code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _A = logging.get_logger('''transformers.models.encodec''') _A = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } _A = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } _A = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } _A = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } _A = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } _A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _A = [] _A = [] def __UpperCamelCase ( _A , _A , _A , _A , _A ): for attribute in key.split('''.''' ): lowerCAmelCase_ = getattr(_A , _A ) if weight_type is not None: lowerCAmelCase_ = getattr(_A , _A ).shape else: lowerCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": lowerCAmelCase_ = value elif weight_type == "weight_g": lowerCAmelCase_ = value elif weight_type == "weight_v": lowerCAmelCase_ = value elif weight_type == "bias": lowerCAmelCase_ = value elif weight_type == "running_mean": lowerCAmelCase_ = value elif weight_type == "running_var": lowerCAmelCase_ = value elif weight_type == "num_batches_tracked": lowerCAmelCase_ = value elif weight_type == "weight_ih_l0": lowerCAmelCase_ = value elif weight_type == "weight_hh_l0": lowerCAmelCase_ = value elif weight_type == "bias_ih_l0": lowerCAmelCase_ = value elif weight_type == "bias_hh_l0": lowerCAmelCase_ = value elif weight_type == "weight_ih_l1": lowerCAmelCase_ = value elif weight_type == "weight_hh_l1": lowerCAmelCase_ = value elif weight_type == "bias_ih_l1": lowerCAmelCase_ = value elif weight_type == "bias_hh_l1": lowerCAmelCase_ = value else: lowerCAmelCase_ = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __UpperCamelCase ( _A , _A ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase_ , lowerCAmelCase_ = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase_ = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase_ = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(_A , _A ): logger.info(f"{name} was ignored" ) continue lowerCAmelCase_ = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase_ , lowerCAmelCase_ = key.split('''.*.''' ) if prefix in name and suffix in name: lowerCAmelCase_ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue lowerCAmelCase_ = True if "*" in mapped_key: lowerCAmelCase_ = name.split(_A )[0].split('''.''' )[-2] lowerCAmelCase_ = mapped_key.replace('''*''' , _A ) if "weight_g" in name: lowerCAmelCase_ = '''weight_g''' elif "weight_v" in name: lowerCAmelCase_ = '''weight_v''' elif "weight_ih_l0" in name: lowerCAmelCase_ = '''weight_ih_l0''' elif "weight_hh_l0" in name: lowerCAmelCase_ = '''weight_hh_l0''' elif "bias_ih_l0" in name: lowerCAmelCase_ = '''bias_ih_l0''' elif "bias_hh_l0" in name: lowerCAmelCase_ = '''bias_hh_l0''' elif "weight_ih_l1" in name: lowerCAmelCase_ = '''weight_ih_l1''' elif "weight_hh_l1" in name: lowerCAmelCase_ = '''weight_hh_l1''' elif "bias_ih_l1" in name: lowerCAmelCase_ = '''bias_ih_l1''' elif "bias_hh_l1" in name: lowerCAmelCase_ = '''bias_hh_l1''' elif "bias" in name: lowerCAmelCase_ = '''bias''' elif "weight" in name: lowerCAmelCase_ = '''weight''' elif "running_mean" in name: lowerCAmelCase_ = '''running_mean''' elif "running_var" in name: lowerCAmelCase_ = '''running_var''' elif "num_batches_tracked" in name: lowerCAmelCase_ = '''num_batches_tracked''' else: lowerCAmelCase_ = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def __UpperCamelCase ( _A , _A , _A , _A=None , _A=None , ): if config_path is not None: lowerCAmelCase_ = EncodecConfig.from_pretrained(_A ) else: lowerCAmelCase_ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase_ = [8, 5, 4, 4] lowerCAmelCase_ = [2.2] lowerCAmelCase_ = 64 lowerCAmelCase_ = 32000 lowerCAmelCase_ = 2048 lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False elif model_name == "encodec_48khz": lowerCAmelCase_ = [8, 5, 4, 2] lowerCAmelCase_ = [3.0, 6.0, 1_2.0, 2_4.0] lowerCAmelCase_ = 48000 lowerCAmelCase_ = 2 lowerCAmelCase_ = False lowerCAmelCase_ = '''time_group_norm''' lowerCAmelCase_ = True lowerCAmelCase_ = 1.0 lowerCAmelCase_ = 0.0_1 else: raise ValueError(f"Unknown model name: {model_name}" ) lowerCAmelCase_ = EncodecModel(_A ) lowerCAmelCase_ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_A ) lowerCAmelCase_ = torch.load(_A ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase_ = original_checkpoint['''best_state'''] recursively_load_weights(_A , _A , _A ) model.save_pretrained(_A ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(_A ) model.push_to_hub(_A ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) _A = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
431
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
431
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: a : Any = None a : List[Any] = logging.get_logger(__name__) a : int = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} a : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } a : Optional[Any] = { 'google/rembert': 256, } a : Tuple = '▁' class _UpperCamelCase ( __lowercase ): '''simple docstring''' __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = RemBertTokenizer def __init__( self , __lowercase=None , __lowercase=None , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase="[CLS]" , __lowercase="[SEP]" , __lowercase="<unk>" , __lowercase="[SEP]" , __lowercase="<pad>" , __lowercase="[CLS]" , __lowercase="[MASK]" , **__lowercase , ): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = False if not self.vocab_file else True def A__ ( self , __lowercase , __lowercase = None ): UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self , __lowercase , __lowercase = None , __lowercase = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] def A__ ( self , __lowercase , __lowercase = None ): UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , __lowercase , __lowercase = None ): if not os.path.isdir(__a ): logger.error("""Vocabulary path ({}) should be a directory""".format(__a ) ) return UpperCAmelCase__ = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
720
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase__ = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase__ = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } UpperCAmelCase__ = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowercase , __lowercase ) def A__ ( self , **__lowercase ): return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def A__ ( self , **__lowercase ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def A__ ( self ): shutil.rmtree(self.tmpdirname ) def A__ ( self ): UpperCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self ): UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def A__ ( self ): UpperCAmelCase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase__ = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(__lowercase , return_tensors="""np""" ) UpperCAmelCase__ = processor(images=__lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = processor(text=__lowercase ) UpperCAmelCase__ = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(__lowercase ): processor() def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ = processor.batch_decode(__lowercase ) UpperCAmelCase__ = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def A__ ( self ): UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
422
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=32 , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=[10, 20, 30, 40] , UpperCamelCase=[2, 2, 3, 2] , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=10 , UpperCamelCase=0.02 , UpperCamelCase=["stage2", "stage3", "stage4"] , UpperCamelCase=3 , UpperCamelCase=None , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = num_stages lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = out_features lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = num_stages def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def snake_case ( self ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = UperNetForSemanticSegmentation(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (UperNetForSemanticSegmentation,) if is_torch_available() else () _lowerCamelCase = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = UperNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): """simple docstring""" return def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="UperNet does not have a base model" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="UperNet does not have a base model" ) def snake_case ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(UpperCamelCase ) lowerCamelCase_ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def snake_case ( self ): """simple docstring""" pass @slow def snake_case ( self ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = UperNetForSemanticSegmentation.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def __snake_case ( ): lowerCamelCase_ = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) lowerCamelCase_ = Image.open(UpperCAmelCase_ ).convert("RGB" ) return image @require_torch @require_vision @slow class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) lowerCamelCase_ = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(UpperCamelCase ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = processor(images=UpperCamelCase , return_tensors="pt" ).to(UpperCamelCase ) with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase ) lowerCamelCase_ = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) lowerCamelCase_ = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(UpperCamelCase ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = processor(images=UpperCamelCase , return_tensors="pt" ).to(UpperCamelCase ) with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase ) lowerCamelCase_ = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1e-4 ) )
675
'''simple docstring''' import os import sys import unittest a_ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a_ : Tuple = os.path.join(git_repo_path, """src""", """transformers""") a_ : List[Any] = """ {0} = None """ a_ : Optional[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ a_ : str = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(UpperCamelCase ) lowerCamelCase_ = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(UpperCamelCase , "tokenizers" ) lowerCamelCase_ = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(UpperCamelCase , "tensorflow_text" ) lowerCamelCase_ = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(UpperCamelCase , "sentencepiece_and_tokenizers" ) lowerCamelCase_ = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(UpperCamelCase , "sentencepiece_and_tensorflow_text" ) lowerCamelCase_ = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(UpperCamelCase , "sentencepiece_and_tokenizers_and_vision" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , UpperCamelCase ) self.assertIn("tensorflow_text" , UpperCamelCase ) self.assertIn("sentencepiece_and_tokenizers" , UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertModel" , objects["tf"] ) self.assertIn("FlaxBertModel" , objects["flax"] ) self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertTokenizer" , objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer" , objects["sentencepiece_and_tokenizers"] ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(UpperCamelCase , "\nCONSTANT = None\n" ) lowerCamelCase_ = create_dummy_object("function" , "'torch'" ) self.assertEqual( UpperCamelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) lowerCamelCase_ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" lowerCamelCase_ = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" lowerCamelCase_ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , UpperCamelCase )
675
1
'''simple docstring''' def _lowercase ( UpperCamelCase__ : list, UpperCamelCase__ : list ): _validate_point(UpperCamelCase__ ) _validate_point(UpperCamelCase__ ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(UpperCamelCase__, UpperCamelCase__ ) ) ) def _lowercase ( UpperCamelCase__ : list[float] ): if point: if isinstance(UpperCamelCase__, UpperCamelCase__ ): for item in point: if not isinstance(UpperCamelCase__, (int, float) ): __A : List[Any] = ( 'Expected a list of numbers as input, found ' f"""{type(UpperCamelCase__ ).__name__}""" ) raise TypeError(UpperCamelCase__ ) else: __A : Optional[Any] = f"""Expected a list of numbers as input, found {type(UpperCamelCase__ ).__name__}""" raise TypeError(UpperCamelCase__ ) else: raise ValueError('Missing an input' ) def _lowercase ( UpperCamelCase__ : list, UpperCamelCase__ : list ): _validate_point(UpperCamelCase__ ) _validate_point(UpperCamelCase__ ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(UpperCamelCase__, UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
540
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Tuple = logging.get_logger(__name__) def _lowercase ( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Tuple=False ): __A : List[str] = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __A : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def _lowercase ( UpperCamelCase__ : Any, UpperCamelCase__ : int, UpperCamelCase__ : List[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: __A : Optional[Any] = '' else: __A : int = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A : str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) __A : str = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __A : List[Any] = in_proj_weight[ : config.hidden_size, : ] __A : List[Any] = in_proj_bias[: config.hidden_size] __A : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A : Dict = in_proj_weight[ -config.hidden_size :, : ] __A : Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowercase ( UpperCamelCase__ : Optional[Any] ): __A : Any = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(UpperCamelCase__, UpperCamelCase__ ) def _lowercase ( UpperCamelCase__ : Any, UpperCamelCase__ : Any, UpperCamelCase__ : Union[str, Any] ): __A : Dict = dct.pop(UpperCamelCase__ ) __A : Optional[Any] = val def _lowercase ( ): __A : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A : Optional[Any] = Image.open(requests.get(UpperCamelCase__, stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def _lowercase ( UpperCamelCase__ : Tuple, UpperCamelCase__ : int, UpperCamelCase__ : Any=False ): __A : Optional[Any] = BitConfig( global_padding='same', layer_type='bottleneck', depths=(3, 4, 9), out_features=['stage3'], embedding_dynamic_padding=UpperCamelCase__, ) __A : str = ViTHybridConfig(backbone_config=UpperCamelCase__, image_size=384, num_labels=1000 ) __A : Union[str, Any] = False # load original model from timm __A : List[Any] = timm.create_model(UpperCamelCase__, pretrained=UpperCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __A : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(UpperCamelCase__ ) __A : List[str] = create_rename_keys(UpperCamelCase__, UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) __A : List[str] = 'huggingface/label-files' __A : Optional[Any] = 'imagenet-1k-id2label.json' __A : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__, UpperCamelCase__, repo_type='dataset' ), 'r' ) ) __A : Optional[int] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __A : List[Any] = idalabel __A : Tuple = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": __A : List[Any] = ViTHybridModel(UpperCamelCase__ ).eval() else: __A : int = ViTHybridForImageClassification(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) # create image processor __A : Tuple = create_transform(**resolve_data_config({}, model=UpperCamelCase__ ) ) __A : Union[str, Any] = transform.transforms __A : str = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } __A : List[str] = ViTHybridImageProcessor( do_resize=UpperCamelCase__, size={'shortest_edge': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=UpperCamelCase__, crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]}, do_normalize=UpperCamelCase__, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) __A : Optional[Any] = prepare_img() __A : Any = transform(UpperCamelCase__ ).unsqueeze(0 ) __A : Dict = processor(UpperCamelCase__, return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(UpperCamelCase__, UpperCamelCase__ ) # verify logits with torch.no_grad(): __A : Union[str, Any] = model(UpperCamelCase__ ) __A : Dict = outputs.logits print('Predicted class:', logits.argmax(-1 ).item() ) if base_model: __A : Tuple = timm_model.forward_features(UpperCamelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(UpperCamelCase__, outputs.pooler_output, atol=1E-3 ) else: __A : Any = timm_model(UpperCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase__, outputs.logits, atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
540
1
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _A = logging.getLogger(__name__) class __UpperCAmelCase ( a_ ): """simple docstring""" _snake_case : Tuple = 'sequence-classification' def __init__( self : Dict , A_ : Union[str, Any] )-> Optional[int]: if type(a_ ) == dict: __UpperCamelCase = Namespace(**a_ ) __UpperCamelCase = glue_output_modes[hparams.task] __UpperCamelCase = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : int , **A_ : List[str] )-> List[str]: return self.model(**a_ ) def A ( self : Tuple , A_ : Dict , A_ : int )-> Tuple: __UpperCamelCase = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __UpperCamelCase = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __UpperCamelCase = self(**a_ ) __UpperCamelCase = outputs[0] __UpperCamelCase = self.trainer.lr_schedulers[0]["scheduler"] __UpperCamelCase = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[int] )-> List[str]: __UpperCamelCase = self.hparams __UpperCamelCase = processors[args.task]() __UpperCamelCase = processor.get_labels() for mode in ["train", "dev"]: __UpperCamelCase = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __UpperCamelCase = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __UpperCamelCase = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : List[str] , A_ : Optional[Any] , A_ : List[Any] , A_ : int = False )-> Any: __UpperCamelCase = "dev" if mode == "test" else mode __UpperCamelCase = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __UpperCamelCase = torch.load(a_ ) __UpperCamelCase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __UpperCamelCase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __UpperCamelCase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __UpperCamelCase = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __UpperCamelCase = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : Dict , A_ : Optional[int] , A_ : str )-> List[Any]: __UpperCamelCase = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __UpperCamelCase = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __UpperCamelCase = self(**a_ ) __UpperCamelCase = outputs[:2] __UpperCamelCase = logits.detach().cpu().numpy() __UpperCamelCase = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : List[str] , A_ : List[str] )-> int: __UpperCamelCase = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __UpperCamelCase = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __UpperCamelCase = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __UpperCamelCase = np.squeeze(a_ ) __UpperCamelCase = np.concatenate([x["target"] for x in outputs] , axis=0 ) __UpperCamelCase = [[] for _ in range(out_label_ids.shape[0] )] __UpperCamelCase = [[] for _ in range(out_label_ids.shape[0] )] __UpperCamelCase = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __UpperCamelCase = dict(results.items() ) __UpperCamelCase = results return ret, preds_list, out_label_list def A ( self : Tuple , A_ : Any )-> List[str]: __UpperCamelCase = self._eval_end(a_ ) __UpperCamelCase = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : Any , A_ : List[str] )-> Dict: __UpperCamelCase = self._eval_end(a_ ) __UpperCamelCase = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( A_ : Dict , A_ : List[str] )-> int: BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=1_28 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def lowercase () -> Optional[int]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() add_generic_args(SCREAMING_SNAKE_CASE__ ,os.getcwd() ) __UpperCamelCase = GLUETransformer.add_model_specific_args(SCREAMING_SNAKE_CASE__ ,os.getcwd() ) __UpperCamelCase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __UpperCamelCase = os.path.join( "./results" ,f"""{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}""" ,) os.makedirs(args.output_dir ) __UpperCamelCase = GLUETransformer(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase = generic_train(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir ,"checkpoint-epoch=*.ckpt" ) ,recursive=SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
505
"""simple docstring""" import argparse import os import re import packaging.version SCREAMING_SNAKE_CASE_ = """examples/""" SCREAMING_SNAKE_CASE_ = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } SCREAMING_SNAKE_CASE_ = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } SCREAMING_SNAKE_CASE_ = """README.md""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE__, "r", encoding="utf-8", newline="\n" ) as f: a_ : Union[str, Any] = f.read() a_ , a_ : List[str] = REPLACE_PATTERNS[pattern] a_ : List[Any] = replace.replace("VERSION", SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = re_pattern.sub(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__, "w", encoding="utf-8", newline="\n" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__, pattern="examples" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__=False ) -> List[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if not patch: update_version_in_examples(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( ) -> Union[str, Any]: a_ : int = "🤗 Transformers currently provides the following architectures" a_ : str = "1. Want to contribute a new model?" with open(SCREAMING_SNAKE_CASE__, "r", encoding="utf-8", newline="\n" ) as f: a_ : Union[str, Any] = f.readlines() # Find the start of the list. a_ : List[str] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a_ : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): a_ : str = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc", "https://huggingface.co/docs/diffusers/model_doc", ) index += 1 with open(SCREAMING_SNAKE_CASE__, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( ) -> Optional[Any]: with open(REPLACE_FILES["init"], "r" ) as f: a_ : Dict = f.read() a_ : Union[str, Any] = REPLACE_PATTERNS["init"][0].search(SCREAMING_SNAKE_CASE__ ).groups()[0] return packaging.version.parse(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__=False ) -> int: a_ : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: a_ : Optional[int] = default_version.base_version elif patch: a_ : List[Any] = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: a_ : str = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. a_ : Any = input(F"""Which version are you releasing? [{default_version}]""" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: a_ : Optional[Any] = default_version print(F"""Updating version to {version}.""" ) global_version_update(SCREAMING_SNAKE_CASE__, patch=SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( ) -> List[str]: a_ : Optional[Any] = get_version() a_ : Optional[int] = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" a_ : Dict = current_version.base_version # Check with the user we got that right. a_ : Any = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: a_ : int = dev_version print(F"""Updating version to {version}.""" ) global_version_update(SCREAMING_SNAKE_CASE__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") SCREAMING_SNAKE_CASE_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
237
0
'''simple docstring''' from __future__ import annotations class __magic_name__: def __init__( self : Dict , __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' snake_case__ , snake_case__ = text, pattern snake_case__ , snake_case__ = len(__UpperCamelCase ), len(__UpperCamelCase ) def __lowerCAmelCase( self : Dict , __UpperCamelCase : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __lowerCAmelCase( self : Any , __UpperCamelCase : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __lowerCAmelCase( self : str ): '''simple docstring''' snake_case__ = [] for i in range(self.textLen - self.patLen + 1 ): snake_case__ = self.mismatch_in_text(__UpperCamelCase ) if mismatch_index == -1: positions.append(__UpperCamelCase ) else: snake_case__ = self.match_in_pattern(self.text[mismatch_index] ) snake_case__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions a__ = '''ABAABA''' a__ = '''AB''' a__ = BoyerMooreSearch(text, pattern) a__ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
566
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def snake_case__ ( a ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def snake_case__ ( a , a , a ) -> np.ndarray: '''simple docstring''' snake_case__ = np.nan for i in range(a ): snake_case__ = features[:, labels == i] snake_case__ = data.mean(1 ) # Centralize the data of class i snake_case__ = data - column_reshape(a ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(a , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case__ = np.dot(a , centered_data.T ) return covariance_sum / features.shape[1] def snake_case__ ( a , a , a ) -> np.ndarray: '''simple docstring''' snake_case__ = features.mean(1 ) snake_case__ = np.nan for i in range(a ): snake_case__ = features[:, labels == i] snake_case__ = data.shape[1] snake_case__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(a ) - column_reshape(a ) , (column_reshape(a ) - column_reshape(a )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case__ = device_data * np.dot( column_reshape(a ) - column_reshape(a ) , (column_reshape(a ) - column_reshape(a )).T , ) return covariance_sum / features.shape[1] def snake_case__ ( a , a ) -> np.ndarray: '''simple docstring''' if features.any(): snake_case__ = features.mean(1 ) # Center the dataset snake_case__ = features - np.reshape(a , (data_mean.size, 1) ) snake_case__ = np.dot(a , centered_data.T ) / features.shape[1] snake_case__ , snake_case__ = np.linalg.eigh(a ) # Take all the columns in the reverse order (-1), and then takes only the first snake_case__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space snake_case__ = np.dot(filtered_eigenvectors.T , a ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=a ) logging.error("""Dataset empty""" ) raise AssertionError def snake_case__ ( a , a , a , a ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: snake_case__ , snake_case__ = eigh( covariance_between_classes(a , a , a ) , covariance_within_classes(a , a , a ) , ) snake_case__ = eigenvectors[:, ::-1][:, :dimensions] snake_case__ , snake_case__ , snake_case__ = np.linalg.svd(a ) snake_case__ = svd_matrix[:, 0:dimensions] snake_case__ = np.dot(filtered_svd_matrix.T , a ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=a ) logging.error("""Dataset empty""" ) raise AssertionError def snake_case__ ( ) -> None: '''simple docstring''' snake_case__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) snake_case__ = np.array([0, 0, 0, 1, 1] ) snake_case__ = 2 snake_case__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(a ) as error_info: snake_case__ = linear_discriminant_analysis( a , a , a , a ) if isinstance(a , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def snake_case__ ( ) -> None: '''simple docstring''' snake_case__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) snake_case__ = 2 snake_case__ = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(a ) as error_info: snake_case__ = principal_component_analysis(a , a ) if not np.allclose(a , a ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
566
1
import operator as op def A__ ( lowercase: Any ) -> List[Any]: A : Dict =[] A : Optional[Any] =lambda lowercase, lowercase : int(x / y ) # noqa: E731 integer division operation A : Optional[Any] ={ '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ), 'Action'.center(12 ), 'Stack', sep=' | ' ) print('-' * (30 + len(lowercase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase ) # append x to stack # output in tabular format print(x.rjust(8 ), ('push(' + x + ')').ljust(12 ), ','.join(lowercase ), sep=' | ' ) else: A : Optional[int] =stack.pop() # pop stack # output in tabular format print(''.rjust(8 ), ('pop(' + b + ')').ljust(12 ), ','.join(lowercase ), sep=' | ' ) A : Optional[int] =stack.pop() # pop stack # output in tabular format print(''.rjust(8 ), ('pop(' + a + ')').ljust(12 ), ','.join(lowercase ), sep=' | ' ) stack.append( str(opr[x](int(lowercase ), int(lowercase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ('push(' + a + x + b + ')').ljust(12 ), ','.join(lowercase ), sep=' | ', ) return int(stack[0] ) if __name__ == "__main__": _lowercase : Any =input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
305
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowercase : Dict ='''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A__ ( lowercase: str, lowercase: Dict=None ) -> Tuple: require_version(deps[pkg], lowercase )
305
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A :int = PegasusTokenizer A :Tuple = PegasusTokenizerFast A :Optional[Any] = True A :Union[str, Any] = True def _A ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a__ : Tuple = PegasusTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _A ( self ): """simple docstring""" return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def _A ( self , **__UpperCAmelCase ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _A ( self , __UpperCAmelCase ): """simple docstring""" return ("This is a test", "This is a test") def _A ( self ): """simple docstring""" a__ : Dict = "</s>" a__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(__UpperCAmelCase ) , 1103 ) def _A ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _A ( self ): """simple docstring""" a__ : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) a__ : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) a__ : Optional[int] = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) a__ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0] a__ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : Dict = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word a__ : Any = "<mask_1> To ensure a <mask_2> flow of bank resolutions." a__ : Dict = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] a__ : Any = tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 a__ : Any = "To ensure a smooth flow of bank resolutions." a__ : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] a__ : List[str] = tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _A ( self ): """simple docstring""" a__ : List[str] = ["This is going to be way too long." * 150, "short example"] a__ : Optional[int] = ["not super long but more than 5 tokens", "tiny"] a__ : Optional[int] = self._large_tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" ) a__ : Union[str, Any] = self._large_tokenizer( text_target=__UpperCAmelCase , max_length=5 , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(__UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def _A ( self ): """simple docstring""" a__ : Tuple = {"input_ids": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A :Union[str, Any] = PegasusTokenizer A :Optional[Any] = PegasusTokenizerFast A :Dict = True A :str = True def _A ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a__ : Union[str, Any] = PegasusTokenizer(__UpperCAmelCase , offset=0 , mask_token_sent=__UpperCAmelCase , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _A ( self ): """simple docstring""" return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def _A ( self , **__UpperCAmelCase ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _A ( self , __UpperCAmelCase ): """simple docstring""" return ("This is a test", "This is a test") def _A ( self ): """simple docstring""" a__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) a__ : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) a__ : Dict = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) a__ : List[str] = rust_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0] a__ : List[Any] = py_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_torch def _A ( self ): """simple docstring""" a__ : Optional[Any] = ["This is going to be way too long." * 1000, "short example"] a__ : List[Any] = ["not super long but more than 5 tokens", "tiny"] a__ : List[str] = self._large_tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" ) a__ : int = self._large_tokenizer( text_target=__UpperCAmelCase , max_length=5 , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(__UpperCAmelCase ) == 2 # input_ids, attention_mask. def _A ( self ): """simple docstring""" a__ : Optional[Any] = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) a__ : Tuple = self._large_tokenizer(__UpperCAmelCase ).input_ids self.assertListEqual( __UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
713
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> int: a__ : List[Any] = prime_factors(__UpperCamelCase ) if is_square_free(__UpperCamelCase ): return -1 if len(__UpperCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
207
0
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[int]: UpperCAmelCase__ : Optional[int] = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } UpperCAmelCase__ , UpperCAmelCase__ : int = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase__ : Tuple = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) assert base_extractor.is_extractable(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ : Dict = file_path.read_text(encoding='''utf-8''' ) else: UpperCAmelCase__ : Union[str, Any] = output_path.read_text(encoding='''utf-8''' ) UpperCAmelCase__ : Dict = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[Any]: UpperCAmelCase__ : Union[str, Any] = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } UpperCAmelCase__ : Dict = input_paths[compression_format] if input_path is None: UpperCAmelCase__ : int = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) UpperCAmelCase__ : Any = Extractor.infer_extractor_format(lowerCAmelCase__ ) assert extractor_format is not None UpperCAmelCase__ : Any = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ : Optional[int] = file_path.read_text(encoding='''utf-8''' ) else: UpperCAmelCase__ : Optional[int] = output_path.read_text(encoding='''utf-8''' ) UpperCAmelCase__ : Optional[int] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: import tarfile UpperCAmelCase__ : int = tmp_path / '''data_dot_dot''' directory.mkdir() UpperCAmelCase__ : Tuple = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(lowerCAmelCase__ , '''w''' ) as f: f.add(lowerCAmelCase__ , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def a__ ( lowerCAmelCase__ ) -> Any: import tarfile UpperCAmelCase__ : str = tmp_path / '''data_sym_link''' directory.mkdir() UpperCAmelCase__ : Optional[Any] = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=lowerCAmelCase__ ) with tarfile.TarFile(lowerCAmelCase__ , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: UpperCAmelCase__ : Dict = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } UpperCAmelCase__ : Any = insecure_tar_files[insecure_tar_file] UpperCAmelCase__ : Dict = tmp_path / '''extracted''' TarExtractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def a__ ( lowerCAmelCase__ ) -> Optional[Any]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number UpperCAmelCase__ : Dict = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase__ : List[str] = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(lowerCAmelCase__ ) assert zipfile.is_zipfile(str(lowerCAmelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCAmelCase__ ) # but we're right
75
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a_ : Union[str, Any] = NewType('DataClass', Any) a_ : int = NewType('DataClassType', Any) def __lowercase( UpperCAmelCase__ ): """simple docstring""" if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = {str(UpperCAmelCase__ ): choice for choice in choices} return lambda UpperCAmelCase__ : str_to_choice.get(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowercase( *, UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = dataclasses.MISSING , UpperCAmelCase__ = dataclasses.MISSING , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCamelCase = {} if aliases is not None: lowerCamelCase = aliases if help is not None: lowerCamelCase = help return dataclasses.field(metadata=UpperCAmelCase__ , default=UpperCAmelCase__ , default_factory=UpperCAmelCase__ , **UpperCAmelCase__ ) class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" _A = 42 def __init__(self , __a , **__a ): '''simple docstring''' if "formatter_class" not in kwargs: lowerCamelCase = ArgumentDefaultsHelpFormatter super().__init__(**__a ) if dataclasses.is_dataclass(__a ): lowerCamelCase = [dataclass_types] lowerCamelCase = list(__a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__a ) @staticmethod def _a (__a , __a ): '''simple docstring''' lowerCamelCase = F"""--{field.name}""" lowerCamelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __a ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) lowerCamelCase = kwargs.pop("aliases" , [] ) if isinstance(__a , __a ): lowerCamelCase = [aliases] lowerCamelCase = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(__a , "UnionType" ) and isinstance(__a , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__a ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F""" Problem encountered in field '{field.name}'.""" ) if type(__a ) not in field.type.__args__: # filter `str` in Union lowerCamelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCamelCase = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCamelCase = ( field.type.__args__[0] if isinstance(__a , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCamelCase = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCamelCase = {} if origin_type is Literal or (isinstance(field.type , __a ) and issubclass(field.type , __a )): if origin_type is Literal: lowerCamelCase = field.type.__args__ else: lowerCamelCase = [x.value for x in field.type] lowerCamelCase = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: lowerCamelCase = field.default else: lowerCamelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCamelCase = copy(__a ) # Hack because type=bool in argparse does not behave as we want. lowerCamelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCamelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCamelCase = default # This tells argparse we accept 0 or 1 value after --field_name lowerCamelCase = "?" # This is the value that will get picked if we do --field_name (without value) lowerCamelCase = True elif isclass(__a ) and issubclass(__a , __a ): lowerCamelCase = field.type.__args__[0] lowerCamelCase = "+" if field.default_factory is not dataclasses.MISSING: lowerCamelCase = field.default_factory() elif field.default is dataclasses.MISSING: lowerCamelCase = True else: lowerCamelCase = field.type if field.default is not dataclasses.MISSING: lowerCamelCase = field.default elif field.default_factory is not dataclasses.MISSING: lowerCamelCase = field.default_factory() else: lowerCamelCase = True parser.add_argument(__a , *__a , **__a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCamelCase = False parser.add_argument(F"""--no_{field.name}""" , action="store_false" , dest=field.name , **__a ) def _a (self , __a ): '''simple docstring''' if hasattr(__a , "_argument_group_name" ): lowerCamelCase = self.add_argument_group(dtype._argument_group_name ) else: lowerCamelCase = self try: lowerCamelCase = get_type_hints(__a ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__a ): lowerCamelCase = ".".join(map(__a , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(__a ): if not field.init: continue lowerCamelCase = type_hints[field.name] self._parse_dataclass_field(__a , __a ) def _a (self , __a=None , __a=False , __a=True , __a=None , __a=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCamelCase = [] if args_filename: args_files.append(Path(__a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCamelCase = ArgumentParser() args_file_parser.add_argument(__a , type=__a , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCamelCase , lowerCamelCase = args_file_parser.parse_known_args(args=__a ) lowerCamelCase = vars(__a ).get(args_file_flag.lstrip("-" ) , __a ) if cmd_args_file_paths: args_files.extend([Path(__a ) for p in cmd_args_file_paths] ) lowerCamelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCamelCase = file_args + args if args is not None else file_args + sys.argv[1:] lowerCamelCase , lowerCamelCase = self.parse_known_args(args=__a ) lowerCamelCase = [] for dtype in self.dataclass_types: lowerCamelCase = {f.name for f in dataclasses.fields(__a ) if f.init} lowerCamelCase = {k: v for k, v in vars(__a ).items() if k in keys} for k in keys: delattr(__a , __a ) lowerCamelCase = dtype(**__a ) outputs.append(__a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _a (self , __a , __a = False ): '''simple docstring''' lowerCamelCase = set(args.keys() ) lowerCamelCase = [] for dtype in self.dataclass_types: lowerCamelCase = {f.name for f in dataclasses.fields(__a ) if f.init} lowerCamelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCamelCase = dtype(**__a ) outputs.append(__a ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(__a )}""" ) return tuple(__a ) def _a (self , __a , __a = False ): '''simple docstring''' with open(Path(__a ) , encoding="utf-8" ) as open_json_file: lowerCamelCase = json.loads(open_json_file.read() ) lowerCamelCase = self.parse_dict(__a , allow_extra_keys=__a ) return tuple(__a ) def _a (self , __a , __a = False ): '''simple docstring''' lowerCamelCase = self.parse_dict(yaml.safe_load(Path(__a ).read_text() ) , allow_extra_keys=__a ) return tuple(__a )
623
0
"""simple docstring""" class __SCREAMING_SNAKE_CASE : def __init__( self :Tuple ,__UpperCAmelCase :Any ) -> List[str]: """simple docstring""" lowerCamelCase__ : List[Any] = val lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : str = None def lowercase_ ( self :Optional[Any] ,__UpperCAmelCase :Any ) -> List[str]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowerCamelCase__ : Optional[Any] = Node(__UpperCAmelCase ) else: self.left.insert(__UpperCAmelCase ) elif val > self.val: if self.right is None: lowerCamelCase__ : List[str] = Node(__UpperCAmelCase ) else: self.right.insert(__UpperCAmelCase ) else: lowerCamelCase__ : List[str] = val def __a ( _lowercase , _lowercase ): """simple docstring""" if root: inorder(root.left , _lowercase ) res.append(root.val ) inorder(root.right , _lowercase ) def __a ( _lowercase ): """simple docstring""" if len(_lowercase ) == 0: return arr lowerCamelCase__ : List[Any] = Node(arr[0] ) for i in range(1 , len(_lowercase ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCamelCase__ : Optional[int] = [] inorder(_lowercase , _lowercase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
708
"""simple docstring""" def __a ( _lowercase ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") UpperCAmelCase : Tuple = int(input("Enter number: ").strip()) print(f'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
121
0
UpperCAmelCase_ : Optional[Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" UpperCAmelCase_ : str = [{"type": "code", "content": INSTALL_CONTENT}] UpperCAmelCase_ : Union[str, Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
21
import gc import threading import time import psutil import torch class lowerCAmelCase : def __init__( self : str ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = psutil.Process() lowerCamelCase__ : Union[str, Any] = False def A_ ( self : Optional[int] ) -> int: lowerCamelCase__ : Optional[Any] = -1 while True: lowerCamelCase__ : Dict = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A_ ( self : Tuple ) -> Dict: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = threading.Thread(target=self.peak_monitor ) lowerCamelCase__ : Union[str, Any] = True self.thread.start() def A_ ( self : str ) -> Dict: lowerCamelCase__ : int = False self.thread.join() return self.cpu_memory_peak _UpperCAmelCase : Dict = PeakCPUMemory() def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # Time lowerCamelCase__ : List[Any] = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase__ : List[str] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase__ : Union[str, Any] = torch.cuda.memory_allocated(_UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: # Time lowerCamelCase__ : Optional[int] = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase__ : Dict = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 lowerCamelCase__ : int = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase__ : List[str] = (torch.cuda.memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 lowerCamelCase__ : Optional[Any] = (torch.cuda.max_memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 return measures def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_UpperCAmelCase )]:.2f}MiB""" ) lowerCamelCase__ : List[str] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
295
0
'''simple docstring''' from typing import Any class UpperCamelCase__ : def __init__( self : int , lowerCamelCase : Any ): '''simple docstring''' a__ = data a__ = None class UpperCamelCase__ : def __init__( self : str ): '''simple docstring''' a__ = None def __a ( self : Union[str, Any] ): '''simple docstring''' a__ = self.head while temp is not None: print(temp.data , end=" " ) a__ = temp.next print() def __a ( self : Tuple , lowerCamelCase : Any ): '''simple docstring''' a__ = Node(lowerCamelCase ) a__ = self.head a__ = new_node def __a ( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] ): '''simple docstring''' if node_data_a == node_data_a: return else: a__ = self.head while node_a is not None and node_a.data != node_data_a: a__ = node_a.next a__ = self.head while node_a is not None and node_a.data != node_data_a: a__ = node_a.next if node_a is None or node_a is None: return a__ , a__ = node_a.data, node_a.data if __name__ == "__main__": lowerCAmelCase_ : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
289
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def _lowerCamelCase (__lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=False ) -> Dict: try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: a__ = os.path.abspath(__lowerCamelCase ) logger.info(f'''Loading PyTorch weights from {pt_path}''' ) a__ = torch.load(__lowerCamelCase , map_location="cpu" ) logger.info(f'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) a__ = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files a__ = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def _lowerCamelCase (__lowerCamelCase : Tuple[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, jnp.ndarray] , __lowerCamelCase : str , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase : Tuple[str] ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm a__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean a__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var a__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding a__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer a__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): a__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): a__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 a__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): a__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): a__ = pt_tuple_key[-2] + "_v" if name is not None: a__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _lowerCamelCase (__lowerCamelCase : int , __lowerCamelCase : List[Any] ) -> Any: # convert pytorch tensor to numpy a__ = {k: v.numpy() for k, v in pt_state_dict.items()} a__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: a__ = flax_model.params["params"] else: a__ = flax_model.params a__ = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: a__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(__lowerCamelCase ) a__ = {} a__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) a__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary a__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: a__ = pt_tuple_key[1:] # Correctly rename weight parameters a__ , a__ = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary a__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: a__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: a__ = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown a__ = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown a__ = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def _lowerCamelCase (__lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ) -> Union[str, Any]: import torch # Load the index a__ = {} for shard_file in shard_filenames: # load using msgpack utils a__ = torch.load(__lowerCamelCase ) a__ = {k: v.numpy() for k, v in pt_state_dict.items()} a__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: a__ = flax_model.params["params"] a__ = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: a__ = flax_model.params a__ = flatten_dict(__lowerCamelCase ) a__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) a__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary a__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: a__ = pt_tuple_key[1:] # Correctly rename weight parameters a__ , a__ = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary a__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: a__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: a__ = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: a__ = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown a__ = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown a__ = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def _lowerCamelCase (__lowerCamelCase : Tuple , __lowerCamelCase : Tuple ) -> Any: a__ = os.path.abspath(__lowerCamelCase ) logger.info(f'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class a__ = getattr(__lowerCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , "rb" ) as state_f: try: a__ = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase (__lowerCamelCase : str , __lowerCamelCase : Tuple ) -> Dict: try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights a__ = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) a__ = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) a__ = flatten_dict(__lowerCamelCase ) a__ = pt_model.state_dict() a__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) a__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys a__ = [] a__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): a__ = flax_key_tuple[0] == pt_model.base_model_prefix a__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: a__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: a__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer a__ = flax_key_tuple[:-1] + ("weight",) a__ = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer a__ = flax_key_tuple[:-1] + ("weight",) a__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: a__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: a__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: a__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: a__ = ".".join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. a__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: a__ = key.split("." ) a__ = None if key_components[-3::2] == ["parametrizations", "original0"]: a__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: a__ = key_components[-2] + "_v" if name is not None: a__ = key_components[:-3] + [name] a__ = ".".join(__lowerCamelCase ) a__ = key if flax_key in special_pt_names: a__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict a__ = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor a__ = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list a__ = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(f'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(__lowerCamelCase ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' " use it for predictions and inference." ) else: logger.warning( f'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' "If your task is similar to the task the model of the checkpoint was trained on, " f'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
289
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a__ : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
'''simple docstring''' import socket def lowerCAmelCase__ ( ): _A : Dict = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) _A : List[Any] = socket.gethostname() _A : List[str] = 12312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' ,'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _A : Optional[int] = sock.recv(1024 ) if not data: break out_file.write(lowerCamelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
128
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: str = logging.get_logger(__name__) _lowercase: List[str] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ ='swin2sr' UpperCamelCase__ ={ 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : str , lowercase__ : List[Any]=64 , lowercase__ : List[str]=1 , lowercase__ : Optional[int]=3 , lowercase__ : Tuple=1_80 , lowercase__ : Optional[Any]=[6, 6, 6, 6, 6, 6] , lowercase__ : Optional[int]=[6, 6, 6, 6, 6, 6] , lowercase__ : int=8 , lowercase__ : int=2.0 , lowercase__ : List[Any]=True , lowercase__ : List[str]=0.0 , lowercase__ : Union[str, Any]=0.0 , lowercase__ : str=0.1 , lowercase__ : Optional[int]="gelu" , lowercase__ : Any=False , lowercase__ : Any=0.0_2 , lowercase__ : List[str]=1e-5 , lowercase__ : List[Any]=2 , lowercase__ : Tuple=1.0 , lowercase__ : List[str]="1conv" , lowercase__ : Any="pixelshuffle" , **lowercase__ : List[str] , ): super().__init__(**_a ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_a ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = upscale _lowerCAmelCase = img_range _lowerCAmelCase = resi_connection _lowerCAmelCase = upsampler
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase: Any = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Tuple = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[Any] = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[Any] = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[Any] = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _lowercase: Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
225
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : Tuple , __snake_case : int , __snake_case : List[str]=13 , __snake_case : int=7 , __snake_case : int=True , __snake_case : int=True , __snake_case : Dict=True , __snake_case : str=True , __snake_case : Dict=99 , __snake_case : Optional[int]=32 , __snake_case : Optional[Any]=5 , __snake_case : Union[str, Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : int="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Any=512 , __snake_case : Dict=16 , __snake_case : Optional[int]=2 , __snake_case : str=0.0_2 , __snake_case : int=4 , ): lowerCamelCase :Union[str, Any] = parent lowerCamelCase :str = batch_size lowerCamelCase :Dict = seq_length lowerCamelCase :int = is_training lowerCamelCase :int = use_attention_mask lowerCamelCase :Optional[Any] = use_token_type_ids lowerCamelCase :int = use_labels lowerCamelCase :List[Any] = vocab_size lowerCamelCase :str = hidden_size lowerCamelCase :Optional[int] = num_hidden_layers lowerCamelCase :Tuple = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :Tuple = hidden_act lowerCamelCase :Any = hidden_dropout_prob lowerCamelCase :List[str] = attention_probs_dropout_prob lowerCamelCase :Any = max_position_embeddings lowerCamelCase :Dict = type_vocab_size lowerCamelCase :int = type_sequence_label_size lowerCamelCase :str = initializer_range lowerCamelCase :Any = num_choices def snake_case ( self : Any ): lowerCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase :Any = None if self.use_attention_mask: lowerCamelCase :int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase :Dict = None if self.use_token_type_ids: lowerCamelCase :Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase :List[str] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case ( self : Any ): lowerCamelCase :int = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :Any = config_and_inputs lowerCamelCase :str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :Optional[Any] = config_and_inputs lowerCamelCase :List[Any] = True lowerCamelCase :Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase :str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = True _UpperCAmelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def snake_case ( self : Optional[int] ): lowerCamelCase :str = FlaxRobertaPreLayerNormModelTester(self ) @slow def snake_case ( self : Any ): for model_class_name in self.all_model_classes: lowerCamelCase :Dict = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__snake_case ) lowerCamelCase :Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self : Tuple ): lowerCamelCase :List[str] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__snake_case ) lowerCamelCase :int = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) lowerCamelCase :List[str] = model(__snake_case )[0] lowerCamelCase :Tuple = [1, 11, 50265] self.assertEqual(list(output.shape ) , __snake_case ) # compare the actual values for a slice. lowerCamelCase :Optional[Any] = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def snake_case ( self : Any ): lowerCamelCase :Optional[int] = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__snake_case ) lowerCamelCase :Union[str, Any] = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) lowerCamelCase :int = model(__snake_case )[0] # compare the actual values for a slice. lowerCamelCase :List[Any] = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) )
166
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = """▁""" A__ = {"""vocab_file""": """sentencepiece.bpe.model"""} A__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } A__ = { """xlm-roberta-base""": 512, """xlm-roberta-large""": 512, """xlm-roberta-large-finetuned-conll02-dutch""": 512, """xlm-roberta-large-finetuned-conll02-spanish""": 512, """xlm-roberta-large-finetuned-conll03-english""": 512, """xlm-roberta-large-finetuned-conll03-german""": 512, } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , __snake_case : Any , __snake_case : str="<s>" , __snake_case : Dict="</s>" , __snake_case : List[Any]="</s>" , __snake_case : str="<s>" , __snake_case : Tuple="<unk>" , __snake_case : int="<pad>" , __snake_case : List[str]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase :int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token lowerCamelCase :str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) lowerCamelCase :Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) lowerCamelCase :List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase :Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase :Tuple = 1 lowerCamelCase :Dict = len(self.sp_model ) + self.fairseq_offset lowerCamelCase :Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.__dict__.copy() lowerCamelCase :int = None lowerCamelCase :List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , __snake_case : Optional[Any] ): lowerCamelCase :str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase :List[str] = {} lowerCamelCase :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase :Optional[int] = [self.cls_token_id] lowerCamelCase :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def snake_case ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): lowerCamelCase :Dict = [self.sep_token_id] lowerCamelCase :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case ( self : int ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def snake_case ( self : Optional[int] ): lowerCamelCase :int = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self : List[str] , __snake_case : str ): return self.sp_model.encode(__snake_case , out_type=__snake_case ) def snake_case ( self : Tuple , __snake_case : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase :Dict = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case ( self : Any , __snake_case : Any ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case ( self : Dict , __snake_case : List[str] ): lowerCamelCase :Optional[Any] = ''''''.join(__snake_case ).replace(__snake_case , ''' ''' ).strip() return out_string def snake_case ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase :Tuple = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: lowerCamelCase :Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
166
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowerCamelCase_ ( lowerCamelCase ): a__ = '''informer''' a__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "student_t" , __lowerCAmelCase = "nll" , __lowerCAmelCase = 1 , __lowerCAmelCase = None , __lowerCAmelCase = "mean" , __lowerCAmelCase = 0 , __lowerCAmelCase = 0 , __lowerCAmelCase = 0 , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 6_4 , __lowerCAmelCase = 3_2 , __lowerCAmelCase = 3_2 , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , __lowerCAmelCase = True , __lowerCAmelCase = "gelu" , __lowerCAmelCase = 0.05 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 1_0_0 , __lowerCAmelCase = 0.02 , __lowerCAmelCase=True , __lowerCAmelCase = "prob" , __lowerCAmelCase = 5 , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" # time series specific configuration __magic_name__ :str = prediction_length __magic_name__ :List[Any] = context_length or prediction_length __magic_name__ :Dict = distribution_output __magic_name__ :Optional[int] = loss __magic_name__ :Tuple = input_size __magic_name__ :Optional[Any] = num_time_features __magic_name__ :Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __magic_name__ :Dict = scaling __magic_name__ :Union[str, Any] = num_dynamic_real_features __magic_name__ :Union[str, Any] = num_static_real_features __magic_name__ :List[str] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __magic_name__ :Optional[int] = cardinality else: __magic_name__ :List[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __magic_name__ :Tuple = embedding_dimension else: __magic_name__ :Any = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __magic_name__ :List[str] = num_parallel_samples # Transformer architecture configuration __magic_name__ :Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features __magic_name__ :List[str] = d_model __magic_name__ :Union[str, Any] = encoder_attention_heads __magic_name__ :Optional[int] = decoder_attention_heads __magic_name__ :Optional[Any] = encoder_ffn_dim __magic_name__ :Dict = decoder_ffn_dim __magic_name__ :List[Any] = encoder_layers __magic_name__ :List[str] = decoder_layers __magic_name__ :int = dropout __magic_name__ :Union[str, Any] = attention_dropout __magic_name__ :str = activation_dropout __magic_name__ :str = encoder_layerdrop __magic_name__ :List[Any] = decoder_layerdrop __magic_name__ :int = activation_function __magic_name__ :List[Any] = init_std __magic_name__ :List[str] = use_cache # Informer __magic_name__ :List[str] = attention_type __magic_name__ :Union[str, Any] = sampling_factor __magic_name__ :List[Any] = distil super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) @property def A ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
180
SCREAMING_SNAKE_CASE__ : str = """Alexander Joslin""" import operator as op from .stack import Stack def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Optional[int] = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} __magic_name__ :Stack[int] = Stack() __magic_name__ :Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(snake_case ) elif i == ")": # RULE 4 __magic_name__ :Optional[int] = operator_stack.peek() operator_stack.pop() __magic_name__ :List[str] = operand_stack.peek() operand_stack.pop() __magic_name__ :Optional[Any] = operand_stack.peek() operand_stack.pop() __magic_name__ :Optional[int] = operators[opr](snake_case, snake_case ) operand_stack.push(snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
180
1
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A_ = logging.get_logger(__name__) def _UpperCamelCase ( __UpperCamelCase=None ,__UpperCamelCase=None ) -> Tuple: return field(default_factory=lambda: default ,metadata=__UpperCamelCase ) @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) SCREAMING_SNAKE_CASE_ = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) SCREAMING_SNAKE_CASE_ = list_field( default=[8, 32, 1_28, 5_12] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) SCREAMING_SNAKE_CASE_ = field( default=__lowerCamelCase , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) SCREAMING_SNAKE_CASE_ = field( default=__lowerCamelCase , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) SCREAMING_SNAKE_CASE_ = field( default=__lowerCamelCase , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) SCREAMING_SNAKE_CASE_ = field(default=__lowerCamelCase , metadata={'help': 'Use FP16 to accelerate inference.'} ) SCREAMING_SNAKE_CASE_ = field(default=__lowerCamelCase , metadata={'help': 'Benchmark training of model'} ) SCREAMING_SNAKE_CASE_ = field(default=__lowerCamelCase , metadata={'help': 'Verbose memory tracing'} ) SCREAMING_SNAKE_CASE_ = field( default=__lowerCamelCase , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) SCREAMING_SNAKE_CASE_ = field( default=__lowerCamelCase , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) SCREAMING_SNAKE_CASE_ = field(default=__lowerCamelCase , metadata={'help': 'Trace memory line by line'} ) SCREAMING_SNAKE_CASE_ = field(default=__lowerCamelCase , metadata={'help': 'Save result to a CSV file'} ) SCREAMING_SNAKE_CASE_ = field(default=__lowerCamelCase , metadata={'help': 'Save all print statements in a log file'} ) SCREAMING_SNAKE_CASE_ = field(default=__lowerCamelCase , metadata={'help': 'Whether to print environment information'} ) SCREAMING_SNAKE_CASE_ = field( default=__lowerCamelCase , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) SCREAMING_SNAKE_CASE_ = field( default=f"inference_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) SCREAMING_SNAKE_CASE_ = field( default=f"inference_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) SCREAMING_SNAKE_CASE_ = field( default=f"train_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) SCREAMING_SNAKE_CASE_ = field( default=f"train_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) SCREAMING_SNAKE_CASE_ = field( default=f"env_info_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving environment information.'} , ) SCREAMING_SNAKE_CASE_ = field( default=f"log_{round(time() )}.csv" , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) SCREAMING_SNAKE_CASE_ = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) SCREAMING_SNAKE_CASE_ = field( default=__lowerCamelCase , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' warnings.warn( f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , SCREAMING_SNAKE_CASE_ , ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def UpperCamelCase( self ) -> Any: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
42
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] ,A : Optional[int] ,A : int=13 ,A : Tuple=7 ,A : Dict=True ,A : Optional[int]=True ,A : Tuple=True ,A : str=True ,A : Any=99 ,A : Tuple=32 ,A : Dict=5 ,A : Optional[int]=4 ,A : Dict=37 ,A : Any="gelu" ,A : Any=0.1 ,A : Optional[int]=0.1 ,A : Union[str, Any]=512 ,A : Any=16 ,A : List[str]=2 ,A : List[Any]=0.0_2 ,A : Optional[int]=4 ,): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Optional[Any] = use_attention_mask UpperCAmelCase__ : int = use_token_type_ids UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : Any = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : List[Any] = type_vocab_size UpperCAmelCase__ : List[str] = type_sequence_label_size UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = num_choices def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : List[str] = None if self.use_attention_mask: UpperCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : int = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=A ,) return config, input_ids, attention_mask def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = FlaxDistilBertModelTester(self ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase__ : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __lowercase ( unittest.TestCase ): @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase__ : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase__ : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase__ : Dict = model(A ,attention_mask=A )[0] UpperCAmelCase__ : List[Any] = (1, 11, 768) self.assertEqual(output.shape ,A ) UpperCAmelCase__ : Any = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,A ,atol=1e-4 ) )
65
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase : List[Any] = logging.get_logger(__name__) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : List[str] = '''AutoTokenizer''' __A : str = ['''tokenizer'''] __A : List[str] = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self , lowercase , lowercase=None) -> List[str]: '''simple docstring''' super().__init__(lowercase) a__ : Dict = speaker_embeddings @classmethod def __lowercase ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase) -> List[str]: '''simple docstring''' if speaker_embeddings_dict_path is not None: a__ : List[str] = get_file_from_repo( lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase) , cache_dir=kwargs.pop('cache_dir' , lowercase) , force_download=kwargs.pop('force_download' , lowercase) , proxies=kwargs.pop('proxies' , lowercase) , resume_download=kwargs.pop('resume_download' , lowercase) , local_files_only=kwargs.pop('local_files_only' , lowercase) , use_auth_token=kwargs.pop('use_auth_token' , lowercase) , revision=kwargs.pop('revision' , lowercase) , ) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(lowercase , lowercase)}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.') a__ : int = None else: with open(lowercase) as speaker_embeddings_json: a__ : Union[str, Any] = json.load(lowercase) else: a__ : int = None a__ : str = AutoTokenizer.from_pretrained(lowercase , **lowercase) return cls(tokenizer=lowercase , speaker_embeddings=lowercase) def __lowercase ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ) -> Optional[Any]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowercase , lowercase , 'v2') , exist_ok=lowercase) a__ : List[Any] = {} a__ : Dict = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": a__ : List[Any] = self._load_voice_preset(lowercase) a__ : Union[str, Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowercase , F'{prompt_key}_{key}') , voice_preset[key] , allow_pickle=lowercase , ) a__ : Tuple = os.path.join(lowercase , F'{prompt_key}_{key}.npy') a__ : Any = tmp_dict with open(os.path.join(lowercase , lowercase) , 'w') as fp: json.dump(lowercase , lowercase) super().save_pretrained(lowercase , lowercase , **lowercase) def __lowercase ( self , lowercase = None , **lowercase) -> Dict: '''simple docstring''' a__ : List[Any] = self.speaker_embeddings[voice_preset] a__ : int = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].') a__ : Dict = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/') , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase) , cache_dir=kwargs.pop('cache_dir' , lowercase) , force_download=kwargs.pop('force_download' , lowercase) , proxies=kwargs.pop('proxies' , lowercase) , resume_download=kwargs.pop('resume_download' , lowercase) , local_files_only=kwargs.pop('local_files_only' , lowercase) , use_auth_token=kwargs.pop('use_auth_token' , lowercase) , revision=kwargs.pop('revision' , lowercase) , ) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/") , voice_preset_paths[key])}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.') a__ : Optional[Any] = np.load(lowercase) return voice_preset_dict def __lowercase ( self , lowercase = None) -> Optional[int]: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.') if not isinstance(voice_preset[key] , np.ndarray): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.') if len(voice_preset[key].shape) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.') def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ) -> Union[str, Any]: '''simple docstring''' if voice_preset is not None and not isinstance(lowercase , lowercase): if ( isinstance(lowercase , lowercase) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): a__ : int = self._load_voice_preset(lowercase) else: if isinstance(lowercase , lowercase) and not voice_preset.endswith('.npz'): a__ : Tuple = voice_preset + '.npz' a__ : str = np.load(lowercase) if voice_preset is not None: self._validate_voice_preset_dict(lowercase , **lowercase) a__ : int = BatchFeature(data=lowercase , tensor_type=lowercase) a__ : List[Any] = self.tokenizer( lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , ) if voice_preset is not None: a__ : Union[str, Any] = voice_preset return encoded_text
713
def A_ ( A__ ) -> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) a__ : Any = [True] * (num + 1) a__ : Dict = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , A__ ): a__ : Tuple = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowercase : Union[str, Any] = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
392
0
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : str = logging.get_logger(__name__) lowerCAmelCase_ : List[Any] = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCamelCase__ ( __lowerCAmelCase ): lowerCAmelCase__ : Tuple = "xlm-prophetnet" lowerCAmelCase__ : Optional[Any] = ["past_key_values"] lowerCAmelCase__ : Union[str, Any] = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self : int , lowerCamelCase : Optional[float] = 0.1 , lowerCamelCase : Optional[Union[str, Callable]] = "gelu" , lowerCamelCase : Optional[int] = 3_0_5_2_2 , lowerCamelCase : Optional[int] = 1_0_2_4 , lowerCamelCase : Optional[int] = 4_0_9_6 , lowerCamelCase : Optional[int] = 1_2 , lowerCamelCase : Optional[int] = 1_6 , lowerCamelCase : Optional[int] = 4_0_9_6 , lowerCamelCase : Optional[int] = 1_2 , lowerCamelCase : Optional[int] = 1_6 , lowerCamelCase : Optional[float] = 0.1 , lowerCamelCase : Optional[float] = 0.1 , lowerCamelCase : Optional[int] = 5_1_2 , lowerCamelCase : Optional[float] = 0.02 , lowerCamelCase : Optional[bool] = True , lowerCamelCase : Optional[bool] = True , lowerCamelCase : Optional[int] = 0 , lowerCamelCase : Optional[int] = 2 , lowerCamelCase : Optional[int] = 3_2 , lowerCamelCase : Optional[int] = 1_2_8 , lowerCamelCase : Optional[bool] = False , lowerCamelCase : Optional[float] = 0.0 , lowerCamelCase : Optional[bool] = True , lowerCamelCase : Optional[int] = 0 , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : Optional[int] = 2 , **lowerCamelCase : Dict , ): '''simple docstring''' a__ = vocab_size a__ = hidden_size a__ = encoder_ffn_dim a__ = num_encoder_layers a__ = num_encoder_attention_heads a__ = decoder_ffn_dim a__ = num_decoder_layers a__ = num_decoder_attention_heads a__ = max_position_embeddings a__ = init_std # Normal(0, this parameter) a__ = activation_function # parameters for xlmprophetnet a__ = ngram a__ = num_buckets a__ = relative_max_distance a__ = disable_ngram_loss a__ = eps # 3 Types of Dropout a__ = attention_dropout a__ = activation_dropout a__ = dropout a__ = use_cache super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , is_encoder_decoder=lowerCamelCase , add_cross_attention=lowerCamelCase , decoder_start_token_id=lowerCamelCase , **lowerCamelCase , ) @property def __a ( self : str ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __a ( self : List[Any] , lowerCamelCase : Optional[Any] ): '''simple docstring''' raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
489
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar lowerCAmelCase_ : Optional[int] = TypeVar("_T") class UpperCamelCase__ ( Generic[_T] ): def __init__( self : Dict , lowerCamelCase : Iterable[_T] | None = None ): '''simple docstring''' a__ = list(iterable or [] ) a__ = [] def __len__( self : Optional[Any] ): '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : List[Any] ): '''simple docstring''' return F'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def __a ( self : Union[str, Any] , lowerCamelCase : _T ): '''simple docstring''' self._stacka.append(lowerCamelCase ) def __a ( self : Dict ): '''simple docstring''' a__ = self._stacka.pop a__ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
489
1
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = OpenAIGPTTokenizer __lowerCAmelCase = OpenAIGPTTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = False def _lowerCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __a : str = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __a : List[Any] = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _lowerCamelCase ( self , _UpperCAmelCase ): return "lower newer", "lower newer" def _lowerCamelCase ( self ): __a : Tuple = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __a : Tuple = '''lower''' __a : Union[str, Any] = ['''low''', '''er</w>'''] __a : str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : List[Any] = tokens + ['''<unk>'''] __a : Tuple = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Any = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # Simple input __a : str = '''This is a simple input''' __a : Dict = ['''This is a simple input 1''', '''This is a simple input 2'''] __a : List[Any] = ('''This is a simple input''', '''This is a pair''') __a : Optional[Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' , ) def _lowerCamelCase ( self ): pass @require_ftfy @require_spacy @require_tokenizers class __lowercase ( _UpperCamelCase ): '''simple docstring''' pass
101
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = StableDiffusionInstructPixaPixPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): torch.manual_seed(0 ) __a : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __a : List[str] = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) __a : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __a : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a : Optional[int] = CLIPTextModel(_UpperCAmelCase ) __a : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): __a : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) __a : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : Tuple = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ) if str(_UpperCAmelCase ).startswith('''mps''' ): __a : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __a : Union[str, Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __a : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Dict = self.get_dummy_components() __a : Any = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) __a : int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs(_UpperCAmelCase ) __a : str = sd_pipe(**_UpperCAmelCase ).images __a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a : Optional[int] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Optional[Any] = self.get_dummy_components() __a : Dict = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) __a : List[Any] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = self.get_dummy_inputs(_UpperCAmelCase ) __a : Union[str, Any] = '''french fries''' __a : str = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) __a : Dict = output.images __a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a : Tuple = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Dict = self.get_dummy_components() __a : str = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) __a : Optional[int] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs(_UpperCAmelCase ) __a : List[str] = [inputs['''prompt''']] * 2 __a : Optional[Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 2_5_5.0 __a : Optional[Any] = torch.from_numpy(_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) __a : Tuple = image / 2 + 0.5 __a : str = image.permute(0 , 3 , 1 , 2 ) __a : List[str] = image.repeat(2 , 1 , 1 , 1 ) __a : int = sd_pipe(**_UpperCAmelCase ).images __a : Optional[Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __a : List[str] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : List[str] = self.get_dummy_components() __a : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) __a : str = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) __a : List[str] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = self.get_dummy_inputs(_UpperCAmelCase ) __a : Any = sd_pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1] __a : Optional[int] = [round(_UpperCAmelCase , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(_UpperCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __a : int = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): __a : Any = self.get_dummy_components() __a : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) __a : Any = VaeImageProcessor(do_resize=_UpperCAmelCase , do_normalize=_UpperCAmelCase ) __a : Dict = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : str = pipe(**self.get_dummy_inputs_by_type(_UpperCAmelCase , input_image_type='''pt''' ) )[0] __a : List[Any] = components['''vae'''] __a : List[Any] = self.get_dummy_inputs_by_type(_UpperCAmelCase , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __a : Optional[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() __a : str = pipe(**_UpperCAmelCase )[0] __a : Union[str, Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(_UpperCAmelCase , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self , _UpperCAmelCase=0 ): __a : List[str] = torch.manual_seed(_UpperCAmelCase ) __a : str = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __a : List[str] = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : str = self.get_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __a : Tuple = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_UpperCAmelCase ) __a : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : List[str] = self.get_inputs() __a : Optional[int] = pipe(**_UpperCAmelCase ).images __a : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __a : Tuple = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_UpperCAmelCase ) __a : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : List[str] = self.get_inputs() __a : str = pipe(**_UpperCAmelCase ).images __a : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __a : Any = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : Dict = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: __a : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __a : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __a : int = latents[0, -3:, -3:, -1] __a : int = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __a : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __a : List[str] = latents[0, -3:, -3:, -1] __a : Tuple = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __a : Union[str, Any] = False __a : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) __a : Optional[int] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : str = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _lowerCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) __a : Optional[int] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a : List[Any] = self.get_inputs() __a : Tuple = pipe(**_UpperCAmelCase ) __a : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _lowerCamelCase ( self ): __a : List[Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __a : str = inputs['''image'''].resize((504, 504) ) __a : Tuple = '''timbrooks/instruct-pix2pix''' __a : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __a : List[Any] = pipe(**_UpperCAmelCase ) __a : int = output.images[0] __a : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __a : Union[str, Any] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
101
1
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = BertTokenizer lowercase__ = BertTokenizerFast lowercase__ = True lowercase__ = True lowercase__ = filter_non_english def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' super().setUp() _UpperCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = '''UNwant\u00E9d,running''' _UpperCamelCase = '''unwanted, running''' return input_text, output_text def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.tokenizer_class(self.vocab_file) _UpperCamelCase = tokenizer.tokenize('''UNwant\u00E9d,running''') self.assertListEqual(__a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [9, 6, 7, 12, 10, 11]) def UpperCAmelCase ( self) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''UNwant\u00E9d,running''' _UpperCamelCase = tokenizer.tokenize(__a) _UpperCamelCase = rust_tokenizer.tokenize(__a) self.assertListEqual(__a , __a) _UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a) _UpperCamelCase = rust_tokenizer.encode(__a , add_special_tokens=__a) self.assertListEqual(__a , __a) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(__a) _UpperCamelCase = rust_tokenizer.encode(__a) self.assertListEqual(__a , __a) # With lower casing _UpperCamelCase = self.get_tokenizer(do_lower_case=__a) _UpperCamelCase = self.get_rust_tokenizer(do_lower_case=__a) _UpperCamelCase = '''UNwant\u00E9d,running''' _UpperCamelCase = tokenizer.tokenize(__a) _UpperCamelCase = rust_tokenizer.tokenize(__a) self.assertListEqual(__a , __a) _UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a) _UpperCamelCase = rust_tokenizer.encode(__a , add_special_tokens=__a) self.assertListEqual(__a , __a) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(__a) _UpperCamelCase = rust_tokenizer.encode(__a) self.assertListEqual(__a , __a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''') , ['''ah''', '''\u535A''', '''\u63A8''', '''zz''']) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''h\u00E9llo''']) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a , never_split=['''[UNK]''']) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]''']) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = BasicTokenizer() _UpperCamelCase = '''a\n\'ll !!to?\'d of, can\'t.''' _UpperCamelCase = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(__a) , __a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] _UpperCamelCase = {} for i, token in enumerate(__a): _UpperCamelCase = i _UpperCamelCase = WordpieceTokenizer(vocab=__a , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''unwanted running''') , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.tokenize('''unwantedX running''') , ['''[UNK]''', '''runn''', '''##ing''']) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' self.assertTrue(_is_whitespace(''' ''')) self.assertTrue(_is_whitespace('''\t''')) self.assertTrue(_is_whitespace('''\r''')) self.assertTrue(_is_whitespace('''\n''')) self.assertTrue(_is_whitespace('''\u00A0''')) self.assertFalse(_is_whitespace('''A''')) self.assertFalse(_is_whitespace('''-''')) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' self.assertTrue(_is_control('''\u0005''')) self.assertFalse(_is_control('''A''')) self.assertFalse(_is_control(''' ''')) self.assertFalse(_is_control('''\t''')) self.assertFalse(_is_control('''\r''')) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.assertTrue(_is_punctuation('''-''')) self.assertTrue(_is_punctuation('''$''')) self.assertTrue(_is_punctuation('''`''')) self.assertTrue(_is_punctuation('''.''')) self.assertFalse(_is_punctuation('''A''')) self.assertFalse(_is_punctuation(''' ''')) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']]) self.assertListEqual( [rust_tokenizer.tokenize(__a) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']]) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained('''bert-base-uncased''') _UpperCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__a) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__a) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__a) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__a , __a) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a) _UpperCamelCase = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase = tokenizer_r.do_lower_case if hasattr(__a , '''do_lower_case''') else False _UpperCamelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''])) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping''']) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ['''的''', '''人''', '''有'''] _UpperCamelCase = ''''''.join(__a) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _UpperCamelCase = True _UpperCamelCase = self.tokenizer_class.from_pretrained(__a , **__a) _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a) _UpperCamelCase = tokenizer_p.encode(__a , add_special_tokens=__a) _UpperCamelCase = tokenizer_r.encode(__a , add_special_tokens=__a) _UpperCamelCase = tokenizer_r.convert_ids_to_tokens(__a) _UpperCamelCase = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a) self.assertListEqual(__a , __a) _UpperCamelCase = False _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a) _UpperCamelCase = self.tokenizer_class.from_pretrained(__a , **__a) _UpperCamelCase = tokenizer_r.encode(__a , add_special_tokens=__a) _UpperCamelCase = tokenizer_p.encode(__a , add_special_tokens=__a) _UpperCamelCase = tokenizer_r.convert_ids_to_tokens(__a) _UpperCamelCase = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a) ] self.assertListEqual(__a , __a) self.assertListEqual(__a , __a)
19
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
1
from __future__ import annotations import os from typing import Any import requests UpperCamelCase = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCamelCase = BASE_URL + '''/user''' # https://github.com/settings/tokens UpperCamelCase = os.environ.get('''USER_TOKEN''', '''''') def __lowerCamelCase ( snake_case__ ) -> dict[Any, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = { """Authorization""": F'token {auth_token}', """Accept""": """application/vnd.github.v3+json""", } return requests.get(snake_case__ ,headers=snake_case__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
718
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = "" __snake_case : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __snake_case : str = None # compression type in fsspec. ex: "gzip" __snake_case : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self: int , UpperCAmelCase_: str = "" , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: Optional[dict] = None , **UpperCAmelCase_: Any ): '''simple docstring''' super().__init__(self , **UpperCAmelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _SCREAMING_SNAKE_CASE = fsspec.open( UpperCAmelCase_ , mode="""rb""" , protocol=UpperCAmelCase_ , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _SCREAMING_SNAKE_CASE = os.path.basename(self.file.path.split("""::""" )[0] ) _SCREAMING_SNAKE_CASE = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) _SCREAMING_SNAKE_CASE = None @classmethod def UpperCamelCase ( cls: str , UpperCAmelCase_: List[Any] ): '''simple docstring''' return super()._strip_protocol(UpperCAmelCase_ ).lstrip("""/""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' if self.dir_cache is None: _SCREAMING_SNAKE_CASE = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} _SCREAMING_SNAKE_CASE = {f["""name"""]: f} def UpperCamelCase ( self: str , UpperCAmelCase_: str ): '''simple docstring''' return self.file.open().read() def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: str = "rb" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: int=True , UpperCAmelCase_: Optional[int]=None , **UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._strip_protocol(UpperCAmelCase_ ) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : str = "bz2" __snake_case : List[str] = "bz2" __snake_case : Optional[int] = ".bz2" class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Union[str, Any] = "gzip" __snake_case : str = "gzip" __snake_case : str = ".gz" class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = "lz4" __snake_case : Any = "lz4" __snake_case : List[Any] = ".lz4" class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : str = "xz" __snake_case : int = "xz" __snake_case : Dict = ".xz" class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[Any] = "zstd" __snake_case : List[str] = "zstd" __snake_case : List[str] = ".zst" def __init__( self: Any , UpperCAmelCase_: str , UpperCAmelCase_: str = "rb" , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: Optional[dict] = None , UpperCAmelCase_: int = DEFAULT_BLOCK_SIZE , **UpperCAmelCase_: Union[str, Any] , ): '''simple docstring''' super().__init__( fo=UpperCAmelCase_ , mode=UpperCAmelCase_ , target_protocol=UpperCAmelCase_ , target_options=UpperCAmelCase_ , block_size=UpperCAmelCase_ , **UpperCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _SCREAMING_SNAKE_CASE = self.file.__enter__ class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = file_ def __enter__( self: Dict ): '''simple docstring''' self._file.__enter__() return self def __exit__( self: Optional[int] , *UpperCAmelCase_: Optional[Any] , **UpperCAmelCase_: List[Any] ): '''simple docstring''' self._file.__exit__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def __iter__( self: Optional[int] ): '''simple docstring''' return iter(self._file ) def UpperCamelCase ( self: Dict ): '''simple docstring''' return next(self._file ) def __getattr__( self: List[Any] , UpperCAmelCase_: Dict ): '''simple docstring''' return getattr(self._file , UpperCAmelCase_ ) def fixed_enter(*UpperCAmelCase_: Dict , **UpperCAmelCase_: List[Any] ): return WrappedFile(_enter(*UpperCAmelCase_ , **UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = fixed_enter
569
0
import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE__ = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A ( __UpperCamelCase ) -> str: re.sub('<n>' , '' , __UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCamelCase ) )
9
SCREAMING_SNAKE_CASE__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
9
1
'''simple docstring''' import math def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ = 10_001 ): try: lowercase_ : List[Any] = int(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) lowercase_ : list[int] = [] lowercase_ : Optional[int] = 2 while len(SCREAMING_SNAKE_CASE_ ) < nth: if is_prime(SCREAMING_SNAKE_CASE_ ): primes.append(SCREAMING_SNAKE_CASE_ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE_ ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
438
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowercase_ ,lowercase_ : Optional[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": _A = list(range(1_0, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
438
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _lowerCAmelCase(a : List[str] , a : List[Any] , a : int , a : int=5 ) -> Optional[int]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 _SCREAMING_SNAKE_CASE =torch.tensor(tokenizer.encode(a , add_special_tokens=a ) ).unsqueeze(0 ) # Batch size 1 _SCREAMING_SNAKE_CASE =model(a )[0] # The last hidden-state is the first element of the output tuple _SCREAMING_SNAKE_CASE =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _SCREAMING_SNAKE_CASE =logits[0, masked_index, :] _SCREAMING_SNAKE_CASE =logits.softmax(dim=0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prob.topk(k=a , dim=0 ) _SCREAMING_SNAKE_CASE =''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(a ) )] ) _SCREAMING_SNAKE_CASE =tokenizer.mask_token _SCREAMING_SNAKE_CASE =[] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): _SCREAMING_SNAKE_CASE =predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(a ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a ) , a ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(a , a ), values[index].item(), predicted_token, ) ) return topk_filled_outputs UpperCAmelCase_ : int = CamembertTokenizer.from_pretrained('''camembert-base''') UpperCAmelCase_ : str = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() UpperCAmelCase_ : List[str] = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
255
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) def _lowerCAmelCase(a : Any ) -> int: _SCREAMING_SNAKE_CASE =DPTConfig() if "large" in checkpoint_url: _SCREAMING_SNAKE_CASE =1024 _SCREAMING_SNAKE_CASE =4096 _SCREAMING_SNAKE_CASE =24 _SCREAMING_SNAKE_CASE =16 _SCREAMING_SNAKE_CASE =[5, 11, 17, 23] _SCREAMING_SNAKE_CASE =[256, 512, 1024, 1024] _SCREAMING_SNAKE_CASE =(1, 384, 384) if "ade" in checkpoint_url: _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =150 _SCREAMING_SNAKE_CASE ='''huggingface/label-files''' _SCREAMING_SNAKE_CASE ='''ade20k-id2label.json''' _SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(a , a , repo_type='''dataset''' ) ) , '''r''' ) ) _SCREAMING_SNAKE_CASE ={int(a ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE =idalabel _SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE =[1, 150, 480, 480] return config, expected_shape def _lowerCAmelCase(a : Any ) -> List[Any]: _SCREAMING_SNAKE_CASE =['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(a , a ) def _lowerCAmelCase(a : Dict ) -> Union[str, Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _SCREAMING_SNAKE_CASE =name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: _SCREAMING_SNAKE_CASE =name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: _SCREAMING_SNAKE_CASE =name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: _SCREAMING_SNAKE_CASE =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: _SCREAMING_SNAKE_CASE =name.replace('''proj''' , '''projection''' ) if "blocks" in name: _SCREAMING_SNAKE_CASE =name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: _SCREAMING_SNAKE_CASE =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _SCREAMING_SNAKE_CASE =name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: _SCREAMING_SNAKE_CASE =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _SCREAMING_SNAKE_CASE =name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: _SCREAMING_SNAKE_CASE =name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: _SCREAMING_SNAKE_CASE =name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: _SCREAMING_SNAKE_CASE =name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: _SCREAMING_SNAKE_CASE =name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: _SCREAMING_SNAKE_CASE =name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: _SCREAMING_SNAKE_CASE =name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: _SCREAMING_SNAKE_CASE =int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _SCREAMING_SNAKE_CASE =name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _SCREAMING_SNAKE_CASE =name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: _SCREAMING_SNAKE_CASE =name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: _SCREAMING_SNAKE_CASE =name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: _SCREAMING_SNAKE_CASE =name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: _SCREAMING_SNAKE_CASE =name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: _SCREAMING_SNAKE_CASE =name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: _SCREAMING_SNAKE_CASE =name.replace('''bn''' , '''batch_norm''' ) if "head" in name: _SCREAMING_SNAKE_CASE =name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: _SCREAMING_SNAKE_CASE =name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: _SCREAMING_SNAKE_CASE =name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def _lowerCAmelCase(a : str , a : Union[str, Any] ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE =state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _SCREAMING_SNAKE_CASE =state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE =in_proj_weight[: config.hidden_size, :] _SCREAMING_SNAKE_CASE =in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE =in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE =in_proj_bias[-config.hidden_size :] def _lowerCAmelCase() -> List[str]: _SCREAMING_SNAKE_CASE ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _SCREAMING_SNAKE_CASE =Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def _lowerCAmelCase(a : Dict , a : Optional[Any] , a : int , a : List[str] ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =get_dpt_config(a ) # load original state_dict from URL _SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(a , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(a ) # rename keys for key in state_dict.copy().keys(): _SCREAMING_SNAKE_CASE =state_dict.pop(a ) _SCREAMING_SNAKE_CASE =val # read in qkv matrices read_in_q_k_v(a , a ) # load HuggingFace model _SCREAMING_SNAKE_CASE =DPTForSemanticSegmentation(a ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(a ) model.load_state_dict(a ) model.eval() # Check outputs on an image _SCREAMING_SNAKE_CASE =480 if '''ade''' in checkpoint_url else 384 _SCREAMING_SNAKE_CASE =DPTImageProcessor(size=a ) _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(a , return_tensors='''pt''' ) # forward pass _SCREAMING_SNAKE_CASE =model(**a ).logits if '''ade''' in checkpoint_url else model(**a ).predicted_depth # Assert logits _SCREAMING_SNAKE_CASE =torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: _SCREAMING_SNAKE_CASE =torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(a ) assert ( torch.allclose(outputs[0, 0, :3, :3] , a , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , a ) ) Path(a ).mkdir(exist_ok=a ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(a , a ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=a , ) image_processor.push_to_hub( repo_path_or_name=Path(a , a ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=a , ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
255
1
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __lowerCAmelCase = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __lowerCAmelCase = get_tests_dir('''fixtures/vocab.json''') __lowerCAmelCase = get_tests_dir('''fixtures''') class __a ( unittest.TestCase ): __lowercase : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Union[str, Any] = 0 def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Optional[int] = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase__: Optional[int] = WavaVecaConfig() lowercase__: int = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) lowercase__: Dict = AutoProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) copyfile(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'vocab.json' ) ) lowercase__: Dict = AutoProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase__: Dict = WavaVecaFeatureExtractor() lowercase__: Any = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) lowercase__: Tuple = WavaVecaProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) # save in new folder processor.save_pretrained(lowerCAmelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'r' ) as f: lowercase__: Dict = json.load(lowerCAmelCase__ ) config_dict.pop('processor_class' ) with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'w' ) as f: f.write(json.dumps(lowerCAmelCase__ ) ) lowercase__: Optional[Any] = AutoProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase__: Dict = WavaVecaFeatureExtractor() lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) lowercase__: Optional[int] = WavaVecaProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) # save in new folder processor.save_pretrained(lowerCAmelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'r' ) as f: lowercase__: str = json.load(lowerCAmelCase__ ) config_dict.pop('processor_class' ) with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'w' ) as f: f.write(json.dumps(lowerCAmelCase__ ) ) lowercase__: Optional[Any] = AutoProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase__: Dict = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(lowerCAmelCase__ ) # copy relevant files copyfile(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'w' ) as f: f.write('{}' ) lowercase__: int = AutoProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase__ ): lowercase__: Tuple = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): lowercase__: Any = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase__ ) lowercase__: Any = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) lowercase__: Optional[int] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) lowercase__: int = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version lowercase__: List[str] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase__ , use_fast=lowerCAmelCase__ ) lowercase__: Dict = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' try: AutoConfig.register('custom' , lowerCAmelCase__ ) AutoFeatureExtractor.register(lowerCAmelCase__ , lowerCAmelCase__ ) AutoTokenizer.register(lowerCAmelCase__ , slow_tokenizer_class=lowerCAmelCase__ ) AutoProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__: List[str] = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: List[Any] = os.path.join(lowerCAmelCase__ , 'vocab.txt' ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowercase__: Dict = CustomTokenizer(lowerCAmelCase__ ) lowercase__: int = CustomProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCAmelCase__ ) lowercase__: Tuple = AutoProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' class __a ( __UpperCamelCase ): __lowercase : Dict = False class __a ( __UpperCamelCase ): __lowercase : Dict = False class __a ( __UpperCamelCase ): __lowercase : Union[str, Any] = 'AutoFeatureExtractor' __lowercase : Tuple = 'AutoTokenizer' __lowercase : str = False try: AutoConfig.register('custom' , lowerCAmelCase__ ) AutoFeatureExtractor.register(lowerCAmelCase__ , lowerCAmelCase__ ) AutoTokenizer.register(lowerCAmelCase__ , slow_tokenizer_class=lowerCAmelCase__ ) AutoProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # If remote code is not set, the default is to use local classes. lowercase__: List[Any] = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase__: str = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase__: List[str] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[Any] = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Any = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class __a ( unittest.TestCase ): __lowercase : Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> List[Any]: '''simple docstring''' lowercase__: Optional[int] = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> Dict: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = WavaVecaProcessor.from_pretrained(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase__ , 'test-processor' ) , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: List[Any] = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(new_processor.feature_extractor , lowerCAmelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: str = WavaVecaProcessor.from_pretrained(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase__ , 'test-processor-org' ) , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token , organization='valid_org' , ) lowercase__: Optional[Any] = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(new_processor.feature_extractor , lowerCAmelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase__: List[str] = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Union[str, Any] = os.path.join(lowerCAmelCase__ , 'vocab.txt' ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowercase__: Any = CustomTokenizer(lowerCAmelCase__ ) lowercase__: List[str] = CustomProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' , token=self._token ) lowercase__: Dict = Repository(lowerCAmelCase__ , clone_from=F'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(lowerCAmelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCAmelCase__ , 'tokenizer_config.json' ) ) as f: lowercase__: str = json.load(lowerCAmelCase__ ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase__ , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase__ , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase__ , 'custom_processing.py' ) ) ) repo.push_to_hub() lowercase__: Union[str, Any] = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
713
import socket def snake_case_ ( ) -> List[str]: lowercase__: int = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase__: Any = socket.gethostname() lowercase__: Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: lowercase__: Optional[Any] = sock.recv(10_24 ) if not data: break out_file.write(snake_case ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
335
0
def __lowercase ( _UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
321
from heapq import heappop, heappush import numpy as np def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' __lowercase , __lowercase = grid.shape __lowercase = [-1, 1, 0, 0] __lowercase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __lowercase , __lowercase = [(0, source)], set() __lowercase = np.full((rows, cols) , np.inf ) __lowercase = 0 __lowercase = np.empty((rows, cols) , dtype=_UpperCAmelCase ) __lowercase = None while queue: ((__lowercase) , (__lowercase)) = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __lowercase = [] while (x, y) != source: path.append((x, y) ) __lowercase , __lowercase = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): __lowercase , __lowercase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __lowercase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) __lowercase = dist + 1 __lowercase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
321
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ = 4 ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : Any = abs(lowercase_ ) or 4 return [[1 + x + y * row_size for x in range(lowercase_ )] for y in range(lowercase_ )] def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(lowercase_ ) ) # OR.. transpose(reverse_column(matrix)) def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(lowercase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(lowercase_ ) ) # OR.. transpose(reverse_row(matrix)) def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : List[Any] = [list(lowercase_ ) for x in zip(*lowercase_ )] return matrix def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : Tuple = matrix[::-1] return matrix def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : List[str] = [x[::-1] for x in matrix] return matrix def lowercase__ ( lowercase_ ) -> None: """simple docstring""" for i in matrix: print(*lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) lowerCamelCase__ = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) lowerCamelCase__ = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
51
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : list[int] ) -> None: _UpperCamelCase : Tuple = len(__a ) _UpperCamelCase : Dict = [0] * len_array if len_array > 0: _UpperCamelCase : Optional[Any] = array[0] for i in range(1 , __a ): _UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int , __a : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> bool: _UpperCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
51
1
'''simple docstring''' import math def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: '''simple docstring''' if ( not isinstance(lowerCamelCase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: '''simple docstring''' if ( not isinstance(lowerCamelCase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
638
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a =logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Path ,SCREAMING_SNAKE_CASE__ : Union[str, None] = None ,SCREAMING_SNAKE_CASE__ : Union[List[str], None] = None ,SCREAMING_SNAKE_CASE__ : Union[str, List[str], None] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,): __lowerCamelCase : List[str] = [file for file in os.listdir(SCREAMING_SNAKE_CASE__) if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__))] if identifier is not None: __lowerCamelCase : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): for n_ in n_identifier: __lowerCamelCase : Optional[int] = [file for file in files if n_ not in file] else: __lowerCamelCase : Dict = [file for file in files if n_identifier not in file] __lowerCamelCase : str = ignore_files or [] ignore_files.append('__init__.py') __lowerCamelCase : Tuple = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' ,SCREAMING_SNAKE_CASE__) if only_modules: __lowerCamelCase : Optional[int] = file.split('.')[0] try: __lowerCamelCase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = doctest.DocTestSuite(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = unittest.TextTestRunner().run(SCREAMING_SNAKE_CASE__) self.assertIs(len(result.failures) ,0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __lowerCamelCase : int = doctest.testfile(str('..' / directory / file) ,optionflags=doctest.ELLIPSIS) self.assertIs(result.failed ,0) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Dict = Path('src/transformers') __lowerCamelCase : Any = 'modeling' __lowerCamelCase : Dict = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__ ,ignore_files=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Tuple = Path('src/transformers') __lowerCamelCase : Optional[int] = 'tokenization' self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : List[Any] = Path('src/transformers') __lowerCamelCase : str = 'configuration' self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : Dict = Path('src/transformers') __lowerCamelCase : Any = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,n_identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = Path('docs/source') __lowerCamelCase : str = ['favicon.ico'] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,ignore_files=SCREAMING_SNAKE_CASE__ ,only_modules=SCREAMING_SNAKE_CASE__)
652
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A_ = logging.get_logger(__name__) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
384
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["PerceiverFeatureExtractor"] A_ = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
384
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
47
from __future__ import annotations def a__ ( _UpperCamelCase : list[float] ): if len(_UpperCamelCase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) __lowerCamelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
175
0
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger() def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = True ): """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": UpperCAmelCase = timm.create_model("""levit_128s""" , pretrained=_snake_case ) else: UpperCAmelCase = timm.create_model("""levit_128""" , pretrained=_snake_case ) if hidden_sizes == 192: UpperCAmelCase = timm.create_model("""levit_192""" , pretrained=_snake_case ) if hidden_sizes == 256: UpperCAmelCase = timm.create_model("""levit_256""" , pretrained=_snake_case ) if hidden_sizes == 384: UpperCAmelCase = timm.create_model("""levit_384""" , pretrained=_snake_case ) from_model.eval() UpperCAmelCase = LevitForImageClassificationWithTeacher(_snake_case ).eval() UpperCAmelCase = OrderedDict() UpperCAmelCase = from_model.state_dict() UpperCAmelCase = list(from_model.state_dict().keys() ) UpperCAmelCase = list(our_model.state_dict().keys() ) print(len(_snake_case ) , len(_snake_case ) ) for i in range(len(_snake_case ) ): UpperCAmelCase = weights[og_keys[i]] our_model.load_state_dict(_snake_case ) UpperCAmelCase = torch.randn((2, 3, 224, 224) ) UpperCAmelCase = from_model(_snake_case ) UpperCAmelCase = our_model(_snake_case ).logits assert torch.allclose(_snake_case , _snake_case ), "The model logits don't match the original one." UpperCAmelCase = name print(_snake_case ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCAmelCase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def _a ( _snake_case , _snake_case = None , _snake_case = True ): """simple docstring""" UpperCAmelCase = """imagenet-1k-id2label.json""" UpperCAmelCase = 1000 UpperCAmelCase = (1, num_labels) UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = num_labels UpperCAmelCase = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase = {int(_snake_case ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = partial(_snake_case , num_labels=_snake_case , idalabel=_snake_case , labelaid=_snake_case ) UpperCAmelCase = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } UpperCAmelCase = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _snake_case , names_to_config[model_name] , _snake_case , _snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _snake_case , _snake_case , _snake_case , _snake_case ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
74
"""simple docstring""" def _a ( _snake_case = 10 , _snake_case = 22 ): """simple docstring""" UpperCAmelCase = range(1 , _snake_case ) UpperCAmelCase = range(1 , _snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
74
1
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCamelCase : Any = False class lowercase ( unittest.TestCase): '''simple docstring''' pass @nightly @require_torch_gpu class lowercase ( unittest.TestCase): '''simple docstring''' def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Any = VersatileDiffusionPipeline.from_pretrained(snake_case , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : List[str] = generator.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = 'cyberpunk 2077' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe.dual_guided( prompt=snake_case , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images SCREAMING_SNAKE_CASE : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE : Any = 'A painting of a squirrel eating a burger ' SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe.text_to_image( prompt=snake_case , generator=snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images SCREAMING_SNAKE_CASE : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE : Optional[Any] = pipe.image_variation(snake_case , generator=snake_case , output_type='numpy' ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
352
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowerCAmelCase ( ) -> Any: '''simple docstring''' __snake_case = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=_lowerCAmelCase , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=_lowerCAmelCase , default=5 ) parser.add_argument("--batch_size" , type=_lowerCAmelCase , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=_lowerCAmelCase , default=1 ) parser.add_argument("--freeze" , type=_lowerCAmelCase , default=_lowerCAmelCase ) parser.add_argument("--learning_rate" , type=_lowerCAmelCase , default=5E-4 ) parser.add_argument("--seed" , type=_lowerCAmelCase , default=0 ) parser.add_argument("--lr_scheduler_type" , type=_lowerCAmelCase , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=_lowerCAmelCase , default=10 ) parser.add_argument("--weight_decay" , type=_lowerCAmelCase , default=0.01 ) parser.add_argument("--output_dir" , type=_lowerCAmelCase , default="./results" ) return parser.parse_args() A : Optional[int] = load('accuracy') def _lowerCAmelCase ( _lowerCAmelCase ) -> Any: '''simple docstring''' __snake_case , __snake_case = eval_pred __snake_case = np.argmax(_lowerCAmelCase , axis=1 ) return metric.compute(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) class UpperCamelCase( _a ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ) -> None: '''simple docstring''' super().__init__() __snake_case = trainer def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ) -> str: '''simple docstring''' if control.should_evaluate: __snake_case = deepcopy(SCREAMING_SNAKE_CASE ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' __snake_case = get_args() set_seed(args.seed ) __snake_case = load_dataset("codeparrot/codecomplex" , split="train" ) __snake_case = dataset.train_test_split(test_size=0.2 ) __snake_case = train_test["test"].train_test_split(test_size=0.5 ) __snake_case = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) __snake_case = AutoTokenizer.from_pretrained(args.model_ckpt ) __snake_case = tokenizer.eos_token __snake_case = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __snake_case = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __snake_case = False __snake_case = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(_lowerCAmelCase ): __snake_case = tokenizer(example["src"] , truncation=_lowerCAmelCase , max_length=1024 ) __snake_case = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __snake_case = train_test_validation.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=train_test_validation["train"].column_names , ) __snake_case = DataCollatorWithPadding(tokenizer=_lowerCAmelCase ) __snake_case = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) __snake_case = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=_lowerCAmelCase , data_collator=_lowerCAmelCase , compute_metrics=_lowerCAmelCase , ) print("Training..." ) trainer.add_callback(CustomCallback(_lowerCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
473
def _lowerCAmelCase ( _lowerCAmelCase ) -> int: '''simple docstring''' __snake_case = abs(_lowerCAmelCase ) __snake_case = 0 while n > 0: res += n % 10 n //= 10 return res def _lowerCAmelCase ( _lowerCAmelCase ) -> int: '''simple docstring''' __snake_case = abs(_lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _lowerCAmelCase ( _lowerCAmelCase ) -> int: '''simple docstring''' return sum(int(_lowerCAmelCase ) for c in str(abs(_lowerCAmelCase ) ) ) def _lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCAmelCase , _lowerCAmelCase ) -> None: __snake_case = F'''{func.__name__}({value})''' __snake_case = timeit(F'''__main__.{call}''' , setup="import __main__" ) print(F'''{call:56} = {func(_lowerCAmelCase )} -- {timing:.4f} seconds''' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_lowerCAmelCase , _lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
473
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
146
from __future__ import annotations import numpy as np def UpperCamelCase_( snake_case__: np.ndarray ) -> tuple[np.ndarray, np.ndarray]: UpperCAmelCase__ , UpperCAmelCase__ = np.shape(snake_case__ ) if rows != columns: UpperCAmelCase__ = ( '\'table\' has to be of square shaped array but got a ' f"{rows}x{columns} array:\n{table}" ) raise ValueError(snake_case__ ) UpperCAmelCase__ = np.zeros((rows, columns) ) UpperCAmelCase__ = np.zeros((rows, columns) ) for i in range(snake_case__ ): for j in range(snake_case__ ): UpperCAmelCase__ = sum(lower[i][k] * upper[k][j] for k in range(snake_case__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) UpperCAmelCase__ = (table[i][j] - total) / upper[j][j] UpperCAmelCase__ = 1 for j in range(snake_case__ , snake_case__ ): UpperCAmelCase__ = sum(lower[i][k] * upper[k][j] for k in range(snake_case__ ) ) UpperCAmelCase__ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
146
1
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''trajectory_transformer''' _lowercase : Any = ['''past_key_values'''] _lowercase : List[str] = { '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self: Optional[int] , UpperCamelCase_: Optional[int]=100 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: int=1 , UpperCamelCase_: Tuple=1 , UpperCamelCase_: Any=249 , UpperCamelCase_: Dict=6 , UpperCamelCase_: List[Any]=17 , UpperCamelCase_: str=25 , UpperCamelCase_: Optional[Any]=4 , UpperCamelCase_: Optional[Any]=4 , UpperCamelCase_: Optional[Any]=128 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: str=0.1 , UpperCamelCase_: int=0.1 , UpperCamelCase_: List[Any]=0.0006 , UpperCamelCase_: List[Any]=512 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: List[str]=1E-1_2 , UpperCamelCase_: str=1 , UpperCamelCase_: List[Any]=True , UpperCamelCase_: str=1 , UpperCamelCase_: int=50_256 , UpperCamelCase_: Any=50_256 , **UpperCamelCase_: List[str] , ) -> Optional[Any]: """simple docstring""" lowercase__ = vocab_size lowercase__ = action_weight lowercase__ = reward_weight lowercase__ = value_weight lowercase__ = max_position_embeddings lowercase__ = block_size lowercase__ = action_dim lowercase__ = observation_dim lowercase__ = transition_dim lowercase__ = learning_rate lowercase__ = n_layer lowercase__ = n_head lowercase__ = n_embd lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = resid_pdrop lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = kaiming_initializer_range lowercase__ = use_cache super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
429
lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = f'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(SCREAMING_SNAKE_CASE ) lowercase__ = ''''''.join(bin(SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) lowercase__ = len(SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = B'''=''' * ((6 - len(SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(SCREAMING_SNAKE_CASE ) % 6) else: lowercase__ = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = ( '''argument should be a bytes-like object or ASCII string, ''' f'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): try: lowercase__ = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) lowercase__ = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = ''''''.join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = ''''''.join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
429
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" A__ : List[Any] = "vision-encoder-decoder" A__ : Dict = True def __init__( self : List[Any] , **_snake_case : Union[str, Any] ): """simple docstring""" super().__init__(**_snake_case ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) A__ = kwargs.pop('encoder' ) A__ = encoder_config.pop('model_type' ) A__ = kwargs.pop('decoder' ) A__ = decoder_config.pop('model_type' ) A__ = AutoConfig.for_model(_snake_case , **_snake_case ) A__ = AutoConfig.for_model(_snake_case , **_snake_case ) A__ = True @classmethod def _a ( cls : List[Any] , _snake_case : PretrainedConfig , _snake_case : PretrainedConfig , **_snake_case : Tuple ): """simple docstring""" logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" A__ = copy.deepcopy(self.__dict__ ) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output class __lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" A__ : Optional[int] = version.parse("1.11" ) @property def _a ( self : Optional[int] ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _a ( self : List[Any] ): """simple docstring""" return 1E-4 @property def _a ( self : List[Any] ): """simple docstring""" return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class __lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" @property def _a ( self : Any ): """simple docstring""" A__ = OrderedDict() A__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A__ = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def _a ( self : Dict , _snake_case : "PreTrainedTokenizerBase" , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional["TensorType"] = None , ): """simple docstring""" import torch A__ = OrderedDict() A__ = super().generate_dummy_inputs( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) A__ = dummy_input["""input_ids"""].shape A__ = (batch, encoder_sequence, self._config.encoder_hidden_size) A__ = dummy_input.pop('input_ids' ) A__ = dummy_input.pop('attention_mask' ) A__ = torch.zeros(_snake_case ) return common_inputs class __lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" @property def _a ( self : str ): """simple docstring""" pass def _a ( self : Any , _snake_case : PretrainedConfig ): """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_snake_case ) def _a ( self : Dict , _snake_case : PretrainedConfig , _snake_case : PretrainedConfig , _snake_case : str = "default" ): """simple docstring""" A__ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_snake_case , _snake_case )
9
"""simple docstring""" __UpperCAmelCase = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __UpperCAmelCase = frozenset(['prompt', 'negative_prompt']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset(['image']) __UpperCAmelCase = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['image']) __UpperCAmelCase = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __UpperCAmelCase = frozenset(['prompt', 'image', 'negative_prompt']) __UpperCAmelCase = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __UpperCAmelCase = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) __UpperCAmelCase = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['image', 'mask_image']) __UpperCAmelCase = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['example_image', 'image', 'mask_image']) __UpperCAmelCase = frozenset(['class_labels']) __UpperCAmelCase = frozenset(['class_labels']) __UpperCAmelCase = frozenset(['batch_size']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset(['batch_size']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __UpperCAmelCase = frozenset(['prompt', 'negative_prompt']) __UpperCAmelCase = frozenset(['input_tokens']) __UpperCAmelCase = frozenset(['input_tokens'])
65
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ (a__ , unittest.TestCase ): '''simple docstring''' _a = DiTPipeline _a = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _a = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _a = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _a = False def _lowerCAmelCase ( self : int ) ->str: torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__a , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=__a , ) lowerCamelCase_ : List[Any] = AutoencoderKL() lowerCamelCase_ : int = DDIMScheduler() lowerCamelCase_ : Any = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _lowerCAmelCase ( self : int , __a : int , __a : Any=0 ) ->int: if str(__a ).startswith("""mps""" ): lowerCamelCase_ : Optional[int] = torch.manual_seed(__a ) else: lowerCamelCase_ : int = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase_ : Dict = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowerCAmelCase ( self : List[str] ) ->int: lowerCamelCase_ : Optional[int] = """cpu""" lowerCamelCase_ : List[str] = self.get_dummy_components() lowerCamelCase_ : Dict = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : Dict = self.get_dummy_inputs(__a ) lowerCamelCase_ : Any = pipe(**__a ).images lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowerCamelCase_ : Union[str, Any] = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowerCamelCase_ : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1e-3 ) def _lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: self._test_inference_batch_single_identical(relax_max_difference=__a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowerCAmelCase ( self : Any ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : Any ) ->Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Optional[int] ) ->Any: lowerCamelCase_ : List[str] = torch.manual_seed(0 ) lowerCamelCase_ : List[str] = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) lowerCamelCase_ : Tuple = ["""vase""", """umbrella""", """white shark""", """white wolf"""] lowerCamelCase_ : List[Any] = pipe.get_label_ids(__a ) lowerCamelCase_ : Dict = pipe(__a , generator=__a , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(__a , __a ): lowerCamelCase_ : Optional[Any] = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _lowerCAmelCase ( self : List[str] ) ->Tuple: lowerCamelCase_ : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) lowerCamelCase_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) lowerCamelCase_ : Optional[int] = ["""vase""", """umbrella"""] lowerCamelCase_ : Tuple = pipe.get_label_ids(__a ) lowerCamelCase_ : Dict = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe(__a , generator=__a , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(__a , __a ): lowerCamelCase_ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
171
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __lowerCamelCase ( A__ : Dict ) -> Optional[int]: if string == "True": return True elif string == "False": return False else: raise ValueError(f'''could not parse string as bool {string}''' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) snake_case__ : Dict = parser.parse_args() snake_case__ : List[str] = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
171
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ = logging.get_logger(__name__) a_ = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class __lowercase ( _UpperCAmelCase , _UpperCAmelCase): """simple docstring""" _A : List[Any] = """swin""" _A : Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self , lowercase__=2_24 , lowercase__=4 , lowercase__=3 , lowercase__=96 , lowercase__=[2, 2, 6, 2] , lowercase__=[3, 6, 12, 24] , lowercase__=7 , lowercase__=4.0 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=False , lowercase__=0.02 , lowercase__=1e-5 , lowercase__=32 , lowercase__=None , lowercase__=None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : List[Any] = image_size snake_case_ : Optional[Any] = patch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : List[str] = embed_dim snake_case_ : str = depths snake_case_ : Tuple = len(lowercase__ ) snake_case_ : Optional[int] = num_heads snake_case_ : Dict = window_size snake_case_ : int = mlp_ratio snake_case_ : List[Any] = qkv_bias snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : int = drop_path_rate snake_case_ : Optional[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Optional[int] = int(embed_dim * 2 ** (len(lowercase__ ) - 1) ) snake_case_ : Optional[int] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(lowercase__ ) + 1 )] snake_case_ , snake_case_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase__ , out_indices=lowercase__ , stage_names=self.stage_names ) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = version.parse("""1.11""") @property def __UpperCamelCase (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase (self ): return 1e-4
480
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCamelCase_ : Optional[Any] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCamelCase__ ( self : Optional[int] , _snake_case : Any , _snake_case : Any , _snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" A_ = ZeroShotClassificationPipeline( model=_snake_case , tokenizer=_snake_case , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCamelCase__ ( self : Dict , _snake_case : List[Any] , _snake_case : int ) -> List[Any]: """simple docstring""" A_ = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) # No kwarg A_ = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) A_ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) A_ = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( _snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) A_ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( _snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) A_ = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) # https://github.com/huggingface/transformers/issues/13846 A_ = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} for i in range(1 ) ] , ) A_ = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} for i in range(2 ) ] , ) with self.assertRaises(_snake_case ): classifier("" , candidate_labels="politics" ) with self.assertRaises(_snake_case ): classifier(_snake_case , candidate_labels="politics" ) with self.assertRaises(_snake_case ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(_snake_case ): classifier("Who are you voting for in 2020?" , candidate_labels=_snake_case ) with self.assertRaises(_snake_case ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(_snake_case ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=_snake_case , ) self.run_entailment_id(_snake_case ) def lowerCamelCase__ ( self : List[Any] , _snake_case : Pipeline ) -> Dict: """simple docstring""" A_ = zero_shot_classifier.model.config A_ = config.labelaid A_ = zero_shot_classifier.entailment_id A_ = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) A_ = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) A_ = original_labelaid self.assertEqual(_snake_case , zero_shot_classifier.entailment_id ) @require_torch def lowerCamelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" A_ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" A_ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def lowerCamelCase__ ( self : Any ) -> List[Any]: """simple docstring""" A_ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" A_ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) A_ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=_snake_case , ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def lowerCamelCase__ ( self : Any ) -> int: """simple docstring""" A_ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) A_ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=_snake_case , ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
708
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCamelCase_ : Tuple = 637_8137.0 UpperCamelCase_ : List[str] = 635_6752.31_4245 UpperCamelCase_ : Dict = 637_8137 def A_ (__a , __a , __a , __a ): '''simple docstring''' A_ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude A_ = atan((1 - flattening) * tan(radians(__a ) ) ) A_ = atan((1 - flattening) * tan(radians(__a ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius A_ = haversine_distance(__a , __a , __a , __a ) / EQUATORIAL_RADIUS # Intermediate P and Q values A_ = (b_lata + b_lata) / 2 A_ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) A_ = (sin(__a ) ** 2) * (cos(__a ) ** 2) A_ = cos(sigma / 2 ) ** 2 A_ = (sigma - sin(__a )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) A_ = (cos(__a ) ** 2) * (sin(__a ) ** 2) A_ = sin(sigma / 2 ) ** 2 A_ = (sigma + sin(__a )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
482
0
from math import pi def a ( A__ : int , A__ : int ) -> float: """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
291
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase_ = datasets.utils.logging.get_logger(__name__) class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): _a = None _a = None class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): _a = datasets.Audio() _a = """audio""" _a = AudioFolderConfig _a = 42 # definition at the bottom of the script _a = AudioClassification(audio_column="""audio""" , label_column="""label""" ) lowercase_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] lowercase_ = AUDIO_EXTENSIONS
291
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDIMParallelScheduler,) lowercase_ = (("eta", 0.0), ("num_inference_steps", 50)) def SCREAMING_SNAKE_CASE_ (self : List[str] , **UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : List[Any] , **UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Optional[int] =10, 0.0 lowerCamelCase__: List[Any] =self.dummy_model() lowerCamelCase__: Optional[int] =self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_) for t in scheduler.timesteps: lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Any =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_).prev_sample return sample def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase_) lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: List[str] =self.get_scheduler_config(steps_offset=1) lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1])) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500]): self.check_over_forward(time_step=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=UpperCAmelCase_ , eta=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400) - 0.1_4771)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960) - 0.3_2460)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: List[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Tuple =10, 0.0 scheduler.set_timesteps(UpperCAmelCase_) lowerCamelCase__: Tuple =self.dummy_model() lowerCamelCase__: List[str] =self.dummy_sample_deter lowerCamelCase__: str =self.dummy_sample_deter + 0.1 lowerCamelCase__: Any =self.dummy_sample_deter - 0.1 lowerCamelCase__: List[Any] =samplea.shape[0] lowerCamelCase__: Any =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Optional[Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Any =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: int =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , UpperCAmelCase_) lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1147.7904) < 1E-2 assert abs(result_mean.item() - 0.4982) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.full_loop() lowerCamelCase__: Dict =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[Any] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 172.0067) < 1E-2 assert abs(result_mean.item() - 0.22_3967) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.full_loop(prediction_type="v_prediction") lowerCamelCase__: int =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Optional[Any] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 52.5302) < 1E-2 assert abs(result_mean.item() - 0.0684) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' lowerCamelCase__: int =self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01) lowerCamelCase__: Union[str, Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Optional[Any] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 149.8295) < 1E-2 assert abs(result_mean.item() - 0.1951) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01) lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: int =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 149.0784) < 1E-2 assert abs(result_mean.item() - 0.1941) < 1E-3
437
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=100 , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Optional[int]=30 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Optional[int]=3 , ) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =parent lowerCamelCase__: List[Any] =vocab_size lowerCamelCase__: List[str] =batch_size lowerCamelCase__: str =image_size lowerCamelCase__: Any =patch_size lowerCamelCase__: int =num_channels lowerCamelCase__: str =is_training lowerCamelCase__: Tuple =use_labels lowerCamelCase__: Optional[int] =hidden_size lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Optional[Any] =intermediate_size lowerCamelCase__: Tuple =hidden_act lowerCamelCase__: Optional[Any] =hidden_dropout_prob lowerCamelCase__: Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__: List[Any] =type_sequence_label_size lowerCamelCase__: List[str] =initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__: Union[str, Any] =(image_size // patch_size) ** 2 lowerCamelCase__: str =num_patches + 1 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Any =None if self.use_labels: lowerCamelCase__: Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: Dict =BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =FlaxBeitModel(config=UpperCAmelCase_) lowerCamelCase__: Any =model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =FlaxBeitForMaskedImageModeling(config=UpperCAmelCase_) lowerCamelCase__: Any =model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size)) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: str =self.type_sequence_label_size lowerCamelCase__: Any =FlaxBeitForImageClassification(config=UpperCAmelCase_) lowerCamelCase__: List[str] =model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images lowerCamelCase__: int =1 lowerCamelCase__: int =FlaxBeitForImageClassification(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowerCamelCase__: List[str] =model(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): List[Any] =config_and_inputs lowerCamelCase__: Dict ={"pixel_values": pixel_values} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE_ (self : Dict) ->None: '''simple docstring''' lowerCamelCase__: Optional[Any] =FlaxBeitModelTester(self) lowerCamelCase__: Any =ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: int =model_class(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Dict =[*signature.parameters.keys()] lowerCamelCase__: Dict =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Any =model_class(UpperCAmelCase_) @jax.jit def model_jitted(UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple): return model(pixel_values=UpperCAmelCase_ , **UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Tuple =model_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =model_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Any =model_class_name.from_pretrained("microsoft/beit-base-patch16-224") lowerCamelCase__: Dict =model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" lowerCamelCase__: Any =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k") lowerCamelCase__: Optional[int] =self.default_image_processor lowerCamelCase__: int =prepare_img() lowerCamelCase__: Optional[Any] =image_processor(images=UpperCAmelCase_ , return_tensors="np").pixel_values # prepare bool_masked_pos lowerCamelCase__: List[str] =np.ones((1, 196) , dtype=UpperCAmelCase_) # forward pass lowerCamelCase__: List[str] =model(pixel_values=UpperCAmelCase_ , bool_masked_pos=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =outputs.logits # verify the logits lowerCamelCase__: str =(1, 196, 8_192) self.assertEqual(logits.shape , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , UpperCAmelCase_ , atol=1E-2)) @slow def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224") lowerCamelCase__: int =self.default_image_processor lowerCamelCase__: str =prepare_img() lowerCamelCase__: List[str] =image_processor(images=UpperCAmelCase_ , return_tensors="np") # forward pass lowerCamelCase__: Union[str, Any] =model(**UpperCAmelCase_) lowerCamelCase__: int =outputs.logits # verify the logits lowerCamelCase__: Dict =(1, 1_000) self.assertEqual(logits.shape , UpperCAmelCase_) lowerCamelCase__: Any =np.array([-1.2385, -1.0987, -1.0108]) self.assertTrue(np.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1E-4)) lowerCamelCase__: List[str] =281 self.assertEqual(logits.argmax(-1).item() , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k") lowerCamelCase__: List[str] =self.default_image_processor lowerCamelCase__: Dict =prepare_img() lowerCamelCase__: List[Any] =image_processor(images=UpperCAmelCase_ , return_tensors="np") # forward pass lowerCamelCase__: Optional[Any] =model(**UpperCAmelCase_) lowerCamelCase__: Any =outputs.logits # verify the logits lowerCamelCase__: Any =(1, 21_841) self.assertEqual(logits.shape , UpperCAmelCase_) lowerCamelCase__: str =np.array([1.6881, -0.2787, 0.5901]) self.assertTrue(np.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1E-4)) lowerCamelCase__: List[str] =2_396 self.assertEqual(logits.argmax(-1).item() , UpperCAmelCase_)
437
1
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __snake_case ( lowerCAmelCase : List[str] ): def wrapper(*lowerCAmelCase : Any , **lowerCAmelCase : List[Any] ): __UpperCAmelCase = timeit.default_timer() __UpperCAmelCase = func(*lowerCAmelCase , **lowerCAmelCase ) __UpperCAmelCase = timeit.default_timer() - starttime return delta __UpperCAmelCase = func.__name__ return wrapper def __snake_case ( lowerCAmelCase : dict , lowerCAmelCase : Any=100 , lowerCAmelCase : int=None ): __UpperCAmelCase = [] __UpperCAmelCase = seq_shapes or {} for i in range(lowerCAmelCase ): __UpperCAmelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): __UpperCAmelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": __UpperCAmelCase = 'The small grey turtle was surprisingly fast when challenged.' else: __UpperCAmelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): __UpperCAmelCase = v.feature __UpperCAmelCase = seq_shapes[k] __UpperCAmelCase = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) __UpperCAmelCase = data dummy_data.append((i, example) ) return dummy_data def __snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Any , lowerCAmelCase : str=100 , lowerCAmelCase : Any=None ): __UpperCAmelCase = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: __UpperCAmelCase = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) __UpperCAmelCase , __UpperCAmelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __UpperCAmelCase = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
396
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase : str = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
396
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __UpperCAmelCase: """simple docstring""" def __init__( self , __magic_name__=None , **__magic_name__ ): """simple docstring""" logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) A_ : Optional[Any] = model A_ : List[str] = kwargs.get('''model_save_dir''' , UpperCamelCase__ ) A_ : int = kwargs.get('''latest_model_name''' , UpperCamelCase__ ) def __call__( self , **__magic_name__ ): """simple docstring""" A_ : Optional[int] = {k: np.array(UpperCamelCase__ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase__ , UpperCamelCase__ ) @staticmethod def UpperCAmelCase ( __magic_name__ , __magic_name__=None , __magic_name__=None ): """simple docstring""" if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) A_ : int = '''CPUExecutionProvider''' return ort.InferenceSession(UpperCamelCase__ , providers=[provider] , sess_options=UpperCamelCase__ ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , **__magic_name__ ): """simple docstring""" A_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME A_ : List[Any] = self.model_save_dir.joinpath(self.latest_model_name ) A_ : Union[str, Any] = Path(UpperCamelCase__ ).joinpath(UpperCamelCase__ ) try: shutil.copyfile(UpperCamelCase__ , UpperCamelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A_ : List[str] = self.model_save_dir.joinpath(UpperCamelCase__ ) if src_path.exists(): A_ : List[str] = Path(UpperCamelCase__ ).joinpath(UpperCamelCase__ ) try: shutil.copyfile(UpperCamelCase__ , UpperCamelCase__ ) except shutil.SameFileError: pass def UpperCAmelCase ( self , __magic_name__ , **__magic_name__ , ): """simple docstring""" if os.path.isfile(UpperCamelCase__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # saving model weights/files self._save_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def UpperCAmelCase ( cls , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" A_ : Optional[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase__ ): A_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , provider=UpperCamelCase__ , sess_options=UpperCamelCase__ ) A_ : Tuple = Path(UpperCamelCase__ ) # load model from hub else: # download model A_ : Union[str, Any] = hf_hub_download( repo_id=UpperCamelCase__ , filename=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , revision=UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , ) A_ : Optional[int] = Path(UpperCamelCase__ ).parent A_ : int = Path(UpperCamelCase__ ).name A_ : Union[str, Any] = OnnxRuntimeModel.load_model(UpperCamelCase__ , provider=UpperCamelCase__ , sess_options=UpperCamelCase__ ) return cls(model=UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def UpperCAmelCase ( cls , __magic_name__ , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" A_ : Union[str, Any] = None if len(str(UpperCamelCase__ ).split('''@''' ) ) == 2: A_ , A_ : Tuple = model_id.split('''@''' ) return cls._from_pretrained( model_id=UpperCamelCase__ , revision=UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , **UpperCamelCase__ , )
700
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : List[Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Any = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } SCREAMING_SNAKE_CASE : Any = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Optional[Any] =VOCAB_FILES_NAMES lowercase : str =PRETRAINED_VOCAB_FILES_MAP lowercase : List[Any] =PRETRAINED_INIT_CONFIGURATION lowercase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple =SqueezeBertTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_="[UNK]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[PAD]" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , tokenize_chinese_chars=__lowerCAmelCase , strip_accents=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase_ :List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowerCAmelCase ) != tokenize_chinese_chars ): lowercase_ :List[str] = getattr(__lowerCAmelCase , normalizer_state.pop('''type''' ) ) lowercase_ :List[Any] = do_lower_case lowercase_ :Dict = strip_accents lowercase_ :Union[str, Any] = tokenize_chinese_chars lowercase_ :Optional[Any] = normalizer_class(**__lowerCAmelCase ) lowercase_ :Tuple = do_lower_case def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None ): lowercase_ :Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :Tuple = [self.sep_token_id] lowercase_ :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :Any = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase )
257
from math import factorial _a = {str(digit): factorial(digit) for digit in range(10)} def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' if not isinstance(__snake_case ,__snake_case ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__snake_case ) ) def lowerCAmelCase__(__snake_case = 60 ,__snake_case = 1000000 ) -> int: '''simple docstring''' if not isinstance(__snake_case ,__snake_case ) or not isinstance(__snake_case ,__snake_case ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length lowerCamelCase__ = 0 # the cached sizes of the previous chains lowerCamelCase__ = {} for start_chain_element in range(1 ,__snake_case ): # The temporary set will contain the elements of the chain lowerCamelCase__ = set() lowerCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__snake_case ) chain_set_length += 1 lowerCamelCase__ = digit_factorial_sum(__snake_case ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution()}""")
481
0
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase_ : """simple docstring""" def __init__( self : int ,lowercase__ : str = "cpu" ,lowercase__ : str = "openai/clip-vit-large-patch14" ): __lowercase = device __lowercase = CLIPTokenizerFast.from_pretrained(lowercase__ ) __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] __lowercase = torchvision.transforms.Normalize(self.image_mean ,self.image_std ) __lowercase = torchvision.transforms.Resize(2_2_4 ) __lowercase = torchvision.transforms.CenterCrop(2_2_4 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ): __lowercase = self.resize(lowercase__ ) __lowercase = self.center_crop(lowercase__ ) __lowercase = self.normalize(lowercase__ ) return images def __call__( self : Dict ,lowercase__ : str=None ,lowercase__ : Optional[int]=None ,**lowercase__ : List[str] ): __lowercase = self.tokenizer(text=lowercase__ ,**lowercase__ ) __lowercase = self.preprocess_img(lowercase__ ) __lowercase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : str=1_0 ,lowercase__ : str=0.0_1 ,lowercase__ : Optional[int]=None ,lowercase__ : Optional[Any]=None ,lowercase__ : List[str]=None ,lowercase__ : Any=None ,lowercase__ : Optional[int]=None ,lowercase__ : str=None ,lowercase__ : List[str]=False ,lowercase__ : Union[str, Any]=True ,lowercase__ : Optional[int]="image" ,lowercase__ : Tuple=True ,lowercase__ : int=False ,lowercase__ : Tuple=False ,lowercase__ : Optional[Any]=False ,): super().__init__() __lowercase = None __lowercase = device if device else get_device() if vqgan: __lowercase = vqgan else: __lowercase = load_vqgan(self.device ,conf_path=lowercase__ ,ckpt_path=lowercase__ ) self.vqgan.eval() if clip: __lowercase = clip else: __lowercase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __lowercase = ProcessorGradientFlow(device=self.device ) __lowercase = iterations __lowercase = lr __lowercase = log __lowercase = make_grid __lowercase = return_val __lowercase = quantize __lowercase = self.vqgan.decoder.z_shape def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Optional[int]=None ,lowercase__ : str=None ,lowercase__ : Dict=5 ,lowercase__ : Tuple=True ): __lowercase = [] if output_path is None: __lowercase = '''./animation.gif''' if input_path is None: __lowercase = self.save_path __lowercase = sorted(glob(input_path + '''/*''' ) ) if not len(lowercase__ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(lowercase__ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __lowercase = total_duration / len(lowercase__ ) __lowercase = [frame_duration] * len(lowercase__ ) if extend_frames: __lowercase = 1.5 __lowercase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(lowercase__ ) ) imageio.mimsave(lowercase__ ,lowercase__ ,duration=lowercase__ ) print(F"gif saved to {output_path}" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Any=None ,lowercase__ : Tuple=None ): if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __lowercase = preprocess(Image.open(lowercase__ ) ,target_image_size=2_5_6 ).to(self.device ) __lowercase = preprocess_vqgan(lowercase__ ) __lowercase , *__lowercase = self.vqgan.encode(lowercase__ ) return z def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Union[str, Any] ): __lowercase = self.latent.detach().requires_grad_() __lowercase = base_latent + transform_vector if self.quantize: __lowercase , *__lowercase = self.vqgan.quantize(lowercase__ ) else: __lowercase = trans_latent return self.vqgan.decode(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict=None ): __lowercase = self.clip_preprocessor(text=lowercase__ ,images=lowercase__ ,return_tensors='''pt''' ,padding=lowercase__ ) __lowercase = self.clip(**lowercase__ ) __lowercase = clip_outputs.logits_per_image if weights is not None: __lowercase = similarity_logits * weights return similarity_logits.sum() def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ): __lowercase = self._get_clip_similarity(pos_prompts['''prompts'''] ,lowercase__ ,weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __lowercase = self._get_clip_similarity(neg_prompts['''prompts'''] ,lowercase__ ,weights=neg_prompts['''weights'''] ) else: __lowercase = torch.tensor([1] ,device=self.device ) __lowercase = -torch.log(lowercase__ ) + torch.log(lowercase__ ) return loss def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ): __lowercase = torch.randn_like(self.latent ,requires_grad=lowercase__ ,device=self.device ) __lowercase = torch.optim.Adam([vector] ,lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __lowercase = self._add_vector(lowercase__ ) __lowercase = loop_post_process(lowercase__ ) __lowercase = self._get_CLIP_loss(lowercase__ ,lowercase__ ,lowercase__ ) print('''CLIP loss''' ,lowercase__ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=lowercase__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : int ,lowercase__ : List[str] ): wandb.init(reinit=lowercase__ ,project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __lowercase = Image.open(lowercase__ ) __lowercase = image.resize((2_5_6, 2_5_6) ) wandb.log('''Original Image''' ,wandb.Image(lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if not prompts: return [] __lowercase = [] __lowercase = [] if isinstance(lowercase__ ,lowercase__ ): __lowercase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(lowercase__ ,(tuple, list) ): __lowercase = prompt[0] __lowercase = float(prompt[1] ) elif ":" in prompt: __lowercase , __lowercase = prompt.split(''':''' ) __lowercase = float(lowercase__ ) else: __lowercase = prompt __lowercase = 1.0 processed_prompts.append(lowercase__ ) weights.append(lowercase__ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase__ ,device=self.device ), } def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Tuple ,lowercase__ : Optional[int]=None ,lowercase__ : Optional[int]=None ,lowercase__ : List[Any]=True ,lowercase__ : List[str]=False ,lowercase__ : int=True ,lowercase__ : Optional[int]=True ,lowercase__ : Dict=None ,): if image_path: __lowercase = self._get_latent(lowercase__ ) else: __lowercase = torch.randn(self.latent_dim ,device=self.device ) if self.log: self._init_logging(lowercase__ ,lowercase__ ,lowercase__ ) assert pos_prompts, "You must provide at least one positive prompt." __lowercase = self.process_prompts(lowercase__ ) __lowercase = self.process_prompts(lowercase__ ) if save_final and save_path is None: __lowercase = os.path.join('''./outputs/''' ,'''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(lowercase__ ): os.makedirs(lowercase__ ) else: __lowercase = save_path + '''_''' + get_timestamp() os.makedirs(lowercase__ ) __lowercase = save_path __lowercase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(lowercase__ ) ) __lowercase = loop_post_process(lowercase__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase__ ,lowercase__ ,lowercase__ ) ): if show_intermediate: show_pil(lowercase__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path ,F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'''Image''': wandb.Image(lowercase__ )} ) if show_final: show_pil(lowercase__ ) if save_final: transformed_img.save(os.path.join(self.save_path ,F"iter_{iter:03d}_final.png" ) )
624
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_660_254]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _A ( A__ , A__ ): """simple docstring""" __lowercase = initial_vectors for _ in range(A__ ): __lowercase = iteration_step(A__ ) return vectors def _A ( A__ ): """simple docstring""" __lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): __lowercase = vectors[i + 1] new_vectors.append(A__ ) __lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _A ( A__ , A__ ): """simple docstring""" __lowercase = numpy.radians(A__ ) __lowercase , __lowercase = numpy.cos(A__ ), numpy.sin(A__ ) __lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __lowercase , __lowercase = zip(*A__ ) plt.plot(A__ , A__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
624
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
658
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): UpperCamelCase :Dict = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase :Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCamelCase :int = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) UpperCamelCase :Optional[Any] = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 2_55.0 UpperCamelCase :List[str] = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase :Tuple = 2.0 * image - 1.0 UpperCamelCase :Any = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase :str = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def _A ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=0.99_95 ): if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): UpperCamelCase :int = True UpperCamelCase :Dict = va.device UpperCamelCase :List[Any] = va.cpu().numpy() UpperCamelCase :str = va.cpu().numpy() UpperCamelCase :Dict = np.sum(va * va / (np.linalg.norm(SCREAMING_SNAKE_CASE__ ) * np.linalg.norm(SCREAMING_SNAKE_CASE__ )) ) if np.abs(SCREAMING_SNAKE_CASE__ ) > DOT_THRESHOLD: UpperCamelCase :Any = (1 - t) * va + t * va else: UpperCamelCase :Union[str, Any] = np.arccos(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = np.sin(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = theta_a * t UpperCamelCase :str = np.sin(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = np.sin(theta_a - theta_t ) / sin_theta_a UpperCamelCase :List[Any] = sin_theta_t / sin_theta_a UpperCamelCase :Union[str, Any] = sa * va + sa * va if inputs_are_torch: UpperCamelCase :Dict = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return va def _A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ): UpperCamelCase :int = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) UpperCamelCase :int = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any ): for param in model.parameters(): UpperCamelCase :Any = value class UpperCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> str: super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , clip_model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , coca_model=SCREAMING_SNAKE_CASE_ , coca_tokenizer=SCREAMING_SNAKE_CASE_ , coca_transform=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase :Union[str, Any] = ( feature_extractor.size if isinstance(feature_extractor.size , SCREAMING_SNAKE_CASE_ ) else feature_extractor.size['''shortest_edge'''] ) UpperCamelCase :Any = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , SCREAMING_SNAKE_CASE_ ) set_requires_grad(self.clip_model , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase :Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> int: self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: set_requires_grad(self.vae , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: set_requires_grad(self.vae , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> int: set_requires_grad(self.unet , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: set_requires_grad(self.unet , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: # get the original timestep using init_timestep UpperCamelCase :Union[str, Any] = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase :Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE_ )}''' ) UpperCamelCase :Tuple = image.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :int = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(SCREAMING_SNAKE_CASE_ ) ] UpperCamelCase :List[str] = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) else: UpperCamelCase :Any = self.vae.encode(SCREAMING_SNAKE_CASE_ ).latent_dist.sample(SCREAMING_SNAKE_CASE_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase :List[str] = 0.1_8215 * init_latents UpperCamelCase :Optional[Any] = init_latents.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase :List[Any] = randn_tensor(init_latents.shape , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) # get latents UpperCamelCase :Optional[Any] = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = init_latents return latents def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :List[str] = self.coca_transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCamelCase :Any = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCamelCase :List[Any] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase :str = self.feature_extractor.preprocess(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() UpperCamelCase :int = self.clip_model.get_image_features(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = image_embeddings_clip.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: UpperCamelCase :List[str] = latents.detach().requires_grad_() UpperCamelCase :List[str] = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase :List[Any] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCamelCase :List[str] = self.scheduler.alphas_cumprod[timestep] UpperCamelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase :List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCamelCase :int = torch.sqrt(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :str = self.scheduler.sigmas[index] UpperCamelCase :Union[str, Any] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase :int = 1 / 0.1_8215 * sample UpperCamelCase :List[Any] = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase :str = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase :List[str] = transforms.Resize(self.feature_extractor_size )(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = self.normalize(SCREAMING_SNAKE_CASE_ ).to(latents.dtype ) UpperCamelCase :List[Any] = self.clip_model.get_image_features(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = spherical_dist_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() * clip_guidance_scale UpperCamelCase :Union[str, Any] = -torch.autograd.grad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] if isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Dict = latents.detach() + grads * (sigma**2) UpperCamelCase :Optional[Any] = noise_pred_original else: UpperCamelCase :List[str] = noise_pred_original - torch.sqrt(SCREAMING_SNAKE_CASE_ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.6 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 100 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0.8 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , ) -> Dict: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(SCREAMING_SNAKE_CASE_ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(SCREAMING_SNAKE_CASE_ , torch.Generator ) and batch_size > 1: UpperCamelCase :Optional[int] = [generator] + [None] * (batch_size - 1) UpperCamelCase :Tuple = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] UpperCamelCase :Union[str, Any] = [x[0] for x in coca_is_none if x[1]] UpperCamelCase :Dict = ''', '''.join(SCREAMING_SNAKE_CASE_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCamelCase :Any = self.get_image_description(SCREAMING_SNAKE_CASE_ ) if style_prompt is None: if len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCamelCase :str = self.get_image_description(SCREAMING_SNAKE_CASE_ ) # get prompt text embeddings for content and style UpperCamelCase :List[Any] = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) UpperCamelCase :Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCamelCase :List[Any] = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) UpperCamelCase :Tuple = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCamelCase :Dict = slerp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase :Union[str, Any] = text_embeddings.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) # set timesteps UpperCamelCase :str = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCamelCase :List[str] = {} if accepts_offset: UpperCamelCase :Tuple = 1 self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCamelCase , UpperCamelCase :Tuple = self.get_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device ) UpperCamelCase :Any = timesteps[:1].repeat(SCREAMING_SNAKE_CASE_ ) # Preprocess image UpperCamelCase :Union[str, Any] = preprocess(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = self.prepare_latents( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , text_embeddings.dtype , self.device , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = preprocess(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = self.prepare_latents( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , text_embeddings.dtype , self.device , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = slerp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if clip_guidance_scale > 0: UpperCamelCase :Dict = self.get_clip_image_embeddings(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = self.get_clip_image_embeddings(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = slerp( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase :Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase :Any = content_text_input.input_ids.shape[-1] UpperCamelCase :Any = self.tokenizer([''''''] , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) UpperCamelCase :Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCamelCase :Optional[int] = uncond_embeddings.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase :str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase :Any = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase :int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCamelCase :List[str] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='''cpu''' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: UpperCamelCase :int = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCamelCase :str = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase :Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase :Optional[int] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase :Dict = {} if accepts_eta: UpperCamelCase :int = eta # check if the scheduler accepts generator UpperCamelCase :Optional[int] = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCamelCase :List[str] = generator with self.progress_bar(total=SCREAMING_SNAKE_CASE_ ): for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # expand the latents if we are doing classifier free guidance UpperCamelCase :Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase :List[Any] = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase :List[str] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase :Any = noise_pred.chunk(2 ) UpperCamelCase :Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCamelCase :int = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCamelCase , UpperCamelCase :str = self.cond_fn( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase :List[str] = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase :List[Any] = 1 / 0.1_8215 * latents UpperCamelCase :Optional[Any] = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase :str = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase :List[str] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
658
1
"""simple docstring""" def A( snake_case_ ): """simple docstring""" return 10 - x * x def A( snake_case_ , snake_case_ ): """simple docstring""" if equation(snake_case_ ) * equation(snake_case_ ) >= 0: raise ValueError("Wrong space!" ) lowercase__: Union[str, Any] = a while (b - a) >= 0.01: # Find middle point lowercase__: Tuple = (a + b) / 2 # Check if middle point is root if equation(snake_case_ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case_ ) * equation(snake_case_ ) < 0: lowercase__: Tuple = c else: lowercase__: List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
120
"""simple docstring""" from math import factorial def A( snake_case_ = 20 ): """simple docstring""" lowercase__: Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowercase__: int = n // 2 return int(factorial(snake_case_ ) / (factorial(snake_case_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
120
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
76
"""simple docstring""" import gc import threading import time import psutil import torch class UpperCAmelCase_ : def __init__( self ) -> str: __lowercase : List[Any] = psutil.Process() __lowercase : Any = False def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Optional[Any] = -1 while True: __lowercase : List[str] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : List[Any] = True __lowercase : List[Any] = threading.Thread(target=self.peak_monitor ) __lowercase : Optional[int] = True self.thread.start() def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Union[str, Any] = False self.thread.join() return self.cpu_memory_peak a_ = PeakCPUMemory() def __UpperCAmelCase ( ): # Time __lowercase : Union[str, Any] = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowercase : List[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowercase : List[str] = torch.cuda.memory_allocated(__UpperCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def __UpperCAmelCase ( __UpperCamelCase ): # Time __lowercase : List[Any] = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem __lowercase : Union[str, Any] = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 __lowercase : Dict = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowercase : str = (torch.cuda.memory_allocated(__UpperCamelCase ) - start_measures[str(__UpperCamelCase )]) / 2**20 __lowercase : Optional[int] = (torch.cuda.max_memory_allocated(__UpperCamelCase ) - start_measures[str(__UpperCamelCase )]) / 2**20 return measures def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__UpperCamelCase )]:.2f}MiB""" ) __lowercase : Dict = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
76
1
'''simple docstring''' UpperCAmelCase = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.35_5818, } def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' f'Valid values are: {", ".join(_SCREAMING_SNAKE_CASE )}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] ) -> str: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCAmelCase = mf_knapsack(i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = max( mf_knapsack(i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , mf_knapsack(i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j - wt[i - 1] ) + val[i - 1] , ) lowerCAmelCase = val return f[i][j] def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" lowerCAmelCase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowerCAmelCase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowerCAmelCase = dp[i - 1][w_] return dp[n][w_], dp def _snake_case ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list ) -> List[str]: """simple docstring""" if not (isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) if num_items != len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = ( """The number of weights must be the same as the number of values.\n""" f'But got {num_items} weights and {len(_SCREAMING_SNAKE_CASE )} values' ) raise ValueError(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): if not isinstance(wt[i] , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = ( """All weights must be integers but got weight of """ f'type {type(wt[i] )} at index {i}' ) raise TypeError(_SCREAMING_SNAKE_CASE ) lowerCAmelCase, lowerCAmelCase = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = set() _construct_solution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return optimal_val, example_optional_set def _snake_case ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : set ) -> str: """simple docstring""" # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: optimal_set.add(_SCREAMING_SNAKE_CASE ) _construct_solution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i - 1 , j - wt[i - 1] , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = [3, 2, 4, 4] UpperCAmelCase = [4, 3, 2, 3] UpperCAmelCase = 4 UpperCAmelCase = 6 UpperCAmelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCAmelCase , UpperCAmelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCAmelCase , UpperCAmelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
344
1
"""simple docstring""" import os from collections.abc import Iterator def __magic_name__ ( __snake_case : str = "." ) -> int: for dir_path, dir_names, filenames in os.walk(lowercase__ ): lowercase : Optional[Any] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowercase__ )[1] in (".py", ".ipynb"): yield os.path.join(lowercase__ , lowercase__ ).lstrip("./" ) def __magic_name__ ( __snake_case : Optional[Any] ) -> Optional[Any]: return f"""{i * " "}*""" if i else "\n##" def __magic_name__ ( __snake_case : str , __snake_case : str ) -> List[Any]: lowercase : Optional[int] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowercase__ ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(lowercase__ )} {new_part.replace("_" , " " ).title()}""" ) return new_path def __magic_name__ ( __snake_case : str = "." ) -> Any: lowercase : Tuple = "" for filepath in sorted(good_file_paths(lowercase__ ) ): lowercase , lowercase : Tuple = os.path.split(lowercase__ ) if filepath != old_path: lowercase : int = print_path(lowercase__ , lowercase__ ) lowercase : Union[str, Any] = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase : Any = f"""{filepath}/{filename}""".replace(" " , "%20" ) lowercase : Any = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f"""{md_prefix(lowercase__ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md(""".""")
361
"""simple docstring""" from __future__ import annotations def a_ ( lowercase__ :list[float] ): if len(lowercase__ ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowerCamelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
281
0
"""simple docstring""" import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCamelCase : Tuple = get_logger() UpperCamelCase : Optional[dict] = None class lowerCamelCase__ ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__( self : Tuple , _lowercase : Optional[Any]=None , _lowercase : Optional[Any]=None , **_lowercase : Optional[int] ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) A = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) A = str(jax.devices()[0] ) A = jnp_array_kwargs @staticmethod def __a ( ): import jax return {str(__A ): device for device in jax.devices()} def __a ( self : Union[str, Any] , _lowercase : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def __a ( self : Dict , _lowercase : Dict ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: A = {"dtype": jnp.intaa} else: A = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): A = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def __a ( self : Tuple , _lowercase : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , '__array__' ) and not isinstance(__A , jax.Array ): A = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def __a ( self : Tuple , _lowercase : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def __a ( self : Union[str, Any] , _lowercase : pa.Table ): A = self.numpy_arrow_extractor().extract_row(__A ) A = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def __a ( self : Any , _lowercase : pa.Table ): A = self.numpy_arrow_extractor().extract_column(__A ) A = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) A = self.recursive_tensorize(__A ) A = self._consolidate(__A ) return column def __a ( self : Optional[int] , _lowercase : pa.Table ): A = self.numpy_arrow_extractor().extract_batch(__A ) A = self.python_features_decoder.decode_batch(__A ) A = self.recursive_tensorize(__A ) for column_name in batch: A = self._consolidate(batch[column_name] ) return batch
711
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not nums: return 0 A = nums[0] A = 0 for num in nums[1:]: A , A = ( max_excluding + num, max(UpperCamelCase__ , UpperCamelCase__ ), ) return max(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
91
0
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): lowerCamelCase__ : str = True from torch.cuda.amp import autocast lowerCamelCase__ : List[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : '''simple docstring''' __lowercase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) __lowercase : Optional[bool] = field( default=snake_case_ ,metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) __lowercase : Optional[bool] = field( default=snake_case_ ,metadata={'help': 'Whether to log verbose messages or not.'} ,) __lowercase : Optional[float] = field( default=2.0 ,metadata={'help': 'Maximum temperature for gumbel softmax.'} ) __lowercase : Optional[float] = field( default=0.5 ,metadata={'help': 'Minimum temperature for gumbel softmax.'} ) __lowercase : Optional[float] = field( default=0.99_99_95 ,metadata={'help': 'Decay of gumbel temperature during training.'} ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case__ = logging.WARNING if model_args.verbose_logging: snake_case__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): snake_case__ = logging.INFO logger.setLevel(__lowerCAmelCase ) @dataclass class __magic_name__ : '''simple docstring''' __lowercase : str = field( default=snake_case_ ,metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field( default='train' ,metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } ,) __lowercase : Optional[str] = field( default='validation' ,metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } ,) __lowercase : Optional[str] = field( default='file' ,metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} ,) __lowercase : bool = field( default=snake_case_ ,metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __lowercase : Optional[int] = field( default=1 ,metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } ,) __lowercase : Optional[int] = field( default=snake_case_ ,metadata={'help': 'The number of processes to use for the preprocessing.'} ,) __lowercase : Optional[float] = field( default=20.0 ,metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class __magic_name__ : '''simple docstring''' __lowercase : WavaVecaForPreTraining __lowercase : WavaVecaFeatureExtractor __lowercase : Union[bool, str] = "longest" __lowercase : Optional[int] = None __lowercase : Optional[int] = None def __call__( self:Optional[Any] , _a:List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format snake_case__ = self.feature_extractor.pad( _a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) snake_case__ = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) snake_case__ = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula snake_case__ = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) snake_case__ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to snake_case__ = 1 snake_case__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices snake_case__ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_a , min_masks=2 , ) return batch class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:str , *_a:List[Any] , _a:Dict=1 , _a:List[str]=0 , _a:Union[str, Any]=1.0 , **_a:Optional[Any] ): super().__init__(*_a , **_a ) snake_case__ = 0 snake_case__ = max_gumbel_temp snake_case__ = min_gumbel_temp snake_case__ = gumbel_temp_decay def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:nn.Module , _a:Dict[str, Union[torch.Tensor, Any]] ): model.train() snake_case__ = self._prepare_inputs(_a ) if self.use_amp: with autocast(): snake_case__ = self.compute_loss(_a , _a ) else: snake_case__ = self.compute_loss(_a , _a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": snake_case__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case__ = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: snake_case__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_a ).backward() elif self.use_apex: with amp.scale_loss(_a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case__ , snake_case__ , snake_case__ = parser.parse_args_into_dataclasses() configure_logger(__lowerCAmelCase , __lowerCAmelCase ) # Downloading and loading a dataset from the hub. snake_case__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" snake_case__ = DatasetDict() snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" snake_case__ = DatasetDict() snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported snake_case__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__lowerCAmelCase ) def prepare_dataset(__lowerCAmelCase ): # check that all files have the correct sampling rate snake_case__ , snake_case__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays snake_case__ = datasets.map( __lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long snake_case__ = vectorized_datasets.filter( lambda __lowerCAmelCase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCAmelCase ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` snake_case__ = vectorized_datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 snake_case__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) snake_case__ = WavaVecaForPreTraining(__lowerCAmelCase ) snake_case__ = DataCollatorForWavaVecaPretraining(model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) snake_case__ = WavaVecaPreTrainer( model=__lowerCAmelCase , data_collator=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=__lowerCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
33
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __snake_case ( _UpperCamelCase ) -> str: _a = model.config _a = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) _a = MBartConfig( is_decoder=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , add_cross_attention=_UpperCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_UpperCamelCase , add_final_layer_norm=_UpperCamelCase , ) return encoder_config, decoder_config def __snake_case ( _UpperCamelCase ) -> Dict: if "encoder.model" in name: _a = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _a = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _a = '''encoder.''' + name if "attn.proj" in name: _a = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _a = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _a = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _a = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _a = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _a = '''encoder.layernorm.bias''' return name def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> Dict: for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(_UpperCamelCase ) if "qkv" in key: _a = key.split('''.''' ) _a = int(key_split[3] ) _a = int(key_split[5] ) _a = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _a = val return orig_state_dict def __snake_case ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=False ) -> Optional[int]: # load original model _a = DonutModel.from_pretrained(_UpperCamelCase ).eval() # load HuggingFace model _a , _a = get_configs(_UpperCamelCase ) _a = DonutSwinModel(_UpperCamelCase ) _a = MBartForCausalLM(_UpperCamelCase ) _a = VisionEncoderDecoderModel(encoder=_UpperCamelCase , decoder=_UpperCamelCase ) model.eval() _a = original_model.state_dict() _a = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # verify results on scanned document _a = load_dataset('''hf-internal-testing/example-documents''' ) _a = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _a = XLMRobertaTokenizerFast.from_pretrained(_UpperCamelCase , from_slow=_UpperCamelCase ) _a = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _a = DonutProcessor(_UpperCamelCase , _UpperCamelCase ) _a = processor(_UpperCamelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _a = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _a = '''When is the coffee break?''' _a = task_prompt.replace('''{user_input}''' , _UpperCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _a = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _a = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _a = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _a = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _a = '''hello world''' else: raise ValueError('''Model name not supported''' ) _a = original_model.decoder.tokenizer(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors='''pt''' )[ '''input_ids''' ] _a = original_model.encoder.model.patch_embed(_UpperCamelCase ) _a , _a = model.encoder.embeddings(_UpperCamelCase ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) # verify encoder hidden states _a = original_model.encoder(_UpperCamelCase ) _a = model.encoder(_UpperCamelCase ).last_hidden_state assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-2 ) # verify decoder hidden states _a = original_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).logits _a = model(_UpperCamelCase , decoder_input_ids=_UpperCamelCase ).logits assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": lowerCamelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) lowerCamelCase :Dict = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
487
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _UpperCamelCase : List[str] =R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(__snake_case ) class UpperCAmelCase__ ( __snake_case ): __snake_case : str = "rag" __snake_case : List[str] = True def __init__( self ,A__=None ,A__=True ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=" / " ,A__=" // " ,A__=5 ,A__=300 ,A__=768 ,A__=8 ,A__="wiki_dpr" ,A__="train" ,A__="compressed" ,A__=None ,A__=None ,A__=False ,A__=False ,A__=0.0 ,A__=True ,A__=False ,A__=False ,A__=False ,A__=True ,A__=None ,**A__ ,): super().__init__( bos_token_id=A__ ,pad_token_id=A__ ,eos_token_id=A__ ,decoder_start_token_id=A__ ,forced_eos_token_id=A__ ,is_encoder_decoder=A__ ,prefix=A__ ,vocab_size=A__ ,**A__ ,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _A : Union[str, Any] = kwargs.pop('''question_encoder''' ) _A : int = question_encoder_config.pop('''model_type''' ) _A : int = kwargs.pop('''generator''' ) _A : List[Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _A : Dict = AutoConfig.for_model(A__ ,**A__ ) _A : Optional[Any] = AutoConfig.for_model(A__ ,**A__ ) _A : int = reduce_loss _A : Tuple = label_smoothing _A : Any = exclude_bos_score _A : List[Any] = do_marginalize _A : Any = title_sep _A : Union[str, Any] = doc_sep _A : Dict = n_docs _A : Tuple = max_combined_length _A : Optional[int] = dataset _A : Union[str, Any] = dataset_split _A : Any = index_name _A : Optional[int] = retrieval_vector_size _A : Tuple = retrieval_batch_size _A : Union[str, Any] = passages_path _A : List[str] = index_path _A : Union[str, Any] = use_dummy_dataset _A : int = output_retrieved _A : List[Any] = do_deduplication _A : Tuple = use_cache if self.forced_eos_token_id is None: _A : List[Any] = getattr(self.generator ,'''forced_eos_token_id''' ,A__ ) @classmethod def A__ ( cls ,A__ ,A__ ,**A__ ): return cls(question_encoder=question_encoder_config.to_dict() ,generator=generator_config.to_dict() ,**A__ ) def A__ ( self ): _A : int = copy.deepcopy(self.__dict__ ) _A : Union[str, Any] = self.question_encoder.to_dict() _A : Union[str, Any] = self.generator.to_dict() _A : Dict = self.__class__.model_type return output
714
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _UpperCamelCase : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class UpperCAmelCase__ ( __snake_case ): def __init__( self ,*A__ ,**A__ ): super().__init__(*A__ ,**A__ ) requires_backends(self ,'''vision''' ) self.check_model_type(A__ ) def __call__( self ,A__ ,**A__ ): return super().__call__(A__ ,**A__ ) def A__ ( self ,**A__ ): return {}, {}, {} def A__ ( self ,A__ ): _A : Optional[int] = load_image(A__ ) _A : List[Any] = image.size _A : Any = self.image_processor(images=A__ ,return_tensors=self.framework ) return model_inputs def A__ ( self ,A__ ): _A : Tuple = self.model(**A__ ) return model_outputs def A__ ( self ,A__ ): _A : Tuple = model_outputs.predicted_depth _A : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=A__ ) _A : Tuple = prediction.squeeze().cpu().numpy() _A : Any = (output * 255 / np.max(A__ )).astype('''uint8''' ) _A : List[str] = Image.fromarray(A__ ) _A : Optional[int] = {} _A : Any = predicted_depth _A : Optional[Any] = depth return output_dict
332
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class __UpperCamelCase : lowercase : Optional[str] =field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowercase : Optional[str] =field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowercase : Optional[str] =field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowercase : Optional[str] =field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowercase : Optional[int] =field(default=2 , metadata={'help': 'Batch size for training.'} ) lowercase : Optional[int] =field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowercase : Optional[float] =field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowercase : Optional[int] =field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowercase : Optional[float] =field(default=2E-4 , metadata={'help': 'Learning rate fo training.'} ) lowercase : Optional[str] =field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowercase : Optional[int] =field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowercase : Optional[int] =field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowercase : Optional[bool] =field( default=__snake_case , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowercase : Optional[int] =field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowercase : Optional[int] =field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowercase : Optional[int] =field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowercase : Optional[int] =field(default=1 , metadata={'help': 'Training seed.'} ) lowercase : Optional[int] =field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowercase : Optional[str] =field( default=__snake_case , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowercase : Optional[bool] =field(default=__snake_case , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class __UpperCamelCase : lowercase : Optional[str] =field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowercase : Optional[str] =field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowercase : Optional[int] =field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowercase : Optional[int] =field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowercase : Optional[int] =field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowercase : Optional[int] =field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class __UpperCamelCase : lowercase : Optional[str] =field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowercase : Optional[int] =field(default=__snake_case , metadata={'help': 'Number of workers used for code evaluation.'} ) lowercase : Optional[int] =field( default=__snake_case , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowercase : Optional[bool] =field( default=__snake_case , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowercase : Optional[float] =field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowercase : Optional[int] =field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowercase : Optional[int] =field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowercase : Optional[float] =field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowercase : Optional[int] =field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowercase : Optional[int] =field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowercase : Optional[int] =field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowercase : Optional[str] =field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowercase : Optional[str] =field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowercase : Optional[int] =field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class __UpperCamelCase : lowercase : Optional[int] =field( default=__snake_case , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowercase : Optional[str] =field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowercase : Optional[str] =field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowercase : Optional[int] =field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowercase : Optional[str] =field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowercase : Optional[float] =field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowercase : Optional[float] =field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowercase : Optional[float] =field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowercase : Optional[float] =field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowercase : Optional[float] =field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowercase : Optional[str] =field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowercase : Optional[bool] =field( default=__snake_case , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowercase : Optional[float] =field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class __UpperCamelCase : lowercase : Optional[str] =field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowercase : Optional[str] =field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowercase : Optional[str] =field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowercase : Optional[int] =field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowercase : Optional[int] =field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowercase : Optional[str] =field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowercase : Optional[bool] =field(default=__snake_case , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class __UpperCamelCase : lowercase : Optional[str] =field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowercase : Optional[str] =field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowercase : Optional[str] =field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowercase : Optional[int] =field(default=__snake_case , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class __UpperCamelCase : lowercase : Optional[str] =field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowercase : Optional[str] =field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowercase : Optional[str] =field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowercase : Optional[bool] =field(default=__snake_case , metadata={'help': 'Push saved tokenizer to the hub.'} )
676
import math from datetime import datetime, timedelta def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Union[str, Any] = year % 19 snake_case__ : Tuple = year % 4 snake_case__ : Any = year % 7 snake_case__ : Any = math.floor(year / 100) snake_case__ : str = math.floor((13 + 8 * leap_day_inhibits) / 25) snake_case__ : Any = leap_day_inhibits / 4 snake_case__ : str = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 snake_case__ : Tuple = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case__ : Tuple = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon snake_case__ : Any = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 18) else: return datetime(UpperCAmelCase_ , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): lowercase_: str = 'will be' if year > datetime.now().year else 'was' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
648
0
'''simple docstring''' import math def a ( UpperCamelCase_ : Any ) -> bool: return math.sqrt(lowerCamelCase__ ) * math.sqrt(lowerCamelCase__ ) == num def a ( UpperCamelCase_ : Union[str, Any] ) -> bool: snake_case__ =0 snake_case__ =n while left <= right: snake_case__ =(left + right) // 2 if mid**2 == n: return True elif mid**2 > n: snake_case__ =mid - 1 else: snake_case__ =mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class a__: def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=99 , _UpperCAmelCase=0 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase="last" , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=0 , ) -> Optional[int]: snake_case__ =parent snake_case__ =batch_size snake_case__ =seq_length snake_case__ =is_training snake_case__ =use_input_lengths snake_case__ =use_token_type_ids snake_case__ =use_labels snake_case__ =gelu_activation snake_case__ =sinusoidal_embeddings snake_case__ =causal snake_case__ =asm snake_case__ =n_langs snake_case__ =vocab_size snake_case__ =n_special snake_case__ =hidden_size snake_case__ =num_hidden_layers snake_case__ =num_attention_heads snake_case__ =hidden_dropout_prob snake_case__ =attention_probs_dropout_prob snake_case__ =max_position_embeddings snake_case__ =type_sequence_label_size snake_case__ =initializer_range snake_case__ =num_labels snake_case__ =num_choices snake_case__ =summary_type snake_case__ =use_proj snake_case__ =scope snake_case__ =bos_token_id def _lowercase ( self ) -> Any: snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ =random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ =None if self.use_input_lengths: snake_case__ =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case__ =None if self.use_token_type_ids: snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case__ =None snake_case__ =None snake_case__ =None if self.use_labels: snake_case__ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ =ids_tensor([self.batch_size] , 2 ).float() snake_case__ =ids_tensor([self.batch_size] , self.num_choices ) snake_case__ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowercase ( self ) -> Union[str, Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Tuple: snake_case__ =XLMModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase , langs=_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> str: snake_case__ =XLMWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> str: snake_case__ =XLMForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) snake_case__ =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Dict: snake_case__ =XLMForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase ) snake_case__ =model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) snake_case__ =model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((snake_case__) , ) =result_with_labels.to_tuple() snake_case__ =model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((snake_case__) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Any: snake_case__ =XLMForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[Any]: snake_case__ =self.num_labels snake_case__ =XLMForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> int: snake_case__ =self.num_choices snake_case__ =XLMForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ =model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self ) -> str: snake_case__ =self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) =config_and_inputs snake_case__ ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class a__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): a_ : Optional[int] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) a_ : Optional[Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a_ : Any = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> str: snake_case__ =super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case__ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) snake_case__ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _lowercase ( self ) -> Optional[int]: snake_case__ =XLMModelTester(self ) snake_case__ =ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def _lowercase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowercase ( self ) -> int: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_UpperCAmelCase ) def _lowercase ( self ) -> Dict: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_UpperCAmelCase ) def _lowercase ( self ) -> str: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_UpperCAmelCase ) def _lowercase ( self ) -> str: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_UpperCAmelCase ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=1 ) -> Dict: self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual( [isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(_UpperCAmelCase ) ) self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_UpperCAmelCase ): # adds PAD dummy token snake_case__ =min_length + idx + 1 snake_case__ =min_length + idx + 1 snake_case__ =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_UpperCAmelCase ) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=1 ) -> int: self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual( [isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(_UpperCAmelCase ) , ) self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_UpperCAmelCase ): # adds PAD dummy token snake_case__ =min_length + idx + 1 snake_case__ =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_UpperCAmelCase ) , ) pass @slow def _lowercase ( self ) -> Dict: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ =XLMModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class a__( unittest.TestCase ): @slow def _lowercase ( self ) -> str: snake_case__ =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(_UpperCAmelCase ) snake_case__ =torch.tensor([[14, 447]] , dtype=torch.long , device=_UpperCAmelCase ) # the president snake_case__ =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case__ =model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _UpperCAmelCase )
581
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'philschmid/bart-large-cnn-samsum' UpperCamelCase__ = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) UpperCamelCase__ = 'summarizer' UpperCamelCase__ = AutoTokenizer UpperCamelCase__ = AutoModelForSeqaSeqLM UpperCamelCase__ = ['text'] UpperCamelCase__ = ['text'] def _A( self , snake_case_ ): return self.pre_processor(snake_case_ , return_tensors='''pt''' , truncation=snake_case_ ) def _A( self , snake_case_ ): return self.model.generate(**snake_case_ )[0] def _A( self , snake_case_ ): return self.pre_processor.decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ )
72
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _UpperCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
72
1
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) class A_ ( _UpperCAmelCase ): """simple docstring""" def __init__( self , __UpperCAmelCase ) -> List[str]: super().__init__() a : Union[str, Any] = nn.ModuleList(__UpperCAmelCase ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(__UpperCAmelCase , __UpperCAmelCase , self.nets ) ): a , a : int = controlnet( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) # merge samples if i == 0: a , a : Tuple = down_samples, mid_sample else: a : List[str] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__UpperCAmelCase , __UpperCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Optional[int]: a : int = 0 a : List[Any] = save_directory for controlnet in self.nets: controlnet.save_pretrained( __UpperCAmelCase , is_main_process=__UpperCAmelCase , save_function=__UpperCAmelCase , safe_serialization=__UpperCAmelCase , variant=__UpperCAmelCase , ) idx += 1 a : List[str] = model_path_to_save + f'_{idx}' @classmethod def lowercase_ ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: a : Union[str, Any] = 0 a : Optional[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... a : Union[str, Any] = pretrained_model_path while os.path.isdir(__UpperCAmelCase ): a : int = ControlNetModel.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) controlnets.append(__UpperCAmelCase ) idx += 1 a : Any = pretrained_model_path + f'_{idx}' logger.info(f'{len(__UpperCAmelCase )} controlnets loaded from {pretrained_model_path}.' ) if len(__UpperCAmelCase ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(__UpperCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(__UpperCAmelCase )
509
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) class A_ ( _UpperCAmelCase ): """simple docstring""" def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
509
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch snake_case_ : Any = logging.get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : Tuple , __magic_name__ : List[Any] = None , __magic_name__ : Union[str, Any] = None , __magic_name__ : List[str]=None , __magic_name__ : Any=None ) -> str: if not conversation_id: lowerCamelCase_ : Any = uuid.uuida() if past_user_inputs is None: lowerCamelCase_ : Optional[int] = [] if generated_responses is None: lowerCamelCase_ : Dict = [] lowerCamelCase_ : uuid.UUID = conversation_id lowerCamelCase_ : List[str] = past_user_inputs lowerCamelCase_ : List[str] = generated_responses lowerCamelCase_ : Optional[str] = text def __eq__( self : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: if not isinstance(A_ , A_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] = False ) -> Optional[int]: if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) lowerCamelCase_ : Tuple = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: lowerCamelCase_ : int = text def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCamelCase_ : Dict = None def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Dict ) -> List[str]: self.generated_responses.append(A_ ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Optional[Any] ) -> Union[str, Any]: lowerCamelCase_ : List[str] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): lowerCamelCase_ : Any = "user" if is_user else "bot" output += F"{name} >> {text} \n" return output @add_end_docstrings( __A , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : str , *__magic_name__ : Any , **__magic_name__ : int ) -> str: super().__init__(*A_ , **A_ ) if self.tokenizer.pad_token_id is None: lowerCamelCase_ : Union[str, Any] = self.tokenizer.eos_token def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : int=None , __magic_name__ : Optional[int]=None , __magic_name__ : Dict=None , **__magic_name__ : Optional[Any] ) -> Optional[Any]: lowerCamelCase_ : Tuple = {} lowerCamelCase_ : Dict = {} lowerCamelCase_ : Optional[int] = {} if min_length_for_response is not None: lowerCamelCase_ : Optional[Any] = min_length_for_response if minimum_tokens is not None: lowerCamelCase_ : Any = minimum_tokens if "max_length" in generate_kwargs: lowerCamelCase_ : Dict = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCamelCase_ : int = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A_ ) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any]=0 , **__magic_name__ : Union[str, Any] ) -> Any: lowerCamelCase_ : str = super().__call__(A_ , num_workers=A_ , **A_ ) if isinstance(A_ , A_ ) and len(A_ ) == 1: return outputs[0] return outputs def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any]=32 ) -> Optional[Any]: if not isinstance(A_ , A_ ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): lowerCamelCase_ : Optional[Any] = self.tokenizer._build_conversation_input_ids(A_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCamelCase_ : Optional[int] = self._legacy_parse_and_tokenize(A_ ) if self.framework == "pt": lowerCamelCase_ : List[str] = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCamelCase_ : str = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=10 , **__magic_name__ : Optional[int] ) -> Optional[Any]: lowerCamelCase_ : List[str] = generate_kwargs.get("max_length" , self.model.config.max_length ) lowerCamelCase_ : List[Any] = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) lowerCamelCase_ : int = max_length - minimum_tokens lowerCamelCase_ : Optional[int] = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: lowerCamelCase_ : Union[str, Any] = model_inputs["attention_mask"][:, -trim:] lowerCamelCase_ : Optional[int] = model_inputs.pop("conversation" ) lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : Any = self.model.generate(**A_ , **A_ ) if self.model.config.is_encoder_decoder: lowerCamelCase_ : Union[str, Any] = 1 else: lowerCamelCase_ : List[str] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Tuple , __magic_name__ : str=True ) -> List[str]: lowerCamelCase_ : Optional[Any] = model_outputs["output_ids"] lowerCamelCase_ : List[Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) lowerCamelCase_ : Any = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(A_ ) return conversation def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ) -> str: lowerCamelCase_ : str = self.tokenizer.eos_token_id lowerCamelCase_ : Tuple = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) ) if len(A_ ) > self.tokenizer.model_max_length: lowerCamelCase_ : str = input_ids[-self.tokenizer.model_max_length :] return input_ids
488
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a : def __init__( self , A_ , A_=2 , A_=3 , A_=4 , A_=2 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=36 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=6 , A_=6 , A_=3 , A_=4 , A_=None , A_=1000 , ): '''simple docstring''' _UpperCAmelCase : List[str] = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Dict = image_size _UpperCAmelCase : Optional[Any] = patch_size _UpperCAmelCase : Optional[int] = is_training _UpperCAmelCase : Dict = use_input_mask _UpperCAmelCase : str = use_token_type_ids _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Dict = type_vocab_size _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : int = coordinate_size _UpperCAmelCase : Any = shape_size _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : Optional[Any] = num_choices _UpperCAmelCase : int = scope _UpperCAmelCase : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _UpperCAmelCase : int = text_seq_length _UpperCAmelCase : Dict = (image_size // patch_size) ** 2 + 1 _UpperCAmelCase : Dict = self.text_seq_length + self.image_seq_length def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) _UpperCAmelCase : List[Any] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase : int = bbox[i, j, 3] _UpperCAmelCase : Union[str, Any] = bbox[i, j, 1] _UpperCAmelCase : Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase : Dict = bbox[i, j, 2] _UpperCAmelCase : str = bbox[i, j, 0] _UpperCAmelCase : Optional[Any] = tmp_coordinate _UpperCAmelCase : List[Any] = tf.constant(A_ ) _UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : List[str] = None if self.use_input_mask: _UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.text_seq_length] ) _UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _UpperCAmelCase : str = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Any = TFLayoutLMvaModel(config=A_ ) # text + image _UpperCAmelCase : Union[str, Any] = model(A_ , pixel_values=A_ , training=A_ ) _UpperCAmelCase : List[Any] = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , training=A_ , ) _UpperCAmelCase : Union[str, Any] = model(A_ , bbox=A_ , pixel_values=A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _UpperCAmelCase : Optional[int] = model(A_ , training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _UpperCAmelCase : List[str] = model({"pixel_values": pixel_values} , training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = self.num_labels _UpperCAmelCase : str = TFLayoutLMvaForSequenceClassification(config=A_ ) _UpperCAmelCase : Any = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , training=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = self.num_labels _UpperCAmelCase : Optional[int] = TFLayoutLMvaForTokenClassification(config=A_ ) _UpperCAmelCase : List[str] = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , training=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Union[str, Any] = TFLayoutLMvaForQuestionAnswering(config=A_ ) _UpperCAmelCase : int = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , training=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Dict = config_and_inputs _UpperCAmelCase : Tuple = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _lowercase = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' return True def _UpperCAmelCase ( self , A_ , A_ , A_=False ): '''simple docstring''' _UpperCAmelCase : List[Any] = copy.deepcopy(A_ ) if model_class in get_values(A_ ): _UpperCAmelCase : Union[str, Any] = { k: tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(A_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): _UpperCAmelCase : List[str] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A_ ): _UpperCAmelCase : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) _UpperCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A_ ): _UpperCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A_ ): _UpperCAmelCase : Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = TFLayoutLMvaModelTester(self ) _UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def _UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(A_ ) if getattr(A_ , "hf_compute_loss" , A_ ): # The number of elements in the loss should be the same as the number of elements in the label _UpperCAmelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) _UpperCAmelCase : str = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=A_ )[0] ] _UpperCAmelCase : List[Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _UpperCAmelCase : Tuple = self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) _UpperCAmelCase : str = prepared_for_class.pop("input_ids" ) _UpperCAmelCase : Any = model(A_ , **A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _UpperCAmelCase : List[str] = self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) _UpperCAmelCase : Any = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: _UpperCAmelCase : Union[str, Any] = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _UpperCAmelCase : str = -100 _UpperCAmelCase : Any = tf.convert_to_tensor(A_ ) _UpperCAmelCase : int = model(A_ , **A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _UpperCAmelCase : Any = self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) _UpperCAmelCase : str = model(A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _UpperCAmelCase : Dict = self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) # Get keys that were added with the _prepare_for_class function _UpperCAmelCase : Tuple = prepared_for_class.keys() - inputs_dict.keys() _UpperCAmelCase : Union[str, Any] = inspect.signature(model.call ).parameters _UpperCAmelCase : List[str] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _UpperCAmelCase : str = {0: "input_ids"} for label_key in label_keys: _UpperCAmelCase : Tuple = signature_names.index(A_ ) _UpperCAmelCase : str = label_key _UpperCAmelCase : Union[str, Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _UpperCAmelCase : Optional[int] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _UpperCAmelCase : str = prepared_for_class[value] _UpperCAmelCase : List[str] = tuple(A_ ) # Send to model _UpperCAmelCase : int = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _UpperCAmelCase ( self ): '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A_ , A_ , A_ , A_ , A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(A_ , A_ , A_ , A_ , A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = TFLayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __SCREAMING_SNAKE_CASE ( ) -> Any: _UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class a ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) _UpperCAmelCase : Any = self.default_image_processor _UpperCAmelCase : Union[str, Any] = prepare_img() _UpperCAmelCase : Any = image_processor(images=A_ , return_tensors="tf" ).pixel_values _UpperCAmelCase : Tuple = tf.constant([[1, 2]] ) _UpperCAmelCase : Any = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass _UpperCAmelCase : Union[str, Any] = model(input_ids=A_ , bbox=A_ , pixel_values=A_ , training=A_ ) # verify the logits _UpperCAmelCase : Optional[Any] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , A_ ) _UpperCAmelCase : Dict = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , A_ , atol=1e-4 ) )
300
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __lowerCAmelCase ( _A ): _UpperCamelCase : str = """mra""" def __init__( self , snake_case=50_265 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3_072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=1 , snake_case=0.02 , snake_case=1E-5 , snake_case="absolute" , snake_case=4 , snake_case="full" , snake_case=0 , snake_case=0 , snake_case=1 , snake_case=0 , snake_case=2 , **snake_case , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) a__ : List[str] = vocab_size a__ : Dict = max_position_embeddings a__ : Dict = hidden_size a__ : Any = num_hidden_layers a__ : List[Any] = num_attention_heads a__ : Dict = intermediate_size a__ : str = hidden_act a__ : Optional[Any] = hidden_dropout_prob a__ : int = attention_probs_dropout_prob a__ : Union[str, Any] = initializer_range a__ : str = type_vocab_size a__ : Any = layer_norm_eps a__ : int = position_embedding_type a__ : Dict = block_per_row a__ : Dict = approx_mode a__ : int = initial_prior_first_n_blocks a__ : List[str] = initial_prior_diagonal_n_blocks
710
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch SCREAMING_SNAKE_CASE__ : List[Any] = """sshleifer/bart-tiny-random""" SCREAMING_SNAKE_CASE__ : Tuple = """patrickvonplaten/t5-tiny-random""" @require_torch class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> List[Any]: """simple docstring""" return AutoConfig.from_pretrained(snake_case ) def _snake_case ( self ) -> Any: """simple docstring""" a__ , *a__ : int = create_student_by_copying_alternating_layers(snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _snake_case ( self ) -> str: """simple docstring""" a__ , *a__ : int = create_student_by_copying_alternating_layers(snake_case , tempfile.mkdtemp() , e=1 , d=snake_case ) def _snake_case ( self ) -> List[str]: """simple docstring""" a__ , *a__ : Any = create_student_by_copying_alternating_layers(snake_case , tempfile.mkdtemp() , e=1 , d=snake_case ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _snake_case ( self ) -> Optional[int]: """simple docstring""" a__ , *a__ : List[str] = create_student_by_copying_alternating_layers(snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _snake_case ( self ) -> int: """simple docstring""" with self.assertRaises(snake_case ): create_student_by_copying_alternating_layers(snake_case , tempfile.mkdtemp() , e=snake_case , d=snake_case )
629
0
from __future__ import annotations from random import choice def __SCREAMING_SNAKE_CASE ( a__ : str ) -> Optional[Any]: return choice(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[int] ,a__ : int ) -> int: __A : List[str] = random_pivot(a__ ) # partition based on pivot # linear time __A : Optional[int] = [e for e in lst if e < pivot] __A : Tuple = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(a__ ) < k - 1: return kth_number(a__ ,k - len(a__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(a__ ,a__ ) if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple )-> str: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) for i in range(length - 1 ): UpperCAmelCase__ : Any = i for k in range(i + 1 , snake_case ): if collection[k] < collection[least]: UpperCAmelCase__ : Union[str, Any] = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": _lowerCAmelCase : List[str] = input("""Enter numbers separated by a comma:\n""").strip() _lowerCAmelCase : Optional[int] = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
438
0
def A__ ( __A : float ) ->float: return 10 - x * x def A__ ( __A : float , __A : float ) ->float: # Bolzano theory in order to find if there is a root between a and b if equation(__A ) * equation(__A ) >= 0: raise ValueError('''Wrong space!''' ) __A =a while (b - a) >= 0.01: # Find middle point __A =(a + b) / 2 # Check if middle point is root if equation(__A ) == 0.0: break # Decide the side to repeat the steps if equation(__A ) * equation(__A ) < 0: __A =c else: __A =c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
516
from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) def A__ ( *__A : Optional[int] , **__A : Union[str, Any] ) ->Dict: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : str , **__A : int ) ->List[Any]: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Dict , **__A : str ) ->Tuple: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Optional[Any] , **__A : Dict ) ->Optional[Any]: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : str , **__A : str ) ->Any: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : List[Any] , **__A : Dict ) ->Union[str, Any]: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Optional[int] , **__A : Optional[int] ) ->Any: requires_backends(__A , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] )
516
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __A( unittest.TestCase ): def lowercase__ ( self : Any ): lowerCamelCase_ = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() lowerCamelCase_ = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) lowerCamelCase_ = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } lowerCamelCase_ = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6_0_0_0, """return_attention_mask""": False, """do_normalize""": True, } lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase_ = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + """\n""" ) # load decoder from hub lowerCamelCase_ = """hf-internal-testing/ngram-beam-search-decoder""" def lowercase__ ( self : List[str] , **__UpperCamelCase : Tuple ): lowerCamelCase_ = self.add_kwargs_tokens_map.copy() kwargs.update(__UpperCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : str , **__UpperCamelCase : int ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , **__UpperCamelCase : str ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__UpperCamelCase ) def lowercase__ ( self : Any ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Tuple ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = self.get_decoder() lowerCamelCase_ = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowerCamelCase_ = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase__ ( self : int ): lowerCamelCase_ = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__UpperCamelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=__UpperCamelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase__ ( self : str ): lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_decoder() lowerCamelCase_ = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) lowerCamelCase_ = floats_list((3, 1_0_0_0) ) lowerCamelCase_ = feature_extractor(__UpperCamelCase , return_tensors="""np""" ) lowerCamelCase_ = processor(__UpperCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : int ): lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_decoder() lowerCamelCase_ = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) lowerCamelCase_ = """This is a test string""" lowerCamelCase_ = processor(text=__UpperCamelCase ) lowerCamelCase_ = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Dict=(2, 1_0, 1_6) , __UpperCamelCase : Optional[int]=7_7 ): np.random.seed(__UpperCamelCase ) return np.random.rand(*__UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_decoder() lowerCamelCase_ = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) lowerCamelCase_ = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) lowerCamelCase_ = processor.decode(__UpperCamelCase ) lowerCamelCase_ = decoder.decode_beams(__UpperCamelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowercase__ ( self : Tuple , __UpperCamelCase : str ): lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_decoder() lowerCamelCase_ = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) lowerCamelCase_ = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowerCamelCase_ = processor.batch_decode(__UpperCamelCase ) else: with get_context(__UpperCamelCase ).Pool() as pool: lowerCamelCase_ = processor.batch_decode(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = list(__UpperCamelCase ) with get_context("""fork""" ).Pool() as p: lowerCamelCase_ = decoder.decode_beams_batch(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__UpperCamelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__UpperCamelCase , decoded_processor.logit_score ) self.assertListEqual(__UpperCamelCase , decoded_processor.lm_score ) def lowercase__ ( self : Tuple ): lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_decoder() lowerCamelCase_ = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) lowerCamelCase_ = self._get_dummy_logits() lowerCamelCase_ = 1_5 lowerCamelCase_ = -20.0 lowerCamelCase_ = -4.0 lowerCamelCase_ = processor.batch_decode( __UpperCamelCase , beam_width=__UpperCamelCase , beam_prune_logp=__UpperCamelCase , token_min_logp=__UpperCamelCase , ) lowerCamelCase_ = decoded_processor_out.text lowerCamelCase_ = list(__UpperCamelCase ) with get_context("""fork""" ).Pool() as pool: lowerCamelCase_ = decoder.decode_beams_batch( __UpperCamelCase , __UpperCamelCase , beam_width=__UpperCamelCase , beam_prune_logp=__UpperCamelCase , token_min_logp=__UpperCamelCase , ) lowerCamelCase_ = [d[0][0] for d in decoded_decoder_out] lowerCamelCase_ = [d[0][2] for d in decoded_decoder_out] lowerCamelCase_ = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __UpperCamelCase ) self.assertTrue(np.array_equal(__UpperCamelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __UpperCamelCase , atol=1E-3 ) ) self.assertTrue(np.array_equal(__UpperCamelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __UpperCamelCase , atol=1E-3 ) ) def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_decoder() lowerCamelCase_ = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) lowerCamelCase_ = self._get_dummy_logits() lowerCamelCase_ = 2.0 lowerCamelCase_ = 5.0 lowerCamelCase_ = -20.0 lowerCamelCase_ = True lowerCamelCase_ = processor.batch_decode( __UpperCamelCase , alpha=__UpperCamelCase , beta=__UpperCamelCase , unk_score_offset=__UpperCamelCase , lm_score_boundary=__UpperCamelCase , ) lowerCamelCase_ = decoded_processor_out.text lowerCamelCase_ = list(__UpperCamelCase ) decoder.reset_params( alpha=__UpperCamelCase , beta=__UpperCamelCase , unk_score_offset=__UpperCamelCase , lm_score_boundary=__UpperCamelCase , ) with get_context("""fork""" ).Pool() as pool: lowerCamelCase_ = decoder.decode_beams_batch( __UpperCamelCase , __UpperCamelCase , ) lowerCamelCase_ = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __UpperCamelCase ) lowerCamelCase_ = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __UpperCamelCase ) def lowercase__ ( self : List[str] ): lowerCamelCase_ = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowerCamelCase_ = processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase_ = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() lowerCamelCase_ = os.listdir(__UpperCamelCase ) lowerCamelCase_ = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : List[Any] ): lowerCamelCase_ = snapshot_download("""hf-internal-testing/processor_with_lm""" ) lowerCamelCase_ = WavaVecaProcessorWithLM.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase_ = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() lowerCamelCase_ = os.listdir(__UpperCamelCase ) lowerCamelCase_ = os.listdir(__UpperCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : List[str] ): lowerCamelCase_ = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowerCamelCase_ = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowerCamelCase_ = floats_list((3, 1_0_0_0) ) lowerCamelCase_ = processor_wavaveca(__UpperCamelCase , return_tensors="""np""" ) lowerCamelCase_ = processor_auto(__UpperCamelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) lowerCamelCase_ = self._get_dummy_logits() lowerCamelCase_ = processor_wavaveca.batch_decode(__UpperCamelCase ) lowerCamelCase_ = processor_auto.batch_decode(__UpperCamelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase__ ( self : str ): lowerCamelCase_ = self.get_feature_extractor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_decoder() lowerCamelCase_ = WavaVecaProcessorWithLM(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase , decoder=__UpperCamelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowercase__ ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): lowerCamelCase_ = [d[key] for d in offsets] return retrieved_list def lowercase__ ( self : Any ): lowerCamelCase_ = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowerCamelCase_ = self._get_dummy_logits()[0] lowerCamelCase_ = processor.decode(__UpperCamelCase , output_word_offsets=__UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowercase__ ( self : Dict ): lowerCamelCase_ = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowerCamelCase_ = self._get_dummy_logits() lowerCamelCase_ = processor.batch_decode(__UpperCamelCase , output_word_offsets=__UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__UpperCamelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase__ ( self : Dict ): import torch lowerCamelCase_ = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__UpperCamelCase ) lowerCamelCase_ = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) lowerCamelCase_ = iter(__UpperCamelCase ) lowerCamelCase_ = next(__UpperCamelCase ) lowerCamelCase_ = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) lowerCamelCase_ = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowerCamelCase_ = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): lowerCamelCase_ = model(__UpperCamelCase ).logits.cpu().numpy() lowerCamelCase_ = processor.decode(logits[0] , output_word_offsets=__UpperCamelCase ) lowerCamelCase_ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowerCamelCase_ = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] lowerCamelCase_ = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__UpperCamelCase , """word""" ) ) , __UpperCamelCase ) self.assertEqual(""" """.join(self.get_from_offsets(__UpperCamelCase , """word""" ) ) , output.text ) # output times lowerCamelCase_ = torch.tensor(self.get_from_offsets(__UpperCamelCase , """start_time""" ) ) lowerCamelCase_ = torch.tensor(self.get_from_offsets(__UpperCamelCase , """end_time""" ) ) # fmt: off lowerCamelCase_ = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) lowerCamelCase_ = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=0.01 ) )
272
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase = None lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } lowercase = { '''facebook/mbart-large-en-ro''': 1_0_2_4, '''facebook/mbart-large-cc25''': 1_0_2_4, } # fmt: off lowercase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE = MBartTokenizer SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] def __init__( self : Any , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : int=None , __UpperCamelCase : Dict="<s>" , __UpperCamelCase : Tuple="</s>" , __UpperCamelCase : Union[str, Any]="</s>" , __UpperCamelCase : Optional[Any]="<s>" , __UpperCamelCase : Optional[Any]="<unk>" , __UpperCamelCase : Dict="<pad>" , __UpperCamelCase : Dict="<mask>" , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( vocab_file=__UpperCamelCase , tokenizer_file=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) lowerCamelCase_ = { lang_code: self.convert_tokens_to_ids(__UpperCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ = src_lang if src_lang is not None else """en_XX""" lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowercase__ ( self : List[str] ): return self._src_lang @src_lang.setter def lowercase__ ( self : Optional[int] , __UpperCamelCase : str ): lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[str] , __UpperCamelCase : Optional[str] , **__UpperCamelCase : Dict ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = self.convert_tokens_to_ids(__UpperCamelCase ) lowerCamelCase_ = tgt_lang_id return inputs def lowercase__ ( self : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : str = "en_XX" , __UpperCamelCase : Optional[List[str]] = None , __UpperCamelCase : str = "ro_RO" , **__UpperCamelCase : Optional[int] , ): lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : int ): return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Dict ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : Dict , __UpperCamelCase : Dict ): lowerCamelCase_ = self.convert_tokens_to_ids(__UpperCamelCase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase__ ( self : Dict , __UpperCamelCase : str ): lowerCamelCase_ = self.convert_tokens_to_ids(__UpperCamelCase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase__ ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowerCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
272
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput SCREAMING_SNAKE_CASE_ = """scheduler_config.json""" class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : str = 1 __snake_case : Union[str, Any] = 2 __snake_case : Union[str, Any] = 3 __snake_case : str = 4 __snake_case : Optional[int] = 5 @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : jnp.ndarray class UpperCamelCase__ : '''simple docstring''' __snake_case : Optional[int] = SCHEDULER_CONFIG_NAME __snake_case : Dict = ["dtype"] __snake_case : Optional[Any] = [] __snake_case : Dict = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str ,lowerCamelCase__ : Dict[str, Any] = None ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : List[Any]=False ,**lowerCamelCase__ : str ,) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = cls.load_config( pretrained_model_name_or_path=lowerCamelCase__ ,subfolder=lowerCamelCase__ ,return_unused_kwargs=lowerCamelCase__ ,**lowerCamelCase__ ,) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = cls.from_config(lowerCamelCase__ ,return_unused_kwargs=lowerCamelCase__ ,**lowerCamelCase__ ) if hasattr(lowerCamelCase__ ,"""create_state""" ) and getattr(lowerCamelCase__ ,"""has_state""" ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : Union[str, os.PathLike] ,lowerCamelCase__ : bool = False ,**lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' self.save_config(save_directory=lowerCamelCase__ ,push_to_hub=lowerCamelCase__ ,**lowerCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' return self._get_compatibles() @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = list(set([cls.__name__] + cls._compatibles ) ) SCREAMING_SNAKE_CASE = importlib.import_module(__name__.split(""".""" )[0] ) SCREAMING_SNAKE_CASE = [ getattr(lowerCamelCase__ ,lowerCamelCase__ ) for c in compatible_classes_str if hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ] return compatible_classes def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' assert len(_SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_SCREAMING_SNAKE_CASE ) - x.ndim) ) , _SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.999 , _SCREAMING_SNAKE_CASE=jnp.floataa ) -> jnp.ndarray: '''simple docstring''' def alpha_bar(_SCREAMING_SNAKE_CASE ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE = [] for i in range(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_SCREAMING_SNAKE_CASE ) / alpha_bar(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return jnp.array(_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class UpperCamelCase__ : '''simple docstring''' __snake_case : jnp.ndarray __snake_case : jnp.ndarray __snake_case : jnp.ndarray @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] ,lowerCamelCase__ : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = scheduler.config if config.trained_betas is not None: SCREAMING_SNAKE_CASE = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": SCREAMING_SNAKE_CASE = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( F"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) SCREAMING_SNAKE_CASE = 1.0 - betas SCREAMING_SNAKE_CASE = jnp.cumprod(lowerCamelCase__ ,axis=0 ) return cls( alphas=lowerCamelCase__ ,betas=lowerCamelCase__ ,alphas_cumprod=lowerCamelCase__ ,) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = state.alphas_cumprod SCREAMING_SNAKE_CASE = alphas_cumprod[timesteps] ** 0.5 SCREAMING_SNAKE_CASE = sqrt_alpha_prod.flatten() SCREAMING_SNAKE_CASE = broadcast_to_shape_from_left(_SCREAMING_SNAKE_CASE , original_samples.shape ) SCREAMING_SNAKE_CASE = (1 - alphas_cumprod[timesteps]) ** 0.5 SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.flatten() SCREAMING_SNAKE_CASE = broadcast_to_shape_from_left(_SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = get_sqrt_alpha_prod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = get_sqrt_alpha_prod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
116
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' _validate_point(_SCREAMING_SNAKE_CASE ) _validate_point(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' if point: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for item in point: if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): SCREAMING_SNAKE_CASE = ( """Expected a list of numbers as input, found """ F"""{type(_SCREAMING_SNAKE_CASE ).__name__}""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = F"""Expected a list of numbers as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(_SCREAMING_SNAKE_CASE ) else: raise ValueError("""Missing an input""" ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' _validate_point(_SCREAMING_SNAKE_CASE ) _validate_point(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
116
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class _UpperCamelCase ( UpperCAmelCase_ ): '''simple docstring''' _A = "switch_transformers" _A = ["past_key_values"] _A = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : int , SCREAMING_SNAKE_CASE_ : str=3_2_1_2_8 , SCREAMING_SNAKE_CASE_ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE_ : Tuple=6_4 , SCREAMING_SNAKE_CASE_ : int=2_0_4_8 , SCREAMING_SNAKE_CASE_ : str=6_4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE_ : List[str]=8 , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : str=0.01 , SCREAMING_SNAKE_CASE_ : Optional[int]="float32" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_2_8 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : str=1e-6 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.001 , SCREAMING_SNAKE_CASE_ : List[Any]=0.001 , SCREAMING_SNAKE_CASE_ : Any=1.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="relu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ): _a = vocab_size _a = d_model _a = d_kv _a = d_ff _a = num_sparse_encoder_layers _a = num_layers _a = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _a = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _a = self.num_layers // self.num_sparse_encoder_layers else: _a = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _a = self.num_decoder_layers // self.num_sparse_decoder_layers else: _a = self.num_decoder_layers # HACK: this will create 0 sparse layers _a = num_heads _a = num_experts _a = expert_capacity _a = router_bias _a = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}""" ) _a = router_dtype _a = router_ignore_padding_tokens _a = relative_attention_num_buckets _a = relative_attention_max_distance _a = dropout_rate _a = layer_norm_epsilon _a = initializer_factor _a = feed_forward_proj _a = use_cache _a = add_router_probs _a = router_z_loss_coef _a = router_aux_loss_coef _a = self.feed_forward_proj.split('-' ) _a = act_info[-1] _a = act_info[0] == 'gated' if len(a_ ) > 1 and act_info[0] != "gated" or len(a_ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _a = 'gelu_new' super().__init__( pad_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , **a_ , )
562
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : Union[str, Any] = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
165
0
from bisect import bisect from itertools import accumulate def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = sorted(zip(lowerCAmelCase , lowerCAmelCase ) , key=lambda lowerCAmelCase : x[0] / x[1] , reverse=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = [i[0] for i in r], [i[1] for i in r] SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(accumulate(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = bisect(lowerCAmelCase , lowerCAmelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
706
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class a__ : A = 42 # [batch_size x 3] A = 42 # [batch_size x 3] A = 42 # [batch_size x 3] A = 42 # [batch_size x 3] A = 42 A = 42 A = 42 A = 42 A = 42 def __UpperCamelCase ( self : int ): """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return torch.from_numpy(np.array([self.width, self.height],dtype=np.floataa ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov],dtype=np.floataa ) ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.arange(self.height * self.width ) SCREAMING_SNAKE_CASE_ : str = torch.stack( [ pixel_indices % self.width, torch.div(_A,self.width,rounding_mode="trunc" ), ],axis=1,) return coords @property def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ : List[str] = self.shape SCREAMING_SNAKE_CASE_ : Any = int(np.prod(_A ) ) SCREAMING_SNAKE_CASE_ : str = self.get_image_coords() SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.broadcast_to(coords.unsqueeze(0 ),[batch_size * inner_batch_size, *coords.shape] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_camera_rays(_A ) SCREAMING_SNAKE_CASE_ : Any = rays.view(_A,inner_batch_size * self.height * self.width,2,3 ) return rays def __UpperCamelCase ( self : Tuple,_A : torch.Tensor ): """simple docstring""" SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] SCREAMING_SNAKE_CASE_ : Tuple = coords.view(_A,-1,2 ) SCREAMING_SNAKE_CASE_ : List[str] = self.resolution() SCREAMING_SNAKE_CASE_ : List[str] = self.fov() SCREAMING_SNAKE_CASE_ : Optional[Any] = (flat.float() / (res - 1)) * 2 - 1 SCREAMING_SNAKE_CASE_ : Optional[int] = fracs * torch.tan(fov / 2 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = fracs.view(_A,-1,2 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( self.z.view(_A,1,3 ) + self.x.view(_A,1,3 ) * fracs[:, :, :1] + self.y.view(_A,1,3 ) * fracs[:, :, 1:] ) SCREAMING_SNAKE_CASE_ : Any = directions / directions.norm(dim=-1,keepdim=_A ) SCREAMING_SNAKE_CASE_ : Tuple = torch.stack( [ torch.broadcast_to(self.origin.view(_A,1,3 ),[batch_size, directions.shape[1], 3] ), directions, ],dim=2,) return rays.view(_A,*_A,2,3 ) def __UpperCamelCase ( self : Optional[int],_A : int,_A : int ): """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin,x=self.x,y=self.y,z=self.z,width=_A,height=_A,x_fov=self.x_fov,y_fov=self.y_fov,) def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : int = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): SCREAMING_SNAKE_CASE_ : Dict = np.array([np.sin(lowerCAmelCase ), np.cos(lowerCAmelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) SCREAMING_SNAKE_CASE_ : Dict = -z * 4 SCREAMING_SNAKE_CASE_ : str = np.array([np.cos(lowerCAmelCase ), -np.sin(lowerCAmelCase ), 0.0] ) SCREAMING_SNAKE_CASE_ : int = np.cross(lowerCAmelCase , lowerCAmelCase ) origins.append(lowerCAmelCase ) xs.append(lowerCAmelCase ) ys.append(lowerCAmelCase ) zs.append(lowerCAmelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCAmelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCAmelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCAmelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCAmelCase , axis=0 ) ).float() , width=lowerCAmelCase , height=lowerCAmelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCAmelCase )) , )
316
0
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : int ): """simple docstring""" UpperCamelCase__ = BertConfig.from_json_file(_snake_case ) print(F'Building PyTorch model from configuration: {config}' ) UpperCamelCase__ = BertForPreTraining(_snake_case ) # Load weights from tf checkpoint load_tf_weights_in_bert(_snake_case , _snake_case , _snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _snake_case ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
516
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[Any] = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
516
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __A : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __A : int = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :Dict ): snake_case_ : Tuple = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir ,"""schedulers/""" ) ) snake_case_ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(_UpperCamelCase ,"""src/diffusers/schedulers/scheduling_ddpm.py""" ) ,os.path.join(self.diffusers_dir ,"""schedulers/scheduling_ddpm.py""" ) ,) def a__ ( self :Dict ): snake_case_ : List[Any] = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def a__ ( self :Tuple ,_UpperCamelCase :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Tuple ,_UpperCamelCase :List[Any]=None ): snake_case_ : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: snake_case_ : Dict = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result snake_case_ : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=1_1_9 ) snake_case_ : Any = black.format_str(_UpperCamelCase ,mode=_UpperCamelCase ) snake_case_ : Dict = os.path.join(self.diffusers_dir ,"""new_code.py""" ) with open(_UpperCamelCase ,"""w""" ,newline="""\n""" ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=_UpperCamelCase ) with open(_UpperCamelCase ,"""r""" ) as f: self.assertTrue(f.read() ,_UpperCamelCase ) def a__ ( self :int ): snake_case_ : Union[str, Any] = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :List[str] ): # Base copy consistency self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,REFERENCE_CODE + """\n""" ,) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,_UpperCamelCase ,) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,re.sub("""DDPM""" ,"""Test""" ,_UpperCamelCase ) ,) # Copy consistency with a really long name snake_case_ : Optional[int] = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' ,F'''{long_class_name}SchedulerOutput''' ,re.sub("""Bert""" ,_UpperCamelCase ,_UpperCamelCase ) ,) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,_UpperCamelCase ,overwrite_result=re.sub("""DDPM""" ,"""Test""" ,_UpperCamelCase ) ,)
712
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __A : List[Any] = logging.get_logger(__name__) def UpperCAmelCase ( lowerCamelCase_ :nn.ModuleList , lowerCamelCase_ :nn.ModuleList , lowerCamelCase_ :List[int] ): '''simple docstring''' snake_case_ : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ), F'''{len(lowerCamelCase_ )} != {len(lowerCamelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __A : Optional[int] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __A : Dict = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ): '''simple docstring''' try: snake_case_ : int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCamelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def UpperCAmelCase ( lowerCamelCase_ :Union[str, PreTrainedModel] , lowerCamelCase_ :Union[str, Path] = "student" , lowerCamelCase_ :Union[int, None] = None , lowerCamelCase_ :Union[int, None] = None , lowerCamelCase_ :List[str]=False , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :Dict , ): '''simple docstring''' snake_case_ : Optional[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCamelCase_ , lowerCamelCase_ ): AutoTokenizer.from_pretrained(lowerCamelCase_ ).save_pretrained(lowerCamelCase_ ) # purely for convenience snake_case_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase_ ).eval() else: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), F'''teacher must be a model or string got type {type(lowerCamelCase_ )}''' snake_case_ : Any = teacher.config.to_diff_dict() try: snake_case_ , snake_case_ : List[str] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: snake_case_ : Dict = teacher_e if d is None: snake_case_ : List[Any] = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): snake_case_ , snake_case_ : Tuple = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: snake_case_ , snake_case_ : Union[str, Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: snake_case_ : Optional[int] = teacher_e if d is None: snake_case_ : List[str] = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCamelCase_ ) # Copy weights snake_case_ : List[Any] = teacher.config_class(**lowerCamelCase_ ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_config(lowerCamelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. snake_case_ : Tuple = student.load_state_dict(teacher.state_dict() , strict=lowerCamelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save snake_case_ , snake_case_ : List[str] = list(range(lowerCamelCase_ ) ), list(range(lowerCamelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCamelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: snake_case_ : List[int] = pick_layers_to_copy(lowerCamelCase_ , lowerCamelCase_ ) if d_layers_to_copy is None: snake_case_ : List[int] = pick_layers_to_copy(lowerCamelCase_ , lowerCamelCase_ ) try: if hasattr( lowerCamelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCamelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCamelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCamelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCamelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCamelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCamelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) snake_case_ : Any = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCamelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
267
0
from __future__ import annotations def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = 0.00 lowercase = 0 for resistor in resistors: if resistor <= 0: lowercase = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(__lowerCamelCase ) first_sum += 1 / float(__lowerCamelCase ) index += 1 return 1 / first_sum def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = 0.00 lowercase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase = f"""Resistor at index {index} has a negative value!""" raise ValueError(__lowerCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
428
'''simple docstring''' import sys lowerCAmelCase_ : List[str] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _lowerCamelCase (__lowerCamelCase : str = N ) -> int: a__ = -sys.maxsize - 1 for i in range(len(__lowerCamelCase ) - 12 ): a__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: a__ = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
489
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = LxmertConfig.from_json_file(lowercase__ ) print(f"Building PyTorch model from configuration: {config}" ) __UpperCAmelCase : List[str] = LxmertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : List[str] = torch.device('cpu') def lowercase__( ): snake_case__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Tuple = Image.open(requests.get(A , stream=A ).raw ) return im def lowercase__( A ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def lowercase__( A , A , A ): snake_case__ : List[Any] = dct.pop(A ) snake_case__ : Any = val def lowercase__( A ): snake_case__ : List[str] = [] for k in state_dict.keys(): snake_case__ : List[str] = k if ".pwconv" in k: snake_case__ : List[Any] = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: snake_case__ : List[Any] = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: snake_case__ : Any = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: snake_case__ : int = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: snake_case__ : Dict = k_new.split('.' ) if ls[2].isdigit(): snake_case__ : Optional[Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: snake_case__ : Optional[int] = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowercase__( A , A , A ): snake_case__ : int = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Union[str, Any] = 1_0_0_0 snake_case__ : Tuple = 'huggingface/label-files' snake_case__ : Optional[int] = 'imagenet-1k-id2label.json' snake_case__ : List[Any] = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) snake_case__ : Dict = {int(A ): v for k, v in idalabel.items()} snake_case__ : Optional[Any] = idalabel snake_case__ : Tuple = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": snake_case__ : Union[str, Any] = [3, 3, 6, 4] snake_case__ : List[str] = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": snake_case__ : List[Any] = [3, 3, 9, 6] snake_case__ : Optional[Any] = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": snake_case__ : List[str] = [4, 3, 1_0, 5] snake_case__ : Optional[Any] = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": snake_case__ : str = [4, 4, 1_2, 6] snake_case__ : List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): snake_case__ : Tuple = torch.hub.load_state_dict_from_url(A , map_location='cpu' , check_hash=A ) else: snake_case__ : List[str] = torch.load(A , map_location='cpu' ) snake_case__ : Any = checkpoint snake_case__ : List[str] = create_rename_keys(A ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A , A , A ) # load HuggingFace model snake_case__ : Optional[int] = SwiftFormerForImageClassification(A ).eval() hf_model.load_state_dict(A ) # prepare test inputs snake_case__ : Dict = prepare_img() snake_case__ : Any = ViTImageProcessor.from_pretrained('preprocessor_config' ) snake_case__ : str = processor(images=A , return_tensors='pt' ) # compare outputs from both models snake_case__ : Optional[Any] = get_expected_output(A ) snake_case__ : Optional[int] = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , A , atol=1e-3 ) Path(A ).mkdir(exist_ok=A ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(A ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') lowerCamelCase : Any = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
170
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowercase__( A ): # A local function to see if a dot lands in the circle. def is_in_circle(A , A ) -> bool: snake_case__ : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case__ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(A ) ) # The ratio of the area for circle to square is pi/4. snake_case__ : Optional[Any] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowercase__( A , A , A = 0.0 , A = 1.0 , ): return mean( function_to_integrate(uniform(A , A ) ) for _ in range(A ) ) * (max_value - min_value) def lowercase__( A , A = 0.0 , A = 1.0 ): def identity_function(A ) -> float: return x snake_case__ : List[Any] = area_under_curve_estimator( A , A , A , A ) snake_case__ : List[str] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('******************' ) def lowercase__( A ): def function_to_integrate(A ) -> float: return sqrt(4.0 - x * x ) snake_case__ : Tuple = area_under_curve_estimator( A , A , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
170
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase_ ( unittest.TestCase , UpperCAmelCase_ ): def __a ( self ): _lowercase : List[str] = load_tool('text-classification' ) self.tool.setup() _lowercase : Dict = load_tool('text-classification' , remote=_lowercase ) def __a ( self ): _lowercase : Tuple = self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(_lowercase , 'positive' ) def __a ( self ): _lowercase : Optional[Any] = self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(_lowercase , 'positive' ) def __a ( self ): _lowercase : Tuple = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(_lowercase , 'positive' ) def __a ( self ): _lowercase : Any = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(_lowercase , 'positive' )
707
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a : int = logging.get_logger("""transformers.models.speecht5""") def snake_case__ ( lowercase , lowercase , lowercase ): hf_model.apply_weight_norm() lowerCAmelCase_: List[str] = checkpoint["input_conv.weight_g"] lowerCAmelCase_: Optional[int] = checkpoint["input_conv.weight_v"] lowerCAmelCase_: Optional[Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_: Any = checkpoint[F'''upsamples.{i}.1.weight_g'''] lowerCAmelCase_: List[Any] = checkpoint[F'''upsamples.{i}.1.weight_v'''] lowerCAmelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_: List[str] = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] lowerCAmelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] lowerCAmelCase_: int = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] lowerCAmelCase_: Dict = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] lowerCAmelCase_: Optional[int] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] lowerCAmelCase_: List[Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] lowerCAmelCase_: List[str] = checkpoint["output_conv.1.weight_g"] lowerCAmelCase_: Union[str, Any] = checkpoint["output_conv.1.weight_v"] lowerCAmelCase_: Union[str, Any] = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def snake_case__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ): if config_path is not None: lowerCAmelCase_: Dict = SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: lowerCAmelCase_: int = SpeechTaHifiGanConfig() lowerCAmelCase_: List[Any] = SpeechTaHifiGan(lowercase ) lowerCAmelCase_: List[Any] = torch.load(lowercase ) load_weights(orig_checkpoint["model"]["generator"] , lowercase , lowercase ) lowerCAmelCase_: Optional[Any] = np.load(lowercase ) lowerCAmelCase_: Optional[int] = stats[0].reshape(-1 ) lowerCAmelCase_: Dict = stats[1].reshape(-1 ) lowerCAmelCase_: Any = torch.from_numpy(lowercase ).float() lowerCAmelCase_: Union[str, Any] = torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(lowercase ) if __name__ == "__main__": a : int = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) a : List[str] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
613
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def _a ( self ): lowerCAmelCase_: Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , "num_attention_heads" ) ) class _lowercase : '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=64 , lowerCamelCase__=3 , lowerCamelCase__=3 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=16 , lowerCamelCase__=[128, 256, 384] , lowerCamelCase__=[4, 6, 8] , lowerCamelCase__=[2, 3, 4] , lowerCamelCase__=[16, 16, 16] , lowerCamelCase__=0 , lowerCamelCase__=[2, 2, 2] , lowerCamelCase__=[2, 2, 2] , lowerCamelCase__=0.0_2 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=2 , ): lowerCAmelCase_: int = parent lowerCAmelCase_: Tuple = batch_size lowerCAmelCase_: List[str] = image_size lowerCAmelCase_: Tuple = num_channels lowerCAmelCase_: Optional[int] = kernel_size lowerCAmelCase_: int = stride lowerCAmelCase_: Optional[int] = padding lowerCAmelCase_: Tuple = hidden_sizes lowerCAmelCase_: Union[str, Any] = num_attention_heads lowerCAmelCase_: Tuple = depths lowerCAmelCase_: Optional[int] = key_dim lowerCAmelCase_: Optional[Any] = drop_path_rate lowerCAmelCase_: List[str] = patch_size lowerCAmelCase_: Any = attention_ratio lowerCAmelCase_: Tuple = mlp_ratio lowerCAmelCase_: Any = initializer_range lowerCAmelCase_: List[str] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowerCAmelCase_: Any = is_training lowerCAmelCase_: Optional[int] = use_labels lowerCAmelCase_: Dict = num_labels lowerCAmelCase_: Any = initializer_range def _a ( self ): lowerCAmelCase_: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_: Tuple = None if self.use_labels: lowerCAmelCase_: int = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_: Tuple = self.get_config() return config, pixel_values, labels def _a ( self ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: int = LevitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCAmelCase_: Optional[Any] = model(lowerCamelCase__ ) lowerCAmelCase_: Tuple = (self.image_size, self.image_size) lowerCAmelCase_ , lowerCAmelCase_: Optional[int] = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase_: Union[str, Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowerCAmelCase_: str = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: Tuple = self.num_labels lowerCAmelCase_: str = LevitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCAmelCase_: Optional[Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ): lowerCAmelCase_: Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: Dict = config_and_inputs lowerCAmelCase_: Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE: Any = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) SCREAMING_SNAKE_CASE: int = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE: Optional[int] = False SCREAMING_SNAKE_CASE: Optional[Any] = False SCREAMING_SNAKE_CASE: str = False SCREAMING_SNAKE_CASE: str = False SCREAMING_SNAKE_CASE: List[Any] = False def _a ( self ): lowerCAmelCase_: List[str] = LevitModelTester(self ) lowerCAmelCase_: Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _a ( self ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _a ( self ): pass @unittest.skip(reason="Levit does not output attentions" ) def _a ( self ): pass def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_: List[str] = model_class(lowerCamelCase__ ) lowerCAmelCase_: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_: Any = [*signature.parameters.keys()] lowerCAmelCase_: str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _a ( self ): def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: int = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_: Dict = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase_: str = outputs.hidden_states lowerCAmelCase_: List[Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) lowerCAmelCase_: List[Any] = (self.model_tester.image_size, self.model_tester.image_size) lowerCAmelCase_ , lowerCAmelCase_: int = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase_: Tuple = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowerCAmelCase_: Optional[int] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowerCAmelCase_ , lowerCAmelCase_: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_: int = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_: Union[str, Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _a ( self ): pass def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): lowerCAmelCase_: List[str] = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self ): lowerCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _a ( self ): if not self.model_tester.is_training: return lowerCAmelCase_ , lowerCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_: int = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowerCAmelCase_: Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() lowerCAmelCase_: Optional[int] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) lowerCAmelCase_: Tuple = model(**lowerCamelCase__ ).loss loss.backward() def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase_: Any = False lowerCAmelCase_: Tuple = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowerCAmelCase_: Any = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() lowerCAmelCase_: str = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) lowerCAmelCase_: List[str] = model(**lowerCamelCase__ ).loss loss.backward() def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_: Optional[int] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowerCAmelCase_: Tuple = problem_type["title"] lowerCAmelCase_: Optional[Any] = problem_type["num_labels"] lowerCAmelCase_: List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() lowerCAmelCase_: List[Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if problem_type["num_labels"] > 1: lowerCAmelCase_: List[str] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) lowerCAmelCase_: List[Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase__ ) as warning_list: lowerCAmelCase_: Dict = model(**lowerCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def _a ( self ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_: Optional[int] = LevitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def snake_case__ ( ): lowerCAmelCase_: Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _a ( self ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _a ( self ): lowerCAmelCase_: Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase__ ) lowerCAmelCase_: str = self.default_image_processor lowerCAmelCase_: int = prepare_img() lowerCAmelCase_: Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_: Tuple = model(**lowerCamelCase__ ) # verify the logits lowerCAmelCase_: str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) lowerCAmelCase_: Union[str, Any] = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
613
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] lowercase_ = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
lowercase_ = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
390
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a_ ( _UpperCAmelCase ): a : List[Any] = 'dandelin/vilt-b32-finetuned-vqa' a : List[str] = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) a : List[Any] = 'image_qa' a : str = AutoProcessor a : Any = AutoModelForVisualQuestionAnswering a : Union[str, Any] = ['image', 'text'] a : str = ['text'] def __init__( self : str , *__UpperCamelCase : str , **__UpperCamelCase : Dict ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Any , __UpperCamelCase : "Image" , __UpperCamelCase : str ) ->Optional[int]: '''simple docstring''' return self.pre_processor(__UpperCamelCase , __UpperCamelCase , return_tensors="""pt""" ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : Optional[int] ) ->List[str]: '''simple docstring''' with torch.no_grad(): return self.model(**__UpperCamelCase ).logits def _snake_case ( self : int , __UpperCamelCase : Tuple ) ->List[str]: '''simple docstring''' _UpperCAmelCase = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
555
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : Dict = StableDiffusionSAGPipeline a : Any = TEXT_TO_IMAGE_PARAMS a : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS a : Tuple = False def _snake_case ( self : List[Any] ) ->Tuple: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _UpperCAmelCase = CLIPTextModel(__UpperCamelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any=0 ) ->Any: '''simple docstring''' if str(__UpperCamelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _UpperCAmelCase = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def _snake_case ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _snake_case ( self : Union[str, Any] ) ->str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) _UpperCAmelCase = sag_pipe.to(__UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = """.""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sag_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _snake_case ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) _UpperCAmelCase = sag_pipe.to(__UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = """.""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sag_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _snake_case ( self : str ) ->str: '''simple docstring''' _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) _UpperCAmelCase = sag_pipe.to(__UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = """.""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=__UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) _UpperCAmelCase = output.images assert image.shape == (1, 5_12, 7_68, 3)
555
1
"""simple docstring""" def lowerCAmelCase_ ( lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Any ): '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowercase_ , n - 1 , lowercase_ ) * a) % mod else: __SCREAMING_SNAKE_CASE : Union[str, Any] = binary_exponentiation(lowercase_ , n / 2 , lowercase_ ) return (b * b) % mod # a prime number _lowerCamelCase = 7_01 _lowerCamelCase = 10_00_00_00_00 _lowerCamelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
401
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : int ): '''simple docstring''' if b == 0: return (1, 0) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : Tuple = extended_euclid(lowercase_ , a % b ) __SCREAMING_SNAKE_CASE : int = a // b return (y, x - k * y) def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ): '''simple docstring''' ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : int = extended_euclid(lowercase_ , lowercase_ ) __SCREAMING_SNAKE_CASE : Any = na * na __SCREAMING_SNAKE_CASE : str = ra * x * na + ra * y * na return (n % m + m) % m def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : int ): '''simple docstring''' ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : str = extended_euclid(lowercase_ , lowercase_ ) if b < 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = (b % n + n) % n return b def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = invert_modulo(lowercase_ , lowercase_ ), invert_modulo(lowercase_ , lowercase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = na * na __SCREAMING_SNAKE_CASE : List[Any] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
401
1
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ) -> Tuple: # noqa: E741 """simple docstring""" while r - l > 1: __lowerCamelCase = (l + r) // 2 if v[m] >= key: __lowerCamelCase = m else: __lowerCamelCase = m # noqa: E741 return r def lowerCamelCase_ ( UpperCamelCase__ : list[int] ) -> int: """simple docstring""" if len(UpperCamelCase__ ) == 0: return 0 __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = 1 __lowerCamelCase = v[0] for i in range(1 , len(UpperCamelCase__ ) ): if v[i] < tail[0]: __lowerCamelCase = v[i] elif v[i] > tail[length - 1]: __lowerCamelCase = v[i] length += 1 else: __lowerCamelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
469
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __A = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Tuple: """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(UpperCamelCase__ ): return ext raise Exception( F"""Unable to determine file format from file extension {path}. """ F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> List[str]: """simple docstring""" __lowerCamelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __lowerCamelCase = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format __lowerCamelCase = PipelineDataFormat.from_str( format=UpperCamelCase__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(UpperCamelCase__ , UpperCamelCase__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = nlp __lowerCamelCase = reader @staticmethod def lowercase_ ( lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=lowerCamelCase__ , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=lowerCamelCase__ , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=lowerCamelCase__ , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=lowerCamelCase__ , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=lowerCamelCase__ , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=lowerCamelCase__ , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=lowerCamelCase__ , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=lowerCamelCase__ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self._nlp, [] for entry in self._reader: __lowerCamelCase = nlp(**lowerCamelCase__ ) if self._reader.is_multi_columns else nlp(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): outputs.append(lowerCamelCase__ ) else: outputs += output # Saving data if self._nlp.binary_output: __lowerCamelCase = self._reader.save_binary(lowerCamelCase__ ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(lowerCamelCase__ )
469
1
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : int = 2_0_0 ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] __SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * (pence + 1) __SCREAMING_SNAKE_CASE : int = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_SCREAMING_SNAKE_CASE , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
717
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE : Tuple = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(self.tmpdirname , a__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(a__ , a__ ) def a_ ( self , **a__ ): return BertTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a_ ( self , **a__ ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def a_ ( self , **a__ ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **a__ ) def a_ ( self ): shutil.rmtree(self.tmpdirname ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : List[Any] = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[int] = AlignProcessor(tokenizer=a__ , image_processor=a__ ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : List[str] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=a__ ) __SCREAMING_SNAKE_CASE : Optional[int] = AlignProcessor(tokenizer=a__ , image_processor=a__ ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : List[str] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , a__ ) self.assertIsInstance(processor_fast.tokenizer , a__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , a__ ) self.assertIsInstance(processor_fast.image_processor , a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : Any = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = AlignProcessor(tokenizer=a__ , image_processor=a__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[Any] = image_processor(a__ , return_tensors="np" ) __SCREAMING_SNAKE_CASE : Dict = processor(images=a__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() __SCREAMING_SNAKE_CASE : int = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[Any] = AlignProcessor(tokenizer=a__ , image_processor=a__ ) __SCREAMING_SNAKE_CASE : Any = "lower newer" __SCREAMING_SNAKE_CASE : List[str] = processor(text=a__ ) __SCREAMING_SNAKE_CASE : int = tokenizer(a__ , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() __SCREAMING_SNAKE_CASE : str = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = AlignProcessor(tokenizer=a__ , image_processor=a__ ) __SCREAMING_SNAKE_CASE : List[str] = "lower newer" __SCREAMING_SNAKE_CASE : str = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(a__ ): processor() def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Dict = AlignProcessor(tokenizer=a__ , image_processor=a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : Dict = processor.batch_decode(a__ ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.batch_decode(a__ ) self.assertListEqual(a__ , a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : str = AlignProcessor(tokenizer=a__ , image_processor=a__ ) __SCREAMING_SNAKE_CASE : Any = "lower newer" __SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[str] = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
564
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase( lowercase__ , unittest.TestCase ): '''simple docstring''' __a : Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def snake_case_ ( self , __a=0 ): __lowerCamelCase : List[str] = floats_tensor((1, 3, 128, 128) , rng=random.Random(__a ) ) __lowerCamelCase : Any = np.random.RandomState(__a ) __lowerCamelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case_ ( self ): __lowerCamelCase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : Dict = self.get_dummy_inputs() __lowerCamelCase : List[str] = pipe(**__a ).images __lowerCamelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase : Union[str, Any] = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def snake_case_ ( self ): __lowerCamelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__a ) pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : Optional[Any] = self.get_dummy_inputs() __lowerCamelCase : int = pipe(**__a ).images __lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase : Any = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case_ ( self ): __lowerCamelCase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) # warmup pass to apply optimizations __lowerCamelCase : str = pipe(**self.get_dummy_inputs() ) __lowerCamelCase : str = self.get_dummy_inputs() __lowerCamelCase : Tuple = pipe(**__a ).images __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase : Optional[int] = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case_ ( self ): __lowerCamelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : Tuple = self.get_dummy_inputs() __lowerCamelCase : Optional[Any] = pipe(**__a ).images __lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase : List[Any] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case_ ( self ): __lowerCamelCase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : Dict = self.get_dummy_inputs() __lowerCamelCase : Union[str, Any] = pipe(**__a ).images __lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase : Any = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case_ ( self ): __lowerCamelCase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : Dict = self.get_dummy_inputs() __lowerCamelCase : List[str] = pipe(**__a ).images __lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase : str = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __lowercase( unittest.TestCase ): '''simple docstring''' @property def snake_case_ ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case_ ( self ): __lowerCamelCase : Any = ort.SessionOptions() __lowerCamelCase : Tuple = False return options def snake_case_ ( self ): __lowerCamelCase : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase : str = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : List[str] = 'A fantasy landscape, trending on artstation' __lowerCamelCase : Optional[Any] = np.random.RandomState(0 ) __lowerCamelCase : List[Any] = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type='np' , ) __lowerCamelCase : Any = output.images __lowerCamelCase : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase : int = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def snake_case_ ( self ): __lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase : str = init_image.resize((768, 512) ) __lowerCamelCase : Any = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : Tuple = 'A fantasy landscape, trending on artstation' __lowerCamelCase : Union[str, Any] = np.random.RandomState(0 ) __lowerCamelCase : int = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__a , output_type='np' , ) __lowerCamelCase : Dict = output.images __lowerCamelCase : List[str] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase : int = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
594
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowercase( lowercase__ , unittest.TestCase ): '''simple docstring''' __a : str = DebertaTokenizer __a : Optional[int] = True __a : Tuple = DebertaTokenizerFast def snake_case_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] __lowerCamelCase : int = dict(zip(__a , range(len(__a ) ) ) ) __lowerCamelCase : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __lowerCamelCase : Optional[int] = {'unk_token': '[UNK]'} __lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def snake_case_ ( self , **__a ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def snake_case_ ( self , __a ): __lowerCamelCase : Dict = 'lower newer' __lowerCamelCase : Dict = 'lower newer' return input_text, output_text def snake_case_ ( self ): __lowerCamelCase : List[Any] = self.get_tokenizer() __lowerCamelCase : str = 'lower newer' __lowerCamelCase : str = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __lowerCamelCase : Optional[Any] = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __lowerCamelCase : List[Any] = tokens + [tokenizer.unk_token] __lowerCamelCase : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def snake_case_ ( self ): __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : List[Any] = tokenizer('Hello' , 'World' ) __lowerCamelCase : int = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , __a ) @slow def snake_case_ ( self ): __lowerCamelCase : int = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) __lowerCamelCase : Dict = tokenizer.encode('sequence builders' , add_special_tokens=__a ) __lowerCamelCase : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) __lowerCamelCase : str = tokenizer.encode( 'sequence builders' , add_special_tokens=__a , add_prefix_space=__a ) __lowerCamelCase : str = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=__a , add_prefix_space=__a ) __lowerCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(__a ) __lowerCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case_ ( self ): __lowerCamelCase : str = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCamelCase : str = tokenizer_class.from_pretrained('microsoft/deberta-base' ) __lowerCamelCase : Optional[int] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] __lowerCamelCase : Any = tokenizer(__a , padding=__a ) __lowerCamelCase : int = [tokenizer.decode(__a , skip_special_tokens=__a ) for seq in encoding['input_ids']] # fmt: off __lowerCamelCase : Optional[int] = { 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCamelCase : Union[str, Any] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , __a ) for expected, decoded in zip(__a , __a ): self.assertEqual(__a , __a )
594
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig class a ( __lowerCAmelCase ): """simple docstring""" __lowerCAmelCase = """bert-generation""" def __init__( self , snake_case_=5_0358 , snake_case_=1024 , snake_case_=24 , snake_case_=16 , snake_case_=4096 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=0.0_2 , snake_case_=1e-1_2 , snake_case_=0 , snake_case_=2 , snake_case_=1 , snake_case_="absolute" , snake_case_=True , **snake_case_ , ): '''simple docstring''' super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) __UpperCAmelCase: str = vocab_size __UpperCAmelCase: Optional[Any] = hidden_size __UpperCAmelCase: str = num_hidden_layers __UpperCAmelCase: Optional[int] = num_attention_heads __UpperCAmelCase: Optional[int] = hidden_act __UpperCAmelCase: Tuple = intermediate_size __UpperCAmelCase: Optional[Any] = hidden_dropout_prob __UpperCAmelCase: Any = attention_probs_dropout_prob __UpperCAmelCase: Optional[Any] = max_position_embeddings __UpperCAmelCase: int = initializer_range __UpperCAmelCase: int = layer_norm_eps __UpperCAmelCase: Optional[Any] = position_embedding_type __UpperCAmelCase: Any = use_cache
466
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
466
1
from __future__ import annotations import numpy as np def A ( lowercase__ : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: UpperCamelCase__ , UpperCamelCase__ :str = np.shape(lowercase__ ) if rows != columns: UpperCamelCase__ :str = ( """'table' has to be of square shaped array but got a """ f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(lowercase__ ) UpperCamelCase__ :Union[str, Any] = np.zeros((rows, columns) ) UpperCamelCase__ :int = np.zeros((rows, columns) ) for i in range(lowercase__ ): for j in range(lowercase__ ): UpperCamelCase__ :List[str] = sum(lower[i][k] * upper[k][j] for k in range(lowercase__ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) UpperCamelCase__ :int = (table[i][j] - total) / upper[j][j] UpperCamelCase__ :Optional[Any] = 1 for j in range(lowercase__ , lowercase__ ): UpperCamelCase__ :int = sum(lower[i][k] * upper[k][j] for k in range(lowercase__ ) ) UpperCamelCase__ :Optional[int] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
45
'''simple docstring''' import re from filelock import FileLock try: import nltk __A =True except (ImportError, ModuleNotFoundError): __A =False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _UpperCamelCase ( UpperCamelCase__ ): re.sub("""<n>""" , """""" , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
407
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase=2 , _lowercase=3 , _lowercase=64 , _lowercase=None ): """simple docstring""" _lowerCAmelCase = np.random.default_rng(_lowercase ) _lowerCAmelCase = length _lowerCAmelCase = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ): """simple docstring""" return self.length def __getitem__( self , _lowercase ): """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , _lowercase=0 , _lowercase=0 , _lowercase=False ): """simple docstring""" super().__init__() _lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCAmelCase = True def _lowercase ( self , _lowercase=None ): """simple docstring""" if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCAmelCase = False return x * self.a[0] + self.b[0] class UpperCAmelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , _lowercase=0 , _lowercase=0 , _lowercase=False ): """simple docstring""" super().__init__() _lowerCAmelCase = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) _lowerCAmelCase = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) _lowerCAmelCase = True def _lowercase ( self , _lowercase=None ): """simple docstring""" if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCAmelCase = False return x * self.a + self.b def A (__lowerCamelCase :List[str] , __lowerCamelCase :int = 16 ): from datasets import load_dataset from transformers import AutoTokenizer _lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _lowerCAmelCase = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} _lowerCAmelCase = load_dataset("""csv""" , data_files=__lowerCamelCase ) _lowerCAmelCase = datasets["""train"""].unique("""label""" ) _lowerCAmelCase = {v: i for i, v in enumerate(__lowerCamelCase )} def tokenize_function(__lowerCamelCase :Dict ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding="""max_length""" ) if "label" in examples: _lowerCAmelCase = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(__lowerCamelCase :Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. _lowerCAmelCase = DataLoader(tokenized_datasets["""train"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=2 ) _lowerCAmelCase = DataLoader(tokenized_datasets["""validation"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
162
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule _lowercase = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
162
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : Union[str, Any]=1_0 , __lowerCAmelCase : Union[str, Any]=[1_0, 2_0, 3_0, 4_0] , __lowerCAmelCase : Any=[1, 1, 2, 1] , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Tuple="relu" , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : List[str]=None , ): """simple docstring""" _lowerCamelCase : str = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : int = image_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = embeddings_size _lowerCamelCase : Optional[Any] = hidden_sizes _lowerCamelCase : Dict = depths _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Tuple = num_labels _lowerCamelCase : Dict = scope _lowerCamelCase : List[str] = len(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : str = RegNetModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[str] = model(__lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : str = RegNetForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Any = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = config_and_inputs _lowerCamelCase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Any = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case__ : int = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case__ : Dict = False snake_case__ : List[Any] = False snake_case__ : Optional[int] = False snake_case__ : List[str] = False def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Tuple = RegNetModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[int] = [*signature.parameters.keys()] _lowerCamelCase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(config=__lowerCAmelCase ) for name, module in model.named_modules(): if isinstance(__lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : Any = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Dict = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCamelCase : Tuple = layer_type _lowerCamelCase : Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = RegNetModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCAmelCase ) _lowerCamelCase : str = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**__lowerCAmelCase ) # verify the logits _lowerCamelCase : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
83
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCAmelCase_ ( __A : Features ): '''simple docstring''' snake_case: Any = np.inf def set_batch_size(__A : FeatureType ) -> None: nonlocal batch_size if isinstance(__A , __A ): snake_case: str = min(__A , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__A , __A ): snake_case: Optional[int] = min(__A , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__A , __A ) and feature.dtype == "binary": snake_case: Union[str, Any] = min(__A , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__A , __A ) return None if batch_size is np.inf else batch_size class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ , streaming=SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: str = path_or_paths if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else {self.split: path_or_paths} snake_case: int = _PACKAGED_DATASETS_MODULES['parquet'][1] snake_case: Optional[Any] = Parquet( cache_dir=SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , hash=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' if self.streaming: snake_case: Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case: Dict = None snake_case: List[Any] = None snake_case: Optional[int] = None snake_case: Any = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE__ , download_mode=SCREAMING_SNAKE_CASE__ , verification_mode=SCREAMING_SNAKE_CASE__ , base_path=SCREAMING_SNAKE_CASE__ , num_proc=self.num_proc , ) snake_case: List[Any] = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE__ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Union[str, Any] = dataset snake_case: Any = path_or_buf snake_case: Dict = batch_size or get_writer_batch_size(dataset.features ) snake_case: Optional[Any] = parquet_writer_kwargs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: snake_case: Any = self._write(file_obj=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , **self.parquet_writer_kwargs ) else: snake_case: Optional[int] = self._write(file_obj=self.path_or_buf , batch_size=SCREAMING_SNAKE_CASE__ , **self.parquet_writer_kwargs ) return written def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = 0 snake_case: List[Any] = parquet_writer_kwargs.pop('path_or_buf' , SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.dataset.features.arrow_schema snake_case: Optional[int] = pq.ParquetWriter(SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , SCREAMING_SNAKE_CASE__ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): snake_case: Any = query_table( table=self.dataset._data , key=slice(SCREAMING_SNAKE_CASE__ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(SCREAMING_SNAKE_CASE__ ) written += batch.nbytes writer.close() return written
329
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir("""fixtures/test_sentencepiece.model""") __magic_name__ = {"""target_lang""": """fi""", """source_lang""": """en"""} __magic_name__ = """>>zh<<""" __magic_name__ = """Helsinki-NLP/""" if is_torch_available(): __magic_name__ = """pt""" elif is_tf_available(): __magic_name__ = """tf""" else: __magic_name__ = """jax""" @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): snake_case = MarianTokenizer snake_case = False snake_case = True def __UpperCAmelCase ( self : Any ): super().setUp() lowerCamelCase__ = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] lowerCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase__ = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) lowerCamelCase__ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : str , **SCREAMING_SNAKE_CASE_ : Tuple ): return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ): return ( "This is a test", "This is a test", ) def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ = """</s>""" lowerCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Any ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def __UpperCAmelCase ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCAmelCase ( self : Optional[int] ): lowerCamelCase__ = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) lowerCamelCase__ = en_de_tokenizer(["""I am a small frog"""] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) lowerCamelCase__ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob("""*""" )] self.assertIn("""source.spm""" , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Any ): lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = tok( ["""I am a small frog""" * 1000, """I am a small frog"""] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCAmelCase ( self : Optional[int] ): # fmt: off lowerCamelCase__ = {"""input_ids""": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) lowerCamelCase__ = """Tämä on testi""" lowerCamelCase__ = """This is a test""" lowerCamelCase__ = [76, 7, 2047, 2] lowerCamelCase__ = [69, 12, 11, 940, 2] lowerCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
702
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def _A ( __lowercase ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) return quad(__lowercase , 0 , __lowercase , args=(__lowercase) )[0] def _A ( __lowercase , __lowercase ): """simple docstring""" return math.pow(__lowercase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
258
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Optional[Any] = os.path.abspath(__lowercase ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model UpperCamelCase__ : Union[str, Any] = tf.train.list_variables(__lowercase ) UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = [] UpperCamelCase__ : List[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") UpperCamelCase__ : Tuple = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' UpperCamelCase__ : str = name[1:] # figure out how many levels deep the name is UpperCamelCase__ : Union[str, Any] = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(__lowercase ) # read data UpperCamelCase__ : List[Any] = tf.train.load_variable(__lowercase , __lowercase ) names.append('''/'''.join(__lowercase ) ) arrays.append(__lowercase ) logger.info(f'''Read a total of {len(__lowercase ):,} layers''' ) # Sanity check if len(set(__lowercase ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(__lowercase ) )})''' ) UpperCamelCase__ : Union[str, Any] = list(set(__lowercase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(__lowercase , __lowercase ): UpperCamelCase__ : Union[str, Any] = full_name.split('''/''' ) UpperCamelCase__ : List[Any] = model UpperCamelCase__ : List[str] = [] for i, m_name in enumerate(__lowercase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): UpperCamelCase__ : Optional[int] = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) UpperCamelCase__ : Any = getattr(__lowercase , '''embeddings''' ) UpperCamelCase__ : str = getattr(__lowercase , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) UpperCamelCase__ : Union[str, Any] = getattr(__lowercase , '''encoder''' ) UpperCamelCase__ : Any = getattr(__lowercase , '''layer''' ) UpperCamelCase__ : Union[str, Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) UpperCamelCase__ : int = getattr(__lowercase , '''pooler''' ) UpperCamelCase__ : Any = getattr(__lowercase , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) UpperCamelCase__ : Optional[int] = getattr(__lowercase , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) UpperCamelCase__ : Optional[int] = getattr(__lowercase , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) UpperCamelCase__ : Union[str, Any] = getattr(__lowercase , '''token_type_embeddings''' ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append('''weight''' ) UpperCamelCase__ : Optional[Any] = getattr(__lowercase , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) UpperCamelCase__ : Optional[int] = getattr(__lowercase , '''attention''' ) UpperCamelCase__ : Optional[Any] = getattr(__lowercase , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) UpperCamelCase__ : Union[str, Any] = getattr(__lowercase , '''attention''' ) UpperCamelCase__ : Optional[int] = getattr(__lowercase , '''output''' ) UpperCamelCase__ : Union[str, Any] = getattr(__lowercase , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) UpperCamelCase__ : List[str] = getattr(__lowercase , '''attention''' ) UpperCamelCase__ : Tuple = getattr(__lowercase , '''output''' ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''output''' ) UpperCamelCase__ : List[str] = getattr(__lowercase , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) UpperCamelCase__ : List[str] = getattr(__lowercase , '''output''' ) UpperCamelCase__ : Any = getattr(__lowercase , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) UpperCamelCase__ : Any = getattr(__lowercase , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''intermediate''' ) UpperCamelCase__ : Union[str, Any] = getattr(__lowercase , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) UpperCamelCase__ : List[str] = getattr(__lowercase , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) UpperCamelCase__ : List[Any] = getattr(__lowercase , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) UpperCamelCase__ : Any = getattr(__lowercase , '''weight''' ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary UpperCamelCase__ : Dict = '''.'''.join(__lowercase ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , __lowercase ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , __lowercase ): UpperCamelCase__ : Any = array.reshape(pointer.data.shape ) if "kernel" in full_name: UpperCamelCase__ : int = array.transpose() if pointer.shape == array.shape: UpperCamelCase__ : str = torch.from_numpy(__lowercase ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # Instantiate model logger.info(f'''Loading model based on config from {config_path}...''' ) UpperCamelCase__ : Any = BertConfig.from_json_file(__lowercase ) UpperCamelCase__ : int = BertModel(__lowercase ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) lowerCamelCase =parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
285
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _A = int(input('Enter number: ').strip()) print(F'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
714
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , _snake_case : List[str] , _snake_case : List[Any]=13 , _snake_case : List[str]=7 , _snake_case : Dict=True , _snake_case : str=True , _snake_case : Optional[Any]=True , _snake_case : Tuple=True , _snake_case : List[Any]=99 , _snake_case : Dict=16 , _snake_case : Tuple=36 , _snake_case : Optional[int]=6 , _snake_case : Optional[int]=6 , _snake_case : Tuple=6 , _snake_case : Optional[int]=37 , _snake_case : Dict="gelu" , _snake_case : str=0.1 , _snake_case : Tuple=0.1 , _snake_case : List[str]=512 , _snake_case : Any=16 , _snake_case : Optional[int]=2 , _snake_case : Optional[int]=0.02 , _snake_case : Union[str, Any]=3 , _snake_case : int=4 , _snake_case : Optional[int]=None , ) -> List[str]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = embedding_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_hidden_groups SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowerCAmelCase_ ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Dict ) -> Union[str, Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase_ ( self : int , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : int , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = AlbertModel(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) SCREAMING_SNAKE_CASE__ = model(_snake_case , token_type_ids=_snake_case ) SCREAMING_SNAKE_CASE__ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Tuple , _snake_case : Optional[Any] , _snake_case : int , _snake_case : str , _snake_case : List[Any] , _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = AlbertForPreTraining(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , sentence_order_label=_snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : int , _snake_case : Any , _snake_case : List[Any] , _snake_case : Any , _snake_case : str , _snake_case : Tuple , _snake_case : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = AlbertForMaskedLM(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = AlbertForQuestionAnswering(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Optional[Any] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : int , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = AlbertForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : int , _snake_case : Any , _snake_case : str , _snake_case : List[Any] , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = AlbertForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Tuple , _snake_case : str , _snake_case : Any , _snake_case : Any , _snake_case : int , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = AlbertForMultipleChoice(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) a = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) a = True def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : Dict , _snake_case : str , _snake_case : str=False ) -> Dict: SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class in get_values(_snake_case ): SCREAMING_SNAKE_CASE__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def lowerCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = AlbertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def lowerCAmelCase_ ( self : List[str] ) -> List[str]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def lowerCAmelCase_ ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_snake_case ) def lowerCAmelCase_ ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def lowerCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_snake_case ) def lowerCAmelCase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) def lowerCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def lowerCAmelCase_ ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(*_snake_case ) @slow def lowerCAmelCase_ ( self : Any ) -> str: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = AlbertModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Any ) -> Any: SCREAMING_SNAKE_CASE__ = AlbertModel.from_pretrained("albert-base-v2" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _snake_case ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _snake_case , atol=1e-4 ) )
538
0
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def a ( lowerCamelCase__ ): '''simple docstring''' return getitem, k def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return setitem, k, v def a ( lowerCamelCase__ ): '''simple docstring''' return delitem, k def a ( lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ ): '''simple docstring''' try: return fun(lowerCamelCase__ , *lowerCamelCase__ ), None except Exception as e: return None, e lowerCamelCase :Dict = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) lowerCamelCase :str = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] lowerCamelCase :List[str] = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] lowerCamelCase :List[Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] lowerCamelCase :Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCamelCase :Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = HashMap(initial_block_size=4 ) A_ : List[Any] = {} for _, (fun, *args) in enumerate(lowerCamelCase__ ): A_, A_ : Optional[int] = _run_operation(lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ ) A_, A_ : List[str] = _run_operation(lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ ) assert my_res == py_res assert str(lowerCamelCase__ ) == str(lowerCamelCase__ ) assert set(lowerCamelCase__ ) == set(lowerCamelCase__ ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) assert set(my.items() ) == set(py.items() ) def a ( ): '''simple docstring''' def is_public(lowerCamelCase__ ) -> bool: return not name.startswith("""_""" ) A_ : Optional[int] = {name for name in dir({} ) if is_public(lowerCamelCase__ )} A_ : Union[str, Any] = {name for name in dir(HashMap() ) if is_public(lowerCamelCase__ )} assert dict_public_names > hash_public_names
667
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def __snake_case ( lowercase : Dict ): snake_case_ = {} snake_case_ = job["started_at"] snake_case_ = job["completed_at"] snake_case_ = date_parser.parse(lowercase ) snake_case_ = date_parser.parse(lowercase ) snake_case_ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case_ = start snake_case_ = end snake_case_ = duration_in_min return job_info def __snake_case ( lowercase : Tuple , lowercase : Dict=None ): snake_case_ = None if token is not None: snake_case_ = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''} snake_case_ = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' snake_case_ = requests.get(lowercase , headers=lowercase ).json() snake_case_ = {} try: job_time.update({job["name"]: extract_time_from_single_job(lowercase ) for job in result["jobs"]} ) snake_case_ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowercase ): snake_case_ = requests.get(url + f'''&page={i + 2}''' , headers=lowercase ).json() job_time.update({job["name"]: extract_time_from_single_job(lowercase ) for job in result["jobs"]} ) return job_time except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') lowercase__ = parser.parse_args() lowercase__ = get_job_time(args.workflow_run_id) lowercase__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
508
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCamelCase ( snake_case__ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.size _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _SCREAMING_SNAKE_CASE = image.resize((w, h) ,resample=PIL_INTERPOLATION["""lanczos"""] ) _SCREAMING_SNAKE_CASE = np.array(snake_case__ ).astype(np.floataa ) / 255.0 _SCREAMING_SNAKE_CASE = image[None].transpose(0 ,3 ,1 ,2 ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) return 2.0 * image - 1.0 class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: VQModel , UpperCAmelCase_: UNetaDModel , UpperCAmelCase_: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): '''simple docstring''' super().__init__() self.register_modules(vqvae=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) @torch.no_grad() def __call__( self: str , UpperCAmelCase_: Union[torch.Tensor, PIL.Image.Image] = None , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 100 , UpperCAmelCase_: Optional[float] = 0.0 , UpperCAmelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_: Optional[str] = "pil" , UpperCAmelCase_: bool = True , ): '''simple docstring''' if isinstance(UpperCAmelCase_ , PIL.Image.Image ): _SCREAMING_SNAKE_CASE = 1 elif isinstance(UpperCAmelCase_ , torch.Tensor ): _SCREAMING_SNAKE_CASE = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase_ )}' ) if isinstance(UpperCAmelCase_ , PIL.Image.Image ): _SCREAMING_SNAKE_CASE = preprocess(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _SCREAMING_SNAKE_CASE = (batch_size, self.unet.config.in_channels // 2, height, width) _SCREAMING_SNAKE_CASE = next(self.unet.parameters() ).dtype _SCREAMING_SNAKE_CASE = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image.to(device=self.device , dtype=UpperCAmelCase_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _SCREAMING_SNAKE_CASE = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _SCREAMING_SNAKE_CASE = {} if accepts_eta: _SCREAMING_SNAKE_CASE = eta for t in self.progress_bar(UpperCAmelCase_ ): # concat latents and low resolution image in the channel dimension. _SCREAMING_SNAKE_CASE = torch.cat([latents, image] , dim=1 ) _SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # predict the noise residual _SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample # decode the image latents with the VQVAE _SCREAMING_SNAKE_CASE = self.vqvae.decode(UpperCAmelCase_ ).sample _SCREAMING_SNAKE_CASE = torch.clamp(UpperCAmelCase_ , -1.0 , 1.0 ) _SCREAMING_SNAKE_CASE = image / 2 + 0.5 _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
569
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = ( first_str_length if first_str_length > second_str_length else second_str_length ) _SCREAMING_SNAKE_CASE = [] for char_count in range(snake_case__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case__ ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
569
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __snake_case : Tuple = 'pt' elif is_tf_available(): __snake_case : str = 'tf' else: __snake_case : str = 'jax' class UpperCamelCase ( a , unittest.TestCase ): """simple docstring""" _lowerCamelCase : str =PerceiverTokenizer _lowerCamelCase : Optional[int] =False def A__ ( self : Optional[int] ): super().setUp() A__ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ ( self : int ): return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def A__ ( self : Optional[int] , **_lowerCamelCase : List[str] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def A__ ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : List[str]=2_0 , _lowerCamelCase : Union[str, Any]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. A__ = [] for i in range(len(_lowerCamelCase ) ): try: A__ = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) A__ = list(filter(lambda _lowerCamelCase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _lowerCamelCase ) ) A__ = list(filter(lambda _lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCamelCase ) , _lowerCamelCase ) ) if max_length is not None and len(_lowerCamelCase ) > max_length: A__ = toks[:max_length] if min_length is not None and len(_lowerCamelCase ) < min_length and len(_lowerCamelCase ) > 0: while len(_lowerCamelCase ) < min_length: A__ = toks + toks # toks_str = [t[1] for t in toks] A__ = [t[0] for t in toks] # Ensure consistency A__ = tokenizer.decode(_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) if " " not in output_txt and len(_lowerCamelCase ) > 1: A__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCamelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCamelCase ) ) if with_prefix_space: A__ = ''' ''' + output_txt A__ = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) return output_txt, output_ids def A__ ( self : List[str] ): A__ = self.perceiver_tokenizer A__ = '''Unicode €.''' A__ = tokenizer(_lowerCamelCase ) A__ = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , _lowerCamelCase ) # decoding A__ = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , '''[CLS]Unicode €.[SEP]''' ) A__ = tokenizer('''e è é ê ë''' ) A__ = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , _lowerCamelCase ) # decoding A__ = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def A__ ( self : int ): A__ = self.perceiver_tokenizer A__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off A__ = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on A__ = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) if FRAMEWORK != "jax": A__ = list(batch.input_ids.numpy()[0] ) else: A__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def A__ ( self : Union[str, Any] ): A__ = self.perceiver_tokenizer A__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] A__ = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _lowerCamelCase ) self.assertIn('''attention_mask''' , _lowerCamelCase ) self.assertNotIn('''decoder_input_ids''' , _lowerCamelCase ) self.assertNotIn('''decoder_attention_mask''' , _lowerCamelCase ) def A__ ( self : str ): A__ = self.perceiver_tokenizer A__ = [ '''Summary of the text.''', '''Another summary.''', ] A__ = tokenizer( text_target=_lowerCamelCase , max_length=3_2 , padding='''max_length''' , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def A__ ( self : str ): # safety check on max_len default value so we are sure the test works A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc A__ = tempfile.mkdtemp() A__ = ''' He is very happy, UNwant\u00E9d,running''' A__ = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) A__ = tokenizer.__class__.from_pretrained(_lowerCamelCase ) A__ = after_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) shutil.rmtree(_lowerCamelCase ) A__ = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc A__ = tempfile.mkdtemp() A__ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) A__ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) A__ = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) A__ = tokenizer.__class__.from_pretrained(_lowerCamelCase ) A__ = after_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) A__ = tokenizer.__class__.from_pretrained(_lowerCamelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCamelCase ) def A__ ( self : Union[str, Any] ): A__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: A__ = json.load(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: A__ = json.load(_lowerCamelCase ) A__ = [F'''<extra_id_{i}>''' for i in range(1_2_5 )] A__ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] A__ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_lowerCamelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase , _lowerCamelCase ) with open(os.path.join(_lowerCamelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase , _lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A__ = tokenizer_class.from_pretrained( _lowerCamelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A__ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_lowerCamelCase )] A__ = tokenizer_class.from_pretrained( _lowerCamelCase , additional_special_tokens=_lowerCamelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A__ ( self : str ): A__ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def A__ ( self : Union[str, Any] ): pass def A__ ( self : Optional[Any] ): pass def A__ ( self : Any ): pass def A__ ( self : int ): pass def A__ ( self : List[str] ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens A__ = self.get_tokenizers(fast=_lowerCamelCase , do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): A__ = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] A__ = tokenizer.convert_tokens_to_string(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase )
571
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __snake_case : Optional[int] = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ['ViTFeatureExtractor'] __snake_case : Any = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
571
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ ( A__, unittest.TestCase ): lowercase : List[str] =ConsistencyModelPipeline lowercase : Dict =UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase : List[Any] =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase : Dict =frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def SCREAMING_SNAKE_CASE_ ( self : int , UpperCamelCase__ : Tuple=False ) -> List[Any]: '''simple docstring''' if class_cond: UpperCAmelCase = self.dummy_cond_unet else: UpperCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) UpperCAmelCase = { "unet": unet, "scheduler": scheduler, } return components def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict=0 ) -> Any: '''simple docstring''' if str(UpperCamelCase__ ).startswith("mps" ): UpperCAmelCase = torch.manual_seed(UpperCamelCase__ ) else: UpperCAmelCase = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) UpperCAmelCase = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = ConsistencyModelPipeline(**UpperCamelCase__ ) UpperCAmelCase = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = pipe(**UpperCamelCase__ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components(class_cond=UpperCamelCase__ ) UpperCAmelCase = ConsistencyModelPipeline(**UpperCamelCase__ ) UpperCAmelCase = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = 0 UpperCAmelCase = pipe(**UpperCamelCase__ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = ConsistencyModelPipeline(**UpperCamelCase__ ) UpperCAmelCase = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = 1 UpperCAmelCase = None UpperCAmelCase = pipe(**UpperCamelCase__ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components(class_cond=UpperCamelCase__ ) UpperCAmelCase = ConsistencyModelPipeline(**UpperCamelCase__ ) UpperCAmelCase = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = 1 UpperCAmelCase = None UpperCAmelCase = 0 UpperCAmelCase = pipe(**UpperCamelCase__ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : int , UpperCamelCase__ : Any=0 , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : List[Any]="cpu" , UpperCamelCase__ : Any=torch.floataa , UpperCamelCase__ : Dict=(1, 3, 64, 64) ) -> Dict: '''simple docstring''' UpperCAmelCase = torch.manual_seed(UpperCamelCase__ ) UpperCAmelCase = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: UpperCAmelCase = self.get_fixed_latents(seed=UpperCamelCase__ , device=UpperCamelCase__ , dtype=UpperCamelCase__ , shape=UpperCamelCase__ ) UpperCAmelCase = latents return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCamelCase__ : Optional[int]=0 , UpperCamelCase__ : Tuple="cpu" , UpperCamelCase__ : Dict=torch.floataa , UpperCamelCase__ : int=(1, 3, 64, 64) ) -> Tuple: '''simple docstring''' if type(UpperCamelCase__ ) == str: UpperCAmelCase = torch.device(UpperCamelCase__ ) UpperCAmelCase = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) UpperCAmelCase = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=UpperCamelCase__ , dtype=UpperCamelCase__ ) return latents def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(torch_device=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_inputs() UpperCAmelCase = pipe(**UpperCamelCase__ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(torch_device=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_inputs() UpperCAmelCase = 1 UpperCAmelCase = None UpperCAmelCase = pipe(**UpperCamelCase__ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(torch_device=UpperCamelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_inputs(get_fixed_latents=UpperCamelCase__ , device=UpperCamelCase__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase__ , enable_math=UpperCamelCase__ , enable_mem_efficient=UpperCamelCase__ ): UpperCAmelCase = pipe(**UpperCamelCase__ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(torch_device=UpperCamelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_inputs(get_fixed_latents=UpperCamelCase__ , device=UpperCamelCase__ ) UpperCAmelCase = 1 UpperCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase__ , enable_math=UpperCamelCase__ , enable_mem_efficient=UpperCamelCase__ ): UpperCAmelCase = pipe(**UpperCamelCase__ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
457
def lowerCamelCase_(lowerCamelCase_ ) -> list[int]: UpperCAmelCase = len(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): for j in range(i + 1 , lowerCamelCase_ ): if numbers[j] < numbers[i]: UpperCAmelCase , UpperCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": __lowerCamelCase : int = input("Enter numbers separated by a comma:\n").strip() __lowerCamelCase : Dict = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
457
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup a_ :Optional[int] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def a ( A__ ) -> Union[str, Any]: '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": a_ :List[Any] = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') a_ :Dict = parser.parse_args() if args.check_lib: a_ :List[Any] = importlib.import_module('transformers') a_ :List[str] = Path(transformers_module.__file__).parent else: a_ :Union[str, Any] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
35
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ = logging.get_logger(__name__) # pylint: disable=invalid-name a_ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> Tuple: """simple docstring""" __UpperCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=5_12 , lowercase_=5_12 ) -> Optional[int]: """simple docstring""" __UpperCamelCase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) __UpperCamelCase = np.array(pil_image.convert('''RGB''' ) ) __UpperCamelCase = arr.astype(np.floataa ) / 127.5 - 1 __UpperCamelCase = np.transpose(lowercase_ , [2, 0, 1] ) __UpperCamelCase = torch.from_numpy(lowercase_ ).unsqueeze(0 ) return image class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Optional[int] , snake_case : UNetaDConditionModel , snake_case : DDPMScheduler , snake_case : VQModel , ): super().__init__() self.register_modules( unet=snake_case , scheduler=snake_case , movq=snake_case , ) __UpperCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case ( self : int , snake_case : Optional[Any] , snake_case : str , snake_case : Tuple ): # get the original timestep using init_timestep __UpperCamelCase = min(int(num_inference_steps * strength ) , snake_case ) __UpperCamelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case ( self : str , snake_case : Dict , snake_case : List[str] , snake_case : Any , snake_case : str , snake_case : Dict , snake_case : Optional[Any] , snake_case : int=None ): if not isinstance(snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case )}" ) __UpperCamelCase = image.to(device=snake_case , dtype=snake_case ) __UpperCamelCase = batch_size * num_images_per_prompt if image.shape[1] == 4: __UpperCamelCase = image else: if isinstance(snake_case , snake_case ) and len(snake_case ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(snake_case )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(snake_case , snake_case ): __UpperCamelCase = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case ) ] __UpperCamelCase = torch.cat(snake_case , dim=0 ) else: __UpperCamelCase = self.movq.encode(snake_case ).latent_dist.sample(snake_case ) __UpperCamelCase = self.movq.config.scaling_factor * init_latents __UpperCamelCase = torch.cat([init_latents] , dim=0 ) __UpperCamelCase = init_latents.shape __UpperCamelCase = randn_tensor(snake_case , generator=snake_case , device=snake_case , dtype=snake_case ) # get latents __UpperCamelCase = self.scheduler.add_noise(snake_case , snake_case , snake_case ) __UpperCamelCase = init_latents return latents def snake_case ( self : Optional[int] , snake_case : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __UpperCamelCase = torch.device(F"cuda:{gpu_id}" ) __UpperCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case , snake_case ) def snake_case ( self : Dict , snake_case : Dict=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __UpperCamelCase = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCamelCase , __UpperCamelCase = cpu_offload_with_hook(snake_case , snake_case , prev_module_hook=snake_case ) # We'll offload the last model manually. __UpperCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case ( self : Dict ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case ) def __call__( self : Union[str, Any] , snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case : int = 512 , snake_case : int = 512 , snake_case : int = 100 , snake_case : float = 4.0 , snake_case : float = 0.3 , snake_case : int = 1 , snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case : Optional[str] = "pil" , snake_case : bool = True , ): __UpperCamelCase = self._execution_device __UpperCamelCase = guidance_scale > 1.0 if isinstance(snake_case , snake_case ): __UpperCamelCase = torch.cat(snake_case , dim=0 ) __UpperCamelCase = image_embeds.shape[0] if isinstance(snake_case , snake_case ): __UpperCamelCase = torch.cat(snake_case , dim=0 ) if do_classifier_free_guidance: __UpperCamelCase = image_embeds.repeat_interleave(snake_case , dim=0 ) __UpperCamelCase = negative_image_embeds.repeat_interleave(snake_case , dim=0 ) __UpperCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case ) if not isinstance(snake_case , snake_case ): __UpperCamelCase = [image] if not all(isinstance(snake_case , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) __UpperCamelCase = torch.cat([prepare_image(snake_case , snake_case , snake_case ) for i in image] , dim=0 ) __UpperCamelCase = image.to(dtype=image_embeds.dtype , device=snake_case ) __UpperCamelCase = self.movq.encode(snake_case )['''latents'''] __UpperCamelCase = latents.repeat_interleave(snake_case , dim=0 ) self.scheduler.set_timesteps(snake_case , device=snake_case ) __UpperCamelCase , __UpperCamelCase = self.get_timesteps(snake_case , snake_case , snake_case ) __UpperCamelCase = timesteps[:1].repeat(batch_size * num_images_per_prompt ) __UpperCamelCase , __UpperCamelCase = downscale_height_and_width(snake_case , snake_case , self.movq_scale_factor ) __UpperCamelCase = self.prepare_latents( snake_case , snake_case , snake_case , snake_case , image_embeds.dtype , snake_case , snake_case ) for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance __UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCamelCase = {'''image_embeds''': image_embeds} __UpperCamelCase = self.unet( sample=snake_case , timestep=snake_case , encoder_hidden_states=snake_case , added_cond_kwargs=snake_case , return_dict=snake_case , )[0] if do_classifier_free_guidance: __UpperCamelCase , __UpperCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __UpperCamelCase , __UpperCamelCase = noise_pred.chunk(2 ) __UpperCamelCase , __UpperCamelCase = variance_pred.chunk(2 ) __UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCamelCase , __UpperCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCamelCase = self.scheduler.step( snake_case , snake_case , snake_case , generator=snake_case , )[0] # post-processing __UpperCamelCase = self.movq.decode(snake_case , force_not_quantize=snake_case )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __UpperCamelCase = image * 0.5 + 0.5 __UpperCamelCase = image.clamp(0 , 1 ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case )
719
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Dict = ["input_features", "is_longer"] def __init__( self : Dict , snake_case : int=64 , snake_case : Dict=48000 , snake_case : Tuple=480 , snake_case : Optional[Any]=10 , snake_case : Union[str, Any]=1024 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=False , snake_case : float = 0 , snake_case : float = 14000 , snake_case : int = None , snake_case : str = "fusion" , snake_case : str = "repeatpad" , **snake_case : int , ): super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , return_attention_mask=snake_case , **snake_case , ) __UpperCamelCase = top_db __UpperCamelCase = truncation __UpperCamelCase = padding __UpperCamelCase = fft_window_size __UpperCamelCase = (fft_window_size >> 1) + 1 __UpperCamelCase = hop_length __UpperCamelCase = max_length_s __UpperCamelCase = max_length_s * sampling_rate __UpperCamelCase = sampling_rate __UpperCamelCase = frequency_min __UpperCamelCase = frequency_max __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm=snake_case , mel_scale='''htk''' , ) __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm='''slaney''' , mel_scale='''slaney''' , ) def snake_case ( self : Union[str, Any] ): __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case ( self : Tuple , snake_case : np.array , snake_case : Optional[np.array] = None ): __UpperCamelCase = spectrogram( snake_case , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case , log_mel='''dB''' , ) return log_mel_spectrogram.T def snake_case ( self : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : int ): __UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase = [0] # randomly choose index for each part __UpperCamelCase = np.random.choice(ranges[0] ) __UpperCamelCase = np.random.choice(ranges[1] ) __UpperCamelCase = np.random.choice(ranges[2] ) __UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] __UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] __UpperCamelCase = torch.tensor(mel[None, None, :] ) __UpperCamelCase = torch.nn.functional.interpolate( snake_case , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=snake_case ) __UpperCamelCase = mel_shrink[0][0].numpy() __UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def snake_case ( self : Optional[Any] , snake_case : np.array , snake_case : Optional[int] , snake_case : Tuple , snake_case : str ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCamelCase = len(snake_case ) - max_length __UpperCamelCase = np.random.randint(0 , overflow + 1 ) __UpperCamelCase = waveform[idx : idx + max_length] __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters ) __UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __UpperCamelCase = False else: __UpperCamelCase = self._random_mel_fusion(snake_case , snake_case , snake_case ) __UpperCamelCase = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: __UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCamelCase = int(max_length / len(snake_case ) ) __UpperCamelCase = np.stack(np.tile(snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __UpperCamelCase = int(max_length / len(snake_case ) ) __UpperCamelCase = np.stack(np.tile(snake_case , snake_case ) ) __UpperCamelCase = np.pad(snake_case , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters ) __UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[str] , snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case : str = None , snake_case : Optional[str] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : Any , ): __UpperCamelCase = truncation if truncation is not None else self.truncation __UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __UpperCamelCase = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) __UpperCamelCase = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): __UpperCamelCase = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [np.asarray(snake_case )] # convert to mel spectrogram, truncate and pad if needed. __UpperCamelCase = [ self._get_input_mel(snake_case , max_length if max_length else self.nb_max_samples , snake_case , snake_case ) for waveform in raw_speech ] __UpperCamelCase = [] __UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(snake_case ) is_longer.append(snake_case ) if truncation == "fusion" and sum(snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCamelCase = np.random.randint(0 , len(snake_case ) ) __UpperCamelCase = True if isinstance(input_mel[0] , snake_case ): __UpperCamelCase = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __UpperCamelCase = [[longer] for longer in is_longer] __UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} __UpperCamelCase = BatchFeature(snake_case ) if return_tensors is not None: __UpperCamelCase = input_features.convert_to_tensors(snake_case ) return input_features
375
0
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def A__ ( A__ ) -> Optional[int]: '''simple docstring''' return TrainCommand(A__ ) class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod def __A ( snake_case_ ) -> Optional[Any]: _UpperCAmelCase = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=snake_case_ , required=snake_case_ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=snake_case_ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=snake_case_ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=snake_case_ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=snake_case_ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=snake_case_ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=snake_case_ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=snake_case_ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=snake_case_ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=snake_case_ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=snake_case_ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=snake_case_ , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=snake_case_ , default=1e-0_8 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ ) -> Any: _UpperCAmelCase = logging.get_logger("transformers-cli/training" ) _UpperCAmelCase = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=snake_case_ ) _UpperCAmelCase = args.output _UpperCAmelCase = args.column_label _UpperCAmelCase = args.column_text _UpperCAmelCase = args.column_id self.logger.info(F"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": _UpperCAmelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"""Loading dataset from {args.train_data}""" ) _UpperCAmelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _UpperCAmelCase = None if args.validation_data: self.logger.info(F"""Loading validation dataset from {args.validation_data}""" ) _UpperCAmelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _UpperCAmelCase = args.validation_split _UpperCAmelCase = args.train_batch_size _UpperCAmelCase = args.valid_batch_size _UpperCAmelCase = args.learning_rate _UpperCAmelCase = args.adam_epsilon def __A ( self ) -> Union[str, Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def __A ( self ) -> Tuple: raise NotImplementedError def __A ( self ) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
426
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers SCREAMING_SNAKE_CASE_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A__ ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(A__ ) ) _UpperCAmelCase = os.path.join(A__ , "words.txt" ) _UpperCAmelCase = "" with open(A__ ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _UpperCAmelCase = [ word for word in [sum(ord(A__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(A__ ) if __name__ == "__main__": print(solution())
426
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) A : Tuple = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) A : Tuple = False A : Dict = False def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str=False): """simple docstring""" a : str = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class in get_values(UpperCAmelCase_): a : Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int=1_3 , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=9_9 , UpperCAmelCase_ : Optional[int]=3_2 , UpperCAmelCase_ : List[Any]=3_2 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : str=3_7 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[Any]=5_1_2 , UpperCAmelCase_ : str=1_6 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : List[str]=None , ): """simple docstring""" a : str = parent a : Any = batch_size a : Optional[int] = seq_length a : Any = is_training a : Optional[int] = use_input_mask a : str = use_token_type_ids a : int = use_labels a : int = vocab_size a : Any = hidden_size a : Union[str, Any] = num_hidden_layers a : Dict = num_attention_heads a : Tuple = intermediate_size a : List[Any] = hidden_act a : Optional[Any] = hidden_dropout_prob a : int = attention_probs_dropout_prob a : List[Any] = max_position_embeddings a : Dict = type_vocab_size a : Any = type_sequence_label_size a : Dict = initializer_range a : str = num_labels a : str = num_choices a : Tuple = scope a : int = embedding_size def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : Any = None if self.use_input_mask: a : Dict = random_attention_mask([self.batch_size, self.seq_length]) a : List[str] = None if self.use_token_type_ids: a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a : List[Any] = None a : str = None a : Optional[Any] = None if self.use_labels: a : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : List[str] = ids_tensor([self.batch_size] , self.num_choices) a : List[str] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str]): """simple docstring""" a : List[Any] = TFMobileBertModel(config=UpperCAmelCase_) a : Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a : List[Any] = model(UpperCAmelCase_) a : Any = [input_ids, input_mask] a : List[Any] = model(UpperCAmelCase_) a : Tuple = model(UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]): """simple docstring""" a : int = TFMobileBertForMaskedLM(config=UpperCAmelCase_) a : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]): """simple docstring""" a : Any = TFMobileBertForNextSentencePrediction(config=UpperCAmelCase_) a : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a : Any = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int): """simple docstring""" a : Optional[Any] = TFMobileBertForPreTraining(config=UpperCAmelCase_) a : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a : List[Any] = model(UpperCAmelCase_) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any): """simple docstring""" a : Dict = self.num_labels a : Dict = TFMobileBertForSequenceClassification(config=UpperCAmelCase_) a : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[str] = self.num_choices a : Optional[int] = TFMobileBertForMultipleChoice(config=UpperCAmelCase_) a : Dict = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1) , (1, self.num_choices, 1)) a : List[Any] = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1) , (1, self.num_choices, 1)) a : List[Any] = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1) , (1, self.num_choices, 1)) a : Dict = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } a : Dict = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Union[str, Any] = self.num_labels a : Any = TFMobileBertForTokenClassification(config=UpperCAmelCase_) a : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int): """simple docstring""" a : Optional[int] = TFMobileBertForQuestionAnswering(config=UpperCAmelCase_) a : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a : Any = model(UpperCAmelCase_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Dict = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Any = config_and_inputs a : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) a : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" for model_name in ["google/mobilebert-uncased"]: a : Optional[int] = TFMobileBertModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_tf class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased') a : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]]) a : Union[str, Any] = model(UpperCAmelCase_)[0] a : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , UpperCAmelCase_) a : Optional[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ]) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1e-4)
610
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCamelCase : int = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ UpperCamelCase : List[str] = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ UpperCamelCase : Tuple = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] ) -> Dict: """simple docstring""" return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" a : Optional[Any] = simple_accuracy(snake_case , snake_case ) a : Dict = float(fa_score(y_true=snake_case , y_pred=snake_case ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : int ) -> Optional[int]: """simple docstring""" a : Union[str, Any] = np.array(snake_case ) a : Any = np.array(snake_case ) a : Tuple = en_sentvecs.shape[0] # mean centering a : Tuple = en_sentvecs - np.mean(snake_case , axis=0 ) a : Optional[Any] = in_sentvecs - np.mean(snake_case , axis=0 ) a : Optional[int] = cdist(snake_case , snake_case , 'cosine' ) a : List[Any] = np.array(range(snake_case ) ) a : str = sim.argsort(axis=1 )[:, :10] a : int = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), 'references': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), }) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(UpperCAmelCase_ , UpperCAmelCase_)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_)} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]')
610
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a : str = logging.get_logger(__name__) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = ["pixel_values"] def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : int = 32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> None: __snake_case = do_resize __snake_case = do_rescale __snake_case = size_divisor __snake_case = resample super().__init__(**SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[ChannelDimension] = None , **SCREAMING_SNAKE_CASE_ : Tuple ) -> np.ndarray: __snake_case , __snake_case = get_image_size(SCREAMING_SNAKE_CASE_ ) # Rounds the height and width down to the closest multiple of size_divisor __snake_case = height // size_divisor * size_divisor __snake_case = width // size_divisor * size_divisor __snake_case = resize(SCREAMING_SNAKE_CASE_ , (new_h, new_w) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return image def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[ChannelDimension] = None , **SCREAMING_SNAKE_CASE_ : List[str] ) -> np.ndarray: return rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[TensorType, str]] = None , SCREAMING_SNAKE_CASE_ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> BatchFeature: __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = size_divisor if size_divisor is not None else self.size_divisor __snake_case = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) __snake_case = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for img in images] if do_resize: __snake_case = [self.resize(SCREAMING_SNAKE_CASE_ , size_divisor=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __snake_case = [self.rescale(SCREAMING_SNAKE_CASE_ , scale=1 / 255 ) for image in images] __snake_case = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __snake_case = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
56
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : List[str] = logging.get_logger(__name__) a__ : str = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = "xlm-roberta" def __init__( self : int , UpperCAmelCase__ : Union[str, Any]=3_0_5_2_2 , UpperCAmelCase__ : Optional[Any]=7_6_8 , UpperCAmelCase__ : Optional[int]=1_2 , UpperCAmelCase__ : Tuple=1_2 , UpperCAmelCase__ : str=3_0_7_2 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Optional[int]=5_1_2 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[int]=1E-12 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Any="absolute" , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : int , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @property def UpperCAmelCase_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: __SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
682
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} UpperCAmelCase_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } UpperCAmelCase_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def lowerCamelCase__ ( A__ : List[str] , A__ : Optional[int] ): '''simple docstring''' with open(A__ , """r""" , encoding="""utf-8""" ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = collections.OrderedDict() __lowerCamelCase = collections.OrderedDict() __lowerCamelCase = collections.OrderedDict() with open(A__ , """r""" , encoding="""utf-8""" ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(A__ ): __lowerCamelCase = b __lowerCamelCase = idx for wd in b: __lowerCamelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = ['input_ids', 'attention_mask'] def __init__( self: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: str="<|endoftext|>" , UpperCamelCase_: Dict="<|endoftext|>" , UpperCamelCase_: List[str]="<|startoftext|>" , UpperCamelCase_: List[Any]="<|endoftext|>" , UpperCamelCase_: Optional[Any]=False , **UpperCamelCase_: Tuple , ): super().__init__( unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , do_clean_text=UpperCamelCase_ , **UpperCamelCase_ , ) if not os.path.isfile(UpperCamelCase_ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(UpperCamelCase_ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) __lowerCamelCase = do_clean_text __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = load_vocab_and_emoji(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowerCAmelCase__ ( self: Tuple ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def lowerCAmelCase__ ( self: List[Any] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Dict ): return self.subword_tokenizer.tokenize(UpperCamelCase_ , clean=self.do_clean_text ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Optional[Any] ): return self.vocab.get(UpperCamelCase_ , self.vocab.get(self.unk_token ) ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any ): return self.subword_tokenizer.convert_id_to_token(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = """""".join(UpperCamelCase_ ).strip() return out_string def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "Conversation" ): __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) + [self.eos_token_id] ) if len(UpperCamelCase_ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): __lowerCamelCase = 0 if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: __lowerCamelCase = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) __lowerCamelCase = token_index writer.write(""",""".join(UpperCamelCase_ ) + """\n""" ) index += 1 with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , UpperCamelCase_ ) return vocab_file, emoji_file class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict , UpperCamelCase_: int ): __lowerCamelCase = vocab # same as swe __lowerCamelCase = ids_to_tokens # same as bpe __lowerCamelCase = emoji __lowerCamelCase = np.max([len(UpperCamelCase_ ) for w in self.vocab.keys()] ) __lowerCamelCase = re.compile(r"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) __lowerCamelCase = re.compile(r"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) __lowerCamelCase = re.compile(r"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) __lowerCamelCase = re.compile( r"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __lowerCamelCase = re.compile( r"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __lowerCamelCase = re.compile( r"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) __lowerCamelCase = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" __lowerCamelCase = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" __lowerCamelCase = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self: int ): return len(self.ids_to_tokens ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: List[Any] ): __lowerCamelCase = self.content_repattera.sub("""<URL>""" , UpperCamelCase_ ) __lowerCamelCase = self.content_repattera.sub("""<EMAIL>""" , UpperCamelCase_ ) __lowerCamelCase = self.content_repattera.sub("""<TEL>""" , UpperCamelCase_ ) __lowerCamelCase = self.content_repattera.sub("""<DATE>""" , UpperCamelCase_ ) __lowerCamelCase = self.content_repattera.sub("""<DATE>""" , UpperCamelCase_ ) __lowerCamelCase = self.content_repattera.sub("""<PRICE>""" , UpperCamelCase_ ) __lowerCamelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __lowerCamelCase = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: str=False ): __lowerCamelCase = text.replace(""" """ , """<SP>""" ) __lowerCamelCase = text.replace(""" """ , """<SP>""" ) __lowerCamelCase = text.replace("""\r\n""" , """<BR>""" ) __lowerCamelCase = text.replace("""\n""" , """<BR>""" ) __lowerCamelCase = text.replace("""\r""" , """<BR>""" ) __lowerCamelCase = text.replace("""\t""" , """<TAB>""" ) __lowerCamelCase = text.replace("""—""" , """ー""" ) __lowerCamelCase = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: __lowerCamelCase = text.replace(UpperCamelCase_ , UpperCamelCase_ ) if clean: __lowerCamelCase = self.clean_text(UpperCamelCase_ ) def check_simbol(UpperCamelCase_: int ): __lowerCamelCase = x.encode() if len(UpperCamelCase_ ) == 1 and len(UpperCamelCase_ ) == 2: __lowerCamelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(UpperCamelCase_: Optional[Any] ): __lowerCamelCase = x.encode() if len(UpperCamelCase_ ) == 1 and len(UpperCamelCase_ ) == 3: __lowerCamelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28080 and c <= 0xe2b07f: return True return False __lowerCamelCase = 0 __lowerCamelCase = [] while pos < len(UpperCamelCase_ ): __lowerCamelCase = min(len(UpperCamelCase_ ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 __lowerCamelCase = [] # (token_id, token, pos) for e in range(UpperCamelCase_ , UpperCamelCase_ , -1 ): __lowerCamelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(UpperCamelCase_ ) > 2: __lowerCamelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(UpperCamelCase_ ) > 0: # the smallest token_id is adopted __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x[0] )[0] result.append(UpperCamelCase_ ) __lowerCamelCase = e else: __lowerCamelCase = pos + 1 __lowerCamelCase = text[pos:end] if check_simbol(UpperCamelCase_ ): result.append("""<KIGOU>""" ) elif checkuae(UpperCamelCase_ ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) __lowerCamelCase = end return result def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any]="\n" ): __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(UpperCamelCase_ ) > 0: words.append(bytearray(UpperCamelCase_ ).decode("""utf-8""" , errors="""replace""" ) ) __lowerCamelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(UpperCamelCase_ ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: words.append(bytearray(UpperCamelCase_ ).decode("""utf-8""" , errors="""replace""" ) ) __lowerCamelCase = """""".join(UpperCamelCase_ ) return text
714
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging UpperCAmelCase_ = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] UpperCAmelCase_ = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = ' Hello world! cécé herlolip' UpperCAmelCase_ = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def lowerCamelCase__ ( A__ : Tuple , A__ : Any , A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = dct.pop(A__ ) __lowerCamelCase = val def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = torch.load(A__ , map_location="""cpu""" ) __lowerCamelCase = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = emb.weight.shape __lowerCamelCase = nn.Linear(A__ , A__ , bias=A__ ) __lowerCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : Dict=None ): '''simple docstring''' if not os.path.exists(A__ ): __lowerCamelCase = torch.hub.load("""pytorch/fairseq""" , A__ ).eval() else: __lowerCamelCase = load_xsum_checkpoint(A__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __lowerCamelCase = checkpoint_path.replace(""".""" , """-""" ) __lowerCamelCase = BartConfig.from_pretrained(A__ ) __lowerCamelCase = bart.encode(A__ ).unsqueeze(0 ) __lowerCamelCase = BartTokenizer.from_pretrained(A__ ).encode(A__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(A__ , A__ ).all(): raise ValueError( f'converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}' ) if checkpoint_path == "bart.large.mnli": __lowerCamelCase = bart.state_dict() remove_ignore_keys_(A__ ) __lowerCamelCase = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(A__ , A__ , A__ ) __lowerCamelCase = BartForSequenceClassification(A__ ).eval() model.load_state_dict(A__ ) __lowerCamelCase = bart.predict("""mnli""" , A__ , return_logits=A__ ) __lowerCamelCase = model(A__ )[0] # logits else: # no classification heads to worry about __lowerCamelCase = bart.model.state_dict() remove_ignore_keys_(A__ ) __lowerCamelCase = state_dict["""decoder.embed_tokens.weight"""] __lowerCamelCase = bart.extract_features(A__ ) if hf_checkpoint_name == "facebook/bart-large": __lowerCamelCase = BartModel(A__ ).eval() model.load_state_dict(A__ ) __lowerCamelCase = model(A__ ).model[0] else: __lowerCamelCase = BartForConditionalGeneration(A__ ).eval() # an existing summarization ckpt model.model.load_state_dict(A__ ) if hasattr(A__ , """lm_head""" ): __lowerCamelCase = make_linear_from_emb(model.model.shared ) __lowerCamelCase = model.model(A__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f'`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) UpperCAmelCase_ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
80
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin UpperCAmelCase__ = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class a__ ( unittest.TestCase , a_ ): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) -> Tuple: __A= load_tool('text-question-answering' ) self.tool.setup() __A= load_tool('text-question-answering' , remote=lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: __A= self.tool(lowerCAmelCase_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase_ , 'launched the BigScience Research Workshop' ) def lowerCAmelCase ( self : Dict ) -> str: __A= self.remote_tool(lowerCAmelCase_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase_ , 'launched the BigScience Research Workshop' ) def lowerCAmelCase ( self : List[str] ) -> int: __A= self.tool(text=lowerCAmelCase_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase_ , 'launched the BigScience Research Workshop' ) def lowerCAmelCase ( self : Dict ) -> Dict: __A= self.remote_tool(text=lowerCAmelCase_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase_ , 'launched the BigScience Research Workshop' )
186
'''simple docstring''' def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int,_SCREAMING_SNAKE_CASE : int ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase__( ): """simple docstring""" assert or_gate(0,0 ) == 0 assert or_gate(0,1 ) == 1 assert or_gate(1,0 ) == 1 assert or_gate(1,1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
186
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _lowercase = datasets.utils.logging.get_logger(__name__) @dataclass class _lowercase ( datasets.BuilderConfig ): _UpperCAmelCase = 10_000 _UpperCAmelCase = None _UpperCAmelCase = None class _lowercase ( datasets.ArrowBasedBuilder ): _UpperCAmelCase = ParquetConfig def UpperCamelCase ( self ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase ( self , A__ ) -> str: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) snake_case = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A__ , (str, list, tuple) ): snake_case = data_files if isinstance(A__ , A__ ): snake_case = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case = [dl_manager.iter_files(A__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] snake_case = [] for split_name, files in data_files.items(): if isinstance(A__ , A__ ): snake_case = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case = [dl_manager.iter_files(A__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(A__ ): with open(A__ , '''rb''' ) as f: snake_case = datasets.Features.from_arrow_schema(pq.read_schema(A__ ) ) break splits.append(datasets.SplitGenerator(name=A__ , gen_kwargs={'''files''': files} ) ) return splits def UpperCamelCase ( self , A__ ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case = table_cast(A__ , self.info.features.arrow_schema ) return pa_table def UpperCamelCase ( self , A__ ) -> Optional[int]: snake_case = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(A__ ) ): with open(A__ , '''rb''' ) as f: snake_case = pq.ParquetFile(A__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): snake_case = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(A__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=__a ): _UpperCAmelCase = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *A__ , **A__ ) -> Union[str, Any]: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> Optional[Any]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> Any: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
44
0
'''simple docstring''' import pprint import requests UpperCamelCase_ = "https://zenquotes.io/api" def lowercase__( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '/today' ).json() def lowercase__( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": UpperCamelCase_ = random_quotes() pprint.pprint(response)
28
import qiskit def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ :Union[str, Any] = qiskit.QuantumCircuit(a , a ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE_ :Any = qiskit.execute(a , a , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
631
0
def _lowerCAmelCase ( __magic_name__ :List[str] , __magic_name__ :Dict , __magic_name__ :Union[str, Any] ): UpperCAmelCase_ = len(_lowerCAmelCase ) UpperCAmelCase_ = [[0] * n for i in range(_lowerCAmelCase )] for i in range(_lowerCAmelCase ): UpperCAmelCase_ = y_points[i] for i in range(2 , _lowerCAmelCase ): for j in range(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
701
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class snake_case__ ( __snake_case ): '''simple docstring''' __A = '''efficientnet''' def __init__( self : Any , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 6_00 , lowerCAmelCase_ : float = 2.0 , lowerCAmelCase_ : float = 3.1 , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCAmelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCAmelCase_ : List[int] = [] , lowerCAmelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : float = 0.25 , lowerCAmelCase_ : str = "swish" , lowerCAmelCase_ : int = 25_60 , lowerCAmelCase_ : str = "mean" , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : float = 0.001 , lowerCAmelCase_ : float = 0.99 , lowerCAmelCase_ : float = 0.5 , lowerCAmelCase_ : float = 0.2 , **lowerCAmelCase_ : Optional[Any] , ) -> Any: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = width_coefficient UpperCAmelCase_ = depth_coefficient UpperCAmelCase_ = depth_divisor UpperCAmelCase_ = kernel_sizes UpperCAmelCase_ = in_channels UpperCAmelCase_ = out_channels UpperCAmelCase_ = depthwise_padding UpperCAmelCase_ = strides UpperCAmelCase_ = num_block_repeats UpperCAmelCase_ = expand_ratios UpperCAmelCase_ = squeeze_expansion_ratio UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dim UpperCAmelCase_ = pooling_type UpperCAmelCase_ = initializer_range UpperCAmelCase_ = batch_norm_eps UpperCAmelCase_ = batch_norm_momentum UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = drop_connect_rate UpperCAmelCase_ = sum(lowerCAmelCase_ ) * 4 class snake_case__ ( __snake_case ): '''simple docstring''' __A = version.parse('''1.11''' ) @property def UpperCamelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase ( self : Union[str, Any] ) -> float: return 1e-5
407
0