code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import numpy import onnx def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Dict: _lowercase : Dict = a.name _lowercase : Optional[int] = b.name _lowercase : Tuple = "" _lowercase : Union[str, Any] = "" _lowercase : str = a == b _lowercase : Tuple = name_a _lowercase : Any = name_b return res def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_UpperCAmelCase , _UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _UpperCAmelCase , _UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _UpperCAmelCase , _UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: _lowercase : int = list(model.graph.initializer ) _lowercase : Optional[int] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _lowercase : int = inits[i].name _lowercase : List[Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : int = os.path.dirname(_UpperCAmelCase ) _lowercase : Tuple = os.path.basename(_UpperCAmelCase ) _lowercase : Optional[Any] = onnx.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) _lowercase : Tuple = list(model.graph.initializer ) _lowercase : Union[str, Any] = set() _lowercase : Union[str, Any] = {} _lowercase : int = [] _lowercase : Any = 0 for i in range(len(_UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_UpperCAmelCase ) dup_set.add(_UpperCAmelCase ) _lowercase : Dict = inits[j].data_type _lowercase : Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , _UpperCAmelCase ) total_reduced_size += mem_size _lowercase : List[Any] = inits[i].name _lowercase : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(_UpperCAmelCase ) else: _lowercase : List[str] = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) _lowercase : List[str] = sorted(_UpperCAmelCase ) _remove_dup_initializers_from_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowercase : Union[str, Any] = "optimized_" + model_file_name _lowercase : Union[str, Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) onnx.save(_UpperCAmelCase , _UpperCAmelCase ) return new_model
89
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Dict = logging.get_logger(__name__) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = b.T SCREAMING_SNAKE_CASE_: Dict = np.sum(np.square(_UpperCAmelCase ) , axis=1 ) SCREAMING_SNAKE_CASE_: Tuple = np.sum(np.square(_UpperCAmelCase ) , axis=0 ) SCREAMING_SNAKE_CASE_: List[Any] = np.matmul(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = aa[:, None] - 2 * ab + ba[None, :] return d def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = x.reshape(-1 , 3 ) SCREAMING_SNAKE_CASE_: Tuple = squared_euclidean_distance(_UpperCAmelCase , _UpperCAmelCase ) return np.argmin(_UpperCAmelCase , axis=1 ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = ['''pixel_values'''] def __init__( self : Tuple , lowerCAmelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = size if size is not None else {"height": 256, "width": 256} SCREAMING_SNAKE_CASE_: Tuple = get_size_dict(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = np.array(lowerCAmelCase__) if clusters is not None else None SCREAMING_SNAKE_CASE_: Dict = do_resize SCREAMING_SNAKE_CASE_: str = size SCREAMING_SNAKE_CASE_: List[Any] = resample SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize SCREAMING_SNAKE_CASE_: Dict = do_color_quantize def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ): SCREAMING_SNAKE_CASE_: List[str] = get_size_dict(lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}") return resize( lowerCAmelCase__ , size=(size["height"], size["width"]) , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , ): SCREAMING_SNAKE_CASE_: str = rescale(image=lowerCAmelCase__ , scale=1 / 127.5 , data_format=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = image - 1 return image def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowerCAmelCase__ : Union[str, Any] , ): SCREAMING_SNAKE_CASE_: Tuple = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE_: Dict = get_size_dict(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: int = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: List[str] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize SCREAMING_SNAKE_CASE_: Tuple = clusters if clusters is not None else self.clusters SCREAMING_SNAKE_CASE_: Optional[int] = np.array(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True.") # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: Union[str, Any] = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: Optional[Any] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_: str = [self.normalize(image=lowerCAmelCase__) for image in images] if do_color_quantize: SCREAMING_SNAKE_CASE_: Any = [to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) SCREAMING_SNAKE_CASE_: List[Any] = np.array(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = color_quantize(lowerCAmelCase__ , lowerCAmelCase__).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) SCREAMING_SNAKE_CASE_: str = images.shape[0] SCREAMING_SNAKE_CASE_: Tuple = images.reshape(lowerCAmelCase__ , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. SCREAMING_SNAKE_CASE_: str = list(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Dict = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__)
671
0
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { "n_samples": 6_4, "horizon": 3_2, "num_inference_steps": 2_0, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": a_ = "hopper-medium-v2" a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1_0_0_0 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=3_2) # execute action in environment a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
712
"""simple docstring""" a_ = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] a_ = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] a_ = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] a_ = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] a_ = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] a_ = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] a_ = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] a_ = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
523
0
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = "linear" UpperCamelCase = "cosine" UpperCamelCase = "cosine_with_restarts" UpperCamelCase = "polynomial" UpperCamelCase = "constant" UpperCamelCase = "constant_with_warmup" UpperCamelCase = "piecewise_constant" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = -1 ): return LambdaLR(__UpperCAmelCase , lambda lowerCAmelCase__ : 1 , last_epoch=__UpperCAmelCase ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = -1 ): UpperCAmelCase_ = {} UpperCAmelCase_ = step_rules.split("," ) for rule_str in rule_list[:-1]: UpperCAmelCase_ = rule_str.split(":" ) UpperCAmelCase_ = int(__UpperCAmelCase ) UpperCAmelCase_ = float(__UpperCAmelCase ) UpperCAmelCase_ = value UpperCAmelCase_ = float(rule_list[-1] ) def create_rules_function(lowerCAmelCase__ , lowerCAmelCase__ ): def rule_func(lowerCAmelCase__ ) -> float: UpperCAmelCase_ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCAmelCase_ = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=-1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.5 , lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) UpperCAmelCase_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) UpperCAmelCase_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1e-7 , lowerCAmelCase__=1.0 , lowerCAmelCase__=-1 ): UpperCAmelCase_ = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCAmelCase_ = lr_init - lr_end UpperCAmelCase_ = num_training_steps - num_warmup_steps UpperCAmelCase_ = 1 - (current_step - num_warmup_steps) / decay_steps UpperCAmelCase_ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = -1 , ): UpperCAmelCase_ = SchedulerType(__UpperCAmelCase ) UpperCAmelCase_ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
82
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "timesformer" def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=8 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase="divided_space_time" , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Optional[int] = image_size lowercase__: Optional[Any] = patch_size lowercase__: Dict = num_channels lowercase__: Tuple = num_frames lowercase__: Any = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: int = num_attention_heads lowercase__: Optional[int] = intermediate_size lowercase__: Optional[int] = hidden_act lowercase__: int = hidden_dropout_prob lowercase__: Tuple = attention_probs_dropout_prob lowercase__: Union[str, Any] = initializer_range lowercase__: List[Any] = layer_norm_eps lowercase__: str = qkv_bias lowercase__: Tuple = attention_type lowercase__: Tuple = drop_path_rate
586
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _a : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["pixel_values"] def __init__( self , a__ = True , a__ = None , a__ = PILImageResampling.BICUBIC , a__ = True , a__ = None , a__ = True , a__ = 1 / 255 , a__ = True , a__ = None , a__ = None , a__ = True , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : List[str] = size if size is not None else {"""shortest_edge""": 224} _lowerCAmelCase : Union[str, Any] = get_size_dict(a__ , default_to_square=a__ ) _lowerCAmelCase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase : Optional[Any] = get_size_dict(a__ , default_to_square=a__ , param_name="""crop_size""" ) _lowerCAmelCase : str = do_resize _lowerCAmelCase : Tuple = size _lowerCAmelCase : Dict = resample _lowerCAmelCase : Any = do_center_crop _lowerCAmelCase : Tuple = crop_size _lowerCAmelCase : List[Any] = do_rescale _lowerCAmelCase : Optional[Any] = rescale_factor _lowerCAmelCase : Optional[int] = do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase : Any = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase : List[str] = do_convert_rgb def __A ( self , a__ , a__ , a__ = PILImageResampling.BICUBIC , a__ = None , **a__ , ): _lowerCAmelCase : Optional[int] = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _lowerCAmelCase : str = get_resize_output_image_size(a__ , size=size["""shortest_edge"""] , default_to_square=a__ ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): _lowerCAmelCase : Optional[Any] = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(a__ , size=(size["""height"""], size["""width"""]) , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ , a__ = None , **a__ , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ): _lowerCAmelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : str = size if size is not None else self.size _lowerCAmelCase : Dict = get_size_dict(a__ , param_name="""size""" , default_to_square=a__ ) _lowerCAmelCase : Tuple = resample if resample is not None else self.resample _lowerCAmelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : Any = get_size_dict(a__ , param_name="""crop_size""" , default_to_square=a__ ) _lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase : Any = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase : List[Any] = [convert_to_rgb(a__ ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase : List[str] = [to_numpy_array(a__ ) for image in images] if do_resize: _lowerCAmelCase : Dict = [self.resize(image=a__ , size=a__ , resample=a__ ) for image in images] if do_center_crop: _lowerCAmelCase : str = [self.center_crop(image=a__ , size=a__ ) for image in images] if do_rescale: _lowerCAmelCase : Optional[Any] = [self.rescale(image=a__ , scale=a__ ) for image in images] if do_normalize: _lowerCAmelCase : Union[str, Any] = [self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images] _lowerCAmelCase : Optional[int] = [to_channel_dimension_format(a__ , a__ ) for image in images] _lowerCAmelCase : Dict = {"""pixel_values""": images} return BatchFeature(data=a__ , tensor_type=a__ )
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a__ ( A__ ): A = ['image_processor', 'tokenizer'] A = 'ViTImageProcessor' A = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[str],_A : Optional[Any]=None,_A : List[str]=None,**_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.",_A,) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_A,_A ) def __call__( self : Optional[Any],_A : Any=None,_A : Tuple=None,_A : Dict=None,_A : Optional[Any]=None,**_A : int ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: SCREAMING_SNAKE_CASE_ : int = self.tokenizer(_A,return_tensors=_A,**_A ) if visual_prompt is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processor(_A,return_tensors=_A,**_A ) if images is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processor(_A,return_tensors=_A,**_A ) if visual_prompt is not None and images is not None: SCREAMING_SNAKE_CASE_ : List[str] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: SCREAMING_SNAKE_CASE_ : int = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: SCREAMING_SNAKE_CASE_ : str = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_A ),tensor_type=_A ) def __UpperCamelCase ( self : int,*_A : Optional[Any],**_A : Dict ): """simple docstring""" return self.tokenizer.batch_decode(*_A,**_A ) def __UpperCamelCase ( self : Tuple,*_A : Dict,**_A : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*_A,**_A ) @property def __UpperCamelCase ( self : Any ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",_A,) return self.image_processor_class @property def __UpperCamelCase ( self : int ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",_A,) return self.image_processor
216
def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] SCREAMING_SNAKE_CASE_ : Optional[int] = True for i in range(lowerCAmelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: SCREAMING_SNAKE_CASE_ : int = True if a[i].islower(): SCREAMING_SNAKE_CASE_ : List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
216
1
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Dict = torch.nn.Linear(10 , 10 ) lowercase__ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) lowercase__ : int = Accelerator() lowercase__ : Dict = accelerator.prepare(lowerCamelCase__ ) try: pickle.loads(pickle.dumps(lowerCamelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
128
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __snake_case = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ): for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowercase__ : List[Any] = """lm_head""" lowercase__ : int = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowercase__ : Any = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowercase__ : Any = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ : Dict = value elif weight_type == "weight_g": lowercase__ : Union[str, Any] = value elif weight_type == "weight_v": lowercase__ : str = value elif weight_type == "bias": lowercase__ : int = value else: lowercase__ : Optional[Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[str] ): lowercase__ : Tuple = [] lowercase__ : Dict = fairseq_model.state_dict() lowercase__ : Optional[int] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : str = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase__ : int = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[str] = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase__ : Dict = True if "*" in mapped_key: lowercase__ : List[str] = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] lowercase__ : Optional[Any] = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: lowercase__ : Any = """weight_g""" elif "weight_v" in name: lowercase__ : Any = """weight_v""" elif "bias" in name: lowercase__ : List[str] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : str = """weight""" else: lowercase__ : str = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _lowerCamelCase ( lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ): lowercase__ : Dict = full_name.split("""conv_layers.""" )[-1] lowercase__ : Union[str, Any] = name.split(""".""" ) lowercase__ : List[Any] = int(items[0] ) lowercase__ : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ : int = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ : Tuple = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ : Any = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : List[Any]=True ): if config_path is not None: lowercase__ : int = UniSpeechConfig.from_pretrained(lowerCamelCase__ ) else: lowercase__ : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: lowercase__ : Any = Dictionary.load_from_json(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ : int = target_dict.pad_index lowercase__ : Tuple = target_dict.bos_index lowercase__ : Dict = target_dict.eos_index lowercase__ : Dict = len(target_dict.symbols ) lowercase__ : List[Any] = os.path.join(lowerCamelCase__ , """vocab.json""" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowercase__ : Any = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ : Any = 42 lowercase__ : List[str] = 43 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = WavaVecaPhonemeCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase__ , ) lowercase__ : List[str] = True if config.feat_extract_norm == """layer""" else False lowercase__ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) lowercase__ : Any = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowercase__ : Any = UniSpeechForCTC(lowerCamelCase__ ) else: lowercase__ : Dict = UniSpeechForPreTraining(lowerCamelCase__ ) if is_finetuned: lowercase__ , lowercase__ , lowercase__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: lowercase__ , lowercase__ , lowercase__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowercase__ : str = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) hf_unispeech.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __snake_case = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
128
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , lowercase__ : TransformeraDModel , lowercase__ : AutoencoderKL , lowercase__ : KarrasDiffusionSchedulers , lowercase__ : Optional[Dict[int, str]] = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__ ) # create a imagenet -> id dictionary for easier use __lowercase : int = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): __lowercase : List[str] = int(lowercase__ ) __lowercase : str = dict(sorted(self.labels.items() ) ) def snake_case ( self : str , lowercase__ : Union[str, List[str]] ): if not isinstance(lowercase__ , lowercase__ ): __lowercase : Any = list(lowercase__ ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[str] , lowercase__ : List[int] , lowercase__ : float = 4.0 , lowercase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase__ : int = 5_0 , lowercase__ : Optional[str] = "pil" , lowercase__ : bool = True , ): __lowercase : Dict = len(lowercase__ ) __lowercase : Tuple = self.transformer.config.sample_size __lowercase : str = self.transformer.config.in_channels __lowercase : int = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __lowercase : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __lowercase : str = torch.tensor(lowercase__ , device=self.device ).reshape(-1 ) __lowercase : Optional[int] = torch.tensor([1_0_0_0] * batch_size , device=self.device ) __lowercase : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __lowercase : List[Any] = latent_model_input[: len(lowercase__ ) // 2] __lowercase : Optional[Any] = torch.cat([half, half] , dim=0 ) __lowercase : str = self.scheduler.scale_model_input(lowercase__ , lowercase__ ) __lowercase : List[str] = t if not torch.is_tensor(lowercase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __lowercase : List[str] = latent_model_input.device.type == "mps" if isinstance(lowercase__ , lowercase__ ): __lowercase : Optional[int] = torch.floataa if is_mps else torch.floataa else: __lowercase : Dict = torch.intaa if is_mps else torch.intaa __lowercase : List[Any] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __lowercase : str = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowercase : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __lowercase : Optional[Any] = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__ ).sample # perform guidance if guidance_scale > 1: __lowercase ,__lowercase : Any = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __lowercase ,__lowercase : Optional[int] = torch.split(lowercase__ , len(lowercase__ ) // 2 , dim=0 ) __lowercase : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __lowercase : str = torch.cat([half_eps, half_eps] , dim=0 ) __lowercase : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __lowercase ,__lowercase : int = torch.split(lowercase__ , lowercase__ , dim=1 ) else: __lowercase : Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 __lowercase : Optional[Any] = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample if guidance_scale > 1: __lowercase ,__lowercase : Tuple = latent_model_input.chunk(2 , dim=0 ) else: __lowercase : Tuple = latent_model_input __lowercase : Any = 1 / self.vae.config.scaling_factor * latents __lowercase : Optional[int] = self.vae.decode(lowercase__ ).sample __lowercase : str = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase : List[str] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase : int = self.numpy_to_pil(lowercase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__ )
575
"""simple docstring""" import random def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase = False ) ->dict: """simple docstring""" __lowercase : dict = {i: [] for i in range(_lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowerCamelCase ): for j in range(i + 1, _lowerCamelCase ): if random.random() < probability: graph[i].append(_lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowerCamelCase ) return graph def snake_case__ ( _lowerCamelCase ) ->dict: """simple docstring""" return { i: [j for j in range(_lowerCamelCase ) if i != j] for i in range(_lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
575
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter UpperCAmelCase_ = True except ImportError: UpperCAmelCase_ = False UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase ( A__ ) -> List[str]: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" @staticmethod def __lowerCamelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : Optional[Any] = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=SCREAMING_SNAKE_CASE__ , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=SCREAMING_SNAKE_CASE__ , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , *SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : Optional[int] = testing _snake_case : Tuple = testing_file _snake_case : List[str] = path def __lowerCamelCase( self ): """simple docstring""" warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _snake_case : str = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) _snake_case : Dict = ( Path(SCREAMING_SNAKE_CASE__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _snake_case : str = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(SCREAMING_SNAKE_CASE__ ) ) else: with open(self._testing_file , """r""" ) as configuration_file: _snake_case : List[str] = json.load(SCREAMING_SNAKE_CASE__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=SCREAMING_SNAKE_CASE__ , extra_context=SCREAMING_SNAKE_CASE__ , ) _snake_case : Tuple = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: _snake_case : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = configuration["""lowercase_modelname"""] _snake_case : str = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(f'''{directory}/configuration.json''' ) _snake_case : Dict = """PyTorch""" in generate_tensorflow_pytorch_and_flax _snake_case : Any = """TensorFlow""" in generate_tensorflow_pytorch_and_flax _snake_case : Union[str, Any] = """Flax""" in generate_tensorflow_pytorch_and_flax _snake_case : Tuple = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=SCREAMING_SNAKE_CASE__ ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , """w""" ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , """r""" ) as f: _snake_case : List[str] = f.readlines() with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(SCREAMING_SNAKE_CASE__ ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Create temp file _snake_case : str = mkstemp() _snake_case : Any = False with fdopen(SCREAMING_SNAKE_CASE__ , """w""" ) as new_file: with open(SCREAMING_SNAKE_CASE__ ) as old_file: for line in old_file: new_file.write(SCREAMING_SNAKE_CASE__ ) if line_to_copy_below in line: _snake_case : str = True for line_to_copy in lines_to_copy: new_file.write(SCREAMING_SNAKE_CASE__ ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Remove original file remove(SCREAMING_SNAKE_CASE__ ) # Move new file move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def skip_units(SCREAMING_SNAKE_CASE__ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ ) as datafile: _snake_case : Optional[Any] = [] _snake_case : Tuple = False _snake_case : Tuple = False for line in datafile: if "# To replace in: " in line and "##" not in line: _snake_case : Optional[Any] = line.split("""\"""" )[1] _snake_case : int = skip_units(SCREAMING_SNAKE_CASE__ ) elif "# Below: " in line and "##" not in line: _snake_case : Union[str, Any] = line.split("""\"""" )[1] _snake_case : Any = skip_units(SCREAMING_SNAKE_CASE__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = [] elif "# Replace with" in line and "##" not in line: _snake_case : Any = [] elif "##" not in line: lines_to_copy.append(SCREAMING_SNAKE_CASE__ ) remove(SCREAMING_SNAKE_CASE__ ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(SCREAMING_SNAKE_CASE__ )
700
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" def __lowerCamelCase( self ): """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[Any] = self._create_example_records() _snake_case : Optional[int] = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(SCREAMING_SNAKE_CASE__ ): self.assertDictEqual(SCREAMING_SNAKE_CASE__ , example_records[i] ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Tuple = self._create_example_records() _snake_case : Optional[Any] = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __lowerCamelCase( self ): # checks what happens with missing columns """simple docstring""" _snake_case : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _snake_case : List[str] = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def __lowerCamelCase( self ): # checks if the type can be inferred from the second record """simple docstring""" _snake_case : List[str] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _snake_case : str = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[Any] = Dataset.from_list([] ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
519
0
from __future__ import annotations __snake_case :Union[str, Any] =tuple[int, int, int] __snake_case :Tuple =tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __snake_case :Tuple ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- __snake_case :List[str] ='EGZWVONAHDCLFQMSIPJBYUKXTR' __snake_case :Any ='FOBHMDKEXQNRAULPGSJVTYICZW' __snake_case :Union[str, Any] ='ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- __snake_case :List[str] ={ 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- __snake_case :List[Any] ='RMDJXFUWGISLHVTCQNKYPBEZOA' __snake_case :Tuple ='SGLCPQWZHKXAREONTFBVIYJUDM' __snake_case :str ='HVSICLTYKQUBXDWAJZOMFGPREN' __snake_case :int ='RZWQHFMVDBKICJLNTUXAGYPSOE' __snake_case :Dict ='LFKIJODBEGAMQPXVUHYSTCZRWN' __snake_case :Any ='KOAEGVDHXPQZMLFTYWJNBRCIUS' def lowerCamelCase_ ( lowerCAmelCase__ : RotorPositionT , lowerCAmelCase__ : RotorSelectionT , lowerCAmelCase__ : str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: '''simple docstring''' if (unique_rotsel := len(set(lowerCAmelCase__ ) )) < 3: A = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(lowerCAmelCase__ ) # Checks if rotor positions are valid A , A , A = rotpos if not 0 < rotorposa <= len(lowerCAmelCase__ ): A = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): A = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): A = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(lowerCAmelCase__ ) # Validates string and returns dict A = _plugboard(lowerCAmelCase__ ) return rotpos, rotsel, pbdict def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> dict[str, str]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): A = F'''Plugboard setting isn\'t type string ({type(lowerCAmelCase__ )})''' raise TypeError(lowerCAmelCase__ ) elif len(lowerCAmelCase__ ) % 2 != 0: A = F'''Odd number of symbols ({len(lowerCAmelCase__ )})''' raise Exception(lowerCAmelCase__ ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique A = set() for i in pbstring: if i not in abc: A = F'''\'{i}\' not in list of symbols''' raise Exception(lowerCAmelCase__ ) elif i in tmppbl: A = F'''Duplicate symbol ({i})''' raise Exception(lowerCAmelCase__ ) else: tmppbl.add(lowerCAmelCase__ ) del tmppbl # Created the dictionary A = {} for j in range(0 , len(lowerCAmelCase__ ) - 1 , 2 ): A = pbstring[j + 1] A = pbstring[j] return pb def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : RotorPositionT , lowerCAmelCase__ : RotorSelectionT = (rotora, rotora, rotora) , lowerCAmelCase__ : str = "" , ) -> str: '''simple docstring''' A = text.upper() A , A , A = _validator( lowerCAmelCase__ , lowerCAmelCase__ , plugb.upper() ) A , A , A = rotor_position A , A , A = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 A = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: A = plugboard[symbol] # rotor ra -------------------------- A = abc.index(lowerCAmelCase__ ) + rotorposa A = rotora[index % len(lowerCAmelCase__ )] # rotor rb -------------------------- A = abc.index(lowerCAmelCase__ ) + rotorposa A = rotora[index % len(lowerCAmelCase__ )] # rotor rc -------------------------- A = abc.index(lowerCAmelCase__ ) + rotorposa A = rotora[index % len(lowerCAmelCase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher A = reflector[symbol] # 2nd rotors A = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] A = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] A = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: A = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): A = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): A = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): A = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCAmelCase__ ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": __snake_case :Optional[Any] ='This is my Python script that emulates the Enigma machine from WWII.' __snake_case :Any =(1, 1, 1) __snake_case :Optional[int] ='pictures' __snake_case :Dict =(rotora, rotora, rotora) __snake_case :Union[str, Any] =enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
106
'''simple docstring''' import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _SCREAMING_SNAKE_CASE = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] ) else: _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = np.asarray(_lowerCAmelCase ) if ignore_case: _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans("" , "" , string.digits ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
18
0
import copy import random from transformers import CLIPTokenizer class _lowercase ( _A ): def __init__( self , *a , **a ): super().__init__(*a , **a ) snake_case__ : Optional[Any] ={} def lowercase__ ( self , a , *a , **a ): snake_case__ : Any =super().add_tokens(a , *a , **a ) if num_added_tokens == 0: raise ValueError( F"The tokenizer already contains the token {placeholder_token}. Please pass a different" """ `placeholder_token` that is not already in the tokenizer.""" ) def lowercase__ ( self , a , *a , a=1 , **a ): snake_case__ : Optional[int] =[] if num_vec_per_token == 1: self.try_adding_tokens(a , *a , **a ) output.append(a ) else: snake_case__ : Tuple =[] for i in range(a ): snake_case__ : str =placeholder_token + F"_{i}" self.try_adding_tokens(a , *a , **a ) output.append(a ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"The tokenizer already has placeholder token {token} that can get confused with" F" {placeholder_token}keep placeholder tokens independent" ) snake_case__ : Dict =output def lowercase__ ( self , a , a=False , a=1.0 ): if isinstance(a , a ): snake_case__ : Dict =[] for i in range(len(a ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=a ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: snake_case__ : List[str] =self.token_map[placeholder_token] snake_case__ : Any =tokens[: 1 + int(len(a ) * prop_tokens_to_load )] if vector_shuffle: snake_case__ : Optional[int] =copy.copy(a ) random.shuffle(a ) snake_case__ : Dict =text.replace(a , """ """.join(a ) ) return text def __call__( self , a , *a , a=False , a=1.0 , **a ): return super().__call__( self.replace_placeholder_tokens_in_text( a , vector_shuffle=a , prop_tokens_to_load=a ) , *a , **a , ) def lowercase__ ( self , a , *a , a=False , a=1.0 , **a ): return super().encode( self.replace_placeholder_tokens_in_text( a , vector_shuffle=a , prop_tokens_to_load=a ) , *a , **a , )
703
def A__ ( _a : list ): '''simple docstring''' if len(_a ) <= 1: return [tuple(_a )] snake_case__ : Optional[int] =[] def generate(_a : int , _a : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _a ) for i in range(k - 1 ): if k % 2 == 0: # k is even snake_case__ , snake_case__ : Dict =arr[k - 1], arr[i] else: # k is odd snake_case__ , snake_case__ : int =arr[k - 1], arr[0] generate(k - 1 , _a ) generate(len(_a ) , _a ) return res if __name__ == "__main__": __lowerCamelCase : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Any = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
448
0
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowerCamelCase ( _snake_case=32 ,_snake_case=10 ,_snake_case=100 ,_snake_case=1026 ,_snake_case=True ,_snake_case="data/tokenized_stories_train_wikitext103.jbl" ,_snake_case="igf_context_pairs.jbl" ,): set_seed(3 ) # generate train_data and objective_set UpperCAmelCase__ : List[str] = generate_datasets( __lowerCAmelCase ,__lowerCAmelCase ,number=__lowerCAmelCase ,min_len=1026 ,trim=__lowerCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCAmelCase__ : Any = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model UpperCAmelCase__ : int = load_gpta('gpt2' ).to(__lowerCAmelCase ) print('computing perplexity on objective set' ) UpperCAmelCase__ : List[Any] = compute_perplexity(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).item() print('perplexity on objective set:' ,__lowerCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowerCamelCase ( _snake_case ,_snake_case=15 ,_snake_case=128 ,_snake_case=100 ,_snake_case="igf_model.pt" ,): set_seed(42 ) # Load pre-trained model UpperCAmelCase__ : Dict = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model UpperCAmelCase__ : Optional[int] = SecondaryLearner(__lowerCAmelCase ) # Train secondary learner UpperCAmelCase__ : Optional[Any] = train_secondary_learner( __lowerCAmelCase ,__lowerCAmelCase ,max_epochs=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,eval_freq=100 ,igf_model_path=__lowerCAmelCase ,) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,_snake_case=32 ,_snake_case=1000 ,_snake_case=16 ,_snake_case=1.0 ,_snake_case=recopy_gpta ,_snake_case=None ,_snake_case=10 ,_snake_case="gpt2_finetuned.pt" ,): UpperCAmelCase__ : Optional[int] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) UpperCAmelCase__ : str = RandomSampler(__lowerCAmelCase ) UpperCAmelCase__ : List[str] = DataLoader(__lowerCAmelCase ,sampler=__lowerCAmelCase ) UpperCAmelCase__ : int = max_steps // (len(__lowerCAmelCase )) + 1 UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : List[str] = torch.zeros((1, context_len) ,dtype=torch.long ,device=__lowerCAmelCase ) UpperCAmelCase__ : int = recopy_model(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(__lowerCAmelCase ) secondary_learner.eval() UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : int = [] # Compute the performance of the transformer model at the beginning UpperCAmelCase__ : List[str] = compute_perplexity(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) test_perps.append(__lowerCAmelCase ) print('Test perplexity, step' ,__lowerCAmelCase ,':' ,__lowerCAmelCase ) for epoch in range(int(__lowerCAmelCase ) ): for step, example in enumerate(__lowerCAmelCase ): torch.cuda.empty_cache() UpperCAmelCase__ : List[Any] = random.randint(0 ,example.size(2 ) - context_len - 1 ) UpperCAmelCase__ : Union[str, Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCAmelCase__ : Union[str, Any] = model(__lowerCAmelCase ,labels=__lowerCAmelCase ) UpperCAmelCase__ : Any = True if secondary_learner is not None: UpperCAmelCase__ : str = secondary_learner.forward( torch.tensor(__lowerCAmelCase ,dtype=torch.long ,device=__lowerCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(__lowerCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCAmelCase__ : str = -1 if predicted_q < threshold: UpperCAmelCase__ : Any = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) UpperCAmelCase__ : Optional[int] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCAmelCase__ : List[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() ,3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCAmelCase__ : Any = compute_perplexity(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) test_perps.append(__lowerCAmelCase ) print('Test perplexity, step' ,__lowerCAmelCase ,':' ,__lowerCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() ,__lowerCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowerCamelCase ( ): UpperCAmelCase__ : Any = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' ,default=__lowerCAmelCase ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help='The input data dir. Should contain data files for WikiText.' ,) parser.add_argument( '--model_name_or_path' ,default=__lowerCAmelCase ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help='Path to pretrained model or model identifier from huggingface.co/models' ,) parser.add_argument( '--data_file' ,type=__lowerCAmelCase ,default=__lowerCAmelCase ,help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) ,) parser.add_argument( '--igf_data_file' ,type=__lowerCAmelCase ,default=__lowerCAmelCase ,help='A jbl file containing the context and information gain pairs to train secondary learner.' ,) parser.add_argument( '--output_dir' ,default=__lowerCAmelCase ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help='The output directory where the final fine-tuned model is stored.' ,) parser.add_argument( '--tokenizer_name' ,default=__lowerCAmelCase ,type=__lowerCAmelCase ,help='Pretrained tokenizer name or path if not the same as model_name' ,) parser.add_argument('--seed' ,type=__lowerCAmelCase ,default=__lowerCAmelCase ,help='A seed for reproducible training.' ) parser.add_argument( '--context_len' ,default=32 ,type=__lowerCAmelCase ,help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) ,) parser.add_argument( '--size_objective_set' ,default=100 ,type=__lowerCAmelCase ,help='number of articles that are long enough to be used as our objective set' ,) parser.add_argument( '--eval_freq' ,default=100 ,type=__lowerCAmelCase ,help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' ,default=1000 ,type=__lowerCAmelCase ,help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' ,default=128 ,type=__lowerCAmelCase ,help='batch size of training data for secondary learner' ,) parser.add_argument( '--batch_size' ,default=16 ,type=__lowerCAmelCase ,help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' ,default=10 ,type=__lowerCAmelCase ,help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) ,) parser.add_argument( '--number' ,default=100 ,type=__lowerCAmelCase ,help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' ,default=1026 ,type=__lowerCAmelCase ,help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' ,default=15 ,type=__lowerCAmelCase ,help='number of epochs to train secondary learner' ) parser.add_argument('--trim' ,default=__lowerCAmelCase ,type=__lowerCAmelCase ,help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' ,default=1.0 ,type=__lowerCAmelCase ,help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) ,) parser.add_argument('--finetuned_model_name' ,default='gpt2_finetuned.pt' ,type=__lowerCAmelCase ,help='finetuned_model_name' ) parser.add_argument( '--recopy_model' ,default=__lowerCAmelCase ,type=__lowerCAmelCase ,help='Reset the model to the original pretrained GPT-2 weights after each iteration' ,) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 ,max_steps=10 ,size_objective_set=100 ,min_len=1026 ,trim=__lowerCAmelCase ,data_file='data/tokenized_stories_train_wikitext103.jbl' ,igf_data_file='igf_context_pairs.jbl' ,) # Load train data for secondary learner UpperCAmelCase__ : int = joblib.load('data/IGF_values.jbl' ) # Train secondary learner UpperCAmelCase__ : Dict = training_secondary_learner( __lowerCAmelCase ,secondary_learner_max_epochs=15 ,secondary_learner_batch_size=128 ,eval_freq=100 ,igf_model_path='igf_model.pt' ,) # load pretrained gpt2 model UpperCAmelCase__ : Union[str, Any] = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model UpperCAmelCase__ : List[Any] = generate_datasets( context_len=32 ,file='data/tokenized_stories_train_wikitext103.jbl' ,number=100 ,min_len=1026 ,trim=__lowerCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,context_len=32 ,max_steps=1000 ,batch_size=16 ,threshold=1.0 ,recopy_model=__lowerCAmelCase ,secondary_learner=__lowerCAmelCase ,eval_interval=10 ,finetuned_model_name='gpt2_finetuned.pt' ,) if __name__ == "__main__": main()
110
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) a :str = logging.getLogger(__name__) def _lowercase ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=__lowerCAmelCase , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=__lowerCAmelCase , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=__lowerCAmelCase , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=__lowerCAmelCase , default="""data/dump""" , help="""The dump file prefix.""" ) SCREAMING_SNAKE_CASE__ : str = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE__ : List[str] = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : str = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` SCREAMING_SNAKE_CASE__ : str = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE__ : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` SCREAMING_SNAKE_CASE__ : Dict = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE__ : List[Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: SCREAMING_SNAKE_CASE__ : int = fp.readlines() logger.info("""Start encoding""" ) logger.info(F'''{len(__lowerCAmelCase )} examples to process.''' ) SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1_0000 SCREAMING_SNAKE_CASE__ : Dict = time.time() for text in data: SCREAMING_SNAKE_CASE__ : Dict = F'''{bos} {text.strip()} {sep}''' SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) rslt.append(__lowerCAmelCase ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE__ : str = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) SCREAMING_SNAKE_CASE__ : Tuple = time.time() logger.info("""Finished binarization""" ) logger.info(F'''{len(__lowerCAmelCase )} examples processed.''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' SCREAMING_SNAKE_CASE__ : Dict = tokenizer.vocab_size if vocab_size < (1 << 16): SCREAMING_SNAKE_CASE__ : Tuple = [np.uintaa(__lowerCAmelCase ) for d in rslt] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [np.intaa(__lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(__lowerCAmelCase , """wb""" ) as handle: pickle.dump(rslt_ , __lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
680
0
'''simple docstring''' import re from filelock import FileLock try: import nltk __A = True except (ImportError, ModuleNotFoundError): __A = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _SCREAMING_SNAKE_CASE ( A : str ) -> str: """simple docstring""" re.sub('<n>' , '' , A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A ) )
61
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A = logging.getLogger(__name__) @dataclass class a_ : _snake_case = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _snake_case = field(default=UpperCamelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class a_ : _snake_case = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _snake_case = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case ,__snake_case ,__snake_case : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case ,__snake_case ,__snake_case : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) __snake_case : List[str] = import_module('tasks' ) try: __snake_case : Any = getattr(A , model_args.task_type ) __snake_case : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __snake_case : Optional[Any] = token_classification_task.get_labels(data_args.labels ) __snake_case : Dict[int, str] = dict(enumerate(A ) ) __snake_case : Optional[Any] = len(A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , idalabel=A , labelaid={label: i for i, label in enumerate(A )} , cache_dir=model_args.cache_dir , ) __snake_case : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __snake_case : Optional[int] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) # Get datasets __snake_case : List[Any] = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __snake_case : int = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A : np.ndarray , A : np.ndarray ) -> Tuple[List[int], List[int]]: __snake_case : str = np.argmax(A , axis=2 ) __snake_case ,__snake_case : int = preds.shape __snake_case : Dict = [[] for _ in range(A )] __snake_case : Union[str, Any] = [[] for _ in range(A )] for i in range(A ): for j in range(A ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A : EvalPrediction ) -> Dict: __snake_case ,__snake_case : Any = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A , A ), "precision": precision_score(A , A ), "recall": recall_score(A , A ), "f1": fa_score(A , A ), } # Data collator __snake_case : Optional[int] = DataCollatorWithPadding(A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __snake_case : Optional[Any] = Trainer( model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , data_collator=A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : List[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : List[str] = trainer.evaluate() __snake_case : Tuple = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , A , A ) writer.write('%s = %s\n' % (key, value) ) results.update(A ) # Predict if training_args.do_predict: __snake_case : str = TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __snake_case ,__snake_case ,__snake_case : str = trainer.predict(A ) __snake_case ,__snake_case : List[str] = align_predictions(A , A ) __snake_case : Optional[int] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , A , A ) writer.write('%s = %s\n' % (key, value) ) # Save predictions __snake_case : List[str] = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(A , A , A ) return results def _SCREAMING_SNAKE_CASE ( A : int ) -> Any: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
61
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ): # noqa: E741 """simple docstring""" while r - l > 1: snake_case_ : List[str] = (l + r) // 2 if v[m] >= key: snake_case_ : List[Any] = m else: snake_case_ : Any = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] ): """simple docstring""" if len(snake_case__ ) == 0: return 0 snake_case_ : Optional[int] = [0] * len(snake_case__ ) snake_case_ : Any = 1 snake_case_ : Optional[int] = v[0] for i in range(1 , len(snake_case__ ) ): if v[i] < tail[0]: snake_case_ : Dict = v[i] elif v[i] > tail[length - 1]: snake_case_ : List[str] = v[i] length += 1 else: snake_case_ : str = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
480
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __a = logging.getLogger(__name__) __a = tf.data.AUTOTUNE def a ( ): '''simple docstring''' lowercase_ = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=snake_case__ , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=snake_case__ , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=snake_case__ , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=snake_case__ , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=snake_case__ , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=snake_case__ , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=snake_case__ , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=snake_case__ , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=snake_case__ , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case__ , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=snake_case__ , default=1e-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=snake_case__ , default=1e-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=snake_case__ , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=snake_case__ , default=0.1_5 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=snake_case__ , required=snake_case__ , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=snake_case__ , help='''Model ID to upload to on the Hugging Face Hub.''' ) lowercase_ = parser.parse_args() return args def a ( snake_case__: int ): '''simple docstring''' try: if args.tpu_name: lowercase_ = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase_ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(snake_case__ ) tf.tpu.experimental.initialize_tpu_system(snake_case__ ) return tpu def a ( snake_case__: Optional[int] ): '''simple docstring''' lowercase_ = 0 for file in file_list: lowercase_ = file.split('''/''' )[-1] lowercase_ = re.search(r'''-\d+-(\d+)\.tfrecord''' , snake_case__ ).group(1 ) lowercase_ = int(snake_case__ ) num_samples += sample_count return num_samples def a ( snake_case__: Dict , snake_case__: Dict , snake_case__: Union[str, Any] , snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: Dict=None ): '''simple docstring''' lowercase_ = count_samples(snake_case__ ) lowercase_ = tf.data.Dataset.from_tensor_slices(snake_case__ ) if shuffle: lowercase_ = dataset.shuffle(len(snake_case__ ) ) lowercase_ = tf.data.TFRecordDataset(snake_case__ , num_parallel_reads=snake_case__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase_ = dataset.apply(tf.data.experimental.assert_cardinality(snake_case__ ) ) lowercase_ = dataset.map(snake_case__ , num_parallel_calls=snake_case__ ) if shuffle: assert shuffle_buffer_size is not None lowercase_ = dataset.shuffle(args.shuffle_buffer_size ) lowercase_ = dataset.batch(snake_case__ , drop_remainder=snake_case__ ) lowercase_ = dataset.map(snake_case__ , num_parallel_calls=snake_case__ ) lowercase_ = dataset.prefetch(snake_case__ ) return dataset def a ( snake_case__: Tuple ): '''simple docstring''' if not args.no_tpu: lowercase_ = initialize_tpu(snake_case__ ) lowercase_ = tf.distribute.TPUStrategy(snake_case__ ) else: lowercase_ = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) lowercase_ = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase_ = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase_ = tokenizer.vocab_size lowercase_ = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(F'''No .tfrecord files found in {args.train_dataset}.''' ) lowercase_ = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(F'''No .tfrecord files found in {args.eval_dataset}.''' ) lowercase_ = count_samples(snake_case__ ) lowercase_ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase_ = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase_ = TFAutoModelForMaskedLM.from_config(snake_case__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase_ , lowercase_ = create_optimizer( num_train_steps=snake_case__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=snake_case__ , metrics=['''accuracy'''] ) def decode_fn(snake_case__: Dict ): lowercase_ = { '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(snake_case__ , snake_case__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase_ = DataCollatorForLanguageModeling( tokenizer=snake_case__ , mlm_probability=args.mlm_probability , mlm=snake_case__ , return_tensors='''tf''' ) def mask_with_collator(snake_case__: str ): # TF really needs an isin() function lowercase_ = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) lowercase_ , lowercase_ = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(snake_case__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=snake_case__ , ) return batch lowercase_ = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase_ = prepare_dataset( snake_case__ , decode_fn=snake_case__ , mask_fn=snake_case__ , batch_size=snake_case__ , shuffle=snake_case__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase_ = prepare_dataset( snake_case__ , decode_fn=snake_case__ , mask_fn=snake_case__ , batch_size=snake_case__ , shuffle=snake_case__ , ) lowercase_ = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=snake_case__ ) ) model.fit( snake_case__ , validation_data=snake_case__ , epochs=args.num_epochs , callbacks=snake_case__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __a = parse_args() main(args)
97
0
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = '▁' lowercase_ = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} lowercase_ = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } lowercase_ = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } lowercase_ = { 'ernie-m-base': 514, 'ernie-m-large': 514, } lowercase_ = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : List[str] = ["input_ids"] A_ : Union[str, Any] = VOCAB_FILES_NAMES A_ : int = PRETRAINED_INIT_CONFIGURATION A_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A_ : List[Any] = RESOURCE_FILES_NAMES def __init__( self : Optional[int], _lowerCamelCase : str, _lowerCamelCase : Any=None, _lowerCamelCase : Dict=False, _lowerCamelCase : Optional[int]="utf8", _lowerCamelCase : List[Any]="[UNK]", _lowerCamelCase : Optional[int]="[SEP]", _lowerCamelCase : str="[PAD]", _lowerCamelCase : List[str]="[CLS]", _lowerCamelCase : str="[MASK]", _lowerCamelCase : Optional[Dict[str, Any]] = None, **_lowerCamelCase : Any, ): '''simple docstring''' __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase, unk_token=_lowerCamelCase, sep_token=_lowerCamelCase, pad_token=_lowerCamelCase, cls_token=_lowerCamelCase, mask_token=_lowerCamelCase, vocab_file=_lowerCamelCase, encoding=_lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **_lowerCamelCase, ) __A = do_lower_case __A = sentencepiece_model_ckpt __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __A = self.load_vocab(filepath=_lowerCamelCase ) else: __A = {self.sp_model.id_to_piece(_lowerCamelCase ): id for id in range(self.sp_model.get_piece_size() )} __A = {v: k for k, v in self.vocab.items()} def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Union[str, Any] ): '''simple docstring''' if text is None: return None __A = self.tokenize(_lowerCamelCase ) __A , __A = '''''', [] for i, ch in enumerate(_lowerCamelCase ): if ch in self.SP_CHAR_MAPPING: __A = self.SP_CHAR_MAPPING.get(_lowerCamelCase ) else: __A = unicodedata.normalize('''NFKC''', _lowerCamelCase ) if self.is_whitespace(_lowerCamelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCamelCase ) ) __A , __A , __A = normalized_text, [], 0 if self.do_lower_case: __A = text.lower() for token in split_tokens: if token[:1] == "▁": __A = token[1:] __A = text[offset:].index(_lowerCamelCase ) + offset __A = start + len(_lowerCamelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __A = end return token_mapping @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' return len(self.vocab ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' return dict(self.vocab, **self.added_tokens_encoder ) def __getstate__( self : Optional[int] ): '''simple docstring''' __A = self.__dict__.copy() __A = None return state def __setstate__( self : Union[str, Any], _lowerCamelCase : Union[str, Any] ): '''simple docstring''' __A = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : int ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(_lowerCamelCase, _lowerCamelCase ) for c in text) ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Optional[int], _lowerCamelCase : int=False, _lowerCamelCase : Dict=64, _lowerCamelCase : Tuple=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: __A = True if self.sp_model_kwargs.get('''alpha''' ) is not None: __A = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: __A = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: __A = self.sp_model.EncodeAsPieces(_lowerCamelCase ) else: __A = self.sp_model.SampleEncodeAsPieces(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) __A = [] for pi, piece in enumerate(_lowerCamelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCamelCase ) and pi != 0: new_pieces.append(_lowerCamelCase ) continue else: continue __A = 0 for i, chunk in enumerate(_lowerCamelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCamelCase ) or self.is_punct(_lowerCamelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCamelCase ) __A = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __A = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __A = i if len(_lowerCamelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : Dict ): '''simple docstring''' __A = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase, ''' ''' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : Optional[int] ): '''simple docstring''' __A = self.convert_ids_to_tokens(_lowerCamelCase ) __A = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase, ''' ''' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : List[str] ): '''simple docstring''' return self.vocab.get(_lowerCamelCase, self.vocab.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Any ): '''simple docstring''' return self.reverse_vocab.get(_lowerCamelCase, self.unk_token ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Dict, _lowerCamelCase : List[Any]=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : List[Any], _lowerCamelCase : Tuple=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : Optional[Any], _lowerCamelCase : Any=None, _lowerCamelCase : List[str]=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : List[int], _lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCamelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCamelCase ) + 1) + [1] * (len(_lowerCamelCase ) + 3) def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : str ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Union[str, Any] ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : str ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : str ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCamelCase ) == 1: __A = unicodedata.category(_lowerCamelCase ) if cat == "Zs": return True return False def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Tuple ): '''simple docstring''' __A = {} with io.open(_lowerCamelCase, '''r''', encoding='''utf-8''' ) as f: for index, line in enumerate(_lowerCamelCase ): __A = line.rstrip('''\n''' ) __A = int(_lowerCamelCase ) return token_to_idx def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : str, _lowerCamelCase : Optional[str] = None ): '''simple docstring''' __A = 0 if os.path.isdir(_lowerCamelCase ): __A = os.path.join( _lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __A = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items(), key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) __A = token_index writer.write(token + '''\n''' ) index += 1 __A = os.path.join(_lowerCamelCase, '''sentencepiece.bpe.model''' ) with open(_lowerCamelCase, '''wb''' ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (vocab_file,)
709
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', '''stage2.cls_token''') ) return token def lowerCAmelCase ( ): """simple docstring""" __A = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = '''imagenet-1k-id2label.json''' __A = 1_0_0_0 __A = '''huggingface/label-files''' __A = num_labels __A = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __A = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(__UpperCamelCase ) __A = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __A = image_size __A = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(__UpperCamelCase ) __A = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
215
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a : Dict = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Dict = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __a : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
534
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __a ( A__ ): _lowerCAmelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
228
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" def wrapper(*lowerCAmelCase__ , **lowerCAmelCase__ ): _lowerCAmelCase : Optional[Any] = timeit.default_timer() _lowerCAmelCase : Tuple = func(*lowerCAmelCase__ , **lowerCAmelCase__ ) _lowerCAmelCase : str = timeit.default_timer() - starttime return delta _lowerCAmelCase : str = func.__name__ return wrapper def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__=1_00 , lowerCAmelCase__=None ): """simple docstring""" _lowerCAmelCase : int = [] _lowerCAmelCase : Union[str, Any] = seq_shapes or {} for i in range(lowerCAmelCase__ ): _lowerCAmelCase : List[Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ , _ArrayXD ): _lowerCAmelCase : Dict = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ , datasets.Value ): if v.dtype == "string": _lowerCAmelCase : int = """The small grey turtle was surprisingly fast when challenged.""" else: _lowerCAmelCase : Optional[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ , datasets.Sequence ): while isinstance(lowerCAmelCase__ , datasets.Sequence ): _lowerCAmelCase : Union[str, Any] = v.feature _lowerCAmelCase : Optional[int] = seq_shapes[k] _lowerCAmelCase : Any = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) _lowerCAmelCase : Tuple = data dummy_data.append((i, example) ) return dummy_data def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1_00 , lowerCAmelCase__=None ): """simple docstring""" _lowerCAmelCase : Any = generate_examples(lowerCAmelCase__ , num_examples=lowerCAmelCase__ , seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ , path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: _lowerCAmelCase : Tuple = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) _lowerCAmelCase : int = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) _lowerCAmelCase : Tuple = datasets.Dataset.from_file(filename=lowerCAmelCase__ , info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
714
import functools from typing import Any def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not all( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie _lowerCAmelCase : dict[str, Any] = {} _lowerCAmelCase : Optional[int] = "WORD_KEEPER" for word in words: _lowerCAmelCase : Optional[int] = trie for c in word: if c not in trie_node: _lowerCAmelCase : Tuple = {} _lowerCAmelCase : Union[str, Any] = trie_node[c] _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Union[str, Any] = len(lowerCAmelCase__ ) # Dynamic programming method @functools.cache def is_breakable(lowerCAmelCase__ ) -> bool: if index == len_string: return True _lowerCAmelCase : Dict = trie for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): _lowerCAmelCase : Optional[Any] = trie_node.get(string[i] , lowerCAmelCase__ ) if trie_node is None: return False if trie_node.get(lowerCAmelCase__ , lowerCAmelCase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
587
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __UpperCAmelCase = random.Random() def _snake_case ( A , A=1.0 , A=None , A=None ) -> int: if rng is None: lowerCAmelCase__ = global_rng lowerCAmelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class a__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=7 , lowerCamelCase_=4_00 , lowerCamelCase_=20_00 , lowerCamelCase_=24 , lowerCamelCase_=24 , lowerCamelCase_=0.0 , lowerCamelCase_=1_60_00 , lowerCamelCase_=True , lowerCamelCase_=True , ) -> Any: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = min_seq_length lowerCAmelCase__ = max_seq_length lowerCAmelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ = feature_size lowerCAmelCase__ = num_mel_bins lowerCAmelCase__ = padding_value lowerCAmelCase__ = sampling_rate lowerCAmelCase__ = return_attention_mask lowerCAmelCase__ = do_normalize def __SCREAMING_SNAKE_CASE ( self ) -> int: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=False , lowerCamelCase_=False ) -> List[str]: def _flatten(lowerCamelCase_ ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: lowerCAmelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : str = SpeechaTextFeatureExtractor if is_speech_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = SpeechaTextFeatureExtractionTester(self ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Tuple: self.assertTrue(np.all(np.mean(lowerCamelCase_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase_ , axis=0 ) - 1 ) < 1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCAmelCase__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features lowerCAmelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test batched lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_features lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase__ = np.asarray(lowerCamelCase_ ) lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_features lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase__ = [None, 16, None] for max_length, padding in zip(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = feature_extractor( lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ ) lowerCAmelCase__ = inputs.input_features lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = [np.sum(lowerCamelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase__ = [None, 16, None] for max_length, padding in zip(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = feature_extractor( lowerCamelCase_ , max_length=lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''np''' , return_attention_mask=lowerCamelCase_ ) lowerCAmelCase__ = inputs.input_features lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = [np.sum(lowerCamelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = feature_extractor( lowerCamelCase_ , padding='''max_length''' , max_length=4 , truncation=lowerCamelCase_ , return_tensors='''np''' , return_attention_mask=lowerCamelCase_ , ) lowerCAmelCase__ = inputs.input_features lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = feature_extractor( lowerCamelCase_ , padding='''longest''' , max_length=4 , truncation=lowerCamelCase_ , return_tensors='''np''' , return_attention_mask=lowerCamelCase_ , ) lowerCAmelCase__ = inputs.input_features lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = feature_extractor( lowerCamelCase_ , padding='''longest''' , max_length=16 , truncation=lowerCamelCase_ , return_tensors='''np''' , return_attention_mask=lowerCamelCase_ , ) lowerCAmelCase__ = inputs.input_features lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: import torch lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = np.random.rand(1_00 , 32 ).astype(np.floataa ) lowerCAmelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCAmelCase__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Dict: from datasets import load_dataset lowerCAmelCase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowerCAmelCase__ = ds.sort('''id''' ).select(range(lowerCamelCase_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # fmt: off lowerCAmelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on lowerCAmelCase__ = self._load_datasamples(1 ) lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowerCamelCase_ , atol=1e-4 ) )
90
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __UpperCamelCase : Any = 'tiny-wmt19-en-ru' # Build # borrowed from a test __UpperCamelCase : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase : Any = dict(zip(vocab, range(len(vocab)))) __UpperCamelCase : Optional[int] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : Optional[Any] = Path(tmpdirname) __UpperCamelCase : Tuple = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] __UpperCamelCase : Optional[int] = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] __UpperCamelCase : Union[str, Any] = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) __UpperCamelCase : Any = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __UpperCamelCase : Tuple = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __UpperCamelCase : Optional[int] = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test __UpperCamelCase : str = tokenizer(['Making tiny model'], return_tensors='pt') __UpperCamelCase : Any = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
248
0
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]: return 1.0 / (1.0 + np.exp(-_outputs )) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->int: _lowerCamelCase : List[str] = np.max(_outputs , axis=-1 , keepdims=SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[int] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE_ ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """sigmoid""" __snake_case = """softmax""" __snake_case = """none""" @add_end_docstrings( a_ , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = False __snake_case = ClassificationFunction.NONE def __init__( self , **_lowercase ) -> Optional[Any]: super().__init__(**_lowercase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def a__ ( self , _lowercase=None , _lowercase=None , _lowercase="" , **_lowercase ) -> List[Any]: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" _lowerCamelCase : List[str] = tokenizer_kwargs _lowerCamelCase : Union[str, Any] = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: _lowerCamelCase : Any = self.model.config.return_all_scores if isinstance(_lowercase , _lowercase ) or top_k is None: _lowerCamelCase : Union[str, Any] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , _lowercase , ) if return_all_scores: _lowerCamelCase : Optional[Any] = None else: _lowerCamelCase : List[Any] = 1 if isinstance(_lowercase , _lowercase ): _lowerCamelCase : Optional[Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : int = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *_lowercase , **_lowercase ) -> int: _lowerCamelCase : int = super().__call__(*_lowercase , **_lowercase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[int] = '''top_k''' not in kwargs if isinstance(args[0] , _lowercase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def a__ ( self , _lowercase , **_lowercase ) -> Dict[str, GenericTensor]: _lowerCamelCase : str = self.framework if isinstance(_lowercase , _lowercase ): return self.tokenizer(**_lowercase , return_tensors=_lowercase , **_lowercase ) elif isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1 and isinstance(inputs[0] , _lowercase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_lowercase , **_lowercase ) elif isinstance(_lowercase , _lowercase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) def a__ ( self , _lowercase ) -> Union[str, Any]: return self.model(**_lowercase ) def a__ ( self , _lowercase , _lowercase=None , _lowercase=1 , _lowercase=True ) -> Optional[Any]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Optional[int] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : Dict = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: _lowerCamelCase : Optional[Any] = self.model.config.function_to_apply else: _lowerCamelCase : Tuple = ClassificationFunction.NONE _lowerCamelCase : Optional[int] = model_outputs['''logits'''][0] _lowerCamelCase : str = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : Optional[Any] = sigmoid(_lowercase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : List[Any] = softmax(_lowercase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : str = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(_lowercase ) ] if not _legacy: dict_scores.sort(key=lambda _lowercase : x["score"] , reverse=_lowercase ) if top_k is not None: _lowerCamelCase : List[str] = dict_scores[:top_k] return dict_scores
558
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = ["""image_processor""", """tokenizer"""] __snake_case = """ViltImageProcessor""" __snake_case = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , _lowercase=None , _lowercase=None , **_lowercase ) -> Tuple: _lowerCamelCase : str = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowercase , ) _lowerCamelCase : Tuple = kwargs.pop('''feature_extractor''' ) _lowerCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowercase , _lowercase ) _lowerCamelCase : Union[str, Any] = self.image_processor def __call__( self , _lowercase , _lowercase = None , _lowercase = True , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = 0 , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = True , _lowercase = None , **_lowercase , ) -> BatchEncoding: _lowerCamelCase : Dict = self.tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) # add pixel_values + pixel_mask _lowerCamelCase : List[Any] = self.image_processor(_lowercase , return_tensors=_lowercase ) encoding.update(_lowercase ) return encoding def a__ ( self , *_lowercase , **_lowercase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a__ ( self , *_lowercase , **_lowercase ) -> Optional[int]: return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def a__ ( self ) -> Optional[Any]: _lowerCamelCase : Any = self.tokenizer.model_input_names _lowerCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__ ( self ) -> Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowercase , ) return self.image_processor_class @property def a__ ( self ) -> Union[str, Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowercase , ) return self.image_processor
558
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class snake_case ( _UpperCAmelCase ): lowerCamelCase__ = 'switch_transformers' lowerCamelCase__ = ['past_key_values'] lowerCamelCase__ = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self :str , _lowerCamelCase :Optional[int]=3_2_1_2_8 , _lowerCamelCase :List[Any]=7_6_8 , _lowerCamelCase :str=6_4 , _lowerCamelCase :Dict=2_0_4_8 , _lowerCamelCase :Any=6_4 , _lowerCamelCase :str=1_2 , _lowerCamelCase :Dict=3 , _lowerCamelCase :Tuple=1_2 , _lowerCamelCase :str=3 , _lowerCamelCase :List[Any]=1_2 , _lowerCamelCase :Union[str, Any]=8 , _lowerCamelCase :str=False , _lowerCamelCase :Optional[int]=0.0_1 , _lowerCamelCase :Any="float32" , _lowerCamelCase :str=False , _lowerCamelCase :Tuple=3_2 , _lowerCamelCase :int=1_2_8 , _lowerCamelCase :Union[str, Any]=0.1 , _lowerCamelCase :Dict=1e-6 , _lowerCamelCase :List[str]=0.0_0_1 , _lowerCamelCase :List[Any]=0.0_0_1 , _lowerCamelCase :List[str]=1.0 , _lowerCamelCase :Any="relu" , _lowerCamelCase :int=True , _lowerCamelCase :Tuple=False , _lowerCamelCase :Tuple=True , _lowerCamelCase :Optional[int]=0 , _lowerCamelCase :List[str]=1 , **_lowerCamelCase :int , ): __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : int = d_model __SCREAMING_SNAKE_CASE : List[Any] = d_kv __SCREAMING_SNAKE_CASE : Union[str, Any] = d_ff __SCREAMING_SNAKE_CASE : Any = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : Tuple = num_layers __SCREAMING_SNAKE_CASE : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : int = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : int = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Optional[int] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : List[Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : Any = num_heads __SCREAMING_SNAKE_CASE : Dict = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : str = router_bias __SCREAMING_SNAKE_CASE : Union[str, Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : str = router_dtype __SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : Union[str, Any] = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Optional[int] = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Dict = dropout_rate __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : List[Any] = initializer_factor __SCREAMING_SNAKE_CASE : Optional[int] = feed_forward_proj __SCREAMING_SNAKE_CASE : Optional[Any] = use_cache __SCREAMING_SNAKE_CASE : List[Any] = add_router_probs __SCREAMING_SNAKE_CASE : Optional[int] = router_z_loss_coef __SCREAMING_SNAKE_CASE : Tuple = router_aux_loss_coef __SCREAMING_SNAKE_CASE : List[Any] = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : List[Any] = act_info[-1] __SCREAMING_SNAKE_CASE : str = act_info[0] == '''gated''' if len(__UpperCamelCase ) > 1 and act_info[0] != "gated" or len(__UpperCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : str = '''gelu_new''' super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase , )
674
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging a : Dict = logging.get_logger(__name__) # TODO: upload to AWS a : Tuple = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class a_ ( _UpperCAmelCase ): a : int = 'retribert' def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any]=3_05_22 , __UpperCamelCase : int=7_68 , __UpperCamelCase : Any=8 , __UpperCamelCase : Dict=12 , __UpperCamelCase : List[Any]=30_72 , __UpperCamelCase : List[Any]="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Union[str, Any]=5_12 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Tuple=0.0_2 , __UpperCamelCase : List[str]=1e-12 , __UpperCamelCase : int=True , __UpperCamelCase : str=1_28 , __UpperCamelCase : Union[str, Any]=0 , **__UpperCamelCase : Any , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = share_encoders _UpperCAmelCase = projection_dim
555
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( lowercase__ ): __a : List[Any] = 42 __a : Any = None def snake_case_ (_a : List[Any] , _a : str=0.999 , _a : List[str]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_a : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_a : Optional[Any] ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) UpperCAmelCase = [] for i in range(_lowerCamelCase ): UpperCAmelCase = i / num_diffusion_timesteps UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class _a ( lowercase__ , lowercase__ ): @register_to_config def __init__( self : int , lowercase : int = 1_000 , lowercase : str = "fixed_small_log" , lowercase : bool = True , lowercase : Optional[float] = 1.0 , lowercase : str = "epsilon" , lowercase : str = "squaredcos_cap_v2" , ): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) UpperCAmelCase = betas_for_alpha_bar(lowercase ) UpperCAmelCase = 1.0 - self.betas UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase = 1.0 # setable values UpperCAmelCase = None UpperCAmelCase = torch.from_numpy(np.arange(0 , lowercase )[::-1].copy() ) UpperCAmelCase = variance_type def A ( self : str , lowercase : torch.FloatTensor , lowercase : Optional[int] = None ): '''simple docstring''' return sample def A ( self : Optional[Any] , lowercase : int , lowercase : Union[str, torch.device] = None ): '''simple docstring''' UpperCAmelCase = num_inference_steps UpperCAmelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase = (np.arange(0 , lowercase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase = torch.from_numpy(lowercase ).to(lowercase ) def A ( self : List[str] , lowercase : str , lowercase : Optional[Any]=None , lowercase : Any=None , lowercase : Optional[Any]=None ): '''simple docstring''' if prev_timestep is None: UpperCAmelCase = t - 1 UpperCAmelCase = self.alphas_cumprod[t] UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase = self.betas[t] else: UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase = torch.log(torch.clamp(lowercase , min=1E-20 ) ) UpperCAmelCase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase = variance.log() UpperCAmelCase = beta.log() UpperCAmelCase = (predicted_variance + 1) / 2 UpperCAmelCase = frac * max_log + (1 - frac) * min_log return variance def A ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : Optional[int] = None , lowercase : Union[str, Any]=None , lowercase : bool = True , ): '''simple docstring''' UpperCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase = torch.split(lowercase , sample.shape[1] , dim=1 ) else: UpperCAmelCase = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase = t - 1 UpperCAmelCase = self.alphas_cumprod[t] UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase = self.betas[t] UpperCAmelCase = self.alphas[t] else: UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase = torch.clamp( lowercase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase = 0 if t > 0: UpperCAmelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowercase , device=model_output.device ) UpperCAmelCase = self._get_variance( lowercase , predicted_variance=lowercase , prev_timestep=lowercase , ) if self.variance_type == "fixed_small_log": UpperCAmelCase = variance elif self.variance_type == "learned_range": UpperCAmelCase = (0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" ''' for the UnCLIPScheduler.''' ) UpperCAmelCase = variance * variance_noise UpperCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) def A ( self : List[Any] , lowercase : torch.FloatTensor , lowercase : torch.FloatTensor , lowercase : torch.IntTensor , ): '''simple docstring''' UpperCAmelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase = timesteps.to(original_samples.device ) UpperCAmelCase = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
704
'''simple docstring''' from typing import Any class _a : def __init__( self : int , lowercase : Any ): '''simple docstring''' UpperCAmelCase = data UpperCAmelCase = None class _a : def __init__( self : int ): '''simple docstring''' UpperCAmelCase = None def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.head while temp is not None: print(temp.data , end=''' ''' ) UpperCAmelCase = temp.next print() def A ( self : List[str] , lowercase : Any ): '''simple docstring''' UpperCAmelCase = Node(lowercase ) UpperCAmelCase = self.head UpperCAmelCase = new_node def A ( self : List[Any] , lowercase : List[Any] , lowercase : str ): '''simple docstring''' if node_data_a == node_data_a: return else: UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase = node_a.next UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase = node_a.next if node_a is None or node_a is None: return UpperCAmelCase , UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": A =LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
358
0
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : int = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class __lowercase ( __snake_case ): lowerCamelCase : Tuple = "efficientformer" def __init__(self , A = [3, 2, 6, 4] , A = [4_8, 9_6, 2_2_4, 4_4_8] , A = [True, True, True, True] , A = 4_4_8 , A = 3_2 , A = 4 , A = 7 , A = 5 , A = 8 , A = 4 , A = 0.0 , A = 1_6 , A = 3 , A = 3 , A = 3 , A = 2 , A = 1 , A = 0.0 , A = 1 , A = True , A = True , A = 1E-5 , A = "gelu" , A = 0.02 , A = 1E-12 , A = 2_2_4 , A = 1E-05 , **A , ): super().__init__(**lowerCAmelCase_ ) lowerCamelCase_ : Any = hidden_act lowerCamelCase_ : List[str] = hidden_dropout_prob lowerCamelCase_ : Tuple = hidden_sizes lowerCamelCase_ : int = num_hidden_layers lowerCamelCase_ : Optional[Any] = num_attention_heads lowerCamelCase_ : Union[str, Any] = initializer_range lowerCamelCase_ : List[str] = layer_norm_eps lowerCamelCase_ : Optional[Any] = patch_size lowerCamelCase_ : Any = num_channels lowerCamelCase_ : Optional[int] = depths lowerCamelCase_ : List[str] = mlp_expansion_ratio lowerCamelCase_ : Optional[Any] = downsamples lowerCamelCase_ : Optional[int] = dim lowerCamelCase_ : Tuple = key_dim lowerCamelCase_ : Optional[Any] = attention_ratio lowerCamelCase_ : Any = resolution lowerCamelCase_ : List[Any] = pool_size lowerCamelCase_ : Optional[int] = downsample_patch_size lowerCamelCase_ : Union[str, Any] = downsample_stride lowerCamelCase_ : Tuple = downsample_pad lowerCamelCase_ : Optional[int] = drop_path_rate lowerCamelCase_ : Any = num_metaad_blocks lowerCamelCase_ : str = distillation lowerCamelCase_ : Any = use_layer_scale lowerCamelCase_ : str = layer_scale_init_value lowerCamelCase_ : Optional[Any] = image_size lowerCamelCase_ : Union[str, Any] = batch_norm_eps
422
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = ["""image_processor""", """tokenizer"""] __lowerCAmelCase = """LayoutLMv2ImageProcessor""" __lowerCAmelCase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase_ , ) __lowercase = kwargs.pop("feature_extractor" ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = True , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor __lowercase = self.image_processor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features["words"] __lowercase = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) # add pixel values __lowercase = features.pop("pixel_values" ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(lowerCAmelCase_ , encoded_inputs["overflow_to_sample_mapping"] ) __lowercase = images return encoded_inputs def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}''' ) return images_with_overflow def snake_case__ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def snake_case__ ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def snake_case__ ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase_ , ) return self.image_processor_class @property def snake_case__ ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase_ , ) return self.image_processor
321
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): SCREAMING_SNAKE_CASE : List[str] = "pt" elif is_tf_available(): SCREAMING_SNAKE_CASE : str = "tf" else: SCREAMING_SNAKE_CASE : List[Any] = "jax" class snake_case ( lowercase_, unittest.TestCase ): """simple docstring""" _a = ByTaTokenizer _a = False def a__ ( self ) -> List[str]: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Union[str, Any]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def a__ ( self, **_lowercase ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **_lowercase ) def a__ ( self, _lowercase, _lowercase=False, _lowercase=20, _lowercase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_lowercase ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i], clean_up_tokenization_spaces=_lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _lowercase : re.match(R'^[ a-zA-Z]+$', t[1] ), _lowercase ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _lowercase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_lowercase ), _lowercase ) ) if max_length is not None and len(_lowercase ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_lowercase ) < min_length and len(_lowercase ) > 0: while len(_lowercase ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_lowercase, clean_up_tokenization_spaces=_lowercase ) if " " not in output_txt and len(_lowercase ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_lowercase ) + ' ' + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_lowercase ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ' ' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_lowercase, add_special_tokens=_lowercase ) return output_txt, output_ids def a__ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) SCREAMING_SNAKE_CASE_ = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'], batch_without_eos_added['input_ids'] ) def a__ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = 'Unicode €.' SCREAMING_SNAKE_CASE_ = tokenizer(_lowercase ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'], _lowercase ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase, 'Unicode €.</s>' ) SCREAMING_SNAKE_CASE_ = tokenizer('e è é ê ë' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'], _lowercase ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase, 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ), 'e è é ê ë</s>' ) def a__ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_lowercase, padding=_lowercase, return_tensors=_lowercase ) self.assertIsInstance(_lowercase, _lowercase ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowercase, _lowercase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def a__ ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] SCREAMING_SNAKE_CASE_ = tokenizer(_lowercase, padding=_lowercase, return_tensors=_lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids', _lowercase ) self.assertIn('attention_mask', _lowercase ) self.assertNotIn('decoder_input_ids', _lowercase ) self.assertNotIn('decoder_attention_mask', _lowercase ) def a__ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ 'Summary of the text.', 'Another summary.', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_lowercase, max_length=32, padding='max_length', truncation=_lowercase, return_tensors=_lowercase ) self.assertEqual(32, targets['input_ids'].shape[1] ) def a__ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['A long paragraph for summarization. </s>'] SCREAMING_SNAKE_CASE_ = ['Summary of the text. </s>'] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_lowercase, text_target=_lowercase ) self.assertEqual(_lowercase, batch['input_ids'][0] ) self.assertEqual(_lowercase, batch['labels'][0] ) def a__ ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ' He is very happy, UNwant\u00E9d,running' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_lowercase, add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_lowercase, add_special_tokens=_lowercase ) self.assertListEqual(_lowercase, _lowercase ) shutil.rmtree(_lowercase ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_lowercase, add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_lowercase, add_special_tokens=_lowercase ) self.assertListEqual(_lowercase, _lowercase ) self.assertIn('new_additional_special_token', after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_lowercase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_lowercase ) def a__ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowercase ) with open(os.path.join(_lowercase, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_lowercase ) with open(os.path.join(_lowercase, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_lowercase ) SCREAMING_SNAKE_CASE_ = [f"""<extra_id_{i}>""" for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ 'an_additional_special_token' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowercase, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(_lowercase, _lowercase ) with open(os.path.join(_lowercase, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(_lowercase, _lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _lowercase, ) self.assertIn( 'an_additional_special_token', tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token', lstrip=_lowercase )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _lowercase, additional_special_tokens=_lowercase, ) self.assertIn('a_new_additional_special_token', tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ), ) def a__ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_lowercase ) self.assertTrue(tokenizer.decode([255] ) == '' ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Tuple: pass def a__ ( self ) -> Dict: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_lowercase, do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): SCREAMING_SNAKE_CASE_ = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_lowercase ) self.assertIsInstance(_lowercase, _lowercase ) def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): SCREAMING_SNAKE_CASE_ = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _lowercase, skip_special_tokens=_lowercase ) for attr in attributes_list: setattr(_lowercase, attr + '_id', _lowercase ) self.assertEqual(getattr(_lowercase, _lowercase ), _lowercase ) self.assertEqual(getattr(_lowercase, attr + '_id' ), _lowercase ) setattr(_lowercase, attr + '_id', _lowercase ) self.assertEqual(getattr(_lowercase, _lowercase ), _lowercase ) self.assertEqual(getattr(_lowercase, attr + '_id' ), _lowercase ) setattr(_lowercase, 'additional_special_tokens_ids', [] ) self.assertListEqual(getattr(_lowercase, 'additional_special_tokens' ), [] ) self.assertListEqual(getattr(_lowercase, 'additional_special_tokens_ids' ), [] ) setattr(_lowercase, 'additional_special_tokens_ids', [token_id_to_test_setters] ) self.assertListEqual(getattr(_lowercase, 'additional_special_tokens' ), [token_to_test_setters] ) self.assertListEqual(getattr(_lowercase, 'additional_special_tokens_ids' ), [token_id_to_test_setters] )
238
'''simple docstring''' def _UpperCamelCase ( lowerCAmelCase__: float ,lowerCAmelCase__: list[float] ) -> float: if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) SCREAMING_SNAKE_CASE_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCAmelCase__ ) ) return round(lowerCAmelCase__ ,ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
238
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCAmelCase__ ( UpperCamelCase_ : List[str] )-> List[Any]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def lowerCAmelCase__ ( UpperCamelCase_ : str )-> Optional[int]: # word like '180' or '身高' or '神' for char in word: A__ = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowerCAmelCase__ ( UpperCamelCase_ : List[str] )-> Union[str, Any]: A__ = set() for token in tokens: A__ = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) A__ = list(UpperCamelCase_ ) return word_list def lowerCAmelCase__ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : set() )-> Dict: if not chinese_word_set: return bert_tokens A__ = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) A__ = bert_tokens A__ , A__ = 0, len(UpperCamelCase_ ) while start < end: A__ = True if is_chinese(bert_word[start] ): A__ = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): A__ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): A__ = '''##''' + bert_word[j] A__ = start + i A__ = False break if single_word: start += 1 return bert_word def lowerCAmelCase__ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : LTP , UpperCamelCase_ : BertTokenizer )-> Optional[int]: A__ = [] for i in range(0 , len(UpperCamelCase_ ) , 1_0_0 ): A__ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['''cws'''] ).cws A__ = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) A__ = [] for i in range(0 , len(UpperCamelCase_ ) , 1_0_0 ): A__ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=5_1_2 ) bert_res.extend(res['''input_ids'''] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) A__ = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): A__ = [] for id in input_ids: A__ = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) A__ = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) A__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": A__ = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowerCAmelCase__ ( UpperCamelCase_ : str )-> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: A__ = f.readlines() A__ = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A__ = LTP(args.ltp ) # faster in GPU device A__ = BertTokenizer.from_pretrained(args.bert ) A__ = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: A__ = [json.dumps(UpperCamelCase_ ) + '''\n''' for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) _lowercase = parser.parse_args() main(args)
632
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _lowercase = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _lowercase = concatenate_datasets _lowercase = DownloadConfig _lowercase = DownloadManager _lowercase = DownloadMode _lowercase = DownloadConfig _lowercase = DownloadMode _lowercase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
632
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def __UpperCamelCase ( a : List[Any] , a : Optional[Any] , a : Optional[int] ) ->Union[str, Any]: snake_case = UniSpeechSatForSequenceClassification.from_pretrained(a , config=a ) snake_case = downstream_dict['''projector.weight'''] snake_case = downstream_dict['''projector.bias'''] snake_case = downstream_dict['''model.post_net.linear.weight'''] snake_case = downstream_dict['''model.post_net.linear.bias'''] return model def __UpperCamelCase ( a : Tuple , a : int , a : Optional[int] ) ->str: snake_case = UniSpeechSatForAudioFrameClassification.from_pretrained(a , config=a ) snake_case = downstream_dict['''model.linear.weight'''] snake_case = downstream_dict['''model.linear.bias'''] return model def __UpperCamelCase ( a : Optional[int] , a : Optional[Any] , a : Optional[int] ) ->Optional[Any]: snake_case = UniSpeechSatForXVector.from_pretrained(a , config=a ) snake_case = downstream_dict['''connector.weight'''] snake_case = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] snake_case = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] snake_case = downstream_dict['''objective.W'''] return model @torch.no_grad() def __UpperCamelCase ( a : Any , a : str , a : Any , a : Tuple ) ->List[Any]: snake_case = torch.load(a , map_location='''cpu''' ) snake_case = checkpoint['''Downstream'''] snake_case = UniSpeechSatConfig.from_pretrained(a ) snake_case = WavaVecaFeatureExtractor.from_pretrained( a , return_attention_mask=a , do_normalize=a ) snake_case = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): snake_case = convert_classification(a , a , a ) elif arch.endswith('''ForAudioFrameClassification''' ): snake_case = convert_diarization(a , a , a ) elif arch.endswith('''ForXVector''' ): snake_case = convert_xvector(a , a , a ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: snake_case = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(a ) hf_model.save_pretrained(a ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _lowercase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
44
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowercase = logging.get_logger(__name__) class _lowercase ( __a ): def __init__( self , A__ , A__ , A__ , **A__ ) -> Union[str, Any]: snake_case = feature_size snake_case = sampling_rate snake_case = padding_value snake_case = kwargs.pop('''padding_side''' , '''right''' ) snake_case = kwargs.pop('''return_attention_mask''' , A__ ) super().__init__(**A__ ) def UpperCamelCase ( self , A__ , A__ = True , A__ = None , A__ = False , A__ = None , A__ = None , A__ = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(A__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): snake_case = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) snake_case = processed_features[self.model_input_names[0]] snake_case = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A__ ) == 0: if return_attention_mask: snake_case = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch snake_case = required_input[0] if isinstance(A__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. snake_case = 0 while len(required_input[index] ) == 0: index += 1 if index < len(A__ ): snake_case = required_input[index][0] if return_tensors is None: if is_tf_tensor(A__ ): snake_case = '''tf''' elif is_torch_tensor(A__ ): snake_case = '''pt''' elif isinstance(A__ , (int, float, list, tuple, np.ndarray) ): snake_case = '''np''' else: raise ValueError( F"""type of {first_element} unknown: {type(A__ )}. """ '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): snake_case = to_numpy(A__ ) else: snake_case = [to_numpy(A__ ) for v in value] # Convert padding_strategy in PaddingStrategy snake_case = self._get_padding_strategies(padding=A__ , max_length=A__ ) snake_case = processed_features[self.model_input_names[0]] snake_case = len(A__ ) if not all(len(A__ ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) snake_case = [] for i in range(A__ ): snake_case = {k: v[i] for k, v in processed_features.items()} # truncation snake_case = self._truncate( A__ , max_length=A__ , pad_to_multiple_of=A__ , truncation=A__ , ) truncated_inputs.append(A__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length snake_case = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) snake_case = PaddingStrategy.MAX_LENGTH snake_case = {} for i in range(A__ ): # padding snake_case = self._pad( truncated_inputs[i] , max_length=A__ , padding_strategy=A__ , pad_to_multiple_of=A__ , return_attention_mask=A__ , ) for key, value in outputs.items(): if key not in batch_outputs: snake_case = [] if value.dtype is np.dtype(np.floataa ): snake_case = value.astype(np.floataa ) batch_outputs[key].append(A__ ) return BatchFeature(A__ , tensor_type=A__ ) def UpperCamelCase ( self , A__ , A__ = None , A__ = PaddingStrategy.DO_NOT_PAD , A__ = None , A__ = None , ) -> dict: snake_case = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: snake_case = len(A__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: snake_case = np.ones(len(A__ ) , dtype=np.intaa ) if needs_to_be_padded: snake_case = max_length - len(A__ ) if self.padding_side == "right": if return_attention_mask: snake_case = np.pad( processed_features['''attention_mask'''] , (0, difference) ) snake_case = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) snake_case = np.pad( A__ , A__ , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: snake_case = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) snake_case = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) snake_case = np.pad( A__ , A__ , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def UpperCamelCase ( self , A__ , A__ = None , A__ = None , A__ = None , ) -> Union[str, Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) snake_case = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case = len(A__ ) > max_length if needs_to_be_truncated: snake_case = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: snake_case = processed_features['''attention_mask'''][:max_length] return processed_features def UpperCamelCase ( self , A__=False , A__=None ) -> Union[str, Any]: # Get padding strategy if padding is not False: if padding is True: snake_case = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A__ , A__ ): snake_case = PaddingStrategy(A__ ) elif isinstance(A__ , A__ ): snake_case = padding else: snake_case = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
44
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _UpperCamelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _UpperCamelCase = '''main''' # Default branch name _UpperCamelCase = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) _UpperCamelCase = '''aaaaaaa''' # This commit does not exist, so we should 404. _UpperCamelCase = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes _UpperCamelCase = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def UpperCamelCase_( ) -> Dict: print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCamelCase_( ) -> Optional[int]: print('Bonjour!' ) yield print('Au revoir!' ) class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class lowercase ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def UpperCamelCase__ (self ) -> Dict: """simple docstring""" self.assertEqual(find_labels(__a ) , ['labels'] ) self.assertEqual(find_labels(__a ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__a ) , ['start_positions', 'end_positions'] ) class lowercase ( _UpperCamelCase ): '''simple docstring''' pass self.assertEqual(find_labels(__a ) , ['labels'] ) @require_tf def UpperCamelCase__ (self ) -> str: """simple docstring""" self.assertEqual(find_labels(__a ) , ['labels'] ) self.assertEqual(find_labels(__a ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__a ) , ['start_positions', 'end_positions'] ) class lowercase ( _UpperCamelCase ): '''simple docstring''' pass self.assertEqual(find_labels(__a ) , ['labels'] ) @require_flax def UpperCamelCase__ (self ) -> Dict: """simple docstring""" self.assertEqual(find_labels(__a ) , [] ) self.assertEqual(find_labels(__a ) , [] ) self.assertEqual(find_labels(__a ) , [] ) class lowercase ( _UpperCamelCase ): '''simple docstring''' pass self.assertEqual(find_labels(__a ) , [] )
146
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer __SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def UpperCamelCase__ (self ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = XLMRobertaTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = '<pad>' UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__a ) , 1002 ) def UpperCamelCase__ (self ) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = XLMRobertaTokenizer(__a , keep_accents=__a ) UpperCAmelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase__ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(__a , legacy_format=__a ) UpperCAmelCase__ = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(__a , legacy_format=__a ) UpperCAmelCase__ = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @cached_property def UpperCamelCase__ (self ) -> int: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__a , f.name ) UpperCAmelCase__ = XLMRobertaTokenizer(f.name , keep_accents=__a ) UpperCAmelCase__ = pickle.dumps(__a ) pickle.loads(__a ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ = tokenizer.tokenize(__a ) UpperCAmelCase__ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase__ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(__a ) UpperCAmelCase__ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = 'Hello World!' UpperCAmelCase__ = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) UpperCAmelCase__ = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = {'input_ids': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
146
1
'''simple docstring''' def lowerCAmelCase_ ( __A : int , __A : int , __A : list[list[int]] ): '''simple docstring''' def update_area_of_max_square(__A : int , __A : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case: List[Any] = update_area_of_max_square(__A , col + 1 ) snake_case: Dict = update_area_of_max_square(row + 1 , col + 1 ) snake_case: List[Any] = update_area_of_max_square(row + 1 , __A ) if mat[row][col]: snake_case: Optional[int] = 1 + min([right, diagonal, down] ) snake_case: int = max(largest_square_area[0] , __A ) return sub_problem_sol else: return 0 snake_case: Tuple = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowerCAmelCase_ ( __A : int , __A : int , __A : list[list[int]] ): '''simple docstring''' def update_area_of_max_square_using_dp_array( __A : int , __A : int , __A : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case: Optional[Any] = update_area_of_max_square_using_dp_array(__A , col + 1 , __A ) snake_case: Dict = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __A ) snake_case: List[Any] = update_area_of_max_square_using_dp_array(row + 1 , __A , __A ) if mat[row][col]: snake_case: str = 1 + min([right, diagonal, down] ) snake_case: Any = max(largest_square_area[0] , __A ) snake_case: int = sub_problem_sol return sub_problem_sol else: return 0 snake_case: Tuple = [0] snake_case: Union[str, Any] = [[-1] * cols for _ in range(__A )] update_area_of_max_square_using_dp_array(0 , 0 , __A ) return largest_square_area[0] def lowerCAmelCase_ ( __A : int , __A : int , __A : list[list[int]] ): '''simple docstring''' snake_case: str = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case: Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case: Optional[int] = dp_array[row][col + 1] snake_case: Optional[int] = dp_array[row + 1][col + 1] snake_case: int = dp_array[row + 1][col] if mat[row][col] == 1: snake_case: Optional[Any] = 1 + min(__A , __A , __A ) snake_case: List[Any] = max(dp_array[row][col] , __A ) else: snake_case: Optional[Any] = 0 return largest_square_area def lowerCAmelCase_ ( __A : int , __A : int , __A : list[list[int]] ): '''simple docstring''' snake_case: str = [0] * (cols + 1) snake_case: Union[str, Any] = [0] * (cols + 1) snake_case: Union[str, Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case: Any = current_row[col + 1] snake_case: str = next_row[col + 1] snake_case: List[str] = next_row[col] if mat[row][col] == 1: snake_case: Dict = 1 + min(__A , __A , __A ) snake_case: Dict = max(current_row[col] , __A ) else: snake_case: str = 0 snake_case: List[str] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
692
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase_ = TypeVar("""T""") class __UpperCamelCase ( Generic[T] ): """simple docstring""" def __init__( self : List[Any] , _A : list[T] , _A : Callable[[T, T], T] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any | T = None __SCREAMING_SNAKE_CASE : int = len(_A ) __SCREAMING_SNAKE_CASE : list[T] = [any_type for _ in range(self.N )] + arr __SCREAMING_SNAKE_CASE : Optional[int] = fnc self.build() def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" for p in range(self.N - 1 , 0 , -1 ): __SCREAMING_SNAKE_CASE : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase__ ( self : str , _A : int , _A : T ): """simple docstring""" p += self.N __SCREAMING_SNAKE_CASE : Tuple = v while p > 1: __SCREAMING_SNAKE_CASE : Union[str, Any] = p // 2 __SCREAMING_SNAKE_CASE : Any = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase__ ( self : int , _A : int , _A : int ): # noqa: E741 """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = l + self.N, r + self.N __SCREAMING_SNAKE_CASE : T | None = None while l <= r: if l % 2 == 1: __SCREAMING_SNAKE_CASE : Optional[int] = self.st[l] if res is None else self.fn(_A , self.st[l] ) if r % 2 == 0: __SCREAMING_SNAKE_CASE : int = self.st[r] if res is None else self.fn(_A , self.st[r] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase_ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowercase_ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowercase_ = SegmentTree(test_array, min) lowercase_ = SegmentTree(test_array, max) lowercase_ = SegmentTree(test_array, lambda a, b: a + b) def a__ ( ): """simple docstring""" for i in range(len(snake_case ) ): for j in range(snake_case , len(snake_case ) ): __SCREAMING_SNAKE_CASE : Any = reduce(snake_case , test_array[i : j + 1] ) __SCREAMING_SNAKE_CASE : Tuple = reduce(snake_case , test_array[i : j + 1] ) __SCREAMING_SNAKE_CASE : str = reduce(lambda snake_case , snake_case : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(snake_case , snake_case ) assert max_range == max_segment_tree.query(snake_case , snake_case ) assert sum_range == sum_segment_tree.query(snake_case , snake_case ) test_all_segments() for index, value in test_updates.items(): lowercase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
74
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """openai-gpt""" lowerCamelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase=40478 , lowercase=512 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1E-5 , lowercase=0.02 , lowercase="cls_index" , lowercase=True , lowercase=None , lowercase=True , lowercase=0.1 , **lowercase , ): _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : List[str] = n_positions _lowerCamelCase : Tuple = n_embd _lowerCamelCase : Optional[int] = n_layer _lowerCamelCase : List[Any] = n_head _lowerCamelCase : Dict = afn _lowerCamelCase : Union[str, Any] = resid_pdrop _lowerCamelCase : Dict = embd_pdrop _lowerCamelCase : List[Any] = attn_pdrop _lowerCamelCase : Any = layer_norm_epsilon _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : List[Any] = summary_type _lowerCamelCase : List[str] = summary_use_proj _lowerCamelCase : Tuple = summary_activation _lowerCamelCase : int = summary_first_dropout _lowerCamelCase : str = summary_proj_to_labels super().__init__(**lowercase )
630
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( a__ ): __magic_name__ : Dict = ["image_processor", "tokenizer"] __magic_name__ : Any = "ChineseCLIPImageProcessor" __magic_name__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Optional[int] , lowerCAmelCase : Dict=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Dict )-> Any: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCamelCase_ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase = self.image_processor def __call__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : int )-> Any: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if images is not None: UpperCAmelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def a__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any] )-> str: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def a__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any] )-> Any: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def a__( self : Dict )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__( self : int )-> List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCamelCase_ , ) return self.image_processor_class
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase ) -> List[Any]: """simple docstring""" __magic_name__ : List[Any] = parent __magic_name__ : List[Any] = config_class __magic_name__ : Any = has_text_modality __magic_name__ : str = kwargs __magic_name__ : Optional[int] = common_properties def lowercase ( self ) -> Optional[int]: """simple docstring""" __magic_name__ : int = self.config_class(**self.inputs_dict ) __magic_name__ : Union[str, Any] = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(lowerCamelCase , lowerCamelCase ) , msg=F'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(lowerCamelCase ): try: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.parent.assertEqual( getattr(lowerCamelCase , lowerCamelCase ) , lowerCamelCase , msg=F'''`{name} value {idx} expected, but was {getattr(lowerCamelCase , lowerCamelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(lowerCamelCase ): try: __magic_name__ : List[Any] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(lowerCamelCase , lowerCamelCase ) , lowerCamelCase , msg=F'''`{name} value {idx} expected, but was {getattr(lowerCamelCase , lowerCamelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowercase ( self ) -> str: """simple docstring""" __magic_name__ : Optional[Any] = self.config_class(**self.inputs_dict ) __magic_name__ : Dict = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , lowerCamelCase ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" __magic_name__ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ : Optional[Any] = os.path.join(lowerCamelCase , '''config.json''' ) config_first.to_json_file(lowerCamelCase ) __magic_name__ : str = self.config_class.from_json_file(lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(lowerCamelCase ) __magic_name__ : Optional[int] = self.config_class.from_pretrained(lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase ( self ) -> Any: """simple docstring""" __magic_name__ : str = self.config_class(**self.inputs_dict ) __magic_name__ : int = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ : Union[str, Any] = os.path.join(lowerCamelCase , lowerCamelCase ) config_first.save_pretrained(lowerCamelCase ) __magic_name__ : Tuple = self.config_class.from_pretrained(lowerCamelCase , subfolder=lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase ( self ) -> List[str]: """simple docstring""" __magic_name__ : str = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __magic_name__ : Dict = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowercase ( self ) -> List[Any]: """simple docstring""" if self.config_class.is_composition: return __magic_name__ : int = self.config_class() self.parent.assertIsNotNone(lowerCamelCase ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" __magic_name__ : Optional[Any] = copy.deepcopy(lowerCamelCase ) __magic_name__ : List[Any] = self.config_class(**lowerCamelCase ) __magic_name__ : Dict = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(lowerCamelCase , lowerCamelCase ) != value: wrong_values.append((key, getattr(lowerCamelCase , lowerCamelCase ), value) ) if len(lowerCamelCase ) > 0: __magic_name__ : List[Any] = '''\n'''.join([F'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(F'''The following keys were not properly set in the config:\n{errors}''' ) def lowercase ( self ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
154
def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->list: """simple docstring""" __magic_name__ : Optional[Any] = word.split() def justify(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) -> str: __magic_name__ : int = max_width - width __magic_name__ : Optional[int] = len(UpperCAmelCase ) if len(UpperCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __magic_name__ : List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __magic_name__ : int = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __magic_name__ : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCAmelCase ): num_spaces_between_words_list[i] += 1 __magic_name__ : List[str] = [] for i in range(UpperCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCAmelCase ) __magic_name__ : List[Any] = [] __magic_name__ : list[str] = [] __magic_name__ : List[str] = 0 for word in words: if width + len(UpperCAmelCase ) + len(UpperCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCAmelCase ) width += len(UpperCAmelCase ) else: # justify the line and add it to result answer.append(justify(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) ) # reset new line and new width __magic_name__ , __magic_name__ : Optional[int] = [word], len(UpperCAmelCase ) __magic_name__ : List[str] = max_width - width - len(UpperCAmelCase ) answer.append(''' '''.join(UpperCAmelCase ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
154
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def A(__a: str ): lowerCAmelCase_ = VideoMAEConfig() set_architecture_configs(__a , __a ) if "finetuned" not in model_name: lowerCAmelCase_ = False if "finetuned" in model_name: lowerCAmelCase_ = "huggingface/label-files" if "kinetics" in model_name: lowerCAmelCase_ = 400 lowerCAmelCase_ = "kinetics400-id2label.json" elif "ssv2" in model_name: lowerCAmelCase_ = 174 lowerCAmelCase_ = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) lowerCAmelCase_ = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCAmelCase_ = {int(__a ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} return config def A(__a: int , __a: Dict ): if "small" in model_name: lowerCAmelCase_ = 384 lowerCAmelCase_ = 1536 lowerCAmelCase_ = 12 lowerCAmelCase_ = 16 lowerCAmelCase_ = 12 lowerCAmelCase_ = 3 lowerCAmelCase_ = 192 lowerCAmelCase_ = 768 elif "large" in model_name: lowerCAmelCase_ = 1024 lowerCAmelCase_ = 4096 lowerCAmelCase_ = 24 lowerCAmelCase_ = 16 lowerCAmelCase_ = 12 lowerCAmelCase_ = 8 lowerCAmelCase_ = 512 lowerCAmelCase_ = 2048 elif "huge" in model_name: lowerCAmelCase_ = 1280 lowerCAmelCase_ = 5120 lowerCAmelCase_ = 32 lowerCAmelCase_ = 16 lowerCAmelCase_ = 12 lowerCAmelCase_ = 8 lowerCAmelCase_ = 640 lowerCAmelCase_ = 2560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def A(__a: List[Any] ): if "encoder." in name: lowerCAmelCase_ = name.replace("encoder." , "" ) if "cls_token" in name: lowerCAmelCase_ = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: lowerCAmelCase_ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase_ = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase_ = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: lowerCAmelCase_ = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: lowerCAmelCase_ = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: lowerCAmelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: lowerCAmelCase_ = name.replace("attn" , "attention.self" ) if "attn" in name: lowerCAmelCase_ = name.replace("attn" , "attention.attention" ) if "norm1" in name: lowerCAmelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCAmelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCAmelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: lowerCAmelCase_ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: lowerCAmelCase_ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: lowerCAmelCase_ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase_ = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase_ = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: lowerCAmelCase_ = name.replace("head" , "classifier" ) return name def A(__a: Optional[Any] , __a: Optional[Any] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(__a ) if key.startswith("encoder." ): lowerCAmelCase_ = key.replace("encoder." , "" ) if "qkv" in key: lowerCAmelCase_ = key.split("." ) if key.startswith("decoder.blocks" ): lowerCAmelCase_ = config.decoder_hidden_size lowerCAmelCase_ = int(key_split[2] ) lowerCAmelCase_ = "decoder.decoder_layers." if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = config.hidden_size lowerCAmelCase_ = int(key_split[1] ) lowerCAmelCase_ = "videomae.encoder.layer." if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val return orig_state_dict def A(): lowerCAmelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowerCAmelCase_ = np.load(__a ) return list(__a ) def A(__a: Optional[Any] , __a: Tuple , __a: Any , __a: Optional[Any] ): lowerCAmelCase_ = get_videomae_config(__a ) if "finetuned" in model_name: lowerCAmelCase_ = VideoMAEForVideoClassification(__a ) else: lowerCAmelCase_ = VideoMAEForPreTraining(__a ) # download original checkpoint, hosted on Google Drive lowerCAmelCase_ = "pytorch_model.bin" gdown.cached_download(__a , __a , quiet=__a ) lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) if "model" in files: lowerCAmelCase_ = files["model"] else: lowerCAmelCase_ = files["module"] lowerCAmelCase_ = convert_state_dict(__a , __a ) model.load_state_dict(__a ) model.eval() # verify model on basic input lowerCAmelCase_ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowerCAmelCase_ = prepare_video() lowerCAmelCase_ = image_processor(__a , return_tensors="pt" ) if "finetuned" not in model_name: lowerCAmelCase_ = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowerCAmelCase_ = torch.load(__a ) lowerCAmelCase_ = model(**__a ) lowerCAmelCase_ = outputs.logits lowerCAmelCase_ = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCAmelCase_ = torch.Size([1, 400] ) lowerCAmelCase_ = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCAmelCase_ = torch.Size([1, 174] ) lowerCAmelCase_ = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCAmelCase_ = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCAmelCase_ = torch.Size([1, 400] ) lowerCAmelCase_ = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCAmelCase_ = torch.Size([1, 400] ) lowerCAmelCase_ = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCAmelCase_ = torch.Size([1, 400] ) lowerCAmelCase_ = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCAmelCase_ = torch.Size([1, 400] ) lowerCAmelCase_ = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCAmelCase_ = torch.Size([1, 174] ) lowerCAmelCase_ = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCAmelCase_ = torch.Size([1, 174] ) lowerCAmelCase_ = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __a , atol=1E-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1E-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCAmelCase_ = outputs.loss assert torch.allclose(__a , __a , atol=1E-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__a ) model.save_pretrained(__a ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(__a , organization="nielsr" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase__ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
226
def A(__a: int ): lowerCAmelCase_ = abs(__a ) lowerCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def A(__a: int ): lowerCAmelCase_ = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A(__a: int ): return sum(int(__a ) for c in str(abs(__a ) ) ) def A(): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a: Callable , __a: int ) -> None: lowerCAmelCase_ = F"{func.__name__}({value})" lowerCAmelCase_ = timeit(F"__main__.{call}" , setup="import __main__" ) print(F"{call:56} = {func(__a )} -- {timing:.4f} seconds" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
226
1
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _snake_case = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _a : Optional[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCamelCase_ ) _a , _a : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCamelCase_ , output_loading_info=lowerCamelCase_ ) else: _a : Tuple = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCamelCase_ ) _a , _a : int = ProphetNetForConditionalGeneration.from_pretrained( lowerCamelCase_ , output_loading_info=lowerCamelCase_ ) _a : Optional[int] = ["""key_proj""", """value_proj""", """query_proj"""] _a : List[Any] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _a : Union[str, Any] = key.split(""".""" ) if attributes[0] == "lm_head": _a : Dict = prophet _a : Dict = prophet_old else: _a : Union[str, Any] = prophet.prophetnet _a : Any = prophet_old.model _a : str = False for attribute in attributes: if attribute in mapping: _a : Optional[Any] = mapping[attribute] if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) > 0: _a : Optional[Any] = attribute elif hasattr(lowerCamelCase_ , lowerCamelCase_ ): _a : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _a : Dict = old_model.weight logger.info(F"""{attribute} is initialized.""" ) _a : str = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _a : Tuple = old_model.bias logger.info(F"""{attribute} is initialized""" ) _a : str = True break elif attribute in special_keys and hasattr(lowerCamelCase_ , """in_proj_weight""" ): _a : List[Any] = old_model.in_proj_weight.shape[0] // 3 _a : Union[str, Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _a : str = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _a : str = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _a : Optional[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _a : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _a : Dict = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _a : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _a : Optional[int] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings." _a : List[str] = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] ) _a : int = True break if attribute.isdigit(): _a : int = model[int(lowerCamelCase_ )] _a : Dict = old_model[int(lowerCamelCase_ )] else: _a : Any = getattr(lowerCamelCase_ , lowerCamelCase_ ) if old_attribute == "": _a : List[Any] = old_model else: if not hasattr(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError(F"""{old_model} does not have {old_attribute}""" ) _a : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ) if not is_key_init: raise ValueError(F"""{key} was not correctly initialized!""" ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
389
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowercase : '''simple docstring''' @staticmethod def _UpperCAmelCase (*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' a : Optional[int] = MODEL_FOR_OBJECT_DETECTION_MAPPING def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = ObjectDetectionPipeline(model=_lowerCamelCase ,image_processor=_lowerCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ,threshold=0.0 ) self.assertGreater(len(_lowerCamelCase ) ,0 ) for detected_object in outputs: self.assertEqual( _lowerCamelCase ,{ '''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase ), '''box''': {'''xmin''': ANY(_lowerCamelCase ), '''ymin''': ANY(_lowerCamelCase ), '''xmax''': ANY(_lowerCamelCase ), '''ymax''': ANY(_lowerCamelCase )}, } ,) import datasets __lowercase = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) __lowercase = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __lowercase = object_detector(_lowerCamelCase ,threshold=0.0 ) self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(_lowerCamelCase ) ,0 ) for detected_object in outputs: self.assertEqual( _lowerCamelCase ,{ '''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase ), '''box''': {'''xmin''': ANY(_lowerCamelCase ), '''ymin''': ANY(_lowerCamelCase ), '''xmax''': ANY(_lowerCamelCase ), '''ymax''': ANY(_lowerCamelCase )}, } ,) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass @require_torch def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __lowercase = AutoModelForObjectDetection.from_pretrained(_lowerCamelCase ) __lowercase = AutoFeatureExtractor.from_pretrained(_lowerCamelCase ) __lowercase = ObjectDetectionPipeline(model=_lowerCamelCase ,feature_extractor=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,threshold=0.0 ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ] ,) @require_torch @slow def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = '''facebook/detr-resnet-50''' __lowercase = AutoModelForObjectDetection.from_pretrained(_lowerCamelCase ) __lowercase = AutoFeatureExtractor.from_pretrained(_lowerCamelCase ) __lowercase = ObjectDetectionPipeline(model=_lowerCamelCase ,feature_extractor=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] ,) @require_torch @slow def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = '''facebook/detr-resnet-50''' __lowercase = pipeline('''object-detection''' ,model=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] ,) @require_torch @slow def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = 0.9_9_8_5 __lowercase = '''facebook/detr-resnet-50''' __lowercase = pipeline('''object-detection''' ,model=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,threshold=_lowerCamelCase ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] ,) @require_torch @require_pytesseract @slow def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = '''Narsil/layoutlmv3-finetuned-funsd''' __lowercase = 0.9_9_9_3 __lowercase = pipeline('''object-detection''' ,model=_lowerCamelCase ,threshold=_lowerCamelCase ) __lowercase = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ] ,)
502
0
'''simple docstring''' def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) SCREAMING_SNAKE_CASE : str = str(bin(a_ ) ) binary_number += "0" * shift_amount return binary_number def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) SCREAMING_SNAKE_CASE : Optional[Any] = str(bin(a_ ) )[2:] if shift_amount >= len(a_ ): return "0b0" SCREAMING_SNAKE_CASE : Dict = binary_number[: len(a_ ) - shift_amount] return "0b" + shifted_binary_number def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number SCREAMING_SNAKE_CASE : Tuple = '0' + str(bin(a_ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number SCREAMING_SNAKE_CASE : Union[str, Any] = len(bin(a_ )[3:] ) # Find 2's complement of number SCREAMING_SNAKE_CASE : Any = bin(abs(a_ ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE : Optional[Any] = ( '1' + '0' * (binary_number_length - len(a_ )) + binary_number ) if shift_amount >= len(a_ ): return "0b" + binary_number[0] * len(a_ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(a_ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
179
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase :int = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[str] = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
179
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) snake_case_ = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def __lowercase (_SCREAMING_SNAKE_CASE :Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = {} state_dict.pop('''pixel_mean''' , _SCREAMING_SNAKE_CASE ) state_dict.pop('''pixel_std''' , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE : int = key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Optional[Any] = int(re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(2 ) ) if layer_nb == 0: SCREAMING_SNAKE_CASE : Any = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: SCREAMING_SNAKE_CASE : Optional[int] = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: SCREAMING_SNAKE_CASE : Dict = key.replace('''layers.2''' , '''proj_out''' ) SCREAMING_SNAKE_CASE : str = value SCREAMING_SNAKE_CASE : Optional[Any] = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __lowercase (_SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Any="ybelkada/segment-anything" ): SCREAMING_SNAKE_CASE : Any = hf_hub_download(_SCREAMING_SNAKE_CASE , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: SCREAMING_SNAKE_CASE : Tuple = SamConfig() elif "sam_vit_l" in model_name: SCREAMING_SNAKE_CASE : List[Any] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) SCREAMING_SNAKE_CASE : Optional[Any] = SamConfig( vision_config=_SCREAMING_SNAKE_CASE , ) elif "sam_vit_h" in model_name: SCREAMING_SNAKE_CASE : List[Any] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) SCREAMING_SNAKE_CASE : Optional[int] = SamConfig( vision_config=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE : str = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = replace_keys(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = SamImageProcessor() SCREAMING_SNAKE_CASE : Union[str, Any] = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = SamModel(_SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = hf_model.to('''cuda''' ) SCREAMING_SNAKE_CASE : str = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = [[[4_00, 6_50]]] SCREAMING_SNAKE_CASE : Tuple = [[1]] SCREAMING_SNAKE_CASE : Dict = processor(images=np.array(_SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = hf_model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 SCREAMING_SNAKE_CASE : Union[str, Any] = processor( images=np.array(_SCREAMING_SNAKE_CASE ) , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = hf_model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 SCREAMING_SNAKE_CASE : Dict = ((75, 2_75, 17_25, 8_50),) SCREAMING_SNAKE_CASE : Union[str, Any] = processor(images=np.array(_SCREAMING_SNAKE_CASE ) , input_boxes=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = hf_model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. SCREAMING_SNAKE_CASE : Tuple = [[[4_00, 6_50], [8_00, 6_50]]] SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 1]] SCREAMING_SNAKE_CASE : List[str] = processor( images=np.array(_SCREAMING_SNAKE_CASE ) , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = hf_model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() snake_case_ = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) snake_case_ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
507
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self : Optional[int], __lowercase : str, __lowercase : str=13, __lowercase : List[Any]=7, __lowercase : Any=True, __lowercase : Optional[int]=True, __lowercase : int=True, __lowercase : Any=True, __lowercase : str=99, __lowercase : Optional[Any]=24, __lowercase : int=2, __lowercase : Optional[Any]=6, __lowercase : Optional[int]=37, __lowercase : int="gelu", __lowercase : Dict=0.1, __lowercase : str=0.1, __lowercase : str=512, __lowercase : int=16, __lowercase : Union[str, Any]=2, __lowercase : int=0.02, __lowercase : str=3, __lowercase : Optional[Any]=None, __lowercase : Optional[Any]=1000, ): lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = scope lowercase__ = range_bbox def A__ ( self : List[str] ): lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase__ = bbox[i, j, 3] lowercase__ = bbox[i, j, 1] lowercase__ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase__ = bbox[i, j, 2] lowercase__ = bbox[i, j, 0] lowercase__ = t lowercase__ = None if self.use_input_mask: lowercase__ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A__ ( self : Dict ): return LiltConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def A__ ( self : Tuple, __lowercase : Optional[int], __lowercase : List[Any], __lowercase : int, __lowercase : int, __lowercase : Union[str, Any], __lowercase : Any, __lowercase : str, ): lowercase__ = LiltModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(__lowercase, bbox=__lowercase, attention_mask=__lowercase, token_type_ids=__lowercase ) lowercase__ = model(__lowercase, bbox=__lowercase, token_type_ids=__lowercase ) lowercase__ = model(__lowercase, bbox=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def A__ ( self : Optional[int], __lowercase : Dict, __lowercase : Optional[int], __lowercase : List[str], __lowercase : Tuple, __lowercase : List[Any], __lowercase : List[str], __lowercase : str, ): lowercase__ = self.num_labels lowercase__ = LiltForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model( __lowercase, bbox=__lowercase, attention_mask=__lowercase, token_type_ids=__lowercase, labels=__lowercase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : Dict, __lowercase : List[Any], __lowercase : Union[str, Any], __lowercase : int, __lowercase : Tuple, __lowercase : Optional[int], __lowercase : Any, __lowercase : Dict, ): lowercase__ = LiltForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model( __lowercase, bbox=__lowercase, attention_mask=__lowercase, token_type_ids=__lowercase, start_positions=__lowercase, end_positions=__lowercase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def A__ ( self : Any ): lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _snake_case ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : str =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ : Optional[int] =( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : Any =False UpperCamelCase__ : Dict =False def A__ ( self : int, __lowercase : Optional[Any], __lowercase : List[str], __lowercase : List[Any], __lowercase : int, __lowercase : str ): return True def A__ ( self : List[str] ): lowercase__ = LiltModelTester(self ) lowercase__ = ConfigTester(self, config_class=__lowercase, hidden_size=37 ) def A__ ( self : Optional[int] ): self.config_tester.run_common_tests() def A__ ( self : Any ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def A__ ( self : str ): lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*__lowercase ) def A__ ( self : List[Any] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) def A__ ( self : Any ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase ) @slow def A__ ( self : Optional[int] ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = LiltModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch @slow class _snake_case ( unittest.TestCase): def A__ ( self : Optional[Any] ): lowercase__ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(__lowercase ) lowercase__ = torch.tensor([[1, 2]], device=__lowercase ) lowercase__ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]], device=__lowercase ) # forward pass with torch.no_grad(): lowercase__ = model(input_ids=__lowercase, bbox=__lowercase ) lowercase__ = torch.Size([1, 2, 768] ) lowercase__ = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]], device=__lowercase, ) self.assertTrue(outputs.last_hidden_state.shape, __lowercase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3], __lowercase, atol=1e-3 ) )
37
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase_ = """<<<<<<< This should probably be modified because it mentions: """ lowercase_ = """======= >>>>>>> """ lowercase_ = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] lowercase_ = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class _snake_case ( lowercase__): @staticmethod def A__ ( __lowercase : ArgumentParser ): lowercase__ = parser.add_parser( "convert", help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.", ) train_parser.add_argument( "--tfds_path", type=__lowercase, required=__lowercase, help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.", ) train_parser.add_argument( "--datasets_directory", type=__lowercase, required=__lowercase, help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__lowercase ) def __init__( self : Tuple, __lowercase : str, __lowercase : str, *__lowercase : Tuple ): lowercase__ = get_logger("datasets-cli/converting" ) lowercase__ = tfds_path lowercase__ = datasets_directory def A__ ( self : Any ): if os.path.isdir(self._tfds_path ): lowercase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__ = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) lowercase__ = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) lowercase__ = [] lowercase__ = [] lowercase__ = {} if os.path.isdir(self._tfds_path ): lowercase__ = os.listdir(__lowercase ) else: lowercase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) lowercase__ = os.path.join(__lowercase, __lowercase ) lowercase__ = os.path.join(__lowercase, __lowercase ) if not os.path.isfile(__lowercase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__lowercase, encoding="utf-8" ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = False lowercase__ = False lowercase__ = [] for line in lines: lowercase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__ = "import datasets\n" elif "import tensorflow" in out_line: # order is important here lowercase__ = "" continue elif "from absl import logging" in out_line: lowercase__ = "from datasets import logging\n" elif "getLogger" in out_line: lowercase__ = out_line.replace("getLogger", "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__ = True lowercase__ = list(filter(lambda __lowercase : e in out_line, __lowercase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowercase ) + "\n" ) out_lines.append(__lowercase ) out_lines.append(__lowercase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__ = re.sub(__lowercase, __lowercase, __lowercase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__ = re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)", __lowercase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) lowercase__ = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__ = True out_lines.append(__lowercase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__ = f_name.replace(".py", "" ) lowercase__ = os.path.join(__lowercase, __lowercase ) lowercase__ = os.path.join(__lowercase, __lowercase ) os.makedirs(__lowercase, exist_ok=__lowercase ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowercase ) if needs_manual_update: with_manual_update.append(__lowercase ) with open(__lowercase, "w", encoding="utf-8" ) as f: f.writelines(__lowercase ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: lowercase__ = os.path.basename(__lowercase ) lowercase__ = imports_to_builder_map[f_name.replace(".py", "" )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(__lowercase, __lowercase ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
37
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ : int =False class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ): """simple docstring""" return 1_2 @property def UpperCamelCase__ ( self ): """simple docstring""" return 1_2 @property def UpperCamelCase__ ( self ): """simple docstring""" return 3_2 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowerCAmelCase__ ) @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = 1_2 SCREAMING_SNAKE_CASE_ : Any = 1_2 SCREAMING_SNAKE_CASE_ : Optional[int] = { 'attention_bias': True, 'cross_attention_dim': 3_2, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 3_2, 'sample_size': width, 'activation_fn': 'geglu-approximate', } SCREAMING_SNAKE_CASE_ : Optional[Any] = TransformeraDModel(**lowerCAmelCase__ ) return model def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'cpu' SCREAMING_SNAKE_CASE_ : Dict = self.dummy_vqvae SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : str = self.dummy_tokenizer SCREAMING_SNAKE_CASE_ : int = self.dummy_transformer SCREAMING_SNAKE_CASE_ : List[Any] = VQDiffusionScheduler(self.num_embed ) SCREAMING_SNAKE_CASE_ : Tuple = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = VQDiffusionPipeline( vqvae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , transformer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : List[str] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = 'teddy bear playing in the pool' SCREAMING_SNAKE_CASE_ : Tuple = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type='np' ) SCREAMING_SNAKE_CASE_ : Tuple = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( [prompt] , generator=lowerCAmelCase__ , output_type='np' , return_dict=lowerCAmelCase__ , num_inference_steps=2 )[0] SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'cpu' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_vqvae SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_transformer SCREAMING_SNAKE_CASE_ : Union[str, Any] = VQDiffusionScheduler(self.num_embed ) SCREAMING_SNAKE_CASE_ : str = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCAmelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) SCREAMING_SNAKE_CASE_ : Dict = VQDiffusionPipeline( vqvae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , transformer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = 'teddy bear playing in the pool' SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type='np' ) SCREAMING_SNAKE_CASE_ : List[Any] = output.images SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = pipe( [prompt] , generator=lowerCAmelCase__ , output_type='np' , return_dict=lowerCAmelCase__ , num_inference_steps=2 )[0] SCREAMING_SNAKE_CASE_ : List[str] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) SCREAMING_SNAKE_CASE_ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) SCREAMING_SNAKE_CASE_ : List[Any] = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though SCREAMING_SNAKE_CASE_ : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCAmelCase__ , output_type='np' , ) SCREAMING_SNAKE_CASE_ : List[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
101
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _UpperCAmelCase = logging.get_logger(__name__) # General docstring _UpperCAmelCase = """RegNetConfig""" # Base docstring _UpperCAmelCase = """facebook/regnet-y-040""" _UpperCAmelCase = [1, 1088, 7, 7] # Image classification docstring _UpperCAmelCase = """facebook/regnet-y-040""" _UpperCAmelCase = """tabby, tabby cat""" _UpperCAmelCase = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb A_ : List[str] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) A_ : Tuple = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='VALID' , groups=lowercase , use_bias=lowercase , name='convolution' , ) A_ : Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) A_ : Optional[int] = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = self.convolution(self.padding(lowercase ) ) A_ : Optional[Any] = self.normalization(lowercase ) A_ : Union[str, Any] = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Dict = config.num_channels A_ : Dict = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = shape_list(lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) A_ : Optional[Any] = tf.transpose(lowercase , perm=(0, 2, 3, 1) ) A_ : Dict = self.embedder(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[int] = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='convolution' ) A_ : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def lowerCAmelCase_ ( self , lowercase , lowercase = False ): """simple docstring""" return self.normalization(self.convolution(lowercase ) , training=lowercase ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) A_ : Any = [ tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : str = self.pooler(lowercase ) for layer_module in self.attention: A_ : List[str] = layer_module(lowercase ) A_ : str = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Union[str, Any] = in_channels != out_channels or stride != 1 A_ : Optional[Any] = max(1 , out_channels // config.groups_width ) A_ : List[Any] = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. A_ : Optional[Any] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.2' ), ] A_ : int = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = hidden_state for layer_module in self.layers: A_ : Union[str, Any] = layer_module(lowercase ) A_ : int = self.shortcut(lowercase ) hidden_state += residual A_ : Optional[int] = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Any = in_channels != out_channels or stride != 1 A_ : Union[str, Any] = max(1 , out_channels // config.groups_width ) A_ : str = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) A_ : Optional[int] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.3' ), ] A_ : str = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = hidden_state for layer_module in self.layers: A_ : Optional[Any] = layer_module(lowercase ) A_ : Optional[Any] = self.shortcut(lowercase ) hidden_state += residual A_ : Tuple = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[Any] = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer A_ : int = [ # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , lowercase , stride=lowercase , name='layers.0' ), *[layer(lowercase , lowercase , lowercase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" for layer_module in self.layers: A_ : List[str] = layer_module(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Any = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) A_ : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=F'''stages.{i+1}''' ) ) def lowerCAmelCase_ ( self , lowercase , lowercase = False , lowercase = True ): """simple docstring""" A_ : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A_ : Optional[Any] = hidden_states + (hidden_state,) A_ : List[Any] = stage_module(lowercase ) if output_hidden_states: A_ : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase_ = RegNetConfig def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[Any] = config A_ : List[str] = TFRegNetEmbeddings(lowercase , name='embedder' ) A_ : Dict = TFRegNetEncoder(lowercase , name='encoder' ) A_ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) @unpack_inputs def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ): """simple docstring""" A_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Any = return_dict if return_dict is not None else self.config.use_return_dict A_ : int = self.embedder(lowercase , training=lowercase ) A_ : int = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) A_ : List[Any] = encoder_outputs[0] A_ : Any = self.pooler(lowercase ) # Change to NCHW output format have uniformity in the modules A_ : Optional[int] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) A_ : List[str] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: A_ : Dict = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = RegNetConfig lowerCamelCase_ = '''regnet''' lowerCamelCase_ = '''pixel_values''' @property def lowerCAmelCase_ ( self ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _UpperCAmelCase = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __A , ) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , *lowercase , **lowercase ) A_ : Union[str, Any] = TFRegNetMainLayer(lowercase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : str = return_dict if return_dict is not None else self.config.use_return_dict A_ : int = self.regnet( pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __A , ) class UpperCAmelCase ( __A , __A ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , *lowercase , **lowercase ) A_ : str = config.num_labels A_ : Optional[Any] = TFRegNetMainLayer(lowercase , name='regnet' ) # classification head A_ : int = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict A_ : Dict = self.regnet( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) A_ : Any = outputs.pooler_output if return_dict else outputs[1] A_ : Union[str, Any] = self.classifier[0](lowercase ) A_ : Dict = self.classifier[1](lowercase ) A_ : Dict = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase ) if not return_dict: A_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
558
0
import sys def UpperCAmelCase ( _lowerCamelCase ): A : Union[str, Any] = len(_lowerCamelCase ) A : Union[str, Any] = [[0 for x in range(_lowerCamelCase )] for x in range(_lowerCamelCase )] A : Tuple = [[0 for x in range(_lowerCamelCase )] for x in range(_lowerCamelCase )] for chain_length in range(2 , _lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): A : Any = a + chain_length - 1 A : Dict = sys.maxsize for c in range(_lowerCamelCase , _lowerCamelCase ): A : Dict = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A : Any = cost A : Optional[Any] = c return matrix, sol def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if i == j: print("A" + str(_lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(_lowerCamelCase , _lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(_lowerCamelCase , optimal_solution[i][j] + 1 , _lowerCamelCase ) print(")" , end=" " ) def UpperCAmelCase ( ): A : Optional[Any] = [30, 35, 15, 5, 10, 20, 25] A : int = len(_lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A : Optional[int] = matrix_chain_order(_lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(_lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
17
from collections import deque from .hash_table import HashTable class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , *__lowerCamelCase : Dict , **__lowerCamelCase : int ) -> Optional[int]: super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: A : Optional[Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) A : Dict = self.values[key] def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> Optional[int]: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
17
1
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict ={ 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """xlm-prophetnet""" __snake_case = ["""past_key_values"""] __snake_case = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self , _lowercase = 0.1 , _lowercase = "gelu" , _lowercase = 30522 , _lowercase = 1024 , _lowercase = 4096 , _lowercase = 12 , _lowercase = 16 , _lowercase = 4096 , _lowercase = 12 , _lowercase = 16 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 512 , _lowercase = 0.02 , _lowercase = True , _lowercase = True , _lowercase = 0 , _lowercase = 2 , _lowercase = 32 , _lowercase = 128 , _lowercase = False , _lowercase = 0.0 , _lowercase = True , _lowercase = 0 , _lowercase = 1 , _lowercase = 2 , **_lowercase , ) -> List[str]: _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : str = encoder_ffn_dim _lowerCamelCase : List[Any] = num_encoder_layers _lowerCamelCase : Any = num_encoder_attention_heads _lowerCamelCase : List[str] = decoder_ffn_dim _lowerCamelCase : Optional[Any] = num_decoder_layers _lowerCamelCase : int = num_decoder_attention_heads _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : int = init_std # Normal(0, this parameter) _lowerCamelCase : str = activation_function # parameters for xlmprophetnet _lowerCamelCase : Optional[Any] = ngram _lowerCamelCase : Any = num_buckets _lowerCamelCase : Optional[int] = relative_max_distance _lowerCamelCase : Optional[int] = disable_ngram_loss _lowerCamelCase : List[str] = eps # 3 Types of Dropout _lowerCamelCase : str = attention_dropout _lowerCamelCase : Union[str, Any] = activation_dropout _lowerCamelCase : Optional[Any] = dropout _lowerCamelCase : Optional[int] = use_cache super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , add_cross_attention=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , ) @property def a__ ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def a__ ( self , _lowercase ) -> Optional[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
434
"""simple docstring""" import numpy # List of input, output pairs SCREAMING_SNAKE_CASE__ : Optional[Any] =( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) SCREAMING_SNAKE_CASE__ : str =(((515, 22, 13), 555), ((61, 35, 49), 150)) SCREAMING_SNAKE_CASE__ : int =[2, 4, 1, 5] SCREAMING_SNAKE_CASE__ : Any =len(train_data) SCREAMING_SNAKE_CASE__ : List[Any] =0.009 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="train" ) ->List[str]: return calculate_hypothesis_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) - output( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Tuple: _lowerCamelCase : int = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=m ) ->List[str]: _lowerCamelCase : Tuple = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if index == -1: summation_value += _error(SCREAMING_SNAKE_CASE_ ) else: summation_value += _error(SCREAMING_SNAKE_CASE_ ) * train_data[i][0][index] return summation_value def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->List[str]: _lowerCamelCase : Optional[Any] = summation_of_cost_derivative(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / m return cost_derivative_value def UpperCamelCase ( ) ->Optional[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output _lowerCamelCase : Dict = 0.000002 _lowerCamelCase : List[str] = 0 _lowerCamelCase : Union[str, Any] = 0 while True: j += 1 _lowerCamelCase : str = [0, 0, 0, 0] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): _lowerCamelCase : Optional[int] = get_cost_derivative(i - 1 ) _lowerCamelCase : Optional[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ , rtol=SCREAMING_SNAKE_CASE_ , ): break _lowerCamelCase : List[str] = temp_parameter_vector print(('''Number of iterations:''', j) ) def UpperCamelCase ( ) ->Optional[Any]: for i in range(len(SCREAMING_SNAKE_CASE_ ) ): print(('''Actual output value:''', output(SCREAMING_SNAKE_CASE_ , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(SCREAMING_SNAKE_CASE_ , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
434
1
import os def _lowerCamelCase ( ) -> List[Any]: _UpperCAmelCase : Optional[int] = os.path.dirname(os.path.realpath(__A ) ) _UpperCAmelCase : Dict = os.path.join(__A , '''triangle.txt''' ) with open(__A ) as f: _UpperCAmelCase : Tuple = f.readlines() _UpperCAmelCase : int = [] for line in triangle: _UpperCAmelCase : Optional[Any] = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(__A ) ) a.append(__A ) for i in range(1 , len(__A ) ): for j in range(len(a[i] ) ): _UpperCAmelCase : int = a[i - 1][j] if j != len(a[i - 1] ) else 0 _UpperCAmelCase : List[str] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__A , __A ) return max(a[-1] ) if __name__ == "__main__": print(solution())
186
from math import pow, sqrt def _lowerCamelCase ( *__A : float ) -> bool: _UpperCAmelCase : str = len(__A ) > 0 and all(value > 0.0 for value in values ) return result def _lowerCamelCase ( __A : float , __A : float ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def _lowerCamelCase ( __A : float , __A : float , __A : float ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _lowerCamelCase ( __A : float , __A : float , __A : float ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _lowerCamelCase ( __A : float , __A : float , __A : float ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _lowerCamelCase ( __A : float , __A : float , __A : float ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
186
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} snake_case_ : Tuple = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } snake_case_ : List[str] = { "gpt-neox-20b": 2048, } class snake_case_ ( _lowerCAmelCase ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __magic_name__ : List[str]=None , __magic_name__ : Any=None , __magic_name__ : int=None , __magic_name__ : Optional[int]="<|endoftext|>" , __magic_name__ : Tuple="<|endoftext|>" , __magic_name__ : Optional[int]="<|endoftext|>" , __magic_name__ : List[Any]=False , **__magic_name__ : Union[str, Any] , ) -> List[Any]: super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase_ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase_ ) != add_prefix_space: lowerCamelCase_ : List[str] = getattr(UpperCAmelCase_ , pre_tok_state.pop("type" ) ) lowerCamelCase_ : Optional[Any] = add_prefix_space lowerCamelCase_ : Optional[Any] = pre_tok_class(**UpperCAmelCase_ ) lowerCamelCase_ : int = add_prefix_space def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: lowerCamelCase_ : Dict = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : "Conversation" ) -> List[int]: lowerCamelCase_ : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: lowerCamelCase_ : Dict = input_ids[-self.model_max_length :] return input_ids
488
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False , )-> str: """simple docstring""" super().__init__() UpperCamelCase = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = False UpperCamelCase = nn.Dropout(p=UpperCAmelCase_ ) UpperCamelCase = TaConfig( vocab_size=UpperCAmelCase_ , d_model=UpperCAmelCase_ , num_heads=UpperCAmelCase_ , d_kv=UpperCAmelCase_ , d_ff=UpperCAmelCase_ , dropout_rate=UpperCAmelCase_ , feed_forward_proj=UpperCAmelCase_ , is_decoder=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , ) UpperCamelCase = nn.ModuleList() for lyr_num in range(UpperCAmelCase_ ): UpperCamelCase = TaBlock(UpperCAmelCase_ ) self.encoders.append(UpperCAmelCase_ ) UpperCamelCase = TaLayerNorm(UpperCAmelCase_ ) UpperCamelCase = nn.Dropout(p=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str )-> List[Any]: """simple docstring""" UpperCamelCase = self.token_embedder(UpperCAmelCase_ ) UpperCamelCase = encoder_input_tokens.shape[1] UpperCamelCase = torch.arange(UpperCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCAmelCase_ ) UpperCamelCase = self.dropout_pre(UpperCAmelCase_ ) # inverted the attention mask UpperCamelCase = encoder_input_tokens.size() UpperCamelCase = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ ) for lyr in self.encoders: UpperCamelCase = lyr(UpperCAmelCase_ , UpperCAmelCase_ )[0] UpperCamelCase = self.layer_norm(UpperCAmelCase_ ) return self.dropout_post(UpperCAmelCase_ ), encoder_inputs_mask
554
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets UpperCamelCase : List[Any] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCamelCase : int = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n" UpperCamelCase : Any = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def UpperCAmelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ , sample_weight=UpperCamelCase_ ) ), }
714
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : List[str] = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys UpperCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
293
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Any = ["""image_processor""", """tokenizer"""] a__ : str = """LayoutLMv3ImageProcessor""" a__ : str = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , SCREAMING_SNAKE_CASE , ) snake_case : Optional[Any] = kwargs.pop("feature_extractor" ) snake_case : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor snake_case : str = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : Any = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case : Dict = features["words"] snake_case : Any = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) # add pixel values snake_case : List[Any] = features.pop("pixel_values" ) if return_overflowing_tokens is True: snake_case : Dict = self.get_overflowing_images(SCREAMING_SNAKE_CASE , encoded_inputs["overflow_to_sample_mapping"] ) snake_case : str = images return encoded_inputs def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F''' {len(SCREAMING_SNAKE_CASE )} and {len(SCREAMING_SNAKE_CASE )}''' ) return images_with_overflow def lowerCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def lowerCamelCase_ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , SCREAMING_SNAKE_CASE , ) return self.image_processor
134
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
134
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer a = logging.get_logger(__name__) a = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp a = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } a = { '''RUCAIBox/mvp''': 1_024, } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = VOCAB_FILES_NAMES UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase : Optional[Any] = MvpTokenizer def __init__( self : str , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]="replace" , _UpperCAmelCase : List[Any]="<s>" , _UpperCAmelCase : Any="</s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Tuple="<s>" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : Tuple="<pad>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Dict=True , **_UpperCAmelCase : Optional[int] , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) _A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: _A = getattr(_UpperCAmelCase , pre_tok_state.pop('type' ) ) _A = add_prefix_space _A = pre_tok_class(**_UpperCAmelCase ) _A = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _A = 'post_processor' _A = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: _A = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A = tuple(state['sep'] ) if "cls" in state: _A = tuple(state['cls'] ) _A = False if state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: _A = add_prefix_space _A = True if state.get('trim_offsets' , _UpperCAmelCase ) != trim_offsets: _A = trim_offsets _A = True if changes_to_apply: _A = getattr(_UpperCAmelCase , state.pop('type' ) ) _A = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property def lowerCAmelCase_ ( self : int ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Dict ): _A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value _A = value def lowerCAmelCase_ ( self : Optional[int] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ): _A = kwargs.get('is_split_into_words' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Dict ): _A = kwargs.get('is_split_into_words' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): _A = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=None ): _A = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
505
"""simple docstring""" import numpy # List of input, output pairs a = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a = (((515, 22, 13), 555), ((61, 35, 49), 150)) a = [2, 4, 1, 5] a = len(train_data) a = 0.0_0_9 def _snake_case ( _snake_case : int , _snake_case : List[Any]="train" ) -> Dict: '''simple docstring''' return calculate_hypothesis_value(_snake_case , _snake_case ) - output( _snake_case , _snake_case ) def _snake_case ( _snake_case : int ) -> Optional[Any]: '''simple docstring''' _A = 0 for i in range(len(_snake_case ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str ) -> List[Any]: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _snake_case ( _snake_case : Optional[int] , _snake_case : Dict ) -> str: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _snake_case ( _snake_case : str , _snake_case : Dict=m ) -> Tuple: '''simple docstring''' _A = 0 for i in range(_snake_case ): if index == -1: summation_value += _error(_snake_case ) else: summation_value += _error(_snake_case ) * train_data[i][0][index] return summation_value def _snake_case ( _snake_case : Union[str, Any] ) -> Any: '''simple docstring''' _A = summation_of_cost_derivative(_snake_case , _snake_case ) / m return cost_derivative_value def _snake_case ( ) -> List[Any]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output _A = 0.000002 _A = 0 _A = 0 while True: j += 1 _A = [0, 0, 0, 0] for i in range(0 , len(_snake_case ) ): _A = get_cost_derivative(i - 1 ) _A = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _snake_case , _snake_case , atol=_snake_case , rtol=_snake_case , ): break _A = temp_parameter_vector print(('Number of iterations:', j) ) def _snake_case ( ) -> List[str]: '''simple docstring''' for i in range(len(_snake_case ) ): print(('Actual output value:', output(_snake_case , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_snake_case , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
505
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __UpperCamelCase : Dict = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } __UpperCamelCase : Optional[int] = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def snake_case ( lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' __lowercase , __lowercase = create_model( """HTSAT-tiny""" , """roberta""" , lowerCamelCase , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowerCamelCase , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {} __lowercase = r""".*sequential.(\d+).*""" __lowercase = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowercase = key.replace(lowerCamelCase , lowerCamelCase ) if re.match(lowerCamelCase , lowerCamelCase ): # replace sequential layers with list __lowercase = re.match(lowerCamelCase , lowerCamelCase ).group(1 ) __lowercase = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(lowerCamelCase )//3}.linear.' ) elif re.match(lowerCamelCase , lowerCamelCase ): __lowercase = int(re.match(lowerCamelCase , lowerCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __lowercase = 1 if projecton_layer == 0 else 2 __lowercase = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value __lowercase = value __lowercase = mixed_qkv.size(0 ) // 3 __lowercase = mixed_qkv[:qkv_dim] __lowercase = mixed_qkv[qkv_dim : qkv_dim * 2] __lowercase = mixed_qkv[qkv_dim * 2 :] __lowercase = query_layer __lowercase = key_layer __lowercase = value_layer else: __lowercase = value return model_state_dict def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' __lowercase , __lowercase = init_clap(lowerCamelCase , enable_fusion=lowerCamelCase ) clap_model.eval() __lowercase = clap_model.state_dict() __lowercase = rename_state_dict(lowerCamelCase ) __lowercase = ClapConfig() __lowercase = enable_fusion __lowercase = ClapModel(lowerCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) transformers_config.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") __UpperCamelCase : Optional[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
80
"""simple docstring""" def lowercase ( UpperCamelCase : int , UpperCamelCase : list[int] , UpperCamelCase : int ): """simple docstring""" def count_of_possible_combinations(UpperCamelCase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(UpperCamelCase ) def lowercase ( UpperCamelCase : int , UpperCamelCase : list[int] , UpperCamelCase : int ): """simple docstring""" def count_of_possible_combinations_with_dp_array( UpperCamelCase : int , UpperCamelCase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A__ : str =sum( count_of_possible_combinations_with_dp_array(target - item , UpperCamelCase ) for item in array ) A__ : List[str] =answer return answer A__ : List[Any] =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(UpperCamelCase , UpperCamelCase ) def lowercase ( UpperCamelCase : int , UpperCamelCase : list[int] , UpperCamelCase : int ): """simple docstring""" A__ : str =[0] * (target + 1) A__ : Optional[Any] =1 for i in range(1 , target + 1 ): for j in range(UpperCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[Any] = 3 __A : Optional[Any] = 5 __A : int = [1, 2, 5] print(combination_sum_iv(n, array, target))
656
0
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Optional[Any] = {} _lowercase : List[str] = tokenizer(example["""content"""] , truncation=__UpperCAmelCase )["""input_ids"""] _lowercase : Union[str, Any] = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase: Dict = HfArgumentParser(PretokenizationArguments) UpperCAmelCase: Tuple = parser.parse_args() if args.num_workers is None: UpperCAmelCase: int = multiprocessing.cpu_count() UpperCAmelCase: List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase: Tuple = time.time() UpperCAmelCase: Dict = load_dataset(args.dataset_name, split="""train""") print(F'Dataset loaded in {time.time()-t_start:.2f}s') UpperCAmelCase: str = time.time() UpperCAmelCase: Tuple = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') UpperCAmelCase: List[Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase: List[Any] = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Tuple = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Optional[int] = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[str] = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase: Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
600
0
from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str = "cpu" , __magic_name__ : Union[str, None] = None ): """simple docstring""" _lowerCAmelCase :Tuple = torch.load(__magic_name__ , map_location=__magic_name__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(__magic_name__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _lowerCAmelCase :int = v.half() if save_path is None: # overwrite src_path _lowerCAmelCase :Dict = src_path torch.save(__magic_name__ , __magic_name__ ) if __name__ == "__main__": fire.Fire(convert)
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'}) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field(default=_lowerCamelCase , metadata={'help': 'Whether tp freeze the encoder.'}) SCREAMING_SNAKE_CASE = field(default=_lowerCamelCase , metadata={'help': 'Whether to freeze the embeddings.'}) @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'}) SCREAMING_SNAKE_CASE = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) SCREAMING_SNAKE_CASE = field( default=10_24 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=1_28 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=1_42 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) SCREAMING_SNAKE_CASE = field( default=1_42 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'}) SCREAMING_SNAKE_CASE = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'}) SCREAMING_SNAKE_CASE = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'}) SCREAMING_SNAKE_CASE = field(default=_lowerCamelCase , metadata={'help': 'Source language id for translation.'}) SCREAMING_SNAKE_CASE = field(default=_lowerCamelCase , metadata={'help': 'Target language id for translation.'}) SCREAMING_SNAKE_CASE = field(default=_lowerCamelCase , metadata={'help': '# num_beams to use for evaluation.'}) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" logger.info(F"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(F" {key} = {metrics[key]}" ) save_json(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , F"{split}_results.json" ) ) def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _SCREAMING_SNAKE_CASE = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), F"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _SCREAMING_SNAKE_CASE = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _SCREAMING_SNAKE_CASE = SeqaSeqDataset # Get datasets _SCREAMING_SNAKE_CASE = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _SCREAMING_SNAKE_CASE = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _SCREAMING_SNAKE_CASE = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _SCREAMING_SNAKE_CASE = ( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE_ ) if training_args.predict_with_generate else None ) _SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , data_args=SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , ) _SCREAMING_SNAKE_CASE = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _SCREAMING_SNAKE_CASE = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _SCREAMING_SNAKE_CASE = train_result.metrics _SCREAMING_SNAKE_CASE = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _SCREAMING_SNAKE_CASE = trainer.evaluate(metric_key_prefix="""val""" ) _SCREAMING_SNAKE_CASE = data_args.n_val _SCREAMING_SNAKE_CASE = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _SCREAMING_SNAKE_CASE = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE_ , metric_key_prefix="""test""" ) _SCREAMING_SNAKE_CASE = test_output.metrics _SCREAMING_SNAKE_CASE = data_args.n_test if trainer.is_world_process_zero(): _SCREAMING_SNAKE_CASE = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) if training_args.predict_with_generate: _SCREAMING_SNAKE_CASE = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = lmap(str.strip , SCREAMING_SNAKE_CASE_ ) write_txt_file(SCREAMING_SNAKE_CASE_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
709
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = XCLIPTextConfig() # derive patch size from model name _SCREAMING_SNAKE_CASE = model_name.find("""patch""" ) _SCREAMING_SNAKE_CASE = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) _SCREAMING_SNAKE_CASE = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE_ , num_frames=SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 if model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = 3_36 _SCREAMING_SNAKE_CASE = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" # text encoder if name == "token_embedding.weight": _SCREAMING_SNAKE_CASE = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: _SCREAMING_SNAKE_CASE = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: _SCREAMING_SNAKE_CASE = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): _SCREAMING_SNAKE_CASE = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "attn.in_proj" in key: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if key.startswith("""visual""" ): _SCREAMING_SNAKE_CASE = key_split[3] _SCREAMING_SNAKE_CASE = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[ :dim ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[ -dim: ] else: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] elif key.startswith("""mit""" ): _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.vision_config.mit_hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.text_config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = rename_key(SCREAMING_SNAKE_CASE_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _SCREAMING_SNAKE_CASE = val.T _SCREAMING_SNAKE_CASE = val return orig_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if num_frames == 8: _SCREAMING_SNAKE_CASE = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: _SCREAMING_SNAKE_CASE = """eating_spaghetti.npy""" elif num_frames == 32: _SCREAMING_SNAKE_CASE = """eating_spaghetti_32_frames.npy""" _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" , ) _SCREAMING_SNAKE_CASE = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } _SCREAMING_SNAKE_CASE = model_to_url[model_name] _SCREAMING_SNAKE_CASE = 8 if "16-frames" in model_name: _SCREAMING_SNAKE_CASE = 16 elif "shot" in model_name: _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = get_xclip_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) model.eval() if "drive" in checkpoint_url: _SCREAMING_SNAKE_CASE = """pytorch_model.bin""" gdown.cached_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model"""] else: _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ )["""model"""] _SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _SCREAMING_SNAKE_CASE = 3_36 if model_name == """xclip-large-patch14-16-frames""" else 2_24 _SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = prepare_video(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs _SCREAMING_SNAKE_CASE = outputs.logits_per_video _SCREAMING_SNAKE_CASE = logits_per_video.softmax(dim=1 ) print("""Probs:""" , SCREAMING_SNAKE_CASE_ ) # kinetics-400 if model_name == "xclip-base-patch32": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__ : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
0
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = DownBlockaD # noqa F405 lowercase__ = "down" def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[Any] = [-0.0_232, -0.9_869, 0.8_054, -0.0_637, -0.1_688, -1.4_264, 0.4_470, -1.3_394, 0.0_904] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ResnetDownsampleBlockaD # noqa F405 lowercase__ = "down" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : List[str] = [0.0_710, 0.2_410, -0.7_320, -1.0_757, -1.1_343, 0.3_540, -0.0_133, -0.2_576, 0.0_948] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = AttnDownBlockaD # noqa F405 lowercase__ = "down" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : int = [0.0_636, 0.8_964, -0.6_234, -1.0_131, 0.0_844, 0.4_935, 0.3_437, 0.0_911, -0.2_957] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = CrossAttnDownBlockaD # noqa F405 lowercase__ = "down" def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[Any] = super().prepare_init_args_and_inputs_for_common() _snake_case : Optional[Any] = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : List[Any] = [0.2_238, -0.7_396, -0.2_255, -0.3_829, 0.1_925, 1.1_665, 0.0_603, -0.7_295, 0.1_983] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = SimpleCrossAttnDownBlockaD # noqa F405 lowercase__ = "down" @property def UpperCamelCase_ ( self: int ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case , _snake_case : List[Any] = super().prepare_init_args_and_inputs_for_common() _snake_case : List[Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""", """MPS result is not consistent""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : List[str] = [0.7_921, -0.0_992, -0.1_962, -0.7_695, -0.4_242, 0.7_804, 0.4_737, 0.2_765, 0.3_338] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = SkipDownBlockaD # noqa F405 lowercase__ = "down" @property def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = [-0.0_845, -0.2_087, -0.2_465, 0.0_971, 0.1_900, -0.0_484, 0.2_664, 0.4_179, 0.5_069] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = AttnSkipDownBlockaD # noqa F405 lowercase__ = "down" @property def UpperCamelCase_ ( self: Any ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = [0.5_539, 0.1_609, 0.4_924, 0.0_537, -0.1_995, 0.4_050, 0.0_979, -0.2_721, -0.0_642] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = DownEncoderBlockaD # noqa F405 lowercase__ = "down" @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[Any] = { """in_channels""": 32, """out_channels""": 32, } _snake_case : Optional[int] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = [1.1_102, 0.5_302, 0.4_872, -0.0_023, -0.8_042, 0.0_483, -0.3_489, -0.5_632, 0.7_626] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = AttnDownEncoderBlockaD # noqa F405 lowercase__ = "down" @property def UpperCamelCase_ ( self: str ): '''simple docstring''' return super().get_dummy_input(include_temb=a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[str] = { """in_channels""": 32, """out_channels""": 32, } _snake_case : Tuple = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = [0.8_966, -0.1_486, 0.8_568, 0.8_141, -0.9_046, -0.1_342, -0.0_972, -0.7_417, 0.1_538] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = UNetMidBlockaD # noqa F405 lowercase__ = "mid" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = { """in_channels""": 32, """temb_channels""": 128, } _snake_case : Optional[Any] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = [-0.1_062, 1.7_248, 0.3_494, 1.4_569, -0.0_910, -1.2_421, -0.9_984, 0.6_736, 1.0_028] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = UNetMidBlockaDCrossAttn # noqa F405 lowercase__ = "mid" def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : str = super().prepare_init_args_and_inputs_for_common() _snake_case : Optional[Any] = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = [0.0_187, 2.4_220, 0.4_484, 1.1_203, -0.6_121, -1.5_122, -0.8_270, 0.7_851, 1.8_335] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowercase__ = "mid" @property def UpperCamelCase_ ( self: Any ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = super().prepare_init_args_and_inputs_for_common() _snake_case : Tuple = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Dict = [0.7_143, 1.9_974, 0.5_448, 1.3_977, 0.1_282, -1.1_237, -1.4_238, 0.5_530, 0.8_880] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = UpBlockaD # noqa F405 lowercase__ = "up" @property def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [-0.2_041, -0.4_165, -0.3_022, 0.0_041, -0.6_628, -0.7_053, 0.1_928, -0.0_325, 0.0_523] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ResnetUpsampleBlockaD # noqa F405 lowercase__ = "up" @property def UpperCamelCase_ ( self: str ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = [0.2_287, 0.3_549, -0.1_346, 0.4_797, -0.1_715, -0.9_649, 0.7_305, -0.5_864, -0.6_244] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = CrossAttnUpBlockaD # noqa F405 lowercase__ = "up" @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , _snake_case : List[Any] = super().prepare_init_args_and_inputs_for_common() _snake_case : Any = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[str] = [-0.1_403, -0.3_515, -0.0_420, -0.1_425, 0.3_167, 0.5_094, -0.2_181, 0.5_931, 0.5_582] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = SimpleCrossAttnUpBlockaD # noqa F405 lowercase__ = "up" @property def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=a_, include_encoder_hidden_states=a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Tuple = super().prepare_init_args_and_inputs_for_common() _snake_case : str = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Dict = [0.2_645, 0.1_480, 0.0_909, 0.8_044, -0.9_758, -0.9_083, 0.0_994, -1.1_453, -0.7_402] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = AttnUpBlockaD # noqa F405 lowercase__ = "up" @property def UpperCamelCase_ ( self: str ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=a_ ) @unittest.skipIf(torch_device == """mps""", """MPS result is not consistent""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[Any] = [0.0_979, 0.1_326, 0.0_021, 0.0_659, 0.2_249, 0.0_059, 0.1_132, 0.5_952, 0.1_033] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = SkipUpBlockaD # noqa F405 lowercase__ = "up" @property def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = [-0.0_893, -0.1_234, -0.1_506, -0.0_332, 0.0_123, -0.0_211, 0.0_566, 0.0_143, 0.0_362] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = AttnSkipUpBlockaD # noqa F405 lowercase__ = "up" @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = [0.0_361, 0.0_617, 0.2_787, -0.0_350, 0.0_342, 0.3_421, -0.0_843, 0.0_913, 0.3_015] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = UpDecoderBlockaD # noqa F405 lowercase__ = "up" @property def UpperCamelCase_ ( self: Any ): '''simple docstring''' return super().get_dummy_input(include_temb=a_ ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : str = {"""in_channels""": 32, """out_channels""": 32} _snake_case : Optional[int] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = [0.4_404, 0.1_998, -0.9_886, -0.3_320, -0.3_128, -0.7_034, -0.6_955, -0.2_338, -0.3_137] super().test_output(a_ ) class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = AttnUpDecoderBlockaD # noqa F405 lowercase__ = "up" @property def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[str] = {"""in_channels""": 32, """out_channels""": 32} _snake_case : int = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Any = [0.6_738, 0.4_491, 0.1_055, 1.0_710, 0.7_316, 0.3_339, 0.3_352, 0.1_023, 0.3_568] super().test_output(a_ )
609
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class lowercase( __a ): '''simple docstring''' lowercase__ = "open-llama" def __init__( self: int, a_: List[str]=100_000, a_: List[str]=4_096, a_: int=11_008, a_: Tuple=32, a_: Any=32, a_: Optional[Any]="silu", a_: Any=2_048, a_: List[Any]=0.02, a_: int=1E-6, a_: Optional[int]=True, a_: List[str]=0, a_: Any=1, a_: Optional[int]=2, a_: Tuple=False, a_: List[Any]=True, a_: Optional[int]=0.1, a_: Tuple=0.1, a_: List[Any]=True, a_: Optional[int]=True, a_: Dict=None, **a_: int, ): '''simple docstring''' _snake_case : Any = vocab_size _snake_case : Tuple = max_position_embeddings _snake_case : str = hidden_size _snake_case : Dict = intermediate_size _snake_case : str = num_hidden_layers _snake_case : int = num_attention_heads _snake_case : Union[str, Any] = hidden_act _snake_case : Dict = initializer_range _snake_case : Tuple = rms_norm_eps _snake_case : Dict = use_cache _snake_case : Optional[int] = kwargs.pop( """use_memorry_efficient_attention""", a_ ) _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_dropout_prob _snake_case : Optional[int] = use_stable_embedding _snake_case : int = shared_input_output_embedding _snake_case : List[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, tie_word_embeddings=a_, **a_, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling, a_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) _snake_case : Optional[int] = self.rope_scaling.get("""type""", a_ ) _snake_case : Optional[int] = self.rope_scaling.get("""factor""", a_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(a_, a_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
609
1
"""simple docstring""" _A = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _A = [{"type": "code", "content": INSTALL_CONTENT}] _A = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
228
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : torch.FloatTensor class __UpperCAmelCase ( snake_case__ , snake_case__ ): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , A_ : int = 32 , A_ : int = 64 , A_ : int = 20 , A_ : int = 7_68 , A_ : Dict=77 , A_ : Union[str, Any]=4 , A_ : float = 0.0 , A_ : str = "silu" , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[str] = "linear" , A_ : Optional[str] = "prd" , A_ : Optional[int] = None , A_ : Optional[int] = None , A_ : Optional[int] = None , )-> Optional[int]: super().__init__() __UpperCamelCase = num_attention_heads __UpperCamelCase = attention_head_dim __UpperCamelCase = num_attention_heads * attention_head_dim __UpperCamelCase = additional_embeddings __UpperCamelCase = time_embed_dim or inner_dim __UpperCamelCase = embedding_proj_dim or embedding_dim __UpperCamelCase = clip_embed_dim or embedding_dim __UpperCamelCase = Timesteps(A_ , A_ , 0 ) __UpperCamelCase = TimestepEmbedding(A_ , A_ , out_dim=A_ , act_fn=A_ ) __UpperCamelCase = nn.Linear(A_ , A_ ) if embedding_proj_norm_type is None: __UpperCamelCase = None elif embedding_proj_norm_type == "layer": __UpperCamelCase = nn.LayerNorm(A_ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __UpperCamelCase = nn.Linear(A_ , A_ ) if encoder_hid_proj_type is None: __UpperCamelCase = None elif encoder_hid_proj_type == "linear": __UpperCamelCase = nn.Linear(A_ , A_ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __UpperCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , A_ ) ) if added_emb_type == "prd": __UpperCamelCase = nn.Parameter(torch.zeros(1 , 1 , A_ ) ) elif added_emb_type is None: __UpperCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __UpperCamelCase = nn.ModuleList( [ BasicTransformerBlock( A_ , A_ , A_ , dropout=A_ , activation_fn="gelu" , attention_bias=A_ , ) for d in range(A_ ) ] ) if norm_in_type == "layer": __UpperCamelCase = nn.LayerNorm(A_ ) elif norm_in_type is None: __UpperCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __UpperCamelCase = nn.LayerNorm(A_ ) __UpperCamelCase = nn.Linear(A_ , A_ ) __UpperCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) __UpperCamelCase = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , A_ , persistent=A_ ) __UpperCamelCase = nn.Parameter(torch.zeros(1 , A_ ) ) __UpperCamelCase = nn.Parameter(torch.zeros(1 , A_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A ( self : Tuple )-> Dict[str, AttentionProcessor]: __UpperCamelCase = {} def fn_recursive_add_processors(A_ : str , A_ : torch.nn.Module , A_ : Dict[str, AttentionProcessor] ): if hasattr(A_ , "set_processor" ): __UpperCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , A_ , A_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(A_ , A_ , A_ ) return processors def A ( self : Tuple , A_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] )-> Optional[int]: __UpperCamelCase = len(self.attn_processors.keys() ) if isinstance(A_ , A_ ) and len(A_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(A_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(A_ : str , A_ : torch.nn.Module , A_ : Any ): if hasattr(A_ , "set_processor" ): if not isinstance(A_ , A_ ): module.set_processor(A_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , A_ , A_ ) for name, module in self.named_children(): fn_recursive_attn_processor(A_ , A_ , A_ ) def A ( self : List[str] )-> List[str]: self.set_attn_processor(AttnProcessor() ) def A ( self : Dict , A_ : str , A_ : Union[torch.Tensor, float, int] , A_ : torch.FloatTensor , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[torch.BoolTensor] = None , A_ : bool = True , )-> Any: __UpperCamelCase = hidden_states.shape[0] __UpperCamelCase = timestep if not torch.is_tensor(A_ ): __UpperCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: __UpperCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase = timesteps * torch.ones(A_ , dtype=timesteps.dtype , device=timesteps.device ) __UpperCamelCase = self.time_proj(A_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCamelCase = timesteps_projected.to(dtype=self.dtype ) __UpperCamelCase = self.time_embedding(A_ ) if self.embedding_proj_norm is not None: __UpperCamelCase = self.embedding_proj_norm(A_ ) __UpperCamelCase = self.embedding_proj(A_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCamelCase = self.encoder_hidden_states_proj(A_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) __UpperCamelCase = self.proj_in(A_ ) __UpperCamelCase = self.positional_embedding.to(hidden_states.dtype ) __UpperCamelCase = [] __UpperCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(A_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCamelCase = hidden_states[:, None, :] __UpperCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(A_ , -1 , -1 ) additional_embeds.append(A_ ) __UpperCamelCase = torch.cat( A_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCamelCase = F.pad( A_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __UpperCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 __UpperCamelCase = F.pad(A_ , (0, self.additional_embeddings) , value=0.0 ) __UpperCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCamelCase = self.norm_in(A_ ) for block in self.transformer_blocks: __UpperCamelCase = block(A_ , attention_mask=A_ ) __UpperCamelCase = self.norm_out(A_ ) if self.prd_embedding is not None: __UpperCamelCase = hidden_states[:, -1] else: __UpperCamelCase = hidden_states[:, additional_embeddings_len:] __UpperCamelCase = self.proj_to_clip_embeddings(A_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=A_ ) def A ( self : Dict , A_ : Tuple )-> Dict: __UpperCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
228
1
"""simple docstring""" from typing import Any class a : def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Any ) -> Dict: lowerCamelCase_ = data lowerCamelCase_ = None def __repr__( self : int ) -> Tuple: return F'''Node({self.data})''' class a : def __init__( self : List[str] ) -> Dict: lowerCamelCase_ = None def __iter__( self : Optional[Any] ) -> int: lowerCamelCase_ = self.head while node: yield node.data lowerCamelCase_ = node.next def __len__( self : Union[str, Any] ) -> Optional[Any]: return sum(1 for _ in self ) def __repr__( self : str ) -> Optional[int]: return "->".join([str(__UpperCAmelCase ) for item in self] ) def __getitem__( self : str , __SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCamelCase_ = self.head for _ in range(__UpperCAmelCase ): lowerCamelCase_ = current.next lowerCamelCase_ = data def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: self.insert_nth(len(self ) , __UpperCAmelCase ) def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: self.insert_nth(0 , __UpperCAmelCase ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCamelCase_ = Node(__UpperCAmelCase ) if self.head is None: lowerCamelCase_ = new_node elif index == 0: lowerCamelCase_ = self.head # link new_node to head lowerCamelCase_ = new_node else: lowerCamelCase_ = self.head for _ in range(index - 1 ): lowerCamelCase_ = temp.next lowerCamelCase_ = temp.next lowerCamelCase_ = new_node def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: # print every node data print(self ) def UpperCamelCase ( self : Optional[int] ) -> str: return self.delete_nth(0 ) def UpperCamelCase ( self : str ) -> int: # delete from tail return self.delete_nth(len(self ) - 1 ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict = 0 ) -> List[str]: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCamelCase_ = self.head # default first node if index == 0: lowerCamelCase_ = self.head.next else: lowerCamelCase_ = self.head for _ in range(index - 1 ): lowerCamelCase_ = temp.next lowerCamelCase_ = temp.next lowerCamelCase_ = temp.next.next return delete_node.data def UpperCamelCase ( self : List[str] ) -> Union[str, Any]: return self.head is None def UpperCamelCase ( self : str ) -> Tuple: lowerCamelCase_ = None lowerCamelCase_ = self.head while current: # Store the current node's next node. lowerCamelCase_ = current.next # Make the current node's next point backwards lowerCamelCase_ = prev # Make the previous node be the current node lowerCamelCase_ = current # Make the current node the next node (to progress iteration) lowerCamelCase_ = next_node # Return prev in order to put the head at the end lowerCamelCase_ = prev def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = LinkedList() assert linked_list.is_empty() is True assert str(lowerCAmelCase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowerCAmelCase_ ) == i linked_list.insert_nth(lowerCAmelCase_ , i + 1 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowerCAmelCase_ ) == 9 assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCamelCase_ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(-8 , 1 ) ) def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCamelCase_ = LinkedList() for i in test_input: linked_list.insert_tail(lowerCAmelCase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowerCAmelCase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCamelCase_ = linked_list.delete_head() assert result == -9 assert ( str(lowerCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCamelCase_ = linked_list.delete_tail() assert result == 12.2 assert ( str(lowerCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCamelCase_ = linked_list.delete_nth(10 ) assert result is None assert ( str(lowerCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(lowerCAmelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowerCAmelCase_ ) assert ( str(lowerCAmelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowerCAmelCase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCamelCase__ ( ) -> List[Any]: from doctest import testmod testmod() lowerCamelCase_ = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(lowerCAmelCase_ ) print('\nReading/changing Node data using indexing:' ) print(F'''Element at Position 1: {linked_list[1]}''' ) lowerCamelCase_ = input('Enter New Value: ' ).strip() print('New list:' ) print(lowerCAmelCase_ ) print(F'''length of linked_list is : {len(lowerCAmelCase_ )}''' ) if __name__ == "__main__": main()
549
# Function to print upper half of diamond (pyramid) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Tuple ) -> Optional[Any]: """simple docstring""" for i in range(0 ,lowerCAmelCase_ ): for _ in range(0 ,n - i - 1 ): # printing spaces print(' ' ,end='' ) for _ in range(0 ,i + 1 ): # printing stars print('* ' ,end='' ) print() def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[str] ) -> str: """simple docstring""" for i in range(lowerCAmelCase_ ,0 ,-1 ): for _ in range(lowerCAmelCase_ ,0 ,-1 ): # printing stars print('* ' ,end='' ) print() for _ in range(n - i + 1 ,0 ,-1 ): # printing spaces print(' ' ,end='' ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase_ ) # upper half reverse_floyd(lowerCAmelCase_ ) # lower half if __name__ == "__main__": print(r'| /\ | |- | |- |--| |\ /| |-') print(r'|/ \| |- |_ |_ |__| | \/ | |_') __SCREAMING_SNAKE_CASE = 1 while K: __SCREAMING_SNAKE_CASE = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __SCREAMING_SNAKE_CASE = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
220
0
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) UpperCAmelCase_ : Any = logging.getLogger(__name__) def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=__a , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=__a , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=__a , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=__a , default='''data/dump''' , help='''The dump file prefix.''' ) SCREAMING_SNAKE_CASE_ : int = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE_ : Optional[int] = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE_ : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.special_tokens_map['''cls_token'''] # `<s>` SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE_ : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: SCREAMING_SNAKE_CASE_ : List[str] = fp.readlines() logger.info('''Start encoding''' ) logger.info(f'{len(__a )} examples to process.' ) SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 1_00_00 SCREAMING_SNAKE_CASE_ : str = time.time() for text in data: SCREAMING_SNAKE_CASE_ : Any = f'{bos} {text.strip()} {sep}' SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.encode(__a , add_special_tokens=__a ) rslt.append(__a ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE_ : List[Any] = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) SCREAMING_SNAKE_CASE_ : Dict = time.time() logger.info('''Finished binarization''' ) logger.info(f'{len(__a )} examples processed.' ) SCREAMING_SNAKE_CASE_ : Dict = f'{args.dump_file}.{args.tokenizer_name}.pickle' SCREAMING_SNAKE_CASE_ : Any = tokenizer.vocab_size if vocab_size < (1 << 16): SCREAMING_SNAKE_CASE_ : int = [np.uintaa(__a ) for d in rslt] else: SCREAMING_SNAKE_CASE_ : List[str] = [np.intaa(__a ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(__a , '''wb''' ) as handle: pickle.dump(rslt_ , __a , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
176
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(example['''content'''] , truncation=__a )['''input_ids'''] SCREAMING_SNAKE_CASE_ : List[Any] = len(example['''content'''] ) / len(output['''input_ids'''] ) return output UpperCAmelCase_ : Tuple = HfArgumentParser(PretokenizationArguments) UpperCAmelCase_ : Tuple = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : Tuple = multiprocessing.cpu_count() UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : List[Any] = load_dataset(args.dataset_name, split="""train""") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase_ : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
176
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel snake_case : Dict = HfApi() snake_case : int = {} # fmt: off snake_case : Any = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) snake_case : str = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) snake_case : Optional[int] = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) snake_case : int = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) snake_case : List[str] = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) snake_case : List[Any] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) snake_case : int = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) snake_case : Tuple = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) snake_case : List[Any] = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) snake_case : int = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) snake_case : str = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) snake_case : Any = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) snake_case : Dict = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) snake_case : Optional[int] = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) snake_case : Optional[Any] = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on snake_case : Dict = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": snake_case : Optional[int] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(F"Started running {mod.modelId}!!!") if mod.modelId.startswith("CompVis"): snake_case : Union[str, Any] = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: snake_case : List[Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) snake_case : Optional[int] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) snake_case : Tuple = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): snake_case : List[str] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(F"{mod.modelId} has passed successfully!!!")
124
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( _snake_case : int , _snake_case : Union[str, Any] ) -> str: '''simple docstring''' __magic_name__ : Optional[int] = torch.load(_snake_case , map_location="cpu" ) __magic_name__ : List[Any] = chkpt["model"] # We have the base model one level deeper than the original XLM repository __magic_name__ : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: __magic_name__ : Optional[Any] = v else: __magic_name__ : Tuple = v __magic_name__ : int = chkpt["params"] __magic_name__ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(_snake_case , (torch.FloatTensor, numpy.ndarray) )} __magic_name__ : Optional[int] = chkpt["dico_word2id"] __magic_name__ : List[str] = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model __magic_name__ : Union[str, Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __magic_name__ : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME __magic_name__ : int = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(_snake_case , _snake_case ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_snake_case , indent=2 ) + "\n" ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_snake_case , indent=2 ) + "\n" ) if __name__ == "__main__": snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) snake_case : Optional[int] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
124
1
"""simple docstring""" __lowerCAmelCase : Optional[int] =8.314_4598 def UpperCAmelCase__ ( lowerCAmelCase__ :float , lowerCAmelCase__ :float ) -> float: '''simple docstring''' if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __lowerCAmelCase : List[str] =3_0_0 __lowerCAmelCase : Union[str, Any] =2_8 __lowerCAmelCase : List[str] =rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
197
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _A ( lowerCAmelCase ): snake_case__ : int = 'blenderbot-small' snake_case__ : Optional[Any] = ['past_key_values'] snake_case__ : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __lowerCAmelCase=5_0265 , __lowerCAmelCase=512 , __lowerCAmelCase=8 , __lowerCAmelCase=2048 , __lowerCAmelCase=16 , __lowerCAmelCase=8 , __lowerCAmelCase=2048 , __lowerCAmelCase=16 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="gelu" , __lowerCAmelCase=512 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1 , __lowerCAmelCase=False , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size lowercase = max_position_embeddings lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = use_cache lowercase = encoder_layers lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , forced_eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) class _A ( lowerCAmelCase ): @property def A__ ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase = {0: """batch"""} lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase = {0: """batch""", 1: """decoder_sequence"""} lowercase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase , lowercase = self.num_layers for i in range(__lowerCAmelCase ): lowercase = {0: """batch""", 2: """past_sequence + sequence"""} lowercase = {0: """batch""", 2: """past_sequence + sequence"""} else: lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def A__ ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase = super().outputs else: lowercase = super(__lowerCAmelCase , self ).outputs if self.use_past: lowercase , lowercase = self.num_layers for i in range(__lowerCAmelCase ): lowercase = {0: """batch""", 2: """past_sequence + sequence"""} lowercase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ): """simple docstring""" lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Generate decoder inputs lowercase = seq_length if not self.use_past else 1 lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} lowercase = dict(**__lowerCAmelCase , **__lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase = common_inputs["""input_ids"""].shape lowercase = common_inputs["""decoder_input_ids"""].shape[1] lowercase , lowercase = self.num_attention_heads lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase = decoder_seq_length + 3 lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__lowerCAmelCase , __lowerCAmelCase )] , dim=1 ) lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase , lowercase = self.num_layers lowercase = min(__lowerCAmelCase , __lowerCAmelCase ) lowercase = max(__lowerCAmelCase , __lowerCAmelCase ) - min_num_layers lowercase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), ) ) # TODO: test this. lowercase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__lowerCAmelCase , __lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) ) return common_inputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ): """simple docstring""" lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase = seqlen + 2 lowercase , lowercase = self.num_layers lowercase , lowercase = self.num_attention_heads lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase = common_inputs["""attention_mask"""].dtype lowercase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 ) lowercase = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(__lowerCAmelCase ) ] return common_inputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ): """simple docstring""" lowercase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase = tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) lowercase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowercase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase = dict(tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) ) return common_inputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) elif self.task == "causal-lm": lowercase = self._generate_dummy_inputs_for_causal_lm( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) else: lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) return common_inputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase = super()._flatten_past_key_values_(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: lowercase = super(__lowerCAmelCase , self )._flatten_past_key_values_( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
197
1
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowercase_ = logging.getLogger(__name__) class a_ ( snake_case_ ): '''simple docstring''' def snake_case_( self , A , A , A=None , A=None ) -> int: _SCREAMING_SNAKE_CASE = self.layer[current_layer](A , A , head_mask[current_layer] ) _SCREAMING_SNAKE_CASE = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , snake_case_ , ) class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A ) -> Optional[int]: super().__init__(A ) _SCREAMING_SNAKE_CASE = BertEncoderWithPabee(A ) self.init_weights() _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 def snake_case_( self , A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = threshold def snake_case_( self , A ) -> Dict: _SCREAMING_SNAKE_CASE = patience def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.inference_layers_num / self.inference_instances_num _SCREAMING_SNAKE_CASE = ( f'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =' f' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***' ) print(A ) @add_start_docstrings_to_model_forward(A ) def snake_case_( self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=False , ) -> int: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: _SCREAMING_SNAKE_CASE = input_ids.size() elif inputs_embeds is not None: _SCREAMING_SNAKE_CASE = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) _SCREAMING_SNAKE_CASE = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _SCREAMING_SNAKE_CASE = torch.ones(A , device=A ) if token_type_ids is None: _SCREAMING_SNAKE_CASE = torch.zeros(A , dtype=torch.long , device=A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _SCREAMING_SNAKE_CASE = self.get_extended_attention_mask(A , A , A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = encoder_hidden_states.size() _SCREAMING_SNAKE_CASE = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _SCREAMING_SNAKE_CASE = torch.ones(A , device=A ) _SCREAMING_SNAKE_CASE = self.invert_attention_mask(A ) else: _SCREAMING_SNAKE_CASE = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _SCREAMING_SNAKE_CASE = self.get_head_mask(A , self.config.num_hidden_layers ) _SCREAMING_SNAKE_CASE = self.embeddings( input_ids=A , position_ids=A , token_type_ids=A , inputs_embeds=A ) _SCREAMING_SNAKE_CASE = embedding_output if self.training: _SCREAMING_SNAKE_CASE = [] for i in range(self.config.num_hidden_layers ): _SCREAMING_SNAKE_CASE = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A ) _SCREAMING_SNAKE_CASE = self.pooler(A ) _SCREAMING_SNAKE_CASE = output_layers[i](output_dropout(A ) ) res.append(A ) elif self.patience == 0: # Use all layers for inference _SCREAMING_SNAKE_CASE = self.encoder( A , attention_mask=A , head_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _SCREAMING_SNAKE_CASE = self.pooler(encoder_outputs[0] ) _SCREAMING_SNAKE_CASE = [output_layers[self.config.num_hidden_layers - 1](A )] else: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _SCREAMING_SNAKE_CASE = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A ) _SCREAMING_SNAKE_CASE = self.pooler(A ) _SCREAMING_SNAKE_CASE = output_layers[i](A ) if regression: _SCREAMING_SNAKE_CASE = logits.detach() if patient_result is not None: _SCREAMING_SNAKE_CASE = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _SCREAMING_SNAKE_CASE = 0 else: _SCREAMING_SNAKE_CASE = logits.detach().argmax(dim=1 ) if patient_result is not None: _SCREAMING_SNAKE_CASE = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(A ) ): patient_counter += 1 else: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = logits if patient_counter == self.patience: break _SCREAMING_SNAKE_CASE = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''' , snake_case_ , ) class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A ) -> Union[str, Any]: super().__init__(A ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = BertModelWithPabee(A ) _SCREAMING_SNAKE_CASE = nn.Dropout(config.hidden_dropout_prob ) _SCREAMING_SNAKE_CASE = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(A ) def snake_case_( self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , ) -> Dict: _SCREAMING_SNAKE_CASE = self.bert( input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _SCREAMING_SNAKE_CASE = (logits[-1],) if labels is not None: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = 0 for ix, logits_item in enumerate(A ): if self.num_labels == 1: # We are doing regression _SCREAMING_SNAKE_CASE = MSELoss() _SCREAMING_SNAKE_CASE = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _SCREAMING_SNAKE_CASE = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _SCREAMING_SNAKE_CASE = (total_loss / total_weights,) + outputs return outputs
314
'''simple docstring''' from __future__ import annotations from typing import Any class a_ ( snake_case_ ): '''simple docstring''' pass class a_ : '''simple docstring''' def __init__( self , A ) -> None: _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = None def __iter__( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self _SCREAMING_SNAKE_CASE = [] while node: if node in visited: raise ContainsLoopError visited.append(A ) yield node.data _SCREAMING_SNAKE_CASE = node.next_node @property def snake_case_( self ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowercase_ = Node(1) lowercase_ = Node(2) lowercase_ = Node(3) lowercase_ = Node(4) print(root_node.has_loop) # False lowercase_ = root_node.next_node print(root_node.has_loop) # True lowercase_ = Node(5) lowercase_ = Node(6) lowercase_ = Node(5) lowercase_ = Node(6) print(root_node.has_loop) # False lowercase_ = Node(1) print(root_node.has_loop) # False
314
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __snake_case :List[Any] =random.Random() def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int=1.0 , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Dict=None ) -> List[str]: '''simple docstring''' if rng is None: A = global_rng A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any=7 , __UpperCamelCase : Tuple=400 , __UpperCamelCase : Tuple=2_000 , __UpperCamelCase : Tuple=2_048 , __UpperCamelCase : Any=128 , __UpperCamelCase : Any=1 , __UpperCamelCase : Tuple=512 , __UpperCamelCase : Any=30 , __UpperCamelCase : Tuple=44_100 , ) -> Any: A = parent A = batch_size A = min_seq_length A = max_seq_length A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A = spectrogram_length A = feature_size A = num_audio_channels A = hop_length A = chunk_length A = sampling_rate def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __UpperCamelCase ( self : Dict , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : Dict=False ) -> Dict: def _flatten(__UpperCamelCase : int ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : Union[str, Any] = TvltFeatureExtractor def __UpperCamelCase ( self : Any ) -> List[str]: A = TvltFeatureExtractionTester(self ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__UpperCamelCase , 'spectrogram_length' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'feature_size' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'num_audio_channels' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'hop_length' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'chunk_length' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'sampling_rate' ) ) def __UpperCamelCase ( self : Tuple ) -> Any: A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) A = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) A = feat_extract_first.to_dict() A = feat_extract_second.to_dict() A = dict_first.pop('mel_filters' ) A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : int ) -> Any: A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(__UpperCamelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(__UpperCamelCase ) A = self.feature_extraction_class.from_json_file(__UpperCamelCase ) A = feat_extract_first.to_dict() A = feat_extract_second.to_dict() A = dict_first.pop('mel_filters' ) A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: # Initialize feature_extractor A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A = feature_extractor(__UpperCamelCase , return_tensors='np' , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A = feature_extractor( __UpperCamelCase , return_tensors='np' , sampling_rate=44_100 , mask_audio=__UpperCamelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A = [floats_list((1, x) )[0] for x in (800, 800, 800)] A = np.asarray(__UpperCamelCase ) A = feature_extractor(__UpperCamelCase , return_tensors='np' , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Union[str, Any] ) -> int: A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech A = ds.sort('id' ).select(range(__UpperCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self : Tuple ) -> Dict: A = self._load_datasamples(1 ) A = TvltFeatureExtractor() A = feature_extractor(__UpperCamelCase , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) A = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __UpperCamelCase , atol=1e-4 ) )
717
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase__ : list[float] ) -> bool: '''simple docstring''' if len(lowerCAmelCase__ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) A = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
224
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
267
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case (UpperCamelCase ): def __init__( self ,UpperCAmelCase_ = "▁" ,UpperCAmelCase_ = True ,UpperCAmelCase_ = "<unk>" ,UpperCAmelCase_ = "</s>" ,UpperCAmelCase_ = "<pad>" ,) -> Optional[int]: lowercase__ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } lowercase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowercase__ = token_dict["token"] lowercase__ = Tokenizer(Unigram() ) lowercase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) ," " ), normalizers.Lowercase(), ] ) lowercase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ), pre_tokenizers.Digits(individual_digits=UpperCAmelCase_ ), pre_tokenizers.Punctuation(), ] ) lowercase__ = decoders.Metaspace(replacement=UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ) lowercase__ = TemplateProcessing( single=F'''$A {self.special_tokens['eos']['token']}''' ,special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] ,) lowercase__ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = 8_000 ,UpperCAmelCase_ = True ,) -> List[str]: lowercase__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase_ ,special_tokens=self.special_tokens_list ,show_progress=UpperCAmelCase_ ,) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): lowercase__ = [files] self._tokenizer.train(UpperCAmelCase_ ,trainer=UpperCAmelCase_ ) self.add_unk_id() def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = 8_000 ,UpperCAmelCase_ = True ,) -> Union[str, Any]: lowercase__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase_ ,special_tokens=self.special_tokens_list ,show_progress=UpperCAmelCase_ ,) self._tokenizer.train_from_iterator(UpperCAmelCase_ ,trainer=UpperCAmelCase_ ) self.add_unk_id() def _a ( self ) -> str: lowercase__ = json.loads(self._tokenizer.to_str() ) lowercase__ = self.special_tokens["unk"]["id"] lowercase__ = Tokenizer.from_str(json.dumps(UpperCAmelCase_ ) )
267
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowerCAmelCase__ = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: '''simple docstring''' __lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): __lowercase = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , _UpperCAmelCase , ) is not None ): __lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __lowercase = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] __lowercase = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed __lowercase = True if not attribute_used: __lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: __lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __lowercase = True elif attribute.endswith("_token_id" ): __lowercase = True # configuration class specific cases if not case_allowed: __lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __lowercase ( _UpperCAmelCase ) -> Dict: '''simple docstring''' __lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) __lowercase = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] __lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __lowercase = {} if len(config_class.attribute_map ) > 0: __lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __lowercase = inspect.getsourcefile(_UpperCAmelCase ) __lowercase = os.path.dirname(_UpperCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __lowercase = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for fn in os.listdir(_UpperCAmelCase ) if fn.startswith("modeling_" )] # Get the source code strings __lowercase = [] for path in modeling_paths: if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase ) as fp: modeling_sources.append(fp.read() ) __lowercase = [] for config_param, default_value in zip(_UpperCAmelCase , _UpperCAmelCase ): # `attributes` here is all the variant names for `config_param` __lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(_UpperCAmelCase ) def __lowercase ( ) -> Optional[int]: '''simple docstring''' __lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _UpperCAmelCase : inspect.isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ) and inspect.getmodule(_UpperCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __lowercase = check_config_attributes_being_used(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: __lowercase = unused_attributes if len(_UpperCAmelCase ) > 0: __lowercase = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": check_config_attributes()
576
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCAmelCase__ = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: lowerCAmelCase__ = json.load(f) @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self , lowerCAmelCase_ ): return FSMTTokenizer.from_pretrained(lowerCAmelCase_ ) def snake_case__ ( self , lowerCAmelCase_ ): __lowercase = FSMTForConditionalGeneration.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __lowercase = f'''facebook/wmt19-{pair}''' __lowercase = self.get_tokenizer(lowerCAmelCase_ ) __lowercase = self.get_model(lowerCAmelCase_ ) __lowercase = bleu_data[pair]["src"] __lowercase = bleu_data[pair]["tgt"] __lowercase = tokenizer(lowerCAmelCase_ , return_tensors="pt" , truncation=lowerCAmelCase_ , padding="longest" ).to(lowerCAmelCase_ ) __lowercase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __lowercase = tokenizer.batch_decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) __lowercase = calculate_bleu(lowerCAmelCase_ , lowerCAmelCase_ ) print(lowerCAmelCase_ ) self.assertGreaterEqual(scores["bleu"] , lowerCAmelCase_ )
576
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __A : Union[str, Any] = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' __A : str = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' __A : Dict = R''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def lowercase__ ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : List[Any] = 0.0 for i, j in zip(UpperCAmelCase_ , UpperCAmelCase_ ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCAmelCase_ , UpperCAmelCase_ ) else 0.0 lowerCAmelCase : str = n_correct / len(UpperCAmelCase_ ) return { "accuracy": accuracy, }
343
from ...processing_utils import ProcessorMixin class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = "SpeechT5FeatureExtractor" lowerCAmelCase_ : Any = "SpeechT5Tokenizer" def __init__( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : List[str] = kwargs.pop('audio' , UpperCAmelCase_ ) lowerCAmelCase : str = kwargs.pop('text' , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = kwargs.pop('text_target' , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = kwargs.pop('audio_target' , UpperCAmelCase_ ) lowerCAmelCase : int = kwargs.pop('sampling_rate' , UpperCAmelCase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: lowerCAmelCase : Dict = self.feature_extractor(UpperCAmelCase_ , *UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , **UpperCAmelCase_ ) elif text is not None: lowerCAmelCase : List[Any] = self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_ ) else: lowerCAmelCase : Any = None if audio_target is not None: lowerCAmelCase : Tuple = self.feature_extractor(audio_target=UpperCAmelCase_ , *UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : int = targets['input_values'] elif text_target is not None: lowerCAmelCase : Optional[int] = self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = targets['input_ids'] else: lowerCAmelCase : Union[str, Any] = None if inputs is None: return targets if targets is not None: lowerCAmelCase : Dict = labels lowerCAmelCase : Any = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase : Tuple = decoder_attention_mask return inputs def lowercase__ ( self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = kwargs.pop('input_values' , UpperCAmelCase_ ) lowerCAmelCase : List[str] = kwargs.pop('input_ids' , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = kwargs.pop('labels' , UpperCAmelCase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: lowerCAmelCase : List[str] = self.feature_extractor.pad(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) elif input_ids is not None: lowerCAmelCase : Dict = self.tokenizer.pad(UpperCAmelCase_ , **UpperCAmelCase_ ) else: lowerCAmelCase : str = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and "input_ids" in labels[0]): lowerCAmelCase : int = self.tokenizer.pad(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Dict = targets['input_ids'] else: lowerCAmelCase : Any = self.feature_extractor.feature_size lowerCAmelCase : str = self.feature_extractor.num_mel_bins lowerCAmelCase : Optional[int] = self.feature_extractor.pad(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : List[Any] = feature_size_hack lowerCAmelCase : Tuple = targets['input_values'] else: lowerCAmelCase : Tuple = None if inputs is None: return targets if targets is not None: lowerCAmelCase : Union[str, Any] = labels lowerCAmelCase : List[str] = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase : Optional[Any] = decoder_attention_mask return inputs def lowercase__ ( self : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str] ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ )
343
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[Any] ) -> Optional[Any]: if "cls_token" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace('cls_token' , 'vit.embeddings.cls_token' ) if "mask_token" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('mask_token' , 'decoder.mask_token' ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE : Any = name.replace('pos_embed' , 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace('patch_embed.norm' , 'vit.embeddings.norm' ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('decoder_blocks' , 'decoder.decoder_layers' ) if "blocks" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('blocks' , 'vit.encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE : int = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : int = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('norm.weight' , 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE : int = name.replace('norm.bias' , 'vit.layernorm.bias' ) return name def SCREAMING_SNAKE_CASE_ ( snake_case_ : Tuple , snake_case_ : List[str] ) -> List[Any]: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : str = orig_state_dict.pop(snake_case_ ) if "qkv" in key: SCREAMING_SNAKE_CASE : Tuple = key.split('.' ) SCREAMING_SNAKE_CASE : Dict = int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE : int = config.decoder_hidden_size SCREAMING_SNAKE_CASE : Any = 'decoder.decoder_layers.' if "weight" in key: SCREAMING_SNAKE_CASE : Dict = val[:dim, :] SCREAMING_SNAKE_CASE : Tuple = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : Any = val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE : int = val[:dim] SCREAMING_SNAKE_CASE : int = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Dict = val[-dim:] else: SCREAMING_SNAKE_CASE : str = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 'vit.encoder.layer.' if "weight" in key: SCREAMING_SNAKE_CASE : str = val[:dim, :] SCREAMING_SNAKE_CASE : Dict = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE : Any = val[:dim] SCREAMING_SNAKE_CASE : Dict = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:] else: SCREAMING_SNAKE_CASE : int = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( snake_case_ : Tuple , snake_case_ : int ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 1024 SCREAMING_SNAKE_CASE : Optional[int] = 4096 SCREAMING_SNAKE_CASE : Any = 24 SCREAMING_SNAKE_CASE : Tuple = 16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE : Dict = 14 SCREAMING_SNAKE_CASE : Optional[int] = 1280 SCREAMING_SNAKE_CASE : Union[str, Any] = 5120 SCREAMING_SNAKE_CASE : Union[str, Any] = 32 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Dict = ViTMAEForPreTraining(snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = torch.hub.load_state_dict_from_url(snake_case_ , map_location='cpu' )['model'] SCREAMING_SNAKE_CASE : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = convert_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' SCREAMING_SNAKE_CASE : Optional[int] = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) SCREAMING_SNAKE_CASE : List[str] = ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE : List[str] = image_processor(images=snake_case_ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : int = model(**snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , snake_case_ , atol=1e-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
220
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __UpperCAmelCase = '\\n\n' __UpperCAmelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' __UpperCAmelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def __a ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) ,reference_urls=['https://huggingface.co/docs/transformers/perplexity'] ,) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = 16 ,__SCREAMING_SNAKE_CASE = True ,__SCREAMING_SNAKE_CASE=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": SCREAMING_SNAKE_CASE : Tuple = 'cuda' else: SCREAMING_SNAKE_CASE : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE : List[str] = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: SCREAMING_SNAKE_CASE : Optional[int] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" SCREAMING_SNAKE_CASE : int = model.config.max_length - 1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = model.config.max_length SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer( __SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ,truncation=__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,return_tensors='pt' ,return_attention_mask=__SCREAMING_SNAKE_CASE ,).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = encodings['input_ids'] SCREAMING_SNAKE_CASE : Dict = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : List[str] = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 ,len(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE : List[str] = min(start_index + batch_size ,len(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : List[str] = encoded_texts[start_index:end_index] SCREAMING_SNAKE_CASE : Any = attn_masks[start_index:end_index] if add_start_token: SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 ) SCREAMING_SNAKE_CASE : int = torch.cat( [torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask] ,dim=1 ) SCREAMING_SNAKE_CASE : str = encoded_batch with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ).logits SCREAMING_SNAKE_CASE : int = out_logits[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE : List[Any] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Any = attn_mask[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 ,2 ) ,__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
220
1
'''simple docstring''' class UpperCamelCase__ : """simple docstring""" def __init__( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = """""" SCREAMING_SNAKE_CASE : Optional[int] = """""" SCREAMING_SNAKE_CASE : Tuple = [] def lowerCamelCase_ ( self : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] ): '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: SCREAMING_SNAKE_CASE : List[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.__min_dist_top_down_dp(lowerCamelCase__ , n - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = self.__min_dist_top_down_dp(m - 1 , lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Any = self.__min_dist_top_down_dp(m - 1 , n - 1 ) SCREAMING_SNAKE_CASE : Any = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return self.dp[m][n] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = worda SCREAMING_SNAKE_CASE : str = worda SCREAMING_SNAKE_CASE : Optional[int] = [[-1 for _ in range(len(lowerCamelCase__ ) )] for _ in range(len(lowerCamelCase__ ) )] return self.__min_dist_top_down_dp(len(lowerCamelCase__ ) - 1 , len(lowerCamelCase__ ) - 1 ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = worda SCREAMING_SNAKE_CASE : Optional[Any] = worda SCREAMING_SNAKE_CASE : List[Any] = len(lowerCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Any = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty SCREAMING_SNAKE_CASE : Any = j elif j == 0: # second string is empty SCREAMING_SNAKE_CASE : Any = i elif worda[i - 1] == worda[j - 1]: # last characters are equal SCREAMING_SNAKE_CASE : List[Any] = self.dp[i - 1][j - 1] else: SCREAMING_SNAKE_CASE : List[Any] = self.dp[i][j - 1] SCREAMING_SNAKE_CASE : int = self.dp[i - 1][j] SCREAMING_SNAKE_CASE : Dict = self.dp[i - 1][j - 1] SCREAMING_SNAKE_CASE : Dict = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": __UpperCAmelCase = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() __UpperCAmelCase = input("""Enter the first string: """).strip() __UpperCAmelCase = input("""Enter the second string: """).strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
379
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__ ): # we need a list not a string, so do something to change the type A : List[Any] = arr.split(""",""" ) def _lowerCAmelCase ( self ): A : int = [int(self.array[0] )] * len(self.array ) A : Optional[Any] = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): A : Union[str, Any] = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) A : Dict = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": SCREAMING_SNAKE_CASE_:int = input("""please input some numbers:""") SCREAMING_SNAKE_CASE_:Dict = SubArray(whole_array) SCREAMING_SNAKE_CASE_:Optional[int] = array.solve_sub_array() print(("""the results is:""", re))
662
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _a ( SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [False] * len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = [-1] * len(SCREAMING_SNAKE_CASE__ ) def dfs(SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : int = c for u in graph[v]: if not visited[u]: dfs(SCREAMING_SNAKE_CASE__ , 1 - c ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if not visited[i]: dfs(SCREAMING_SNAKE_CASE__ , 0 ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCamelCase : str = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
711
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowerCamelCase : List[Any] = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' _lowerCamelCase : List[str] = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' _lowerCamelCase : Optional[int] = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): """simple docstring""" def A_ ( self : Tuple ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token" ), id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token" ), id="sequence" ), id="references" ), } ), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def A_ ( self : Optional[Any], _UpperCAmelCase : str, _UpperCAmelCase : str, _UpperCAmelCase : Union[str, Any]=4, _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = compute_bleu( reference_corpus=_UpperCAmelCase, translation_corpus=_UpperCAmelCase, max_order=_UpperCAmelCase, smooth=_UpperCAmelCase ) ((SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__)) : Union[str, Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
157
0
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
105
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : int = TypeVar('''DatasetType''', Dataset, IterableDataset) def __UpperCAmelCase ( lowerCamelCase_ : List[DatasetType] , lowerCamelCase_ : Optional[List[float]] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[DatasetInfo] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(lowerCamelCase_ ): if not isinstance(lowerCamelCase_ , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowerCamelCase_ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowerCamelCase_ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase_ ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = ( (Dataset, IterableDataset) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , stopping_strategy=lowerCamelCase_ ) else: return _interleave_iterable_datasets( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , stopping_strategy=lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[DatasetType] , lowerCamelCase_ : Optional[DatasetInfo] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(lowerCamelCase_ ): if not isinstance(lowerCamelCase_ , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowerCamelCase_ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowerCamelCase_ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase_ ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = ( (Dataset, IterableDataset) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , axis=lowerCamelCase_ ) else: return _concatenate_iterable_datasets(lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , axis=lowerCamelCase_ )
105
1
"""simple docstring""" def lowercase_ ( __UpperCAmelCase = 100_0000 ) -> int: lowerCAmelCase__ : Tuple = limit + 1 lowerCAmelCase__ : int = [0] * limit for first_term in range(1 , __UpperCAmelCase ): for n in range(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : List[str] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCAmelCase__ : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
507
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _A = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } _A = logging.WARNING def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : List[str] = os.getenv("""DATASETS_VERBOSITY""" , __UpperCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowercase_ ( ) -> str: return __name__.split(""".""" )[0] def lowercase_ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def lowercase_ ( ) -> None: # Apply our default configuration to the library root logger. lowerCAmelCase__ : Tuple = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase_ ( ) -> None: lowerCAmelCase__ : int = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase_ ( __UpperCAmelCase = None ) -> logging.Logger: if name is None: lowerCAmelCase__ : Union[str, Any] = _get_library_name() return logging.getLogger(__UpperCAmelCase ) def lowercase_ ( ) -> int: return _get_library_root_logger().getEffectiveLevel() def lowercase_ ( __UpperCAmelCase ) -> None: _get_library_root_logger().setLevel(__UpperCAmelCase ) def lowercase_ ( ) -> int: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> str: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> List[str]: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> int: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> None: lowerCAmelCase__ : Optional[int] = False def lowercase_ ( ) -> None: lowerCAmelCase__ : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowerCamelCase : def __init__( self : Optional[int] , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ) -> Dict: # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase__ : Dict = args[0] if args else None def __iter__( self : Dict ) -> Dict: """simple docstring""" return iter(self._iterator ) def __getattr__( self : str , UpperCamelCase : List[Any] ) -> Any: """simple docstring""" def empty_fn(*UpperCamelCase : Optional[int] , **UpperCamelCase : int ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> Tuple: """simple docstring""" return self def __exit__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" return _A = True class _lowerCamelCase : def __call__( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , UpperCamelCase : Any=False , **UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase , **UpperCamelCase ) else: return EmptyTqdm(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Tuple , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Tuple = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() _A = _tqdm_cls() def lowercase_ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def lowercase_ ( ) -> Any: global _tqdm_active lowerCAmelCase__ : List[str] = True def lowercase_ ( ) -> Tuple: global _tqdm_active lowerCAmelCase__ : List[str] = False
507
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCamelCase : List[str] = logging.get_logger(__name__) class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : List[str] = ['pixel_values'] def __init__( self : List[Any] , snake_case : bool = True , snake_case : Optional[Dict[str, int]] = None , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : bool = True , snake_case : bool = True , snake_case : Union[int, float] = 1 / 255 , snake_case : Dict[str, int] = None , snake_case : bool = True , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , **snake_case : Optional[int] , ): '''simple docstring''' super().__init__(**snake_case ) SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(snake_case ) SCREAMING_SNAKE_CASE : Any = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE : int = get_size_dict(snake_case , default_to_square=snake_case , param_name='crop_size' ) SCREAMING_SNAKE_CASE : Optional[Any] = do_resize SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : Dict = do_center_crop SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size SCREAMING_SNAKE_CASE : str = size SCREAMING_SNAKE_CASE : List[str] = resample SCREAMING_SNAKE_CASE : Union[str, Any] = rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE : Union[str, Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase_ ( self : int , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(snake_case ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE : Tuple = get_resize_output_image_size(snake_case , size=size['shortest_edge'] , default_to_square=snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE : int = (size['height'], size['width']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def lowerCamelCase_ ( self : List[str] , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(snake_case , size=(size['height'], size['width']) , data_format=snake_case , **snake_case ) def lowerCamelCase_ ( self : Any , snake_case : np.ndarray , snake_case : float , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Dict ): '''simple docstring''' return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def lowerCamelCase_ ( self : List[Any] , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : List[Any] , ): '''simple docstring''' return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def lowerCamelCase_ ( self : str , snake_case : ImageInput , snake_case : Optional[bool] = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : int = None , snake_case : Optional[bool] = None , snake_case : Optional[float] = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : int = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : List[str] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(snake_case , param_name='crop_size' , default_to_square=snake_case ) SCREAMING_SNAKE_CASE : Any = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Any = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : List[str] = size if size is not None else self.size SCREAMING_SNAKE_CASE : str = get_size_dict(snake_case ) if not is_batched(snake_case ): SCREAMING_SNAKE_CASE : str = [images] if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Dict = [to_numpy_array(snake_case ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : str = [self.center_crop(image=snake_case , size=snake_case ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Tuple = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : int = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] SCREAMING_SNAKE_CASE : List[str] = [to_channel_dimension_format(snake_case , snake_case ) for image in images] SCREAMING_SNAKE_CASE : Any = {'pixel_values': images} return BatchFeature(data=snake_case , tensor_type=snake_case )
352
def __a ( __lowerCAmelCase ) -> List[str]: stooge(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return arr def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: SCREAMING_SNAKE_CASE : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__lowerCAmelCase , __lowerCAmelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(__lowerCAmelCase , i + t , (__lowerCAmelCase) ) # Recursively sort first 2/3 elements stooge(__lowerCAmelCase , __lowerCAmelCase , (h - t) ) if __name__ == "__main__": _lowerCamelCase : List[str] = input("""Enter numbers separated by a comma:\n""").strip() _lowerCamelCase : List[Any] = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
352
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = 42 class snake_case ( lowercase , lowercase ): """simple docstring""" _lowerCamelCase = True @register_to_config def __init__( self , UpperCamelCase = 3 , UpperCamelCase = 3 , UpperCamelCase = ("DownEncoderBlock2D",) , UpperCamelCase = ("UpDecoderBlock2D",) , UpperCamelCase = (64,) , UpperCamelCase = 1 , UpperCamelCase = "silu" , UpperCamelCase = 4 , UpperCamelCase = 32 , UpperCamelCase = 32 , UpperCamelCase = 0.18_215 , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCamelCase_ = Encoder( in_channels=UpperCamelCase , out_channels=UpperCamelCase , down_block_types=UpperCamelCase , block_out_channels=UpperCamelCase , layers_per_block=UpperCamelCase , act_fn=UpperCamelCase , norm_num_groups=UpperCamelCase , double_z=UpperCamelCase , ) # pass init params to Decoder lowerCamelCase_ = Decoder( in_channels=UpperCamelCase , out_channels=UpperCamelCase , up_block_types=UpperCamelCase , block_out_channels=UpperCamelCase , layers_per_block=UpperCamelCase , norm_num_groups=UpperCamelCase , act_fn=UpperCamelCase , ) lowerCamelCase_ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) lowerCamelCase_ = nn.Convad(UpperCamelCase , UpperCamelCase , 1 ) lowerCamelCase_ = False lowerCamelCase_ = False # only relevant if vae tiling is enabled lowerCamelCase_ = self.config.sample_size lowerCamelCase_ = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) lowerCamelCase_ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) lowerCamelCase_ = 0.25 def snake_case ( self , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" if isinstance(UpperCamelCase , (Encoder, Decoder) ): lowerCamelCase_ = value def snake_case ( self , UpperCamelCase = True ): """simple docstring""" lowerCamelCase_ = use_tiling def snake_case ( self ): """simple docstring""" self.enable_tiling(UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = True def snake_case ( self ): """simple docstring""" lowerCamelCase_ = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case ( self ): """simple docstring""" lowerCamelCase_ = {} def fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ): if hasattr(UpperCamelCase , "set_processor" ): lowerCamelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ): if hasattr(UpperCamelCase , "set_processor" ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def snake_case ( self ): """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def snake_case ( self , UpperCamelCase , UpperCamelCase = True ): """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase , return_dict=UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: lowerCamelCase_ = [self.encoder(UpperCamelCase ) for x_slice in x.split(1 )] lowerCamelCase_ = torch.cat(UpperCamelCase ) else: lowerCamelCase_ = self.encoder(UpperCamelCase ) lowerCamelCase_ = self.quant_conv(UpperCamelCase ) lowerCamelCase_ = DiagonalGaussianDistribution(UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase = True ): """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase , return_dict=UpperCamelCase ) lowerCamelCase_ = self.post_quant_conv(UpperCamelCase ) lowerCamelCase_ = self.decoder(UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase ) @apply_forward_hook def snake_case ( self , UpperCamelCase , UpperCamelCase = True ): """simple docstring""" if self.use_slicing and z.shape[0] > 1: lowerCamelCase_ = [self._decode(UpperCamelCase ).sample for z_slice in z.split(1 )] lowerCamelCase_ = torch.cat(UpperCamelCase ) else: lowerCamelCase_ = self._decode(UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = min(a.shape[2] , b.shape[2] , UpperCamelCase ) for y in range(UpperCamelCase ): lowerCamelCase_ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = min(a.shape[3] , b.shape[3] , UpperCamelCase ) for x in range(UpperCamelCase ): lowerCamelCase_ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def snake_case ( self , UpperCamelCase , UpperCamelCase = True ): """simple docstring""" lowerCamelCase_ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) lowerCamelCase_ = int(self.tile_latent_min_size * self.tile_overlap_factor ) lowerCamelCase_ = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. lowerCamelCase_ = [] for i in range(0 , x.shape[2] , UpperCamelCase ): lowerCamelCase_ = [] for j in range(0 , x.shape[3] , UpperCamelCase ): lowerCamelCase_ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] lowerCamelCase_ = self.encoder(UpperCamelCase ) lowerCamelCase_ = self.quant_conv(UpperCamelCase ) row.append(UpperCamelCase ) rows.append(UpperCamelCase ) lowerCamelCase_ = [] for i, row in enumerate(UpperCamelCase ): lowerCamelCase_ = [] for j, tile in enumerate(UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowerCamelCase_ = self.blend_v(rows[i - 1][j] , UpperCamelCase , UpperCamelCase ) if j > 0: lowerCamelCase_ = self.blend_h(row[j - 1] , UpperCamelCase , UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase , dim=3 ) ) lowerCamelCase_ = torch.cat(UpperCamelCase , dim=2 ) lowerCamelCase_ = DiagonalGaussianDistribution(UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase = True ): """simple docstring""" lowerCamelCase_ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) lowerCamelCase_ = int(self.tile_sample_min_size * self.tile_overlap_factor ) lowerCamelCase_ = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. lowerCamelCase_ = [] for i in range(0 , z.shape[2] , UpperCamelCase ): lowerCamelCase_ = [] for j in range(0 , z.shape[3] , UpperCamelCase ): lowerCamelCase_ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] lowerCamelCase_ = self.post_quant_conv(UpperCamelCase ) lowerCamelCase_ = self.decoder(UpperCamelCase ) row.append(UpperCamelCase ) rows.append(UpperCamelCase ) lowerCamelCase_ = [] for i, row in enumerate(UpperCamelCase ): lowerCamelCase_ = [] for j, tile in enumerate(UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowerCamelCase_ = self.blend_v(rows[i - 1][j] , UpperCamelCase , UpperCamelCase ) if j > 0: lowerCamelCase_ = self.blend_h(row[j - 1] , UpperCamelCase , UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase , dim=3 ) ) lowerCamelCase_ = torch.cat(UpperCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase = False , UpperCamelCase = True , UpperCamelCase = None , ): """simple docstring""" lowerCamelCase_ = sample lowerCamelCase_ = self.encode(UpperCamelCase ).latent_dist if sample_posterior: lowerCamelCase_ = posterior.sample(generator=UpperCamelCase ) else: lowerCamelCase_ = posterior.mode() lowerCamelCase_ = self.decode(UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase )
445
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : int = 1000 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
445
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ="""▁""" __lowerCAmelCase : str ={"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCAmelCase : Union[str, Any] ={ """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } __lowerCAmelCase : Optional[Any] ={ """facebook/mbart-large-en-ro""": 1_0_2_4, """facebook/mbart-large-cc25""": 1_0_2_4, } # fmt: off __lowerCAmelCase : Tuple =["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _A ( __a ): snake_case__ : Dict = VOCAB_FILES_NAMES snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : int = ["""input_ids""", """attention_mask"""] snake_case__ : List[int] = [] snake_case__ : List[int] = [] def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = None , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenizer_file=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase = 1 lowercase = len(self.sp_model ) lowercase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowerCamelCase ) } lowercase = {v: k for k, v in self.lang_code_to_id.items()} lowercase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase = src_lang if src_lang is not None else """en_XX""" lowercase = self.lang_code_to_id[self._src_lang] lowercase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowercase = self.__dict__.copy() lowercase = None lowercase = self.sp_model.serialized_model_proto() return state def __setstate__( self , __lowerCAmelCase ): """simple docstring""" lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def A__ ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A__ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) lowercase = [1] * len(self.prefix_tokens ) lowercase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowercase = src_lang lowercase = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) lowercase = self.convert_tokens_to_ids(_lowerCamelCase ) lowercase = tgt_lang_id return inputs def A__ ( self ): """simple docstring""" lowercase = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __lowerCAmelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """""".join(_lowerCamelCase ).replace(_lowerCamelCase , """ """ ).strip() return out_string def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = "en_XX" , __lowerCAmelCase = None , __lowerCAmelCase = "ro_RO" , **__lowerCAmelCase , ): """simple docstring""" lowercase = src_lang lowercase = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def A__ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def A__ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.lang_code_to_id[src_lang] lowercase = [] lowercase = [self.eos_token_id, self.cur_lang_code] def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.lang_code_to_id[lang] lowercase = [] lowercase = [self.eos_token_id, self.cur_lang_code]
359
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) ->float: __lowercase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) __lowercase = np.array(__magic_name__ ) __lowercase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ) ->float: __lowercase = (1, 2, 1) __lowercase = (1, 1, 0, 7) __lowercase = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) __lowercase = model.fit(disp=__magic_name__ , maxiter=6_0_0 , method="nm" ) __lowercase = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ) ->float: __lowercase = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) __lowercase = regressor.predict(__magic_name__ ) return y_pred[0] def lowerCAmelCase__ ( __magic_name__ ) ->float: train_user.sort() __lowercase = np.percentile(__magic_name__ , 2_5 ) __lowercase = np.percentile(__magic_name__ , 7_5 ) __lowercase = qa - qa __lowercase = qa - (iqr * 0.1) return low_lim def lowerCAmelCase__ ( __magic_name__ , __magic_name__ ) ->bool: __lowercase = 0 __lowercase = 0 for i in list_vote: if i > actual_result: __lowercase = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _lowercase = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] _lowercase = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) _lowercase = Normalizer().fit_transform(data_input_df.values) # split data _lowercase = normalize_df[:, 2].tolist() _lowercase = normalize_df[:, 0].tolist() _lowercase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _lowercase = normalize_df[:, [1, 2]].tolist() _lowercase = x[: len(x) - 1] _lowercase = x[len(x) - 1 :] # for linear regression & sarimax _lowercase = total_date[: len(total_date) - 1] _lowercase = total_user[: len(total_user) - 1] _lowercase = total_match[: len(total_match) - 1] _lowercase = total_date[len(total_date) - 1 :] _lowercase = total_user[len(total_user) - 1 :] _lowercase = total_match[len(total_match) - 1 :] # voting system with forecasting _lowercase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _lowercase = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
118
0
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCAmelCase__ : str = 1_0 def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): for i in range(_snake_case ,_snake_case ): if array[i] == target: return i return -1 def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : str = len(_snake_case ) while left <= right: if right - left < precision: return lin_search(_snake_case ,_snake_case ,_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : Any = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE__ : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: SCREAMING_SNAKE_CASE__ : int = one_third - 1 elif array[two_third] < target: SCREAMING_SNAKE_CASE__ : List[Any] = two_third + 1 else: SCREAMING_SNAKE_CASE__ : str = one_third + 1 SCREAMING_SNAKE_CASE__ : Dict = two_third - 1 else: return -1 def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): if left < right: if right - left < precision: return lin_search(_snake_case ,_snake_case ,_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : Any = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE__ : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_snake_case ,one_third - 1 ,_snake_case ,_snake_case ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 ,_snake_case ,_snake_case ,_snake_case ) else: return rec_ternary_search(one_third + 1 ,two_third - 1 ,_snake_case ,_snake_case ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : int = input('Enter numbers separated by comma:\n').strip() UpperCAmelCase__ : int = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." UpperCAmelCase__ : Any = int(input('Enter the number to be found in the list:\n').strip()) UpperCAmelCase__ : Optional[Any] = ite_ternary_search(collection, target) UpperCAmelCase__ : int = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"""Iterative search: {target} found at positions: {resulta}""") print(f"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
545
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCamelCase : Tuple = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = False def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=None , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = seq_length SCREAMING_SNAKE_CASE__ : Any = is_training SCREAMING_SNAKE_CASE__ : List[str] = use_input_mask SCREAMING_SNAKE_CASE__ : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE__ : List[Any] = use_labels SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE__ : int = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : str = num_labels SCREAMING_SNAKE_CASE__ : Dict = num_choices SCREAMING_SNAKE_CASE__ : Union[str, Any] = scope SCREAMING_SNAKE_CASE__ : Dict = embedding_size def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : str = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = TFMobileBertModel(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[Any] = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = TFMobileBertForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = TFMobileBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFMobileBertForPreTraining(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : List[Any] = TFMobileBertForSequenceClassification(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE__ : List[Any] = TFMobileBertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Tuple = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE__ : Optional[int] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.num_labels SCREAMING_SNAKE_CASE__ : Tuple = TFMobileBertForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = TFMobileBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : str = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = TFMobileBertModelTest.TFMobileBertModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = TFMobileBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_tf class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ : Dict = model(SCREAMING_SNAKE_CASE__ )[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = [1, 6, 3_05_22] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 )
545
1
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE_ = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE_ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE_ = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
373
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : Tuple = "ibert" def __init__( self , lowercase_=3_0_5_2_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1E-12 , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_="absolute" , lowercase_=False , lowercase_="none" , **lowercase_ , ) -> Optional[int]: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = quant_mode UpperCAmelCase = force_dequant class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): @property def a_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
373
1
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging SCREAMING_SNAKE_CASE_ : int = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) SCREAMING_SNAKE_CASE_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( ): A__ = """https://pypi.org/pypi/diffusers/json""" A__ = json.loads(request.urlopen(_lowercase ).read() )["""releases"""].keys() return sorted(_lowercase , key=lambda UpperCAmelCase_ : version.Version(_lowercase ) ) def _snake_case ( ): if HF_MODULES_CACHE in sys.path: return sys.path.append(_lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) A__ = Path(_lowercase ) / """__init__.py""" if not init_path.exists(): init_path.touch() def _snake_case ( UpperCAmelCase_ : Tuple ): init_hf_modules() A__ = Path(_lowercase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_lowercase , exist_ok=_lowercase ) A__ = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def _snake_case ( UpperCAmelCase_ : int ): with open(_lowercase , """r""" , encoding="""utf-8""" ) as f: A__ = f.read() # Imports of the form `import .xxx` A__ = re.findall("""^\s*import\s+\.(\S+)\s*$""" , _lowercase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , _lowercase , flags=re.MULTILINE ) # Unique-ify return list(set(_lowercase ) ) def _snake_case ( UpperCAmelCase_ : Optional[Any] ): A__ = False A__ = [module_file] A__ = [] # Let's recurse through all relative imports while not no_change: A__ = [] for f in files_to_check: new_imports.extend(get_relative_imports(_lowercase ) ) A__ = Path(_lowercase ).parent A__ = [str(module_path / m ) for m in new_imports] A__ = [f for f in new_import_files if f not in all_relative_imports] A__ = [F"""{f}.py""" for f in new_import_files] A__ = len(_lowercase ) == 0 all_relative_imports.extend(_lowercase ) return all_relative_imports def _snake_case ( UpperCAmelCase_ : Optional[Any] ): with open(_lowercase , """r""" , encoding="""utf-8""" ) as f: A__ = f.read() # Imports of the form `import xxx` A__ = re.findall("""^\s*import\s+(\S+)\s*$""" , _lowercase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , _lowercase , flags=re.MULTILINE ) # Only keep the top-level module A__ = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all A__ = list(set(_lowercase ) ) A__ = [] for imp in imports: try: importlib.import_module(_lowercase ) except ImportError: missing_packages.append(_lowercase ) if len(_lowercase ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"""{', '.join(_lowercase )}. Run `pip install {' '.join(_lowercase )}`""" ) return get_relative_imports(_lowercase ) def _snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] ): A__ = module_path.replace(os.path.sep , """.""" ) A__ = importlib.import_module(_lowercase ) if class_name is None: return find_pipeline_class(_lowercase ) return getattr(_lowercase , _lowercase ) def _snake_case ( UpperCAmelCase_ : Tuple ): from ..pipelines import DiffusionPipeline A__ = dict(inspect.getmembers(_lowercase , inspect.isclass ) ) A__ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _lowercase ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) A__ = cls return pipeline_class def _snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] = None , UpperCAmelCase_ : Union[str, Any] = False , UpperCAmelCase_ : Tuple = False , UpperCAmelCase_ : Optional[Any] = None , UpperCAmelCase_ : List[str] = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : str = False , ): A__ = str(_lowercase ) A__ = os.path.join(_lowercase , _lowercase ) if os.path.isfile(_lowercase ): A__ = module_file_or_url A__ = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: A__ = get_diffusers_versions() # cut ".dev0" A__ = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: A__ = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: A__ = F"""v{revision}""" elif revision == "main": A__ = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub A__ = COMMUNITY_PIPELINES_URL.format(revision=_lowercase , pipeline=_lowercase ) try: A__ = cached_download( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , use_auth_token=_lowercase , ) A__ = """git""" A__ = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached A__ = hf_hub_download( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , use_auth_token=_lowercase , ) A__ = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment A__ = check_imports(_lowercase ) # Now we move the module inside our cached dynamic modules. A__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_lowercase ) A__ = Path(_lowercase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_lowercase , submodule_path / module_file ) for module_needed in modules_needed: A__ = F"""{module_needed}.py""" shutil.copy(os.path.join(_lowercase , _lowercase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_lowercase , _lowercase ): A__ = use_auth_token elif use_auth_token is True: A__ = HfFolder.get_token() else: A__ = None A__ = model_info(_lowercase , revision=_lowercase , token=_lowercase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. A__ = submodule_path / commit_hash A__ = full_submodule + os.path.sep + commit_hash create_dynamic_module(_lowercase ) if not (submodule_path / module_file).exists(): shutil.copy(_lowercase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _lowercase , F"""{module_needed}.py""" , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) return os.path.join(_lowercase , _lowercase ) def _snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = False , UpperCAmelCase_ : Dict = False , UpperCAmelCase_ : Dict = None , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : Any = None , UpperCAmelCase_ : Optional[int] = False , **UpperCAmelCase_ : List[Any] , ): A__ = get_cached_module_file( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) return get_class_in_module(_lowercase , final_module.replace(""".py""" , """""" ) )
718
"""simple docstring""" from itertools import count def _snake_case ( UpperCAmelCase_ : int = 50 ): A__ = [1] * min_block_length for n in count(UpperCAmelCase_ ): fill_count_functions.append(1 ) for block_length in range(UpperCAmelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(f"""{solution() = }""")
500
0
import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _SCREAMING_SNAKE_CASE = get_logger() _SCREAMING_SNAKE_CASE = None class SCREAMING_SNAKE_CASE_ ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__( self : Any , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : str ): """simple docstring""" super().__init__(features=UpperCamelCase__ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( f"""Expected {device} to be a `str` not {type(UpperCamelCase__ )}, as `jaxlib.xla_extension.Device` """ """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCamelCase = device if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) UpperCamelCase = str(jax.devices()[0] ) UpperCamelCase = jnp_array_kwargs @staticmethod def lowerCamelCase_ ( ): """simple docstring""" import jax return {str(UpperCamelCase__ ): device for device in jax.devices()} def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : List[Any] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and column: if all( isinstance(UpperCamelCase__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCamelCase__ , axis=0 ) return column def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[Any] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(UpperCamelCase__ , (str, bytes, type(UpperCamelCase__ )) ): return value elif isinstance(UpperCamelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase = {} if isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase = {"""dtype""": jnp.intaa} else: UpperCamelCase = {"""dtype""": jnp.intaa} elif isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase__ , PIL.Image.Image ): UpperCamelCase = np.asarray(UpperCamelCase__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCamelCase__ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCamelCase__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCamelCase__ , """__array__""" ) and not isinstance(UpperCamelCase__ , jax.Array ): UpperCamelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase__ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Dict ): """simple docstring""" return map_nested(self._recursive_tensorize , UpperCamelCase__ , map_list=UpperCamelCase__ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_row(UpperCamelCase__ ) UpperCamelCase = self.python_features_decoder.decode_row(UpperCamelCase__ ) return self.recursive_tensorize(UpperCamelCase__ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_column(UpperCamelCase__ ) UpperCamelCase = self.python_features_decoder.decode_column(UpperCamelCase__ , pa_table.column_names[0] ) UpperCamelCase = self.recursive_tensorize(UpperCamelCase__ ) UpperCamelCase = self._consolidate(UpperCamelCase__ ) return column def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_batch(UpperCamelCase__ ) UpperCamelCase = self.python_features_decoder.decode_batch(UpperCamelCase__ ) UpperCamelCase = self.recursive_tensorize(UpperCamelCase__ ) for column_name in batch: UpperCamelCase = self._consolidate(batch[column_name] ) return batch
537
"""simple docstring""" __lowercase : Union[str, Any] = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) __lowercase : Any = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 1_2, """Pm""": 1_5, """Em""": 1_8, """Zm""": 2_1, """Ym""": 2_4, } def lowerCamelCase_ ( _lowerCamelCase : float , _lowerCamelCase : str , _lowerCamelCase : str ): lowerCamelCase_ = from_type.lower().strip('''s''' ) lowerCamelCase_ = to_type.lower().strip('''s''' ) lowerCamelCase_ = UNIT_SYMBOL.get(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = UNIT_SYMBOL.get(_lowerCamelCase , _lowerCamelCase ) if from_sanitized not in METRIC_CONVERSION: lowerCamelCase_ = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(_lowerCamelCase )}""" ) raise ValueError(_lowerCamelCase ) if to_sanitized not in METRIC_CONVERSION: lowerCamelCase_ = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(_lowerCamelCase )}""" ) raise ValueError(_lowerCamelCase ) lowerCamelCase_ = METRIC_CONVERSION[from_sanitized] lowerCamelCase_ = METRIC_CONVERSION[to_sanitized] lowerCamelCase_ = 1 if from_exponent > to_exponent: lowerCamelCase_ = from_exponent - to_exponent else: lowerCamelCase_ = -(to_exponent - from_exponent) return value * pow(1_0 , _lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
142
0
from __future__ import annotations _UpperCamelCase : int =1.6_021E-19 # units = C def a__ (__lowercase :float , __lowercase :float , __lowercase :float , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
709
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def a__ (__lowercase :str , __lowercase :int ) -> Dict: assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a__ (__lowercase :Union[str, Any] , __lowercase :str , __lowercase :str , __lowercase :str ) -> int: _A : str = tmp_path / '''cache''' _A : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _A : Any = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_sql_dataset(__lowercase , __lowercase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def a__ (__lowercase :Dict , __lowercase :Union[str, Any] , __lowercase :Dict , __lowercase :int ) -> List[str]: _A : Union[str, Any] = tmp_path / '''cache''' _A : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _A : Tuple = features.copy() if features else default_expected_features _A : Union[str, Any] = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _A : int = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=__lowercase , cache_dir=__lowercase ).read() _check_sql_dataset(__lowercase , __lowercase ) def a__ (__lowercase :Optional[Any] ) -> List[str]: with contextlib.closing(sqlitea.connect(__lowercase ) ) as con: _A : List[str] = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def a__ (__lowercase :Tuple , __lowercase :List[str] , __lowercase :Tuple ) -> str: _A : Optional[int] = tmp_path / '''cache''' _A : Dict = os.path.join(__lowercase , '''tmp.sql''' ) _A : Optional[Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowercase ).read() SqlDatasetWriter(__lowercase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() _A : Dict = iter_sql_file(__lowercase ) _A : Any = iter_sql_file(__lowercase ) for rowa, rowa in zip(__lowercase , __lowercase ): assert rowa == rowa @require_sqlalchemy def a__ (__lowercase :Optional[Any] , __lowercase :Tuple , __lowercase :Union[str, Any] ) -> Union[str, Any]: _A : Optional[Any] = tmp_path / '''cache''' _A : Union[str, Any] = os.path.join(__lowercase , '''tmp.sql''' ) _A : Any = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowercase ).read() SqlDatasetWriter(__lowercase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() _A : Union[str, Any] = iter_sql_file(__lowercase ) _A : str = iter_sql_file(__lowercase ) for rowa, rowa in zip(__lowercase , __lowercase ): assert rowa == rowa @require_sqlalchemy def a__ (__lowercase :Union[str, Any] , __lowercase :Dict , __lowercase :int ) -> Any: _A : Optional[int] = tmp_path / '''cache''' _A : Optional[Any] = os.path.join(__lowercase , '''tmp.sql''' ) _A : Tuple = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowercase ).read() with pytest.raises(__lowercase ): SqlDatasetWriter(__lowercase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
332
0
def __A ( _A ): """simple docstring""" __a = 0 # if input_string is "aba" than new_input_string become "a|b|a" __a = '''''' __a = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __a = 0, 0 # length[i] shows the length of palindromic substring with center i __a = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string __a = 0 for j in range(len(_A ) ): __a = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __a = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __a = j - k + 1 # noqa: E741 __a = j + k - 1 # update max_length and start position if max_length < length[j]: __a = length[j] __a = j # create that string __a = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
197
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :str = XCLIPTextConfig() # derive patch size from model name __magic_name__ :Union[str, Any] = model_name.find('''patch''' ) __magic_name__ :Optional[Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) __magic_name__ :int = XCLIPVisionConfig(patch_size=snake_case, num_frames=snake_case ) if "large" in model_name: __magic_name__ :Dict = 7_6_8 __magic_name__ :int = 3_0_7_2 __magic_name__ :List[Any] = 1_2 __magic_name__ :str = 1_0_2_4 __magic_name__ :Any = 4_0_9_6 __magic_name__ :Optional[Any] = 1_6 __magic_name__ :Union[str, Any] = 2_4 __magic_name__ :Union[str, Any] = 7_6_8 __magic_name__ :Tuple = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": __magic_name__ :List[str] = 3_3_6 __magic_name__ :Any = XCLIPConfig.from_text_vision_configs(snake_case, snake_case ) if "large" in model_name: __magic_name__ :str = 7_6_8 return config def __lowercase ( snake_case ): """simple docstring""" if name == "token_embedding.weight": __magic_name__ :Any = name.replace('''token_embedding.weight''', '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": __magic_name__ :Any = name.replace('''positional_embedding''', '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: __magic_name__ :List[str] = name.replace('''ln_1''', '''layer_norm1''' ) if "ln_2" in name: __magic_name__ :str = name.replace('''ln_2''', '''layer_norm2''' ) if "c_fc" in name: __magic_name__ :List[Any] = name.replace('''c_fc''', '''fc1''' ) if "c_proj" in name: __magic_name__ :Any = name.replace('''c_proj''', '''fc2''' ) if name.startswith('''transformer.resblocks''' ): __magic_name__ :Any = name.replace('''transformer.resblocks''', '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: __magic_name__ :Union[str, Any] = name.replace('''attn.out_proj''', '''self_attn.out_proj''' ) if "ln_final" in name: __magic_name__ :Tuple = name.replace('''ln_final''', '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": __magic_name__ :List[Any] = name.replace('''visual.class_embedding''', '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": __magic_name__ :Any = name.replace('''visual.positional_embedding''', '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): __magic_name__ :Union[str, Any] = name.replace('''visual.transformer.resblocks''', '''vision_model.encoder.layers''' ) if "visual.conv1" in name: __magic_name__ :Tuple = name.replace('''visual.conv1''', '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: __magic_name__ :Tuple = name.replace('''visual.ln_pre''', '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: __magic_name__ :Optional[Any] = name.replace('''visual.ln_post''', '''vision_model.post_layernorm''' ) if "visual.proj" in name: __magic_name__ :Tuple = name.replace('''visual.proj''', '''visual_projection.weight''' ) if "text_projection" in name: __magic_name__ :int = name.replace('''text_projection''', '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: __magic_name__ :int = name.replace('''prompts_visual_proj''', '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: __magic_name__ :Dict = name.replace('''prompts_visual_ln''', '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": __magic_name__ :List[Any] = name.replace('''positional''', '''position''' ) if name.startswith('''mit.resblocks''' ): __magic_name__ :Union[str, Any] = name.replace('''mit.resblocks''', '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): __magic_name__ :str = name.replace('''prompts_generator.norm''', '''prompts_generator.layernorm''' ) return name def __lowercase ( snake_case, snake_case ): """simple docstring""" for key in orig_state_dict.copy().keys(): __magic_name__ :Any = orig_state_dict.pop(snake_case ) if "attn.in_proj" in key: __magic_name__ :str = key.split('''.''' ) if key.startswith('''visual''' ): __magic_name__ :List[Any] = key_split[3] __magic_name__ :List[Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __magic_name__ :List[Any] = val[ :dim, : ] __magic_name__ :List[str] = val[ dim : dim * 2, : ] __magic_name__ :List[str] = val[ -dim:, : ] else: __magic_name__ :str = val[ :dim ] __magic_name__ :Optional[int] = val[ dim : dim * 2 ] __magic_name__ :Any = val[ -dim: ] else: if "weight" in key: __magic_name__ :int = val[ :dim, : ] __magic_name__ :Union[str, Any] = val[ dim : dim * 2, : ] __magic_name__ :List[Any] = val[ -dim:, : ] else: __magic_name__ :Union[str, Any] = val[:dim] __magic_name__ :str = val[ dim : dim * 2 ] __magic_name__ :Dict = val[-dim:] elif key.startswith('''mit''' ): __magic_name__ :List[Any] = key_split[2] __magic_name__ :Any = config.vision_config.mit_hidden_size if "weight" in key: __magic_name__ :Union[str, Any] = val[:dim, :] __magic_name__ :Optional[int] = val[dim : dim * 2, :] __magic_name__ :int = val[-dim:, :] else: __magic_name__ :Tuple = val[:dim] __magic_name__ :Optional[int] = val[dim : dim * 2] __magic_name__ :Optional[int] = val[-dim:] else: __magic_name__ :Any = key_split[2] __magic_name__ :List[Any] = config.text_config.hidden_size if "weight" in key: __magic_name__ :Union[str, Any] = val[:dim, :] __magic_name__ :Tuple = val[ dim : dim * 2, : ] __magic_name__ :str = val[-dim:, :] else: __magic_name__ :int = val[:dim] __magic_name__ :Any = val[ dim : dim * 2 ] __magic_name__ :str = val[-dim:] else: __magic_name__ :Tuple = rename_key(snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __magic_name__ :List[Any] = val.T __magic_name__ :Optional[Any] = val return orig_state_dict def __lowercase ( snake_case ): """simple docstring""" if num_frames == 8: __magic_name__ :Any = '''eating_spaghetti_8_frames.npy''' elif num_frames == 1_6: __magic_name__ :List[Any] = '''eating_spaghetti.npy''' elif num_frames == 3_2: __magic_name__ :Tuple = '''eating_spaghetti_32_frames.npy''' __magic_name__ :str = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename=snake_case, repo_type='''dataset''', ) __magic_name__ :List[Any] = np.load(snake_case ) return list(snake_case ) def __lowercase ( snake_case, snake_case=None, snake_case=False ): """simple docstring""" __magic_name__ :Union[str, Any] = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __magic_name__ :Optional[int] = model_to_url[model_name] __magic_name__ :List[str] = 8 if "16-frames" in model_name: __magic_name__ :List[Any] = 1_6 elif "shot" in model_name: __magic_name__ :Dict = 3_2 __magic_name__ :str = get_xclip_config(snake_case, snake_case ) __magic_name__ :List[Any] = XCLIPModel(snake_case ) model.eval() if "drive" in checkpoint_url: __magic_name__ :Any = '''pytorch_model.bin''' gdown.cached_download(snake_case, snake_case, quiet=snake_case ) __magic_name__ :Optional[Any] = torch.load(snake_case, map_location='''cpu''' )['''model'''] else: __magic_name__ :Optional[int] = torch.hub.load_state_dict_from_url(snake_case )['''model'''] __magic_name__ :List[str] = convert_state_dict(snake_case, snake_case ) __magic_name__ :List[Any] = XCLIPModel(snake_case ) __magic_name__ , __magic_name__ :Optional[Any] = model.load_state_dict(snake_case, strict=snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __magic_name__ :str = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4 __magic_name__ :Optional[int] = VideoMAEImageProcessor(size=snake_case ) __magic_name__ :Optional[int] = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) __magic_name__ :Tuple = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) __magic_name__ :Optional[int] = XCLIPProcessor(image_processor=snake_case, tokenizer=snake_case ) __magic_name__ :List[Any] = prepare_video(snake_case ) __magic_name__ :str = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''], videos=snake_case, return_tensors='''pt''', padding=snake_case ) print('''Shape of pixel values:''', inputs.pixel_values.shape ) with torch.no_grad(): __magic_name__ :Tuple = model(**snake_case ) # Verify outputs __magic_name__ :Any = outputs.logits_per_video __magic_name__ :str = logits_per_video.softmax(dim=1 ) print('''Probs:''', snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": __magic_name__ :Dict = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __magic_name__ :str = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] ) elif model_name == "xclip-base-patch16": __magic_name__ :Tuple = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __magic_name__ :Tuple = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] ) elif model_name == "xclip-large-patch14": __magic_name__ :str = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __magic_name__ :Optional[int] = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __magic_name__ :Optional[int] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __magic_name__ :List[str] = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": __magic_name__ :List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __magic_name__ :Tuple = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __magic_name__ :List[str] = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __magic_name__ :Optional[int] = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __magic_name__ :Optional[int] = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __magic_name__ :Optional[int] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __magic_name__ :Any = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __magic_name__ :Optional[int] = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(snake_case, snake_case, atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(snake_case, organization='''nielsr''' ) processor.push_to_hub(snake_case, organization='''nielsr''' ) slow_tokenizer.push_to_hub(snake_case, organization='''nielsr''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __magic_name__ ( _snake_case , _snake_case ): UpperCAmelCase = """convnextv2""" def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = num_stages UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_path_rate UpperCAmelCase = image_size UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
705
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
1
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch A_ = logging.get_logger(__name__) @add_end_docstrings( snake_case__ , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class __lowercase ( snake_case__ ): def __a ( self : Union[str, Any] , __lowerCamelCase : GenericTensor ) -> str: '''simple docstring''' if self.framework == "tf": lowercase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__lowerCamelCase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __a ( self : Dict , __lowerCamelCase : GenericTensor ) -> Optional[Any]: '''simple docstring''' lowercase = self.get_masked_index(__lowerCamelCase ) lowercase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , f'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def __a ( self : Union[str, Any] , __lowerCamelCase : GenericTensor ) -> Optional[Any]: '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__lowerCamelCase ) def __a ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str]=None , **__lowerCamelCase : List[str] ) -> Tuple: '''simple docstring''' if return_tensors is None: lowercase = self.framework lowercase = self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) self.ensure_exactly_one_mask_token(__lowerCamelCase ) return model_inputs def __a ( self : Any , __lowerCamelCase : List[Any] ) -> List[str]: '''simple docstring''' lowercase = self.model(**__lowerCamelCase ) lowercase = model_inputs["input_ids"] return model_outputs def __a ( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=5 , __lowerCamelCase : Optional[int]=None ) -> List[Any]: '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: lowercase = target_ids.shape[0] lowercase = model_outputs["input_ids"][0] lowercase = model_outputs["logits"] if self.framework == "tf": lowercase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase = outputs.numpy() lowercase = outputs[0, masked_index, :] lowercase = stable_softmax(__lowerCamelCase , axis=-1 ) if target_ids is not None: lowercase = tf.gather_nd(tf.squeeze(__lowerCamelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) lowercase = tf.expand_dims(__lowerCamelCase , 0 ) lowercase = tf.math.top_k(__lowerCamelCase , k=__lowerCamelCase ) lowercase = topk.values.numpy(), topk.indices.numpy() else: lowercase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__lowerCamelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase = outputs[0, masked_index, :] lowercase = logits.softmax(dim=-1 ) if target_ids is not None: lowercase = probs[..., target_ids] lowercase = probs.topk(__lowerCamelCase ) lowercase = [] lowercase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowercase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowercase = input_ids.numpy().copy() if target_ids is not None: lowercase = target_ids[p].tolist() lowercase = p # Filter padding out: lowercase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) lowercase = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__lowerCamelCase ) result.append(__lowerCamelCase ) if single_mask: return result[0] return result def __a ( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=None ) -> Union[str, Any]: '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase = [targets] try: lowercase = self.tokenizer.get_vocab() except Exception: lowercase = {} lowercase = [] for target in targets: lowercase = vocab.get(__lowerCamelCase , __lowerCamelCase ) if id_ is None: lowercase = self.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , max_length=1 , truncation=__lowerCamelCase , )["input_ids"] if len(__lowerCamelCase ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowercase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) lowercase = list(set(__lowerCamelCase ) ) if len(__lowerCamelCase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowercase = np.array(__lowerCamelCase ) return target_ids def __a ( self : Dict , __lowerCamelCase : Any=None , __lowerCamelCase : List[Any]=None ) -> List[str]: '''simple docstring''' lowercase = {} if targets is not None: lowercase = self.get_target_ids(__lowerCamelCase , __lowerCamelCase ) lowercase = target_ids if top_k is not None: lowercase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : str , __lowerCamelCase : Tuple , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase = super().__call__(__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) == 1: return outputs[0] return outputs
604
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number | (1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number & ~(1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return number ^ (1 << position) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
244
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCamelCase = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small") _UpperCamelCase = AutoTokenizer.from_pretrained("google/mt5-small") _UpperCamelCase = tokenizer("Hello there" , return_tensors="np").input_ids _UpperCamelCase = tokenizer("Hi I am" , return_tensors="np").input_ids _UpperCamelCase = shift_tokens_right(lowercase_ , model.config.pad_token_id , model.config.decoder_start_token_id) _UpperCamelCase = model(lowercase_ , decoder_input_ids=lowercase_).logits _UpperCamelCase = optax.softmax_cross_entropy(lowercase_ , onehot(lowercase_ , logits.shape[-1])).mean() _UpperCamelCase = -(labels.shape[-1] * loss.item()) _UpperCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''dpr''' def __init__( self : Optional[Any] , lowercase_ : int=30522 , lowercase_ : str=768 , lowercase_ : List[Any]=12 , lowercase_ : Dict=12 , lowercase_ : str=3072 , lowercase_ : Any="gelu" , lowercase_ : Any=0.1 , lowercase_ : Any=0.1 , lowercase_ : str=512 , lowercase_ : str=2 , lowercase_ : List[Any]=0.02 , lowercase_ : Dict=1e-1_2 , lowercase_ : List[str]=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : int = 0 , **lowercase_ : int , ) -> int: """simple docstring""" super().__init__(pad_token_id=lowercase_ , **lowercase_) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = projection_dim _UpperCamelCase = position_embedding_type
82
0
class A : # Public class to implement a graph def __init__( self: int , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: list[list[bool]] ) -> None: '''simple docstring''' UpperCAmelCase_ =row UpperCAmelCase_ =col UpperCAmelCase_ =graph def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: list[list[bool]] ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: list[list[bool]] ) -> None: '''simple docstring''' UpperCAmelCase_ =[-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase_ =[-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase_ =True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _lowerCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple ) -> int: # And finally, count all islands. '''simple docstring''' UpperCAmelCase_ =[[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase_ =0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) count += 1 return count
54
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
1
from math import sqrt def lowercase_( SCREAMING_SNAKE_CASE_ = 1000000 ): '''simple docstring''' lowerCamelCase : int = 0 lowerCamelCase : int = 0 lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(SCREAMING_SNAKE_CASE_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
231
from __future__ import annotations import numpy as np def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase , lowerCamelCase : Dict = np.shape(SCREAMING_SNAKE_CASE_ ) if rows != columns: lowerCamelCase : int = ( "'table' has to be of square shaped array but got a " f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = np.zeros((rows, columns) ) lowerCamelCase : List[str] = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Dict = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) lowerCamelCase : Dict = (table[i][j] - total) / upper[j][j] lowerCamelCase : Dict = 1 for j in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : int = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : Any = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
231
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __magic_name__: int = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex __magic_name__: List[Any] = 10 __magic_name__: List[Any] = 256 def UpperCamelCase ( _A ): """simple docstring""" if len(_A ) < MIN_NUM_TOKENS: return None __magic_name__ : Optional[int] = MinHash(num_perm=_A ) for token in set(_A ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase ( _A ): """simple docstring""" return {t for t in NON_ALPHA.split(_A ) if len(t.strip() ) > 0} class snake_case__ : def __init__( self , *, lowerCAmelCase__ = 0.8_5 , ) -> str: __magic_name__ : List[str] = duplication_jaccard_threshold __magic_name__ : str = NUM_PERM __magic_name__ : str = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __magic_name__ : Tuple = defaultdict(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self._index.query(lowerCAmelCase__ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(lowerCAmelCase__ , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[List[Dict]]: __magic_name__ : List[str] = [] for base, duplicates in self._duplicate_clusters.items(): __magic_name__ : List[str] = [base] + list(lowerCAmelCase__ ) # reformat the cluster to be a list of dict __magic_name__ : List[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase__ ) return duplicate_clusters def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : str = self.get_duplicate_clusters() with open(lowerCAmelCase__ , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ ,__magic_name__ : Optional[int] = element __magic_name__ : str = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase ( _A ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash, ThreadedIterator(_A, max_queue_size=10000 ), chunksize=100, ): if data is not None: yield data def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Optional[Any] = DuplicationIndex(duplication_jaccard_threshold=_A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_A ) ), max_queue_size=100 ) ): di.add(_A, _A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Optional[int] = get_tokens(_A ) __magic_name__ : int = get_tokens(_A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __magic_name__: List[str] = None def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Tuple = [] for elementa in cluster: __magic_name__ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __magic_name__ : Optional[int] = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_A, _A ) >= jaccard_threshold: elementa["copies"] += 1 break else: __magic_name__ : Union[str, Any] = 1 extremes.append(_A ) return extremes def UpperCamelCase ( _A, _A, _A ): """simple docstring""" global _shared_dataset __magic_name__ : List[str] = dataset __magic_name__ : str = [] __magic_name__ : int = partial(_find_cluster_extremes_shared, jaccard_threshold=_A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _A, _A, ), total=len(_A ), ): extremes_list.append(_A ) return extremes_list def UpperCamelCase ( _A, _A = 0.85 ): """simple docstring""" __magic_name__ : Tuple = make_duplicate_clusters(_A, _A ) __magic_name__ : int = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __magic_name__ : str = {} __magic_name__ : int = find_extremes(_A, _A, _A ) for extremes in extremes_clusters: for element in extremes: __magic_name__ : Dict = element __magic_name__ : Optional[Any] = duplicate_indices - set(extreme_dict.keys() ) __magic_name__ : List[Any] = dataset.filter(lambda _A, _A : idx not in remove_indices, with_indices=_A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __magic_name__ : Union[str, Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __magic_name__ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(_A )}' ) print(f'Number of duplicate clusters: {len(_A )}' ) print(f'Files in duplicate cluster: {len(_A )}' ) print(f'Unique files in duplicate cluster: {len(_A )}' ) print(f'Filtered dataset size: {len(_A )}' ) return ds_filter, duplicate_clusters
324
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_lowerCAmelCase ) class snake_case__ ( _lowerCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowercase__ : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowercase__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) lowercase__ : ClassVar[Features] = Features({'''labels''': ClassLabel} ) lowercase__ : str = "text" lowercase__ : str = "labels" def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) __magic_name__ : Union[str, Any] = copy.deepcopy(self ) __magic_name__ : Optional[int] = self.label_schema.copy() __magic_name__ : Union[str, Any] = features[self.label_column] __magic_name__ : int = label_schema return task_template @property def __magic_name__ ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
324
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _SCREAMING_SNAKE_CASE ( __lowercase : Tuple ) -> Optional[int]: """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" __A = """mock-s3-bucket""" __A = f"s3://{mock_bucket}" __A = extract_path_from_uri(__lowercase ) assert dataset_path.startswith("""s3://""" ) is False __A = """./local/path""" __A = extract_path_from_uri(__lowercase ) assert dataset_path == new_dataset_path def _SCREAMING_SNAKE_CASE ( __lowercase : List[Any] ) -> int: """simple docstring""" __A = is_remote_filesystem(__lowercase ) assert is_remote is True __A = fsspec.filesystem("""file""" ) __A = is_remote_filesystem(__lowercase ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , __lowercase ) def _SCREAMING_SNAKE_CASE ( __lowercase : Tuple , __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : List[str] ) -> Union[str, Any]: """simple docstring""" __A = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} __A = input_paths[compression_fs_class.protocol] if input_path is None: __A = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowercase ) __A = fsspec.filesystem(compression_fs_class.protocol , fo=__lowercase ) assert isinstance(__lowercase , __lowercase ) __A = os.path.basename(__lowercase ) __A = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(__lowercase , """r""" , encoding="""utf-8""" ) as f, open(__lowercase , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def _SCREAMING_SNAKE_CASE ( __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Tuple ) -> Union[str, Any]: """simple docstring""" __A = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} __A = compressed_file_paths[protocol] __A = """dataset.jsonl""" __A = f"{protocol}://{member_file_path}::{compressed_file_path}" __A , *__A = fsspec.get_fs_token_paths(__lowercase ) assert fs.isfile(__lowercase ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( __lowercase : List[Any] , __lowercase : Dict , __lowercase : Tuple , __lowercase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __A = hf_api.dataset_info(__lowercase , token=__lowercase ) __A = HfFileSystem(repo_info=__lowercase , token=__lowercase ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(__lowercase ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def _SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" __A = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__lowercase , __lowercase , clobber=__lowercase ) with pytest.warns(__lowercase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__lowercase ) == 1 assert ( str(warning_info[0].message ) == f"A filesystem protocol was already set for {protocol} and will be overwritten." )
199
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( __lowercase : Any ) -> Optional[int]: """simple docstring""" return EnvironmentCommand() class __lowercase ( lowercase_ ): '''simple docstring''' @staticmethod def lowerCAmelCase_ ( UpperCamelCase_ : ArgumentParser ): """simple docstring""" __A = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = huggingface_hub.__version__ __A = """not installed""" __A = """NA""" if is_torch_available(): import torch __A = torch.__version__ __A = torch.cuda.is_available() __A = """not installed""" if is_transformers_available(): import transformers __A = transformers.__version__ __A = """not installed""" if is_accelerate_available(): import accelerate __A = accelerate.__version__ __A = """not installed""" if is_xformers_available(): import xformers __A = xformers.__version__ __A = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase_ ) ) return info @staticmethod def lowerCAmelCase_ ( UpperCamelCase_ : str ): """simple docstring""" return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
199
1
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict snake_case : List[Any] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] ): """simple docstring""" a :int = _TestCommandArgs(dataset=UpperCAmelCase_ , all_configs=UpperCAmelCase_ , save_infos=UpperCAmelCase_ ) a :List[Any] = TestCommand(*UpperCAmelCase_ ) test_command.run() a :List[str] = os.path.join(UpperCAmelCase_ , '''README.md''' ) assert os.path.exists(UpperCAmelCase_ ) a :Any = DatasetInfosDict.from_directory(UpperCAmelCase_ ) a :Optional[Any] = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 235_1563, '''num_examples''': 1_0000, }, { '''name''': '''validation''', '''num_bytes''': 23_8418, '''num_examples''': 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: a , a :Optional[Any] = getattr(dataset_infos['''default'''] , UpperCAmelCase_ ), getattr(expected_dataset_infos['''default'''] , UpperCAmelCase_ ) if key == "num_bytes": assert is_apercent_close(UpperCAmelCase_ , UpperCAmelCase_ ) elif key == "splits": assert list(UpperCAmelCase_ ) == list(UpperCAmelCase_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
445
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Optional[Any] = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'wavlm' def __init__( self , _lowerCamelCase=32 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase="group" , _lowerCamelCase="gelu" , _lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase=False , _lowerCamelCase=128 , _lowerCamelCase=16 , _lowerCamelCase=320 , _lowerCamelCase=800 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.05 , _lowerCamelCase=10 , _lowerCamelCase=2 , _lowerCamelCase=0.0 , _lowerCamelCase=10 , _lowerCamelCase=320 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=100 , _lowerCamelCase=256 , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase="mean" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=256 , _lowerCamelCase=(512, 512, 512, 512, 1500) , _lowerCamelCase=(5, 3, 3, 1, 1) , _lowerCamelCase=(1, 2, 3, 1, 1) , _lowerCamelCase=512 , _lowerCamelCase=80 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=3 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) a :Union[str, Any] = hidden_size a :List[Any] = feat_extract_norm a :Tuple = feat_extract_activation a :Tuple = list(_lowerCamelCase ) a :Optional[Any] = list(_lowerCamelCase ) a :Optional[Any] = list(_lowerCamelCase ) a :int = conv_bias a :Tuple = num_buckets a :Tuple = max_bucket_distance a :int = num_conv_pos_embeddings a :List[str] = num_conv_pos_embedding_groups a :Tuple = len(self.conv_dim ) a :Any = num_hidden_layers a :Tuple = intermediate_size a :Any = hidden_act a :List[str] = num_attention_heads a :int = hidden_dropout a :Optional[Any] = attention_dropout a :Dict = activation_dropout a :Any = feat_proj_dropout a :Dict = final_dropout a :int = layerdrop a :Tuple = layer_norm_eps a :Union[str, Any] = initializer_range a :Union[str, Any] = num_ctc_classes a :Optional[Any] = vocab_size a :str = do_stable_layer_norm a :Dict = use_weighted_layer_sum a :Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a :List[Any] = apply_spec_augment a :Optional[int] = mask_time_prob a :Optional[Any] = mask_time_length a :Tuple = mask_time_min_masks a :Dict = mask_feature_prob a :List[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations a :Tuple = num_codevectors_per_group a :List[str] = num_codevector_groups a :List[Any] = contrastive_logits_temperature a :Union[str, Any] = num_negatives a :Union[str, Any] = codevector_dim a :Dict = proj_codevector_dim a :Union[str, Any] = diversity_loss_weight # ctc loss a :Dict = ctc_loss_reduction a :Optional[int] = ctc_zero_infinity # adapter a :Any = add_adapter a :str = adapter_kernel_size a :Tuple = adapter_stride a :Dict = num_adapter_layers a :Any = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a :Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a :List[Any] = list(_lowerCamelCase ) a :Optional[int] = list(_lowerCamelCase ) a :List[str] = list(_lowerCamelCase ) a :Optional[int] = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
445
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ : Optional[Any] = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
def A__ ( lowerCamelCase , lowerCamelCase ) -> int: while second != 0: UpperCamelCase_: Optional[Any] = first & second first ^= second UpperCamelCase_: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : Tuple = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
670
1
import operator as op def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): __snake_case : List[str] = [] __snake_case : Optional[int] = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation __snake_case : int = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: __snake_case : Optional[int] = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) __snake_case : List[Any] = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __magic_name__ = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
576
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "bert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Dict = hidden_size __snake_case : Any = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Any = hidden_act __snake_case : Any = intermediate_size __snake_case : List[str] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : str = type_vocab_size __snake_case : Any = initializer_range __snake_case : Any = layer_norm_eps __snake_case : List[Any] = position_embedding_type __snake_case : Dict = use_cache __snake_case : str = classifier_dropout class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" @property def lowercase_ ( self ): if self.task == "multiple-choice": __snake_case : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
576
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = 42 @flax_register_to_config class snake_case__ ( nn.Module , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = 32 A__ = 4 A__ = 4 A__ = ( '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''DownBlock2D''', ) A__ = ('''UpBlock2D''', '''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''') A__ = False A__ = (320, 640, 1_280, 1_280) A__ = 2 A__ = 8 A__ = None A__ = 1_280 A__ = 0.0 A__ = False A__ = jnp.floataa A__ = True A__ = 0 A__ = False def A_ ( self : Optional[int] , __a : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' __snake_case : List[str] = (1, self.in_channels, self.sample_size, self.sample_size) __snake_case : str = jnp.zeros(__a , dtype=jnp.floataa ) __snake_case : List[str] = jnp.ones((1,) , dtype=jnp.intaa ) __snake_case : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __snake_case : Optional[Any] = jax.random.split(__a ) __snake_case : Union[str, Any] = {'params': params_rng, 'dropout': dropout_rng} return self.init(__a , __a , __a , __a )["params"] def A_ ( self : str ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = self.block_out_channels __snake_case : str = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __snake_case : Dict = self.num_attention_heads or self.attention_head_dim # input __snake_case : str = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __snake_case : Any = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __snake_case : Any = FlaxTimestepEmbedding(__a , dtype=self.dtype ) __snake_case : Any = self.only_cross_attention if isinstance(__a , __a ): __snake_case : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__a , __a ): __snake_case : List[str] = (num_attention_heads,) * len(self.down_block_types ) # down __snake_case : Any = [] __snake_case : int = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __snake_case : str = output_channel __snake_case : int = block_out_channels[i] __snake_case : Optional[Any] = i == len(__a ) - 1 if down_block_type == "CrossAttnDownBlock2D": __snake_case : str = FlaxCrossAttnDownBlockaD( in_channels=__a , out_channels=__a , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __snake_case : Tuple = FlaxDownBlockaD( in_channels=__a , out_channels=__a , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__a ) __snake_case : int = down_blocks # mid __snake_case : str = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __snake_case : str = [] __snake_case : Any = list(reversed(__a ) ) __snake_case : Optional[Any] = list(reversed(__a ) ) __snake_case : Dict = list(reversed(__a ) ) __snake_case : str = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __snake_case : Dict = output_channel __snake_case : Any = reversed_block_out_channels[i] __snake_case : List[Any] = reversed_block_out_channels[min(i + 1 , len(__a ) - 1 )] __snake_case : Union[str, Any] = i == len(__a ) - 1 if up_block_type == "CrossAttnUpBlock2D": __snake_case : List[str] = FlaxCrossAttnUpBlockaD( in_channels=__a , out_channels=__a , prev_output_channel=__a , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __snake_case : Dict = FlaxUpBlockaD( in_channels=__a , out_channels=__a , prev_output_channel=__a , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__a ) __snake_case : Dict = output_channel __snake_case : List[str] = up_blocks # out __snake_case : int = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __snake_case : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , __a : List[str] , __a : Union[str, Any] , __a : int , __a : List[Any]=None , __a : Tuple=None , __a : bool = True , __a : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' # 1. time if not isinstance(__a , jnp.ndarray ): __snake_case : Optional[int] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__a , jnp.ndarray ) and len(timesteps.shape ) == 0: __snake_case : Any = timesteps.astype(dtype=jnp.floataa ) __snake_case : List[str] = jnp.expand_dims(__a , 0 ) __snake_case : List[str] = self.time_proj(__a ) __snake_case : Tuple = self.time_embedding(__a ) # 2. pre-process __snake_case : List[Any] = jnp.transpose(__a , (0, 2, 3, 1) ) __snake_case : Dict = self.conv_in(__a ) # 3. down __snake_case : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(__a , __a ): __snake_case : Dict = down_block(__a , __a , __a , deterministic=not train ) else: __snake_case : Dict = down_block(__a , __a , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __snake_case : List[str] = () for down_block_res_sample, down_block_additional_residual in zip( __a , __a ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __snake_case : Optional[int] = new_down_block_res_samples # 4. mid __snake_case : Tuple = self.mid_block(__a , __a , __a , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __snake_case : Tuple = down_block_res_samples[-(self.layers_per_block + 1) :] __snake_case : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__a , __a ): __snake_case : int = up_block( __a , temb=__a , encoder_hidden_states=__a , res_hidden_states_tuple=__a , deterministic=not train , ) else: __snake_case : Dict = up_block(__a , temb=__a , res_hidden_states_tuple=__a , deterministic=not train ) # 6. post-process __snake_case : Any = self.conv_norm_out(__a ) __snake_case : Optional[int] = nn.silu(__a ) __snake_case : List[str] = self.conv_out(__a ) __snake_case : Optional[int] = jnp.transpose(__a , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__a )
705
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : List[str] = SMALL_MODEL_IDENTIFIER __snake_case : str = 'pt' __snake_case : int = 'tf' def A_ ( self : str , __a : Any ) -> Tuple: '''simple docstring''' __snake_case : str = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def A_ ( self : List[Any] , __a : List[Any] ) -> str: '''simple docstring''' __snake_case : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def A_ ( self : Any ) -> Any: '''simple docstring''' __snake_case : Any = 'mock_framework' # Framework provided - return whatever the user provides __snake_case : int = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Dict = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : List[Any] = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def A_ ( self : int ) -> List[str]: '''simple docstring''' # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Any = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : List[str] = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): __snake_case : List[str] = FeaturesManager.determine_framework(__a ) def A_ ( self : List[str] ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ): __snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __snake_case : int = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_torch_available' , __a ): __snake_case : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch __snake_case : Tuple = MagicMock(return_value=__a ) __snake_case : Optional[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): __snake_case : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error __snake_case : int = MagicMock(return_value=__a ) __snake_case : Optional[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): with self.assertRaises(__a ): __snake_case : Any = FeaturesManager.determine_framework(self.test_model )
124
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :List[Any] ): __lowerCamelCase : str =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowerCamelCase : Tuple =get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__lowercase ) , torch_builtin(__lowercase ) ) ) self.assertFalse(torch.allclose(gelu_python(__lowercase ) , gelu_new(__lowercase ) ) ) def __lowercase ( self :str ): __lowerCamelCase : Dict =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowerCamelCase : str =get_activation('''gelu''' ) __lowerCamelCase : Tuple =get_activation('''gelu_10''' ) __lowerCamelCase : Optional[int] =torch_builtin(__lowercase ) __lowerCamelCase : Optional[Any] =geluaa(__lowercase ) __lowerCamelCase : List[str] =torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__lowercase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __lowercase ( self :Union[str, Any] ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__lowercase ): get_activation('''bogus''' ) with self.assertRaises(__lowercase ): get_activation(__lowercase ) def __lowercase ( self :Dict ): __lowerCamelCase : List[str] =get_activation('''gelu''' ) __lowerCamelCase : Tuple =1 __lowerCamelCase : List[str] =get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__lowercase ): __lowerCamelCase : Dict =acta.a
179
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : str = ["""pixel_values"""] def __init__( self :str , __lowercase :bool = True , __lowercase :Dict[str, int] = None , __lowercase :float = None , __lowercase :PILImageResampling = PILImageResampling.BILINEAR , __lowercase :bool = True , __lowercase :Union[int, float] = 1 / 255 , __lowercase :bool = True , __lowercase :Optional[Union[float, List[float]]] = None , __lowercase :Optional[Union[float, List[float]]] = None , **__lowercase :Tuple , ): super().__init__(**__lowercase ) __lowerCamelCase : int =size if size is not None else {'''shortest_edge''': 384} __lowerCamelCase : List[str] =get_size_dict(__lowercase , default_to_square=__lowercase ) __lowerCamelCase : Any =do_resize __lowerCamelCase : List[str] =size # Default value set here for backwards compatibility where the value in config is None __lowerCamelCase : Tuple =crop_pct if crop_pct is not None else 224 / 256 __lowerCamelCase : Any =resample __lowerCamelCase : List[str] =do_rescale __lowerCamelCase : Dict =rescale_factor __lowerCamelCase : Any =do_normalize __lowerCamelCase : int =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase : List[Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowercase ( self :Any , __lowercase :np.ndarray , __lowercase :Dict[str, int] , __lowercase :float , __lowercase :PILImageResampling = PILImageResampling.BICUBIC , __lowercase :Optional[Union[str, ChannelDimension]] = None , **__lowercase :int , ): __lowerCamelCase : int =get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __lowerCamelCase : Optional[int] =size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __lowerCamelCase : int =int(shortest_edge / crop_pct ) __lowerCamelCase : str =get_resize_output_image_size(__lowercase , size=__lowercase , default_to_square=__lowercase ) __lowerCamelCase : str =resize(image=__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__lowercase , size=(shortest_edge, shortest_edge) , data_format=__lowercase , **__lowercase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __lowercase , size=(shortest_edge, shortest_edge) , resample=__lowercase , data_format=__lowercase , **__lowercase ) def __lowercase ( self :int , __lowercase :np.ndarray , __lowercase :Union[int, float] , __lowercase :Optional[Union[str, ChannelDimension]] = None , **__lowercase :List[Any] , ): return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def __lowercase ( self :str , __lowercase :np.ndarray , __lowercase :Union[float, List[float]] , __lowercase :Union[float, List[float]] , __lowercase :Optional[Union[str, ChannelDimension]] = None , **__lowercase :Optional[int] , ): return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def __lowercase ( self :int , __lowercase :ImageInput , __lowercase :bool = None , __lowercase :Dict[str, int] = None , __lowercase :float = None , __lowercase :PILImageResampling = None , __lowercase :bool = None , __lowercase :float = None , __lowercase :bool = None , __lowercase :Optional[Union[float, List[float]]] = None , __lowercase :Optional[Union[float, List[float]]] = None , __lowercase :Optional[Union[str, TensorType]] = None , __lowercase :ChannelDimension = ChannelDimension.FIRST , **__lowercase :Optional[Any] , ): __lowerCamelCase : Optional[Any] =do_resize if do_resize is not None else self.do_resize __lowerCamelCase : int =crop_pct if crop_pct is not None else self.crop_pct __lowerCamelCase : List[Any] =resample if resample is not None else self.resample __lowerCamelCase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : List[Any] =do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : Optional[Any] =image_mean if image_mean is not None else self.image_mean __lowerCamelCase : str =image_std if image_std is not None else self.image_std __lowerCamelCase : str =size if size is not None else self.size __lowerCamelCase : Optional[int] =get_size_dict(__lowercase , default_to_square=__lowercase ) __lowerCamelCase : Optional[int] =make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase : List[Any] =[to_numpy_array(__lowercase ) for image in images] if do_resize: __lowerCamelCase : Union[str, Any] =[self.resize(image=__lowercase , size=__lowercase , crop_pct=__lowercase , resample=__lowercase ) for image in images] if do_rescale: __lowerCamelCase : int =[self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __lowerCamelCase : Union[str, Any] =[self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __lowerCamelCase : Union[str, Any] =[to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCamelCase : Tuple ={'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
179
1
class __magic_name__ ( _a): pass class __magic_name__ ( _a): pass class __magic_name__ : def __init__( self : Optional[int] ): UpperCAmelCase = [ [], [], [], ] def _UpperCAmelCase ( self : Tuple ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : int ): try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(__SCREAMING_SNAKE_CASE ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def _UpperCAmelCase ( self : List[str] ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self : Optional[Any] ): return "\n".join(f'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __magic_name__ : def __init__( self : Any ): UpperCAmelCase = [] def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : int ): if len(self.queue ) == 1_0_0: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Optional[Any] ): if not self.queue: raise UnderFlowError("The queue is empty" ) else: UpperCAmelCase = min(self.queue ) self.queue.remove(__SCREAMING_SNAKE_CASE ) return data def __str__( self : Optional[Any] ): return str(self.queue ) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(_lowerCAmelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCAmelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(_lowerCAmelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCAmelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
405
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase ={ "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
405
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase__ ( __snake_case , unittest.TestCase ): __snake_case : Optional[int] = ShapEImgaImgPipeline __snake_case : int = ["image"] __snake_case : List[Any] = ["image"] __snake_case : Optional[int] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __snake_case : Union[str, Any] = False @property def A__ ( self ): return 32 @property def A__ ( self ): return 32 @property def A__ ( self ): return self.time_input_dim * 4 @property def A__ ( self ): return 8 @property def A__ ( self ): torch.manual_seed(0 ) _A : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=64 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,) _A : List[Any] = CLIPVisionModel(A__ ) return model @property def A__ ( self ): _A : Union[str, Any] = CLIPImageProcessor( crop_size=224 ,do_center_crop=A__ ,do_normalize=A__ ,do_resize=A__ ,image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] ,image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] ,resample=3 ,size=224 ,) return image_processor @property def A__ ( self ): torch.manual_seed(0 ) _A : Any = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _A : Union[str, Any] = PriorTransformer(**A__ ) return model @property def A__ ( self ): torch.manual_seed(0 ) _A : Optional[int] = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _A : str = ShapERenderer(**A__ ) return model def A__ ( self ): _A : Dict = self.dummy_prior _A : Optional[Any] = self.dummy_image_encoder _A : Tuple = self.dummy_image_processor _A : Union[str, Any] = self.dummy_renderer _A : Optional[Any] = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=1024 ,prediction_type='''sample''' ,use_karras_sigmas=A__ ,clip_sample=A__ ,clip_sample_range=1.0 ,) _A : Any = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def A__ ( self ,A__ ,A__=0 ): _A : Tuple = floats_tensor((1, 3, 64, 64) ,rng=random.Random(A__ ) ).to(A__ ) if str(A__ ).startswith('''mps''' ): _A : int = torch.manual_seed(A__ ) else: _A : List[Any] = torch.Generator(device=A__ ).manual_seed(A__ ) _A : Tuple = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def A__ ( self ): _A : Tuple = '''cpu''' _A : Optional[Any] = self.get_dummy_components() _A : str = self.pipeline_class(**A__ ) _A : List[Any] = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) _A : Union[str, Any] = pipe(**self.get_dummy_inputs(A__ ) ) _A : List[str] = output.images[0] _A : List[str] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _A : Optional[int] = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A__ ( self ): _A : Union[str, Any] = torch_device == '''cpu''' _A : Dict = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=A__ ,relax_max_difference=A__ ,) def A__ ( self ): _A : List[str] = self.get_dummy_components() _A : Dict = self.pipeline_class(**A__ ) _A : List[str] = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) _A : Dict = 1 _A : int = 2 _A : str = self.get_dummy_inputs(A__ ) for key in inputs.keys(): if key in self.batch_params: _A : List[Any] = batch_size * [inputs[key]] _A : int = pipe(**A__ ,num_images_per_prompt=A__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def A__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): _A : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) _A : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) _A : Dict = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) _A : Union[str, Any] = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) _A : Any = torch.Generator(device=A__ ).manual_seed(0 ) _A : Optional[int] = pipe( A__ ,generator=A__ ,guidance_scale=3.0 ,num_inference_steps=64 ,frame_size=64 ,output_type='''np''' ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A__ ,A__ )
206
from PIL import Image def a__ (__lowercase :Image , __lowercase :float ) -> Image: def brightness(__lowercase :int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__lowercase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _UpperCamelCase : Any =change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
206
1
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCamelCase : '''simple docstring''' lowercase : str =field( metadata={"""help""": """The output directory where the model will be written."""} , ) lowercase : str =field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) lowercase : str =field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowercase_ :Tuple = HfArgumentParser((ModelArguments,) ) (lowercase_ ) :Optional[int] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase_ :Optional[int] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase_ :List[Any] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase_ :List[Any] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase_ :List[str] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase_ :Optional[Any] = True lowercase_ :List[Any] = True lowercase_ :List[Any] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=_a , decoder_config=_a , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase_ :int = decoder_config.decoder_start_token_id lowercase_ :List[Any] = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase_ :Optional[int] = decoder_config.bos_token_id if pad_token_id is None: lowercase_ :Dict = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase_ :Any = decoder_config.eos_token_id lowercase_ :Optional[Any] = decoder_start_token_id lowercase_ :Union[str, Any] = pad_token_id lowercase_ :int = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase_ :Optional[Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase_ :Optional[int] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
701
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE : int = 299_792_458 # Symbols SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = symbols("ct x y z") def UpperCamelCase ( _a ) -> float: '''simple docstring''' if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def UpperCamelCase ( _a ) -> float: '''simple docstring''' return 1 / sqrt(1 - beta(_a ) ** 2 ) def UpperCamelCase ( _a ) -> np.ndarray: '''simple docstring''' return np.array( [ [gamma(_a ), -gamma(_a ) * beta(_a ), 0, 0], [-gamma(_a ) * beta(_a ), gamma(_a ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCamelCase ( _a , _a = None ) -> np.ndarray: '''simple docstring''' if event is None: lowercase_ :Optional[int] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_a ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE : List[str] = transform(29_979_245) print("Example of four vector: ") print(f"ct' = {four_vector[0]}") print(f"x' = {four_vector[1]}") print(f"y' = {four_vector[2]}") print(f"z' = {four_vector[3]}") # Substitute symbols with numerical values SCREAMING_SNAKE_CASE : Optional[int] = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE : str = [four_vector[i].subs(sub_dict) for i in range(4)] print(f"\n{numerical_vector}")
441
0
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def __lowercase (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :str ): SCREAMING_SNAKE_CASE : Any = int(_SCREAMING_SNAKE_CASE ) assert noofclusters < len(_SCREAMING_SNAKE_CASE ) # Find out the dimensionality SCREAMING_SNAKE_CASE : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors SCREAMING_SNAKE_CASE : str = list(range(len(_SCREAMING_SNAKE_CASE ) ) ) shuffle(_SCREAMING_SNAKE_CASE ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. SCREAMING_SNAKE_CASE : Optional[int] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION SCREAMING_SNAKE_CASE : Optional[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points SCREAMING_SNAKE_CASE : Any = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_SCREAMING_SNAKE_CASE ) ] ##These nodes will assign the centroid Variables the appropriate ##values SCREAMING_SNAKE_CASE : List[str] = tf.placeholder('''float64''' , [dim] ) SCREAMING_SNAKE_CASE : Any = [] for centroid in centroids: cent_assigns.append(tf.assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) SCREAMING_SNAKE_CASE : Optional[int] = [tf.Variable(0 ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ##These nodes will assign an assignment Variable the appropriate ##value SCREAMING_SNAKE_CASE : List[str] = tf.placeholder('''int32''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input SCREAMING_SNAKE_CASE : Tuple = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors SCREAMING_SNAKE_CASE : Union[str, Any] = tf.reduce_mean(_SCREAMING_SNAKE_CASE , 0 ) ##Node for computing Euclidean distances # Placeholders for input SCREAMING_SNAKE_CASE : int = tf.placeholder('''float''' , [dim] ) SCREAMING_SNAKE_CASE : List[Any] = tf.placeholder('''float''' , [dim] ) SCREAMING_SNAKE_CASE : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input SCREAMING_SNAKE_CASE : int = tf.placeholder('''float''' , [noofclusters] ) SCREAMING_SNAKE_CASE : List[Any] = tf.argmin(_SCREAMING_SNAKE_CASE , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. SCREAMING_SNAKE_CASE : List[str] = tf.initialize_all_variables() # Initialize all variables sess.run(_SCREAMING_SNAKE_CASE ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. SCREAMING_SNAKE_CASE : List[Any] = 1_00 for _ in range(_SCREAMING_SNAKE_CASE ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE : str = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. SCREAMING_SNAKE_CASE : Optional[Any] = [ sess.run(_SCREAMING_SNAKE_CASE , feed_dict={va: vect, va: sess.run(_SCREAMING_SNAKE_CASE )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input SCREAMING_SNAKE_CASE : str = sess.run( _SCREAMING_SNAKE_CASE , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_SCREAMING_SNAKE_CASE ): # Collect all the vectors assigned to this cluster SCREAMING_SNAKE_CASE : Optional[int] = [ vectors[i] for i in range(len(_SCREAMING_SNAKE_CASE ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location SCREAMING_SNAKE_CASE : Tuple = sess.run( _SCREAMING_SNAKE_CASE , feed_dict={mean_input: array(_SCREAMING_SNAKE_CASE )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments SCREAMING_SNAKE_CASE : Optional[Any] = sess.run(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = sess.run(_SCREAMING_SNAKE_CASE ) return centroids, assignments
507
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __lowercase (_SCREAMING_SNAKE_CASE :str = "laptop" ): SCREAMING_SNAKE_CASE : str = F'''https://www.amazon.in/laptop/s?k={product}''' SCREAMING_SNAKE_CASE : int = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } SCREAMING_SNAKE_CASE : Dict = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).text ) # Initialize a Pandas dataframe with the column titles SCREAMING_SNAKE_CASE : str = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: SCREAMING_SNAKE_CASE : Optional[int] = item.ha.text SCREAMING_SNAKE_CASE : Tuple = '''https://www.amazon.in/''' + item.ha.a['''href'''] SCREAMING_SNAKE_CASE : Any = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: SCREAMING_SNAKE_CASE : Optional[int] = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: SCREAMING_SNAKE_CASE : Any = '''Not available''' try: SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: SCREAMING_SNAKE_CASE : List[str] = '''''' try: SCREAMING_SNAKE_CASE : Optional[Any] = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_00 ) except ValueError: SCREAMING_SNAKE_CASE : Optional[Any] = float('''nan''' ) except AttributeError: pass SCREAMING_SNAKE_CASE : int = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] SCREAMING_SNAKE_CASE : int = ''' ''' SCREAMING_SNAKE_CASE : List[str] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": snake_case_ = """headphones""" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
507
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class UpperCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = "swin2sr" _SCREAMING_SNAKE_CASE : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=64 , _lowerCAmelCase=1 , _lowerCAmelCase=3 , _lowerCAmelCase=180 , _lowerCAmelCase=[6, 6, 6, 6, 6, 6] , _lowerCAmelCase=[6, 6, 6, 6, 6, 6] , _lowerCAmelCase=8 , _lowerCAmelCase=2.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=2 , _lowerCAmelCase=1.0 , _lowerCAmelCase="1conv" , _lowerCAmelCase="pixelshuffle" , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) a =image_size a =patch_size a =num_channels a =embed_dim a =depths a =len(_lowerCAmelCase ) a =num_heads a =window_size a =mlp_ratio a =qkv_bias a =hidden_dropout_prob a =attention_probs_dropout_prob a =drop_path_rate a =hidden_act a =use_absolute_embeddings a =layer_norm_eps a =initializer_range a =upscale a =img_range a =resi_connection a =upsampler
708
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCAmelCase__ : '''simple docstring''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase = 13 , _lowerCAmelCase = 64 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 128 , _lowerCAmelCase=[16, 32, 64, 128] , _lowerCAmelCase = 7 , _lowerCAmelCase = 4 , _lowerCAmelCase = 37 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 10 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 128 , _lowerCAmelCase = [2, 2, 2, 2] , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , ): a =parent a =batch_size a =image_size a =patch_size a =num_channels a =is_training a =use_labels a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =type_sequence_label_size a =initializer_range a =encoder_stride a =num_attention_outputs a =embed_dim a =embed_dim + 1 a =resolution a =depths a =hidden_sizes a =dim a =mlp_expansion_ratio def lowerCAmelCase__ ( self ): a =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a =None if self.use_labels: a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): a =TFEfficientFormerModel(config=_lowerCAmelCase ) a =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): a =self.type_sequence_label_size a =TFEfficientFormerForImageClassification(_lowerCAmelCase ) a =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a =1 a =TFEfficientFormerForImageClassification(_lowerCAmelCase ) a =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a =model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self ): a =self.prepare_config_and_inputs() a , a , a =config_and_inputs a ={"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE : Any = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : int = False def lowerCAmelCase__ ( self ): a =TFEfficientFormerModelTester(self ) a =ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(_lowerCAmelCase ) a =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self ): def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): a =model_class(_lowerCAmelCase ) a =model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) a =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a =getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): a =self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: a =seq_length * self.model_tester.chunk_length else: a =self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: a =outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) a =getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) a =getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): a =super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase__ ( self ): a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def lowerCAmelCase__ ( self ): a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def lowerCAmelCase__ ( self ): a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase__ ( self ): a , a =self.model_tester.prepare_config_and_inputs_for_common() a =True a =getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) a =getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) a =getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) a =getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): a =encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: a =True a =False a =True a =model_class(_lowerCAmelCase ) a =model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) a =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a =True a =model_class(_lowerCAmelCase ) a =model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) a =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase__ ( self ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model a =model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes a ={ key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } a =model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase ( )-> str: """simple docstring""" a =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self ): return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self ): a =TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) a =self.default_image_processor a =prepare_img() a =image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass a =model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits a =tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) a =tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): a =TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) a =self.default_image_processor a =prepare_img() a =image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass a =model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits a =tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) a =tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
321
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : str , __A : Tuple=7 , __A : List[str]=3 , __A : Optional[Any]=1_8 , __A : int=3_0 , __A : Any=4_0_0 , __A : str=True , __A : Dict=None , __A : List[str]=True , __A : List[Any]=False , __A : int=True , __A : Dict=True , __A : Any=[0.5, 0.5, 0.5] , __A : Optional[int]=[0.5, 0.5, 0.5] , ): """simple docstring""" _lowercase = parent _lowercase = batch_size _lowercase = num_channels _lowercase = image_size _lowercase = min_resolution _lowercase = max_resolution _lowercase = do_resize _lowercase = size if size is not None else {"height": 1_8, "width": 2_0} _lowercase = do_thumbnail _lowercase = do_align_axis _lowercase = do_pad _lowercase = do_normalize _lowercase = image_mean _lowercase = image_std def snake_case ( self : List[str] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = DonutImageProcessor if is_vision_available() else None def snake_case ( self : List[str] ): """simple docstring""" _lowercase = DonutImageProcessingTester(self ) @property def snake_case ( self : str ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : Dict ): """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) self.assertTrue(hasattr(__A , "do_thumbnail" ) ) self.assertTrue(hasattr(__A , "do_align_long_axis" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) def snake_case ( self : Union[str, Any] ): """simple docstring""" _lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 2_0} ) _lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) # Previous config had dimensions in (width, height) order _lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=(4_2, 8_4) ) self.assertEqual(image_processor.size , {"height": 8_4, "width": 4_2} ) def snake_case ( self : Dict ): """simple docstring""" pass @is_flaky() def snake_case ( self : Optional[int] ): """simple docstring""" # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _lowercase = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def snake_case ( self : Tuple ): """simple docstring""" # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _lowercase = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def snake_case ( self : Dict ): """simple docstring""" # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _lowercase = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
497
'''simple docstring''' from __future__ import annotations def A__ ( A_ , A_ ) -> list[str]: if nth_term == "": return [""] _lowercase = int(A_ ) _lowercase = int(A_ ) _lowercase = [] for temp in range(int(A_ ) ): series.append(F"""1 / {pow(temp + 1 , int(A_ ) )}""" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ : Any = int(input('''Enter the last number (nth term) of the P-Series''')) __magic_name__ : Dict = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
497
1
from __future__ import annotations def lowerCamelCase__ ( _A , _A = None ): '''simple docstring''' snake_case_ = word_bank or [] # create a table snake_case_ = len(_A ) + 1 snake_case_ = [] for _ in range(_A ): table.append([] ) # seed value snake_case_ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: snake_case_ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
139
def lowerCamelCase__ ( _A ): '''simple docstring''' return 10 - x * x def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if equation(_A ) * equation(_A ) >= 0: raise ValueError("Wrong space!" ) snake_case_ = a while (b - a) >= 0.01: # Find middle point snake_case_ = (a + b) / 2 # Check if middle point is root if equation(_A ) == 0.0: break # Decide the side to repeat the steps if equation(_A ) * equation(_A ) < 0: snake_case_ = c else: snake_case_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
139
1
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] lowerCAmelCase = True for i in range(SCREAMING_SNAKE_CASE ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCAmelCase = True if a[i].islower(): lowerCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
532
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'fnet' def __init__( self , lowercase=32_000 , lowercase=768 , lowercase=12 , lowercase=3_072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=512 , lowercase=4 , lowercase=0.02 , lowercase=1e-12 , lowercase=False , lowercase=512 , lowercase=3 , lowercase=1 , lowercase=2 , **lowercase , ) -> int: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_tpu_fourier_optimizations lowerCAmelCase = tpu_short_seq_length
532
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : List[Any] = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : str = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
703
"""simple docstring""" def UpperCAmelCase__ ( A__ ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError("Input must be a positive integer" ) lowerCamelCase__ = [True] * (num + 1) lowerCamelCase__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , A__ ): lowerCamelCase__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ : Optional[Any] = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
274
0
"""simple docstring""" # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) A = """pytorch_model.bin""" A = """pytorch_model.bin.index.json""" A = """adapter_config.json""" A = """adapter_model.bin""" A = """adapter_model.safetensors""" A = """tf_model.h5""" A = """tf_model.h5.index.json""" A = """model.ckpt""" A = """flax_model.msgpack""" A = """flax_model.msgpack.index.json""" A = """model.safetensors""" A = """model.safetensors.index.json""" A = """config.json""" A = """preprocessor_config.json""" A = FEATURE_EXTRACTOR_NAME A = """generation_config.json""" A = """modelcard.json""" A = """▁""" A = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility A = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. A = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] A = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _UpperCamelCase ( UpperCamelCase ) -> Tuple: """simple docstring""" if version.parse(UpperCamelCase ) < version.parse(UpperCamelCase ): if "dev" in min_version: __UpperCAmelCase : Union[str, Any] = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __UpperCAmelCase : int = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
77
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Optional[int]=32 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[str]=10 , UpperCamelCase_ : str=[10, 20, 30, 40] , UpperCamelCase_ : Tuple=[1, 1, 2, 1] , UpperCamelCase_ : str=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict="relu" , UpperCamelCase_ : str=3 , UpperCamelCase_ : int=None , ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Union[str, Any] = embeddings_size __UpperCAmelCase : Dict = hidden_sizes __UpperCAmelCase : Dict = depths __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : str = num_labels __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : Dict = len(UpperCamelCase_) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values def a_ ( self : Dict): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a_ ( self : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any]): """simple docstring""" __UpperCAmelCase : List[str] = FlaxRegNetModel(config=UpperCamelCase_) __UpperCAmelCase : Dict = model(UpperCamelCase_) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a_ ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Tuple = FlaxRegNetForImageClassification(config=UpperCamelCase_) __UpperCAmelCase : str = model(UpperCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase_ = False lowercase_ = False lowercase_ = False def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Tuple = FlaxRegNetModelTester(self) __UpperCAmelCase : str = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_) def a_ ( self : Dict): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self : Tuple): """simple docstring""" return def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_) @unittest.skip(reason="RegNet does not use inputs_embeds") def a_ ( self : Union[str, Any]): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings") def a_ ( self : Optional[int]): """simple docstring""" pass def a_ ( self : str): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(UpperCamelCase_) __UpperCAmelCase : Optional[int] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Any = [*signature.parameters.keys()] __UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase_) def a_ ( self : int): """simple docstring""" def check_hidden_states_output(UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any]): __UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : str = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_) , expected_num_stages + 1) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __UpperCAmelCase : List[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase_) @jax.jit def model_jitted(UpperCamelCase_ : int , **UpperCamelCase_ : Optional[int]): return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_) with self.subTest("JIT Enabled"): __UpperCAmelCase : Optional[Any] = model_jitted(**UpperCamelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): __UpperCAmelCase : Dict = model_jitted(**UpperCamelCase_).to_tuple() self.assertEqual(len(UpperCamelCase_) , len(UpperCamelCase_)) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCamelCase ( ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class a__ ( unittest.TestCase ): @cached_property def a_ ( self : Optional[int]): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/regnet-y-040") if is_vision_available() else None @slow def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Any = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040") __UpperCAmelCase : Dict = self.default_image_processor __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : int = image_processor(images=UpperCamelCase_ , return_tensors="np") __UpperCAmelCase : Dict = model(**UpperCamelCase_) # verify the logits __UpperCAmelCase : Dict = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCamelCase_) __UpperCAmelCase : Any = jnp.array([-0.4180, -1.5051, -3.4836]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4))
77
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class snake_case__ (unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ("foo.json",)] ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Optional[int] ) -> Optional[int]: a = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase ) a = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCamelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , __lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: a = AutoConfig.from_pretrained("gpt2" ) a = GenerationConfig.from_model_config(__lowerCamelCase ) a = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __UpperCAmelCase ( self : Union[str, Any] ) -> int: a = GenerationConfig() a = { '''max_new_tokens''': 10_24, '''foo''': '''bar''', } a = copy.deepcopy(__lowerCamelCase ) a = generation_config.update(**__lowerCamelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCamelCase , {"foo": "bar"} ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: a = GenerationConfig() a = '''bar''' with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(__lowerCamelCase ) a = GenerationConfig.from_pretrained(__lowerCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) a = GenerationConfig.from_model_config(__lowerCamelCase ) assert not hasattr(__lowerCamelCase , "foo" ) # no new kwargs should be initialized if from config def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: a = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __lowerCamelCase ) self.assertEqual(default_config.num_beams , 1 ) a = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __lowerCamelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase ) a = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __lowerCamelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class snake_case__ (unittest.TestCase ): """simple docstring""" @classmethod def __UpperCAmelCase ( cls : int ) -> int: a = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def __UpperCAmelCase ( cls : str ) -> List[str]: try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def __UpperCAmelCase ( self : Optional[int] ) -> str: a = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) a = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) a = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: a = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) a = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) a = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
702
def __magic_name__ ( A : str, A : str ): '''simple docstring''' def get_matched_characters(A : str, A : str ) -> str: a = [] a = min(len(_stra ), len(_stra ) ) // 2 for i, l in enumerate(_stra ): a = int(max(0, i - limit ) ) a = int(min(i + limit + 1, len(_stra ) ) ) if l in _stra[left:right]: matched.append(A ) a = F"""{_stra[0:_stra.index(A )]} {_stra[_stra.index(A ) + 1:]}""" return "".join(A ) # matching characters a = get_matched_characters(A, A ) a = get_matched_characters(A, A ) a = len(A ) # transposition a = ( len([(ca, ca) for ca, ca in zip(A, A ) if ca != ca] ) // 2 ) if not match_count: a = 0.0 else: a = ( 1 / 3 * ( match_count / len(A ) + match_count / len(A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a = 0 for ca, ca in zip(stra[:4], stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
662
0
from __future__ import annotations from typing import Any class A : def __init__( self: Optional[int] , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: float = 0 ) -> None: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =row, column UpperCAmelCase_ =[[default_value for c in range(_lowerCAmelCase )] for r in range(_lowerCAmelCase )] def __str__( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =F'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier UpperCAmelCase_ =0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase_ =max(_lowerCAmelCase , len(str(_lowerCAmelCase ) ) ) UpperCAmelCase_ =F'%{max_element_length}s' # Make string and return def single_line(_lowerCAmelCase: list[float] ) -> str: nonlocal string_format_identifier UpperCAmelCase_ ="[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_lowerCAmelCase ) for row_vector in self.array ) return s def __repr__( self: Optional[Any] ) -> str: '''simple docstring''' return str(self ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: tuple[int, int] ) -> bool: '''simple docstring''' if not (isinstance(_lowerCAmelCase , (list, tuple) ) and len(_lowerCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self: int , _lowerCAmelCase: tuple[int, int] ) -> Any: '''simple docstring''' assert self.validate_indicies(_lowerCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self: List[str] , _lowerCAmelCase: tuple[int, int] , _lowerCAmelCase: float ) -> None: '''simple docstring''' assert self.validate_indicies(_lowerCAmelCase ) UpperCAmelCase_ =value def __add__( self: Union[str, Any] , _lowerCAmelCase: Matrix ) -> Matrix: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase_ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase_ =self[r, c] + another[r, c] return result def __neg__( self: Dict ) -> Matrix: '''simple docstring''' UpperCAmelCase_ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase_ =-self[r, c] return result def __sub__( self: Union[str, Any] , _lowerCAmelCase: Matrix ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self: Union[str, Any] , _lowerCAmelCase: int | float | Matrix ) -> Matrix: '''simple docstring''' if isinstance(_lowerCAmelCase , (int, float) ): # Scalar multiplication UpperCAmelCase_ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase_ =self[r, c] * another return result elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Matrix multiplication assert self.column == another.row UpperCAmelCase_ =Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase_ =F'Unsupported type given for another ({type(_lowerCAmelCase )})' raise TypeError(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Matrix: '''simple docstring''' UpperCAmelCase_ =Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase_ =self[r, c] return result def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Matrix , _lowerCAmelCase: Matrix ) -> Any: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase_ =v.transpose() UpperCAmelCase_ =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCAmelCase_ =1 print(F'a^(-1) is {ainv}' ) # u, v UpperCAmelCase_ =Matrix(3 , 1 , 0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =1, 2, -3 UpperCAmelCase_ =Matrix(3 , 1 , 0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =4, -2, 5 print(F'u is {u}' ) print(F'v is {v}' ) print(F'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(F'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowercase__ , lowercase__ )}' ) def a__ ( ): '''simple docstring''' import doctest doctest.testmod() testa()
54
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
1
'''simple docstring''' class UpperCamelCase__: def __init__( self : List[str] , lowerCAmelCase : int )-> None: """simple docstring""" UpperCAmelCase = size UpperCAmelCase = [0] * size UpperCAmelCase = [0] * size @staticmethod def a__( lowerCAmelCase : int )-> int: """simple docstring""" return index | (index + 1) @staticmethod def a__( lowerCAmelCase : int )-> int: """simple docstring""" return (index & (index + 1)) - 1 def a__( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : int )-> None: """simple docstring""" UpperCAmelCase = value while index < self.size: UpperCAmelCase = self.get_prev(lowerCAmelCase ) + 1 if current_left_border == index: UpperCAmelCase = value else: UpperCAmelCase = max(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.get_next(lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int )-> int: """simple docstring""" right -= 1 # Because of right is exclusive UpperCAmelCase = 0 while left <= right: UpperCAmelCase = self.get_prev(lowerCAmelCase ) if left <= current_left: UpperCAmelCase = max(lowerCAmelCase , self.tree[right] ) UpperCAmelCase = current_left else: UpperCAmelCase = max(lowerCAmelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Any) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Dict = 3 __lowerCAmelCase : Tuple = 250 __lowerCAmelCase : Optional[Any] = ids_tensor((batch_size, length) , A_) __lowerCAmelCase : Any = torch.ones((batch_size, length) , device=A_ , dtype=torch.float) / length return input_ids, scores def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Optional[int] = self._get_tensors(5) __lowerCAmelCase : Optional[int] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10), MaxTimeCriteria(max_time=0.1), ]) self.assertFalse(criteria(A_ , A_)) __lowerCAmelCase , __lowerCAmelCase : List[Any] = self._get_tensors(9) self.assertFalse(criteria(A_ , A_)) __lowerCAmelCase , __lowerCAmelCase : List[Any] = self._get_tensors(10) self.assertTrue(criteria(A_ , A_)) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Any = MaxLengthCriteria(max_length=10) __lowerCAmelCase , __lowerCAmelCase : int = self._get_tensors(5) self.assertFalse(criteria(A_ , A_)) __lowerCAmelCase , __lowerCAmelCase : List[Any] = self._get_tensors(9) self.assertFalse(criteria(A_ , A_)) __lowerCAmelCase , __lowerCAmelCase : List[Any] = self._get_tensors(10) self.assertTrue(criteria(A_ , A_)) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5) __lowerCAmelCase , __lowerCAmelCase : Dict = self._get_tensors(5) self.assertFalse(criteria(A_ , A_)) __lowerCAmelCase , __lowerCAmelCase : Dict = self._get_tensors(9) self.assertFalse(criteria(A_ , A_)) __lowerCAmelCase , __lowerCAmelCase : List[Any] = self._get_tensors(10) self.assertTrue(criteria(A_ , A_)) __lowerCAmelCase : Any = StoppingCriteriaList([criteria]) self.assertEqual(criteria_list.max_length , 10) def _SCREAMING_SNAKE_CASE ( self: Dict) -> int: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Any = self._get_tensors(5) __lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1) self.assertFalse(criteria(A_ , A_)) __lowerCAmelCase : Optional[int] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2) self.assertTrue(criteria(A_ , A_)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Dict: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]) , 10) with self.assertWarns(A_): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]) , 11) __lowerCAmelCase : Tuple = validate_stopping_criteria(StoppingCriteriaList() , 11) self.assertEqual(len(A_) , 1)
293
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __snake_case = 0 __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __snake_case = tuple[int, int] class __lowerCamelCase : def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,): '''simple docstring''' __UpperCamelCase = pos_x __UpperCamelCase = pos_y __UpperCamelCase = (pos_y, pos_x) __UpperCamelCase = goal_x __UpperCamelCase = goal_y __UpperCamelCase = g_cost __UpperCamelCase = parent __UpperCamelCase = self.calculate_heuristic() __UpperCamelCase = self.g_cost + self.h_cost def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.pos_x - self.goal_x __UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A_ ) + abs(A_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: int,A_: Node ): '''simple docstring''' return self.f_cost < other.f_cost class __lowerCamelCase : def __init__( self: Any,A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ ) __UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ ) __UpperCamelCase = [self.start] __UpperCamelCase = [] __UpperCamelCase = False def snake_case_ ( self: Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A_ ) self.closed_nodes.append(A_ ) __UpperCamelCase = self.get_successors(A_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A_ ) else: self.open_nodes.append(A_ ) return [self.start.pos] def snake_case_ ( self: int,A_: Node ): '''simple docstring''' __UpperCamelCase = [] for action in delta: __UpperCamelCase = parent.pos_x + action[1] __UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) ) return successors def snake_case_ ( self: Any,A_: Node | None ): '''simple docstring''' __UpperCamelCase = node __UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCamelCase = current_node.parent path.reverse() return path class __lowerCamelCase : def __init__( self: List[Any],A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = False def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) __UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A_,A_ ) self.fwd_astar.closed_nodes.append(A_ ) self.bwd_astar.closed_nodes.append(A_ ) __UpperCamelCase = current_bwd_node __UpperCamelCase = current_fwd_node __UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(A_ ), self.bwd_astar: self.bwd_astar.get_successors(A_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A_ ) else: astar.open_nodes.append(A_ ) return [self.fwd_astar.start.pos] def snake_case_ ( self: List[str],A_: Node,A_: Node ): '''simple docstring''' __UpperCamelCase = self.fwd_astar.retrace_path(A_ ) __UpperCamelCase = self.bwd_astar.retrace_path(A_ ) bwd_path.pop() bwd_path.reverse() __UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __snake_case = time.time() __snake_case = AStar(init, goal) __snake_case = a_star.search() __snake_case = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") __snake_case = time.time() __snake_case = BidirectionalAStar(init, goal) __snake_case = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
1
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase : Union[str, Any] = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
324
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _lowerCamelCase : List[str] = datasets.load_iris() _lowerCamelCase : Optional[Any] = np.array(data["data"]) _lowerCamelCase : Tuple = np.array(data["target"]) _lowerCamelCase : int = data["target_names"] _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase : Any = train_test_split(X, y) def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__=5 ) -> Any: """simple docstring""" UpperCamelCase = zip(A__ , A__ ) # List of distances of all points from the point to be classified UpperCamelCase = [] for data_point in data: UpperCamelCase = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCamelCase = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCamelCase = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
324
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '''▁''' __A = {'''vocab_file''': '''sentencepiece.bpe.model'''} __A = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } __A = { '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __A = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class lowercase ( snake_case__): """simple docstring""" a__ : Any = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Any = ["input_ids", "attention_mask"] a__ : List[int] = [] a__ : List[int] = [] def __init__( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str="<s>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : Dict="</s>" , __UpperCAmelCase : Any="<s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[int]="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[Dict[str, Any]] = None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Tuple=False , **__UpperCAmelCase : Optional[int] , ) -> str: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_= AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token UpperCAmelCase_= {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_= legacy_behaviour super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase_= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) UpperCAmelCase_= vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_= {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_= 1 UpperCAmelCase_= len(self.sp_model ) UpperCAmelCase_= { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCAmelCase ) } UpperCAmelCase_= {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_= len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_= {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_= list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase_= src_lang if src_lang is not None else """eng_Latn""" UpperCAmelCase_= self.lang_code_to_id[self._src_lang] UpperCAmelCase_= tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : str ) -> Tuple: UpperCAmelCase_= self.__dict__.copy() UpperCAmelCase_= None UpperCAmelCase_= self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __UpperCAmelCase : Tuple ) -> Union[str, Any]: UpperCAmelCase_= d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase_= {} UpperCAmelCase_= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return self._src_lang @src_lang.setter def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : str ) -> None: UpperCAmelCase_= new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) UpperCAmelCase_= [1] * len(self.prefix_tokens ) UpperCAmelCase_= [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_= [self.sep_token_id] UpperCAmelCase_= [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] , __UpperCAmelCase : Optional[str] , **__UpperCAmelCase : Optional[Any] ) -> Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCAmelCase_= src_lang UpperCAmelCase_= self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_= self.convert_tokens_to_ids(__UpperCAmelCase ) UpperCAmelCase_= tgt_lang_id return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: UpperCAmelCase_= {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : str ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : List[str] ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_= self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : List[Any] ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Any ) -> List[str]: UpperCAmelCase_= """""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_= os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: UpperCAmelCase_= self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str = "eng_Latn" , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "fra_Latn" , **__UpperCAmelCase : str , ) -> BatchEncoding: UpperCAmelCase_= src_lang UpperCAmelCase_= tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : List[Any] ) -> None: UpperCAmelCase_= self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCAmelCase_= [] UpperCAmelCase_= [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_= [self.cur_lang_code] UpperCAmelCase_= [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : str ) -> None: UpperCAmelCase_= self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCAmelCase_= [] UpperCAmelCase_= [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_= [self.cur_lang_code] UpperCAmelCase_= [self.eos_token_id]
593
from math import factorial def __a ( lowerCAmelCase_ : int = 1_00 ) -> int: '''simple docstring''' return sum(int(lowerCAmelCase_ ) for x in str(factorial(lowerCAmelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
593
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } lowercase_ = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } lowercase_ = "▁" class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['input_ids', 'attention_mask'] lowerCamelCase = BarthezTokenizer def __init__( self : Union[str, Any],lowercase_ : Optional[Any]=None,lowercase_ : str=None,lowercase_ : List[Any]="<s>",lowercase_ : Optional[int]="</s>",lowercase_ : Any="</s>",lowercase_ : str="<s>",lowercase_ : Any="<unk>",lowercase_ : List[str]="<pad>",lowercase_ : Union[str, Any]="<mask>",**lowercase_ : Any,)-> Any: '''simple docstring''' A__ = AddedToken(lowercase__,lstrip=lowercase__,rstrip=lowercase__ ) if isinstance(lowercase__,lowercase__ ) else mask_token super().__init__( lowercase__,tokenizer_file=lowercase__,bos_token=lowercase__,eos_token=lowercase__,unk_token=lowercase__,sep_token=lowercase__,cls_token=lowercase__,pad_token=lowercase__,mask_token=lowercase__,**lowercase__,) A__ = vocab_file A__ = False if not self.vocab_file else True def snake_case__ ( self : Optional[Any],lowercase_ : Any,lowercase_ : str = None )-> Any: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int],lowercase_ : List[Any] = None )-> Optional[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : Optional[Any],lowercase_ : Tuple,lowercase_ : Any = None )-> str: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowercase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( lowercase__,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file,lowercase__ ) return (out_vocab_file,)
702
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class A : """simple docstring""" lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None # sigma(t_i) @classmethod def snake_case__ ( cls : Tuple )-> Union[str, Any]: '''simple docstring''' return cls() @dataclass class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 class A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : Union[str, Any] )-> Optional[int]: '''simple docstring''' return True @register_to_config def __init__( self : str,lowercase_ : float = 0.02,lowercase_ : float = 1_0_0,lowercase_ : float = 1.007,lowercase_ : float = 8_0,lowercase_ : float = 0.05,lowercase_ : float = 5_0,)-> int: '''simple docstring''' pass def snake_case__ ( self : Optional[int] )-> Dict: '''simple docstring''' return KarrasVeSchedulerState.create() def snake_case__ ( self : Dict,lowercase_ : KarrasVeSchedulerState,lowercase_ : int,lowercase_ : Tuple = () )-> KarrasVeSchedulerState: '''simple docstring''' A__ = jnp.arange(0,lowercase_ )[::-1].copy() A__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowercase_,schedule=jnp.array(lowercase_,dtype=jnp.floataa ),timesteps=lowercase_,) def snake_case__ ( self : int,lowercase_ : KarrasVeSchedulerState,lowercase_ : jnp.ndarray,lowercase_ : float,lowercase_ : random.KeyArray,)-> Tuple[jnp.ndarray, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A__ = min(self.config.s_churn / state.num_inference_steps,2**0.5 - 1 ) else: A__ = 0 # sample eps ~ N(0, S_noise^2 * I) A__ = random.split(lowercase_,num=1 ) A__ = self.config.s_noise * random.normal(key=lowercase_,shape=sample.shape ) A__ = sigma + gamma * sigma A__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def snake_case__ ( self : Union[str, Any],lowercase_ : KarrasVeSchedulerState,lowercase_ : jnp.ndarray,lowercase_ : float,lowercase_ : float,lowercase_ : jnp.ndarray,lowercase_ : bool = True,)-> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' A__ = sample_hat + sigma_hat * model_output A__ = (sample_hat - pred_original_sample) / sigma_hat A__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowercase_,derivative=lowercase_,state=lowercase_ ) def snake_case__ ( self : Optional[int],lowercase_ : KarrasVeSchedulerState,lowercase_ : jnp.ndarray,lowercase_ : float,lowercase_ : float,lowercase_ : jnp.ndarray,lowercase_ : jnp.ndarray,lowercase_ : jnp.ndarray,lowercase_ : bool = True,)-> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' A__ = sample_prev + sigma_prev * model_output A__ = (sample_prev - pred_original_sample) / sigma_prev A__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowercase_,derivative=lowercase_,state=lowercase_ ) def snake_case__ ( self : Optional[int],lowercase_ : KarrasVeSchedulerState,lowercase_ : str,lowercase_ : str,lowercase_ : Any )-> Any: '''simple docstring''' raise NotImplementedError()
586
0