source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(block): marker = None value = [] for line in block.split('\n'): line = line.strip() if line.startswith('\\_'): continue match = MARKER_PATTERN.match(line) if match: if marker: yield marker, '\n'.join(value) marker = match.group('marker') value = [line[match.end():]] else: value.append(line) if marker: yield marker, '\n'.join(value).strip()
marker_split
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(block):\n marker = None\n value = []\n for line in block.split('\\n'):\n line = line.strip()\n if line.startswith('\\\\_'):\n continue\n match = MARKER_PATTERN.match(line)\n if match:\n if marker:\n yield marker, '\\n'.join(value)\n marker = match.group('marker')\n value = [line[match.end():]]\n else:\n value.append(line)\n if marker:\n yield marker, '\\n'.join(value).strip()\n", "role": "user" }, { "content": "marker_split", "role": "assistant" } ]
def x(self, key, default=None): for k, v in self: if k == key: return v return default
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, default=None):\n for k, v in self:\n if k == key:\n return v\n return default\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, filename, encoding='utf-8', marker_map=None, entry_impl=Entry, entry_sep='\n\n', entry_prefix=None, keep_empty=False): marker_map = marker_map or {} for entry in parse(filename, encoding, entry_sep, entry_prefix or entry_sep, keep_empty=keep_empty): if entry: self.append(entry_impl([(marker_map.get(k, k), v) for k, v in entry]))
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, encoding='utf-8', marker_map=None, entry_impl=Entry,\n entry_sep='\\n\\n', entry_prefix=None, keep_empty=False):\n marker_map = marker_map or {}\n for entry in parse(filename, encoding, entry_sep, entry_prefix or\n entry_sep, keep_empty=keep_empty):\n if entry:\n self.append(entry_impl([(marker_map.get(k, k), v) for k, v in\n entry]))\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, filename, encoding='utf-8'): with io.open(str(filename), 'w', encoding=encoding) as fp: for entry in self: fp.write(entry.__unicode__()) fp.write('\n\n')
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, encoding='utf-8'):\n with io.open(str(filename), 'w', encoding=encoding) as fp:\n for entry in self:\n fp.write(entry.__unicode__())\n fp.write('\\n\\n')\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(question, default=True): valid = {'': default, 'yes': True, 'y': True, 'no': False, 'n': False} while 1: choice = input(question + (' [Y/n] ' if default else ' [y/N] ')).lower( ) if choice in valid: return valid[choice] print("Please respond with 'y' or 'n' ")
confirm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(question, default=True):\n valid = {'': default, 'yes': True, 'y': True, 'no': False, 'n': False}\n while 1:\n choice = input(question + (' [Y/n] ' if default else ' [y/N] ')).lower(\n )\n if choice in valid:\n return valid[choice]\n print(\"Please respond with 'y' or 'n' \")\n", "role": "user" }, { "content": "confirm", "role": "assistant" } ]
def x(self, section, option, whitespace_preserving_prefix='.'): lines = [] for line in self.get(section, option, fallback='').splitlines(): if re.match(re.escape(whitespace_preserving_prefix) + '\\s+', line): line = line[len(whitespace_preserving_prefix):] lines.append(line) return '\n'.join(lines)
gettext
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, section, option, whitespace_preserving_prefix='.'):\n lines = []\n for line in self.get(section, option, fallback='').splitlines():\n if re.match(re.escape(whitespace_preserving_prefix) + '\\\\s+', line):\n line = line[len(whitespace_preserving_prefix):]\n lines.append(line)\n return '\\n'.join(lines)\n", "role": "user" }, { "content": "gettext", "role": "assistant" } ]
def x(content, mimetype=None): if isinstance(content, pathlib.Path): if not mimetype: mimetype = guess_type(content.name)[0] with content.open('rb') as fp: content = fp.read() elif isinstance(content, text_type): content = content.encode('utf8') return 'data:{0};base64,{1}'.format(mimetype or 'application/octet-stream', b64encode(content).decode())
data_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(content, mimetype=None):\n if isinstance(content, pathlib.Path):\n if not mimetype:\n mimetype = guess_type(content.name)[0]\n with content.open('rb') as fp:\n content = fp.read()\n elif isinstance(content, text_type):\n content = content.encode('utf8')\n return 'data:{0};base64,{1}'.format(mimetype or\n 'application/octet-stream', b64encode(content).decode())\n", "role": "user" }, { "content": "data_url", "role": "assistant" } ]
def x(s, encoding='utf8'): if PY3: return s if isinstance(s, binary_type) else binary_type(s, encoding =encoding) return binary_type(s)
to_binary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, encoding='utf8'):\n if PY3:\n return s if isinstance(s, binary_type) else binary_type(s, encoding\n =encoding)\n return binary_type(s)\n", "role": "user" }, { "content": "to_binary", "role": "assistant" } ]
def x(d, _filter=None, **kw): def x(s): if _filter: return _filter(s) return s is not None d = d or {} for k, v in iteritems(kw): if f(v): d[k] = v return d
dict_merged
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d, _filter=None, **kw):\n\n def x(s):\n if _filter:\n return _filter(s)\n return s is not None\n d = d or {}\n for k, v in iteritems(kw):\n if f(v):\n d[k] = v\n return d\n", "role": "user" }, { "content": "dict_merged", "role": "assistant" } ]
def x(text): invalid = list(range(9)) invalid.extend([11, 12]) invalid.extend(range(14, 32)) return re.sub('|'.join('\\x%0.2X' % i for i in invalid), '', text)
xmlchars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n invalid = list(range(9))\n invalid.extend([11, 12])\n invalid.extend(range(14, 32))\n return re.sub('|'.join('\\\\x%0.2X' % i for i in invalid), '', text)\n", "role": "user" }, { "content": "xmlchars", "role": "assistant" } ]
def x(s, remove_whitespace=True, lowercase=True): res = ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata .category(c) != 'Mn') if lowercase: res = res.lower() for c in string.punctuation: res = res.replace(c, '') res = re.sub('\\s+', '' if remove_whitespace else ' ', res) res = res.encode('ascii', 'ignore').decode('ascii') assert re.match('[ A-Za-z0-9]*$', res) return res
slug
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, remove_whitespace=True, lowercase=True):\n res = ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata\n .category(c) != 'Mn')\n if lowercase:\n res = res.lower()\n for c in string.punctuation:\n res = res.replace(c, '')\n res = re.sub('\\\\s+', '' if remove_whitespace else ' ', res)\n res = res.encode('ascii', 'ignore').decode('ascii')\n assert re.match('[ A-Za-z0-9]*$', res)\n return res\n", "role": "user" }, { "content": "slug", "role": "assistant" } ]
def x(string, encoding='utf-8'): assert isinstance(string, string_types) or isinstance(string, binary_type) if isinstance(string, text_type): return string.encode(encoding) try: string.decode(encoding) return string except UnicodeDecodeError: return string.decode('latin1').encode(encoding)
encoded
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, encoding='utf-8'):\n assert isinstance(string, string_types) or isinstance(string, binary_type)\n if isinstance(string, text_type):\n return string.encode(encoding)\n try:\n string.decode(encoding)\n return string\n except UnicodeDecodeError:\n return string.decode('latin1').encode(encoding)\n", "role": "user" }, { "content": "encoded", "role": "assistant" } ]
def x(p, encoding=None, strip=False, comment=None, normalize=None, linenumbers=False): if comment: strip = True if isinstance(p, (list, tuple)): res = [(l.decode(encoding) if encoding else l) for l in p] else: with Path(p).open(encoding=encoding or 'utf-8') as fp: res = fp.readlines() if strip: res = [(l.strip() or None) for l in res] if comment: res = [(None if l and l.startswith(comment) else l) for l in res] if normalize: res = [(unicodedata.normalize(normalize, l) if l else l) for l in res] if linenumbers: return [(n, l) for n, l in enumerate(res, 1)] return [l for l in res if l is not None]
readlines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p, encoding=None, strip=False, comment=None, normalize=None,\n linenumbers=False):\n if comment:\n strip = True\n if isinstance(p, (list, tuple)):\n res = [(l.decode(encoding) if encoding else l) for l in p]\n else:\n with Path(p).open(encoding=encoding or 'utf-8') as fp:\n res = fp.readlines()\n if strip:\n res = [(l.strip() or None) for l in res]\n if comment:\n res = [(None if l and l.startswith(comment) else l) for l in res]\n if normalize:\n res = [(unicodedata.normalize(normalize, l) if l else l) for l in res]\n if linenumbers:\n return [(n, l) for n, l in enumerate(res, 1)]\n return [l for l in res if l is not None]\n", "role": "user" }, { "content": "readlines", "role": "assistant" } ]
def x(p, mode='all', **kw): for dirpath, dirnames, filenames in os.walk(as_posix(p), **kw): if mode in ('all', 'dirs'): for dirname in dirnames: yield Path(dirpath).joinpath(dirname) if mode in ('all', 'files'): for fname in filenames: yield Path(dirpath).joinpath(fname)
walk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p, mode='all', **kw):\n for dirpath, dirnames, filenames in os.walk(as_posix(p), **kw):\n if mode in ('all', 'dirs'):\n for dirname in dirnames:\n yield Path(dirpath).joinpath(dirname)\n if mode in ('all', 'files'):\n for fname in filenames:\n yield Path(dirpath).joinpath(fname)\n", "role": "user" }, { "content": "walk", "role": "assistant" } ]
def x(self): m = max(itertools.chain(map(len, self), [0])) fields = (' %s = {%s}' % (k.ljust(m), self[k]) for k in self) return '@%s{%s,\n%s\n}' % (getattr(self.genre, 'value', self.genre), self.id, ',\n'.join(fields))
bibtex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n m = max(itertools.chain(map(len, self), [0]))\n fields = (' %s = {%s}' % (k.ljust(m), self[k]) for k in self)\n return '@%s{%s,\\n%s\\n}' % (getattr(self.genre, 'value', self.genre),\n self.id, ',\\n'.join(fields))\n", "role": "user" }, { "content": "bibtex", "role": "assistant" } ]
def x(self): genre = getattr(self.genre, 'value', self.genre) pages_at_end = genre in ('book', 'phdthesis', 'mastersthesis', 'misc', 'techreport') thesis = genre in ('phdthesis', 'mastersthesis') if self.get('editor'): editors = self['editor'] affix = 'eds' if ' and ' in editors or '&' in editors else 'ed' editors = ' %s (%s.)' % (editors, affix) else: editors = None res = [self.get('author', editors), self.get('year', 'n.d')] if genre == 'book': res.append(self.get_with_translation('booktitle') or self. get_with_translation('title')) series = ', '.join(filter(None, [self.get('series'), self.get( 'volume')])) if series: res.append('(%s.)' % series) elif genre == 'misc': res.append(self.get_with_translation('title') or self.get('note')) else: res.append(self.get_with_translation('title')) if genre == 'article': atom = ' '.join(filter(None, [self.get('journal'), self.get('volume')]) ) if self.get('issue'): atom += '(%s)' % self['issue'] res.append(atom) res.append(self.get('pages')) elif genre == 'incollection' or genre == 'inproceedings': prefix = 'In' atom = '' if editors: atom += editors if self.get('booktitle'): if atom: atom += ',' atom += ' %s' % self.get_with_translation('booktitle') if self.get('pages'): atom += ', %s' % self['pages'] res.append(prefix + atom) else: if editors and self.get('author'): res.append('In %s' % editors) for attr in ['journal', 'volume' if genre != 'book' else None]: if attr and self.get(attr): res.append(self.get(attr)) if self.get('issue'): res.append('(%s)' % self['issue']) if not pages_at_end and self.get('pages'): res.append(self['pages']) if self.get('publisher'): res.append(': '.join(filter(None, [self.get('address'), self[ 'publisher']]))) elif genre == 'misc' and self.get('howpublished'): res.append(self.get('howpublished')) if not thesis and pages_at_end and self.get('pages'): res.append(self['pages'] + 'pp') note = self.get('note') or self._genre_note.get(genre) if note and note not in res: if thesis: joiner = ',' if self.get('school'): note += '{0} {1}'.format(joiner, self.get('school')) joiner = ';' if self.get('pages'): note += '{0} {1}pp.'.format(joiner, self.get('pages')) res.append('(%s)' % note) return ' '.join(x if x.endswith(('.', '.)')) else '%s.' % x for x in res if x)
text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n genre = getattr(self.genre, 'value', self.genre)\n pages_at_end = genre in ('book', 'phdthesis', 'mastersthesis', 'misc',\n 'techreport')\n thesis = genre in ('phdthesis', 'mastersthesis')\n if self.get('editor'):\n editors = self['editor']\n affix = 'eds' if ' and ' in editors or '&' in editors else 'ed'\n editors = ' %s (%s.)' % (editors, affix)\n else:\n editors = None\n res = [self.get('author', editors), self.get('year', 'n.d')]\n if genre == 'book':\n res.append(self.get_with_translation('booktitle') or self.\n get_with_translation('title'))\n series = ', '.join(filter(None, [self.get('series'), self.get(\n 'volume')]))\n if series:\n res.append('(%s.)' % series)\n elif genre == 'misc':\n res.append(self.get_with_translation('title') or self.get('note'))\n else:\n res.append(self.get_with_translation('title'))\n if genre == 'article':\n atom = ' '.join(filter(None, [self.get('journal'), self.get('volume')])\n )\n if self.get('issue'):\n atom += '(%s)' % self['issue']\n res.append(atom)\n res.append(self.get('pages'))\n elif genre == 'incollection' or genre == 'inproceedings':\n prefix = 'In'\n atom = ''\n if editors:\n atom += editors\n if self.get('booktitle'):\n if atom:\n atom += ','\n atom += ' %s' % self.get_with_translation('booktitle')\n if self.get('pages'):\n atom += ', %s' % self['pages']\n res.append(prefix + atom)\n else:\n if editors and self.get('author'):\n res.append('In %s' % editors)\n for attr in ['journal', 'volume' if genre != 'book' else None]:\n if attr and self.get(attr):\n res.append(self.get(attr))\n if self.get('issue'):\n res.append('(%s)' % self['issue'])\n if not pages_at_end and self.get('pages'):\n res.append(self['pages'])\n if self.get('publisher'):\n res.append(': '.join(filter(None, [self.get('address'), self[\n 'publisher']])))\n elif genre == 'misc' and self.get('howpublished'):\n res.append(self.get('howpublished'))\n if not thesis and pages_at_end and self.get('pages'):\n res.append(self['pages'] + 'pp')\n note = self.get('note') or self._genre_note.get(genre)\n if note and note not in res:\n if thesis:\n joiner = ','\n if self.get('school'):\n note += '{0} {1}'.format(joiner, self.get('school'))\n joiner = ';'\n if self.get('pages'):\n note += '{0} {1}pp.'.format(joiner, self.get('pages'))\n res.append('(%s)' % note)\n return ' '.join(x if x.endswith(('.', '.)')) else '%s.' % x for x in\n res if x)\n", "role": "user" }, { "content": "text", "role": "assistant" } ]
def x(self, path, method='GET', params=None, type=REST_TYPE): response_text = self._get_http_client(type).request(path, method, params) if not response_text: return response_text response_json = json.loads(response_text) if 'errors' in response_json: raise ErrorException([Error().load(e) for e in response_json['errors']] ) return response_json
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path, method='GET', params=None, type=REST_TYPE):\n response_text = self._get_http_client(type).request(path, method, params)\n if not response_text:\n return response_text\n response_json = json.loads(response_text)\n if 'errors' in response_json:\n raise ErrorException([Error().load(e) for e in response_json['errors']]\n )\n return response_json\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(self, msisdn, reference): return HLR().load(self.request('hlr', 'POST', {'msisdn': msisdn, 'reference': reference}))
hlr_create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msisdn, reference):\n return HLR().load(self.request('hlr', 'POST', {'msisdn': msisdn,\n 'reference': reference}))\n", "role": "user" }, { "content": "hlr_create", "role": "assistant" } ]
def x(self, originator, recipients, body, params=None): if params is None: params = {} if type(recipients) == list: recipients = ','.join(recipients) params.update({'originator': originator, 'body': body, 'recipients': recipients}) return Message().load(self.request('messages', 'POST', params))
message_create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, originator, recipients, body, params=None):\n if params is None:\n params = {}\n if type(recipients) == list:\n recipients = ','.join(recipients)\n params.update({'originator': originator, 'body': body, 'recipients':\n recipients})\n return Message().load(self.request('messages', 'POST', params))\n", "role": "user" }, { "content": "message_create", "role": "assistant" } ]
def x(self, recipients, body, params=None): if params is None: params = {} if type(recipients) == list: recipients = ','.join(recipients) params.update({'recipients': recipients, 'body': body}) return VoiceMessage().load(self.request('voicemessages', 'POST', params))
voice_message_create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, recipients, body, params=None):\n if params is None:\n params = {}\n if type(recipients) == list:\n recipients = ','.join(recipients)\n params.update({'recipients': recipients, 'body': body})\n return VoiceMessage().load(self.request('voicemessages', 'POST', params))\n", "role": "user" }, { "content": "voice_message_create", "role": "assistant" } ]
def x(self, phonenumber, params=None): if params is None: params = {} return Lookup().load(self.request('lookup/' + str(phonenumber), 'GET', params))
lookup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, phonenumber, params=None):\n if params is None:\n params = {}\n return Lookup().load(self.request('lookup/' + str(phonenumber), 'GET',\n params))\n", "role": "user" }, { "content": "lookup", "role": "assistant" } ]
def x(self, phonenumber, params=None): if params is None: params = {} return HLR().load(self.request('lookup/' + str(phonenumber) + '/hlr', 'GET', params))
lookup_hlr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, phonenumber, params=None):\n if params is None:\n params = {}\n return HLR().load(self.request('lookup/' + str(phonenumber) + '/hlr',\n 'GET', params))\n", "role": "user" }, { "content": "lookup_hlr", "role": "assistant" } ]
def x(self, phonenumber, params=None): if params is None: params = {} return HLR().load(self.request('lookup/' + str(phonenumber) + '/hlr', 'POST', params))
lookup_hlr_create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, phonenumber, params=None):\n if params is None:\n params = {}\n return HLR().load(self.request('lookup/' + str(phonenumber) + '/hlr',\n 'POST', params))\n", "role": "user" }, { "content": "lookup_hlr_create", "role": "assistant" } ]
def x(self, recipient, params=None): if params is None: params = {} params.update({'recipient': recipient}) return Verify().load(self.request('verify', 'POST', params))
verify_create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, recipient, params=None):\n if params is None:\n params = {}\n params.update({'recipient': recipient})\n return Verify().load(self.request('verify', 'POST', params))\n", "role": "user" }, { "content": "verify_create", "role": "assistant" } ]
def x(self, id, token): return Verify().load(self.request('verify/' + str(id), params={'token': token}))
verify_verify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, id, token):\n return Verify().load(self.request('verify/' + str(id), params={'token':\n token}))\n", "role": "user" }, { "content": "verify_verify", "role": "assistant" } ]
def x(self, value): items = [] for item in value: items.append(self.itemType().load(item)) self._items = items
items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n items = []\n for item in value:\n items.append(self.itemType().load(item))\n self._items = items\n", "role": "user" }, { "content": "items", "role": "assistant" } ]
def x(self, path, method='GET', params=None): if params is None: params = {} url = urljoin(self.endpoint, path) headers = {'Accept': 'application/json', 'Authorization': 'AccessKey ' + self.access_key, 'User-Agent': self.user_agent, 'Content-Type': 'application/json'} if method == 'DELETE': response = requests.delete(url, verify=True, headers=headers, data= json.dumps(params)) elif method == 'GET': response = requests.get(url, verify=True, headers=headers, params= params) elif method == 'PATCH': response = requests.patch(url, verify=True, headers=headers, data= json.dumps(params)) elif method == 'POST': response = requests.post(url, verify=True, headers=headers, data= json.dumps(params)) elif method == 'PUT': response = requests.put(url, verify=True, headers=headers, data= json.dumps(params)) else: raise ValueError(str(method) + ' is not a supported HTTP method') if response.status_code in self.__supported_status_codes: response_text = response.text else: response.raise_for_status() return response_text
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path, method='GET', params=None):\n if params is None:\n params = {}\n url = urljoin(self.endpoint, path)\n headers = {'Accept': 'application/json', 'Authorization': 'AccessKey ' +\n self.access_key, 'User-Agent': self.user_agent, 'Content-Type':\n 'application/json'}\n if method == 'DELETE':\n response = requests.delete(url, verify=True, headers=headers, data=\n json.dumps(params))\n elif method == 'GET':\n response = requests.get(url, verify=True, headers=headers, params=\n params)\n elif method == 'PATCH':\n response = requests.patch(url, verify=True, headers=headers, data=\n json.dumps(params))\n elif method == 'POST':\n response = requests.post(url, verify=True, headers=headers, data=\n json.dumps(params))\n elif method == 'PUT':\n response = requests.put(url, verify=True, headers=headers, data=\n json.dumps(params))\n else:\n raise ValueError(str(method) + ' is not a supported HTTP method')\n if response.status_code in self.__supported_status_codes:\n response_text = response.text\n else:\n response.raise_for_status()\n return response_text\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(self): config_h = opj('src', 'cysignals', 'cysignals_config.h') if not os.path.isfile(config_h): import subprocess subprocess.check_call(['make', 'configure']) subprocess.check_call(['sh', 'configure']) dist = self.distribution ext_modules = dist.ext_modules if ext_modules: dist.ext_modules[:] = self.cythonize(ext_modules) _build.run(self)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n config_h = opj('src', 'cysignals', 'cysignals_config.h')\n if not os.path.isfile(config_h):\n import subprocess\n subprocess.check_call(['make', 'configure'])\n subprocess.check_call(['sh', 'configure'])\n dist = self.distribution\n ext_modules = dist.ext_modules\n if ext_modules:\n dist.ext_modules[:] = self.cythonize(ext_modules)\n _build.run(self)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(): files = [] for path in sys_path: pattern = os.path.join(path, '*', 'cython_debug', 'cython_debug_info_*' ) files.extend(glob.glob(pattern)) return files
cython_debug_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n files = []\n for path in sys_path:\n pattern = os.path.join(path, '*', 'cython_debug', 'cython_debug_info_*'\n )\n files.extend(glob.glob(pattern))\n return files\n", "role": "user" }, { "content": "cython_debug_files", "role": "assistant" } ]
def x(self): running = self._webcam.start() if not running: return running running &= self._phoxi.start() if not running: self._webcam.stop() return running
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n running = self._webcam.start()\n if not running:\n return running\n running &= self._phoxi.start()\n if not running:\n self._webcam.stop()\n return running\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self): if not self._running: logging.warning('Colorized PhoXi not running. Aborting stop') return False self._webcam.stop() self._phoxi.stop() return True
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running:\n logging.warning('Colorized PhoXi not running. Aborting stop')\n return False\n self._webcam.stop()\n self._phoxi.stop()\n return True\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self): _, phoxi_depth_im, _ = self._phoxi.frames() webcam_color_im, _, _ = self._webcam.frames(most_recent=True) phoxi_color_im = self._colorize(phoxi_depth_im, webcam_color_im) return phoxi_color_im, phoxi_depth_im, None
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n _, phoxi_depth_im, _ = self._phoxi.frames()\n webcam_color_im, _, _ = self._webcam.frames(most_recent=True)\n phoxi_color_im = self._colorize(phoxi_depth_im, webcam_color_im)\n return phoxi_color_im, phoxi_depth_im, None\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(self, num_img=1, fill_depth=0.0): depths = [] for _ in range(num_img): _, depth, _ = self.frames() depths.append(depth) median_depth = Image.median_images(depths) median_depth.data[median_depth.data == 0.0] = fill_depth return median_depth
median_depth_img
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_img=1, fill_depth=0.0):\n depths = []\n for _ in range(num_img):\n _, depth, _ = self.frames()\n depths.append(depth)\n median_depth = Image.median_images(depths)\n median_depth.data[median_depth.data == 0.0] = fill_depth\n return median_depth\n", "role": "user" }, { "content": "median_depth_img", "role": "assistant" } ]
def x(self, depth_im, color_im): target_shape = depth_im.data.shape[0], depth_im.data.shape[1], 3 pc_depth = self._phoxi.ir_intrinsics.deproject(depth_im) pc_color = self._T_webcam_world.inverse().dot(self._T_phoxi_world).apply( pc_depth) pc_data = pc_color.data.T dists = np.linalg.norm(pc_data, axis=1) order = np.argsort(dists) pc_data = pc_data[order] pc_color = PointCloud(pc_data.T, frame=self._webcam.color_intrinsics.frame) sorted_dists = dists[order] sorted_depths = depth_im.data.flatten()[order] icds = self._webcam.color_intrinsics.project(pc_color).data.T rounded_icds = np.array(icds / 3.0, dtype=np.uint32) unique_icds, unique_inds, unique_inv = np.unique(rounded_icds, axis=0, return_index=True, return_inverse=True) icd_depths = sorted_dists[unique_inds] min_depths_pp = icd_depths[unique_inv] depth_delta_mask = np.abs(min_depths_pp - sorted_dists) < 0.005 valid_mask = np.logical_and(np.logical_and(icds[:, 0] >= 0, icds[:, 0] < self._webcam.color_intrinsics.width), np.logical_and(icds[:, 1] >= 0, icds[:, 1] < self._webcam.color_intrinsics.height)) valid_mask = np.logical_and(valid_mask, sorted_depths != 0.0) valid_mask = np.logical_and(valid_mask, depth_delta_mask) valid_icds = icds[valid_mask] colors = color_im.data[valid_icds[:, 1], valid_icds[:, 0], :] color_im_data = np.zeros((target_shape[0] * target_shape[1], target_shape[2]), dtype=np.uint8) color_im_data[valid_mask] = colors color_im_data[order] = color_im_data.copy() color_im_data = color_im_data.reshape(target_shape) return ColorImage(color_im_data, frame=self._frame)
colorize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, depth_im, color_im):\n target_shape = depth_im.data.shape[0], depth_im.data.shape[1], 3\n pc_depth = self._phoxi.ir_intrinsics.deproject(depth_im)\n pc_color = self._T_webcam_world.inverse().dot(self._T_phoxi_world).apply(\n pc_depth)\n pc_data = pc_color.data.T\n dists = np.linalg.norm(pc_data, axis=1)\n order = np.argsort(dists)\n pc_data = pc_data[order]\n pc_color = PointCloud(pc_data.T, frame=self._webcam.color_intrinsics.frame)\n sorted_dists = dists[order]\n sorted_depths = depth_im.data.flatten()[order]\n icds = self._webcam.color_intrinsics.project(pc_color).data.T\n rounded_icds = np.array(icds / 3.0, dtype=np.uint32)\n unique_icds, unique_inds, unique_inv = np.unique(rounded_icds, axis=0,\n return_index=True, return_inverse=True)\n icd_depths = sorted_dists[unique_inds]\n min_depths_pp = icd_depths[unique_inv]\n depth_delta_mask = np.abs(min_depths_pp - sorted_dists) < 0.005\n valid_mask = np.logical_and(np.logical_and(icds[:, 0] >= 0, icds[:, 0] <\n self._webcam.color_intrinsics.width), np.logical_and(icds[:, 1] >= \n 0, icds[:, 1] < self._webcam.color_intrinsics.height))\n valid_mask = np.logical_and(valid_mask, sorted_depths != 0.0)\n valid_mask = np.logical_and(valid_mask, depth_delta_mask)\n valid_icds = icds[valid_mask]\n colors = color_im.data[valid_icds[:, 1], valid_icds[:, 0], :]\n color_im_data = np.zeros((target_shape[0] * target_shape[1],\n target_shape[2]), dtype=np.uint8)\n color_im_data[valid_mask] = colors\n color_im_data[order] = color_im_data.copy()\n color_im_data = color_im_data.reshape(target_shape)\n return ColorImage(color_im_data, frame=self._frame)\n", "role": "user" }, { "content": "colorize", "role": "assistant" } ]
def x(sensor_type, cfg): sensor_type = sensor_type.lower() if sensor_type == 'kinect2': s = Kinect2Sensor(packet_pipeline_mode=cfg['pipeline_mode'], device_num=cfg['device_num'], frame=cfg['frame']) elif sensor_type == 'bridged_kinect2': s = KinectSensorBridged(quality=cfg['quality'], frame=cfg['frame']) elif sensor_type == 'primesense': flip_images = True if 'flip_images' in cfg.keys(): flip_images = cfg['flip_images'] s = PrimesenseSensor(auto_white_balance=cfg['auto_white_balance'], flip_images=flip_images, frame=cfg['frame']) elif sensor_type == 'virtual': s = VirtualSensor(cfg['image_dir'], frame=cfg['frame']) elif sensor_type == 'tensor_dataset': s = TensorDatasetVirtualSensor(cfg['dataset_dir'], frame=cfg['frame']) elif sensor_type == 'primesense_ros': s = PrimesenseSensor_ROS(frame=cfg['frame']) elif sensor_type == 'ensenso': s = EnsensoSensor(frame=cfg['frame']) elif sensor_type == 'phoxi': s = PhoXiSensor(frame=cfg['frame'], device_name=cfg['device_name'], size=cfg['size']) elif sensor_type == 'webcam': s = WebcamSensor(frame=cfg['frame'], device_id=cfg['device_id']) elif sensor_type == 'colorized_phoxi': s = ColorizedPhoXiSensor(frame=cfg['frame'], phoxi_config=cfg[ 'phoxi_config'], webcam_config=cfg['webcam_config'], calib_dir= cfg['calib_dir']) elif sensor_type == 'realsense': s = RealSenseSensor(cam_id=cfg['cam_id'], filter_depth=cfg[ 'filter_depth'], frame=cfg['frame']) else: raise ValueError('RGBD sensor type %s not supported' % sensor_type) return s
sensor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sensor_type, cfg):\n sensor_type = sensor_type.lower()\n if sensor_type == 'kinect2':\n s = Kinect2Sensor(packet_pipeline_mode=cfg['pipeline_mode'],\n device_num=cfg['device_num'], frame=cfg['frame'])\n elif sensor_type == 'bridged_kinect2':\n s = KinectSensorBridged(quality=cfg['quality'], frame=cfg['frame'])\n elif sensor_type == 'primesense':\n flip_images = True\n if 'flip_images' in cfg.keys():\n flip_images = cfg['flip_images']\n s = PrimesenseSensor(auto_white_balance=cfg['auto_white_balance'],\n flip_images=flip_images, frame=cfg['frame'])\n elif sensor_type == 'virtual':\n s = VirtualSensor(cfg['image_dir'], frame=cfg['frame'])\n elif sensor_type == 'tensor_dataset':\n s = TensorDatasetVirtualSensor(cfg['dataset_dir'], frame=cfg['frame'])\n elif sensor_type == 'primesense_ros':\n s = PrimesenseSensor_ROS(frame=cfg['frame'])\n elif sensor_type == 'ensenso':\n s = EnsensoSensor(frame=cfg['frame'])\n elif sensor_type == 'phoxi':\n s = PhoXiSensor(frame=cfg['frame'], device_name=cfg['device_name'],\n size=cfg['size'])\n elif sensor_type == 'webcam':\n s = WebcamSensor(frame=cfg['frame'], device_id=cfg['device_id'])\n elif sensor_type == 'colorized_phoxi':\n s = ColorizedPhoXiSensor(frame=cfg['frame'], phoxi_config=cfg[\n 'phoxi_config'], webcam_config=cfg['webcam_config'], calib_dir=\n cfg['calib_dir'])\n elif sensor_type == 'realsense':\n s = RealSenseSensor(cam_id=cfg['cam_id'], filter_depth=cfg[\n 'filter_depth'], frame=cfg['frame'])\n else:\n raise ValueError('RGBD sensor type %s not supported' % sensor_type)\n return s\n", "role": "user" }, { "content": "sensor", "role": "assistant" } ]
def x(point, all_points, eps=0.0001): inds = np.where(np.linalg.norm(point - all_points, axis=1) < eps) if inds[0].shape[0] == 0: return -1 return inds[0][0]
get_point_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(point, all_points, eps=0.0001):\n inds = np.where(np.linalg.norm(point - all_points, axis=1) < eps)\n if inds[0].shape[0] == 0:\n return -1\n return inds[0][0]\n", "role": "user" }, { "content": "get_point_index", "role": "assistant" } ]
def x(self, source_obj_features, target_obj_features): if not isinstance(source_obj_features, f.BagOfFeatures): raise ValueError('Must supply source bag of object features') if not isinstance(target_obj_features, f.BagOfFeatures): raise ValueError('Must supply target bag of object features') source_descriptors = source_obj_features.descriptors target_descriptors = target_obj_features.descriptors source_keypoints = source_obj_features.keypoints target_keypoints = target_obj_features.keypoints dists = spatial.distance.cdist(source_descriptors, target_descriptors) source_closest_descriptors = dists.argmin(axis=1) target_closest_descriptors = dists.argmin(axis=0) match_indices = [] source_matched_points = np.zeros((0, 3)) target_matched_points = np.zeros((0, 3)) for i, j in enumerate(source_closest_descriptors): if target_closest_descriptors[j] == i: match_indices.append(j) source_matched_points = np.r_[source_matched_points, source_keypoints[i:i + 1, :]] target_matched_points = np.r_[target_matched_points, target_keypoints[j:j + 1, :]] else: match_indices.append(-1) return Correspondences(match_indices, source_matched_points, target_matched_points)
match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source_obj_features, target_obj_features):\n if not isinstance(source_obj_features, f.BagOfFeatures):\n raise ValueError('Must supply source bag of object features')\n if not isinstance(target_obj_features, f.BagOfFeatures):\n raise ValueError('Must supply target bag of object features')\n source_descriptors = source_obj_features.descriptors\n target_descriptors = target_obj_features.descriptors\n source_keypoints = source_obj_features.keypoints\n target_keypoints = target_obj_features.keypoints\n dists = spatial.distance.cdist(source_descriptors, target_descriptors)\n source_closest_descriptors = dists.argmin(axis=1)\n target_closest_descriptors = dists.argmin(axis=0)\n match_indices = []\n source_matched_points = np.zeros((0, 3))\n target_matched_points = np.zeros((0, 3))\n for i, j in enumerate(source_closest_descriptors):\n if target_closest_descriptors[j] == i:\n match_indices.append(j)\n source_matched_points = np.r_[source_matched_points,\n source_keypoints[i:i + 1, :]]\n target_matched_points = np.r_[target_matched_points,\n target_keypoints[j:j + 1, :]]\n else:\n match_indices.append(-1)\n return Correspondences(match_indices, source_matched_points,\n target_matched_points)\n", "role": "user" }, { "content": "match", "role": "assistant" } ]
def x(self, source_points, target_points, source_normals, target_normals): dists = ssd.cdist(source_points, target_points, 'euclidean') ip = source_normals.dot(target_normals.T) source_ip = source_points.dot(target_normals.T) target_ip = target_points.dot(target_normals.T) target_ip = np.diag(target_ip) target_ip = np.tile(target_ip, [source_points.shape[0], 1]) abs_diff = np.abs(source_ip - target_ip) invalid_dists = np.where(dists > self.dist_thresh_) abs_diff[invalid_dists[0], invalid_dists[1]] = np.inf invalid_norms = np.where(ip < self.norm_thresh_) abs_diff[invalid_norms[0], invalid_norms[1]] = np.inf match_indices = np.argmin(abs_diff, axis=1) match_vals = np.min(abs_diff, axis=1) invalid_matches = np.where(match_vals == np.inf) match_indices[invalid_matches[0]] = -1 return NormalCorrespondences(match_indices, source_points, target_points, source_normals, target_normals)
match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source_points, target_points, source_normals, target_normals):\n dists = ssd.cdist(source_points, target_points, 'euclidean')\n ip = source_normals.dot(target_normals.T)\n source_ip = source_points.dot(target_normals.T)\n target_ip = target_points.dot(target_normals.T)\n target_ip = np.diag(target_ip)\n target_ip = np.tile(target_ip, [source_points.shape[0], 1])\n abs_diff = np.abs(source_ip - target_ip)\n invalid_dists = np.where(dists > self.dist_thresh_)\n abs_diff[invalid_dists[0], invalid_dists[1]] = np.inf\n invalid_norms = np.where(ip < self.norm_thresh_)\n abs_diff[invalid_norms[0], invalid_norms[1]] = np.inf\n match_indices = np.argmin(abs_diff, axis=1)\n match_vals = np.min(abs_diff, axis=1)\n invalid_matches = np.where(match_vals == np.inf)\n match_indices[invalid_matches[0]] = -1\n return NormalCorrespondences(match_indices, source_points,\n target_points, source_normals, target_normals)\n", "role": "user" }, { "content": "match", "role": "assistant" } ]
def x(self): self._cfg.enable_device(self.id) self._cfg.enable_stream(rs.stream.color, RealSenseSensor.COLOR_IM_WIDTH, RealSenseSensor.COLOR_IM_HEIGHT, rs.format.bgr8, RealSenseSensor.FPS) self._cfg.enable_stream(rs.stream.depth, RealSenseSensor.DEPTH_IM_WIDTH, 360 if self._depth_align else RealSenseSensor.DEPTH_IM_HEIGHT, rs. format.z16, RealSenseSensor.FPS)
config_pipe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._cfg.enable_device(self.id)\n self._cfg.enable_stream(rs.stream.color, RealSenseSensor.COLOR_IM_WIDTH,\n RealSenseSensor.COLOR_IM_HEIGHT, rs.format.bgr8, RealSenseSensor.FPS)\n self._cfg.enable_stream(rs.stream.depth, RealSenseSensor.DEPTH_IM_WIDTH,\n 360 if self._depth_align else RealSenseSensor.DEPTH_IM_HEIGHT, rs.\n format.z16, RealSenseSensor.FPS)\n", "role": "user" }, { "content": "config_pipe", "role": "assistant" } ]
def x(self): sensor = self._profile.get_device().first_depth_sensor() self._depth_scale = sensor.get_depth_scale()
set_depth_scale
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n sensor = self._profile.get_device().first_depth_sensor()\n self._depth_scale = sensor.get_depth_scale()\n", "role": "user" }, { "content": "set_depth_scale", "role": "assistant" } ]
def x(self): strm = self._profile.get_stream(rs.stream.color) obj = strm.as_video_stream_profile().get_intrinsics() self._intrinsics[0, 0] = obj.fx self._intrinsics[1, 1] = obj.fy self._intrinsics[0, 2] = obj.ppx self._intrinsics[1, 2] = obj.ppy
set_intrinsics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n strm = self._profile.get_stream(rs.stream.color)\n obj = strm.as_video_stream_profile().get_intrinsics()\n self._intrinsics[0, 0] = obj.fx\n self._intrinsics[1, 1] = obj.fy\n self._intrinsics[0, 2] = obj.ppx\n self._intrinsics[1, 2] = obj.ppy\n", "role": "user" }, { "content": "set_intrinsics", "role": "assistant" } ]
def x(self): return CameraIntrinsics(self._frame, self._intrinsics[0, 0], self. _intrinsics[1, 1], self._intrinsics[0, 2], self._intrinsics[1, 2], height=RealSenseSensor.COLOR_IM_HEIGHT, width=RealSenseSensor. COLOR_IM_WIDTH)
color_intrinsics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return CameraIntrinsics(self._frame, self._intrinsics[0, 0], self.\n _intrinsics[1, 1], self._intrinsics[0, 2], self._intrinsics[1, 2],\n height=RealSenseSensor.COLOR_IM_HEIGHT, width=RealSenseSensor.\n COLOR_IM_WIDTH)\n", "role": "user" }, { "content": "color_intrinsics", "role": "assistant" } ]
def x(self): try: self._depth_align = False if self._registration_mode == RealSenseRegistrationMode.DEPTH_TO_COLOR: self._depth_align = True self._config_pipe() self._profile = self._pipe.start(self._cfg) self._set_depth_scale() self._set_intrinsics() for _ in range(5): self._pipe.wait_for_frames() self._running = True except RuntimeError as e: print(e)
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n self._depth_align = False\n if self._registration_mode == RealSenseRegistrationMode.DEPTH_TO_COLOR:\n self._depth_align = True\n self._config_pipe()\n self._profile = self._pipe.start(self._cfg)\n self._set_depth_scale()\n self._set_intrinsics()\n for _ in range(5):\n self._pipe.wait_for_frames()\n self._running = True\n except RuntimeError as e:\n print(e)\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self): if not self._running: logging.warning('Realsense not running. Aborting stop.') return False self._pipe.stop() self._running = False return True
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running:\n logging.warning('Realsense not running. Aborting stop.')\n return False\n self._pipe.stop()\n self._running = False\n return True\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self): frames = self._pipe.wait_for_frames() if self._depth_align: frames = self._align.process(frames) depth_frame = frames.get_depth_frame() color_frame = frames.get_color_frame() if not depth_frame or not color_frame: logging.warning('Could not retrieve frames.') return None, None if self._filter_depth: depth_frame = self._filter_depth_frame(depth_frame) depth_image = self._to_numpy(depth_frame, np.float32) color_image = self._to_numpy(color_frame, np.uint8) depth_image *= self._depth_scale color_image = color_image[..., ::-1] depth = DepthImage(depth_image, frame=self._frame) color = ColorImage(color_image, frame=self._frame) return color, depth
read_color_and_depth_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n frames = self._pipe.wait_for_frames()\n if self._depth_align:\n frames = self._align.process(frames)\n depth_frame = frames.get_depth_frame()\n color_frame = frames.get_color_frame()\n if not depth_frame or not color_frame:\n logging.warning('Could not retrieve frames.')\n return None, None\n if self._filter_depth:\n depth_frame = self._filter_depth_frame(depth_frame)\n depth_image = self._to_numpy(depth_frame, np.float32)\n color_image = self._to_numpy(color_frame, np.uint8)\n depth_image *= self._depth_scale\n color_image = color_image[..., ::-1]\n depth = DepthImage(depth_image, frame=self._frame)\n color = ColorImage(color_image, frame=self._frame)\n return color, depth\n", "role": "user" }, { "content": "read_color_and_depth_image", "role": "assistant" } ]
def x(self): self._cap = cv2.VideoCapture(self._device_id + cv2.CAP_V4L2) if not self._cap.isOpened(): self._running = False self._cap.release() self._cap = None return False self._cap.set(cv2.CAP_PROP_FRAME_WIDTH, self._camera_intr.width) self._cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self._camera_intr.height) self._running = True for _ in range(5): _ = self.frames() return True
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._cap = cv2.VideoCapture(self._device_id + cv2.CAP_V4L2)\n if not self._cap.isOpened():\n self._running = False\n self._cap.release()\n self._cap = None\n return False\n self._cap.set(cv2.CAP_PROP_FRAME_WIDTH, self._camera_intr.width)\n self._cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self._camera_intr.height)\n self._running = True\n for _ in range(5):\n _ = self.frames()\n return True\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self): if not self._running: logging.warning('Webcam not running. Aborting stop') return False if self._cap: self._cap.release() self._cap = None self._running = False return True
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running:\n logging.warning('Webcam not running. Aborting stop')\n return False\n if self._cap:\n self._cap.release()\n self._cap = None\n self._running = False\n return True\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self, most_recent=False): if most_recent: for i in xrange(4): self._cap.grab() for i in range(1): if self._adjust_exposure: try: command = ( 'v4l2-ctl -d /dev/video{} -c exposure_auto=1 -c exposure_auto_priority=0 -c exposure_absolute=100 -c saturation=60 -c gain=140' .format(self._device_id)) FNULL = open(os.devnull, 'w') subprocess.call(shlex.split(command), stdout=FNULL, stderr= subprocess.STDOUT) except: pass ret, frame = self._cap.read() rgb_data = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) return ColorImage(rgb_data, frame=self._frame), None, None
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, most_recent=False):\n if most_recent:\n for i in xrange(4):\n self._cap.grab()\n for i in range(1):\n if self._adjust_exposure:\n try:\n command = (\n 'v4l2-ctl -d /dev/video{} -c exposure_auto=1 -c exposure_auto_priority=0 -c exposure_absolute=100 -c saturation=60 -c gain=140'\n .format(self._device_id))\n FNULL = open(os.devnull, 'w')\n subprocess.call(shlex.split(command), stdout=FNULL, stderr=\n subprocess.STDOUT)\n except:\n pass\n ret, frame = self._cap.read()\n rgb_data = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n return ColorImage(rgb_data, frame=self._frame), None, None\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(self, msg): num_points = msg.height * msg.width self._format = '<' + num_points * 'ffff'
set_format
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg):\n num_points = msg.height * msg.width\n self._format = '<' + num_points * 'ffff'\n", "role": "user" }, { "content": "set_format", "role": "assistant" } ]
def x(self, msg): focal_x = msg.K[0] focal_y = msg.K[4] center_x = msg.K[2] center_y = msg.K[5] im_height = msg.height im_width = msg.width self._camera_intr = CameraIntrinsics(self._frame, focal_x, focal_y, center_x, center_y, height=im_height, width=im_width)
set_camera_properties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg):\n focal_x = msg.K[0]\n focal_y = msg.K[4]\n center_x = msg.K[2]\n center_y = msg.K[5]\n im_height = msg.height\n im_width = msg.width\n self._camera_intr = CameraIntrinsics(self._frame, focal_x, focal_y,\n center_x, center_y, height=im_height, width=im_width)\n", "role": "user" }, { "content": "set_camera_properties", "role": "assistant" } ]
def x(self, msg): if self._format is None: self._set_format(msg) if msg.height != self._camera_intr.height: rescale_factor = float(msg.height) / self._camera_intr.height self._camera_intr = self._camera_intr.resize(rescale_factor) num_points = msg.height * msg.width raw_tup = struct.Struct(self._format).unpack_from(msg.data, 0) raw_arr = np.array(raw_tup) depth_ind = 2 + 4 * np.arange(num_points) depth_buf = raw_arr[depth_ind] depth_arr = depth_buf.reshape(msg.height, msg.width) depth_im = DepthImage(depth_arr, frame=self._frame) return depth_im
depth_im_from_pointcloud
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg):\n if self._format is None:\n self._set_format(msg)\n if msg.height != self._camera_intr.height:\n rescale_factor = float(msg.height) / self._camera_intr.height\n self._camera_intr = self._camera_intr.resize(rescale_factor)\n num_points = msg.height * msg.width\n raw_tup = struct.Struct(self._format).unpack_from(msg.data, 0)\n raw_arr = np.array(raw_tup)\n depth_ind = 2 + 4 * np.arange(num_points)\n depth_buf = raw_arr[depth_ind]\n depth_arr = depth_buf.reshape(msg.height, msg.width)\n depth_im = DepthImage(depth_arr, frame=self._frame)\n return depth_im\n", "role": "user" }, { "content": "depth_im_from_pointcloud", "role": "assistant" } ]
def x(self): self._pointcloud_sub = rospy.Subscriber('/%s/depth/points' % self.frame, PointCloud2, self._pointcloud_callback) self._camera_info_sub = rospy.Subscriber('/%s/left/camera_info' % self. frame, CameraInfo, self._camera_info_callback) while self._camera_intr is None: time.sleep(0.1) self._running = True
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._pointcloud_sub = rospy.Subscriber('/%s/depth/points' % self.frame,\n PointCloud2, self._pointcloud_callback)\n self._camera_info_sub = rospy.Subscriber('/%s/left/camera_info' % self.\n frame, CameraInfo, self._camera_info_callback)\n while self._camera_intr is None:\n time.sleep(0.1)\n self._running = True\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self): if not self._running: logging.warning('Ensenso not running. Aborting stop') return False self._pointcloud_sub.unregister() self._camera_info_sub.unregister() self._running = False return True
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running:\n logging.warning('Ensenso not running. Aborting stop')\n return False\n self._pointcloud_sub.unregister()\n self._camera_info_sub.unregister()\n self._running = False\n return True\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self): while self._cur_depth_im is None: time.sleep(0.01) depth_im = self._cur_depth_im color_im = ColorImage(np.zeros([depth_im.height, depth_im.width, 3]). astype(np.uint8), frame=self._frame) self._cur_depth_im = None return color_im, depth_im, None
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n while self._cur_depth_im is None:\n time.sleep(0.01)\n depth_im = self._cur_depth_im\n color_im = ColorImage(np.zeros([depth_im.height, depth_im.width, 3]).\n astype(np.uint8), frame=self._frame)\n self._cur_depth_im = None\n return color_im, depth_im, None\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(self, source_point_cloud, target_point_cloud, source_normal_cloud, target_normal_cloud, matcher, num_iterations=1, compute_total_cost=True, match_centroids=False, vis=False): pass
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source_point_cloud, target_point_cloud, source_normal_cloud,\n target_normal_cloud, matcher, num_iterations=1, compute_total_cost=True,\n match_centroids=False, vis=False):\n pass\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(self): if not self._running: raise RuntimeError( 'Device pointing to %s not runnning. Cannot read frames' % self ._path_to_images) if self._im_index >= self._num_images: raise RuntimeError('Device is out of images') color_filename = os.path.join(self._path_to_images, 'color_%d%s' % ( self._im_index, self._color_ext)) color_im = ColorImage.open(color_filename, frame=self._frame) depth_filename = os.path.join(self._path_to_images, 'depth_%d.npy' % self._im_index) depth_im = DepthImage.open(depth_filename, frame=self._frame) self._im_index = (self._im_index + 1) % self._num_images return color_im, depth_im, None
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running:\n raise RuntimeError(\n 'Device pointing to %s not runnning. Cannot read frames' % self\n ._path_to_images)\n if self._im_index >= self._num_images:\n raise RuntimeError('Device is out of images')\n color_filename = os.path.join(self._path_to_images, 'color_%d%s' % (\n self._im_index, self._color_ext))\n color_im = ColorImage.open(color_filename, frame=self._frame)\n depth_filename = os.path.join(self._path_to_images, 'depth_%d.npy' %\n self._im_index)\n depth_im = DepthImage.open(depth_filename, frame=self._frame)\n self._im_index = (self._im_index + 1) % self._num_images\n return color_im, depth_im, None\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(self, num_img=1): depths = [] for _ in range(num_img): _, depth, _ = self.frames() depths.append(depth) return Image.median_images(depths)
median_depth_img
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_img=1):\n depths = []\n for _ in range(num_img):\n _, depth, _ = self.frames()\n depths.append(depth)\n return Image.median_images(depths)\n", "role": "user" }, { "content": "median_depth_img", "role": "assistant" } ]
def x(self): if not self._running: raise RuntimeError( 'Device pointing to %s not runnning. Cannot read frames' % self ._path_to_images) if self._im_index >= self._num_images: raise RuntimeError('Device is out of images') datapoint = self._dataset.datapoint(self._im_index, TensorDatasetVirtualSensor.IMAGE_FIELDS) color_im = ColorImage(datapoint[TensorDatasetVirtualSensor. COLOR_IM_FIELD], frame=self._frame) depth_im = DepthImage(datapoint[TensorDatasetVirtualSensor. DEPTH_IM_FIELD], frame=self._frame) if self._image_rescale_factor != 1.0: color_im = color_im.resize(self._image_rescale_factor) depth_im = depth_im.resize(self._image_rescale_factor, interp='nearest' ) self._im_index = (self._im_index + 1) % self._num_images return color_im, depth_im, None
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running:\n raise RuntimeError(\n 'Device pointing to %s not runnning. Cannot read frames' % self\n ._path_to_images)\n if self._im_index >= self._num_images:\n raise RuntimeError('Device is out of images')\n datapoint = self._dataset.datapoint(self._im_index,\n TensorDatasetVirtualSensor.IMAGE_FIELDS)\n color_im = ColorImage(datapoint[TensorDatasetVirtualSensor.\n COLOR_IM_FIELD], frame=self._frame)\n depth_im = DepthImage(datapoint[TensorDatasetVirtualSensor.\n DEPTH_IM_FIELD], frame=self._frame)\n if self._image_rescale_factor != 1.0:\n color_im = color_im.resize(self._image_rescale_factor)\n depth_im = depth_im.resize(self._image_rescale_factor, interp='nearest'\n )\n self._im_index = (self._im_index + 1) % self._num_images\n return color_im, depth_im, None\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(self): return CameraIntrinsics(self._ir_frame, PrimesenseSensor.FOCAL_X, PrimesenseSensor.FOCAL_Y, PrimesenseSensor.CENTER_X, PrimesenseSensor.CENTER_Y, height=PrimesenseSensor.DEPTH_IM_HEIGHT, width=PrimesenseSensor.DEPTH_IM_WIDTH)
color_intrinsics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return CameraIntrinsics(self._ir_frame, PrimesenseSensor.FOCAL_X,\n PrimesenseSensor.FOCAL_Y, PrimesenseSensor.CENTER_X,\n PrimesenseSensor.CENTER_Y, height=PrimesenseSensor.DEPTH_IM_HEIGHT,\n width=PrimesenseSensor.DEPTH_IM_WIDTH)\n", "role": "user" }, { "content": "color_intrinsics", "role": "assistant" } ]
def x(self): openni2.initialize(PrimesenseSensor.OPENNI2_PATH) self._device = openni2.Device.open_any() self._depth_stream = self._device.create_depth_stream() self._depth_stream.configure_mode(PrimesenseSensor.DEPTH_IM_WIDTH, PrimesenseSensor.DEPTH_IM_HEIGHT, PrimesenseSensor.FPS, openni2. PIXEL_FORMAT_DEPTH_1_MM) self._depth_stream.start() self._color_stream = self._device.create_color_stream() self._color_stream.configure_mode(PrimesenseSensor.COLOR_IM_WIDTH, PrimesenseSensor.COLOR_IM_HEIGHT, PrimesenseSensor.FPS, openni2. PIXEL_FORMAT_RGB888) self._color_stream.camera.set_auto_white_balance(self._auto_white_balance) self._color_stream.camera.set_auto_exposure(self._auto_exposure) self._color_stream.start() if self._registration_mode == PrimesenseRegistrationMode.DEPTH_TO_COLOR: self._device.set_image_registration_mode(openni2. IMAGE_REGISTRATION_DEPTH_TO_COLOR) else: self._device.set_image_registration_mode(openni2.IMAGE_REGISTRATION_OFF ) self._device.set_depth_color_sync_enabled(self._enable_depth_color_sync) self._running = True
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n openni2.initialize(PrimesenseSensor.OPENNI2_PATH)\n self._device = openni2.Device.open_any()\n self._depth_stream = self._device.create_depth_stream()\n self._depth_stream.configure_mode(PrimesenseSensor.DEPTH_IM_WIDTH,\n PrimesenseSensor.DEPTH_IM_HEIGHT, PrimesenseSensor.FPS, openni2.\n PIXEL_FORMAT_DEPTH_1_MM)\n self._depth_stream.start()\n self._color_stream = self._device.create_color_stream()\n self._color_stream.configure_mode(PrimesenseSensor.COLOR_IM_WIDTH,\n PrimesenseSensor.COLOR_IM_HEIGHT, PrimesenseSensor.FPS, openni2.\n PIXEL_FORMAT_RGB888)\n self._color_stream.camera.set_auto_white_balance(self._auto_white_balance)\n self._color_stream.camera.set_auto_exposure(self._auto_exposure)\n self._color_stream.start()\n if self._registration_mode == PrimesenseRegistrationMode.DEPTH_TO_COLOR:\n self._device.set_image_registration_mode(openni2.\n IMAGE_REGISTRATION_DEPTH_TO_COLOR)\n else:\n self._device.set_image_registration_mode(openni2.IMAGE_REGISTRATION_OFF\n )\n self._device.set_depth_color_sync_enabled(self._enable_depth_color_sync)\n self._running = True\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self): if not self._running or self._device is None: logging.warning('Primesense not running. Aborting stop') return False if self._depth_stream: self._depth_stream.stop() if self._color_stream: self._color_stream.stop() self._running = False openni2.unload() return True
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running or self._device is None:\n logging.warning('Primesense not running. Aborting stop')\n return False\n if self._depth_stream:\n self._depth_stream.stop()\n if self._color_stream:\n self._color_stream.stop()\n self._running = False\n openni2.unload()\n return True\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self): im_arr = self._depth_stream.read_frame() raw_buf = im_arr.get_buffer_as_uint16() buf_array = np.array([raw_buf[i] for i in range(PrimesenseSensor. DEPTH_IM_WIDTH * PrimesenseSensor.DEPTH_IM_HEIGHT)]) depth_image = buf_array.reshape(PrimesenseSensor.DEPTH_IM_HEIGHT, PrimesenseSensor.DEPTH_IM_WIDTH) depth_image = depth_image * MM_TO_METERS if self._flip_images: depth_image = np.flipud(depth_image) else: depth_image = np.fliplr(depth_image) return DepthImage(depth_image, frame=self._frame)
read_depth_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n im_arr = self._depth_stream.read_frame()\n raw_buf = im_arr.get_buffer_as_uint16()\n buf_array = np.array([raw_buf[i] for i in range(PrimesenseSensor.\n DEPTH_IM_WIDTH * PrimesenseSensor.DEPTH_IM_HEIGHT)])\n depth_image = buf_array.reshape(PrimesenseSensor.DEPTH_IM_HEIGHT,\n PrimesenseSensor.DEPTH_IM_WIDTH)\n depth_image = depth_image * MM_TO_METERS\n if self._flip_images:\n depth_image = np.flipud(depth_image)\n else:\n depth_image = np.fliplr(depth_image)\n return DepthImage(depth_image, frame=self._frame)\n", "role": "user" }, { "content": "read_depth_image", "role": "assistant" } ]
def x(self): im_arr = self._color_stream.read_frame() raw_buf = im_arr.get_buffer_as_triplet() r_array = np.array([raw_buf[i][0] for i in range(PrimesenseSensor. COLOR_IM_WIDTH * PrimesenseSensor.COLOR_IM_HEIGHT)]) g_array = np.array([raw_buf[i][1] for i in range(PrimesenseSensor. COLOR_IM_WIDTH * PrimesenseSensor.COLOR_IM_HEIGHT)]) b_array = np.array([raw_buf[i][2] for i in range(PrimesenseSensor. COLOR_IM_WIDTH * PrimesenseSensor.COLOR_IM_HEIGHT)]) color_image = np.zeros([PrimesenseSensor.COLOR_IM_HEIGHT, PrimesenseSensor.COLOR_IM_WIDTH, 3]) color_image[:, :, 0] = r_array.reshape(PrimesenseSensor.COLOR_IM_HEIGHT, PrimesenseSensor.COLOR_IM_WIDTH) color_image[:, :, 1] = g_array.reshape(PrimesenseSensor.COLOR_IM_HEIGHT, PrimesenseSensor.COLOR_IM_WIDTH) color_image[:, :, 2] = b_array.reshape(PrimesenseSensor.COLOR_IM_HEIGHT, PrimesenseSensor.COLOR_IM_WIDTH) if self._flip_images: color_image = np.flipud(color_image.astype(np.uint8)) else: color_image = np.fliplr(color_image.astype(np.uint8)) return ColorImage(color_image, frame=self._frame)
read_color_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n im_arr = self._color_stream.read_frame()\n raw_buf = im_arr.get_buffer_as_triplet()\n r_array = np.array([raw_buf[i][0] for i in range(PrimesenseSensor.\n COLOR_IM_WIDTH * PrimesenseSensor.COLOR_IM_HEIGHT)])\n g_array = np.array([raw_buf[i][1] for i in range(PrimesenseSensor.\n COLOR_IM_WIDTH * PrimesenseSensor.COLOR_IM_HEIGHT)])\n b_array = np.array([raw_buf[i][2] for i in range(PrimesenseSensor.\n COLOR_IM_WIDTH * PrimesenseSensor.COLOR_IM_HEIGHT)])\n color_image = np.zeros([PrimesenseSensor.COLOR_IM_HEIGHT,\n PrimesenseSensor.COLOR_IM_WIDTH, 3])\n color_image[:, :, 0] = r_array.reshape(PrimesenseSensor.COLOR_IM_HEIGHT,\n PrimesenseSensor.COLOR_IM_WIDTH)\n color_image[:, :, 1] = g_array.reshape(PrimesenseSensor.COLOR_IM_HEIGHT,\n PrimesenseSensor.COLOR_IM_WIDTH)\n color_image[:, :, 2] = b_array.reshape(PrimesenseSensor.COLOR_IM_HEIGHT,\n PrimesenseSensor.COLOR_IM_WIDTH)\n if self._flip_images:\n color_image = np.flipud(color_image.astype(np.uint8))\n else:\n color_image = np.fliplr(color_image.astype(np.uint8))\n return ColorImage(color_image, frame=self._frame)\n", "role": "user" }, { "content": "read_color_image", "role": "assistant" } ]
def x(self): color_im = self._read_color_image() depth_im = self._read_depth_image() return color_im, depth_im, None
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n color_im = self._read_color_image()\n depth_im = self._read_depth_image()\n return color_im, depth_im, None\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(self, num_img=1): depths = [] for _ in range(num_img): _, depth, _ = self.frames() depths.append(depth) return Image.min_images(depths)
min_depth_img
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_img=1):\n depths = []\n for _ in range(num_img):\n _, depth, _ = self.frames()\n depths.append(depth)\n return Image.min_images(depths)\n", "role": "user" }, { "content": "min_depth_img", "role": "assistant" } ]
def x(self, stream_buffer, number, staleness_limit=10.0): rospy.wait_for_service(stream_buffer, timeout=self.timeout) ros_image_buffer = rospy.ServiceProxy(stream_buffer, ImageBuffer) ret = ros_image_buffer(number, 1) if not staleness_limit == None: if ret.timestamps[-1] > staleness_limit: raise RuntimeError( 'Got data {0} seconds old, more than allowed {1} seconds'. format(ret.timestamps[-1], staleness_limit)) data = ret.data.reshape(ret.data_dim1, ret.data_dim2, ret.data_dim3 ).astype(ret.dtype) if number == 1: return [data] return np.dsplit(data, number)
ros_read_images
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, stream_buffer, number, staleness_limit=10.0):\n rospy.wait_for_service(stream_buffer, timeout=self.timeout)\n ros_image_buffer = rospy.ServiceProxy(stream_buffer, ImageBuffer)\n ret = ros_image_buffer(number, 1)\n if not staleness_limit == None:\n if ret.timestamps[-1] > staleness_limit:\n raise RuntimeError(\n 'Got data {0} seconds old, more than allowed {1} seconds'.\n format(ret.timestamps[-1], staleness_limit))\n data = ret.data.reshape(ret.data_dim1, ret.data_dim2, ret.data_dim3\n ).astype(ret.dtype)\n if number == 1:\n return [data]\n return np.dsplit(data, number)\n", "role": "user" }, { "content": "ros_read_images", "role": "assistant" } ]
def x(self, num_images): depth_images = self._ros_read_images(self._depth_image_buffer, num_images, self.staleness_limit) for i in range(0, num_images): depth_images[i] = depth_images[i] * MM_TO_METERS if self._flip_images: depth_images[i] = np.flipud(depth_images[i]) depth_images[i] = np.fliplr(depth_images[i]) depth_images[i] = DepthImage(depth_images[i], frame=self._frame) return depth_images
read_depth_images
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_images):\n depth_images = self._ros_read_images(self._depth_image_buffer,\n num_images, self.staleness_limit)\n for i in range(0, num_images):\n depth_images[i] = depth_images[i] * MM_TO_METERS\n if self._flip_images:\n depth_images[i] = np.flipud(depth_images[i])\n depth_images[i] = np.fliplr(depth_images[i])\n depth_images[i] = DepthImage(depth_images[i], frame=self._frame)\n return depth_images\n", "role": "user" }, { "content": "read_depth_images", "role": "assistant" } ]
def x(self, num_images): color_images = self._ros_read_images(self._color_image_buffer, num_images, self.staleness_limit) for i in range(0, num_images): if self._flip_images: color_images[i] = np.flipud(color_images[i].astype(np.uint8)) color_images[i] = np.fliplr(color_images[i].astype(np.uint8)) color_images[i] = ColorImage(color_images[i], frame=self._frame) return color_images
read_color_images
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_images):\n color_images = self._ros_read_images(self._color_image_buffer,\n num_images, self.staleness_limit)\n for i in range(0, num_images):\n if self._flip_images:\n color_images[i] = np.flipud(color_images[i].astype(np.uint8))\n color_images[i] = np.fliplr(color_images[i].astype(np.uint8))\n color_images[i] = ColorImage(color_images[i], frame=self._frame)\n return color_images\n", "role": "user" }, { "content": "read_color_images", "role": "assistant" } ]
def x(self, num_img=1, fill_depth=0.0): depths = self._read_depth_images(num_img) median_depth = Image.median_images(depths) median_depth.data[median_depth.data == 0.0] = fill_depth return median_depth
median_depth_img
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_img=1, fill_depth=0.0):\n depths = self._read_depth_images(num_img)\n median_depth = Image.median_images(depths)\n median_depth.data[median_depth.data == 0.0] = fill_depth\n return median_depth\n", "role": "user" }, { "content": "median_depth_img", "role": "assistant" } ]
def x(self, num_img=1): depths = self._read_depth_images(num_img) return Image.min_images(depths)
min_depth_img
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_img=1):\n depths = self._read_depth_images(num_img)\n return Image.min_images(depths)\n", "role": "user" }, { "content": "min_depth_img", "role": "assistant" } ]
def x(self): if self.stable_pose is None: T_obj_world = RigidTransform(from_frame='obj', to_frame='world') else: T_obj_world = self.stable_pose.T_obj_table.as_frames('obj', 'world') T_camera_obj = T_obj_world.inverse() * self.T_camera_world return T_camera_obj
T_obj_camera
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.stable_pose is None:\n T_obj_world = RigidTransform(from_frame='obj', to_frame='world')\n else:\n T_obj_world = self.stable_pose.T_obj_table.as_frames('obj', 'world')\n T_camera_obj = T_obj_world.inverse() * self.T_camera_world\n return T_camera_obj\n", "role": "user" }, { "content": "T_obj_camera", "role": "assistant" } ]
def x(self, render_mode): if render_mode == RenderMode.COLOR: return self.color_im elif render_mode == RenderMode.DEPTH: return self.depth_im elif render_mode == RenderMode.SEGMASK: return self.binary_im else: return None
image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, render_mode):\n if render_mode == RenderMode.COLOR:\n return self.color_im\n elif render_mode == RenderMode.DEPTH:\n return self.depth_im\n elif render_mode == RenderMode.SEGMASK:\n return self.binary_im\n else:\n return None\n", "role": "user" }, { "content": "image", "role": "assistant" } ]
def x(self, feature): self.features_.append(feature) self.num_features_ = len(self.features_)
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, feature):\n self.features_.append(feature)\n self.num_features_ = len(self.features_)\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, features): self.features_.extend(features) self.num_features_ = len(self.features_)
extend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, features):\n self.features_.extend(features)\n self.num_features_ = len(self.features_)\n", "role": "user" }, { "content": "extend", "role": "assistant" } ]
def x(self, index): if index < 0 or index >= self.num_features_: raise ValueError('Index %d out of range' % index) return self.features_[index]
feature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index):\n if index < 0 or index >= self.num_features_:\n raise ValueError('Index %d out of range' % index)\n return self.features_[index]\n", "role": "user" }, { "content": "feature", "role": "assistant" } ]
def x(self, indices): if isinstance(indices, np.ndarray): indices = indices.tolist() if not isinstance(indices, list): raise ValueError('Can only index with lists') return [self.features_[i] for i in indices]
feature_subset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indices):\n if isinstance(indices, np.ndarray):\n indices = indices.tolist()\n if not isinstance(indices, list):\n raise ValueError('Can only index with lists')\n return [self.features_[i] for i in indices]\n", "role": "user" }, { "content": "feature_subset", "role": "assistant" } ]
def x(self): if rospy.get_name() == '/unnamed': raise ValueError('Weight sensor must be run inside a ros node!') self._weight_subscriber = rospy.Subscriber('weight_sensor/weights', Float32MultiArray, self._weights_callback) self._running = True
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if rospy.get_name() == '/unnamed':\n raise ValueError('Weight sensor must be run inside a ros node!')\n self._weight_subscriber = rospy.Subscriber('weight_sensor/weights',\n Float32MultiArray, self._weights_callback)\n self._running = True\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self): if not self._running: return self._weight_subscriber.unregister() self._running = False
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running:\n return\n self._weight_subscriber.unregister()\n self._running = False\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self): weights = self._raw_weights() if weights.shape[1] == 0: return 0.0 elif weights.shape[1] < self._ntaps: return np.sum(np.mean(weights, axis=1)) else: return self._filter_coeffs.dot(np.sum(weights, axis=0))
total_weight
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n weights = self._raw_weights()\n if weights.shape[1] == 0:\n return 0.0\n elif weights.shape[1] < self._ntaps:\n return np.sum(np.mean(weights, axis=1))\n else:\n return self._filter_coeffs.dot(np.sum(weights, axis=0))\n", "role": "user" }, { "content": "total_weight", "role": "assistant" } ]
def x(self): weights = self._raw_weights() if weights.shape[1] == 0: return np.zeros(weights.shape[0]) elif weights.shape[1] < self._ntaps: return np.mean(weights, axis=1) else: return weights.dot(self._filter_coeffs)
individual_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n weights = self._raw_weights()\n if weights.shape[1] == 0:\n return np.zeros(weights.shape[0])\n elif weights.shape[1] < self._ntaps:\n return np.mean(weights, axis=1)\n else:\n return weights.dot(self._filter_coeffs)\n", "role": "user" }, { "content": "individual_weights", "role": "assistant" } ]
def x(self): if self._debug: return np.array([[], [], [], []]) if not self._running: raise ValueError('Weight sensor is not running!') if len(self._weight_buffers) == 0: time.sleep(0.3) if len(self._weight_buffers) == 0: raise ValueError('Weight sensor is not retrieving data!') weights = np.array(self._weight_buffers) return weights
raw_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._debug:\n return np.array([[], [], [], []])\n if not self._running:\n raise ValueError('Weight sensor is not running!')\n if len(self._weight_buffers) == 0:\n time.sleep(0.3)\n if len(self._weight_buffers) == 0:\n raise ValueError('Weight sensor is not retrieving data!')\n weights = np.array(self._weight_buffers)\n return weights\n", "role": "user" }, { "content": "raw_weights", "role": "assistant" } ]
def x(self, msg): weights = np.array(msg.data) if len(self._weight_buffers) == 0: self._weight_buffers = [[] for i in range(len(weights))] for i, w in enumerate(weights): if len(self._weight_buffers[i]) == self._ntaps: self._weight_buffers[i].pop(0) self._weight_buffers[i].append(w)
weights_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg):\n weights = np.array(msg.data)\n if len(self._weight_buffers) == 0:\n self._weight_buffers = [[] for i in range(len(weights))]\n for i, w in enumerate(weights):\n if len(self._weight_buffers[i]) == self._ntaps:\n self._weight_buffers[i].pop(0)\n self._weight_buffers[i].append(w)\n", "role": "user" }, { "content": "weights_callback", "role": "assistant" } ]
def x(self): return np.r_[self.fx, self.fy, self.cx, self.cy, self.skew, self.height, self.width]
vec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return np.r_[self.fx, self.fy, self.cx, self.cy, self.skew, self.height,\n self.width]\n", "role": "user" }, { "content": "vec", "role": "assistant" } ]
def x(self): from sensor_msgs.msg import CameraInfo, RegionOfInterest from std_msgs.msg import Header msg_header = Header() msg_header.frame_id = self._frame msg_roi = RegionOfInterest() msg_roi.x_offset = 0 msg_roi.y_offset = 0 msg_roi.height = 0 msg_roi.width = 0 msg_roi.do_rectify = 0 msg = CameraInfo() msg.header = msg_header msg.height = self._height msg.width = self._width msg.distortion_model = 'plumb_bob' msg.D = [0.0, 0.0, 0.0, 0.0, 0.0] msg.K = [self._fx, 0.0, self._cx, 0.0, self._fy, self._cy, 0.0, 0.0, 1.0] msg.R = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] msg.P = [self._fx, 0.0, self._cx, 0.0, 0.0, self._fx, self._cy, 0.0, 0.0, 0.0, 1.0, 0.0] msg.binning_x = 0 msg.binning_y = 0 msg.roi = msg_roi return msg
rosmsg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from sensor_msgs.msg import CameraInfo, RegionOfInterest\n from std_msgs.msg import Header\n msg_header = Header()\n msg_header.frame_id = self._frame\n msg_roi = RegionOfInterest()\n msg_roi.x_offset = 0\n msg_roi.y_offset = 0\n msg_roi.height = 0\n msg_roi.width = 0\n msg_roi.do_rectify = 0\n msg = CameraInfo()\n msg.header = msg_header\n msg.height = self._height\n msg.width = self._width\n msg.distortion_model = 'plumb_bob'\n msg.D = [0.0, 0.0, 0.0, 0.0, 0.0]\n msg.K = [self._fx, 0.0, self._cx, 0.0, self._fy, self._cy, 0.0, 0.0, 1.0]\n msg.R = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]\n msg.P = [self._fx, 0.0, self._cx, 0.0, 0.0, self._fx, self._cy, 0.0, \n 0.0, 0.0, 1.0, 0.0]\n msg.binning_x = 0\n msg.binning_y = 0\n msg.roi = msg_roi\n return msg\n", "role": "user" }, { "content": "rosmsg", "role": "assistant" } ]
def x(self, height, width, crop_ci, crop_cj): cx = self.cx + float(width - 1) / 2 - crop_cj cy = self.cy + float(height - 1) / 2 - crop_ci cropped_intrinsics = CameraIntrinsics(frame=self.frame, fx=self.fx, fy= self.fy, skew=self.skew, cx=cx, cy=cy, height=height, width=width) return cropped_intrinsics
crop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, height, width, crop_ci, crop_cj):\n cx = self.cx + float(width - 1) / 2 - crop_cj\n cy = self.cy + float(height - 1) / 2 - crop_ci\n cropped_intrinsics = CameraIntrinsics(frame=self.frame, fx=self.fx, fy=\n self.fy, skew=self.skew, cx=cx, cy=cy, height=height, width=width)\n return cropped_intrinsics\n", "role": "user" }, { "content": "crop", "role": "assistant" } ]
def x(self, scale): center_x = float(self.width - 1) / 2 center_y = float(self.height - 1) / 2 orig_cx_diff = self.cx - center_x orig_cy_diff = self.cy - center_y height = scale * self.height width = scale * self.width scaled_center_x = float(width - 1) / 2 scaled_center_y = float(height - 1) / 2 fx = scale * self.fx fy = scale * self.fy skew = scale * self.skew cx = scaled_center_x + scale * orig_cx_diff cy = scaled_center_y + scale * orig_cy_diff scaled_intrinsics = CameraIntrinsics(frame=self.frame, fx=fx, fy=fy, skew=skew, cx=cx, cy=cy, height=height, width=width) return scaled_intrinsics
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, scale):\n center_x = float(self.width - 1) / 2\n center_y = float(self.height - 1) / 2\n orig_cx_diff = self.cx - center_x\n orig_cy_diff = self.cy - center_y\n height = scale * self.height\n width = scale * self.width\n scaled_center_x = float(width - 1) / 2\n scaled_center_y = float(height - 1) / 2\n fx = scale * self.fx\n fy = scale * self.fy\n skew = scale * self.skew\n cx = scaled_center_x + scale * orig_cx_diff\n cy = scaled_center_y + scale * orig_cy_diff\n scaled_intrinsics = CameraIntrinsics(frame=self.frame, fx=fx, fy=fy,\n skew=skew, cx=cx, cy=cy, height=height, width=width)\n return scaled_intrinsics\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(self, point_cloud, round_px=True): if not isinstance(point_cloud, PointCloud) and not (isinstance( point_cloud, Point) and point_cloud.dim == 3): raise ValueError( 'Must provide PointCloud or 3D Point object for projection') if point_cloud.frame != self._frame: raise ValueError( 'Cannot project points in frame %s into camera with frame %s' % (point_cloud.frame, self._frame)) points_proj = self._K.dot(point_cloud.data) if len(points_proj.shape) == 1: points_proj = points_proj[:, np.newaxis] point_depths = np.tile(points_proj[2, :], [3, 1]) points_proj = np.divide(points_proj, point_depths) if round_px: points_proj = np.round(points_proj) if isinstance(point_cloud, Point): return Point(data=points_proj[:2, :].astype(np.int16), frame=self. _frame) return ImageCoords(data=points_proj[:2, :].astype(np.int16), frame=self ._frame)
project
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, point_cloud, round_px=True):\n if not isinstance(point_cloud, PointCloud) and not (isinstance(\n point_cloud, Point) and point_cloud.dim == 3):\n raise ValueError(\n 'Must provide PointCloud or 3D Point object for projection')\n if point_cloud.frame != self._frame:\n raise ValueError(\n 'Cannot project points in frame %s into camera with frame %s' %\n (point_cloud.frame, self._frame))\n points_proj = self._K.dot(point_cloud.data)\n if len(points_proj.shape) == 1:\n points_proj = points_proj[:, np.newaxis]\n point_depths = np.tile(points_proj[2, :], [3, 1])\n points_proj = np.divide(points_proj, point_depths)\n if round_px:\n points_proj = np.round(points_proj)\n if isinstance(point_cloud, Point):\n return Point(data=points_proj[:2, :].astype(np.int16), frame=self.\n _frame)\n return ImageCoords(data=points_proj[:2, :].astype(np.int16), frame=self\n ._frame)\n", "role": "user" }, { "content": "project", "role": "assistant" } ]
def x(self, depth_image): point_cloud = self.deproject(depth_image) point_cloud_im_data = point_cloud.data.T.reshape(depth_image.height, depth_image.width, 3) return PointCloudImage(data=point_cloud_im_data, frame=self._frame)
deproject_to_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, depth_image):\n point_cloud = self.deproject(depth_image)\n point_cloud_im_data = point_cloud.data.T.reshape(depth_image.height,\n depth_image.width, 3)\n return PointCloudImage(data=point_cloud_im_data, frame=self._frame)\n", "role": "user" }, { "content": "deproject_to_image", "role": "assistant" } ]
def x(filename): file_root, file_ext = os.path.splitext(filename) if file_ext.lower() != INTR_EXTENSION: raise ValueError( 'Extension %s not supported for CameraIntrinsics. Must be stored with extension %s' % (file_ext, INTR_EXTENSION)) f = open(filename, 'r') ci = json.load(f) f.close() return CameraIntrinsics(frame=ci['_frame'], fx=ci['_fx'], fy=ci['_fy'], cx=ci['_cx'], cy=ci['_cy'], skew=ci['_skew'], height=ci['_height'], width=ci['_width'])
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n file_root, file_ext = os.path.splitext(filename)\n if file_ext.lower() != INTR_EXTENSION:\n raise ValueError(\n 'Extension %s not supported for CameraIntrinsics. Must be stored with extension %s'\n % (file_ext, INTR_EXTENSION))\n f = open(filename, 'r')\n ci = json.load(f)\n f.close()\n return CameraIntrinsics(frame=ci['_frame'], fx=ci['_fx'], fy=ci['_fy'],\n cx=ci['_cx'], cy=ci['_cy'], skew=ci['_skew'], height=ci['_height'],\n width=ci['_width'])\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(cfg): if 'prestored_data' in cfg.keys() and cfg['prestored_data'] == 1: sensor = VirtualKinect2Sensor(path_to_images=cfg[ 'prestored_data_dir'], frame=cfg['sensor']['frame']) else: sensor = Kinect2Sensor(device_num=cfg['sensor']['device_num'], frame=cfg['sensor']['frame'], packet_pipeline_mode=cfg['sensor' ]['pipeline_mode']) sensor.start() ir_intrinsics = sensor.ir_intrinsics colors = [] depths = [] for _ in range(cfg['num_images']): color, depth, _ = sensor.frames() colors.append(color) depths.append(depth) sensor.stop() return colors, depths, ir_intrinsics
load_images
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cfg):\n if 'prestored_data' in cfg.keys() and cfg['prestored_data'] == 1:\n sensor = VirtualKinect2Sensor(path_to_images=cfg[\n 'prestored_data_dir'], frame=cfg['sensor']['frame'])\n else:\n sensor = Kinect2Sensor(device_num=cfg['sensor']['device_num'],\n frame=cfg['sensor']['frame'], packet_pipeline_mode=cfg['sensor'\n ]['pipeline_mode'])\n sensor.start()\n ir_intrinsics = sensor.ir_intrinsics\n colors = []\n depths = []\n for _ in range(cfg['num_images']):\n color, depth, _ = sensor.frames()\n colors.append(color)\n depths.append(depth)\n sensor.stop()\n return colors, depths, ir_intrinsics\n", "role": "user" }, { "content": "load_images", "role": "assistant" } ]
def x(self): if self._device is None: raise RuntimeError( 'Kinect2 device %s not runnning. Cannot return color intrinsics') camera_params = self._device.getColorCameraParams() return CameraIntrinsics(self._color_frame, camera_params.fx, camera_params.fy, camera_params.cx, camera_params.cy)
color_intrinsics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._device is None:\n raise RuntimeError(\n 'Kinect2 device %s not runnning. Cannot return color intrinsics')\n camera_params = self._device.getColorCameraParams()\n return CameraIntrinsics(self._color_frame, camera_params.fx,\n camera_params.fy, camera_params.cx, camera_params.cy)\n", "role": "user" }, { "content": "color_intrinsics", "role": "assistant" } ]
def x(self): if self._device is None: raise RuntimeError( 'Kinect2 device %s not runnning. Cannot return IR intrinsics') camera_params = self._device.getIrCameraParams() return CameraIntrinsics(self._ir_frame, camera_params.fx, camera_params .fy, camera_params.cx, camera_params.cy, height=Kinect2Sensor. DEPTH_IM_HEIGHT, width=Kinect2Sensor.DEPTH_IM_WIDTH)
ir_intrinsics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._device is None:\n raise RuntimeError(\n 'Kinect2 device %s not runnning. Cannot return IR intrinsics')\n camera_params = self._device.getIrCameraParams()\n return CameraIntrinsics(self._ir_frame, camera_params.fx, camera_params\n .fy, camera_params.cx, camera_params.cy, height=Kinect2Sensor.\n DEPTH_IM_HEIGHT, width=Kinect2Sensor.DEPTH_IM_WIDTH)\n", "role": "user" }, { "content": "ir_intrinsics", "role": "assistant" } ]
def x(self): if self._packet_pipeline_mode == Kinect2PacketPipelineMode.OPENGL: self._pipeline = lf2.OpenGLPacketPipeline() elif self._packet_pipeline_mode == Kinect2PacketPipelineMode.CPU: self._pipeline = lf2.CpuPacketPipeline() self._logger = lf2.createConsoleLogger(lf2.LoggerLevel.Warning) lf2.setGlobalLogger(self._logger) self._fn_handle = lf2.Freenect2() self._num_devices = self._fn_handle.enumerateDevices() if self._num_devices == 0: raise IOError('Failed to start stream. No Kinect2 devices available!') if self._num_devices <= self._device_num: raise IOError('Failed to start stream. Device num %d unavailable!' % self._device_num) self._serial = self._fn_handle.getDeviceSerialNumber(self._device_num) self._device = self._fn_handle.openDevice(self._serial, pipeline=self. _pipeline) self._listener = lf2.SyncMultiFrameListener(lf2.FrameType.Color | lf2. FrameType.Ir | lf2.FrameType.Depth) self._device.setColorFrameListener(self._listener) self._device.setIrAndDepthFrameListener(self._listener) self._device.start() self._registration = None if self._registration_mode == Kinect2RegistrationMode.COLOR_TO_DEPTH: logging.debug('Using color to depth registration') self._registration = lf2.Registration(self._device. getIrCameraParams(), self._device.getColorCameraParams()) self._running = True
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._packet_pipeline_mode == Kinect2PacketPipelineMode.OPENGL:\n self._pipeline = lf2.OpenGLPacketPipeline()\n elif self._packet_pipeline_mode == Kinect2PacketPipelineMode.CPU:\n self._pipeline = lf2.CpuPacketPipeline()\n self._logger = lf2.createConsoleLogger(lf2.LoggerLevel.Warning)\n lf2.setGlobalLogger(self._logger)\n self._fn_handle = lf2.Freenect2()\n self._num_devices = self._fn_handle.enumerateDevices()\n if self._num_devices == 0:\n raise IOError('Failed to start stream. No Kinect2 devices available!')\n if self._num_devices <= self._device_num:\n raise IOError('Failed to start stream. Device num %d unavailable!' %\n self._device_num)\n self._serial = self._fn_handle.getDeviceSerialNumber(self._device_num)\n self._device = self._fn_handle.openDevice(self._serial, pipeline=self.\n _pipeline)\n self._listener = lf2.SyncMultiFrameListener(lf2.FrameType.Color | lf2.\n FrameType.Ir | lf2.FrameType.Depth)\n self._device.setColorFrameListener(self._listener)\n self._device.setIrAndDepthFrameListener(self._listener)\n self._device.start()\n self._registration = None\n if self._registration_mode == Kinect2RegistrationMode.COLOR_TO_DEPTH:\n logging.debug('Using color to depth registration')\n self._registration = lf2.Registration(self._device.\n getIrCameraParams(), self._device.getColorCameraParams())\n self._running = True\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self): if not self._running or self._device is None: logging.warning('Kinect2 device %d not runnning. Aborting stop' % self._device_num) return False self._device.stop() self._device.close() self._device = None self._running = False return True
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running or self._device is None:\n logging.warning('Kinect2 device %d not runnning. Aborting stop' %\n self._device_num)\n return False\n self._device.stop()\n self._device.close()\n self._device = None\n self._running = False\n return True\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self, skip_registration=False): color_im, depth_im, ir_im, _ = self._frames_and_index_map(skip_registration =skip_registration) return color_im, depth_im, ir_im
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, skip_registration=False):\n color_im, depth_im, ir_im, _ = self._frames_and_index_map(skip_registration\n =skip_registration)\n return color_im, depth_im, ir_im\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(self, skip_registration=False): if not self._running: raise RuntimeError( 'Kinect2 device %s not runnning. Cannot read frames' % self. _device_num) frames = self._listener.waitForNewFrame() unregistered_color = frames['color'] distorted_depth = frames['depth'] ir = frames['ir'] color_frame = self._color_frame color = unregistered_color depth = distorted_depth color_depth_map = np.zeros([depth.height, depth.width]).astype(np.int32 ).ravel() if (not skip_registration and self._registration_mode == Kinect2RegistrationMode.COLOR_TO_DEPTH): color_frame = self._ir_frame depth = lf2.Frame(depth.width, depth.height, 4, lf2.FrameType.Depth) color = lf2.Frame(depth.width, depth.height, 4, lf2.FrameType.Color) self._registration.apply(unregistered_color, distorted_depth, depth, color, color_depth_map=color_depth_map) color_arr = copy.copy(color.asarray()) color_arr[:, :, [0, 2]] = color_arr[:, :, [2, 0]] color_arr[:, :, 0] = np.fliplr(color_arr[:, :, 0]) color_arr[:, :, 1] = np.fliplr(color_arr[:, :, 1]) color_arr[:, :, 2] = np.fliplr(color_arr[:, :, 2]) color_arr[:, :, 3] = np.fliplr(color_arr[:, :, 3]) depth_arr = np.fliplr(copy.copy(depth.asarray())) ir_arr = np.fliplr(copy.copy(ir.asarray())) if self._depth_mode == Kinect2DepthMode.METERS: depth_arr = depth_arr * MM_TO_METERS self._listener.release(frames) return ColorImage(color_arr[:, :, :3], color_frame), DepthImage(depth_arr, self._ir_frame), IrImage(ir_arr.astype(np.uint16), self._ir_frame ), color_depth_map
frames_and_index_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, skip_registration=False):\n if not self._running:\n raise RuntimeError(\n 'Kinect2 device %s not runnning. Cannot read frames' % self.\n _device_num)\n frames = self._listener.waitForNewFrame()\n unregistered_color = frames['color']\n distorted_depth = frames['depth']\n ir = frames['ir']\n color_frame = self._color_frame\n color = unregistered_color\n depth = distorted_depth\n color_depth_map = np.zeros([depth.height, depth.width]).astype(np.int32\n ).ravel()\n if (not skip_registration and self._registration_mode ==\n Kinect2RegistrationMode.COLOR_TO_DEPTH):\n color_frame = self._ir_frame\n depth = lf2.Frame(depth.width, depth.height, 4, lf2.FrameType.Depth)\n color = lf2.Frame(depth.width, depth.height, 4, lf2.FrameType.Color)\n self._registration.apply(unregistered_color, distorted_depth, depth,\n color, color_depth_map=color_depth_map)\n color_arr = copy.copy(color.asarray())\n color_arr[:, :, [0, 2]] = color_arr[:, :, [2, 0]]\n color_arr[:, :, 0] = np.fliplr(color_arr[:, :, 0])\n color_arr[:, :, 1] = np.fliplr(color_arr[:, :, 1])\n color_arr[:, :, 2] = np.fliplr(color_arr[:, :, 2])\n color_arr[:, :, 3] = np.fliplr(color_arr[:, :, 3])\n depth_arr = np.fliplr(copy.copy(depth.asarray()))\n ir_arr = np.fliplr(copy.copy(ir.asarray()))\n if self._depth_mode == Kinect2DepthMode.METERS:\n depth_arr = depth_arr * MM_TO_METERS\n self._listener.release(frames)\n return ColorImage(color_arr[:, :, :3], color_frame), DepthImage(depth_arr,\n self._ir_frame), IrImage(ir_arr.astype(np.uint16), self._ir_frame\n ), color_depth_map\n", "role": "user" }, { "content": "frames_and_index_map", "role": "assistant" } ]
def x(self, msg): encoding = msg.encoding try: image = self._bridge.imgmsg_to_cv2(msg, encoding) except CvBridgeError as e: rospy.logerr(e) return image
process_image_msg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg):\n encoding = msg.encoding\n try:\n image = self._bridge.imgmsg_to_cv2(msg, encoding)\n except CvBridgeError as e:\n rospy.logerr(e)\n return image\n", "role": "user" }, { "content": "process_image_msg", "role": "assistant" } ]
def x(self, image_msg): color_arr = self._process_image_msg(image_msg) self._cur_color_im = ColorImage(color_arr[:, :, ::-1], self._frame)
color_image_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image_msg):\n color_arr = self._process_image_msg(image_msg)\n self._cur_color_im = ColorImage(color_arr[:, :, ::-1], self._frame)\n", "role": "user" }, { "content": "color_image_callback", "role": "assistant" } ]
def x(self, image_msg): encoding = image_msg.encoding try: depth_arr = self._bridge.imgmsg_to_cv2(image_msg, encoding) import pdb pdb.set_trace() except CvBridgeError as e: rospy.logerr(e) depth = np.array(depth_arr * MM_TO_METERS, np.float32) self._cur_depth_im = DepthImage(depth, self._frame)
depth_image_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image_msg):\n encoding = image_msg.encoding\n try:\n depth_arr = self._bridge.imgmsg_to_cv2(image_msg, encoding)\n import pdb\n pdb.set_trace()\n except CvBridgeError as e:\n rospy.logerr(e)\n depth = np.array(depth_arr * MM_TO_METERS, np.float32)\n self._cur_depth_im = DepthImage(depth, self._frame)\n", "role": "user" }, { "content": "depth_image_callback", "role": "assistant" } ]
def x(self): self._image_sub = rospy.Subscriber(self.topic_image_color, sensor_msgs. msg.Image, self._color_image_callback) self._depth_sub = rospy.Subscriber(self.topic_image_depth, sensor_msgs. msg.Image, self._depth_image_callback) self._camera_info_sub = rospy.Subscriber(self.topic_info_camera, sensor_msgs.msg.CameraInfo, self._camera_info_callback) timeout = 10 try: rospy.loginfo('waiting to recieve a message from the Kinect') rospy.wait_for_message(self.topic_image_color, sensor_msgs.msg. Image, timeout=timeout) rospy.wait_for_message(self.topic_image_depth, sensor_msgs.msg. Image, timeout=timeout) rospy.wait_for_message(self.topic_info_camera, sensor_msgs.msg. CameraInfo, timeout=timeout) except rospy.ROSException as e: print('KINECT NOT FOUND') rospy.logerr('Kinect topic not found, Kinect not started') rospy.logerr(e) while self._camera_intr is None: time.sleep(0.1) self._running = True
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._image_sub = rospy.Subscriber(self.topic_image_color, sensor_msgs.\n msg.Image, self._color_image_callback)\n self._depth_sub = rospy.Subscriber(self.topic_image_depth, sensor_msgs.\n msg.Image, self._depth_image_callback)\n self._camera_info_sub = rospy.Subscriber(self.topic_info_camera,\n sensor_msgs.msg.CameraInfo, self._camera_info_callback)\n timeout = 10\n try:\n rospy.loginfo('waiting to recieve a message from the Kinect')\n rospy.wait_for_message(self.topic_image_color, sensor_msgs.msg.\n Image, timeout=timeout)\n rospy.wait_for_message(self.topic_image_depth, sensor_msgs.msg.\n Image, timeout=timeout)\n rospy.wait_for_message(self.topic_info_camera, sensor_msgs.msg.\n CameraInfo, timeout=timeout)\n except rospy.ROSException as e:\n print('KINECT NOT FOUND')\n rospy.logerr('Kinect topic not found, Kinect not started')\n rospy.logerr(e)\n while self._camera_intr is None:\n time.sleep(0.1)\n self._running = True\n", "role": "user" }, { "content": "start", "role": "assistant" } ]