source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, request, response):
super(TaskQueueHandler, self).initialize(request, response)
if 'X-AppEngine-QueueName' not in self.request.headers:
logging.error(self.request.headers)
logging.error('Task queue handler received non-task queue request')
self.response.set_status(403, message=
'Task queue handler received non-task queue request')
return
if self.task_retry_count() + 1 > parameters.config.TASK_MAX_ATTEMPTS:
logging.error(
'Task %s has been attempted %s times. Dropping it permanently.',
self.request.headers['X-AppEngine-TaskName'], self.
task_retry_count() + 1)
self._drop_gracefully()
return
try:
self._preprocess()
self._preprocess_success = True
except:
self._preprocess_success = False
logging.error('Preprocess task %s failed. Dropping it permanently.',
self.request.headers['X-AppEngine-TaskName'])
self._drop_gracefully()
|
initialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, response):\n super(TaskQueueHandler, self).initialize(request, response)\n if 'X-AppEngine-QueueName' not in self.request.headers:\n logging.error(self.request.headers)\n logging.error('Task queue handler received non-task queue request')\n self.response.set_status(403, message=\n 'Task queue handler received non-task queue request')\n return\n if self.task_retry_count() + 1 > parameters.config.TASK_MAX_ATTEMPTS:\n logging.error(\n 'Task %s has been attempted %s times. Dropping it permanently.',\n self.request.headers['X-AppEngine-TaskName'], self.\n task_retry_count() + 1)\n self._drop_gracefully()\n return\n try:\n self._preprocess()\n self._preprocess_success = True\n except:\n self._preprocess_success = False\n logging.error('Preprocess task %s failed. Dropping it permanently.',\n self.request.headers['X-AppEngine-TaskName'])\n self._drop_gracefully()\n",
"role": "user"
},
{
"content": "initialize",
"role": "assistant"
}
] |
def x(self):
self.response.set_status(httplib.SERVICE_UNAVAILABLE, 'Retry task')
self.response.clear()
|
retry_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.response.set_status(httplib.SERVICE_UNAVAILABLE, 'Retry task')\n self.response.clear()\n",
"role": "user"
},
{
"content": "retry_task",
"role": "assistant"
}
] |
def x(self):
path = self.request.path
base_path = path[:path.rfind('/')]
if not base_path.endswith('/command'):
raise BadRequestPathError(
'Json handlers should have /command path prefix')
return base_path[:base_path.rfind('/')]
|
base_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n path = self.request.path\n base_path = path[:path.rfind('/')]\n if not base_path.endswith('/command'):\n raise BadRequestPathError(\n 'Json handlers should have /command path prefix')\n return base_path[:base_path.rfind('/')]\n",
"role": "user"
},
{
"content": "base_path",
"role": "assistant"
}
] |
def x(self, n):
if self._EOF:
return ''
while self._seg_index <= self._last_seg_index:
result = self._read_from_seg(n)
if result != '':
return result
else:
self._next_seg()
self._EOF = True
return ''
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n):\n if self._EOF:\n return ''\n while self._seg_index <= self._last_seg_index:\n result = self._read_from_seg(n)\n if result != '':\n return result\n else:\n self._next_seg()\n self._EOF = True\n return ''\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self):
if self._seg:
self._seg.close()
self._seg_index += 1
if self._seg_index > self._last_seg_index:
self._seg = None
return
filename = self._seg_prefix + str(self._seg_index)
stat = cloudstorage.stat(filename)
writer = output_writers._GoogleCloudStorageOutputWriter
if writer._VALID_LENGTH not in stat.metadata:
raise ValueError('Expect %s in metadata for file %s.' % (writer.
_VALID_LENGTH, filename))
self._seg_valid_length = int(stat.metadata[writer._VALID_LENGTH])
if self._seg_valid_length > stat.st_size:
raise ValueError(
'Valid length %s is too big for file %s of length %s' % (self.
_seg_valid_length, filename, stat.st_size))
self._seg = cloudstorage.open(filename)
|
next_seg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._seg:\n self._seg.close()\n self._seg_index += 1\n if self._seg_index > self._last_seg_index:\n self._seg = None\n return\n filename = self._seg_prefix + str(self._seg_index)\n stat = cloudstorage.stat(filename)\n writer = output_writers._GoogleCloudStorageOutputWriter\n if writer._VALID_LENGTH not in stat.metadata:\n raise ValueError('Expect %s in metadata for file %s.' % (writer.\n _VALID_LENGTH, filename))\n self._seg_valid_length = int(stat.metadata[writer._VALID_LENGTH])\n if self._seg_valid_length > stat.st_size:\n raise ValueError(\n 'Valid length %s is too big for file %s of length %s' % (self.\n _seg_valid_length, filename, stat.st_size))\n self._seg = cloudstorage.open(filename)\n",
"role": "user"
},
{
"content": "next_seg",
"role": "assistant"
}
] |
def x(self, n):
result = self._seg.read(size=n)
if result == '':
return result
offset = self._seg.tell()
if offset > self._seg_valid_length:
extra = offset - self._seg_valid_length
result = result[:-1 * extra]
self._offset += len(result)
return result
|
read_from_seg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n):\n result = self._seg.read(size=n)\n if result == '':\n return result\n offset = self._seg.tell()\n if offset > self._seg_valid_length:\n extra = offset - self._seg_valid_length\n result = result[:-1 * extra]\n self._offset += len(result)\n return result\n",
"role": "user"
},
{
"content": "read_from_seg",
"role": "assistant"
}
] |
def x(gettime=time.time):
now_descending = int((_FUTURE_TIME - gettime()) * 100)
request_id_hash = os.environ.get('REQUEST_ID_HASH')
if not request_id_hash:
request_id_hash = str(random.getrandbits(32))
return '%d%s' % (now_descending, request_id_hash)
|
get_descending_key
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gettime=time.time):\n now_descending = int((_FUTURE_TIME - gettime()) * 100)\n request_id_hash = os.environ.get('REQUEST_ID_HASH')\n if not request_id_hash:\n request_id_hash = str(random.getrandbits(32))\n return '%d%s' % (now_descending, request_id_hash)\n",
"role": "user"
},
{
"content": "get_descending_key",
"role": "assistant"
}
] |
def x():
version = os.environ['CURRENT_VERSION_ID'].split('.')[0]
default_host = os.environ['DEFAULT_VERSION_HOSTNAME']
module = os.environ['CURRENT_MODULE_ID']
if os.environ['CURRENT_MODULE_ID'] == 'default':
return '%s.%s' % (version, default_host)
return '%s.%s.%s' % (version, module, default_host)
|
get_task_host
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n version = os.environ['CURRENT_VERSION_ID'].split('.')[0]\n default_host = os.environ['DEFAULT_VERSION_HOSTNAME']\n module = os.environ['CURRENT_MODULE_ID']\n if os.environ['CURRENT_MODULE_ID'] == 'default':\n return '%s.%s' % (version, default_host)\n return '%s.%s.%s' % (version, module, default_host)\n",
"role": "user"
},
{
"content": "get_task_host",
"role": "assistant"
}
] |
def x(queue_name):
if queue_name:
return queue_name
queue_name = os.environ.get('HTTP_X_APPENGINE_QUEUENAME', parameters.
config.QUEUE_NAME)
if len(queue_name) > 1 and queue_name[0:2] == '__':
return parameters.config.QUEUE_NAME
else:
return queue_name
|
get_queue_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(queue_name):\n if queue_name:\n return queue_name\n queue_name = os.environ.get('HTTP_X_APPENGINE_QUEUENAME', parameters.\n config.QUEUE_NAME)\n if len(queue_name) > 1 and queue_name[0:2] == '__':\n return parameters.config.QUEUE_NAME\n else:\n return queue_name\n",
"role": "user"
},
{
"content": "get_queue_name",
"role": "assistant"
}
] |
def x(td):
secs = td.seconds + td.days * 24 * 3600
if td.microseconds:
secs += 1
return secs
|
total_seconds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(td):\n secs = td.seconds + td.days * 24 * 3600\n if td.microseconds:\n secs += 1\n return secs\n",
"role": "user"
},
{
"content": "total_seconds",
"role": "assistant"
}
] |
def x(fq_name):
resolved_name = for_name(fq_name)
if isinstance(resolved_name, (type, types.ClassType)):
return resolved_name()
elif isinstance(resolved_name, types.MethodType):
return getattr(resolved_name.im_class(), resolved_name.__name__)
else:
return resolved_name
|
handler_for_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fq_name):\n resolved_name = for_name(fq_name)\n if isinstance(resolved_name, (type, types.ClassType)):\n return resolved_name()\n elif isinstance(resolved_name, types.MethodType):\n return getattr(resolved_name.im_class(), resolved_name.__name__)\n else:\n return resolved_name\n",
"role": "user"
},
{
"content": "handler_for_name",
"role": "assistant"
}
] |
def x(handler):
if isinstance(handler, types.InstanceType) or (isinstance(handler,
object) and not inspect.isfunction(handler) and not inspect.
ismethod(handler)) and hasattr(handler, '__call__'):
return pickle.dumps(handler)
return None
|
try_serialize_handler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handler):\n if isinstance(handler, types.InstanceType) or (isinstance(handler,\n object) and not inspect.isfunction(handler) and not inspect.\n ismethod(handler)) and hasattr(handler, '__call__'):\n return pickle.dumps(handler)\n return None\n",
"role": "user"
},
{
"content": "try_serialize_handler",
"role": "assistant"
}
] |
def x(obj):
if isinstance(obj, types.GeneratorType):
return True
CO_GENERATOR = 32
return bool((inspect.isfunction(obj) or inspect.ismethod(obj)) and obj.
func_code.co_flags & CO_GENERATOR)
|
is_generator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n if isinstance(obj, types.GeneratorType):\n return True\n CO_GENERATOR = 32\n return bool((inspect.isfunction(obj) or inspect.ismethod(obj)) and obj.\n func_code.co_flags & CO_GENERATOR)\n",
"role": "user"
},
{
"content": "is_generator",
"role": "assistant"
}
] |
def x(obj):
if type(obj) is str:
TRUTH_VALUE_SET = ['true', '1', 'yes', 't', 'on']
return obj.lower() in TRUTH_VALUE_SET
else:
return bool(obj)
|
parse_bool
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n if type(obj) is str:\n TRUTH_VALUE_SET = ['true', '1', 'yes', 't', 'on']\n return obj.lower() in TRUTH_VALUE_SET\n else:\n return bool(obj)\n",
"role": "user"
},
{
"content": "parse_bool",
"role": "assistant"
}
] |
def x(mapreduce_spec):
force_writes = parse_bool(mapreduce_spec.params.get('force_writes',
'false'))
if force_writes:
return datastore_rpc.Configuration(force_writes=force_writes)
else:
return datastore_rpc.Configuration()
|
create_datastore_write_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mapreduce_spec):\n force_writes = parse_bool(mapreduce_spec.params.get('force_writes',\n 'false'))\n if force_writes:\n return datastore_rpc.Configuration(force_writes=force_writes)\n else:\n return datastore_rpc.Configuration()\n",
"role": "user"
},
{
"content": "create_datastore_write_config",
"role": "assistant"
}
] |
def x():
ndb_ctx = ndb.get_context()
ndb_ctx.set_cache_policy(lambda key: False)
ndb_ctx.set_memcache_policy(lambda key: False)
|
set_ndb_cache_policy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n ndb_ctx = ndb.get_context()\n ndb_ctx.set_cache_policy(lambda key: False)\n ndb_ctx.set_memcache_policy(lambda key: False)\n",
"role": "user"
},
{
"content": "set_ndb_cache_policy",
"role": "assistant"
}
] |
def x(obj):
if obj is None:
return obj
if inspect.isclass(obj) or inspect.isfunction(obj):
fetched = getattr(sys.modules[obj.__module__], obj.__name__, None)
if fetched is None:
raise ValueError(
'Object %r must be defined on the top level of a module.' % obj
)
return '%s.%s' % (obj.__module__, obj.__name__)
raise TypeError('Unexpected type %s.' % type(obj))
|
obj_to_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n if obj is None:\n return obj\n if inspect.isclass(obj) or inspect.isfunction(obj):\n fetched = getattr(sys.modules[obj.__module__], obj.__name__, None)\n if fetched is None:\n raise ValueError(\n 'Object %r must be defined on the top level of a module.' % obj\n )\n return '%s.%s' % (obj.__module__, obj.__name__)\n raise TypeError('Unexpected type %s.' % type(obj))\n",
"role": "user"
},
{
"content": "obj_to_path",
"role": "assistant"
}
] |
def x(prefix, items):
items_no_prefix = []
for item in items:
if item.startswith(prefix):
items_no_prefix.append(item[len(prefix):])
else:
items_no_prefix.append(item)
return items_no_prefix
|
strip_prefix_from_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prefix, items):\n items_no_prefix = []\n for item in items:\n if item.startswith(prefix):\n items_no_prefix.append(item[len(prefix):])\n else:\n items_no_prefix.append(item)\n return items_no_prefix\n",
"role": "user"
},
{
"content": "strip_prefix_from_items",
"role": "assistant"
}
] |
def x(hooks, method, task, queue_name):
if hooks is not None:
try:
getattr(hooks, method)(task, queue_name)
except NotImplementedError:
return False
return True
return False
|
run_task_hook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hooks, method, task, queue_name):\n if hooks is not None:\n try:\n getattr(hooks, method)(task, queue_name)\n except NotImplementedError:\n return False\n return True\n return False\n",
"role": "user"
},
{
"content": "run_task_hook",
"role": "assistant"
}
] |
def x(self):
shard_id = self.request.headers[util._MR_SHARD_ID_TASK_HEADER]
mr_id = self.request.headers[util._MR_ID_TASK_HEADER]
shard_state, mr_state = db.get([model.ShardState.get_key_by_shard_id(
shard_id), model.MapreduceState.get_key_by_job_id(mr_id)])
if shard_state and shard_state.active:
shard_state.set_for_failure()
config = util.create_datastore_write_config(mr_state.mapreduce_spec)
shard_state.put(config=config)
|
drop_gracefully
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n shard_id = self.request.headers[util._MR_SHARD_ID_TASK_HEADER]\n mr_id = self.request.headers[util._MR_ID_TASK_HEADER]\n shard_state, mr_state = db.get([model.ShardState.get_key_by_shard_id(\n shard_id), model.MapreduceState.get_key_by_job_id(mr_id)])\n if shard_state and shard_state.active:\n shard_state.set_for_failure()\n config = util.create_datastore_write_config(mr_state.mapreduce_spec)\n shard_state.put(config=config)\n",
"role": "user"
},
{
"content": "drop_gracefully",
"role": "assistant"
}
] |
def x(self, shard_state, tstate):
if not shard_state:
logging.warning(
'State not found for shard %s; Possible spurious task execution. Dropping this task.'
, tstate.shard_id)
return self._TASK_DIRECTIVE.DROP_TASK
if not shard_state.active:
logging.warning(
'Shard %s is not active. Possible spurious task execution. Dropping this task.'
, tstate.shard_id)
logging.warning(str(shard_state))
return self._TASK_DIRECTIVE.DROP_TASK
if shard_state.retries > tstate.retries:
logging.warning(
'Got shard %s from previous shard retry %s. Possible spurious task execution. Dropping this task.'
, tstate.shard_id, tstate.retries)
logging.warning(str(shard_state))
return self._TASK_DIRECTIVE.DROP_TASK
elif shard_state.retries < tstate.retries:
logging.warning(
'ShardState for %s is behind slice. Waiting for it to catch up',
shard_state.shard_id)
return self._TASK_DIRECTIVE.RETRY_TASK
if shard_state.slice_id > tstate.slice_id:
logging.warning('Task %s-%s is behind ShardState %s. Dropping task.',
tstate.shard_id, tstate.slice_id, shard_state.slice_id)
return self._TASK_DIRECTIVE.DROP_TASK
elif shard_state.slice_id < tstate.slice_id:
logging.warning(
'Task %s-%s is ahead of ShardState %s. Waiting for it to catch up.'
, tstate.shard_id, tstate.slice_id, shard_state.slice_id)
return self._TASK_DIRECTIVE.RETRY_TASK
if shard_state.slice_start_time:
countdown = self._wait_time(shard_state, parameters._LEASE_DURATION_SEC
)
if countdown > 0:
logging.warning(
'Last retry of slice %s-%s may be still running.Will try again in %s seconds'
, tstate.shard_id, tstate.slice_id, countdown)
time.sleep(countdown)
return self._TASK_DIRECTIVE.RETRY_TASK
elif self._wait_time(shard_state, parameters._MAX_LEASE_DURATION_SEC):
if not self._has_old_request_ended(shard_state):
logging.warning(
'Last retry of slice %s-%s is still in flight with request_id %s. Will try again later.'
, tstate.shard_id, tstate.slice_id, shard_state.
slice_request_id)
return self._TASK_DIRECTIVE.RETRY_TASK
else:
logging.warning(
'Last retry of slice %s-%s has no log entry and hastimed out after %s seconds'
, tstate.shard_id, tstate.slice_id, parameters.
_MAX_LEASE_DURATION_SEC)
config = util.create_datastore_write_config(tstate.mapreduce_spec)
@db.transactional(retries=5)
def x():
fresh_state = model.ShardState.get_by_shard_id(tstate.shard_id)
if not fresh_state:
logging.warning('ShardState missing.')
raise db.Rollback()
if (fresh_state.active and fresh_state.slice_id == shard_state.
slice_id and fresh_state.slice_start_time == shard_state.
slice_start_time):
shard_state.slice_start_time = datetime.datetime.now()
shard_state.slice_request_id = os.environ.get('REQUEST_LOG_ID')
shard_state.acquired_once = True
shard_state.put(config=config)
return self._TASK_DIRECTIVE.PROCEED_TASK
else:
logging.warning(
'Contention on slice %s-%s execution. Will retry again.',
tstate.shard_id, tstate.slice_id)
time.sleep(random.randrange(1, 5))
return self._TASK_DIRECTIVE.RETRY_TASK
return _tx()
|
try_acquire_lease
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shard_state, tstate):\n if not shard_state:\n logging.warning(\n 'State not found for shard %s; Possible spurious task execution. Dropping this task.'\n , tstate.shard_id)\n return self._TASK_DIRECTIVE.DROP_TASK\n if not shard_state.active:\n logging.warning(\n 'Shard %s is not active. Possible spurious task execution. Dropping this task.'\n , tstate.shard_id)\n logging.warning(str(shard_state))\n return self._TASK_DIRECTIVE.DROP_TASK\n if shard_state.retries > tstate.retries:\n logging.warning(\n 'Got shard %s from previous shard retry %s. Possible spurious task execution. Dropping this task.'\n , tstate.shard_id, tstate.retries)\n logging.warning(str(shard_state))\n return self._TASK_DIRECTIVE.DROP_TASK\n elif shard_state.retries < tstate.retries:\n logging.warning(\n 'ShardState for %s is behind slice. Waiting for it to catch up',\n shard_state.shard_id)\n return self._TASK_DIRECTIVE.RETRY_TASK\n if shard_state.slice_id > tstate.slice_id:\n logging.warning('Task %s-%s is behind ShardState %s. Dropping task.',\n tstate.shard_id, tstate.slice_id, shard_state.slice_id)\n return self._TASK_DIRECTIVE.DROP_TASK\n elif shard_state.slice_id < tstate.slice_id:\n logging.warning(\n 'Task %s-%s is ahead of ShardState %s. Waiting for it to catch up.'\n , tstate.shard_id, tstate.slice_id, shard_state.slice_id)\n return self._TASK_DIRECTIVE.RETRY_TASK\n if shard_state.slice_start_time:\n countdown = self._wait_time(shard_state, parameters._LEASE_DURATION_SEC\n )\n if countdown > 0:\n logging.warning(\n 'Last retry of slice %s-%s may be still running.Will try again in %s seconds'\n , tstate.shard_id, tstate.slice_id, countdown)\n time.sleep(countdown)\n return self._TASK_DIRECTIVE.RETRY_TASK\n elif self._wait_time(shard_state, parameters._MAX_LEASE_DURATION_SEC):\n if not self._has_old_request_ended(shard_state):\n logging.warning(\n 'Last retry of slice %s-%s is still in flight with request_id %s. Will try again later.'\n , tstate.shard_id, tstate.slice_id, shard_state.\n slice_request_id)\n return self._TASK_DIRECTIVE.RETRY_TASK\n else:\n logging.warning(\n 'Last retry of slice %s-%s has no log entry and hastimed out after %s seconds'\n , tstate.shard_id, tstate.slice_id, parameters.\n _MAX_LEASE_DURATION_SEC)\n config = util.create_datastore_write_config(tstate.mapreduce_spec)\n\n @db.transactional(retries=5)\n def x():\n fresh_state = model.ShardState.get_by_shard_id(tstate.shard_id)\n if not fresh_state:\n logging.warning('ShardState missing.')\n raise db.Rollback()\n if (fresh_state.active and fresh_state.slice_id == shard_state.\n slice_id and fresh_state.slice_start_time == shard_state.\n slice_start_time):\n shard_state.slice_start_time = datetime.datetime.now()\n shard_state.slice_request_id = os.environ.get('REQUEST_LOG_ID')\n shard_state.acquired_once = True\n shard_state.put(config=config)\n return self._TASK_DIRECTIVE.PROCEED_TASK\n else:\n logging.warning(\n 'Contention on slice %s-%s execution. Will retry again.',\n tstate.shard_id, tstate.slice_id)\n time.sleep(random.randrange(1, 5))\n return self._TASK_DIRECTIVE.RETRY_TASK\n return _tx()\n",
"role": "user"
},
{
"content": "try_acquire_lease",
"role": "assistant"
}
] |
def x(self, shard_state):
assert shard_state.slice_start_time is not None
assert shard_state.slice_request_id is not None
request_ids = [shard_state.slice_request_id]
logs = None
try:
logs = list(logservice.fetch(request_ids=request_ids))
except (apiproxy_errors.FeatureNotEnabledError, apiproxy_errors.
CapabilityDisabledError) as e:
logging.warning('Ignoring exception: %s', e)
if not logs or not logs[0].finished:
return False
return True
|
has_old_request_ended
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shard_state):\n assert shard_state.slice_start_time is not None\n assert shard_state.slice_request_id is not None\n request_ids = [shard_state.slice_request_id]\n logs = None\n try:\n logs = list(logservice.fetch(request_ids=request_ids))\n except (apiproxy_errors.FeatureNotEnabledError, apiproxy_errors.\n CapabilityDisabledError) as e:\n logging.warning('Ignoring exception: %s', e)\n if not logs or not logs[0].finished:\n return False\n return True\n",
"role": "user"
},
{
"content": "has_old_request_ended",
"role": "assistant"
}
] |
def x(self, shard_state, secs, now=datetime.datetime.now):
assert shard_state.slice_start_time is not None
delta = now() - shard_state.slice_start_time
duration = datetime.timedelta(seconds=secs)
if delta < duration:
return util.total_seconds(duration - delta)
else:
return 0
|
wait_time
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shard_state, secs, now=datetime.datetime.now):\n assert shard_state.slice_start_time is not None\n delta = now() - shard_state.slice_start_time\n duration = datetime.timedelta(seconds=secs)\n if delta < duration:\n return util.total_seconds(duration - delta)\n else:\n return 0\n",
"role": "user"
},
{
"content": "wait_time",
"role": "assistant"
}
] |
def x(self, obj, slice_id, last_slice=False, begin_slice=True, shard_ctx=
None, slice_ctx=None):
if obj is None or not isinstance(obj, shard_life_cycle._ShardLifeCycle):
return
shard_context = shard_ctx or self.shard_context
slice_context = slice_ctx or self.slice_context
if begin_slice:
if slice_id == 0:
obj.begin_shard(shard_context)
obj.begin_slice(slice_context)
else:
obj.end_slice(slice_context)
if last_slice:
obj.end_shard(shard_context)
|
maintain_LC
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj, slice_id, last_slice=False, begin_slice=True, shard_ctx=\n None, slice_ctx=None):\n if obj is None or not isinstance(obj, shard_life_cycle._ShardLifeCycle):\n return\n shard_context = shard_ctx or self.shard_context\n slice_context = slice_ctx or self.slice_context\n if begin_slice:\n if slice_id == 0:\n obj.begin_shard(shard_context)\n obj.begin_slice(slice_context)\n else:\n obj.end_slice(slice_context)\n if last_slice:\n obj.end_shard(shard_context)\n",
"role": "user"
},
{
"content": "maintain_LC",
"role": "assistant"
}
] |
def x(self, shard_state, tstate, task_directive):
task_directive = self._set_state(shard_state, tstate, task_directive)
self._save_state_and_schedule_next(shard_state, tstate, task_directive)
context.Context._set(None)
|
return
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shard_state, tstate, task_directive):\n task_directive = self._set_state(shard_state, tstate, task_directive)\n self._save_state_and_schedule_next(shard_state, tstate, task_directive)\n context.Context._set(None)\n",
"role": "user"
},
{
"content": "return",
"role": "assistant"
}
] |
def x(self, input_reader, shard_state, tstate, ctx):
processing_limit = self._processing_limit(tstate.mapreduce_spec)
if processing_limit == 0:
return
finished_shard = True
iterator = iter(input_reader)
while True:
try:
entity = iterator.next()
except StopIteration:
break
if isinstance(entity, db.Model):
shard_state.last_work_item = repr(entity.key())
elif isinstance(entity, ndb.Model):
shard_state.last_work_item = repr(entity.key)
else:
shard_state.last_work_item = repr(entity)[:100]
processing_limit -= 1
if not self._process_datum(entity, input_reader, ctx, tstate):
finished_shard = False
break
elif processing_limit == 0:
finished_shard = False
break
self.slice_context.incr(context.COUNTER_MAPPER_WALLTIME_MS, int((self.
_time() - self._start_time) * 1000))
return finished_shard
|
process_inputs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_reader, shard_state, tstate, ctx):\n processing_limit = self._processing_limit(tstate.mapreduce_spec)\n if processing_limit == 0:\n return\n finished_shard = True\n iterator = iter(input_reader)\n while True:\n try:\n entity = iterator.next()\n except StopIteration:\n break\n if isinstance(entity, db.Model):\n shard_state.last_work_item = repr(entity.key())\n elif isinstance(entity, ndb.Model):\n shard_state.last_work_item = repr(entity.key)\n else:\n shard_state.last_work_item = repr(entity)[:100]\n processing_limit -= 1\n if not self._process_datum(entity, input_reader, ctx, tstate):\n finished_shard = False\n break\n elif processing_limit == 0:\n finished_shard = False\n break\n self.slice_context.incr(context.COUNTER_MAPPER_WALLTIME_MS, int((self.\n _time() - self._start_time) * 1000))\n return finished_shard\n",
"role": "user"
},
{
"content": "process_inputs",
"role": "assistant"
}
] |
def x(self, data, input_reader, ctx, transient_shard_state):
if data is not input_readers.ALLOW_CHECKPOINT:
self.slice_context.incr(context.COUNTER_MAPPER_CALLS)
handler = transient_shard_state.handler
if isinstance(handler, map_job.Mapper):
handler(self.slice_context, data)
else:
if input_reader.expand_parameters:
result = handler(*data)
else:
result = handler(data)
if util.is_generator(result):
for output in result:
if isinstance(output, operation.Operation):
output(ctx)
else:
output_writer = transient_shard_state.output_writer
if not output_writer:
logging.warning(
'Handler yielded %s, but no output writer is set.'
, output)
else:
output_writer.write(output)
if self._time(
) - self._start_time >= parameters.config._SLICE_DURATION_SEC:
return False
return True
|
process_datum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, input_reader, ctx, transient_shard_state):\n if data is not input_readers.ALLOW_CHECKPOINT:\n self.slice_context.incr(context.COUNTER_MAPPER_CALLS)\n handler = transient_shard_state.handler\n if isinstance(handler, map_job.Mapper):\n handler(self.slice_context, data)\n else:\n if input_reader.expand_parameters:\n result = handler(*data)\n else:\n result = handler(data)\n if util.is_generator(result):\n for output in result:\n if isinstance(output, operation.Operation):\n output(ctx)\n else:\n output_writer = transient_shard_state.output_writer\n if not output_writer:\n logging.warning(\n 'Handler yielded %s, but no output writer is set.'\n , output)\n else:\n output_writer.write(output)\n if self._time(\n ) - self._start_time >= parameters.config._SLICE_DURATION_SEC:\n return False\n return True\n",
"role": "user"
},
{
"content": "process_datum",
"role": "assistant"
}
] |
def x(self, shard_state, tstate, task_directive):
if task_directive in (self._TASK_DIRECTIVE.RETRY_TASK, self.
_TASK_DIRECTIVE.DROP_TASK):
return task_directive
if task_directive == self._TASK_DIRECTIVE.ABORT_SHARD:
shard_state.set_for_abort()
return task_directive
if task_directive == self._TASK_DIRECTIVE.PROCEED_TASK:
shard_state.advance_for_next_slice()
tstate.advance_for_next_slice()
return task_directive
if task_directive == self._TASK_DIRECTIVE.RECOVER_SLICE:
tstate.advance_for_next_slice(recovery_slice=True)
shard_state.advance_for_next_slice(recovery_slice=True)
return task_directive
if task_directive == self._TASK_DIRECTIVE.RETRY_SLICE:
task_directive = self._attempt_slice_retry(shard_state, tstate)
if task_directive == self._TASK_DIRECTIVE.RETRY_SHARD:
task_directive = self._attempt_shard_retry(shard_state, tstate)
if task_directive == self._TASK_DIRECTIVE.FAIL_TASK:
shard_state.set_for_failure()
return task_directive
|
set_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shard_state, tstate, task_directive):\n if task_directive in (self._TASK_DIRECTIVE.RETRY_TASK, self.\n _TASK_DIRECTIVE.DROP_TASK):\n return task_directive\n if task_directive == self._TASK_DIRECTIVE.ABORT_SHARD:\n shard_state.set_for_abort()\n return task_directive\n if task_directive == self._TASK_DIRECTIVE.PROCEED_TASK:\n shard_state.advance_for_next_slice()\n tstate.advance_for_next_slice()\n return task_directive\n if task_directive == self._TASK_DIRECTIVE.RECOVER_SLICE:\n tstate.advance_for_next_slice(recovery_slice=True)\n shard_state.advance_for_next_slice(recovery_slice=True)\n return task_directive\n if task_directive == self._TASK_DIRECTIVE.RETRY_SLICE:\n task_directive = self._attempt_slice_retry(shard_state, tstate)\n if task_directive == self._TASK_DIRECTIVE.RETRY_SHARD:\n task_directive = self._attempt_shard_retry(shard_state, tstate)\n if task_directive == self._TASK_DIRECTIVE.FAIL_TASK:\n shard_state.set_for_failure()\n return task_directive\n",
"role": "user"
},
{
"content": "set_state",
"role": "assistant"
}
] |
def x(self, shard_state, tstate):
mapper_spec = tstate.mapreduce_spec.mapper
if not (tstate.output_writer and tstate.output_writer.
_supports_slice_recovery(mapper_spec)):
return self._TASK_DIRECTIVE.PROCEED_TASK
tstate.output_writer = tstate.output_writer._recover(tstate.
mapreduce_spec, shard_state.shard_number, shard_state.retries + 1)
return self._TASK_DIRECTIVE.RECOVER_SLICE
|
attempt_slice_recovery
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shard_state, tstate):\n mapper_spec = tstate.mapreduce_spec.mapper\n if not (tstate.output_writer and tstate.output_writer.\n _supports_slice_recovery(mapper_spec)):\n return self._TASK_DIRECTIVE.PROCEED_TASK\n tstate.output_writer = tstate.output_writer._recover(tstate.\n mapreduce_spec, shard_state.shard_number, shard_state.retries + 1)\n return self._TASK_DIRECTIVE.RECOVER_SLICE\n",
"role": "user"
},
{
"content": "attempt_slice_recovery",
"role": "assistant"
}
] |
def x(self, shard_state, tstate):
shard_attempts = shard_state.retries + 1
if shard_attempts >= parameters.config.SHARD_MAX_ATTEMPTS:
logging.warning('Shard attempt %s exceeded %s max attempts.',
shard_attempts, parameters.config.SHARD_MAX_ATTEMPTS)
return self._TASK_DIRECTIVE.FAIL_TASK
if tstate.output_writer and not tstate.output_writer._supports_shard_retry(
tstate):
logging.warning('Output writer %s does not support shard retry.',
tstate.output_writer.__class__.__name__)
return self._TASK_DIRECTIVE.FAIL_TASK
shard_state.reset_for_retry()
logging.warning('Shard %s attempt %s failed with up to %s attempts.',
shard_state.shard_id, shard_state.retries, parameters.config.
SHARD_MAX_ATTEMPTS)
output_writer = None
if tstate.output_writer:
output_writer = tstate.output_writer.create(tstate.mapreduce_spec,
shard_state.shard_number, shard_attempts + 1)
tstate.reset_for_retry(output_writer)
return self._TASK_DIRECTIVE.RETRY_SHARD
|
attempt_shard_retry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shard_state, tstate):\n shard_attempts = shard_state.retries + 1\n if shard_attempts >= parameters.config.SHARD_MAX_ATTEMPTS:\n logging.warning('Shard attempt %s exceeded %s max attempts.',\n shard_attempts, parameters.config.SHARD_MAX_ATTEMPTS)\n return self._TASK_DIRECTIVE.FAIL_TASK\n if tstate.output_writer and not tstate.output_writer._supports_shard_retry(\n tstate):\n logging.warning('Output writer %s does not support shard retry.',\n tstate.output_writer.__class__.__name__)\n return self._TASK_DIRECTIVE.FAIL_TASK\n shard_state.reset_for_retry()\n logging.warning('Shard %s attempt %s failed with up to %s attempts.',\n shard_state.shard_id, shard_state.retries, parameters.config.\n SHARD_MAX_ATTEMPTS)\n output_writer = None\n if tstate.output_writer:\n output_writer = tstate.output_writer.create(tstate.mapreduce_spec,\n shard_state.shard_number, shard_attempts + 1)\n tstate.reset_for_retry(output_writer)\n return self._TASK_DIRECTIVE.RETRY_SHARD\n",
"role": "user"
},
{
"content": "attempt_shard_retry",
"role": "assistant"
}
] |
def x(self, shard_state, tstate):
if (shard_state.slice_retries + 1 < parameters.config.
TASK_MAX_DATA_PROCESSING_ATTEMPTS):
logging.warning(
'Slice %s %s failed for the %s of up to %s attempts (%s of %s taskqueue execution attempts). Will retry now.'
, tstate.shard_id, tstate.slice_id, shard_state.slice_retries +
1, parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS, self.
task_retry_count() + 1, parameters.config.TASK_MAX_ATTEMPTS)
sys.exc_clear()
self._try_free_lease(shard_state, slice_retry=True)
return self._TASK_DIRECTIVE.RETRY_SLICE
if parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS > 0:
logging.warning('Slice attempt %s exceeded %s max attempts.', self.
task_retry_count() + 1, parameters.config.
TASK_MAX_DATA_PROCESSING_ATTEMPTS)
return self._TASK_DIRECTIVE.RETRY_SHARD
|
attempt_slice_retry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shard_state, tstate):\n if (shard_state.slice_retries + 1 < parameters.config.\n TASK_MAX_DATA_PROCESSING_ATTEMPTS):\n logging.warning(\n 'Slice %s %s failed for the %s of up to %s attempts (%s of %s taskqueue execution attempts). Will retry now.'\n , tstate.shard_id, tstate.slice_id, shard_state.slice_retries +\n 1, parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS, self.\n task_retry_count() + 1, parameters.config.TASK_MAX_ATTEMPTS)\n sys.exc_clear()\n self._try_free_lease(shard_state, slice_retry=True)\n return self._TASK_DIRECTIVE.RETRY_SLICE\n if parameters.config.TASK_MAX_DATA_PROCESSING_ATTEMPTS > 0:\n logging.warning('Slice attempt %s exceeded %s max attempts.', self.\n task_retry_count() + 1, parameters.config.\n TASK_MAX_DATA_PROCESSING_ATTEMPTS)\n return self._TASK_DIRECTIVE.RETRY_SHARD\n",
"role": "user"
},
{
"content": "attempt_slice_retry",
"role": "assistant"
}
] |
def x(self, spec):
countdown = 0
if self._processing_limit(spec) != -1:
countdown = max(int(parameters.config._SLICE_DURATION_SEC - (self.
_time() - self._start_time)), 0)
return countdown
|
get_countdown_for_next_slice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, spec):\n countdown = 0\n if self._processing_limit(spec) != -1:\n countdown = max(int(parameters.config._SLICE_DURATION_SEC - (self.\n _time() - self._start_time)), 0)\n return countdown\n",
"role": "user"
},
{
"content": "get_countdown_for_next_slice",
"role": "assistant"
}
] |
def x(cls, tstate, shard_state, eta=None, countdown=None):
base_path = tstate.base_path
task_name = MapperWorkerCallbackHandler.get_task_name(tstate.shard_id,
tstate.slice_id, tstate.retries)
headers = util._get_task_headers(tstate.mapreduce_spec.mapreduce_id)
headers[util._MR_SHARD_ID_TASK_HEADER] = tstate.shard_id
worker_task = model.HugeTask(url=base_path + '/worker_callback/' +
tstate.shard_id, params=tstate.to_dict(), name=task_name, eta=eta,
countdown=countdown, parent=shard_state, headers=headers)
return worker_task
|
state_to_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, tstate, shard_state, eta=None, countdown=None):\n base_path = tstate.base_path\n task_name = MapperWorkerCallbackHandler.get_task_name(tstate.shard_id,\n tstate.slice_id, tstate.retries)\n headers = util._get_task_headers(tstate.mapreduce_spec.mapreduce_id)\n headers[util._MR_SHARD_ID_TASK_HEADER] = tstate.shard_id\n worker_task = model.HugeTask(url=base_path + '/worker_callback/' +\n tstate.shard_id, params=tstate.to_dict(), name=task_name, eta=eta,\n countdown=countdown, parent=shard_state, headers=headers)\n return worker_task\n",
"role": "user"
},
{
"content": "state_to_task",
"role": "assistant"
}
] |
def x(self, spec):
processing_rate = float(spec.mapper.params.get('processing_rate', 0))
slice_processing_limit = -1
if processing_rate > 0:
slice_processing_limit = int(math.ceil(parameters.config.
_SLICE_DURATION_SEC * processing_rate / int(spec.mapper.
shard_count)))
return slice_processing_limit
|
processing_limit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, spec):\n processing_rate = float(spec.mapper.params.get('processing_rate', 0))\n slice_processing_limit = -1\n if processing_rate > 0:\n slice_processing_limit = int(math.ceil(parameters.config.\n _SLICE_DURATION_SEC * processing_rate / int(spec.mapper.\n shard_count)))\n return slice_processing_limit\n",
"role": "user"
},
{
"content": "processing_limit",
"role": "assistant"
}
] |
def x(cls, shard_state, tstate, queue_name=None, eta=None, countdown=None):
queue_name = queue_name or os.environ.get('HTTP_X_APPENGINE_QUEUENAME',
'default')
task = cls._state_to_task(tstate, shard_state, eta, countdown)
cls._add_task(task, tstate.mapreduce_spec, queue_name)
|
schedule_slice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, shard_state, tstate, queue_name=None, eta=None, countdown=None):\n queue_name = queue_name or os.environ.get('HTTP_X_APPENGINE_QUEUENAME',\n 'default')\n task = cls._state_to_task(tstate, shard_state, eta, countdown)\n cls._add_task(task, tstate.mapreduce_spec, queue_name)\n",
"role": "user"
},
{
"content": "schedule_slice",
"role": "assistant"
}
] |
def x(self):
mr_id = self.request.headers[util._MR_ID_TASK_HEADER]
state = model.MapreduceState.get_by_job_id(mr_id)
if not state or not state.active:
return
state.active = False
state.result_status = model.MapreduceState.RESULT_FAILED
config = util.create_datastore_write_config(state.mapreduce_spec)
puts = []
for ss in model.ShardState.find_all_by_mapreduce_state(state):
if ss.active:
ss.set_for_failure()
puts.append(ss)
if len(puts) > model.ShardState._MAX_STATES_IN_MEMORY:
db.put(puts, config=config)
puts = []
db.put(puts, config=config)
db.put(state, config=config)
|
drop_gracefully
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mr_id = self.request.headers[util._MR_ID_TASK_HEADER]\n state = model.MapreduceState.get_by_job_id(mr_id)\n if not state or not state.active:\n return\n state.active = False\n state.result_status = model.MapreduceState.RESULT_FAILED\n config = util.create_datastore_write_config(state.mapreduce_spec)\n puts = []\n for ss in model.ShardState.find_all_by_mapreduce_state(state):\n if ss.active:\n ss.set_for_failure()\n puts.append(ss)\n if len(puts) > model.ShardState._MAX_STATES_IN_MEMORY:\n db.put(puts, config=config)\n puts = []\n db.put(puts, config=config)\n db.put(state, config=config)\n",
"role": "user"
},
{
"content": "drop_gracefully",
"role": "assistant"
}
] |
def x(self):
spec = model.MapreduceSpec.from_json_str(self.request.get('mapreduce_spec')
)
state, control = db.get([model.MapreduceState.get_key_by_job_id(spec.
mapreduce_id), model.MapreduceControl.get_key_by_job_id(spec.
mapreduce_id)])
if not state:
logging.warning(
"State not found for MR '%s'; dropping controller task.", spec.
mapreduce_id)
return
if not state.active:
logging.warning(
'MR %r is not active. Looks like spurious controller task execution.'
, spec.mapreduce_id)
self._clean_up_mr(spec)
return
shard_states = model.ShardState.find_all_by_mapreduce_state(state)
self._update_state_from_shard_states(state, shard_states, control)
if state.active:
ControllerCallbackHandler.reschedule(state, spec, self.serial_id() + 1)
|
handle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n spec = model.MapreduceSpec.from_json_str(self.request.get('mapreduce_spec')\n )\n state, control = db.get([model.MapreduceState.get_key_by_job_id(spec.\n mapreduce_id), model.MapreduceControl.get_key_by_job_id(spec.\n mapreduce_id)])\n if not state:\n logging.warning(\n \"State not found for MR '%s'; dropping controller task.\", spec.\n mapreduce_id)\n return\n if not state.active:\n logging.warning(\n 'MR %r is not active. Looks like spurious controller task execution.'\n , spec.mapreduce_id)\n self._clean_up_mr(spec)\n return\n shard_states = model.ShardState.find_all_by_mapreduce_state(state)\n self._update_state_from_shard_states(state, shard_states, control)\n if state.active:\n ControllerCallbackHandler.reschedule(state, spec, self.serial_id() + 1)\n",
"role": "user"
},
{
"content": "handle",
"role": "assistant"
}
] |
def x(self, state, shard_states, control):
state.active_shards, state.aborted_shards, state.failed_shards = 0, 0, 0
total_shards = 0
processed_counts = []
processed_status = []
state.counters_map.clear()
for s in shard_states:
total_shards += 1
status = 'unknown'
if s.active:
state.active_shards += 1
status = 'running'
if s.result_status == model.ShardState.RESULT_SUCCESS:
status = 'success'
elif s.result_status == model.ShardState.RESULT_ABORTED:
state.aborted_shards += 1
status = 'aborted'
elif s.result_status == model.ShardState.RESULT_FAILED:
state.failed_shards += 1
status = 'failed'
state.counters_map.add_map(s.counters_map)
processed_counts.append(s.counters_map.get(context.
COUNTER_MAPPER_CALLS))
processed_status.append(status)
state.set_processed_counts(processed_counts, processed_status)
state.last_poll_time = datetime.datetime.utcfromtimestamp(self._time())
spec = state.mapreduce_spec
if total_shards != spec.mapper.shard_count:
logging.error(
"Found %d shard states. Expect %d. Issuing abort command to job '%s'"
, total_shards, spec.mapper.shard_count, spec.mapreduce_id)
model.MapreduceControl.abort(spec.mapreduce_id)
state.active = bool(state.active_shards)
if not control and (state.failed_shards or state.aborted_shards):
model.MapreduceControl.abort(spec.mapreduce_id)
if not state.active:
if state.failed_shards or not total_shards:
state.result_status = model.MapreduceState.RESULT_FAILED
elif state.aborted_shards:
state.result_status = model.MapreduceState.RESULT_ABORTED
else:
state.result_status = model.MapreduceState.RESULT_SUCCESS
self._finalize_outputs(spec, state)
self._finalize_job(spec, state)
else:
@db.transactional(retries=5)
def x():
fresh_state = model.MapreduceState.get_by_job_id(spec.mapreduce_id)
if not fresh_state.active:
logging.warning(
'Job %s is not active. Looks like spurious task execution. Dropping controller task.'
, spec.mapreduce_id)
return
config = util.create_datastore_write_config(spec)
state.put(config=config)
_put_state()
|
update_state_from_shard_states
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, state, shard_states, control):\n state.active_shards, state.aborted_shards, state.failed_shards = 0, 0, 0\n total_shards = 0\n processed_counts = []\n processed_status = []\n state.counters_map.clear()\n for s in shard_states:\n total_shards += 1\n status = 'unknown'\n if s.active:\n state.active_shards += 1\n status = 'running'\n if s.result_status == model.ShardState.RESULT_SUCCESS:\n status = 'success'\n elif s.result_status == model.ShardState.RESULT_ABORTED:\n state.aborted_shards += 1\n status = 'aborted'\n elif s.result_status == model.ShardState.RESULT_FAILED:\n state.failed_shards += 1\n status = 'failed'\n state.counters_map.add_map(s.counters_map)\n processed_counts.append(s.counters_map.get(context.\n COUNTER_MAPPER_CALLS))\n processed_status.append(status)\n state.set_processed_counts(processed_counts, processed_status)\n state.last_poll_time = datetime.datetime.utcfromtimestamp(self._time())\n spec = state.mapreduce_spec\n if total_shards != spec.mapper.shard_count:\n logging.error(\n \"Found %d shard states. Expect %d. Issuing abort command to job '%s'\"\n , total_shards, spec.mapper.shard_count, spec.mapreduce_id)\n model.MapreduceControl.abort(spec.mapreduce_id)\n state.active = bool(state.active_shards)\n if not control and (state.failed_shards or state.aborted_shards):\n model.MapreduceControl.abort(spec.mapreduce_id)\n if not state.active:\n if state.failed_shards or not total_shards:\n state.result_status = model.MapreduceState.RESULT_FAILED\n elif state.aborted_shards:\n state.result_status = model.MapreduceState.RESULT_ABORTED\n else:\n state.result_status = model.MapreduceState.RESULT_SUCCESS\n self._finalize_outputs(spec, state)\n self._finalize_job(spec, state)\n else:\n\n @db.transactional(retries=5)\n def x():\n fresh_state = model.MapreduceState.get_by_job_id(spec.mapreduce_id)\n if not fresh_state.active:\n logging.warning(\n 'Job %s is not active. Looks like spurious task execution. Dropping controller task.'\n , spec.mapreduce_id)\n return\n config = util.create_datastore_write_config(spec)\n state.put(config=config)\n _put_state()\n",
"role": "user"
},
{
"content": "update_state_from_shard_states",
"role": "assistant"
}
] |
def x(cls, mapreduce_spec, mapreduce_state):
if mapreduce_spec.mapper.output_writer_class(
) and mapreduce_state.result_status == model.MapreduceState.RESULT_SUCCESS:
mapreduce_spec.mapper.output_writer_class().finalize_job(
mapreduce_state)
|
finalize_outputs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapreduce_spec, mapreduce_state):\n if mapreduce_spec.mapper.output_writer_class(\n ) and mapreduce_state.result_status == model.MapreduceState.RESULT_SUCCESS:\n mapreduce_spec.mapper.output_writer_class().finalize_job(\n mapreduce_state)\n",
"role": "user"
},
{
"content": "finalize_outputs",
"role": "assistant"
}
] |
def x(cls, mapreduce_spec, mapreduce_state):
config = util.create_datastore_write_config(mapreduce_spec)
queue_name = util.get_queue_name(mapreduce_spec.params.get(model.
MapreduceSpec.PARAM_DONE_CALLBACK_QUEUE))
done_callback = mapreduce_spec.params.get(model.MapreduceSpec.
PARAM_DONE_CALLBACK)
done_task = None
if done_callback:
done_task = taskqueue.Task(url=done_callback, headers=util.
_get_task_headers(mapreduce_spec.mapreduce_id, util.
CALLBACK_MR_ID_TASK_HEADER), method=mapreduce_spec.params.get(
'done_callback_method', 'POST'))
@db.transactional(retries=5)
def x():
fresh_state = model.MapreduceState.get_by_job_id(mapreduce_spec.
mapreduce_id)
if not fresh_state.active:
logging.warning(
'Job %s is not active. Looks like spurious task execution. Dropping task.'
, mapreduce_spec.mapreduce_id)
return
mapreduce_state.put(config=config)
if done_task and not _run_task_hook(mapreduce_spec.get_hooks(),
'enqueue_done_task', done_task, queue_name):
done_task.add(queue_name, transactional=True)
_put_state()
logging.info("Final result for job '%s' is '%s'", mapreduce_spec.
mapreduce_id, mapreduce_state.result_status)
cls._clean_up_mr(mapreduce_spec)
|
finalize_job
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapreduce_spec, mapreduce_state):\n config = util.create_datastore_write_config(mapreduce_spec)\n queue_name = util.get_queue_name(mapreduce_spec.params.get(model.\n MapreduceSpec.PARAM_DONE_CALLBACK_QUEUE))\n done_callback = mapreduce_spec.params.get(model.MapreduceSpec.\n PARAM_DONE_CALLBACK)\n done_task = None\n if done_callback:\n done_task = taskqueue.Task(url=done_callback, headers=util.\n _get_task_headers(mapreduce_spec.mapreduce_id, util.\n CALLBACK_MR_ID_TASK_HEADER), method=mapreduce_spec.params.get(\n 'done_callback_method', 'POST'))\n\n @db.transactional(retries=5)\n def x():\n fresh_state = model.MapreduceState.get_by_job_id(mapreduce_spec.\n mapreduce_id)\n if not fresh_state.active:\n logging.warning(\n 'Job %s is not active. Looks like spurious task execution. Dropping task.'\n , mapreduce_spec.mapreduce_id)\n return\n mapreduce_state.put(config=config)\n if done_task and not _run_task_hook(mapreduce_spec.get_hooks(),\n 'enqueue_done_task', done_task, queue_name):\n done_task.add(queue_name, transactional=True)\n _put_state()\n logging.info(\"Final result for job '%s' is '%s'\", mapreduce_spec.\n mapreduce_id, mapreduce_state.result_status)\n cls._clean_up_mr(mapreduce_spec)\n",
"role": "user"
},
{
"content": "finalize_job",
"role": "assistant"
}
] |
def x(self):
mr_id = self.request.get('mapreduce_id')
logging.info('Processing kickoff for job %s', mr_id)
state = model.MapreduceState.get_by_job_id(mr_id)
if not self._check_mr_state(state, mr_id):
return
readers, serialized_readers_entity = self._get_input_readers(state)
if readers is None:
logging.warning('Found no mapper input data to process.')
state.active = False
state.result_status = model.MapreduceState.RESULT_SUCCESS
ControllerCallbackHandler._finalize_job(state.mapreduce_spec, state)
return False
self._setup_output_writer(state)
result = self._save_states(state, serialized_readers_entity)
if result is None:
readers, _ = self._get_input_readers(state)
elif not result:
return
queue_name = self.request.headers.get('X-AppEngine-QueueName')
KickOffJobHandler._schedule_shards(state.mapreduce_spec, readers,
queue_name, state.mapreduce_spec.params['base_path'], state)
ControllerCallbackHandler.reschedule(state, state.mapreduce_spec,
serial_id=0, queue_name=queue_name)
|
handle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mr_id = self.request.get('mapreduce_id')\n logging.info('Processing kickoff for job %s', mr_id)\n state = model.MapreduceState.get_by_job_id(mr_id)\n if not self._check_mr_state(state, mr_id):\n return\n readers, serialized_readers_entity = self._get_input_readers(state)\n if readers is None:\n logging.warning('Found no mapper input data to process.')\n state.active = False\n state.result_status = model.MapreduceState.RESULT_SUCCESS\n ControllerCallbackHandler._finalize_job(state.mapreduce_spec, state)\n return False\n self._setup_output_writer(state)\n result = self._save_states(state, serialized_readers_entity)\n if result is None:\n readers, _ = self._get_input_readers(state)\n elif not result:\n return\n queue_name = self.request.headers.get('X-AppEngine-QueueName')\n KickOffJobHandler._schedule_shards(state.mapreduce_spec, readers,\n queue_name, state.mapreduce_spec.params['base_path'], state)\n ControllerCallbackHandler.reschedule(state, state.mapreduce_spec,\n serial_id=0, queue_name=queue_name)\n",
"role": "user"
},
{
"content": "handle",
"role": "assistant"
}
] |
def x(self):
mr_id = self.request.get('mapreduce_id')
logging.error('Failed to kick off job %s', mr_id)
state = model.MapreduceState.get_by_job_id(mr_id)
if not self._check_mr_state(state, mr_id):
return
config = util.create_datastore_write_config(state.mapreduce_spec)
model.MapreduceControl.abort(mr_id, config=config)
state.active = False
state.result_status = model.MapreduceState.RESULT_FAILED
ControllerCallbackHandler._finalize_job(state.mapreduce_spec, state)
|
drop_gracefully
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mr_id = self.request.get('mapreduce_id')\n logging.error('Failed to kick off job %s', mr_id)\n state = model.MapreduceState.get_by_job_id(mr_id)\n if not self._check_mr_state(state, mr_id):\n return\n config = util.create_datastore_write_config(state.mapreduce_spec)\n model.MapreduceControl.abort(mr_id, config=config)\n state.active = False\n state.result_status = model.MapreduceState.RESULT_FAILED\n ControllerCallbackHandler._finalize_job(state.mapreduce_spec, state)\n",
"role": "user"
},
{
"content": "drop_gracefully",
"role": "assistant"
}
] |
def x(self, state):
serialized_input_readers_key = (self._SERIALIZED_INPUT_READERS_KEY %
state.key().id_or_name())
serialized_input_readers = model._HugeTaskPayload.get_by_key_name(
serialized_input_readers_key, parent=state)
input_reader_class = state.mapreduce_spec.mapper.input_reader_class()
split_param = state.mapreduce_spec.mapper
if issubclass(input_reader_class, map_job.InputReader):
split_param = map_job.JobConfig._to_map_job_config(state.
mapreduce_spec, os.environ.get('HTTP_X_APPENGINE_QUEUENAME'))
if serialized_input_readers is None:
readers = input_reader_class.split_input(split_param)
else:
readers = [input_reader_class.from_json_str(_json) for _json in
json.loads(zlib.decompress(serialized_input_readers.payload))]
if not readers:
return None, None
state.mapreduce_spec.mapper.shard_count = len(readers)
state.active_shards = len(readers)
if serialized_input_readers is None:
serialized_input_readers = model._HugeTaskPayload(key_name=
serialized_input_readers_key, parent=state)
readers_json_str = [i.to_json_str() for i in readers]
serialized_input_readers.payload = zlib.compress(json.dumps(
readers_json_str))
return readers, serialized_input_readers
|
get_input_readers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, state):\n serialized_input_readers_key = (self._SERIALIZED_INPUT_READERS_KEY %\n state.key().id_or_name())\n serialized_input_readers = model._HugeTaskPayload.get_by_key_name(\n serialized_input_readers_key, parent=state)\n input_reader_class = state.mapreduce_spec.mapper.input_reader_class()\n split_param = state.mapreduce_spec.mapper\n if issubclass(input_reader_class, map_job.InputReader):\n split_param = map_job.JobConfig._to_map_job_config(state.\n mapreduce_spec, os.environ.get('HTTP_X_APPENGINE_QUEUENAME'))\n if serialized_input_readers is None:\n readers = input_reader_class.split_input(split_param)\n else:\n readers = [input_reader_class.from_json_str(_json) for _json in\n json.loads(zlib.decompress(serialized_input_readers.payload))]\n if not readers:\n return None, None\n state.mapreduce_spec.mapper.shard_count = len(readers)\n state.active_shards = len(readers)\n if serialized_input_readers is None:\n serialized_input_readers = model._HugeTaskPayload(key_name=\n serialized_input_readers_key, parent=state)\n readers_json_str = [i.to_json_str() for i in readers]\n serialized_input_readers.payload = zlib.compress(json.dumps(\n readers_json_str))\n return readers, serialized_input_readers\n",
"role": "user"
},
{
"content": "get_input_readers",
"role": "assistant"
}
] |
def x(self, state, serialized_readers_entity):
mr_id = state.key().id_or_name()
fresh_state = model.MapreduceState.get_by_job_id(mr_id)
if not self._check_mr_state(fresh_state, mr_id):
return False
if fresh_state.active_shards != 0:
logging.warning(
'Mapreduce %s already has active shards. Looks like spurious task execution.'
, mr_id)
return None
config = util.create_datastore_write_config(state.mapreduce_spec)
db.put([state, serialized_readers_entity], config=config)
return True
|
save_states
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, state, serialized_readers_entity):\n mr_id = state.key().id_or_name()\n fresh_state = model.MapreduceState.get_by_job_id(mr_id)\n if not self._check_mr_state(fresh_state, mr_id):\n return False\n if fresh_state.active_shards != 0:\n logging.warning(\n 'Mapreduce %s already has active shards. Looks like spurious task execution.'\n , mr_id)\n return None\n config = util.create_datastore_write_config(state.mapreduce_spec)\n db.put([state, serialized_readers_entity], config=config)\n return True\n",
"role": "user"
},
{
"content": "save_states",
"role": "assistant"
}
] |
def x(cls, spec, readers, queue_name, base_path, mr_state):
shard_states = []
for shard_number, input_reader in enumerate(readers):
shard_state = model.ShardState.create_new(spec.mapreduce_id,
shard_number)
shard_state.shard_description = str(input_reader)
shard_states.append(shard_state)
existing_shard_states = db.get(shard.key() for shard in shard_states)
existing_shard_keys = set(shard.key() for shard in
existing_shard_states if shard is not None)
db.put((shard for shard in shard_states if shard.key() not in
existing_shard_keys), config=util.create_datastore_write_config(spec))
writer_class = spec.mapper.output_writer_class()
writers = [None] * len(readers)
if writer_class:
for shard_number, shard_state in enumerate(shard_states):
writers[shard_number] = writer_class.create(mr_state.
mapreduce_spec, shard_state.shard_number, shard_state.
retries + 1, mr_state.writer_state)
for shard_number, (input_reader, output_writer) in enumerate(zip(
readers, writers)):
shard_id = model.ShardState.shard_id_from_number(spec.mapreduce_id,
shard_number)
task = MapperWorkerCallbackHandler._state_to_task(model.
TransientShardState(base_path, spec, shard_id, 0, input_reader,
input_reader, output_writer=output_writer, handler=spec.mapper.
handler), shard_states[shard_number])
MapperWorkerCallbackHandler._add_task(task, spec, queue_name)
|
schedule_shards
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, spec, readers, queue_name, base_path, mr_state):\n shard_states = []\n for shard_number, input_reader in enumerate(readers):\n shard_state = model.ShardState.create_new(spec.mapreduce_id,\n shard_number)\n shard_state.shard_description = str(input_reader)\n shard_states.append(shard_state)\n existing_shard_states = db.get(shard.key() for shard in shard_states)\n existing_shard_keys = set(shard.key() for shard in\n existing_shard_states if shard is not None)\n db.put((shard for shard in shard_states if shard.key() not in\n existing_shard_keys), config=util.create_datastore_write_config(spec))\n writer_class = spec.mapper.output_writer_class()\n writers = [None] * len(readers)\n if writer_class:\n for shard_number, shard_state in enumerate(shard_states):\n writers[shard_number] = writer_class.create(mr_state.\n mapreduce_spec, shard_state.shard_number, shard_state.\n retries + 1, mr_state.writer_state)\n for shard_number, (input_reader, output_writer) in enumerate(zip(\n readers, writers)):\n shard_id = model.ShardState.shard_id_from_number(spec.mapreduce_id,\n shard_number)\n task = MapperWorkerCallbackHandler._state_to_task(model.\n TransientShardState(base_path, spec, shard_id, 0, input_reader,\n input_reader, output_writer=output_writer, handler=spec.mapper.\n handler), shard_states[shard_number])\n MapperWorkerCallbackHandler._add_task(task, spec, queue_name)\n",
"role": "user"
},
{
"content": "schedule_shards",
"role": "assistant"
}
] |
def x(cls, state, mr_id):
if state is None:
logging.warning('Mapreduce State for job %s is missing. Dropping Task.'
, mr_id)
return False
if not state.active:
logging.warning(
'Mapreduce %s is not active. Looks like spurious task execution. Dropping Task.'
, mr_id)
return False
return True
|
check_mr_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, state, mr_id):\n if state is None:\n logging.warning('Mapreduce State for job %s is missing. Dropping Task.'\n , mr_id)\n return False\n if not state.active:\n logging.warning(\n 'Mapreduce %s is not active. Looks like spurious task execution. Dropping Task.'\n , mr_id)\n return False\n return True\n",
"role": "user"
},
{
"content": "check_mr_state",
"role": "assistant"
}
] |
def x(self):
mapreduce_name = self._get_required_param('name')
mapper_input_reader_spec = self._get_required_param('mapper_input_reader')
mapper_handler_spec = self._get_required_param('mapper_handler')
mapper_output_writer_spec = self.request.get('mapper_output_writer')
mapper_params = self._get_params('mapper_params_validator',
'mapper_params.')
params = self._get_params('params_validator', 'params.')
mr_params = map_job.JobConfig._get_default_mr_params()
mr_params.update(params)
if 'queue_name' in mapper_params:
mr_params['queue_name'] = mapper_params['queue_name']
mapper_params['processing_rate'] = int(mapper_params.get(
'processing_rate') or parameters.config.PROCESSING_RATE_PER_SEC)
mapper_spec = model.MapperSpec(mapper_handler_spec,
mapper_input_reader_spec, mapper_params, int(mapper_params.get(
'shard_count', parameters.config.SHARD_COUNT)), output_writer_spec=
mapper_output_writer_spec)
mapreduce_id = self._start_map(mapreduce_name, mapper_spec, mr_params,
queue_name=mr_params['queue_name'], _app=mapper_params.get('_app'))
self.json_response['mapreduce_id'] = mapreduce_id
|
handle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mapreduce_name = self._get_required_param('name')\n mapper_input_reader_spec = self._get_required_param('mapper_input_reader')\n mapper_handler_spec = self._get_required_param('mapper_handler')\n mapper_output_writer_spec = self.request.get('mapper_output_writer')\n mapper_params = self._get_params('mapper_params_validator',\n 'mapper_params.')\n params = self._get_params('params_validator', 'params.')\n mr_params = map_job.JobConfig._get_default_mr_params()\n mr_params.update(params)\n if 'queue_name' in mapper_params:\n mr_params['queue_name'] = mapper_params['queue_name']\n mapper_params['processing_rate'] = int(mapper_params.get(\n 'processing_rate') or parameters.config.PROCESSING_RATE_PER_SEC)\n mapper_spec = model.MapperSpec(mapper_handler_spec,\n mapper_input_reader_spec, mapper_params, int(mapper_params.get(\n 'shard_count', parameters.config.SHARD_COUNT)), output_writer_spec=\n mapper_output_writer_spec)\n mapreduce_id = self._start_map(mapreduce_name, mapper_spec, mr_params,\n queue_name=mr_params['queue_name'], _app=mapper_params.get('_app'))\n self.json_response['mapreduce_id'] = mapreduce_id\n",
"role": "user"
},
{
"content": "handle",
"role": "assistant"
}
] |
def x(self, validator_parameter, name_prefix):
params_validator = self.request.get(validator_parameter)
user_params = {}
for key in self.request.arguments():
if key.startswith(name_prefix):
values = self.request.get_all(key)
adjusted_key = key[len(name_prefix):]
if len(values) == 1:
user_params[adjusted_key] = values[0]
else:
user_params[adjusted_key] = values
if params_validator:
resolved_validator = util.for_name(params_validator)
resolved_validator(user_params)
return user_params
|
get_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, validator_parameter, name_prefix):\n params_validator = self.request.get(validator_parameter)\n user_params = {}\n for key in self.request.arguments():\n if key.startswith(name_prefix):\n values = self.request.get_all(key)\n adjusted_key = key[len(name_prefix):]\n if len(values) == 1:\n user_params[adjusted_key] = values[0]\n else:\n user_params[adjusted_key] = values\n if params_validator:\n resolved_validator = util.for_name(params_validator)\n resolved_validator(user_params)\n return user_params\n",
"role": "user"
},
{
"content": "get_params",
"role": "assistant"
}
] |
def x(self, param_name):
value = self.request.get(param_name)
if not value:
raise errors.NotEnoughArgumentsError(param_name + ' not specified')
return value
|
get_required_param
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, param_name):\n value = self.request.get(param_name)\n if not value:\n raise errors.NotEnoughArgumentsError(param_name + ' not specified')\n return value\n",
"role": "user"
},
{
"content": "get_required_param",
"role": "assistant"
}
] |
def x(cls, name, mapper_spec, mapreduce_params, queue_name, eta=None,
countdown=None, hooks_class_name=None, _app=None, in_xg_transaction=False):
mapper_input_reader_class = mapper_spec.input_reader_class()
mapper_input_reader_class.validate(mapper_spec)
mapper_output_writer_class = mapper_spec.output_writer_class()
if mapper_output_writer_class:
mapper_output_writer_class.validate(mapper_spec)
mapreduce_id = model.MapreduceState.new_mapreduce_id()
mapreduce_spec = model.MapreduceSpec(name, mapreduce_id, mapper_spec.
to_json(), mapreduce_params, hooks_class_name)
ctx = context.Context(mapreduce_spec, None)
context.Context._set(ctx)
try:
mapper_spec.handler
finally:
context.Context._set(None)
if in_xg_transaction:
propagation = db.MANDATORY
else:
propagation = db.INDEPENDENT
@db.transactional(propagation=propagation)
def x():
cls._create_and_save_state(mapreduce_spec, _app)
cls._add_kickoff_task(mapreduce_params['base_path'], mapreduce_spec,
eta, countdown, queue_name)
_txn()
return mapreduce_id
|
start_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, name, mapper_spec, mapreduce_params, queue_name, eta=None,\n countdown=None, hooks_class_name=None, _app=None, in_xg_transaction=False):\n mapper_input_reader_class = mapper_spec.input_reader_class()\n mapper_input_reader_class.validate(mapper_spec)\n mapper_output_writer_class = mapper_spec.output_writer_class()\n if mapper_output_writer_class:\n mapper_output_writer_class.validate(mapper_spec)\n mapreduce_id = model.MapreduceState.new_mapreduce_id()\n mapreduce_spec = model.MapreduceSpec(name, mapreduce_id, mapper_spec.\n to_json(), mapreduce_params, hooks_class_name)\n ctx = context.Context(mapreduce_spec, None)\n context.Context._set(ctx)\n try:\n mapper_spec.handler\n finally:\n context.Context._set(None)\n if in_xg_transaction:\n propagation = db.MANDATORY\n else:\n propagation = db.INDEPENDENT\n\n @db.transactional(propagation=propagation)\n def x():\n cls._create_and_save_state(mapreduce_spec, _app)\n cls._add_kickoff_task(mapreduce_params['base_path'], mapreduce_spec,\n eta, countdown, queue_name)\n _txn()\n return mapreduce_id\n",
"role": "user"
},
{
"content": "start_map",
"role": "assistant"
}
] |
def x(cls, mapreduce_spec, _app):
state = model.MapreduceState.create_new(mapreduce_spec.mapreduce_id)
state.mapreduce_spec = mapreduce_spec
state.active = True
state.active_shards = 0
if _app:
state.app_id = _app
config = util.create_datastore_write_config(mapreduce_spec)
state.put(config=config)
return state
|
create_and_save_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapreduce_spec, _app):\n state = model.MapreduceState.create_new(mapreduce_spec.mapreduce_id)\n state.mapreduce_spec = mapreduce_spec\n state.active = True\n state.active_shards = 0\n if _app:\n state.app_id = _app\n config = util.create_datastore_write_config(mapreduce_spec)\n state.put(config=config)\n return state\n",
"role": "user"
},
{
"content": "create_and_save_state",
"role": "assistant"
}
] |
def x(cls, base_path, mapreduce_spec, eta, countdown, queue_name):
params = {'mapreduce_id': mapreduce_spec.mapreduce_id}
kickoff_task = taskqueue.Task(url=base_path + '/kickoffjob_callback/' +
mapreduce_spec.mapreduce_id, headers=util._get_task_headers(
mapreduce_spec.mapreduce_id), params=params, eta=eta, countdown=
countdown)
hooks = mapreduce_spec.get_hooks()
if hooks is not None:
try:
hooks.enqueue_kickoff_task(kickoff_task, queue_name)
return
except NotImplementedError:
pass
kickoff_task.add(queue_name, transactional=True)
|
add_kickoff_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, base_path, mapreduce_spec, eta, countdown, queue_name):\n params = {'mapreduce_id': mapreduce_spec.mapreduce_id}\n kickoff_task = taskqueue.Task(url=base_path + '/kickoffjob_callback/' +\n mapreduce_spec.mapreduce_id, headers=util._get_task_headers(\n mapreduce_spec.mapreduce_id), params=params, eta=eta, countdown=\n countdown)\n hooks = mapreduce_spec.get_hooks()\n if hooks is not None:\n try:\n hooks.enqueue_kickoff_task(kickoff_task, queue_name)\n return\n except NotImplementedError:\n pass\n kickoff_task.add(queue_name, transactional=True)\n",
"role": "user"
},
{
"content": "add_kickoff_task",
"role": "assistant"
}
] |
def x(mapper_spec, allowed_keys=None, allow_old=True):
if 'input_reader' not in mapper_spec.params:
message = (
"Input reader's parameters should be specified in input_reader subdictionary."
)
if not allow_old or allowed_keys:
raise errors.BadReaderParamsError(message)
params = mapper_spec.params
params = dict((str(n), v) for n, v in params.iteritems())
else:
if not isinstance(mapper_spec.params.get('input_reader'), dict):
raise errors.BadReaderParamsError(
'Input reader parameters should be a dictionary')
params = mapper_spec.params.get('input_reader')
params = dict((str(n), v) for n, v in params.iteritems())
if allowed_keys:
params_diff = set(params.keys()) - allowed_keys
if params_diff:
raise errors.BadReaderParamsError(
'Invalid input_reader parameters: %s' % ','.join(
params_diff))
return params
|
get_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mapper_spec, allowed_keys=None, allow_old=True):\n if 'input_reader' not in mapper_spec.params:\n message = (\n \"Input reader's parameters should be specified in input_reader subdictionary.\"\n )\n if not allow_old or allowed_keys:\n raise errors.BadReaderParamsError(message)\n params = mapper_spec.params\n params = dict((str(n), v) for n, v in params.iteritems())\n else:\n if not isinstance(mapper_spec.params.get('input_reader'), dict):\n raise errors.BadReaderParamsError(\n 'Input reader parameters should be a dictionary')\n params = mapper_spec.params.get('input_reader')\n params = dict((str(n), v) for n, v in params.iteritems())\n if allowed_keys:\n params_diff = set(params.keys()) - allowed_keys\n if params_diff:\n raise errors.BadReaderParamsError(\n 'Invalid input_reader parameters: %s' % ','.join(\n params_diff))\n return params\n",
"role": "user"
},
{
"content": "get_params",
"role": "assistant"
}
] |
def x(cls, sorted_keys, shard_count):
assert len(sorted_keys) >= shard_count
index_stride = len(sorted_keys) / float(shard_count)
return [sorted_keys[int(round(index_stride * i))] for i in range(1,
shard_count)]
|
choose_split_points
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, sorted_keys, shard_count):\n assert len(sorted_keys) >= shard_count\n index_stride = len(sorted_keys) / float(shard_count)\n return [sorted_keys[int(round(index_stride * i))] for i in range(1,\n shard_count)]\n",
"role": "user"
},
{
"content": "choose_split_points",
"role": "assistant"
}
] |
def x(cls, mapper_spec):
super(RawDatastoreInputReader, cls).validate(mapper_spec)
params = _get_params(mapper_spec)
entity_kind = params[cls.ENTITY_KIND_PARAM]
if '.' in entity_kind:
logging.warning(
'. detected in entity kind %s specified for reader %s.Assuming entity kind contains the dot.'
, entity_kind, cls.__name__)
if cls.FILTERS_PARAM in params:
filters = params[cls.FILTERS_PARAM]
for f in filters:
if f[1] != '=':
raise BadReaderParamsError(
'Only equality filters are supported: %s', f)
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec):\n super(RawDatastoreInputReader, cls).validate(mapper_spec)\n params = _get_params(mapper_spec)\n entity_kind = params[cls.ENTITY_KIND_PARAM]\n if '.' in entity_kind:\n logging.warning(\n '. detected in entity kind %s specified for reader %s.Assuming entity kind contains the dot.'\n , entity_kind, cls.__name__)\n if cls.FILTERS_PARAM in params:\n filters = params[cls.FILTERS_PARAM]\n for f in filters:\n if f[1] != '=':\n raise BadReaderParamsError(\n 'Only equality filters are supported: %s', f)\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(cls, mapper_spec):
shard_count = mapper_spec.shard_count
query_spec = cls._get_query_spec(mapper_spec)
if not property_range.should_shard_by_property_range(query_spec.filters):
return super(DatastoreInputReader, cls).split_input(mapper_spec)
oversplit_factor = query_spec.oversplit_factor
oversplit_shard_count = oversplit_factor * shard_count
p_range = property_range.PropertyRange(query_spec.filters, query_spec.
model_class_path)
p_ranges = p_range.split(oversplit_shard_count)
if query_spec.ns is not None:
ns_range = namespace_range.NamespaceRange(namespace_start=
query_spec.ns, namespace_end=query_spec.ns, _app=query_spec.app)
ns_ranges = [copy.copy(ns_range) for _ in p_ranges]
else:
ns_keys = namespace_range.get_namespace_keys(query_spec.app, cls.
MAX_NAMESPACES_FOR_KEY_SHARD + 1)
if not ns_keys:
return
if len(ns_keys) <= cls.MAX_NAMESPACES_FOR_KEY_SHARD:
ns_ranges = [namespace_range.NamespaceRange(_app=query_spec.app
) for _ in p_ranges]
else:
ns_ranges = namespace_range.NamespaceRange.split(n=
oversplit_shard_count, contiguous=False, can_query=lambda :
True, _app=query_spec.app)
p_ranges = [copy.copy(p_range) for _ in ns_ranges]
assert len(p_ranges) == len(ns_ranges)
iters = [db_iters.RangeIteratorFactory.create_property_range_iterator(p,
ns, query_spec) for p, ns in zip(p_ranges, ns_ranges)]
if len(iters) > shard_count:
iters = [db_iters.RangeIteratorFactory.
create_multi_property_range_iterator([iters[i] for i in xrange(
start_index, len(iters), shard_count)]) for start_index in
xrange(shard_count)]
return [cls(i) for i in iters]
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec):\n shard_count = mapper_spec.shard_count\n query_spec = cls._get_query_spec(mapper_spec)\n if not property_range.should_shard_by_property_range(query_spec.filters):\n return super(DatastoreInputReader, cls).split_input(mapper_spec)\n oversplit_factor = query_spec.oversplit_factor\n oversplit_shard_count = oversplit_factor * shard_count\n p_range = property_range.PropertyRange(query_spec.filters, query_spec.\n model_class_path)\n p_ranges = p_range.split(oversplit_shard_count)\n if query_spec.ns is not None:\n ns_range = namespace_range.NamespaceRange(namespace_start=\n query_spec.ns, namespace_end=query_spec.ns, _app=query_spec.app)\n ns_ranges = [copy.copy(ns_range) for _ in p_ranges]\n else:\n ns_keys = namespace_range.get_namespace_keys(query_spec.app, cls.\n MAX_NAMESPACES_FOR_KEY_SHARD + 1)\n if not ns_keys:\n return\n if len(ns_keys) <= cls.MAX_NAMESPACES_FOR_KEY_SHARD:\n ns_ranges = [namespace_range.NamespaceRange(_app=query_spec.app\n ) for _ in p_ranges]\n else:\n ns_ranges = namespace_range.NamespaceRange.split(n=\n oversplit_shard_count, contiguous=False, can_query=lambda :\n True, _app=query_spec.app)\n p_ranges = [copy.copy(p_range) for _ in ns_ranges]\n assert len(p_ranges) == len(ns_ranges)\n iters = [db_iters.RangeIteratorFactory.create_property_range_iterator(p,\n ns, query_spec) for p, ns in zip(p_ranges, ns_ranges)]\n if len(iters) > shard_count:\n iters = [db_iters.RangeIteratorFactory.\n create_multi_property_range_iterator([iters[i] for i in xrange(\n start_index, len(iters), shard_count)]) for start_index in\n xrange(shard_count)]\n return [cls(i) for i in iters]\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
def x(self):
while True:
if self._current_key_range is None:
if self._key_ranges:
self._current_key_range = self._key_ranges.pop()
continue
else:
break
for key, o in self._iter_key_range(copy.deepcopy(self.
_current_key_range)):
self._current_key_range.advance(key)
yield o
self._current_key_range = None
|
iter_key_ranges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n while True:\n if self._current_key_range is None:\n if self._key_ranges:\n self._current_key_range = self._key_ranges.pop()\n continue\n else:\n break\n for key, o in self._iter_key_range(copy.deepcopy(self.\n _current_key_range)):\n self._current_key_range.advance(key)\n yield o\n self._current_key_range = None\n",
"role": "user"
},
{
"content": "iter_key_ranges",
"role": "assistant"
}
] |
def x(self):
while True:
if self._current_key_range is None:
query = self._ns_range.make_datastore_query()
namespace_result = query.Get(1)
if not namespace_result:
break
namespace = namespace_result[0].name() or ''
self._current_key_range = key_range.KeyRange(namespace=
namespace, _app=self._ns_range.app)
yield ALLOW_CHECKPOINT
for key, o in self._iter_key_range(copy.deepcopy(self.
_current_key_range)):
self._current_key_range.advance(key)
yield o
if (self._ns_range.is_single_namespace or self._current_key_range.
namespace == self._ns_range.namespace_end):
break
self._ns_range = self._ns_range.with_start_after(self.
_current_key_range.namespace)
self._current_key_range = None
|
iter_ns_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n while True:\n if self._current_key_range is None:\n query = self._ns_range.make_datastore_query()\n namespace_result = query.Get(1)\n if not namespace_result:\n break\n namespace = namespace_result[0].name() or ''\n self._current_key_range = key_range.KeyRange(namespace=\n namespace, _app=self._ns_range.app)\n yield ALLOW_CHECKPOINT\n for key, o in self._iter_key_range(copy.deepcopy(self.\n _current_key_range)):\n self._current_key_range.advance(key)\n yield o\n if (self._ns_range.is_single_namespace or self._current_key_range.\n namespace == self._ns_range.namespace_end):\n break\n self._ns_range = self._ns_range.with_start_after(self.\n _current_key_range.namespace)\n self._current_key_range = None\n",
"role": "user"
},
{
"content": "iter_ns_range",
"role": "assistant"
}
] |
def x(cls, app, namespace, entity_kind, shard_count):
raw_entity_kind = cls._get_raw_entity_kind(entity_kind)
if shard_count == 1:
return [key_range.KeyRange(namespace=namespace, _app=app)]
ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace,
_app=app, keys_only=True)
ds_query.Order('__scatter__')
random_keys = ds_query.Get(shard_count * cls._OVERSAMPLING_FACTOR)
if not random_keys:
return [key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (
shard_count - 1)
random_keys.sort()
if len(random_keys) >= shard_count:
random_keys = cls._choose_split_points(random_keys, shard_count)
key_ranges = []
key_ranges.append(key_range.KeyRange(key_start=None, key_end=
random_keys[0], direction=key_range.KeyRange.ASC, include_start=
False, include_end=False, namespace=namespace, _app=app))
for i in range(0, len(random_keys) - 1):
key_ranges.append(key_range.KeyRange(key_start=random_keys[i],
key_end=random_keys[i + 1], direction=key_range.KeyRange.ASC,
include_start=True, include_end=False, namespace=namespace,
_app=app))
key_ranges.append(key_range.KeyRange(key_start=random_keys[-1], key_end
=None, direction=key_range.KeyRange.ASC, include_start=True,
include_end=False, namespace=namespace, _app=app))
if len(key_ranges) < shard_count:
key_ranges += [None] * (shard_count - len(key_ranges))
return key_ranges
|
split_input_from_namespace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, app, namespace, entity_kind, shard_count):\n raw_entity_kind = cls._get_raw_entity_kind(entity_kind)\n if shard_count == 1:\n return [key_range.KeyRange(namespace=namespace, _app=app)]\n ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace,\n _app=app, keys_only=True)\n ds_query.Order('__scatter__')\n random_keys = ds_query.Get(shard_count * cls._OVERSAMPLING_FACTOR)\n if not random_keys:\n return [key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (\n shard_count - 1)\n random_keys.sort()\n if len(random_keys) >= shard_count:\n random_keys = cls._choose_split_points(random_keys, shard_count)\n key_ranges = []\n key_ranges.append(key_range.KeyRange(key_start=None, key_end=\n random_keys[0], direction=key_range.KeyRange.ASC, include_start=\n False, include_end=False, namespace=namespace, _app=app))\n for i in range(0, len(random_keys) - 1):\n key_ranges.append(key_range.KeyRange(key_start=random_keys[i],\n key_end=random_keys[i + 1], direction=key_range.KeyRange.ASC,\n include_start=True, include_end=False, namespace=namespace,\n _app=app))\n key_ranges.append(key_range.KeyRange(key_start=random_keys[-1], key_end\n =None, direction=key_range.KeyRange.ASC, include_start=True,\n include_end=False, namespace=namespace, _app=app))\n if len(key_ranges) < shard_count:\n key_ranges += [None] * (shard_count - len(key_ranges))\n return key_ranges\n",
"role": "user"
},
{
"content": "split_input_from_namespace",
"role": "assistant"
}
] |
def x(cls, app, namespaces, entity_kind_name, params, shard_count):
key_ranges = []
for namespace in namespaces:
key_ranges.extend(cls._split_input_from_namespace(app, namespace,
entity_kind_name, shard_count))
shared_ranges = [[] for _ in range(shard_count)]
for i, k_range in enumerate(key_ranges):
shared_ranges[i % shard_count].append(k_range)
batch_size = int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE))
return [cls(entity_kind_name, key_ranges=key_ranges, ns_range=None,
batch_size=batch_size) for key_ranges in shared_ranges if key_ranges]
|
split_input_from_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, app, namespaces, entity_kind_name, params, shard_count):\n key_ranges = []\n for namespace in namespaces:\n key_ranges.extend(cls._split_input_from_namespace(app, namespace,\n entity_kind_name, shard_count))\n shared_ranges = [[] for _ in range(shard_count)]\n for i, k_range in enumerate(key_ranges):\n shared_ranges[i % shard_count].append(k_range)\n batch_size = int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE))\n return [cls(entity_kind_name, key_ranges=key_ranges, ns_range=None,\n batch_size=batch_size) for key_ranges in shared_ranges if key_ranges]\n",
"role": "user"
},
{
"content": "split_input_from_params",
"role": "assistant"
}
] |
def x(cls, mapper_spec):
params = _get_params(mapper_spec)
entity_kind_name = params[cls.ENTITY_KIND_PARAM]
batch_size = int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE))
shard_count = mapper_spec.shard_count
namespace = params.get(cls.NAMESPACE_PARAM)
app = params.get(cls._APP_PARAM)
filters = params.get(cls.FILTERS_PARAM)
if namespace is None:
namespace_query = datastore.Query('__namespace__', keys_only=True,
_app=app)
namespace_keys = namespace_query.Get(limit=cls.
MAX_NAMESPACES_FOR_KEY_SHARD + 1)
if len(namespace_keys) > cls.MAX_NAMESPACES_FOR_KEY_SHARD:
ns_ranges = namespace_range.NamespaceRange.split(n=shard_count,
contiguous=True, _app=app)
return [cls(entity_kind_name, key_ranges=None, ns_range=
ns_range, batch_size=batch_size, filters=filters) for
ns_range in ns_ranges]
elif not namespace_keys:
return [cls(entity_kind_name, key_ranges=None, ns_range=
namespace_range.NamespaceRange(_app=app), batch_size=
shard_count, filters=filters)]
else:
namespaces = [(namespace_key.name() or '') for namespace_key in
namespace_keys]
else:
namespaces = [namespace]
readers = cls._split_input_from_params(app, namespaces,
entity_kind_name, params, shard_count)
if filters:
for reader in readers:
reader._filters = filters
return readers
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec):\n params = _get_params(mapper_spec)\n entity_kind_name = params[cls.ENTITY_KIND_PARAM]\n batch_size = int(params.get(cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE))\n shard_count = mapper_spec.shard_count\n namespace = params.get(cls.NAMESPACE_PARAM)\n app = params.get(cls._APP_PARAM)\n filters = params.get(cls.FILTERS_PARAM)\n if namespace is None:\n namespace_query = datastore.Query('__namespace__', keys_only=True,\n _app=app)\n namespace_keys = namespace_query.Get(limit=cls.\n MAX_NAMESPACES_FOR_KEY_SHARD + 1)\n if len(namespace_keys) > cls.MAX_NAMESPACES_FOR_KEY_SHARD:\n ns_ranges = namespace_range.NamespaceRange.split(n=shard_count,\n contiguous=True, _app=app)\n return [cls(entity_kind_name, key_ranges=None, ns_range=\n ns_range, batch_size=batch_size, filters=filters) for\n ns_range in ns_ranges]\n elif not namespace_keys:\n return [cls(entity_kind_name, key_ranges=None, ns_range=\n namespace_range.NamespaceRange(_app=app), batch_size=\n shard_count, filters=filters)]\n else:\n namespaces = [(namespace_key.name() or '') for namespace_key in\n namespace_keys]\n else:\n namespaces = [namespace]\n readers = cls._split_input_from_params(app, namespaces,\n entity_kind_name, params, shard_count)\n if filters:\n for reader in readers:\n reader._filters = filters\n return readers\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
def x(self):
if self._key_ranges is None:
key_ranges_json = None
else:
key_ranges_json = []
for k in self._key_ranges:
if k:
key_ranges_json.append(k.to_json())
else:
key_ranges_json.append(None)
if self._ns_range is None:
namespace_range_json = None
else:
namespace_range_json = self._ns_range.to_json_object()
if self._current_key_range is None:
current_key_range_json = None
else:
current_key_range_json = self._current_key_range.to_json()
json_dict = {self.KEY_RANGE_PARAM: key_ranges_json, self.
NAMESPACE_RANGE_PARAM: namespace_range_json, self.
CURRENT_KEY_RANGE_PARAM: current_key_range_json, self.
ENTITY_KIND_PARAM: self._entity_kind, self.BATCH_SIZE_PARAM: self.
_batch_size, self.FILTERS_PARAM: self._filters}
return json_dict
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._key_ranges is None:\n key_ranges_json = None\n else:\n key_ranges_json = []\n for k in self._key_ranges:\n if k:\n key_ranges_json.append(k.to_json())\n else:\n key_ranges_json.append(None)\n if self._ns_range is None:\n namespace_range_json = None\n else:\n namespace_range_json = self._ns_range.to_json_object()\n if self._current_key_range is None:\n current_key_range_json = None\n else:\n current_key_range_json = self._current_key_range.to_json()\n json_dict = {self.KEY_RANGE_PARAM: key_ranges_json, self.\n NAMESPACE_RANGE_PARAM: namespace_range_json, self.\n CURRENT_KEY_RANGE_PARAM: current_key_range_json, self.\n ENTITY_KIND_PARAM: self._entity_kind, self.BATCH_SIZE_PARAM: self.\n _batch_size, self.FILTERS_PARAM: self._filters}\n return json_dict\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(cls, json):
if json[cls.KEY_RANGE_PARAM] is None:
key_ranges = None
else:
key_ranges = []
for k in json[cls.KEY_RANGE_PARAM]:
if k:
key_ranges.append(key_range.KeyRange.from_json(k))
else:
key_ranges.append(None)
if json[cls.NAMESPACE_RANGE_PARAM] is None:
ns_range = None
else:
ns_range = namespace_range.NamespaceRange.from_json_object(json[cls
.NAMESPACE_RANGE_PARAM])
if json[cls.CURRENT_KEY_RANGE_PARAM] is None:
current_key_range = None
else:
current_key_range = key_range.KeyRange.from_json(json[cls.
CURRENT_KEY_RANGE_PARAM])
return cls(json[cls.ENTITY_KIND_PARAM], key_ranges, ns_range, json[cls.
BATCH_SIZE_PARAM], current_key_range, filters=json.get(cls.
FILTERS_PARAM))
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, json):\n if json[cls.KEY_RANGE_PARAM] is None:\n key_ranges = None\n else:\n key_ranges = []\n for k in json[cls.KEY_RANGE_PARAM]:\n if k:\n key_ranges.append(key_range.KeyRange.from_json(k))\n else:\n key_ranges.append(None)\n if json[cls.NAMESPACE_RANGE_PARAM] is None:\n ns_range = None\n else:\n ns_range = namespace_range.NamespaceRange.from_json_object(json[cls\n .NAMESPACE_RANGE_PARAM])\n if json[cls.CURRENT_KEY_RANGE_PARAM] is None:\n current_key_range = None\n else:\n current_key_range = key_range.KeyRange.from_json(json[cls.\n CURRENT_KEY_RANGE_PARAM])\n return cls(json[cls.ENTITY_KIND_PARAM], key_ranges, ns_range, json[cls.\n BATCH_SIZE_PARAM], current_key_range, filters=json.get(cls.\n FILTERS_PARAM))\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(self):
self._has_iterated = True
if self._read_before_start:
self._blob_reader.readline()
self._read_before_start = False
start_position = self._blob_reader.tell()
if start_position > self._end_position:
raise StopIteration()
line = self._blob_reader.readline()
if not line:
raise StopIteration()
return start_position, line.rstrip('\n')
|
next
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._has_iterated = True\n if self._read_before_start:\n self._blob_reader.readline()\n self._read_before_start = False\n start_position = self._blob_reader.tell()\n if start_position > self._end_position:\n raise StopIteration()\n line = self._blob_reader.readline()\n if not line:\n raise StopIteration()\n return start_position, line.rstrip('\\n')\n",
"role": "user"
},
{
"content": "next",
"role": "assistant"
}
] |
def x(self):
new_pos = self._blob_reader.tell()
if self._has_iterated:
new_pos -= 1
return {self.BLOB_KEY_PARAM: self._blob_key, self.
INITIAL_POSITION_PARAM: new_pos, self.END_POSITION_PARAM: self.
_end_position}
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n new_pos = self._blob_reader.tell()\n if self._has_iterated:\n new_pos -= 1\n return {self.BLOB_KEY_PARAM: self._blob_key, self.\n INITIAL_POSITION_PARAM: new_pos, self.END_POSITION_PARAM: self.\n _end_position}\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(cls, json):
return cls(json[cls.BLOB_KEY_PARAM], json[cls.INITIAL_POSITION_PARAM],
json[cls.END_POSITION_PARAM])
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, json):\n return cls(json[cls.BLOB_KEY_PARAM], json[cls.INITIAL_POSITION_PARAM],\n json[cls.END_POSITION_PARAM])\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(cls, mapper_spec):
if mapper_spec.input_reader_class() != cls:
raise BadReaderParamsError('Mapper input reader class mismatch')
params = _get_params(mapper_spec)
if cls.BLOB_KEYS_PARAM not in params:
raise BadReaderParamsError("Must specify 'blob_keys' for mapper input")
blob_keys = params[cls.BLOB_KEYS_PARAM]
if isinstance(blob_keys, basestring):
blob_keys = blob_keys.split(',')
if len(blob_keys) > cls._MAX_BLOB_KEYS_COUNT:
raise BadReaderParamsError("Too many 'blob_keys' for mapper input")
if not blob_keys:
raise BadReaderParamsError("No 'blob_keys' specified for mapper input")
for blob_key in blob_keys:
blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key))
if not blob_info:
raise BadReaderParamsError('Could not find blobinfo for key %s' %
blob_key)
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec):\n if mapper_spec.input_reader_class() != cls:\n raise BadReaderParamsError('Mapper input reader class mismatch')\n params = _get_params(mapper_spec)\n if cls.BLOB_KEYS_PARAM not in params:\n raise BadReaderParamsError(\"Must specify 'blob_keys' for mapper input\")\n blob_keys = params[cls.BLOB_KEYS_PARAM]\n if isinstance(blob_keys, basestring):\n blob_keys = blob_keys.split(',')\n if len(blob_keys) > cls._MAX_BLOB_KEYS_COUNT:\n raise BadReaderParamsError(\"Too many 'blob_keys' for mapper input\")\n if not blob_keys:\n raise BadReaderParamsError(\"No 'blob_keys' specified for mapper input\")\n for blob_key in blob_keys:\n blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key))\n if not blob_info:\n raise BadReaderParamsError('Could not find blobinfo for key %s' %\n blob_key)\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(cls, mapper_spec):
params = _get_params(mapper_spec)
blob_keys = params[cls.BLOB_KEYS_PARAM]
if isinstance(blob_keys, basestring):
blob_keys = blob_keys.split(',')
blob_sizes = {}
for blob_key in blob_keys:
blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key))
blob_sizes[blob_key] = blob_info.size
shard_count = min(cls._MAX_SHARD_COUNT, mapper_spec.shard_count)
shards_per_blob = shard_count // len(blob_keys)
if shards_per_blob == 0:
shards_per_blob = 1
chunks = []
for blob_key, blob_size in blob_sizes.items():
blob_chunk_size = blob_size // shards_per_blob
for i in xrange(shards_per_blob - 1):
chunks.append(BlobstoreLineInputReader.from_json({cls.
BLOB_KEY_PARAM: blob_key, cls.INITIAL_POSITION_PARAM:
blob_chunk_size * i, cls.END_POSITION_PARAM:
blob_chunk_size * (i + 1)}))
chunks.append(BlobstoreLineInputReader.from_json({cls.
BLOB_KEY_PARAM: blob_key, cls.INITIAL_POSITION_PARAM:
blob_chunk_size * (shards_per_blob - 1), cls.END_POSITION_PARAM:
blob_size}))
return chunks
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec):\n params = _get_params(mapper_spec)\n blob_keys = params[cls.BLOB_KEYS_PARAM]\n if isinstance(blob_keys, basestring):\n blob_keys = blob_keys.split(',')\n blob_sizes = {}\n for blob_key in blob_keys:\n blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key))\n blob_sizes[blob_key] = blob_info.size\n shard_count = min(cls._MAX_SHARD_COUNT, mapper_spec.shard_count)\n shards_per_blob = shard_count // len(blob_keys)\n if shards_per_blob == 0:\n shards_per_blob = 1\n chunks = []\n for blob_key, blob_size in blob_sizes.items():\n blob_chunk_size = blob_size // shards_per_blob\n for i in xrange(shards_per_blob - 1):\n chunks.append(BlobstoreLineInputReader.from_json({cls.\n BLOB_KEY_PARAM: blob_key, cls.INITIAL_POSITION_PARAM: \n blob_chunk_size * i, cls.END_POSITION_PARAM: \n blob_chunk_size * (i + 1)}))\n chunks.append(BlobstoreLineInputReader.from_json({cls.\n BLOB_KEY_PARAM: blob_key, cls.INITIAL_POSITION_PARAM: \n blob_chunk_size * (shards_per_blob - 1), cls.END_POSITION_PARAM:\n blob_size}))\n return chunks\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
def x(self):
if not self._zip:
self._zip = zipfile.ZipFile(self._reader(self._blob_key))
self._entries = self._zip.infolist()[self._start_index:self._end_index]
self._entries.reverse()
if not self._entries:
raise StopIteration()
entry = self._entries.pop()
self._start_index += 1
return entry, lambda : self._read(entry)
|
next
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self._zip:\n self._zip = zipfile.ZipFile(self._reader(self._blob_key))\n self._entries = self._zip.infolist()[self._start_index:self._end_index]\n self._entries.reverse()\n if not self._entries:\n raise StopIteration()\n entry = self._entries.pop()\n self._start_index += 1\n return entry, lambda : self._read(entry)\n",
"role": "user"
},
{
"content": "next",
"role": "assistant"
}
] |
def x(self, entry):
start_time = time.time()
content = self._zip.read(entry.filename)
ctx = context.get()
if ctx:
operation.counters.Increment(COUNTER_IO_READ_BYTES, len(content))(ctx)
operation.counters.Increment(COUNTER_IO_READ_MSEC, int((time.time() -
start_time) * 1000))(ctx)
return content
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, entry):\n start_time = time.time()\n content = self._zip.read(entry.filename)\n ctx = context.get()\n if ctx:\n operation.counters.Increment(COUNTER_IO_READ_BYTES, len(content))(ctx)\n operation.counters.Increment(COUNTER_IO_READ_MSEC, int((time.time() -\n start_time) * 1000))(ctx)\n return content\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(cls, json):
return cls(json[cls.BLOB_KEY_PARAM], json[cls.START_INDEX_PARAM], json[
cls.END_INDEX_PARAM])
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, json):\n return cls(json[cls.BLOB_KEY_PARAM], json[cls.START_INDEX_PARAM], json[\n cls.END_INDEX_PARAM])\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(self):
return {self.BLOB_KEY_PARAM: self._blob_key, self.START_INDEX_PARAM:
self._start_index, self.END_INDEX_PARAM: self._end_index}
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return {self.BLOB_KEY_PARAM: self._blob_key, self.START_INDEX_PARAM:\n self._start_index, self.END_INDEX_PARAM: self._end_index}\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(cls, mapper_spec):
if mapper_spec.input_reader_class() != cls:
raise BadReaderParamsError('Mapper input reader class mismatch')
params = _get_params(mapper_spec)
if cls.BLOB_KEY_PARAM not in params:
raise BadReaderParamsError("Must specify 'blob_key' for mapper input")
blob_key = params[cls.BLOB_KEY_PARAM]
blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key))
if not blob_info:
raise BadReaderParamsError('Could not find blobinfo for key %s' %
blob_key)
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec):\n if mapper_spec.input_reader_class() != cls:\n raise BadReaderParamsError('Mapper input reader class mismatch')\n params = _get_params(mapper_spec)\n if cls.BLOB_KEY_PARAM not in params:\n raise BadReaderParamsError(\"Must specify 'blob_key' for mapper input\")\n blob_key = params[cls.BLOB_KEY_PARAM]\n blob_info = blobstore.BlobInfo.get(blobstore.BlobKey(blob_key))\n if not blob_info:\n raise BadReaderParamsError('Could not find blobinfo for key %s' %\n blob_key)\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(cls, mapper_spec, _reader=blobstore.BlobReader):
params = _get_params(mapper_spec)
blob_key = params[cls.BLOB_KEY_PARAM]
zip_input = zipfile.ZipFile(_reader(blob_key))
zfiles = zip_input.infolist()
total_size = sum(x.file_size for x in zfiles)
num_shards = min(mapper_spec.shard_count, cls._MAX_SHARD_COUNT)
size_per_shard = total_size // num_shards
shard_start_indexes = [0]
current_shard_size = 0
for i, fileinfo in enumerate(zfiles):
current_shard_size += fileinfo.file_size
if current_shard_size >= size_per_shard:
shard_start_indexes.append(i + 1)
current_shard_size = 0
if shard_start_indexes[-1] != len(zfiles):
shard_start_indexes.append(len(zfiles))
return [cls(blob_key, start_index, end_index, _reader) for start_index,
end_index in zip(shard_start_indexes, shard_start_indexes[1:])]
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec, _reader=blobstore.BlobReader):\n params = _get_params(mapper_spec)\n blob_key = params[cls.BLOB_KEY_PARAM]\n zip_input = zipfile.ZipFile(_reader(blob_key))\n zfiles = zip_input.infolist()\n total_size = sum(x.file_size for x in zfiles)\n num_shards = min(mapper_spec.shard_count, cls._MAX_SHARD_COUNT)\n size_per_shard = total_size // num_shards\n shard_start_indexes = [0]\n current_shard_size = 0\n for i, fileinfo in enumerate(zfiles):\n current_shard_size += fileinfo.file_size\n if current_shard_size >= size_per_shard:\n shard_start_indexes.append(i + 1)\n current_shard_size = 0\n if shard_start_indexes[-1] != len(zfiles):\n shard_start_indexes.append(len(zfiles))\n return [cls(blob_key, start_index, end_index, _reader) for start_index,\n end_index in zip(shard_start_indexes, shard_start_indexes[1:])]\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
def x(cls, mapper_spec, _reader=blobstore.BlobReader):
params = _get_params(mapper_spec)
blob_keys = params[cls.BLOB_KEYS_PARAM]
if isinstance(blob_keys, basestring):
blob_keys = blob_keys.split(',')
blob_files = {}
total_size = 0
for blob_key in blob_keys:
zip_input = zipfile.ZipFile(_reader(blob_key))
blob_files[blob_key] = zip_input.infolist()
total_size += sum(x.file_size for x in blob_files[blob_key])
shard_count = min(cls._MAX_SHARD_COUNT, mapper_spec.shard_count)
size_per_shard = total_size // shard_count
readers = []
for blob_key in blob_keys:
bfiles = blob_files[blob_key]
current_shard_size = 0
start_file_index = 0
next_file_index = 0
for fileinfo in bfiles:
next_file_index += 1
current_shard_size += fileinfo.file_size
if current_shard_size >= size_per_shard:
readers.append(cls(blob_key, start_file_index,
next_file_index, 0, _reader))
current_shard_size = 0
start_file_index = next_file_index
if current_shard_size != 0:
readers.append(cls(blob_key, start_file_index, next_file_index,
0, _reader))
return readers
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec, _reader=blobstore.BlobReader):\n params = _get_params(mapper_spec)\n blob_keys = params[cls.BLOB_KEYS_PARAM]\n if isinstance(blob_keys, basestring):\n blob_keys = blob_keys.split(',')\n blob_files = {}\n total_size = 0\n for blob_key in blob_keys:\n zip_input = zipfile.ZipFile(_reader(blob_key))\n blob_files[blob_key] = zip_input.infolist()\n total_size += sum(x.file_size for x in blob_files[blob_key])\n shard_count = min(cls._MAX_SHARD_COUNT, mapper_spec.shard_count)\n size_per_shard = total_size // shard_count\n readers = []\n for blob_key in blob_keys:\n bfiles = blob_files[blob_key]\n current_shard_size = 0\n start_file_index = 0\n next_file_index = 0\n for fileinfo in bfiles:\n next_file_index += 1\n current_shard_size += fileinfo.file_size\n if current_shard_size >= size_per_shard:\n readers.append(cls(blob_key, start_file_index,\n next_file_index, 0, _reader))\n current_shard_size = 0\n start_file_index = next_file_index\n if current_shard_size != 0:\n readers.append(cls(blob_key, start_file_index, next_file_index,\n 0, _reader))\n return readers\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
def x(self):
if not self._filestream:
if not self._zip:
self._zip = zipfile.ZipFile(self._reader(self._blob_key))
self._entries = self._zip.infolist()[self._start_file_index:
self._end_file_index]
self._entries.reverse()
if not self._entries:
raise StopIteration()
entry = self._entries.pop()
value = self._zip.read(entry.filename)
self._filestream = StringIO.StringIO(value)
if self._initial_offset:
self._filestream.seek(self._initial_offset)
self._filestream.readline()
start_position = self._filestream.tell()
line = self._filestream.readline()
if not line:
self._filestream.close()
self._filestream = None
self._start_file_index += 1
self._initial_offset = 0
return self.next()
return (self._blob_key, self._start_file_index, start_position
), line.rstrip('\n')
|
next
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self._filestream:\n if not self._zip:\n self._zip = zipfile.ZipFile(self._reader(self._blob_key))\n self._entries = self._zip.infolist()[self._start_file_index:\n self._end_file_index]\n self._entries.reverse()\n if not self._entries:\n raise StopIteration()\n entry = self._entries.pop()\n value = self._zip.read(entry.filename)\n self._filestream = StringIO.StringIO(value)\n if self._initial_offset:\n self._filestream.seek(self._initial_offset)\n self._filestream.readline()\n start_position = self._filestream.tell()\n line = self._filestream.readline()\n if not line:\n self._filestream.close()\n self._filestream = None\n self._start_file_index += 1\n self._initial_offset = 0\n return self.next()\n return (self._blob_key, self._start_file_index, start_position\n ), line.rstrip('\\n')\n",
"role": "user"
},
{
"content": "next",
"role": "assistant"
}
] |
def x(self):
if self._filestream:
offset = self._filestream.tell()
if offset:
offset -= 1
else:
offset = self._initial_offset
return offset
|
next_offset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._filestream:\n offset = self._filestream.tell()\n if offset:\n offset -= 1\n else:\n offset = self._initial_offset\n return offset\n",
"role": "user"
},
{
"content": "next_offset",
"role": "assistant"
}
] |
def x(self):
return {self.BLOB_KEY_PARAM: self._blob_key, self.
START_FILE_INDEX_PARAM: self._start_file_index, self.
END_FILE_INDEX_PARAM: self._end_file_index, self.OFFSET_PARAM: self
._next_offset()}
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return {self.BLOB_KEY_PARAM: self._blob_key, self.\n START_FILE_INDEX_PARAM: self._start_file_index, self.\n END_FILE_INDEX_PARAM: self._end_file_index, self.OFFSET_PARAM: self\n ._next_offset()}\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(cls, json, _reader=blobstore.BlobReader):
return cls(json[cls.BLOB_KEY_PARAM], json[cls.START_FILE_INDEX_PARAM],
json[cls.END_FILE_INDEX_PARAM], json[cls.OFFSET_PARAM], _reader)
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, json, _reader=blobstore.BlobReader):\n return cls(json[cls.BLOB_KEY_PARAM], json[cls.START_FILE_INDEX_PARAM],\n json[cls.END_FILE_INDEX_PARAM], json[cls.OFFSET_PARAM], _reader)\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(self):
return {self.NAMESPACE_RANGE_PARAM: self.ns_range.to_json_object(),
self.BATCH_SIZE_PARAM: self._batch_size}
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return {self.NAMESPACE_RANGE_PARAM: self.ns_range.to_json_object(),\n self.BATCH_SIZE_PARAM: self._batch_size}\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(cls, json):
return cls(namespace_range.NamespaceRange.from_json_object(json[cls.
NAMESPACE_RANGE_PARAM]), json[cls.BATCH_SIZE_PARAM])
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, json):\n return cls(namespace_range.NamespaceRange.from_json_object(json[cls.\n NAMESPACE_RANGE_PARAM]), json[cls.BATCH_SIZE_PARAM])\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(cls, mapper_spec):
batch_size = int(_get_params(mapper_spec).get(cls.BATCH_SIZE_PARAM, cls
._BATCH_SIZE))
shard_count = mapper_spec.shard_count
namespace_ranges = namespace_range.NamespaceRange.split(shard_count,
contiguous=True)
return [NamespaceInputReader(ns_range, batch_size) for ns_range in
namespace_ranges]
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec):\n batch_size = int(_get_params(mapper_spec).get(cls.BATCH_SIZE_PARAM, cls\n ._BATCH_SIZE))\n shard_count = mapper_spec.shard_count\n namespace_ranges = namespace_range.NamespaceRange.split(shard_count,\n contiguous=True)\n return [NamespaceInputReader(ns_range, batch_size) for ns_range in\n namespace_ranges]\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
def x(cls, json):
params = dict((str(k), v) for k, v in json.iteritems() if k in cls._PARAMS)
if cls._OFFSET_PARAM in params:
params[cls._OFFSET_PARAM] = base64.b64decode(params[cls._OFFSET_PARAM])
return cls(**params)
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, json):\n params = dict((str(k), v) for k, v in json.iteritems() if k in cls._PARAMS)\n if cls._OFFSET_PARAM in params:\n params[cls._OFFSET_PARAM] = base64.b64decode(params[cls._OFFSET_PARAM])\n return cls(**params)\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(self):
params = dict(self.__params)
if self._PROTOTYPE_REQUEST_PARAM in params:
prototype_request = params[self._PROTOTYPE_REQUEST_PARAM]
params[self._PROTOTYPE_REQUEST_PARAM] = prototype_request.Encode()
if self._OFFSET_PARAM in params:
params[self._OFFSET_PARAM] = base64.b64encode(params[self.
_OFFSET_PARAM])
return params
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n params = dict(self.__params)\n if self._PROTOTYPE_REQUEST_PARAM in params:\n prototype_request = params[self._PROTOTYPE_REQUEST_PARAM]\n params[self._PROTOTYPE_REQUEST_PARAM] = prototype_request.Encode()\n if self._OFFSET_PARAM in params:\n params[self._OFFSET_PARAM] = base64.b64encode(params[self.\n _OFFSET_PARAM])\n return params\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(cls, mapper_spec):
params = _get_params(mapper_spec)
shard_count = mapper_spec.shard_count
start_time = params[cls.START_TIME_PARAM]
end_time = params[cls.END_TIME_PARAM]
seconds_per_shard = (end_time - start_time) / shard_count
shards = []
for _ in xrange(shard_count - 1):
params[cls.END_TIME_PARAM] = params[cls.START_TIME_PARAM
] + seconds_per_shard
shards.append(LogInputReader(**params))
params[cls.START_TIME_PARAM] = params[cls.END_TIME_PARAM]
params[cls.END_TIME_PARAM] = end_time
return shards + [LogInputReader(**params)]
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec):\n params = _get_params(mapper_spec)\n shard_count = mapper_spec.shard_count\n start_time = params[cls.START_TIME_PARAM]\n end_time = params[cls.END_TIME_PARAM]\n seconds_per_shard = (end_time - start_time) / shard_count\n shards = []\n for _ in xrange(shard_count - 1):\n params[cls.END_TIME_PARAM] = params[cls.START_TIME_PARAM\n ] + seconds_per_shard\n shards.append(LogInputReader(**params))\n params[cls.START_TIME_PARAM] = params[cls.END_TIME_PARAM]\n params[cls.END_TIME_PARAM] = end_time\n return shards + [LogInputReader(**params)]\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
def x(self):
while True:
if self._bucket_iter:
try:
return self._bucket_iter.next().filename
except StopIteration:
self._bucket_iter = None
self._bucket = None
if self._index >= len(self._filenames):
return
filename = self._filenames[self._index]
self._index += 1
if self._delimiter is None or not filename.endswith(self._delimiter):
return filename
self._bucket = cloudstorage.listbucket(filename, delimiter=self.
_delimiter)
self._bucket_iter = iter(self._bucket)
|
next_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n while True:\n if self._bucket_iter:\n try:\n return self._bucket_iter.next().filename\n except StopIteration:\n self._bucket_iter = None\n self._bucket = None\n if self._index >= len(self._filenames):\n return\n filename = self._filenames[self._index]\n self._index += 1\n if self._delimiter is None or not filename.endswith(self._delimiter):\n return filename\n self._bucket = cloudstorage.listbucket(filename, delimiter=self.\n _delimiter)\n self._bucket_iter = iter(self._bucket)\n",
"role": "user"
},
{
"content": "next_file",
"role": "assistant"
}
] |
def x(cls, mapper_spec):
reader_spec = cls.get_params(mapper_spec, allow_old=False)
bucket = reader_spec[cls.BUCKET_NAME_PARAM]
filenames = reader_spec[cls.OBJECT_NAMES_PARAM]
delimiter = reader_spec.get(cls.DELIMITER_PARAM)
account_id = reader_spec.get(cls._ACCOUNT_ID_PARAM)
buffer_size = reader_spec.get(cls.BUFFER_SIZE_PARAM)
fail_on_missing_input = reader_spec.get(cls.FAIL_ON_MISSING_INPUT)
all_filenames = []
for filename in filenames:
if filename.endswith('*'):
all_filenames.extend([file_stat.filename for file_stat in
cloudstorage.listbucket('/' + bucket + '/' + filename[:-1],
delimiter=delimiter, _account_id=account_id)])
else:
all_filenames.append('/%s/%s' % (bucket, filename))
readers = []
for shard in range(0, mapper_spec.shard_count):
shard_filenames = all_filenames[shard::mapper_spec.shard_count]
if shard_filenames:
reader = cls(shard_filenames, buffer_size=buffer_size,
_account_id=account_id, delimiter=delimiter)
reader._fail_on_missing_input = fail_on_missing_input
readers.append(reader)
return readers
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec):\n reader_spec = cls.get_params(mapper_spec, allow_old=False)\n bucket = reader_spec[cls.BUCKET_NAME_PARAM]\n filenames = reader_spec[cls.OBJECT_NAMES_PARAM]\n delimiter = reader_spec.get(cls.DELIMITER_PARAM)\n account_id = reader_spec.get(cls._ACCOUNT_ID_PARAM)\n buffer_size = reader_spec.get(cls.BUFFER_SIZE_PARAM)\n fail_on_missing_input = reader_spec.get(cls.FAIL_ON_MISSING_INPUT)\n all_filenames = []\n for filename in filenames:\n if filename.endswith('*'):\n all_filenames.extend([file_stat.filename for file_stat in\n cloudstorage.listbucket('/' + bucket + '/' + filename[:-1],\n delimiter=delimiter, _account_id=account_id)])\n else:\n all_filenames.append('/%s/%s' % (bucket, filename))\n readers = []\n for shard in range(0, mapper_spec.shard_count):\n shard_filenames = all_filenames[shard::mapper_spec.shard_count]\n if shard_filenames:\n reader = cls(shard_filenames, buffer_size=buffer_size,\n _account_id=account_id, delimiter=delimiter)\n reader._fail_on_missing_input = fail_on_missing_input\n readers.append(reader)\n return readers\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
def x(self):
options = {}
if self._buffer_size:
options['read_buffer_size'] = self._buffer_size
if self._account_id:
options['_account_id'] = self._account_id
while True:
filename = self._next_file()
if filename is None:
raise StopIteration()
try:
start_time = time.time()
handle = cloudstorage.open(filename, **options)
ctx = context.get()
if ctx:
operation.counters.Increment(COUNTER_IO_READ_MSEC, int((
time.time() - start_time) * 1000))(ctx)
return handle
except cloudstorage.NotFoundError:
if getattr(self, '_fail_on_missing_input', False):
raise errors.FailJobError(
'File missing in GCS, aborting: %s' % filename)
logging.warning('File %s may have been removed. Skipping file.',
filename)
|
next
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n options = {}\n if self._buffer_size:\n options['read_buffer_size'] = self._buffer_size\n if self._account_id:\n options['_account_id'] = self._account_id\n while True:\n filename = self._next_file()\n if filename is None:\n raise StopIteration()\n try:\n start_time = time.time()\n handle = cloudstorage.open(filename, **options)\n ctx = context.get()\n if ctx:\n operation.counters.Increment(COUNTER_IO_READ_MSEC, int((\n time.time() - start_time) * 1000))(ctx)\n return handle\n except cloudstorage.NotFoundError:\n if getattr(self, '_fail_on_missing_input', False):\n raise errors.FailJobError(\n 'File missing in GCS, aborting: %s' % filename)\n logging.warning('File %s may have been removed. Skipping file.',\n filename)\n",
"role": "user"
},
{
"content": "next",
"role": "assistant"
}
] |
def x(self):
while True:
if not hasattr(self, '_cur_handle') or self._cur_handle is None:
self._cur_handle = super(_GoogleCloudStorageRecordInputReader, self
).next()
if not hasattr(self, '_record_reader') or self._record_reader is None:
self._record_reader = records.RecordsReader(self._cur_handle)
try:
start_time = time.time()
content = self._record_reader.read()
ctx = context.get()
if ctx:
operation.counters.Increment(COUNTER_IO_READ_BYTES, len(
content))(ctx)
operation.counters.Increment(COUNTER_IO_READ_MSEC, int((
time.time() - start_time) * 1000))(ctx)
return content
except EOFError:
self._cur_handle = None
self._record_reader = None
|
next
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n while True:\n if not hasattr(self, '_cur_handle') or self._cur_handle is None:\n self._cur_handle = super(_GoogleCloudStorageRecordInputReader, self\n ).next()\n if not hasattr(self, '_record_reader') or self._record_reader is None:\n self._record_reader = records.RecordsReader(self._cur_handle)\n try:\n start_time = time.time()\n content = self._record_reader.read()\n ctx = context.get()\n if ctx:\n operation.counters.Increment(COUNTER_IO_READ_BYTES, len(\n content))(ctx)\n operation.counters.Increment(COUNTER_IO_READ_MSEC, int((\n time.time() - start_time) * 1000))(ctx)\n return content\n except EOFError:\n self._cur_handle = None\n self._record_reader = None\n",
"role": "user"
},
{
"content": "next",
"role": "assistant"
}
] |
def x(self):
result = super(_ReducerReader, self).to_json()
result['current_key'] = self.encode_data(self.current_key)
result['current_values'] = self.encode_data(self.current_values)
return result
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = super(_ReducerReader, self).to_json()\n result['current_key'] = self.encode_data(self.current_key)\n result['current_values'] = self.encode_data(self.current_values)\n return result\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(cls, json):
result = super(_ReducerReader, cls).from_json(json)
result.current_key = _ReducerReader.decode_data(json['current_key'])
result.current_values = _ReducerReader.decode_data(json['current_values'])
return result
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, json):\n result = super(_ReducerReader, cls).from_json(json)\n result.current_key = _ReducerReader.decode_data(json['current_key'])\n result.current_values = _ReducerReader.decode_data(json['current_values'])\n return result\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(self, counter_name, delta=1):
self._state.counters_map.increment(counter_name, delta)
|
incr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, counter_name, delta=1):\n self._state.counters_map.increment(counter_name, delta)\n",
"role": "user"
},
{
"content": "incr",
"role": "assistant"
}
] |
def x(self, counter_name, default=0):
return self._state.counters_map.get(counter_name, default)
|
counter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, counter_name, default=0):\n return self._state.counters_map.get(counter_name, default)\n",
"role": "user"
},
{
"content": "counter",
"role": "assistant"
}
] |
def x(self, value):
if not self._tstate.output_writer:
logging.error('emit is called, but no output writer is set.')
return
self._tstate.output_writer.write(value)
|
emit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if not self._tstate.output_writer:\n logging.error('emit is called, but no output writer is set.')\n return\n self._tstate.output_writer.write(value)\n",
"role": "user"
},
{
"content": "emit",
"role": "assistant"
}
] |
def x(cls, job_config):
reader_params = job_config.input_reader_params
bucket = reader_params[cls.BUCKET_NAME_PARAM]
filenames = reader_params[cls.OBJECT_NAMES_PARAM]
delimiter = reader_params.get(cls.DELIMITER_PARAM)
account_id = reader_params.get(cls._ACCOUNT_ID_PARAM)
buffer_size = reader_params.get(cls.BUFFER_SIZE_PARAM)
path_filter = reader_params.get(cls.PATH_FILTER_PARAM)
all_filenames = []
for filename in filenames:
if filename.endswith('*'):
all_filenames.extend([file_stat.filename for file_stat in
cloudstorage.listbucket('/' + bucket + '/' + filename[:-1],
delimiter=delimiter, _account_id=account_id)])
else:
all_filenames.append('/%s/%s' % (bucket, filename))
readers = []
for shard in range(0, job_config.shard_count):
shard_filenames = all_filenames[shard::job_config.shard_count]
if shard_filenames:
readers.append(cls(shard_filenames, buffer_size=buffer_size,
_account_id=account_id, delimiter=delimiter, path_filter=
path_filter))
return readers
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, job_config):\n reader_params = job_config.input_reader_params\n bucket = reader_params[cls.BUCKET_NAME_PARAM]\n filenames = reader_params[cls.OBJECT_NAMES_PARAM]\n delimiter = reader_params.get(cls.DELIMITER_PARAM)\n account_id = reader_params.get(cls._ACCOUNT_ID_PARAM)\n buffer_size = reader_params.get(cls.BUFFER_SIZE_PARAM)\n path_filter = reader_params.get(cls.PATH_FILTER_PARAM)\n all_filenames = []\n for filename in filenames:\n if filename.endswith('*'):\n all_filenames.extend([file_stat.filename for file_stat in\n cloudstorage.listbucket('/' + bucket + '/' + filename[:-1],\n delimiter=delimiter, _account_id=account_id)])\n else:\n all_filenames.append('/%s/%s' % (bucket, filename))\n readers = []\n for shard in range(0, job_config.shard_count):\n shard_filenames = all_filenames[shard::job_config.shard_count]\n if shard_filenames:\n readers.append(cls(shard_filenames, buffer_size=buffer_size,\n _account_id=account_id, delimiter=delimiter, path_filter=\n path_filter))\n return readers\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
def x(self):
options = {}
if self._buffer_size:
options['read_buffer_size'] = self._buffer_size
if self._account_id:
options['_account_id'] = self._account_id
while True:
filename = self._next_file()
if filename is None:
raise StopIteration()
if self._path_filter and not self._path_filter.accept(self.
_slice_ctx, filename):
continue
try:
start_time = time.time()
handle = cloudstorage.open(filename, **options)
self._slice_ctx.incr(self.COUNTER_IO_READ_MSEC, int(time.time() -
start_time) * 1000)
self._slice_ctx.incr(self.COUNTER_FILE_READ)
return handle
except cloudstorage.NotFoundError:
logging.warning('File %s may have been removed. Skipping file.',
filename)
self._slice_ctx.incr(self.COUNTER_FILE_MISSING)
|
next
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n options = {}\n if self._buffer_size:\n options['read_buffer_size'] = self._buffer_size\n if self._account_id:\n options['_account_id'] = self._account_id\n while True:\n filename = self._next_file()\n if filename is None:\n raise StopIteration()\n if self._path_filter and not self._path_filter.accept(self.\n _slice_ctx, filename):\n continue\n try:\n start_time = time.time()\n handle = cloudstorage.open(filename, **options)\n self._slice_ctx.incr(self.COUNTER_IO_READ_MSEC, int(time.time() -\n start_time) * 1000)\n self._slice_ctx.incr(self.COUNTER_FILE_READ)\n return handle\n except cloudstorage.NotFoundError:\n logging.warning('File %s may have been removed. Skipping file.',\n filename)\n self._slice_ctx.incr(self.COUNTER_FILE_MISSING)\n",
"role": "user"
},
{
"content": "next",
"role": "assistant"
}
] |
def x(cls, params):
params_cp = dict(params)
if cls.PATH_FILTER_PARAM in params_cp:
path_filter = params_cp[cls.PATH_FILTER_PARAM]
params_cp[cls.PATH_FILTER_PARAM] = pickle.dumps(path_filter)
return params_cp
|
params_to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, params):\n params_cp = dict(params)\n if cls.PATH_FILTER_PARAM in params_cp:\n path_filter = params_cp[cls.PATH_FILTER_PARAM]\n params_cp[cls.PATH_FILTER_PARAM] = pickle.dumps(path_filter)\n return params_cp\n",
"role": "user"
},
{
"content": "params_to_json",
"role": "assistant"
}
] |
def x(self):
while True:
if not hasattr(self, '_cur_handle') or self._cur_handle is None:
self._cur_handle = super(GCSRecordInputReader, self).next()
if not hasattr(self, '_record_reader') or self._record_reader is None:
self._record_reader = records.RecordsReader(self._cur_handle)
try:
start_time = time.time()
content = self._record_reader.read()
self._slice_ctx.incr(self.COUNTER_IO_READ_BYTE, len(content))
self._slice_ctx.incr(self.COUNTER_IO_READ_MSEC, int(time.time() -
start_time) * 1000)
return content
except EOFError:
self._cur_handle = None
self._record_reader = None
|
next
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n while True:\n if not hasattr(self, '_cur_handle') or self._cur_handle is None:\n self._cur_handle = super(GCSRecordInputReader, self).next()\n if not hasattr(self, '_record_reader') or self._record_reader is None:\n self._record_reader = records.RecordsReader(self._cur_handle)\n try:\n start_time = time.time()\n content = self._record_reader.read()\n self._slice_ctx.incr(self.COUNTER_IO_READ_BYTE, len(content))\n self._slice_ctx.incr(self.COUNTER_IO_READ_MSEC, int(time.time() -\n start_time) * 1000)\n return content\n except EOFError:\n self._cur_handle = None\n self._record_reader = None\n",
"role": "user"
},
{
"content": "next",
"role": "assistant"
}
] |
def x(cls, params):
entity_kind = params[cls.ENTITY_KIND_PARAM]
filters = params.get(cls.FILTERS_PARAM)
app = params.get(cls._APP_PARAM)
ns = params.get(cls.NAMESPACE_PARAM)
return model.QuerySpec(entity_kind=cls._get_raw_entity_kind(entity_kind
), keys_only=bool(params.get(cls.KEYS_ONLY_PARAM, False)), filters=
filters, batch_size=int(params.get(cls.BATCH_SIZE_PARAM, cls.
_BATCH_SIZE)), model_class_path=entity_kind, app=app, ns=ns)
|
get_query_spec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, params):\n entity_kind = params[cls.ENTITY_KIND_PARAM]\n filters = params.get(cls.FILTERS_PARAM)\n app = params.get(cls._APP_PARAM)\n ns = params.get(cls.NAMESPACE_PARAM)\n return model.QuerySpec(entity_kind=cls._get_raw_entity_kind(entity_kind\n ), keys_only=bool(params.get(cls.KEYS_ONLY_PARAM, False)), filters=\n filters, batch_size=int(params.get(cls.BATCH_SIZE_PARAM, cls.\n _BATCH_SIZE)), model_class_path=entity_kind, app=app, ns=ns)\n",
"role": "user"
},
{
"content": "get_query_spec",
"role": "assistant"
}
] |
def x(cls, job_config):
shard_count = job_config.shard_count
params = job_config.input_reader_params
query_spec = cls._get_query_spec(params)
namespaces = None
if query_spec.ns is not None:
k_ranges = cls._to_key_ranges_by_shard(query_spec.app, [query_spec.
ns], shard_count, query_spec)
else:
ns_keys = namespace_range.get_namespace_keys(query_spec.app, cls.
MAX_NAMESPACES_FOR_KEY_SHARD + 1)
if not ns_keys:
return
elif len(ns_keys) <= cls.MAX_NAMESPACES_FOR_KEY_SHARD:
namespaces = [(ns_key.name() or '') for ns_key in ns_keys]
k_ranges = cls._to_key_ranges_by_shard(query_spec.app,
namespaces, shard_count, query_spec)
else:
ns_ranges = namespace_range.NamespaceRange.split(n=shard_count,
contiguous=False, can_query=lambda : True, _app=query_spec.app)
k_ranges = [key_ranges.KeyRangesFactory.create_from_ns_range(
ns_range) for ns_range in ns_ranges]
iters = [db_iters.RangeIteratorFactory.create_key_ranges_iterator(r,
query_spec, cls._KEY_RANGE_ITER_CLS) for r in k_ranges]
return [cls(i) for i in iters]
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, job_config):\n shard_count = job_config.shard_count\n params = job_config.input_reader_params\n query_spec = cls._get_query_spec(params)\n namespaces = None\n if query_spec.ns is not None:\n k_ranges = cls._to_key_ranges_by_shard(query_spec.app, [query_spec.\n ns], shard_count, query_spec)\n else:\n ns_keys = namespace_range.get_namespace_keys(query_spec.app, cls.\n MAX_NAMESPACES_FOR_KEY_SHARD + 1)\n if not ns_keys:\n return\n elif len(ns_keys) <= cls.MAX_NAMESPACES_FOR_KEY_SHARD:\n namespaces = [(ns_key.name() or '') for ns_key in ns_keys]\n k_ranges = cls._to_key_ranges_by_shard(query_spec.app,\n namespaces, shard_count, query_spec)\n else:\n ns_ranges = namespace_range.NamespaceRange.split(n=shard_count,\n contiguous=False, can_query=lambda : True, _app=query_spec.app)\n k_ranges = [key_ranges.KeyRangesFactory.create_from_ns_range(\n ns_range) for ns_range in ns_ranges]\n iters = [db_iters.RangeIteratorFactory.create_key_ranges_iterator(r,\n query_spec, cls._KEY_RANGE_ITER_CLS) for r in k_ranges]\n return [cls(i) for i in iters]\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.