source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(cls, app, namespaces, shard_count, query_spec): key_ranges_by_ns = [] for namespace in namespaces: ranges = cls._split_ns_by_scatter(shard_count, namespace, query_spec.entity_kind, app) random.shuffle(ranges) key_ranges_by_ns.append(ranges) ranges_by_shard = [[] for _ in range(shard_count)] for ranges in key_ranges_by_ns: for i, k_range in enumerate(ranges): if k_range: ranges_by_shard[i].append(k_range) key_ranges_by_shard = [] for ranges in ranges_by_shard: if ranges: key_ranges_by_shard.append(key_ranges.KeyRangesFactory. create_from_list(ranges)) return key_ranges_by_shard
to_key_ranges_by_shard
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, app, namespaces, shard_count, query_spec):\n key_ranges_by_ns = []\n for namespace in namespaces:\n ranges = cls._split_ns_by_scatter(shard_count, namespace,\n query_spec.entity_kind, app)\n random.shuffle(ranges)\n key_ranges_by_ns.append(ranges)\n ranges_by_shard = [[] for _ in range(shard_count)]\n for ranges in key_ranges_by_ns:\n for i, k_range in enumerate(ranges):\n if k_range:\n ranges_by_shard[i].append(k_range)\n key_ranges_by_shard = []\n for ranges in ranges_by_shard:\n if ranges:\n key_ranges_by_shard.append(key_ranges.KeyRangesFactory.\n create_from_list(ranges))\n return key_ranges_by_shard\n", "role": "user" }, { "content": "to_key_ranges_by_shard", "role": "assistant" } ]
def x(cls, shard_count, namespace, raw_entity_kind, app): if shard_count == 1: return [key_range.KeyRange(namespace=namespace, _app=app)] ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace, _app=app, keys_only=True) ds_query.Order('__scatter__') oversampling_factor = 32 random_keys = ds_query.Get(shard_count * oversampling_factor) if not random_keys: return [key_range.KeyRange(namespace=namespace, _app=app)] + [None] * ( shard_count - 1) random_keys.sort() if len(random_keys) >= shard_count: random_keys = cls._choose_split_points(random_keys, shard_count) k_ranges = [] k_ranges.append(key_range.KeyRange(key_start=None, key_end=random_keys[ 0], direction=key_range.KeyRange.ASC, include_start=False, include_end=False, namespace=namespace, _app=app)) for i in range(0, len(random_keys) - 1): k_ranges.append(key_range.KeyRange(key_start=random_keys[i], key_end=random_keys[i + 1], direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) k_ranges.append(key_range.KeyRange(key_start=random_keys[-1], key_end= None, direction=key_range.KeyRange.ASC, include_start=True, include_end=False, namespace=namespace, _app=app)) if len(k_ranges) < shard_count: k_ranges += [None] * (shard_count - len(k_ranges)) return k_ranges
split_ns_by_scatter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, shard_count, namespace, raw_entity_kind, app):\n if shard_count == 1:\n return [key_range.KeyRange(namespace=namespace, _app=app)]\n ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace,\n _app=app, keys_only=True)\n ds_query.Order('__scatter__')\n oversampling_factor = 32\n random_keys = ds_query.Get(shard_count * oversampling_factor)\n if not random_keys:\n return [key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (\n shard_count - 1)\n random_keys.sort()\n if len(random_keys) >= shard_count:\n random_keys = cls._choose_split_points(random_keys, shard_count)\n k_ranges = []\n k_ranges.append(key_range.KeyRange(key_start=None, key_end=random_keys[\n 0], direction=key_range.KeyRange.ASC, include_start=False,\n include_end=False, namespace=namespace, _app=app))\n for i in range(0, len(random_keys) - 1):\n k_ranges.append(key_range.KeyRange(key_start=random_keys[i],\n key_end=random_keys[i + 1], direction=key_range.KeyRange.ASC,\n include_start=True, include_end=False, namespace=namespace,\n _app=app))\n k_ranges.append(key_range.KeyRange(key_start=random_keys[-1], key_end=\n None, direction=key_range.KeyRange.ASC, include_start=True,\n include_end=False, namespace=namespace, _app=app))\n if len(k_ranges) < shard_count:\n k_ranges += [None] * (shard_count - len(k_ranges))\n return k_ranges\n", "role": "user" }, { "content": "split_ns_by_scatter", "role": "assistant" } ]
def x(alphabet=NAMESPACE_CHARACTERS, max_length=MAX_NAMESPACE_LENGTH, batch_size=NAMESPACE_BATCH_SIZE): global NAMESPACE_CHARACTERS global MAX_NAMESPACE_LENGTH global MAX_NAMESPACE global _LEX_DISTANCE global NAMESPACE_BATCH_SIZE NAMESPACE_CHARACTERS = alphabet MAX_NAMESPACE_LENGTH = max_length MAX_NAMESPACE = NAMESPACE_CHARACTERS[-1] * MAX_NAMESPACE_LENGTH NAMESPACE_BATCH_SIZE = batch_size _LEX_DISTANCE = [1] for i in range(1, MAX_NAMESPACE_LENGTH): _LEX_DISTANCE.append(_LEX_DISTANCE[i - 1] * len( NAMESPACE_CHARACTERS) + 1) del i
setup_constants
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alphabet=NAMESPACE_CHARACTERS, max_length=MAX_NAMESPACE_LENGTH,\n batch_size=NAMESPACE_BATCH_SIZE):\n global NAMESPACE_CHARACTERS\n global MAX_NAMESPACE_LENGTH\n global MAX_NAMESPACE\n global _LEX_DISTANCE\n global NAMESPACE_BATCH_SIZE\n NAMESPACE_CHARACTERS = alphabet\n MAX_NAMESPACE_LENGTH = max_length\n MAX_NAMESPACE = NAMESPACE_CHARACTERS[-1] * MAX_NAMESPACE_LENGTH\n NAMESPACE_BATCH_SIZE = batch_size\n _LEX_DISTANCE = [1]\n for i in range(1, MAX_NAMESPACE_LENGTH):\n _LEX_DISTANCE.append(_LEX_DISTANCE[i - 1] * len(\n NAMESPACE_CHARACTERS) + 1)\n del i\n", "role": "user" }, { "content": "setup_constants", "role": "assistant" } ]
def x(n, _max_length=None): if _max_length is None: _max_length = MAX_NAMESPACE_LENGTH length = _LEX_DISTANCE[_max_length - 1] if n == 0: return '' n -= 1 return NAMESPACE_CHARACTERS[n / length] + _ord_to_namespace(n % length, _max_length - 1)
ord_to_namespace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, _max_length=None):\n if _max_length is None:\n _max_length = MAX_NAMESPACE_LENGTH\n length = _LEX_DISTANCE[_max_length - 1]\n if n == 0:\n return ''\n n -= 1\n return NAMESPACE_CHARACTERS[n / length] + _ord_to_namespace(n % length,\n _max_length - 1)\n", "role": "user" }, { "content": "ord_to_namespace", "role": "assistant" } ]
def x(namespace): n = 0 for i, c in enumerate(namespace): n += _LEX_DISTANCE[MAX_NAMESPACE_LENGTH - i - 1 ] * NAMESPACE_CHARACTERS.index(c) + 1 return n
namespace_to_ord
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(namespace):\n n = 0\n for i, c in enumerate(namespace):\n n += _LEX_DISTANCE[MAX_NAMESPACE_LENGTH - i - 1\n ] * NAMESPACE_CHARACTERS.index(c) + 1\n return n\n", "role": "user" }, { "content": "namespace_to_ord", "role": "assistant" } ]
def x(namespace, app): if namespace: return db.Key.from_path(metadata.Namespace.KIND_NAME, namespace, _app=app) else: return db.Key.from_path(metadata.Namespace.KIND_NAME, metadata. Namespace.EMPTY_NAMESPACE_ID, _app=app)
key_for_namespace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(namespace, app):\n if namespace:\n return db.Key.from_path(metadata.Namespace.KIND_NAME, namespace,\n _app=app)\n else:\n return db.Key.from_path(metadata.Namespace.KIND_NAME, metadata.\n Namespace.EMPTY_NAMESPACE_ID, _app=app)\n", "role": "user" }, { "content": "key_for_namespace", "role": "assistant" } ]
def x(app, limit): ns_query = datastore.Query('__namespace__', keys_only=True, _app=app) return list(ns_query.Run(limit=limit, batch_size=limit))
get_namespace_keys
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(app, limit):\n ns_query = datastore.Query('__namespace__', keys_only=True, _app=app)\n return list(ns_query.Run(limit=limit, batch_size=limit))\n", "role": "user" }, { "content": "get_namespace_keys", "role": "assistant" } ]
def x(self): if self.is_single_namespace: return [self] mid_point = (_namespace_to_ord(self.namespace_start) + _namespace_to_ord(self.namespace_end)) // 2 return [NamespaceRange(self.namespace_start, _ord_to_namespace( mid_point), _app=self.app), NamespaceRange(_ord_to_namespace( mid_point + 1), self.namespace_end, _app=self.app)]
split_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.is_single_namespace:\n return [self]\n mid_point = (_namespace_to_ord(self.namespace_start) +\n _namespace_to_ord(self.namespace_end)) // 2\n return [NamespaceRange(self.namespace_start, _ord_to_namespace(\n mid_point), _app=self.app), NamespaceRange(_ord_to_namespace(\n mid_point + 1), self.namespace_end, _app=self.app)]\n", "role": "user" }, { "content": "split_range", "role": "assistant" } ]
def x(self, after_namespace): namespace_start = _ord_to_namespace(_namespace_to_ord(after_namespace) + 1) return NamespaceRange(namespace_start, self.namespace_end, _app=self.app)
with_start_after
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, after_namespace):\n namespace_start = _ord_to_namespace(_namespace_to_ord(after_namespace) + 1)\n return NamespaceRange(namespace_start, self.namespace_end, _app=self.app)\n", "role": "user" }, { "content": "with_start_after", "role": "assistant" } ]
def x(self, cursor=None): filters = {} filters['__key__ >= '] = _key_for_namespace(self.namespace_start, self.app) filters['__key__ <= '] = _key_for_namespace(self.namespace_end, self.app) return datastore.Query('__namespace__', filters=filters, keys_only=True, cursor=cursor, _app=self.app)
make_datastore_query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cursor=None):\n filters = {}\n filters['__key__ >= '] = _key_for_namespace(self.namespace_start, self.app)\n filters['__key__ <= '] = _key_for_namespace(self.namespace_end, self.app)\n return datastore.Query('__namespace__', filters=filters, keys_only=True,\n cursor=cursor, _app=self.app)\n", "role": "user" }, { "content": "make_datastore_query", "role": "assistant" } ]
def x(self): namespaces_after_key = list(self.make_datastore_query().Run(limit=1)) if not namespaces_after_key: return None namespace_after_key = namespaces_after_key[0].name() or '' return NamespaceRange(namespace_after_key, self.namespace_end, _app= self.app)
normalized_start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n namespaces_after_key = list(self.make_datastore_query().Run(limit=1))\n if not namespaces_after_key:\n return None\n namespace_after_key = namespaces_after_key[0].name() or ''\n return NamespaceRange(namespace_after_key, self.namespace_end, _app=\n self.app)\n", "role": "user" }, { "content": "normalized_start", "role": "assistant" } ]
def x(self): obj_dict = dict(namespace_start=self.namespace_start, namespace_end= self.namespace_end) if self.app is not None: obj_dict['app'] = self.app return obj_dict
to_json_object
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n obj_dict = dict(namespace_start=self.namespace_start, namespace_end=\n self.namespace_end)\n if self.app is not None:\n obj_dict['app'] = self.app\n return obj_dict\n", "role": "user" }, { "content": "to_json_object", "role": "assistant" } ]
def x(cls, n, contiguous, can_query=itertools.chain(itertools.repeat(True, 50), itertools.repeat(False)).next, _app=None): if n < 1: raise ValueError('n must be >= 1') ranges = None if can_query(): if not contiguous: ns_keys = get_namespace_keys(_app, n + 1) if not ns_keys: return [] else: if len(ns_keys) <= n: ns_range = [] for ns_key in ns_keys: ns_range.append(NamespaceRange(ns_key.name() or '', ns_key.name() or '', _app=_app)) return sorted(ns_range, key=lambda ns_range: ns_range. namespace_start) ranges = [NamespaceRange(ns_keys[0].name() or '', _app=_app)] else: ns_range = NamespaceRange(_app=_app).normalized_start() if ns_range is None: return [NamespaceRange(_app=_app)] ranges = [ns_range] else: ranges = [NamespaceRange(_app=_app)] singles = [] while ranges and len(ranges) + len(singles) < n: namespace_range = ranges.pop(0) if namespace_range.is_single_namespace: singles.append(namespace_range) else: left, right = namespace_range.split_range() if can_query(): right = right.normalized_start() if right is not None: ranges.append(right) ranges.append(left) ns_ranges = sorted(singles + ranges, key=lambda ns_range: ns_range. namespace_start) if contiguous: if not ns_ranges: return [NamespaceRange(_app=_app)] continuous_ns_ranges = [] for i in range(len(ns_ranges)): if i == 0: namespace_start = MIN_NAMESPACE else: namespace_start = ns_ranges[i].namespace_start if i == len(ns_ranges) - 1: namespace_end = MAX_NAMESPACE else: namespace_end = _ord_to_namespace(_namespace_to_ord( ns_ranges[i + 1].namespace_start) - 1) continuous_ns_ranges.append(NamespaceRange(namespace_start, namespace_end, _app=_app)) return continuous_ns_ranges else: return ns_ranges
split
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, n, contiguous, can_query=itertools.chain(itertools.repeat(True, \n 50), itertools.repeat(False)).next, _app=None):\n if n < 1:\n raise ValueError('n must be >= 1')\n ranges = None\n if can_query():\n if not contiguous:\n ns_keys = get_namespace_keys(_app, n + 1)\n if not ns_keys:\n return []\n else:\n if len(ns_keys) <= n:\n ns_range = []\n for ns_key in ns_keys:\n ns_range.append(NamespaceRange(ns_key.name() or '',\n ns_key.name() or '', _app=_app))\n return sorted(ns_range, key=lambda ns_range: ns_range.\n namespace_start)\n ranges = [NamespaceRange(ns_keys[0].name() or '', _app=_app)]\n else:\n ns_range = NamespaceRange(_app=_app).normalized_start()\n if ns_range is None:\n return [NamespaceRange(_app=_app)]\n ranges = [ns_range]\n else:\n ranges = [NamespaceRange(_app=_app)]\n singles = []\n while ranges and len(ranges) + len(singles) < n:\n namespace_range = ranges.pop(0)\n if namespace_range.is_single_namespace:\n singles.append(namespace_range)\n else:\n left, right = namespace_range.split_range()\n if can_query():\n right = right.normalized_start()\n if right is not None:\n ranges.append(right)\n ranges.append(left)\n ns_ranges = sorted(singles + ranges, key=lambda ns_range: ns_range.\n namespace_start)\n if contiguous:\n if not ns_ranges:\n return [NamespaceRange(_app=_app)]\n continuous_ns_ranges = []\n for i in range(len(ns_ranges)):\n if i == 0:\n namespace_start = MIN_NAMESPACE\n else:\n namespace_start = ns_ranges[i].namespace_start\n if i == len(ns_ranges) - 1:\n namespace_end = MAX_NAMESPACE\n else:\n namespace_end = _ord_to_namespace(_namespace_to_ord(\n ns_ranges[i + 1].namespace_start) - 1)\n continuous_ns_ranges.append(NamespaceRange(namespace_start,\n namespace_end, _app=_app))\n return continuous_ns_ranges\n else:\n return ns_ranges\n", "role": "user" }, { "content": "split", "role": "assistant" } ]
def x(self, data): data_length = len(data) if self._size + data_length > self._flush_size: self.flush() if not self._exclusive and data_length > _FILE_POOL_MAX_SIZE: raise errors.Error('Too big input %s (%s).' % (data_length, _FILE_POOL_MAX_SIZE)) else: self._buffer.append(data) self._size += data_length if self._size > self._flush_size: self.flush()
append
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n data_length = len(data)\n if self._size + data_length > self._flush_size:\n self.flush()\n if not self._exclusive and data_length > _FILE_POOL_MAX_SIZE:\n raise errors.Error('Too big input %s (%s).' % (data_length,\n _FILE_POOL_MAX_SIZE))\n else:\n self._buffer.append(data)\n self._size += data_length\n if self._size > self._flush_size:\n self.flush()\n", "role": "user" }, { "content": "append", "role": "assistant" } ]
def x(self): buf = cStringIO.StringIO() with records.RecordsWriter(buf) as w: for record in self._buffer: w.write(record) w._pad_block() str_buf = buf.getvalue() buf.close() if not self._exclusive and len(str_buf) > _FILE_POOL_MAX_SIZE: raise errors.Error( "Buffer too big. Can't write more than %s bytes in one request: risk of writes interleaving. Got: %s" % (_FILE_POOL_MAX_SIZE, len(str_buf))) start_time = time.time() self._write(str_buf) if self._ctx: operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(str_buf))(self ._ctx) operation.counters.Increment(COUNTER_IO_WRITE_MSEC, int((time.time( ) - start_time) * 1000))(self._ctx) self._buffer = [] self._size = 0 gc.collect()
flush
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n buf = cStringIO.StringIO()\n with records.RecordsWriter(buf) as w:\n for record in self._buffer:\n w.write(record)\n w._pad_block()\n str_buf = buf.getvalue()\n buf.close()\n if not self._exclusive and len(str_buf) > _FILE_POOL_MAX_SIZE:\n raise errors.Error(\n \"Buffer too big. Can't write more than %s bytes in one request: risk of writes interleaving. Got: %s\"\n % (_FILE_POOL_MAX_SIZE, len(str_buf)))\n start_time = time.time()\n self._write(str_buf)\n if self._ctx:\n operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(str_buf))(self\n ._ctx)\n operation.counters.Increment(COUNTER_IO_WRITE_MSEC, int((time.time(\n ) - start_time) * 1000))(self._ctx)\n self._buffer = []\n self._size = 0\n gc.collect()\n", "role": "user" }, { "content": "flush", "role": "assistant" } ]
def x(self, str_buf): self._filehandle.write(str_buf) self._buf_size += len(str_buf)
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, str_buf):\n self._filehandle.write(str_buf)\n self._buf_size += len(str_buf)\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self, force=False): super(GCSRecordsPool, self).flush() if force: extra_padding = self._buf_size % self._GCS_BLOCK_SIZE if extra_padding > 0: self._write('\x00' * (self._GCS_BLOCK_SIZE - extra_padding)) self._filehandle.flush()
flush
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, force=False):\n super(GCSRecordsPool, self).flush()\n if force:\n extra_padding = self._buf_size % self._GCS_BLOCK_SIZE\n if extra_padding > 0:\n self._write('\\x00' * (self._GCS_BLOCK_SIZE - extra_padding))\n self._filehandle.flush()\n", "role": "user" }, { "content": "flush", "role": "assistant" } ]
def x(cls, writer_spec): if cls.TMP_BUCKET_NAME_PARAM in writer_spec: return writer_spec[cls.TMP_BUCKET_NAME_PARAM] return cls._get_gcs_bucket(writer_spec)
get_tmp_gcs_bucket
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, writer_spec):\n if cls.TMP_BUCKET_NAME_PARAM in writer_spec:\n return writer_spec[cls.TMP_BUCKET_NAME_PARAM]\n return cls._get_gcs_bucket(writer_spec)\n", "role": "user" }, { "content": "get_tmp_gcs_bucket", "role": "assistant" } ]
def x(cls, writer_spec): if cls.TMP_BUCKET_NAME_PARAM in writer_spec: return writer_spec.get(cls._TMP_ACCOUNT_ID_PARAM, None) return cls._get_account_id(writer_spec)
get_tmp_account_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, writer_spec):\n if cls.TMP_BUCKET_NAME_PARAM in writer_spec:\n return writer_spec.get(cls._TMP_ACCOUNT_ID_PARAM, None)\n return cls._get_account_id(writer_spec)\n", "role": "user" }, { "content": "get_tmp_account_id", "role": "assistant" } ]
def x(cls, writer_spec, filename_suffix, use_tmp_bucket=False): if use_tmp_bucket: bucket = cls._get_tmp_gcs_bucket(writer_spec) account_id = cls._get_tmp_account_id(writer_spec) else: bucket = cls._get_gcs_bucket(writer_spec) account_id = cls._get_account_id(writer_spec) filename = '/%s/%s' % (bucket, filename_suffix) content_type = writer_spec.get(cls.CONTENT_TYPE_PARAM, None) options = {} if cls.ACL_PARAM in writer_spec: options['x-goog-acl'] = writer_spec.get(cls.ACL_PARAM) return cloudstorage.open(filename, mode='w', content_type=content_type, options=options, _account_id=account_id)
open_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, writer_spec, filename_suffix, use_tmp_bucket=False):\n if use_tmp_bucket:\n bucket = cls._get_tmp_gcs_bucket(writer_spec)\n account_id = cls._get_tmp_account_id(writer_spec)\n else:\n bucket = cls._get_gcs_bucket(writer_spec)\n account_id = cls._get_account_id(writer_spec)\n filename = '/%s/%s' % (bucket, filename_suffix)\n content_type = writer_spec.get(cls.CONTENT_TYPE_PARAM, None)\n options = {}\n if cls.ACL_PARAM in writer_spec:\n options['x-goog-acl'] = writer_spec.get(cls.ACL_PARAM)\n return cloudstorage.open(filename, mode='w', content_type=content_type,\n options=options, _account_id=account_id)\n", "role": "user" }, { "content": "open_file", "role": "assistant" } ]
def x(self, data): start_time = time.time() self._get_write_buffer().write(data) ctx = context.get() operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(data))(ctx) operation.counters.Increment(COUNTER_IO_WRITE_MSEC, int((time.time() - start_time) * 1000))(ctx)
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n start_time = time.time()\n self._get_write_buffer().write(data)\n ctx = context.get()\n operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(data))(ctx)\n operation.counters.Increment(COUNTER_IO_WRITE_MSEC, int((time.time() -\n start_time) * 1000))(ctx)\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(cls, mapper_spec): writer_spec = cls.get_params(mapper_spec, allow_old=False) if writer_spec.get(cls._NO_DUPLICATE, False) not in (True, False): raise errors.BadWriterParamsError('No duplicate must a boolean.') super(_GoogleCloudStorageOutputWriter, cls).validate(mapper_spec)
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, mapper_spec):\n writer_spec = cls.get_params(mapper_spec, allow_old=False)\n if writer_spec.get(cls._NO_DUPLICATE, False) not in (True, False):\n raise errors.BadWriterParamsError('No duplicate must a boolean.')\n super(_GoogleCloudStorageOutputWriter, cls).validate(mapper_spec)\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(cls, mr_spec, shard_number, shard_attempt, _writer_state=None): writer_spec = cls.get_params(mr_spec.mapper, allow_old=False) seg_index = None if writer_spec.get(cls._NO_DUPLICATE, False): seg_index = 0 key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec. mapreduce_id, shard_number, shard_attempt, seg_index) return cls._create(writer_spec, key)
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, mr_spec, shard_number, shard_attempt, _writer_state=None):\n writer_spec = cls.get_params(mr_spec.mapper, allow_old=False)\n seg_index = None\n if writer_spec.get(cls._NO_DUPLICATE, False):\n seg_index = 0\n key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec.\n mapreduce_id, shard_number, shard_attempt, seg_index)\n return cls._create(writer_spec, key)\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(cls, writer_spec, filename_suffix): writer = cls._open_file(writer_spec, filename_suffix) return cls(writer, writer_spec=writer_spec)
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, writer_spec, filename_suffix):\n writer = cls._open_file(writer_spec, filename_suffix)\n return cls(writer, writer_spec=writer_spec)\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(cls, mr_spec, shard_number, shard_attempt, _writer_state=None): writer_spec = cls.get_params(mr_spec.mapper, allow_old=False) key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec. mapreduce_id, shard_number, shard_attempt) status = _ConsistentStatus() status.writer_spec = writer_spec status.mainfile = cls._open_file(writer_spec, key) status.mapreduce_id = mr_spec.mapreduce_id status.shard = shard_number return cls(status)
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, mr_spec, shard_number, shard_attempt, _writer_state=None):\n writer_spec = cls.get_params(mr_spec.mapper, allow_old=False)\n key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec.\n mapreduce_id, shard_number, shard_attempt)\n status = _ConsistentStatus()\n status.writer_spec = writer_spec\n status.mainfile = cls._open_file(writer_spec, key)\n status.mapreduce_id = mr_spec.mapreduce_id\n status.shard = shard_number\n return cls(status)\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(self, mainfile, tmpfile, writer_spec): if mainfile.closed: return account_id = self._get_tmp_account_id(writer_spec) f = cloudstorage_api.open(tmpfile, _account_id=account_id) data = f.read(self._REWRITE_BLOCK_SIZE) while data: mainfile.write(data) data = f.read(self._REWRITE_BLOCK_SIZE) f.close() mainfile.flush()
rewrite_tmpfile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mainfile, tmpfile, writer_spec):\n if mainfile.closed:\n return\n account_id = self._get_tmp_account_id(writer_spec)\n f = cloudstorage_api.open(tmpfile, _account_id=account_id)\n data = f.read(self._REWRITE_BLOCK_SIZE)\n while data:\n mainfile.write(data)\n data = f.read(self._REWRITE_BLOCK_SIZE)\n f.close()\n mainfile.flush()\n", "role": "user" }, { "content": "rewrite_tmpfile", "role": "assistant" } ]
def x(cls, status): tmpl = string.Template(cls._TMPFILE_PATTERN) filename = tmpl.substitute(id=status.mapreduce_id, shard=status.shard, random=random.getrandbits(cls._RAND_BITS)) return cls._open_file(status.writer_spec, filename, use_tmp_bucket=True)
create_tmpfile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, status):\n tmpl = string.Template(cls._TMPFILE_PATTERN)\n filename = tmpl.substitute(id=status.mapreduce_id, shard=status.shard,\n random=random.getrandbits(cls._RAND_BITS))\n return cls._open_file(status.writer_spec, filename, use_tmp_bucket=True)\n", "role": "user" }, { "content": "create_tmpfile", "role": "assistant" } ]
def x(self, writer_spec, exclude_list=()): tmpl = string.Template(self._TMPFILE_PREFIX) prefix = tmpl.substitute(id=self.status.mapreduce_id, shard=self.status .shard) bucket = self._get_tmp_gcs_bucket(writer_spec) account_id = self._get_tmp_account_id(writer_spec) for f in cloudstorage.listbucket('/%s/%s' % (bucket, prefix), _account_id=account_id): if f.filename not in exclude_list: self._remove_tmpfile(f.filename, self.status.writer_spec)
try_to_clean_garbage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, writer_spec, exclude_list=()):\n tmpl = string.Template(self._TMPFILE_PREFIX)\n prefix = tmpl.substitute(id=self.status.mapreduce_id, shard=self.status\n .shard)\n bucket = self._get_tmp_gcs_bucket(writer_spec)\n account_id = self._get_tmp_account_id(writer_spec)\n for f in cloudstorage.listbucket('/%s/%s' % (bucket, prefix),\n _account_id=account_id):\n if f.filename not in exclude_list:\n self._remove_tmpfile(f.filename, self.status.writer_spec)\n", "role": "user" }, { "content": "try_to_clean_garbage", "role": "assistant" } ]
def x(cls, state): return cls(state[cls.COUNT], state[cls.STRING_LENGTH])
from_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, state):\n return cls(state[cls.COUNT], state[cls.STRING_LENGTH])\n", "role": "user" }, { "content": "from_json", "role": "assistant" } ]
def x(cls, job_config): params = job_config.input_reader_params count = params[cls.COUNT] string_length = params.get(cls.STRING_LENGTH, cls._DEFAULT_STRING_LENGTH) shard_count = job_config.shard_count count_per_shard = count // shard_count mr_input_readers = [cls(count_per_shard, string_length) for _ in range( shard_count)] left = count - count_per_shard * shard_count if left > 0: mr_input_readers.append(cls(left, string_length)) return mr_input_readers
split_input
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, job_config):\n params = job_config.input_reader_params\n count = params[cls.COUNT]\n string_length = params.get(cls.STRING_LENGTH, cls._DEFAULT_STRING_LENGTH)\n shard_count = job_config.shard_count\n count_per_shard = count // shard_count\n mr_input_readers = [cls(count_per_shard, string_length) for _ in range(\n shard_count)]\n left = count - count_per_shard * shard_count\n if left > 0:\n mr_input_readers.append(cls(left, string_length))\n return mr_input_readers\n", "role": "user" }, { "content": "split_input", "role": "assistant" } ]
def x(cls, job_config): super(SampleInputReader, cls).validate(job_config) params = job_config.input_reader_params if cls.COUNT not in params: raise errors.BadReaderParamsError('Must specify %s' % cls.COUNT) if not isinstance(params[cls.COUNT], int): raise errors.BadReaderParamsError('%s should be an int but is %s' % (cls.COUNT, type(params[cls.COUNT]))) if params[cls.COUNT] <= 0: raise errors.BadReaderParamsError('%s should be a positive int') if cls.STRING_LENGTH in params and not (isinstance(params[cls. STRING_LENGTH], int) and params[cls.STRING_LENGTH] > 0): raise errors.BadReaderParamsError( '%s should be a positive int but is %s' % (cls.STRING_LENGTH, params[cls.STRING_LENGTH]))
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, job_config):\n super(SampleInputReader, cls).validate(job_config)\n params = job_config.input_reader_params\n if cls.COUNT not in params:\n raise errors.BadReaderParamsError('Must specify %s' % cls.COUNT)\n if not isinstance(params[cls.COUNT], int):\n raise errors.BadReaderParamsError('%s should be an int but is %s' %\n (cls.COUNT, type(params[cls.COUNT])))\n if params[cls.COUNT] <= 0:\n raise errors.BadReaderParamsError('%s should be a positive int')\n if cls.STRING_LENGTH in params and not (isinstance(params[cls.\n STRING_LENGTH], int) and params[cls.STRING_LENGTH] > 0):\n raise errors.BadReaderParamsError(\n '%s should be a positive int but is %s' % (cls.STRING_LENGTH,\n params[cls.STRING_LENGTH]))\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(max_length): weights = [1] for i in range(1, max_length): weights.append(weights[i - 1] * len(_ALPHABET) + 1) weights.reverse() return weights
get_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(max_length):\n weights = [1]\n for i in range(1, max_length):\n weights.append(weights[i - 1] * len(_ALPHABET) + 1)\n weights.reverse()\n return weights\n", "role": "user" }, { "content": "get_weights", "role": "assistant" } ]
def x(content, weights): ordinal = 0 for i, c in enumerate(content): ordinal += weights[i] * _ALPHABET.index(c) + 1 return ordinal
str_to_ord
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(content, weights):\n ordinal = 0\n for i, c in enumerate(content):\n ordinal += weights[i] * _ALPHABET.index(c) + 1\n return ordinal\n", "role": "user" }, { "content": "str_to_ord", "role": "assistant" } ]
def x(ordinal, weights): chars = [] for weight in weights: if ordinal == 0: return ''.join(chars) ordinal -= 1 index, ordinal = divmod(ordinal, weight) chars.append(_ALPHABET[index]) return ''.join(chars)
ord_to_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ordinal, weights):\n chars = []\n for weight in weights:\n if ordinal == 0:\n return ''.join(chars)\n ordinal -= 1\n index, ordinal = divmod(ordinal, weight)\n chars.append(_ALPHABET[index])\n return ''.join(chars)\n", "role": "user" }, { "content": "ord_to_str", "role": "assistant" } ]
def x(cls, filters, model_class): if not filters: return None, None, None range_property = None start_val = None end_val = None start_filter = None end_filter = None for f in filters: prop, op, val = f if op in ['>', '>=', '<', '<=']: if range_property and range_property != prop: raise errors.BadReaderParamsError( 'Range on only one property is supported.') range_property = prop if val is None: raise errors.BadReaderParamsError( "Range can't be None in filter %s", f) if op in ['>', '>=']: if start_val is not None: raise errors.BadReaderParamsError( 'Operation %s is specified more than once.', op) start_val = val start_filter = f else: if end_val is not None: raise errors.BadReaderParamsError( 'Operation %s is specified more than once.', op) end_val = val end_filter = f elif op != '=': raise errors.BadReaderParamsError( 'Only < <= > >= = are supported as operation. Got %s', op) if not range_property: return None, None, None if start_val is None or end_val is None: raise errors.BadReaderParamsError( 'Filter should contains a complete range on property %s', range_property) if issubclass(model_class, db.Model): property_obj = model_class.properties()[range_property] else: property_obj = model_class._properties[range_property] supported_properties = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS.keys( ) + _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS.keys() if not isinstance(property_obj, tuple(supported_properties)): raise errors.BadReaderParamsError( 'Filtered property %s is not supported by sharding.', range_property) if not start_val < end_val: raise errors.BadReaderParamsError( 'Start value %s should be smaller than end value %s', start_val, end_val) return property_obj, start_filter, end_filter
get_range_from_filters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, filters, model_class):\n if not filters:\n return None, None, None\n range_property = None\n start_val = None\n end_val = None\n start_filter = None\n end_filter = None\n for f in filters:\n prop, op, val = f\n if op in ['>', '>=', '<', '<=']:\n if range_property and range_property != prop:\n raise errors.BadReaderParamsError(\n 'Range on only one property is supported.')\n range_property = prop\n if val is None:\n raise errors.BadReaderParamsError(\n \"Range can't be None in filter %s\", f)\n if op in ['>', '>=']:\n if start_val is not None:\n raise errors.BadReaderParamsError(\n 'Operation %s is specified more than once.', op)\n start_val = val\n start_filter = f\n else:\n if end_val is not None:\n raise errors.BadReaderParamsError(\n 'Operation %s is specified more than once.', op)\n end_val = val\n end_filter = f\n elif op != '=':\n raise errors.BadReaderParamsError(\n 'Only < <= > >= = are supported as operation. Got %s', op)\n if not range_property:\n return None, None, None\n if start_val is None or end_val is None:\n raise errors.BadReaderParamsError(\n 'Filter should contains a complete range on property %s',\n range_property)\n if issubclass(model_class, db.Model):\n property_obj = model_class.properties()[range_property]\n else:\n property_obj = model_class._properties[range_property]\n supported_properties = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS.keys(\n ) + _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS.keys()\n if not isinstance(property_obj, tuple(supported_properties)):\n raise errors.BadReaderParamsError(\n 'Filtered property %s is not supported by sharding.',\n range_property)\n if not start_val < end_val:\n raise errors.BadReaderParamsError(\n 'Start value %s should be smaller than end value %s', start_val,\n end_val)\n return property_obj, start_filter, end_filter\n", "role": "user" }, { "content": "get_range_from_filters", "role": "assistant" } ]
def x(self, n): new_range_filters = [] name = self.start[0] prop_cls = self.prop.__class__ if prop_cls in _DISCRETE_PROPERTY_SPLIT_FUNCTIONS: splitpoints = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS[prop_cls](self. start[2], self.end[2], n, self.start[1] == '>=', self.end[1] == '<=') start_filter = name, '>=', splitpoints[0] for p in splitpoints[1:]: end_filter = name, '<', p new_range_filters.append([start_filter, end_filter]) start_filter = name, '>=', p else: splitpoints = _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS[prop_cls](self. start[2], self.end[2], n) start_filter = self.start for p in splitpoints: end_filter = name, '<', p new_range_filters.append([start_filter, end_filter]) start_filter = name, '>=', p new_range_filters.append([start_filter, self.end]) for f in new_range_filters: f.extend(self._equality_filters) return [self.__class__(f, self.model_class_path) for f in new_range_filters ]
split
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n):\n new_range_filters = []\n name = self.start[0]\n prop_cls = self.prop.__class__\n if prop_cls in _DISCRETE_PROPERTY_SPLIT_FUNCTIONS:\n splitpoints = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS[prop_cls](self.\n start[2], self.end[2], n, self.start[1] == '>=', self.end[1] ==\n '<=')\n start_filter = name, '>=', splitpoints[0]\n for p in splitpoints[1:]:\n end_filter = name, '<', p\n new_range_filters.append([start_filter, end_filter])\n start_filter = name, '>=', p\n else:\n splitpoints = _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS[prop_cls](self.\n start[2], self.end[2], n)\n start_filter = self.start\n for p in splitpoints:\n end_filter = name, '<', p\n new_range_filters.append([start_filter, end_filter])\n start_filter = name, '>=', p\n new_range_filters.append([start_filter, self.end])\n for f in new_range_filters:\n f.extend(self._equality_filters)\n return [self.__class__(f, self.model_class_path) for f in new_range_filters\n ]\n", "role": "user" }, { "content": "split", "role": "assistant" } ]
def x(self, ns): if issubclass(self.model_class, db.Model): query = db.Query(self.model_class, namespace=ns) for f in self.filters: query.filter('%s %s' % (f[0], f[1]), f[2]) else: query = self.model_class.query(namespace=ns) for f in self.filters: query = query.filter(ndb.FilterNode(*f)) return query
make_query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ns):\n if issubclass(self.model_class, db.Model):\n query = db.Query(self.model_class, namespace=ns)\n for f in self.filters:\n query.filter('%s %s' % (f[0], f[1]), f[2])\n else:\n query = self.model_class.query(namespace=ns)\n for f in self.filters:\n query = query.filter(ndb.FilterNode(*f))\n return query\n", "role": "user" }, { "content": "make_query", "role": "assistant" } ]
def x(cls, job_config): if job_config.output_writer_cls != cls: raise errors.BadWriterParamsError( 'Expect output writer class %r, got %r.' % (cls, job_config. output_writer_cls))
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, job_config):\n if job_config.output_writer_cls != cls:\n raise errors.BadWriterParamsError(\n 'Expect output writer class %r, got %r.' % (cls, job_config.\n output_writer_cls))\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(cls, shard_ctx, iterator): outs = tuple(iterator) shard_ctx._state.writer_state['outs'] = outs
commit_output
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, shard_ctx, iterator):\n outs = tuple(iterator)\n shard_ctx._state.writer_state['outs'] = outs\n", "role": "user" }, { "content": "commit_output", "role": "assistant" } ]
def x(): pipeline_handlers_map = [] if pipeline: pipeline_handlers_map = pipeline.create_handlers_map(prefix= '.*/pipeline') return pipeline_handlers_map + [('.*/worker_callback.*', handlers. MapperWorkerCallbackHandler), ('.*/controller_callback.*', handlers .ControllerCallbackHandler), ('.*/kickoffjob_callback.*', handlers. KickOffJobHandler), ('.*/finalizejob_callback.*', handlers. FinalizeJobHandler), ('.*/command/start_job', handlers. StartJobHandler), ('.*/command/cleanup_job', handlers. CleanUpJobHandler), ('.*/command/abort_job', handlers. AbortJobHandler), ('.*/command/list_configs', status. ListConfigsHandler), ('.*/command/list_jobs', status. ListJobsHandler), ('.*/command/get_job_detail', status. GetJobDetailHandler), (STATIC_RE, status.ResourceHandler), ('.*', RedirectHandler)]
create_handlers_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n pipeline_handlers_map = []\n if pipeline:\n pipeline_handlers_map = pipeline.create_handlers_map(prefix=\n '.*/pipeline')\n return pipeline_handlers_map + [('.*/worker_callback.*', handlers.\n MapperWorkerCallbackHandler), ('.*/controller_callback.*', handlers\n .ControllerCallbackHandler), ('.*/kickoffjob_callback.*', handlers.\n KickOffJobHandler), ('.*/finalizejob_callback.*', handlers.\n FinalizeJobHandler), ('.*/command/start_job', handlers.\n StartJobHandler), ('.*/command/cleanup_job', handlers.\n CleanUpJobHandler), ('.*/command/abort_job', handlers.\n AbortJobHandler), ('.*/command/list_configs', status.\n ListConfigsHandler), ('.*/command/list_jobs', status.\n ListJobsHandler), ('.*/command/get_job_detail', status.\n GetJobDetailHandler), (STATIC_RE, status.ResourceHandler), ('.*',\n RedirectHandler)]\n", "role": "user" }, { "content": "create_handlers_map", "role": "assistant" } ]
def x(cls, json): if json['name'] in _KEYRANGES_CLASSES: return _KEYRANGES_CLASSES[json['name']].from_json(json) raise ValueError('Invalid json %s', json)
from_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, json):\n if json['name'] in _KEYRANGES_CLASSES:\n return _KEYRANGES_CLASSES[json['name']].from_json(json)\n raise ValueError('Invalid json %s', json)\n", "role": "user" }, { "content": "from_json", "role": "assistant" } ]
def x(s): s = re.sub('\\s+', ' ', s) s = re.sub('[\\\\.\\\\?\\\\!]', '\n', s) return s.split('\n')
split_into_sentences
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n s = re.sub('\\\\s+', ' ', s)\n s = re.sub('[\\\\\\\\.\\\\\\\\?\\\\\\\\!]', '\\n', s)\n return s.split('\\n')\n", "role": "user" }, { "content": "split_into_sentences", "role": "assistant" } ]
def x(s): s = re.sub('\\W+', ' ', s) s = re.sub('[_0-9]+', ' ', s) return s.split()
split_into_words
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n s = re.sub('\\\\W+', ' ', s)\n s = re.sub('[_0-9]+', ' ', s)\n return s.split()\n", "role": "user" }, { "content": "split_into_words", "role": "assistant" } ]
def x(data): entry, text_fn = data text = text_fn() logging.debug('Got %s', entry.filename) for s in split_into_sentences(text): for w in split_into_words(s.lower()): yield w, entry.filename
index_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n entry, text_fn = data\n text = text_fn()\n logging.debug('Got %s', entry.filename)\n for s in split_into_sentences(text):\n for w in split_into_words(s.lower()):\n yield w, entry.filename\n", "role": "user" }, { "content": "index_map", "role": "assistant" } ]
def x(data): entry, text_fn = data text = text_fn() filename = entry.filename logging.debug('Got %s', filename) for s in split_into_sentences(text): words = split_into_words(s.lower()) if len(words) < PHRASE_LENGTH: yield ':'.join(words), filename continue for i in range(0, len(words) - PHRASE_LENGTH): yield ':'.join(words[i:i + PHRASE_LENGTH]), filename
phrases_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n entry, text_fn = data\n text = text_fn()\n filename = entry.filename\n logging.debug('Got %s', filename)\n for s in split_into_sentences(text):\n words = split_into_words(s.lower())\n if len(words) < PHRASE_LENGTH:\n yield ':'.join(words), filename\n continue\n for i in range(0, len(words) - PHRASE_LENGTH):\n yield ':'.join(words[i:i + PHRASE_LENGTH]), filename\n", "role": "user" }, { "content": "phrases_map", "role": "assistant" } ]
def x(key, values): if len(values) < 10: return counts = {} for filename in values: counts[filename] = counts.get(filename, 0) + 1 words = re.sub(':', ' ', key) threshold = len(values) / 2 for filename, count in counts.items(): if count > threshold: yield '%s:%s\n' % (words, filename)
phrases_reduce
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, values):\n if len(values) < 10:\n return\n counts = {}\n for filename in values:\n counts[filename] = counts.get(filename, 0) + 1\n words = re.sub(':', ' ', key)\n threshold = len(values) / 2\n for filename, count in counts.items():\n if count > threshold:\n yield '%s:%s\\n' % (words, filename)\n", "role": "user" }, { "content": "phrases_reduce", "role": "assistant" } ]
def x(username, date, blob_key): sep = FileMetadata.__SEP return str(username + sep + str(date) + sep + blob_key)
getKeyName
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(username, date, blob_key):\n sep = FileMetadata.__SEP\n return str(username + sep + str(date) + sep + blob_key)\n", "role": "user" }, { "content": "getKeyName", "role": "assistant" } ]
def x(cls, spec): dec = MontyDecoder() def x(dotpath): modname, classname = dotpath.rsplit('.', 1) mod = __import__(modname, globals(), locals(), [classname], 0) return getattr(mod, classname) def x(d): decoded = {} for k, v in d.items(): if k.startswith('$'): if isinstance(v, list): v = [os.path.expandvars(i) for i in v] elif isinstance(v, dict): v = {k2: os.path.expandvars(v2) for k2, v2 in v.items()} else: v = os.path.expandvars(v) decoded[k.strip('$')] = dec.process_decoded(v) return decoded jobs = [] common_params = process_params(spec.get('jobs_common_params', {})) for d in spec['jobs']: cls_ = load_class(d['jb']) params = process_params(d.get('params', {})) params.update(common_params) jobs.append(cls_(**params)) handlers = [] for d in spec.get('handlers', []): cls_ = load_class(d['hdlr']) params = process_params(d.get('params', {})) handlers.append(cls_(**params)) validators = [] for d in spec.get('validators', []): cls_ = load_class(d['vldr']) params = process_params(d.get('params', {})) validators.append(cls_(**params)) custodian_params = process_params(spec.get('custodian_params', {})) return cls(jobs=jobs, handlers=handlers, validators=validators, ** custodian_params)
from_spec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, spec):\n dec = MontyDecoder()\n\n def x(dotpath):\n modname, classname = dotpath.rsplit('.', 1)\n mod = __import__(modname, globals(), locals(), [classname], 0)\n return getattr(mod, classname)\n\n def x(d):\n decoded = {}\n for k, v in d.items():\n if k.startswith('$'):\n if isinstance(v, list):\n v = [os.path.expandvars(i) for i in v]\n elif isinstance(v, dict):\n v = {k2: os.path.expandvars(v2) for k2, v2 in v.items()}\n else:\n v = os.path.expandvars(v)\n decoded[k.strip('$')] = dec.process_decoded(v)\n return decoded\n jobs = []\n common_params = process_params(spec.get('jobs_common_params', {}))\n for d in spec['jobs']:\n cls_ = load_class(d['jb'])\n params = process_params(d.get('params', {}))\n params.update(common_params)\n jobs.append(cls_(**params))\n handlers = []\n for d in spec.get('handlers', []):\n cls_ = load_class(d['hdlr'])\n params = process_params(d.get('params', {}))\n handlers.append(cls_(**params))\n validators = []\n for d in spec.get('validators', []):\n cls_ = load_class(d['vldr'])\n params = process_params(d.get('params', {}))\n validators.append(cls_(**params))\n custodian_params = process_params(spec.get('custodian_params', {}))\n return cls(jobs=jobs, handlers=handlers, validators=validators, **\n custodian_params)\n", "role": "user" }, { "content": "from_spec", "role": "assistant" } ]
def x(self): cwd = os.getcwd() with ScratchDir(self.scratch_dir, create_symbolic_link=True, copy_to_current_on_exit=True, copy_from_current_on_enter=True ) as temp_dir: self.total_errors = 0 start = datetime.datetime.now() logger.info('Run started at {} in {}.'.format(start, temp_dir)) v = sys.version.replace('\n', ' ') logger.info('Custodian running on Python version {}'.format(v)) logger.info('Hostname: {}, Cluster: {}'.format(* get_execution_host_info())) try: for job_n, job in islice(enumerate(self.jobs, 1), self.restart, None): self._run_job(job_n, job) dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) if self.checkpoint: self.restart = job_n Custodian._save_checkpoint(cwd, job_n) except CustodianError as ex: logger.error(ex.message) if ex.raises: raise finally: logger.info('Logging to {}...'.format(Custodian.LOG_FILE)) dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4 ) end = datetime.datetime.now() logger.info('Run ended at {}.'.format(end)) run_time = end - start logger.info('Run completed. Total time taken = {}.'.format( run_time)) if self.gzipped_output: gzip_dir('.') Custodian._delete_checkpoints(cwd) return self.run_log
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n cwd = os.getcwd()\n with ScratchDir(self.scratch_dir, create_symbolic_link=True,\n copy_to_current_on_exit=True, copy_from_current_on_enter=True\n ) as temp_dir:\n self.total_errors = 0\n start = datetime.datetime.now()\n logger.info('Run started at {} in {}.'.format(start, temp_dir))\n v = sys.version.replace('\\n', ' ')\n logger.info('Custodian running on Python version {}'.format(v))\n logger.info('Hostname: {}, Cluster: {}'.format(*\n get_execution_host_info()))\n try:\n for job_n, job in islice(enumerate(self.jobs, 1), self.restart,\n None):\n self._run_job(job_n, job)\n dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder,\n indent=4)\n if self.checkpoint:\n self.restart = job_n\n Custodian._save_checkpoint(cwd, job_n)\n except CustodianError as ex:\n logger.error(ex.message)\n if ex.raises:\n raise\n finally:\n logger.info('Logging to {}...'.format(Custodian.LOG_FILE))\n dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4\n )\n end = datetime.datetime.now()\n logger.info('Run ended at {}.'.format(end))\n run_time = end - start\n logger.info('Run completed. Total time taken = {}.'.format(\n run_time))\n if self.gzipped_output:\n gzip_dir('.')\n Custodian._delete_checkpoints(cwd)\n return self.run_log\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, job_n, job): self.run_log.append({'job': job.as_dict(), 'corrections': [], 'handler': None, 'validator': None, 'max_errors': False, 'max_errors_per_job': False, 'max_errors_per_handler': False, 'nonzero_return_code': False}) self.errors_current_job = 0 for h in self.handlers: h.n_applied_corrections = 0 job.setup() attempt = 0 while (self.total_errors < self.max_errors and self.errors_current_job < self.max_errors_per_job): attempt += 1 logger.info( 'Starting job no. {} ({}) attempt no. {}. Total errors and errors in job thus far = {}, {}.' .format(job_n, job.name, attempt, self.total_errors, self. errors_current_job)) p = job.run() has_error = False zero_return_code = True if isinstance(p, subprocess.Popen): if self.monitors: n = 0 while True: n += 1 time.sleep(self.polling_time_step) if p.poll() is not None: break terminate = self.terminate_func or p.terminate if n % self.monitor_freq == 0: has_error = self._do_check(self.monitors, terminate) if terminate is not None and terminate != p.terminate: time.sleep(self.polling_time_step) else: p.wait() if (self.terminate_func is not None and self.terminate_func != p.terminate): self.terminate_func() time.sleep(self.polling_time_step) zero_return_code = p.returncode == 0 logger.info('{}.run has completed. Checking remaining handlers'. format(job.name)) if has_error: self._do_check([h for h in self.handlers if not h.is_monitor]) else: has_error = self._do_check(self.handlers) if has_error: job.terminate() if not has_error: for v in self.validators: if v.check(): self.run_log[-1]['validator'] = v s = 'Validation failed: {}'.format(v) raise ValidationError(s, True, v) if not zero_return_code: if self.terminate_on_nonzero_returncode: self.run_log[-1]['nonzero_return_code'] = True s = 'Job return code is %d. Terminating...' % p.returncode logger.info(s) raise ReturnCodeError(s, True) else: warnings.warn( 'subprocess returned a non-zero return code. Check outputs carefully...' ) job.postprocess() return for x in self.run_log[-1]['corrections']: if not x['actions'] and x['handler'].raises_runtime_error: self.run_log[-1]['handler'] = x['handler'] s = 'Unrecoverable error for handler: {}'.format(x['handler']) raise NonRecoverableError(s, True, x['handler']) for x in self.run_log[-1]['corrections']: if not x['actions']: self.run_log[-1]['handler'] = x['handler'] s = 'Unrecoverable error for handler: %s' % x['handler'] raise NonRecoverableError(s, False, x['handler']) if self.errors_current_job >= self.max_errors_per_job: self.run_log[-1]['max_errors_per_job'] = True msg = 'Max errors per job reached: {}.'.format(self.max_errors_per_job) logger.info(msg) raise MaxCorrectionsPerJobError(msg, True, self.max_errors_per_job, job ) else: self.run_log[-1]['max_errors'] = True msg = 'Max errors reached: {}.'.format(self.max_errors) logger.info(msg) raise MaxCorrectionsError(msg, True, self.max_errors)
run_job
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, job_n, job):\n self.run_log.append({'job': job.as_dict(), 'corrections': [], 'handler':\n None, 'validator': None, 'max_errors': False, 'max_errors_per_job':\n False, 'max_errors_per_handler': False, 'nonzero_return_code': False})\n self.errors_current_job = 0\n for h in self.handlers:\n h.n_applied_corrections = 0\n job.setup()\n attempt = 0\n while (self.total_errors < self.max_errors and self.errors_current_job <\n self.max_errors_per_job):\n attempt += 1\n logger.info(\n 'Starting job no. {} ({}) attempt no. {}. Total errors and errors in job thus far = {}, {}.'\n .format(job_n, job.name, attempt, self.total_errors, self.\n errors_current_job))\n p = job.run()\n has_error = False\n zero_return_code = True\n if isinstance(p, subprocess.Popen):\n if self.monitors:\n n = 0\n while True:\n n += 1\n time.sleep(self.polling_time_step)\n if p.poll() is not None:\n break\n terminate = self.terminate_func or p.terminate\n if n % self.monitor_freq == 0:\n has_error = self._do_check(self.monitors, terminate)\n if terminate is not None and terminate != p.terminate:\n time.sleep(self.polling_time_step)\n else:\n p.wait()\n if (self.terminate_func is not None and self.terminate_func !=\n p.terminate):\n self.terminate_func()\n time.sleep(self.polling_time_step)\n zero_return_code = p.returncode == 0\n logger.info('{}.run has completed. Checking remaining handlers'.\n format(job.name))\n if has_error:\n self._do_check([h for h in self.handlers if not h.is_monitor])\n else:\n has_error = self._do_check(self.handlers)\n if has_error:\n job.terminate()\n if not has_error:\n for v in self.validators:\n if v.check():\n self.run_log[-1]['validator'] = v\n s = 'Validation failed: {}'.format(v)\n raise ValidationError(s, True, v)\n if not zero_return_code:\n if self.terminate_on_nonzero_returncode:\n self.run_log[-1]['nonzero_return_code'] = True\n s = 'Job return code is %d. Terminating...' % p.returncode\n logger.info(s)\n raise ReturnCodeError(s, True)\n else:\n warnings.warn(\n 'subprocess returned a non-zero return code. Check outputs carefully...'\n )\n job.postprocess()\n return\n for x in self.run_log[-1]['corrections']:\n if not x['actions'] and x['handler'].raises_runtime_error:\n self.run_log[-1]['handler'] = x['handler']\n s = 'Unrecoverable error for handler: {}'.format(x['handler'])\n raise NonRecoverableError(s, True, x['handler'])\n for x in self.run_log[-1]['corrections']:\n if not x['actions']:\n self.run_log[-1]['handler'] = x['handler']\n s = 'Unrecoverable error for handler: %s' % x['handler']\n raise NonRecoverableError(s, False, x['handler'])\n if self.errors_current_job >= self.max_errors_per_job:\n self.run_log[-1]['max_errors_per_job'] = True\n msg = 'Max errors per job reached: {}.'.format(self.max_errors_per_job)\n logger.info(msg)\n raise MaxCorrectionsPerJobError(msg, True, self.max_errors_per_job, job\n )\n else:\n self.run_log[-1]['max_errors'] = True\n msg = 'Max errors reached: {}.'.format(self.max_errors)\n logger.info(msg)\n raise MaxCorrectionsError(msg, True, self.max_errors)\n", "role": "user" }, { "content": "run_job", "role": "assistant" } ]
def x(self): start = datetime.datetime.now() try: cwd = os.getcwd() v = sys.version.replace('\n', ' ') logger.info('Custodian started in singleshot mode at {} in {}.'. format(start, cwd)) logger.info('Custodian running on Python version {}'.format(v)) if os.path.exists(Custodian.LOG_FILE): self.run_log = loadfn(Custodian.LOG_FILE, cls=MontyDecoder) if len(self.run_log) == 0: job_n = 0 job = self.jobs[job_n] logger.info('Setting up job no. 1 ({}) '.format(job.name)) job.setup() self.run_log.append({'job': job.as_dict(), 'corrections': [], 'job_n': job_n}) return len(self.jobs) else: job_n = self.run_log[-1]['job_n'] job = self.jobs[job_n] if len(self.run_log[-1]['corrections']) > 0: logger.info('Reran {}.run due to fixable errors'.format(job .name)) logger.info('Checking error handlers for {}.run'.format(job.name)) if self._do_check(self.handlers): logger.info('Failed validation based on error handlers') for x in self.run_log[-1]['corrections']: if not x['actions'] and x['handler'].raises_runtime_error: self.run_log[-1]['handler'] = x['handler'] s = ( 'Unrecoverable error for handler: {}. Raising RuntimeError' .format(x['handler'])) raise NonRecoverableError(s, True, x['handler']) logger.info('Corrected input based on error handlers') return len(self.jobs) - job_n logger.info('Checking validator for {}.run'.format(job.name)) for v in self.validators: if v.check(): self.run_log[-1]['validator'] = v logger.info('Failed validation based on validator') s = 'Validation failed: {}'.format(v) raise ValidationError(s, True, v) logger.info('Postprocessing for {}.run'.format(job.name)) job.postprocess() if len(self.jobs) == job_n + 1: self.finished = True return 0 job_n += 1 job = self.jobs[job_n] self.run_log.append({'job': job.as_dict(), 'corrections': [], 'job_n': job_n}) job.setup() return len(self.jobs) - job_n except CustodianError as ex: logger.error(ex.message) if ex.raises: raise finally: logger.info('Logging to {}...'.format(Custodian.LOG_FILE)) dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) end = datetime.datetime.now() logger.info('Run ended at {}.'.format(end)) run_time = end - start logger.info('Run completed. Total time taken = {}.'.format(run_time)) if self.finished and self.gzipped_output: gzip_dir('.')
run_interrupted
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n start = datetime.datetime.now()\n try:\n cwd = os.getcwd()\n v = sys.version.replace('\\n', ' ')\n logger.info('Custodian started in singleshot mode at {} in {}.'.\n format(start, cwd))\n logger.info('Custodian running on Python version {}'.format(v))\n if os.path.exists(Custodian.LOG_FILE):\n self.run_log = loadfn(Custodian.LOG_FILE, cls=MontyDecoder)\n if len(self.run_log) == 0:\n job_n = 0\n job = self.jobs[job_n]\n logger.info('Setting up job no. 1 ({}) '.format(job.name))\n job.setup()\n self.run_log.append({'job': job.as_dict(), 'corrections': [],\n 'job_n': job_n})\n return len(self.jobs)\n else:\n job_n = self.run_log[-1]['job_n']\n job = self.jobs[job_n]\n if len(self.run_log[-1]['corrections']) > 0:\n logger.info('Reran {}.run due to fixable errors'.format(job\n .name))\n logger.info('Checking error handlers for {}.run'.format(job.name))\n if self._do_check(self.handlers):\n logger.info('Failed validation based on error handlers')\n for x in self.run_log[-1]['corrections']:\n if not x['actions'] and x['handler'].raises_runtime_error:\n self.run_log[-1]['handler'] = x['handler']\n s = (\n 'Unrecoverable error for handler: {}. Raising RuntimeError'\n .format(x['handler']))\n raise NonRecoverableError(s, True, x['handler'])\n logger.info('Corrected input based on error handlers')\n return len(self.jobs) - job_n\n logger.info('Checking validator for {}.run'.format(job.name))\n for v in self.validators:\n if v.check():\n self.run_log[-1]['validator'] = v\n logger.info('Failed validation based on validator')\n s = 'Validation failed: {}'.format(v)\n raise ValidationError(s, True, v)\n logger.info('Postprocessing for {}.run'.format(job.name))\n job.postprocess()\n if len(self.jobs) == job_n + 1:\n self.finished = True\n return 0\n job_n += 1\n job = self.jobs[job_n]\n self.run_log.append({'job': job.as_dict(), 'corrections': [],\n 'job_n': job_n})\n job.setup()\n return len(self.jobs) - job_n\n except CustodianError as ex:\n logger.error(ex.message)\n if ex.raises:\n raise\n finally:\n logger.info('Logging to {}...'.format(Custodian.LOG_FILE))\n dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4)\n end = datetime.datetime.now()\n logger.info('Run ended at {}.'.format(end))\n run_time = end - start\n logger.info('Run completed. Total time taken = {}.'.format(run_time))\n if self.finished and self.gzipped_output:\n gzip_dir('.')\n", "role": "user" }, { "content": "run_interrupted", "role": "assistant" } ]
def x(self, handlers, terminate_func=None): corrections = [] for h in handlers: try: if h.check(): if (h.max_num_corrections is not None and h. n_applied_corrections >= h.max_num_corrections): msg = ( 'Maximum number of corrections {} reached for handler {}' .format(h.max_num_corrections, h)) if h.raise_on_max: self.run_log[-1]['handler'] = h self.run_log[-1]['max_errors_per_handler'] = True raise MaxCorrectionsPerHandlerError(msg, True, h. max_num_corrections, h) else: logger.warning(msg + ' Correction not applied.') continue if terminate_func is not None and h.is_terminating: logger.info('Terminating job') terminate_func() terminate_func = None d = h.correct() d['handler'] = h logger.error('\n' + pformat(d, indent=2, width=-1)) corrections.append(d) h.n_applied_corrections += 1 except Exception: if not self.skip_over_errors: raise else: import traceback logger.error('Bad handler %s ' % h) logger.error(traceback.format_exc()) corrections.append({'errors': ['Bad handler %s ' % h], 'actions': []}) self.total_errors += len(corrections) self.errors_current_job += len(corrections) self.run_log[-1]['corrections'].extend(corrections) dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4) return len(corrections) > 0
do_check
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, handlers, terminate_func=None):\n corrections = []\n for h in handlers:\n try:\n if h.check():\n if (h.max_num_corrections is not None and h.\n n_applied_corrections >= h.max_num_corrections):\n msg = (\n 'Maximum number of corrections {} reached for handler {}'\n .format(h.max_num_corrections, h))\n if h.raise_on_max:\n self.run_log[-1]['handler'] = h\n self.run_log[-1]['max_errors_per_handler'] = True\n raise MaxCorrectionsPerHandlerError(msg, True, h.\n max_num_corrections, h)\n else:\n logger.warning(msg + ' Correction not applied.')\n continue\n if terminate_func is not None and h.is_terminating:\n logger.info('Terminating job')\n terminate_func()\n terminate_func = None\n d = h.correct()\n d['handler'] = h\n logger.error('\\n' + pformat(d, indent=2, width=-1))\n corrections.append(d)\n h.n_applied_corrections += 1\n except Exception:\n if not self.skip_over_errors:\n raise\n else:\n import traceback\n logger.error('Bad handler %s ' % h)\n logger.error(traceback.format_exc())\n corrections.append({'errors': ['Bad handler %s ' % h],\n 'actions': []})\n self.total_errors += len(corrections)\n self.errors_current_job += len(corrections)\n self.run_log[-1]['corrections'].extend(corrections)\n dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4)\n return len(corrections) > 0\n", "role": "user" }, { "content": "do_check", "role": "assistant" } ]
def x(self, actions): modified = [] for a in actions: if 'dict' in a: k = a['dict'] modified.append(k) self.feffinp[k] = self.modify_object(a['action'], self.feffinp[k]) elif 'file' in a: self.modify(a['action'], a['file']) else: raise ValueError('Unrecognized format: {}'.format(a)) if modified: feff = self.feffinp feff_input = '\n\n'.join(str(feff[k]) for k in ['HEADER', 'PARAMETERS', 'POTENTIALS', 'ATOMS'] if k in feff) for k, v in six.iteritems(feff): with open(os.path.join('.', k), 'w') as f: f.write(str(v)) with open(os.path.join('.', 'feff.inp'), 'w') as f: f.write(feff_input)
apply_actions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, actions):\n modified = []\n for a in actions:\n if 'dict' in a:\n k = a['dict']\n modified.append(k)\n self.feffinp[k] = self.modify_object(a['action'], self.feffinp[k])\n elif 'file' in a:\n self.modify(a['action'], a['file'])\n else:\n raise ValueError('Unrecognized format: {}'.format(a))\n if modified:\n feff = self.feffinp\n feff_input = '\\n\\n'.join(str(feff[k]) for k in ['HEADER',\n 'PARAMETERS', 'POTENTIALS', 'ATOMS'] if k in feff)\n for k, v in six.iteritems(feff):\n with open(os.path.join('.', k), 'w') as f:\n f.write(str(v))\n with open(os.path.join('.', 'feff.inp'), 'w') as f:\n f.write(feff_input)\n", "role": "user" }, { "content": "apply_actions", "role": "assistant" } ]
def x(filename, settings): if len(settings) != 1: raise ValueError( "Settings must only contain one item with key 'content'.") for k, v in settings.items(): if k == 'content': with open(filename, 'w') as f: f.write(v)
file_create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, settings):\n if len(settings) != 1:\n raise ValueError(\n \"Settings must only contain one item with key 'content'.\")\n for k, v in settings.items():\n if k == 'content':\n with open(filename, 'w') as f:\n f.write(v)\n", "role": "user" }, { "content": "file_create", "role": "assistant" } ]
def x(filename, settings): if len(settings) != 1: raise ValueError("Settings must only contain one item with key 'dest'." ) for k, v in settings.items(): if k == 'dest': shutil.move(filename, v)
file_move
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, settings):\n if len(settings) != 1:\n raise ValueError(\"Settings must only contain one item with key 'dest'.\"\n )\n for k, v in settings.items():\n if k == 'dest':\n shutil.move(filename, v)\n", "role": "user" }, { "content": "file_move", "role": "assistant" } ]
def x(filename, settings): if len(settings) != 1: raise ValueError("Settings must only contain one item with key 'mode'." ) for k, v in settings.items(): if k == 'mode' and v == 'actual': try: os.remove(filename) except OSError: pass elif k == 'mode' and v == 'simulated': print('Simulated removal of {}'.format(filename))
file_delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, settings):\n if len(settings) != 1:\n raise ValueError(\"Settings must only contain one item with key 'mode'.\"\n )\n for k, v in settings.items():\n if k == 'mode' and v == 'actual':\n try:\n os.remove(filename)\n except OSError:\n pass\n elif k == 'mode' and v == 'simulated':\n print('Simulated removal of {}'.format(filename))\n", "role": "user" }, { "content": "file_delete", "role": "assistant" } ]
def x(filename, settings): for k, v in settings.items(): if k.startswith('dest'): shutil.copyfile(filename, v)
file_copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, settings):\n for k, v in settings.items():\n if k.startswith('dest'):\n shutil.copyfile(filename, v)\n", "role": "user" }, { "content": "file_copy", "role": "assistant" } ]
def x(filename, settings): for k, v in settings.items(): if k == 'mode': os.chmod(filename, v) if k == 'owners': os.chown(filename, v)
file_modify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, settings):\n for k, v in settings.items():\n if k == 'mode':\n os.chmod(filename, v)\n if k == 'owners':\n os.chown(filename, v)\n", "role": "user" }, { "content": "file_modify", "role": "assistant" } ]
def x(self): decompress_dir('.') if self.backup: for f in FEFF_INPUT_FILES: shutil.copy(f, '{}.orig'.format(f)) for f in FEFF_BACKUP_FILES: if os.path.isfile(f): shutil.copy(f, '{}.orig'.format(f))
setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n decompress_dir('.')\n if self.backup:\n for f in FEFF_INPUT_FILES:\n shutil.copy(f, '{}.orig'.format(f))\n for f in FEFF_BACKUP_FILES:\n if os.path.isfile(f):\n shutil.copy(f, '{}.orig'.format(f))\n", "role": "user" }, { "content": "setup", "role": "assistant" } ]
def x(self): with open(self.output_file, 'w') as f_std, open(self.stderr_file, 'w', buffering=1) as f_err: p = subprocess.Popen(self.feff_cmd, stdout=f_std, stderr=f_err, shell=True) return p
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with open(self.output_file, 'w') as f_std, open(self.stderr_file, 'w',\n buffering=1) as f_err:\n p = subprocess.Popen(self.feff_cmd, stdout=f_std, stderr=f_err,\n shell=True)\n return p\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, modification, obj): for action, settings in modification.items(): if action in self.supported_actions: self.supported_actions[action].__call__(obj, settings) elif self.strict: raise ValueError('{} is not a supported action!'.format(action))
modify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, modification, obj):\n for action, settings in modification.items():\n if action in self.supported_actions:\n self.supported_actions[action].__call__(obj, settings)\n elif self.strict:\n raise ValueError('{} is not a supported action!'.format(action))\n", "role": "user" }, { "content": "modify", "role": "assistant" } ]
def x(self, modification, obj): d = obj.as_dict() self.modify(modification, d) return obj.from_dict(d)
modify_object
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, modification, obj):\n d = obj.as_dict()\n self.modify(modification, d)\n return obj.from_dict(d)\n", "role": "user" }, { "content": "modify_object", "role": "assistant" } ]
def x(self, actions): modified = [] for a in actions: if 'dict' in a: k = a['dict'] modified.append(k) self.vi[k] = self.modify_object(a['action'], self.vi[k]) elif 'file' in a: self.modify(a['action'], a['file']) else: raise ValueError('Unrecognized format: {}'.format(a)) for f in modified: self.vi[f].write_file(f)
apply_actions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, actions):\n modified = []\n for a in actions:\n if 'dict' in a:\n k = a['dict']\n modified.append(k)\n self.vi[k] = self.modify_object(a['action'], self.vi[k])\n elif 'file' in a:\n self.modify(a['action'], a['file'])\n else:\n raise ValueError('Unrecognized format: {}'.format(a))\n for f in modified:\n self.vi[f].write_file(f)\n", "role": "user" }, { "content": "apply_actions", "role": "assistant" } ]
def x(filenames, prefix='error'): num = max([0] + [int(f.split('.')[1]) for f in glob('{}.*.tar.gz'. format(prefix))]) filename = '{}.{}.tar.gz'.format(prefix, num + 1) logging.info('Backing up run to {}.'.format(filename)) with tarfile.open(filename, 'w:gz') as tar: for fname in filenames: for f in glob(fname): tar.add(f)
backup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filenames, prefix='error'):\n num = max([0] + [int(f.split('.')[1]) for f in glob('{}.*.tar.gz'.\n format(prefix))])\n filename = '{}.{}.tar.gz'.format(prefix, num + 1)\n logging.info('Backing up run to {}.'.format(filename))\n with tarfile.open(filename, 'w:gz') as tar:\n for fname in filenames:\n for f in glob(fname):\n tar.add(f)\n", "role": "user" }, { "content": "backup", "role": "assistant" } ]
def x(): host = os.environ.get('HOSTNAME', None) cluster = os.environ.get('SGE_O_HOST', None) if host is None: try: import socket host = host or socket.gethostname() except: pass return host or 'unknown', cluster or 'unknown'
get_execution_host_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n host = os.environ.get('HOSTNAME', None)\n cluster = os.environ.get('SGE_O_HOST', None)\n if host is None:\n try:\n import socket\n host = host or socket.gethostname()\n except:\n pass\n return host or 'unknown', cluster or 'unknown'\n", "role": "user" }, { "content": "get_execution_host_info", "role": "assistant" } ]
def x(self): qclog = open(self.qclog_file, 'w') p = subprocess.Popen(self.current_command, stdout=qclog) return p
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n qclog = open(self.qclog_file, 'w')\n p = subprocess.Popen(self.current_command, stdout=qclog)\n return p\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(cls, qchem_command, multimode='openmp', input_file='mol.qin', output_file='mol.qout', qclog_file='mol.qclog', max_iterations=10, max_molecule_perturb_scale=0.3, check_connectivity=True, **QCJob_kwargs): min_molecule_perturb_scale = 0.1 scale_grid = 10 perturb_scale_grid = (max_molecule_perturb_scale - min_molecule_perturb_scale) / scale_grid if not os.path.exists(input_file): raise AssertionError('Input file must be present!') orig_opt_input = QCInput.from_file(input_file) orig_opt_rem = copy.deepcopy(orig_opt_input.rem) orig_freq_rem = copy.deepcopy(orig_opt_input.rem) orig_freq_rem['job_type'] = 'freq' first = True reversed_direction = False num_neg_freqs = [] for ii in range(max_iterations): yield QCJob(qchem_command=qchem_command, multimode=multimode, input_file=input_file, output_file=output_file, qclog_file= qclog_file, suffix='.opt_' + str(ii), backup=first, **QCJob_kwargs) first = False opt_outdata = QCOutput(output_file + '.opt_' + str(ii)).data if opt_outdata['structure_change' ] == 'unconnected_fragments' and not opt_outdata['completion']: print( 'Unstable molecule broke into unconnected fragments which failed to optimize! Exiting...' ) break else: freq_QCInput = QCInput(molecule=opt_outdata.get( 'molecule_from_optimized_geometry'), rem=orig_freq_rem, opt =orig_opt_input.opt, pcm=orig_opt_input.pcm, solvent= orig_opt_input.solvent) freq_QCInput.write_file(input_file) yield QCJob(qchem_command=qchem_command, multimode=multimode, input_file=input_file, output_file=output_file, qclog_file= qclog_file, suffix='.freq_' + str(ii), backup=first, ** QCJob_kwargs) outdata = QCOutput(output_file + '.freq_' + str(ii)).data errors = outdata.get('errors') if len(errors) != 0: raise AssertionError( 'No errors should be encountered while flattening frequencies!' ) if outdata.get('frequencies')[0] > 0.0: print('All frequencies positive!') break else: num_neg_freqs += [sum(1 for freq in outdata.get( 'frequencies') if freq < 0)] if len(num_neg_freqs) > 1: if num_neg_freqs[-1] == num_neg_freqs[-2 ] and not reversed_direction: reversed_direction = True elif num_neg_freqs[-1] == num_neg_freqs[-2 ] and reversed_direction: if len(num_neg_freqs) < 3: raise AssertionError( 'ERROR: This should only be possible after at least three frequency flattening iterations! Exiting...' ) else: raise Exception( 'ERROR: Reversing the perturbation direction still could not flatten any frequencies. Exiting...' ) elif num_neg_freqs[-1] != num_neg_freqs[-2 ] and reversed_direction: reversed_direction = False negative_freq_vecs = outdata.get('frequency_mode_vectors')[0] structure_successfully_perturbed = False for molecule_perturb_scale in np.arange( max_molecule_perturb_scale, min_molecule_perturb_scale, -perturb_scale_grid): new_coords = perturb_coordinates(old_coords=outdata.get ('initial_geometry'), negative_freq_vecs= negative_freq_vecs, molecule_perturb_scale= molecule_perturb_scale, reversed_direction= reversed_direction) new_molecule = Molecule(species=outdata.get('species'), coords=new_coords, charge=outdata.get('charge'), spin_multiplicity=outdata.get('multiplicity')) if check_connectivity: old_molgraph = MoleculeGraph.with_local_env_strategy( outdata.get('initial_molecule'), OpenBabelNN(), reorder=False, extend_structure=False) new_molgraph = MoleculeGraph.with_local_env_strategy( new_molecule, OpenBabelNN(), reorder=False, extend_structure=False) if old_molgraph.isomorphic_to(new_molgraph): structure_successfully_perturbed = True break if not structure_successfully_perturbed: raise Exception( 'ERROR: Unable to perturb coordinates to remove negative frequency without changing the connectivity! Exiting...' ) new_opt_QCInput = QCInput(molecule=new_molecule, rem= orig_opt_rem, opt=orig_opt_input.opt, pcm= orig_opt_input.pcm, solvent=orig_opt_input.solvent) new_opt_QCInput.write_file(input_file)
opt_with_frequency_flattener
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, qchem_command, multimode='openmp', input_file='mol.qin',\n output_file='mol.qout', qclog_file='mol.qclog', max_iterations=10,\n max_molecule_perturb_scale=0.3, check_connectivity=True, **QCJob_kwargs):\n min_molecule_perturb_scale = 0.1\n scale_grid = 10\n perturb_scale_grid = (max_molecule_perturb_scale -\n min_molecule_perturb_scale) / scale_grid\n if not os.path.exists(input_file):\n raise AssertionError('Input file must be present!')\n orig_opt_input = QCInput.from_file(input_file)\n orig_opt_rem = copy.deepcopy(orig_opt_input.rem)\n orig_freq_rem = copy.deepcopy(orig_opt_input.rem)\n orig_freq_rem['job_type'] = 'freq'\n first = True\n reversed_direction = False\n num_neg_freqs = []\n for ii in range(max_iterations):\n yield QCJob(qchem_command=qchem_command, multimode=multimode,\n input_file=input_file, output_file=output_file, qclog_file=\n qclog_file, suffix='.opt_' + str(ii), backup=first, **QCJob_kwargs)\n first = False\n opt_outdata = QCOutput(output_file + '.opt_' + str(ii)).data\n if opt_outdata['structure_change'\n ] == 'unconnected_fragments' and not opt_outdata['completion']:\n print(\n 'Unstable molecule broke into unconnected fragments which failed to optimize! Exiting...'\n )\n break\n else:\n freq_QCInput = QCInput(molecule=opt_outdata.get(\n 'molecule_from_optimized_geometry'), rem=orig_freq_rem, opt\n =orig_opt_input.opt, pcm=orig_opt_input.pcm, solvent=\n orig_opt_input.solvent)\n freq_QCInput.write_file(input_file)\n yield QCJob(qchem_command=qchem_command, multimode=multimode,\n input_file=input_file, output_file=output_file, qclog_file=\n qclog_file, suffix='.freq_' + str(ii), backup=first, **\n QCJob_kwargs)\n outdata = QCOutput(output_file + '.freq_' + str(ii)).data\n errors = outdata.get('errors')\n if len(errors) != 0:\n raise AssertionError(\n 'No errors should be encountered while flattening frequencies!'\n )\n if outdata.get('frequencies')[0] > 0.0:\n print('All frequencies positive!')\n break\n else:\n num_neg_freqs += [sum(1 for freq in outdata.get(\n 'frequencies') if freq < 0)]\n if len(num_neg_freqs) > 1:\n if num_neg_freqs[-1] == num_neg_freqs[-2\n ] and not reversed_direction:\n reversed_direction = True\n elif num_neg_freqs[-1] == num_neg_freqs[-2\n ] and reversed_direction:\n if len(num_neg_freqs) < 3:\n raise AssertionError(\n 'ERROR: This should only be possible after at least three frequency flattening iterations! Exiting...'\n )\n else:\n raise Exception(\n 'ERROR: Reversing the perturbation direction still could not flatten any frequencies. Exiting...'\n )\n elif num_neg_freqs[-1] != num_neg_freqs[-2\n ] and reversed_direction:\n reversed_direction = False\n negative_freq_vecs = outdata.get('frequency_mode_vectors')[0]\n structure_successfully_perturbed = False\n for molecule_perturb_scale in np.arange(\n max_molecule_perturb_scale, min_molecule_perturb_scale,\n -perturb_scale_grid):\n new_coords = perturb_coordinates(old_coords=outdata.get\n ('initial_geometry'), negative_freq_vecs=\n negative_freq_vecs, molecule_perturb_scale=\n molecule_perturb_scale, reversed_direction=\n reversed_direction)\n new_molecule = Molecule(species=outdata.get('species'),\n coords=new_coords, charge=outdata.get('charge'),\n spin_multiplicity=outdata.get('multiplicity'))\n if check_connectivity:\n old_molgraph = MoleculeGraph.with_local_env_strategy(\n outdata.get('initial_molecule'), OpenBabelNN(),\n reorder=False, extend_structure=False)\n new_molgraph = MoleculeGraph.with_local_env_strategy(\n new_molecule, OpenBabelNN(), reorder=False,\n extend_structure=False)\n if old_molgraph.isomorphic_to(new_molgraph):\n structure_successfully_perturbed = True\n break\n if not structure_successfully_perturbed:\n raise Exception(\n 'ERROR: Unable to perturb coordinates to remove negative frequency without changing the connectivity! Exiting...'\n )\n new_opt_QCInput = QCInput(molecule=new_molecule, rem=\n orig_opt_rem, opt=orig_opt_input.opt, pcm=\n orig_opt_input.pcm, solvent=orig_opt_input.solvent)\n new_opt_QCInput.write_file(input_file)\n", "role": "user" }, { "content": "opt_with_frequency_flattener", "role": "assistant" } ]
def x(self): decompress_dir('.') if self.backup: for f in VASP_INPUT_FILES: shutil.copy(f, '{}.orig'.format(f)) if self.auto_npar: try: incar = Incar.from_file('INCAR') if not (incar.get('LHFCALC') or incar.get('LRPA') or incar.get( 'LEPSILON')): if incar.get('IBRION') in [5, 6, 7, 8]: del incar['NPAR'] else: import multiprocessing ncores = os.environ.get('NSLOTS' ) or multiprocessing.cpu_count() ncores = int(ncores) for npar in range(int(math.sqrt(ncores)), ncores): if ncores % npar == 0: incar['NPAR'] = npar break incar.write_file('INCAR') except: pass if self.auto_continue: if os.path.exists('continue.json'): actions = loadfn('continue.json').get('actions') logger.info('Continuing previous VaspJob. Actions: {}'.format( actions)) backup(VASP_BACKUP_FILES, prefix='prev_run') VaspModder().apply_actions(actions) else: if self.auto_continue is True: actions = [{'file': 'CONTCAR', 'action': {'_file_copy': { 'dest': 'POSCAR'}}}, {'dict': 'INCAR', 'action': { '_set': {'ISTART': 1}}}] else: actions = self.auto_continue dumpfn({'actions': actions}, 'continue.json') if self.settings_override is not None: VaspModder().apply_actions(self.settings_override)
setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n decompress_dir('.')\n if self.backup:\n for f in VASP_INPUT_FILES:\n shutil.copy(f, '{}.orig'.format(f))\n if self.auto_npar:\n try:\n incar = Incar.from_file('INCAR')\n if not (incar.get('LHFCALC') or incar.get('LRPA') or incar.get(\n 'LEPSILON')):\n if incar.get('IBRION') in [5, 6, 7, 8]:\n del incar['NPAR']\n else:\n import multiprocessing\n ncores = os.environ.get('NSLOTS'\n ) or multiprocessing.cpu_count()\n ncores = int(ncores)\n for npar in range(int(math.sqrt(ncores)), ncores):\n if ncores % npar == 0:\n incar['NPAR'] = npar\n break\n incar.write_file('INCAR')\n except:\n pass\n if self.auto_continue:\n if os.path.exists('continue.json'):\n actions = loadfn('continue.json').get('actions')\n logger.info('Continuing previous VaspJob. Actions: {}'.format(\n actions))\n backup(VASP_BACKUP_FILES, prefix='prev_run')\n VaspModder().apply_actions(actions)\n else:\n if self.auto_continue is True:\n actions = [{'file': 'CONTCAR', 'action': {'_file_copy': {\n 'dest': 'POSCAR'}}}, {'dict': 'INCAR', 'action': {\n '_set': {'ISTART': 1}}}]\n else:\n actions = self.auto_continue\n dumpfn({'actions': actions}, 'continue.json')\n if self.settings_override is not None:\n VaspModder().apply_actions(self.settings_override)\n", "role": "user" }, { "content": "setup", "role": "assistant" } ]
def x(self): cmd = list(self.vasp_cmd) if self.auto_gamma: vi = VaspInput.from_directory('.') kpts = vi['KPOINTS'] if kpts.style == Kpoints.supported_modes.Gamma and tuple(kpts.kpts[0] ) == (1, 1, 1): if self.gamma_vasp_cmd is not None and which(self. gamma_vasp_cmd[-1]): cmd = self.gamma_vasp_cmd elif which(cmd[-1] + '.gamma'): cmd[-1] += '.gamma' logger.info('Running {}'.format(' '.join(cmd))) with open(self.output_file, 'w') as f_std, open(self.stderr_file, 'w', buffering=1) as f_err: p = subprocess.Popen(cmd, stdout=f_std, stderr=f_err) return p
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n cmd = list(self.vasp_cmd)\n if self.auto_gamma:\n vi = VaspInput.from_directory('.')\n kpts = vi['KPOINTS']\n if kpts.style == Kpoints.supported_modes.Gamma and tuple(kpts.kpts[0]\n ) == (1, 1, 1):\n if self.gamma_vasp_cmd is not None and which(self.\n gamma_vasp_cmd[-1]):\n cmd = self.gamma_vasp_cmd\n elif which(cmd[-1] + '.gamma'):\n cmd[-1] += '.gamma'\n logger.info('Running {}'.format(' '.join(cmd)))\n with open(self.output_file, 'w') as f_std, open(self.stderr_file, 'w',\n buffering=1) as f_err:\n p = subprocess.Popen(cmd, stdout=f_std, stderr=f_err)\n return p\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self): for f in (VASP_OUTPUT_FILES + [self.output_file]): if os.path.exists(f): if self.final and self.suffix != '': shutil.move(f, '{}{}'.format(f, self.suffix)) elif self.suffix != '': shutil.copy(f, '{}{}'.format(f, self.suffix)) if self.copy_magmom and not self.final: try: outcar = Outcar('OUTCAR') magmom = [m['tot'] for m in outcar.magnetization] incar = Incar.from_file('INCAR') incar['MAGMOM'] = magmom incar.write_file('INCAR') except: logger.error('MAGMOM copy from OUTCAR to INCAR failed') if os.path.exists('continue.json'): os.remove('continue.json')
postprocess
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for f in (VASP_OUTPUT_FILES + [self.output_file]):\n if os.path.exists(f):\n if self.final and self.suffix != '':\n shutil.move(f, '{}{}'.format(f, self.suffix))\n elif self.suffix != '':\n shutil.copy(f, '{}{}'.format(f, self.suffix))\n if self.copy_magmom and not self.final:\n try:\n outcar = Outcar('OUTCAR')\n magmom = [m['tot'] for m in outcar.magnetization]\n incar = Incar.from_file('INCAR')\n incar['MAGMOM'] = magmom\n incar.write_file('INCAR')\n except:\n logger.error('MAGMOM copy from OUTCAR to INCAR failed')\n if os.path.exists('continue.json'):\n os.remove('continue.json')\n", "role": "user" }, { "content": "postprocess", "role": "assistant" } ]
def x(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax= False, auto_continue=False): incar_update = {'ISTART': 1} if ediffg: incar_update['EDIFFG'] = ediffg settings_overide_1 = None settings_overide_2 = [{'dict': 'INCAR', 'action': {'_set': incar_update }}, {'file': 'CONTCAR', 'action': {'_file_copy': {'dest': 'POSCAR'}}}] if half_kpts_first_relax and os.path.exists('KPOINTS') and os.path.exists( 'POSCAR'): kpts = Kpoints.from_file('KPOINTS') orig_kpts_dict = kpts.as_dict() kpts.kpts = np.round(np.maximum(np.array(kpts.kpts) / 2, 1)).astype(int ).tolist() low_kpts_dict = kpts.as_dict() settings_overide_1 = [{'dict': 'KPOINTS', 'action': {'_set': low_kpts_dict}}] settings_overide_2.append({'dict': 'KPOINTS', 'action': {'_set': orig_kpts_dict}}) return [VaspJob(vasp_cmd, final=False, suffix='.relax1', auto_npar= auto_npar, auto_continue=auto_continue, settings_override= settings_overide_1), VaspJob(vasp_cmd, final=True, backup=False, suffix='.relax2', auto_npar=auto_npar, auto_continue=auto_continue, settings_override=settings_overide_2)]
double_relaxation_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax=\n False, auto_continue=False):\n incar_update = {'ISTART': 1}\n if ediffg:\n incar_update['EDIFFG'] = ediffg\n settings_overide_1 = None\n settings_overide_2 = [{'dict': 'INCAR', 'action': {'_set': incar_update\n }}, {'file': 'CONTCAR', 'action': {'_file_copy': {'dest': 'POSCAR'}}}]\n if half_kpts_first_relax and os.path.exists('KPOINTS') and os.path.exists(\n 'POSCAR'):\n kpts = Kpoints.from_file('KPOINTS')\n orig_kpts_dict = kpts.as_dict()\n kpts.kpts = np.round(np.maximum(np.array(kpts.kpts) / 2, 1)).astype(int\n ).tolist()\n low_kpts_dict = kpts.as_dict()\n settings_overide_1 = [{'dict': 'KPOINTS', 'action': {'_set':\n low_kpts_dict}}]\n settings_overide_2.append({'dict': 'KPOINTS', 'action': {'_set':\n orig_kpts_dict}})\n return [VaspJob(vasp_cmd, final=False, suffix='.relax1', auto_npar=\n auto_npar, auto_continue=auto_continue, settings_override=\n settings_overide_1), VaspJob(vasp_cmd, final=True, backup=False,\n suffix='.relax2', auto_npar=auto_npar, auto_continue=auto_continue,\n settings_override=settings_overide_2)]\n", "role": "user" }, { "content": "double_relaxation_run", "role": "assistant" } ]
def x(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax= False, auto_continue=False): incar = Incar.from_file('INCAR') metaGGA = incar.get('METAGGA', 'SCAN') pre_opt_setings = [{'dict': 'INCAR', 'action': {'_set': {'METAGGA': None, 'LWAVE': True, 'NSW': 0}}}] jobs = [VaspJob(vasp_cmd, auto_npar=auto_npar, final=False, suffix= '.precondition', settings_override=pre_opt_setings)] jobs.extend(VaspJob.double_relaxation_run(vasp_cmd, auto_npar=auto_npar, ediffg=ediffg, half_kpts_first_relax=half_kpts_first_relax)) jobs[1].backup = False post_opt_settings = [{'dict': 'INCAR', 'action': {'_set': {'METAGGA': metaGGA, 'ISTART': 1, 'NSW': incar.get('NSW', 99), 'LWAVE': incar. get('LWAVE', False)}}}, {'file': 'CONTCAR', 'action': {'_file_copy': {'dest': 'POSCAR'}}}] if jobs[1].settings_override: post_opt_settings = jobs[1].settings_override + post_opt_settings jobs[1].settings_override = post_opt_settings return jobs
metagga_opt_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax=\n False, auto_continue=False):\n incar = Incar.from_file('INCAR')\n metaGGA = incar.get('METAGGA', 'SCAN')\n pre_opt_setings = [{'dict': 'INCAR', 'action': {'_set': {'METAGGA':\n None, 'LWAVE': True, 'NSW': 0}}}]\n jobs = [VaspJob(vasp_cmd, auto_npar=auto_npar, final=False, suffix=\n '.precondition', settings_override=pre_opt_setings)]\n jobs.extend(VaspJob.double_relaxation_run(vasp_cmd, auto_npar=auto_npar,\n ediffg=ediffg, half_kpts_first_relax=half_kpts_first_relax))\n jobs[1].backup = False\n post_opt_settings = [{'dict': 'INCAR', 'action': {'_set': {'METAGGA':\n metaGGA, 'ISTART': 1, 'NSW': incar.get('NSW', 99), 'LWAVE': incar.\n get('LWAVE', False)}}}, {'file': 'CONTCAR', 'action': {'_file_copy':\n {'dest': 'POSCAR'}}}]\n if jobs[1].settings_override:\n post_opt_settings = jobs[1].settings_override + post_opt_settings\n jobs[1].settings_override = post_opt_settings\n return jobs\n", "role": "user" }, { "content": "metagga_opt_run", "role": "assistant" } ]
def x(cls, vasp_cmd, vol_change_tol=0.02, max_steps=10, ediffg=-0.05, half_kpts_first_relax=False, **vasp_job_kwargs): for i in range(max_steps): if i == 0: settings = None backup = True if half_kpts_first_relax and os.path.exists('KPOINTS' ) and os.path.exists('POSCAR'): kpts = Kpoints.from_file('KPOINTS') orig_kpts_dict = kpts.as_dict() kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1).tolist() low_kpts_dict = kpts.as_dict() settings = [{'dict': 'KPOINTS', 'action': {'_set': low_kpts_dict}}] else: backup = False initial = Poscar.from_file('POSCAR').structure final = Poscar.from_file('CONTCAR').structure vol_change = (final.volume - initial.volume) / initial.volume logger.info('Vol change = %.1f %%!' % (vol_change * 100)) if abs(vol_change) < vol_change_tol: logger.info('Stopping optimization!') break else: incar_update = {'ISTART': 1} if ediffg: incar_update['EDIFFG'] = ediffg settings = [{'dict': 'INCAR', 'action': {'_set': incar_update}}, {'file': 'CONTCAR', 'action': { '_file_copy': {'dest': 'POSCAR'}}}] if i == 1 and half_kpts_first_relax: settings.append({'dict': 'KPOINTS', 'action': {'_set': orig_kpts_dict}}) logger.info('Generating job = %d!' % (i + 1)) yield VaspJob(vasp_cmd, final=False, backup=backup, suffix= '.relax%d' % (i + 1), settings_override=settings, **vasp_job_kwargs )
full_opt_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, vasp_cmd, vol_change_tol=0.02, max_steps=10, ediffg=-0.05,\n half_kpts_first_relax=False, **vasp_job_kwargs):\n for i in range(max_steps):\n if i == 0:\n settings = None\n backup = True\n if half_kpts_first_relax and os.path.exists('KPOINTS'\n ) and os.path.exists('POSCAR'):\n kpts = Kpoints.from_file('KPOINTS')\n orig_kpts_dict = kpts.as_dict()\n kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1).tolist()\n low_kpts_dict = kpts.as_dict()\n settings = [{'dict': 'KPOINTS', 'action': {'_set':\n low_kpts_dict}}]\n else:\n backup = False\n initial = Poscar.from_file('POSCAR').structure\n final = Poscar.from_file('CONTCAR').structure\n vol_change = (final.volume - initial.volume) / initial.volume\n logger.info('Vol change = %.1f %%!' % (vol_change * 100))\n if abs(vol_change) < vol_change_tol:\n logger.info('Stopping optimization!')\n break\n else:\n incar_update = {'ISTART': 1}\n if ediffg:\n incar_update['EDIFFG'] = ediffg\n settings = [{'dict': 'INCAR', 'action': {'_set':\n incar_update}}, {'file': 'CONTCAR', 'action': {\n '_file_copy': {'dest': 'POSCAR'}}}]\n if i == 1 and half_kpts_first_relax:\n settings.append({'dict': 'KPOINTS', 'action': {'_set':\n orig_kpts_dict}})\n logger.info('Generating job = %d!' % (i + 1))\n yield VaspJob(vasp_cmd, final=False, backup=backup, suffix=\n '.relax%d' % (i + 1), settings_override=settings, **vasp_job_kwargs\n )\n", "role": "user" }, { "content": "full_opt_run", "role": "assistant" } ]
def x(cls, vasp_cmd, lattice_direction, initial_strain, atom_relax=True, max_steps=20, algo='bfgs', **vasp_job_kwargs): nsw = 99 if atom_relax else 0 incar = Incar.from_file('INCAR') if incar.get('EDIFFG') and incar.get('EDIFFG') > 0: etol = incar['EDIFFG'] else: etol = incar.get('EDIFF', 0.0001) * 10 if lattice_direction == 'a': lattice_index = 0 elif lattice_direction == 'b': lattice_index = 1 else: lattice_index = 2 energies = {} for i in range(max_steps): if i == 0: settings = [{'dict': 'INCAR', 'action': {'_set': {'ISIF': 2, 'NSW': nsw}}}] structure = Poscar.from_file('POSCAR').structure x = structure.lattice.abc[lattice_index] backup = True else: backup = False v = Vasprun('vasprun.xml') structure = v.final_structure energy = v.final_energy lattice = structure.lattice x = lattice.abc[lattice_index] energies[x] = energy if i == 1: x *= 1 + initial_strain else: min_x = min(energies.keys(), key=lambda e: energies[e]) sorted_x = sorted(energies.keys()) ind = sorted_x.index(min_x) if ind == 0: other = ind + 1 elif ind == len(sorted_x) - 1: other = ind - 1 else: other = ind + 1 if energies[sorted_x[ind + 1]] < energies[ sorted_x[ind - 1]] else ind - 1 if abs(energies[min_x] - energies[sorted_x[other]]) < etol: logger.info('Stopping optimization! Final %s = %f' % ( lattice_direction, min_x)) break if ind == 0 and len(sorted_x) > 2: x = sorted_x[0] - abs(sorted_x[1] - sorted_x[0]) logger.info( 'Lowest energy lies below bounds. Setting %s = %f.' % (lattice_direction, x)) elif ind == len(sorted_x) - 1 and len(sorted_x) > 2: x = sorted_x[-1] + abs(sorted_x[-1] - sorted_x[-2]) logger.info( 'Lowest energy lies above bounds. Setting %s = %f.' % (lattice_direction, x)) elif algo.lower() == 'bfgs' and len(sorted_x) >= 4: try: x1 = list(energies.keys()) y1 = [energies[j] for j in x1] z1 = np.polyfit(x1, y1, 2) pp = np.poly1d(z1) from scipy.optimize import minimize result = minimize(pp, min_x, bounds=[(sorted_x[0], sorted_x[-1])]) if not result.success or result.x[0] < 0: raise ValueError('Negative lattice constant!') x = result.x[0] logger.info('BFGS minimized %s = %f.' % ( lattice_direction, x)) except ValueError as ex: logger.info(str(ex)) x = (min_x + sorted_x[other]) / 2 logger.info('Falling back on bisection %s = %f.' % (lattice_direction, x)) else: x = (min_x + sorted_x[other]) / 2 logger.info('Bisection %s = %f.' % (lattice_direction, x)) lattice = lattice.matrix lattice[lattice_index] = lattice[lattice_index] / np.linalg.norm( lattice[lattice_index]) * x s = Structure(lattice, structure.species, structure.frac_coords) fname = 'POSCAR.%f' % x s.to(filename=fname) incar_update = {'ISTART': 1, 'NSW': nsw, 'ISIF': 2} settings = [{'dict': 'INCAR', 'action': {'_set': incar_update}}, {'file': fname, 'action': {'_file_copy': {'dest': 'POSCAR'}}}] logger.info('Generating job = %d with parameter %f!' % (i + 1, x)) yield VaspJob(vasp_cmd, final=False, backup=backup, suffix= '.static.%f' % x, settings_override=settings, **vasp_job_kwargs) with open('EOS.txt', 'wt') as f: f.write('# %s energy\n' % lattice_direction) for k in sorted(energies.keys()): f.write('%f %f\n' % (k, energies[k]))
constrained_opt_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, vasp_cmd, lattice_direction, initial_strain, atom_relax=True,\n max_steps=20, algo='bfgs', **vasp_job_kwargs):\n nsw = 99 if atom_relax else 0\n incar = Incar.from_file('INCAR')\n if incar.get('EDIFFG') and incar.get('EDIFFG') > 0:\n etol = incar['EDIFFG']\n else:\n etol = incar.get('EDIFF', 0.0001) * 10\n if lattice_direction == 'a':\n lattice_index = 0\n elif lattice_direction == 'b':\n lattice_index = 1\n else:\n lattice_index = 2\n energies = {}\n for i in range(max_steps):\n if i == 0:\n settings = [{'dict': 'INCAR', 'action': {'_set': {'ISIF': 2,\n 'NSW': nsw}}}]\n structure = Poscar.from_file('POSCAR').structure\n x = structure.lattice.abc[lattice_index]\n backup = True\n else:\n backup = False\n v = Vasprun('vasprun.xml')\n structure = v.final_structure\n energy = v.final_energy\n lattice = structure.lattice\n x = lattice.abc[lattice_index]\n energies[x] = energy\n if i == 1:\n x *= 1 + initial_strain\n else:\n min_x = min(energies.keys(), key=lambda e: energies[e])\n sorted_x = sorted(energies.keys())\n ind = sorted_x.index(min_x)\n if ind == 0:\n other = ind + 1\n elif ind == len(sorted_x) - 1:\n other = ind - 1\n else:\n other = ind + 1 if energies[sorted_x[ind + 1]] < energies[\n sorted_x[ind - 1]] else ind - 1\n if abs(energies[min_x] - energies[sorted_x[other]]) < etol:\n logger.info('Stopping optimization! Final %s = %f' % (\n lattice_direction, min_x))\n break\n if ind == 0 and len(sorted_x) > 2:\n x = sorted_x[0] - abs(sorted_x[1] - sorted_x[0])\n logger.info(\n 'Lowest energy lies below bounds. Setting %s = %f.' %\n (lattice_direction, x))\n elif ind == len(sorted_x) - 1 and len(sorted_x) > 2:\n x = sorted_x[-1] + abs(sorted_x[-1] - sorted_x[-2])\n logger.info(\n 'Lowest energy lies above bounds. Setting %s = %f.' %\n (lattice_direction, x))\n elif algo.lower() == 'bfgs' and len(sorted_x) >= 4:\n try:\n x1 = list(energies.keys())\n y1 = [energies[j] for j in x1]\n z1 = np.polyfit(x1, y1, 2)\n pp = np.poly1d(z1)\n from scipy.optimize import minimize\n result = minimize(pp, min_x, bounds=[(sorted_x[0],\n sorted_x[-1])])\n if not result.success or result.x[0] < 0:\n raise ValueError('Negative lattice constant!')\n x = result.x[0]\n logger.info('BFGS minimized %s = %f.' % (\n lattice_direction, x))\n except ValueError as ex:\n logger.info(str(ex))\n x = (min_x + sorted_x[other]) / 2\n logger.info('Falling back on bisection %s = %f.' %\n (lattice_direction, x))\n else:\n x = (min_x + sorted_x[other]) / 2\n logger.info('Bisection %s = %f.' % (lattice_direction, x))\n lattice = lattice.matrix\n lattice[lattice_index] = lattice[lattice_index] / np.linalg.norm(\n lattice[lattice_index]) * x\n s = Structure(lattice, structure.species, structure.frac_coords)\n fname = 'POSCAR.%f' % x\n s.to(filename=fname)\n incar_update = {'ISTART': 1, 'NSW': nsw, 'ISIF': 2}\n settings = [{'dict': 'INCAR', 'action': {'_set': incar_update}},\n {'file': fname, 'action': {'_file_copy': {'dest': 'POSCAR'}}}]\n logger.info('Generating job = %d with parameter %f!' % (i + 1, x))\n yield VaspJob(vasp_cmd, final=False, backup=backup, suffix=\n '.static.%f' % x, settings_override=settings, **vasp_job_kwargs)\n with open('EOS.txt', 'wt') as f:\n f.write('# %s energy\\n' % lattice_direction)\n for k in sorted(energies.keys()):\n f.write('%f %f\\n' % (k, energies[k]))\n", "role": "user" }, { "content": "constrained_opt_run", "role": "assistant" } ]
def x(self): neb_dirs = self.neb_dirs if self.backup: for f in VASP_NEB_INPUT_FILES: shutil.copy(f, '{}.orig'.format(f)) for path in neb_dirs: poscar = os.path.join(path, 'POSCAR') shutil.copy(poscar, '{}.orig'.format(poscar)) if self.half_kpts and os.path.exists('KPOINTS'): kpts = Kpoints.from_file('KPOINTS') kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1) kpts.kpts = kpts.kpts.astype(int).tolist() if tuple(kpts.kpts[0]) == (1, 1, 1): kpt_dic = kpts.as_dict() kpt_dic['generation_style'] = 'Gamma' kpts = Kpoints.from_dict(kpt_dic) kpts.write_file('KPOINTS') if self.auto_npar: try: incar = Incar.from_file('INCAR') import multiprocessing ncores = os.environ.get('NSLOTS') or multiprocessing.cpu_count() ncores = int(ncores) for npar in range(int(math.sqrt(ncores)), ncores): if ncores % npar == 0: incar['NPAR'] = npar break incar.write_file('INCAR') except: pass if self.auto_continue and os.path.exists('STOPCAR') and not os.access( 'STOPCAR', os.W_OK): os.chmod('STOPCAR', 420) os.remove('STOPCAR') for path in self.neb_sub: contcar = os.path.join(path, 'CONTCAR') poscar = os.path.join(path, 'POSCAR') shutil.copy(contcar, poscar) if self.settings_override is not None: VaspModder().apply_actions(self.settings_override)
setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n neb_dirs = self.neb_dirs\n if self.backup:\n for f in VASP_NEB_INPUT_FILES:\n shutil.copy(f, '{}.orig'.format(f))\n for path in neb_dirs:\n poscar = os.path.join(path, 'POSCAR')\n shutil.copy(poscar, '{}.orig'.format(poscar))\n if self.half_kpts and os.path.exists('KPOINTS'):\n kpts = Kpoints.from_file('KPOINTS')\n kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1)\n kpts.kpts = kpts.kpts.astype(int).tolist()\n if tuple(kpts.kpts[0]) == (1, 1, 1):\n kpt_dic = kpts.as_dict()\n kpt_dic['generation_style'] = 'Gamma'\n kpts = Kpoints.from_dict(kpt_dic)\n kpts.write_file('KPOINTS')\n if self.auto_npar:\n try:\n incar = Incar.from_file('INCAR')\n import multiprocessing\n ncores = os.environ.get('NSLOTS') or multiprocessing.cpu_count()\n ncores = int(ncores)\n for npar in range(int(math.sqrt(ncores)), ncores):\n if ncores % npar == 0:\n incar['NPAR'] = npar\n break\n incar.write_file('INCAR')\n except:\n pass\n if self.auto_continue and os.path.exists('STOPCAR') and not os.access(\n 'STOPCAR', os.W_OK):\n os.chmod('STOPCAR', 420)\n os.remove('STOPCAR')\n for path in self.neb_sub:\n contcar = os.path.join(path, 'CONTCAR')\n poscar = os.path.join(path, 'POSCAR')\n shutil.copy(contcar, poscar)\n if self.settings_override is not None:\n VaspModder().apply_actions(self.settings_override)\n", "role": "user" }, { "content": "setup", "role": "assistant" } ]
def x(self): for path in self.neb_dirs: for f in VASP_NEB_OUTPUT_SUB_FILES: f = os.path.join(path, f) if os.path.exists(f): if self.final and self.suffix != '': shutil.move(f, '{}{}'.format(f, self.suffix)) elif self.suffix != '': shutil.copy(f, '{}{}'.format(f, self.suffix)) for f in (VASP_NEB_OUTPUT_FILES + [self.output_file]): if os.path.exists(f): if self.final and self.suffix != '': shutil.move(f, '{}{}'.format(f, self.suffix)) elif self.suffix != '': shutil.copy(f, '{}{}'.format(f, self.suffix))
postprocess
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for path in self.neb_dirs:\n for f in VASP_NEB_OUTPUT_SUB_FILES:\n f = os.path.join(path, f)\n if os.path.exists(f):\n if self.final and self.suffix != '':\n shutil.move(f, '{}{}'.format(f, self.suffix))\n elif self.suffix != '':\n shutil.copy(f, '{}{}'.format(f, self.suffix))\n for f in (VASP_NEB_OUTPUT_FILES + [self.output_file]):\n if os.path.exists(f):\n if self.final and self.suffix != '':\n shutil.move(f, '{}{}'.format(f, self.suffix))\n elif self.suffix != '':\n shutil.copy(f, '{}{}'.format(f, self.suffix))\n", "role": "user" }, { "content": "postprocess", "role": "assistant" } ]
def x(self): if self.backup: shutil.copy(self.input_file, '{}.orig'.format(self.input_file))
setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.backup:\n shutil.copy(self.input_file, '{}.orig'.format(self.input_file))\n", "role": "user" }, { "content": "setup", "role": "assistant" } ]
def x(self): with zopen(self.output_file, 'w') as fout: return subprocess.Popen(self.nwchem_cmd + [self.input_file], stdout =fout)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with zopen(self.output_file, 'w') as fout:\n return subprocess.Popen(self.nwchem_cmd + [self.input_file], stdout\n =fout)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(x): x = float(x) if x < 0.0 or x > 1.0: raise ArgumentTypeError('{} not in range [0.0, 1.0]'.format(x)) return x
valid_GC
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n x = float(x)\n if x < 0.0 or x > 1.0:\n raise ArgumentTypeError('{} not in range [0.0, 1.0]'.format(x))\n return x\n", "role": "user" }, { "content": "valid_GC", "role": "assistant" } ]
def x(fq, args): if args.quality: quality_check = ave_qual else: quality_check = silent_quality_check minlen = args.length + int(args.headcrop or 0) - int(args.tailcrop or 0) for rec in SeqIO.parse(fq, 'fastq'): if args.GC_filter: gc = (rec.seq.upper().count('C') + rec.seq.upper().count('G') ) / len(rec) else: gc = 0.5 if quality_check(rec.letter_annotations['phred_quality'] ) > args.quality and minlen <= len(rec ) <= args.maxlength and args.minGC <= gc <= args.maxGC: print(rec[args.headcrop:args.tailcrop].format('fastq'), end='')
filter_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fq, args):\n if args.quality:\n quality_check = ave_qual\n else:\n quality_check = silent_quality_check\n minlen = args.length + int(args.headcrop or 0) - int(args.tailcrop or 0)\n for rec in SeqIO.parse(fq, 'fastq'):\n if args.GC_filter:\n gc = (rec.seq.upper().count('C') + rec.seq.upper().count('G')\n ) / len(rec)\n else:\n gc = 0.5\n if quality_check(rec.letter_annotations['phred_quality']\n ) > args.quality and minlen <= len(rec\n ) <= args.maxlength and args.minGC <= gc <= args.maxGC:\n print(rec[args.headcrop:args.tailcrop].format('fastq'), end='')\n", "role": "user" }, { "content": "filter_stream", "role": "assistant" } ]
def x(fq, args): data = {entry[0]: entry[1] for entry in process_summary(summaryfile= args.summary, threads='NA', readtype=args.readtype, barcoded=False) [['readIDs', 'quals']].itertuples(index=False)} try: for record in SeqIO.parse(fq, 'fastq'): if data[record.id] > args.quality and args.length <= len(record ) <= args.maxlength: print(record[args.headcrop:args.tailcrop].format('fastq'), end='') except KeyError: logging.error( 'mismatch between summary and fastq: {} was not found in the summary file.' .format(record.id)) sys.exit( """ ERROR: mismatch between sequencing_summary and fastq file: {} was not found in the summary file. Quitting.""" .format(record.id))
filter_using_summary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fq, args):\n data = {entry[0]: entry[1] for entry in process_summary(summaryfile=\n args.summary, threads='NA', readtype=args.readtype, barcoded=False)\n [['readIDs', 'quals']].itertuples(index=False)}\n try:\n for record in SeqIO.parse(fq, 'fastq'):\n if data[record.id] > args.quality and args.length <= len(record\n ) <= args.maxlength:\n print(record[args.headcrop:args.tailcrop].format('fastq'),\n end='')\n except KeyError:\n logging.error(\n 'mismatch between summary and fastq: {} was not found in the summary file.'\n .format(record.id))\n sys.exit(\n \"\"\"\nERROR: mismatch between sequencing_summary and fastq file: {} was not found in the summary file.\nQuitting.\"\"\"\n .format(record.id))\n", "role": "user" }, { "content": "filter_using_summary", "role": "assistant" } ]
def x(func): def x(obj, *args, **kw): conn = ACCESS_KEYS if not (conn and conn.get('master_key')): message = '%s requires the master key' % func.__name__ raise core.ParseError(message) func(obj, *args, **kw) return ret
master_key_required
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n def x(obj, *args, **kw):\n conn = ACCESS_KEYS\n if not (conn and conn.get('master_key')):\n message = '%s requires the master key' % func.__name__\n raise core.ParseError(message)\n func(obj, *args, **kw)\n return ret\n", "role": "user" }, { "content": "master_key_required", "role": "assistant" } ]
def x(cls, uri, http_verb, extra_headers=None, batch=False, _body=None, **kw): if batch: urlsplitter = urlparse(API_ROOT).netloc ret = {'method': http_verb, 'path': uri.split(urlsplitter, 1)[1]} if kw: ret['body'] = kw return ret if not ('app_id' in ACCESS_KEYS and 'rest_key' in ACCESS_KEYS): raise core.ParseError('Missing connection credentials') app_id = ACCESS_KEYS.get('app_id') rest_key = ACCESS_KEYS.get('rest_key') master_key = ACCESS_KEYS.get('master_key') url = uri if uri.startswith(API_ROOT) else cls.ENDPOINT_ROOT + uri if _body is None: data = kw and json.dumps(kw, default=date_handler) or '{}' else: data = _body if http_verb == 'GET' and data: url += '?%s' % urlencode(kw) data = None elif cls.__name__ == 'File': data = data else: data = data.encode('utf-8') headers = {'Content-type': 'application/json', 'X-Parse-Application-Id': app_id, 'X-Parse-REST-API-Key': rest_key} headers.update(extra_headers or {}) if cls.__name__ == 'File': request = Request(url.encode('utf-8'), data, headers) else: request = Request(url, data, headers) if ACCESS_KEYS.get('session_token'): request.add_header('X-Parse-Session-Token', ACCESS_KEYS.get( 'session_token')) elif master_key: request.add_header('X-Parse-Master-Key', master_key) request.get_method = lambda : http_verb try: response = urlopen(request, timeout=CONNECTION_TIMEOUT) except HTTPError as e: exc = {(400): core.ResourceRequestBadRequest, (401): core. ResourceRequestLoginRequired, (403): core. ResourceRequestForbidden, (404): core.ResourceRequestNotFound}.get( e.code, core.ParseError) raise exc(e.read()) return json.loads(response.read().decode('utf-8'))
execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, uri, http_verb, extra_headers=None, batch=False, _body=None, **kw):\n if batch:\n urlsplitter = urlparse(API_ROOT).netloc\n ret = {'method': http_verb, 'path': uri.split(urlsplitter, 1)[1]}\n if kw:\n ret['body'] = kw\n return ret\n if not ('app_id' in ACCESS_KEYS and 'rest_key' in ACCESS_KEYS):\n raise core.ParseError('Missing connection credentials')\n app_id = ACCESS_KEYS.get('app_id')\n rest_key = ACCESS_KEYS.get('rest_key')\n master_key = ACCESS_KEYS.get('master_key')\n url = uri if uri.startswith(API_ROOT) else cls.ENDPOINT_ROOT + uri\n if _body is None:\n data = kw and json.dumps(kw, default=date_handler) or '{}'\n else:\n data = _body\n if http_verb == 'GET' and data:\n url += '?%s' % urlencode(kw)\n data = None\n elif cls.__name__ == 'File':\n data = data\n else:\n data = data.encode('utf-8')\n headers = {'Content-type': 'application/json', 'X-Parse-Application-Id':\n app_id, 'X-Parse-REST-API-Key': rest_key}\n headers.update(extra_headers or {})\n if cls.__name__ == 'File':\n request = Request(url.encode('utf-8'), data, headers)\n else:\n request = Request(url, data, headers)\n if ACCESS_KEYS.get('session_token'):\n request.add_header('X-Parse-Session-Token', ACCESS_KEYS.get(\n 'session_token'))\n elif master_key:\n request.add_header('X-Parse-Master-Key', master_key)\n request.get_method = lambda : http_verb\n try:\n response = urlopen(request, timeout=CONNECTION_TIMEOUT)\n except HTTPError as e:\n exc = {(400): core.ResourceRequestBadRequest, (401): core.\n ResourceRequestLoginRequired, (403): core.\n ResourceRequestForbidden, (404): core.ResourceRequestNotFound}.get(\n e.code, core.ParseError)\n raise exc(e.read())\n return json.loads(response.read().decode('utf-8'))\n", "role": "user" }, { "content": "execute", "role": "assistant" } ]
def x(self, methods): methods = list(methods) if not methods: return queries, callbacks = list(zip(*[m(batch=True) for m in methods])) responses = self.execute('', 'POST', requests=queries) batched_errors = [] for callback, response in zip(callbacks, responses): if 'success' in response: callback(response['success']) else: batched_errors.append(response['error']) if batched_errors: raise core.ParseBatchError(batched_errors)
batch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, methods):\n methods = list(methods)\n if not methods:\n return\n queries, callbacks = list(zip(*[m(batch=True) for m in methods]))\n responses = self.execute('', 'POST', requests=queries)\n batched_errors = []\n for callback, response in zip(callbacks, responses):\n if 'success' in response:\n callback(response['success'])\n else:\n batched_errors.append(response['error'])\n if batched_errors:\n raise core.ParseBatchError(batched_errors)\n", "role": "user" }, { "content": "batch", "role": "assistant" } ]
def x(cls, installation_id, channels_to_add=set(), channels_to_remove=set(), **kw): installation_url = cls._get_installation_url(installation_id) current_config = cls.GET(installation_url) new_channels = list(set(current_config['channels']).union( channels_to_add).difference(channels_to_remove)) cls.PUT(installation_url, channels=new_channels)
update_channels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, installation_id, channels_to_add=set(), channels_to_remove=set(),\n **kw):\n installation_url = cls._get_installation_url(installation_id)\n current_config = cls.GET(installation_url)\n new_channels = list(set(current_config['channels']).union(\n channels_to_add).difference(channels_to_remove))\n cls.PUT(installation_url, channels=new_channels)\n", "role": "user" }, { "content": "update_channels", "role": "assistant" } ]
def x(self, count=False): if self._result_cache is not None: return len(self._result_cache) if count else self._result_cache """ Return a list of objects matching query, or if count == True return only the number of objects matching. """ options = dict(self._options) if self._where: options['where'] = json.dumps(self._where) if self._select_related: options['include'] = ','.join(self._select_related) if count: return self._manager._count(**options) self._result_cache = self._manager._fetch(**options) return self._result_cache
fetch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, count=False):\n if self._result_cache is not None:\n return len(self._result_cache) if count else self._result_cache\n \"\"\"\n Return a list of objects matching query, or if count == True return\n only the number of objects matching.\n \"\"\"\n options = dict(self._options)\n if self._where:\n options['where'] = json.dumps(self._where)\n if self._select_related:\n options['include'] = ','.join(self._select_related)\n if count:\n return self._manager._count(**options)\n self._result_cache = self._manager._fetch(**options)\n return self._result_cache\n", "role": "user" }, { "content": "fetch", "role": "assistant" } ]
def x(name=None): def x(cls): ParseType.type_mapping[name or cls.__name__] = cls return cls return wrapped
complex_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name=None):\n\n def x(cls):\n ParseType.type_mapping[name or cls.__name__] = cls\n return cls\n return wrapped\n", "role": "user" }, { "content": "complex_type", "role": "assistant" } ]
def x(cls, class_name): class_name = str(class_name.lstrip('_')) types = ParseResource.__subclasses__() while types: t = types.pop() if t.__name__ == class_name: return t types.extend(t.__subclasses__()) else: return type(class_name, (Object,), {})
factory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, class_name):\n class_name = str(class_name.lstrip('_'))\n types = ParseResource.__subclasses__()\n while types:\n t = types.pop()\n if t.__name__ == class_name:\n return t\n types.extend(t.__subclasses__())\n else:\n return type(class_name, (Object,), {})\n", "role": "user" }, { "content": "factory", "role": "assistant" } ]
def x(cls): root = '/'.join([API_ROOT, 'schemas', cls.__name__]) schema = cls.GET(root) return schema
schema
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls):\n root = '/'.join([API_ROOT, 'schemas', cls.__name__])\n schema = cls.GET(root)\n return schema\n", "role": "user" }, { "content": "schema", "role": "assistant" } ]
def x(cls, key): root = '/'.join([API_ROOT, 'schemas', cls.__name__]) payload = {'className': cls.__name__, 'fields': {key: {'__op': 'Delete'}}} cls.PUT(root, **payload)
schema_delete_field
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, key):\n root = '/'.join([API_ROOT, 'schemas', cls.__name__])\n payload = {'className': cls.__name__, 'fields': {key: {'__op': 'Delete'}}}\n cls.PUT(root, **payload)\n", "role": "user" }, { "content": "schema_delete_field", "role": "assistant" } ]
def x(self, key, amount=1): payload = {key: {'__op': 'Increment', 'amount': amount}} self.__class__.PUT(self._absolute_url, **payload) self.__dict__[key] += amount
increment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, amount=1):\n payload = {key: {'__op': 'Increment', 'amount': amount}}\n self.__class__.PUT(self._absolute_url, **payload)\n self.__dict__[key] += amount\n", "role": "user" }, { "content": "increment", "role": "assistant" } ]
def x(self, key): payload = {key: {'__op': 'Delete'}} self.__class__.PUT(self._absolute_url, **payload) del self.__dict__[key]
remove
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key):\n payload = {key: {'__op': 'Delete'}}\n self.__class__.PUT(self._absolute_url, **payload)\n del self.__dict__[key]\n", "role": "user" }, { "content": "remove", "role": "assistant" } ]
def x(func): def x(obj, *args, **kw): if not hasattr(obj, 'sessionToken'): message = '%s requires a logged-in session' % func.__name__ raise ResourceRequestLoginRequired(message) return func(obj, *args, **kw) return ret
login_required
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n def x(obj, *args, **kw):\n if not hasattr(obj, 'sessionToken'):\n message = '%s requires a logged-in session' % func.__name__\n raise ResourceRequestLoginRequired(message)\n return func(obj, *args, **kw)\n return ret\n", "role": "user" }, { "content": "login_required", "role": "assistant" } ]
def x(email): url = '/'.join([API_ROOT, 'requestPasswordReset']) try: User.POST(url, email=email) return True except ParseError: return False
request_password_reset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(email):\n url = '/'.join([API_ROOT, 'requestPasswordReset'])\n try:\n User.POST(url, email=email)\n return True\n except ParseError:\n return False\n", "role": "user" }, { "content": "request_password_reset", "role": "assistant" } ]
def x(d): res = {} for k, v in iteritems(d): if isinstance(v, string_types) and DATETIME_ISO_FORMAT.match(v): v = dateutil.parser.parse(v) res[k] = v return res
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d):\n res = {}\n for k, v in iteritems(d):\n if isinstance(v, string_types) and DATETIME_ISO_FORMAT.match(v):\n v = dateutil.parser.parse(v)\n res[k] = v\n return res\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(obj, path, **kw): open_kw = {'mode': 'w'} if PY3: open_kw['encoding'] = 'utf-8' if kw.get('indent') and kw.get('separators') is None: kw['separators'] = ',', ': ' with open(str(path), **open_kw) as fp: return json.dump(obj, fp, **kw)
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj, path, **kw):\n open_kw = {'mode': 'w'}\n if PY3:\n open_kw['encoding'] = 'utf-8'\n if kw.get('indent') and kw.get('separators') is None:\n kw['separators'] = ',', ': '\n with open(str(path), **open_kw) as fp:\n return json.dump(obj, fp, **kw)\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(path, **kw): _kw = {} if PY3: _kw['encoding'] = 'utf-8' with open(str(path), **_kw) as fp: return json.load(fp, **kw)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, **kw):\n _kw = {}\n if PY3:\n _kw['encoding'] = 'utf-8'\n with open(str(path), **_kw) as fp:\n return json.load(fp, **kw)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(text, brackets=None): res = [] for c, type_ in _tokens(text, brackets=brackets): if type_ == TextType.text: res.append(c) return ''.join(res).strip()
strip_brackets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, brackets=None):\n res = []\n for c, type_ in _tokens(text, brackets=brackets):\n if type_ == TextType.text:\n res.append(c)\n return ''.join(res).strip()\n", "role": "user" }, { "content": "strip_brackets", "role": "assistant" } ]
def x(text, separators=WHITESPACE, brackets=None): res, chunk = [], [] for c, type_ in _tokens(text, brackets=brackets): if type_ == TextType.text and c in separators: res.append(''.join(chunk).strip()) chunk = [] else: chunk.append(c) res.append(''.join(chunk).strip()) return nfilter(res)
split_text_with_context
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, separators=WHITESPACE, brackets=None):\n res, chunk = [], []\n for c, type_ in _tokens(text, brackets=brackets):\n if type_ == TextType.text and c in separators:\n res.append(''.join(chunk).strip())\n chunk = []\n else:\n chunk.append(c)\n res.append(''.join(chunk).strip())\n return nfilter(res)\n", "role": "user" }, { "content": "split_text_with_context", "role": "assistant" } ]
def x(text, separators=re.compile('\\s'), brackets=None, strip=False): if not isinstance(separators, PATTERN_TYPE): separators = re.compile('[{0}]'.format(''.join('\\{0}'.format(c) for c in separators))) return nfilter(s.strip() if strip else s for s in separators.split( strip_brackets(text, brackets=brackets)))
split_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, separators=re.compile('\\\\s'), brackets=None, strip=False):\n if not isinstance(separators, PATTERN_TYPE):\n separators = re.compile('[{0}]'.format(''.join('\\\\{0}'.format(c) for\n c in separators)))\n return nfilter(s.strip() if strip else s for s in separators.split(\n strip_brackets(text, brackets=brackets)))\n", "role": "user" }, { "content": "split_text", "role": "assistant" } ]