source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(cls, app, namespaces, shard_count, query_spec):
key_ranges_by_ns = []
for namespace in namespaces:
ranges = cls._split_ns_by_scatter(shard_count, namespace,
query_spec.entity_kind, app)
random.shuffle(ranges)
key_ranges_by_ns.append(ranges)
ranges_by_shard = [[] for _ in range(shard_count)]
for ranges in key_ranges_by_ns:
for i, k_range in enumerate(ranges):
if k_range:
ranges_by_shard[i].append(k_range)
key_ranges_by_shard = []
for ranges in ranges_by_shard:
if ranges:
key_ranges_by_shard.append(key_ranges.KeyRangesFactory.
create_from_list(ranges))
return key_ranges_by_shard
|
to_key_ranges_by_shard
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, app, namespaces, shard_count, query_spec):\n key_ranges_by_ns = []\n for namespace in namespaces:\n ranges = cls._split_ns_by_scatter(shard_count, namespace,\n query_spec.entity_kind, app)\n random.shuffle(ranges)\n key_ranges_by_ns.append(ranges)\n ranges_by_shard = [[] for _ in range(shard_count)]\n for ranges in key_ranges_by_ns:\n for i, k_range in enumerate(ranges):\n if k_range:\n ranges_by_shard[i].append(k_range)\n key_ranges_by_shard = []\n for ranges in ranges_by_shard:\n if ranges:\n key_ranges_by_shard.append(key_ranges.KeyRangesFactory.\n create_from_list(ranges))\n return key_ranges_by_shard\n",
"role": "user"
},
{
"content": "to_key_ranges_by_shard",
"role": "assistant"
}
] |
def x(cls, shard_count, namespace, raw_entity_kind, app):
if shard_count == 1:
return [key_range.KeyRange(namespace=namespace, _app=app)]
ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace,
_app=app, keys_only=True)
ds_query.Order('__scatter__')
oversampling_factor = 32
random_keys = ds_query.Get(shard_count * oversampling_factor)
if not random_keys:
return [key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (
shard_count - 1)
random_keys.sort()
if len(random_keys) >= shard_count:
random_keys = cls._choose_split_points(random_keys, shard_count)
k_ranges = []
k_ranges.append(key_range.KeyRange(key_start=None, key_end=random_keys[
0], direction=key_range.KeyRange.ASC, include_start=False,
include_end=False, namespace=namespace, _app=app))
for i in range(0, len(random_keys) - 1):
k_ranges.append(key_range.KeyRange(key_start=random_keys[i],
key_end=random_keys[i + 1], direction=key_range.KeyRange.ASC,
include_start=True, include_end=False, namespace=namespace,
_app=app))
k_ranges.append(key_range.KeyRange(key_start=random_keys[-1], key_end=
None, direction=key_range.KeyRange.ASC, include_start=True,
include_end=False, namespace=namespace, _app=app))
if len(k_ranges) < shard_count:
k_ranges += [None] * (shard_count - len(k_ranges))
return k_ranges
|
split_ns_by_scatter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, shard_count, namespace, raw_entity_kind, app):\n if shard_count == 1:\n return [key_range.KeyRange(namespace=namespace, _app=app)]\n ds_query = datastore.Query(kind=raw_entity_kind, namespace=namespace,\n _app=app, keys_only=True)\n ds_query.Order('__scatter__')\n oversampling_factor = 32\n random_keys = ds_query.Get(shard_count * oversampling_factor)\n if not random_keys:\n return [key_range.KeyRange(namespace=namespace, _app=app)] + [None] * (\n shard_count - 1)\n random_keys.sort()\n if len(random_keys) >= shard_count:\n random_keys = cls._choose_split_points(random_keys, shard_count)\n k_ranges = []\n k_ranges.append(key_range.KeyRange(key_start=None, key_end=random_keys[\n 0], direction=key_range.KeyRange.ASC, include_start=False,\n include_end=False, namespace=namespace, _app=app))\n for i in range(0, len(random_keys) - 1):\n k_ranges.append(key_range.KeyRange(key_start=random_keys[i],\n key_end=random_keys[i + 1], direction=key_range.KeyRange.ASC,\n include_start=True, include_end=False, namespace=namespace,\n _app=app))\n k_ranges.append(key_range.KeyRange(key_start=random_keys[-1], key_end=\n None, direction=key_range.KeyRange.ASC, include_start=True,\n include_end=False, namespace=namespace, _app=app))\n if len(k_ranges) < shard_count:\n k_ranges += [None] * (shard_count - len(k_ranges))\n return k_ranges\n",
"role": "user"
},
{
"content": "split_ns_by_scatter",
"role": "assistant"
}
] |
def x(alphabet=NAMESPACE_CHARACTERS, max_length=MAX_NAMESPACE_LENGTH,
batch_size=NAMESPACE_BATCH_SIZE):
global NAMESPACE_CHARACTERS
global MAX_NAMESPACE_LENGTH
global MAX_NAMESPACE
global _LEX_DISTANCE
global NAMESPACE_BATCH_SIZE
NAMESPACE_CHARACTERS = alphabet
MAX_NAMESPACE_LENGTH = max_length
MAX_NAMESPACE = NAMESPACE_CHARACTERS[-1] * MAX_NAMESPACE_LENGTH
NAMESPACE_BATCH_SIZE = batch_size
_LEX_DISTANCE = [1]
for i in range(1, MAX_NAMESPACE_LENGTH):
_LEX_DISTANCE.append(_LEX_DISTANCE[i - 1] * len(
NAMESPACE_CHARACTERS) + 1)
del i
|
setup_constants
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(alphabet=NAMESPACE_CHARACTERS, max_length=MAX_NAMESPACE_LENGTH,\n batch_size=NAMESPACE_BATCH_SIZE):\n global NAMESPACE_CHARACTERS\n global MAX_NAMESPACE_LENGTH\n global MAX_NAMESPACE\n global _LEX_DISTANCE\n global NAMESPACE_BATCH_SIZE\n NAMESPACE_CHARACTERS = alphabet\n MAX_NAMESPACE_LENGTH = max_length\n MAX_NAMESPACE = NAMESPACE_CHARACTERS[-1] * MAX_NAMESPACE_LENGTH\n NAMESPACE_BATCH_SIZE = batch_size\n _LEX_DISTANCE = [1]\n for i in range(1, MAX_NAMESPACE_LENGTH):\n _LEX_DISTANCE.append(_LEX_DISTANCE[i - 1] * len(\n NAMESPACE_CHARACTERS) + 1)\n del i\n",
"role": "user"
},
{
"content": "setup_constants",
"role": "assistant"
}
] |
def x(n, _max_length=None):
if _max_length is None:
_max_length = MAX_NAMESPACE_LENGTH
length = _LEX_DISTANCE[_max_length - 1]
if n == 0:
return ''
n -= 1
return NAMESPACE_CHARACTERS[n / length] + _ord_to_namespace(n % length,
_max_length - 1)
|
ord_to_namespace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, _max_length=None):\n if _max_length is None:\n _max_length = MAX_NAMESPACE_LENGTH\n length = _LEX_DISTANCE[_max_length - 1]\n if n == 0:\n return ''\n n -= 1\n return NAMESPACE_CHARACTERS[n / length] + _ord_to_namespace(n % length,\n _max_length - 1)\n",
"role": "user"
},
{
"content": "ord_to_namespace",
"role": "assistant"
}
] |
def x(namespace):
n = 0
for i, c in enumerate(namespace):
n += _LEX_DISTANCE[MAX_NAMESPACE_LENGTH - i - 1
] * NAMESPACE_CHARACTERS.index(c) + 1
return n
|
namespace_to_ord
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(namespace):\n n = 0\n for i, c in enumerate(namespace):\n n += _LEX_DISTANCE[MAX_NAMESPACE_LENGTH - i - 1\n ] * NAMESPACE_CHARACTERS.index(c) + 1\n return n\n",
"role": "user"
},
{
"content": "namespace_to_ord",
"role": "assistant"
}
] |
def x(namespace, app):
if namespace:
return db.Key.from_path(metadata.Namespace.KIND_NAME, namespace,
_app=app)
else:
return db.Key.from_path(metadata.Namespace.KIND_NAME, metadata.
Namespace.EMPTY_NAMESPACE_ID, _app=app)
|
key_for_namespace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(namespace, app):\n if namespace:\n return db.Key.from_path(metadata.Namespace.KIND_NAME, namespace,\n _app=app)\n else:\n return db.Key.from_path(metadata.Namespace.KIND_NAME, metadata.\n Namespace.EMPTY_NAMESPACE_ID, _app=app)\n",
"role": "user"
},
{
"content": "key_for_namespace",
"role": "assistant"
}
] |
def x(app, limit):
ns_query = datastore.Query('__namespace__', keys_only=True, _app=app)
return list(ns_query.Run(limit=limit, batch_size=limit))
|
get_namespace_keys
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(app, limit):\n ns_query = datastore.Query('__namespace__', keys_only=True, _app=app)\n return list(ns_query.Run(limit=limit, batch_size=limit))\n",
"role": "user"
},
{
"content": "get_namespace_keys",
"role": "assistant"
}
] |
def x(self):
if self.is_single_namespace:
return [self]
mid_point = (_namespace_to_ord(self.namespace_start) +
_namespace_to_ord(self.namespace_end)) // 2
return [NamespaceRange(self.namespace_start, _ord_to_namespace(
mid_point), _app=self.app), NamespaceRange(_ord_to_namespace(
mid_point + 1), self.namespace_end, _app=self.app)]
|
split_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.is_single_namespace:\n return [self]\n mid_point = (_namespace_to_ord(self.namespace_start) +\n _namespace_to_ord(self.namespace_end)) // 2\n return [NamespaceRange(self.namespace_start, _ord_to_namespace(\n mid_point), _app=self.app), NamespaceRange(_ord_to_namespace(\n mid_point + 1), self.namespace_end, _app=self.app)]\n",
"role": "user"
},
{
"content": "split_range",
"role": "assistant"
}
] |
def x(self, after_namespace):
namespace_start = _ord_to_namespace(_namespace_to_ord(after_namespace) + 1)
return NamespaceRange(namespace_start, self.namespace_end, _app=self.app)
|
with_start_after
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, after_namespace):\n namespace_start = _ord_to_namespace(_namespace_to_ord(after_namespace) + 1)\n return NamespaceRange(namespace_start, self.namespace_end, _app=self.app)\n",
"role": "user"
},
{
"content": "with_start_after",
"role": "assistant"
}
] |
def x(self, cursor=None):
filters = {}
filters['__key__ >= '] = _key_for_namespace(self.namespace_start, self.app)
filters['__key__ <= '] = _key_for_namespace(self.namespace_end, self.app)
return datastore.Query('__namespace__', filters=filters, keys_only=True,
cursor=cursor, _app=self.app)
|
make_datastore_query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cursor=None):\n filters = {}\n filters['__key__ >= '] = _key_for_namespace(self.namespace_start, self.app)\n filters['__key__ <= '] = _key_for_namespace(self.namespace_end, self.app)\n return datastore.Query('__namespace__', filters=filters, keys_only=True,\n cursor=cursor, _app=self.app)\n",
"role": "user"
},
{
"content": "make_datastore_query",
"role": "assistant"
}
] |
def x(self):
namespaces_after_key = list(self.make_datastore_query().Run(limit=1))
if not namespaces_after_key:
return None
namespace_after_key = namespaces_after_key[0].name() or ''
return NamespaceRange(namespace_after_key, self.namespace_end, _app=
self.app)
|
normalized_start
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n namespaces_after_key = list(self.make_datastore_query().Run(limit=1))\n if not namespaces_after_key:\n return None\n namespace_after_key = namespaces_after_key[0].name() or ''\n return NamespaceRange(namespace_after_key, self.namespace_end, _app=\n self.app)\n",
"role": "user"
},
{
"content": "normalized_start",
"role": "assistant"
}
] |
def x(self):
obj_dict = dict(namespace_start=self.namespace_start, namespace_end=
self.namespace_end)
if self.app is not None:
obj_dict['app'] = self.app
return obj_dict
|
to_json_object
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n obj_dict = dict(namespace_start=self.namespace_start, namespace_end=\n self.namespace_end)\n if self.app is not None:\n obj_dict['app'] = self.app\n return obj_dict\n",
"role": "user"
},
{
"content": "to_json_object",
"role": "assistant"
}
] |
def x(cls, n, contiguous, can_query=itertools.chain(itertools.repeat(True,
50), itertools.repeat(False)).next, _app=None):
if n < 1:
raise ValueError('n must be >= 1')
ranges = None
if can_query():
if not contiguous:
ns_keys = get_namespace_keys(_app, n + 1)
if not ns_keys:
return []
else:
if len(ns_keys) <= n:
ns_range = []
for ns_key in ns_keys:
ns_range.append(NamespaceRange(ns_key.name() or '',
ns_key.name() or '', _app=_app))
return sorted(ns_range, key=lambda ns_range: ns_range.
namespace_start)
ranges = [NamespaceRange(ns_keys[0].name() or '', _app=_app)]
else:
ns_range = NamespaceRange(_app=_app).normalized_start()
if ns_range is None:
return [NamespaceRange(_app=_app)]
ranges = [ns_range]
else:
ranges = [NamespaceRange(_app=_app)]
singles = []
while ranges and len(ranges) + len(singles) < n:
namespace_range = ranges.pop(0)
if namespace_range.is_single_namespace:
singles.append(namespace_range)
else:
left, right = namespace_range.split_range()
if can_query():
right = right.normalized_start()
if right is not None:
ranges.append(right)
ranges.append(left)
ns_ranges = sorted(singles + ranges, key=lambda ns_range: ns_range.
namespace_start)
if contiguous:
if not ns_ranges:
return [NamespaceRange(_app=_app)]
continuous_ns_ranges = []
for i in range(len(ns_ranges)):
if i == 0:
namespace_start = MIN_NAMESPACE
else:
namespace_start = ns_ranges[i].namespace_start
if i == len(ns_ranges) - 1:
namespace_end = MAX_NAMESPACE
else:
namespace_end = _ord_to_namespace(_namespace_to_ord(
ns_ranges[i + 1].namespace_start) - 1)
continuous_ns_ranges.append(NamespaceRange(namespace_start,
namespace_end, _app=_app))
return continuous_ns_ranges
else:
return ns_ranges
|
split
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, n, contiguous, can_query=itertools.chain(itertools.repeat(True, \n 50), itertools.repeat(False)).next, _app=None):\n if n < 1:\n raise ValueError('n must be >= 1')\n ranges = None\n if can_query():\n if not contiguous:\n ns_keys = get_namespace_keys(_app, n + 1)\n if not ns_keys:\n return []\n else:\n if len(ns_keys) <= n:\n ns_range = []\n for ns_key in ns_keys:\n ns_range.append(NamespaceRange(ns_key.name() or '',\n ns_key.name() or '', _app=_app))\n return sorted(ns_range, key=lambda ns_range: ns_range.\n namespace_start)\n ranges = [NamespaceRange(ns_keys[0].name() or '', _app=_app)]\n else:\n ns_range = NamespaceRange(_app=_app).normalized_start()\n if ns_range is None:\n return [NamespaceRange(_app=_app)]\n ranges = [ns_range]\n else:\n ranges = [NamespaceRange(_app=_app)]\n singles = []\n while ranges and len(ranges) + len(singles) < n:\n namespace_range = ranges.pop(0)\n if namespace_range.is_single_namespace:\n singles.append(namespace_range)\n else:\n left, right = namespace_range.split_range()\n if can_query():\n right = right.normalized_start()\n if right is not None:\n ranges.append(right)\n ranges.append(left)\n ns_ranges = sorted(singles + ranges, key=lambda ns_range: ns_range.\n namespace_start)\n if contiguous:\n if not ns_ranges:\n return [NamespaceRange(_app=_app)]\n continuous_ns_ranges = []\n for i in range(len(ns_ranges)):\n if i == 0:\n namespace_start = MIN_NAMESPACE\n else:\n namespace_start = ns_ranges[i].namespace_start\n if i == len(ns_ranges) - 1:\n namespace_end = MAX_NAMESPACE\n else:\n namespace_end = _ord_to_namespace(_namespace_to_ord(\n ns_ranges[i + 1].namespace_start) - 1)\n continuous_ns_ranges.append(NamespaceRange(namespace_start,\n namespace_end, _app=_app))\n return continuous_ns_ranges\n else:\n return ns_ranges\n",
"role": "user"
},
{
"content": "split",
"role": "assistant"
}
] |
def x(self, data):
data_length = len(data)
if self._size + data_length > self._flush_size:
self.flush()
if not self._exclusive and data_length > _FILE_POOL_MAX_SIZE:
raise errors.Error('Too big input %s (%s).' % (data_length,
_FILE_POOL_MAX_SIZE))
else:
self._buffer.append(data)
self._size += data_length
if self._size > self._flush_size:
self.flush()
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n data_length = len(data)\n if self._size + data_length > self._flush_size:\n self.flush()\n if not self._exclusive and data_length > _FILE_POOL_MAX_SIZE:\n raise errors.Error('Too big input %s (%s).' % (data_length,\n _FILE_POOL_MAX_SIZE))\n else:\n self._buffer.append(data)\n self._size += data_length\n if self._size > self._flush_size:\n self.flush()\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(self):
buf = cStringIO.StringIO()
with records.RecordsWriter(buf) as w:
for record in self._buffer:
w.write(record)
w._pad_block()
str_buf = buf.getvalue()
buf.close()
if not self._exclusive and len(str_buf) > _FILE_POOL_MAX_SIZE:
raise errors.Error(
"Buffer too big. Can't write more than %s bytes in one request: risk of writes interleaving. Got: %s"
% (_FILE_POOL_MAX_SIZE, len(str_buf)))
start_time = time.time()
self._write(str_buf)
if self._ctx:
operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(str_buf))(self
._ctx)
operation.counters.Increment(COUNTER_IO_WRITE_MSEC, int((time.time(
) - start_time) * 1000))(self._ctx)
self._buffer = []
self._size = 0
gc.collect()
|
flush
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n buf = cStringIO.StringIO()\n with records.RecordsWriter(buf) as w:\n for record in self._buffer:\n w.write(record)\n w._pad_block()\n str_buf = buf.getvalue()\n buf.close()\n if not self._exclusive and len(str_buf) > _FILE_POOL_MAX_SIZE:\n raise errors.Error(\n \"Buffer too big. Can't write more than %s bytes in one request: risk of writes interleaving. Got: %s\"\n % (_FILE_POOL_MAX_SIZE, len(str_buf)))\n start_time = time.time()\n self._write(str_buf)\n if self._ctx:\n operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(str_buf))(self\n ._ctx)\n operation.counters.Increment(COUNTER_IO_WRITE_MSEC, int((time.time(\n ) - start_time) * 1000))(self._ctx)\n self._buffer = []\n self._size = 0\n gc.collect()\n",
"role": "user"
},
{
"content": "flush",
"role": "assistant"
}
] |
def x(self, str_buf):
self._filehandle.write(str_buf)
self._buf_size += len(str_buf)
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, str_buf):\n self._filehandle.write(str_buf)\n self._buf_size += len(str_buf)\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self, force=False):
super(GCSRecordsPool, self).flush()
if force:
extra_padding = self._buf_size % self._GCS_BLOCK_SIZE
if extra_padding > 0:
self._write('\x00' * (self._GCS_BLOCK_SIZE - extra_padding))
self._filehandle.flush()
|
flush
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, force=False):\n super(GCSRecordsPool, self).flush()\n if force:\n extra_padding = self._buf_size % self._GCS_BLOCK_SIZE\n if extra_padding > 0:\n self._write('\\x00' * (self._GCS_BLOCK_SIZE - extra_padding))\n self._filehandle.flush()\n",
"role": "user"
},
{
"content": "flush",
"role": "assistant"
}
] |
def x(cls, writer_spec):
if cls.TMP_BUCKET_NAME_PARAM in writer_spec:
return writer_spec[cls.TMP_BUCKET_NAME_PARAM]
return cls._get_gcs_bucket(writer_spec)
|
get_tmp_gcs_bucket
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, writer_spec):\n if cls.TMP_BUCKET_NAME_PARAM in writer_spec:\n return writer_spec[cls.TMP_BUCKET_NAME_PARAM]\n return cls._get_gcs_bucket(writer_spec)\n",
"role": "user"
},
{
"content": "get_tmp_gcs_bucket",
"role": "assistant"
}
] |
def x(cls, writer_spec):
if cls.TMP_BUCKET_NAME_PARAM in writer_spec:
return writer_spec.get(cls._TMP_ACCOUNT_ID_PARAM, None)
return cls._get_account_id(writer_spec)
|
get_tmp_account_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, writer_spec):\n if cls.TMP_BUCKET_NAME_PARAM in writer_spec:\n return writer_spec.get(cls._TMP_ACCOUNT_ID_PARAM, None)\n return cls._get_account_id(writer_spec)\n",
"role": "user"
},
{
"content": "get_tmp_account_id",
"role": "assistant"
}
] |
def x(cls, writer_spec, filename_suffix, use_tmp_bucket=False):
if use_tmp_bucket:
bucket = cls._get_tmp_gcs_bucket(writer_spec)
account_id = cls._get_tmp_account_id(writer_spec)
else:
bucket = cls._get_gcs_bucket(writer_spec)
account_id = cls._get_account_id(writer_spec)
filename = '/%s/%s' % (bucket, filename_suffix)
content_type = writer_spec.get(cls.CONTENT_TYPE_PARAM, None)
options = {}
if cls.ACL_PARAM in writer_spec:
options['x-goog-acl'] = writer_spec.get(cls.ACL_PARAM)
return cloudstorage.open(filename, mode='w', content_type=content_type,
options=options, _account_id=account_id)
|
open_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, writer_spec, filename_suffix, use_tmp_bucket=False):\n if use_tmp_bucket:\n bucket = cls._get_tmp_gcs_bucket(writer_spec)\n account_id = cls._get_tmp_account_id(writer_spec)\n else:\n bucket = cls._get_gcs_bucket(writer_spec)\n account_id = cls._get_account_id(writer_spec)\n filename = '/%s/%s' % (bucket, filename_suffix)\n content_type = writer_spec.get(cls.CONTENT_TYPE_PARAM, None)\n options = {}\n if cls.ACL_PARAM in writer_spec:\n options['x-goog-acl'] = writer_spec.get(cls.ACL_PARAM)\n return cloudstorage.open(filename, mode='w', content_type=content_type,\n options=options, _account_id=account_id)\n",
"role": "user"
},
{
"content": "open_file",
"role": "assistant"
}
] |
def x(self, data):
start_time = time.time()
self._get_write_buffer().write(data)
ctx = context.get()
operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(data))(ctx)
operation.counters.Increment(COUNTER_IO_WRITE_MSEC, int((time.time() -
start_time) * 1000))(ctx)
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n start_time = time.time()\n self._get_write_buffer().write(data)\n ctx = context.get()\n operation.counters.Increment(COUNTER_IO_WRITE_BYTES, len(data))(ctx)\n operation.counters.Increment(COUNTER_IO_WRITE_MSEC, int((time.time() -\n start_time) * 1000))(ctx)\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(cls, mapper_spec):
writer_spec = cls.get_params(mapper_spec, allow_old=False)
if writer_spec.get(cls._NO_DUPLICATE, False) not in (True, False):
raise errors.BadWriterParamsError('No duplicate must a boolean.')
super(_GoogleCloudStorageOutputWriter, cls).validate(mapper_spec)
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mapper_spec):\n writer_spec = cls.get_params(mapper_spec, allow_old=False)\n if writer_spec.get(cls._NO_DUPLICATE, False) not in (True, False):\n raise errors.BadWriterParamsError('No duplicate must a boolean.')\n super(_GoogleCloudStorageOutputWriter, cls).validate(mapper_spec)\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(cls, mr_spec, shard_number, shard_attempt, _writer_state=None):
writer_spec = cls.get_params(mr_spec.mapper, allow_old=False)
seg_index = None
if writer_spec.get(cls._NO_DUPLICATE, False):
seg_index = 0
key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec.
mapreduce_id, shard_number, shard_attempt, seg_index)
return cls._create(writer_spec, key)
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mr_spec, shard_number, shard_attempt, _writer_state=None):\n writer_spec = cls.get_params(mr_spec.mapper, allow_old=False)\n seg_index = None\n if writer_spec.get(cls._NO_DUPLICATE, False):\n seg_index = 0\n key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec.\n mapreduce_id, shard_number, shard_attempt, seg_index)\n return cls._create(writer_spec, key)\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(cls, writer_spec, filename_suffix):
writer = cls._open_file(writer_spec, filename_suffix)
return cls(writer, writer_spec=writer_spec)
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, writer_spec, filename_suffix):\n writer = cls._open_file(writer_spec, filename_suffix)\n return cls(writer, writer_spec=writer_spec)\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(cls, mr_spec, shard_number, shard_attempt, _writer_state=None):
writer_spec = cls.get_params(mr_spec.mapper, allow_old=False)
key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec.
mapreduce_id, shard_number, shard_attempt)
status = _ConsistentStatus()
status.writer_spec = writer_spec
status.mainfile = cls._open_file(writer_spec, key)
status.mapreduce_id = mr_spec.mapreduce_id
status.shard = shard_number
return cls(status)
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mr_spec, shard_number, shard_attempt, _writer_state=None):\n writer_spec = cls.get_params(mr_spec.mapper, allow_old=False)\n key = cls._generate_filename(writer_spec, mr_spec.name, mr_spec.\n mapreduce_id, shard_number, shard_attempt)\n status = _ConsistentStatus()\n status.writer_spec = writer_spec\n status.mainfile = cls._open_file(writer_spec, key)\n status.mapreduce_id = mr_spec.mapreduce_id\n status.shard = shard_number\n return cls(status)\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(self, mainfile, tmpfile, writer_spec):
if mainfile.closed:
return
account_id = self._get_tmp_account_id(writer_spec)
f = cloudstorage_api.open(tmpfile, _account_id=account_id)
data = f.read(self._REWRITE_BLOCK_SIZE)
while data:
mainfile.write(data)
data = f.read(self._REWRITE_BLOCK_SIZE)
f.close()
mainfile.flush()
|
rewrite_tmpfile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mainfile, tmpfile, writer_spec):\n if mainfile.closed:\n return\n account_id = self._get_tmp_account_id(writer_spec)\n f = cloudstorage_api.open(tmpfile, _account_id=account_id)\n data = f.read(self._REWRITE_BLOCK_SIZE)\n while data:\n mainfile.write(data)\n data = f.read(self._REWRITE_BLOCK_SIZE)\n f.close()\n mainfile.flush()\n",
"role": "user"
},
{
"content": "rewrite_tmpfile",
"role": "assistant"
}
] |
def x(cls, status):
tmpl = string.Template(cls._TMPFILE_PATTERN)
filename = tmpl.substitute(id=status.mapreduce_id, shard=status.shard,
random=random.getrandbits(cls._RAND_BITS))
return cls._open_file(status.writer_spec, filename, use_tmp_bucket=True)
|
create_tmpfile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, status):\n tmpl = string.Template(cls._TMPFILE_PATTERN)\n filename = tmpl.substitute(id=status.mapreduce_id, shard=status.shard,\n random=random.getrandbits(cls._RAND_BITS))\n return cls._open_file(status.writer_spec, filename, use_tmp_bucket=True)\n",
"role": "user"
},
{
"content": "create_tmpfile",
"role": "assistant"
}
] |
def x(self, writer_spec, exclude_list=()):
tmpl = string.Template(self._TMPFILE_PREFIX)
prefix = tmpl.substitute(id=self.status.mapreduce_id, shard=self.status
.shard)
bucket = self._get_tmp_gcs_bucket(writer_spec)
account_id = self._get_tmp_account_id(writer_spec)
for f in cloudstorage.listbucket('/%s/%s' % (bucket, prefix),
_account_id=account_id):
if f.filename not in exclude_list:
self._remove_tmpfile(f.filename, self.status.writer_spec)
|
try_to_clean_garbage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, writer_spec, exclude_list=()):\n tmpl = string.Template(self._TMPFILE_PREFIX)\n prefix = tmpl.substitute(id=self.status.mapreduce_id, shard=self.status\n .shard)\n bucket = self._get_tmp_gcs_bucket(writer_spec)\n account_id = self._get_tmp_account_id(writer_spec)\n for f in cloudstorage.listbucket('/%s/%s' % (bucket, prefix),\n _account_id=account_id):\n if f.filename not in exclude_list:\n self._remove_tmpfile(f.filename, self.status.writer_spec)\n",
"role": "user"
},
{
"content": "try_to_clean_garbage",
"role": "assistant"
}
] |
def x(cls, state):
return cls(state[cls.COUNT], state[cls.STRING_LENGTH])
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, state):\n return cls(state[cls.COUNT], state[cls.STRING_LENGTH])\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(cls, job_config):
params = job_config.input_reader_params
count = params[cls.COUNT]
string_length = params.get(cls.STRING_LENGTH, cls._DEFAULT_STRING_LENGTH)
shard_count = job_config.shard_count
count_per_shard = count // shard_count
mr_input_readers = [cls(count_per_shard, string_length) for _ in range(
shard_count)]
left = count - count_per_shard * shard_count
if left > 0:
mr_input_readers.append(cls(left, string_length))
return mr_input_readers
|
split_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, job_config):\n params = job_config.input_reader_params\n count = params[cls.COUNT]\n string_length = params.get(cls.STRING_LENGTH, cls._DEFAULT_STRING_LENGTH)\n shard_count = job_config.shard_count\n count_per_shard = count // shard_count\n mr_input_readers = [cls(count_per_shard, string_length) for _ in range(\n shard_count)]\n left = count - count_per_shard * shard_count\n if left > 0:\n mr_input_readers.append(cls(left, string_length))\n return mr_input_readers\n",
"role": "user"
},
{
"content": "split_input",
"role": "assistant"
}
] |
def x(cls, job_config):
super(SampleInputReader, cls).validate(job_config)
params = job_config.input_reader_params
if cls.COUNT not in params:
raise errors.BadReaderParamsError('Must specify %s' % cls.COUNT)
if not isinstance(params[cls.COUNT], int):
raise errors.BadReaderParamsError('%s should be an int but is %s' %
(cls.COUNT, type(params[cls.COUNT])))
if params[cls.COUNT] <= 0:
raise errors.BadReaderParamsError('%s should be a positive int')
if cls.STRING_LENGTH in params and not (isinstance(params[cls.
STRING_LENGTH], int) and params[cls.STRING_LENGTH] > 0):
raise errors.BadReaderParamsError(
'%s should be a positive int but is %s' % (cls.STRING_LENGTH,
params[cls.STRING_LENGTH]))
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, job_config):\n super(SampleInputReader, cls).validate(job_config)\n params = job_config.input_reader_params\n if cls.COUNT not in params:\n raise errors.BadReaderParamsError('Must specify %s' % cls.COUNT)\n if not isinstance(params[cls.COUNT], int):\n raise errors.BadReaderParamsError('%s should be an int but is %s' %\n (cls.COUNT, type(params[cls.COUNT])))\n if params[cls.COUNT] <= 0:\n raise errors.BadReaderParamsError('%s should be a positive int')\n if cls.STRING_LENGTH in params and not (isinstance(params[cls.\n STRING_LENGTH], int) and params[cls.STRING_LENGTH] > 0):\n raise errors.BadReaderParamsError(\n '%s should be a positive int but is %s' % (cls.STRING_LENGTH,\n params[cls.STRING_LENGTH]))\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(max_length):
weights = [1]
for i in range(1, max_length):
weights.append(weights[i - 1] * len(_ALPHABET) + 1)
weights.reverse()
return weights
|
get_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(max_length):\n weights = [1]\n for i in range(1, max_length):\n weights.append(weights[i - 1] * len(_ALPHABET) + 1)\n weights.reverse()\n return weights\n",
"role": "user"
},
{
"content": "get_weights",
"role": "assistant"
}
] |
def x(content, weights):
ordinal = 0
for i, c in enumerate(content):
ordinal += weights[i] * _ALPHABET.index(c) + 1
return ordinal
|
str_to_ord
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(content, weights):\n ordinal = 0\n for i, c in enumerate(content):\n ordinal += weights[i] * _ALPHABET.index(c) + 1\n return ordinal\n",
"role": "user"
},
{
"content": "str_to_ord",
"role": "assistant"
}
] |
def x(ordinal, weights):
chars = []
for weight in weights:
if ordinal == 0:
return ''.join(chars)
ordinal -= 1
index, ordinal = divmod(ordinal, weight)
chars.append(_ALPHABET[index])
return ''.join(chars)
|
ord_to_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ordinal, weights):\n chars = []\n for weight in weights:\n if ordinal == 0:\n return ''.join(chars)\n ordinal -= 1\n index, ordinal = divmod(ordinal, weight)\n chars.append(_ALPHABET[index])\n return ''.join(chars)\n",
"role": "user"
},
{
"content": "ord_to_str",
"role": "assistant"
}
] |
def x(cls, filters, model_class):
if not filters:
return None, None, None
range_property = None
start_val = None
end_val = None
start_filter = None
end_filter = None
for f in filters:
prop, op, val = f
if op in ['>', '>=', '<', '<=']:
if range_property and range_property != prop:
raise errors.BadReaderParamsError(
'Range on only one property is supported.')
range_property = prop
if val is None:
raise errors.BadReaderParamsError(
"Range can't be None in filter %s", f)
if op in ['>', '>=']:
if start_val is not None:
raise errors.BadReaderParamsError(
'Operation %s is specified more than once.', op)
start_val = val
start_filter = f
else:
if end_val is not None:
raise errors.BadReaderParamsError(
'Operation %s is specified more than once.', op)
end_val = val
end_filter = f
elif op != '=':
raise errors.BadReaderParamsError(
'Only < <= > >= = are supported as operation. Got %s', op)
if not range_property:
return None, None, None
if start_val is None or end_val is None:
raise errors.BadReaderParamsError(
'Filter should contains a complete range on property %s',
range_property)
if issubclass(model_class, db.Model):
property_obj = model_class.properties()[range_property]
else:
property_obj = model_class._properties[range_property]
supported_properties = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS.keys(
) + _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS.keys()
if not isinstance(property_obj, tuple(supported_properties)):
raise errors.BadReaderParamsError(
'Filtered property %s is not supported by sharding.',
range_property)
if not start_val < end_val:
raise errors.BadReaderParamsError(
'Start value %s should be smaller than end value %s', start_val,
end_val)
return property_obj, start_filter, end_filter
|
get_range_from_filters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, filters, model_class):\n if not filters:\n return None, None, None\n range_property = None\n start_val = None\n end_val = None\n start_filter = None\n end_filter = None\n for f in filters:\n prop, op, val = f\n if op in ['>', '>=', '<', '<=']:\n if range_property and range_property != prop:\n raise errors.BadReaderParamsError(\n 'Range on only one property is supported.')\n range_property = prop\n if val is None:\n raise errors.BadReaderParamsError(\n \"Range can't be None in filter %s\", f)\n if op in ['>', '>=']:\n if start_val is not None:\n raise errors.BadReaderParamsError(\n 'Operation %s is specified more than once.', op)\n start_val = val\n start_filter = f\n else:\n if end_val is not None:\n raise errors.BadReaderParamsError(\n 'Operation %s is specified more than once.', op)\n end_val = val\n end_filter = f\n elif op != '=':\n raise errors.BadReaderParamsError(\n 'Only < <= > >= = are supported as operation. Got %s', op)\n if not range_property:\n return None, None, None\n if start_val is None or end_val is None:\n raise errors.BadReaderParamsError(\n 'Filter should contains a complete range on property %s',\n range_property)\n if issubclass(model_class, db.Model):\n property_obj = model_class.properties()[range_property]\n else:\n property_obj = model_class._properties[range_property]\n supported_properties = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS.keys(\n ) + _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS.keys()\n if not isinstance(property_obj, tuple(supported_properties)):\n raise errors.BadReaderParamsError(\n 'Filtered property %s is not supported by sharding.',\n range_property)\n if not start_val < end_val:\n raise errors.BadReaderParamsError(\n 'Start value %s should be smaller than end value %s', start_val,\n end_val)\n return property_obj, start_filter, end_filter\n",
"role": "user"
},
{
"content": "get_range_from_filters",
"role": "assistant"
}
] |
def x(self, n):
new_range_filters = []
name = self.start[0]
prop_cls = self.prop.__class__
if prop_cls in _DISCRETE_PROPERTY_SPLIT_FUNCTIONS:
splitpoints = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS[prop_cls](self.
start[2], self.end[2], n, self.start[1] == '>=', self.end[1] ==
'<=')
start_filter = name, '>=', splitpoints[0]
for p in splitpoints[1:]:
end_filter = name, '<', p
new_range_filters.append([start_filter, end_filter])
start_filter = name, '>=', p
else:
splitpoints = _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS[prop_cls](self.
start[2], self.end[2], n)
start_filter = self.start
for p in splitpoints:
end_filter = name, '<', p
new_range_filters.append([start_filter, end_filter])
start_filter = name, '>=', p
new_range_filters.append([start_filter, self.end])
for f in new_range_filters:
f.extend(self._equality_filters)
return [self.__class__(f, self.model_class_path) for f in new_range_filters
]
|
split
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n):\n new_range_filters = []\n name = self.start[0]\n prop_cls = self.prop.__class__\n if prop_cls in _DISCRETE_PROPERTY_SPLIT_FUNCTIONS:\n splitpoints = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS[prop_cls](self.\n start[2], self.end[2], n, self.start[1] == '>=', self.end[1] ==\n '<=')\n start_filter = name, '>=', splitpoints[0]\n for p in splitpoints[1:]:\n end_filter = name, '<', p\n new_range_filters.append([start_filter, end_filter])\n start_filter = name, '>=', p\n else:\n splitpoints = _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS[prop_cls](self.\n start[2], self.end[2], n)\n start_filter = self.start\n for p in splitpoints:\n end_filter = name, '<', p\n new_range_filters.append([start_filter, end_filter])\n start_filter = name, '>=', p\n new_range_filters.append([start_filter, self.end])\n for f in new_range_filters:\n f.extend(self._equality_filters)\n return [self.__class__(f, self.model_class_path) for f in new_range_filters\n ]\n",
"role": "user"
},
{
"content": "split",
"role": "assistant"
}
] |
def x(self, ns):
if issubclass(self.model_class, db.Model):
query = db.Query(self.model_class, namespace=ns)
for f in self.filters:
query.filter('%s %s' % (f[0], f[1]), f[2])
else:
query = self.model_class.query(namespace=ns)
for f in self.filters:
query = query.filter(ndb.FilterNode(*f))
return query
|
make_query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ns):\n if issubclass(self.model_class, db.Model):\n query = db.Query(self.model_class, namespace=ns)\n for f in self.filters:\n query.filter('%s %s' % (f[0], f[1]), f[2])\n else:\n query = self.model_class.query(namespace=ns)\n for f in self.filters:\n query = query.filter(ndb.FilterNode(*f))\n return query\n",
"role": "user"
},
{
"content": "make_query",
"role": "assistant"
}
] |
def x(cls, job_config):
if job_config.output_writer_cls != cls:
raise errors.BadWriterParamsError(
'Expect output writer class %r, got %r.' % (cls, job_config.
output_writer_cls))
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, job_config):\n if job_config.output_writer_cls != cls:\n raise errors.BadWriterParamsError(\n 'Expect output writer class %r, got %r.' % (cls, job_config.\n output_writer_cls))\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(cls, shard_ctx, iterator):
outs = tuple(iterator)
shard_ctx._state.writer_state['outs'] = outs
|
commit_output
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, shard_ctx, iterator):\n outs = tuple(iterator)\n shard_ctx._state.writer_state['outs'] = outs\n",
"role": "user"
},
{
"content": "commit_output",
"role": "assistant"
}
] |
def x():
pipeline_handlers_map = []
if pipeline:
pipeline_handlers_map = pipeline.create_handlers_map(prefix=
'.*/pipeline')
return pipeline_handlers_map + [('.*/worker_callback.*', handlers.
MapperWorkerCallbackHandler), ('.*/controller_callback.*', handlers
.ControllerCallbackHandler), ('.*/kickoffjob_callback.*', handlers.
KickOffJobHandler), ('.*/finalizejob_callback.*', handlers.
FinalizeJobHandler), ('.*/command/start_job', handlers.
StartJobHandler), ('.*/command/cleanup_job', handlers.
CleanUpJobHandler), ('.*/command/abort_job', handlers.
AbortJobHandler), ('.*/command/list_configs', status.
ListConfigsHandler), ('.*/command/list_jobs', status.
ListJobsHandler), ('.*/command/get_job_detail', status.
GetJobDetailHandler), (STATIC_RE, status.ResourceHandler), ('.*',
RedirectHandler)]
|
create_handlers_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n pipeline_handlers_map = []\n if pipeline:\n pipeline_handlers_map = pipeline.create_handlers_map(prefix=\n '.*/pipeline')\n return pipeline_handlers_map + [('.*/worker_callback.*', handlers.\n MapperWorkerCallbackHandler), ('.*/controller_callback.*', handlers\n .ControllerCallbackHandler), ('.*/kickoffjob_callback.*', handlers.\n KickOffJobHandler), ('.*/finalizejob_callback.*', handlers.\n FinalizeJobHandler), ('.*/command/start_job', handlers.\n StartJobHandler), ('.*/command/cleanup_job', handlers.\n CleanUpJobHandler), ('.*/command/abort_job', handlers.\n AbortJobHandler), ('.*/command/list_configs', status.\n ListConfigsHandler), ('.*/command/list_jobs', status.\n ListJobsHandler), ('.*/command/get_job_detail', status.\n GetJobDetailHandler), (STATIC_RE, status.ResourceHandler), ('.*',\n RedirectHandler)]\n",
"role": "user"
},
{
"content": "create_handlers_map",
"role": "assistant"
}
] |
def x(cls, json):
if json['name'] in _KEYRANGES_CLASSES:
return _KEYRANGES_CLASSES[json['name']].from_json(json)
raise ValueError('Invalid json %s', json)
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, json):\n if json['name'] in _KEYRANGES_CLASSES:\n return _KEYRANGES_CLASSES[json['name']].from_json(json)\n raise ValueError('Invalid json %s', json)\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(s):
s = re.sub('\\s+', ' ', s)
s = re.sub('[\\\\.\\\\?\\\\!]', '\n', s)
return s.split('\n')
|
split_into_sentences
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n s = re.sub('\\\\s+', ' ', s)\n s = re.sub('[\\\\\\\\.\\\\\\\\?\\\\\\\\!]', '\\n', s)\n return s.split('\\n')\n",
"role": "user"
},
{
"content": "split_into_sentences",
"role": "assistant"
}
] |
def x(s):
s = re.sub('\\W+', ' ', s)
s = re.sub('[_0-9]+', ' ', s)
return s.split()
|
split_into_words
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n s = re.sub('\\\\W+', ' ', s)\n s = re.sub('[_0-9]+', ' ', s)\n return s.split()\n",
"role": "user"
},
{
"content": "split_into_words",
"role": "assistant"
}
] |
def x(data):
entry, text_fn = data
text = text_fn()
logging.debug('Got %s', entry.filename)
for s in split_into_sentences(text):
for w in split_into_words(s.lower()):
yield w, entry.filename
|
index_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n entry, text_fn = data\n text = text_fn()\n logging.debug('Got %s', entry.filename)\n for s in split_into_sentences(text):\n for w in split_into_words(s.lower()):\n yield w, entry.filename\n",
"role": "user"
},
{
"content": "index_map",
"role": "assistant"
}
] |
def x(data):
entry, text_fn = data
text = text_fn()
filename = entry.filename
logging.debug('Got %s', filename)
for s in split_into_sentences(text):
words = split_into_words(s.lower())
if len(words) < PHRASE_LENGTH:
yield ':'.join(words), filename
continue
for i in range(0, len(words) - PHRASE_LENGTH):
yield ':'.join(words[i:i + PHRASE_LENGTH]), filename
|
phrases_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n entry, text_fn = data\n text = text_fn()\n filename = entry.filename\n logging.debug('Got %s', filename)\n for s in split_into_sentences(text):\n words = split_into_words(s.lower())\n if len(words) < PHRASE_LENGTH:\n yield ':'.join(words), filename\n continue\n for i in range(0, len(words) - PHRASE_LENGTH):\n yield ':'.join(words[i:i + PHRASE_LENGTH]), filename\n",
"role": "user"
},
{
"content": "phrases_map",
"role": "assistant"
}
] |
def x(key, values):
if len(values) < 10:
return
counts = {}
for filename in values:
counts[filename] = counts.get(filename, 0) + 1
words = re.sub(':', ' ', key)
threshold = len(values) / 2
for filename, count in counts.items():
if count > threshold:
yield '%s:%s\n' % (words, filename)
|
phrases_reduce
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, values):\n if len(values) < 10:\n return\n counts = {}\n for filename in values:\n counts[filename] = counts.get(filename, 0) + 1\n words = re.sub(':', ' ', key)\n threshold = len(values) / 2\n for filename, count in counts.items():\n if count > threshold:\n yield '%s:%s\\n' % (words, filename)\n",
"role": "user"
},
{
"content": "phrases_reduce",
"role": "assistant"
}
] |
def x(username, date, blob_key):
sep = FileMetadata.__SEP
return str(username + sep + str(date) + sep + blob_key)
|
getKeyName
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(username, date, blob_key):\n sep = FileMetadata.__SEP\n return str(username + sep + str(date) + sep + blob_key)\n",
"role": "user"
},
{
"content": "getKeyName",
"role": "assistant"
}
] |
def x(cls, spec):
dec = MontyDecoder()
def x(dotpath):
modname, classname = dotpath.rsplit('.', 1)
mod = __import__(modname, globals(), locals(), [classname], 0)
return getattr(mod, classname)
def x(d):
decoded = {}
for k, v in d.items():
if k.startswith('$'):
if isinstance(v, list):
v = [os.path.expandvars(i) for i in v]
elif isinstance(v, dict):
v = {k2: os.path.expandvars(v2) for k2, v2 in v.items()}
else:
v = os.path.expandvars(v)
decoded[k.strip('$')] = dec.process_decoded(v)
return decoded
jobs = []
common_params = process_params(spec.get('jobs_common_params', {}))
for d in spec['jobs']:
cls_ = load_class(d['jb'])
params = process_params(d.get('params', {}))
params.update(common_params)
jobs.append(cls_(**params))
handlers = []
for d in spec.get('handlers', []):
cls_ = load_class(d['hdlr'])
params = process_params(d.get('params', {}))
handlers.append(cls_(**params))
validators = []
for d in spec.get('validators', []):
cls_ = load_class(d['vldr'])
params = process_params(d.get('params', {}))
validators.append(cls_(**params))
custodian_params = process_params(spec.get('custodian_params', {}))
return cls(jobs=jobs, handlers=handlers, validators=validators, **
custodian_params)
|
from_spec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, spec):\n dec = MontyDecoder()\n\n def x(dotpath):\n modname, classname = dotpath.rsplit('.', 1)\n mod = __import__(modname, globals(), locals(), [classname], 0)\n return getattr(mod, classname)\n\n def x(d):\n decoded = {}\n for k, v in d.items():\n if k.startswith('$'):\n if isinstance(v, list):\n v = [os.path.expandvars(i) for i in v]\n elif isinstance(v, dict):\n v = {k2: os.path.expandvars(v2) for k2, v2 in v.items()}\n else:\n v = os.path.expandvars(v)\n decoded[k.strip('$')] = dec.process_decoded(v)\n return decoded\n jobs = []\n common_params = process_params(spec.get('jobs_common_params', {}))\n for d in spec['jobs']:\n cls_ = load_class(d['jb'])\n params = process_params(d.get('params', {}))\n params.update(common_params)\n jobs.append(cls_(**params))\n handlers = []\n for d in spec.get('handlers', []):\n cls_ = load_class(d['hdlr'])\n params = process_params(d.get('params', {}))\n handlers.append(cls_(**params))\n validators = []\n for d in spec.get('validators', []):\n cls_ = load_class(d['vldr'])\n params = process_params(d.get('params', {}))\n validators.append(cls_(**params))\n custodian_params = process_params(spec.get('custodian_params', {}))\n return cls(jobs=jobs, handlers=handlers, validators=validators, **\n custodian_params)\n",
"role": "user"
},
{
"content": "from_spec",
"role": "assistant"
}
] |
def x(self):
cwd = os.getcwd()
with ScratchDir(self.scratch_dir, create_symbolic_link=True,
copy_to_current_on_exit=True, copy_from_current_on_enter=True
) as temp_dir:
self.total_errors = 0
start = datetime.datetime.now()
logger.info('Run started at {} in {}.'.format(start, temp_dir))
v = sys.version.replace('\n', ' ')
logger.info('Custodian running on Python version {}'.format(v))
logger.info('Hostname: {}, Cluster: {}'.format(*
get_execution_host_info()))
try:
for job_n, job in islice(enumerate(self.jobs, 1), self.restart,
None):
self._run_job(job_n, job)
dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder,
indent=4)
if self.checkpoint:
self.restart = job_n
Custodian._save_checkpoint(cwd, job_n)
except CustodianError as ex:
logger.error(ex.message)
if ex.raises:
raise
finally:
logger.info('Logging to {}...'.format(Custodian.LOG_FILE))
dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4
)
end = datetime.datetime.now()
logger.info('Run ended at {}.'.format(end))
run_time = end - start
logger.info('Run completed. Total time taken = {}.'.format(
run_time))
if self.gzipped_output:
gzip_dir('.')
Custodian._delete_checkpoints(cwd)
return self.run_log
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n cwd = os.getcwd()\n with ScratchDir(self.scratch_dir, create_symbolic_link=True,\n copy_to_current_on_exit=True, copy_from_current_on_enter=True\n ) as temp_dir:\n self.total_errors = 0\n start = datetime.datetime.now()\n logger.info('Run started at {} in {}.'.format(start, temp_dir))\n v = sys.version.replace('\\n', ' ')\n logger.info('Custodian running on Python version {}'.format(v))\n logger.info('Hostname: {}, Cluster: {}'.format(*\n get_execution_host_info()))\n try:\n for job_n, job in islice(enumerate(self.jobs, 1), self.restart,\n None):\n self._run_job(job_n, job)\n dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder,\n indent=4)\n if self.checkpoint:\n self.restart = job_n\n Custodian._save_checkpoint(cwd, job_n)\n except CustodianError as ex:\n logger.error(ex.message)\n if ex.raises:\n raise\n finally:\n logger.info('Logging to {}...'.format(Custodian.LOG_FILE))\n dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4\n )\n end = datetime.datetime.now()\n logger.info('Run ended at {}.'.format(end))\n run_time = end - start\n logger.info('Run completed. Total time taken = {}.'.format(\n run_time))\n if self.gzipped_output:\n gzip_dir('.')\n Custodian._delete_checkpoints(cwd)\n return self.run_log\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, job_n, job):
self.run_log.append({'job': job.as_dict(), 'corrections': [], 'handler':
None, 'validator': None, 'max_errors': False, 'max_errors_per_job':
False, 'max_errors_per_handler': False, 'nonzero_return_code': False})
self.errors_current_job = 0
for h in self.handlers:
h.n_applied_corrections = 0
job.setup()
attempt = 0
while (self.total_errors < self.max_errors and self.errors_current_job <
self.max_errors_per_job):
attempt += 1
logger.info(
'Starting job no. {} ({}) attempt no. {}. Total errors and errors in job thus far = {}, {}.'
.format(job_n, job.name, attempt, self.total_errors, self.
errors_current_job))
p = job.run()
has_error = False
zero_return_code = True
if isinstance(p, subprocess.Popen):
if self.monitors:
n = 0
while True:
n += 1
time.sleep(self.polling_time_step)
if p.poll() is not None:
break
terminate = self.terminate_func or p.terminate
if n % self.monitor_freq == 0:
has_error = self._do_check(self.monitors, terminate)
if terminate is not None and terminate != p.terminate:
time.sleep(self.polling_time_step)
else:
p.wait()
if (self.terminate_func is not None and self.terminate_func !=
p.terminate):
self.terminate_func()
time.sleep(self.polling_time_step)
zero_return_code = p.returncode == 0
logger.info('{}.run has completed. Checking remaining handlers'.
format(job.name))
if has_error:
self._do_check([h for h in self.handlers if not h.is_monitor])
else:
has_error = self._do_check(self.handlers)
if has_error:
job.terminate()
if not has_error:
for v in self.validators:
if v.check():
self.run_log[-1]['validator'] = v
s = 'Validation failed: {}'.format(v)
raise ValidationError(s, True, v)
if not zero_return_code:
if self.terminate_on_nonzero_returncode:
self.run_log[-1]['nonzero_return_code'] = True
s = 'Job return code is %d. Terminating...' % p.returncode
logger.info(s)
raise ReturnCodeError(s, True)
else:
warnings.warn(
'subprocess returned a non-zero return code. Check outputs carefully...'
)
job.postprocess()
return
for x in self.run_log[-1]['corrections']:
if not x['actions'] and x['handler'].raises_runtime_error:
self.run_log[-1]['handler'] = x['handler']
s = 'Unrecoverable error for handler: {}'.format(x['handler'])
raise NonRecoverableError(s, True, x['handler'])
for x in self.run_log[-1]['corrections']:
if not x['actions']:
self.run_log[-1]['handler'] = x['handler']
s = 'Unrecoverable error for handler: %s' % x['handler']
raise NonRecoverableError(s, False, x['handler'])
if self.errors_current_job >= self.max_errors_per_job:
self.run_log[-1]['max_errors_per_job'] = True
msg = 'Max errors per job reached: {}.'.format(self.max_errors_per_job)
logger.info(msg)
raise MaxCorrectionsPerJobError(msg, True, self.max_errors_per_job, job
)
else:
self.run_log[-1]['max_errors'] = True
msg = 'Max errors reached: {}.'.format(self.max_errors)
logger.info(msg)
raise MaxCorrectionsError(msg, True, self.max_errors)
|
run_job
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, job_n, job):\n self.run_log.append({'job': job.as_dict(), 'corrections': [], 'handler':\n None, 'validator': None, 'max_errors': False, 'max_errors_per_job':\n False, 'max_errors_per_handler': False, 'nonzero_return_code': False})\n self.errors_current_job = 0\n for h in self.handlers:\n h.n_applied_corrections = 0\n job.setup()\n attempt = 0\n while (self.total_errors < self.max_errors and self.errors_current_job <\n self.max_errors_per_job):\n attempt += 1\n logger.info(\n 'Starting job no. {} ({}) attempt no. {}. Total errors and errors in job thus far = {}, {}.'\n .format(job_n, job.name, attempt, self.total_errors, self.\n errors_current_job))\n p = job.run()\n has_error = False\n zero_return_code = True\n if isinstance(p, subprocess.Popen):\n if self.monitors:\n n = 0\n while True:\n n += 1\n time.sleep(self.polling_time_step)\n if p.poll() is not None:\n break\n terminate = self.terminate_func or p.terminate\n if n % self.monitor_freq == 0:\n has_error = self._do_check(self.monitors, terminate)\n if terminate is not None and terminate != p.terminate:\n time.sleep(self.polling_time_step)\n else:\n p.wait()\n if (self.terminate_func is not None and self.terminate_func !=\n p.terminate):\n self.terminate_func()\n time.sleep(self.polling_time_step)\n zero_return_code = p.returncode == 0\n logger.info('{}.run has completed. Checking remaining handlers'.\n format(job.name))\n if has_error:\n self._do_check([h for h in self.handlers if not h.is_monitor])\n else:\n has_error = self._do_check(self.handlers)\n if has_error:\n job.terminate()\n if not has_error:\n for v in self.validators:\n if v.check():\n self.run_log[-1]['validator'] = v\n s = 'Validation failed: {}'.format(v)\n raise ValidationError(s, True, v)\n if not zero_return_code:\n if self.terminate_on_nonzero_returncode:\n self.run_log[-1]['nonzero_return_code'] = True\n s = 'Job return code is %d. Terminating...' % p.returncode\n logger.info(s)\n raise ReturnCodeError(s, True)\n else:\n warnings.warn(\n 'subprocess returned a non-zero return code. Check outputs carefully...'\n )\n job.postprocess()\n return\n for x in self.run_log[-1]['corrections']:\n if not x['actions'] and x['handler'].raises_runtime_error:\n self.run_log[-1]['handler'] = x['handler']\n s = 'Unrecoverable error for handler: {}'.format(x['handler'])\n raise NonRecoverableError(s, True, x['handler'])\n for x in self.run_log[-1]['corrections']:\n if not x['actions']:\n self.run_log[-1]['handler'] = x['handler']\n s = 'Unrecoverable error for handler: %s' % x['handler']\n raise NonRecoverableError(s, False, x['handler'])\n if self.errors_current_job >= self.max_errors_per_job:\n self.run_log[-1]['max_errors_per_job'] = True\n msg = 'Max errors per job reached: {}.'.format(self.max_errors_per_job)\n logger.info(msg)\n raise MaxCorrectionsPerJobError(msg, True, self.max_errors_per_job, job\n )\n else:\n self.run_log[-1]['max_errors'] = True\n msg = 'Max errors reached: {}.'.format(self.max_errors)\n logger.info(msg)\n raise MaxCorrectionsError(msg, True, self.max_errors)\n",
"role": "user"
},
{
"content": "run_job",
"role": "assistant"
}
] |
def x(self):
start = datetime.datetime.now()
try:
cwd = os.getcwd()
v = sys.version.replace('\n', ' ')
logger.info('Custodian started in singleshot mode at {} in {}.'.
format(start, cwd))
logger.info('Custodian running on Python version {}'.format(v))
if os.path.exists(Custodian.LOG_FILE):
self.run_log = loadfn(Custodian.LOG_FILE, cls=MontyDecoder)
if len(self.run_log) == 0:
job_n = 0
job = self.jobs[job_n]
logger.info('Setting up job no. 1 ({}) '.format(job.name))
job.setup()
self.run_log.append({'job': job.as_dict(), 'corrections': [],
'job_n': job_n})
return len(self.jobs)
else:
job_n = self.run_log[-1]['job_n']
job = self.jobs[job_n]
if len(self.run_log[-1]['corrections']) > 0:
logger.info('Reran {}.run due to fixable errors'.format(job
.name))
logger.info('Checking error handlers for {}.run'.format(job.name))
if self._do_check(self.handlers):
logger.info('Failed validation based on error handlers')
for x in self.run_log[-1]['corrections']:
if not x['actions'] and x['handler'].raises_runtime_error:
self.run_log[-1]['handler'] = x['handler']
s = (
'Unrecoverable error for handler: {}. Raising RuntimeError'
.format(x['handler']))
raise NonRecoverableError(s, True, x['handler'])
logger.info('Corrected input based on error handlers')
return len(self.jobs) - job_n
logger.info('Checking validator for {}.run'.format(job.name))
for v in self.validators:
if v.check():
self.run_log[-1]['validator'] = v
logger.info('Failed validation based on validator')
s = 'Validation failed: {}'.format(v)
raise ValidationError(s, True, v)
logger.info('Postprocessing for {}.run'.format(job.name))
job.postprocess()
if len(self.jobs) == job_n + 1:
self.finished = True
return 0
job_n += 1
job = self.jobs[job_n]
self.run_log.append({'job': job.as_dict(), 'corrections': [],
'job_n': job_n})
job.setup()
return len(self.jobs) - job_n
except CustodianError as ex:
logger.error(ex.message)
if ex.raises:
raise
finally:
logger.info('Logging to {}...'.format(Custodian.LOG_FILE))
dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4)
end = datetime.datetime.now()
logger.info('Run ended at {}.'.format(end))
run_time = end - start
logger.info('Run completed. Total time taken = {}.'.format(run_time))
if self.finished and self.gzipped_output:
gzip_dir('.')
|
run_interrupted
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n start = datetime.datetime.now()\n try:\n cwd = os.getcwd()\n v = sys.version.replace('\\n', ' ')\n logger.info('Custodian started in singleshot mode at {} in {}.'.\n format(start, cwd))\n logger.info('Custodian running on Python version {}'.format(v))\n if os.path.exists(Custodian.LOG_FILE):\n self.run_log = loadfn(Custodian.LOG_FILE, cls=MontyDecoder)\n if len(self.run_log) == 0:\n job_n = 0\n job = self.jobs[job_n]\n logger.info('Setting up job no. 1 ({}) '.format(job.name))\n job.setup()\n self.run_log.append({'job': job.as_dict(), 'corrections': [],\n 'job_n': job_n})\n return len(self.jobs)\n else:\n job_n = self.run_log[-1]['job_n']\n job = self.jobs[job_n]\n if len(self.run_log[-1]['corrections']) > 0:\n logger.info('Reran {}.run due to fixable errors'.format(job\n .name))\n logger.info('Checking error handlers for {}.run'.format(job.name))\n if self._do_check(self.handlers):\n logger.info('Failed validation based on error handlers')\n for x in self.run_log[-1]['corrections']:\n if not x['actions'] and x['handler'].raises_runtime_error:\n self.run_log[-1]['handler'] = x['handler']\n s = (\n 'Unrecoverable error for handler: {}. Raising RuntimeError'\n .format(x['handler']))\n raise NonRecoverableError(s, True, x['handler'])\n logger.info('Corrected input based on error handlers')\n return len(self.jobs) - job_n\n logger.info('Checking validator for {}.run'.format(job.name))\n for v in self.validators:\n if v.check():\n self.run_log[-1]['validator'] = v\n logger.info('Failed validation based on validator')\n s = 'Validation failed: {}'.format(v)\n raise ValidationError(s, True, v)\n logger.info('Postprocessing for {}.run'.format(job.name))\n job.postprocess()\n if len(self.jobs) == job_n + 1:\n self.finished = True\n return 0\n job_n += 1\n job = self.jobs[job_n]\n self.run_log.append({'job': job.as_dict(), 'corrections': [],\n 'job_n': job_n})\n job.setup()\n return len(self.jobs) - job_n\n except CustodianError as ex:\n logger.error(ex.message)\n if ex.raises:\n raise\n finally:\n logger.info('Logging to {}...'.format(Custodian.LOG_FILE))\n dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4)\n end = datetime.datetime.now()\n logger.info('Run ended at {}.'.format(end))\n run_time = end - start\n logger.info('Run completed. Total time taken = {}.'.format(run_time))\n if self.finished and self.gzipped_output:\n gzip_dir('.')\n",
"role": "user"
},
{
"content": "run_interrupted",
"role": "assistant"
}
] |
def x(self, handlers, terminate_func=None):
corrections = []
for h in handlers:
try:
if h.check():
if (h.max_num_corrections is not None and h.
n_applied_corrections >= h.max_num_corrections):
msg = (
'Maximum number of corrections {} reached for handler {}'
.format(h.max_num_corrections, h))
if h.raise_on_max:
self.run_log[-1]['handler'] = h
self.run_log[-1]['max_errors_per_handler'] = True
raise MaxCorrectionsPerHandlerError(msg, True, h.
max_num_corrections, h)
else:
logger.warning(msg + ' Correction not applied.')
continue
if terminate_func is not None and h.is_terminating:
logger.info('Terminating job')
terminate_func()
terminate_func = None
d = h.correct()
d['handler'] = h
logger.error('\n' + pformat(d, indent=2, width=-1))
corrections.append(d)
h.n_applied_corrections += 1
except Exception:
if not self.skip_over_errors:
raise
else:
import traceback
logger.error('Bad handler %s ' % h)
logger.error(traceback.format_exc())
corrections.append({'errors': ['Bad handler %s ' % h],
'actions': []})
self.total_errors += len(corrections)
self.errors_current_job += len(corrections)
self.run_log[-1]['corrections'].extend(corrections)
dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4)
return len(corrections) > 0
|
do_check
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, handlers, terminate_func=None):\n corrections = []\n for h in handlers:\n try:\n if h.check():\n if (h.max_num_corrections is not None and h.\n n_applied_corrections >= h.max_num_corrections):\n msg = (\n 'Maximum number of corrections {} reached for handler {}'\n .format(h.max_num_corrections, h))\n if h.raise_on_max:\n self.run_log[-1]['handler'] = h\n self.run_log[-1]['max_errors_per_handler'] = True\n raise MaxCorrectionsPerHandlerError(msg, True, h.\n max_num_corrections, h)\n else:\n logger.warning(msg + ' Correction not applied.')\n continue\n if terminate_func is not None and h.is_terminating:\n logger.info('Terminating job')\n terminate_func()\n terminate_func = None\n d = h.correct()\n d['handler'] = h\n logger.error('\\n' + pformat(d, indent=2, width=-1))\n corrections.append(d)\n h.n_applied_corrections += 1\n except Exception:\n if not self.skip_over_errors:\n raise\n else:\n import traceback\n logger.error('Bad handler %s ' % h)\n logger.error(traceback.format_exc())\n corrections.append({'errors': ['Bad handler %s ' % h],\n 'actions': []})\n self.total_errors += len(corrections)\n self.errors_current_job += len(corrections)\n self.run_log[-1]['corrections'].extend(corrections)\n dumpfn(self.run_log, Custodian.LOG_FILE, cls=MontyEncoder, indent=4)\n return len(corrections) > 0\n",
"role": "user"
},
{
"content": "do_check",
"role": "assistant"
}
] |
def x(self, actions):
modified = []
for a in actions:
if 'dict' in a:
k = a['dict']
modified.append(k)
self.feffinp[k] = self.modify_object(a['action'], self.feffinp[k])
elif 'file' in a:
self.modify(a['action'], a['file'])
else:
raise ValueError('Unrecognized format: {}'.format(a))
if modified:
feff = self.feffinp
feff_input = '\n\n'.join(str(feff[k]) for k in ['HEADER',
'PARAMETERS', 'POTENTIALS', 'ATOMS'] if k in feff)
for k, v in six.iteritems(feff):
with open(os.path.join('.', k), 'w') as f:
f.write(str(v))
with open(os.path.join('.', 'feff.inp'), 'w') as f:
f.write(feff_input)
|
apply_actions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, actions):\n modified = []\n for a in actions:\n if 'dict' in a:\n k = a['dict']\n modified.append(k)\n self.feffinp[k] = self.modify_object(a['action'], self.feffinp[k])\n elif 'file' in a:\n self.modify(a['action'], a['file'])\n else:\n raise ValueError('Unrecognized format: {}'.format(a))\n if modified:\n feff = self.feffinp\n feff_input = '\\n\\n'.join(str(feff[k]) for k in ['HEADER',\n 'PARAMETERS', 'POTENTIALS', 'ATOMS'] if k in feff)\n for k, v in six.iteritems(feff):\n with open(os.path.join('.', k), 'w') as f:\n f.write(str(v))\n with open(os.path.join('.', 'feff.inp'), 'w') as f:\n f.write(feff_input)\n",
"role": "user"
},
{
"content": "apply_actions",
"role": "assistant"
}
] |
def x(filename, settings):
if len(settings) != 1:
raise ValueError(
"Settings must only contain one item with key 'content'.")
for k, v in settings.items():
if k == 'content':
with open(filename, 'w') as f:
f.write(v)
|
file_create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, settings):\n if len(settings) != 1:\n raise ValueError(\n \"Settings must only contain one item with key 'content'.\")\n for k, v in settings.items():\n if k == 'content':\n with open(filename, 'w') as f:\n f.write(v)\n",
"role": "user"
},
{
"content": "file_create",
"role": "assistant"
}
] |
def x(filename, settings):
if len(settings) != 1:
raise ValueError("Settings must only contain one item with key 'dest'."
)
for k, v in settings.items():
if k == 'dest':
shutil.move(filename, v)
|
file_move
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, settings):\n if len(settings) != 1:\n raise ValueError(\"Settings must only contain one item with key 'dest'.\"\n )\n for k, v in settings.items():\n if k == 'dest':\n shutil.move(filename, v)\n",
"role": "user"
},
{
"content": "file_move",
"role": "assistant"
}
] |
def x(filename, settings):
if len(settings) != 1:
raise ValueError("Settings must only contain one item with key 'mode'."
)
for k, v in settings.items():
if k == 'mode' and v == 'actual':
try:
os.remove(filename)
except OSError:
pass
elif k == 'mode' and v == 'simulated':
print('Simulated removal of {}'.format(filename))
|
file_delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, settings):\n if len(settings) != 1:\n raise ValueError(\"Settings must only contain one item with key 'mode'.\"\n )\n for k, v in settings.items():\n if k == 'mode' and v == 'actual':\n try:\n os.remove(filename)\n except OSError:\n pass\n elif k == 'mode' and v == 'simulated':\n print('Simulated removal of {}'.format(filename))\n",
"role": "user"
},
{
"content": "file_delete",
"role": "assistant"
}
] |
def x(filename, settings):
for k, v in settings.items():
if k.startswith('dest'):
shutil.copyfile(filename, v)
|
file_copy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, settings):\n for k, v in settings.items():\n if k.startswith('dest'):\n shutil.copyfile(filename, v)\n",
"role": "user"
},
{
"content": "file_copy",
"role": "assistant"
}
] |
def x(filename, settings):
for k, v in settings.items():
if k == 'mode':
os.chmod(filename, v)
if k == 'owners':
os.chown(filename, v)
|
file_modify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, settings):\n for k, v in settings.items():\n if k == 'mode':\n os.chmod(filename, v)\n if k == 'owners':\n os.chown(filename, v)\n",
"role": "user"
},
{
"content": "file_modify",
"role": "assistant"
}
] |
def x(self):
decompress_dir('.')
if self.backup:
for f in FEFF_INPUT_FILES:
shutil.copy(f, '{}.orig'.format(f))
for f in FEFF_BACKUP_FILES:
if os.path.isfile(f):
shutil.copy(f, '{}.orig'.format(f))
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n decompress_dir('.')\n if self.backup:\n for f in FEFF_INPUT_FILES:\n shutil.copy(f, '{}.orig'.format(f))\n for f in FEFF_BACKUP_FILES:\n if os.path.isfile(f):\n shutil.copy(f, '{}.orig'.format(f))\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self):
with open(self.output_file, 'w') as f_std, open(self.stderr_file, 'w',
buffering=1) as f_err:
p = subprocess.Popen(self.feff_cmd, stdout=f_std, stderr=f_err,
shell=True)
return p
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n with open(self.output_file, 'w') as f_std, open(self.stderr_file, 'w',\n buffering=1) as f_err:\n p = subprocess.Popen(self.feff_cmd, stdout=f_std, stderr=f_err,\n shell=True)\n return p\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, modification, obj):
for action, settings in modification.items():
if action in self.supported_actions:
self.supported_actions[action].__call__(obj, settings)
elif self.strict:
raise ValueError('{} is not a supported action!'.format(action))
|
modify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, modification, obj):\n for action, settings in modification.items():\n if action in self.supported_actions:\n self.supported_actions[action].__call__(obj, settings)\n elif self.strict:\n raise ValueError('{} is not a supported action!'.format(action))\n",
"role": "user"
},
{
"content": "modify",
"role": "assistant"
}
] |
def x(self, modification, obj):
d = obj.as_dict()
self.modify(modification, d)
return obj.from_dict(d)
|
modify_object
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, modification, obj):\n d = obj.as_dict()\n self.modify(modification, d)\n return obj.from_dict(d)\n",
"role": "user"
},
{
"content": "modify_object",
"role": "assistant"
}
] |
def x(self, actions):
modified = []
for a in actions:
if 'dict' in a:
k = a['dict']
modified.append(k)
self.vi[k] = self.modify_object(a['action'], self.vi[k])
elif 'file' in a:
self.modify(a['action'], a['file'])
else:
raise ValueError('Unrecognized format: {}'.format(a))
for f in modified:
self.vi[f].write_file(f)
|
apply_actions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, actions):\n modified = []\n for a in actions:\n if 'dict' in a:\n k = a['dict']\n modified.append(k)\n self.vi[k] = self.modify_object(a['action'], self.vi[k])\n elif 'file' in a:\n self.modify(a['action'], a['file'])\n else:\n raise ValueError('Unrecognized format: {}'.format(a))\n for f in modified:\n self.vi[f].write_file(f)\n",
"role": "user"
},
{
"content": "apply_actions",
"role": "assistant"
}
] |
def x(filenames, prefix='error'):
num = max([0] + [int(f.split('.')[1]) for f in glob('{}.*.tar.gz'.
format(prefix))])
filename = '{}.{}.tar.gz'.format(prefix, num + 1)
logging.info('Backing up run to {}.'.format(filename))
with tarfile.open(filename, 'w:gz') as tar:
for fname in filenames:
for f in glob(fname):
tar.add(f)
|
backup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filenames, prefix='error'):\n num = max([0] + [int(f.split('.')[1]) for f in glob('{}.*.tar.gz'.\n format(prefix))])\n filename = '{}.{}.tar.gz'.format(prefix, num + 1)\n logging.info('Backing up run to {}.'.format(filename))\n with tarfile.open(filename, 'w:gz') as tar:\n for fname in filenames:\n for f in glob(fname):\n tar.add(f)\n",
"role": "user"
},
{
"content": "backup",
"role": "assistant"
}
] |
def x():
host = os.environ.get('HOSTNAME', None)
cluster = os.environ.get('SGE_O_HOST', None)
if host is None:
try:
import socket
host = host or socket.gethostname()
except:
pass
return host or 'unknown', cluster or 'unknown'
|
get_execution_host_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n host = os.environ.get('HOSTNAME', None)\n cluster = os.environ.get('SGE_O_HOST', None)\n if host is None:\n try:\n import socket\n host = host or socket.gethostname()\n except:\n pass\n return host or 'unknown', cluster or 'unknown'\n",
"role": "user"
},
{
"content": "get_execution_host_info",
"role": "assistant"
}
] |
def x(self):
qclog = open(self.qclog_file, 'w')
p = subprocess.Popen(self.current_command, stdout=qclog)
return p
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n qclog = open(self.qclog_file, 'w')\n p = subprocess.Popen(self.current_command, stdout=qclog)\n return p\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(cls, qchem_command, multimode='openmp', input_file='mol.qin',
output_file='mol.qout', qclog_file='mol.qclog', max_iterations=10,
max_molecule_perturb_scale=0.3, check_connectivity=True, **QCJob_kwargs):
min_molecule_perturb_scale = 0.1
scale_grid = 10
perturb_scale_grid = (max_molecule_perturb_scale -
min_molecule_perturb_scale) / scale_grid
if not os.path.exists(input_file):
raise AssertionError('Input file must be present!')
orig_opt_input = QCInput.from_file(input_file)
orig_opt_rem = copy.deepcopy(orig_opt_input.rem)
orig_freq_rem = copy.deepcopy(orig_opt_input.rem)
orig_freq_rem['job_type'] = 'freq'
first = True
reversed_direction = False
num_neg_freqs = []
for ii in range(max_iterations):
yield QCJob(qchem_command=qchem_command, multimode=multimode,
input_file=input_file, output_file=output_file, qclog_file=
qclog_file, suffix='.opt_' + str(ii), backup=first, **QCJob_kwargs)
first = False
opt_outdata = QCOutput(output_file + '.opt_' + str(ii)).data
if opt_outdata['structure_change'
] == 'unconnected_fragments' and not opt_outdata['completion']:
print(
'Unstable molecule broke into unconnected fragments which failed to optimize! Exiting...'
)
break
else:
freq_QCInput = QCInput(molecule=opt_outdata.get(
'molecule_from_optimized_geometry'), rem=orig_freq_rem, opt
=orig_opt_input.opt, pcm=orig_opt_input.pcm, solvent=
orig_opt_input.solvent)
freq_QCInput.write_file(input_file)
yield QCJob(qchem_command=qchem_command, multimode=multimode,
input_file=input_file, output_file=output_file, qclog_file=
qclog_file, suffix='.freq_' + str(ii), backup=first, **
QCJob_kwargs)
outdata = QCOutput(output_file + '.freq_' + str(ii)).data
errors = outdata.get('errors')
if len(errors) != 0:
raise AssertionError(
'No errors should be encountered while flattening frequencies!'
)
if outdata.get('frequencies')[0] > 0.0:
print('All frequencies positive!')
break
else:
num_neg_freqs += [sum(1 for freq in outdata.get(
'frequencies') if freq < 0)]
if len(num_neg_freqs) > 1:
if num_neg_freqs[-1] == num_neg_freqs[-2
] and not reversed_direction:
reversed_direction = True
elif num_neg_freqs[-1] == num_neg_freqs[-2
] and reversed_direction:
if len(num_neg_freqs) < 3:
raise AssertionError(
'ERROR: This should only be possible after at least three frequency flattening iterations! Exiting...'
)
else:
raise Exception(
'ERROR: Reversing the perturbation direction still could not flatten any frequencies. Exiting...'
)
elif num_neg_freqs[-1] != num_neg_freqs[-2
] and reversed_direction:
reversed_direction = False
negative_freq_vecs = outdata.get('frequency_mode_vectors')[0]
structure_successfully_perturbed = False
for molecule_perturb_scale in np.arange(
max_molecule_perturb_scale, min_molecule_perturb_scale,
-perturb_scale_grid):
new_coords = perturb_coordinates(old_coords=outdata.get
('initial_geometry'), negative_freq_vecs=
negative_freq_vecs, molecule_perturb_scale=
molecule_perturb_scale, reversed_direction=
reversed_direction)
new_molecule = Molecule(species=outdata.get('species'),
coords=new_coords, charge=outdata.get('charge'),
spin_multiplicity=outdata.get('multiplicity'))
if check_connectivity:
old_molgraph = MoleculeGraph.with_local_env_strategy(
outdata.get('initial_molecule'), OpenBabelNN(),
reorder=False, extend_structure=False)
new_molgraph = MoleculeGraph.with_local_env_strategy(
new_molecule, OpenBabelNN(), reorder=False,
extend_structure=False)
if old_molgraph.isomorphic_to(new_molgraph):
structure_successfully_perturbed = True
break
if not structure_successfully_perturbed:
raise Exception(
'ERROR: Unable to perturb coordinates to remove negative frequency without changing the connectivity! Exiting...'
)
new_opt_QCInput = QCInput(molecule=new_molecule, rem=
orig_opt_rem, opt=orig_opt_input.opt, pcm=
orig_opt_input.pcm, solvent=orig_opt_input.solvent)
new_opt_QCInput.write_file(input_file)
|
opt_with_frequency_flattener
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, qchem_command, multimode='openmp', input_file='mol.qin',\n output_file='mol.qout', qclog_file='mol.qclog', max_iterations=10,\n max_molecule_perturb_scale=0.3, check_connectivity=True, **QCJob_kwargs):\n min_molecule_perturb_scale = 0.1\n scale_grid = 10\n perturb_scale_grid = (max_molecule_perturb_scale -\n min_molecule_perturb_scale) / scale_grid\n if not os.path.exists(input_file):\n raise AssertionError('Input file must be present!')\n orig_opt_input = QCInput.from_file(input_file)\n orig_opt_rem = copy.deepcopy(orig_opt_input.rem)\n orig_freq_rem = copy.deepcopy(orig_opt_input.rem)\n orig_freq_rem['job_type'] = 'freq'\n first = True\n reversed_direction = False\n num_neg_freqs = []\n for ii in range(max_iterations):\n yield QCJob(qchem_command=qchem_command, multimode=multimode,\n input_file=input_file, output_file=output_file, qclog_file=\n qclog_file, suffix='.opt_' + str(ii), backup=first, **QCJob_kwargs)\n first = False\n opt_outdata = QCOutput(output_file + '.opt_' + str(ii)).data\n if opt_outdata['structure_change'\n ] == 'unconnected_fragments' and not opt_outdata['completion']:\n print(\n 'Unstable molecule broke into unconnected fragments which failed to optimize! Exiting...'\n )\n break\n else:\n freq_QCInput = QCInput(molecule=opt_outdata.get(\n 'molecule_from_optimized_geometry'), rem=orig_freq_rem, opt\n =orig_opt_input.opt, pcm=orig_opt_input.pcm, solvent=\n orig_opt_input.solvent)\n freq_QCInput.write_file(input_file)\n yield QCJob(qchem_command=qchem_command, multimode=multimode,\n input_file=input_file, output_file=output_file, qclog_file=\n qclog_file, suffix='.freq_' + str(ii), backup=first, **\n QCJob_kwargs)\n outdata = QCOutput(output_file + '.freq_' + str(ii)).data\n errors = outdata.get('errors')\n if len(errors) != 0:\n raise AssertionError(\n 'No errors should be encountered while flattening frequencies!'\n )\n if outdata.get('frequencies')[0] > 0.0:\n print('All frequencies positive!')\n break\n else:\n num_neg_freqs += [sum(1 for freq in outdata.get(\n 'frequencies') if freq < 0)]\n if len(num_neg_freqs) > 1:\n if num_neg_freqs[-1] == num_neg_freqs[-2\n ] and not reversed_direction:\n reversed_direction = True\n elif num_neg_freqs[-1] == num_neg_freqs[-2\n ] and reversed_direction:\n if len(num_neg_freqs) < 3:\n raise AssertionError(\n 'ERROR: This should only be possible after at least three frequency flattening iterations! Exiting...'\n )\n else:\n raise Exception(\n 'ERROR: Reversing the perturbation direction still could not flatten any frequencies. Exiting...'\n )\n elif num_neg_freqs[-1] != num_neg_freqs[-2\n ] and reversed_direction:\n reversed_direction = False\n negative_freq_vecs = outdata.get('frequency_mode_vectors')[0]\n structure_successfully_perturbed = False\n for molecule_perturb_scale in np.arange(\n max_molecule_perturb_scale, min_molecule_perturb_scale,\n -perturb_scale_grid):\n new_coords = perturb_coordinates(old_coords=outdata.get\n ('initial_geometry'), negative_freq_vecs=\n negative_freq_vecs, molecule_perturb_scale=\n molecule_perturb_scale, reversed_direction=\n reversed_direction)\n new_molecule = Molecule(species=outdata.get('species'),\n coords=new_coords, charge=outdata.get('charge'),\n spin_multiplicity=outdata.get('multiplicity'))\n if check_connectivity:\n old_molgraph = MoleculeGraph.with_local_env_strategy(\n outdata.get('initial_molecule'), OpenBabelNN(),\n reorder=False, extend_structure=False)\n new_molgraph = MoleculeGraph.with_local_env_strategy(\n new_molecule, OpenBabelNN(), reorder=False,\n extend_structure=False)\n if old_molgraph.isomorphic_to(new_molgraph):\n structure_successfully_perturbed = True\n break\n if not structure_successfully_perturbed:\n raise Exception(\n 'ERROR: Unable to perturb coordinates to remove negative frequency without changing the connectivity! Exiting...'\n )\n new_opt_QCInput = QCInput(molecule=new_molecule, rem=\n orig_opt_rem, opt=orig_opt_input.opt, pcm=\n orig_opt_input.pcm, solvent=orig_opt_input.solvent)\n new_opt_QCInput.write_file(input_file)\n",
"role": "user"
},
{
"content": "opt_with_frequency_flattener",
"role": "assistant"
}
] |
def x(self):
decompress_dir('.')
if self.backup:
for f in VASP_INPUT_FILES:
shutil.copy(f, '{}.orig'.format(f))
if self.auto_npar:
try:
incar = Incar.from_file('INCAR')
if not (incar.get('LHFCALC') or incar.get('LRPA') or incar.get(
'LEPSILON')):
if incar.get('IBRION') in [5, 6, 7, 8]:
del incar['NPAR']
else:
import multiprocessing
ncores = os.environ.get('NSLOTS'
) or multiprocessing.cpu_count()
ncores = int(ncores)
for npar in range(int(math.sqrt(ncores)), ncores):
if ncores % npar == 0:
incar['NPAR'] = npar
break
incar.write_file('INCAR')
except:
pass
if self.auto_continue:
if os.path.exists('continue.json'):
actions = loadfn('continue.json').get('actions')
logger.info('Continuing previous VaspJob. Actions: {}'.format(
actions))
backup(VASP_BACKUP_FILES, prefix='prev_run')
VaspModder().apply_actions(actions)
else:
if self.auto_continue is True:
actions = [{'file': 'CONTCAR', 'action': {'_file_copy': {
'dest': 'POSCAR'}}}, {'dict': 'INCAR', 'action': {
'_set': {'ISTART': 1}}}]
else:
actions = self.auto_continue
dumpfn({'actions': actions}, 'continue.json')
if self.settings_override is not None:
VaspModder().apply_actions(self.settings_override)
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n decompress_dir('.')\n if self.backup:\n for f in VASP_INPUT_FILES:\n shutil.copy(f, '{}.orig'.format(f))\n if self.auto_npar:\n try:\n incar = Incar.from_file('INCAR')\n if not (incar.get('LHFCALC') or incar.get('LRPA') or incar.get(\n 'LEPSILON')):\n if incar.get('IBRION') in [5, 6, 7, 8]:\n del incar['NPAR']\n else:\n import multiprocessing\n ncores = os.environ.get('NSLOTS'\n ) or multiprocessing.cpu_count()\n ncores = int(ncores)\n for npar in range(int(math.sqrt(ncores)), ncores):\n if ncores % npar == 0:\n incar['NPAR'] = npar\n break\n incar.write_file('INCAR')\n except:\n pass\n if self.auto_continue:\n if os.path.exists('continue.json'):\n actions = loadfn('continue.json').get('actions')\n logger.info('Continuing previous VaspJob. Actions: {}'.format(\n actions))\n backup(VASP_BACKUP_FILES, prefix='prev_run')\n VaspModder().apply_actions(actions)\n else:\n if self.auto_continue is True:\n actions = [{'file': 'CONTCAR', 'action': {'_file_copy': {\n 'dest': 'POSCAR'}}}, {'dict': 'INCAR', 'action': {\n '_set': {'ISTART': 1}}}]\n else:\n actions = self.auto_continue\n dumpfn({'actions': actions}, 'continue.json')\n if self.settings_override is not None:\n VaspModder().apply_actions(self.settings_override)\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self):
cmd = list(self.vasp_cmd)
if self.auto_gamma:
vi = VaspInput.from_directory('.')
kpts = vi['KPOINTS']
if kpts.style == Kpoints.supported_modes.Gamma and tuple(kpts.kpts[0]
) == (1, 1, 1):
if self.gamma_vasp_cmd is not None and which(self.
gamma_vasp_cmd[-1]):
cmd = self.gamma_vasp_cmd
elif which(cmd[-1] + '.gamma'):
cmd[-1] += '.gamma'
logger.info('Running {}'.format(' '.join(cmd)))
with open(self.output_file, 'w') as f_std, open(self.stderr_file, 'w',
buffering=1) as f_err:
p = subprocess.Popen(cmd, stdout=f_std, stderr=f_err)
return p
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n cmd = list(self.vasp_cmd)\n if self.auto_gamma:\n vi = VaspInput.from_directory('.')\n kpts = vi['KPOINTS']\n if kpts.style == Kpoints.supported_modes.Gamma and tuple(kpts.kpts[0]\n ) == (1, 1, 1):\n if self.gamma_vasp_cmd is not None and which(self.\n gamma_vasp_cmd[-1]):\n cmd = self.gamma_vasp_cmd\n elif which(cmd[-1] + '.gamma'):\n cmd[-1] += '.gamma'\n logger.info('Running {}'.format(' '.join(cmd)))\n with open(self.output_file, 'w') as f_std, open(self.stderr_file, 'w',\n buffering=1) as f_err:\n p = subprocess.Popen(cmd, stdout=f_std, stderr=f_err)\n return p\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self):
for f in (VASP_OUTPUT_FILES + [self.output_file]):
if os.path.exists(f):
if self.final and self.suffix != '':
shutil.move(f, '{}{}'.format(f, self.suffix))
elif self.suffix != '':
shutil.copy(f, '{}{}'.format(f, self.suffix))
if self.copy_magmom and not self.final:
try:
outcar = Outcar('OUTCAR')
magmom = [m['tot'] for m in outcar.magnetization]
incar = Incar.from_file('INCAR')
incar['MAGMOM'] = magmom
incar.write_file('INCAR')
except:
logger.error('MAGMOM copy from OUTCAR to INCAR failed')
if os.path.exists('continue.json'):
os.remove('continue.json')
|
postprocess
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for f in (VASP_OUTPUT_FILES + [self.output_file]):\n if os.path.exists(f):\n if self.final and self.suffix != '':\n shutil.move(f, '{}{}'.format(f, self.suffix))\n elif self.suffix != '':\n shutil.copy(f, '{}{}'.format(f, self.suffix))\n if self.copy_magmom and not self.final:\n try:\n outcar = Outcar('OUTCAR')\n magmom = [m['tot'] for m in outcar.magnetization]\n incar = Incar.from_file('INCAR')\n incar['MAGMOM'] = magmom\n incar.write_file('INCAR')\n except:\n logger.error('MAGMOM copy from OUTCAR to INCAR failed')\n if os.path.exists('continue.json'):\n os.remove('continue.json')\n",
"role": "user"
},
{
"content": "postprocess",
"role": "assistant"
}
] |
def x(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax=
False, auto_continue=False):
incar_update = {'ISTART': 1}
if ediffg:
incar_update['EDIFFG'] = ediffg
settings_overide_1 = None
settings_overide_2 = [{'dict': 'INCAR', 'action': {'_set': incar_update
}}, {'file': 'CONTCAR', 'action': {'_file_copy': {'dest': 'POSCAR'}}}]
if half_kpts_first_relax and os.path.exists('KPOINTS') and os.path.exists(
'POSCAR'):
kpts = Kpoints.from_file('KPOINTS')
orig_kpts_dict = kpts.as_dict()
kpts.kpts = np.round(np.maximum(np.array(kpts.kpts) / 2, 1)).astype(int
).tolist()
low_kpts_dict = kpts.as_dict()
settings_overide_1 = [{'dict': 'KPOINTS', 'action': {'_set':
low_kpts_dict}}]
settings_overide_2.append({'dict': 'KPOINTS', 'action': {'_set':
orig_kpts_dict}})
return [VaspJob(vasp_cmd, final=False, suffix='.relax1', auto_npar=
auto_npar, auto_continue=auto_continue, settings_override=
settings_overide_1), VaspJob(vasp_cmd, final=True, backup=False,
suffix='.relax2', auto_npar=auto_npar, auto_continue=auto_continue,
settings_override=settings_overide_2)]
|
double_relaxation_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax=\n False, auto_continue=False):\n incar_update = {'ISTART': 1}\n if ediffg:\n incar_update['EDIFFG'] = ediffg\n settings_overide_1 = None\n settings_overide_2 = [{'dict': 'INCAR', 'action': {'_set': incar_update\n }}, {'file': 'CONTCAR', 'action': {'_file_copy': {'dest': 'POSCAR'}}}]\n if half_kpts_first_relax and os.path.exists('KPOINTS') and os.path.exists(\n 'POSCAR'):\n kpts = Kpoints.from_file('KPOINTS')\n orig_kpts_dict = kpts.as_dict()\n kpts.kpts = np.round(np.maximum(np.array(kpts.kpts) / 2, 1)).astype(int\n ).tolist()\n low_kpts_dict = kpts.as_dict()\n settings_overide_1 = [{'dict': 'KPOINTS', 'action': {'_set':\n low_kpts_dict}}]\n settings_overide_2.append({'dict': 'KPOINTS', 'action': {'_set':\n orig_kpts_dict}})\n return [VaspJob(vasp_cmd, final=False, suffix='.relax1', auto_npar=\n auto_npar, auto_continue=auto_continue, settings_override=\n settings_overide_1), VaspJob(vasp_cmd, final=True, backup=False,\n suffix='.relax2', auto_npar=auto_npar, auto_continue=auto_continue,\n settings_override=settings_overide_2)]\n",
"role": "user"
},
{
"content": "double_relaxation_run",
"role": "assistant"
}
] |
def x(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax=
False, auto_continue=False):
incar = Incar.from_file('INCAR')
metaGGA = incar.get('METAGGA', 'SCAN')
pre_opt_setings = [{'dict': 'INCAR', 'action': {'_set': {'METAGGA':
None, 'LWAVE': True, 'NSW': 0}}}]
jobs = [VaspJob(vasp_cmd, auto_npar=auto_npar, final=False, suffix=
'.precondition', settings_override=pre_opt_setings)]
jobs.extend(VaspJob.double_relaxation_run(vasp_cmd, auto_npar=auto_npar,
ediffg=ediffg, half_kpts_first_relax=half_kpts_first_relax))
jobs[1].backup = False
post_opt_settings = [{'dict': 'INCAR', 'action': {'_set': {'METAGGA':
metaGGA, 'ISTART': 1, 'NSW': incar.get('NSW', 99), 'LWAVE': incar.
get('LWAVE', False)}}}, {'file': 'CONTCAR', 'action': {'_file_copy':
{'dest': 'POSCAR'}}}]
if jobs[1].settings_override:
post_opt_settings = jobs[1].settings_override + post_opt_settings
jobs[1].settings_override = post_opt_settings
return jobs
|
metagga_opt_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, vasp_cmd, auto_npar=True, ediffg=-0.05, half_kpts_first_relax=\n False, auto_continue=False):\n incar = Incar.from_file('INCAR')\n metaGGA = incar.get('METAGGA', 'SCAN')\n pre_opt_setings = [{'dict': 'INCAR', 'action': {'_set': {'METAGGA':\n None, 'LWAVE': True, 'NSW': 0}}}]\n jobs = [VaspJob(vasp_cmd, auto_npar=auto_npar, final=False, suffix=\n '.precondition', settings_override=pre_opt_setings)]\n jobs.extend(VaspJob.double_relaxation_run(vasp_cmd, auto_npar=auto_npar,\n ediffg=ediffg, half_kpts_first_relax=half_kpts_first_relax))\n jobs[1].backup = False\n post_opt_settings = [{'dict': 'INCAR', 'action': {'_set': {'METAGGA':\n metaGGA, 'ISTART': 1, 'NSW': incar.get('NSW', 99), 'LWAVE': incar.\n get('LWAVE', False)}}}, {'file': 'CONTCAR', 'action': {'_file_copy':\n {'dest': 'POSCAR'}}}]\n if jobs[1].settings_override:\n post_opt_settings = jobs[1].settings_override + post_opt_settings\n jobs[1].settings_override = post_opt_settings\n return jobs\n",
"role": "user"
},
{
"content": "metagga_opt_run",
"role": "assistant"
}
] |
def x(cls, vasp_cmd, vol_change_tol=0.02, max_steps=10, ediffg=-0.05,
half_kpts_first_relax=False, **vasp_job_kwargs):
for i in range(max_steps):
if i == 0:
settings = None
backup = True
if half_kpts_first_relax and os.path.exists('KPOINTS'
) and os.path.exists('POSCAR'):
kpts = Kpoints.from_file('KPOINTS')
orig_kpts_dict = kpts.as_dict()
kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1).tolist()
low_kpts_dict = kpts.as_dict()
settings = [{'dict': 'KPOINTS', 'action': {'_set':
low_kpts_dict}}]
else:
backup = False
initial = Poscar.from_file('POSCAR').structure
final = Poscar.from_file('CONTCAR').structure
vol_change = (final.volume - initial.volume) / initial.volume
logger.info('Vol change = %.1f %%!' % (vol_change * 100))
if abs(vol_change) < vol_change_tol:
logger.info('Stopping optimization!')
break
else:
incar_update = {'ISTART': 1}
if ediffg:
incar_update['EDIFFG'] = ediffg
settings = [{'dict': 'INCAR', 'action': {'_set':
incar_update}}, {'file': 'CONTCAR', 'action': {
'_file_copy': {'dest': 'POSCAR'}}}]
if i == 1 and half_kpts_first_relax:
settings.append({'dict': 'KPOINTS', 'action': {'_set':
orig_kpts_dict}})
logger.info('Generating job = %d!' % (i + 1))
yield VaspJob(vasp_cmd, final=False, backup=backup, suffix=
'.relax%d' % (i + 1), settings_override=settings, **vasp_job_kwargs
)
|
full_opt_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, vasp_cmd, vol_change_tol=0.02, max_steps=10, ediffg=-0.05,\n half_kpts_first_relax=False, **vasp_job_kwargs):\n for i in range(max_steps):\n if i == 0:\n settings = None\n backup = True\n if half_kpts_first_relax and os.path.exists('KPOINTS'\n ) and os.path.exists('POSCAR'):\n kpts = Kpoints.from_file('KPOINTS')\n orig_kpts_dict = kpts.as_dict()\n kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1).tolist()\n low_kpts_dict = kpts.as_dict()\n settings = [{'dict': 'KPOINTS', 'action': {'_set':\n low_kpts_dict}}]\n else:\n backup = False\n initial = Poscar.from_file('POSCAR').structure\n final = Poscar.from_file('CONTCAR').structure\n vol_change = (final.volume - initial.volume) / initial.volume\n logger.info('Vol change = %.1f %%!' % (vol_change * 100))\n if abs(vol_change) < vol_change_tol:\n logger.info('Stopping optimization!')\n break\n else:\n incar_update = {'ISTART': 1}\n if ediffg:\n incar_update['EDIFFG'] = ediffg\n settings = [{'dict': 'INCAR', 'action': {'_set':\n incar_update}}, {'file': 'CONTCAR', 'action': {\n '_file_copy': {'dest': 'POSCAR'}}}]\n if i == 1 and half_kpts_first_relax:\n settings.append({'dict': 'KPOINTS', 'action': {'_set':\n orig_kpts_dict}})\n logger.info('Generating job = %d!' % (i + 1))\n yield VaspJob(vasp_cmd, final=False, backup=backup, suffix=\n '.relax%d' % (i + 1), settings_override=settings, **vasp_job_kwargs\n )\n",
"role": "user"
},
{
"content": "full_opt_run",
"role": "assistant"
}
] |
def x(cls, vasp_cmd, lattice_direction, initial_strain, atom_relax=True,
max_steps=20, algo='bfgs', **vasp_job_kwargs):
nsw = 99 if atom_relax else 0
incar = Incar.from_file('INCAR')
if incar.get('EDIFFG') and incar.get('EDIFFG') > 0:
etol = incar['EDIFFG']
else:
etol = incar.get('EDIFF', 0.0001) * 10
if lattice_direction == 'a':
lattice_index = 0
elif lattice_direction == 'b':
lattice_index = 1
else:
lattice_index = 2
energies = {}
for i in range(max_steps):
if i == 0:
settings = [{'dict': 'INCAR', 'action': {'_set': {'ISIF': 2,
'NSW': nsw}}}]
structure = Poscar.from_file('POSCAR').structure
x = structure.lattice.abc[lattice_index]
backup = True
else:
backup = False
v = Vasprun('vasprun.xml')
structure = v.final_structure
energy = v.final_energy
lattice = structure.lattice
x = lattice.abc[lattice_index]
energies[x] = energy
if i == 1:
x *= 1 + initial_strain
else:
min_x = min(energies.keys(), key=lambda e: energies[e])
sorted_x = sorted(energies.keys())
ind = sorted_x.index(min_x)
if ind == 0:
other = ind + 1
elif ind == len(sorted_x) - 1:
other = ind - 1
else:
other = ind + 1 if energies[sorted_x[ind + 1]] < energies[
sorted_x[ind - 1]] else ind - 1
if abs(energies[min_x] - energies[sorted_x[other]]) < etol:
logger.info('Stopping optimization! Final %s = %f' % (
lattice_direction, min_x))
break
if ind == 0 and len(sorted_x) > 2:
x = sorted_x[0] - abs(sorted_x[1] - sorted_x[0])
logger.info(
'Lowest energy lies below bounds. Setting %s = %f.' %
(lattice_direction, x))
elif ind == len(sorted_x) - 1 and len(sorted_x) > 2:
x = sorted_x[-1] + abs(sorted_x[-1] - sorted_x[-2])
logger.info(
'Lowest energy lies above bounds. Setting %s = %f.' %
(lattice_direction, x))
elif algo.lower() == 'bfgs' and len(sorted_x) >= 4:
try:
x1 = list(energies.keys())
y1 = [energies[j] for j in x1]
z1 = np.polyfit(x1, y1, 2)
pp = np.poly1d(z1)
from scipy.optimize import minimize
result = minimize(pp, min_x, bounds=[(sorted_x[0],
sorted_x[-1])])
if not result.success or result.x[0] < 0:
raise ValueError('Negative lattice constant!')
x = result.x[0]
logger.info('BFGS minimized %s = %f.' % (
lattice_direction, x))
except ValueError as ex:
logger.info(str(ex))
x = (min_x + sorted_x[other]) / 2
logger.info('Falling back on bisection %s = %f.' %
(lattice_direction, x))
else:
x = (min_x + sorted_x[other]) / 2
logger.info('Bisection %s = %f.' % (lattice_direction, x))
lattice = lattice.matrix
lattice[lattice_index] = lattice[lattice_index] / np.linalg.norm(
lattice[lattice_index]) * x
s = Structure(lattice, structure.species, structure.frac_coords)
fname = 'POSCAR.%f' % x
s.to(filename=fname)
incar_update = {'ISTART': 1, 'NSW': nsw, 'ISIF': 2}
settings = [{'dict': 'INCAR', 'action': {'_set': incar_update}},
{'file': fname, 'action': {'_file_copy': {'dest': 'POSCAR'}}}]
logger.info('Generating job = %d with parameter %f!' % (i + 1, x))
yield VaspJob(vasp_cmd, final=False, backup=backup, suffix=
'.static.%f' % x, settings_override=settings, **vasp_job_kwargs)
with open('EOS.txt', 'wt') as f:
f.write('# %s energy\n' % lattice_direction)
for k in sorted(energies.keys()):
f.write('%f %f\n' % (k, energies[k]))
|
constrained_opt_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, vasp_cmd, lattice_direction, initial_strain, atom_relax=True,\n max_steps=20, algo='bfgs', **vasp_job_kwargs):\n nsw = 99 if atom_relax else 0\n incar = Incar.from_file('INCAR')\n if incar.get('EDIFFG') and incar.get('EDIFFG') > 0:\n etol = incar['EDIFFG']\n else:\n etol = incar.get('EDIFF', 0.0001) * 10\n if lattice_direction == 'a':\n lattice_index = 0\n elif lattice_direction == 'b':\n lattice_index = 1\n else:\n lattice_index = 2\n energies = {}\n for i in range(max_steps):\n if i == 0:\n settings = [{'dict': 'INCAR', 'action': {'_set': {'ISIF': 2,\n 'NSW': nsw}}}]\n structure = Poscar.from_file('POSCAR').structure\n x = structure.lattice.abc[lattice_index]\n backup = True\n else:\n backup = False\n v = Vasprun('vasprun.xml')\n structure = v.final_structure\n energy = v.final_energy\n lattice = structure.lattice\n x = lattice.abc[lattice_index]\n energies[x] = energy\n if i == 1:\n x *= 1 + initial_strain\n else:\n min_x = min(energies.keys(), key=lambda e: energies[e])\n sorted_x = sorted(energies.keys())\n ind = sorted_x.index(min_x)\n if ind == 0:\n other = ind + 1\n elif ind == len(sorted_x) - 1:\n other = ind - 1\n else:\n other = ind + 1 if energies[sorted_x[ind + 1]] < energies[\n sorted_x[ind - 1]] else ind - 1\n if abs(energies[min_x] - energies[sorted_x[other]]) < etol:\n logger.info('Stopping optimization! Final %s = %f' % (\n lattice_direction, min_x))\n break\n if ind == 0 and len(sorted_x) > 2:\n x = sorted_x[0] - abs(sorted_x[1] - sorted_x[0])\n logger.info(\n 'Lowest energy lies below bounds. Setting %s = %f.' %\n (lattice_direction, x))\n elif ind == len(sorted_x) - 1 and len(sorted_x) > 2:\n x = sorted_x[-1] + abs(sorted_x[-1] - sorted_x[-2])\n logger.info(\n 'Lowest energy lies above bounds. Setting %s = %f.' %\n (lattice_direction, x))\n elif algo.lower() == 'bfgs' and len(sorted_x) >= 4:\n try:\n x1 = list(energies.keys())\n y1 = [energies[j] for j in x1]\n z1 = np.polyfit(x1, y1, 2)\n pp = np.poly1d(z1)\n from scipy.optimize import minimize\n result = minimize(pp, min_x, bounds=[(sorted_x[0],\n sorted_x[-1])])\n if not result.success or result.x[0] < 0:\n raise ValueError('Negative lattice constant!')\n x = result.x[0]\n logger.info('BFGS minimized %s = %f.' % (\n lattice_direction, x))\n except ValueError as ex:\n logger.info(str(ex))\n x = (min_x + sorted_x[other]) / 2\n logger.info('Falling back on bisection %s = %f.' %\n (lattice_direction, x))\n else:\n x = (min_x + sorted_x[other]) / 2\n logger.info('Bisection %s = %f.' % (lattice_direction, x))\n lattice = lattice.matrix\n lattice[lattice_index] = lattice[lattice_index] / np.linalg.norm(\n lattice[lattice_index]) * x\n s = Structure(lattice, structure.species, structure.frac_coords)\n fname = 'POSCAR.%f' % x\n s.to(filename=fname)\n incar_update = {'ISTART': 1, 'NSW': nsw, 'ISIF': 2}\n settings = [{'dict': 'INCAR', 'action': {'_set': incar_update}},\n {'file': fname, 'action': {'_file_copy': {'dest': 'POSCAR'}}}]\n logger.info('Generating job = %d with parameter %f!' % (i + 1, x))\n yield VaspJob(vasp_cmd, final=False, backup=backup, suffix=\n '.static.%f' % x, settings_override=settings, **vasp_job_kwargs)\n with open('EOS.txt', 'wt') as f:\n f.write('# %s energy\\n' % lattice_direction)\n for k in sorted(energies.keys()):\n f.write('%f %f\\n' % (k, energies[k]))\n",
"role": "user"
},
{
"content": "constrained_opt_run",
"role": "assistant"
}
] |
def x(self):
neb_dirs = self.neb_dirs
if self.backup:
for f in VASP_NEB_INPUT_FILES:
shutil.copy(f, '{}.orig'.format(f))
for path in neb_dirs:
poscar = os.path.join(path, 'POSCAR')
shutil.copy(poscar, '{}.orig'.format(poscar))
if self.half_kpts and os.path.exists('KPOINTS'):
kpts = Kpoints.from_file('KPOINTS')
kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1)
kpts.kpts = kpts.kpts.astype(int).tolist()
if tuple(kpts.kpts[0]) == (1, 1, 1):
kpt_dic = kpts.as_dict()
kpt_dic['generation_style'] = 'Gamma'
kpts = Kpoints.from_dict(kpt_dic)
kpts.write_file('KPOINTS')
if self.auto_npar:
try:
incar = Incar.from_file('INCAR')
import multiprocessing
ncores = os.environ.get('NSLOTS') or multiprocessing.cpu_count()
ncores = int(ncores)
for npar in range(int(math.sqrt(ncores)), ncores):
if ncores % npar == 0:
incar['NPAR'] = npar
break
incar.write_file('INCAR')
except:
pass
if self.auto_continue and os.path.exists('STOPCAR') and not os.access(
'STOPCAR', os.W_OK):
os.chmod('STOPCAR', 420)
os.remove('STOPCAR')
for path in self.neb_sub:
contcar = os.path.join(path, 'CONTCAR')
poscar = os.path.join(path, 'POSCAR')
shutil.copy(contcar, poscar)
if self.settings_override is not None:
VaspModder().apply_actions(self.settings_override)
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n neb_dirs = self.neb_dirs\n if self.backup:\n for f in VASP_NEB_INPUT_FILES:\n shutil.copy(f, '{}.orig'.format(f))\n for path in neb_dirs:\n poscar = os.path.join(path, 'POSCAR')\n shutil.copy(poscar, '{}.orig'.format(poscar))\n if self.half_kpts and os.path.exists('KPOINTS'):\n kpts = Kpoints.from_file('KPOINTS')\n kpts.kpts = np.maximum(np.array(kpts.kpts) / 2, 1)\n kpts.kpts = kpts.kpts.astype(int).tolist()\n if tuple(kpts.kpts[0]) == (1, 1, 1):\n kpt_dic = kpts.as_dict()\n kpt_dic['generation_style'] = 'Gamma'\n kpts = Kpoints.from_dict(kpt_dic)\n kpts.write_file('KPOINTS')\n if self.auto_npar:\n try:\n incar = Incar.from_file('INCAR')\n import multiprocessing\n ncores = os.environ.get('NSLOTS') or multiprocessing.cpu_count()\n ncores = int(ncores)\n for npar in range(int(math.sqrt(ncores)), ncores):\n if ncores % npar == 0:\n incar['NPAR'] = npar\n break\n incar.write_file('INCAR')\n except:\n pass\n if self.auto_continue and os.path.exists('STOPCAR') and not os.access(\n 'STOPCAR', os.W_OK):\n os.chmod('STOPCAR', 420)\n os.remove('STOPCAR')\n for path in self.neb_sub:\n contcar = os.path.join(path, 'CONTCAR')\n poscar = os.path.join(path, 'POSCAR')\n shutil.copy(contcar, poscar)\n if self.settings_override is not None:\n VaspModder().apply_actions(self.settings_override)\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self):
for path in self.neb_dirs:
for f in VASP_NEB_OUTPUT_SUB_FILES:
f = os.path.join(path, f)
if os.path.exists(f):
if self.final and self.suffix != '':
shutil.move(f, '{}{}'.format(f, self.suffix))
elif self.suffix != '':
shutil.copy(f, '{}{}'.format(f, self.suffix))
for f in (VASP_NEB_OUTPUT_FILES + [self.output_file]):
if os.path.exists(f):
if self.final and self.suffix != '':
shutil.move(f, '{}{}'.format(f, self.suffix))
elif self.suffix != '':
shutil.copy(f, '{}{}'.format(f, self.suffix))
|
postprocess
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for path in self.neb_dirs:\n for f in VASP_NEB_OUTPUT_SUB_FILES:\n f = os.path.join(path, f)\n if os.path.exists(f):\n if self.final and self.suffix != '':\n shutil.move(f, '{}{}'.format(f, self.suffix))\n elif self.suffix != '':\n shutil.copy(f, '{}{}'.format(f, self.suffix))\n for f in (VASP_NEB_OUTPUT_FILES + [self.output_file]):\n if os.path.exists(f):\n if self.final and self.suffix != '':\n shutil.move(f, '{}{}'.format(f, self.suffix))\n elif self.suffix != '':\n shutil.copy(f, '{}{}'.format(f, self.suffix))\n",
"role": "user"
},
{
"content": "postprocess",
"role": "assistant"
}
] |
def x(self):
if self.backup:
shutil.copy(self.input_file, '{}.orig'.format(self.input_file))
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.backup:\n shutil.copy(self.input_file, '{}.orig'.format(self.input_file))\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self):
with zopen(self.output_file, 'w') as fout:
return subprocess.Popen(self.nwchem_cmd + [self.input_file], stdout
=fout)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n with zopen(self.output_file, 'w') as fout:\n return subprocess.Popen(self.nwchem_cmd + [self.input_file], stdout\n =fout)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(x):
x = float(x)
if x < 0.0 or x > 1.0:
raise ArgumentTypeError('{} not in range [0.0, 1.0]'.format(x))
return x
|
valid_GC
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n x = float(x)\n if x < 0.0 or x > 1.0:\n raise ArgumentTypeError('{} not in range [0.0, 1.0]'.format(x))\n return x\n",
"role": "user"
},
{
"content": "valid_GC",
"role": "assistant"
}
] |
def x(fq, args):
if args.quality:
quality_check = ave_qual
else:
quality_check = silent_quality_check
minlen = args.length + int(args.headcrop or 0) - int(args.tailcrop or 0)
for rec in SeqIO.parse(fq, 'fastq'):
if args.GC_filter:
gc = (rec.seq.upper().count('C') + rec.seq.upper().count('G')
) / len(rec)
else:
gc = 0.5
if quality_check(rec.letter_annotations['phred_quality']
) > args.quality and minlen <= len(rec
) <= args.maxlength and args.minGC <= gc <= args.maxGC:
print(rec[args.headcrop:args.tailcrop].format('fastq'), end='')
|
filter_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fq, args):\n if args.quality:\n quality_check = ave_qual\n else:\n quality_check = silent_quality_check\n minlen = args.length + int(args.headcrop or 0) - int(args.tailcrop or 0)\n for rec in SeqIO.parse(fq, 'fastq'):\n if args.GC_filter:\n gc = (rec.seq.upper().count('C') + rec.seq.upper().count('G')\n ) / len(rec)\n else:\n gc = 0.5\n if quality_check(rec.letter_annotations['phred_quality']\n ) > args.quality and minlen <= len(rec\n ) <= args.maxlength and args.minGC <= gc <= args.maxGC:\n print(rec[args.headcrop:args.tailcrop].format('fastq'), end='')\n",
"role": "user"
},
{
"content": "filter_stream",
"role": "assistant"
}
] |
def x(fq, args):
data = {entry[0]: entry[1] for entry in process_summary(summaryfile=
args.summary, threads='NA', readtype=args.readtype, barcoded=False)
[['readIDs', 'quals']].itertuples(index=False)}
try:
for record in SeqIO.parse(fq, 'fastq'):
if data[record.id] > args.quality and args.length <= len(record
) <= args.maxlength:
print(record[args.headcrop:args.tailcrop].format('fastq'),
end='')
except KeyError:
logging.error(
'mismatch between summary and fastq: {} was not found in the summary file.'
.format(record.id))
sys.exit(
"""
ERROR: mismatch between sequencing_summary and fastq file: {} was not found in the summary file.
Quitting."""
.format(record.id))
|
filter_using_summary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fq, args):\n data = {entry[0]: entry[1] for entry in process_summary(summaryfile=\n args.summary, threads='NA', readtype=args.readtype, barcoded=False)\n [['readIDs', 'quals']].itertuples(index=False)}\n try:\n for record in SeqIO.parse(fq, 'fastq'):\n if data[record.id] > args.quality and args.length <= len(record\n ) <= args.maxlength:\n print(record[args.headcrop:args.tailcrop].format('fastq'),\n end='')\n except KeyError:\n logging.error(\n 'mismatch between summary and fastq: {} was not found in the summary file.'\n .format(record.id))\n sys.exit(\n \"\"\"\nERROR: mismatch between sequencing_summary and fastq file: {} was not found in the summary file.\nQuitting.\"\"\"\n .format(record.id))\n",
"role": "user"
},
{
"content": "filter_using_summary",
"role": "assistant"
}
] |
def x(func):
def x(obj, *args, **kw):
conn = ACCESS_KEYS
if not (conn and conn.get('master_key')):
message = '%s requires the master key' % func.__name__
raise core.ParseError(message)
func(obj, *args, **kw)
return ret
|
master_key_required
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func):\n\n def x(obj, *args, **kw):\n conn = ACCESS_KEYS\n if not (conn and conn.get('master_key')):\n message = '%s requires the master key' % func.__name__\n raise core.ParseError(message)\n func(obj, *args, **kw)\n return ret\n",
"role": "user"
},
{
"content": "master_key_required",
"role": "assistant"
}
] |
def x(cls, uri, http_verb, extra_headers=None, batch=False, _body=None, **kw):
if batch:
urlsplitter = urlparse(API_ROOT).netloc
ret = {'method': http_verb, 'path': uri.split(urlsplitter, 1)[1]}
if kw:
ret['body'] = kw
return ret
if not ('app_id' in ACCESS_KEYS and 'rest_key' in ACCESS_KEYS):
raise core.ParseError('Missing connection credentials')
app_id = ACCESS_KEYS.get('app_id')
rest_key = ACCESS_KEYS.get('rest_key')
master_key = ACCESS_KEYS.get('master_key')
url = uri if uri.startswith(API_ROOT) else cls.ENDPOINT_ROOT + uri
if _body is None:
data = kw and json.dumps(kw, default=date_handler) or '{}'
else:
data = _body
if http_verb == 'GET' and data:
url += '?%s' % urlencode(kw)
data = None
elif cls.__name__ == 'File':
data = data
else:
data = data.encode('utf-8')
headers = {'Content-type': 'application/json', 'X-Parse-Application-Id':
app_id, 'X-Parse-REST-API-Key': rest_key}
headers.update(extra_headers or {})
if cls.__name__ == 'File':
request = Request(url.encode('utf-8'), data, headers)
else:
request = Request(url, data, headers)
if ACCESS_KEYS.get('session_token'):
request.add_header('X-Parse-Session-Token', ACCESS_KEYS.get(
'session_token'))
elif master_key:
request.add_header('X-Parse-Master-Key', master_key)
request.get_method = lambda : http_verb
try:
response = urlopen(request, timeout=CONNECTION_TIMEOUT)
except HTTPError as e:
exc = {(400): core.ResourceRequestBadRequest, (401): core.
ResourceRequestLoginRequired, (403): core.
ResourceRequestForbidden, (404): core.ResourceRequestNotFound}.get(
e.code, core.ParseError)
raise exc(e.read())
return json.loads(response.read().decode('utf-8'))
|
execute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, uri, http_verb, extra_headers=None, batch=False, _body=None, **kw):\n if batch:\n urlsplitter = urlparse(API_ROOT).netloc\n ret = {'method': http_verb, 'path': uri.split(urlsplitter, 1)[1]}\n if kw:\n ret['body'] = kw\n return ret\n if not ('app_id' in ACCESS_KEYS and 'rest_key' in ACCESS_KEYS):\n raise core.ParseError('Missing connection credentials')\n app_id = ACCESS_KEYS.get('app_id')\n rest_key = ACCESS_KEYS.get('rest_key')\n master_key = ACCESS_KEYS.get('master_key')\n url = uri if uri.startswith(API_ROOT) else cls.ENDPOINT_ROOT + uri\n if _body is None:\n data = kw and json.dumps(kw, default=date_handler) or '{}'\n else:\n data = _body\n if http_verb == 'GET' and data:\n url += '?%s' % urlencode(kw)\n data = None\n elif cls.__name__ == 'File':\n data = data\n else:\n data = data.encode('utf-8')\n headers = {'Content-type': 'application/json', 'X-Parse-Application-Id':\n app_id, 'X-Parse-REST-API-Key': rest_key}\n headers.update(extra_headers or {})\n if cls.__name__ == 'File':\n request = Request(url.encode('utf-8'), data, headers)\n else:\n request = Request(url, data, headers)\n if ACCESS_KEYS.get('session_token'):\n request.add_header('X-Parse-Session-Token', ACCESS_KEYS.get(\n 'session_token'))\n elif master_key:\n request.add_header('X-Parse-Master-Key', master_key)\n request.get_method = lambda : http_verb\n try:\n response = urlopen(request, timeout=CONNECTION_TIMEOUT)\n except HTTPError as e:\n exc = {(400): core.ResourceRequestBadRequest, (401): core.\n ResourceRequestLoginRequired, (403): core.\n ResourceRequestForbidden, (404): core.ResourceRequestNotFound}.get(\n e.code, core.ParseError)\n raise exc(e.read())\n return json.loads(response.read().decode('utf-8'))\n",
"role": "user"
},
{
"content": "execute",
"role": "assistant"
}
] |
def x(self, methods):
methods = list(methods)
if not methods:
return
queries, callbacks = list(zip(*[m(batch=True) for m in methods]))
responses = self.execute('', 'POST', requests=queries)
batched_errors = []
for callback, response in zip(callbacks, responses):
if 'success' in response:
callback(response['success'])
else:
batched_errors.append(response['error'])
if batched_errors:
raise core.ParseBatchError(batched_errors)
|
batch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, methods):\n methods = list(methods)\n if not methods:\n return\n queries, callbacks = list(zip(*[m(batch=True) for m in methods]))\n responses = self.execute('', 'POST', requests=queries)\n batched_errors = []\n for callback, response in zip(callbacks, responses):\n if 'success' in response:\n callback(response['success'])\n else:\n batched_errors.append(response['error'])\n if batched_errors:\n raise core.ParseBatchError(batched_errors)\n",
"role": "user"
},
{
"content": "batch",
"role": "assistant"
}
] |
def x(cls, installation_id, channels_to_add=set(), channels_to_remove=set(),
**kw):
installation_url = cls._get_installation_url(installation_id)
current_config = cls.GET(installation_url)
new_channels = list(set(current_config['channels']).union(
channels_to_add).difference(channels_to_remove))
cls.PUT(installation_url, channels=new_channels)
|
update_channels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, installation_id, channels_to_add=set(), channels_to_remove=set(),\n **kw):\n installation_url = cls._get_installation_url(installation_id)\n current_config = cls.GET(installation_url)\n new_channels = list(set(current_config['channels']).union(\n channels_to_add).difference(channels_to_remove))\n cls.PUT(installation_url, channels=new_channels)\n",
"role": "user"
},
{
"content": "update_channels",
"role": "assistant"
}
] |
def x(self, count=False):
if self._result_cache is not None:
return len(self._result_cache) if count else self._result_cache
"""
Return a list of objects matching query, or if count == True return
only the number of objects matching.
"""
options = dict(self._options)
if self._where:
options['where'] = json.dumps(self._where)
if self._select_related:
options['include'] = ','.join(self._select_related)
if count:
return self._manager._count(**options)
self._result_cache = self._manager._fetch(**options)
return self._result_cache
|
fetch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, count=False):\n if self._result_cache is not None:\n return len(self._result_cache) if count else self._result_cache\n \"\"\"\n Return a list of objects matching query, or if count == True return\n only the number of objects matching.\n \"\"\"\n options = dict(self._options)\n if self._where:\n options['where'] = json.dumps(self._where)\n if self._select_related:\n options['include'] = ','.join(self._select_related)\n if count:\n return self._manager._count(**options)\n self._result_cache = self._manager._fetch(**options)\n return self._result_cache\n",
"role": "user"
},
{
"content": "fetch",
"role": "assistant"
}
] |
def x(name=None):
def x(cls):
ParseType.type_mapping[name or cls.__name__] = cls
return cls
return wrapped
|
complex_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name=None):\n\n def x(cls):\n ParseType.type_mapping[name or cls.__name__] = cls\n return cls\n return wrapped\n",
"role": "user"
},
{
"content": "complex_type",
"role": "assistant"
}
] |
def x(cls, class_name):
class_name = str(class_name.lstrip('_'))
types = ParseResource.__subclasses__()
while types:
t = types.pop()
if t.__name__ == class_name:
return t
types.extend(t.__subclasses__())
else:
return type(class_name, (Object,), {})
|
factory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, class_name):\n class_name = str(class_name.lstrip('_'))\n types = ParseResource.__subclasses__()\n while types:\n t = types.pop()\n if t.__name__ == class_name:\n return t\n types.extend(t.__subclasses__())\n else:\n return type(class_name, (Object,), {})\n",
"role": "user"
},
{
"content": "factory",
"role": "assistant"
}
] |
def x(cls):
root = '/'.join([API_ROOT, 'schemas', cls.__name__])
schema = cls.GET(root)
return schema
|
schema
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls):\n root = '/'.join([API_ROOT, 'schemas', cls.__name__])\n schema = cls.GET(root)\n return schema\n",
"role": "user"
},
{
"content": "schema",
"role": "assistant"
}
] |
def x(cls, key):
root = '/'.join([API_ROOT, 'schemas', cls.__name__])
payload = {'className': cls.__name__, 'fields': {key: {'__op': 'Delete'}}}
cls.PUT(root, **payload)
|
schema_delete_field
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, key):\n root = '/'.join([API_ROOT, 'schemas', cls.__name__])\n payload = {'className': cls.__name__, 'fields': {key: {'__op': 'Delete'}}}\n cls.PUT(root, **payload)\n",
"role": "user"
},
{
"content": "schema_delete_field",
"role": "assistant"
}
] |
def x(self, key, amount=1):
payload = {key: {'__op': 'Increment', 'amount': amount}}
self.__class__.PUT(self._absolute_url, **payload)
self.__dict__[key] += amount
|
increment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, amount=1):\n payload = {key: {'__op': 'Increment', 'amount': amount}}\n self.__class__.PUT(self._absolute_url, **payload)\n self.__dict__[key] += amount\n",
"role": "user"
},
{
"content": "increment",
"role": "assistant"
}
] |
def x(self, key):
payload = {key: {'__op': 'Delete'}}
self.__class__.PUT(self._absolute_url, **payload)
del self.__dict__[key]
|
remove
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key):\n payload = {key: {'__op': 'Delete'}}\n self.__class__.PUT(self._absolute_url, **payload)\n del self.__dict__[key]\n",
"role": "user"
},
{
"content": "remove",
"role": "assistant"
}
] |
def x(func):
def x(obj, *args, **kw):
if not hasattr(obj, 'sessionToken'):
message = '%s requires a logged-in session' % func.__name__
raise ResourceRequestLoginRequired(message)
return func(obj, *args, **kw)
return ret
|
login_required
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func):\n\n def x(obj, *args, **kw):\n if not hasattr(obj, 'sessionToken'):\n message = '%s requires a logged-in session' % func.__name__\n raise ResourceRequestLoginRequired(message)\n return func(obj, *args, **kw)\n return ret\n",
"role": "user"
},
{
"content": "login_required",
"role": "assistant"
}
] |
def x(email):
url = '/'.join([API_ROOT, 'requestPasswordReset'])
try:
User.POST(url, email=email)
return True
except ParseError:
return False
|
request_password_reset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(email):\n url = '/'.join([API_ROOT, 'requestPasswordReset'])\n try:\n User.POST(url, email=email)\n return True\n except ParseError:\n return False\n",
"role": "user"
},
{
"content": "request_password_reset",
"role": "assistant"
}
] |
def x(d):
res = {}
for k, v in iteritems(d):
if isinstance(v, string_types) and DATETIME_ISO_FORMAT.match(v):
v = dateutil.parser.parse(v)
res[k] = v
return res
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d):\n res = {}\n for k, v in iteritems(d):\n if isinstance(v, string_types) and DATETIME_ISO_FORMAT.match(v):\n v = dateutil.parser.parse(v)\n res[k] = v\n return res\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(obj, path, **kw):
open_kw = {'mode': 'w'}
if PY3:
open_kw['encoding'] = 'utf-8'
if kw.get('indent') and kw.get('separators') is None:
kw['separators'] = ',', ': '
with open(str(path), **open_kw) as fp:
return json.dump(obj, fp, **kw)
|
dump
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj, path, **kw):\n open_kw = {'mode': 'w'}\n if PY3:\n open_kw['encoding'] = 'utf-8'\n if kw.get('indent') and kw.get('separators') is None:\n kw['separators'] = ',', ': '\n with open(str(path), **open_kw) as fp:\n return json.dump(obj, fp, **kw)\n",
"role": "user"
},
{
"content": "dump",
"role": "assistant"
}
] |
def x(path, **kw):
_kw = {}
if PY3:
_kw['encoding'] = 'utf-8'
with open(str(path), **_kw) as fp:
return json.load(fp, **kw)
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, **kw):\n _kw = {}\n if PY3:\n _kw['encoding'] = 'utf-8'\n with open(str(path), **_kw) as fp:\n return json.load(fp, **kw)\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(text, brackets=None):
res = []
for c, type_ in _tokens(text, brackets=brackets):
if type_ == TextType.text:
res.append(c)
return ''.join(res).strip()
|
strip_brackets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, brackets=None):\n res = []\n for c, type_ in _tokens(text, brackets=brackets):\n if type_ == TextType.text:\n res.append(c)\n return ''.join(res).strip()\n",
"role": "user"
},
{
"content": "strip_brackets",
"role": "assistant"
}
] |
def x(text, separators=WHITESPACE, brackets=None):
res, chunk = [], []
for c, type_ in _tokens(text, brackets=brackets):
if type_ == TextType.text and c in separators:
res.append(''.join(chunk).strip())
chunk = []
else:
chunk.append(c)
res.append(''.join(chunk).strip())
return nfilter(res)
|
split_text_with_context
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, separators=WHITESPACE, brackets=None):\n res, chunk = [], []\n for c, type_ in _tokens(text, brackets=brackets):\n if type_ == TextType.text and c in separators:\n res.append(''.join(chunk).strip())\n chunk = []\n else:\n chunk.append(c)\n res.append(''.join(chunk).strip())\n return nfilter(res)\n",
"role": "user"
},
{
"content": "split_text_with_context",
"role": "assistant"
}
] |
def x(text, separators=re.compile('\\s'), brackets=None, strip=False):
if not isinstance(separators, PATTERN_TYPE):
separators = re.compile('[{0}]'.format(''.join('\\{0}'.format(c) for
c in separators)))
return nfilter(s.strip() if strip else s for s in separators.split(
strip_brackets(text, brackets=brackets)))
|
split_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, separators=re.compile('\\\\s'), brackets=None, strip=False):\n if not isinstance(separators, PATTERN_TYPE):\n separators = re.compile('[{0}]'.format(''.join('\\\\{0}'.format(c) for\n c in separators)))\n return nfilter(s.strip() if strip else s for s in separators.split(\n strip_brackets(text, brackets=brackets)))\n",
"role": "user"
},
{
"content": "split_text",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.