source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
if not self._running:
logging.warning('Kinect not running. Aborting stop')
return False
self._image_sub.unregister()
self._depth_sub.unregister()
self._camera_info_sub.unregister
self._running = False
return True
|
stop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self._running:\n logging.warning('Kinect not running. Aborting stop')\n return False\n self._image_sub.unregister()\n self._depth_sub.unregister()\n self._camera_info_sub.unregister\n self._running = False\n return True\n",
"role": "user"
},
{
"content": "stop",
"role": "assistant"
}
] |
def x(self):
while self._cur_depth_im is None or self._cur_color_im is None:
time.sleep(0.01)
depth_im = self._cur_depth_im
color_im = self._cur_color_im
self._cur_color_im = None
self._cur_depth_im = None
return color_im, depth_im, None
|
frames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n while self._cur_depth_im is None or self._cur_color_im is None:\n time.sleep(0.01)\n depth_im = self._cur_depth_im\n color_im = self._cur_color_im\n self._cur_color_im = None\n self._cur_depth_im = None\n return color_im, depth_im, None\n",
"role": "user"
},
{
"content": "frames",
"role": "assistant"
}
] |
def x(self):
if not self._running:
raise RuntimeError(
'VirtualKinect2 device pointing to %s not runnning. Cannot read frames'
% self._path_to_images)
if self._im_index > self._num_images:
raise RuntimeError('VirtualKinect2 device is out of images')
color_filename = os.path.join(self._path_to_images, 'color_%d.png' %
self._im_index)
color_im = ColorImage.open(color_filename, frame=self._frame)
depth_filename = os.path.join(self._path_to_images, 'depth_%d.npy' %
self._im_index)
depth_im = DepthImage.open(depth_filename, frame=self._frame)
ir_filename = os.path.join(self._path_to_images, 'ir_%d.npy' % self.
_im_index)
ir_im = None
if os.path.exists(ir_filename):
ir_im = IrImage.open(ir_filename, frame=self._frame)
self._im_index += 1
return color_im, depth_im, ir_im
|
frames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self._running:\n raise RuntimeError(\n 'VirtualKinect2 device pointing to %s not runnning. Cannot read frames'\n % self._path_to_images)\n if self._im_index > self._num_images:\n raise RuntimeError('VirtualKinect2 device is out of images')\n color_filename = os.path.join(self._path_to_images, 'color_%d.png' %\n self._im_index)\n color_im = ColorImage.open(color_filename, frame=self._frame)\n depth_filename = os.path.join(self._path_to_images, 'depth_%d.npy' %\n self._im_index)\n depth_im = DepthImage.open(depth_filename, frame=self._frame)\n ir_filename = os.path.join(self._path_to_images, 'ir_%d.npy' % self.\n _im_index)\n ir_im = None\n if os.path.exists(ir_filename):\n ir_im = IrImage.open(ir_filename, frame=self._frame)\n self._im_index += 1\n return color_im, depth_im, ir_im\n",
"role": "user"
},
{
"content": "frames",
"role": "assistant"
}
] |
def x(sensor_type, cfg):
sensor_type = sensor_type.lower()
if sensor_type == 'real':
s = Kinect2Sensor(packet_pipeline_mode=cfg['pipeline_mode'],
device_num=cfg['device_num'], frame=cfg['frame'])
elif sensor_type == 'virtual':
s = VirtualKinect2Sensor(cfg['image_dir'], frame=cfg['frame'])
elif sensor_type == 'bridged':
s = KinectSensorBridged(quality=cfg['quality'], frame=cfg['frame'])
else:
raise ValueError('Kinect2 sensor type %s not supported' % sensor_type)
return s
|
sensor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sensor_type, cfg):\n sensor_type = sensor_type.lower()\n if sensor_type == 'real':\n s = Kinect2Sensor(packet_pipeline_mode=cfg['pipeline_mode'],\n device_num=cfg['device_num'], frame=cfg['frame'])\n elif sensor_type == 'virtual':\n s = VirtualKinect2Sensor(cfg['image_dir'], frame=cfg['frame'])\n elif sensor_type == 'bridged':\n s = KinectSensorBridged(quality=cfg['quality'], frame=cfg['frame'])\n else:\n raise ValueError('Kinect2 sensor type %s not supported' % sensor_type)\n return s\n",
"role": "user"
},
{
"content": "sensor",
"role": "assistant"
}
] |
def x(self, id_mask):
all_devices = glob.glob('/dev/ttyUSB*')
sensors = []
for device in all_devices:
try:
ser = serial.Serial(port=device, timeout=0.5, exclusive=True)
ser.write('ID\r')
ser.flush()
time.sleep(0.05)
resp = ser.read(13)
ser.close()
if len(resp) >= 10 and resp[:len(id_mask)] == id_mask:
sensors.append((device, resp.rstrip('\r\n')))
except:
continue
sensors = sorted(sensors, key=lambda x: x[1])
serials = []
for device, key in sensors:
ser = serial.Serial(port=device, timeout=0.5)
serials.append(ser)
rospy.loginfo('Connected to load cell {} at {}'.format(key, device))
return serials
|
connect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, id_mask):\n all_devices = glob.glob('/dev/ttyUSB*')\n sensors = []\n for device in all_devices:\n try:\n ser = serial.Serial(port=device, timeout=0.5, exclusive=True)\n ser.write('ID\\r')\n ser.flush()\n time.sleep(0.05)\n resp = ser.read(13)\n ser.close()\n if len(resp) >= 10 and resp[:len(id_mask)] == id_mask:\n sensors.append((device, resp.rstrip('\\r\\n')))\n except:\n continue\n sensors = sorted(sensors, key=lambda x: x[1])\n serials = []\n for device, key in sensors:\n ser = serial.Serial(port=device, timeout=0.5)\n serials.append(ser)\n rospy.loginfo('Connected to load cell {} at {}'.format(key, device))\n return serials\n",
"role": "user"
},
{
"content": "connect",
"role": "assistant"
}
] |
def x(self):
for ser in self._serials:
ser.flush()
ser.flushInput()
ser.flushOutput()
time.sleep(0.02)
|
flush
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for ser in self._serials:\n ser.flush()\n ser.flushInput()\n ser.flushOutput()\n time.sleep(0.02)\n",
"role": "user"
},
{
"content": "flush",
"role": "assistant"
}
] |
def x(self):
for ser in self._serials:
ser.write('TARE\r')
ser.flush()
ser.flushInput()
ser.flushOutput()
time.sleep(0.02)
|
tare
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for ser in self._serials:\n ser.write('TARE\\r')\n ser.flush()\n ser.flushInput()\n ser.flushOutput()\n time.sleep(0.02)\n",
"role": "user"
},
{
"content": "tare",
"role": "assistant"
}
] |
def x(self):
weights = []
grams_per_pound = 453.592
for ser in self._serials:
ser.write('W\r')
ser.flush()
time.sleep(0.02)
for ser in self._serials:
try:
output_str = ser.readline()
weight = float(output_str) * grams_per_pound
weights.append(weight)
except:
weights.append(0.0)
log_output = ''
for w in weights:
log_output += '{:.2f} '.format(w)
rospy.loginfo(log_output)
return weights
|
read_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n weights = []\n grams_per_pound = 453.592\n for ser in self._serials:\n ser.write('W\\r')\n ser.flush()\n time.sleep(0.02)\n for ser in self._serials:\n try:\n output_str = ser.readline()\n weight = float(output_str) * grams_per_pound\n weights.append(weight)\n except:\n weights.append(0.0)\n log_output = ''\n for w in weights:\n log_output += '{:.2f} '.format(w)\n rospy.loginfo(log_output)\n return weights\n",
"role": "user"
},
{
"content": "read_weights",
"role": "assistant"
}
] |
def x(self):
if not self.camera.is_running:
self.camera.start()
while True:
if not self.cmd_q.empty():
cmd = self.cmd_q.get()
if cmd[0] == 'stop':
self.out.close()
self.recording = False
elif cmd[0] == 'start':
filename = cmd[1]
self.out = si.FFmpegWriter(filename)
self.recording = True
self.count = 0
if self.recording:
if self.count == 0:
image, _, _ = self.camera.frames()
if self.data_buf is None:
self.data_buf = np.zeros([1, image.height, image.width,
image.channels])
self.data_buf[0, ...] = image.raw_data
self.out.writeFrame(self.data_buf)
self.count += 1
if self.count == self.rate:
self.count = 0
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.camera.is_running:\n self.camera.start()\n while True:\n if not self.cmd_q.empty():\n cmd = self.cmd_q.get()\n if cmd[0] == 'stop':\n self.out.close()\n self.recording = False\n elif cmd[0] == 'start':\n filename = cmd[1]\n self.out = si.FFmpegWriter(filename)\n self.recording = True\n self.count = 0\n if self.recording:\n if self.count == 0:\n image, _, _ = self.camera.frames()\n if self.data_buf is None:\n self.data_buf = np.zeros([1, image.height, image.width,\n image.channels])\n self.data_buf[0, ...] = image.raw_data\n self.out.writeFrame(self.data_buf)\n self.count += 1\n if self.count == self.rate:\n self.count = 0\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self):
self._started = True
self._camera = _Camera(self._actual_camera, self._cmd_q, self._res,
self._codec, self._fps, self._rate)
self._camera.start()
|
start
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._started = True\n self._camera = _Camera(self._actual_camera, self._cmd_q, self._res,\n self._codec, self._fps, self._rate)\n self._camera.start()\n",
"role": "user"
},
{
"content": "start",
"role": "assistant"
}
] |
def x(self, output_file):
if not self._started:
raise Exception(
'Must start the video recorder first by calling .start()!')
if self._recording:
raise Exception('Cannot record a video while one is already recording!'
)
self._recording = True
self._cmd_q.put(('start', output_file))
|
start_recording
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, output_file):\n if not self._started:\n raise Exception(\n 'Must start the video recorder first by calling .start()!')\n if self._recording:\n raise Exception('Cannot record a video while one is already recording!'\n )\n self._recording = True\n self._cmd_q.put(('start', output_file))\n",
"role": "user"
},
{
"content": "start_recording",
"role": "assistant"
}
] |
def x(self):
if not self._recording:
raise Exception(
"Cannot stop a video recording when it's not recording!")
self._cmd_q.put(('stop',))
self._recording = False
|
stop_recording
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self._recording:\n raise Exception(\n \"Cannot stop a video recording when it's not recording!\")\n self._cmd_q.put(('stop',))\n self._recording = False\n",
"role": "user"
},
{
"content": "stop_recording",
"role": "assistant"
}
] |
def x(self):
if not self._started:
raise Exception('Cannot stop a video recorder before starting it!')
self._started = False
if self._actual_camera.is_running:
self._actual_camera.stop()
if self._camera is not None:
try:
self._camera.terminate()
except:
pass
|
stop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self._started:\n raise Exception('Cannot stop a video recorder before starting it!')\n self._started = False\n if self._actual_camera.is_running:\n self._actual_camera.stop()\n if self._camera is not None:\n try:\n self._camera.terminate()\n except:\n pass\n",
"role": "user"
},
{
"content": "stop",
"role": "assistant"
}
] |
def x(self, data):
original_type = data.dtype
if len(data.shape) == 1:
data = data[:, np.newaxis, np.newaxis]
elif len(data.shape) == 2:
data = data[:, :, np.newaxis]
elif len(data.shape) == 0 or len(data.shape) > 3:
raise ValueError(
'Illegal data array passed to image. Must be 1, 2, or 3 dimensional numpy array'
)
return data.astype(original_type)
|
preprocess_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n original_type = data.dtype\n if len(data.shape) == 1:\n data = data[:, np.newaxis, np.newaxis]\n elif len(data.shape) == 2:\n data = data[:, :, np.newaxis]\n elif len(data.shape) == 0 or len(data.shape) > 3:\n raise ValueError(\n 'Illegal data array passed to image. Must be 1, 2, or 3 dimensional numpy array'\n )\n return data.astype(original_type)\n",
"role": "user"
},
{
"content": "preprocess_data",
"role": "assistant"
}
] |
def x(self):
from cv_bridge import CvBridge, CvBridgeError
cv_bridge = CvBridge()
try:
return cv_bridge.cv2_to_imgmsg(self._data, encoding=self._encoding)
except CvBridgeError as cv_bridge_exception:
logging.error('%s' % str(cv_bridge_exception))
|
rosmsg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from cv_bridge import CvBridge, CvBridgeError\n cv_bridge = CvBridge()\n try:\n return cv_bridge.cv2_to_imgmsg(self._data, encoding=self._encoding)\n except CvBridgeError as cv_bridge_exception:\n logging.error('%s' % str(cv_bridge_exception))\n",
"role": "user"
},
{
"content": "rosmsg",
"role": "assistant"
}
] |
def x(x):
if len(x.shape) < 2 or len(x.shape) > 3:
return False
dtype = x.dtype
height = x.shape[0]
width = x.shape[1]
channels = 1
if len(x.shape) == 3:
channels = x.shape[2]
if channels > 4:
return False
return True
|
can_convert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if len(x.shape) < 2 or len(x.shape) > 3:\n return False\n dtype = x.dtype\n height = x.shape[0]\n width = x.shape[1]\n channels = 1\n if len(x.shape) == 3:\n channels = x.shape[2]\n if channels > 4:\n return False\n return True\n",
"role": "user"
},
{
"content": "can_convert",
"role": "assistant"
}
] |
def x(x, frame='unspecified'):
if not Image.can_convert(x):
raise ValueError('Cannot convert array to an Image!')
dtype = x.dtype
height = x.shape[0]
width = x.shape[1]
channels = 1
if len(x.shape) == 3:
channels = x.shape[2]
if dtype == np.uint8:
if channels == 1:
if np.any(x % BINARY_IM_MAX_VAL > 0):
return GrayscaleImage(x, frame)
return BinaryImage(x, frame)
elif channels == 3:
return ColorImage(x, frame)
else:
raise ValueError(
'No available image conversion for uint8 array with 2 channels'
)
elif dtype == np.uint16:
if channels != 1:
raise ValueError(
'No available image conversion for uint16 array with 2 or 3 channels'
)
return GrayscaleImage(x, frame)
elif dtype == np.float32 or dtype == np.float64:
if channels == 1:
return DepthImage(x, frame)
elif channels == 2:
return GdImage(x, frame)
elif channels == 3:
logging.warning('Converting float array to uint8')
return ColorImage(x.astype(np.uint8), frame)
return RgbdImage(x, frame)
else:
raise ValueError('Conversion for dtype %s not supported!' % str(dtype))
|
from_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, frame='unspecified'):\n if not Image.can_convert(x):\n raise ValueError('Cannot convert array to an Image!')\n dtype = x.dtype\n height = x.shape[0]\n width = x.shape[1]\n channels = 1\n if len(x.shape) == 3:\n channels = x.shape[2]\n if dtype == np.uint8:\n if channels == 1:\n if np.any(x % BINARY_IM_MAX_VAL > 0):\n return GrayscaleImage(x, frame)\n return BinaryImage(x, frame)\n elif channels == 3:\n return ColorImage(x, frame)\n else:\n raise ValueError(\n 'No available image conversion for uint8 array with 2 channels'\n )\n elif dtype == np.uint16:\n if channels != 1:\n raise ValueError(\n 'No available image conversion for uint16 array with 2 or 3 channels'\n )\n return GrayscaleImage(x, frame)\n elif dtype == np.float32 or dtype == np.float64:\n if channels == 1:\n return DepthImage(x, frame)\n elif channels == 2:\n return GdImage(x, frame)\n elif channels == 3:\n logging.warning('Converting float array to uint8')\n return ColorImage(x.astype(np.uint8), frame)\n return RgbdImage(x, frame)\n else:\n raise ValueError('Conversion for dtype %s not supported!' % str(dtype))\n",
"role": "user"
},
{
"content": "from_array",
"role": "assistant"
}
] |
def x(self, translation, theta, method='opencv'):
theta = np.rad2deg(theta)
trans_map = np.float32([[1, 0, translation[1]], [0, 1, translation[0]]])
rot_map = cv2.getRotationMatrix2D((self.center[1], self.center[0]),
theta, 1)
trans_map_aff = np.r_[trans_map, [[0, 0, 1]]]
rot_map_aff = np.r_[rot_map, [[0, 0, 1]]]
full_map = rot_map_aff.dot(trans_map_aff)
full_map = full_map[:2, :]
if method == 'opencv':
im_data_tf = cv2.warpAffine(self.data, full_map, (self.width, self.
height), flags=cv2.INTER_NEAREST)
else:
im_data_tf = sni.affine_transform(self.data, matrix=full_map[:, :2],
offset=full_map[:, 2], order=0)
return type(self)(im_data_tf.astype(self.data.dtype), frame=self._frame)
|
transform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, translation, theta, method='opencv'):\n theta = np.rad2deg(theta)\n trans_map = np.float32([[1, 0, translation[1]], [0, 1, translation[0]]])\n rot_map = cv2.getRotationMatrix2D((self.center[1], self.center[0]),\n theta, 1)\n trans_map_aff = np.r_[trans_map, [[0, 0, 1]]]\n rot_map_aff = np.r_[rot_map, [[0, 0, 1]]]\n full_map = rot_map_aff.dot(trans_map_aff)\n full_map = full_map[:2, :]\n if method == 'opencv':\n im_data_tf = cv2.warpAffine(self.data, full_map, (self.width, self.\n height), flags=cv2.INTER_NEAREST)\n else:\n im_data_tf = sni.affine_transform(self.data, matrix=full_map[:, :2],\n offset=full_map[:, 2], order=0)\n return type(self)(im_data_tf.astype(self.data.dtype), frame=self._frame)\n",
"role": "user"
},
{
"content": "transform",
"role": "assistant"
}
] |
def x(self, scale, center, angle, height, width):
scaled_im = self.resize(scale)
cx = scaled_im.center[1]
cy = scaled_im.center[0]
dx = cx - center[0] * scale
dy = cy - center[1] * scale
translation = np.array([dy, dx])
tf_im = scaled_im.transform(translation, angle)
aligned_im = tf_im.crop(height, width)
return aligned_im
|
align
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, scale, center, angle, height, width):\n scaled_im = self.resize(scale)\n cx = scaled_im.center[1]\n cy = scaled_im.center[0]\n dx = cx - center[0] * scale\n dy = cy - center[1] * scale\n translation = np.array([dy, dx])\n tf_im = scaled_im.transform(translation, angle)\n aligned_im = tf_im.crop(height, width)\n return aligned_im\n",
"role": "user"
},
{
"content": "align",
"role": "assistant"
}
] |
def x(self):
g = np.gradient(self.data.astype(np.float32))
return g
|
gradients
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n g = np.gradient(self.data.astype(np.float32))\n return g\n",
"role": "user"
},
{
"content": "gradients",
"role": "assistant"
}
] |
def x(self, linear_inds):
return np.c_[linear_inds / self.width, linear_inds % self.width]
|
linear_to_ij
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, linear_inds):\n return np.c_[linear_inds / self.width, linear_inds % self.width]\n",
"role": "user"
},
{
"content": "linear_to_ij",
"role": "assistant"
}
] |
def x(self, other_im, check_channels=False):
if self.height == other_im.height and self.width == other_im.width:
if check_channels and self.channels != other_im.channels:
return False
return True
return False
|
is_same_shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other_im, check_channels=False):\n if self.height == other_im.height and self.width == other_im.width:\n if check_channels and self.channels != other_im.channels:\n return False\n return True\n return False\n",
"role": "user"
},
{
"content": "is_same_shape",
"role": "assistant"
}
] |
def x(self, inds):
new_data = np.zeros(self.shape)
for ind in inds:
new_data[ind[0], ind[1]] = self.data[ind[0], ind[1]]
return type(self)(new_data.astype(self.data.dtype), self.frame)
|
mask_by_ind
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inds):\n new_data = np.zeros(self.shape)\n for ind in inds:\n new_data[ind[0], ind[1]] = self.data[ind[0], ind[1]]\n return type(self)(new_data.astype(self.data.dtype), self.frame)\n",
"role": "user"
},
{
"content": "mask_by_ind",
"role": "assistant"
}
] |
def x(self, linear_inds):
inds = self.linear_to_ij(linear_inds)
return self.mask_by_ind(inds)
|
mask_by_linear_ind
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, linear_inds):\n inds = self.linear_to_ij(linear_inds)\n return self.mask_by_ind(inds)\n",
"role": "user"
},
{
"content": "mask_by_linear_ind",
"role": "assistant"
}
] |
def x(images):
images_data = np.array([image.data for image in images])
median_image_data = np.median(images_data, axis=0)
an_image = images[0]
return type(an_image)(median_image_data.astype(an_image.data.dtype),
an_image.frame)
|
median_images
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(images):\n images_data = np.array([image.data for image in images])\n median_image_data = np.median(images_data, axis=0)\n an_image = images[0]\n return type(an_image)(median_image_data.astype(an_image.data.dtype),\n an_image.frame)\n",
"role": "user"
},
{
"content": "median_images",
"role": "assistant"
}
] |
def x(images):
images_data = np.array([image.data for image in images])
images_data[images_data == 0] = np.inf
min_image_data = np.min(images_data, axis=0)
min_image_data[min_image_data == np.inf] = 0.0
an_image = images[0]
return type(an_image)(min_image_data.astype(an_image.data.dtype),
an_image.frame)
|
min_images
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(images):\n images_data = np.array([image.data for image in images])\n images_data[images_data == 0] = np.inf\n min_image_data = np.min(images_data, axis=0)\n min_image_data[min_image_data == np.inf] = 0.0\n an_image = images[0]\n return type(an_image)(min_image_data.astype(an_image.data.dtype),\n an_image.frame)\n",
"role": "user"
},
{
"content": "min_images",
"role": "assistant"
}
] |
def x(self, method, *args, **kwargs):
data = method(self.data, *args, **kwargs)
return type(self)(data.astype(self.type), self.frame)
|
apply
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method, *args, **kwargs):\n data = method(self.data, *args, **kwargs)\n return type(self)(data.astype(self.type), self.frame)\n",
"role": "user"
},
{
"content": "apply",
"role": "assistant"
}
] |
def x(self, height, width, center_i=None, center_j=None):
height = int(np.round(height))
width = int(np.round(width))
if center_i is None:
center_i = float(self.height) / 2
if center_j is None:
center_j = float(self.width) / 2
desired_start_row = int(np.floor(center_i - float(height) / 2))
desired_end_row = int(np.floor(center_i + float(height) / 2))
desired_start_col = int(np.floor(center_j - float(width) / 2))
desired_end_col = int(np.floor(center_j + float(width) / 2))
pil_im = PImage.fromarray(self.data)
cropped_pil_im = pil_im.crop((desired_start_col, desired_start_row,
desired_end_col, desired_end_row))
crop_data = np.array(cropped_pil_im)
if crop_data.shape[0] != height or crop_data.shape[1] != width:
raise ValueError('Crop dims are incorrect')
return type(self)(crop_data.astype(self.data.dtype), self._frame)
|
crop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, height, width, center_i=None, center_j=None):\n height = int(np.round(height))\n width = int(np.round(width))\n if center_i is None:\n center_i = float(self.height) / 2\n if center_j is None:\n center_j = float(self.width) / 2\n desired_start_row = int(np.floor(center_i - float(height) / 2))\n desired_end_row = int(np.floor(center_i + float(height) / 2))\n desired_start_col = int(np.floor(center_j - float(width) / 2))\n desired_end_col = int(np.floor(center_j + float(width) / 2))\n pil_im = PImage.fromarray(self.data)\n cropped_pil_im = pil_im.crop((desired_start_col, desired_start_row,\n desired_end_col, desired_end_row))\n crop_data = np.array(cropped_pil_im)\n if crop_data.shape[0] != height or crop_data.shape[1] != width:\n raise ValueError('Crop dims are incorrect')\n return type(self)(crop_data.astype(self.data.dtype), self._frame)\n",
"role": "user"
},
{
"content": "crop",
"role": "assistant"
}
] |
def x(self, height, width, center_i=None, center_j=None):
if center_i is None:
center_i = self.height / 2
if center_j is None:
center_j = self.width / 2
start_row = int(max(0, center_i - height / 2))
end_row = int(min(self.height - 1, center_i + height / 2))
start_col = int(max(0, center_j - width / 2))
end_col = int(min(self.width - 1, center_j + width / 2))
focus_data = np.zeros(self._data.shape)
focus_data[start_row:end_row + 1, start_col:end_col + 1] = self._data[
start_row:end_row + 1, start_col:end_col + 1]
return type(self)(focus_data.astype(self._data.dtype), self._frame)
|
focus
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, height, width, center_i=None, center_j=None):\n if center_i is None:\n center_i = self.height / 2\n if center_j is None:\n center_j = self.width / 2\n start_row = int(max(0, center_i - height / 2))\n end_row = int(min(self.height - 1, center_i + height / 2))\n start_col = int(max(0, center_j - width / 2))\n end_col = int(min(self.width - 1, center_j + width / 2))\n focus_data = np.zeros(self._data.shape)\n focus_data[start_row:end_row + 1, start_col:end_col + 1] = self._data[\n start_row:end_row + 1, start_col:end_col + 1]\n return type(self)(focus_data.astype(self._data.dtype), self._frame)\n",
"role": "user"
},
{
"content": "focus",
"role": "assistant"
}
] |
def x(self):
nonzero_px = np.where(self._data != 0.0)
nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]
mean_px = np.mean(nonzero_px, axis=0)
center_px = (np.array(self.shape) / 2.0)[:2]
diff_px = center_px - mean_px
nonzero_px_tf = nonzero_px + diff_px
nonzero_px_tf[:, 0] = np.max(np.c_[np.zeros(nonzero_px_tf[:, 0].shape),
nonzero_px_tf[:, 0]], axis=1)
nonzero_px_tf[:, 0] = np.min(np.c_[(self.height - 1) * np.ones(
nonzero_px_tf[:, 0].shape), nonzero_px_tf[:, 0]], axis=1)
nonzero_px_tf[:, 1] = np.max(np.c_[np.zeros(nonzero_px_tf[:, 1].shape),
nonzero_px_tf[:, 1]], axis=1)
nonzero_px_tf[:, 1] = np.min(np.c_[(self.width - 1) * np.ones(
nonzero_px_tf[:, 1].shape), nonzero_px_tf[:, 1]], axis=1)
nonzero_px = nonzero_px.astype(np.uint16)
nonzero_px_tf = nonzero_px_tf.astype(np.uint16)
shifted_data = np.zeros(self.shape)
shifted_data[nonzero_px_tf[:, 0], nonzero_px_tf[:, 1], :] = self.data[
nonzero_px[:, 0], nonzero_px[:, 1]].reshape(-1, self.channels)
return type(self)(shifted_data.astype(self.data.dtype), frame=self._frame
), diff_px
|
center_nonzero
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nonzero_px = np.where(self._data != 0.0)\n nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]\n mean_px = np.mean(nonzero_px, axis=0)\n center_px = (np.array(self.shape) / 2.0)[:2]\n diff_px = center_px - mean_px\n nonzero_px_tf = nonzero_px + diff_px\n nonzero_px_tf[:, 0] = np.max(np.c_[np.zeros(nonzero_px_tf[:, 0].shape),\n nonzero_px_tf[:, 0]], axis=1)\n nonzero_px_tf[:, 0] = np.min(np.c_[(self.height - 1) * np.ones(\n nonzero_px_tf[:, 0].shape), nonzero_px_tf[:, 0]], axis=1)\n nonzero_px_tf[:, 1] = np.max(np.c_[np.zeros(nonzero_px_tf[:, 1].shape),\n nonzero_px_tf[:, 1]], axis=1)\n nonzero_px_tf[:, 1] = np.min(np.c_[(self.width - 1) * np.ones(\n nonzero_px_tf[:, 1].shape), nonzero_px_tf[:, 1]], axis=1)\n nonzero_px = nonzero_px.astype(np.uint16)\n nonzero_px_tf = nonzero_px_tf.astype(np.uint16)\n shifted_data = np.zeros(self.shape)\n shifted_data[nonzero_px_tf[:, 0], nonzero_px_tf[:, 1], :] = self.data[\n nonzero_px[:, 0], nonzero_px[:, 1]].reshape(-1, self.channels)\n return type(self)(shifted_data.astype(self.data.dtype), frame=self._frame\n ), diff_px\n",
"role": "user"
},
{
"content": "center_nonzero",
"role": "assistant"
}
] |
def x(self):
nonzero_px = np.where(np.sum(self.raw_data, axis=2) > 0)
nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]
return nonzero_px
|
nonzero_pixels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nonzero_px = np.where(np.sum(self.raw_data, axis=2) > 0)\n nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]\n return nonzero_px\n",
"role": "user"
},
{
"content": "nonzero_pixels",
"role": "assistant"
}
] |
def x(self):
zero_px = np.where(np.sum(self.raw_data, axis=2) == 0)
zero_px = np.c_[zero_px[0], zero_px[1]]
return zero_px
|
zero_pixels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n zero_px = np.where(np.sum(self.raw_data, axis=2) == 0)\n zero_px = np.c_[zero_px[0], zero_px[1]]\n return zero_px\n",
"role": "user"
},
{
"content": "zero_pixels",
"role": "assistant"
}
] |
def x(self):
nan_px = np.where(np.isnan(np.sum(self.raw_data, axis=2)))
nan_px = np.c_[nan_px[0], nan_px[1]]
return nan_px
|
nan_pixels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nan_px = np.where(np.isnan(np.sum(self.raw_data, axis=2)))\n nan_px = np.c_[nan_px[0], nan_px[1]]\n return nan_px\n",
"role": "user"
},
{
"content": "nan_pixels",
"role": "assistant"
}
] |
def x(self):
finite_px = np.where(np.isfinite(self.data))
finite_px = np.c_[finite_px[0], finite_px[1]]
return finite_px
|
finite_pixels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n finite_px = np.where(np.isfinite(self.data))\n finite_px = np.c_[finite_px[0], finite_px[1]]\n return finite_px\n",
"role": "user"
},
{
"content": "finite_pixels",
"role": "assistant"
}
] |
def x(self, val, zero_thresh=0.0):
new_data = self.data.copy()
new_data[new_data <= zero_thresh] = val
return type(self)(new_data.astype(self.data.dtype), frame=self._frame)
|
replace_zeros
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, val, zero_thresh=0.0):\n new_data = self.data.copy()\n new_data[new_data <= zero_thresh] = val\n return type(self)(new_data.astype(self.data.dtype), frame=self._frame)\n",
"role": "user"
},
{
"content": "replace_zeros",
"role": "assistant"
}
] |
def x(self, filename):
filename = str(filename)
file_root, file_ext = os.path.splitext(filename)
if file_ext in COLOR_IMAGE_EXTS:
im_data = self._image_data()
if im_data.dtype.type == np.uint8:
pil_image = PImage.fromarray(im_data.squeeze())
pil_image.save(filename)
else:
try:
import png
except:
raise ValueError(
'PyPNG not installed! Cannot save 16-bit images')
png.fromarray(im_data, 'L').save(filename)
elif file_ext == '.npy':
np.save(filename, self._data)
elif file_ext == '.npz':
np.savez_compressed(filename, self._data)
else:
raise ValueError('Extension %s not supported' % file_ext)
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n filename = str(filename)\n file_root, file_ext = os.path.splitext(filename)\n if file_ext in COLOR_IMAGE_EXTS:\n im_data = self._image_data()\n if im_data.dtype.type == np.uint8:\n pil_image = PImage.fromarray(im_data.squeeze())\n pil_image.save(filename)\n else:\n try:\n import png\n except:\n raise ValueError(\n 'PyPNG not installed! Cannot save 16-bit images')\n png.fromarray(im_data, 'L').save(filename)\n elif file_ext == '.npy':\n np.save(filename, self._data)\n elif file_ext == '.npz':\n np.savez_compressed(filename, self._data)\n else:\n raise ValueError('Extension %s not supported' % file_ext)\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(self, output_path, title, dpi=400, format='png', cmap=None):
plt.figure()
plt.imshow(self.data, cmap=cmap)
plt.title(title)
plt.axis('off')
title_underscore = title.replace(' ', '_')
plt.savefig(os.path.join(output_path, '{0}.{1}'.format(title_underscore,
format)), dpi=dpi, format=format)
|
savefig
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, output_path, title, dpi=400, format='png', cmap=None):\n plt.figure()\n plt.imshow(self.data, cmap=cmap)\n plt.title(title)\n plt.axis('off')\n title_underscore = title.replace(' ', '_')\n plt.savefig(os.path.join(output_path, '{0}.{1}'.format(title_underscore,\n format)), dpi=dpi, format=format)\n",
"role": "user"
},
{
"content": "savefig",
"role": "assistant"
}
] |
def x(filename):
file_root, file_ext = os.path.splitext(filename)
data = None
if file_ext.lower() in COLOR_IMAGE_EXTS:
data = cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2RGB)
elif file_ext == '.npy':
data = np.load(filename)
elif file_ext == '.npz':
data = np.load(filename)['arr_0']
else:
raise ValueError('Extension %s not supported' % file_ext)
return data
|
load_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n file_root, file_ext = os.path.splitext(filename)\n data = None\n if file_ext.lower() in COLOR_IMAGE_EXTS:\n data = cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2RGB)\n elif file_ext == '.npy':\n data = np.load(filename)\n elif file_ext == '.npz':\n data = np.load(filename)['arr_0']\n else:\n raise ValueError('Extension %s not supported' % file_ext)\n return data\n",
"role": "user"
},
{
"content": "load_data",
"role": "assistant"
}
] |
def x(self, data):
if data.dtype.type is not np.uint8:
raise ValueError(
'Illegal data type. Color images only support uint8 arrays')
if len(data.shape) != 3 or data.shape[2] != 3:
raise ValueError(
'Illegal data type. Color images only support three channels')
|
check_valid_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n if data.dtype.type is not np.uint8:\n raise ValueError(\n 'Illegal data type. Color images only support uint8 arrays')\n if len(data.shape) != 3 or data.shape[2] != 3:\n raise ValueError(\n 'Illegal data type. Color images only support three channels')\n",
"role": "user"
},
{
"content": "check_valid_data",
"role": "assistant"
}
] |
def x(self):
new_data = cv2.cvtColor(self.raw_data, cv2.COLOR_BGR2RGB)
return ColorImage(new_data, frame=self.frame, encoding='rgb8')
|
bgr2rgb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n new_data = cv2.cvtColor(self.raw_data, cv2.COLOR_BGR2RGB)\n return ColorImage(new_data, frame=self.frame, encoding='rgb8')\n",
"role": "user"
},
{
"content": "bgr2rgb",
"role": "assistant"
}
] |
def x(self):
new_data = cv2.cvtColor(self.raw_data, cv2.COLOR_RGB2BGR)
return ColorImage(new_data, frame=self.frame, encoding='bgr8')
|
rgb2bgr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n new_data = cv2.cvtColor(self.raw_data, cv2.COLOR_RGB2BGR)\n return ColorImage(new_data, frame=self.frame, encoding='bgr8')\n",
"role": "user"
},
{
"content": "rgb2bgr",
"role": "assistant"
}
] |
def x(self, channel_swap):
if len(channel_swap) != 2:
raise ValueError('Illegal value for channel swap')
ci = channel_swap[0]
cj = channel_swap[1]
if ci < 0 or ci > 2 or cj < 0 or cj > 2:
raise ValueError('Channels must be between 0 and 1')
new_data = self.data.copy()
new_data[:, :, ci] = self.data[:, :, cj]
new_data[:, :, cj] = self.data[:, :, ci]
return ColorImage(new_data, frame=self._frame)
|
swap_channels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, channel_swap):\n if len(channel_swap) != 2:\n raise ValueError('Illegal value for channel swap')\n ci = channel_swap[0]\n cj = channel_swap[1]\n if ci < 0 or ci > 2 or cj < 0 or cj > 2:\n raise ValueError('Channels must be between 0 and 1')\n new_data = self.data.copy()\n new_data[:, :, ci] = self.data[:, :, cj]\n new_data[:, :, cj] = self.data[:, :, ci]\n return ColorImage(new_data, frame=self._frame)\n",
"role": "user"
},
{
"content": "swap_channels",
"role": "assistant"
}
] |
def x(self, sx=6, sy=9):
criteria = cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001
objp = np.zeros((sx * sy, 3), np.float32)
objp[:, :2] = np.mgrid[0:sx, 0:sy].T.reshape(-1, 2)
objpoints = []
imgpoints = []
img = self.data.astype(np.uint8)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
ret, corners = cv2.findChessboardCorners(gray, (sx, sy), None)
if ret:
objpoints.append(objp)
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners)
if corners is not None:
return corners.squeeze()
return None
|
find_chessboard
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sx=6, sy=9):\n criteria = cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001\n objp = np.zeros((sx * sy, 3), np.float32)\n objp[:, :2] = np.mgrid[0:sx, 0:sy].T.reshape(-1, 2)\n objpoints = []\n imgpoints = []\n img = self.data.astype(np.uint8)\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n ret, corners = cv2.findChessboardCorners(gray, (sx, sy), None)\n if ret:\n objpoints.append(objp)\n cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)\n imgpoints.append(corners)\n if corners is not None:\n return corners.squeeze()\n return None\n",
"role": "user"
},
{
"content": "find_chessboard",
"role": "assistant"
}
] |
def x(self, tolerance, ignore_black=True, use_hsv=False, scale=8, bgmodel=None
):
if bgmodel is None:
bgmodel = self.background_model(ignore_black=ignore_black, use_hsv=
use_hsv, scale=scale)
lower_bound = np.array([(bgmodel[i] - tolerance) for i in range(self.
channels)])
upper_bound = np.array([(bgmodel[i] + tolerance) for i in range(self.
channels)])
orig_zero_indices = np.where(np.sum(self._data, axis=2) == 0)
binary_data = cv2.inRange(self.data, lower_bound, upper_bound)
binary_data[:, :] = BINARY_IM_MAX_VAL - binary_data[:, :]
binary_data[orig_zero_indices[0], orig_zero_indices[1]] = 0.0
binary_im = BinaryImage(binary_data.astype(np.uint8), frame=self.frame)
return binary_im
|
foreground_mask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tolerance, ignore_black=True, use_hsv=False, scale=8, bgmodel=None\n ):\n if bgmodel is None:\n bgmodel = self.background_model(ignore_black=ignore_black, use_hsv=\n use_hsv, scale=scale)\n lower_bound = np.array([(bgmodel[i] - tolerance) for i in range(self.\n channels)])\n upper_bound = np.array([(bgmodel[i] + tolerance) for i in range(self.\n channels)])\n orig_zero_indices = np.where(np.sum(self._data, axis=2) == 0)\n binary_data = cv2.inRange(self.data, lower_bound, upper_bound)\n binary_data[:, :] = BINARY_IM_MAX_VAL - binary_data[:, :]\n binary_data[orig_zero_indices[0], orig_zero_indices[1]] = 0.0\n binary_im = BinaryImage(binary_data.astype(np.uint8), frame=self.frame)\n return binary_im\n",
"role": "user"
},
{
"content": "foreground_mask",
"role": "assistant"
}
] |
def x(self, ignore_black=True, use_hsv=False, scale=8):
data = self.data
if use_hsv:
pil_im = PImage.fromarray(self._data)
pil_im = pil_im.convert('HSV')
data = np.asarray(pil_im)
nonblack_pixels = np.where(np.sum(self.data, axis=2) > 0)
r_data = self.r_data
g_data = self.g_data
b_data = self.b_data
if ignore_black:
r_data = r_data[nonblack_pixels[0], nonblack_pixels[1]]
g_data = g_data[nonblack_pixels[0], nonblack_pixels[1]]
b_data = b_data[nonblack_pixels[0], nonblack_pixels[1]]
bounds = 0, np.iinfo(np.uint8).max + 1
num_bins = bounds[1] / scale
r_hist, _ = np.histogram(r_data, bins=num_bins, range=bounds)
g_hist, _ = np.histogram(g_data, bins=num_bins, range=bounds)
b_hist, _ = np.histogram(b_data, bins=num_bins, range=bounds)
hists = r_hist, g_hist, b_hist
modes = [(0) for i in range(self.channels)]
for i in range(self.channels):
modes[i] = scale * np.argmax(hists[i])
return modes
|
background_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ignore_black=True, use_hsv=False, scale=8):\n data = self.data\n if use_hsv:\n pil_im = PImage.fromarray(self._data)\n pil_im = pil_im.convert('HSV')\n data = np.asarray(pil_im)\n nonblack_pixels = np.where(np.sum(self.data, axis=2) > 0)\n r_data = self.r_data\n g_data = self.g_data\n b_data = self.b_data\n if ignore_black:\n r_data = r_data[nonblack_pixels[0], nonblack_pixels[1]]\n g_data = g_data[nonblack_pixels[0], nonblack_pixels[1]]\n b_data = b_data[nonblack_pixels[0], nonblack_pixels[1]]\n bounds = 0, np.iinfo(np.uint8).max + 1\n num_bins = bounds[1] / scale\n r_hist, _ = np.histogram(r_data, bins=num_bins, range=bounds)\n g_hist, _ = np.histogram(g_data, bins=num_bins, range=bounds)\n b_hist, _ = np.histogram(b_data, bins=num_bins, range=bounds)\n hists = r_hist, g_hist, b_hist\n modes = [(0) for i in range(self.channels)]\n for i in range(self.channels):\n modes[i] = scale * np.argmax(hists[i])\n return modes\n",
"role": "user"
},
{
"content": "background_model",
"role": "assistant"
}
] |
def x(self, box):
box_data = self._data.copy()
min_i = box.min_pt[1]
min_j = box.min_pt[0]
max_i = box.max_pt[1]
max_j = box.max_pt[0]
for j in range(min_j, max_j):
box_data[min_i, j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)
box_data[max_i, j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)
for i in range(min_i, max_i):
box_data[i, min_j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)
box_data[i, max_j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)
return ColorImage(box_data, self._frame)
|
draw_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, box):\n box_data = self._data.copy()\n min_i = box.min_pt[1]\n min_j = box.min_pt[0]\n max_i = box.max_pt[1]\n max_j = box.max_pt[0]\n for j in range(min_j, max_j):\n box_data[min_i, j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)\n box_data[max_i, j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)\n for i in range(min_i, max_i):\n box_data[i, min_j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)\n box_data[i, max_j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)\n return ColorImage(box_data, self._frame)\n",
"role": "user"
},
{
"content": "draw_box",
"role": "assistant"
}
] |
def x(self):
hsv_data = cv2.cvtColor(self.data, cv2.COLOR_BGR2HSV)
nonzero_px = self.nonzero_pixels()
return hsv_data[nonzero_px[:, 0], nonzero_px[:, 1], ...]
|
nonzero_hsv_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n hsv_data = cv2.cvtColor(self.data, cv2.COLOR_BGR2HSV)\n nonzero_px = self.nonzero_pixels()\n return hsv_data[nonzero_px[:, 0], nonzero_px[:, 1], ...]\n",
"role": "user"
},
{
"content": "nonzero_hsv_data",
"role": "assistant"
}
] |
def x(self, rgb_weight, num_clusters, hue_weight=0.0):
label_offset = 1
nonzero_px = np.where(self.data != 0.0)
nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]
color_vals = rgb_weight * self._data[nonzero_px[:, 0], nonzero_px[:, 1], :]
if hue_weight > 0.0:
hsv_data = cv2.cvtColor(self.data, cv2.COLOR_BGR2HSV)
color_vals = np.c_[color_vals, hue_weight * hsv_data[nonzero_px[:,
0], nonzero_px[:, 1], :1]]
features = np.c_[nonzero_px, color_vals.astype(np.float32)]
kmeans = sc.KMeans(n_clusters=num_clusters)
labels = kmeans.fit_predict(features)
label_im = np.zeros([self.height, self.width]).astype(np.uint8)
label_im[nonzero_px[:, 0], nonzero_px[:, 1]] = labels + label_offset
return SegmentationImage(label_im, frame=self.frame)
|
segment_kmeans
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rgb_weight, num_clusters, hue_weight=0.0):\n label_offset = 1\n nonzero_px = np.where(self.data != 0.0)\n nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]\n color_vals = rgb_weight * self._data[nonzero_px[:, 0], nonzero_px[:, 1], :]\n if hue_weight > 0.0:\n hsv_data = cv2.cvtColor(self.data, cv2.COLOR_BGR2HSV)\n color_vals = np.c_[color_vals, hue_weight * hsv_data[nonzero_px[:, \n 0], nonzero_px[:, 1], :1]]\n features = np.c_[nonzero_px, color_vals.astype(np.float32)]\n kmeans = sc.KMeans(n_clusters=num_clusters)\n labels = kmeans.fit_predict(features)\n label_im = np.zeros([self.height, self.width]).astype(np.uint8)\n label_im[nonzero_px[:, 0], nonzero_px[:, 1]] = labels + label_offset\n return SegmentationImage(label_im, frame=self.frame)\n",
"role": "user"
},
{
"content": "segment_kmeans",
"role": "assistant"
}
] |
def x(self, win_size=3, rescale_factor=1.0):
orig_shape = self.height, self.width
resized_data = self.resize(rescale_factor, interp='nearest').data
mask = 1 * (np.sum(resized_data, axis=2) == 0)
inpainted_data = cv2.inpaint(resized_data, mask.astype(np.uint8),
win_size, cv2.INPAINT_TELEA)
inpainted_im = ColorImage(inpainted_data, frame=self.frame)
filled_data = inpainted_im.resize(orig_shape, interp='bilinear').data
new_data = self.data
new_data[self.data == 0] = filled_data[self.data == 0]
return ColorImage(new_data, frame=self.frame)
|
inpaint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, win_size=3, rescale_factor=1.0):\n orig_shape = self.height, self.width\n resized_data = self.resize(rescale_factor, interp='nearest').data\n mask = 1 * (np.sum(resized_data, axis=2) == 0)\n inpainted_data = cv2.inpaint(resized_data, mask.astype(np.uint8),\n win_size, cv2.INPAINT_TELEA)\n inpainted_im = ColorImage(inpainted_data, frame=self.frame)\n filled_data = inpainted_im.resize(orig_shape, interp='bilinear').data\n new_data = self.data\n new_data[self.data == 0] = filled_data[self.data == 0]\n return ColorImage(new_data, frame=self.frame)\n",
"role": "user"
},
{
"content": "inpaint",
"role": "assistant"
}
] |
def x(self):
gray_data = cv2.cvtColor(self.data, cv2.COLOR_RGB2GRAY)
return GrayscaleImage(gray_data, frame=self.frame)
|
to_grayscale
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n gray_data = cv2.cvtColor(self.data, cv2.COLOR_RGB2GRAY)\n return GrayscaleImage(gray_data, frame=self.frame)\n",
"role": "user"
},
{
"content": "to_grayscale",
"role": "assistant"
}
] |
def x(filename, frame='unspecified'):
data = Image.load_data(filename).astype(np.uint8)
return ColorImage(data, frame)
|
open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename).astype(np.uint8)\n return ColorImage(data, frame)\n",
"role": "user"
},
{
"content": "open",
"role": "assistant"
}
] |
def x(self, data):
if data.dtype.type is not np.float32 and data.dtype.type is not np.float64:
raise ValueError(
'Illegal data type. Depth images only support float arrays')
if len(data.shape) == 3 and data.shape[2] != 1:
raise ValueError(
'Illegal data type. Depth images only support single channel')
|
check_valid_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n if data.dtype.type is not np.float32 and data.dtype.type is not np.float64:\n raise ValueError(\n 'Illegal data type. Depth images only support float arrays')\n if len(data.shape) == 3 and data.shape[2] != 1:\n raise ValueError(\n 'Illegal data type. Depth images only support single channel')\n",
"role": "user"
},
{
"content": "check_valid_data",
"role": "assistant"
}
] |
def x(self, normalize=False, min_depth=MIN_DEPTH, max_depth=MAX_DEPTH,
twobyte=False):
max_val = BINARY_IM_MAX_VAL
if twobyte:
max_val = np.iinfo(np.uint16).max
if normalize:
min_depth = np.min(self._data)
max_depth = np.max(self._data)
depth_data = (self._data - min_depth) / (max_depth - min_depth)
depth_data = float(max_val) * depth_data.squeeze()
else:
zero_px = np.where(self._data == 0)
zero_px = np.c_[zero_px[0], zero_px[1], zero_px[2]]
depth_data = ((self._data - min_depth) * (float(max_val) / (
max_depth - min_depth))).squeeze()
depth_data[zero_px[:, 0], zero_px[:, 1]] = 0
im_data = np.zeros([self.height, self.width, 3])
im_data[:, :, 0] = depth_data
im_data[:, :, 1] = depth_data
im_data[:, :, 2] = depth_data
if twobyte:
return im_data.astype(np.uint16)
return im_data.astype(np.uint8)
|
image_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, normalize=False, min_depth=MIN_DEPTH, max_depth=MAX_DEPTH,\n twobyte=False):\n max_val = BINARY_IM_MAX_VAL\n if twobyte:\n max_val = np.iinfo(np.uint16).max\n if normalize:\n min_depth = np.min(self._data)\n max_depth = np.max(self._data)\n depth_data = (self._data - min_depth) / (max_depth - min_depth)\n depth_data = float(max_val) * depth_data.squeeze()\n else:\n zero_px = np.where(self._data == 0)\n zero_px = np.c_[zero_px[0], zero_px[1], zero_px[2]]\n depth_data = ((self._data - min_depth) * (float(max_val) / (\n max_depth - min_depth))).squeeze()\n depth_data[zero_px[:, 0], zero_px[:, 1]] = 0\n im_data = np.zeros([self.height, self.width, 3])\n im_data[:, :, 0] = depth_data\n im_data[:, :, 1] = depth_data\n im_data[:, :, 2] = depth_data\n if twobyte:\n return im_data.astype(np.uint16)\n return im_data.astype(np.uint8)\n",
"role": "user"
},
{
"content": "image_data",
"role": "assistant"
}
] |
def x(self, front_thresh=0.0, rear_thresh=100.0):
data = np.copy(self._data)
data[data < front_thresh] = 0.0
data[data > rear_thresh] = 0.0
return DepthImage(data, self._frame)
|
threshold
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, front_thresh=0.0, rear_thresh=100.0):\n data = np.copy(self._data)\n data[data < front_thresh] = 0.0\n data[data > rear_thresh] = 0.0\n return DepthImage(data, self._frame)\n",
"role": "user"
},
{
"content": "threshold",
"role": "assistant"
}
] |
def x(self, grad_thresh):
data = np.copy(self._data)
gx, gy = self.gradients()
gradients = np.zeros([gx.shape[0], gx.shape[1], 2])
gradients[:, :, 0] = gx
gradients[:, :, 1] = gy
gradient_mags = np.linalg.norm(gradients, axis=2)
ind = np.where(gradient_mags > grad_thresh)
data[ind[0], ind[1]] = 0.0
return DepthImage(data, self._frame)
|
threshold_gradients
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, grad_thresh):\n data = np.copy(self._data)\n gx, gy = self.gradients()\n gradients = np.zeros([gx.shape[0], gx.shape[1], 2])\n gradients[:, :, 0] = gx\n gradients[:, :, 1] = gy\n gradient_mags = np.linalg.norm(gradients, axis=2)\n ind = np.where(gradient_mags > grad_thresh)\n data[ind[0], ind[1]] = 0.0\n return DepthImage(data, self._frame)\n",
"role": "user"
},
{
"content": "threshold_gradients",
"role": "assistant"
}
] |
def x(self, thresh_pctile, min_mag=0.0):
data = np.copy(self._data)
gx, gy = self.gradients()
gradients = np.zeros([gx.shape[0], gx.shape[1], 2])
gradients[:, :, 0] = gx
gradients[:, :, 1] = gy
gradient_mags = np.linalg.norm(gradients, axis=2)
grad_thresh = np.percentile(gradient_mags, thresh_pctile)
ind = np.where((gradient_mags > grad_thresh) & (gradient_mags > min_mag))
data[ind[0], ind[1]] = 0.0
return DepthImage(data, self._frame)
|
threshold_gradients_pctile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, thresh_pctile, min_mag=0.0):\n data = np.copy(self._data)\n gx, gy = self.gradients()\n gradients = np.zeros([gx.shape[0], gx.shape[1], 2])\n gradients[:, :, 0] = gx\n gradients[:, :, 1] = gy\n gradient_mags = np.linalg.norm(gradients, axis=2)\n grad_thresh = np.percentile(gradient_mags, thresh_pctile)\n ind = np.where((gradient_mags > grad_thresh) & (gradient_mags > min_mag))\n data[ind[0], ind[1]] = 0.0\n return DepthImage(data, self._frame)\n",
"role": "user"
},
{
"content": "threshold_gradients_pctile",
"role": "assistant"
}
] |
def x(self, rescale_factor=1.0):
orig_shape = self.height, self.width
inpaint_kernel = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]])
resized_data = self.resize(rescale_factor, interp='nearest').data
cur_data = resized_data.copy()
zeros = cur_data == 0
while np.any(zeros):
neighbors = ssg.convolve2d(cur_data != 0, inpaint_kernel, mode=
'same', boundary='symm')
avg_depth = ssg.convolve2d(cur_data, inpaint_kernel, mode='same',
boundary='symm')
avg_depth[neighbors > 0] = avg_depth[neighbors > 0] / neighbors[
neighbors > 0]
avg_depth[neighbors == 0] = 0
avg_depth[resized_data > 0] = resized_data[resized_data > 0]
cur_data = avg_depth
zeros = cur_data == 0
inpainted_im = DepthImage(cur_data, frame=self.frame)
filled_data = inpainted_im.resize(orig_shape, interp='bilinear').data
new_data = np.copy(self.data)
new_data[self.data == 0] = filled_data[self.data == 0]
return DepthImage(new_data, frame=self.frame)
|
inpaint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rescale_factor=1.0):\n orig_shape = self.height, self.width\n inpaint_kernel = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]])\n resized_data = self.resize(rescale_factor, interp='nearest').data\n cur_data = resized_data.copy()\n zeros = cur_data == 0\n while np.any(zeros):\n neighbors = ssg.convolve2d(cur_data != 0, inpaint_kernel, mode=\n 'same', boundary='symm')\n avg_depth = ssg.convolve2d(cur_data, inpaint_kernel, mode='same',\n boundary='symm')\n avg_depth[neighbors > 0] = avg_depth[neighbors > 0] / neighbors[\n neighbors > 0]\n avg_depth[neighbors == 0] = 0\n avg_depth[resized_data > 0] = resized_data[resized_data > 0]\n cur_data = avg_depth\n zeros = cur_data == 0\n inpainted_im = DepthImage(cur_data, frame=self.frame)\n filled_data = inpainted_im.resize(orig_shape, interp='bilinear').data\n new_data = np.copy(self.data)\n new_data[self.data == 0] = filled_data[self.data == 0]\n return DepthImage(new_data, frame=self.frame)\n",
"role": "user"
},
{
"content": "inpaint",
"role": "assistant"
}
] |
def x(self):
mask = np.zeros([self.height, self.width, 1]).astype(np.uint8)
zero_pixels = self.zero_pixels()
nan_pixels = self.nan_pixels()
mask[zero_pixels[:, 0], zero_pixels[:, 1]] = BINARY_IM_MAX_VAL
mask[nan_pixels[:, 0], nan_pixels[:, 1]] = BINARY_IM_MAX_VAL
return BinaryImage(mask, frame=self.frame)
|
invalid_pixel_mask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mask = np.zeros([self.height, self.width, 1]).astype(np.uint8)\n zero_pixels = self.zero_pixels()\n nan_pixels = self.nan_pixels()\n mask[zero_pixels[:, 0], zero_pixels[:, 1]] = BINARY_IM_MAX_VAL\n mask[nan_pixels[:, 0], nan_pixels[:, 1]] = BINARY_IM_MAX_VAL\n return BinaryImage(mask, frame=self.frame)\n",
"role": "user"
},
{
"content": "invalid_pixel_mask",
"role": "assistant"
}
] |
def x(self, depth_im, filter_equal_depth=False):
if filter_equal_depth:
farther_px = np.where((self.data > depth_im.data) & np.isfinite(
depth_im.data))
else:
farther_px = np.where((self.data >= depth_im.data) & np.isfinite(
depth_im.data))
farther_px = np.c_[farther_px[0], farther_px[1]]
return farther_px
|
pixels_farther_than
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, depth_im, filter_equal_depth=False):\n if filter_equal_depth:\n farther_px = np.where((self.data > depth_im.data) & np.isfinite(\n depth_im.data))\n else:\n farther_px = np.where((self.data >= depth_im.data) & np.isfinite(\n depth_im.data))\n farther_px = np.c_[farther_px[0], farther_px[1]]\n return farther_px\n",
"role": "user"
},
{
"content": "pixels_farther_than",
"role": "assistant"
}
] |
def x(self, depth_im):
new_data = self.data.copy()
new_data[new_data == 0] = depth_im.data[new_data == 0]
new_data[(new_data > depth_im.data) & (depth_im.data > 0)] = depth_im.data[
(new_data > depth_im.data) & (depth_im.data > 0)]
return DepthImage(new_data, frame=self.frame)
|
combine_with
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, depth_im):\n new_data = self.data.copy()\n new_data[new_data == 0] = depth_im.data[new_data == 0]\n new_data[(new_data > depth_im.data) & (depth_im.data > 0)] = depth_im.data[\n (new_data > depth_im.data) & (depth_im.data > 0)]\n return DepthImage(new_data, frame=self.frame)\n",
"role": "user"
},
{
"content": "combine_with",
"role": "assistant"
}
] |
def x(self, threshold=0.0):
data = BINARY_IM_MAX_VAL * (self._data > threshold)
return BinaryImage(data.astype(np.uint8), self._frame)
|
to_binary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, threshold=0.0):\n data = BINARY_IM_MAX_VAL * (self._data > threshold)\n return BinaryImage(data.astype(np.uint8), self._frame)\n",
"role": "user"
},
{
"content": "to_binary",
"role": "assistant"
}
] |
def x(self, normalize=False):
im_data = self._image_data(normalize=normalize)
return ColorImage(im_data, frame=self._frame)
|
to_color
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, normalize=False):\n im_data = self._image_data(normalize=normalize)\n return ColorImage(im_data, frame=self._frame)\n",
"role": "user"
},
{
"content": "to_color",
"role": "assistant"
}
] |
def x(self):
return DepthImage(self.data.astype(np.float32), frame=self.frame)
|
to_float
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return DepthImage(self.data.astype(np.float32), frame=self.frame)\n",
"role": "user"
},
{
"content": "to_float",
"role": "assistant"
}
] |
def x(self, camera_intr):
point_cloud_im = camera_intr.deproject_to_image(self)
normal_cloud_im = point_cloud_im.normal_cloud_im()
point_cloud = point_cloud_im.to_point_cloud()
normal_cloud = normal_cloud_im.to_normal_cloud()
return PointNormalCloud(point_cloud.data, normal_cloud.data, frame=self
._frame)
|
point_normal_cloud
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, camera_intr):\n point_cloud_im = camera_intr.deproject_to_image(self)\n normal_cloud_im = point_cloud_im.normal_cloud_im()\n point_cloud = point_cloud_im.to_point_cloud()\n normal_cloud = normal_cloud_im.to_normal_cloud()\n return PointNormalCloud(point_cloud.data, normal_cloud.data, frame=self\n ._frame)\n",
"role": "user"
},
{
"content": "point_normal_cloud",
"role": "assistant"
}
] |
def x(filename, frame='unspecified'):
file_root, file_ext = os.path.splitext(filename)
data = Image.load_data(filename)
if file_ext.lower() in COLOR_IMAGE_EXTS:
data = (data * (MAX_DEPTH / BINARY_IM_MAX_VAL)).astype(np.float32)
return DepthImage(data, frame)
|
open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, frame='unspecified'):\n file_root, file_ext = os.path.splitext(filename)\n data = Image.load_data(filename)\n if file_ext.lower() in COLOR_IMAGE_EXTS:\n data = (data * (MAX_DEPTH / BINARY_IM_MAX_VAL)).astype(np.float32)\n return DepthImage(data, frame)\n",
"role": "user"
},
{
"content": "open",
"role": "assistant"
}
] |
def x(self):
return (self._data * (float(BINARY_IM_MAX_VAL) / MAX_IR)).astype(np.uint8)
|
image_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return (self._data * (float(BINARY_IM_MAX_VAL) / MAX_IR)).astype(np.uint8)\n",
"role": "user"
},
{
"content": "image_data",
"role": "assistant"
}
] |
def x(self, size, interp='bilinear'):
resized_data = sm.imresize(self._data, size, interp=interp)
return IrImage(resized_data, self._frame)
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size, interp='bilinear'):\n resized_data = sm.imresize(self._data, size, interp=interp)\n return IrImage(resized_data, self._frame)\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(filename, frame='unspecified'):
data = Image.load_data(filename)
data = (data * (MAX_IR / BINARY_IM_MAX_VAL)).astype(np.uint16)
return IrImage(data, frame)
|
open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n data = (data * (MAX_IR / BINARY_IM_MAX_VAL)).astype(np.uint16)\n return IrImage(data, frame)\n",
"role": "user"
},
{
"content": "open",
"role": "assistant"
}
] |
def x(self, size, interp='bilinear'):
resized_data = sm.imresize(self.data, size, interp=interp)
return GrayscaleImage(resized_data, self._frame)
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size, interp='bilinear'):\n resized_data = sm.imresize(self.data, size, interp=interp)\n return GrayscaleImage(resized_data, self._frame)\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(self):
color_data = np.repeat(self.data[:, :, np.newaxis], 3, axis=2)
return ColorImage(color_data, self._frame)
|
to_color
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n color_data = np.repeat(self.data[:, :, np.newaxis], 3, axis=2)\n return ColorImage(color_data, self._frame)\n",
"role": "user"
},
{
"content": "to_color",
"role": "assistant"
}
] |
def x(filename, frame='unspecified'):
data = Image.load_data(filename)
return GrayscaleImage(data, frame)
|
open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n return GrayscaleImage(data, frame)\n",
"role": "user"
},
{
"content": "open",
"role": "assistant"
}
] |
def x(self, binary_im):
data = np.copy(self._data)
ind = np.where(binary_im.data > 0)
data[ind[0], ind[1], ...] = BINARY_IM_MAX_VAL
return BinaryImage(data, self._frame)
|
pixelwise_or
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, binary_im):\n data = np.copy(self._data)\n ind = np.where(binary_im.data > 0)\n data[ind[0], ind[1], ...] = BINARY_IM_MAX_VAL\n return BinaryImage(data, self._frame)\n",
"role": "user"
},
{
"content": "pixelwise_or",
"role": "assistant"
}
] |
def x(self):
data = np.zeros(self.shape).astype(np.uint8)
ind = np.where(self.data == 0)
data[ind[0], ind[1], ...] = BINARY_IM_MAX_VAL
return BinaryImage(data, self._frame)
|
inverse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n data = np.zeros(self.shape).astype(np.uint8)\n ind = np.where(self.data == 0)\n data[ind[0], ind[1], ...] = BINARY_IM_MAX_VAL\n return BinaryImage(data, self._frame)\n",
"role": "user"
},
{
"content": "inverse",
"role": "assistant"
}
] |
def x(self, area_thresh=1000.0, dist_thresh=20, preserve_topology=True):
contours, hierarchy = cv2.findContours(self.data.copy(), cv2.
RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
num_contours = len(contours)
middle_pixel = np.array(self.shape)[:2] / 2
middle_pixel = middle_pixel.reshape(1, 2)
center_contour = None
pruned_contours = []
for i in range(num_contours):
area = cv2.contourArea(contours[i])
if area > area_thresh:
fill = np.zeros([self.height, self.width, 3])
cv2.fillPoly(fill, pts=[contours[i]], color=(BINARY_IM_MAX_VAL,
BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL))
nonzero_px = np.where(fill > 0)
nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]
dists = ssd.cdist(middle_pixel, nonzero_px)
min_dist = np.min(dists)
pruned_contours.append((contours[i], min_dist))
if len(pruned_contours) == 0:
return None
pruned_contours.sort(key=lambda x: x[1])
num_contours = len(pruned_contours)
keep_indices = [0]
source_coords = pruned_contours[0][0].squeeze().astype(np.float32)
for i in range(1, num_contours):
target_coords = pruned_contours[i][0].squeeze().astype(np.float32)
dists = ssd.cdist(source_coords, target_coords)
min_dist = np.min(dists)
if min_dist < dist_thresh:
keep_indices.append(i)
keep_indices = np.unique(keep_indices)
pruned_contours = [pruned_contours[i][0] for i in keep_indices]
pruned_data = np.zeros([self.height, self.width, 3])
for contour in pruned_contours:
cv2.fillPoly(pruned_data, pts=[contour], color=(BINARY_IM_MAX_VAL,
BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL))
pruned_data = pruned_data[:, :, 0]
if preserve_topology:
orig_zeros = np.where(self.data == 0)
pruned_data[orig_zeros[0], orig_zeros[1]] = 0
return BinaryImage(pruned_data.astype(np.uint8), self._frame)
|
prune_contours
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, area_thresh=1000.0, dist_thresh=20, preserve_topology=True):\n contours, hierarchy = cv2.findContours(self.data.copy(), cv2.\n RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)\n num_contours = len(contours)\n middle_pixel = np.array(self.shape)[:2] / 2\n middle_pixel = middle_pixel.reshape(1, 2)\n center_contour = None\n pruned_contours = []\n for i in range(num_contours):\n area = cv2.contourArea(contours[i])\n if area > area_thresh:\n fill = np.zeros([self.height, self.width, 3])\n cv2.fillPoly(fill, pts=[contours[i]], color=(BINARY_IM_MAX_VAL,\n BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL))\n nonzero_px = np.where(fill > 0)\n nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]\n dists = ssd.cdist(middle_pixel, nonzero_px)\n min_dist = np.min(dists)\n pruned_contours.append((contours[i], min_dist))\n if len(pruned_contours) == 0:\n return None\n pruned_contours.sort(key=lambda x: x[1])\n num_contours = len(pruned_contours)\n keep_indices = [0]\n source_coords = pruned_contours[0][0].squeeze().astype(np.float32)\n for i in range(1, num_contours):\n target_coords = pruned_contours[i][0].squeeze().astype(np.float32)\n dists = ssd.cdist(source_coords, target_coords)\n min_dist = np.min(dists)\n if min_dist < dist_thresh:\n keep_indices.append(i)\n keep_indices = np.unique(keep_indices)\n pruned_contours = [pruned_contours[i][0] for i in keep_indices]\n pruned_data = np.zeros([self.height, self.width, 3])\n for contour in pruned_contours:\n cv2.fillPoly(pruned_data, pts=[contour], color=(BINARY_IM_MAX_VAL,\n BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL))\n pruned_data = pruned_data[:, :, 0]\n if preserve_topology:\n orig_zeros = np.where(self.data == 0)\n pruned_data[orig_zeros[0], orig_zeros[1]] = 0\n return BinaryImage(pruned_data.astype(np.uint8), self._frame)\n",
"role": "user"
},
{
"content": "prune_contours",
"role": "assistant"
}
] |
def x(self, min_area=0.0, max_area=np.inf):
_, contours, hierarchy = cv2.findContours(self.data.copy(), cv2.
RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
num_contours = len(contours)
kept_contours = []
for i in range(num_contours):
area = cv2.contourArea(contours[i])
logging.debug('Contour %d area: %.3f' % (len(kept_contours), area))
if area > min_area and area < max_area:
boundary_px = contours[i].squeeze()
boundary_px_ij_swapped = np.zeros(boundary_px.shape)
boundary_px_ij_swapped[:, 0] = boundary_px[:, 1]
boundary_px_ij_swapped[:, 1] = boundary_px[:, 0]
kept_contours.append(Contour(boundary_px_ij_swapped, area=area,
frame=self._frame))
return kept_contours
|
find_contours
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, min_area=0.0, max_area=np.inf):\n _, contours, hierarchy = cv2.findContours(self.data.copy(), cv2.\n RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)\n num_contours = len(contours)\n kept_contours = []\n for i in range(num_contours):\n area = cv2.contourArea(contours[i])\n logging.debug('Contour %d area: %.3f' % (len(kept_contours), area))\n if area > min_area and area < max_area:\n boundary_px = contours[i].squeeze()\n boundary_px_ij_swapped = np.zeros(boundary_px.shape)\n boundary_px_ij_swapped[:, 0] = boundary_px[:, 1]\n boundary_px_ij_swapped[:, 1] = boundary_px[:, 0]\n kept_contours.append(Contour(boundary_px_ij_swapped, area=area,\n frame=self._frame))\n return kept_contours\n",
"role": "user"
},
{
"content": "find_contours",
"role": "assistant"
}
] |
def x(self, contour):
new_data = np.zeros(self.data.shape)
num_boundary = contour.boundary_pixels.shape[0]
boundary_px_ij_swapped = np.zeros([num_boundary, 1, 2])
boundary_px_ij_swapped[:, 0, 0] = contour.boundary_pixels[:, 1]
boundary_px_ij_swapped[:, 0, 1] = contour.boundary_pixels[:, 0]
cv2.fillPoly(new_data, pts=[boundary_px_ij_swapped.astype(np.int32)],
color=(BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL))
orig_zeros = np.where(self.data == 0)
new_data[orig_zeros[0], orig_zeros[1]] = 0
return BinaryImage(new_data.astype(np.uint8), frame=self._frame)
|
contour_mask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, contour):\n new_data = np.zeros(self.data.shape)\n num_boundary = contour.boundary_pixels.shape[0]\n boundary_px_ij_swapped = np.zeros([num_boundary, 1, 2])\n boundary_px_ij_swapped[:, 0, 0] = contour.boundary_pixels[:, 1]\n boundary_px_ij_swapped[:, 0, 1] = contour.boundary_pixels[:, 0]\n cv2.fillPoly(new_data, pts=[boundary_px_ij_swapped.astype(np.int32)],\n color=(BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL))\n orig_zeros = np.where(self.data == 0)\n new_data[orig_zeros[0], orig_zeros[1]] = 0\n return BinaryImage(new_data.astype(np.uint8), frame=self._frame)\n",
"role": "user"
},
{
"content": "contour_mask",
"role": "assistant"
}
] |
def x(self):
contours = self.find_contours()
new_data = np.zeros(self.data.shape)
for contour in contours:
new_data[contour.boundary_pixels[:, 0].astype(np.uint8), contour.
boundary_pixels[:, 1].astype(np.uint8)] = np.iinfo(np.uint8).max
return BinaryImage(new_data.astype(np.uint8), frame=self.frame)
|
boundary_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n contours = self.find_contours()\n new_data = np.zeros(self.data.shape)\n for contour in contours:\n new_data[contour.boundary_pixels[:, 0].astype(np.uint8), contour.\n boundary_pixels[:, 1].astype(np.uint8)] = np.iinfo(np.uint8).max\n return BinaryImage(new_data.astype(np.uint8), frame=self.frame)\n",
"role": "user"
},
{
"content": "boundary_map",
"role": "assistant"
}
] |
def x(self, start, pixel_set, direction, w=13, t=0.5):
y, x = np.meshgrid(np.arange(w) - w / 2, np.arange(w) - w / 2)
cur_px_y = np.ravel(y + start[0]).astype(np.uint16)
cur_px_x = np.ravel(x + start[1]).astype(np.uint16)
cur_px = set(zip(cur_px_y, cur_px_x))
includes = True
if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(
cur_px_x >= 0) and np.all(cur_px_x < self.width):
includes = not cur_px.isdisjoint(pixel_set)
else:
return None
while not includes:
start = start + t * direction
cur_px_y = np.ravel(y + start[0]).astype(np.uint16)
cur_px_x = np.ravel(x + start[1]).astype(np.uint16)
cur_px = set(zip(cur_px_y, cur_px_x))
if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(
cur_px_x >= 0) and np.all(cur_px_x < self.width):
includes = not cur_px.isdisjoint(pixel_set)
else:
return None
return start
|
closest_pixel_to_set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start, pixel_set, direction, w=13, t=0.5):\n y, x = np.meshgrid(np.arange(w) - w / 2, np.arange(w) - w / 2)\n cur_px_y = np.ravel(y + start[0]).astype(np.uint16)\n cur_px_x = np.ravel(x + start[1]).astype(np.uint16)\n cur_px = set(zip(cur_px_y, cur_px_x))\n includes = True\n if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(\n cur_px_x >= 0) and np.all(cur_px_x < self.width):\n includes = not cur_px.isdisjoint(pixel_set)\n else:\n return None\n while not includes:\n start = start + t * direction\n cur_px_y = np.ravel(y + start[0]).astype(np.uint16)\n cur_px_x = np.ravel(x + start[1]).astype(np.uint16)\n cur_px = set(zip(cur_px_y, cur_px_x))\n if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(\n cur_px_x >= 0) and np.all(cur_px_x < self.width):\n includes = not cur_px.isdisjoint(pixel_set)\n else:\n return None\n return start\n",
"role": "user"
},
{
"content": "closest_pixel_to_set",
"role": "assistant"
}
] |
def x(self, pixel, direction, w=13, t=0.5):
y, x = np.meshgrid(np.arange(w) - w / 2, np.arange(w) - w / 2)
cur_px_y = np.ravel(y + pixel[0]).astype(np.uint16)
cur_px_x = np.ravel(x + pixel[1]).astype(np.uint16)
empty = False
if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(
cur_px_x >= 0) and np.all(cur_px_x < self.width):
empty = np.all(self[cur_px_y, cur_px_x] <= self._threshold)
else:
return None
while not empty:
pixel = pixel + t * direction
cur_px_y = np.ravel(y + pixel[0]).astype(np.uint16)
cur_px_x = np.ravel(x + pixel[1]).astype(np.uint16)
if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(
cur_px_x >= 0) and np.all(cur_px_x < self.width):
empty = np.all(self[cur_px_y, cur_px_x] <= self._threshold)
else:
return None
return pixel
|
closest_allzero_pixel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pixel, direction, w=13, t=0.5):\n y, x = np.meshgrid(np.arange(w) - w / 2, np.arange(w) - w / 2)\n cur_px_y = np.ravel(y + pixel[0]).astype(np.uint16)\n cur_px_x = np.ravel(x + pixel[1]).astype(np.uint16)\n empty = False\n if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(\n cur_px_x >= 0) and np.all(cur_px_x < self.width):\n empty = np.all(self[cur_px_y, cur_px_x] <= self._threshold)\n else:\n return None\n while not empty:\n pixel = pixel + t * direction\n cur_px_y = np.ravel(y + pixel[0]).astype(np.uint16)\n cur_px_x = np.ravel(x + pixel[1]).astype(np.uint16)\n if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(\n cur_px_x >= 0) and np.all(cur_px_x < self.width):\n empty = np.all(self[cur_px_y, cur_px_x] <= self._threshold)\n else:\n return None\n return pixel\n",
"role": "user"
},
{
"content": "closest_allzero_pixel",
"role": "assistant"
}
] |
def x(self, left_boundary, right_boundary, upper_boundary, lower_boundary):
left_boundary = max(0, left_boundary)
right_boundary = min(self.width - 1, right_boundary)
upper_boundary = max(0, upper_boundary)
lower_boundary = min(self.height - 1, lower_boundary)
if right_boundary < left_boundary:
raise ValueError(
'Left boundary must be smaller than the right boundary')
if upper_boundary > lower_boundary:
raise ValueError(
'Upper boundary must be smaller than the lower boundary')
bordered_data = self.data.copy()
bordered_data[:upper_boundary, :] = BINARY_IM_MAX_VAL
bordered_data[lower_boundary:, :] = BINARY_IM_MAX_VAL
bordered_data[:, :left_boundary] = BINARY_IM_MAX_VAL
bordered_data[:, right_boundary:] = BINARY_IM_MAX_VAL
return BinaryImage(bordered_data, frame=self._frame)
|
add_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, left_boundary, right_boundary, upper_boundary, lower_boundary):\n left_boundary = max(0, left_boundary)\n right_boundary = min(self.width - 1, right_boundary)\n upper_boundary = max(0, upper_boundary)\n lower_boundary = min(self.height - 1, lower_boundary)\n if right_boundary < left_boundary:\n raise ValueError(\n 'Left boundary must be smaller than the right boundary')\n if upper_boundary > lower_boundary:\n raise ValueError(\n 'Upper boundary must be smaller than the lower boundary')\n bordered_data = self.data.copy()\n bordered_data[:upper_boundary, :] = BINARY_IM_MAX_VAL\n bordered_data[lower_boundary:, :] = BINARY_IM_MAX_VAL\n bordered_data[:, :left_boundary] = BINARY_IM_MAX_VAL\n bordered_data[:, right_boundary:] = BINARY_IM_MAX_VAL\n return BinaryImage(bordered_data, frame=self._frame)\n",
"role": "user"
},
{
"content": "add_frame",
"role": "assistant"
}
] |
def x(self):
dist_tf = self.to_distance_im()
max_px = np.where(dist_tf == np.max(dist_tf))
free_pixel = np.array([max_px[0][0], max_px[1][0]])
return free_pixel
|
most_free_pixel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n dist_tf = self.to_distance_im()\n max_px = np.where(dist_tf == np.max(dist_tf))\n free_pixel = np.array([max_px[0][0], max_px[1][0]])\n return free_pixel\n",
"role": "user"
},
{
"content": "most_free_pixel",
"role": "assistant"
}
] |
def x(self, binary_im):
red = np.array([BINARY_IM_MAX_VAL, 0, 0])
yellow = np.array([BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL, 0])
green = np.array([0, BINARY_IM_MAX_VAL, 0])
overlap_data = np.zeros([self.height, self.width, 3])
unfilled_px = np.where((self.data == 0) & (binary_im.data > 0))
overlap_data[unfilled_px[0], unfilled_px[1], :] = red
filled_px = np.where((self.data > 0) & (binary_im.data > 0))
overlap_data[filled_px[0], filled_px[1], :] = green
spurious_px = np.where((self.data > 0) & (binary_im.data == 0))
overlap_data[spurious_px[0], spurious_px[1], :] = yellow
return ColorImage(overlap_data.astype(np.uint8), frame=self.frame)
|
diff_with_target
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, binary_im):\n red = np.array([BINARY_IM_MAX_VAL, 0, 0])\n yellow = np.array([BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL, 0])\n green = np.array([0, BINARY_IM_MAX_VAL, 0])\n overlap_data = np.zeros([self.height, self.width, 3])\n unfilled_px = np.where((self.data == 0) & (binary_im.data > 0))\n overlap_data[unfilled_px[0], unfilled_px[1], :] = red\n filled_px = np.where((self.data > 0) & (binary_im.data > 0))\n overlap_data[filled_px[0], filled_px[1], :] = green\n spurious_px = np.where((self.data > 0) & (binary_im.data == 0))\n overlap_data[spurious_px[0], spurious_px[1], :] = yellow\n return ColorImage(overlap_data.astype(np.uint8), frame=self.frame)\n",
"role": "user"
},
{
"content": "diff_with_target",
"role": "assistant"
}
] |
def x(self, i, j):
if i < 1 or i > self.height - 2 or j < 1 and j > self.width - 2:
raise ValueError('Pixels out of bounds')
count = 0
diffs = [[-1, 0], [1, 0], [0, -1], [0, 1]]
for d in diffs:
if self.data[i + d[0]][j + d[1]] > self._threshold:
count += 1
return count
|
num_adjacent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i, j):\n if i < 1 or i > self.height - 2 or j < 1 and j > self.width - 2:\n raise ValueError('Pixels out of bounds')\n count = 0\n diffs = [[-1, 0], [1, 0], [0, -1], [0, 1]]\n for d in diffs:\n if self.data[i + d[0]][j + d[1]] > self._threshold:\n count += 1\n return count\n",
"role": "user"
},
{
"content": "num_adjacent",
"role": "assistant"
}
] |
def x(self):
skel, sdf_in = morph.medial_axis(self.data, return_distance=True)
useless_skel, sdf_out = morph.medial_axis(np.iinfo(np.uint8).max - self
.data, return_distance=True)
sdf = sdf_out - sdf_in
return sdf
|
to_sdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n skel, sdf_in = morph.medial_axis(self.data, return_distance=True)\n useless_skel, sdf_out = morph.medial_axis(np.iinfo(np.uint8).max - self\n .data, return_distance=True)\n sdf = sdf_out - sdf_in\n return sdf\n",
"role": "user"
},
{
"content": "to_sdf",
"role": "assistant"
}
] |
def x(self):
color_data = np.zeros([self.height, self.width, 3])
color_data[:, :, 0] = self.data
color_data[:, :, 1] = self.data
color_data[:, :, 2] = self.data
return ColorImage(color_data.astype(np.uint8), self._frame)
|
to_color
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n color_data = np.zeros([self.height, self.width, 3])\n color_data[:, :, 0] = self.data\n color_data[:, :, 1] = self.data\n color_data[:, :, 2] = self.data\n return ColorImage(color_data.astype(np.uint8), self._frame)\n",
"role": "user"
},
{
"content": "to_color",
"role": "assistant"
}
] |
def x(filename, frame='unspecified'):
data = Image.load_data(filename)
if len(data.shape) > 2 and data.shape[2] > 1:
data = data[:, :, 0]
return BinaryImage(data, frame)
|
open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n if len(data.shape) > 2 and data.shape[2] > 1:\n data = data[:, :, 0]\n return BinaryImage(data, frame)\n",
"role": "user"
},
{
"content": "open",
"role": "assistant"
}
] |
def x(self, data):
if data.dtype.type is not np.float32 and data.dtype.type is not np.float64:
raise ValueError(
'Illegal data type. RGB-D images only support float arrays')
if len(data.shape) != 3 and data.shape[2] != 4:
raise ValueError(
'Illegal data type. RGB-D images only support four channel')
color_data = data[:, :, :3]
if np.any((color_data < 0) | (color_data > BINARY_IM_MAX_VAL)):
raise ValueError(
'Color channels must be in the range (0, BINARY_IM_MAX_VAL)')
|
check_valid_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n if data.dtype.type is not np.float32 and data.dtype.type is not np.float64:\n raise ValueError(\n 'Illegal data type. RGB-D images only support float arrays')\n if len(data.shape) != 3 and data.shape[2] != 4:\n raise ValueError(\n 'Illegal data type. RGB-D images only support four channel')\n color_data = data[:, :, :3]\n if np.any((color_data < 0) | (color_data > BINARY_IM_MAX_VAL)):\n raise ValueError(\n 'Color channels must be in the range (0, BINARY_IM_MAX_VAL)')\n",
"role": "user"
},
{
"content": "check_valid_data",
"role": "assistant"
}
] |
def x(color_im, depth_im):
if color_im.height != depth_im.height or color_im.width != depth_im.width:
raise ValueError('Color and depth images must have the same shape')
if color_im.frame != depth_im.frame:
raise ValueError('Color and depth images must have the same frame')
rgbd_data = np.zeros([color_im.height, color_im.width, 4])
rgbd_data[:, :, :3] = color_im.data.astype(np.float64)
rgbd_data[:, :, 3] = depth_im.data
return RgbdImage(rgbd_data, frame=color_im.frame)
|
from_color_and_depth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(color_im, depth_im):\n if color_im.height != depth_im.height or color_im.width != depth_im.width:\n raise ValueError('Color and depth images must have the same shape')\n if color_im.frame != depth_im.frame:\n raise ValueError('Color and depth images must have the same frame')\n rgbd_data = np.zeros([color_im.height, color_im.width, 4])\n rgbd_data[:, :, :3] = color_im.data.astype(np.float64)\n rgbd_data[:, :, 3] = depth_im.data\n return RgbdImage(rgbd_data, frame=color_im.frame)\n",
"role": "user"
},
{
"content": "from_color_and_depth",
"role": "assistant"
}
] |
def x(self):
return ColorImage(self.raw_data[:, :, :3].astype(np.uint8), frame=self.
frame)
|
color
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return ColorImage(self.raw_data[:, :, :3].astype(np.uint8), frame=self.\n frame)\n",
"role": "user"
},
{
"content": "color",
"role": "assistant"
}
] |
def x(self, binary_im):
color = self.color.mask_binary(binary_im)
depth = self.depth.mask_binary(binary_im)
return RgbdImage.from_color_and_depth(color, depth)
|
mask_binary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, binary_im):\n color = self.color.mask_binary(binary_im)\n depth = self.depth.mask_binary(binary_im)\n return RgbdImage.from_color_and_depth(color, depth)\n",
"role": "user"
},
{
"content": "mask_binary",
"role": "assistant"
}
] |
def x(self, size, interp='bilinear'):
color_im_resized = self.color.resize(size, interp)
depth_im_resized = self.depth.resize(size, interp)
return RgbdImage.from_color_and_depth(color_im_resized, depth_im_resized)
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size, interp='bilinear'):\n color_im_resized = self.color.resize(size, interp)\n depth_im_resized = self.depth.resize(size, interp)\n return RgbdImage.from_color_and_depth(color_im_resized, depth_im_resized)\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(self, height, width, center_i=None, center_j=None):
color_im_cropped = self.color.crop(height, width, center_i=center_i,
center_j=center_j)
depth_im_cropped = self.depth.crop(height, width, center_i=center_i,
center_j=center_j)
return RgbdImage.from_color_and_depth(color_im_cropped, depth_im_cropped)
|
crop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, height, width, center_i=None, center_j=None):\n color_im_cropped = self.color.crop(height, width, center_i=center_i,\n center_j=center_j)\n depth_im_cropped = self.depth.crop(height, width, center_i=center_i,\n center_j=center_j)\n return RgbdImage.from_color_and_depth(color_im_cropped, depth_im_cropped)\n",
"role": "user"
},
{
"content": "crop",
"role": "assistant"
}
] |
def x(self, translation, theta, method='opencv'):
color_im_tf = self.color.transform(translation, theta, method=method)
depth_im_tf = self.depth.transform(translation, theta, method=method)
return RgbdImage.from_color_and_depth(color_im_tf, depth_im_tf)
|
transform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, translation, theta, method='opencv'):\n color_im_tf = self.color.transform(translation, theta, method=method)\n depth_im_tf = self.depth.transform(translation, theta, method=method)\n return RgbdImage.from_color_and_depth(color_im_tf, depth_im_tf)\n",
"role": "user"
},
{
"content": "transform",
"role": "assistant"
}
] |
def x(self):
gray = self.color.to_grayscale()
return GdImage.from_grayscale_and_depth(gray, self.depth)
|
to_grayscale_depth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n gray = self.color.to_grayscale()\n return GdImage.from_grayscale_and_depth(gray, self.depth)\n",
"role": "user"
},
{
"content": "to_grayscale_depth",
"role": "assistant"
}
] |
def x(self, rgbd_im):
new_data = self.data.copy()
depth_data = self.depth.data
other_depth_data = rgbd_im.depth.data
depth_zero_px = self.depth.zero_pixels()
depth_replace_px = np.where((other_depth_data != 0) & (other_depth_data <
depth_data))
depth_replace_px = np.c_[depth_replace_px[0], depth_replace_px[1]]
new_data[depth_zero_px[:, 0], depth_zero_px[:, 1], :] = rgbd_im.data[
depth_zero_px[:, 0], depth_zero_px[:, 1], :]
new_data[depth_replace_px[:, 0], depth_replace_px[:, 1], :] = rgbd_im.data[
depth_replace_px[:, 0], depth_replace_px[:, 1], :]
return RgbdImage(new_data, frame=self.frame)
|
combine_with
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rgbd_im):\n new_data = self.data.copy()\n depth_data = self.depth.data\n other_depth_data = rgbd_im.depth.data\n depth_zero_px = self.depth.zero_pixels()\n depth_replace_px = np.where((other_depth_data != 0) & (other_depth_data <\n depth_data))\n depth_replace_px = np.c_[depth_replace_px[0], depth_replace_px[1]]\n new_data[depth_zero_px[:, 0], depth_zero_px[:, 1], :] = rgbd_im.data[\n depth_zero_px[:, 0], depth_zero_px[:, 1], :]\n new_data[depth_replace_px[:, 0], depth_replace_px[:, 1], :] = rgbd_im.data[\n depth_replace_px[:, 0], depth_replace_px[:, 1], :]\n return RgbdImage(new_data, frame=self.frame)\n",
"role": "user"
},
{
"content": "combine_with",
"role": "assistant"
}
] |
def x(self, height, width, center_i=None, center_j=None):
color_im_crop = self.color.crop(height, width, center_i, center_j)
depth_im_crop = self.depth.crop(height, width, center_i, center_j)
return RgbdImage.from_color_and_depth(color_im_crop, depth_im_crop)
|
crop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, height, width, center_i=None, center_j=None):\n color_im_crop = self.color.crop(height, width, center_i, center_j)\n depth_im_crop = self.depth.crop(height, width, center_i, center_j)\n return RgbdImage.from_color_and_depth(color_im_crop, depth_im_crop)\n",
"role": "user"
},
{
"content": "crop",
"role": "assistant"
}
] |
def x(gray_im, depth_im):
if gray_im.height != depth_im.height or gray_im.width != depth_im.width:
raise ValueError('Grayscale and depth images must have the same shape')
if gray_im.frame != depth_im.frame:
raise ValueError('Grayscale and depth images must have the same frame')
gd_data = np.zeros([gray_im.height, gray_im.width, 2])
gd_data[:, :, 0] = gray_im.data.astype(np.float64)
gd_data[:, :, 1] = depth_im.data
return GdImage(gd_data, frame=gray_im.frame)
|
from_grayscale_and_depth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gray_im, depth_im):\n if gray_im.height != depth_im.height or gray_im.width != depth_im.width:\n raise ValueError('Grayscale and depth images must have the same shape')\n if gray_im.frame != depth_im.frame:\n raise ValueError('Grayscale and depth images must have the same frame')\n gd_data = np.zeros([gray_im.height, gray_im.width, 2])\n gd_data[:, :, 0] = gray_im.data.astype(np.float64)\n gd_data[:, :, 1] = depth_im.data\n return GdImage(gd_data, frame=gray_im.frame)\n",
"role": "user"
},
{
"content": "from_grayscale_and_depth",
"role": "assistant"
}
] |
def x(self):
return GrayscaleImage(self.raw_data[:, :, 0].astype(np.uint8), frame=
self.frame)
|
gray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return GrayscaleImage(self.raw_data[:, :, 0].astype(np.uint8), frame=\n self.frame)\n",
"role": "user"
},
{
"content": "gray",
"role": "assistant"
}
] |
def x(self, size, interp='bilinear'):
gray_im_resized = self.gray.resize(size, interp)
depth_im_resized = self.depth.resize(size, interp)
return GdImage.from_grayscale_and_depth(gray_im_resized, depth_im_resized)
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size, interp='bilinear'):\n gray_im_resized = self.gray.resize(size, interp)\n depth_im_resized = self.depth.resize(size, interp)\n return GdImage.from_grayscale_and_depth(gray_im_resized, depth_im_resized)\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(self, height, width, center_i=None, center_j=None):
gray_im_crop = self.gray.crop(height, width, center_i, center_j)
depth_im_crop = self.depth.crop(height, width, center_i, center_j)
return GdImage.from_grayscale_and_depth(gray_im_crop, depth_im_crop)
|
crop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, height, width, center_i=None, center_j=None):\n gray_im_crop = self.gray.crop(height, width, center_i, center_j)\n depth_im_crop = self.depth.crop(height, width, center_i, center_j)\n return GdImage.from_grayscale_and_depth(gray_im_crop, depth_im_crop)\n",
"role": "user"
},
{
"content": "crop",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.