source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): if not self._running: logging.warning('Kinect not running. Aborting stop') return False self._image_sub.unregister() self._depth_sub.unregister() self._camera_info_sub.unregister self._running = False return True
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running:\n logging.warning('Kinect not running. Aborting stop')\n return False\n self._image_sub.unregister()\n self._depth_sub.unregister()\n self._camera_info_sub.unregister\n self._running = False\n return True\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self): while self._cur_depth_im is None or self._cur_color_im is None: time.sleep(0.01) depth_im = self._cur_depth_im color_im = self._cur_color_im self._cur_color_im = None self._cur_depth_im = None return color_im, depth_im, None
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n while self._cur_depth_im is None or self._cur_color_im is None:\n time.sleep(0.01)\n depth_im = self._cur_depth_im\n color_im = self._cur_color_im\n self._cur_color_im = None\n self._cur_depth_im = None\n return color_im, depth_im, None\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(self): if not self._running: raise RuntimeError( 'VirtualKinect2 device pointing to %s not runnning. Cannot read frames' % self._path_to_images) if self._im_index > self._num_images: raise RuntimeError('VirtualKinect2 device is out of images') color_filename = os.path.join(self._path_to_images, 'color_%d.png' % self._im_index) color_im = ColorImage.open(color_filename, frame=self._frame) depth_filename = os.path.join(self._path_to_images, 'depth_%d.npy' % self._im_index) depth_im = DepthImage.open(depth_filename, frame=self._frame) ir_filename = os.path.join(self._path_to_images, 'ir_%d.npy' % self. _im_index) ir_im = None if os.path.exists(ir_filename): ir_im = IrImage.open(ir_filename, frame=self._frame) self._im_index += 1 return color_im, depth_im, ir_im
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running:\n raise RuntimeError(\n 'VirtualKinect2 device pointing to %s not runnning. Cannot read frames'\n % self._path_to_images)\n if self._im_index > self._num_images:\n raise RuntimeError('VirtualKinect2 device is out of images')\n color_filename = os.path.join(self._path_to_images, 'color_%d.png' %\n self._im_index)\n color_im = ColorImage.open(color_filename, frame=self._frame)\n depth_filename = os.path.join(self._path_to_images, 'depth_%d.npy' %\n self._im_index)\n depth_im = DepthImage.open(depth_filename, frame=self._frame)\n ir_filename = os.path.join(self._path_to_images, 'ir_%d.npy' % self.\n _im_index)\n ir_im = None\n if os.path.exists(ir_filename):\n ir_im = IrImage.open(ir_filename, frame=self._frame)\n self._im_index += 1\n return color_im, depth_im, ir_im\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(sensor_type, cfg): sensor_type = sensor_type.lower() if sensor_type == 'real': s = Kinect2Sensor(packet_pipeline_mode=cfg['pipeline_mode'], device_num=cfg['device_num'], frame=cfg['frame']) elif sensor_type == 'virtual': s = VirtualKinect2Sensor(cfg['image_dir'], frame=cfg['frame']) elif sensor_type == 'bridged': s = KinectSensorBridged(quality=cfg['quality'], frame=cfg['frame']) else: raise ValueError('Kinect2 sensor type %s not supported' % sensor_type) return s
sensor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sensor_type, cfg):\n sensor_type = sensor_type.lower()\n if sensor_type == 'real':\n s = Kinect2Sensor(packet_pipeline_mode=cfg['pipeline_mode'],\n device_num=cfg['device_num'], frame=cfg['frame'])\n elif sensor_type == 'virtual':\n s = VirtualKinect2Sensor(cfg['image_dir'], frame=cfg['frame'])\n elif sensor_type == 'bridged':\n s = KinectSensorBridged(quality=cfg['quality'], frame=cfg['frame'])\n else:\n raise ValueError('Kinect2 sensor type %s not supported' % sensor_type)\n return s\n", "role": "user" }, { "content": "sensor", "role": "assistant" } ]
def x(self, id_mask): all_devices = glob.glob('/dev/ttyUSB*') sensors = [] for device in all_devices: try: ser = serial.Serial(port=device, timeout=0.5, exclusive=True) ser.write('ID\r') ser.flush() time.sleep(0.05) resp = ser.read(13) ser.close() if len(resp) >= 10 and resp[:len(id_mask)] == id_mask: sensors.append((device, resp.rstrip('\r\n'))) except: continue sensors = sorted(sensors, key=lambda x: x[1]) serials = [] for device, key in sensors: ser = serial.Serial(port=device, timeout=0.5) serials.append(ser) rospy.loginfo('Connected to load cell {} at {}'.format(key, device)) return serials
connect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, id_mask):\n all_devices = glob.glob('/dev/ttyUSB*')\n sensors = []\n for device in all_devices:\n try:\n ser = serial.Serial(port=device, timeout=0.5, exclusive=True)\n ser.write('ID\\r')\n ser.flush()\n time.sleep(0.05)\n resp = ser.read(13)\n ser.close()\n if len(resp) >= 10 and resp[:len(id_mask)] == id_mask:\n sensors.append((device, resp.rstrip('\\r\\n')))\n except:\n continue\n sensors = sorted(sensors, key=lambda x: x[1])\n serials = []\n for device, key in sensors:\n ser = serial.Serial(port=device, timeout=0.5)\n serials.append(ser)\n rospy.loginfo('Connected to load cell {} at {}'.format(key, device))\n return serials\n", "role": "user" }, { "content": "connect", "role": "assistant" } ]
def x(self): for ser in self._serials: ser.flush() ser.flushInput() ser.flushOutput() time.sleep(0.02)
flush
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for ser in self._serials:\n ser.flush()\n ser.flushInput()\n ser.flushOutput()\n time.sleep(0.02)\n", "role": "user" }, { "content": "flush", "role": "assistant" } ]
def x(self): for ser in self._serials: ser.write('TARE\r') ser.flush() ser.flushInput() ser.flushOutput() time.sleep(0.02)
tare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for ser in self._serials:\n ser.write('TARE\\r')\n ser.flush()\n ser.flushInput()\n ser.flushOutput()\n time.sleep(0.02)\n", "role": "user" }, { "content": "tare", "role": "assistant" } ]
def x(self): weights = [] grams_per_pound = 453.592 for ser in self._serials: ser.write('W\r') ser.flush() time.sleep(0.02) for ser in self._serials: try: output_str = ser.readline() weight = float(output_str) * grams_per_pound weights.append(weight) except: weights.append(0.0) log_output = '' for w in weights: log_output += '{:.2f} '.format(w) rospy.loginfo(log_output) return weights
read_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n weights = []\n grams_per_pound = 453.592\n for ser in self._serials:\n ser.write('W\\r')\n ser.flush()\n time.sleep(0.02)\n for ser in self._serials:\n try:\n output_str = ser.readline()\n weight = float(output_str) * grams_per_pound\n weights.append(weight)\n except:\n weights.append(0.0)\n log_output = ''\n for w in weights:\n log_output += '{:.2f} '.format(w)\n rospy.loginfo(log_output)\n return weights\n", "role": "user" }, { "content": "read_weights", "role": "assistant" } ]
def x(self): if not self.camera.is_running: self.camera.start() while True: if not self.cmd_q.empty(): cmd = self.cmd_q.get() if cmd[0] == 'stop': self.out.close() self.recording = False elif cmd[0] == 'start': filename = cmd[1] self.out = si.FFmpegWriter(filename) self.recording = True self.count = 0 if self.recording: if self.count == 0: image, _, _ = self.camera.frames() if self.data_buf is None: self.data_buf = np.zeros([1, image.height, image.width, image.channels]) self.data_buf[0, ...] = image.raw_data self.out.writeFrame(self.data_buf) self.count += 1 if self.count == self.rate: self.count = 0
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.camera.is_running:\n self.camera.start()\n while True:\n if not self.cmd_q.empty():\n cmd = self.cmd_q.get()\n if cmd[0] == 'stop':\n self.out.close()\n self.recording = False\n elif cmd[0] == 'start':\n filename = cmd[1]\n self.out = si.FFmpegWriter(filename)\n self.recording = True\n self.count = 0\n if self.recording:\n if self.count == 0:\n image, _, _ = self.camera.frames()\n if self.data_buf is None:\n self.data_buf = np.zeros([1, image.height, image.width,\n image.channels])\n self.data_buf[0, ...] = image.raw_data\n self.out.writeFrame(self.data_buf)\n self.count += 1\n if self.count == self.rate:\n self.count = 0\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self): self._started = True self._camera = _Camera(self._actual_camera, self._cmd_q, self._res, self._codec, self._fps, self._rate) self._camera.start()
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._started = True\n self._camera = _Camera(self._actual_camera, self._cmd_q, self._res,\n self._codec, self._fps, self._rate)\n self._camera.start()\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self, output_file): if not self._started: raise Exception( 'Must start the video recorder first by calling .start()!') if self._recording: raise Exception('Cannot record a video while one is already recording!' ) self._recording = True self._cmd_q.put(('start', output_file))
start_recording
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, output_file):\n if not self._started:\n raise Exception(\n 'Must start the video recorder first by calling .start()!')\n if self._recording:\n raise Exception('Cannot record a video while one is already recording!'\n )\n self._recording = True\n self._cmd_q.put(('start', output_file))\n", "role": "user" }, { "content": "start_recording", "role": "assistant" } ]
def x(self): if not self._recording: raise Exception( "Cannot stop a video recording when it's not recording!") self._cmd_q.put(('stop',)) self._recording = False
stop_recording
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._recording:\n raise Exception(\n \"Cannot stop a video recording when it's not recording!\")\n self._cmd_q.put(('stop',))\n self._recording = False\n", "role": "user" }, { "content": "stop_recording", "role": "assistant" } ]
def x(self): if not self._started: raise Exception('Cannot stop a video recorder before starting it!') self._started = False if self._actual_camera.is_running: self._actual_camera.stop() if self._camera is not None: try: self._camera.terminate() except: pass
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._started:\n raise Exception('Cannot stop a video recorder before starting it!')\n self._started = False\n if self._actual_camera.is_running:\n self._actual_camera.stop()\n if self._camera is not None:\n try:\n self._camera.terminate()\n except:\n pass\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self, data): original_type = data.dtype if len(data.shape) == 1: data = data[:, np.newaxis, np.newaxis] elif len(data.shape) == 2: data = data[:, :, np.newaxis] elif len(data.shape) == 0 or len(data.shape) > 3: raise ValueError( 'Illegal data array passed to image. Must be 1, 2, or 3 dimensional numpy array' ) return data.astype(original_type)
preprocess_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n original_type = data.dtype\n if len(data.shape) == 1:\n data = data[:, np.newaxis, np.newaxis]\n elif len(data.shape) == 2:\n data = data[:, :, np.newaxis]\n elif len(data.shape) == 0 or len(data.shape) > 3:\n raise ValueError(\n 'Illegal data array passed to image. Must be 1, 2, or 3 dimensional numpy array'\n )\n return data.astype(original_type)\n", "role": "user" }, { "content": "preprocess_data", "role": "assistant" } ]
def x(self): from cv_bridge import CvBridge, CvBridgeError cv_bridge = CvBridge() try: return cv_bridge.cv2_to_imgmsg(self._data, encoding=self._encoding) except CvBridgeError as cv_bridge_exception: logging.error('%s' % str(cv_bridge_exception))
rosmsg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from cv_bridge import CvBridge, CvBridgeError\n cv_bridge = CvBridge()\n try:\n return cv_bridge.cv2_to_imgmsg(self._data, encoding=self._encoding)\n except CvBridgeError as cv_bridge_exception:\n logging.error('%s' % str(cv_bridge_exception))\n", "role": "user" }, { "content": "rosmsg", "role": "assistant" } ]
def x(x): if len(x.shape) < 2 or len(x.shape) > 3: return False dtype = x.dtype height = x.shape[0] width = x.shape[1] channels = 1 if len(x.shape) == 3: channels = x.shape[2] if channels > 4: return False return True
can_convert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if len(x.shape) < 2 or len(x.shape) > 3:\n return False\n dtype = x.dtype\n height = x.shape[0]\n width = x.shape[1]\n channels = 1\n if len(x.shape) == 3:\n channels = x.shape[2]\n if channels > 4:\n return False\n return True\n", "role": "user" }, { "content": "can_convert", "role": "assistant" } ]
def x(x, frame='unspecified'): if not Image.can_convert(x): raise ValueError('Cannot convert array to an Image!') dtype = x.dtype height = x.shape[0] width = x.shape[1] channels = 1 if len(x.shape) == 3: channels = x.shape[2] if dtype == np.uint8: if channels == 1: if np.any(x % BINARY_IM_MAX_VAL > 0): return GrayscaleImage(x, frame) return BinaryImage(x, frame) elif channels == 3: return ColorImage(x, frame) else: raise ValueError( 'No available image conversion for uint8 array with 2 channels' ) elif dtype == np.uint16: if channels != 1: raise ValueError( 'No available image conversion for uint16 array with 2 or 3 channels' ) return GrayscaleImage(x, frame) elif dtype == np.float32 or dtype == np.float64: if channels == 1: return DepthImage(x, frame) elif channels == 2: return GdImage(x, frame) elif channels == 3: logging.warning('Converting float array to uint8') return ColorImage(x.astype(np.uint8), frame) return RgbdImage(x, frame) else: raise ValueError('Conversion for dtype %s not supported!' % str(dtype))
from_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, frame='unspecified'):\n if not Image.can_convert(x):\n raise ValueError('Cannot convert array to an Image!')\n dtype = x.dtype\n height = x.shape[0]\n width = x.shape[1]\n channels = 1\n if len(x.shape) == 3:\n channels = x.shape[2]\n if dtype == np.uint8:\n if channels == 1:\n if np.any(x % BINARY_IM_MAX_VAL > 0):\n return GrayscaleImage(x, frame)\n return BinaryImage(x, frame)\n elif channels == 3:\n return ColorImage(x, frame)\n else:\n raise ValueError(\n 'No available image conversion for uint8 array with 2 channels'\n )\n elif dtype == np.uint16:\n if channels != 1:\n raise ValueError(\n 'No available image conversion for uint16 array with 2 or 3 channels'\n )\n return GrayscaleImage(x, frame)\n elif dtype == np.float32 or dtype == np.float64:\n if channels == 1:\n return DepthImage(x, frame)\n elif channels == 2:\n return GdImage(x, frame)\n elif channels == 3:\n logging.warning('Converting float array to uint8')\n return ColorImage(x.astype(np.uint8), frame)\n return RgbdImage(x, frame)\n else:\n raise ValueError('Conversion for dtype %s not supported!' % str(dtype))\n", "role": "user" }, { "content": "from_array", "role": "assistant" } ]
def x(self, translation, theta, method='opencv'): theta = np.rad2deg(theta) trans_map = np.float32([[1, 0, translation[1]], [0, 1, translation[0]]]) rot_map = cv2.getRotationMatrix2D((self.center[1], self.center[0]), theta, 1) trans_map_aff = np.r_[trans_map, [[0, 0, 1]]] rot_map_aff = np.r_[rot_map, [[0, 0, 1]]] full_map = rot_map_aff.dot(trans_map_aff) full_map = full_map[:2, :] if method == 'opencv': im_data_tf = cv2.warpAffine(self.data, full_map, (self.width, self. height), flags=cv2.INTER_NEAREST) else: im_data_tf = sni.affine_transform(self.data, matrix=full_map[:, :2], offset=full_map[:, 2], order=0) return type(self)(im_data_tf.astype(self.data.dtype), frame=self._frame)
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, translation, theta, method='opencv'):\n theta = np.rad2deg(theta)\n trans_map = np.float32([[1, 0, translation[1]], [0, 1, translation[0]]])\n rot_map = cv2.getRotationMatrix2D((self.center[1], self.center[0]),\n theta, 1)\n trans_map_aff = np.r_[trans_map, [[0, 0, 1]]]\n rot_map_aff = np.r_[rot_map, [[0, 0, 1]]]\n full_map = rot_map_aff.dot(trans_map_aff)\n full_map = full_map[:2, :]\n if method == 'opencv':\n im_data_tf = cv2.warpAffine(self.data, full_map, (self.width, self.\n height), flags=cv2.INTER_NEAREST)\n else:\n im_data_tf = sni.affine_transform(self.data, matrix=full_map[:, :2],\n offset=full_map[:, 2], order=0)\n return type(self)(im_data_tf.astype(self.data.dtype), frame=self._frame)\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(self, scale, center, angle, height, width): scaled_im = self.resize(scale) cx = scaled_im.center[1] cy = scaled_im.center[0] dx = cx - center[0] * scale dy = cy - center[1] * scale translation = np.array([dy, dx]) tf_im = scaled_im.transform(translation, angle) aligned_im = tf_im.crop(height, width) return aligned_im
align
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, scale, center, angle, height, width):\n scaled_im = self.resize(scale)\n cx = scaled_im.center[1]\n cy = scaled_im.center[0]\n dx = cx - center[0] * scale\n dy = cy - center[1] * scale\n translation = np.array([dy, dx])\n tf_im = scaled_im.transform(translation, angle)\n aligned_im = tf_im.crop(height, width)\n return aligned_im\n", "role": "user" }, { "content": "align", "role": "assistant" } ]
def x(self): g = np.gradient(self.data.astype(np.float32)) return g
gradients
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n g = np.gradient(self.data.astype(np.float32))\n return g\n", "role": "user" }, { "content": "gradients", "role": "assistant" } ]
def x(self, linear_inds): return np.c_[linear_inds / self.width, linear_inds % self.width]
linear_to_ij
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, linear_inds):\n return np.c_[linear_inds / self.width, linear_inds % self.width]\n", "role": "user" }, { "content": "linear_to_ij", "role": "assistant" } ]
def x(self, other_im, check_channels=False): if self.height == other_im.height and self.width == other_im.width: if check_channels and self.channels != other_im.channels: return False return True return False
is_same_shape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other_im, check_channels=False):\n if self.height == other_im.height and self.width == other_im.width:\n if check_channels and self.channels != other_im.channels:\n return False\n return True\n return False\n", "role": "user" }, { "content": "is_same_shape", "role": "assistant" } ]
def x(self, inds): new_data = np.zeros(self.shape) for ind in inds: new_data[ind[0], ind[1]] = self.data[ind[0], ind[1]] return type(self)(new_data.astype(self.data.dtype), self.frame)
mask_by_ind
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inds):\n new_data = np.zeros(self.shape)\n for ind in inds:\n new_data[ind[0], ind[1]] = self.data[ind[0], ind[1]]\n return type(self)(new_data.astype(self.data.dtype), self.frame)\n", "role": "user" }, { "content": "mask_by_ind", "role": "assistant" } ]
def x(self, linear_inds): inds = self.linear_to_ij(linear_inds) return self.mask_by_ind(inds)
mask_by_linear_ind
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, linear_inds):\n inds = self.linear_to_ij(linear_inds)\n return self.mask_by_ind(inds)\n", "role": "user" }, { "content": "mask_by_linear_ind", "role": "assistant" } ]
def x(images): images_data = np.array([image.data for image in images]) median_image_data = np.median(images_data, axis=0) an_image = images[0] return type(an_image)(median_image_data.astype(an_image.data.dtype), an_image.frame)
median_images
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(images):\n images_data = np.array([image.data for image in images])\n median_image_data = np.median(images_data, axis=0)\n an_image = images[0]\n return type(an_image)(median_image_data.astype(an_image.data.dtype),\n an_image.frame)\n", "role": "user" }, { "content": "median_images", "role": "assistant" } ]
def x(images): images_data = np.array([image.data for image in images]) images_data[images_data == 0] = np.inf min_image_data = np.min(images_data, axis=0) min_image_data[min_image_data == np.inf] = 0.0 an_image = images[0] return type(an_image)(min_image_data.astype(an_image.data.dtype), an_image.frame)
min_images
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(images):\n images_data = np.array([image.data for image in images])\n images_data[images_data == 0] = np.inf\n min_image_data = np.min(images_data, axis=0)\n min_image_data[min_image_data == np.inf] = 0.0\n an_image = images[0]\n return type(an_image)(min_image_data.astype(an_image.data.dtype),\n an_image.frame)\n", "role": "user" }, { "content": "min_images", "role": "assistant" } ]
def x(self, method, *args, **kwargs): data = method(self.data, *args, **kwargs) return type(self)(data.astype(self.type), self.frame)
apply
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method, *args, **kwargs):\n data = method(self.data, *args, **kwargs)\n return type(self)(data.astype(self.type), self.frame)\n", "role": "user" }, { "content": "apply", "role": "assistant" } ]
def x(self, height, width, center_i=None, center_j=None): height = int(np.round(height)) width = int(np.round(width)) if center_i is None: center_i = float(self.height) / 2 if center_j is None: center_j = float(self.width) / 2 desired_start_row = int(np.floor(center_i - float(height) / 2)) desired_end_row = int(np.floor(center_i + float(height) / 2)) desired_start_col = int(np.floor(center_j - float(width) / 2)) desired_end_col = int(np.floor(center_j + float(width) / 2)) pil_im = PImage.fromarray(self.data) cropped_pil_im = pil_im.crop((desired_start_col, desired_start_row, desired_end_col, desired_end_row)) crop_data = np.array(cropped_pil_im) if crop_data.shape[0] != height or crop_data.shape[1] != width: raise ValueError('Crop dims are incorrect') return type(self)(crop_data.astype(self.data.dtype), self._frame)
crop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, height, width, center_i=None, center_j=None):\n height = int(np.round(height))\n width = int(np.round(width))\n if center_i is None:\n center_i = float(self.height) / 2\n if center_j is None:\n center_j = float(self.width) / 2\n desired_start_row = int(np.floor(center_i - float(height) / 2))\n desired_end_row = int(np.floor(center_i + float(height) / 2))\n desired_start_col = int(np.floor(center_j - float(width) / 2))\n desired_end_col = int(np.floor(center_j + float(width) / 2))\n pil_im = PImage.fromarray(self.data)\n cropped_pil_im = pil_im.crop((desired_start_col, desired_start_row,\n desired_end_col, desired_end_row))\n crop_data = np.array(cropped_pil_im)\n if crop_data.shape[0] != height or crop_data.shape[1] != width:\n raise ValueError('Crop dims are incorrect')\n return type(self)(crop_data.astype(self.data.dtype), self._frame)\n", "role": "user" }, { "content": "crop", "role": "assistant" } ]
def x(self, height, width, center_i=None, center_j=None): if center_i is None: center_i = self.height / 2 if center_j is None: center_j = self.width / 2 start_row = int(max(0, center_i - height / 2)) end_row = int(min(self.height - 1, center_i + height / 2)) start_col = int(max(0, center_j - width / 2)) end_col = int(min(self.width - 1, center_j + width / 2)) focus_data = np.zeros(self._data.shape) focus_data[start_row:end_row + 1, start_col:end_col + 1] = self._data[ start_row:end_row + 1, start_col:end_col + 1] return type(self)(focus_data.astype(self._data.dtype), self._frame)
focus
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, height, width, center_i=None, center_j=None):\n if center_i is None:\n center_i = self.height / 2\n if center_j is None:\n center_j = self.width / 2\n start_row = int(max(0, center_i - height / 2))\n end_row = int(min(self.height - 1, center_i + height / 2))\n start_col = int(max(0, center_j - width / 2))\n end_col = int(min(self.width - 1, center_j + width / 2))\n focus_data = np.zeros(self._data.shape)\n focus_data[start_row:end_row + 1, start_col:end_col + 1] = self._data[\n start_row:end_row + 1, start_col:end_col + 1]\n return type(self)(focus_data.astype(self._data.dtype), self._frame)\n", "role": "user" }, { "content": "focus", "role": "assistant" } ]
def x(self): nonzero_px = np.where(self._data != 0.0) nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]] mean_px = np.mean(nonzero_px, axis=0) center_px = (np.array(self.shape) / 2.0)[:2] diff_px = center_px - mean_px nonzero_px_tf = nonzero_px + diff_px nonzero_px_tf[:, 0] = np.max(np.c_[np.zeros(nonzero_px_tf[:, 0].shape), nonzero_px_tf[:, 0]], axis=1) nonzero_px_tf[:, 0] = np.min(np.c_[(self.height - 1) * np.ones( nonzero_px_tf[:, 0].shape), nonzero_px_tf[:, 0]], axis=1) nonzero_px_tf[:, 1] = np.max(np.c_[np.zeros(nonzero_px_tf[:, 1].shape), nonzero_px_tf[:, 1]], axis=1) nonzero_px_tf[:, 1] = np.min(np.c_[(self.width - 1) * np.ones( nonzero_px_tf[:, 1].shape), nonzero_px_tf[:, 1]], axis=1) nonzero_px = nonzero_px.astype(np.uint16) nonzero_px_tf = nonzero_px_tf.astype(np.uint16) shifted_data = np.zeros(self.shape) shifted_data[nonzero_px_tf[:, 0], nonzero_px_tf[:, 1], :] = self.data[ nonzero_px[:, 0], nonzero_px[:, 1]].reshape(-1, self.channels) return type(self)(shifted_data.astype(self.data.dtype), frame=self._frame ), diff_px
center_nonzero
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nonzero_px = np.where(self._data != 0.0)\n nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]\n mean_px = np.mean(nonzero_px, axis=0)\n center_px = (np.array(self.shape) / 2.0)[:2]\n diff_px = center_px - mean_px\n nonzero_px_tf = nonzero_px + diff_px\n nonzero_px_tf[:, 0] = np.max(np.c_[np.zeros(nonzero_px_tf[:, 0].shape),\n nonzero_px_tf[:, 0]], axis=1)\n nonzero_px_tf[:, 0] = np.min(np.c_[(self.height - 1) * np.ones(\n nonzero_px_tf[:, 0].shape), nonzero_px_tf[:, 0]], axis=1)\n nonzero_px_tf[:, 1] = np.max(np.c_[np.zeros(nonzero_px_tf[:, 1].shape),\n nonzero_px_tf[:, 1]], axis=1)\n nonzero_px_tf[:, 1] = np.min(np.c_[(self.width - 1) * np.ones(\n nonzero_px_tf[:, 1].shape), nonzero_px_tf[:, 1]], axis=1)\n nonzero_px = nonzero_px.astype(np.uint16)\n nonzero_px_tf = nonzero_px_tf.astype(np.uint16)\n shifted_data = np.zeros(self.shape)\n shifted_data[nonzero_px_tf[:, 0], nonzero_px_tf[:, 1], :] = self.data[\n nonzero_px[:, 0], nonzero_px[:, 1]].reshape(-1, self.channels)\n return type(self)(shifted_data.astype(self.data.dtype), frame=self._frame\n ), diff_px\n", "role": "user" }, { "content": "center_nonzero", "role": "assistant" } ]
def x(self): nonzero_px = np.where(np.sum(self.raw_data, axis=2) > 0) nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]] return nonzero_px
nonzero_pixels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nonzero_px = np.where(np.sum(self.raw_data, axis=2) > 0)\n nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]\n return nonzero_px\n", "role": "user" }, { "content": "nonzero_pixels", "role": "assistant" } ]
def x(self): zero_px = np.where(np.sum(self.raw_data, axis=2) == 0) zero_px = np.c_[zero_px[0], zero_px[1]] return zero_px
zero_pixels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n zero_px = np.where(np.sum(self.raw_data, axis=2) == 0)\n zero_px = np.c_[zero_px[0], zero_px[1]]\n return zero_px\n", "role": "user" }, { "content": "zero_pixels", "role": "assistant" } ]
def x(self): nan_px = np.where(np.isnan(np.sum(self.raw_data, axis=2))) nan_px = np.c_[nan_px[0], nan_px[1]] return nan_px
nan_pixels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nan_px = np.where(np.isnan(np.sum(self.raw_data, axis=2)))\n nan_px = np.c_[nan_px[0], nan_px[1]]\n return nan_px\n", "role": "user" }, { "content": "nan_pixels", "role": "assistant" } ]
def x(self): finite_px = np.where(np.isfinite(self.data)) finite_px = np.c_[finite_px[0], finite_px[1]] return finite_px
finite_pixels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n finite_px = np.where(np.isfinite(self.data))\n finite_px = np.c_[finite_px[0], finite_px[1]]\n return finite_px\n", "role": "user" }, { "content": "finite_pixels", "role": "assistant" } ]
def x(self, val, zero_thresh=0.0): new_data = self.data.copy() new_data[new_data <= zero_thresh] = val return type(self)(new_data.astype(self.data.dtype), frame=self._frame)
replace_zeros
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, val, zero_thresh=0.0):\n new_data = self.data.copy()\n new_data[new_data <= zero_thresh] = val\n return type(self)(new_data.astype(self.data.dtype), frame=self._frame)\n", "role": "user" }, { "content": "replace_zeros", "role": "assistant" } ]
def x(self, filename): filename = str(filename) file_root, file_ext = os.path.splitext(filename) if file_ext in COLOR_IMAGE_EXTS: im_data = self._image_data() if im_data.dtype.type == np.uint8: pil_image = PImage.fromarray(im_data.squeeze()) pil_image.save(filename) else: try: import png except: raise ValueError( 'PyPNG not installed! Cannot save 16-bit images') png.fromarray(im_data, 'L').save(filename) elif file_ext == '.npy': np.save(filename, self._data) elif file_ext == '.npz': np.savez_compressed(filename, self._data) else: raise ValueError('Extension %s not supported' % file_ext)
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n filename = str(filename)\n file_root, file_ext = os.path.splitext(filename)\n if file_ext in COLOR_IMAGE_EXTS:\n im_data = self._image_data()\n if im_data.dtype.type == np.uint8:\n pil_image = PImage.fromarray(im_data.squeeze())\n pil_image.save(filename)\n else:\n try:\n import png\n except:\n raise ValueError(\n 'PyPNG not installed! Cannot save 16-bit images')\n png.fromarray(im_data, 'L').save(filename)\n elif file_ext == '.npy':\n np.save(filename, self._data)\n elif file_ext == '.npz':\n np.savez_compressed(filename, self._data)\n else:\n raise ValueError('Extension %s not supported' % file_ext)\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(self, output_path, title, dpi=400, format='png', cmap=None): plt.figure() plt.imshow(self.data, cmap=cmap) plt.title(title) plt.axis('off') title_underscore = title.replace(' ', '_') plt.savefig(os.path.join(output_path, '{0}.{1}'.format(title_underscore, format)), dpi=dpi, format=format)
savefig
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, output_path, title, dpi=400, format='png', cmap=None):\n plt.figure()\n plt.imshow(self.data, cmap=cmap)\n plt.title(title)\n plt.axis('off')\n title_underscore = title.replace(' ', '_')\n plt.savefig(os.path.join(output_path, '{0}.{1}'.format(title_underscore,\n format)), dpi=dpi, format=format)\n", "role": "user" }, { "content": "savefig", "role": "assistant" } ]
def x(filename): file_root, file_ext = os.path.splitext(filename) data = None if file_ext.lower() in COLOR_IMAGE_EXTS: data = cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2RGB) elif file_ext == '.npy': data = np.load(filename) elif file_ext == '.npz': data = np.load(filename)['arr_0'] else: raise ValueError('Extension %s not supported' % file_ext) return data
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n file_root, file_ext = os.path.splitext(filename)\n data = None\n if file_ext.lower() in COLOR_IMAGE_EXTS:\n data = cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2RGB)\n elif file_ext == '.npy':\n data = np.load(filename)\n elif file_ext == '.npz':\n data = np.load(filename)['arr_0']\n else:\n raise ValueError('Extension %s not supported' % file_ext)\n return data\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(self, data): if data.dtype.type is not np.uint8: raise ValueError( 'Illegal data type. Color images only support uint8 arrays') if len(data.shape) != 3 or data.shape[2] != 3: raise ValueError( 'Illegal data type. Color images only support three channels')
check_valid_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n if data.dtype.type is not np.uint8:\n raise ValueError(\n 'Illegal data type. Color images only support uint8 arrays')\n if len(data.shape) != 3 or data.shape[2] != 3:\n raise ValueError(\n 'Illegal data type. Color images only support three channels')\n", "role": "user" }, { "content": "check_valid_data", "role": "assistant" } ]
def x(self): new_data = cv2.cvtColor(self.raw_data, cv2.COLOR_BGR2RGB) return ColorImage(new_data, frame=self.frame, encoding='rgb8')
bgr2rgb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n new_data = cv2.cvtColor(self.raw_data, cv2.COLOR_BGR2RGB)\n return ColorImage(new_data, frame=self.frame, encoding='rgb8')\n", "role": "user" }, { "content": "bgr2rgb", "role": "assistant" } ]
def x(self): new_data = cv2.cvtColor(self.raw_data, cv2.COLOR_RGB2BGR) return ColorImage(new_data, frame=self.frame, encoding='bgr8')
rgb2bgr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n new_data = cv2.cvtColor(self.raw_data, cv2.COLOR_RGB2BGR)\n return ColorImage(new_data, frame=self.frame, encoding='bgr8')\n", "role": "user" }, { "content": "rgb2bgr", "role": "assistant" } ]
def x(self, channel_swap): if len(channel_swap) != 2: raise ValueError('Illegal value for channel swap') ci = channel_swap[0] cj = channel_swap[1] if ci < 0 or ci > 2 or cj < 0 or cj > 2: raise ValueError('Channels must be between 0 and 1') new_data = self.data.copy() new_data[:, :, ci] = self.data[:, :, cj] new_data[:, :, cj] = self.data[:, :, ci] return ColorImage(new_data, frame=self._frame)
swap_channels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, channel_swap):\n if len(channel_swap) != 2:\n raise ValueError('Illegal value for channel swap')\n ci = channel_swap[0]\n cj = channel_swap[1]\n if ci < 0 or ci > 2 or cj < 0 or cj > 2:\n raise ValueError('Channels must be between 0 and 1')\n new_data = self.data.copy()\n new_data[:, :, ci] = self.data[:, :, cj]\n new_data[:, :, cj] = self.data[:, :, ci]\n return ColorImage(new_data, frame=self._frame)\n", "role": "user" }, { "content": "swap_channels", "role": "assistant" } ]
def x(self, sx=6, sy=9): criteria = cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001 objp = np.zeros((sx * sy, 3), np.float32) objp[:, :2] = np.mgrid[0:sx, 0:sy].T.reshape(-1, 2) objpoints = [] imgpoints = [] img = self.data.astype(np.uint8) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) ret, corners = cv2.findChessboardCorners(gray, (sx, sy), None) if ret: objpoints.append(objp) cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) imgpoints.append(corners) if corners is not None: return corners.squeeze() return None
find_chessboard
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sx=6, sy=9):\n criteria = cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001\n objp = np.zeros((sx * sy, 3), np.float32)\n objp[:, :2] = np.mgrid[0:sx, 0:sy].T.reshape(-1, 2)\n objpoints = []\n imgpoints = []\n img = self.data.astype(np.uint8)\n gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n ret, corners = cv2.findChessboardCorners(gray, (sx, sy), None)\n if ret:\n objpoints.append(objp)\n cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)\n imgpoints.append(corners)\n if corners is not None:\n return corners.squeeze()\n return None\n", "role": "user" }, { "content": "find_chessboard", "role": "assistant" } ]
def x(self, tolerance, ignore_black=True, use_hsv=False, scale=8, bgmodel=None ): if bgmodel is None: bgmodel = self.background_model(ignore_black=ignore_black, use_hsv= use_hsv, scale=scale) lower_bound = np.array([(bgmodel[i] - tolerance) for i in range(self. channels)]) upper_bound = np.array([(bgmodel[i] + tolerance) for i in range(self. channels)]) orig_zero_indices = np.where(np.sum(self._data, axis=2) == 0) binary_data = cv2.inRange(self.data, lower_bound, upper_bound) binary_data[:, :] = BINARY_IM_MAX_VAL - binary_data[:, :] binary_data[orig_zero_indices[0], orig_zero_indices[1]] = 0.0 binary_im = BinaryImage(binary_data.astype(np.uint8), frame=self.frame) return binary_im
foreground_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tolerance, ignore_black=True, use_hsv=False, scale=8, bgmodel=None\n ):\n if bgmodel is None:\n bgmodel = self.background_model(ignore_black=ignore_black, use_hsv=\n use_hsv, scale=scale)\n lower_bound = np.array([(bgmodel[i] - tolerance) for i in range(self.\n channels)])\n upper_bound = np.array([(bgmodel[i] + tolerance) for i in range(self.\n channels)])\n orig_zero_indices = np.where(np.sum(self._data, axis=2) == 0)\n binary_data = cv2.inRange(self.data, lower_bound, upper_bound)\n binary_data[:, :] = BINARY_IM_MAX_VAL - binary_data[:, :]\n binary_data[orig_zero_indices[0], orig_zero_indices[1]] = 0.0\n binary_im = BinaryImage(binary_data.astype(np.uint8), frame=self.frame)\n return binary_im\n", "role": "user" }, { "content": "foreground_mask", "role": "assistant" } ]
def x(self, ignore_black=True, use_hsv=False, scale=8): data = self.data if use_hsv: pil_im = PImage.fromarray(self._data) pil_im = pil_im.convert('HSV') data = np.asarray(pil_im) nonblack_pixels = np.where(np.sum(self.data, axis=2) > 0) r_data = self.r_data g_data = self.g_data b_data = self.b_data if ignore_black: r_data = r_data[nonblack_pixels[0], nonblack_pixels[1]] g_data = g_data[nonblack_pixels[0], nonblack_pixels[1]] b_data = b_data[nonblack_pixels[0], nonblack_pixels[1]] bounds = 0, np.iinfo(np.uint8).max + 1 num_bins = bounds[1] / scale r_hist, _ = np.histogram(r_data, bins=num_bins, range=bounds) g_hist, _ = np.histogram(g_data, bins=num_bins, range=bounds) b_hist, _ = np.histogram(b_data, bins=num_bins, range=bounds) hists = r_hist, g_hist, b_hist modes = [(0) for i in range(self.channels)] for i in range(self.channels): modes[i] = scale * np.argmax(hists[i]) return modes
background_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ignore_black=True, use_hsv=False, scale=8):\n data = self.data\n if use_hsv:\n pil_im = PImage.fromarray(self._data)\n pil_im = pil_im.convert('HSV')\n data = np.asarray(pil_im)\n nonblack_pixels = np.where(np.sum(self.data, axis=2) > 0)\n r_data = self.r_data\n g_data = self.g_data\n b_data = self.b_data\n if ignore_black:\n r_data = r_data[nonblack_pixels[0], nonblack_pixels[1]]\n g_data = g_data[nonblack_pixels[0], nonblack_pixels[1]]\n b_data = b_data[nonblack_pixels[0], nonblack_pixels[1]]\n bounds = 0, np.iinfo(np.uint8).max + 1\n num_bins = bounds[1] / scale\n r_hist, _ = np.histogram(r_data, bins=num_bins, range=bounds)\n g_hist, _ = np.histogram(g_data, bins=num_bins, range=bounds)\n b_hist, _ = np.histogram(b_data, bins=num_bins, range=bounds)\n hists = r_hist, g_hist, b_hist\n modes = [(0) for i in range(self.channels)]\n for i in range(self.channels):\n modes[i] = scale * np.argmax(hists[i])\n return modes\n", "role": "user" }, { "content": "background_model", "role": "assistant" } ]
def x(self, box): box_data = self._data.copy() min_i = box.min_pt[1] min_j = box.min_pt[0] max_i = box.max_pt[1] max_j = box.max_pt[0] for j in range(min_j, max_j): box_data[min_i, j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels) box_data[max_i, j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels) for i in range(min_i, max_i): box_data[i, min_j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels) box_data[i, max_j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels) return ColorImage(box_data, self._frame)
draw_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, box):\n box_data = self._data.copy()\n min_i = box.min_pt[1]\n min_j = box.min_pt[0]\n max_i = box.max_pt[1]\n max_j = box.max_pt[0]\n for j in range(min_j, max_j):\n box_data[min_i, j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)\n box_data[max_i, j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)\n for i in range(min_i, max_i):\n box_data[i, min_j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)\n box_data[i, max_j, :] = BINARY_IM_MAX_VAL * np.ones(self.channels)\n return ColorImage(box_data, self._frame)\n", "role": "user" }, { "content": "draw_box", "role": "assistant" } ]
def x(self): hsv_data = cv2.cvtColor(self.data, cv2.COLOR_BGR2HSV) nonzero_px = self.nonzero_pixels() return hsv_data[nonzero_px[:, 0], nonzero_px[:, 1], ...]
nonzero_hsv_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n hsv_data = cv2.cvtColor(self.data, cv2.COLOR_BGR2HSV)\n nonzero_px = self.nonzero_pixels()\n return hsv_data[nonzero_px[:, 0], nonzero_px[:, 1], ...]\n", "role": "user" }, { "content": "nonzero_hsv_data", "role": "assistant" } ]
def x(self, rgb_weight, num_clusters, hue_weight=0.0): label_offset = 1 nonzero_px = np.where(self.data != 0.0) nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]] color_vals = rgb_weight * self._data[nonzero_px[:, 0], nonzero_px[:, 1], :] if hue_weight > 0.0: hsv_data = cv2.cvtColor(self.data, cv2.COLOR_BGR2HSV) color_vals = np.c_[color_vals, hue_weight * hsv_data[nonzero_px[:, 0], nonzero_px[:, 1], :1]] features = np.c_[nonzero_px, color_vals.astype(np.float32)] kmeans = sc.KMeans(n_clusters=num_clusters) labels = kmeans.fit_predict(features) label_im = np.zeros([self.height, self.width]).astype(np.uint8) label_im[nonzero_px[:, 0], nonzero_px[:, 1]] = labels + label_offset return SegmentationImage(label_im, frame=self.frame)
segment_kmeans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rgb_weight, num_clusters, hue_weight=0.0):\n label_offset = 1\n nonzero_px = np.where(self.data != 0.0)\n nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]\n color_vals = rgb_weight * self._data[nonzero_px[:, 0], nonzero_px[:, 1], :]\n if hue_weight > 0.0:\n hsv_data = cv2.cvtColor(self.data, cv2.COLOR_BGR2HSV)\n color_vals = np.c_[color_vals, hue_weight * hsv_data[nonzero_px[:, \n 0], nonzero_px[:, 1], :1]]\n features = np.c_[nonzero_px, color_vals.astype(np.float32)]\n kmeans = sc.KMeans(n_clusters=num_clusters)\n labels = kmeans.fit_predict(features)\n label_im = np.zeros([self.height, self.width]).astype(np.uint8)\n label_im[nonzero_px[:, 0], nonzero_px[:, 1]] = labels + label_offset\n return SegmentationImage(label_im, frame=self.frame)\n", "role": "user" }, { "content": "segment_kmeans", "role": "assistant" } ]
def x(self, win_size=3, rescale_factor=1.0): orig_shape = self.height, self.width resized_data = self.resize(rescale_factor, interp='nearest').data mask = 1 * (np.sum(resized_data, axis=2) == 0) inpainted_data = cv2.inpaint(resized_data, mask.astype(np.uint8), win_size, cv2.INPAINT_TELEA) inpainted_im = ColorImage(inpainted_data, frame=self.frame) filled_data = inpainted_im.resize(orig_shape, interp='bilinear').data new_data = self.data new_data[self.data == 0] = filled_data[self.data == 0] return ColorImage(new_data, frame=self.frame)
inpaint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, win_size=3, rescale_factor=1.0):\n orig_shape = self.height, self.width\n resized_data = self.resize(rescale_factor, interp='nearest').data\n mask = 1 * (np.sum(resized_data, axis=2) == 0)\n inpainted_data = cv2.inpaint(resized_data, mask.astype(np.uint8),\n win_size, cv2.INPAINT_TELEA)\n inpainted_im = ColorImage(inpainted_data, frame=self.frame)\n filled_data = inpainted_im.resize(orig_shape, interp='bilinear').data\n new_data = self.data\n new_data[self.data == 0] = filled_data[self.data == 0]\n return ColorImage(new_data, frame=self.frame)\n", "role": "user" }, { "content": "inpaint", "role": "assistant" } ]
def x(self): gray_data = cv2.cvtColor(self.data, cv2.COLOR_RGB2GRAY) return GrayscaleImage(gray_data, frame=self.frame)
to_grayscale
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n gray_data = cv2.cvtColor(self.data, cv2.COLOR_RGB2GRAY)\n return GrayscaleImage(gray_data, frame=self.frame)\n", "role": "user" }, { "content": "to_grayscale", "role": "assistant" } ]
def x(filename, frame='unspecified'): data = Image.load_data(filename).astype(np.uint8) return ColorImage(data, frame)
open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename).astype(np.uint8)\n return ColorImage(data, frame)\n", "role": "user" }, { "content": "open", "role": "assistant" } ]
def x(self, data): if data.dtype.type is not np.float32 and data.dtype.type is not np.float64: raise ValueError( 'Illegal data type. Depth images only support float arrays') if len(data.shape) == 3 and data.shape[2] != 1: raise ValueError( 'Illegal data type. Depth images only support single channel')
check_valid_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n if data.dtype.type is not np.float32 and data.dtype.type is not np.float64:\n raise ValueError(\n 'Illegal data type. Depth images only support float arrays')\n if len(data.shape) == 3 and data.shape[2] != 1:\n raise ValueError(\n 'Illegal data type. Depth images only support single channel')\n", "role": "user" }, { "content": "check_valid_data", "role": "assistant" } ]
def x(self, normalize=False, min_depth=MIN_DEPTH, max_depth=MAX_DEPTH, twobyte=False): max_val = BINARY_IM_MAX_VAL if twobyte: max_val = np.iinfo(np.uint16).max if normalize: min_depth = np.min(self._data) max_depth = np.max(self._data) depth_data = (self._data - min_depth) / (max_depth - min_depth) depth_data = float(max_val) * depth_data.squeeze() else: zero_px = np.where(self._data == 0) zero_px = np.c_[zero_px[0], zero_px[1], zero_px[2]] depth_data = ((self._data - min_depth) * (float(max_val) / ( max_depth - min_depth))).squeeze() depth_data[zero_px[:, 0], zero_px[:, 1]] = 0 im_data = np.zeros([self.height, self.width, 3]) im_data[:, :, 0] = depth_data im_data[:, :, 1] = depth_data im_data[:, :, 2] = depth_data if twobyte: return im_data.astype(np.uint16) return im_data.astype(np.uint8)
image_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, normalize=False, min_depth=MIN_DEPTH, max_depth=MAX_DEPTH,\n twobyte=False):\n max_val = BINARY_IM_MAX_VAL\n if twobyte:\n max_val = np.iinfo(np.uint16).max\n if normalize:\n min_depth = np.min(self._data)\n max_depth = np.max(self._data)\n depth_data = (self._data - min_depth) / (max_depth - min_depth)\n depth_data = float(max_val) * depth_data.squeeze()\n else:\n zero_px = np.where(self._data == 0)\n zero_px = np.c_[zero_px[0], zero_px[1], zero_px[2]]\n depth_data = ((self._data - min_depth) * (float(max_val) / (\n max_depth - min_depth))).squeeze()\n depth_data[zero_px[:, 0], zero_px[:, 1]] = 0\n im_data = np.zeros([self.height, self.width, 3])\n im_data[:, :, 0] = depth_data\n im_data[:, :, 1] = depth_data\n im_data[:, :, 2] = depth_data\n if twobyte:\n return im_data.astype(np.uint16)\n return im_data.astype(np.uint8)\n", "role": "user" }, { "content": "image_data", "role": "assistant" } ]
def x(self, front_thresh=0.0, rear_thresh=100.0): data = np.copy(self._data) data[data < front_thresh] = 0.0 data[data > rear_thresh] = 0.0 return DepthImage(data, self._frame)
threshold
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, front_thresh=0.0, rear_thresh=100.0):\n data = np.copy(self._data)\n data[data < front_thresh] = 0.0\n data[data > rear_thresh] = 0.0\n return DepthImage(data, self._frame)\n", "role": "user" }, { "content": "threshold", "role": "assistant" } ]
def x(self, grad_thresh): data = np.copy(self._data) gx, gy = self.gradients() gradients = np.zeros([gx.shape[0], gx.shape[1], 2]) gradients[:, :, 0] = gx gradients[:, :, 1] = gy gradient_mags = np.linalg.norm(gradients, axis=2) ind = np.where(gradient_mags > grad_thresh) data[ind[0], ind[1]] = 0.0 return DepthImage(data, self._frame)
threshold_gradients
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, grad_thresh):\n data = np.copy(self._data)\n gx, gy = self.gradients()\n gradients = np.zeros([gx.shape[0], gx.shape[1], 2])\n gradients[:, :, 0] = gx\n gradients[:, :, 1] = gy\n gradient_mags = np.linalg.norm(gradients, axis=2)\n ind = np.where(gradient_mags > grad_thresh)\n data[ind[0], ind[1]] = 0.0\n return DepthImage(data, self._frame)\n", "role": "user" }, { "content": "threshold_gradients", "role": "assistant" } ]
def x(self, thresh_pctile, min_mag=0.0): data = np.copy(self._data) gx, gy = self.gradients() gradients = np.zeros([gx.shape[0], gx.shape[1], 2]) gradients[:, :, 0] = gx gradients[:, :, 1] = gy gradient_mags = np.linalg.norm(gradients, axis=2) grad_thresh = np.percentile(gradient_mags, thresh_pctile) ind = np.where((gradient_mags > grad_thresh) & (gradient_mags > min_mag)) data[ind[0], ind[1]] = 0.0 return DepthImage(data, self._frame)
threshold_gradients_pctile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, thresh_pctile, min_mag=0.0):\n data = np.copy(self._data)\n gx, gy = self.gradients()\n gradients = np.zeros([gx.shape[0], gx.shape[1], 2])\n gradients[:, :, 0] = gx\n gradients[:, :, 1] = gy\n gradient_mags = np.linalg.norm(gradients, axis=2)\n grad_thresh = np.percentile(gradient_mags, thresh_pctile)\n ind = np.where((gradient_mags > grad_thresh) & (gradient_mags > min_mag))\n data[ind[0], ind[1]] = 0.0\n return DepthImage(data, self._frame)\n", "role": "user" }, { "content": "threshold_gradients_pctile", "role": "assistant" } ]
def x(self, rescale_factor=1.0): orig_shape = self.height, self.width inpaint_kernel = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]]) resized_data = self.resize(rescale_factor, interp='nearest').data cur_data = resized_data.copy() zeros = cur_data == 0 while np.any(zeros): neighbors = ssg.convolve2d(cur_data != 0, inpaint_kernel, mode= 'same', boundary='symm') avg_depth = ssg.convolve2d(cur_data, inpaint_kernel, mode='same', boundary='symm') avg_depth[neighbors > 0] = avg_depth[neighbors > 0] / neighbors[ neighbors > 0] avg_depth[neighbors == 0] = 0 avg_depth[resized_data > 0] = resized_data[resized_data > 0] cur_data = avg_depth zeros = cur_data == 0 inpainted_im = DepthImage(cur_data, frame=self.frame) filled_data = inpainted_im.resize(orig_shape, interp='bilinear').data new_data = np.copy(self.data) new_data[self.data == 0] = filled_data[self.data == 0] return DepthImage(new_data, frame=self.frame)
inpaint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rescale_factor=1.0):\n orig_shape = self.height, self.width\n inpaint_kernel = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]])\n resized_data = self.resize(rescale_factor, interp='nearest').data\n cur_data = resized_data.copy()\n zeros = cur_data == 0\n while np.any(zeros):\n neighbors = ssg.convolve2d(cur_data != 0, inpaint_kernel, mode=\n 'same', boundary='symm')\n avg_depth = ssg.convolve2d(cur_data, inpaint_kernel, mode='same',\n boundary='symm')\n avg_depth[neighbors > 0] = avg_depth[neighbors > 0] / neighbors[\n neighbors > 0]\n avg_depth[neighbors == 0] = 0\n avg_depth[resized_data > 0] = resized_data[resized_data > 0]\n cur_data = avg_depth\n zeros = cur_data == 0\n inpainted_im = DepthImage(cur_data, frame=self.frame)\n filled_data = inpainted_im.resize(orig_shape, interp='bilinear').data\n new_data = np.copy(self.data)\n new_data[self.data == 0] = filled_data[self.data == 0]\n return DepthImage(new_data, frame=self.frame)\n", "role": "user" }, { "content": "inpaint", "role": "assistant" } ]
def x(self): mask = np.zeros([self.height, self.width, 1]).astype(np.uint8) zero_pixels = self.zero_pixels() nan_pixels = self.nan_pixels() mask[zero_pixels[:, 0], zero_pixels[:, 1]] = BINARY_IM_MAX_VAL mask[nan_pixels[:, 0], nan_pixels[:, 1]] = BINARY_IM_MAX_VAL return BinaryImage(mask, frame=self.frame)
invalid_pixel_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n mask = np.zeros([self.height, self.width, 1]).astype(np.uint8)\n zero_pixels = self.zero_pixels()\n nan_pixels = self.nan_pixels()\n mask[zero_pixels[:, 0], zero_pixels[:, 1]] = BINARY_IM_MAX_VAL\n mask[nan_pixels[:, 0], nan_pixels[:, 1]] = BINARY_IM_MAX_VAL\n return BinaryImage(mask, frame=self.frame)\n", "role": "user" }, { "content": "invalid_pixel_mask", "role": "assistant" } ]
def x(self, depth_im, filter_equal_depth=False): if filter_equal_depth: farther_px = np.where((self.data > depth_im.data) & np.isfinite( depth_im.data)) else: farther_px = np.where((self.data >= depth_im.data) & np.isfinite( depth_im.data)) farther_px = np.c_[farther_px[0], farther_px[1]] return farther_px
pixels_farther_than
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, depth_im, filter_equal_depth=False):\n if filter_equal_depth:\n farther_px = np.where((self.data > depth_im.data) & np.isfinite(\n depth_im.data))\n else:\n farther_px = np.where((self.data >= depth_im.data) & np.isfinite(\n depth_im.data))\n farther_px = np.c_[farther_px[0], farther_px[1]]\n return farther_px\n", "role": "user" }, { "content": "pixels_farther_than", "role": "assistant" } ]
def x(self, depth_im): new_data = self.data.copy() new_data[new_data == 0] = depth_im.data[new_data == 0] new_data[(new_data > depth_im.data) & (depth_im.data > 0)] = depth_im.data[ (new_data > depth_im.data) & (depth_im.data > 0)] return DepthImage(new_data, frame=self.frame)
combine_with
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, depth_im):\n new_data = self.data.copy()\n new_data[new_data == 0] = depth_im.data[new_data == 0]\n new_data[(new_data > depth_im.data) & (depth_im.data > 0)] = depth_im.data[\n (new_data > depth_im.data) & (depth_im.data > 0)]\n return DepthImage(new_data, frame=self.frame)\n", "role": "user" }, { "content": "combine_with", "role": "assistant" } ]
def x(self, threshold=0.0): data = BINARY_IM_MAX_VAL * (self._data > threshold) return BinaryImage(data.astype(np.uint8), self._frame)
to_binary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, threshold=0.0):\n data = BINARY_IM_MAX_VAL * (self._data > threshold)\n return BinaryImage(data.astype(np.uint8), self._frame)\n", "role": "user" }, { "content": "to_binary", "role": "assistant" } ]
def x(self, normalize=False): im_data = self._image_data(normalize=normalize) return ColorImage(im_data, frame=self._frame)
to_color
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, normalize=False):\n im_data = self._image_data(normalize=normalize)\n return ColorImage(im_data, frame=self._frame)\n", "role": "user" }, { "content": "to_color", "role": "assistant" } ]
def x(self): return DepthImage(self.data.astype(np.float32), frame=self.frame)
to_float
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return DepthImage(self.data.astype(np.float32), frame=self.frame)\n", "role": "user" }, { "content": "to_float", "role": "assistant" } ]
def x(self, camera_intr): point_cloud_im = camera_intr.deproject_to_image(self) normal_cloud_im = point_cloud_im.normal_cloud_im() point_cloud = point_cloud_im.to_point_cloud() normal_cloud = normal_cloud_im.to_normal_cloud() return PointNormalCloud(point_cloud.data, normal_cloud.data, frame=self ._frame)
point_normal_cloud
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, camera_intr):\n point_cloud_im = camera_intr.deproject_to_image(self)\n normal_cloud_im = point_cloud_im.normal_cloud_im()\n point_cloud = point_cloud_im.to_point_cloud()\n normal_cloud = normal_cloud_im.to_normal_cloud()\n return PointNormalCloud(point_cloud.data, normal_cloud.data, frame=self\n ._frame)\n", "role": "user" }, { "content": "point_normal_cloud", "role": "assistant" } ]
def x(filename, frame='unspecified'): file_root, file_ext = os.path.splitext(filename) data = Image.load_data(filename) if file_ext.lower() in COLOR_IMAGE_EXTS: data = (data * (MAX_DEPTH / BINARY_IM_MAX_VAL)).astype(np.float32) return DepthImage(data, frame)
open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, frame='unspecified'):\n file_root, file_ext = os.path.splitext(filename)\n data = Image.load_data(filename)\n if file_ext.lower() in COLOR_IMAGE_EXTS:\n data = (data * (MAX_DEPTH / BINARY_IM_MAX_VAL)).astype(np.float32)\n return DepthImage(data, frame)\n", "role": "user" }, { "content": "open", "role": "assistant" } ]
def x(self): return (self._data * (float(BINARY_IM_MAX_VAL) / MAX_IR)).astype(np.uint8)
image_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return (self._data * (float(BINARY_IM_MAX_VAL) / MAX_IR)).astype(np.uint8)\n", "role": "user" }, { "content": "image_data", "role": "assistant" } ]
def x(self, size, interp='bilinear'): resized_data = sm.imresize(self._data, size, interp=interp) return IrImage(resized_data, self._frame)
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size, interp='bilinear'):\n resized_data = sm.imresize(self._data, size, interp=interp)\n return IrImage(resized_data, self._frame)\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(filename, frame='unspecified'): data = Image.load_data(filename) data = (data * (MAX_IR / BINARY_IM_MAX_VAL)).astype(np.uint16) return IrImage(data, frame)
open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n data = (data * (MAX_IR / BINARY_IM_MAX_VAL)).astype(np.uint16)\n return IrImage(data, frame)\n", "role": "user" }, { "content": "open", "role": "assistant" } ]
def x(self, size, interp='bilinear'): resized_data = sm.imresize(self.data, size, interp=interp) return GrayscaleImage(resized_data, self._frame)
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size, interp='bilinear'):\n resized_data = sm.imresize(self.data, size, interp=interp)\n return GrayscaleImage(resized_data, self._frame)\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(self): color_data = np.repeat(self.data[:, :, np.newaxis], 3, axis=2) return ColorImage(color_data, self._frame)
to_color
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n color_data = np.repeat(self.data[:, :, np.newaxis], 3, axis=2)\n return ColorImage(color_data, self._frame)\n", "role": "user" }, { "content": "to_color", "role": "assistant" } ]
def x(filename, frame='unspecified'): data = Image.load_data(filename) return GrayscaleImage(data, frame)
open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n return GrayscaleImage(data, frame)\n", "role": "user" }, { "content": "open", "role": "assistant" } ]
def x(self, binary_im): data = np.copy(self._data) ind = np.where(binary_im.data > 0) data[ind[0], ind[1], ...] = BINARY_IM_MAX_VAL return BinaryImage(data, self._frame)
pixelwise_or
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, binary_im):\n data = np.copy(self._data)\n ind = np.where(binary_im.data > 0)\n data[ind[0], ind[1], ...] = BINARY_IM_MAX_VAL\n return BinaryImage(data, self._frame)\n", "role": "user" }, { "content": "pixelwise_or", "role": "assistant" } ]
def x(self): data = np.zeros(self.shape).astype(np.uint8) ind = np.where(self.data == 0) data[ind[0], ind[1], ...] = BINARY_IM_MAX_VAL return BinaryImage(data, self._frame)
inverse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n data = np.zeros(self.shape).astype(np.uint8)\n ind = np.where(self.data == 0)\n data[ind[0], ind[1], ...] = BINARY_IM_MAX_VAL\n return BinaryImage(data, self._frame)\n", "role": "user" }, { "content": "inverse", "role": "assistant" } ]
def x(self, area_thresh=1000.0, dist_thresh=20, preserve_topology=True): contours, hierarchy = cv2.findContours(self.data.copy(), cv2. RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) num_contours = len(contours) middle_pixel = np.array(self.shape)[:2] / 2 middle_pixel = middle_pixel.reshape(1, 2) center_contour = None pruned_contours = [] for i in range(num_contours): area = cv2.contourArea(contours[i]) if area > area_thresh: fill = np.zeros([self.height, self.width, 3]) cv2.fillPoly(fill, pts=[contours[i]], color=(BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL)) nonzero_px = np.where(fill > 0) nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]] dists = ssd.cdist(middle_pixel, nonzero_px) min_dist = np.min(dists) pruned_contours.append((contours[i], min_dist)) if len(pruned_contours) == 0: return None pruned_contours.sort(key=lambda x: x[1]) num_contours = len(pruned_contours) keep_indices = [0] source_coords = pruned_contours[0][0].squeeze().astype(np.float32) for i in range(1, num_contours): target_coords = pruned_contours[i][0].squeeze().astype(np.float32) dists = ssd.cdist(source_coords, target_coords) min_dist = np.min(dists) if min_dist < dist_thresh: keep_indices.append(i) keep_indices = np.unique(keep_indices) pruned_contours = [pruned_contours[i][0] for i in keep_indices] pruned_data = np.zeros([self.height, self.width, 3]) for contour in pruned_contours: cv2.fillPoly(pruned_data, pts=[contour], color=(BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL)) pruned_data = pruned_data[:, :, 0] if preserve_topology: orig_zeros = np.where(self.data == 0) pruned_data[orig_zeros[0], orig_zeros[1]] = 0 return BinaryImage(pruned_data.astype(np.uint8), self._frame)
prune_contours
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, area_thresh=1000.0, dist_thresh=20, preserve_topology=True):\n contours, hierarchy = cv2.findContours(self.data.copy(), cv2.\n RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)\n num_contours = len(contours)\n middle_pixel = np.array(self.shape)[:2] / 2\n middle_pixel = middle_pixel.reshape(1, 2)\n center_contour = None\n pruned_contours = []\n for i in range(num_contours):\n area = cv2.contourArea(contours[i])\n if area > area_thresh:\n fill = np.zeros([self.height, self.width, 3])\n cv2.fillPoly(fill, pts=[contours[i]], color=(BINARY_IM_MAX_VAL,\n BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL))\n nonzero_px = np.where(fill > 0)\n nonzero_px = np.c_[nonzero_px[0], nonzero_px[1]]\n dists = ssd.cdist(middle_pixel, nonzero_px)\n min_dist = np.min(dists)\n pruned_contours.append((contours[i], min_dist))\n if len(pruned_contours) == 0:\n return None\n pruned_contours.sort(key=lambda x: x[1])\n num_contours = len(pruned_contours)\n keep_indices = [0]\n source_coords = pruned_contours[0][0].squeeze().astype(np.float32)\n for i in range(1, num_contours):\n target_coords = pruned_contours[i][0].squeeze().astype(np.float32)\n dists = ssd.cdist(source_coords, target_coords)\n min_dist = np.min(dists)\n if min_dist < dist_thresh:\n keep_indices.append(i)\n keep_indices = np.unique(keep_indices)\n pruned_contours = [pruned_contours[i][0] for i in keep_indices]\n pruned_data = np.zeros([self.height, self.width, 3])\n for contour in pruned_contours:\n cv2.fillPoly(pruned_data, pts=[contour], color=(BINARY_IM_MAX_VAL,\n BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL))\n pruned_data = pruned_data[:, :, 0]\n if preserve_topology:\n orig_zeros = np.where(self.data == 0)\n pruned_data[orig_zeros[0], orig_zeros[1]] = 0\n return BinaryImage(pruned_data.astype(np.uint8), self._frame)\n", "role": "user" }, { "content": "prune_contours", "role": "assistant" } ]
def x(self, min_area=0.0, max_area=np.inf): _, contours, hierarchy = cv2.findContours(self.data.copy(), cv2. RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) num_contours = len(contours) kept_contours = [] for i in range(num_contours): area = cv2.contourArea(contours[i]) logging.debug('Contour %d area: %.3f' % (len(kept_contours), area)) if area > min_area and area < max_area: boundary_px = contours[i].squeeze() boundary_px_ij_swapped = np.zeros(boundary_px.shape) boundary_px_ij_swapped[:, 0] = boundary_px[:, 1] boundary_px_ij_swapped[:, 1] = boundary_px[:, 0] kept_contours.append(Contour(boundary_px_ij_swapped, area=area, frame=self._frame)) return kept_contours
find_contours
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, min_area=0.0, max_area=np.inf):\n _, contours, hierarchy = cv2.findContours(self.data.copy(), cv2.\n RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)\n num_contours = len(contours)\n kept_contours = []\n for i in range(num_contours):\n area = cv2.contourArea(contours[i])\n logging.debug('Contour %d area: %.3f' % (len(kept_contours), area))\n if area > min_area and area < max_area:\n boundary_px = contours[i].squeeze()\n boundary_px_ij_swapped = np.zeros(boundary_px.shape)\n boundary_px_ij_swapped[:, 0] = boundary_px[:, 1]\n boundary_px_ij_swapped[:, 1] = boundary_px[:, 0]\n kept_contours.append(Contour(boundary_px_ij_swapped, area=area,\n frame=self._frame))\n return kept_contours\n", "role": "user" }, { "content": "find_contours", "role": "assistant" } ]
def x(self, contour): new_data = np.zeros(self.data.shape) num_boundary = contour.boundary_pixels.shape[0] boundary_px_ij_swapped = np.zeros([num_boundary, 1, 2]) boundary_px_ij_swapped[:, 0, 0] = contour.boundary_pixels[:, 1] boundary_px_ij_swapped[:, 0, 1] = contour.boundary_pixels[:, 0] cv2.fillPoly(new_data, pts=[boundary_px_ij_swapped.astype(np.int32)], color=(BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL)) orig_zeros = np.where(self.data == 0) new_data[orig_zeros[0], orig_zeros[1]] = 0 return BinaryImage(new_data.astype(np.uint8), frame=self._frame)
contour_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, contour):\n new_data = np.zeros(self.data.shape)\n num_boundary = contour.boundary_pixels.shape[0]\n boundary_px_ij_swapped = np.zeros([num_boundary, 1, 2])\n boundary_px_ij_swapped[:, 0, 0] = contour.boundary_pixels[:, 1]\n boundary_px_ij_swapped[:, 0, 1] = contour.boundary_pixels[:, 0]\n cv2.fillPoly(new_data, pts=[boundary_px_ij_swapped.astype(np.int32)],\n color=(BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL))\n orig_zeros = np.where(self.data == 0)\n new_data[orig_zeros[0], orig_zeros[1]] = 0\n return BinaryImage(new_data.astype(np.uint8), frame=self._frame)\n", "role": "user" }, { "content": "contour_mask", "role": "assistant" } ]
def x(self): contours = self.find_contours() new_data = np.zeros(self.data.shape) for contour in contours: new_data[contour.boundary_pixels[:, 0].astype(np.uint8), contour. boundary_pixels[:, 1].astype(np.uint8)] = np.iinfo(np.uint8).max return BinaryImage(new_data.astype(np.uint8), frame=self.frame)
boundary_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n contours = self.find_contours()\n new_data = np.zeros(self.data.shape)\n for contour in contours:\n new_data[contour.boundary_pixels[:, 0].astype(np.uint8), contour.\n boundary_pixels[:, 1].astype(np.uint8)] = np.iinfo(np.uint8).max\n return BinaryImage(new_data.astype(np.uint8), frame=self.frame)\n", "role": "user" }, { "content": "boundary_map", "role": "assistant" } ]
def x(self, start, pixel_set, direction, w=13, t=0.5): y, x = np.meshgrid(np.arange(w) - w / 2, np.arange(w) - w / 2) cur_px_y = np.ravel(y + start[0]).astype(np.uint16) cur_px_x = np.ravel(x + start[1]).astype(np.uint16) cur_px = set(zip(cur_px_y, cur_px_x)) includes = True if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all( cur_px_x >= 0) and np.all(cur_px_x < self.width): includes = not cur_px.isdisjoint(pixel_set) else: return None while not includes: start = start + t * direction cur_px_y = np.ravel(y + start[0]).astype(np.uint16) cur_px_x = np.ravel(x + start[1]).astype(np.uint16) cur_px = set(zip(cur_px_y, cur_px_x)) if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all( cur_px_x >= 0) and np.all(cur_px_x < self.width): includes = not cur_px.isdisjoint(pixel_set) else: return None return start
closest_pixel_to_set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, pixel_set, direction, w=13, t=0.5):\n y, x = np.meshgrid(np.arange(w) - w / 2, np.arange(w) - w / 2)\n cur_px_y = np.ravel(y + start[0]).astype(np.uint16)\n cur_px_x = np.ravel(x + start[1]).astype(np.uint16)\n cur_px = set(zip(cur_px_y, cur_px_x))\n includes = True\n if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(\n cur_px_x >= 0) and np.all(cur_px_x < self.width):\n includes = not cur_px.isdisjoint(pixel_set)\n else:\n return None\n while not includes:\n start = start + t * direction\n cur_px_y = np.ravel(y + start[0]).astype(np.uint16)\n cur_px_x = np.ravel(x + start[1]).astype(np.uint16)\n cur_px = set(zip(cur_px_y, cur_px_x))\n if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(\n cur_px_x >= 0) and np.all(cur_px_x < self.width):\n includes = not cur_px.isdisjoint(pixel_set)\n else:\n return None\n return start\n", "role": "user" }, { "content": "closest_pixel_to_set", "role": "assistant" } ]
def x(self, pixel, direction, w=13, t=0.5): y, x = np.meshgrid(np.arange(w) - w / 2, np.arange(w) - w / 2) cur_px_y = np.ravel(y + pixel[0]).astype(np.uint16) cur_px_x = np.ravel(x + pixel[1]).astype(np.uint16) empty = False if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all( cur_px_x >= 0) and np.all(cur_px_x < self.width): empty = np.all(self[cur_px_y, cur_px_x] <= self._threshold) else: return None while not empty: pixel = pixel + t * direction cur_px_y = np.ravel(y + pixel[0]).astype(np.uint16) cur_px_x = np.ravel(x + pixel[1]).astype(np.uint16) if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all( cur_px_x >= 0) and np.all(cur_px_x < self.width): empty = np.all(self[cur_px_y, cur_px_x] <= self._threshold) else: return None return pixel
closest_allzero_pixel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pixel, direction, w=13, t=0.5):\n y, x = np.meshgrid(np.arange(w) - w / 2, np.arange(w) - w / 2)\n cur_px_y = np.ravel(y + pixel[0]).astype(np.uint16)\n cur_px_x = np.ravel(x + pixel[1]).astype(np.uint16)\n empty = False\n if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(\n cur_px_x >= 0) and np.all(cur_px_x < self.width):\n empty = np.all(self[cur_px_y, cur_px_x] <= self._threshold)\n else:\n return None\n while not empty:\n pixel = pixel + t * direction\n cur_px_y = np.ravel(y + pixel[0]).astype(np.uint16)\n cur_px_x = np.ravel(x + pixel[1]).astype(np.uint16)\n if np.all(cur_px_y >= 0) and np.all(cur_px_y < self.height) and np.all(\n cur_px_x >= 0) and np.all(cur_px_x < self.width):\n empty = np.all(self[cur_px_y, cur_px_x] <= self._threshold)\n else:\n return None\n return pixel\n", "role": "user" }, { "content": "closest_allzero_pixel", "role": "assistant" } ]
def x(self, left_boundary, right_boundary, upper_boundary, lower_boundary): left_boundary = max(0, left_boundary) right_boundary = min(self.width - 1, right_boundary) upper_boundary = max(0, upper_boundary) lower_boundary = min(self.height - 1, lower_boundary) if right_boundary < left_boundary: raise ValueError( 'Left boundary must be smaller than the right boundary') if upper_boundary > lower_boundary: raise ValueError( 'Upper boundary must be smaller than the lower boundary') bordered_data = self.data.copy() bordered_data[:upper_boundary, :] = BINARY_IM_MAX_VAL bordered_data[lower_boundary:, :] = BINARY_IM_MAX_VAL bordered_data[:, :left_boundary] = BINARY_IM_MAX_VAL bordered_data[:, right_boundary:] = BINARY_IM_MAX_VAL return BinaryImage(bordered_data, frame=self._frame)
add_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, left_boundary, right_boundary, upper_boundary, lower_boundary):\n left_boundary = max(0, left_boundary)\n right_boundary = min(self.width - 1, right_boundary)\n upper_boundary = max(0, upper_boundary)\n lower_boundary = min(self.height - 1, lower_boundary)\n if right_boundary < left_boundary:\n raise ValueError(\n 'Left boundary must be smaller than the right boundary')\n if upper_boundary > lower_boundary:\n raise ValueError(\n 'Upper boundary must be smaller than the lower boundary')\n bordered_data = self.data.copy()\n bordered_data[:upper_boundary, :] = BINARY_IM_MAX_VAL\n bordered_data[lower_boundary:, :] = BINARY_IM_MAX_VAL\n bordered_data[:, :left_boundary] = BINARY_IM_MAX_VAL\n bordered_data[:, right_boundary:] = BINARY_IM_MAX_VAL\n return BinaryImage(bordered_data, frame=self._frame)\n", "role": "user" }, { "content": "add_frame", "role": "assistant" } ]
def x(self): dist_tf = self.to_distance_im() max_px = np.where(dist_tf == np.max(dist_tf)) free_pixel = np.array([max_px[0][0], max_px[1][0]]) return free_pixel
most_free_pixel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n dist_tf = self.to_distance_im()\n max_px = np.where(dist_tf == np.max(dist_tf))\n free_pixel = np.array([max_px[0][0], max_px[1][0]])\n return free_pixel\n", "role": "user" }, { "content": "most_free_pixel", "role": "assistant" } ]
def x(self, binary_im): red = np.array([BINARY_IM_MAX_VAL, 0, 0]) yellow = np.array([BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL, 0]) green = np.array([0, BINARY_IM_MAX_VAL, 0]) overlap_data = np.zeros([self.height, self.width, 3]) unfilled_px = np.where((self.data == 0) & (binary_im.data > 0)) overlap_data[unfilled_px[0], unfilled_px[1], :] = red filled_px = np.where((self.data > 0) & (binary_im.data > 0)) overlap_data[filled_px[0], filled_px[1], :] = green spurious_px = np.where((self.data > 0) & (binary_im.data == 0)) overlap_data[spurious_px[0], spurious_px[1], :] = yellow return ColorImage(overlap_data.astype(np.uint8), frame=self.frame)
diff_with_target
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, binary_im):\n red = np.array([BINARY_IM_MAX_VAL, 0, 0])\n yellow = np.array([BINARY_IM_MAX_VAL, BINARY_IM_MAX_VAL, 0])\n green = np.array([0, BINARY_IM_MAX_VAL, 0])\n overlap_data = np.zeros([self.height, self.width, 3])\n unfilled_px = np.where((self.data == 0) & (binary_im.data > 0))\n overlap_data[unfilled_px[0], unfilled_px[1], :] = red\n filled_px = np.where((self.data > 0) & (binary_im.data > 0))\n overlap_data[filled_px[0], filled_px[1], :] = green\n spurious_px = np.where((self.data > 0) & (binary_im.data == 0))\n overlap_data[spurious_px[0], spurious_px[1], :] = yellow\n return ColorImage(overlap_data.astype(np.uint8), frame=self.frame)\n", "role": "user" }, { "content": "diff_with_target", "role": "assistant" } ]
def x(self, i, j): if i < 1 or i > self.height - 2 or j < 1 and j > self.width - 2: raise ValueError('Pixels out of bounds') count = 0 diffs = [[-1, 0], [1, 0], [0, -1], [0, 1]] for d in diffs: if self.data[i + d[0]][j + d[1]] > self._threshold: count += 1 return count
num_adjacent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i, j):\n if i < 1 or i > self.height - 2 or j < 1 and j > self.width - 2:\n raise ValueError('Pixels out of bounds')\n count = 0\n diffs = [[-1, 0], [1, 0], [0, -1], [0, 1]]\n for d in diffs:\n if self.data[i + d[0]][j + d[1]] > self._threshold:\n count += 1\n return count\n", "role": "user" }, { "content": "num_adjacent", "role": "assistant" } ]
def x(self): skel, sdf_in = morph.medial_axis(self.data, return_distance=True) useless_skel, sdf_out = morph.medial_axis(np.iinfo(np.uint8).max - self .data, return_distance=True) sdf = sdf_out - sdf_in return sdf
to_sdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n skel, sdf_in = morph.medial_axis(self.data, return_distance=True)\n useless_skel, sdf_out = morph.medial_axis(np.iinfo(np.uint8).max - self\n .data, return_distance=True)\n sdf = sdf_out - sdf_in\n return sdf\n", "role": "user" }, { "content": "to_sdf", "role": "assistant" } ]
def x(self): color_data = np.zeros([self.height, self.width, 3]) color_data[:, :, 0] = self.data color_data[:, :, 1] = self.data color_data[:, :, 2] = self.data return ColorImage(color_data.astype(np.uint8), self._frame)
to_color
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n color_data = np.zeros([self.height, self.width, 3])\n color_data[:, :, 0] = self.data\n color_data[:, :, 1] = self.data\n color_data[:, :, 2] = self.data\n return ColorImage(color_data.astype(np.uint8), self._frame)\n", "role": "user" }, { "content": "to_color", "role": "assistant" } ]
def x(filename, frame='unspecified'): data = Image.load_data(filename) if len(data.shape) > 2 and data.shape[2] > 1: data = data[:, :, 0] return BinaryImage(data, frame)
open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n if len(data.shape) > 2 and data.shape[2] > 1:\n data = data[:, :, 0]\n return BinaryImage(data, frame)\n", "role": "user" }, { "content": "open", "role": "assistant" } ]
def x(self, data): if data.dtype.type is not np.float32 and data.dtype.type is not np.float64: raise ValueError( 'Illegal data type. RGB-D images only support float arrays') if len(data.shape) != 3 and data.shape[2] != 4: raise ValueError( 'Illegal data type. RGB-D images only support four channel') color_data = data[:, :, :3] if np.any((color_data < 0) | (color_data > BINARY_IM_MAX_VAL)): raise ValueError( 'Color channels must be in the range (0, BINARY_IM_MAX_VAL)')
check_valid_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n if data.dtype.type is not np.float32 and data.dtype.type is not np.float64:\n raise ValueError(\n 'Illegal data type. RGB-D images only support float arrays')\n if len(data.shape) != 3 and data.shape[2] != 4:\n raise ValueError(\n 'Illegal data type. RGB-D images only support four channel')\n color_data = data[:, :, :3]\n if np.any((color_data < 0) | (color_data > BINARY_IM_MAX_VAL)):\n raise ValueError(\n 'Color channels must be in the range (0, BINARY_IM_MAX_VAL)')\n", "role": "user" }, { "content": "check_valid_data", "role": "assistant" } ]
def x(color_im, depth_im): if color_im.height != depth_im.height or color_im.width != depth_im.width: raise ValueError('Color and depth images must have the same shape') if color_im.frame != depth_im.frame: raise ValueError('Color and depth images must have the same frame') rgbd_data = np.zeros([color_im.height, color_im.width, 4]) rgbd_data[:, :, :3] = color_im.data.astype(np.float64) rgbd_data[:, :, 3] = depth_im.data return RgbdImage(rgbd_data, frame=color_im.frame)
from_color_and_depth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(color_im, depth_im):\n if color_im.height != depth_im.height or color_im.width != depth_im.width:\n raise ValueError('Color and depth images must have the same shape')\n if color_im.frame != depth_im.frame:\n raise ValueError('Color and depth images must have the same frame')\n rgbd_data = np.zeros([color_im.height, color_im.width, 4])\n rgbd_data[:, :, :3] = color_im.data.astype(np.float64)\n rgbd_data[:, :, 3] = depth_im.data\n return RgbdImage(rgbd_data, frame=color_im.frame)\n", "role": "user" }, { "content": "from_color_and_depth", "role": "assistant" } ]
def x(self): return ColorImage(self.raw_data[:, :, :3].astype(np.uint8), frame=self. frame)
color
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return ColorImage(self.raw_data[:, :, :3].astype(np.uint8), frame=self.\n frame)\n", "role": "user" }, { "content": "color", "role": "assistant" } ]
def x(self, binary_im): color = self.color.mask_binary(binary_im) depth = self.depth.mask_binary(binary_im) return RgbdImage.from_color_and_depth(color, depth)
mask_binary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, binary_im):\n color = self.color.mask_binary(binary_im)\n depth = self.depth.mask_binary(binary_im)\n return RgbdImage.from_color_and_depth(color, depth)\n", "role": "user" }, { "content": "mask_binary", "role": "assistant" } ]
def x(self, size, interp='bilinear'): color_im_resized = self.color.resize(size, interp) depth_im_resized = self.depth.resize(size, interp) return RgbdImage.from_color_and_depth(color_im_resized, depth_im_resized)
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size, interp='bilinear'):\n color_im_resized = self.color.resize(size, interp)\n depth_im_resized = self.depth.resize(size, interp)\n return RgbdImage.from_color_and_depth(color_im_resized, depth_im_resized)\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(self, height, width, center_i=None, center_j=None): color_im_cropped = self.color.crop(height, width, center_i=center_i, center_j=center_j) depth_im_cropped = self.depth.crop(height, width, center_i=center_i, center_j=center_j) return RgbdImage.from_color_and_depth(color_im_cropped, depth_im_cropped)
crop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, height, width, center_i=None, center_j=None):\n color_im_cropped = self.color.crop(height, width, center_i=center_i,\n center_j=center_j)\n depth_im_cropped = self.depth.crop(height, width, center_i=center_i,\n center_j=center_j)\n return RgbdImage.from_color_and_depth(color_im_cropped, depth_im_cropped)\n", "role": "user" }, { "content": "crop", "role": "assistant" } ]
def x(self, translation, theta, method='opencv'): color_im_tf = self.color.transform(translation, theta, method=method) depth_im_tf = self.depth.transform(translation, theta, method=method) return RgbdImage.from_color_and_depth(color_im_tf, depth_im_tf)
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, translation, theta, method='opencv'):\n color_im_tf = self.color.transform(translation, theta, method=method)\n depth_im_tf = self.depth.transform(translation, theta, method=method)\n return RgbdImage.from_color_and_depth(color_im_tf, depth_im_tf)\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(self): gray = self.color.to_grayscale() return GdImage.from_grayscale_and_depth(gray, self.depth)
to_grayscale_depth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n gray = self.color.to_grayscale()\n return GdImage.from_grayscale_and_depth(gray, self.depth)\n", "role": "user" }, { "content": "to_grayscale_depth", "role": "assistant" } ]
def x(self, rgbd_im): new_data = self.data.copy() depth_data = self.depth.data other_depth_data = rgbd_im.depth.data depth_zero_px = self.depth.zero_pixels() depth_replace_px = np.where((other_depth_data != 0) & (other_depth_data < depth_data)) depth_replace_px = np.c_[depth_replace_px[0], depth_replace_px[1]] new_data[depth_zero_px[:, 0], depth_zero_px[:, 1], :] = rgbd_im.data[ depth_zero_px[:, 0], depth_zero_px[:, 1], :] new_data[depth_replace_px[:, 0], depth_replace_px[:, 1], :] = rgbd_im.data[ depth_replace_px[:, 0], depth_replace_px[:, 1], :] return RgbdImage(new_data, frame=self.frame)
combine_with
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rgbd_im):\n new_data = self.data.copy()\n depth_data = self.depth.data\n other_depth_data = rgbd_im.depth.data\n depth_zero_px = self.depth.zero_pixels()\n depth_replace_px = np.where((other_depth_data != 0) & (other_depth_data <\n depth_data))\n depth_replace_px = np.c_[depth_replace_px[0], depth_replace_px[1]]\n new_data[depth_zero_px[:, 0], depth_zero_px[:, 1], :] = rgbd_im.data[\n depth_zero_px[:, 0], depth_zero_px[:, 1], :]\n new_data[depth_replace_px[:, 0], depth_replace_px[:, 1], :] = rgbd_im.data[\n depth_replace_px[:, 0], depth_replace_px[:, 1], :]\n return RgbdImage(new_data, frame=self.frame)\n", "role": "user" }, { "content": "combine_with", "role": "assistant" } ]
def x(self, height, width, center_i=None, center_j=None): color_im_crop = self.color.crop(height, width, center_i, center_j) depth_im_crop = self.depth.crop(height, width, center_i, center_j) return RgbdImage.from_color_and_depth(color_im_crop, depth_im_crop)
crop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, height, width, center_i=None, center_j=None):\n color_im_crop = self.color.crop(height, width, center_i, center_j)\n depth_im_crop = self.depth.crop(height, width, center_i, center_j)\n return RgbdImage.from_color_and_depth(color_im_crop, depth_im_crop)\n", "role": "user" }, { "content": "crop", "role": "assistant" } ]
def x(gray_im, depth_im): if gray_im.height != depth_im.height or gray_im.width != depth_im.width: raise ValueError('Grayscale and depth images must have the same shape') if gray_im.frame != depth_im.frame: raise ValueError('Grayscale and depth images must have the same frame') gd_data = np.zeros([gray_im.height, gray_im.width, 2]) gd_data[:, :, 0] = gray_im.data.astype(np.float64) gd_data[:, :, 1] = depth_im.data return GdImage(gd_data, frame=gray_im.frame)
from_grayscale_and_depth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gray_im, depth_im):\n if gray_im.height != depth_im.height or gray_im.width != depth_im.width:\n raise ValueError('Grayscale and depth images must have the same shape')\n if gray_im.frame != depth_im.frame:\n raise ValueError('Grayscale and depth images must have the same frame')\n gd_data = np.zeros([gray_im.height, gray_im.width, 2])\n gd_data[:, :, 0] = gray_im.data.astype(np.float64)\n gd_data[:, :, 1] = depth_im.data\n return GdImage(gd_data, frame=gray_im.frame)\n", "role": "user" }, { "content": "from_grayscale_and_depth", "role": "assistant" } ]
def x(self): return GrayscaleImage(self.raw_data[:, :, 0].astype(np.uint8), frame= self.frame)
gray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return GrayscaleImage(self.raw_data[:, :, 0].astype(np.uint8), frame=\n self.frame)\n", "role": "user" }, { "content": "gray", "role": "assistant" } ]
def x(self, size, interp='bilinear'): gray_im_resized = self.gray.resize(size, interp) depth_im_resized = self.depth.resize(size, interp) return GdImage.from_grayscale_and_depth(gray_im_resized, depth_im_resized)
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size, interp='bilinear'):\n gray_im_resized = self.gray.resize(size, interp)\n depth_im_resized = self.depth.resize(size, interp)\n return GdImage.from_grayscale_and_depth(gray_im_resized, depth_im_resized)\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(self, height, width, center_i=None, center_j=None): gray_im_crop = self.gray.crop(height, width, center_i, center_j) depth_im_crop = self.depth.crop(height, width, center_i, center_j) return GdImage.from_grayscale_and_depth(gray_im_crop, depth_im_crop)
crop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, height, width, center_i=None, center_j=None):\n gray_im_crop = self.gray.crop(height, width, center_i, center_j)\n depth_im_crop = self.depth.crop(height, width, center_i, center_j)\n return GdImage.from_grayscale_and_depth(gray_im_crop, depth_im_crop)\n", "role": "user" }, { "content": "crop", "role": "assistant" } ]