source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, grad_sigma=0.5, grad_lower_thresh=0.1, grad_upper_thresh=1.0): boundary_im = np.ones(self.shape) for i in range(1, self.num_segments): label_border_im = self.data.copy() label_border_im[self.data == 0] = i grad_mag = sf.gaussian_gradient_magnitude(label_border_im.astype(np .float32), sigma=grad_sigma) nonborder_px = np.where((grad_mag < grad_lower_thresh) | (grad_mag > grad_upper_thresh)) boundary_im[nonborder_px[0], nonborder_px[1]] = 0 border_px = np.where(boundary_im > 0) border_px = np.c_[border_px[0], border_px[1]] return border_px
border_pixels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, grad_sigma=0.5, grad_lower_thresh=0.1, grad_upper_thresh=1.0):\n boundary_im = np.ones(self.shape)\n for i in range(1, self.num_segments):\n label_border_im = self.data.copy()\n label_border_im[self.data == 0] = i\n grad_mag = sf.gaussian_gradient_magnitude(label_border_im.astype(np\n .float32), sigma=grad_sigma)\n nonborder_px = np.where((grad_mag < grad_lower_thresh) | (grad_mag >\n grad_upper_thresh))\n boundary_im[nonborder_px[0], nonborder_px[1]] = 0\n border_px = np.where(boundary_im > 0)\n border_px = np.c_[border_px[0], border_px[1]]\n return border_px\n", "role": "user" }, { "content": "border_pixels", "role": "assistant" } ]
def x(self, segnum): binary_data = np.zeros(self.shape) binary_data[self.data == segnum] = BINARY_IM_MAX_VAL return BinaryImage(binary_data.astype(np.uint8), frame=self.frame)
segment_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, segnum):\n binary_data = np.zeros(self.shape)\n binary_data[self.data == segnum] = BINARY_IM_MAX_VAL\n return BinaryImage(binary_data.astype(np.uint8), frame=self.frame)\n", "role": "user" }, { "content": "segment_mask", "role": "assistant" } ]
def x(self, binary_im): data = np.copy(self._data) ind = np.where(binary_im.data == 0) data[ind[0], ind[1], :] = 0 return SegmentationImage(data, self._frame)
mask_binary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, binary_im):\n data = np.copy(self._data)\n ind = np.where(binary_im.data == 0)\n data[ind[0], ind[1], :] = 0\n return SegmentationImage(data, self._frame)\n", "role": "user" }, { "content": "mask_binary", "role": "assistant" } ]
def x(self, size, interp='nearest'): resized_data = sm.imresize(self.data, size, interp=interp, mode='L') return SegmentationImage(resized_data, self._frame)
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size, interp='nearest'):\n resized_data = sm.imresize(self.data, size, interp=interp, mode='L')\n return SegmentationImage(resized_data, self._frame)\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(filename, frame='unspecified'): data = Image.load_data(filename) return SegmentationImage(data, frame)
open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n return SegmentationImage(data, frame)\n", "role": "user" }, { "content": "open", "role": "assistant" } ]
def x(self, size, interp='nearest'): resized_data_0 = sm.imresize(self._data[:, :, 0], size, interp=interp, mode='F') resized_data_1 = sm.imresize(self._data[:, :, 1], size, interp=interp, mode='F') resized_data_2 = sm.imresize(self._data[:, :, 2], size, interp=interp, mode='F') resized_data = np.zeros([resized_data_0.shape[0], resized_data_0.shape[ 1], self.channels]) resized_data[:, :, 0] = resized_data_0 resized_data[:, :, 1] = resized_data_1 resized_data[:, :, 2] = resized_data_2 return PointCloudImage(resized_data, self._frame)
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size, interp='nearest'):\n resized_data_0 = sm.imresize(self._data[:, :, 0], size, interp=interp,\n mode='F')\n resized_data_1 = sm.imresize(self._data[:, :, 1], size, interp=interp,\n mode='F')\n resized_data_2 = sm.imresize(self._data[:, :, 2], size, interp=interp,\n mode='F')\n resized_data = np.zeros([resized_data_0.shape[0], resized_data_0.shape[\n 1], self.channels])\n resized_data[:, :, 0] = resized_data_0\n resized_data[:, :, 1] = resized_data_1\n resized_data[:, :, 2] = resized_data_2\n return PointCloudImage(resized_data, self._frame)\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(self, dist_thresh=0.01): vertices = [] triangles = [] vertex_indices = -1 * np.ones([self.height, self.width]).astype(np.int32) for i in range(self.height - 1): for j in range(self.width - 1): v0 = self.data[i, j, :] v1 = self.data[i, j + 1, :] v2 = self.data[i + 1, j, :] v3 = self.data[i + 1, j + 1, :] d01 = np.abs(v0[2] - v1[2]) d02 = np.abs(v0[2] - v2[2]) d03 = np.abs(v0[2] - v3[2]) d13 = np.abs(v1[2] - v3[2]) d23 = np.abs(v2[2] - v3[2]) if max(d01, d03, d13) < dist_thresh: if vertex_indices[i, j] == -1: vertices.append(v0) vertex_indices[i, j] = len(vertices) - 1 if vertex_indices[i, j + 1] == -1: vertices.append(v1) vertex_indices[i, j + 1] = len(vertices) - 1 if vertex_indices[i + 1, j + 1] == -1: vertices.append(v3) vertex_indices[i + 1, j + 1] = len(vertices) - 1 i0 = vertex_indices[i, j] i1 = vertex_indices[i, j + 1] i3 = vertex_indices[i + 1, j + 1] triangles.append([i0, i1, i3]) if max(d01, d03, d23) < dist_thresh: if vertex_indices[i, j] == -1: vertices.append(v0) vertex_indices[i, j] = len(vertices) - 1 if vertex_indices[i + 1, j] == -1: vertices.append(v2) vertex_indices[i + 1, j] = len(vertices) - 1 if vertex_indices[i + 1, j + 1] == -1: vertices.append(v3) vertex_indices[i + 1, j + 1] = len(vertices) - 1 i0 = vertex_indices[i, j] i2 = vertex_indices[i + 1, j] i3 = vertex_indices[i + 1, j + 1] triangles.append([i0, i3, i2]) import trimesh mesh = trimesh.Trimesh(vertices, triangles) return mesh
to_mesh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dist_thresh=0.01):\n vertices = []\n triangles = []\n vertex_indices = -1 * np.ones([self.height, self.width]).astype(np.int32)\n for i in range(self.height - 1):\n for j in range(self.width - 1):\n v0 = self.data[i, j, :]\n v1 = self.data[i, j + 1, :]\n v2 = self.data[i + 1, j, :]\n v3 = self.data[i + 1, j + 1, :]\n d01 = np.abs(v0[2] - v1[2])\n d02 = np.abs(v0[2] - v2[2])\n d03 = np.abs(v0[2] - v3[2])\n d13 = np.abs(v1[2] - v3[2])\n d23 = np.abs(v2[2] - v3[2])\n if max(d01, d03, d13) < dist_thresh:\n if vertex_indices[i, j] == -1:\n vertices.append(v0)\n vertex_indices[i, j] = len(vertices) - 1\n if vertex_indices[i, j + 1] == -1:\n vertices.append(v1)\n vertex_indices[i, j + 1] = len(vertices) - 1\n if vertex_indices[i + 1, j + 1] == -1:\n vertices.append(v3)\n vertex_indices[i + 1, j + 1] = len(vertices) - 1\n i0 = vertex_indices[i, j]\n i1 = vertex_indices[i, j + 1]\n i3 = vertex_indices[i + 1, j + 1]\n triangles.append([i0, i1, i3])\n if max(d01, d03, d23) < dist_thresh:\n if vertex_indices[i, j] == -1:\n vertices.append(v0)\n vertex_indices[i, j] = len(vertices) - 1\n if vertex_indices[i + 1, j] == -1:\n vertices.append(v2)\n vertex_indices[i + 1, j] = len(vertices) - 1\n if vertex_indices[i + 1, j + 1] == -1:\n vertices.append(v3)\n vertex_indices[i + 1, j + 1] = len(vertices) - 1\n i0 = vertex_indices[i, j]\n i2 = vertex_indices[i + 1, j]\n i3 = vertex_indices[i + 1, j + 1]\n triangles.append([i0, i3, i2])\n import trimesh\n mesh = trimesh.Trimesh(vertices, triangles)\n return mesh\n", "role": "user" }, { "content": "to_mesh", "role": "assistant" } ]
def x(self): return PointCloud(data=self._data.reshape(self.height * self.width, 3). T, frame=self._frame)
to_point_cloud
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return PointCloud(data=self._data.reshape(self.height * self.width, 3).\n T, frame=self._frame)\n", "role": "user" }, { "content": "to_point_cloud", "role": "assistant" } ]
def x(self, ksize=3): gy = cv2.Sobel(self.data, cv2.CV_64F, 1, 0, ksize=ksize) gx = cv2.Sobel(self.data, cv2.CV_64F, 0, 1, ksize=ksize) gx_data = gx.reshape(self.height * self.width, 3) gy_data = gy.reshape(self.height * self.width, 3) pc_grads = np.cross(gx_data, gy_data) pc_grad_norms = np.linalg.norm(pc_grads, axis=1) pc_grads[pc_grad_norms > 0] = pc_grads[pc_grad_norms > 0] / np.tile( pc_grad_norms[pc_grad_norms > 0, np.newaxis], [1, 3]) pc_grads[pc_grad_norms == 0.0] = np.array([0, 0, -1.0]) normal_im_data = pc_grads.reshape(self.height, self.width, 3) zero_px = self.zero_pixels() normal_im_data[zero_px[:, 0], zero_px[:, 1], :] = np.zeros(3) return NormalCloudImage(normal_im_data, frame=self.frame)
normal_cloud_im
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ksize=3):\n gy = cv2.Sobel(self.data, cv2.CV_64F, 1, 0, ksize=ksize)\n gx = cv2.Sobel(self.data, cv2.CV_64F, 0, 1, ksize=ksize)\n gx_data = gx.reshape(self.height * self.width, 3)\n gy_data = gy.reshape(self.height * self.width, 3)\n pc_grads = np.cross(gx_data, gy_data)\n pc_grad_norms = np.linalg.norm(pc_grads, axis=1)\n pc_grads[pc_grad_norms > 0] = pc_grads[pc_grad_norms > 0] / np.tile(\n pc_grad_norms[pc_grad_norms > 0, np.newaxis], [1, 3])\n pc_grads[pc_grad_norms == 0.0] = np.array([0, 0, -1.0])\n normal_im_data = pc_grads.reshape(self.height, self.width, 3)\n zero_px = self.zero_pixels()\n normal_im_data[zero_px[:, 0], zero_px[:, 1], :] = np.zeros(3)\n return NormalCloudImage(normal_im_data, frame=self.frame)\n", "role": "user" }, { "content": "normal_cloud_im", "role": "assistant" } ]
def x(filename, frame='unspecified'): data = Image.load_data(filename) return PointCloudImage(data, frame)
open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n return PointCloudImage(data, frame)\n", "role": "user" }, { "content": "open", "role": "assistant" } ]
def x(self): return NormalCloud(data=self._data.reshape(self.height * self.width, 3) .T, frame=self._frame)
to_normal_cloud
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return NormalCloud(data=self._data.reshape(self.height * self.width, 3)\n .T, frame=self._frame)\n", "role": "user" }, { "content": "to_normal_cloud", "role": "assistant" } ]
def x(filename, frame='unspecified'): data = Image.load_data(filename) return NormalCloudImage(data, frame)
open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n return NormalCloudImage(data, frame)\n", "role": "user" }, { "content": "open", "role": "assistant" } ]
def x(self): S = np.array([[self._plane_width / self._vol_width, 0, 0], [0, self. _plane_height / self._vol_height, 0], [0, 0, self._depth_scale / self._vol_depth]]) return S
S
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n S = np.array([[self._plane_width / self._vol_width, 0, 0], [0, self.\n _plane_height / self._vol_height, 0], [0, 0, self._depth_scale /\n self._vol_depth]])\n return S\n", "role": "user" }, { "content": "S", "role": "assistant" } ]
def x(self): t = np.array([self._plane_width / 2, self._plane_height / 2, self. _depth_scale / 2]) return t
t
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n t = np.array([self._plane_width / 2, self._plane_height / 2, self.\n _depth_scale / 2])\n return t\n", "role": "user" }, { "content": "t", "role": "assistant" } ]
def x(self): P = np.r_[np.c_[self.S, self.t], np.array([0, 0, 0, 1])] return P
P
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n P = np.r_[np.c_[self.S, self.t], np.array([0, 0, 0, 1])]\n return P\n", "role": "user" }, { "content": "P", "role": "assistant" } ]
def x(self, point_cloud, round_px=True): if not isinstance(point_cloud, PointCloud) and not (isinstance( point_cloud, Point) and point_cloud.dim == 3): raise ValueError( 'Must provide PointCloud or 3D Point object for projection') if point_cloud.frame != self._frame: raise ValueError( 'Cannot project points in frame %s into camera with frame %s' % (point_cloud.frame, self._frame)) points_proj = self.S.dot(point_cloud.data) + self.t if len(points_proj.shape) == 1: points_proj = points_proj[:, np.newaxis] point_depths = points_proj[2, :] point_z = np.tile(point_depths, [3, 1]) points_proj = np.divide(points_proj, point_z) if round_px: points_proj = np.round(points_proj) points_proj = points_proj[:2, :].astype(np.int16) valid_ind = np.where((points_proj[0, :] >= 0) & (points_proj[1, :] >= 0 ) & (points_proj[0, :] < self.width) & (points_proj[1, :] < self. height))[0] depth_data = np.zeros([self.height, self.width]) depth_data[points_proj[1, valid_ind], points_proj[0, valid_ind] ] = point_depths[valid_ind] return DepthImage(depth_data, frame=self.frame)
project_to_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, point_cloud, round_px=True):\n if not isinstance(point_cloud, PointCloud) and not (isinstance(\n point_cloud, Point) and point_cloud.dim == 3):\n raise ValueError(\n 'Must provide PointCloud or 3D Point object for projection')\n if point_cloud.frame != self._frame:\n raise ValueError(\n 'Cannot project points in frame %s into camera with frame %s' %\n (point_cloud.frame, self._frame))\n points_proj = self.S.dot(point_cloud.data) + self.t\n if len(points_proj.shape) == 1:\n points_proj = points_proj[:, np.newaxis]\n point_depths = points_proj[2, :]\n point_z = np.tile(point_depths, [3, 1])\n points_proj = np.divide(points_proj, point_z)\n if round_px:\n points_proj = np.round(points_proj)\n points_proj = points_proj[:2, :].astype(np.int16)\n valid_ind = np.where((points_proj[0, :] >= 0) & (points_proj[1, :] >= 0\n ) & (points_proj[0, :] < self.width) & (points_proj[1, :] < self.\n height))[0]\n depth_data = np.zeros([self.height, self.width])\n depth_data[points_proj[1, valid_ind], points_proj[0, valid_ind]\n ] = point_depths[valid_ind]\n return DepthImage(depth_data, frame=self.frame)\n", "role": "user" }, { "content": "project_to_image", "role": "assistant" } ]
def x(self, depth_image): if not isinstance(depth_image, DepthImage): raise ValueError('Must provide DepthImage object for projection') if depth_image.frame != self._frame: raise ValueError( 'Cannot deproject points in frame %s from camera with frame %s' % (depth_image.frame, self._frame)) row_indices = np.arange(depth_image.height) col_indices = np.arange(depth_image.width) pixel_grid = np.meshgrid(col_indices, row_indices) pixels = np.c_[pixel_grid[0].flatten(), pixel_grid[1].flatten()].T depth_data = depth_image.data.flatten() pixels_homog = np.r_[pixels, depth_data.reshape(1, depth_data.shape[0])] points_3d = np.linalg.inv(self.S).dot(pixels_homog - np.tile(self.t. reshape(3, 1), [1, pixels_homog.shape[1]])) return PointCloud(data=points_3d, frame=self._frame)
deproject
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, depth_image):\n if not isinstance(depth_image, DepthImage):\n raise ValueError('Must provide DepthImage object for projection')\n if depth_image.frame != self._frame:\n raise ValueError(\n 'Cannot deproject points in frame %s from camera with frame %s' %\n (depth_image.frame, self._frame))\n row_indices = np.arange(depth_image.height)\n col_indices = np.arange(depth_image.width)\n pixel_grid = np.meshgrid(col_indices, row_indices)\n pixels = np.c_[pixel_grid[0].flatten(), pixel_grid[1].flatten()].T\n depth_data = depth_image.data.flatten()\n pixels_homog = np.r_[pixels, depth_data.reshape(1, depth_data.shape[0])]\n points_3d = np.linalg.inv(self.S).dot(pixels_homog - np.tile(self.t.\n reshape(3, 1), [1, pixels_homog.shape[1]]))\n return PointCloud(data=points_3d, frame=self._frame)\n", "role": "user" }, { "content": "deproject", "role": "assistant" } ]
def x(self, depth, pixel): if not isinstance(pixel, Point) and not pixel.dim == 2: raise ValueError('Must provide 2D Point object for pixel projection') if pixel.frame != self._frame: raise ValueError( 'Cannot deproject pixel in frame %s from camera with frame %s' % (pixel.frame, self._frame)) point = np.r_[pixel.data, depth] point_3d = np.linalg.inv(self.S).dot(point - self.t) return Point(data=point_3d, frame=self._frame)
deproject_pixel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, depth, pixel):\n if not isinstance(pixel, Point) and not pixel.dim == 2:\n raise ValueError('Must provide 2D Point object for pixel projection')\n if pixel.frame != self._frame:\n raise ValueError(\n 'Cannot deproject pixel in frame %s from camera with frame %s' %\n (pixel.frame, self._frame))\n point = np.r_[pixel.data, depth]\n point_3d = np.linalg.inv(self.S).dot(point - self.t)\n return Point(data=point_3d, frame=self._frame)\n", "role": "user" }, { "content": "deproject_pixel", "role": "assistant" } ]
def x(self, filename): file_root, file_ext = os.path.splitext(filename) if file_ext.lower() != INTR_EXTENSION: raise ValueError( 'Extension %s not supported for OrhtographicIntrinsics. Must be stored with extension %s' % (file_ext, INTR_EXTENSION)) camera_intr_dict = copy.deepcopy(self.__dict__) f = open(filename, 'w') json.dump(camera_intr_dict, f) f.close()
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n file_root, file_ext = os.path.splitext(filename)\n if file_ext.lower() != INTR_EXTENSION:\n raise ValueError(\n 'Extension %s not supported for OrhtographicIntrinsics. Must be stored with extension %s'\n % (file_ext, INTR_EXTENSION))\n camera_intr_dict = copy.deepcopy(self.__dict__)\n f = open(filename, 'w')\n json.dump(camera_intr_dict, f)\n f.close()\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(filename): file_root, file_ext = os.path.splitext(filename) if file_ext.lower() != INTR_EXTENSION: raise ValueError( 'Extension %s not supported for CameraIntrinsics. Must be stored with extension %s' % (file_ext, INTR_EXTENSION)) f = open(filename, 'r') ci = json.load(f) f.close() return OrthographicIntrinsics(frame=ci['_frame'], vol_height=ci[ '_vol_height'], vol_width=ci['_vol_width'], vol_depth=ci[ '_vol_depth'], plane_height=ci['_plane_height'], plane_width=ci[ '_plane_width'], depth_scale=ci['_depth_scale'])
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n file_root, file_ext = os.path.splitext(filename)\n if file_ext.lower() != INTR_EXTENSION:\n raise ValueError(\n 'Extension %s not supported for CameraIntrinsics. Must be stored with extension %s'\n % (file_ext, INTR_EXTENSION))\n f = open(filename, 'r')\n ci = json.load(f)\n f.close()\n return OrthographicIntrinsics(frame=ci['_frame'], vol_height=ci[\n '_vol_height'], vol_width=ci['_vol_width'], vol_depth=ci[\n '_vol_depth'], plane_height=ci['_plane_height'], plane_width=ci[\n '_plane_width'], depth_scale=ci['_depth_scale'])\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self): if rospy.get_name() == '/unnamed': raise ValueError('PhoXi sensor must be run inside a ros node!') if not self._connect_to_sensor(): self._running = False return False self._color_im_sub = rospy.Subscriber('/phoxi_camera/texture', ImageMessage, self._color_im_callback) self._depth_im_sub = rospy.Subscriber('/phoxi_camera/depth_map', ImageMessage, self._depth_im_callback) self._normal_map_sub = rospy.Subscriber('/phoxi_camera/normal_map', ImageMessage, self._normal_map_callback) self._running = True return True
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if rospy.get_name() == '/unnamed':\n raise ValueError('PhoXi sensor must be run inside a ros node!')\n if not self._connect_to_sensor():\n self._running = False\n return False\n self._color_im_sub = rospy.Subscriber('/phoxi_camera/texture',\n ImageMessage, self._color_im_callback)\n self._depth_im_sub = rospy.Subscriber('/phoxi_camera/depth_map',\n ImageMessage, self._depth_im_callback)\n self._normal_map_sub = rospy.Subscriber('/phoxi_camera/normal_map',\n ImageMessage, self._normal_map_callback)\n self._running = True\n return True\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self): if not self._running: logging.warning('PhoXi not running. Aborting stop') return False self._color_im_sub.unregister() self._depth_im_sub.unregister() self._normal_map_sub.unregister() rospy.ServiceProxy('phoxi_camera/disconnect_camera', Empty)() self._running = False return True
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._running:\n logging.warning('PhoXi not running. Aborting stop')\n return False\n self._color_im_sub.unregister()\n self._depth_im_sub.unregister()\n self._normal_map_sub.unregister()\n rospy.ServiceProxy('phoxi_camera/disconnect_camera', Empty)()\n self._running = False\n return True\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self): times = [] rospy.ServiceProxy('phoxi_camera/start_acquisition', Empty)() rospy.ServiceProxy('phoxi_camera/trigger_image', TriggerImage)() self._cur_color_im = None self._cur_depth_im = None self._cur_normal_map = None rospy.ServiceProxy('phoxi_camera/get_frame', GetFrame)(-1) max_time = 5.0 time_waiting = 0.0 while (self._cur_color_im is None or self._cur_depth_im is None or self ._cur_normal_map is None): time.sleep(0.05) time_waiting += 0.05 if time_waiting > max_time: raise SensorUnresponsiveException( 'PhoXi sensor seems to be non-responsive') return self._cur_color_im, self._cur_depth_im, None
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n times = []\n rospy.ServiceProxy('phoxi_camera/start_acquisition', Empty)()\n rospy.ServiceProxy('phoxi_camera/trigger_image', TriggerImage)()\n self._cur_color_im = None\n self._cur_depth_im = None\n self._cur_normal_map = None\n rospy.ServiceProxy('phoxi_camera/get_frame', GetFrame)(-1)\n max_time = 5.0\n time_waiting = 0.0\n while (self._cur_color_im is None or self._cur_depth_im is None or self\n ._cur_normal_map is None):\n time.sleep(0.05)\n time_waiting += 0.05\n if time_waiting > max_time:\n raise SensorUnresponsiveException(\n 'PhoXi sensor seems to be non-responsive')\n return self._cur_color_im, self._cur_depth_im, None\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(self): name = self._device_name try: rospy.wait_for_service('phoxi_camera/get_device_list') device_list = rospy.ServiceProxy('phoxi_camera/get_device_list', GetDeviceList)().out if not str(name) in device_list: logging.error('PhoXi sensor {} not in list of active devices'. format(name)) return False success = rospy.ServiceProxy('phoxi_camera/connect_camera', ConnectCamera)(name).success if not success: logging.error('Could not connect to PhoXi sensor {}'.format(name)) return False logging.debug('Connected to PhoXi Sensor {}'.format(name)) return True except rospy.ServiceException as e: logging.error('Service call failed: {}'.format(e)) return False
connect_to_sensor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n name = self._device_name\n try:\n rospy.wait_for_service('phoxi_camera/get_device_list')\n device_list = rospy.ServiceProxy('phoxi_camera/get_device_list',\n GetDeviceList)().out\n if not str(name) in device_list:\n logging.error('PhoXi sensor {} not in list of active devices'.\n format(name))\n return False\n success = rospy.ServiceProxy('phoxi_camera/connect_camera',\n ConnectCamera)(name).success\n if not success:\n logging.error('Could not connect to PhoXi sensor {}'.format(name))\n return False\n logging.debug('Connected to PhoXi Sensor {}'.format(name))\n return True\n except rospy.ServiceException as e:\n logging.error('Service call failed: {}'.format(e))\n return False\n", "role": "user" }, { "content": "connect_to_sensor", "role": "assistant" } ]
def x(self, msg): try: data = self._bridge.imgmsg_to_cv2(msg) if np.max(data) > 255.0: data = 255.0 * data / 1200.0 data = np.clip(data, 0.0, 255.0).astype(np.uint8) gsimage = GrayscaleImage(data, frame=self._frame) self._cur_color_im = gsimage.to_color() except: self._cur_color_im = None
color_im_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg):\n try:\n data = self._bridge.imgmsg_to_cv2(msg)\n if np.max(data) > 255.0:\n data = 255.0 * data / 1200.0\n data = np.clip(data, 0.0, 255.0).astype(np.uint8)\n gsimage = GrayscaleImage(data, frame=self._frame)\n self._cur_color_im = gsimage.to_color()\n except:\n self._cur_color_im = None\n", "role": "user" }, { "content": "color_im_callback", "role": "assistant" } ]
def x(self, msg): try: self._cur_depth_im = DepthImage(self._bridge.imgmsg_to_cv2(msg) / 1000.0, frame=self._frame) except: self._cur_depth_im = None
depth_im_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg):\n try:\n self._cur_depth_im = DepthImage(self._bridge.imgmsg_to_cv2(msg) / \n 1000.0, frame=self._frame)\n except:\n self._cur_depth_im = None\n", "role": "user" }, { "content": "depth_im_callback", "role": "assistant" } ]
def x(self, msg): try: self._cur_normal_map = self._bridge.imgmsg_to_cv2(msg) except: self._cur_normal_map = None
normal_map_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg):\n try:\n self._cur_normal_map = self._bridge.imgmsg_to_cv2(msg)\n except:\n self._cur_normal_map = None\n", "role": "user" }, { "content": "normal_map_callback", "role": "assistant" } ]
def x(self): self._sensor = cv2.VideoCapture(self._device_id) if not self._sensor.isOpened(): raise Exception('Unable to open OpenCVCameraSensor for id {0}'. format(self._device_id)) self.flush()
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._sensor = cv2.VideoCapture(self._device_id)\n if not self._sensor.isOpened():\n raise Exception('Unable to open OpenCVCameraSensor for id {0}'.\n format(self._device_id))\n self.flush()\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self, flush=True): self.flush() ret_val, frame = self._sensor.read() if not ret_val: raise Exception( 'Unable to retrieve frame from OpenCVCameraSensor for id {0}'. format(self._device_id)) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if self._upside_down: frame = np.flipud(frame).astype(np.uint8) frame = np.fliplr(frame).astype(np.uint8) return ColorImage(frame)
frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, flush=True):\n self.flush()\n ret_val, frame = self._sensor.read()\n if not ret_val:\n raise Exception(\n 'Unable to retrieve frame from OpenCVCameraSensor for id {0}'.\n format(self._device_id))\n frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n if self._upside_down:\n frame = np.flipud(frame).astype(np.uint8)\n frame = np.fliplr(frame).astype(np.uint8)\n return ColorImage(frame)\n", "role": "user" }, { "content": "frames", "role": "assistant" } ]
def x(self, render_mode): if render_mode == RenderMode.SEGMASK: return self.query_im elif render_mode == RenderMode.COLOR: return self.color_im elif render_mode == RenderMode.DEPTH: return self.depth_im else: raise ValueError('Render mode %s not supported' % render_mode)
image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, render_mode):\n if render_mode == RenderMode.SEGMASK:\n return self.query_im\n elif render_mode == RenderMode.COLOR:\n return self.color_im\n elif render_mode == RenderMode.DEPTH:\n return self.depth_im\n else:\n raise ValueError('Render mode %s not supported' % render_mode)\n", "role": "user" }, { "content": "image", "role": "assistant" } ]
def x(self, color_im, depth_im, cfg, camera_intr=None, T_camera_world=None, segmask=None): foreground_mask_tolerance = cfg['foreground_mask_tolerance'] min_contour_area = cfg['min_contour_area'] max_contour_area = cfg['max_contour_area'] w = cfg['filter_dim'] bgmodel = color_im.background_model() binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel =bgmodel) y, x = np.ogrid[-w / 2 + 1:w / 2 + 1, -w / 2 + 1:w / 2 + 1] mask = x * x + y * y <= w / 2 * w / 2 filter_struct = np.zeros([w, w]).astype(np.uint8) filter_struct[mask] = 1 binary_im_filtered = binary_im.apply(snm.grey_closing, structure= filter_struct) visualize = False if visualize: plt.figure() plt.imshow(binary_im_filtered.data, cmap=plt.cm.gray) plt.axis('off') plt.show() contours = binary_im_filtered.find_contours(min_area=min_contour_area, max_area=max_contour_area) detections = [] for contour in contours: box = contour.bounding_box color_thumbnail = color_im.crop(box.height, box.width, box.ci, box.cj) depth_thumbnail = depth_im.crop(box.height, box.width, box.ci, box.cj) binary_thumbnail = binary_im_filtered.crop(box.height, box.width, box.ci, box.cj) thumbnail_intr = camera_intr if camera_intr is not None: thumbnail_intr = camera_intr.crop(box.height, box.width, box.ci, box.cj) detections.append(RgbdDetection(color_thumbnail, depth_thumbnail, box, binary_thumbnail=binary_thumbnail, contour=contour, camera_intr=thumbnail_intr)) return detections
detect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, color_im, depth_im, cfg, camera_intr=None, T_camera_world=None,\n segmask=None):\n foreground_mask_tolerance = cfg['foreground_mask_tolerance']\n min_contour_area = cfg['min_contour_area']\n max_contour_area = cfg['max_contour_area']\n w = cfg['filter_dim']\n bgmodel = color_im.background_model()\n binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel\n =bgmodel)\n y, x = np.ogrid[-w / 2 + 1:w / 2 + 1, -w / 2 + 1:w / 2 + 1]\n mask = x * x + y * y <= w / 2 * w / 2\n filter_struct = np.zeros([w, w]).astype(np.uint8)\n filter_struct[mask] = 1\n binary_im_filtered = binary_im.apply(snm.grey_closing, structure=\n filter_struct)\n visualize = False\n if visualize:\n plt.figure()\n plt.imshow(binary_im_filtered.data, cmap=plt.cm.gray)\n plt.axis('off')\n plt.show()\n contours = binary_im_filtered.find_contours(min_area=min_contour_area,\n max_area=max_contour_area)\n detections = []\n for contour in contours:\n box = contour.bounding_box\n color_thumbnail = color_im.crop(box.height, box.width, box.ci, box.cj)\n depth_thumbnail = depth_im.crop(box.height, box.width, box.ci, box.cj)\n binary_thumbnail = binary_im_filtered.crop(box.height, box.width,\n box.ci, box.cj)\n thumbnail_intr = camera_intr\n if camera_intr is not None:\n thumbnail_intr = camera_intr.crop(box.height, box.width, box.ci,\n box.cj)\n detections.append(RgbdDetection(color_thumbnail, depth_thumbnail,\n box, binary_thumbnail=binary_thumbnail, contour=contour,\n camera_intr=thumbnail_intr))\n return detections\n", "role": "user" }, { "content": "detect", "role": "assistant" } ]
def x(self, color_im, bounding_box, bgmodel, cfg, vis_segmentation=False): foreground_mask_tolerance = cfg['foreground_mask_tolerance'] color_seg_rgb_weight = cfg['color_seg_rgb_weight'] color_seg_num_clusters = cfg['color_seg_num_clusters'] color_seg_hsv_weight = cfg['color_seg_hsv_weight'] color_seg_dist_pctile = cfg['color_seg_dist_pctile'] color_seg_dist_thresh = cfg['color_seg_dist_thresh'] color_seg_min_bg_dist = cfg['color_seg_min_bg_dist'] min_contour_area = cfg['min_contour_area'] contour_dist_thresh = cfg['contour_dist_thresh'] binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel =bgmodel) binary_im = binary_im.prune_contours(area_thresh=min_contour_area, dist_thresh=contour_dist_thresh) if binary_im is None: return None, None, None color_im = color_im.mask_binary(binary_im) segment_im = color_im.segment_kmeans(color_seg_rgb_weight, color_seg_num_clusters, hue_weight=color_seg_hsv_weight) bg_dists = [] hsv_bgmodel = 255 * np.array(colorsys.rgb_to_hsv(float(bgmodel[0]) / 255, float(bgmodel[1]) / 255, float(bgmodel[2]) / 255)) hsv_bgmodel = np.r_[color_seg_rgb_weight * np.array(bgmodel), color_seg_hsv_weight * hsv_bgmodel[:1]] for k in range(segment_im.num_segments - 1): seg_mask = segment_im.segment_mask(k) color_im_segment = color_im.mask_binary(seg_mask) color_im_segment_data = color_im_segment.nonzero_data() color_im_segment_data = np.c_[color_seg_rgb_weight * color_im_segment_data, color_seg_hsv_weight * color_im_segment. nonzero_hsv_data()[:, :1]] bg_dist = np.median(np.linalg.norm(color_im_segment_data - hsv_bgmodel, axis=1)) if vis_segmentation: logging.info('BG Dist for segment %d: %.4f' % (k, bg_dist)) bg_dists.append(bg_dist) dists_and_indices = zip(np.arange(len(bg_dists)), bg_dists) dists_and_indices.sort(key=lambda x: x[1], reverse=True) if color_seg_num_clusters > 1 and abs(dists_and_indices[0][1] - dists_and_indices[1][1]) > color_seg_dist_thresh and dists_and_indices[ 1][1] < color_seg_min_bg_dist: obj_segment = dists_and_indices[0][0] obj_seg_mask = segment_im.segment_mask(obj_segment) binary_im = binary_im.mask_binary(obj_seg_mask) binary_im, diff_px = binary_im.center_nonzero() bounding_box = Box(bounding_box.min_pt.astype(np.float32) - diff_px, bounding_box.max_pt.astype(np.float32) - diff_px, bounding_box. frame) if vis_segmentation: plt.figure() plt.subplot(1, 3, 1) plt.imshow(color_im.data) plt.axis('off') plt.subplot(1, 3, 2) plt.imshow(segment_im.data) plt.colorbar() plt.axis('off') plt.subplot(1, 3, 3) plt.imshow(binary_im.data, cmap=plt.cm.gray) plt.axis('off') plt.show() return binary_im, segment_im, bounding_box
segment_color
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, color_im, bounding_box, bgmodel, cfg, vis_segmentation=False):\n foreground_mask_tolerance = cfg['foreground_mask_tolerance']\n color_seg_rgb_weight = cfg['color_seg_rgb_weight']\n color_seg_num_clusters = cfg['color_seg_num_clusters']\n color_seg_hsv_weight = cfg['color_seg_hsv_weight']\n color_seg_dist_pctile = cfg['color_seg_dist_pctile']\n color_seg_dist_thresh = cfg['color_seg_dist_thresh']\n color_seg_min_bg_dist = cfg['color_seg_min_bg_dist']\n min_contour_area = cfg['min_contour_area']\n contour_dist_thresh = cfg['contour_dist_thresh']\n binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel\n =bgmodel)\n binary_im = binary_im.prune_contours(area_thresh=min_contour_area,\n dist_thresh=contour_dist_thresh)\n if binary_im is None:\n return None, None, None\n color_im = color_im.mask_binary(binary_im)\n segment_im = color_im.segment_kmeans(color_seg_rgb_weight,\n color_seg_num_clusters, hue_weight=color_seg_hsv_weight)\n bg_dists = []\n hsv_bgmodel = 255 * np.array(colorsys.rgb_to_hsv(float(bgmodel[0]) / \n 255, float(bgmodel[1]) / 255, float(bgmodel[2]) / 255))\n hsv_bgmodel = np.r_[color_seg_rgb_weight * np.array(bgmodel), \n color_seg_hsv_weight * hsv_bgmodel[:1]]\n for k in range(segment_im.num_segments - 1):\n seg_mask = segment_im.segment_mask(k)\n color_im_segment = color_im.mask_binary(seg_mask)\n color_im_segment_data = color_im_segment.nonzero_data()\n color_im_segment_data = np.c_[color_seg_rgb_weight *\n color_im_segment_data, color_seg_hsv_weight * color_im_segment.\n nonzero_hsv_data()[:, :1]]\n bg_dist = np.median(np.linalg.norm(color_im_segment_data -\n hsv_bgmodel, axis=1))\n if vis_segmentation:\n logging.info('BG Dist for segment %d: %.4f' % (k, bg_dist))\n bg_dists.append(bg_dist)\n dists_and_indices = zip(np.arange(len(bg_dists)), bg_dists)\n dists_and_indices.sort(key=lambda x: x[1], reverse=True)\n if color_seg_num_clusters > 1 and abs(dists_and_indices[0][1] -\n dists_and_indices[1][1]) > color_seg_dist_thresh and dists_and_indices[\n 1][1] < color_seg_min_bg_dist:\n obj_segment = dists_and_indices[0][0]\n obj_seg_mask = segment_im.segment_mask(obj_segment)\n binary_im = binary_im.mask_binary(obj_seg_mask)\n binary_im, diff_px = binary_im.center_nonzero()\n bounding_box = Box(bounding_box.min_pt.astype(np.float32) - diff_px,\n bounding_box.max_pt.astype(np.float32) - diff_px, bounding_box.\n frame)\n if vis_segmentation:\n plt.figure()\n plt.subplot(1, 3, 1)\n plt.imshow(color_im.data)\n plt.axis('off')\n plt.subplot(1, 3, 2)\n plt.imshow(segment_im.data)\n plt.colorbar()\n plt.axis('off')\n plt.subplot(1, 3, 3)\n plt.imshow(binary_im.data, cmap=plt.cm.gray)\n plt.axis('off')\n plt.show()\n return binary_im, segment_im, bounding_box\n", "role": "user" }, { "content": "segment_color", "role": "assistant" } ]
def x(self, color_im, depth_im, cfg, camera_intr=None, T_camera_world=None, vis_foreground=False, vis_segmentation=False, segmask=None): foreground_mask_tolerance = cfg['foreground_mask_tolerance'] min_contour_area = cfg['min_contour_area'] max_contour_area = cfg['max_contour_area'] min_box_area = cfg['min_box_area'] max_box_area = cfg['max_box_area'] box_padding_px = cfg['box_padding_px'] crop_height = cfg['image_height'] crop_width = cfg['image_width'] depth_grad_thresh = cfg['depth_grad_thresh'] w = cfg['filter_dim'] half_crop_height = float(crop_height) / 2 half_crop_width = float(crop_width) / 2 half_crop_dims = np.array([half_crop_height, half_crop_width]) fill_depth = np.max(depth_im.data[depth_im.data > 0]) kinect2_denoising = False if 'kinect2_denoising' in cfg.keys() and cfg['kinect2_denoising']: kinect2_denoising = True depth_offset = cfg['kinect2_noise_offset'] max_depth = cfg['kinect2_noise_max_depth'] bgmodel = color_im.background_model() binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel =bgmodel) y, x = np.ogrid[-w / 2 + 1:w / 2 + 1, -w / 2 + 1:w / 2 + 1] mask = x * x + y * y <= w / 2 * w / 2 filter_struct = np.zeros([w, w]).astype(np.uint8) filter_struct[mask] = 1 binary_im_filtered = binary_im.apply(snm.grey_closing, structure= filter_struct) contours = binary_im_filtered.find_contours(min_area=min_contour_area, max_area=max_contour_area) if vis_foreground: plt.figure() plt.subplot(1, 2, 1) plt.imshow(color_im.data) plt.axis('off') plt.subplot(1, 2, 2) plt.imshow(binary_im_filtered.data, cmap=plt.cm.gray) plt.axis('off') plt.show() depth_im = depth_im.threshold_gradients(depth_grad_thresh) detections = [] for contour in contours: orig_box = contour.bounding_box if orig_box.area > min_box_area and orig_box.area < max_box_area: min_pt = orig_box.center - half_crop_dims max_pt = orig_box.center + half_crop_dims query_box = Box(min_pt, max_pt, frame=orig_box.frame) color_thumbnail = color_im.crop(query_box.height, query_box. width, query_box.ci, query_box.cj) binary_thumbnail, segment_thumbnail, query_box = (self. _segment_color(color_thumbnail, query_box, bgmodel, cfg, vis_segmentation=vis_segmentation)) if binary_thumbnail is None: continue else: query_box = Box(contour.bounding_box.min_pt - box_padding_px, contour.bounding_box.max_pt + box_padding_px, frame=contour .bounding_box.frame) binary_thumbnail = binary_im_filtered.crop(query_box.height, query_box.width, query_box.ci, query_box.cj) color_thumbnail = color_im.crop(query_box.height, query_box.width, query_box.ci, query_box.cj) depth_thumbnail = depth_im.crop(query_box.height, query_box.width, query_box.ci, query_box.cj) thumbnail_intr = camera_intr if camera_intr is not None: thumbnail_intr = camera_intr.crop(query_box.height, query_box. width, query_box.ci, query_box.cj) depth_thumbnail = depth_thumbnail.replace_zeros(fill_depth) if kinect2_denoising: depth_data = depth_thumbnail.data min_depth = np.min(depth_data) binary_mask_data = binary_thumbnail.data depth_mask_data = depth_thumbnail.mask_binary(binary_thumbnail ).data depth_mask_data += depth_offset depth_data[binary_mask_data > 0] = depth_mask_data[ binary_mask_data > 0] depth_thumbnail = DepthImage(depth_data, depth_thumbnail.frame) detections.append(RgbdDetection(color_thumbnail, depth_thumbnail, query_box, binary_thumbnail=binary_thumbnail, contour=contour, camera_intr=thumbnail_intr)) return detections
detect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, color_im, depth_im, cfg, camera_intr=None, T_camera_world=None,\n vis_foreground=False, vis_segmentation=False, segmask=None):\n foreground_mask_tolerance = cfg['foreground_mask_tolerance']\n min_contour_area = cfg['min_contour_area']\n max_contour_area = cfg['max_contour_area']\n min_box_area = cfg['min_box_area']\n max_box_area = cfg['max_box_area']\n box_padding_px = cfg['box_padding_px']\n crop_height = cfg['image_height']\n crop_width = cfg['image_width']\n depth_grad_thresh = cfg['depth_grad_thresh']\n w = cfg['filter_dim']\n half_crop_height = float(crop_height) / 2\n half_crop_width = float(crop_width) / 2\n half_crop_dims = np.array([half_crop_height, half_crop_width])\n fill_depth = np.max(depth_im.data[depth_im.data > 0])\n kinect2_denoising = False\n if 'kinect2_denoising' in cfg.keys() and cfg['kinect2_denoising']:\n kinect2_denoising = True\n depth_offset = cfg['kinect2_noise_offset']\n max_depth = cfg['kinect2_noise_max_depth']\n bgmodel = color_im.background_model()\n binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel\n =bgmodel)\n y, x = np.ogrid[-w / 2 + 1:w / 2 + 1, -w / 2 + 1:w / 2 + 1]\n mask = x * x + y * y <= w / 2 * w / 2\n filter_struct = np.zeros([w, w]).astype(np.uint8)\n filter_struct[mask] = 1\n binary_im_filtered = binary_im.apply(snm.grey_closing, structure=\n filter_struct)\n contours = binary_im_filtered.find_contours(min_area=min_contour_area,\n max_area=max_contour_area)\n if vis_foreground:\n plt.figure()\n plt.subplot(1, 2, 1)\n plt.imshow(color_im.data)\n plt.axis('off')\n plt.subplot(1, 2, 2)\n plt.imshow(binary_im_filtered.data, cmap=plt.cm.gray)\n plt.axis('off')\n plt.show()\n depth_im = depth_im.threshold_gradients(depth_grad_thresh)\n detections = []\n for contour in contours:\n orig_box = contour.bounding_box\n if orig_box.area > min_box_area and orig_box.area < max_box_area:\n min_pt = orig_box.center - half_crop_dims\n max_pt = orig_box.center + half_crop_dims\n query_box = Box(min_pt, max_pt, frame=orig_box.frame)\n color_thumbnail = color_im.crop(query_box.height, query_box.\n width, query_box.ci, query_box.cj)\n binary_thumbnail, segment_thumbnail, query_box = (self.\n _segment_color(color_thumbnail, query_box, bgmodel, cfg,\n vis_segmentation=vis_segmentation))\n if binary_thumbnail is None:\n continue\n else:\n query_box = Box(contour.bounding_box.min_pt - box_padding_px, \n contour.bounding_box.max_pt + box_padding_px, frame=contour\n .bounding_box.frame)\n binary_thumbnail = binary_im_filtered.crop(query_box.height,\n query_box.width, query_box.ci, query_box.cj)\n color_thumbnail = color_im.crop(query_box.height, query_box.width,\n query_box.ci, query_box.cj)\n depth_thumbnail = depth_im.crop(query_box.height, query_box.width,\n query_box.ci, query_box.cj)\n thumbnail_intr = camera_intr\n if camera_intr is not None:\n thumbnail_intr = camera_intr.crop(query_box.height, query_box.\n width, query_box.ci, query_box.cj)\n depth_thumbnail = depth_thumbnail.replace_zeros(fill_depth)\n if kinect2_denoising:\n depth_data = depth_thumbnail.data\n min_depth = np.min(depth_data)\n binary_mask_data = binary_thumbnail.data\n depth_mask_data = depth_thumbnail.mask_binary(binary_thumbnail\n ).data\n depth_mask_data += depth_offset\n depth_data[binary_mask_data > 0] = depth_mask_data[\n binary_mask_data > 0]\n depth_thumbnail = DepthImage(depth_data, depth_thumbnail.frame)\n detections.append(RgbdDetection(color_thumbnail, depth_thumbnail,\n query_box, binary_thumbnail=binary_thumbnail, contour=contour,\n camera_intr=thumbnail_intr))\n return detections\n", "role": "user" }, { "content": "detect", "role": "assistant" } ]
def x(detector_type): if detector_type == 'point_cloud_box': return PointCloudBoxDetector() elif detector_type == 'rgbd_foreground_mask_query': return RgbdForegroundMaskQueryImageDetector() elif detector_type == 'rgbd_foreground_mask': return RgbdForegroundMaskDetector() raise ValueError('Detector type %s not understood' % detector_type)
detector
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(detector_type):\n if detector_type == 'point_cloud_box':\n return PointCloudBoxDetector()\n elif detector_type == 'rgbd_foreground_mask_query':\n return RgbdForegroundMaskQueryImageDetector()\n elif detector_type == 'rgbd_foreground_mask':\n return RgbdForegroundMaskDetector()\n raise ValueError('Detector type %s not understood' % detector_type)\n", "role": "user" }, { "content": "detector", "role": "assistant" } ]
def x(raw_color_im, raw_depth_im, camera_intr, T_camera_world, workspace_box, workspace_im, image_proc_config): inpaint_rescale_factor = image_proc_config['inpaint_rescale_factor'] cluster = image_proc_config['cluster'] cluster_tolerance = image_proc_config['cluster_tolerance'] min_cluster_size = image_proc_config['min_cluster_size'] max_cluster_size = image_proc_config['max_cluster_size'] point_cloud_cam = camera_intr.deproject(raw_depth_im) point_cloud_cam.remove_zero_points() point_cloud_world = T_camera_world * point_cloud_cam seg_point_cloud_world, _ = point_cloud_world.box_mask(workspace_box) seg_point_cloud_cam = T_camera_world.inverse() * seg_point_cloud_world depth_im_seg = camera_intr.project_to_image(seg_point_cloud_cam) env_pixels = depth_im_seg.pixels_farther_than(workspace_im) depth_im_seg._data[env_pixels[:, 0], env_pixels[:, 1]] = 0 low_indices = np.where(point_cloud_world.data[2, :] < workspace_box. min_pt[2])[0] point_cloud_world.data[2, low_indices] = workspace_box.min_pt[2] high_indices = np.where(point_cloud_world.data[2, :] > workspace_box. max_pt[2])[0] point_cloud_world.data[2, high_indices] = workspace_box.max_pt[2] workspace_point_cloud_world, valid_indices = point_cloud_world.box_mask( workspace_box) invalid_indices = np.setdiff1d(np.arange(point_cloud_world.num_points), valid_indices) if cluster: pcl_cloud = pcl.PointCloud(workspace_point_cloud_world.data.T. astype(np.float32)) tree = pcl_cloud.make_kdtree() ec = pcl_cloud.make_EuclideanClusterExtraction() ec.set_ClusterTolerance(cluster_tolerance) ec.set_MinClusterSize(min_cluster_size) ec.set_MaxClusterSize(max_cluster_size) ec.set_SearchMethod(tree) cluster_indices = ec.Extract() num_clusters = len(cluster_indices) filtered_points = np.zeros([3, workspace_point_cloud_world.num_points]) cur_i = 0 for j, indices in enumerate(cluster_indices): num_points = len(indices) points = np.zeros([3, num_points]) for i, index in enumerate(indices): points[0, i] = pcl_cloud[index][0] points[1, i] = pcl_cloud[index][1] points[2, i] = pcl_cloud[index][2] filtered_points[:, cur_i:cur_i + num_points] = points.copy() cur_i = cur_i + num_points all_points = np.c_[filtered_points[:, :cur_i], point_cloud_world. data[:, invalid_indices]] else: all_points = point_cloud_world.data filtered_point_cloud_world = PointCloud(all_points, frame='world') filtered_point_cloud_cam = T_camera_world.inverse( ) * filtered_point_cloud_world depth_im = camera_intr.project_to_image(filtered_point_cloud_cam) segmask = depth_im_seg.to_binary() valid_px_segmask = depth_im.invalid_pixel_mask().inverse() segmask = segmask.mask_binary(valid_px_segmask) color_im = raw_color_im.inpaint(rescale_factor=inpaint_rescale_factor) depth_im = depth_im.inpaint(rescale_factor=inpaint_rescale_factor) return color_im, depth_im, segmask
preprocess_images
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(raw_color_im, raw_depth_im, camera_intr, T_camera_world,\n workspace_box, workspace_im, image_proc_config):\n inpaint_rescale_factor = image_proc_config['inpaint_rescale_factor']\n cluster = image_proc_config['cluster']\n cluster_tolerance = image_proc_config['cluster_tolerance']\n min_cluster_size = image_proc_config['min_cluster_size']\n max_cluster_size = image_proc_config['max_cluster_size']\n point_cloud_cam = camera_intr.deproject(raw_depth_im)\n point_cloud_cam.remove_zero_points()\n point_cloud_world = T_camera_world * point_cloud_cam\n seg_point_cloud_world, _ = point_cloud_world.box_mask(workspace_box)\n seg_point_cloud_cam = T_camera_world.inverse() * seg_point_cloud_world\n depth_im_seg = camera_intr.project_to_image(seg_point_cloud_cam)\n env_pixels = depth_im_seg.pixels_farther_than(workspace_im)\n depth_im_seg._data[env_pixels[:, 0], env_pixels[:, 1]] = 0\n low_indices = np.where(point_cloud_world.data[2, :] < workspace_box.\n min_pt[2])[0]\n point_cloud_world.data[2, low_indices] = workspace_box.min_pt[2]\n high_indices = np.where(point_cloud_world.data[2, :] > workspace_box.\n max_pt[2])[0]\n point_cloud_world.data[2, high_indices] = workspace_box.max_pt[2]\n workspace_point_cloud_world, valid_indices = point_cloud_world.box_mask(\n workspace_box)\n invalid_indices = np.setdiff1d(np.arange(point_cloud_world.num_points),\n valid_indices)\n if cluster:\n pcl_cloud = pcl.PointCloud(workspace_point_cloud_world.data.T.\n astype(np.float32))\n tree = pcl_cloud.make_kdtree()\n ec = pcl_cloud.make_EuclideanClusterExtraction()\n ec.set_ClusterTolerance(cluster_tolerance)\n ec.set_MinClusterSize(min_cluster_size)\n ec.set_MaxClusterSize(max_cluster_size)\n ec.set_SearchMethod(tree)\n cluster_indices = ec.Extract()\n num_clusters = len(cluster_indices)\n filtered_points = np.zeros([3, workspace_point_cloud_world.num_points])\n cur_i = 0\n for j, indices in enumerate(cluster_indices):\n num_points = len(indices)\n points = np.zeros([3, num_points])\n for i, index in enumerate(indices):\n points[0, i] = pcl_cloud[index][0]\n points[1, i] = pcl_cloud[index][1]\n points[2, i] = pcl_cloud[index][2]\n filtered_points[:, cur_i:cur_i + num_points] = points.copy()\n cur_i = cur_i + num_points\n all_points = np.c_[filtered_points[:, :cur_i], point_cloud_world.\n data[:, invalid_indices]]\n else:\n all_points = point_cloud_world.data\n filtered_point_cloud_world = PointCloud(all_points, frame='world')\n filtered_point_cloud_cam = T_camera_world.inverse(\n ) * filtered_point_cloud_world\n depth_im = camera_intr.project_to_image(filtered_point_cloud_cam)\n segmask = depth_im_seg.to_binary()\n valid_px_segmask = depth_im.invalid_pixel_mask().inverse()\n segmask = segmask.mask_binary(valid_px_segmask)\n color_im = raw_color_im.inpaint(rescale_factor=inpaint_rescale_factor)\n depth_im = depth_im.inpaint(rescale_factor=inpaint_rescale_factor)\n return color_im, depth_im, segmask\n", "role": "user" }, { "content": "preprocess_images", "role": "assistant" } ]
def x(input, kernel, biases, k_h, k_w, c_o, s_h, s_w, padding='VALID', group=1 ): c_i = input.get_shape()[-1] assert c_i % group == 0 assert c_o % group == 0 convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding= padding) if group == 1: conv = convolve(input, kernel) else: input_groups = tf.split(input, group, axis=3) kernel_groups = tf.split(kernel, group, axis=3) output_groups = [convolve(i, k) for i, k in zip(input_groups, kernel_groups)] conv = tf.concat(output_groups, axis=3) return tf.reshape(tf.nn.bias_add(conv, biases), [-1] + conv.get_shape() .as_list()[1:])
conv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input, kernel, biases, k_h, k_w, c_o, s_h, s_w, padding='VALID', group=1\n ):\n c_i = input.get_shape()[-1]\n assert c_i % group == 0\n assert c_o % group == 0\n convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=\n padding)\n if group == 1:\n conv = convolve(input, kernel)\n else:\n input_groups = tf.split(input, group, axis=3)\n kernel_groups = tf.split(kernel, group, axis=3)\n output_groups = [convolve(i, k) for i, k in zip(input_groups,\n kernel_groups)]\n conv = tf.concat(output_groups, axis=3)\n return tf.reshape(tf.nn.bias_add(conv, biases), [-1] + conv.get_shape()\n .as_list()[1:])\n", "role": "user" }, { "content": "conv", "role": "assistant" } ]
def x(self, config): self._batch_size = config['batch_size'] self._im_height = config['im_height'] self._im_width = config['im_width'] self._num_channels = config['channels'] self._output_layer = config['out_layer'] self._feature_layer = config['feature_layer'] self._out_size = None if 'out_size' in config.keys(): self._out_size = config['out_size'] self._input_arr = np.zeros([self._batch_size, self._im_height, self. _im_width, self._num_channels]) if self._model_dir is None: self._net_data = np.load(config['caffe_weights']).item() self._mean = np.load(config['mean_file']) self._model_filename = None else: self._net_data = None self._mean = np.load(os.path.join(self._model_dir, 'mean.npy')) self._model_filename = os.path.join(self._model_dir, 'model.ckpt')
parse_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, config):\n self._batch_size = config['batch_size']\n self._im_height = config['im_height']\n self._im_width = config['im_width']\n self._num_channels = config['channels']\n self._output_layer = config['out_layer']\n self._feature_layer = config['feature_layer']\n self._out_size = None\n if 'out_size' in config.keys():\n self._out_size = config['out_size']\n self._input_arr = np.zeros([self._batch_size, self._im_height, self.\n _im_width, self._num_channels])\n if self._model_dir is None:\n self._net_data = np.load(config['caffe_weights']).item()\n self._mean = np.load(config['mean_file'])\n self._model_filename = None\n else:\n self._net_data = None\n self._mean = np.load(os.path.join(self._model_dir, 'mean.npy'))\n self._model_filename = os.path.join(self._model_dir, 'model.ckpt')\n", "role": "user" }, { "content": "parse_config", "role": "assistant" } ]
def x(self): if self._model_filename is None: raise ValueError('Model filename not specified') self._graph = tf.Graph() with self._graph.as_default(): reader = tf.train.NewCheckpointReader(self._model_filename) weights = AlexNetWeights() weights.conv1W = tf.Variable(reader.get_tensor('Variable')) weights.conv1b = tf.Variable(reader.get_tensor('Variable_1')) weights.conv2W = tf.Variable(reader.get_tensor('Variable_2')) weights.conv2b = tf.Variable(reader.get_tensor('Variable_3')) weights.conv3W = tf.Variable(reader.get_tensor('Variable_4')) weights.conv3b = tf.Variable(reader.get_tensor('Variable_5')) weights.conv4W = tf.Variable(reader.get_tensor('Variable_6')) weights.conv4b = tf.Variable(reader.get_tensor('Variable_7')) weights.conv5W = tf.Variable(reader.get_tensor('Variable_8')) weights.conv5b = tf.Variable(reader.get_tensor('Variable_9')) weights.fc6W = tf.Variable(reader.get_tensor('Variable_10')) weights.fc6b = tf.Variable(reader.get_tensor('Variable_11')) weights.fc7W = tf.Variable(reader.get_tensor('Variable_12')) weights.fc7b = tf.Variable(reader.get_tensor('Variable_13')) weights.fc8W = tf.Variable(reader.get_tensor('Variable_14')) weights.fc8b = tf.Variable(reader.get_tensor('Variable_15')) self._input_node = tf.placeholder(tf.float32, (self._batch_size, self._im_height, self._im_width, self._num_channels)) self._output_tensor = self.build_alexnet(weights) self._feature_tensor = self.build_alexnet(weights, output_layer= self._feature_layer) self._initialized = True
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._model_filename is None:\n raise ValueError('Model filename not specified')\n self._graph = tf.Graph()\n with self._graph.as_default():\n reader = tf.train.NewCheckpointReader(self._model_filename)\n weights = AlexNetWeights()\n weights.conv1W = tf.Variable(reader.get_tensor('Variable'))\n weights.conv1b = tf.Variable(reader.get_tensor('Variable_1'))\n weights.conv2W = tf.Variable(reader.get_tensor('Variable_2'))\n weights.conv2b = tf.Variable(reader.get_tensor('Variable_3'))\n weights.conv3W = tf.Variable(reader.get_tensor('Variable_4'))\n weights.conv3b = tf.Variable(reader.get_tensor('Variable_5'))\n weights.conv4W = tf.Variable(reader.get_tensor('Variable_6'))\n weights.conv4b = tf.Variable(reader.get_tensor('Variable_7'))\n weights.conv5W = tf.Variable(reader.get_tensor('Variable_8'))\n weights.conv5b = tf.Variable(reader.get_tensor('Variable_9'))\n weights.fc6W = tf.Variable(reader.get_tensor('Variable_10'))\n weights.fc6b = tf.Variable(reader.get_tensor('Variable_11'))\n weights.fc7W = tf.Variable(reader.get_tensor('Variable_12'))\n weights.fc7b = tf.Variable(reader.get_tensor('Variable_13'))\n weights.fc8W = tf.Variable(reader.get_tensor('Variable_14'))\n weights.fc8b = tf.Variable(reader.get_tensor('Variable_15'))\n self._input_node = tf.placeholder(tf.float32, (self._batch_size,\n self._im_height, self._im_width, self._num_channels))\n self._output_tensor = self.build_alexnet(weights)\n self._feature_tensor = self.build_alexnet(weights, output_layer=\n self._feature_layer)\n self._initialized = True\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self): self._graph = tf.Graph() with self._graph.as_default(): self._input_node = tf.placeholder(tf.float32, (self._batch_size, self._im_height, self._im_width, self._num_channels)) weights = self.build_alexnet_weights() self._output_tensor = self.build_alexnet(weights) self._feature_tensor = self.build_alexnet(weights, output_layer= self._feature_layer) self._initialized = True
initialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._graph = tf.Graph()\n with self._graph.as_default():\n self._input_node = tf.placeholder(tf.float32, (self._batch_size,\n self._im_height, self._im_width, self._num_channels))\n weights = self.build_alexnet_weights()\n self._output_tensor = self.build_alexnet(weights)\n self._feature_tensor = self.build_alexnet(weights, output_layer=\n self._feature_layer)\n self._initialized = True\n", "role": "user" }, { "content": "initialize", "role": "assistant" } ]
def x(self): with self._graph.as_default(): init = tf.initialize_all_variables() self._sess = tf.Session() self._sess.run(init)
open_session
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with self._graph.as_default():\n init = tf.initialize_all_variables()\n self._sess = tf.Session()\n self._sess.run(init)\n", "role": "user" }, { "content": "open_session", "role": "assistant" } ]
def x(self): with self._graph.as_default(): self._sess.close() self._sess = None
close_session
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with self._graph.as_default():\n self._sess.close()\n self._sess = None\n", "role": "user" }, { "content": "close_session", "role": "assistant" } ]
def x(self, image_arr, featurize=False): num_images = image_arr.shape[0] output_arr = None close_sess = False if not self._initialized and self._dynamic_load: self._load() with self._graph.as_default(): if self._sess is None: close_sess = True self.open_session() i = 0 while i < num_images: dim = min(self._batch_size, num_images - i) cur_ind = i end_ind = cur_ind + dim self._input_arr[:dim, :, :, :] = image_arr[cur_ind:end_ind, :, :, : ] - self._mean if featurize: output = self._sess.run(self._feature_tensor, feed_dict={ self._input_node: self._input_arr}) else: output = self._sess.run(self._output_tensor, feed_dict={ self._input_node: self._input_arr}) if output_arr is None: output_arr = output else: output_arr = np.r_[output_arr, output] i = end_ind if close_sess: self.close_session() return output_arr[:num_images, ...]
predict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image_arr, featurize=False):\n num_images = image_arr.shape[0]\n output_arr = None\n close_sess = False\n if not self._initialized and self._dynamic_load:\n self._load()\n with self._graph.as_default():\n if self._sess is None:\n close_sess = True\n self.open_session()\n i = 0\n while i < num_images:\n dim = min(self._batch_size, num_images - i)\n cur_ind = i\n end_ind = cur_ind + dim\n self._input_arr[:dim, :, :, :] = image_arr[cur_ind:end_ind, :, :, :\n ] - self._mean\n if featurize:\n output = self._sess.run(self._feature_tensor, feed_dict={\n self._input_node: self._input_arr})\n else:\n output = self._sess.run(self._output_tensor, feed_dict={\n self._input_node: self._input_arr})\n if output_arr is None:\n output_arr = output\n else:\n output_arr = np.r_[output_arr, output]\n i = end_ind\n if close_sess:\n self.close_session()\n return output_arr[:num_images, ...]\n", "role": "user" }, { "content": "predict", "role": "assistant" } ]
def x(self): net_data = self._net_data k_h = 11 k_w = 11 c_o = 96 s_h = 4 s_w = 4 conv1W = tf.Variable(net_data['conv1'][0]) conv1b = tf.Variable(net_data['conv1'][1]) k_h = 5 k_w = 5 c_o = 256 s_h = 1 s_w = 1 group = 2 conv2W = tf.Variable(net_data['conv2'][0]) conv2b = tf.Variable(net_data['conv2'][1]) k_h = 3 k_w = 3 c_o = 384 s_h = 1 s_w = 1 group = 1 conv3W = tf.Variable(net_data['conv3'][0]) conv3b = tf.Variable(net_data['conv3'][1]) k_h = 3 k_w = 3 c_o = 384 s_h = 1 s_w = 1 group = 2 conv4W = tf.Variable(net_data['conv4'][0]) conv4b = tf.Variable(net_data['conv4'][1]) k_h = 3 k_w = 3 c_o = 256 s_h = 1 s_w = 1 group = 2 conv5W = tf.Variable(net_data['conv5'][0]) conv5b = tf.Variable(net_data['conv5'][1]) fc6_in_size = net_data['fc6'][0].shape[0] fc6_out_size = net_data['fc6'][0].shape[1] fc6W = tf.Variable(net_data['fc6'][0]) fc6b = tf.Variable(net_data['fc6'][1]) fc7_in_size = fc6_out_size fc7_out_size = net_data['fc7'][0].shape[1] fc7W = tf.Variable(net_data['fc7'][0]) fc7b = tf.Variable(net_data['fc7'][1]) fc8_in_size = fc7_out_size fc8_out_size = self._out_size fc8W = tf.Variable(tf.truncated_normal([fc8_in_size, fc8_out_size], stddev=0.01, seed=None)) fc8b = tf.Variable(tf.constant(0.0, shape=[fc8_out_size])) weights = AlexNetWeights() weights.conv1W = conv1W weights.conv1b = conv1b weights.conv2W = conv2W weights.conv2b = conv2b weights.conv3W = conv3W weights.conv3b = conv3b weights.conv4W = conv4W weights.conv4b = conv4b weights.conv5W = conv5W weights.conv5b = conv5b weights.fc6W = fc6W weights.fc6b = fc6b weights.fc7W = fc7W weights.fc7b = fc7b weights.fc8W = fc8W weights.fc8b = fc8b return weights
build_alexnet_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n net_data = self._net_data\n k_h = 11\n k_w = 11\n c_o = 96\n s_h = 4\n s_w = 4\n conv1W = tf.Variable(net_data['conv1'][0])\n conv1b = tf.Variable(net_data['conv1'][1])\n k_h = 5\n k_w = 5\n c_o = 256\n s_h = 1\n s_w = 1\n group = 2\n conv2W = tf.Variable(net_data['conv2'][0])\n conv2b = tf.Variable(net_data['conv2'][1])\n k_h = 3\n k_w = 3\n c_o = 384\n s_h = 1\n s_w = 1\n group = 1\n conv3W = tf.Variable(net_data['conv3'][0])\n conv3b = tf.Variable(net_data['conv3'][1])\n k_h = 3\n k_w = 3\n c_o = 384\n s_h = 1\n s_w = 1\n group = 2\n conv4W = tf.Variable(net_data['conv4'][0])\n conv4b = tf.Variable(net_data['conv4'][1])\n k_h = 3\n k_w = 3\n c_o = 256\n s_h = 1\n s_w = 1\n group = 2\n conv5W = tf.Variable(net_data['conv5'][0])\n conv5b = tf.Variable(net_data['conv5'][1])\n fc6_in_size = net_data['fc6'][0].shape[0]\n fc6_out_size = net_data['fc6'][0].shape[1]\n fc6W = tf.Variable(net_data['fc6'][0])\n fc6b = tf.Variable(net_data['fc6'][1])\n fc7_in_size = fc6_out_size\n fc7_out_size = net_data['fc7'][0].shape[1]\n fc7W = tf.Variable(net_data['fc7'][0])\n fc7b = tf.Variable(net_data['fc7'][1])\n fc8_in_size = fc7_out_size\n fc8_out_size = self._out_size\n fc8W = tf.Variable(tf.truncated_normal([fc8_in_size, fc8_out_size],\n stddev=0.01, seed=None))\n fc8b = tf.Variable(tf.constant(0.0, shape=[fc8_out_size]))\n weights = AlexNetWeights()\n weights.conv1W = conv1W\n weights.conv1b = conv1b\n weights.conv2W = conv2W\n weights.conv2b = conv2b\n weights.conv3W = conv3W\n weights.conv3b = conv3b\n weights.conv4W = conv4W\n weights.conv4b = conv4b\n weights.conv5W = conv5W\n weights.conv5b = conv5b\n weights.fc6W = fc6W\n weights.fc6b = fc6b\n weights.fc7W = fc7W\n weights.fc7b = fc7b\n weights.fc8W = fc8W\n weights.fc8b = fc8b\n return weights\n", "role": "user" }, { "content": "build_alexnet_weights", "role": "assistant" } ]
def x(self, weights, output_layer=None): if output_layer is None: output_layer = self._output_layer k_h = 11 k_w = 11 c_o = 96 s_h = 4 s_w = 4 conv1_in = conv(self._input_node, weights.conv1W, weights.conv1b, k_h, k_w, c_o, s_h, s_w, padding='SAME', group=1) conv1 = tf.nn.relu(conv1_in) if output_layer == 'conv1': return tf.contrib.layers.flatten(conv1) radius = 2 alpha = 2e-05 beta = 0.75 bias = 1.0 lrn1 = tf.nn.local_response_normalization(conv1, depth_radius=radius, alpha=alpha, beta=beta, bias=bias) k_h = 3 k_w = 3 s_h = 2 s_w = 2 padding = 'VALID' maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding) k_h = 5 k_w = 5 c_o = 256 s_h = 1 s_w = 1 group = 2 conv2_in = conv(maxpool1, weights.conv2W, weights.conv2b, k_h, k_w, c_o, s_h, s_w, padding='SAME', group=group) conv2 = tf.nn.relu(conv2_in) if output_layer == 'conv2': return tf.contrib.layers.flatten(conv2) radius = 2 alpha = 2e-05 beta = 0.75 bias = 1.0 lrn2 = tf.nn.local_response_normalization(conv2, depth_radius=radius, alpha=alpha, beta=beta, bias=bias) k_h = 3 k_w = 3 s_h = 2 s_w = 2 padding = 'VALID' maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding) k_h = 3 k_w = 3 c_o = 384 s_h = 1 s_w = 1 group = 1 conv3_in = conv(maxpool2, weights.conv3W, weights.conv3b, k_h, k_w, c_o, s_h, s_w, padding='SAME', group=group) conv3 = tf.nn.relu(conv3_in) if output_layer == 'conv3': return tf.contrib.layers.flatten(conv3) k_h = 3 k_w = 3 c_o = 384 s_h = 1 s_w = 1 group = 2 conv4_in = conv(conv3, weights.conv4W, weights.conv4b, k_h, k_w, c_o, s_h, s_w, padding='SAME', group=group) conv4 = tf.nn.relu(conv4_in) if output_layer == 'conv4': return tf.contrib.layers.flatten(conv4) k_h = 3 k_w = 3 c_o = 256 s_h = 1 s_w = 1 group = 2 conv5_in = conv(conv4, weights.conv5W, weights.conv5b, k_h, k_w, c_o, s_h, s_w, padding='SAME', group=group) conv5 = tf.nn.relu(conv5_in) if output_layer == 'conv5': return tf.contrib.layers.flatten(conv5) k_h = 3 k_w = 3 s_h = 2 s_w = 2 padding = 'VALID' maxpool5 = tf.nn.max_pool(conv5, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding) fc6 = tf.nn.relu_layer(tf.reshape(maxpool5, [-1, int(np.prod(maxpool5. get_shape()[1:]))]), weights.fc6W, weights.fc6b) if output_layer == 'fc6': return fc6 fc7 = tf.nn.relu_layer(fc6, weights.fc7W, weights.fc7b) if output_layer == 'fc7': return fc7 fc8 = tf.nn.xw_plus_b(fc7, weights.fc8W, weights.fc8b) if output_layer == 'fc8': return fc8 sm = tf.nn.softmax(fc8) return sm
build_alexnet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, weights, output_layer=None):\n if output_layer is None:\n output_layer = self._output_layer\n k_h = 11\n k_w = 11\n c_o = 96\n s_h = 4\n s_w = 4\n conv1_in = conv(self._input_node, weights.conv1W, weights.conv1b, k_h,\n k_w, c_o, s_h, s_w, padding='SAME', group=1)\n conv1 = tf.nn.relu(conv1_in)\n if output_layer == 'conv1':\n return tf.contrib.layers.flatten(conv1)\n radius = 2\n alpha = 2e-05\n beta = 0.75\n bias = 1.0\n lrn1 = tf.nn.local_response_normalization(conv1, depth_radius=radius,\n alpha=alpha, beta=beta, bias=bias)\n k_h = 3\n k_w = 3\n s_h = 2\n s_w = 2\n padding = 'VALID'\n maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, k_h, k_w, 1], strides=[1, s_h,\n s_w, 1], padding=padding)\n k_h = 5\n k_w = 5\n c_o = 256\n s_h = 1\n s_w = 1\n group = 2\n conv2_in = conv(maxpool1, weights.conv2W, weights.conv2b, k_h, k_w, c_o,\n s_h, s_w, padding='SAME', group=group)\n conv2 = tf.nn.relu(conv2_in)\n if output_layer == 'conv2':\n return tf.contrib.layers.flatten(conv2)\n radius = 2\n alpha = 2e-05\n beta = 0.75\n bias = 1.0\n lrn2 = tf.nn.local_response_normalization(conv2, depth_radius=radius,\n alpha=alpha, beta=beta, bias=bias)\n k_h = 3\n k_w = 3\n s_h = 2\n s_w = 2\n padding = 'VALID'\n maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, k_h, k_w, 1], strides=[1, s_h,\n s_w, 1], padding=padding)\n k_h = 3\n k_w = 3\n c_o = 384\n s_h = 1\n s_w = 1\n group = 1\n conv3_in = conv(maxpool2, weights.conv3W, weights.conv3b, k_h, k_w, c_o,\n s_h, s_w, padding='SAME', group=group)\n conv3 = tf.nn.relu(conv3_in)\n if output_layer == 'conv3':\n return tf.contrib.layers.flatten(conv3)\n k_h = 3\n k_w = 3\n c_o = 384\n s_h = 1\n s_w = 1\n group = 2\n conv4_in = conv(conv3, weights.conv4W, weights.conv4b, k_h, k_w, c_o,\n s_h, s_w, padding='SAME', group=group)\n conv4 = tf.nn.relu(conv4_in)\n if output_layer == 'conv4':\n return tf.contrib.layers.flatten(conv4)\n k_h = 3\n k_w = 3\n c_o = 256\n s_h = 1\n s_w = 1\n group = 2\n conv5_in = conv(conv4, weights.conv5W, weights.conv5b, k_h, k_w, c_o,\n s_h, s_w, padding='SAME', group=group)\n conv5 = tf.nn.relu(conv5_in)\n if output_layer == 'conv5':\n return tf.contrib.layers.flatten(conv5)\n k_h = 3\n k_w = 3\n s_h = 2\n s_w = 2\n padding = 'VALID'\n maxpool5 = tf.nn.max_pool(conv5, ksize=[1, k_h, k_w, 1], strides=[1,\n s_h, s_w, 1], padding=padding)\n fc6 = tf.nn.relu_layer(tf.reshape(maxpool5, [-1, int(np.prod(maxpool5.\n get_shape()[1:]))]), weights.fc6W, weights.fc6b)\n if output_layer == 'fc6':\n return fc6\n fc7 = tf.nn.relu_layer(fc6, weights.fc7W, weights.fc7b)\n if output_layer == 'fc7':\n return fc7\n fc8 = tf.nn.xw_plus_b(fc7, weights.fc8W, weights.fc8b)\n if output_layer == 'fc8':\n return fc8\n sm = tf.nn.softmax(fc8)\n return sm\n", "role": "user" }, { "content": "build_alexnet", "role": "assistant" } ]
def x(self, images): num_images = len(images) if num_images == 0: return None for image in images: if not isinstance(image, Image): new_images = [] for image in images: if len(image.shape) > 2: new_images.append(ColorImage(image, frame='unspecified')) elif image.dtype == np.float32 or image.dtype == np.float64: new_images.append(DepthImage(image, frame='unspecified')) else: raise ValueError('Image type not understood') images = new_images break im_height = images[0].height im_width = images[0].width channels = images[0].channels tensor_channels = 3 image_arr = np.zeros([num_images, im_height, im_width, tensor_channels]) for j, image in enumerate(images): if channels == 3: image_arr[j, :, :, :] = image.raw_data else: image_arr[j, :, :, :] = np.tile(image.raw_data, [1, 1, 1, 3]) fp_start = time.time() final_blobs = self.cnn_.featurize(image_arr) fp_stop = time.time() logging.debug('Featurization took %f sec per image' % ((fp_stop - fp_start) / len(images))) return final_blobs.reshape(final_blobs.shape[0], -1)
forward_pass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, images):\n num_images = len(images)\n if num_images == 0:\n return None\n for image in images:\n if not isinstance(image, Image):\n new_images = []\n for image in images:\n if len(image.shape) > 2:\n new_images.append(ColorImage(image, frame='unspecified'))\n elif image.dtype == np.float32 or image.dtype == np.float64:\n new_images.append(DepthImage(image, frame='unspecified'))\n else:\n raise ValueError('Image type not understood')\n images = new_images\n break\n im_height = images[0].height\n im_width = images[0].width\n channels = images[0].channels\n tensor_channels = 3\n image_arr = np.zeros([num_images, im_height, im_width, tensor_channels])\n for j, image in enumerate(images):\n if channels == 3:\n image_arr[j, :, :, :] = image.raw_data\n else:\n image_arr[j, :, :, :] = np.tile(image.raw_data, [1, 1, 1, 3])\n fp_start = time.time()\n final_blobs = self.cnn_.featurize(image_arr)\n fp_stop = time.time()\n logging.debug('Featurization took %f sec per image' % ((fp_stop -\n fp_start) / len(images)))\n return final_blobs.reshape(final_blobs.shape[0], -1)\n", "role": "user" }, { "content": "forward_pass", "role": "assistant" } ]
def x(self): return RepositoriesDataFrame(self.__engine.getRepositories(), self. session, self.__implicits)
repositories
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return RepositoriesDataFrame(self.__engine.getRepositories(), self.\n session, self.__implicits)\n", "role": "user" }, { "content": "repositories", "role": "assistant" } ]
def x(self, repository_ids=[], reference_names=[], commit_hashes=[]): if not isinstance(repository_ids, list): raise Exception('repository_ids must be a list') if not isinstance(reference_names, list): raise Exception('reference_names must be a list') if not isinstance(commit_hashes, list): raise Exception('commit_hashes must be a list') return BlobsDataFrame(self.__engine.getBlobs(repository_ids, reference_names, commit_hashes), self.session, self.__implicits)
blobs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, repository_ids=[], reference_names=[], commit_hashes=[]):\n if not isinstance(repository_ids, list):\n raise Exception('repository_ids must be a list')\n if not isinstance(reference_names, list):\n raise Exception('reference_names must be a list')\n if not isinstance(commit_hashes, list):\n raise Exception('commit_hashes must be a list')\n return BlobsDataFrame(self.__engine.getBlobs(repository_ids,\n reference_names, commit_hashes), self.session, self.__implicits)\n", "role": "user" }, { "content": "blobs", "role": "assistant" } ]
def x(self, db_path, db_name='engine_metadata.db'): self.__engine.fromMetadata(db_path, db_name) return self
from_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, db_path, db_name='engine_metadata.db'):\n self.__engine.fromMetadata(db_path, db_name)\n return self\n", "role": "user" }, { "content": "from_metadata", "role": "assistant" } ]
def x(name): try: func = getattr(DataFrame, name) except AttributeError as e: def x(self, *args, **kwargs): raise e return func wraps = getattr(functools, 'wraps', lambda _: lambda f: f) @wraps(func) def x(self, *args, **kwargs): dataframe = func(self, *args, **kwargs) if self.__class__ != SourcedDataFrame and isinstance(self, SourcedDataFrame) and isinstance(dataframe, DataFrame): return self.__class__(dataframe._jdf, self._session, self. _implicits) return dataframe return _wrapper
generate_method
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n try:\n func = getattr(DataFrame, name)\n except AttributeError as e:\n\n def x(self, *args, **kwargs):\n raise e\n return func\n wraps = getattr(functools, 'wraps', lambda _: lambda f: f)\n\n @wraps(func)\n def x(self, *args, **kwargs):\n dataframe = func(self, *args, **kwargs)\n if self.__class__ != SourcedDataFrame and isinstance(self,\n SourcedDataFrame) and isinstance(dataframe, DataFrame):\n return self.__class__(dataframe._jdf, self._session, self.\n _implicits)\n return dataframe\n return _wrapper\n", "role": "user" }, { "content": "generate_method", "role": "assistant" } ]
def x(self): return ReferencesDataFrame(self._engine_dataframe.getReferences(), self ._session, self._implicits)
references
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return ReferencesDataFrame(self._engine_dataframe.getReferences(), self\n ._session, self._implicits)\n", "role": "user" }, { "content": "references", "role": "assistant" } ]
def x(self): return ReferencesDataFrame(self._engine_dataframe.getRemoteReferences(), self._session, self._implicits)
remote_references
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return ReferencesDataFrame(self._engine_dataframe.getRemoteReferences(),\n self._session, self._implicits)\n", "role": "user" }, { "content": "remote_references", "role": "assistant" } ]
def x(self): return ReferencesDataFrame(self._engine_dataframe.getReferences(). getHEAD(), self._session, self._implicits)
master_ref
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return ReferencesDataFrame(self._engine_dataframe.getReferences().\n getHEAD(), self._session, self._implicits)\n", "role": "user" }, { "content": "master_ref", "role": "assistant" } ]
def x(self): return ReferencesDataFrame(self._engine_dataframe.getHEAD(), self. _session, self._implicits)
head_ref
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return ReferencesDataFrame(self._engine_dataframe.getHEAD(), self.\n _session, self._implicits)\n", "role": "user" }, { "content": "head_ref", "role": "assistant" } ]
def x(self): return ReferencesDataFrame(self._engine_dataframe.getMaster(), self. _session, self._implicits) return self.ref('refs/heads/master')
master_ref
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return ReferencesDataFrame(self._engine_dataframe.getMaster(), self.\n _session, self._implicits)\n return self.ref('refs/heads/master')\n", "role": "user" }, { "content": "master_ref", "role": "assistant" } ]
def x(self, ref): return ReferencesDataFrame(self.filter(self.name == ref)._jdf, self. _session, self._implicits)
ref
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ref):\n return ReferencesDataFrame(self.filter(self.name == ref)._jdf, self.\n _session, self._implicits)\n", "role": "user" }, { "content": "ref", "role": "assistant" } ]
def x(self): return CommitsDataFrame(self._engine_dataframe.getAllReferenceCommits(), self._session, self._implicits)
all_reference_commits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return CommitsDataFrame(self._engine_dataframe.getAllReferenceCommits(),\n self._session, self._implicits)\n", "role": "user" }, { "content": "all_reference_commits", "role": "assistant" } ]
def x(self): return CommitsDataFrame(self._engine_dataframe.getCommits(), self. _session, self._implicits)
commits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return CommitsDataFrame(self._engine_dataframe.getCommits(), self.\n _session, self._implicits)\n", "role": "user" }, { "content": "commits", "role": "assistant" } ]
def x(self): return BlobsDataFrame(self._engine_dataframe.getBlobs(), self._session, self._implicits)
blobs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return BlobsDataFrame(self._engine_dataframe.getBlobs(), self._session,\n self._implicits)\n", "role": "user" }, { "content": "blobs", "role": "assistant" } ]
def x(self): return TreeEntriesDataFrame(self._engine_dataframe.getTreeEntries(), self._session, self._implicits)
tree_entries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return TreeEntriesDataFrame(self._engine_dataframe.getTreeEntries(),\n self._session, self._implicits)\n", "role": "user" }, { "content": "tree_entries", "role": "assistant" } ]
def x(self): return BlobsWithLanguageDataFrame(self._engine_dataframe. classifyLanguages(), self._session, self._implicits)
classify_languages
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return BlobsWithLanguageDataFrame(self._engine_dataframe.\n classifyLanguages(), self._session, self._implicits)\n", "role": "user" }, { "content": "classify_languages", "role": "assistant" } ]
def x(self): return UASTsDataFrame(self._engine_dataframe.extractUASTs(), self. _session, self._implicits)
extract_uasts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return UASTsDataFrame(self._engine_dataframe.extractUASTs(), self.\n _session, self._implicits)\n", "role": "user" }, { "content": "extract_uasts", "role": "assistant" } ]
def x(self, query, query_col='uast', output_col='result'): return UASTsDataFrame(self._engine_dataframe.queryUAST(query, query_col, output_col), self._session, self._implicits)
query_uast
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, query, query_col='uast', output_col='result'):\n return UASTsDataFrame(self._engine_dataframe.queryUAST(query, query_col,\n output_col), self._session, self._implicits)\n", "role": "user" }, { "content": "query_uast", "role": "assistant" } ]
def x(self, input_col='result', output_col='tokens'): return UASTsDataFrame(self._engine_dataframe.extractTokens(input_col, output_col), self._session, self._implicits)
extract_tokens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_col='result', output_col='tokens'):\n return UASTsDataFrame(self._engine_dataframe.extractTokens(input_col,\n output_col), self._session, self._implicits)\n", "role": "user" }, { "content": "extract_tokens", "role": "assistant" } ]
def x(self, bucket: str, prefix: str=None, delimiter: str=None ) ->typing.Iterator[str]: kwargs = dict() if prefix is not None: kwargs['prefix'] = prefix if delimiter is not None: kwargs['delimiter'] = delimiter bucket_obj = self._ensure_bucket_loaded(bucket) for blob_obj in bucket_obj.list_blobs(**kwargs): yield blob_obj.name
list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, prefix: str=None, delimiter: str=None\n ) ->typing.Iterator[str]:\n kwargs = dict()\n if prefix is not None:\n kwargs['prefix'] = prefix\n if delimiter is not None:\n kwargs['delimiter'] = delimiter\n bucket_obj = self._ensure_bucket_loaded(bucket)\n for blob_obj in bucket_obj.list_blobs(**kwargs):\n yield blob_obj.name\n", "role": "user" }, { "content": "list", "role": "assistant" } ]
def x(self, bucket: str, key: str): bucket_obj = self._ensure_bucket_loaded(bucket) try: bucket_obj.delete_blob(key) except NotFound: return False
delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str):\n bucket_obj = self._ensure_bucket_loaded(bucket)\n try:\n bucket_obj.delete_blob(key)\n except NotFound:\n return False\n", "role": "user" }, { "content": "delete", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->bytes: bucket_obj = self._ensure_bucket_loaded(bucket) blob_obj = bucket_obj.blob(key) try: return blob_obj.download_as_string() except NotFound: raise BlobNotFoundError(f'Could not find gs://{bucket}/{key}')
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->bytes:\n bucket_obj = self._ensure_bucket_loaded(bucket)\n blob_obj = bucket_obj.blob(key)\n try:\n return blob_obj.download_as_string()\n except NotFound:\n raise BlobNotFoundError(f'Could not find gs://{bucket}/{key}')\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->str: blob_obj = self._get_blob_obj(bucket, key) return self.compute_cloud_checksum(blob_obj)
get_cloud_checksum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->str:\n blob_obj = self._get_blob_obj(bucket, key)\n return self.compute_cloud_checksum(blob_obj)\n", "role": "user" }, { "content": "get_cloud_checksum", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->str: blob_obj = self._get_blob_obj(bucket, key) return blob_obj.content_type
get_content_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->str:\n blob_obj = self._get_blob_obj(bucket, key)\n return blob_obj.content_type\n", "role": "user" }, { "content": "get_content_type", "role": "assistant" } ]
def x(self, bucket: str, key: str, cloud_checksum: str) ->typing.Any: blob_obj = self._get_blob_obj(bucket, key) assert binascii.hexlify(base64.b64decode(blob_obj.crc32c)).decode('utf-8' ).lower() == cloud_checksum return blob_obj.generation
get_copy_token
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str, cloud_checksum: str) ->typing.Any:\n blob_obj = self._get_blob_obj(bucket, key)\n assert binascii.hexlify(base64.b64decode(blob_obj.crc32c)).decode('utf-8'\n ).lower() == cloud_checksum\n return blob_obj.generation\n", "role": "user" }, { "content": "get_copy_token", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->datetime.datetime: blob_obj = self._get_blob_obj(bucket, key) return blob_obj.time_created
get_creation_date
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->datetime.datetime:\n blob_obj = self._get_blob_obj(bucket, key)\n return blob_obj.time_created\n", "role": "user" }, { "content": "get_creation_date", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->datetime.datetime: blob_obj = self._get_blob_obj(bucket, key) return blob_obj.updated
get_last_modified_date
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->datetime.datetime:\n blob_obj = self._get_blob_obj(bucket, key)\n return blob_obj.updated\n", "role": "user" }, { "content": "get_last_modified_date", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->typing.Dict[str, str]: blob_obj = self._get_blob_obj(bucket, key) return blob_obj.metadata
get_user_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->typing.Dict[str, str]:\n blob_obj = self._get_blob_obj(bucket, key)\n return blob_obj.metadata\n", "role": "user" }, { "content": "get_user_metadata", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->int: blob_obj = self._get_blob_obj(bucket, key) return blob_obj.size
get_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->int:\n blob_obj = self._get_blob_obj(bucket, key)\n return blob_obj.size\n", "role": "user" }, { "content": "get_size", "role": "assistant" } ]
def x(self, bucket: str) ->bool: bucket_obj = self.gcp_client.bucket(bucket) return bucket_obj.exists()
check_bucket_exists
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str) ->bool:\n bucket_obj = self.gcp_client.bucket(bucket)\n return bucket_obj.exists()\n", "role": "user" }, { "content": "check_bucket_exists", "role": "assistant" } ]
def x(self, shard): @wraps(API_WRAPPER._get_shard) def x(*arg, **kwargs): """Gets the shard '{}'""".format(shard) return self.get_shards(Shard(shard, *arg, **kwargs)) return get_shard
get_shard
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shard):\n\n @wraps(API_WRAPPER._get_shard)\n def x(*arg, **kwargs):\n \"\"\"Gets the shard '{}'\"\"\".format(shard)\n return self.get_shards(Shard(shard, *arg, **kwargs))\n return get_shard\n", "role": "user" }, { "content": "get_shard", "role": "assistant" } ]
def x(self, shards, full_response, return_status_tuple=False): try: resp = self._request(shards) if return_status_tuple: return self._parser(resp, full_response), True else: return self._parser(resp, full_response) except (ConflictError, CloudflareServerError, InternalServerError) as exc: if return_status_tuple: return None, False elif self.api_mother.do_retry: sleep(self.api_mother.retry_sleep) resp = self.request(shards, full_response, True) while not resp[1]: sleep(self.api_mother.retry_sleep) resp = self.request(shards, full_response, True) return resp[0] else: raise exc
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shards, full_response, return_status_tuple=False):\n try:\n resp = self._request(shards)\n if return_status_tuple:\n return self._parser(resp, full_response), True\n else:\n return self._parser(resp, full_response)\n except (ConflictError, CloudflareServerError, InternalServerError) as exc:\n if return_status_tuple:\n return None, False\n elif self.api_mother.do_retry:\n sleep(self.api_mother.retry_sleep)\n resp = self.request(shards, full_response, True)\n while not resp[1]:\n sleep(self.api_mother.retry_sleep)\n resp = self.request(shards, full_response, True)\n return resp[0]\n else:\n raise exc\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(self, *args, full_response=False): resp = self.request(shards=args, full_response=full_response) return resp
get_shards
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, full_response=False):\n resp = self.request(shards=args, full_response=full_response)\n return resp\n", "role": "user" }, { "content": "get_shards", "role": "assistant" } ]
def x(self, command, full_response=False, **kwargs): command = Shard(c=command) return self.get_shards(*(command, Shard(**kwargs)), full_response= full_response)
command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, command, full_response=False, **kwargs):\n command = Shard(c=command)\n return self.get_shards(*(command, Shard(**kwargs)), full_response=\n full_response)\n", "role": "user" }, { "content": "command", "role": "assistant" } ]
def x(telegram=None, client_key=None, tgid=None, key=None): if telegram: pass else: telegram = self.api_mother.telegram(client_key, tgid, key) telegram.send_telegram(self.nation_name)
send_telegram
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(telegram=None, client_key=None, tgid=None, key=None):\n if telegram:\n pass\n else:\n telegram = self.api_mother.telegram(client_key, tgid, key)\n telegram.send_telegram(self.nation_name)\n", "role": "user" }, { "content": "send_telegram", "role": "assistant" } ]
def x(self, checksum=None, token=None, full_response=False): payload = {'checksum': checksum, 'a': 'verify'} if token: payload.update({'token': token}) return self.get_shards(Shard(**payload), full_response=True)
verify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, checksum=None, token=None, full_response=False):\n payload = {'checksum': checksum, 'a': 'verify'}\n if token:\n payload.update({'token': token})\n return self.get_shards(Shard(**payload), full_response=True)\n", "role": "user" }, { "content": "verify", "role": "assistant" } ]
def x(self, resp) ->typing.Iterable[typing.Tuple[str, dict]]: raise NotImplementedError()
get_listing_from_response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, resp) ->typing.Iterable[typing.Tuple[str, dict]]:\n raise NotImplementedError()\n", "role": "user" }, { "content": "get_listing_from_response", "role": "assistant" } ]
def x(self, bucket: str, prefix: str=None, delimiter: str=None ) ->typing.Iterator[str]: raise NotImplementedError()
list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, prefix: str=None, delimiter: str=None\n ) ->typing.Iterator[str]:\n raise NotImplementedError()\n", "role": "user" }, { "content": "list", "role": "assistant" } ]
def x(self, bucket: str, prefix: str=None, delimiter: str=None, start_after_key: str=None, token: str=None, k_page_max: int=None ) ->typing.Iterable[typing.Tuple[str, dict]]: raise NotImplementedError()
list_v2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, prefix: str=None, delimiter: str=None,\n start_after_key: str=None, token: str=None, k_page_max: int=None\n ) ->typing.Iterable[typing.Tuple[str, dict]]:\n raise NotImplementedError()\n", "role": "user" }, { "content": "list_v2", "role": "assistant" } ]
def x(self, bucket: str, key: str, src_file_handle: typing.BinaryIO, content_type: str=None, metadata: dict=None): raise NotImplementedError()
upload_file_handle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str, src_file_handle: typing.BinaryIO,\n content_type: str=None, metadata: dict=None):\n raise NotImplementedError()\n", "role": "user" }, { "content": "upload_file_handle", "role": "assistant" } ]
def x(self, bucket: str, key: str, cloud_checksum: str) ->typing.Any: raise NotImplementedError()
get_copy_token
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str, cloud_checksum: str) ->typing.Any:\n raise NotImplementedError()\n", "role": "user" }, { "content": "get_copy_token", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->typing.Dict[str, str]: raise NotImplementedError()
get_user_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->typing.Dict[str, str]:\n raise NotImplementedError()\n", "role": "user" }, { "content": "get_user_metadata", "role": "assistant" } ]
def x(self, bucket: str, prefix: str=None, delimiter: str=None ) ->typing.Iterator[str]: kwargs = dict() if prefix is not None: kwargs['Prefix'] = prefix if delimiter is not None: kwargs['Delimiter'] = delimiter for item in boto3.resource('s3').Bucket(bucket).objects.filter(**kwargs): yield item.key
list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, prefix: str=None, delimiter: str=None\n ) ->typing.Iterator[str]:\n kwargs = dict()\n if prefix is not None:\n kwargs['Prefix'] = prefix\n if delimiter is not None:\n kwargs['Delimiter'] = delimiter\n for item in boto3.resource('s3').Bucket(bucket).objects.filter(**kwargs):\n yield item.key\n", "role": "user" }, { "content": "list", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->bytes: try: response = self.s3_client.get_object(Bucket=bucket, Key=key) return response['Body'].read() except botocore.exceptions.ClientError as ex: if ex.response['Error']['Code'] == 'NoSuchKey': raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}' ) from ex raise BlobStoreUnknownError(ex)
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->bytes:\n try:\n response = self.s3_client.get_object(Bucket=bucket, Key=key)\n return response['Body'].read()\n except botocore.exceptions.ClientError as ex:\n if ex.response['Error']['Code'] == 'NoSuchKey':\n raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'\n ) from ex\n raise BlobStoreUnknownError(ex)\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->dict: try: return self.s3_client.head_object(Bucket=bucket, Key=key) except botocore.exceptions.ClientError as ex: if str(ex.response['Error']['Code']) == str(requests.codes.not_found): raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}' ) from ex raise BlobStoreUnknownError(ex)
get_all_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->dict:\n try:\n return self.s3_client.head_object(Bucket=bucket, Key=key)\n except botocore.exceptions.ClientError as ex:\n if str(ex.response['Error']['Code']) == str(requests.codes.not_found):\n raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'\n ) from ex\n raise BlobStoreUnknownError(ex)\n", "role": "user" }, { "content": "get_all_metadata", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->str: response = self.get_all_metadata(bucket, key) return response['ContentType']
get_content_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->str:\n response = self.get_all_metadata(bucket, key)\n return response['ContentType']\n", "role": "user" }, { "content": "get_content_type", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->str: response = self.get_all_metadata(bucket, key) return self.compute_cloud_checksum(response)
get_cloud_checksum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->str:\n response = self.get_all_metadata(bucket, key)\n return self.compute_cloud_checksum(response)\n", "role": "user" }, { "content": "get_cloud_checksum", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->datetime: return self.get_last_modified_date(bucket, key)
get_creation_date
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->datetime:\n return self.get_last_modified_date(bucket, key)\n", "role": "user" }, { "content": "get_creation_date", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->datetime: response = self.get_all_metadata(bucket, key) return response['LastModified']
get_last_modified_date
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->datetime:\n response = self.get_all_metadata(bucket, key)\n return response['LastModified']\n", "role": "user" }, { "content": "get_last_modified_date", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->typing.Dict[str, str]: try: response = self.get_all_metadata(bucket, key) metadata = response['Metadata'].copy() response = self.s3_client.get_object_tagging(Bucket=bucket, Key=key) for tag in response['TagSet']: key, value = tag['Key'], tag['Value'] metadata[key] = value return metadata except botocore.exceptions.ClientError as ex: if str(ex.response['Error']['Code']) == str(requests.codes.not_found): raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}' ) from ex raise BlobStoreUnknownError(ex)
get_user_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->typing.Dict[str, str]:\n try:\n response = self.get_all_metadata(bucket, key)\n metadata = response['Metadata'].copy()\n response = self.s3_client.get_object_tagging(Bucket=bucket, Key=key)\n for tag in response['TagSet']:\n key, value = tag['Key'], tag['Value']\n metadata[key] = value\n return metadata\n except botocore.exceptions.ClientError as ex:\n if str(ex.response['Error']['Code']) == str(requests.codes.not_found):\n raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'\n ) from ex\n raise BlobStoreUnknownError(ex)\n", "role": "user" }, { "content": "get_user_metadata", "role": "assistant" } ]
def x(self, bucket: str, key: str) ->int: try: response = self.get_all_metadata(bucket, key) size = response['ContentLength'] return size except botocore.exceptions.ClientError as ex: if str(ex.response['Error']['Code']) == str(requests.codes.not_found): raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}' ) from ex raise BlobStoreUnknownError(ex)
get_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str) ->int:\n try:\n response = self.get_all_metadata(bucket, key)\n size = response['ContentLength']\n return size\n except botocore.exceptions.ClientError as ex:\n if str(ex.response['Error']['Code']) == str(requests.codes.not_found):\n raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'\n ) from ex\n raise BlobStoreUnknownError(ex)\n", "role": "user" }, { "content": "get_size", "role": "assistant" } ]
def x(self, bucket: str, key: str, upload_id: str, part_count: int, search_start: int=1, return_count: int=1) ->typing.Sequence[int]: if part_count < search_start: raise ValueError('') result = list() while True: kwargs = dict(Bucket=bucket, Key=key, UploadId=upload_id) if search_start > 1: kwargs['PartNumberMarker'] = search_start - 1 parts_resp = self.s3_client.list_parts(**kwargs) parts_map = set() for part_detail in parts_resp.get('Parts', []): parts_map.add(part_detail['PartNumber']) while True: if search_start not in parts_map: result.append(search_start) if len(result) == return_count or search_start == part_count: return result search_start += 1 if parts_resp['IsTruncated'] and search_start == parts_resp[ 'NextPartNumberMarker']: break
find_next_missing_parts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str, key: str, upload_id: str, part_count: int,\n search_start: int=1, return_count: int=1) ->typing.Sequence[int]:\n if part_count < search_start:\n raise ValueError('')\n result = list()\n while True:\n kwargs = dict(Bucket=bucket, Key=key, UploadId=upload_id)\n if search_start > 1:\n kwargs['PartNumberMarker'] = search_start - 1\n parts_resp = self.s3_client.list_parts(**kwargs)\n parts_map = set()\n for part_detail in parts_resp.get('Parts', []):\n parts_map.add(part_detail['PartNumber'])\n while True:\n if search_start not in parts_map:\n result.append(search_start)\n if len(result) == return_count or search_start == part_count:\n return result\n search_start += 1\n if parts_resp['IsTruncated'] and search_start == parts_resp[\n 'NextPartNumberMarker']:\n break\n", "role": "user" }, { "content": "find_next_missing_parts", "role": "assistant" } ]
def x(self, bucket: str) ->bool: exists = True try: self.s3_client.head_bucket(Bucket=bucket) except botocore.exceptions.ClientError as e: error_code = int(e.response['Error']['Code']) if error_code == 404: exists = False return exists
check_bucket_exists
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket: str) ->bool:\n exists = True\n try:\n self.s3_client.head_bucket(Bucket=bucket)\n except botocore.exceptions.ClientError as e:\n error_code = int(e.response['Error']['Code'])\n if error_code == 404:\n exists = False\n return exists\n", "role": "user" }, { "content": "check_bucket_exists", "role": "assistant" } ]
def x(self, bucket) ->str: region = self.s3_client.get_bucket_location(Bucket=bucket)[ 'LocationConstraint'] return 'us-east-1' if region is None else region
get_bucket_region
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket) ->str:\n region = self.s3_client.get_bucket_location(Bucket=bucket)[\n 'LocationConstraint']\n return 'us-east-1' if region is None else region\n", "role": "user" }, { "content": "get_bucket_region", "role": "assistant" } ]
def x(filename='scanf.py'): version = '' with open(filename, 'r') as fp: for line in fp: m = re.search('__version__ .* (.*)', line) if m is not None: version = m.group(1).strip("'") break return version
get_version
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename='scanf.py'):\n version = ''\n with open(filename, 'r') as fp:\n for line in fp:\n m = re.search('__version__ .* (.*)', line)\n if m is not None:\n version = m.group(1).strip(\"'\")\n break\n return version\n", "role": "user" }, { "content": "get_version", "role": "assistant" } ]
def x(format, collapseWhitespace=True): format_pat = '' cast_list = [] i = 0 length = len(format) while i < length: found = None for token, pattern, cast in scanf_translate: found = token.match(format, i) if found: if cast: cast_list.append(cast) groups = found.groupdict() or found.groups() if groups: pattern = pattern % groups format_pat += pattern i = found.end() break if not found: char = format[i] if char in '|^$()[]-.+*?{}<>\\': format_pat += '\\' format_pat += char i += 1 if DEBUG: print('DEBUG: %r -> %s' % (format, format_pat)) if collapseWhitespace: format_pat = re.sub('\\s+', '\\\\s+', format_pat) format_re = re.compile(format_pat) return format_re, cast_list
scanf_compile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(format, collapseWhitespace=True):\n format_pat = ''\n cast_list = []\n i = 0\n length = len(format)\n while i < length:\n found = None\n for token, pattern, cast in scanf_translate:\n found = token.match(format, i)\n if found:\n if cast:\n cast_list.append(cast)\n groups = found.groupdict() or found.groups()\n if groups:\n pattern = pattern % groups\n format_pat += pattern\n i = found.end()\n break\n if not found:\n char = format[i]\n if char in '|^$()[]-.+*?{}<>\\\\':\n format_pat += '\\\\'\n format_pat += char\n i += 1\n if DEBUG:\n print('DEBUG: %r -> %s' % (format, format_pat))\n if collapseWhitespace:\n format_pat = re.sub('\\\\s+', '\\\\\\\\s+', format_pat)\n format_re = re.compile(format_pat)\n return format_re, cast_list\n", "role": "user" }, { "content": "scanf_compile", "role": "assistant" } ]