source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, grad_sigma=0.5, grad_lower_thresh=0.1, grad_upper_thresh=1.0):
boundary_im = np.ones(self.shape)
for i in range(1, self.num_segments):
label_border_im = self.data.copy()
label_border_im[self.data == 0] = i
grad_mag = sf.gaussian_gradient_magnitude(label_border_im.astype(np
.float32), sigma=grad_sigma)
nonborder_px = np.where((grad_mag < grad_lower_thresh) | (grad_mag >
grad_upper_thresh))
boundary_im[nonborder_px[0], nonborder_px[1]] = 0
border_px = np.where(boundary_im > 0)
border_px = np.c_[border_px[0], border_px[1]]
return border_px
|
border_pixels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, grad_sigma=0.5, grad_lower_thresh=0.1, grad_upper_thresh=1.0):\n boundary_im = np.ones(self.shape)\n for i in range(1, self.num_segments):\n label_border_im = self.data.copy()\n label_border_im[self.data == 0] = i\n grad_mag = sf.gaussian_gradient_magnitude(label_border_im.astype(np\n .float32), sigma=grad_sigma)\n nonborder_px = np.where((grad_mag < grad_lower_thresh) | (grad_mag >\n grad_upper_thresh))\n boundary_im[nonborder_px[0], nonborder_px[1]] = 0\n border_px = np.where(boundary_im > 0)\n border_px = np.c_[border_px[0], border_px[1]]\n return border_px\n",
"role": "user"
},
{
"content": "border_pixels",
"role": "assistant"
}
] |
def x(self, segnum):
binary_data = np.zeros(self.shape)
binary_data[self.data == segnum] = BINARY_IM_MAX_VAL
return BinaryImage(binary_data.astype(np.uint8), frame=self.frame)
|
segment_mask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, segnum):\n binary_data = np.zeros(self.shape)\n binary_data[self.data == segnum] = BINARY_IM_MAX_VAL\n return BinaryImage(binary_data.astype(np.uint8), frame=self.frame)\n",
"role": "user"
},
{
"content": "segment_mask",
"role": "assistant"
}
] |
def x(self, binary_im):
data = np.copy(self._data)
ind = np.where(binary_im.data == 0)
data[ind[0], ind[1], :] = 0
return SegmentationImage(data, self._frame)
|
mask_binary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, binary_im):\n data = np.copy(self._data)\n ind = np.where(binary_im.data == 0)\n data[ind[0], ind[1], :] = 0\n return SegmentationImage(data, self._frame)\n",
"role": "user"
},
{
"content": "mask_binary",
"role": "assistant"
}
] |
def x(self, size, interp='nearest'):
resized_data = sm.imresize(self.data, size, interp=interp, mode='L')
return SegmentationImage(resized_data, self._frame)
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size, interp='nearest'):\n resized_data = sm.imresize(self.data, size, interp=interp, mode='L')\n return SegmentationImage(resized_data, self._frame)\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(filename, frame='unspecified'):
data = Image.load_data(filename)
return SegmentationImage(data, frame)
|
open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n return SegmentationImage(data, frame)\n",
"role": "user"
},
{
"content": "open",
"role": "assistant"
}
] |
def x(self, size, interp='nearest'):
resized_data_0 = sm.imresize(self._data[:, :, 0], size, interp=interp,
mode='F')
resized_data_1 = sm.imresize(self._data[:, :, 1], size, interp=interp,
mode='F')
resized_data_2 = sm.imresize(self._data[:, :, 2], size, interp=interp,
mode='F')
resized_data = np.zeros([resized_data_0.shape[0], resized_data_0.shape[
1], self.channels])
resized_data[:, :, 0] = resized_data_0
resized_data[:, :, 1] = resized_data_1
resized_data[:, :, 2] = resized_data_2
return PointCloudImage(resized_data, self._frame)
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size, interp='nearest'):\n resized_data_0 = sm.imresize(self._data[:, :, 0], size, interp=interp,\n mode='F')\n resized_data_1 = sm.imresize(self._data[:, :, 1], size, interp=interp,\n mode='F')\n resized_data_2 = sm.imresize(self._data[:, :, 2], size, interp=interp,\n mode='F')\n resized_data = np.zeros([resized_data_0.shape[0], resized_data_0.shape[\n 1], self.channels])\n resized_data[:, :, 0] = resized_data_0\n resized_data[:, :, 1] = resized_data_1\n resized_data[:, :, 2] = resized_data_2\n return PointCloudImage(resized_data, self._frame)\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(self, dist_thresh=0.01):
vertices = []
triangles = []
vertex_indices = -1 * np.ones([self.height, self.width]).astype(np.int32)
for i in range(self.height - 1):
for j in range(self.width - 1):
v0 = self.data[i, j, :]
v1 = self.data[i, j + 1, :]
v2 = self.data[i + 1, j, :]
v3 = self.data[i + 1, j + 1, :]
d01 = np.abs(v0[2] - v1[2])
d02 = np.abs(v0[2] - v2[2])
d03 = np.abs(v0[2] - v3[2])
d13 = np.abs(v1[2] - v3[2])
d23 = np.abs(v2[2] - v3[2])
if max(d01, d03, d13) < dist_thresh:
if vertex_indices[i, j] == -1:
vertices.append(v0)
vertex_indices[i, j] = len(vertices) - 1
if vertex_indices[i, j + 1] == -1:
vertices.append(v1)
vertex_indices[i, j + 1] = len(vertices) - 1
if vertex_indices[i + 1, j + 1] == -1:
vertices.append(v3)
vertex_indices[i + 1, j + 1] = len(vertices) - 1
i0 = vertex_indices[i, j]
i1 = vertex_indices[i, j + 1]
i3 = vertex_indices[i + 1, j + 1]
triangles.append([i0, i1, i3])
if max(d01, d03, d23) < dist_thresh:
if vertex_indices[i, j] == -1:
vertices.append(v0)
vertex_indices[i, j] = len(vertices) - 1
if vertex_indices[i + 1, j] == -1:
vertices.append(v2)
vertex_indices[i + 1, j] = len(vertices) - 1
if vertex_indices[i + 1, j + 1] == -1:
vertices.append(v3)
vertex_indices[i + 1, j + 1] = len(vertices) - 1
i0 = vertex_indices[i, j]
i2 = vertex_indices[i + 1, j]
i3 = vertex_indices[i + 1, j + 1]
triangles.append([i0, i3, i2])
import trimesh
mesh = trimesh.Trimesh(vertices, triangles)
return mesh
|
to_mesh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dist_thresh=0.01):\n vertices = []\n triangles = []\n vertex_indices = -1 * np.ones([self.height, self.width]).astype(np.int32)\n for i in range(self.height - 1):\n for j in range(self.width - 1):\n v0 = self.data[i, j, :]\n v1 = self.data[i, j + 1, :]\n v2 = self.data[i + 1, j, :]\n v3 = self.data[i + 1, j + 1, :]\n d01 = np.abs(v0[2] - v1[2])\n d02 = np.abs(v0[2] - v2[2])\n d03 = np.abs(v0[2] - v3[2])\n d13 = np.abs(v1[2] - v3[2])\n d23 = np.abs(v2[2] - v3[2])\n if max(d01, d03, d13) < dist_thresh:\n if vertex_indices[i, j] == -1:\n vertices.append(v0)\n vertex_indices[i, j] = len(vertices) - 1\n if vertex_indices[i, j + 1] == -1:\n vertices.append(v1)\n vertex_indices[i, j + 1] = len(vertices) - 1\n if vertex_indices[i + 1, j + 1] == -1:\n vertices.append(v3)\n vertex_indices[i + 1, j + 1] = len(vertices) - 1\n i0 = vertex_indices[i, j]\n i1 = vertex_indices[i, j + 1]\n i3 = vertex_indices[i + 1, j + 1]\n triangles.append([i0, i1, i3])\n if max(d01, d03, d23) < dist_thresh:\n if vertex_indices[i, j] == -1:\n vertices.append(v0)\n vertex_indices[i, j] = len(vertices) - 1\n if vertex_indices[i + 1, j] == -1:\n vertices.append(v2)\n vertex_indices[i + 1, j] = len(vertices) - 1\n if vertex_indices[i + 1, j + 1] == -1:\n vertices.append(v3)\n vertex_indices[i + 1, j + 1] = len(vertices) - 1\n i0 = vertex_indices[i, j]\n i2 = vertex_indices[i + 1, j]\n i3 = vertex_indices[i + 1, j + 1]\n triangles.append([i0, i3, i2])\n import trimesh\n mesh = trimesh.Trimesh(vertices, triangles)\n return mesh\n",
"role": "user"
},
{
"content": "to_mesh",
"role": "assistant"
}
] |
def x(self):
return PointCloud(data=self._data.reshape(self.height * self.width, 3).
T, frame=self._frame)
|
to_point_cloud
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return PointCloud(data=self._data.reshape(self.height * self.width, 3).\n T, frame=self._frame)\n",
"role": "user"
},
{
"content": "to_point_cloud",
"role": "assistant"
}
] |
def x(self, ksize=3):
gy = cv2.Sobel(self.data, cv2.CV_64F, 1, 0, ksize=ksize)
gx = cv2.Sobel(self.data, cv2.CV_64F, 0, 1, ksize=ksize)
gx_data = gx.reshape(self.height * self.width, 3)
gy_data = gy.reshape(self.height * self.width, 3)
pc_grads = np.cross(gx_data, gy_data)
pc_grad_norms = np.linalg.norm(pc_grads, axis=1)
pc_grads[pc_grad_norms > 0] = pc_grads[pc_grad_norms > 0] / np.tile(
pc_grad_norms[pc_grad_norms > 0, np.newaxis], [1, 3])
pc_grads[pc_grad_norms == 0.0] = np.array([0, 0, -1.0])
normal_im_data = pc_grads.reshape(self.height, self.width, 3)
zero_px = self.zero_pixels()
normal_im_data[zero_px[:, 0], zero_px[:, 1], :] = np.zeros(3)
return NormalCloudImage(normal_im_data, frame=self.frame)
|
normal_cloud_im
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ksize=3):\n gy = cv2.Sobel(self.data, cv2.CV_64F, 1, 0, ksize=ksize)\n gx = cv2.Sobel(self.data, cv2.CV_64F, 0, 1, ksize=ksize)\n gx_data = gx.reshape(self.height * self.width, 3)\n gy_data = gy.reshape(self.height * self.width, 3)\n pc_grads = np.cross(gx_data, gy_data)\n pc_grad_norms = np.linalg.norm(pc_grads, axis=1)\n pc_grads[pc_grad_norms > 0] = pc_grads[pc_grad_norms > 0] / np.tile(\n pc_grad_norms[pc_grad_norms > 0, np.newaxis], [1, 3])\n pc_grads[pc_grad_norms == 0.0] = np.array([0, 0, -1.0])\n normal_im_data = pc_grads.reshape(self.height, self.width, 3)\n zero_px = self.zero_pixels()\n normal_im_data[zero_px[:, 0], zero_px[:, 1], :] = np.zeros(3)\n return NormalCloudImage(normal_im_data, frame=self.frame)\n",
"role": "user"
},
{
"content": "normal_cloud_im",
"role": "assistant"
}
] |
def x(filename, frame='unspecified'):
data = Image.load_data(filename)
return PointCloudImage(data, frame)
|
open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n return PointCloudImage(data, frame)\n",
"role": "user"
},
{
"content": "open",
"role": "assistant"
}
] |
def x(self):
return NormalCloud(data=self._data.reshape(self.height * self.width, 3)
.T, frame=self._frame)
|
to_normal_cloud
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return NormalCloud(data=self._data.reshape(self.height * self.width, 3)\n .T, frame=self._frame)\n",
"role": "user"
},
{
"content": "to_normal_cloud",
"role": "assistant"
}
] |
def x(filename, frame='unspecified'):
data = Image.load_data(filename)
return NormalCloudImage(data, frame)
|
open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, frame='unspecified'):\n data = Image.load_data(filename)\n return NormalCloudImage(data, frame)\n",
"role": "user"
},
{
"content": "open",
"role": "assistant"
}
] |
def x(self):
S = np.array([[self._plane_width / self._vol_width, 0, 0], [0, self.
_plane_height / self._vol_height, 0], [0, 0, self._depth_scale /
self._vol_depth]])
return S
|
S
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n S = np.array([[self._plane_width / self._vol_width, 0, 0], [0, self.\n _plane_height / self._vol_height, 0], [0, 0, self._depth_scale /\n self._vol_depth]])\n return S\n",
"role": "user"
},
{
"content": "S",
"role": "assistant"
}
] |
def x(self):
t = np.array([self._plane_width / 2, self._plane_height / 2, self.
_depth_scale / 2])
return t
|
t
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n t = np.array([self._plane_width / 2, self._plane_height / 2, self.\n _depth_scale / 2])\n return t\n",
"role": "user"
},
{
"content": "t",
"role": "assistant"
}
] |
def x(self):
P = np.r_[np.c_[self.S, self.t], np.array([0, 0, 0, 1])]
return P
|
P
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n P = np.r_[np.c_[self.S, self.t], np.array([0, 0, 0, 1])]\n return P\n",
"role": "user"
},
{
"content": "P",
"role": "assistant"
}
] |
def x(self, point_cloud, round_px=True):
if not isinstance(point_cloud, PointCloud) and not (isinstance(
point_cloud, Point) and point_cloud.dim == 3):
raise ValueError(
'Must provide PointCloud or 3D Point object for projection')
if point_cloud.frame != self._frame:
raise ValueError(
'Cannot project points in frame %s into camera with frame %s' %
(point_cloud.frame, self._frame))
points_proj = self.S.dot(point_cloud.data) + self.t
if len(points_proj.shape) == 1:
points_proj = points_proj[:, np.newaxis]
point_depths = points_proj[2, :]
point_z = np.tile(point_depths, [3, 1])
points_proj = np.divide(points_proj, point_z)
if round_px:
points_proj = np.round(points_proj)
points_proj = points_proj[:2, :].astype(np.int16)
valid_ind = np.where((points_proj[0, :] >= 0) & (points_proj[1, :] >= 0
) & (points_proj[0, :] < self.width) & (points_proj[1, :] < self.
height))[0]
depth_data = np.zeros([self.height, self.width])
depth_data[points_proj[1, valid_ind], points_proj[0, valid_ind]
] = point_depths[valid_ind]
return DepthImage(depth_data, frame=self.frame)
|
project_to_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, point_cloud, round_px=True):\n if not isinstance(point_cloud, PointCloud) and not (isinstance(\n point_cloud, Point) and point_cloud.dim == 3):\n raise ValueError(\n 'Must provide PointCloud or 3D Point object for projection')\n if point_cloud.frame != self._frame:\n raise ValueError(\n 'Cannot project points in frame %s into camera with frame %s' %\n (point_cloud.frame, self._frame))\n points_proj = self.S.dot(point_cloud.data) + self.t\n if len(points_proj.shape) == 1:\n points_proj = points_proj[:, np.newaxis]\n point_depths = points_proj[2, :]\n point_z = np.tile(point_depths, [3, 1])\n points_proj = np.divide(points_proj, point_z)\n if round_px:\n points_proj = np.round(points_proj)\n points_proj = points_proj[:2, :].astype(np.int16)\n valid_ind = np.where((points_proj[0, :] >= 0) & (points_proj[1, :] >= 0\n ) & (points_proj[0, :] < self.width) & (points_proj[1, :] < self.\n height))[0]\n depth_data = np.zeros([self.height, self.width])\n depth_data[points_proj[1, valid_ind], points_proj[0, valid_ind]\n ] = point_depths[valid_ind]\n return DepthImage(depth_data, frame=self.frame)\n",
"role": "user"
},
{
"content": "project_to_image",
"role": "assistant"
}
] |
def x(self, depth_image):
if not isinstance(depth_image, DepthImage):
raise ValueError('Must provide DepthImage object for projection')
if depth_image.frame != self._frame:
raise ValueError(
'Cannot deproject points in frame %s from camera with frame %s' %
(depth_image.frame, self._frame))
row_indices = np.arange(depth_image.height)
col_indices = np.arange(depth_image.width)
pixel_grid = np.meshgrid(col_indices, row_indices)
pixels = np.c_[pixel_grid[0].flatten(), pixel_grid[1].flatten()].T
depth_data = depth_image.data.flatten()
pixels_homog = np.r_[pixels, depth_data.reshape(1, depth_data.shape[0])]
points_3d = np.linalg.inv(self.S).dot(pixels_homog - np.tile(self.t.
reshape(3, 1), [1, pixels_homog.shape[1]]))
return PointCloud(data=points_3d, frame=self._frame)
|
deproject
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, depth_image):\n if not isinstance(depth_image, DepthImage):\n raise ValueError('Must provide DepthImage object for projection')\n if depth_image.frame != self._frame:\n raise ValueError(\n 'Cannot deproject points in frame %s from camera with frame %s' %\n (depth_image.frame, self._frame))\n row_indices = np.arange(depth_image.height)\n col_indices = np.arange(depth_image.width)\n pixel_grid = np.meshgrid(col_indices, row_indices)\n pixels = np.c_[pixel_grid[0].flatten(), pixel_grid[1].flatten()].T\n depth_data = depth_image.data.flatten()\n pixels_homog = np.r_[pixels, depth_data.reshape(1, depth_data.shape[0])]\n points_3d = np.linalg.inv(self.S).dot(pixels_homog - np.tile(self.t.\n reshape(3, 1), [1, pixels_homog.shape[1]]))\n return PointCloud(data=points_3d, frame=self._frame)\n",
"role": "user"
},
{
"content": "deproject",
"role": "assistant"
}
] |
def x(self, depth, pixel):
if not isinstance(pixel, Point) and not pixel.dim == 2:
raise ValueError('Must provide 2D Point object for pixel projection')
if pixel.frame != self._frame:
raise ValueError(
'Cannot deproject pixel in frame %s from camera with frame %s' %
(pixel.frame, self._frame))
point = np.r_[pixel.data, depth]
point_3d = np.linalg.inv(self.S).dot(point - self.t)
return Point(data=point_3d, frame=self._frame)
|
deproject_pixel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, depth, pixel):\n if not isinstance(pixel, Point) and not pixel.dim == 2:\n raise ValueError('Must provide 2D Point object for pixel projection')\n if pixel.frame != self._frame:\n raise ValueError(\n 'Cannot deproject pixel in frame %s from camera with frame %s' %\n (pixel.frame, self._frame))\n point = np.r_[pixel.data, depth]\n point_3d = np.linalg.inv(self.S).dot(point - self.t)\n return Point(data=point_3d, frame=self._frame)\n",
"role": "user"
},
{
"content": "deproject_pixel",
"role": "assistant"
}
] |
def x(self, filename):
file_root, file_ext = os.path.splitext(filename)
if file_ext.lower() != INTR_EXTENSION:
raise ValueError(
'Extension %s not supported for OrhtographicIntrinsics. Must be stored with extension %s'
% (file_ext, INTR_EXTENSION))
camera_intr_dict = copy.deepcopy(self.__dict__)
f = open(filename, 'w')
json.dump(camera_intr_dict, f)
f.close()
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n file_root, file_ext = os.path.splitext(filename)\n if file_ext.lower() != INTR_EXTENSION:\n raise ValueError(\n 'Extension %s not supported for OrhtographicIntrinsics. Must be stored with extension %s'\n % (file_ext, INTR_EXTENSION))\n camera_intr_dict = copy.deepcopy(self.__dict__)\n f = open(filename, 'w')\n json.dump(camera_intr_dict, f)\n f.close()\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(filename):
file_root, file_ext = os.path.splitext(filename)
if file_ext.lower() != INTR_EXTENSION:
raise ValueError(
'Extension %s not supported for CameraIntrinsics. Must be stored with extension %s'
% (file_ext, INTR_EXTENSION))
f = open(filename, 'r')
ci = json.load(f)
f.close()
return OrthographicIntrinsics(frame=ci['_frame'], vol_height=ci[
'_vol_height'], vol_width=ci['_vol_width'], vol_depth=ci[
'_vol_depth'], plane_height=ci['_plane_height'], plane_width=ci[
'_plane_width'], depth_scale=ci['_depth_scale'])
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n file_root, file_ext = os.path.splitext(filename)\n if file_ext.lower() != INTR_EXTENSION:\n raise ValueError(\n 'Extension %s not supported for CameraIntrinsics. Must be stored with extension %s'\n % (file_ext, INTR_EXTENSION))\n f = open(filename, 'r')\n ci = json.load(f)\n f.close()\n return OrthographicIntrinsics(frame=ci['_frame'], vol_height=ci[\n '_vol_height'], vol_width=ci['_vol_width'], vol_depth=ci[\n '_vol_depth'], plane_height=ci['_plane_height'], plane_width=ci[\n '_plane_width'], depth_scale=ci['_depth_scale'])\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(self):
if rospy.get_name() == '/unnamed':
raise ValueError('PhoXi sensor must be run inside a ros node!')
if not self._connect_to_sensor():
self._running = False
return False
self._color_im_sub = rospy.Subscriber('/phoxi_camera/texture',
ImageMessage, self._color_im_callback)
self._depth_im_sub = rospy.Subscriber('/phoxi_camera/depth_map',
ImageMessage, self._depth_im_callback)
self._normal_map_sub = rospy.Subscriber('/phoxi_camera/normal_map',
ImageMessage, self._normal_map_callback)
self._running = True
return True
|
start
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if rospy.get_name() == '/unnamed':\n raise ValueError('PhoXi sensor must be run inside a ros node!')\n if not self._connect_to_sensor():\n self._running = False\n return False\n self._color_im_sub = rospy.Subscriber('/phoxi_camera/texture',\n ImageMessage, self._color_im_callback)\n self._depth_im_sub = rospy.Subscriber('/phoxi_camera/depth_map',\n ImageMessage, self._depth_im_callback)\n self._normal_map_sub = rospy.Subscriber('/phoxi_camera/normal_map',\n ImageMessage, self._normal_map_callback)\n self._running = True\n return True\n",
"role": "user"
},
{
"content": "start",
"role": "assistant"
}
] |
def x(self):
if not self._running:
logging.warning('PhoXi not running. Aborting stop')
return False
self._color_im_sub.unregister()
self._depth_im_sub.unregister()
self._normal_map_sub.unregister()
rospy.ServiceProxy('phoxi_camera/disconnect_camera', Empty)()
self._running = False
return True
|
stop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self._running:\n logging.warning('PhoXi not running. Aborting stop')\n return False\n self._color_im_sub.unregister()\n self._depth_im_sub.unregister()\n self._normal_map_sub.unregister()\n rospy.ServiceProxy('phoxi_camera/disconnect_camera', Empty)()\n self._running = False\n return True\n",
"role": "user"
},
{
"content": "stop",
"role": "assistant"
}
] |
def x(self):
times = []
rospy.ServiceProxy('phoxi_camera/start_acquisition', Empty)()
rospy.ServiceProxy('phoxi_camera/trigger_image', TriggerImage)()
self._cur_color_im = None
self._cur_depth_im = None
self._cur_normal_map = None
rospy.ServiceProxy('phoxi_camera/get_frame', GetFrame)(-1)
max_time = 5.0
time_waiting = 0.0
while (self._cur_color_im is None or self._cur_depth_im is None or self
._cur_normal_map is None):
time.sleep(0.05)
time_waiting += 0.05
if time_waiting > max_time:
raise SensorUnresponsiveException(
'PhoXi sensor seems to be non-responsive')
return self._cur_color_im, self._cur_depth_im, None
|
frames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n times = []\n rospy.ServiceProxy('phoxi_camera/start_acquisition', Empty)()\n rospy.ServiceProxy('phoxi_camera/trigger_image', TriggerImage)()\n self._cur_color_im = None\n self._cur_depth_im = None\n self._cur_normal_map = None\n rospy.ServiceProxy('phoxi_camera/get_frame', GetFrame)(-1)\n max_time = 5.0\n time_waiting = 0.0\n while (self._cur_color_im is None or self._cur_depth_im is None or self\n ._cur_normal_map is None):\n time.sleep(0.05)\n time_waiting += 0.05\n if time_waiting > max_time:\n raise SensorUnresponsiveException(\n 'PhoXi sensor seems to be non-responsive')\n return self._cur_color_im, self._cur_depth_im, None\n",
"role": "user"
},
{
"content": "frames",
"role": "assistant"
}
] |
def x(self):
name = self._device_name
try:
rospy.wait_for_service('phoxi_camera/get_device_list')
device_list = rospy.ServiceProxy('phoxi_camera/get_device_list',
GetDeviceList)().out
if not str(name) in device_list:
logging.error('PhoXi sensor {} not in list of active devices'.
format(name))
return False
success = rospy.ServiceProxy('phoxi_camera/connect_camera',
ConnectCamera)(name).success
if not success:
logging.error('Could not connect to PhoXi sensor {}'.format(name))
return False
logging.debug('Connected to PhoXi Sensor {}'.format(name))
return True
except rospy.ServiceException as e:
logging.error('Service call failed: {}'.format(e))
return False
|
connect_to_sensor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n name = self._device_name\n try:\n rospy.wait_for_service('phoxi_camera/get_device_list')\n device_list = rospy.ServiceProxy('phoxi_camera/get_device_list',\n GetDeviceList)().out\n if not str(name) in device_list:\n logging.error('PhoXi sensor {} not in list of active devices'.\n format(name))\n return False\n success = rospy.ServiceProxy('phoxi_camera/connect_camera',\n ConnectCamera)(name).success\n if not success:\n logging.error('Could not connect to PhoXi sensor {}'.format(name))\n return False\n logging.debug('Connected to PhoXi Sensor {}'.format(name))\n return True\n except rospy.ServiceException as e:\n logging.error('Service call failed: {}'.format(e))\n return False\n",
"role": "user"
},
{
"content": "connect_to_sensor",
"role": "assistant"
}
] |
def x(self, msg):
try:
data = self._bridge.imgmsg_to_cv2(msg)
if np.max(data) > 255.0:
data = 255.0 * data / 1200.0
data = np.clip(data, 0.0, 255.0).astype(np.uint8)
gsimage = GrayscaleImage(data, frame=self._frame)
self._cur_color_im = gsimage.to_color()
except:
self._cur_color_im = None
|
color_im_callback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, msg):\n try:\n data = self._bridge.imgmsg_to_cv2(msg)\n if np.max(data) > 255.0:\n data = 255.0 * data / 1200.0\n data = np.clip(data, 0.0, 255.0).astype(np.uint8)\n gsimage = GrayscaleImage(data, frame=self._frame)\n self._cur_color_im = gsimage.to_color()\n except:\n self._cur_color_im = None\n",
"role": "user"
},
{
"content": "color_im_callback",
"role": "assistant"
}
] |
def x(self, msg):
try:
self._cur_depth_im = DepthImage(self._bridge.imgmsg_to_cv2(msg) /
1000.0, frame=self._frame)
except:
self._cur_depth_im = None
|
depth_im_callback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, msg):\n try:\n self._cur_depth_im = DepthImage(self._bridge.imgmsg_to_cv2(msg) / \n 1000.0, frame=self._frame)\n except:\n self._cur_depth_im = None\n",
"role": "user"
},
{
"content": "depth_im_callback",
"role": "assistant"
}
] |
def x(self, msg):
try:
self._cur_normal_map = self._bridge.imgmsg_to_cv2(msg)
except:
self._cur_normal_map = None
|
normal_map_callback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, msg):\n try:\n self._cur_normal_map = self._bridge.imgmsg_to_cv2(msg)\n except:\n self._cur_normal_map = None\n",
"role": "user"
},
{
"content": "normal_map_callback",
"role": "assistant"
}
] |
def x(self):
self._sensor = cv2.VideoCapture(self._device_id)
if not self._sensor.isOpened():
raise Exception('Unable to open OpenCVCameraSensor for id {0}'.
format(self._device_id))
self.flush()
|
start
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._sensor = cv2.VideoCapture(self._device_id)\n if not self._sensor.isOpened():\n raise Exception('Unable to open OpenCVCameraSensor for id {0}'.\n format(self._device_id))\n self.flush()\n",
"role": "user"
},
{
"content": "start",
"role": "assistant"
}
] |
def x(self, flush=True):
self.flush()
ret_val, frame = self._sensor.read()
if not ret_val:
raise Exception(
'Unable to retrieve frame from OpenCVCameraSensor for id {0}'.
format(self._device_id))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if self._upside_down:
frame = np.flipud(frame).astype(np.uint8)
frame = np.fliplr(frame).astype(np.uint8)
return ColorImage(frame)
|
frames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, flush=True):\n self.flush()\n ret_val, frame = self._sensor.read()\n if not ret_val:\n raise Exception(\n 'Unable to retrieve frame from OpenCVCameraSensor for id {0}'.\n format(self._device_id))\n frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n if self._upside_down:\n frame = np.flipud(frame).astype(np.uint8)\n frame = np.fliplr(frame).astype(np.uint8)\n return ColorImage(frame)\n",
"role": "user"
},
{
"content": "frames",
"role": "assistant"
}
] |
def x(self, render_mode):
if render_mode == RenderMode.SEGMASK:
return self.query_im
elif render_mode == RenderMode.COLOR:
return self.color_im
elif render_mode == RenderMode.DEPTH:
return self.depth_im
else:
raise ValueError('Render mode %s not supported' % render_mode)
|
image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, render_mode):\n if render_mode == RenderMode.SEGMASK:\n return self.query_im\n elif render_mode == RenderMode.COLOR:\n return self.color_im\n elif render_mode == RenderMode.DEPTH:\n return self.depth_im\n else:\n raise ValueError('Render mode %s not supported' % render_mode)\n",
"role": "user"
},
{
"content": "image",
"role": "assistant"
}
] |
def x(self, color_im, depth_im, cfg, camera_intr=None, T_camera_world=None,
segmask=None):
foreground_mask_tolerance = cfg['foreground_mask_tolerance']
min_contour_area = cfg['min_contour_area']
max_contour_area = cfg['max_contour_area']
w = cfg['filter_dim']
bgmodel = color_im.background_model()
binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel
=bgmodel)
y, x = np.ogrid[-w / 2 + 1:w / 2 + 1, -w / 2 + 1:w / 2 + 1]
mask = x * x + y * y <= w / 2 * w / 2
filter_struct = np.zeros([w, w]).astype(np.uint8)
filter_struct[mask] = 1
binary_im_filtered = binary_im.apply(snm.grey_closing, structure=
filter_struct)
visualize = False
if visualize:
plt.figure()
plt.imshow(binary_im_filtered.data, cmap=plt.cm.gray)
plt.axis('off')
plt.show()
contours = binary_im_filtered.find_contours(min_area=min_contour_area,
max_area=max_contour_area)
detections = []
for contour in contours:
box = contour.bounding_box
color_thumbnail = color_im.crop(box.height, box.width, box.ci, box.cj)
depth_thumbnail = depth_im.crop(box.height, box.width, box.ci, box.cj)
binary_thumbnail = binary_im_filtered.crop(box.height, box.width,
box.ci, box.cj)
thumbnail_intr = camera_intr
if camera_intr is not None:
thumbnail_intr = camera_intr.crop(box.height, box.width, box.ci,
box.cj)
detections.append(RgbdDetection(color_thumbnail, depth_thumbnail,
box, binary_thumbnail=binary_thumbnail, contour=contour,
camera_intr=thumbnail_intr))
return detections
|
detect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, color_im, depth_im, cfg, camera_intr=None, T_camera_world=None,\n segmask=None):\n foreground_mask_tolerance = cfg['foreground_mask_tolerance']\n min_contour_area = cfg['min_contour_area']\n max_contour_area = cfg['max_contour_area']\n w = cfg['filter_dim']\n bgmodel = color_im.background_model()\n binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel\n =bgmodel)\n y, x = np.ogrid[-w / 2 + 1:w / 2 + 1, -w / 2 + 1:w / 2 + 1]\n mask = x * x + y * y <= w / 2 * w / 2\n filter_struct = np.zeros([w, w]).astype(np.uint8)\n filter_struct[mask] = 1\n binary_im_filtered = binary_im.apply(snm.grey_closing, structure=\n filter_struct)\n visualize = False\n if visualize:\n plt.figure()\n plt.imshow(binary_im_filtered.data, cmap=plt.cm.gray)\n plt.axis('off')\n plt.show()\n contours = binary_im_filtered.find_contours(min_area=min_contour_area,\n max_area=max_contour_area)\n detections = []\n for contour in contours:\n box = contour.bounding_box\n color_thumbnail = color_im.crop(box.height, box.width, box.ci, box.cj)\n depth_thumbnail = depth_im.crop(box.height, box.width, box.ci, box.cj)\n binary_thumbnail = binary_im_filtered.crop(box.height, box.width,\n box.ci, box.cj)\n thumbnail_intr = camera_intr\n if camera_intr is not None:\n thumbnail_intr = camera_intr.crop(box.height, box.width, box.ci,\n box.cj)\n detections.append(RgbdDetection(color_thumbnail, depth_thumbnail,\n box, binary_thumbnail=binary_thumbnail, contour=contour,\n camera_intr=thumbnail_intr))\n return detections\n",
"role": "user"
},
{
"content": "detect",
"role": "assistant"
}
] |
def x(self, color_im, bounding_box, bgmodel, cfg, vis_segmentation=False):
foreground_mask_tolerance = cfg['foreground_mask_tolerance']
color_seg_rgb_weight = cfg['color_seg_rgb_weight']
color_seg_num_clusters = cfg['color_seg_num_clusters']
color_seg_hsv_weight = cfg['color_seg_hsv_weight']
color_seg_dist_pctile = cfg['color_seg_dist_pctile']
color_seg_dist_thresh = cfg['color_seg_dist_thresh']
color_seg_min_bg_dist = cfg['color_seg_min_bg_dist']
min_contour_area = cfg['min_contour_area']
contour_dist_thresh = cfg['contour_dist_thresh']
binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel
=bgmodel)
binary_im = binary_im.prune_contours(area_thresh=min_contour_area,
dist_thresh=contour_dist_thresh)
if binary_im is None:
return None, None, None
color_im = color_im.mask_binary(binary_im)
segment_im = color_im.segment_kmeans(color_seg_rgb_weight,
color_seg_num_clusters, hue_weight=color_seg_hsv_weight)
bg_dists = []
hsv_bgmodel = 255 * np.array(colorsys.rgb_to_hsv(float(bgmodel[0]) /
255, float(bgmodel[1]) / 255, float(bgmodel[2]) / 255))
hsv_bgmodel = np.r_[color_seg_rgb_weight * np.array(bgmodel),
color_seg_hsv_weight * hsv_bgmodel[:1]]
for k in range(segment_im.num_segments - 1):
seg_mask = segment_im.segment_mask(k)
color_im_segment = color_im.mask_binary(seg_mask)
color_im_segment_data = color_im_segment.nonzero_data()
color_im_segment_data = np.c_[color_seg_rgb_weight *
color_im_segment_data, color_seg_hsv_weight * color_im_segment.
nonzero_hsv_data()[:, :1]]
bg_dist = np.median(np.linalg.norm(color_im_segment_data -
hsv_bgmodel, axis=1))
if vis_segmentation:
logging.info('BG Dist for segment %d: %.4f' % (k, bg_dist))
bg_dists.append(bg_dist)
dists_and_indices = zip(np.arange(len(bg_dists)), bg_dists)
dists_and_indices.sort(key=lambda x: x[1], reverse=True)
if color_seg_num_clusters > 1 and abs(dists_and_indices[0][1] -
dists_and_indices[1][1]) > color_seg_dist_thresh and dists_and_indices[
1][1] < color_seg_min_bg_dist:
obj_segment = dists_and_indices[0][0]
obj_seg_mask = segment_im.segment_mask(obj_segment)
binary_im = binary_im.mask_binary(obj_seg_mask)
binary_im, diff_px = binary_im.center_nonzero()
bounding_box = Box(bounding_box.min_pt.astype(np.float32) - diff_px,
bounding_box.max_pt.astype(np.float32) - diff_px, bounding_box.
frame)
if vis_segmentation:
plt.figure()
plt.subplot(1, 3, 1)
plt.imshow(color_im.data)
plt.axis('off')
plt.subplot(1, 3, 2)
plt.imshow(segment_im.data)
plt.colorbar()
plt.axis('off')
plt.subplot(1, 3, 3)
plt.imshow(binary_im.data, cmap=plt.cm.gray)
plt.axis('off')
plt.show()
return binary_im, segment_im, bounding_box
|
segment_color
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, color_im, bounding_box, bgmodel, cfg, vis_segmentation=False):\n foreground_mask_tolerance = cfg['foreground_mask_tolerance']\n color_seg_rgb_weight = cfg['color_seg_rgb_weight']\n color_seg_num_clusters = cfg['color_seg_num_clusters']\n color_seg_hsv_weight = cfg['color_seg_hsv_weight']\n color_seg_dist_pctile = cfg['color_seg_dist_pctile']\n color_seg_dist_thresh = cfg['color_seg_dist_thresh']\n color_seg_min_bg_dist = cfg['color_seg_min_bg_dist']\n min_contour_area = cfg['min_contour_area']\n contour_dist_thresh = cfg['contour_dist_thresh']\n binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel\n =bgmodel)\n binary_im = binary_im.prune_contours(area_thresh=min_contour_area,\n dist_thresh=contour_dist_thresh)\n if binary_im is None:\n return None, None, None\n color_im = color_im.mask_binary(binary_im)\n segment_im = color_im.segment_kmeans(color_seg_rgb_weight,\n color_seg_num_clusters, hue_weight=color_seg_hsv_weight)\n bg_dists = []\n hsv_bgmodel = 255 * np.array(colorsys.rgb_to_hsv(float(bgmodel[0]) / \n 255, float(bgmodel[1]) / 255, float(bgmodel[2]) / 255))\n hsv_bgmodel = np.r_[color_seg_rgb_weight * np.array(bgmodel), \n color_seg_hsv_weight * hsv_bgmodel[:1]]\n for k in range(segment_im.num_segments - 1):\n seg_mask = segment_im.segment_mask(k)\n color_im_segment = color_im.mask_binary(seg_mask)\n color_im_segment_data = color_im_segment.nonzero_data()\n color_im_segment_data = np.c_[color_seg_rgb_weight *\n color_im_segment_data, color_seg_hsv_weight * color_im_segment.\n nonzero_hsv_data()[:, :1]]\n bg_dist = np.median(np.linalg.norm(color_im_segment_data -\n hsv_bgmodel, axis=1))\n if vis_segmentation:\n logging.info('BG Dist for segment %d: %.4f' % (k, bg_dist))\n bg_dists.append(bg_dist)\n dists_and_indices = zip(np.arange(len(bg_dists)), bg_dists)\n dists_and_indices.sort(key=lambda x: x[1], reverse=True)\n if color_seg_num_clusters > 1 and abs(dists_and_indices[0][1] -\n dists_and_indices[1][1]) > color_seg_dist_thresh and dists_and_indices[\n 1][1] < color_seg_min_bg_dist:\n obj_segment = dists_and_indices[0][0]\n obj_seg_mask = segment_im.segment_mask(obj_segment)\n binary_im = binary_im.mask_binary(obj_seg_mask)\n binary_im, diff_px = binary_im.center_nonzero()\n bounding_box = Box(bounding_box.min_pt.astype(np.float32) - diff_px,\n bounding_box.max_pt.astype(np.float32) - diff_px, bounding_box.\n frame)\n if vis_segmentation:\n plt.figure()\n plt.subplot(1, 3, 1)\n plt.imshow(color_im.data)\n plt.axis('off')\n plt.subplot(1, 3, 2)\n plt.imshow(segment_im.data)\n plt.colorbar()\n plt.axis('off')\n plt.subplot(1, 3, 3)\n plt.imshow(binary_im.data, cmap=plt.cm.gray)\n plt.axis('off')\n plt.show()\n return binary_im, segment_im, bounding_box\n",
"role": "user"
},
{
"content": "segment_color",
"role": "assistant"
}
] |
def x(self, color_im, depth_im, cfg, camera_intr=None, T_camera_world=None,
vis_foreground=False, vis_segmentation=False, segmask=None):
foreground_mask_tolerance = cfg['foreground_mask_tolerance']
min_contour_area = cfg['min_contour_area']
max_contour_area = cfg['max_contour_area']
min_box_area = cfg['min_box_area']
max_box_area = cfg['max_box_area']
box_padding_px = cfg['box_padding_px']
crop_height = cfg['image_height']
crop_width = cfg['image_width']
depth_grad_thresh = cfg['depth_grad_thresh']
w = cfg['filter_dim']
half_crop_height = float(crop_height) / 2
half_crop_width = float(crop_width) / 2
half_crop_dims = np.array([half_crop_height, half_crop_width])
fill_depth = np.max(depth_im.data[depth_im.data > 0])
kinect2_denoising = False
if 'kinect2_denoising' in cfg.keys() and cfg['kinect2_denoising']:
kinect2_denoising = True
depth_offset = cfg['kinect2_noise_offset']
max_depth = cfg['kinect2_noise_max_depth']
bgmodel = color_im.background_model()
binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel
=bgmodel)
y, x = np.ogrid[-w / 2 + 1:w / 2 + 1, -w / 2 + 1:w / 2 + 1]
mask = x * x + y * y <= w / 2 * w / 2
filter_struct = np.zeros([w, w]).astype(np.uint8)
filter_struct[mask] = 1
binary_im_filtered = binary_im.apply(snm.grey_closing, structure=
filter_struct)
contours = binary_im_filtered.find_contours(min_area=min_contour_area,
max_area=max_contour_area)
if vis_foreground:
plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(color_im.data)
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(binary_im_filtered.data, cmap=plt.cm.gray)
plt.axis('off')
plt.show()
depth_im = depth_im.threshold_gradients(depth_grad_thresh)
detections = []
for contour in contours:
orig_box = contour.bounding_box
if orig_box.area > min_box_area and orig_box.area < max_box_area:
min_pt = orig_box.center - half_crop_dims
max_pt = orig_box.center + half_crop_dims
query_box = Box(min_pt, max_pt, frame=orig_box.frame)
color_thumbnail = color_im.crop(query_box.height, query_box.
width, query_box.ci, query_box.cj)
binary_thumbnail, segment_thumbnail, query_box = (self.
_segment_color(color_thumbnail, query_box, bgmodel, cfg,
vis_segmentation=vis_segmentation))
if binary_thumbnail is None:
continue
else:
query_box = Box(contour.bounding_box.min_pt - box_padding_px,
contour.bounding_box.max_pt + box_padding_px, frame=contour
.bounding_box.frame)
binary_thumbnail = binary_im_filtered.crop(query_box.height,
query_box.width, query_box.ci, query_box.cj)
color_thumbnail = color_im.crop(query_box.height, query_box.width,
query_box.ci, query_box.cj)
depth_thumbnail = depth_im.crop(query_box.height, query_box.width,
query_box.ci, query_box.cj)
thumbnail_intr = camera_intr
if camera_intr is not None:
thumbnail_intr = camera_intr.crop(query_box.height, query_box.
width, query_box.ci, query_box.cj)
depth_thumbnail = depth_thumbnail.replace_zeros(fill_depth)
if kinect2_denoising:
depth_data = depth_thumbnail.data
min_depth = np.min(depth_data)
binary_mask_data = binary_thumbnail.data
depth_mask_data = depth_thumbnail.mask_binary(binary_thumbnail
).data
depth_mask_data += depth_offset
depth_data[binary_mask_data > 0] = depth_mask_data[
binary_mask_data > 0]
depth_thumbnail = DepthImage(depth_data, depth_thumbnail.frame)
detections.append(RgbdDetection(color_thumbnail, depth_thumbnail,
query_box, binary_thumbnail=binary_thumbnail, contour=contour,
camera_intr=thumbnail_intr))
return detections
|
detect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, color_im, depth_im, cfg, camera_intr=None, T_camera_world=None,\n vis_foreground=False, vis_segmentation=False, segmask=None):\n foreground_mask_tolerance = cfg['foreground_mask_tolerance']\n min_contour_area = cfg['min_contour_area']\n max_contour_area = cfg['max_contour_area']\n min_box_area = cfg['min_box_area']\n max_box_area = cfg['max_box_area']\n box_padding_px = cfg['box_padding_px']\n crop_height = cfg['image_height']\n crop_width = cfg['image_width']\n depth_grad_thresh = cfg['depth_grad_thresh']\n w = cfg['filter_dim']\n half_crop_height = float(crop_height) / 2\n half_crop_width = float(crop_width) / 2\n half_crop_dims = np.array([half_crop_height, half_crop_width])\n fill_depth = np.max(depth_im.data[depth_im.data > 0])\n kinect2_denoising = False\n if 'kinect2_denoising' in cfg.keys() and cfg['kinect2_denoising']:\n kinect2_denoising = True\n depth_offset = cfg['kinect2_noise_offset']\n max_depth = cfg['kinect2_noise_max_depth']\n bgmodel = color_im.background_model()\n binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel\n =bgmodel)\n y, x = np.ogrid[-w / 2 + 1:w / 2 + 1, -w / 2 + 1:w / 2 + 1]\n mask = x * x + y * y <= w / 2 * w / 2\n filter_struct = np.zeros([w, w]).astype(np.uint8)\n filter_struct[mask] = 1\n binary_im_filtered = binary_im.apply(snm.grey_closing, structure=\n filter_struct)\n contours = binary_im_filtered.find_contours(min_area=min_contour_area,\n max_area=max_contour_area)\n if vis_foreground:\n plt.figure()\n plt.subplot(1, 2, 1)\n plt.imshow(color_im.data)\n plt.axis('off')\n plt.subplot(1, 2, 2)\n plt.imshow(binary_im_filtered.data, cmap=plt.cm.gray)\n plt.axis('off')\n plt.show()\n depth_im = depth_im.threshold_gradients(depth_grad_thresh)\n detections = []\n for contour in contours:\n orig_box = contour.bounding_box\n if orig_box.area > min_box_area and orig_box.area < max_box_area:\n min_pt = orig_box.center - half_crop_dims\n max_pt = orig_box.center + half_crop_dims\n query_box = Box(min_pt, max_pt, frame=orig_box.frame)\n color_thumbnail = color_im.crop(query_box.height, query_box.\n width, query_box.ci, query_box.cj)\n binary_thumbnail, segment_thumbnail, query_box = (self.\n _segment_color(color_thumbnail, query_box, bgmodel, cfg,\n vis_segmentation=vis_segmentation))\n if binary_thumbnail is None:\n continue\n else:\n query_box = Box(contour.bounding_box.min_pt - box_padding_px, \n contour.bounding_box.max_pt + box_padding_px, frame=contour\n .bounding_box.frame)\n binary_thumbnail = binary_im_filtered.crop(query_box.height,\n query_box.width, query_box.ci, query_box.cj)\n color_thumbnail = color_im.crop(query_box.height, query_box.width,\n query_box.ci, query_box.cj)\n depth_thumbnail = depth_im.crop(query_box.height, query_box.width,\n query_box.ci, query_box.cj)\n thumbnail_intr = camera_intr\n if camera_intr is not None:\n thumbnail_intr = camera_intr.crop(query_box.height, query_box.\n width, query_box.ci, query_box.cj)\n depth_thumbnail = depth_thumbnail.replace_zeros(fill_depth)\n if kinect2_denoising:\n depth_data = depth_thumbnail.data\n min_depth = np.min(depth_data)\n binary_mask_data = binary_thumbnail.data\n depth_mask_data = depth_thumbnail.mask_binary(binary_thumbnail\n ).data\n depth_mask_data += depth_offset\n depth_data[binary_mask_data > 0] = depth_mask_data[\n binary_mask_data > 0]\n depth_thumbnail = DepthImage(depth_data, depth_thumbnail.frame)\n detections.append(RgbdDetection(color_thumbnail, depth_thumbnail,\n query_box, binary_thumbnail=binary_thumbnail, contour=contour,\n camera_intr=thumbnail_intr))\n return detections\n",
"role": "user"
},
{
"content": "detect",
"role": "assistant"
}
] |
def x(detector_type):
if detector_type == 'point_cloud_box':
return PointCloudBoxDetector()
elif detector_type == 'rgbd_foreground_mask_query':
return RgbdForegroundMaskQueryImageDetector()
elif detector_type == 'rgbd_foreground_mask':
return RgbdForegroundMaskDetector()
raise ValueError('Detector type %s not understood' % detector_type)
|
detector
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(detector_type):\n if detector_type == 'point_cloud_box':\n return PointCloudBoxDetector()\n elif detector_type == 'rgbd_foreground_mask_query':\n return RgbdForegroundMaskQueryImageDetector()\n elif detector_type == 'rgbd_foreground_mask':\n return RgbdForegroundMaskDetector()\n raise ValueError('Detector type %s not understood' % detector_type)\n",
"role": "user"
},
{
"content": "detector",
"role": "assistant"
}
] |
def x(raw_color_im, raw_depth_im, camera_intr, T_camera_world,
workspace_box, workspace_im, image_proc_config):
inpaint_rescale_factor = image_proc_config['inpaint_rescale_factor']
cluster = image_proc_config['cluster']
cluster_tolerance = image_proc_config['cluster_tolerance']
min_cluster_size = image_proc_config['min_cluster_size']
max_cluster_size = image_proc_config['max_cluster_size']
point_cloud_cam = camera_intr.deproject(raw_depth_im)
point_cloud_cam.remove_zero_points()
point_cloud_world = T_camera_world * point_cloud_cam
seg_point_cloud_world, _ = point_cloud_world.box_mask(workspace_box)
seg_point_cloud_cam = T_camera_world.inverse() * seg_point_cloud_world
depth_im_seg = camera_intr.project_to_image(seg_point_cloud_cam)
env_pixels = depth_im_seg.pixels_farther_than(workspace_im)
depth_im_seg._data[env_pixels[:, 0], env_pixels[:, 1]] = 0
low_indices = np.where(point_cloud_world.data[2, :] < workspace_box.
min_pt[2])[0]
point_cloud_world.data[2, low_indices] = workspace_box.min_pt[2]
high_indices = np.where(point_cloud_world.data[2, :] > workspace_box.
max_pt[2])[0]
point_cloud_world.data[2, high_indices] = workspace_box.max_pt[2]
workspace_point_cloud_world, valid_indices = point_cloud_world.box_mask(
workspace_box)
invalid_indices = np.setdiff1d(np.arange(point_cloud_world.num_points),
valid_indices)
if cluster:
pcl_cloud = pcl.PointCloud(workspace_point_cloud_world.data.T.
astype(np.float32))
tree = pcl_cloud.make_kdtree()
ec = pcl_cloud.make_EuclideanClusterExtraction()
ec.set_ClusterTolerance(cluster_tolerance)
ec.set_MinClusterSize(min_cluster_size)
ec.set_MaxClusterSize(max_cluster_size)
ec.set_SearchMethod(tree)
cluster_indices = ec.Extract()
num_clusters = len(cluster_indices)
filtered_points = np.zeros([3, workspace_point_cloud_world.num_points])
cur_i = 0
for j, indices in enumerate(cluster_indices):
num_points = len(indices)
points = np.zeros([3, num_points])
for i, index in enumerate(indices):
points[0, i] = pcl_cloud[index][0]
points[1, i] = pcl_cloud[index][1]
points[2, i] = pcl_cloud[index][2]
filtered_points[:, cur_i:cur_i + num_points] = points.copy()
cur_i = cur_i + num_points
all_points = np.c_[filtered_points[:, :cur_i], point_cloud_world.
data[:, invalid_indices]]
else:
all_points = point_cloud_world.data
filtered_point_cloud_world = PointCloud(all_points, frame='world')
filtered_point_cloud_cam = T_camera_world.inverse(
) * filtered_point_cloud_world
depth_im = camera_intr.project_to_image(filtered_point_cloud_cam)
segmask = depth_im_seg.to_binary()
valid_px_segmask = depth_im.invalid_pixel_mask().inverse()
segmask = segmask.mask_binary(valid_px_segmask)
color_im = raw_color_im.inpaint(rescale_factor=inpaint_rescale_factor)
depth_im = depth_im.inpaint(rescale_factor=inpaint_rescale_factor)
return color_im, depth_im, segmask
|
preprocess_images
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(raw_color_im, raw_depth_im, camera_intr, T_camera_world,\n workspace_box, workspace_im, image_proc_config):\n inpaint_rescale_factor = image_proc_config['inpaint_rescale_factor']\n cluster = image_proc_config['cluster']\n cluster_tolerance = image_proc_config['cluster_tolerance']\n min_cluster_size = image_proc_config['min_cluster_size']\n max_cluster_size = image_proc_config['max_cluster_size']\n point_cloud_cam = camera_intr.deproject(raw_depth_im)\n point_cloud_cam.remove_zero_points()\n point_cloud_world = T_camera_world * point_cloud_cam\n seg_point_cloud_world, _ = point_cloud_world.box_mask(workspace_box)\n seg_point_cloud_cam = T_camera_world.inverse() * seg_point_cloud_world\n depth_im_seg = camera_intr.project_to_image(seg_point_cloud_cam)\n env_pixels = depth_im_seg.pixels_farther_than(workspace_im)\n depth_im_seg._data[env_pixels[:, 0], env_pixels[:, 1]] = 0\n low_indices = np.where(point_cloud_world.data[2, :] < workspace_box.\n min_pt[2])[0]\n point_cloud_world.data[2, low_indices] = workspace_box.min_pt[2]\n high_indices = np.where(point_cloud_world.data[2, :] > workspace_box.\n max_pt[2])[0]\n point_cloud_world.data[2, high_indices] = workspace_box.max_pt[2]\n workspace_point_cloud_world, valid_indices = point_cloud_world.box_mask(\n workspace_box)\n invalid_indices = np.setdiff1d(np.arange(point_cloud_world.num_points),\n valid_indices)\n if cluster:\n pcl_cloud = pcl.PointCloud(workspace_point_cloud_world.data.T.\n astype(np.float32))\n tree = pcl_cloud.make_kdtree()\n ec = pcl_cloud.make_EuclideanClusterExtraction()\n ec.set_ClusterTolerance(cluster_tolerance)\n ec.set_MinClusterSize(min_cluster_size)\n ec.set_MaxClusterSize(max_cluster_size)\n ec.set_SearchMethod(tree)\n cluster_indices = ec.Extract()\n num_clusters = len(cluster_indices)\n filtered_points = np.zeros([3, workspace_point_cloud_world.num_points])\n cur_i = 0\n for j, indices in enumerate(cluster_indices):\n num_points = len(indices)\n points = np.zeros([3, num_points])\n for i, index in enumerate(indices):\n points[0, i] = pcl_cloud[index][0]\n points[1, i] = pcl_cloud[index][1]\n points[2, i] = pcl_cloud[index][2]\n filtered_points[:, cur_i:cur_i + num_points] = points.copy()\n cur_i = cur_i + num_points\n all_points = np.c_[filtered_points[:, :cur_i], point_cloud_world.\n data[:, invalid_indices]]\n else:\n all_points = point_cloud_world.data\n filtered_point_cloud_world = PointCloud(all_points, frame='world')\n filtered_point_cloud_cam = T_camera_world.inverse(\n ) * filtered_point_cloud_world\n depth_im = camera_intr.project_to_image(filtered_point_cloud_cam)\n segmask = depth_im_seg.to_binary()\n valid_px_segmask = depth_im.invalid_pixel_mask().inverse()\n segmask = segmask.mask_binary(valid_px_segmask)\n color_im = raw_color_im.inpaint(rescale_factor=inpaint_rescale_factor)\n depth_im = depth_im.inpaint(rescale_factor=inpaint_rescale_factor)\n return color_im, depth_im, segmask\n",
"role": "user"
},
{
"content": "preprocess_images",
"role": "assistant"
}
] |
def x(input, kernel, biases, k_h, k_w, c_o, s_h, s_w, padding='VALID', group=1
):
c_i = input.get_shape()[-1]
assert c_i % group == 0
assert c_o % group == 0
convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=
padding)
if group == 1:
conv = convolve(input, kernel)
else:
input_groups = tf.split(input, group, axis=3)
kernel_groups = tf.split(kernel, group, axis=3)
output_groups = [convolve(i, k) for i, k in zip(input_groups,
kernel_groups)]
conv = tf.concat(output_groups, axis=3)
return tf.reshape(tf.nn.bias_add(conv, biases), [-1] + conv.get_shape()
.as_list()[1:])
|
conv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input, kernel, biases, k_h, k_w, c_o, s_h, s_w, padding='VALID', group=1\n ):\n c_i = input.get_shape()[-1]\n assert c_i % group == 0\n assert c_o % group == 0\n convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=\n padding)\n if group == 1:\n conv = convolve(input, kernel)\n else:\n input_groups = tf.split(input, group, axis=3)\n kernel_groups = tf.split(kernel, group, axis=3)\n output_groups = [convolve(i, k) for i, k in zip(input_groups,\n kernel_groups)]\n conv = tf.concat(output_groups, axis=3)\n return tf.reshape(tf.nn.bias_add(conv, biases), [-1] + conv.get_shape()\n .as_list()[1:])\n",
"role": "user"
},
{
"content": "conv",
"role": "assistant"
}
] |
def x(self, config):
self._batch_size = config['batch_size']
self._im_height = config['im_height']
self._im_width = config['im_width']
self._num_channels = config['channels']
self._output_layer = config['out_layer']
self._feature_layer = config['feature_layer']
self._out_size = None
if 'out_size' in config.keys():
self._out_size = config['out_size']
self._input_arr = np.zeros([self._batch_size, self._im_height, self.
_im_width, self._num_channels])
if self._model_dir is None:
self._net_data = np.load(config['caffe_weights']).item()
self._mean = np.load(config['mean_file'])
self._model_filename = None
else:
self._net_data = None
self._mean = np.load(os.path.join(self._model_dir, 'mean.npy'))
self._model_filename = os.path.join(self._model_dir, 'model.ckpt')
|
parse_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, config):\n self._batch_size = config['batch_size']\n self._im_height = config['im_height']\n self._im_width = config['im_width']\n self._num_channels = config['channels']\n self._output_layer = config['out_layer']\n self._feature_layer = config['feature_layer']\n self._out_size = None\n if 'out_size' in config.keys():\n self._out_size = config['out_size']\n self._input_arr = np.zeros([self._batch_size, self._im_height, self.\n _im_width, self._num_channels])\n if self._model_dir is None:\n self._net_data = np.load(config['caffe_weights']).item()\n self._mean = np.load(config['mean_file'])\n self._model_filename = None\n else:\n self._net_data = None\n self._mean = np.load(os.path.join(self._model_dir, 'mean.npy'))\n self._model_filename = os.path.join(self._model_dir, 'model.ckpt')\n",
"role": "user"
},
{
"content": "parse_config",
"role": "assistant"
}
] |
def x(self):
if self._model_filename is None:
raise ValueError('Model filename not specified')
self._graph = tf.Graph()
with self._graph.as_default():
reader = tf.train.NewCheckpointReader(self._model_filename)
weights = AlexNetWeights()
weights.conv1W = tf.Variable(reader.get_tensor('Variable'))
weights.conv1b = tf.Variable(reader.get_tensor('Variable_1'))
weights.conv2W = tf.Variable(reader.get_tensor('Variable_2'))
weights.conv2b = tf.Variable(reader.get_tensor('Variable_3'))
weights.conv3W = tf.Variable(reader.get_tensor('Variable_4'))
weights.conv3b = tf.Variable(reader.get_tensor('Variable_5'))
weights.conv4W = tf.Variable(reader.get_tensor('Variable_6'))
weights.conv4b = tf.Variable(reader.get_tensor('Variable_7'))
weights.conv5W = tf.Variable(reader.get_tensor('Variable_8'))
weights.conv5b = tf.Variable(reader.get_tensor('Variable_9'))
weights.fc6W = tf.Variable(reader.get_tensor('Variable_10'))
weights.fc6b = tf.Variable(reader.get_tensor('Variable_11'))
weights.fc7W = tf.Variable(reader.get_tensor('Variable_12'))
weights.fc7b = tf.Variable(reader.get_tensor('Variable_13'))
weights.fc8W = tf.Variable(reader.get_tensor('Variable_14'))
weights.fc8b = tf.Variable(reader.get_tensor('Variable_15'))
self._input_node = tf.placeholder(tf.float32, (self._batch_size,
self._im_height, self._im_width, self._num_channels))
self._output_tensor = self.build_alexnet(weights)
self._feature_tensor = self.build_alexnet(weights, output_layer=
self._feature_layer)
self._initialized = True
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._model_filename is None:\n raise ValueError('Model filename not specified')\n self._graph = tf.Graph()\n with self._graph.as_default():\n reader = tf.train.NewCheckpointReader(self._model_filename)\n weights = AlexNetWeights()\n weights.conv1W = tf.Variable(reader.get_tensor('Variable'))\n weights.conv1b = tf.Variable(reader.get_tensor('Variable_1'))\n weights.conv2W = tf.Variable(reader.get_tensor('Variable_2'))\n weights.conv2b = tf.Variable(reader.get_tensor('Variable_3'))\n weights.conv3W = tf.Variable(reader.get_tensor('Variable_4'))\n weights.conv3b = tf.Variable(reader.get_tensor('Variable_5'))\n weights.conv4W = tf.Variable(reader.get_tensor('Variable_6'))\n weights.conv4b = tf.Variable(reader.get_tensor('Variable_7'))\n weights.conv5W = tf.Variable(reader.get_tensor('Variable_8'))\n weights.conv5b = tf.Variable(reader.get_tensor('Variable_9'))\n weights.fc6W = tf.Variable(reader.get_tensor('Variable_10'))\n weights.fc6b = tf.Variable(reader.get_tensor('Variable_11'))\n weights.fc7W = tf.Variable(reader.get_tensor('Variable_12'))\n weights.fc7b = tf.Variable(reader.get_tensor('Variable_13'))\n weights.fc8W = tf.Variable(reader.get_tensor('Variable_14'))\n weights.fc8b = tf.Variable(reader.get_tensor('Variable_15'))\n self._input_node = tf.placeholder(tf.float32, (self._batch_size,\n self._im_height, self._im_width, self._num_channels))\n self._output_tensor = self.build_alexnet(weights)\n self._feature_tensor = self.build_alexnet(weights, output_layer=\n self._feature_layer)\n self._initialized = True\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(self):
self._graph = tf.Graph()
with self._graph.as_default():
self._input_node = tf.placeholder(tf.float32, (self._batch_size,
self._im_height, self._im_width, self._num_channels))
weights = self.build_alexnet_weights()
self._output_tensor = self.build_alexnet(weights)
self._feature_tensor = self.build_alexnet(weights, output_layer=
self._feature_layer)
self._initialized = True
|
initialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._graph = tf.Graph()\n with self._graph.as_default():\n self._input_node = tf.placeholder(tf.float32, (self._batch_size,\n self._im_height, self._im_width, self._num_channels))\n weights = self.build_alexnet_weights()\n self._output_tensor = self.build_alexnet(weights)\n self._feature_tensor = self.build_alexnet(weights, output_layer=\n self._feature_layer)\n self._initialized = True\n",
"role": "user"
},
{
"content": "initialize",
"role": "assistant"
}
] |
def x(self):
with self._graph.as_default():
init = tf.initialize_all_variables()
self._sess = tf.Session()
self._sess.run(init)
|
open_session
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n with self._graph.as_default():\n init = tf.initialize_all_variables()\n self._sess = tf.Session()\n self._sess.run(init)\n",
"role": "user"
},
{
"content": "open_session",
"role": "assistant"
}
] |
def x(self):
with self._graph.as_default():
self._sess.close()
self._sess = None
|
close_session
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n with self._graph.as_default():\n self._sess.close()\n self._sess = None\n",
"role": "user"
},
{
"content": "close_session",
"role": "assistant"
}
] |
def x(self, image_arr, featurize=False):
num_images = image_arr.shape[0]
output_arr = None
close_sess = False
if not self._initialized and self._dynamic_load:
self._load()
with self._graph.as_default():
if self._sess is None:
close_sess = True
self.open_session()
i = 0
while i < num_images:
dim = min(self._batch_size, num_images - i)
cur_ind = i
end_ind = cur_ind + dim
self._input_arr[:dim, :, :, :] = image_arr[cur_ind:end_ind, :, :, :
] - self._mean
if featurize:
output = self._sess.run(self._feature_tensor, feed_dict={
self._input_node: self._input_arr})
else:
output = self._sess.run(self._output_tensor, feed_dict={
self._input_node: self._input_arr})
if output_arr is None:
output_arr = output
else:
output_arr = np.r_[output_arr, output]
i = end_ind
if close_sess:
self.close_session()
return output_arr[:num_images, ...]
|
predict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image_arr, featurize=False):\n num_images = image_arr.shape[0]\n output_arr = None\n close_sess = False\n if not self._initialized and self._dynamic_load:\n self._load()\n with self._graph.as_default():\n if self._sess is None:\n close_sess = True\n self.open_session()\n i = 0\n while i < num_images:\n dim = min(self._batch_size, num_images - i)\n cur_ind = i\n end_ind = cur_ind + dim\n self._input_arr[:dim, :, :, :] = image_arr[cur_ind:end_ind, :, :, :\n ] - self._mean\n if featurize:\n output = self._sess.run(self._feature_tensor, feed_dict={\n self._input_node: self._input_arr})\n else:\n output = self._sess.run(self._output_tensor, feed_dict={\n self._input_node: self._input_arr})\n if output_arr is None:\n output_arr = output\n else:\n output_arr = np.r_[output_arr, output]\n i = end_ind\n if close_sess:\n self.close_session()\n return output_arr[:num_images, ...]\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
] |
def x(self):
net_data = self._net_data
k_h = 11
k_w = 11
c_o = 96
s_h = 4
s_w = 4
conv1W = tf.Variable(net_data['conv1'][0])
conv1b = tf.Variable(net_data['conv1'][1])
k_h = 5
k_w = 5
c_o = 256
s_h = 1
s_w = 1
group = 2
conv2W = tf.Variable(net_data['conv2'][0])
conv2b = tf.Variable(net_data['conv2'][1])
k_h = 3
k_w = 3
c_o = 384
s_h = 1
s_w = 1
group = 1
conv3W = tf.Variable(net_data['conv3'][0])
conv3b = tf.Variable(net_data['conv3'][1])
k_h = 3
k_w = 3
c_o = 384
s_h = 1
s_w = 1
group = 2
conv4W = tf.Variable(net_data['conv4'][0])
conv4b = tf.Variable(net_data['conv4'][1])
k_h = 3
k_w = 3
c_o = 256
s_h = 1
s_w = 1
group = 2
conv5W = tf.Variable(net_data['conv5'][0])
conv5b = tf.Variable(net_data['conv5'][1])
fc6_in_size = net_data['fc6'][0].shape[0]
fc6_out_size = net_data['fc6'][0].shape[1]
fc6W = tf.Variable(net_data['fc6'][0])
fc6b = tf.Variable(net_data['fc6'][1])
fc7_in_size = fc6_out_size
fc7_out_size = net_data['fc7'][0].shape[1]
fc7W = tf.Variable(net_data['fc7'][0])
fc7b = tf.Variable(net_data['fc7'][1])
fc8_in_size = fc7_out_size
fc8_out_size = self._out_size
fc8W = tf.Variable(tf.truncated_normal([fc8_in_size, fc8_out_size],
stddev=0.01, seed=None))
fc8b = tf.Variable(tf.constant(0.0, shape=[fc8_out_size]))
weights = AlexNetWeights()
weights.conv1W = conv1W
weights.conv1b = conv1b
weights.conv2W = conv2W
weights.conv2b = conv2b
weights.conv3W = conv3W
weights.conv3b = conv3b
weights.conv4W = conv4W
weights.conv4b = conv4b
weights.conv5W = conv5W
weights.conv5b = conv5b
weights.fc6W = fc6W
weights.fc6b = fc6b
weights.fc7W = fc7W
weights.fc7b = fc7b
weights.fc8W = fc8W
weights.fc8b = fc8b
return weights
|
build_alexnet_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n net_data = self._net_data\n k_h = 11\n k_w = 11\n c_o = 96\n s_h = 4\n s_w = 4\n conv1W = tf.Variable(net_data['conv1'][0])\n conv1b = tf.Variable(net_data['conv1'][1])\n k_h = 5\n k_w = 5\n c_o = 256\n s_h = 1\n s_w = 1\n group = 2\n conv2W = tf.Variable(net_data['conv2'][0])\n conv2b = tf.Variable(net_data['conv2'][1])\n k_h = 3\n k_w = 3\n c_o = 384\n s_h = 1\n s_w = 1\n group = 1\n conv3W = tf.Variable(net_data['conv3'][0])\n conv3b = tf.Variable(net_data['conv3'][1])\n k_h = 3\n k_w = 3\n c_o = 384\n s_h = 1\n s_w = 1\n group = 2\n conv4W = tf.Variable(net_data['conv4'][0])\n conv4b = tf.Variable(net_data['conv4'][1])\n k_h = 3\n k_w = 3\n c_o = 256\n s_h = 1\n s_w = 1\n group = 2\n conv5W = tf.Variable(net_data['conv5'][0])\n conv5b = tf.Variable(net_data['conv5'][1])\n fc6_in_size = net_data['fc6'][0].shape[0]\n fc6_out_size = net_data['fc6'][0].shape[1]\n fc6W = tf.Variable(net_data['fc6'][0])\n fc6b = tf.Variable(net_data['fc6'][1])\n fc7_in_size = fc6_out_size\n fc7_out_size = net_data['fc7'][0].shape[1]\n fc7W = tf.Variable(net_data['fc7'][0])\n fc7b = tf.Variable(net_data['fc7'][1])\n fc8_in_size = fc7_out_size\n fc8_out_size = self._out_size\n fc8W = tf.Variable(tf.truncated_normal([fc8_in_size, fc8_out_size],\n stddev=0.01, seed=None))\n fc8b = tf.Variable(tf.constant(0.0, shape=[fc8_out_size]))\n weights = AlexNetWeights()\n weights.conv1W = conv1W\n weights.conv1b = conv1b\n weights.conv2W = conv2W\n weights.conv2b = conv2b\n weights.conv3W = conv3W\n weights.conv3b = conv3b\n weights.conv4W = conv4W\n weights.conv4b = conv4b\n weights.conv5W = conv5W\n weights.conv5b = conv5b\n weights.fc6W = fc6W\n weights.fc6b = fc6b\n weights.fc7W = fc7W\n weights.fc7b = fc7b\n weights.fc8W = fc8W\n weights.fc8b = fc8b\n return weights\n",
"role": "user"
},
{
"content": "build_alexnet_weights",
"role": "assistant"
}
] |
def x(self, weights, output_layer=None):
if output_layer is None:
output_layer = self._output_layer
k_h = 11
k_w = 11
c_o = 96
s_h = 4
s_w = 4
conv1_in = conv(self._input_node, weights.conv1W, weights.conv1b, k_h,
k_w, c_o, s_h, s_w, padding='SAME', group=1)
conv1 = tf.nn.relu(conv1_in)
if output_layer == 'conv1':
return tf.contrib.layers.flatten(conv1)
radius = 2
alpha = 2e-05
beta = 0.75
bias = 1.0
lrn1 = tf.nn.local_response_normalization(conv1, depth_radius=radius,
alpha=alpha, beta=beta, bias=bias)
k_h = 3
k_w = 3
s_h = 2
s_w = 2
padding = 'VALID'
maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, k_h, k_w, 1], strides=[1, s_h,
s_w, 1], padding=padding)
k_h = 5
k_w = 5
c_o = 256
s_h = 1
s_w = 1
group = 2
conv2_in = conv(maxpool1, weights.conv2W, weights.conv2b, k_h, k_w, c_o,
s_h, s_w, padding='SAME', group=group)
conv2 = tf.nn.relu(conv2_in)
if output_layer == 'conv2':
return tf.contrib.layers.flatten(conv2)
radius = 2
alpha = 2e-05
beta = 0.75
bias = 1.0
lrn2 = tf.nn.local_response_normalization(conv2, depth_radius=radius,
alpha=alpha, beta=beta, bias=bias)
k_h = 3
k_w = 3
s_h = 2
s_w = 2
padding = 'VALID'
maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, k_h, k_w, 1], strides=[1, s_h,
s_w, 1], padding=padding)
k_h = 3
k_w = 3
c_o = 384
s_h = 1
s_w = 1
group = 1
conv3_in = conv(maxpool2, weights.conv3W, weights.conv3b, k_h, k_w, c_o,
s_h, s_w, padding='SAME', group=group)
conv3 = tf.nn.relu(conv3_in)
if output_layer == 'conv3':
return tf.contrib.layers.flatten(conv3)
k_h = 3
k_w = 3
c_o = 384
s_h = 1
s_w = 1
group = 2
conv4_in = conv(conv3, weights.conv4W, weights.conv4b, k_h, k_w, c_o,
s_h, s_w, padding='SAME', group=group)
conv4 = tf.nn.relu(conv4_in)
if output_layer == 'conv4':
return tf.contrib.layers.flatten(conv4)
k_h = 3
k_w = 3
c_o = 256
s_h = 1
s_w = 1
group = 2
conv5_in = conv(conv4, weights.conv5W, weights.conv5b, k_h, k_w, c_o,
s_h, s_w, padding='SAME', group=group)
conv5 = tf.nn.relu(conv5_in)
if output_layer == 'conv5':
return tf.contrib.layers.flatten(conv5)
k_h = 3
k_w = 3
s_h = 2
s_w = 2
padding = 'VALID'
maxpool5 = tf.nn.max_pool(conv5, ksize=[1, k_h, k_w, 1], strides=[1,
s_h, s_w, 1], padding=padding)
fc6 = tf.nn.relu_layer(tf.reshape(maxpool5, [-1, int(np.prod(maxpool5.
get_shape()[1:]))]), weights.fc6W, weights.fc6b)
if output_layer == 'fc6':
return fc6
fc7 = tf.nn.relu_layer(fc6, weights.fc7W, weights.fc7b)
if output_layer == 'fc7':
return fc7
fc8 = tf.nn.xw_plus_b(fc7, weights.fc8W, weights.fc8b)
if output_layer == 'fc8':
return fc8
sm = tf.nn.softmax(fc8)
return sm
|
build_alexnet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, weights, output_layer=None):\n if output_layer is None:\n output_layer = self._output_layer\n k_h = 11\n k_w = 11\n c_o = 96\n s_h = 4\n s_w = 4\n conv1_in = conv(self._input_node, weights.conv1W, weights.conv1b, k_h,\n k_w, c_o, s_h, s_w, padding='SAME', group=1)\n conv1 = tf.nn.relu(conv1_in)\n if output_layer == 'conv1':\n return tf.contrib.layers.flatten(conv1)\n radius = 2\n alpha = 2e-05\n beta = 0.75\n bias = 1.0\n lrn1 = tf.nn.local_response_normalization(conv1, depth_radius=radius,\n alpha=alpha, beta=beta, bias=bias)\n k_h = 3\n k_w = 3\n s_h = 2\n s_w = 2\n padding = 'VALID'\n maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, k_h, k_w, 1], strides=[1, s_h,\n s_w, 1], padding=padding)\n k_h = 5\n k_w = 5\n c_o = 256\n s_h = 1\n s_w = 1\n group = 2\n conv2_in = conv(maxpool1, weights.conv2W, weights.conv2b, k_h, k_w, c_o,\n s_h, s_w, padding='SAME', group=group)\n conv2 = tf.nn.relu(conv2_in)\n if output_layer == 'conv2':\n return tf.contrib.layers.flatten(conv2)\n radius = 2\n alpha = 2e-05\n beta = 0.75\n bias = 1.0\n lrn2 = tf.nn.local_response_normalization(conv2, depth_radius=radius,\n alpha=alpha, beta=beta, bias=bias)\n k_h = 3\n k_w = 3\n s_h = 2\n s_w = 2\n padding = 'VALID'\n maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, k_h, k_w, 1], strides=[1, s_h,\n s_w, 1], padding=padding)\n k_h = 3\n k_w = 3\n c_o = 384\n s_h = 1\n s_w = 1\n group = 1\n conv3_in = conv(maxpool2, weights.conv3W, weights.conv3b, k_h, k_w, c_o,\n s_h, s_w, padding='SAME', group=group)\n conv3 = tf.nn.relu(conv3_in)\n if output_layer == 'conv3':\n return tf.contrib.layers.flatten(conv3)\n k_h = 3\n k_w = 3\n c_o = 384\n s_h = 1\n s_w = 1\n group = 2\n conv4_in = conv(conv3, weights.conv4W, weights.conv4b, k_h, k_w, c_o,\n s_h, s_w, padding='SAME', group=group)\n conv4 = tf.nn.relu(conv4_in)\n if output_layer == 'conv4':\n return tf.contrib.layers.flatten(conv4)\n k_h = 3\n k_w = 3\n c_o = 256\n s_h = 1\n s_w = 1\n group = 2\n conv5_in = conv(conv4, weights.conv5W, weights.conv5b, k_h, k_w, c_o,\n s_h, s_w, padding='SAME', group=group)\n conv5 = tf.nn.relu(conv5_in)\n if output_layer == 'conv5':\n return tf.contrib.layers.flatten(conv5)\n k_h = 3\n k_w = 3\n s_h = 2\n s_w = 2\n padding = 'VALID'\n maxpool5 = tf.nn.max_pool(conv5, ksize=[1, k_h, k_w, 1], strides=[1,\n s_h, s_w, 1], padding=padding)\n fc6 = tf.nn.relu_layer(tf.reshape(maxpool5, [-1, int(np.prod(maxpool5.\n get_shape()[1:]))]), weights.fc6W, weights.fc6b)\n if output_layer == 'fc6':\n return fc6\n fc7 = tf.nn.relu_layer(fc6, weights.fc7W, weights.fc7b)\n if output_layer == 'fc7':\n return fc7\n fc8 = tf.nn.xw_plus_b(fc7, weights.fc8W, weights.fc8b)\n if output_layer == 'fc8':\n return fc8\n sm = tf.nn.softmax(fc8)\n return sm\n",
"role": "user"
},
{
"content": "build_alexnet",
"role": "assistant"
}
] |
def x(self, images):
num_images = len(images)
if num_images == 0:
return None
for image in images:
if not isinstance(image, Image):
new_images = []
for image in images:
if len(image.shape) > 2:
new_images.append(ColorImage(image, frame='unspecified'))
elif image.dtype == np.float32 or image.dtype == np.float64:
new_images.append(DepthImage(image, frame='unspecified'))
else:
raise ValueError('Image type not understood')
images = new_images
break
im_height = images[0].height
im_width = images[0].width
channels = images[0].channels
tensor_channels = 3
image_arr = np.zeros([num_images, im_height, im_width, tensor_channels])
for j, image in enumerate(images):
if channels == 3:
image_arr[j, :, :, :] = image.raw_data
else:
image_arr[j, :, :, :] = np.tile(image.raw_data, [1, 1, 1, 3])
fp_start = time.time()
final_blobs = self.cnn_.featurize(image_arr)
fp_stop = time.time()
logging.debug('Featurization took %f sec per image' % ((fp_stop -
fp_start) / len(images)))
return final_blobs.reshape(final_blobs.shape[0], -1)
|
forward_pass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, images):\n num_images = len(images)\n if num_images == 0:\n return None\n for image in images:\n if not isinstance(image, Image):\n new_images = []\n for image in images:\n if len(image.shape) > 2:\n new_images.append(ColorImage(image, frame='unspecified'))\n elif image.dtype == np.float32 or image.dtype == np.float64:\n new_images.append(DepthImage(image, frame='unspecified'))\n else:\n raise ValueError('Image type not understood')\n images = new_images\n break\n im_height = images[0].height\n im_width = images[0].width\n channels = images[0].channels\n tensor_channels = 3\n image_arr = np.zeros([num_images, im_height, im_width, tensor_channels])\n for j, image in enumerate(images):\n if channels == 3:\n image_arr[j, :, :, :] = image.raw_data\n else:\n image_arr[j, :, :, :] = np.tile(image.raw_data, [1, 1, 1, 3])\n fp_start = time.time()\n final_blobs = self.cnn_.featurize(image_arr)\n fp_stop = time.time()\n logging.debug('Featurization took %f sec per image' % ((fp_stop -\n fp_start) / len(images)))\n return final_blobs.reshape(final_blobs.shape[0], -1)\n",
"role": "user"
},
{
"content": "forward_pass",
"role": "assistant"
}
] |
def x(self):
return RepositoriesDataFrame(self.__engine.getRepositories(), self.
session, self.__implicits)
|
repositories
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return RepositoriesDataFrame(self.__engine.getRepositories(), self.\n session, self.__implicits)\n",
"role": "user"
},
{
"content": "repositories",
"role": "assistant"
}
] |
def x(self, repository_ids=[], reference_names=[], commit_hashes=[]):
if not isinstance(repository_ids, list):
raise Exception('repository_ids must be a list')
if not isinstance(reference_names, list):
raise Exception('reference_names must be a list')
if not isinstance(commit_hashes, list):
raise Exception('commit_hashes must be a list')
return BlobsDataFrame(self.__engine.getBlobs(repository_ids,
reference_names, commit_hashes), self.session, self.__implicits)
|
blobs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, repository_ids=[], reference_names=[], commit_hashes=[]):\n if not isinstance(repository_ids, list):\n raise Exception('repository_ids must be a list')\n if not isinstance(reference_names, list):\n raise Exception('reference_names must be a list')\n if not isinstance(commit_hashes, list):\n raise Exception('commit_hashes must be a list')\n return BlobsDataFrame(self.__engine.getBlobs(repository_ids,\n reference_names, commit_hashes), self.session, self.__implicits)\n",
"role": "user"
},
{
"content": "blobs",
"role": "assistant"
}
] |
def x(self, db_path, db_name='engine_metadata.db'):
self.__engine.fromMetadata(db_path, db_name)
return self
|
from_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, db_path, db_name='engine_metadata.db'):\n self.__engine.fromMetadata(db_path, db_name)\n return self\n",
"role": "user"
},
{
"content": "from_metadata",
"role": "assistant"
}
] |
def x(name):
try:
func = getattr(DataFrame, name)
except AttributeError as e:
def x(self, *args, **kwargs):
raise e
return func
wraps = getattr(functools, 'wraps', lambda _: lambda f: f)
@wraps(func)
def x(self, *args, **kwargs):
dataframe = func(self, *args, **kwargs)
if self.__class__ != SourcedDataFrame and isinstance(self,
SourcedDataFrame) and isinstance(dataframe, DataFrame):
return self.__class__(dataframe._jdf, self._session, self.
_implicits)
return dataframe
return _wrapper
|
generate_method
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n try:\n func = getattr(DataFrame, name)\n except AttributeError as e:\n\n def x(self, *args, **kwargs):\n raise e\n return func\n wraps = getattr(functools, 'wraps', lambda _: lambda f: f)\n\n @wraps(func)\n def x(self, *args, **kwargs):\n dataframe = func(self, *args, **kwargs)\n if self.__class__ != SourcedDataFrame and isinstance(self,\n SourcedDataFrame) and isinstance(dataframe, DataFrame):\n return self.__class__(dataframe._jdf, self._session, self.\n _implicits)\n return dataframe\n return _wrapper\n",
"role": "user"
},
{
"content": "generate_method",
"role": "assistant"
}
] |
def x(self):
return ReferencesDataFrame(self._engine_dataframe.getReferences(), self
._session, self._implicits)
|
references
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return ReferencesDataFrame(self._engine_dataframe.getReferences(), self\n ._session, self._implicits)\n",
"role": "user"
},
{
"content": "references",
"role": "assistant"
}
] |
def x(self):
return ReferencesDataFrame(self._engine_dataframe.getRemoteReferences(),
self._session, self._implicits)
|
remote_references
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return ReferencesDataFrame(self._engine_dataframe.getRemoteReferences(),\n self._session, self._implicits)\n",
"role": "user"
},
{
"content": "remote_references",
"role": "assistant"
}
] |
def x(self):
return ReferencesDataFrame(self._engine_dataframe.getReferences().
getHEAD(), self._session, self._implicits)
|
master_ref
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return ReferencesDataFrame(self._engine_dataframe.getReferences().\n getHEAD(), self._session, self._implicits)\n",
"role": "user"
},
{
"content": "master_ref",
"role": "assistant"
}
] |
def x(self):
return ReferencesDataFrame(self._engine_dataframe.getHEAD(), self.
_session, self._implicits)
|
head_ref
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return ReferencesDataFrame(self._engine_dataframe.getHEAD(), self.\n _session, self._implicits)\n",
"role": "user"
},
{
"content": "head_ref",
"role": "assistant"
}
] |
def x(self):
return ReferencesDataFrame(self._engine_dataframe.getMaster(), self.
_session, self._implicits)
return self.ref('refs/heads/master')
|
master_ref
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return ReferencesDataFrame(self._engine_dataframe.getMaster(), self.\n _session, self._implicits)\n return self.ref('refs/heads/master')\n",
"role": "user"
},
{
"content": "master_ref",
"role": "assistant"
}
] |
def x(self, ref):
return ReferencesDataFrame(self.filter(self.name == ref)._jdf, self.
_session, self._implicits)
|
ref
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref):\n return ReferencesDataFrame(self.filter(self.name == ref)._jdf, self.\n _session, self._implicits)\n",
"role": "user"
},
{
"content": "ref",
"role": "assistant"
}
] |
def x(self):
return CommitsDataFrame(self._engine_dataframe.getAllReferenceCommits(),
self._session, self._implicits)
|
all_reference_commits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return CommitsDataFrame(self._engine_dataframe.getAllReferenceCommits(),\n self._session, self._implicits)\n",
"role": "user"
},
{
"content": "all_reference_commits",
"role": "assistant"
}
] |
def x(self):
return CommitsDataFrame(self._engine_dataframe.getCommits(), self.
_session, self._implicits)
|
commits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return CommitsDataFrame(self._engine_dataframe.getCommits(), self.\n _session, self._implicits)\n",
"role": "user"
},
{
"content": "commits",
"role": "assistant"
}
] |
def x(self):
return BlobsDataFrame(self._engine_dataframe.getBlobs(), self._session,
self._implicits)
|
blobs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return BlobsDataFrame(self._engine_dataframe.getBlobs(), self._session,\n self._implicits)\n",
"role": "user"
},
{
"content": "blobs",
"role": "assistant"
}
] |
def x(self):
return TreeEntriesDataFrame(self._engine_dataframe.getTreeEntries(),
self._session, self._implicits)
|
tree_entries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return TreeEntriesDataFrame(self._engine_dataframe.getTreeEntries(),\n self._session, self._implicits)\n",
"role": "user"
},
{
"content": "tree_entries",
"role": "assistant"
}
] |
def x(self):
return BlobsWithLanguageDataFrame(self._engine_dataframe.
classifyLanguages(), self._session, self._implicits)
|
classify_languages
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return BlobsWithLanguageDataFrame(self._engine_dataframe.\n classifyLanguages(), self._session, self._implicits)\n",
"role": "user"
},
{
"content": "classify_languages",
"role": "assistant"
}
] |
def x(self):
return UASTsDataFrame(self._engine_dataframe.extractUASTs(), self.
_session, self._implicits)
|
extract_uasts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return UASTsDataFrame(self._engine_dataframe.extractUASTs(), self.\n _session, self._implicits)\n",
"role": "user"
},
{
"content": "extract_uasts",
"role": "assistant"
}
] |
def x(self, query, query_col='uast', output_col='result'):
return UASTsDataFrame(self._engine_dataframe.queryUAST(query, query_col,
output_col), self._session, self._implicits)
|
query_uast
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, query, query_col='uast', output_col='result'):\n return UASTsDataFrame(self._engine_dataframe.queryUAST(query, query_col,\n output_col), self._session, self._implicits)\n",
"role": "user"
},
{
"content": "query_uast",
"role": "assistant"
}
] |
def x(self, input_col='result', output_col='tokens'):
return UASTsDataFrame(self._engine_dataframe.extractTokens(input_col,
output_col), self._session, self._implicits)
|
extract_tokens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_col='result', output_col='tokens'):\n return UASTsDataFrame(self._engine_dataframe.extractTokens(input_col,\n output_col), self._session, self._implicits)\n",
"role": "user"
},
{
"content": "extract_tokens",
"role": "assistant"
}
] |
def x(self, bucket: str, prefix: str=None, delimiter: str=None
) ->typing.Iterator[str]:
kwargs = dict()
if prefix is not None:
kwargs['prefix'] = prefix
if delimiter is not None:
kwargs['delimiter'] = delimiter
bucket_obj = self._ensure_bucket_loaded(bucket)
for blob_obj in bucket_obj.list_blobs(**kwargs):
yield blob_obj.name
|
list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, prefix: str=None, delimiter: str=None\n ) ->typing.Iterator[str]:\n kwargs = dict()\n if prefix is not None:\n kwargs['prefix'] = prefix\n if delimiter is not None:\n kwargs['delimiter'] = delimiter\n bucket_obj = self._ensure_bucket_loaded(bucket)\n for blob_obj in bucket_obj.list_blobs(**kwargs):\n yield blob_obj.name\n",
"role": "user"
},
{
"content": "list",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str):
bucket_obj = self._ensure_bucket_loaded(bucket)
try:
bucket_obj.delete_blob(key)
except NotFound:
return False
|
delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str):\n bucket_obj = self._ensure_bucket_loaded(bucket)\n try:\n bucket_obj.delete_blob(key)\n except NotFound:\n return False\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->bytes:
bucket_obj = self._ensure_bucket_loaded(bucket)
blob_obj = bucket_obj.blob(key)
try:
return blob_obj.download_as_string()
except NotFound:
raise BlobNotFoundError(f'Could not find gs://{bucket}/{key}')
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->bytes:\n bucket_obj = self._ensure_bucket_loaded(bucket)\n blob_obj = bucket_obj.blob(key)\n try:\n return blob_obj.download_as_string()\n except NotFound:\n raise BlobNotFoundError(f'Could not find gs://{bucket}/{key}')\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->str:
blob_obj = self._get_blob_obj(bucket, key)
return self.compute_cloud_checksum(blob_obj)
|
get_cloud_checksum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->str:\n blob_obj = self._get_blob_obj(bucket, key)\n return self.compute_cloud_checksum(blob_obj)\n",
"role": "user"
},
{
"content": "get_cloud_checksum",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->str:
blob_obj = self._get_blob_obj(bucket, key)
return blob_obj.content_type
|
get_content_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->str:\n blob_obj = self._get_blob_obj(bucket, key)\n return blob_obj.content_type\n",
"role": "user"
},
{
"content": "get_content_type",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str, cloud_checksum: str) ->typing.Any:
blob_obj = self._get_blob_obj(bucket, key)
assert binascii.hexlify(base64.b64decode(blob_obj.crc32c)).decode('utf-8'
).lower() == cloud_checksum
return blob_obj.generation
|
get_copy_token
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str, cloud_checksum: str) ->typing.Any:\n blob_obj = self._get_blob_obj(bucket, key)\n assert binascii.hexlify(base64.b64decode(blob_obj.crc32c)).decode('utf-8'\n ).lower() == cloud_checksum\n return blob_obj.generation\n",
"role": "user"
},
{
"content": "get_copy_token",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->datetime.datetime:
blob_obj = self._get_blob_obj(bucket, key)
return blob_obj.time_created
|
get_creation_date
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->datetime.datetime:\n blob_obj = self._get_blob_obj(bucket, key)\n return blob_obj.time_created\n",
"role": "user"
},
{
"content": "get_creation_date",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->datetime.datetime:
blob_obj = self._get_blob_obj(bucket, key)
return blob_obj.updated
|
get_last_modified_date
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->datetime.datetime:\n blob_obj = self._get_blob_obj(bucket, key)\n return blob_obj.updated\n",
"role": "user"
},
{
"content": "get_last_modified_date",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->typing.Dict[str, str]:
blob_obj = self._get_blob_obj(bucket, key)
return blob_obj.metadata
|
get_user_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->typing.Dict[str, str]:\n blob_obj = self._get_blob_obj(bucket, key)\n return blob_obj.metadata\n",
"role": "user"
},
{
"content": "get_user_metadata",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->int:
blob_obj = self._get_blob_obj(bucket, key)
return blob_obj.size
|
get_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->int:\n blob_obj = self._get_blob_obj(bucket, key)\n return blob_obj.size\n",
"role": "user"
},
{
"content": "get_size",
"role": "assistant"
}
] |
def x(self, bucket: str) ->bool:
bucket_obj = self.gcp_client.bucket(bucket)
return bucket_obj.exists()
|
check_bucket_exists
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str) ->bool:\n bucket_obj = self.gcp_client.bucket(bucket)\n return bucket_obj.exists()\n",
"role": "user"
},
{
"content": "check_bucket_exists",
"role": "assistant"
}
] |
def x(self, shard):
@wraps(API_WRAPPER._get_shard)
def x(*arg, **kwargs):
"""Gets the shard '{}'""".format(shard)
return self.get_shards(Shard(shard, *arg, **kwargs))
return get_shard
|
get_shard
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shard):\n\n @wraps(API_WRAPPER._get_shard)\n def x(*arg, **kwargs):\n \"\"\"Gets the shard '{}'\"\"\".format(shard)\n return self.get_shards(Shard(shard, *arg, **kwargs))\n return get_shard\n",
"role": "user"
},
{
"content": "get_shard",
"role": "assistant"
}
] |
def x(self, shards, full_response, return_status_tuple=False):
try:
resp = self._request(shards)
if return_status_tuple:
return self._parser(resp, full_response), True
else:
return self._parser(resp, full_response)
except (ConflictError, CloudflareServerError, InternalServerError) as exc:
if return_status_tuple:
return None, False
elif self.api_mother.do_retry:
sleep(self.api_mother.retry_sleep)
resp = self.request(shards, full_response, True)
while not resp[1]:
sleep(self.api_mother.retry_sleep)
resp = self.request(shards, full_response, True)
return resp[0]
else:
raise exc
|
request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shards, full_response, return_status_tuple=False):\n try:\n resp = self._request(shards)\n if return_status_tuple:\n return self._parser(resp, full_response), True\n else:\n return self._parser(resp, full_response)\n except (ConflictError, CloudflareServerError, InternalServerError) as exc:\n if return_status_tuple:\n return None, False\n elif self.api_mother.do_retry:\n sleep(self.api_mother.retry_sleep)\n resp = self.request(shards, full_response, True)\n while not resp[1]:\n sleep(self.api_mother.retry_sleep)\n resp = self.request(shards, full_response, True)\n return resp[0]\n else:\n raise exc\n",
"role": "user"
},
{
"content": "request",
"role": "assistant"
}
] |
def x(self, *args, full_response=False):
resp = self.request(shards=args, full_response=full_response)
return resp
|
get_shards
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, full_response=False):\n resp = self.request(shards=args, full_response=full_response)\n return resp\n",
"role": "user"
},
{
"content": "get_shards",
"role": "assistant"
}
] |
def x(self, command, full_response=False, **kwargs):
command = Shard(c=command)
return self.get_shards(*(command, Shard(**kwargs)), full_response=
full_response)
|
command
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, command, full_response=False, **kwargs):\n command = Shard(c=command)\n return self.get_shards(*(command, Shard(**kwargs)), full_response=\n full_response)\n",
"role": "user"
},
{
"content": "command",
"role": "assistant"
}
] |
def x(telegram=None, client_key=None, tgid=None, key=None):
if telegram:
pass
else:
telegram = self.api_mother.telegram(client_key, tgid, key)
telegram.send_telegram(self.nation_name)
|
send_telegram
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(telegram=None, client_key=None, tgid=None, key=None):\n if telegram:\n pass\n else:\n telegram = self.api_mother.telegram(client_key, tgid, key)\n telegram.send_telegram(self.nation_name)\n",
"role": "user"
},
{
"content": "send_telegram",
"role": "assistant"
}
] |
def x(self, checksum=None, token=None, full_response=False):
payload = {'checksum': checksum, 'a': 'verify'}
if token:
payload.update({'token': token})
return self.get_shards(Shard(**payload), full_response=True)
|
verify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, checksum=None, token=None, full_response=False):\n payload = {'checksum': checksum, 'a': 'verify'}\n if token:\n payload.update({'token': token})\n return self.get_shards(Shard(**payload), full_response=True)\n",
"role": "user"
},
{
"content": "verify",
"role": "assistant"
}
] |
def x(self, resp) ->typing.Iterable[typing.Tuple[str, dict]]:
raise NotImplementedError()
|
get_listing_from_response
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, resp) ->typing.Iterable[typing.Tuple[str, dict]]:\n raise NotImplementedError()\n",
"role": "user"
},
{
"content": "get_listing_from_response",
"role": "assistant"
}
] |
def x(self, bucket: str, prefix: str=None, delimiter: str=None
) ->typing.Iterator[str]:
raise NotImplementedError()
|
list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, prefix: str=None, delimiter: str=None\n ) ->typing.Iterator[str]:\n raise NotImplementedError()\n",
"role": "user"
},
{
"content": "list",
"role": "assistant"
}
] |
def x(self, bucket: str, prefix: str=None, delimiter: str=None,
start_after_key: str=None, token: str=None, k_page_max: int=None
) ->typing.Iterable[typing.Tuple[str, dict]]:
raise NotImplementedError()
|
list_v2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, prefix: str=None, delimiter: str=None,\n start_after_key: str=None, token: str=None, k_page_max: int=None\n ) ->typing.Iterable[typing.Tuple[str, dict]]:\n raise NotImplementedError()\n",
"role": "user"
},
{
"content": "list_v2",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str, src_file_handle: typing.BinaryIO,
content_type: str=None, metadata: dict=None):
raise NotImplementedError()
|
upload_file_handle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str, src_file_handle: typing.BinaryIO,\n content_type: str=None, metadata: dict=None):\n raise NotImplementedError()\n",
"role": "user"
},
{
"content": "upload_file_handle",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str, cloud_checksum: str) ->typing.Any:
raise NotImplementedError()
|
get_copy_token
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str, cloud_checksum: str) ->typing.Any:\n raise NotImplementedError()\n",
"role": "user"
},
{
"content": "get_copy_token",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->typing.Dict[str, str]:
raise NotImplementedError()
|
get_user_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->typing.Dict[str, str]:\n raise NotImplementedError()\n",
"role": "user"
},
{
"content": "get_user_metadata",
"role": "assistant"
}
] |
def x(self, bucket: str, prefix: str=None, delimiter: str=None
) ->typing.Iterator[str]:
kwargs = dict()
if prefix is not None:
kwargs['Prefix'] = prefix
if delimiter is not None:
kwargs['Delimiter'] = delimiter
for item in boto3.resource('s3').Bucket(bucket).objects.filter(**kwargs):
yield item.key
|
list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, prefix: str=None, delimiter: str=None\n ) ->typing.Iterator[str]:\n kwargs = dict()\n if prefix is not None:\n kwargs['Prefix'] = prefix\n if delimiter is not None:\n kwargs['Delimiter'] = delimiter\n for item in boto3.resource('s3').Bucket(bucket).objects.filter(**kwargs):\n yield item.key\n",
"role": "user"
},
{
"content": "list",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->bytes:
try:
response = self.s3_client.get_object(Bucket=bucket, Key=key)
return response['Body'].read()
except botocore.exceptions.ClientError as ex:
if ex.response['Error']['Code'] == 'NoSuchKey':
raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'
) from ex
raise BlobStoreUnknownError(ex)
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->bytes:\n try:\n response = self.s3_client.get_object(Bucket=bucket, Key=key)\n return response['Body'].read()\n except botocore.exceptions.ClientError as ex:\n if ex.response['Error']['Code'] == 'NoSuchKey':\n raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'\n ) from ex\n raise BlobStoreUnknownError(ex)\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->dict:
try:
return self.s3_client.head_object(Bucket=bucket, Key=key)
except botocore.exceptions.ClientError as ex:
if str(ex.response['Error']['Code']) == str(requests.codes.not_found):
raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'
) from ex
raise BlobStoreUnknownError(ex)
|
get_all_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->dict:\n try:\n return self.s3_client.head_object(Bucket=bucket, Key=key)\n except botocore.exceptions.ClientError as ex:\n if str(ex.response['Error']['Code']) == str(requests.codes.not_found):\n raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'\n ) from ex\n raise BlobStoreUnknownError(ex)\n",
"role": "user"
},
{
"content": "get_all_metadata",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->str:
response = self.get_all_metadata(bucket, key)
return response['ContentType']
|
get_content_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->str:\n response = self.get_all_metadata(bucket, key)\n return response['ContentType']\n",
"role": "user"
},
{
"content": "get_content_type",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->str:
response = self.get_all_metadata(bucket, key)
return self.compute_cloud_checksum(response)
|
get_cloud_checksum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->str:\n response = self.get_all_metadata(bucket, key)\n return self.compute_cloud_checksum(response)\n",
"role": "user"
},
{
"content": "get_cloud_checksum",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->datetime:
return self.get_last_modified_date(bucket, key)
|
get_creation_date
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->datetime:\n return self.get_last_modified_date(bucket, key)\n",
"role": "user"
},
{
"content": "get_creation_date",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->datetime:
response = self.get_all_metadata(bucket, key)
return response['LastModified']
|
get_last_modified_date
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->datetime:\n response = self.get_all_metadata(bucket, key)\n return response['LastModified']\n",
"role": "user"
},
{
"content": "get_last_modified_date",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->typing.Dict[str, str]:
try:
response = self.get_all_metadata(bucket, key)
metadata = response['Metadata'].copy()
response = self.s3_client.get_object_tagging(Bucket=bucket, Key=key)
for tag in response['TagSet']:
key, value = tag['Key'], tag['Value']
metadata[key] = value
return metadata
except botocore.exceptions.ClientError as ex:
if str(ex.response['Error']['Code']) == str(requests.codes.not_found):
raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'
) from ex
raise BlobStoreUnknownError(ex)
|
get_user_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->typing.Dict[str, str]:\n try:\n response = self.get_all_metadata(bucket, key)\n metadata = response['Metadata'].copy()\n response = self.s3_client.get_object_tagging(Bucket=bucket, Key=key)\n for tag in response['TagSet']:\n key, value = tag['Key'], tag['Value']\n metadata[key] = value\n return metadata\n except botocore.exceptions.ClientError as ex:\n if str(ex.response['Error']['Code']) == str(requests.codes.not_found):\n raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'\n ) from ex\n raise BlobStoreUnknownError(ex)\n",
"role": "user"
},
{
"content": "get_user_metadata",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str) ->int:
try:
response = self.get_all_metadata(bucket, key)
size = response['ContentLength']
return size
except botocore.exceptions.ClientError as ex:
if str(ex.response['Error']['Code']) == str(requests.codes.not_found):
raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'
) from ex
raise BlobStoreUnknownError(ex)
|
get_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str) ->int:\n try:\n response = self.get_all_metadata(bucket, key)\n size = response['ContentLength']\n return size\n except botocore.exceptions.ClientError as ex:\n if str(ex.response['Error']['Code']) == str(requests.codes.not_found):\n raise BlobNotFoundError(f'Could not find s3://{bucket}/{key}'\n ) from ex\n raise BlobStoreUnknownError(ex)\n",
"role": "user"
},
{
"content": "get_size",
"role": "assistant"
}
] |
def x(self, bucket: str, key: str, upload_id: str, part_count: int,
search_start: int=1, return_count: int=1) ->typing.Sequence[int]:
if part_count < search_start:
raise ValueError('')
result = list()
while True:
kwargs = dict(Bucket=bucket, Key=key, UploadId=upload_id)
if search_start > 1:
kwargs['PartNumberMarker'] = search_start - 1
parts_resp = self.s3_client.list_parts(**kwargs)
parts_map = set()
for part_detail in parts_resp.get('Parts', []):
parts_map.add(part_detail['PartNumber'])
while True:
if search_start not in parts_map:
result.append(search_start)
if len(result) == return_count or search_start == part_count:
return result
search_start += 1
if parts_resp['IsTruncated'] and search_start == parts_resp[
'NextPartNumberMarker']:
break
|
find_next_missing_parts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str, key: str, upload_id: str, part_count: int,\n search_start: int=1, return_count: int=1) ->typing.Sequence[int]:\n if part_count < search_start:\n raise ValueError('')\n result = list()\n while True:\n kwargs = dict(Bucket=bucket, Key=key, UploadId=upload_id)\n if search_start > 1:\n kwargs['PartNumberMarker'] = search_start - 1\n parts_resp = self.s3_client.list_parts(**kwargs)\n parts_map = set()\n for part_detail in parts_resp.get('Parts', []):\n parts_map.add(part_detail['PartNumber'])\n while True:\n if search_start not in parts_map:\n result.append(search_start)\n if len(result) == return_count or search_start == part_count:\n return result\n search_start += 1\n if parts_resp['IsTruncated'] and search_start == parts_resp[\n 'NextPartNumberMarker']:\n break\n",
"role": "user"
},
{
"content": "find_next_missing_parts",
"role": "assistant"
}
] |
def x(self, bucket: str) ->bool:
exists = True
try:
self.s3_client.head_bucket(Bucket=bucket)
except botocore.exceptions.ClientError as e:
error_code = int(e.response['Error']['Code'])
if error_code == 404:
exists = False
return exists
|
check_bucket_exists
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket: str) ->bool:\n exists = True\n try:\n self.s3_client.head_bucket(Bucket=bucket)\n except botocore.exceptions.ClientError as e:\n error_code = int(e.response['Error']['Code'])\n if error_code == 404:\n exists = False\n return exists\n",
"role": "user"
},
{
"content": "check_bucket_exists",
"role": "assistant"
}
] |
def x(self, bucket) ->str:
region = self.s3_client.get_bucket_location(Bucket=bucket)[
'LocationConstraint']
return 'us-east-1' if region is None else region
|
get_bucket_region
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket) ->str:\n region = self.s3_client.get_bucket_location(Bucket=bucket)[\n 'LocationConstraint']\n return 'us-east-1' if region is None else region\n",
"role": "user"
},
{
"content": "get_bucket_region",
"role": "assistant"
}
] |
def x(filename='scanf.py'):
version = ''
with open(filename, 'r') as fp:
for line in fp:
m = re.search('__version__ .* (.*)', line)
if m is not None:
version = m.group(1).strip("'")
break
return version
|
get_version
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename='scanf.py'):\n version = ''\n with open(filename, 'r') as fp:\n for line in fp:\n m = re.search('__version__ .* (.*)', line)\n if m is not None:\n version = m.group(1).strip(\"'\")\n break\n return version\n",
"role": "user"
},
{
"content": "get_version",
"role": "assistant"
}
] |
def x(format, collapseWhitespace=True):
format_pat = ''
cast_list = []
i = 0
length = len(format)
while i < length:
found = None
for token, pattern, cast in scanf_translate:
found = token.match(format, i)
if found:
if cast:
cast_list.append(cast)
groups = found.groupdict() or found.groups()
if groups:
pattern = pattern % groups
format_pat += pattern
i = found.end()
break
if not found:
char = format[i]
if char in '|^$()[]-.+*?{}<>\\':
format_pat += '\\'
format_pat += char
i += 1
if DEBUG:
print('DEBUG: %r -> %s' % (format, format_pat))
if collapseWhitespace:
format_pat = re.sub('\\s+', '\\\\s+', format_pat)
format_re = re.compile(format_pat)
return format_re, cast_list
|
scanf_compile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(format, collapseWhitespace=True):\n format_pat = ''\n cast_list = []\n i = 0\n length = len(format)\n while i < length:\n found = None\n for token, pattern, cast in scanf_translate:\n found = token.match(format, i)\n if found:\n if cast:\n cast_list.append(cast)\n groups = found.groupdict() or found.groups()\n if groups:\n pattern = pattern % groups\n format_pat += pattern\n i = found.end()\n break\n if not found:\n char = format[i]\n if char in '|^$()[]-.+*?{}<>\\\\':\n format_pat += '\\\\'\n format_pat += char\n i += 1\n if DEBUG:\n print('DEBUG: %r -> %s' % (format, format_pat))\n if collapseWhitespace:\n format_pat = re.sub('\\\\s+', '\\\\\\\\s+', format_pat)\n format_re = re.compile(format_pat)\n return format_re, cast_list\n",
"role": "user"
},
{
"content": "scanf_compile",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.