sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def saveState(self, stateObj): """Utility methos to save plugin state stored in stateObj to persistent storage to permit access to previous state in subsequent plugin runs. Any object that can be pickled and unpickled can be used to store the plugin state. @param stateObj: Object that stores plugin state. """ try: fp = open(self._stateFile, 'w') pickle.dump(stateObj, fp) except: raise IOError("Failure in storing plugin state in file: %s" % self._stateFile) return True
Utility methos to save plugin state stored in stateObj to persistent storage to permit access to previous state in subsequent plugin runs. Any object that can be pickled and unpickled can be used to store the plugin state. @param stateObj: Object that stores plugin state.
entailment
def restoreState(self): """Utility method to restore plugin state from persistent storage to permit access to previous plugin state. @return: Object that stores plugin state. """ if os.path.exists(self._stateFile): try: fp = open(self._stateFile, 'r') stateObj = pickle.load(fp) except: raise IOError("Failure in reading plugin state from file: %s" % self._stateFile) return stateObj return None
Utility method to restore plugin state from persistent storage to permit access to previous plugin state. @return: Object that stores plugin state.
entailment
def appendGraph(self, graph_name, graph): """Utility method to associate Graph Object to Plugin. This utility method is for use in constructor of child classes for associating a MuninGraph instances to the plugin. @param graph_name: Graph Name @param graph: MuninGraph Instance """ self._graphDict[graph_name] = graph self._graphNames.append(graph_name) if not self.isMultigraph and len(self._graphNames) > 1: raise AttributeError("Simple Munin Plugins cannot have more than one graph.")
Utility method to associate Graph Object to Plugin. This utility method is for use in constructor of child classes for associating a MuninGraph instances to the plugin. @param graph_name: Graph Name @param graph: MuninGraph Instance
entailment
def appendSubgraph(self, parent_name, graph_name, graph): """Utility method to associate Subgraph Instance to Root Graph Instance. This utility method is for use in constructor of child classes for associating a MuninGraph Subgraph instance with a Root Graph instance. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @param graph: MuninGraph Instance """ if not self.isMultigraph: raise AttributeError("Simple Munin Plugins cannot have subgraphs.") if self._graphDict.has_key(parent_name): if not self._subgraphDict.has_key(parent_name): self._subgraphDict[parent_name] = {} self._subgraphNames[parent_name] = [] self._subgraphDict[parent_name][graph_name] = graph self._subgraphNames[parent_name].append(graph_name) else: raise AttributeError("Invalid parent graph name %s used for subgraph %s." % (parent_name, graph_name))
Utility method to associate Subgraph Instance to Root Graph Instance. This utility method is for use in constructor of child classes for associating a MuninGraph Subgraph instance with a Root Graph instance. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @param graph: MuninGraph Instance
entailment
def setGraphVal(self, graph_name, field_name, val): """Utility method to set Value for Field in Graph. The private method is for use in retrieveVals() method of child classes. @param graph_name: Graph Name @param field_name: Field Name. @param val: Value for field. """ graph = self._getGraph(graph_name, True) if graph.hasField(field_name): graph.setVal(field_name, val) else: raise AttributeError("Invalid field name %s for graph %s." % (field_name, graph_name))
Utility method to set Value for Field in Graph. The private method is for use in retrieveVals() method of child classes. @param graph_name: Graph Name @param field_name: Field Name. @param val: Value for field.
entailment
def setSubgraphVal(self, parent_name, graph_name, field_name, val): """Set Value for Field in Subgraph. The private method is for use in retrieveVals() method of child classes. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @param field_name: Field Name. @param val: Value for field. """ subgraph = self._getSubGraph(parent_name, graph_name, True) if subgraph.hasField(field_name): subgraph.setVal(field_name, val) else: raise AttributeError("Invalid field name %s for subgraph %s " "of parent graph %s." % (field_name, graph_name, parent_name))
Set Value for Field in Subgraph. The private method is for use in retrieveVals() method of child classes. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @param field_name: Field Name. @param val: Value for field.
entailment
def getSubgraphList(self, parent_name): """Returns list of names of subgraphs for Root Graph with name parent_name. @param parent_name: Name of Root Graph. @return: List of subgraph names. """ if not self.isMultigraph: raise AttributeError("Simple Munin Plugins cannot have subgraphs.") if self._graphDict.has_key(parent_name): return self._subgraphNames[parent_name] or [] else: raise AttributeError("Invalid parent graph name %s." % (parent_name,))
Returns list of names of subgraphs for Root Graph with name parent_name. @param parent_name: Name of Root Graph. @return: List of subgraph names.
entailment
def graphHasField(self, graph_name, field_name): """Return true if graph with name graph_name has field with name field_name. @param graph_name: Graph Name @param field_name: Field Name. @return: Boolean """ graph = self._graphDict.get(graph_name, True) return graph.hasField(field_name)
Return true if graph with name graph_name has field with name field_name. @param graph_name: Graph Name @param field_name: Field Name. @return: Boolean
entailment
def subGraphHasField(self, parent_name, graph_name, field_name): """Return true if subgraph with name graph_name with parent graph with name parent_name has field with name field_name. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @param field_name: Field Name. @return: Boolean """ subgraph = self._getSubGraph(parent_name, graph_name, True) return subgraph.hasField(field_name)
Return true if subgraph with name graph_name with parent graph with name parent_name has field with name field_name. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @param field_name: Field Name. @return: Boolean
entailment
def getGraphFieldList(self, graph_name): """Returns list of names of fields for graph with name graph_name. @param graph_name: Graph Name @return: List of field names for graph. """ graph = self._getGraph(graph_name, True) return graph.getFieldList()
Returns list of names of fields for graph with name graph_name. @param graph_name: Graph Name @return: List of field names for graph.
entailment
def getGraphFieldCount(self, graph_name): """Returns number of fields for graph with name graph_name. @param graph_name: Graph Name @return: Number of fields for graph. """ graph = self._getGraph(graph_name, True) return graph.getFieldCount()
Returns number of fields for graph with name graph_name. @param graph_name: Graph Name @return: Number of fields for graph.
entailment
def getSubgraphFieldList(self, parent_name, graph_name): """Returns list of names of fields for subgraph with name graph_name and parent graph with name parent_name. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @return: List of field names for subgraph. """ graph = self._getSubGraph(parent_name, graph_name, True) return graph.getFieldList()
Returns list of names of fields for subgraph with name graph_name and parent graph with name parent_name. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @return: List of field names for subgraph.
entailment
def getSubgraphFieldCount(self, parent_name, graph_name): """Returns number of fields for subgraph with name graph_name and parent graph with name parent_name. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @return: Number of fields for subgraph. """ graph = self._getSubGraph(parent_name, graph_name, True) return graph.getFieldCount()
Returns number of fields for subgraph with name graph_name and parent graph with name parent_name. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @return: Number of fields for subgraph.
entailment
def config(self): """Implements Munin Plugin Graph Configuration. Prints out configuration for graphs. Use as is. Not required to be overwritten in child classes. The plugin will work correctly as long as the Munin Graph objects have been populated. """ for parent_name in self._graphNames: graph = self._graphDict[parent_name] if self.isMultigraph: print "multigraph %s" % self._getMultigraphID(parent_name) print self._formatConfig(graph.getConfig()) print if (self.isMultigraph and self._nestedGraphs and self._subgraphDict and self._subgraphNames): for (parent_name, subgraph_names) in self._subgraphNames.iteritems(): for graph_name in subgraph_names: graph = self._subgraphDict[parent_name][graph_name] print "multigraph %s" % self.getMultigraphID(parent_name, graph_name) print self._formatConfig(graph.getConfig()) print return True
Implements Munin Plugin Graph Configuration. Prints out configuration for graphs. Use as is. Not required to be overwritten in child classes. The plugin will work correctly as long as the Munin Graph objects have been populated.
entailment
def fetch(self): """Implements Munin Plugin Fetch Option. Prints out measured values. """ self.retrieveVals() for parent_name in self._graphNames: graph = self._graphDict[parent_name] if self.isMultigraph: print "multigraph %s" % self._getMultigraphID(parent_name) print self._formatVals(graph.getVals()) print if (self.isMultigraph and self._nestedGraphs and self._subgraphDict and self._subgraphNames): for (parent_name, subgraph_names) in self._subgraphNames.iteritems(): for graph_name in subgraph_names: graph = self._subgraphDict[parent_name][graph_name] print "multigraph %s" % self.getMultigraphID(parent_name, graph_name) print self._formatVals(graph.getVals()) print return True
Implements Munin Plugin Fetch Option. Prints out measured values.
entailment
def run(self): """Implements main entry point for plugin execution.""" if len(self._argv) > 1 and len(self._argv[1]) > 0: oper = self._argv[1] else: oper = 'fetch' if oper == 'fetch': ret = self.fetch() elif oper == 'config': ret = self.config() if ret and self._dirtyConfig: ret = self.fetch() elif oper == 'autoconf': ret = self.autoconf() if ret: print "yes" else: print "no" ret = True elif oper == 'suggest': ret = self.suggest() else: raise AttributeError("Invalid command argument: %s" % oper) return ret
Implements main entry point for plugin execution.
entailment
def addField(self, name, label, type=None, draw=None, info=None, #@ReservedAssignment extinfo=None, colour=None, negative=None, graph=None, min=None, max=None, cdef=None, line=None, #@ReservedAssignment warning=None, critical=None): """Add field to Munin Graph @param name: Field Name @param label: Field Label @param type: Stat Type: 'COUNTER' / 'ABSOLUTE' / 'DERIVE' / 'GAUGE' @param draw: Graph Type: 'AREA' / 'LINE{1,2,3}' / 'STACK' / 'LINESTACK{1,2,3}' / 'AREASTACK' @param info: Detailed Field Info @param extinfo: Extended Field Info @param colour: Field Colour @param negative: Mirror Value @param graph: Draw on Graph - True / False (Default: True) @param min: Minimum Valid Value @param max: Maximum Valid Value @param cdef: CDEF @param line: Adds horizontal line at value defined for field. @param warning: Warning Value @param critical: Critical Value """ if self._autoFixNames: name = self._fixName(name) if negative is not None: negative = self._fixName(negative) self._fieldAttrDict[name] = dict(((k,v) for (k,v) in locals().iteritems() if (v is not None and k not in ('self',)))) self._fieldNameList.append(name)
Add field to Munin Graph @param name: Field Name @param label: Field Label @param type: Stat Type: 'COUNTER' / 'ABSOLUTE' / 'DERIVE' / 'GAUGE' @param draw: Graph Type: 'AREA' / 'LINE{1,2,3}' / 'STACK' / 'LINESTACK{1,2,3}' / 'AREASTACK' @param info: Detailed Field Info @param extinfo: Extended Field Info @param colour: Field Colour @param negative: Mirror Value @param graph: Draw on Graph - True / False (Default: True) @param min: Minimum Valid Value @param max: Maximum Valid Value @param cdef: CDEF @param line: Adds horizontal line at value defined for field. @param warning: Warning Value @param critical: Critical Value
entailment
def hasField(self, name): """Returns true if field with field_name exists. @param name: Field Name @return: Boolean """ if self._autoFixNames: name = self._fixName(name) return self._fieldAttrDict.has_key(name)
Returns true if field with field_name exists. @param name: Field Name @return: Boolean
entailment
def getConfig(self): """Returns dictionary of config entries for Munin Graph. @return: Dictionary of config entries. """ return {'graph': self._graphAttrDict, 'fields': [(field_name, self._fieldAttrDict.get(field_name)) for field_name in self._fieldNameList]}
Returns dictionary of config entries for Munin Graph. @return: Dictionary of config entries.
entailment
def setVal(self, name, val): """Set value for field in graph. @param name : Graph Name @param value : Value for field. """ if self._autoFixNames: name = self._fixName(name) self._fieldValDict[name] = val
Set value for field in graph. @param name : Graph Name @param value : Value for field.
entailment
def getVals(self): """Returns value list for Munin Graph @return: List of name-value pairs. """ return [(name, self._fieldValDict.get(name)) for name in self._fieldNameList]
Returns value list for Munin Graph @return: List of name-value pairs.
entailment
def initStats(self, extras=None): """Query and parse Web Server Status Page. @param extras: Include extra metrics, which can be computationally more expensive. """ if extras is not None: self._extras = extras if self._extras: detail = 1 else: detail = 0 url = "%s://%s:%d/%s?detail=%s" % (self._proto, self._host, self._port, self._monpath, detail) response = util.get_url(url, self._user, self._password) self._statusDict = {} for line in response.splitlines(): cols = line.split(':') if not self._statusDict.has_key(cols[0]): self._statusDict[cols[0]] = {} self._statusDict[cols[0]][cols[1]] = util.parse_value(cols[2])
Query and parse Web Server Status Page. @param extras: Include extra metrics, which can be computationally more expensive.
entailment
def initStats(self): """Query and parse Nginx Web Server Status Page.""" url = "%s://%s:%d/%s" % (self._proto, self._host, self._port, self._statuspath) response = util.get_url(url, self._user, self._password) self._statusDict = {} for line in response.splitlines(): mobj = re.match('\s*(\d+)\s+(\d+)\s+(\d+)\s*$', line) if mobj: idx = 0 for key in ('accepts','handled','requests'): idx += 1 self._statusDict[key] = util.parse_value(mobj.group(idx)) else: for (key,val) in re.findall('(\w+):\s*(\d+)', line): self._statusDict[key.lower()] = util.parse_value(val)
Query and parse Nginx Web Server Status Page.
entailment
def read_file(filename): """Read a file into a string""" path = os.path.abspath(os.path.dirname(__file__)) filepath = os.path.join(path, filename) try: return open(filepath).read() except IOError: return ''
Read a file into a string
entailment
def retrieveVals(self): """Retrieve values for graphs.""" proc_info = ProcessInfo() stats = {} for (prefix, is_thread) in (('proc', False), ('thread', True)): graph_name = '%s_status' % prefix if self.hasGraph(graph_name): if not stats.has_key(prefix): stats[prefix] = proc_info.getProcStatStatus(is_thread) for (fname, stat_key) in ( ('unint_sleep', 'uninterruptable_sleep'), ('stopped', 'stopped'), ('defunct', 'defunct'), ('running', 'running'), ('sleep', 'sleep')): self.setGraphVal(graph_name, fname, stats[prefix]['status'].get(stat_key)) graph_name = '%s_prio' % prefix if self.hasGraph(graph_name): if not stats.has_key(prefix): stats[prefix] = proc_info.getProcStatStatus(is_thread) for (fname, stat_key) in ( ('high', 'high'), ('low', 'low'), ('norm', 'norm'), ('locked', 'locked_in_mem')): self.setGraphVal(graph_name, fname, stats[prefix]['prio'].get(stat_key))
Retrieve values for graphs.
entailment
def retrieveVals(self): """Retrieve values for graphs.""" file_stats = self._fileInfo.getContainerStats() for contname in self._fileContList: stats = file_stats.get(contname) if stats is not None: if self.hasGraph('rackspace_cloudfiles_container_size'): self.setGraphVal('rackspace_cloudfiles_container_size', contname, stats.get('size')) if self.hasGraph('rackspace_cloudfiles_container_count'): self.setGraphVal('rackspace_cloudfiles_container_count', contname, stats.get('count'))
Retrieve values for graphs.
entailment
def plot(results, subjgroup=None, subjname='Subject Group', listgroup=None, listname='List', subjconds=None, listconds=None, plot_type=None, plot_style=None, title=None, legend=True, xlim=None, ylim=None, save_path=None, show=True, ax=None, **kwargs): """ General plot function that groups data by subject/list number and performs analysis. Parameters ---------- results : quail.FriedEgg Object containing results subjgroup : list of strings or ints String/int variables indicating how to group over subjects. Must be the length of the number of subjects subjname : string Name of the subject grouping variable listgroup : list of strings or ints String/int variables indicating how to group over list. Must be the length of the number of lists listname : string Name of the list grouping variable subjconds : list List of subject hues (str) to plot listconds : list List of list hues (str) to plot plot_type : string Specifies the type of plot. If list (default), the list groupings (listgroup) will determine the plot grouping. If subject, the subject groupings (subjgroup) will determine the plot grouping. If split (currenty just works for accuracy plots), both listgroup and subjgroup will determine the plot groupings plot_style : string Specifies the style of the plot. This currently works only for accuracy and fingerprint plots. The plot style can be bar (default for accruacy plot), violin (default for fingerprint plots) or swarm. title : string The title of the plot legend : bool If true (default), a legend is plotted. ylim : list of numbers A ymin/max can be specified by a list of the form [ymin, ymax] xlim : list of numbers A xmin/max can be specified by a list of the form [xmin, xmax] save_path : str Path to save out figure. Include the file extension, e.g. save_path='figure.pdf' show : bool If False, do not show figure, but still return ax handle (default True). ax : Matplotlib.Axes object or None A plot object to draw to. If None, a new one is created and returned. Returns ---------- ax : matplotlib.Axes.Axis An axis handle for the figure """ def plot_acc(data, plot_style, plot_type, listname, subjname, **kwargs): # set defaul style to bar plot_style = plot_style if plot_style is not None else 'bar' plot_type = plot_type if plot_type is not None else 'list' if plot_style is 'bar': plot_func = sns.barplot elif plot_style is 'swarm': plot_func = sns.swarmplot elif plot_style is 'violin': plot_func = sns.violinplot if plot_type is 'list': ax = plot_func(data=data, x=listname, y="Accuracy", **kwargs) elif plot_type is 'subject': ax = plot_func(data=data, x=subjname, y="Accuracy", **kwargs) elif plot_type is 'split': ax = plot_func(data=data, x=subjname, y="Accuracy", hue=listname, **kwargs) return ax def plot_temporal(data, plot_style, plot_type, listname, subjname, **kwargs): # set default style to bar plot_style = plot_style if plot_style is not None else 'bar' plot_type = plot_type if plot_type is not None else 'list' if plot_style is 'bar': plot_func = sns.barplot elif plot_style is 'swarm': plot_func = sns.swarmplot elif plot_style is 'violin': plot_func = sns.violinplot if plot_type is 'list': ax = plot_func(data=data, x=listname, y="Temporal Clustering Score", **kwargs) elif plot_type is 'subject': ax = plot_func(data=data, x=subjname, y="Temporal Clustering Score", **kwargs) elif plot_type is 'split': ax = plot_func(data=data, x=subjname, y="Temporal Clustering Score", hue=listname, **kwargs) return ax def plot_fingerprint(data, plot_style, plot_type, listname, subjname, **kwargs): # set default style to violin plot_style = plot_style if plot_style is not None else 'violin' plot_type = plot_type if plot_type is not None else 'list' if plot_style is 'bar': plot_func = sns.barplot elif plot_style is 'swarm': plot_func = sns.swarmplot elif plot_style is 'violin': plot_func = sns.violinplot if plot_type is 'list': ax = plot_func(data=tidy_data, x="Feature", y="Clustering Score", hue=listname, **kwargs) elif plot_type is 'subject': ax = plot_func(data=tidy_data, x="Feature", y="Clustering Score", hue=subjname, **kwargs) else: ax = plot_func(data=tidy_data, x="Feature", y="Clustering Score", **kwargs) return ax def plot_fingerprint_temporal(data, plot_style, plot_type, listname, subjname, **kwargs): # set default style to violin plot_style = plot_style if plot_style is not None else 'violin' plot_type = plot_type if plot_type is not None else 'list' if plot_style is 'bar': plot_func = sns.barplot elif plot_style is 'swarm': plot_func = sns.swarmplot elif plot_style is 'violin': plot_func = sns.violinplot order = list(tidy_data['Feature'].unique()) if plot_type is 'list': ax = plot_func(data=data, x="Feature", y="Clustering Score", hue=listname, order=order, **kwargs) elif plot_type is 'subject': ax = plot_func(data=data, x="Feature", y="Clustering Score", hue=subjname, order=order, **kwargs) else: ax = plot_func(data=data, x="Feature", y="Clustering Score", order=order, **kwargs) return ax def plot_spc(data, plot_style, plot_type, listname, subjname, **kwargs): plot_type = plot_type if plot_type is not None else 'list' if plot_type is 'subject': ax = sns.lineplot(data = data, x="Position", y="Proportion Recalled", hue=subjname, **kwargs) elif plot_type is 'list': ax = sns.lineplot(data = data, x="Position", y="Proportion Recalled", hue=listname, **kwargs) ax.set_xlim(0, data['Position'].max()) return ax def plot_pnr(data, plot_style, plot_type, listname, subjname, position, list_length, **kwargs): plot_type = plot_type if plot_type is not None else 'list' if plot_type is 'subject': ax = sns.lineplot(data = data, x="Position", y='Probability of Recall: Position ' + str(position), hue=subjname, **kwargs) elif plot_type is 'list': ax = sns.lineplot(data = data, x="Position", y='Probability of Recall: Position ' + str(position), hue=listname, **kwargs) ax.set_xlim(0,list_length-1) return ax def plot_lagcrp(data, plot_style, plot_type, listname, subjname, **kwargs): plot_type = plot_type if plot_type is not None else 'list' if plot_type is 'subject': ax = sns.lineplot(data=data[data['Position']<0], x="Position", y="Conditional Response Probability", hue=subjname, **kwargs) if 'ax' in kwargs: del kwargs['ax'] sns.lineplot(data=data[data['Position']>0], x="Position", y="Conditional Response Probability", hue=subjname, ax=ax, legend=False, **kwargs) elif plot_type is 'list': ax = sns.lineplot(data=data[data['Position']<0], x="Position", y="Conditional Response Probability", hue=listname, **kwargs) if 'ax' in kwargs: del kwargs['ax'] sns.lineplot(data=data[data['Position']>0], x="Position", y="Conditional Response Probability", hue=listname, ax=ax, legend=False, **kwargs) ax.set_xlim(-5,5) return ax # if no grouping, set default to iterate over each list independently subjgroup = subjgroup if subjgroup is not None else results.data.index.levels[0].values listgroup = listgroup if listgroup is not None else results.data.index.levels[1].values if subjconds: # make sure its a list if type(subjconds) is not list: subjconds=[subjconds] # slice idx = pd.IndexSlice results.data = results.data.sort_index() results.data = results.data.loc[idx[subjconds, :],:] # filter subjgroup subjgroup = filter(lambda x: x in subjconds, subjgroup) if listconds: # make sure its a list if type(listconds) is not list: listconds=[listconds] # slice idx = pd.IndexSlice results.data = results.data.sort_index() results.data = results.data.loc[idx[:, listconds],:] # convert to tiny and format for plotting tidy_data = format2tidy(results.data, subjname, listname, subjgroup, analysis=results.analysis, position=results.position) if not ax==None: kwargs['ax']=ax #plot! if results.analysis=='accuracy': ax = plot_acc(tidy_data, plot_style, plot_type, listname, subjname, **kwargs) elif results.analysis=='temporal': ax = plot_temporal(tidy_data, plot_style, plot_type, listname, subjname, **kwargs) elif results.analysis=='fingerprint': ax = plot_fingerprint(tidy_data, plot_style, plot_type, listname, subjname, **kwargs) elif results.analysis=='fingerprint_temporal': ax = plot_fingerprint_temporal(tidy_data, plot_style, plot_type, listname, subjname, **kwargs) elif results.analysis=='spc': ax = plot_spc(tidy_data, plot_style, plot_type, listname, subjname, **kwargs) elif results.analysis=='pfr' or results.analysis=='pnr': ax = plot_pnr(tidy_data, plot_style, plot_type, listname, subjname, position=results.position, list_length=results.list_length, **kwargs) elif results.analysis=='lagcrp': ax = plot_lagcrp(tidy_data, plot_style, plot_type, listname, subjname, **kwargs) else: raise ValueError("Did not recognize analysis.") # add title if title: plt.title(title) if legend is False: try: ax.legend_.remove() except: pass if xlim: plt.xlim(xlim) if ylim: plt.ylim(ylim) if save_path: mpl.rcParams['pdf.fonttype'] = 42 plt.savefig(save_path) return ax
General plot function that groups data by subject/list number and performs analysis. Parameters ---------- results : quail.FriedEgg Object containing results subjgroup : list of strings or ints String/int variables indicating how to group over subjects. Must be the length of the number of subjects subjname : string Name of the subject grouping variable listgroup : list of strings or ints String/int variables indicating how to group over list. Must be the length of the number of lists listname : string Name of the list grouping variable subjconds : list List of subject hues (str) to plot listconds : list List of list hues (str) to plot plot_type : string Specifies the type of plot. If list (default), the list groupings (listgroup) will determine the plot grouping. If subject, the subject groupings (subjgroup) will determine the plot grouping. If split (currenty just works for accuracy plots), both listgroup and subjgroup will determine the plot groupings plot_style : string Specifies the style of the plot. This currently works only for accuracy and fingerprint plots. The plot style can be bar (default for accruacy plot), violin (default for fingerprint plots) or swarm. title : string The title of the plot legend : bool If true (default), a legend is plotted. ylim : list of numbers A ymin/max can be specified by a list of the form [ymin, ymax] xlim : list of numbers A xmin/max can be specified by a list of the form [xmin, xmax] save_path : str Path to save out figure. Include the file extension, e.g. save_path='figure.pdf' show : bool If False, do not show figure, but still return ax handle (default True). ax : Matplotlib.Axes object or None A plot object to draw to. If None, a new one is created and returned. Returns ---------- ax : matplotlib.Axes.Axis An axis handle for the figure
entailment
def getIfStats(self): """Return dictionary of Traffic Stats for Network Interfaces. @return: Nested dictionary of statistics for each interface. """ info_dict = {} try: fp = open(ifaceStatsFile, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading interface stats from file: %s' % ifaceStatsFile) for line in data.splitlines(): mobj = re.match('^\s*([\w\d:]+):\s*(.*\S)\s*$', line) if mobj: iface = mobj.group(1) statline = mobj.group(2) info_dict[iface] = dict(zip( ('rxbytes', 'rxpackets', 'rxerrs', 'rxdrop', 'rxfifo', 'rxframe', 'rxcompressed', 'rxmulticast', 'txbytes', 'txpackets', 'txerrs', 'txdrop', 'txfifo', 'txcolls', 'txcarrier', 'txcompressed'), [int(x) for x in statline.split()])) return info_dict
Return dictionary of Traffic Stats for Network Interfaces. @return: Nested dictionary of statistics for each interface.
entailment
def getIfConfig(self): """Return dictionary of Interface Configuration (ifconfig). @return: Dictionary of if configurations keyed by if name. """ conf = {} try: out = subprocess.Popen([ipCmd, "addr", "show"], stdout=subprocess.PIPE).communicate()[0] except: raise Exception('Execution of command %s failed.' % ipCmd) for line in out.splitlines(): mobj = re.match('^\d+: (\S+):\s+<(\S*)>\s+(\S.*\S)\s*$', line) if mobj: iface = mobj.group(1) conf[iface] = {} continue mobj = re.match('^\s{4}link\/(.*\S)\s*$', line) if mobj: arr = mobj.group(1).split() if len(arr) > 0: conf[iface]['type'] = arr[0] if len(arr) > 1: conf[iface]['hwaddr'] = arr[1] continue mobj = re.match('^\s+(inet|inet6)\s+([\d\.\:A-Za-z]+)\/(\d+)($|\s+.*\S)\s*$', line) if mobj: proto = mobj.group(1) if not conf[iface].has_key(proto): conf[iface][proto] = [] addrinfo = {} addrinfo['addr'] = mobj.group(2).lower() addrinfo['mask'] = int(mobj.group(3)) arr = mobj.group(4).split() if len(arr) > 0 and arr[0] == 'brd': addrinfo['brd'] = arr[1] conf[iface][proto].append(addrinfo) continue return conf
Return dictionary of Interface Configuration (ifconfig). @return: Dictionary of if configurations keyed by if name.
entailment
def getRoutes(self): """Get routing table. @return: List of routes. """ routes = [] try: out = subprocess.Popen([routeCmd, "-n"], stdout=subprocess.PIPE).communicate()[0] except: raise Exception('Execution of command %s failed.' % ipCmd) lines = out.splitlines() if len(lines) > 1: headers = [col.lower() for col in lines[1].split()] for line in lines[2:]: routes.append(dict(zip(headers, line.split()))) return routes
Get routing table. @return: List of routes.
entailment
def execNetstatCmd(self, *args): """Execute ps command with positional params args and return result as list of lines. @param *args: Positional params for netstat command. @return: List of output lines """ out = util.exec_command([netstatCmd,] + list(args)) return out.splitlines()
Execute ps command with positional params args and return result as list of lines. @param *args: Positional params for netstat command. @return: List of output lines
entailment
def parseNetstatCmd(self, tcp=True, udp=True, ipv4=True, ipv6=True, include_listen=True, only_listen=False, show_users=False, show_procs=False, resolve_hosts=False, resolve_ports=False, resolve_users=True): """Execute netstat command and return result as a nested dictionary. @param tcp: Include TCP ports in ouput if True. @param udp: Include UDP ports in ouput if True. @param ipv4: Include IPv4 ports in output if True. @param ipv6: Include IPv6 ports in output if True. @param include_listen: Include listening ports in output if True. @param only_listen: Include only listening ports in output if True. @param show_users: Show info on owning users for ports if True. @param show_procs: Show info on PID and Program Name attached to ports if True. @param resolve_hosts: Resolve IP addresses into names if True. @param resolve_ports: Resolve numeric ports to names if True. @param resolve_users: Resolve numeric user IDs to user names if True. @return: List of headers and list of rows and columns. """ headers = ['proto', 'ipversion', 'recvq', 'sendq', 'localaddr', 'localport','foreignaddr', 'foreignport', 'state'] args = [] proto = [] if ipv4: proto.append('inet') if ipv6: proto.append('inet6') if len(proto) > 0: args.append('-A') args.append(','.join(proto)) if tcp: args.append('-t') if udp: args.append('-u') if only_listen: args.append('-l') elif include_listen: args.append('-a') regexp_str = ('(tcp|udp)(\d*)\s+(\d+)\s+(\d+)\s+' '(\S+):(\w+)\s+(\S+):(\w+|\*)\s+(\w*)') if show_users: args.append('-e') regexp_str += '\s+(\w+)\s+(\d+)' headers.extend(['user', 'inode']) if show_procs: args.append('-p') regexp_str += '\s+(\S+)' headers.extend(['pid', 'prog']) if not resolve_hosts: args.append('--numeric-hosts') if not resolve_ports: args.append('--numeric-ports') if not resolve_users: args.append('--numeric-users') lines = self.execNetstatCmd(*args) stats = [] regexp = re.compile(regexp_str) for line in lines[2:]: mobj = regexp.match(line) if mobj is not None: stat = list(mobj.groups()) if stat[1] == '0': stat[1] = '4' if stat[8] == '': stat[8] = None if show_procs: proc = stat.pop().split('/') if len(proc) == 2: stat.extend(proc) else: stat.extend([None, None]) stats.append(stat) return {'headers': headers, 'stats': stats}
Execute netstat command and return result as a nested dictionary. @param tcp: Include TCP ports in ouput if True. @param udp: Include UDP ports in ouput if True. @param ipv4: Include IPv4 ports in output if True. @param ipv6: Include IPv6 ports in output if True. @param include_listen: Include listening ports in output if True. @param only_listen: Include only listening ports in output if True. @param show_users: Show info on owning users for ports if True. @param show_procs: Show info on PID and Program Name attached to ports if True. @param resolve_hosts: Resolve IP addresses into names if True. @param resolve_ports: Resolve numeric ports to names if True. @param resolve_users: Resolve numeric user IDs to user names if True. @return: List of headers and list of rows and columns.
entailment
def getStats(self, tcp=True, udp=True, ipv4=True, ipv6=True, include_listen=True, only_listen=False, show_users=False, show_procs=False, resolve_hosts=False, resolve_ports=False, resolve_users=True, **kwargs): """Execute netstat command and return result as a nested dictionary. @param tcp: Include TCP ports in ouput if True. @param udp: Include UDP ports in ouput if True. @param ipv4: Include IPv4 ports in output if True. @param ipv6: Include IPv6 ports in output if True. @param include_listen: Include listening ports in output if True. @param only_listen: Include only listening ports in output if True. @param show_users: Show info on owning users for ports if True. @param show_procs: Show info on PID and Program Name attached to ports if True. @param resolve_hosts: Resolve IP addresses into names if True. @param resolve_ports: Resolve numeric ports to names if True. @param resolve_users: Resolve numeric user IDs to user names if True. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: List of headers and list of rows and columns. """ pinfo = self.parseNetstatCmd(tcp, udp, ipv4, ipv6, include_listen, only_listen, show_users, show_procs, resolve_hosts, resolve_ports, resolve_users) if pinfo: if len(kwargs) > 0: pfilter = util.TableFilter() pfilter.registerFilters(**kwargs) stats = pfilter.applyFilters(pinfo['headers'], pinfo['stats']) return {'headers': pinfo['headers'], 'stats': stats} else: return pinfo else: return None
Execute netstat command and return result as a nested dictionary. @param tcp: Include TCP ports in ouput if True. @param udp: Include UDP ports in ouput if True. @param ipv4: Include IPv4 ports in output if True. @param ipv6: Include IPv6 ports in output if True. @param include_listen: Include listening ports in output if True. @param only_listen: Include only listening ports in output if True. @param show_users: Show info on owning users for ports if True. @param show_procs: Show info on PID and Program Name attached to ports if True. @param resolve_hosts: Resolve IP addresses into names if True. @param resolve_ports: Resolve numeric ports to names if True. @param resolve_users: Resolve numeric user IDs to user names if True. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: List of headers and list of rows and columns.
entailment
def getTCPportConnStatus(self, ipv4=True, ipv6=True, include_listen=False, **kwargs): """Returns the number of TCP endpoints discriminated by status. @param ipv4: Include IPv4 ports in output if True. @param ipv6: Include IPv6 ports in output if True. @param include_listen: Include listening ports in output if True. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: Dictionary mapping connection status to the number of endpoints. """ status_dict = {} result = self.getStats(tcp=True, udp=False, include_listen=include_listen, ipv4=ipv4, ipv6=ipv6, **kwargs) stats = result['stats'] for stat in stats: if stat is not None: status = stat[8].lower() status_dict[status] = status_dict.get(status, 0) + 1 return status_dict
Returns the number of TCP endpoints discriminated by status. @param ipv4: Include IPv4 ports in output if True. @param ipv6: Include IPv6 ports in output if True. @param include_listen: Include listening ports in output if True. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: Dictionary mapping connection status to the number of endpoints.
entailment
def getTCPportConnCount(self, ipv4=True, ipv6=True, resolve_ports=False, **kwargs): """Returns TCP connection counts for each local port. @param ipv4: Include IPv4 ports in output if True. @param ipv6: Include IPv6 ports in output if True. @param resolve_ports: Resolve numeric ports to names if True. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: Dictionary mapping port number or name to the number of established connections. """ port_dict = {} result = self.getStats(tcp=True, udp=False, include_listen=False, ipv4=ipv4, ipv6=ipv6, resolve_ports=resolve_ports, **kwargs) stats = result['stats'] for stat in stats: if stat[8] == 'ESTABLISHED': port_dict[stat[5]] = port_dict.get(5, 0) + 1 return port_dict
Returns TCP connection counts for each local port. @param ipv4: Include IPv4 ports in output if True. @param ipv6: Include IPv6 ports in output if True. @param resolve_ports: Resolve numeric ports to names if True. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: Dictionary mapping port number or name to the number of established connections.
entailment
def accuracy_helper(egg, match='exact', distance='euclidean', features=None): """ Computes proportion of words recalled Parameters ---------- egg : quail.Egg Data to analyze match : str (exact, best or smooth) Matching approach to compute recall matrix. If exact, the presented and recalled items must be identical (default). If best, the recalled item that is most similar to the presented items will be selected. If smooth, a weighted average of all presented items will be used, where the weights are derived from the similarity between the recalled item and each presented item. distance : str The distance function used to compare presented and recalled items. Applies only to 'best' and 'smooth' matching approaches. Can be any distance function supported by numpy.spatial.distance.cdist. Returns ---------- prop_recalled : numpy array proportion of words recalled """ def acc(lst): return len([i for i in np.unique(lst) if i>=0])/(egg.list_length) opts = dict(match=match, distance=distance, features=features) if match is 'exact': opts.update({'features' : 'item'}) recmat = recall_matrix(egg, **opts) if match in ['exact', 'best']: result = [acc(lst) for lst in recmat] elif match is 'smooth': result = np.mean(recmat, axis=1) else: raise ValueError('Match must be set to exact, best or smooth.') return np.nanmean(result, axis=0)
Computes proportion of words recalled Parameters ---------- egg : quail.Egg Data to analyze match : str (exact, best or smooth) Matching approach to compute recall matrix. If exact, the presented and recalled items must be identical (default). If best, the recalled item that is most similar to the presented items will be selected. If smooth, a weighted average of all presented items will be used, where the weights are derived from the similarity between the recalled item and each presented item. distance : str The distance function used to compare presented and recalled items. Applies only to 'best' and 'smooth' matching approaches. Can be any distance function supported by numpy.spatial.distance.cdist. Returns ---------- prop_recalled : numpy array proportion of words recalled
entailment
def _connect(self): """Establish connection to PostgreSQL Database.""" if self._connParams: self._conn = psycopg2.connect(**self._connParams) else: self._conn = psycopg2.connect('') try: ver_str = self._conn.get_parameter_status('server_version') except AttributeError: ver_str = self.getParam('server_version') self._version = util.SoftwareVersion(ver_str)
Establish connection to PostgreSQL Database.
entailment
def _createStatsDict(self, headers, rows): """Utility method that returns database stats as a nested dictionary. @param headers: List of columns in query result. @param rows: List of rows in query result. @return: Nested dictionary of values. First key is the database name and the second key is the statistics counter name. """ dbstats = {} for row in rows: dbstats[row[0]] = dict(zip(headers[1:], row[1:])) return dbstats
Utility method that returns database stats as a nested dictionary. @param headers: List of columns in query result. @param rows: List of rows in query result. @return: Nested dictionary of values. First key is the database name and the second key is the statistics counter name.
entailment
def _createTotalsDict(self, headers, rows): """Utility method that returns totals for database statistics. @param headers: List of columns in query result. @param rows: List of rows in query result. @return: Dictionary of totals for each statistics column. """ totals = [sum(col) for col in zip(*rows)[1:]] return dict(zip(headers[1:], totals))
Utility method that returns totals for database statistics. @param headers: List of columns in query result. @param rows: List of rows in query result. @return: Dictionary of totals for each statistics column.
entailment
def _simpleQuery(self, query): """Executes simple query which returns a single column. @param query: Query string. @return: Query result string. """ cur = self._conn.cursor() cur.execute(query) row = cur.fetchone() return util.parse_value(row[0])
Executes simple query which returns a single column. @param query: Query string. @return: Query result string.
entailment
def getParam(self, key): """Returns value of Run-time Database Parameter 'key'. @param key: Run-time parameter name. @return: Run-time parameter value. """ cur = self._conn.cursor() cur.execute("SHOW %s" % key) row = cur.fetchone() return util.parse_value(row[0])
Returns value of Run-time Database Parameter 'key'. @param key: Run-time parameter name. @return: Run-time parameter value.
entailment
def getConnectionStats(self): """Returns dictionary with number of connections for each database. @return: Dictionary of database connection statistics. """ cur = self._conn.cursor() cur.execute("""SELECT datname,numbackends FROM pg_stat_database;""") rows = cur.fetchall() if rows: return dict(rows) else: return {}
Returns dictionary with number of connections for each database. @return: Dictionary of database connection statistics.
entailment
def getDatabaseStats(self): """Returns database block read, transaction and tuple stats for each database. @return: Nested dictionary of stats. """ headers = ('datname', 'numbackends', 'xact_commit', 'xact_rollback', 'blks_read', 'blks_hit', 'tup_returned', 'tup_fetched', 'tup_inserted', 'tup_updated', 'tup_deleted', 'disk_size') cur = self._conn.cursor() cur.execute("SELECT %s, pg_database_size(datname) FROM pg_stat_database;" % ",".join(headers[:-1])) rows = cur.fetchall() dbstats = self._createStatsDict(headers, rows) totals = self._createTotalsDict(headers, rows) return {'databases': dbstats, 'totals': totals}
Returns database block read, transaction and tuple stats for each database. @return: Nested dictionary of stats.
entailment
def getLockStatsMode(self): """Returns the number of active lock discriminated by lock mode. @return: : Dictionary of stats. """ info_dict = {'all': dict(zip(self.lockModes, (0,) * len(self.lockModes))), 'wait': dict(zip(self.lockModes, (0,) * len(self.lockModes)))} cur = self._conn.cursor() cur.execute("SELECT TRIM(mode, 'Lock'), granted, COUNT(*) FROM pg_locks " "GROUP BY TRIM(mode, 'Lock'), granted;") rows = cur.fetchall() for (mode, granted, cnt) in rows: info_dict['all'][mode] += cnt if not granted: info_dict['wait'][mode] += cnt return info_dict
Returns the number of active lock discriminated by lock mode. @return: : Dictionary of stats.
entailment
def getLockStatsDB(self): """Returns the number of active lock discriminated by database. @return: : Dictionary of stats. """ info_dict = {'all': {}, 'wait': {}} cur = self._conn.cursor() cur.execute("SELECT d.datname, l.granted, COUNT(*) FROM pg_database d " "JOIN pg_locks l ON d.oid=l.database " "GROUP BY d.datname, l.granted;") rows = cur.fetchall() for (db, granted, cnt) in rows: info_dict['all'][db] = info_dict['all'].get(db, 0) + cnt if not granted: info_dict['wait'][db] = info_dict['wait'].get(db, 0) + cnt return info_dict
Returns the number of active lock discriminated by database. @return: : Dictionary of stats.
entailment
def getBgWriterStats(self): """Returns Global Background Writer and Checkpoint Activity stats. @return: Nested dictionary of stats. """ info_dict = {} if self.checkVersion('8.3'): cur = self._conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) cur.execute("SELECT * FROM pg_stat_bgwriter") info_dict = cur.fetchone() return info_dict
Returns Global Background Writer and Checkpoint Activity stats. @return: Nested dictionary of stats.
entailment
def getXlogStatus(self): """Returns Transaction Logging or Recovery Status. @return: Dictionary of status items. """ inRecovery = None if self.checkVersion('9.0'): inRecovery = self._simpleQuery("SELECT pg_is_in_recovery();") cur = self._conn.cursor() if inRecovery: cols = ['pg_last_xlog_receive_location()', 'pg_last_xlog_replay_location()',] headers = ['xlog_receive_location', 'xlog_replay_location',] if self.checkVersion('9.1'): cols.extend(['pg_last_xact_replay_timestamp()', 'pg_is_xlog_replay_paused()',]) headers.extend(['xact_replay_timestamp', 'xlog_replay_paused',]) cur.execute("""SELECT %s;""" % ','.join(cols)) headers = ('xlog_receive_location', 'xlog_replay_location') else: cur.execute("""SELECT pg_current_xlog_location(), pg_xlogfile_name(pg_current_xlog_location());""") headers = ('xlog_location', 'xlog_filename') row = cur.fetchone() info_dict = dict(zip(headers, row)) if inRecovery is not None: info_dict['in_recovery'] = inRecovery return info_dict
Returns Transaction Logging or Recovery Status. @return: Dictionary of status items.
entailment
def getSlaveStatus(self): """Returns status of replication slaves. @return: Dictionary of status items. """ info_dict = {} if self.checkVersion('9.1'): cols = ['procpid', 'usename', 'application_name', 'client_addr', 'client_port', 'backend_start', 'state', 'sent_location', 'write_location', 'flush_location', 'replay_location', 'sync_priority', 'sync_state',] cur = self._conn.cursor() cur.execute("""SELECT %s FROM pg_stat_replication;""" % ','.join(cols)) rows = cur.fetchall() for row in rows: info_dict[row[0]] = dict(zip(cols[1:], row[1:])) else: return None return info_dict
Returns status of replication slaves. @return: Dictionary of status items.
entailment
def _connect(self): """Establish connection to MySQL Database.""" if self._connParams: self._conn = MySQLdb.connect(**self._connParams) else: self._conn = MySQLdb.connect('')
Establish connection to MySQL Database.
entailment
def getStorageEngines(self): """Returns list of supported storage engines. @return: List of storage engine names. """ cur = self._conn.cursor() cur.execute("""SHOW STORAGE ENGINES;""") rows = cur.fetchall() if rows: return [row[0].lower() for row in rows if row[1] in ['YES', 'DEFAULT']] else: return []
Returns list of supported storage engines. @return: List of storage engine names.
entailment
def getParam(self, key): """Returns value of Run-time Database Parameter 'key'. @param key: Run-time parameter name. @return: Run-time parameter value. """ cur = self._conn.cursor() cur.execute("SHOW GLOBAL VARIABLES LIKE %s", key) row = cur.fetchone() return int(row[1])
Returns value of Run-time Database Parameter 'key'. @param key: Run-time parameter name. @return: Run-time parameter value.
entailment
def getParams(self): """Returns dictionary of all run-time parameters. @return: Dictionary of all Run-time parameters. """ cur = self._conn.cursor() cur.execute("SHOW GLOBAL VARIABLES") rows = cur.fetchall() info_dict = {} for row in rows: key = row[0] val = util.parse_value(row[1]) info_dict[key] = val return info_dict
Returns dictionary of all run-time parameters. @return: Dictionary of all Run-time parameters.
entailment
def getProcessStatus(self): """Returns number of processes discriminated by state. @return: Dictionary mapping process state to number of processes. """ info_dict = {} cur = self._conn.cursor() cur.execute("""SHOW FULL PROCESSLIST;""") rows = cur.fetchall() if rows: for row in rows: if row[6] == '': state = 'idle' elif row[6] is None: state = 'other' else: state = str(row[6]).replace(' ', '_').lower() info_dict[state] = info_dict.get(state, 0) + 1 return info_dict
Returns number of processes discriminated by state. @return: Dictionary mapping process state to number of processes.
entailment
def getProcessDatabase(self): """Returns number of processes discriminated by database name. @return: Dictionary mapping database name to number of processes. """ info_dict = {} cur = self._conn.cursor() cur.execute("""SHOW FULL PROCESSLIST;""") rows = cur.fetchall() if rows: for row in rows: db = row[3] info_dict[db] = info_dict.get(db, 0) + 1 return info_dict
Returns number of processes discriminated by database name. @return: Dictionary mapping database name to number of processes.
entailment
def getDatabases(self): """Returns list of databases. @return: List of databases. """ cur = self._conn.cursor() cur.execute("""SHOW DATABASES;""") rows = cur.fetchall() if rows: return [row[0] for row in rows] else: return []
Returns list of databases. @return: List of databases.
entailment
def spc_helper(egg, match='exact', distance='euclidean', features=None): """ Computes probability of a word being recalled (in the appropriate recall list), given its presentation position Parameters ---------- egg : quail.Egg Data to analyze match : str (exact, best or smooth) Matching approach to compute recall matrix. If exact, the presented and recalled items must be identical (default). If best, the recalled item that is most similar to the presented items will be selected. If smooth, a weighted average of all presented items will be used, where the weights are derived from the similarity between the recalled item and each presented item. distance : str The distance function used to compare presented and recalled items. Applies only to 'best' and 'smooth' matching approaches. Can be any distance function supported by numpy.spatial.distance.cdist. Returns ---------- prec : numpy array each number represents the probability of recall for a word presented in given position/index """ def spc(lst): d = np.zeros_like(egg.pres.values[0]) inds = np.array(lst[~np.isnan(lst)]).astype(int) d[inds-1]=1 return d opts = dict(match=match, distance=distance, features=features) if match is 'exact': opts.update({'features' : 'item'}) recmat = recall_matrix(egg, **opts) if match in ['exact', 'best']: result = [spc(lst) for lst in recmat] elif match == 'smooth': result = np.nanmean(recmat, 2) else: raise ValueError('Match must be set to exact, best or smooth.') return np.mean(result, 0)
Computes probability of a word being recalled (in the appropriate recall list), given its presentation position Parameters ---------- egg : quail.Egg Data to analyze match : str (exact, best or smooth) Matching approach to compute recall matrix. If exact, the presented and recalled items must be identical (default). If best, the recalled item that is most similar to the presented items will be selected. If smooth, a weighted average of all presented items will be used, where the weights are derived from the similarity between the recalled item and each presented item. distance : str The distance function used to compare presented and recalled items. Applies only to 'best' and 'smooth' matching approaches. Can be any distance function supported by numpy.spatial.distance.cdist. Returns ---------- prec : numpy array each number represents the probability of recall for a word presented in given position/index
entailment
def _retrieve(self): """Query Apache Tomcat Server Status Page in XML format and return the result as an ElementTree object. @return: ElementTree object of Status Page XML. """ url = "%s://%s:%d/manager/status" % (self._proto, self._host, self._port) params = {} params['XML'] = 'true' response = util.get_url(url, self._user, self._password, params) tree = ElementTree.XML(response) return tree
Query Apache Tomcat Server Status Page in XML format and return the result as an ElementTree object. @return: ElementTree object of Status Page XML.
entailment
def getMemoryStats(self): """Return JVM Memory Stats for Apache Tomcat Server. @return: Dictionary of memory utilization stats. """ if self._statusxml is None: self.initStats() node = self._statusxml.find('jvm/memory') memstats = {} if node is not None: for (key,val) in node.items(): memstats[key] = util.parse_value(val) return memstats
Return JVM Memory Stats for Apache Tomcat Server. @return: Dictionary of memory utilization stats.
entailment
def getConnectorStats(self): """Return dictionary of Connector Stats for Apache Tomcat Server. @return: Nested dictionary of Connector Stats. """ if self._statusxml is None: self.initStats() connnodes = self._statusxml.findall('connector') connstats = {} if connnodes: for connnode in connnodes: namestr = connnode.get('name') if namestr is not None: mobj = re.match('(.*)-(\d+)', namestr) if mobj: proto = mobj.group(1) port = int(mobj.group(2)) connstats[port] = {'proto': proto} for tag in ('threadInfo', 'requestInfo'): stats = {} node = connnode.find(tag) if node is not None: for (key,val) in node.items(): if re.search('Time$', key): stats[key] = float(val) / 1000.0 else: stats[key] = util.parse_value(val) if stats: connstats[port][tag] = stats return connstats
Return dictionary of Connector Stats for Apache Tomcat Server. @return: Nested dictionary of Connector Stats.
entailment
def load(filepath, update=True): """ Loads eggs, fried eggs ands example data Parameters ---------- filepath : str Location of file update : bool If true, updates egg to latest format Returns ---------- data : quail.Egg or quail.FriedEgg Data loaded from disk """ if filepath == 'automatic' or filepath == 'example': fpath = os.path.dirname(os.path.abspath(__file__)) + '/data/automatic.egg' return load_egg(fpath) elif filepath == 'manual': fpath = os.path.dirname(os.path.abspath(__file__)) + '/data/manual.egg' return load_egg(fpath, update=False) elif filepath == 'naturalistic': fpath = os.path.dirname(os.path.abspath(__file__)) + '/data/naturalistic.egg' elif filepath.split('.')[-1]=='egg': return load_egg(filepath, update=update) elif filepath.split('.')[-1]=='fegg': return load_fegg(filepath, update=False) else: raise ValueError('Could not load file.')
Loads eggs, fried eggs ands example data Parameters ---------- filepath : str Location of file update : bool If true, updates egg to latest format Returns ---------- data : quail.Egg or quail.FriedEgg Data loaded from disk
entailment
def load_fegg(filepath, update=True): """ Loads pickled egg Parameters ---------- filepath : str Location of pickled egg update : bool If true, updates egg to latest format Returns ---------- egg : Egg data object A loaded unpickled egg """ try: egg = FriedEgg(**dd.io.load(filepath)) except ValueError as e: print(e) # if error, try loading old format with open(filepath, 'rb') as f: egg = pickle.load(f) if update: return egg.crack() else: return egg
Loads pickled egg Parameters ---------- filepath : str Location of pickled egg update : bool If true, updates egg to latest format Returns ---------- egg : Egg data object A loaded unpickled egg
entailment
def load_egg(filepath, update=True): """ Loads pickled egg Parameters ---------- filepath : str Location of pickled egg update : bool If true, updates egg to latest format Returns ---------- egg : Egg data object A loaded unpickled egg """ try: egg = Egg(**dd.io.load(filepath)) except: # if error, try loading old format with open(filepath, 'rb') as f: egg = pickle.load(f) if update: if egg.meta: old_meta = egg.meta egg.crack() egg.meta = old_meta return egg else: return egg.crack() else: return egg
Loads pickled egg Parameters ---------- filepath : str Location of pickled egg update : bool If true, updates egg to latest format Returns ---------- egg : Egg data object A loaded unpickled egg
entailment
def loadEL(dbpath=None, recpath=None, remove_subs=None, wordpool=None, groupby=None, experiments=None, filters=None): ''' Function that loads sql files generated by autoFR Experiment ''' assert (dbpath is not None), "You must specify a db file or files." assert (recpath is not None), "You must specify a recall folder." assert (wordpool is not None), "You must specify a wordpool file." assert (experiments is not None), "You must specify a list of experiments" ############################################################################ # subfunctions ############################################################# def db2df(db, filter_func=None): ''' Loads db file and converts to dataframe ''' db_url = "sqlite:///" + db table_name = 'turkdemo' data_column_name = 'datastring' # boilerplace sqlalchemy setup engine = create_engine(db_url) metadata = MetaData() metadata.bind = engine table = Table(table_name, metadata, autoload=True) # make a query and loop through s = table.select() rows = s.execute() data = [] for row in rows: data.append(row[data_column_name]) # parse each participant's datastring as json object # and take the 'data' sub-object data = [json.loads(part)['data'] for part in data if part is not None] # remove duplicate subject data for debugXG82XV:debug7XPXQA # data[110] = data[110][348:] # insert uniqueid field into trialdata in case it wasn't added # in experiment: for part in data: for record in part: # print(record) if type(record['trialdata']) is list: record['trialdata'] = {record['trialdata'][0]:record['trialdata'][1]} record['trialdata']['uniqueid'] = record['uniqueid'] # flatten nested list so we just have a list of the trialdata recorded # each time psiturk.recordTrialData(trialdata) was called. def isNotNumber(s): try: float(s) return False except ValueError: return True data = [record['trialdata'] for part in data for record in part] # filter out fields that we dont want using isNotNumber function filtered_data = [{k:v for (k,v) in list(part.items()) if isNotNumber(k)} for part in data] # Put all subjects' trial data into a dataframe object from the # 'pandas' python library: one option among many for analysis data_frame = pd.DataFrame(filtered_data) data_column_name = 'codeversion' # boilerplace sqlalchemy setup engine = create_engine(db_url) metadata = MetaData() metadata.bind = engine table = Table(table_name, metadata, autoload=True) # make a query and loop through s = table.select() rows = s.execute() versions = [] version_dict = {} for row in rows: version_dict[row[0]]=row[data_column_name] version_col = [] for idx,sub in enumerate(data_frame['uniqueid'].unique()): for i in range(sum(data_frame['uniqueid']==sub)): version_col.append(version_dict[sub]) data_frame['exp_version']=version_col if filter_func: for idx,filt in enumerate(filter_func): data_frame = filt(data_frame) return data_frame # custom filter to clean db file def experimenter_filter(data_frame): data=[] indexes=[] for line in data_frame.iterrows(): try: if json.loads(line[1]['responses'])['Q1'].lower() in ['kirsten','allison','allison\nallison','marisol', 'marisol ','marisiol', 'maddy','campbell', 'campbell field', 'kirsten\nkirsten', 'emily', 'bryan', 'armando', 'armando ortiz', 'maddy/lucy','paxton', 'lucy','campbell\ncampbell','madison','darya','rachael']: delete = False else: delete = True except: pass if delete: indexes.append(line[0]) return data_frame.drop(indexes) def adaptive_filter(data_frame): data=[] indexes=[] subjcb={} for line in data_frame.iterrows(): try: if 'Q2' in json.loads(line[1]['responses']): delete = False else: delete = False except: pass if delete: indexes.append(line[0]) return data_frame.drop(indexes) def experiments_filter(data_frame): indexes=[] for line in data_frame.iterrows(): try: if line[1]['exp_version'] in experiments: delete = False else: delete = True except: pass if delete: indexes.append(line[0]) return data_frame.drop(indexes) # this function takes the data frame and returns subject specific data based on the subid variable def filterData(data_frame,subid): filtered_stim_data = data_frame[data_frame['stimulus'].notnull() & data_frame['listNumber'].notnull()] filtered_stim_data = filtered_stim_data[filtered_stim_data['trial_type']=='single-stim'] filtered_stim_data = filtered_stim_data[filtered_stim_data['uniqueid']==subid] return filtered_stim_data def createStimDict(data): stimDict = [] for index, row in data.iterrows(): try: stimDict.append({ 'text': str(re.findall('>(.+)<',row['stimulus'])[0]), 'color' : { 'r' : int(re.findall('rgb\((.+)\)',row['stimulus'])[0].split(',')[0]), 'g' : int(re.findall('rgb\((.+)\)',row['stimulus'])[0].split(',')[1]), 'b' : int(re.findall('rgb\((.+)\)',row['stimulus'])[0].split(',')[2]) }, 'location' : { 'top': float(re.findall('top:(.+)\%;', row['stimulus'])[0]), 'left' : float(re.findall('left:(.+)\%', row['stimulus'])[0]) }, 'category' : wordpool['CATEGORY'].iloc[list(wordpool['WORD'].values).index(str(re.findall('>(.+)<',row['stimulus'])[0]))], 'size' : wordpool['SIZE'].iloc[list(wordpool['WORD'].values).index(str(re.findall('>(.+)<',row['stimulus'])[0]))], 'wordLength' : len(str(re.findall('>(.+)<',row['stimulus'])[0])), 'firstLetter' : str(re.findall('>(.+)<',row['stimulus'])[0])[0], 'listnum' : row['listNumber'] }) except: stimDict.append({ 'text': str(re.findall('>(.+)<',row['stimulus'])[0]), 'color' : { 'r' : 0, 'g' : 0, 'b' : 0 }, 'location' : { 'top': 50, 'left' : 50 }, 'category' : wordpool['CATEGORY'].iloc[list(wordpool['WORD'].values).index(str(re.findall('>(.+)<',row['stimulus'])[0]))], 'size' : wordpool['SIZE'].iloc[list(wordpool['WORD'].values).index(str(re.findall('>(.+)<',row['stimulus'])[0]))], 'wordLength' : len(str(re.findall('>(.+)<',row['stimulus'])[0])), 'firstLetter' : str(re.findall('>(.+)<',row['stimulus'])[0])[0], 'listnum' : row['listNumber'] }) return stimDict # this function loads in the recall data into an array of arrays, where each array represents a list of words def loadRecallData(subid): recalledWords = [] for i in range(0,16): try: f = open(recpath + subid + '/' + subid + '-' + str(i) + '.wav.txt', 'r') spamreader = csv.reader(f, delimiter=',', quotechar='|') except (IOError, OSError) as e: try: f = open(recpath + subid + '-' + str(i) + '.wav.txt', 'r') spamreader = csv.reader(f, delimiter=',', quotechar='|') except (IOError, OSError) as e: print(e) try: words=[] altformat=True for row in spamreader: if len(row)>1: recalledWords.append(row) altformat=False break else: try: words.append(row[0]) except: pass if altformat: recalledWords.append(words) except: print('couldnt process '+ recpath + subid + '/' + subid + '-' + str(i) + '.wav.txt') return recalledWords # this function computes accuracy for a series of lists def computeListAcc(stimDict,recalledWords): accVec = [] for i in range(0,16): stim = [stim['text'] for stim in stimDict if stim['listnum']==i] recalled= recalledWords[i] acc = 0 tmpstim = stim[:] for word in recalled: if word in tmpstim: tmpstim.remove(word) acc+=1 accVec.append(acc/len(stim)) return accVec def getFeatures(stimDict): stimDict_copy = stimDict[:] for item in stimDict_copy: item['location'] = [item['location']['top'], item['location']['left']] item['color'] = [item['color']['r'], item['color']['g'], item['color']['b']] item.pop('text', None) item.pop('listnum', None) stimDict_copy = [stimDict_copy[i:i+16] for i in range(0, len(stimDict_copy), 16)] return stimDict_copy ############################################################################ # main program ############################################################# # if its not a list, make it one if type(dbpath) is not list: dbpath = [dbpath] # read in stimulus library wordpool = pd.read_csv(wordpool) # add custom filters if filters: filter_func = [adaptive_filter, experimeter_filter, experiments_filter] + filters else: filter_func = [adaptive_filter, experimenter_filter, experiments_filter] # load in dbs and convert to df, and filter dfs = [db2df(db, filter_func=filter_func) for db in dbpath] # concatenate the db files df = pd.concat(dfs) # subjects who have completed the exp subids = list(df[df['listNumber']==15]['uniqueid'].unique()) # remove problematic subjects if remove_subs: for sub in remove_subs: try: subids.remove(sub) except: print('Could not find subject: ' + sub + ', skipping...') # set up data structure to load in subjects if groupby: pres = [[] for i in range(len(groupby['exp_version']))] rec = [[] for i in range(len(groupby['exp_version']))] features = [[] for i in range(len(groupby['exp_version']))] subs = [[] for i in range(len(groupby['exp_version']))] # make each groupby item a list groupby = [exp if type(exp) is list else [exp] for exp in groupby['exp_version']] else: pres = [[]] rec = [[]] features = [[]] subs = [[]] # for each subject that completed the experiment for idx,sub in enumerate(subids): # get the subjects data filteredStimData = filterData(df,sub) if filteredStimData['exp_version'].values[0] in experiments: # create stim dict stimDict = createStimDict(filteredStimData) sub_data = pd.DataFrame(stimDict) sub_data['subject']=idx sub_data['experiment']=filteredStimData['exp_version'].values[0] sub_data = sub_data[['experiment','subject','listnum','text','category','color','location','firstLetter','size','wordLength']] # get features from stim dict feats = getFeatures(stimDict) # load in the recall data recalledWords = loadRecallData(sub) # get experiment version exp_version = filteredStimData['exp_version'].values[0] # find the idx of the experiment for this subjects if groupby: exp_idx = list(np.where([exp_version in item for item in groupby])[0]) else: exp_idx = [0] if exp_idx != []: pres[exp_idx[0]].append([list(sub_data[sub_data['listnum']==lst]['text'].values) for lst in sub_data['listnum'].unique()]) rec[exp_idx[0]].append(recalledWords) features[exp_idx[0]].append(feats) subs[exp_idx[0]].append(sub) eggs = [Egg(pres=ipres, rec=irec, features=ifeatures, meta={'ids' : isub}) for ipres,irec,ifeatures,isub in zip(pres, rec, features, subs)] # map feature dictionaries in pres df to rec df def checkword(x): if x is None: return x else: try: return stim_dict[x['item']] except: return x # convert utf-8 bytes type to string def update_types(egg): featlist = list(egg.pres.loc[0].loc[0].values.tolist()[0].keys()) def update1df(df): for sub in range(egg.n_subjects): for liszt in range(egg.n_lists): for item in range(len(df.loc[sub].loc[liszt].values.tolist())): for feat in featlist: if feat in df.loc[sub].loc[liszt].values.tolist()[item].keys(): if isinstance(df.loc[sub].loc[liszt].values.tolist()[item][feat], np.bytes_): try: df.loc[sub].loc[liszt].values.tolist()[item][feat] = str(df.loc[sub].loc[liszt].values.tolist()[item][feat], 'utf-8') except: print("Subject " + str(sub) + ", list " + str(liszt) + ", item " + str(item) + ", feature " + str(feat) + ": Could not convert type " + str(type(egg.rec.loc[sub].loc[liszt].values.tolist()[item][feat])) + " to string.") update1df(egg.pres) update1df(egg.rec) for egg in eggs: update_types(egg) old_meta = egg.meta temp_eggs = [egg] for i in range(egg.n_subjects): e = egg.crack(subjects=[i]) stim = e.pres.values.ravel() stim_dict = {str(x['item']) : {k:v for k, v in iter(x.items())} for x in stim} e.rec = e.rec.applymap(lambda x: checkword(x)) temp_eggs.append(e) edited_egg = stack_eggs(temp_eggs) mapped_egg = edited_egg.crack(subjects=[i for i in range(egg.n_subjects,egg.n_subjects*2)]) mapped_egg.meta = old_meta eggs[eggs.index(egg)] = mapped_egg if len(eggs)>1: return eggs else: return eggs[0]
Function that loads sql files generated by autoFR Experiment
entailment
def load_example_data(dataset='automatic'): """ Loads example data The automatic and manual example data are eggs containing 30 subjects who completed a free recall experiment as described here: https://psyarxiv.com/psh48/. The subjects studied 8 lists of 16 words each and then performed a free recall test. The naturalistic example data is is an egg containing 17 subjects who viewed and verbally recounted an episode of the BBC series Sherlock, as described here: https://www.nature.com/articles/nn.4450. We fit a topic model to hand-annotated text-descriptions of scenes from the video and used the model to transform both the scene descriptions and manual transcriptions of each subject's verbal recall. We then used a Hidden Markov Model to segment the video model and the recall models, by subject, into k events. Parameters ---------- dataset : str The dataset to load. Can be 'automatic', 'manual', or 'naturalistic'. The free recall audio recordings for the 'automatic' dataset was transcribed by Google Cloud Speech and the 'manual' dataset was transcribed by humans. The 'naturalistic' dataset was transcribed by humans and transformed as described above. Returns ---------- data : quail.Egg Example data """ # can only be auto or manual assert dataset in ['automatic', 'manual', 'naturalistic'], "Dataset can only be automatic, manual, or naturalistic" if dataset == 'naturalistic': # open naturalistic egg egg = Egg(**dd.io.load(os.path.dirname(os.path.abspath(__file__)) + '/data/' + dataset + '.egg')) else: # open pickled egg try: with open(os.path.dirname(os.path.abspath(__file__)) + '/data/' + dataset + '.egg', 'rb') as handle: egg = pickle.load(handle) except: f = dd.io.load(os.path.dirname(os.path.abspath(__file__)) + '/data/' + dataset + '.egg') egg = Egg(pres=f['pres'], rec=f['rec'], dist_funcs=f['dist_funcs'], subjgroup=f['subjgroup'], subjname=f['subjname'], listgroup=f['listgroup'], listname=f['listname'], date_created=f['date_created']) return egg.crack()
Loads example data The automatic and manual example data are eggs containing 30 subjects who completed a free recall experiment as described here: https://psyarxiv.com/psh48/. The subjects studied 8 lists of 16 words each and then performed a free recall test. The naturalistic example data is is an egg containing 17 subjects who viewed and verbally recounted an episode of the BBC series Sherlock, as described here: https://www.nature.com/articles/nn.4450. We fit a topic model to hand-annotated text-descriptions of scenes from the video and used the model to transform both the scene descriptions and manual transcriptions of each subject's verbal recall. We then used a Hidden Markov Model to segment the video model and the recall models, by subject, into k events. Parameters ---------- dataset : str The dataset to load. Can be 'automatic', 'manual', or 'naturalistic'. The free recall audio recordings for the 'automatic' dataset was transcribed by Google Cloud Speech and the 'manual' dataset was transcribed by humans. The 'naturalistic' dataset was transcribed by humans and transformed as described above. Returns ---------- data : quail.Egg Example data
entailment
def retrieveVals(self): """Retrieve values for graphs.""" fs = FSinfo(self._fshost, self._fsport, self._fspass) if self.hasGraph('fs_calls'): count = fs.getCallCount() self.setGraphVal('fs_calls', 'calls', count) if self.hasGraph('fs_channels'): count = fs.getChannelCount() self.setGraphVal('fs_channels', 'channels', count)
Retrieve values for graphs.
entailment
def autoconf(self): """Implements Munin Plugin Auto-Configuration Option. @return: True if plugin can be auto-configured, False otherwise. """ fs = FSinfo(self._fshost, self._fsport, self._fspass) return fs is not None
Implements Munin Plugin Auto-Configuration Option. @return: True if plugin can be auto-configured, False otherwise.
entailment
def spsolve(A, b): """Solve the sparse linear system Ax=b, where b may be a vector or a matrix. Parameters ---------- A : ndarray or sparse matrix The square matrix A will be converted into CSC or CSR form b : ndarray or sparse matrix The matrix or vector representing the right hand side of the equation. Returns ------- x : ndarray or sparse matrix the solution of the sparse linear equation. If b is a vector, then x is a vector of size A.shape[0] If b is a matrix, then x is a matrix of size (A.shape[0],)+b.shape[1:] """ x = UmfpackLU(A).solve(b) if b.ndim == 2 and b.shape[1] == 1: # compatibility with scipy.sparse.spsolve quirk return x.ravel() else: return x
Solve the sparse linear system Ax=b, where b may be a vector or a matrix. Parameters ---------- A : ndarray or sparse matrix The square matrix A will be converted into CSC or CSR form b : ndarray or sparse matrix The matrix or vector representing the right hand side of the equation. Returns ------- x : ndarray or sparse matrix the solution of the sparse linear equation. If b is a vector, then x is a vector of size A.shape[0] If b is a matrix, then x is a matrix of size (A.shape[0],)+b.shape[1:]
entailment
def solve(self, b): """ Solve linear equation A x = b for x Parameters ---------- b : ndarray Right-hand side of the matrix equation. Can be vector or a matrix. Returns ------- x : ndarray Solution to the matrix equation """ if isspmatrix(b): b = b.toarray() if b.shape[0] != self._A.shape[1]: raise ValueError("Shape of b is not compatible with that of A") b_arr = asarray(b, dtype=self._A.dtype).reshape(b.shape[0], -1) x = np.zeros((self._A.shape[0], b_arr.shape[1]), dtype=self._A.dtype) for j in range(b_arr.shape[1]): x[:,j] = self.umf.solve(UMFPACK_A, self._A, b_arr[:,j], autoTranspose=True) return x.reshape((self._A.shape[0],) + b.shape[1:])
Solve linear equation A x = b for x Parameters ---------- b : ndarray Right-hand side of the matrix equation. Can be vector or a matrix. Returns ------- x : ndarray Solution to the matrix equation
entailment
def solve_sparse(self, B): """ Solve linear equation of the form A X = B. Where B and X are sparse matrices. Parameters ---------- B : any scipy.sparse matrix Right-hand side of the matrix equation. Note: it will be converted to csc_matrix via `.tocsc()`. Returns ------- X : csc_matrix Solution to the matrix equation as a csc_matrix """ B = B.tocsc() cols = list() for j in xrange(B.shape[1]): col = self.solve(B[:,j]) cols.append(csc_matrix(col)) return hstack(cols)
Solve linear equation of the form A X = B. Where B and X are sparse matrices. Parameters ---------- B : any scipy.sparse matrix Right-hand side of the matrix equation. Note: it will be converted to csc_matrix via `.tocsc()`. Returns ------- X : csc_matrix Solution to the matrix equation as a csc_matrix
entailment
def recall_matrix(egg, match='exact', distance='euclidean', features=None): """ Computes recall matrix given list of presented and list of recalled words Parameters ---------- egg : quail.Egg Data to analyze match : str (exact, best or smooth) Matching approach to compute recall matrix. If exact, the presented and recalled items must be identical (default). If best, the recalled item that is most similar to the presented items will be selected. If smooth, a weighted average of all presented items will be used, where the weights are derived from the similarity between the recalled item and each presented item. distance : str The distance function used to compare presented and recalled items. Applies only to 'best' and 'smooth' matching approaches. Can be any distance function supported by numpy.spatial.distance.cdist. Returns ---------- recall_matrix : list of lists of ints each integer represents the presentation position of the recalled word in a given list in order of recall 0s represent recalled words not presented negative ints represent words recalled from previous lists """ if match in ['best', 'smooth']: if not features: features = [k for k,v in egg.pres.loc[0][0].values[0].items() if k!='item'] if not features: raise('No features found. Cannot match with best or smooth strategy') if not isinstance(features, list): features = [features] if match=='exact': features=['item'] return _recmat_exact(egg.pres, egg.rec, features) else: return _recmat_smooth(egg.pres, egg.rec, features, distance, match)
Computes recall matrix given list of presented and list of recalled words Parameters ---------- egg : quail.Egg Data to analyze match : str (exact, best or smooth) Matching approach to compute recall matrix. If exact, the presented and recalled items must be identical (default). If best, the recalled item that is most similar to the presented items will be selected. If smooth, a weighted average of all presented items will be used, where the weights are derived from the similarity between the recalled item and each presented item. distance : str The distance function used to compare presented and recalled items. Applies only to 'best' and 'smooth' matching approaches. Can be any distance function supported by numpy.spatial.distance.cdist. Returns ---------- recall_matrix : list of lists of ints each integer represents the presentation position of the recalled word in a given list in order of recall 0s represent recalled words not presented negative ints represent words recalled from previous lists
entailment
def retrieveVals(self): """Retrieve values for graphs.""" net_info = NetstatInfo() if self.hasGraph('netstat_conn_status'): stats = net_info.getTCPportConnStatus(include_listen=True) for fname in ('listen', 'established', 'syn_sent', 'syn_recv', 'fin_wait1', 'fin_wait2', 'time_wait', 'close','close_wait', 'last_ack', 'closing', 'unknown',): self.setGraphVal('netstat_conn_status', fname, stats.get(fname,0)) if self.hasGraph('netstat_conn_server'): stats = net_info.getTCPportConnCount(localport=self._port_list) for srv in self._srv_list: numconn = 0 for port in self._srv_dict[srv]: numconn += stats.get(port, 0) self.setGraphVal('netstat_conn_server', srv, numconn)
Retrieve values for graphs.
entailment
def _parseFreePBXconf(self): """Parses FreePBX configuration file /etc/amportal for user and password for Asterisk Manager Interface. @return: True if configuration file is found and parsed successfully. """ amiuser = None amipass = None if os.path.isfile(confFileFreePBX): try: fp = open(confFileFreePBX, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading FreePBX configuration file: %s' % confFileFreePBX) for (key, val) in re.findall('^(AMPMGR\w+)\s*=\s*(\S+)\s*$', data, re.MULTILINE): if key == 'AMPMGRUSER': amiuser = val elif key == 'AMPMGRPASS': amipass = val if amiuser and amipass: self._amiuser = amiuser self._amipass = amipass return True return False
Parses FreePBX configuration file /etc/amportal for user and password for Asterisk Manager Interface. @return: True if configuration file is found and parsed successfully.
entailment
def _parseAsteriskConf(self): """Parses Asterisk configuration file /etc/asterisk/manager.conf for user and password for Manager Interface. Returns True on success. @return: True if configuration file is found and parsed successfully. """ if os.path.isfile(confFileAMI): try: fp = open(confFileAMI, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading Asterisk configuration file: %s' % confFileAMI) mobj = re.search('^\[(\w+)\]\s*\r{0,1}\nsecret\s*=\s*(\S+)\s*$', data, re.MULTILINE) if mobj: self._amiuser = mobj.group(1) self._amipass = mobj.group(2) return True return False
Parses Asterisk configuration file /etc/asterisk/manager.conf for user and password for Manager Interface. Returns True on success. @return: True if configuration file is found and parsed successfully.
entailment
def _connect(self): """Connect to Asterisk Manager Interface.""" try: if sys.version_info[:2] >= (2,6): self._conn = telnetlib.Telnet(self._amihost, self._amiport, connTimeout) else: self._conn = telnetlib.Telnet(self._amihost, self._amiport) except: raise Exception( "Connection to Asterisk Manager Interface on " "host %s and port %s failed." % (self._amihost, self._amiport) )
Connect to Asterisk Manager Interface.
entailment
def _sendAction(self, action, attrs=None, chan_vars=None): """Send action to Asterisk Manager Interface. @param action: Action name @param attrs: Tuple of key-value pairs for action attributes. @param chan_vars: Tuple of key-value pairs for channel variables. """ self._conn.write("Action: %s\r\n" % action) if attrs: for (key,val) in attrs: self._conn.write("%s: %s\r\n" % (key, val)) if chan_vars: for (key,val) in chan_vars: self._conn.write("Variable: %s=%s\r\n" % (key, val)) self._conn.write("\r\n")
Send action to Asterisk Manager Interface. @param action: Action name @param attrs: Tuple of key-value pairs for action attributes. @param chan_vars: Tuple of key-value pairs for channel variables.
entailment
def _getResponse(self): """Read and parse response from Asterisk Manager Interface. @return: Dictionary with response key-value pairs. """ resp_dict= dict() resp_str = self._conn.read_until("\r\n\r\n", connTimeout) for line in resp_str.split("\r\n"): mobj = re.match('(\w+):\s*(\S.*)$', line); if mobj: resp_dict[mobj.group(1)] = mobj.group(2) else: mobj = re.match('(.*)--END COMMAND--\s*$', line, flags=re.DOTALL) if mobj: resp_dict['command_response'] = mobj.group(1) return resp_dict
Read and parse response from Asterisk Manager Interface. @return: Dictionary with response key-value pairs.
entailment
def _getGreeting(self): """Read and parse Asterisk Manager Interface Greeting to determine and set Manager Interface version. """ greeting = self._conn.read_until("\r\n", connTimeout) mobj = re.match('Asterisk Call Manager\/([\d\.]+)\s*$', greeting) if mobj: self._ami_version = util.SoftwareVersion(mobj.group(1)) else: raise Exception("Asterisk Manager Interface version cannot be determined.")
Read and parse Asterisk Manager Interface Greeting to determine and set Manager Interface version.
entailment
def _initAsteriskVersion(self): """Query Asterisk Manager Interface for Asterisk Version to configure system for compatibility with multiple versions . CLI Command - core show version """ if self._ami_version > util.SoftwareVersion('1.0'): cmd = "core show version" else: cmd = "show version" cmdresp = self.executeCommand(cmd) mobj = re.match('Asterisk\s*(SVN-branch-|\s)(\d+(\.\d+)*)', cmdresp) if mobj: self._asterisk_version = util.SoftwareVersion(mobj.group(2)) else: raise Exception('Asterisk version cannot be determined.')
Query Asterisk Manager Interface for Asterisk Version to configure system for compatibility with multiple versions . CLI Command - core show version
entailment
def _login(self): """Login to Asterisk Manager Interface.""" self._sendAction("login", ( ("Username", self._amiuser), ("Secret", self._amipass), ("Events", "off"), )) resp = self._getResponse() if resp.get("Response") == "Success": return True else: raise Exception("Authentication to Asterisk Manager Interface Failed.")
Login to Asterisk Manager Interface.
entailment
def executeCommand(self, command): """Send Action to Asterisk Manager Interface to execute CLI Command. @param command: CLI command to execute. @return: Command response string. """ self._sendAction("Command", ( ("Command", command), )) resp = self._getResponse() result = resp.get("Response") if result == "Follows": return resp.get("command_response") elif result == "Error": raise Exception("Execution of Asterisk Manager Interface Command " "(%s) failed with error message: %s" % (command, str(resp.get("Message")))) else: raise Exception("Execution of Asterisk Manager Interface Command " "failed: %s" % command)
Send Action to Asterisk Manager Interface to execute CLI Command. @param command: CLI command to execute. @return: Command response string.
entailment
def _initModuleList(self): """Query Asterisk Manager Interface to initialize internal list of loaded modules. CLI Command - core show modules """ if self.checkVersion('1.4'): cmd = "module show" else: cmd = "show modules" cmdresp = self.executeCommand(cmd) self._modules = set() for line in cmdresp.splitlines()[1:-1]: mobj = re.match('\s*(\S+)\s', line) if mobj: self._modules.add(mobj.group(1).lower())
Query Asterisk Manager Interface to initialize internal list of loaded modules. CLI Command - core show modules
entailment
def _initApplicationList(self): """Query Asterisk Manager Interface to initialize internal list of available applications. CLI Command - core show applications """ if self.checkVersion('1.4'): cmd = "core show applications" else: cmd = "show applications" cmdresp = self.executeCommand(cmd) self._applications = set() for line in cmdresp.splitlines()[1:-1]: mobj = re.match('\s*(\S+):', line) if mobj: self._applications.add(mobj.group(1).lower())
Query Asterisk Manager Interface to initialize internal list of available applications. CLI Command - core show applications
entailment
def _initChannelTypesList(self): """Query Asterisk Manager Interface to initialize internal list of supported channel types. CLI Command - core show applications """ if self.checkVersion('1.4'): cmd = "core show channeltypes" else: cmd = "show channeltypes" cmdresp = self.executeCommand(cmd) self._chantypes = set() for line in cmdresp.splitlines()[2:]: mobj = re.match('\s*(\S+)\s+.*\s+(yes|no)\s+', line) if mobj: self._chantypes.add(mobj.group(1).lower())
Query Asterisk Manager Interface to initialize internal list of supported channel types. CLI Command - core show applications
entailment
def hasModule(self, mod): """Returns True if mod is among the loaded modules. @param mod: Module name. @return: Boolean """ if self._modules is None: self._initModuleList() return mod in self._modules
Returns True if mod is among the loaded modules. @param mod: Module name. @return: Boolean
entailment
def hasApplication(self, app): """Returns True if app is among the loaded modules. @param app: Module name. @return: Boolean """ if self._applications is None: self._initApplicationList() return app in self._applications
Returns True if app is among the loaded modules. @param app: Module name. @return: Boolean
entailment
def hasChannelType(self, chan): """Returns True if chan is among the supported channel types. @param app: Module name. @return: Boolean """ if self._chantypes is None: self._initChannelTypesList() return chan in self._chantypes
Returns True if chan is among the supported channel types. @param app: Module name. @return: Boolean
entailment
def getCodecList(self): """Query Asterisk Manager Interface for defined codecs. CLI Command - core show codecs @return: Dictionary - Short Name -> (Type, Long Name) """ if self.checkVersion('1.4'): cmd = "core show codecs" else: cmd = "show codecs" cmdresp = self.executeCommand(cmd) info_dict = {} for line in cmdresp.splitlines(): mobj = re.match('\s*(\d+)\s+\((.+)\)\s+\((.+)\)\s+(\w+)\s+(\w+)\s+\((.+)\)$', line) if mobj: info_dict[mobj.group(5)] = (mobj.group(4), mobj.group(6)) return info_dict
Query Asterisk Manager Interface for defined codecs. CLI Command - core show codecs @return: Dictionary - Short Name -> (Type, Long Name)
entailment
def getChannelStats(self, chantypes=('dahdi', 'zap', 'sip', 'iax2', 'local')): """Query Asterisk Manager Interface for Channel Stats. CLI Command - core show channels @return: Dictionary of statistics counters for channels. Number of active channels for each channel type. """ if self.checkVersion('1.4'): cmd = "core show channels" else: cmd = "show channels" cmdresp = self.executeCommand(cmd) info_dict ={} for chanstr in chantypes: chan = chanstr.lower() if chan in ('zap', 'dahdi'): info_dict['dahdi'] = 0 info_dict['mix'] = 0 else: info_dict[chan] = 0 for k in ('active_calls', 'active_channels', 'calls_processed'): info_dict[k] = 0 regexstr = ('(%s)\/(\w+)' % '|'.join(chantypes)) for line in cmdresp.splitlines(): mobj = re.match(regexstr, line, re.IGNORECASE) if mobj: chan_type = mobj.group(1).lower() chan_id = mobj.group(2).lower() if chan_type == 'dahdi' or chan_type == 'zap': if chan_id == 'pseudo': info_dict['mix'] += 1 else: info_dict['dahdi'] += 1 else: info_dict[chan_type] += 1 continue mobj = re.match('(\d+)\s+(active channel|active call|calls processed)', line, re.IGNORECASE) if mobj: if mobj.group(2) == 'active channel': info_dict['active_channels'] = int(mobj.group(1)) elif mobj.group(2) == 'active call': info_dict['active_calls'] = int(mobj.group(1)) elif mobj.group(2) == 'calls processed': info_dict['calls_processed'] = int(mobj.group(1)) continue return info_dict
Query Asterisk Manager Interface for Channel Stats. CLI Command - core show channels @return: Dictionary of statistics counters for channels. Number of active channels for each channel type.
entailment
def getPeerStats(self, chantype): """Query Asterisk Manager Interface for SIP / IAX2 Peer Stats. CLI Command - sip show peers iax2 show peers @param chantype: Must be 'sip' or 'iax2'. @return: Dictionary of statistics counters for VoIP Peers. """ chan = chantype.lower() if not self.hasChannelType(chan): return None if chan == 'iax2': cmd = "iax2 show peers" elif chan == 'sip': cmd = "sip show peers" else: raise AttributeError("Invalid channel type in query for Peer Stats.") cmdresp = self.executeCommand(cmd) info_dict = dict( online = 0, unreachable = 0, lagged = 0, unknown = 0, unmonitored = 0) for line in cmdresp.splitlines(): if re.search('ok\s+\(\d+\s+ms\)\s*$', line, re.IGNORECASE): info_dict['online'] += 1 else: mobj = re.search('(unreachable|lagged|unknown|unmonitored)\s*$', line, re.IGNORECASE) if mobj: info_dict[mobj.group(1).lower()] += 1 return info_dict
Query Asterisk Manager Interface for SIP / IAX2 Peer Stats. CLI Command - sip show peers iax2 show peers @param chantype: Must be 'sip' or 'iax2'. @return: Dictionary of statistics counters for VoIP Peers.
entailment
def getVoIPchanStats(self, chantype, codec_list=('ulaw', 'alaw', 'gsm', 'g729')): """Query Asterisk Manager Interface for SIP / IAX2 Channel / Codec Stats. CLI Commands - sip show channels iax2 show channnels @param chantype: Must be 'sip' or 'iax2'. @param codec_list: List of codec names to parse. (Codecs not in the list are summed up to the other count.) @return: Dictionary of statistics counters for Active VoIP Channels. """ chan = chantype.lower() if not self.hasChannelType(chan): return None if chan == 'iax2': cmd = "iax2 show channels" elif chan == 'sip': cmd = "sip show channels" else: raise AttributeError("Invalid channel type in query for Channel Stats.") cmdresp = self.executeCommand(cmd) lines = cmdresp.splitlines() headers = re.split('\s\s+', lines[0]) try: idx = headers.index('Format') except ValueError: try: idx = headers.index('Form') except: raise Exception("Error in parsing header line of %s channel stats." % chan) codec_list = tuple(codec_list) + ('other', 'none') info_dict = dict([(k,0) for k in codec_list]) for line in lines[1:-1]: codec = None cols = re.split('\s\s+', line) colcodec = cols[idx] mobj = re.match('0x\w+\s\((\w+)\)$', colcodec) if mobj: codec = mobj.group(1).lower() elif re.match('\w+$', colcodec): codec = colcodec.lower() if codec: if codec in info_dict: info_dict[codec] += 1 elif codec == 'nothing' or codec[0:4] == 'unkn': info_dict['none'] += 1 else: info_dict['other'] += 1 return info_dict
Query Asterisk Manager Interface for SIP / IAX2 Channel / Codec Stats. CLI Commands - sip show channels iax2 show channnels @param chantype: Must be 'sip' or 'iax2'. @param codec_list: List of codec names to parse. (Codecs not in the list are summed up to the other count.) @return: Dictionary of statistics counters for Active VoIP Channels.
entailment
def getConferenceStats(self): """Query Asterisk Manager Interface for Conference Room Stats. CLI Command - meetme list @return: Dictionary of statistics counters for Conference Rooms. """ if not self.hasConference(): return None if self.checkVersion('1.6'): cmd = "meetme list" else: cmd = "meetme" cmdresp = self.executeCommand(cmd) info_dict = dict(active_conferences = 0, conference_users = 0) for line in cmdresp.splitlines(): mobj = re.match('\w+\s+0(\d+)\s', line) if mobj: info_dict['active_conferences'] += 1 info_dict['conference_users'] += int(mobj.group(1)) return info_dict
Query Asterisk Manager Interface for Conference Room Stats. CLI Command - meetme list @return: Dictionary of statistics counters for Conference Rooms.
entailment
def getVoicemailStats(self): """Query Asterisk Manager Interface for Voicemail Stats. CLI Command - voicemail show users @return: Dictionary of statistics counters for Voicemail Accounts. """ if not self.hasVoicemail(): return None if self.checkVersion('1.4'): cmd = "voicemail show users" else: cmd = "show voicemail users" cmdresp = self.executeCommand(cmd) info_dict = dict(accounts = 0, avg_messages = 0, max_messages = 0, total_messages = 0) for line in cmdresp.splitlines(): mobj = re.match('\w+\s+\w+\s+.*\s+(\d+)\s*$', line) if mobj: msgs = int(mobj.group(1)) info_dict['accounts'] += 1 info_dict['total_messages'] += msgs if msgs > info_dict['max_messages']: info_dict['max_messages'] = msgs if info_dict['accounts'] > 0: info_dict['avg_messages'] = (float(info_dict['total_messages']) / info_dict['accounts']) return info_dict
Query Asterisk Manager Interface for Voicemail Stats. CLI Command - voicemail show users @return: Dictionary of statistics counters for Voicemail Accounts.
entailment
def getTrunkStats(self, trunkList): """Query Asterisk Manager Interface for Trunk Stats. CLI Command - core show channels @param trunkList: List of tuples of one of the two following types: (Trunk Name, Regular Expression) (Trunk Name, Regular Expression, MIN, MAX) @return: Dictionary of trunk utilization statistics. """ re_list = [] info_dict = {} for filt in trunkList: info_dict[filt[0]] = 0 re_list.append(re.compile(filt[1], re.IGNORECASE)) if self.checkVersion('1.4'): cmd = "core show channels" else: cmd = "show channels" cmdresp = self.executeCommand(cmd) for line in cmdresp.splitlines(): for idx in range(len(re_list)): recomp = re_list[idx] trunkid = trunkList[idx][0] mobj = recomp.match(line) if mobj: if len(trunkList[idx]) == 2: info_dict[trunkid] += 1 continue elif len(trunkList[idx]) == 4: num = mobj.groupdict().get('num') if num is not None: (vmin,vmax) = trunkList[idx][2:4] if int(num) >= int(vmin) and int(num) <= int(vmax): info_dict[trunkid] += 1 continue return info_dict
Query Asterisk Manager Interface for Trunk Stats. CLI Command - core show channels @param trunkList: List of tuples of one of the two following types: (Trunk Name, Regular Expression) (Trunk Name, Regular Expression, MIN, MAX) @return: Dictionary of trunk utilization statistics.
entailment
def getQueueStats(self): """Query Asterisk Manager Interface for Queue Stats. CLI Command: queue show @return: Dictionary of queue stats. """ if not self.hasQueue(): return None info_dict = {} if self.checkVersion('1.4'): cmd = "queue show" else: cmd = "show queues" cmdresp = self.executeCommand(cmd) queue = None ctxt = None member_states = ("unknown", "not in use", "in use", "busy", "invalid", "unavailable", "ringing", "ring+inuse", "on hold", "total") member_state_dict = dict([(k.lower().replace(' ', '_'),0) for k in member_states]) for line in cmdresp.splitlines(): mobj = re.match(r"([\w\-]+)\s+has\s+(\d+)\s+calls\s+" r"\(max (\d+|unlimited)\)\s+in\s+'(\w+)'\s+strategy\s+" r"\((.+)\),\s+W:(\d+),\s+C:(\d+),\s+A:(\d+),\s+" r"SL:([\d\.]+)%\s+within\s+(\d+)s", line) if mobj: ctxt = None queue = mobj.group(1) info_dict[queue] = {} info_dict[queue]['queue_len'] = int(mobj.group(2)) try: info_dict[queue]['queue_maxlen'] = int(mobj.group(3)) except ValueError: info_dict[queue]['queue_maxlen'] = None info_dict[queue]['strategy'] = mobj.group(4) for tkn in mobj.group(5).split(','): mobjx = re.match(r"\s*(\d+)s\s+(\w+)\s*", tkn) if mobjx: info_dict[queue]['avg_' + mobjx.group(2)] = int(mobjx.group(1)) info_dict[queue]['queue_weight'] = int(mobj.group(6)) info_dict[queue]['calls_completed'] = int(mobj.group(7)) info_dict[queue]['calls_abandoned'] = int(mobj.group(8)) info_dict[queue]['sla_pcent'] = float(mobj.group(9)) info_dict[queue]['sla_cutoff'] = int(mobj.group(10)) info_dict[queue]['members'] = member_state_dict.copy() continue mobj = re.match('\s+(Members|Callers):\s*$', line) if mobj: ctxt = mobj.group(1).lower() continue if ctxt == 'members': mobj = re.match(r"\s+\S.*\s\((.*)\)\s+has\s+taken.*calls", line) if mobj: info_dict[queue]['members']['total'] += 1 state = mobj.group(1).lower().replace(' ', '_') if info_dict[queue]['members'].has_key(state): info_dict[queue]['members'][state] += 1 else: raise AttributeError("Undefined queue member state %s" % state) continue return info_dict
Query Asterisk Manager Interface for Queue Stats. CLI Command: queue show @return: Dictionary of queue stats.
entailment
def getFaxStatsCounters(self): """Query Asterisk Manager Interface for Fax Stats. CLI Command - fax show stats @return: Dictionary of fax stats. """ if not self.hasFax(): return None info_dict = {} cmdresp = self.executeCommand('fax show stats') ctxt = 'general' for section in cmdresp.strip().split('\n\n')[1:]: i = 0 for line in section.splitlines(): mobj = re.match('(\S.*\S)\s*:\s*(\d+)\s*$', line) if mobj: if not info_dict.has_key(ctxt): info_dict[ctxt] = {} info_dict[ctxt][mobj.group(1).lower()] = int(mobj.group(2).lower()) elif i == 0: ctxt = line.strip().lower() i += 1 return info_dict
Query Asterisk Manager Interface for Fax Stats. CLI Command - fax show stats @return: Dictionary of fax stats.
entailment
def getFaxStatsSessions(self): """Query Asterisk Manager Interface for Fax Stats. CLI Command - fax show sessions @return: Dictionary of fax stats. """ if not self.hasFax(): return None info_dict = {} info_dict['total'] = 0 fax_types = ('g.711', 't.38') fax_operations = ('send', 'recv') fax_states = ('uninitialized', 'initialized', 'open', 'active', 'inactive', 'complete', 'unknown',) info_dict['type'] = dict([(k,0) for k in fax_types]) info_dict['operation'] = dict([(k,0) for k in fax_operations]) info_dict['state'] = dict([(k,0) for k in fax_states]) cmdresp = self.executeCommand('fax show sessions') sections = cmdresp.strip().split('\n\n') if len(sections) >= 3: for line in sections[1][1:]: cols = re.split('\s\s+', line) if len(cols) == 7: info_dict['total'] += 1 if cols[3].lower() in fax_types: info_dict['type'][cols[3].lower()] += 1 if cols[4] == 'receive': info_dict['operation']['recv'] += 1 elif cols[4] == 'send': info_dict['operation']['send'] += 1 if cols[5].lower() in fax_states: info_dict['state'][cols[5].lower()] += 1 return info_dict
Query Asterisk Manager Interface for Fax Stats. CLI Command - fax show sessions @return: Dictionary of fax stats.
entailment
def retrieveVals(self): """Retrieve values for graphs.""" for iface in self._ifaceList: if self._reqIfaceList is None or iface in self._reqIfaceList: if (self.graphEnabled('wanpipe_traffic') or self.graphEnabled('wanpipe_errors')): stats = self._ifaceStats.get(iface) if stats: graph_name = 'wanpipe_traffic_%s' % iface if self.hasGraph(graph_name): for field in ('rxpackets', 'txpackets'): self.setGraphVal(graph_name, field, stats.get(field)) graph_name = 'wanpipe_errors_%s' % iface if self.hasGraph(graph_name): for field in ('rxerrs', 'txerrs', 'rxframe', 'txcarrier', 'rxdrop', 'txdrop', 'rxfifo', 'txfifo'): self.setGraphVal(graph_name, field, stats.get(field)) if (self.graphEnabled('wanpipe_pri_errors') or self.graphEnabled('wanpipe_rxlevel')): try: stats = self._wanpipeInfo.getPRIstats(iface) except: stats = None if stats: graph_name = 'wanpipe_pri_errors_%s' % iface if self.hasGraph(graph_name): for field in ('linecodeviolation', 'farendblockerrors', 'crc4errors', 'faserrors'): self.setGraphVal(graph_name, field, stats.get(field)) if self.hasGraph('wanpipe_rxlevel'): self.setGraphVal('wanpipe_pri_rxlevel', iface, stats.get('rxlevel'))
Retrieve values for graphs.
entailment
def simulate_list(nwords=16, nrec=10, ncats=4): """A function to simulate a list""" # load wordpool wp = pd.read_csv('data/cut_wordpool.csv') # get one list wp = wp[wp['GROUP']==np.random.choice(list(range(16)), 1)[0]].sample(16) wp['COLOR'] = [[int(np.random.rand() * 255) for i in range(3)] for i in range(16)]
A function to simulate a list
entailment
def retrieveVals(self): """Retrieve values for graphs.""" if self._genStats is None: self._genStats = self._dbconn.getStats() if self._genVars is None: self._genVars = self._dbconn.getParams() if self.hasGraph('mysql_connections'): self.setGraphVal('mysql_connections', 'conn', self._genStats.get('Connections')) self.setGraphVal('mysql_connections', 'abort_conn', self._genStats.get('Aborted_connects')) self.setGraphVal('mysql_connections', 'abort_client', self._genStats.get('Aborted_clients')) if self.hasGraph('mysql_traffic'): self.setGraphVal('mysql_traffic', 'rx', self._genStats.get('Bytes_received')) self.setGraphVal('mysql_traffic', 'tx', self._genStats.get('Bytes_sent')) if self.graphEnabled('mysql_slowqueries'): self.setGraphVal('mysql_slowqueries', 'queries', self._genStats.get('Slow_queries')) if self.hasGraph('mysql_rowmodifications'): self.setGraphVal('mysql_rowmodifications', 'insert', self._genStats.get('Handler_write')) self.setGraphVal('mysql_rowmodifications', 'update', self._genStats.get('Handler_update')) self.setGraphVal('mysql_rowmodifications', 'delete', self._genStats.get('Handler_delete')) if self.hasGraph('mysql_rowreads'): for field in self.getGraphFieldList('mysql_rowreads'): self.setGraphVal('mysql_rowreads', field, self._genStats.get('Handler_read_%s' % field)) if self.hasGraph('mysql_tablelocks'): self.setGraphVal('mysql_tablelocks', 'waited', self._genStats.get('Table_locks_waited')) self.setGraphVal('mysql_tablelocks', 'immediate', self._genStats.get('Table_locks_immediate')) if self.hasGraph('mysql_threads'): self.setGraphVal('mysql_threads', 'running', self._genStats.get('Threads_running')) self.setGraphVal('mysql_threads', 'idle', self._genStats.get('Threads_connected') - self._genStats.get('Threads_running')) self.setGraphVal('mysql_threads', 'cached', self._genStats.get('Threads_cached')) self.setGraphVal('mysql_threads', 'total', self._genStats.get('Threads_connected') + self._genStats.get('Threads_cached')) if self.hasGraph('mysql_commits_rollbacks'): self.setGraphVal('mysql_commits_rollbacks', 'commit', self._genStats.get('Handler_commit')) self.setGraphVal('mysql_commits_rollbacks', 'rollback', self._genStats.get('Handler_rollback')) if self.hasGraph('mysql_qcache_memory'): try: total = self._genVars['query_cache_size'] free = self._genStats['Qcache_free_memory'] used = total - free except KeyError: free = None used = None self.setGraphVal('mysql_qcache_memory', 'used', used) self.setGraphVal('mysql_qcache_memory', 'free', free) if self.hasGraph('mysql_qcache_hits'): try: hits = self._genStats['Qcache_hits'] misses = self._genStats['Com_select'] - hits except KeyError: hits = None misses = None self.setGraphVal('mysql_qcache_hits', 'hits', hits) self.setGraphVal('mysql_qcache_hits', 'misses', misses) if self.hasGraph('mysql_qcache_prunes'): self.setGraphVal('mysql_qcache_prunes', 'insert', self._genStats.get('Qcache_inserts')) self.setGraphVal('mysql_qcache_prunes', 'prune', self._genStats.get('Qcache_lowmem_prunes')) if self.hasGraph('mysql_proc_status'): self._procStatus = self._dbconn.getProcessStatus() if self._procStatus: stats = {} for field in self.getGraphFieldList('mysql_proc_status'): stats[field] = 0 for (k, v) in self._procStatus.items(): if stats.has_key(k): stats[k] = v else: stats['unknown'] += v for (k,v) in stats.items(): self.setGraphVal('mysql_proc_status', k, v) if self.hasGraph('mysql_proc_db'): self._procDB = self._dbconn.getProcessDatabase() for db in self._dbList: self.setGraphVal('mysql_proc_db', db, self._procDB.get(db, 0)) if self.engineIncluded('myisam'): if self.hasGraph('mysql_myisam_key_buffer_util'): try: bsize = self._genVars['key_cache_block_size'] total = self._genVars['key_buffer_size'] free = self._genStats['Key_blocks_unused'] * bsize dirty = self._genStats['Key_blocks_not_flushed'] * bsize clean = total - free - dirty except KeyError: total = None free = None dirty = None clean = None for (field,val) in (('dirty', dirty), ('clean', clean), ('free', free), ('total', total)): self.setGraphVal('mysql_myisam_key_buffer_util', field, val) if self.hasGraph('mysql_myisam_key_read_reqs'): try: misses = self._genStats['Key_reads'] hits = (self._genStats['Key_read_requests'] - misses) except KeyError: misses = None hits = None self.setGraphVal('mysql_myisam_key_read_reqs', 'disk', misses) self.setGraphVal('mysql_myisam_key_read_reqs', 'buffer', hits) if self.engineIncluded('innodb'): if self.hasGraph('mysql_innodb_buffer_pool_util'): self._genStats['Innodb_buffer_pool_pages_clean'] = ( self._genStats.get('Innodb_buffer_pool_pages_data') - self._genStats.get('Innodb_buffer_pool_pages_dirty')) page_size = int(self._genStats.get('Innodb_page_size')) for field in ('dirty', 'clean', 'misc', 'free', 'total'): self.setGraphVal('mysql_innodb_buffer_pool_util', field, self._genStats.get('Innodb_buffer_pool_pages_%s' % field) * page_size) if self.hasGraph('mysql_innodb_buffer_pool_activity'): for field in ('created', 'read', 'written'): self.setGraphVal('mysql_innodb_buffer_pool_activity', field, self._genStats.get('Innodb_pages_%s' % field)) if self.hasGraph('mysql_innodb_buffer_pool_read_reqs'): try: misses = self._genStats['Innodb_buffer_pool_reads'] hits = (self._genStats['Innodb_buffer_pool_read_requests'] - misses) except KeyError: misses = None hits = None self.setGraphVal('mysql_innodb_buffer_pool_read_reqs', 'disk', misses) self.setGraphVal('mysql_innodb_buffer_pool_read_reqs', 'buffer', hits) if self.hasGraph('mysql_innodb_row_ops'): for field in ('inserted', 'updated', 'deleted', 'read'): self.setGraphVal('mysql_innodb_row_ops', field, self._genStats.get('Innodb_rows_%s' % field))
Retrieve values for graphs.
entailment
def engineIncluded(self, name): """Utility method to check if a storage engine is included in graphs. @param name: Name of storage engine. @return: Returns True if included in graphs, False otherwise. """ if self._engines is None: self._engines = self._dbconn.getStorageEngines() return self.envCheckFilter('engine', name) and name in self._engines
Utility method to check if a storage engine is included in graphs. @param name: Name of storage engine. @return: Returns True if included in graphs, False otherwise.
entailment