sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
|---|---|---|
def npz_generator(npz_path):
"""Generate data from an npz file."""
npz_data = np.load(npz_path)
X = npz_data['X']
# Y is a binary maxtrix with shape=(n, k), each y will have shape=(k,)
y = npz_data['Y']
n = X.shape[0]
while True:
i = np.random.randint(0, n)
yield {'X': X[i], 'Y': y[i]}
|
Generate data from an npz file.
|
entailment
|
def phyper(k, good, bad, N):
""" Current hypergeometric implementation in scipy is broken, so here's the correct version """
pvalues = [phyper_single(x, good, bad, N) for x in range(k + 1, N + 1)]
return np.sum(pvalues)
|
Current hypergeometric implementation in scipy is broken, so here's the correct version
|
entailment
|
def write_equalwidth_bedfile(bedfile, width, outfile):
"""Read input from <bedfile>, set the width of all entries to <width> and
write the result to <outfile>.
Input file needs to be in BED or WIG format."""
BUFSIZE = 10000
f = open(bedfile)
out = open(outfile, "w")
lines = f.readlines(BUFSIZE)
line_count = 0
while lines:
for line in lines:
line_count += 1
if not line.startswith("#") and not line.startswith("track") and not line.startswith("browser"):
vals = line.strip().split("\t")
try:
start, end = int(vals[1]), int(vals[2])
except ValueError:
print("Error on line %s while reading %s. Is the file in BED or WIG format?" % (line_count, bedfile))
sys.exit(1)
start = (start + end) // 2 - (width // 2)
# This shifts the center, but ensures the width is identical... maybe not ideal
if start < 0:
start = 0
end = start + width
# Keep all the other information in the bedfile if it's there
if len(vals) > 3:
out.write("%s\t%s\t%s\t%s\n" % (vals[0], start, end, "\t".join(vals[3:])))
else:
out.write("%s\t%s\t%s\n" % (vals[0], start, end))
lines = f.readlines(BUFSIZE)
out.close()
f.close()
|
Read input from <bedfile>, set the width of all entries to <width> and
write the result to <outfile>.
Input file needs to be in BED or WIG format.
|
entailment
|
def calc_motif_enrichment(sample, background, mtc=None, len_sample=None, len_back=None):
"""Calculate enrichment based on hypergeometric distribution"""
INF = "Inf"
if mtc not in [None, "Bonferroni", "Benjamini-Hochberg", "None"]:
raise RuntimeError("Unknown correction: %s" % mtc)
sig = {}
p_value = {}
n_sample = {}
n_back = {}
if not(len_sample):
len_sample = sample.seqn()
if not(len_back):
len_back = background.seqn()
for motif in sample.motifs.keys():
p = "NA"
s = "NA"
q = len(sample.motifs[motif])
m = 0
if(background.motifs.get(motif)):
m = len(background.motifs[motif])
n = len_back - m
k = len_sample
p = phyper(q - 1, m, n, k)
if p != 0:
s = -(log(p)/log(10))
else:
s = INF
else:
s = INF
p = 0.0
sig[motif] = s
p_value[motif] = p
n_sample[motif] = q
n_back[motif] = m
if mtc == "Bonferroni":
for motif in p_value.keys():
if p_value[motif] != "NA":
p_value[motif] = p_value[motif] * len(p_value.keys())
if p_value[motif] > 1:
p_value[motif] = 1
elif mtc == "Benjamini-Hochberg":
motifs = sorted(p_value.keys(), key=lambda x: -p_value[x])
l = len(p_value)
c = l
for m in motifs:
if p_value[m] != "NA":
p_value[m] = p_value[m] * l / c
c -= 1
return (sig, p_value, n_sample, n_back)
|
Calculate enrichment based on hypergeometric distribution
|
entailment
|
def parse_cutoff(motifs, cutoff, default=0.9):
""" Provide either a file with one cutoff per motif or a single cutoff
returns a hash with motif id as key and cutoff as value
"""
cutoffs = {}
if os.path.isfile(str(cutoff)):
for i,line in enumerate(open(cutoff)):
if line != "Motif\tScore\tCutoff\n":
try:
motif,_,c = line.strip().split("\t")
c = float(c)
cutoffs[motif] = c
except Exception as e:
sys.stderr.write("Error parsing cutoff file, line {0}: {1}\n".format(e, i + 1))
sys.exit(1)
else:
for motif in motifs:
cutoffs[motif.id] = float(cutoff)
for motif in motifs:
if not motif.id in cutoffs:
sys.stderr.write("No cutoff found for {0}, using default {1}\n".format(motif.id, default))
cutoffs[motif.id] = default
return cutoffs
|
Provide either a file with one cutoff per motif or a single cutoff
returns a hash with motif id as key and cutoff as value
|
entailment
|
def determine_file_type(fname):
"""
Detect file type.
The following file types are supported:
BED, narrowPeak, FASTA, list of chr:start-end regions
If the extension is bed, fa, fasta or narrowPeak, we will believe this
without checking!
Parameters
----------
fname : str
File name.
Returns
-------
filetype : str
Filename in lower-case.
"""
if not (isinstance(fname, str) or isinstance(fname, unicode)):
raise ValueError("{} is not a file name!", fname)
if not os.path.isfile(fname):
raise ValueError("{} is not a file!", fname)
ext = os.path.splitext(fname)[1].lower()
if ext in ["bed"]:
return "bed"
elif ext in ["fa", "fasta"]:
return "fasta"
elif ext in ["narrowpeak"]:
return "narrowpeak"
try:
Fasta(fname)
return "fasta"
except:
pass
# Read first line that is not a comment or an UCSC-specific line
p = re.compile(r'^(#|track|browser)')
with open(fname) as f:
for line in f.readlines():
line = line.strip()
if not p.search(line):
break
region_p = re.compile(r'^(.+):(\d+)-(\d+)$')
if region_p.search(line):
return "region"
else:
vals = line.split("\t")
if len(vals) >= 3:
try:
_, _ = int(vals[1]), int(vals[2])
except ValueError:
return "unknown"
if len(vals) == 10:
try:
_, _ = int(vals[4]), int(vals[9])
return "narrowpeak"
except ValueError:
# As far as I know there is no 10-column BED format
return "unknown"
pass
return "bed"
# Catch-all
return "unknown"
|
Detect file type.
The following file types are supported:
BED, narrowPeak, FASTA, list of chr:start-end regions
If the extension is bed, fa, fasta or narrowPeak, we will believe this
without checking!
Parameters
----------
fname : str
File name.
Returns
-------
filetype : str
Filename in lower-case.
|
entailment
|
def get_seqs_type(seqs):
"""
automagically determine input type
the following types are detected:
- Fasta object
- FASTA file
- list of regions
- region file
- BED file
"""
region_p = re.compile(r'^(.+):(\d+)-(\d+)$')
if isinstance(seqs, Fasta):
return "fasta"
elif isinstance(seqs, list):
if len(seqs) == 0:
raise ValueError("empty list of sequences to scan")
else:
if region_p.search(seqs[0]):
return "regions"
else:
raise ValueError("unknown region type")
elif isinstance(seqs, str) or isinstance(seqs, unicode):
if os.path.isfile(seqs):
ftype = determine_file_type(seqs)
if ftype == "unknown":
raise ValueError("unknown type")
elif ftype == "narrowpeak":
raise ValueError("narrowPeak not yet supported in this function")
else:
return ftype + "file"
else:
raise ValueError("no file found with name {}".format(seqs))
else:
raise ValueError("unknown type {}".format(type(seqs).__name__))
|
automagically determine input type
the following types are detected:
- Fasta object
- FASTA file
- list of regions
- region file
- BED file
|
entailment
|
def file_checksum(fname):
"""Return md5 checksum of file.
Note: only works for files < 4GB.
Parameters
----------
filename : str
File used to calculate checksum.
Returns
-------
checkum : str
"""
size = os.path.getsize(fname)
with open(fname, "r+") as f:
checksum = hashlib.md5(mmap.mmap(f.fileno(), size)).hexdigest()
return checksum
|
Return md5 checksum of file.
Note: only works for files < 4GB.
Parameters
----------
filename : str
File used to calculate checksum.
Returns
-------
checkum : str
|
entailment
|
def download_annotation(genomebuild, gene_file):
"""
Download gene annotation from UCSC based on genomebuild.
Will check UCSC, Ensembl and RefSeq annotation.
Parameters
----------
genomebuild : str
UCSC genome name.
gene_file : str
Output file name.
"""
pred_bin = "genePredToBed"
pred = find_executable(pred_bin)
if not pred:
sys.stderr.write("{} not found in path!\n".format(pred_bin))
sys.exit(1)
tmp = NamedTemporaryFile(delete=False, suffix=".gz")
anno = []
f = urlopen(UCSC_GENE_URL.format(genomebuild))
p = re.compile(r'\w+.Gene.txt.gz')
for line in f.readlines():
m = p.search(line.decode())
if m:
anno.append(m.group(0))
sys.stderr.write("Retrieving gene annotation for {}\n".format(genomebuild))
url = ""
for a in ANNOS:
if a in anno:
url = UCSC_GENE_URL.format(genomebuild) + a
break
if url:
sys.stderr.write("Using {}\n".format(url))
urlretrieve(
url,
tmp.name
)
with gzip.open(tmp.name) as f:
cols = f.readline().decode(errors='ignore').split("\t")
start_col = 1
for i,col in enumerate(cols):
if col == "+" or col == "-":
start_col = i - 1
break
end_col = start_col + 10
cmd = "zcat {} | cut -f{}-{} | {} /dev/stdin {}"
print(cmd.format(tmp.name, start_col, end_col, pred, gene_file))
sp.call(cmd.format(
tmp.name, start_col, end_col, pred, gene_file),
shell=True)
else:
sys.stderr.write("No annotation found!")
|
Download gene annotation from UCSC based on genomebuild.
Will check UCSC, Ensembl and RefSeq annotation.
Parameters
----------
genomebuild : str
UCSC genome name.
gene_file : str
Output file name.
|
entailment
|
def _check_dir(self, dirname):
""" Check if dir exists, if not: give warning and die"""
if not os.path.exists(dirname):
print("Directory %s does not exist!" % dirname)
sys.exit(1)
|
Check if dir exists, if not: give warning and die
|
entailment
|
def _make_index(self, fasta, index):
""" Index a single, one-sequence fasta-file"""
out = open(index, "wb")
f = open(fasta)
# Skip first line of fasta-file
line = f.readline()
offset = f.tell()
line = f.readline()
while line:
out.write(pack(self.pack_char, offset))
offset = f.tell()
line = f.readline()
f.close()
out.close()
|
Index a single, one-sequence fasta-file
|
entailment
|
def create_index(self,fasta_dir=None, index_dir=None):
"""Index all fasta-files in fasta_dir (one sequence per file!) and
store the results in index_dir"""
# Use default directories if they are not supplied
if not fasta_dir:
fasta_dir = self.fasta_dir
if not index_dir:
index_dir = self.index_dir
# Can't continue if we still don't have an index_dir or fasta_dir
if not fasta_dir:
print("fasta_dir not defined!")
sys.exit(1)
if not index_dir:
print("index_dir not defined!")
sys.exit(1)
index_dir = os.path.abspath(index_dir)
fasta_dir = os.path.abspath(fasta_dir)
self.index_dir = index_dir
# Prepare index directory
if not os.path.exists(index_dir):
try:
os.mkdir(index_dir)
except OSError as e:
if e.args[0] == 13:
sys.stderr.write("No permission to create index directory. Superuser access needed?\n")
sys.exit()
else:
sys.stderr.write(e)
# Directories need to exist
self._check_dir(fasta_dir)
self._check_dir(index_dir)
# Get all fasta-files
fastafiles = find_by_ext(fasta_dir, FASTA_EXT)
if not(fastafiles):
msg = "No fastafiles found in {} with extension in {}".format(
fasta_dir, ",".join(FASTA_EXT))
raise IOError(msg)
# param_file will hold all the information about the location of the fasta-files, indeces and
# length of the sequences
param_file = os.path.join(index_dir, self.param_file)
size_file = os.path.join(index_dir, self.size_file)
try:
out = open(param_file, "w")
except IOError as e:
if e.args[0] == 13:
sys.stderr.write("No permission to create files in index directory. Superuser access needed?\n")
sys.exit()
else:
sys.stderr.write(e)
s_out = open(size_file, "w")
for fasta_file in fastafiles:
#sys.stderr.write("Indexing %s\n" % fasta_file)
f = open(fasta_file)
line = f.readline()
if not line.startswith(">"):
sys.stderr.write("%s is not a valid FASTA file, expected > at first line\n" % fasta_file)
sys.exit()
seqname = line.strip().replace(">", "")
line = f.readline()
line_size = len(line.strip())
total_size = 0
while line:
line = line.strip()
if line.startswith(">"):
sys.stderr.write("Sorry, can only index genomes with "
"one sequence per FASTA file\n%s contains multiple "
"sequences\n" % fasta_file)
sys.exit()
total_size += len(line)
line = f.readline()
index_file = os.path.join(index_dir, "%s.index" % seqname)
out.write("{}\t{}\t{}\t{}\t{}\n".format(
seqname, fasta_file, index_file, line_size, total_size))
s_out.write("{}\t{}\n".format(seqname, total_size))
self._make_index(fasta_file, index_file)
f.close()
out.close()
s_out.close()
# Read the index we just made so we can immediately use it
self._read_index_file()
|
Index all fasta-files in fasta_dir (one sequence per file!) and
store the results in index_dir
|
entailment
|
def _read_index_file(self):
"""read the param_file, index_dir should already be set """
param_file = os.path.join(self.index_dir, self.param_file)
with open(param_file) as f:
for line in f.readlines():
(name, fasta_file, index_file, line_size, total_size) = line.strip().split("\t")
self.size[name] = int(total_size)
self.fasta_file[name] = fasta_file
self.index_file[name] = index_file
self.line_size[name] = int(line_size)
|
read the param_file, index_dir should already be set
|
entailment
|
def _read_seq_from_fasta(self, fasta, offset, nr_lines):
""" retrieve a number of lines from a fasta file-object, starting at offset"""
fasta.seek(offset)
lines = [fasta.readline().strip() for _ in range(nr_lines)]
return "".join(lines)
|
retrieve a number of lines from a fasta file-object, starting at offset
|
entailment
|
def get_sequences(self, chr, coords):
""" Retrieve multiple sequences from same chr (RC not possible yet)"""
# Check if we have an index_dir
if not self.index_dir:
print("Index dir is not defined!")
sys.exit()
# retrieve all information for this specific sequence
fasta_file = self.fasta_file[chr]
index_file = self.index_file[chr]
line_size = self.line_size[chr]
total_size = self.size[chr]
index = open(index_file, "rb")
fasta = open(fasta_file)
seqs = []
for coordset in coords:
seq = ""
for (start,end) in coordset:
if start > total_size:
raise ValueError("%s: %s, invalid start, greater than sequence length!" % (chr,start))
if start < 0:
raise ValueError("Invalid start, < 0!")
if end > total_size:
raise ValueError("Invalid end, greater than sequence length!")
seq += self._read(index, fasta, start, end, line_size)
seqs.append(seq)
index.close()
fasta.close()
return seqs
|
Retrieve multiple sequences from same chr (RC not possible yet)
|
entailment
|
def get_sequence(self, chrom, start, end, strand=None):
""" Retrieve a sequence """
# Check if we have an index_dir
if not self.index_dir:
print("Index dir is not defined!")
sys.exit()
# retrieve all information for this specific sequence
fasta_file = self.fasta_file[chrom]
index_file = self.index_file[chrom]
line_size = self.line_size[chrom]
total_size = self.size[chrom]
#print fasta_file, index_file, line_size, total_size
if start > total_size:
raise ValueError(
"Invalid start {0}, greater than sequence length {1} of {2}!".format(start, total_size, chrom))
if start < 0:
raise ValueError("Invalid start, < 0!")
if end > total_size:
raise ValueError(
"Invalid end {0}, greater than sequence length {1} of {2}!".format(end, total_size, chrom))
index = open(index_file, "rb")
fasta = open(fasta_file)
seq = self._read(index, fasta, start, end, line_size)
index.close()
fasta.close()
if strand and strand == "-":
seq = rc(seq)
return seq
|
Retrieve a sequence
|
entailment
|
def get_size(self, chrom=None):
""" Return the sizes of all sequences in the index, or the size of chrom if specified
as an optional argument """
if len(self.size) == 0:
raise LookupError("no chromosomes in index, is the index correct?")
if chrom:
if chrom in self.size:
return self.size[chrom]
else:
raise KeyError("chromosome {} not in index".format(chrom))
total = 0
for size in self.size.values():
total += size
return total
|
Return the sizes of all sequences in the index, or the size of chrom if specified
as an optional argument
|
entailment
|
def get_tool(name):
"""
Returns an instance of a specific tool.
Parameters
----------
name : str
Name of the tool (case-insensitive).
Returns
-------
tool : MotifProgram instance
"""
tool = name.lower()
if tool not in __tools__:
raise ValueError("Tool {0} not found!\n".format(name))
t = __tools__[tool]()
if not t.is_installed():
sys.stderr.write("Tool {0} not installed!\n".format(tool))
if not t.is_configured():
sys.stderr.write("Tool {0} not configured!\n".format(tool))
return t
|
Returns an instance of a specific tool.
Parameters
----------
name : str
Name of the tool (case-insensitive).
Returns
-------
tool : MotifProgram instance
|
entailment
|
def locate_tool(name, verbose=True):
"""
Returns the binary of a tool.
Parameters
----------
name : str
Name of the tool (case-insensitive).
Returns
-------
tool_bin : str
Binary of tool.
"""
m = get_tool(name)
tool_bin = which(m.cmd)
if tool_bin:
if verbose:
print("Found {} in {}".format(m.name, tool_bin))
return tool_bin
else:
print("Couldn't find {}".format(m.name))
|
Returns the binary of a tool.
Parameters
----------
name : str
Name of the tool (case-insensitive).
Returns
-------
tool_bin : str
Binary of tool.
|
entailment
|
def bin(self):
"""
Get the command used to run the tool.
Returns
-------
command : str
The tool system command.
"""
if self.local_bin:
return self.local_bin
else:
return self.config.bin(self.name)
|
Get the command used to run the tool.
Returns
-------
command : str
The tool system command.
|
entailment
|
def is_installed(self):
"""
Check if the tool is installed.
Returns
-------
is_installed : bool
True if the tool is installed.
"""
return self.is_configured() and os.access(self.bin(), os.X_OK)
|
Check if the tool is installed.
Returns
-------
is_installed : bool
True if the tool is installed.
|
entailment
|
def run(self, fastafile, params=None, tmp=None):
"""
Run the tool and predict motifs from a FASTA file.
Parameters
----------
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
tmp : str, optional
Directory to use for creation of temporary files.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
if not self.is_configured():
raise ValueError("%s is not configured" % self.name)
if not self.is_installed():
raise ValueError("%s is not installed or not correctly configured" % self.name)
self.tmpdir = mkdtemp(prefix="{0}.".format(self.name), dir=tmp)
fastafile = os.path.abspath(fastafile)
try:
return self._run_program(self.bin(), fastafile, params)
except KeyboardInterrupt:
return ([], "Killed", "Killed")
|
Run the tool and predict motifs from a FASTA file.
Parameters
----------
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
tmp : str, optional
Directory to use for creation of temporary files.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def _parse_params(self, params=None):
"""
Parse parameters.
Combine default and user-defined parameters.
"""
prm = self.default_params.copy()
if params is not None:
prm.update(params)
if prm["background"]:
# Absolute path, just to be sure
prm["background"] = os.path.abspath(prm["background"])
prm["background"] = " --negSet {0} ".format(
prm["background"])
prm["strand"] = ""
if not prm["single"]:
prm["strand"] = " --revcomp "
return prm
|
Parse parameters.
Combine default and user-defined parameters.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Run XXmotif and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
params = self._parse_params(params)
outfile = os.path.join(
self.tmpdir,
os.path.basename(fastafile.replace(".fa", ".pwm")))
stdout = ""
stderr = ""
cmd = "%s %s %s --localization --batch %s %s" % (
bin,
self.tmpdir,
fastafile,
params["background"],
params["strand"],
)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
out,err = p.communicate()
stdout += out.decode()
stderr += err.decode()
motifs = []
if os.path.exists(outfile):
motifs = read_motifs(outfile, fmt="xxmotif")
for m in motifs:
m.id = "{0}_{1}".format(self.name, m.id)
else:
stdout += "\nMotif file {0} not found!\n".format(outfile)
stderr += "\nMotif file {0} not found!\n".format(outfile)
return motifs, stdout, stderr
|
Run XXmotif and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def _parse_params(self, params=None):
"""
Parse parameters.
Combine default and user-defined parameters.
"""
prm = self.default_params.copy()
if params is not None:
prm.update(params)
# Background file is essential!
if not prm["background"]:
print("Background file needed!")
sys.exit()
prm["background"] = os.path.abspath(prm["background"])
prm["strand"] = ""
if prm["single"]:
prm["strand"] = " -strand + "
return prm
|
Parse parameters.
Combine default and user-defined parameters.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Run Homer and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
params = self._parse_params(params)
outfile = NamedTemporaryFile(
mode="w",
dir=self.tmpdir,
prefix= "homer_w{}.".format(params["width"])
).name
cmd = "%s denovo -i %s -b %s -len %s -S %s %s -o %s -p 8" % (
bin,
fastafile,
params["background"],
params["width"],
params["number"],
params["strand"],
outfile)
stderr = ""
stdout = "Running command:\n{}\n".format(cmd)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=self.tmpdir)
out,err = p.communicate()
stdout += out.decode()
stderr += err.decode()
motifs = []
if os.path.exists(outfile):
motifs = read_motifs(outfile, fmt="pwm")
for i, m in enumerate(motifs):
m.id = "{}_{}_{}".format(self.name, params["width"], i + 1)
return motifs, stdout, stderr
|
Run Homer and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def parse(self, fo):
"""
Convert BioProspector output to motifs
Parameters
----------
fo : file-like
File object containing BioProspector output.
Returns
-------
motifs : list
List of Motif instances.
"""
motifs = []
p = re.compile(r'^\d+\s+(\d+\.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)')
pwm = []
motif_id = ""
for line in fo.readlines():
if line.startswith("Motif #"):
if pwm:
m = Motif(pwm)
m.id = "BioProspector_w%s_%s" % (len(m), motif_id)
motifs.append(m)
motif_id = line.split("#")[1].split(":")[0]
pwm = []
else:
m = p.search(line)
if m:
pwm.append([float(m.group(x))/100.0 for x in range(1,5)])
if pwm:
m = Motif(pwm)
m.id = "BioProspector_w%s_%s" % (len(m), motif_id)
motifs.append(m)
return motifs
|
Convert BioProspector output to motifs
Parameters
----------
fo : file-like
File object containing BioProspector output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Run HMS and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
params = self._parse_params(params)
default_params = {"width":10}
if params is not None:
default_params.update(params)
fgfile, summitfile, outfile = self._prepare_files(fastafile)
current_path = os.getcwd()
os.chdir(self.tmpdir)
cmd = "{} -i {} -w {} -dna 4 -iteration 50 -chain 20 -seqprop -0.1 -strand 2 -peaklocation {} -t_dof 3 -dep 2".format(
bin,
fgfile,
params['width'],
summitfile)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
stdout,stderr = p.communicate()
os.chdir(current_path)
motifs = []
if os.path.exists(outfile):
with open(outfile) as f:
motifs = self.parse(f)
for i,m in enumerate(motifs):
m.id = "HMS_w{}_{}".format(params['width'], i + 1)
return motifs, stdout, stderr
|
Run HMS and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def parse(self, fo):
"""
Convert HMS output to motifs
Parameters
----------
fo : file-like
File object containing HMS output.
Returns
-------
motifs : list
List of Motif instances.
"""
motifs = []
m = [[float(x) for x in fo.readline().strip().split(" ")] for i in range(4)]
matrix = [[m[0][i], m[1][i],m[2][i],m[3][i]] for i in range(len(m[0]))]
motifs = [Motif(matrix)]
motifs[-1].id = self.name
return motifs
|
Convert HMS output to motifs
Parameters
----------
fo : file-like
File object containing HMS output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Run AMD and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
params = self._parse_params(params)
fgfile = os.path.join(self.tmpdir, "AMD.in.fa")
outfile = fgfile + ".Matrix"
shutil.copy(fastafile, fgfile)
current_path = os.getcwd()
os.chdir(self.tmpdir)
stdout = ""
stderr = ""
cmd = "%s -F %s -B %s" % (
bin,
fgfile,
params["background"],
)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
out,err = p.communicate()
stdout += out.decode()
stderr += err.decode()
os.chdir(current_path)
motifs = []
if os.path.exists(outfile):
f = open(outfile)
motifs = self.parse(f)
f.close()
return motifs, stdout, stderr
|
Run AMD and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def parse(self, fo):
"""
Convert AMD output to motifs
Parameters
----------
fo : file-like
File object containing AMD output.
Returns
-------
motifs : list
List of Motif instances.
"""
motifs = []
#160: 112 CACGTGC 7.25 chr14:32308489-32308689
p = re.compile(r'\d+\s+([\d.]+)\s+([\d.]+)\s+([\d.]+)\s+([\d.]+)')
wm = []
name = ""
for line in fo.readlines():
if line.startswith("Motif") and line.strip().endswith(":"):
if name:
motifs.append(Motif(wm))
motifs[-1].id = name
name = ""
wm = []
name = "%s_%s" % (self.name, line.split(":")[0])
else:
m = p.search(line)
if m:
wm.append([float(m.group(x)) for x in range(1,5)])
motifs.append(Motif(wm))
motifs[-1].id = name
return motifs
|
Convert AMD output to motifs
Parameters
----------
fo : file-like
File object containing AMD output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def parse(self, fo):
"""
Convert Improbizer output to motifs
Parameters
----------
fo : file-like
File object containing Improbizer output.
Returns
-------
motifs : list
List of Motif instances.
"""
motifs = []
p = re.compile(r'\d+\s+@\s+\d+\.\d+\s+sd\s+\d+\.\d+\s+(\w+)$')
line = fo.readline()
while line and line.find("Color") == -1:
m = p.search(line)
if m:
pwm_data = {}
for i in range(4):
vals = [x.strip() for x in fo.readline().strip().split(" ") if x]
pwm_data[vals[0].upper()] = vals[1:]
pwm = []
for i in range(len(pwm_data["A"])):
pwm.append([float(pwm_data[x][i]) for x in ["A","C","G","T"]])
motifs.append(Motif(pwm))
motifs[-1].id = "%s_%s" % (self.name, m.group(1))
line = fo.readline()
return motifs
|
Convert Improbizer output to motifs
Parameters
----------
fo : file-like
File object containing Improbizer output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Run Trawler and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
params = self._parse_params(params)
tmp = NamedTemporaryFile(mode="w", dir=self.tmpdir, delete=False)
shutil.copy(fastafile, tmp.name)
fastafile = tmp.name
current_path = os.getcwd()
os.chdir(self.dir())
motifs = []
stdout = ""
stderr = ""
for wildcard in [0,1,2]:
cmd = "%s -sample %s -background %s -directory %s -strand %s -wildcard %s" % (
bin,
fastafile,
params["background"],
self.tmpdir,
params["strand"],
wildcard,
)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
out,err = p.communicate()
stdout += out.decode()
stderr += err.decode()
os.chdir(current_path)
pwmfiles = glob.glob("{}/tmp*/result/*pwm".format(self.tmpdir))
if len(pwmfiles) > 0:
out_file = pwmfiles[0]
stdout += "\nOutfile: {}".format(out_file)
my_motifs = []
if os.path.exists(out_file):
my_motifs = read_motifs(out_file, fmt="pwm")
for m in motifs:
m.id = "{}_{}".format(self.name, m.id)
stdout += "\nTrawler: {} motifs".format(len(motifs))
# remove temporary files
if os.path.exists(tmp.name):
os.unlink(tmp.name)
for motif in my_motifs:
motif.id = "{}_{}_{}".format(self.name, wildcard, motif.id)
motifs += my_motifs
else:
stderr += "\nNo outfile found"
return motifs, stdout, stderr
|
Run Trawler and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def _run_program(self, bin,fastafile, params=None):
"""
Run Weeder and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
params = self._parse_params(params)
organism = params["organism"]
weeder_organisms = {
"hg18":"HS",
"hg19":"HS",
"hg38":"HS",
"mm9":"MM",
"mm10":"MM",
"dm3":"DM",
"dm5":"DM",
"dm6":"DM",
"yeast":"SC",
"sacCer2":"SC",
"sacCer3":"SC",
"TAIR10":"AT",
"TAIR11":"AT",
}
weeder_organism = weeder_organisms.get(organism, "HS")
tmp = NamedTemporaryFile(dir=self.tmpdir)
name = tmp.name
tmp.close()
shutil.copy(fastafile, name)
fastafile = name
cmd = "{} -f {} -O".format(
self.cmd,
fastafile,
weeder_organism,
)
if params["single"]:
cmd += " -ss"
#print cmd
stdout, stderr = "", ""
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=self.tmpdir)
out,err = p.communicate()
stdout += out.decode()
stderr += err.decode()
motifs = []
if os.path.exists(fastafile + ".matrix.w2"):
f = open(fastafile + ".matrix.w2")
motifs = self.parse(f)
f.close()
for m in motifs:
m.id = "{}_{}".format(self.name, m.id.split("\t")[0])
for ext in [".w2", ".matrix.w2" ]:
if os.path.exists(fastafile + ext):
os.unlink(fastafile + ext)
return motifs, stdout, stderr
|
Run Weeder and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def _parse_params(self, params=None):
"""
Parse parameters.
Combine default and user-defined parameters.
"""
prm = self.default_params.copy()
if params is not None:
prm.update(params)
if prm["background_model"]:
# Absolute path, just to be sure
prm["background_model"] = os.path.abspath(prm["background_model"])
else:
if prm.get("organism", None):
prm["background_model"] = os.path.join(
self.config.get_bg_dir(),
"{}.{}.bg".format(
prm["organism"],
"MotifSampler"))
else:
raise Exception("No background specified for {}".format(self.name))
prm["strand"] = 1
if prm["single"]:
prm["strand"] = 0
tmp = NamedTemporaryFile(dir=self.tmpdir)
prm["pwmfile"] = tmp.name
tmp2 = NamedTemporaryFile(dir=self.tmpdir)
prm["outfile"] = tmp2.name
return prm
|
Parse parameters.
Combine default and user-defined parameters.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Run MotifSampler and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
params = self._parse_params(params)
# TODO: test organism
#cmd = "%s -f %s -b %s -m %s -w %s -n %s -o %s -s %s > /dev/null 2>&1" % (
cmd = "%s -f %s -b %s -m %s -w %s -n %s -o %s -s %s" % (
bin,
fastafile,
params["background_model"],
params["pwmfile"],
params["width"],
params["number"],
params["outfile"],
params["strand"],
)
#print cmd
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
stdout, stderr = p.communicate()
#stdout,stderr = "",""
#p = Popen(cmd, shell=True)
#p.wait()
motifs = []
if os.path.exists(params["outfile"]):
with open(params["outfile"]) as f:
motifs = self.parse_out(f)
for motif in motifs:
motif.id = "%s_%s" % (self.name, motif.id)
return motifs, stdout, stderr
|
Run MotifSampler and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def parse(self, fo):
"""
Convert MotifSampler output to motifs
Parameters
----------
fo : file-like
File object containing MotifSampler output.
Returns
-------
motifs : list
List of Motif instances.
"""
motifs = []
pwm = []
info = {}
for line in fo.readlines():
if line.startswith("#"):
vals = line.strip()[1:].split(" = ")
if len(vals) > 1:
info[vals[0]] = vals[1]
elif len(line) > 1:
pwm.append([float(x) for x in line.strip().split("\t")])
else:
motifs.append(Motif())
motifs[-1].consensus = info["Consensus"]
motifs[-1].width = info["W"]
motifs[-1].id = info["ID"]
motifs[-1].pwm = pwm[:]
pwm = []
return motifs
|
Convert MotifSampler output to motifs
Parameters
----------
fo : file-like
File object containing MotifSampler output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def parse_out(self, fo):
"""
Convert MotifSampler output to motifs
Parameters
----------
fo : file-like
File object containing MotifSampler output.
Returns
-------
motifs : list
List of Motif instances.
"""
motifs = []
nucs = {"A":0,"C":1,"G":2,"T":3}
pseudo = 0.0 # Should be 1/sqrt(# of seqs)
aligns = {}
for line in fo.readlines():
if line.startswith("#"):
pass
elif len(line) > 1:
vals = line.strip().split("\t")
m_id, site = [x.strip().split(" ")[1].replace('"',"") for x in vals[8].split(";") if x]
#if vals[6] == "+":
if site.upper().find("N") == -1:
aligns.setdefault(m_id, []).append(site)
#else:
# print site, rc(site)
# aligns.setdefault(id, []).append(rc(site))
for m_id, align in aligns.items():
#print id, len(align)
width = len(align[0])
pfm = [[0 for x in range(4)] for x in range(width)]
for row in align:
for i in range(len(row)):
pfm[i][nucs[row[i]]] += 1
total = float(len(align))
pwm = [[(x + pseudo/4)/total+(pseudo) for x in row] for row in pfm]
m = Motif()
m.align = align[:]
m.pwm = pwm[:]
m.pfm = pfm[:]
m.id = m_id
motifs.append(m)
return motifs
|
Convert MotifSampler output to motifs
Parameters
----------
fo : file-like
File object containing MotifSampler output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Run MDmodule and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
default_params = {"width":10, "number":10}
if params is not None:
default_params.update(params)
new_file = os.path.join(self.tmpdir, "mdmodule_in.fa")
shutil.copy(fastafile, new_file)
fastafile = new_file
pwmfile = fastafile + ".out"
width = default_params['width']
number = default_params['number']
current_path = os.getcwd()
os.chdir(self.tmpdir)
cmd = "%s -i %s -a 1 -o %s -w %s -t 100 -r %s" % (bin, fastafile, pwmfile, width, number)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
stdout,stderr = p.communicate()
stdout = "cmd: {}\n".format(cmd) + stdout.decode()
motifs = []
if os.path.exists(pwmfile):
with open(pwmfile) as f:
motifs = self.parse(f)
os.chdir(current_path)
for motif in motifs:
motif.id = "%s_%s" % (self.name, motif.id)
return motifs, stdout, stderr
|
Run MDmodule and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def parse(self, fo):
"""
Convert MDmodule output to motifs
Parameters
----------
fo : file-like
File object containing MDmodule output.
Returns
-------
motifs : list
List of Motif instances.
"""
motifs = []
nucs = {"A":0,"C":1,"G":2,"T":3}
p = re.compile(r'(\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)')
pf = re.compile(r'>.+\s+[bf]\d+\s+(\w+)')
pwm = []
pfm = []
align = []
m_id = ""
for line in fo.readlines():
if line.startswith("Motif"):
if m_id:
motifs.append(Motif())
motifs[-1].id = m_id
motifs[-1].pwm = pwm
motifs[-1].pfm = pfm
motifs[-1].align = align
pwm = []
pfm = []
align = []
m_id = line.split("\t")[0]
else:
m = p.search(line)
if m:
pwm.append([float(m.group(x))/100 for x in [2,3,4,5]])
m = pf.search(line)
if m:
if not pfm:
pfm = [[0 for x in range(4)] for x in range(len(m.group(1)))]
for i in range(len(m.group(1))):
pfm[i][nucs[m.group(1)[i]]] += 1
align.append(m.group(1))
if pwm:
motifs.append(Motif())
motifs[-1].id = m_id
motifs[-1].pwm = pwm
motifs[-1].pfm = pfm
motifs[-1].align = align
return motifs
|
Convert MDmodule output to motifs
Parameters
----------
fo : file-like
File object containing MDmodule output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def _parse_params(self, params=None):
"""
Parse parameters.
Combine default and user-defined parameters.
"""
prm = self.default_params.copy()
if params is not None:
prm.update(params)
return prm
|
Parse parameters.
Combine default and user-defined parameters.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Run ChIPMunk and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
params = self._parse_params(params)
basename = "munk_in.fa"
new_file = os.path.join(self.tmpdir, basename)
out = open(new_file, "w")
f = Fasta(fastafile)
for seq in f.seqs:
header = len(seq) // 2
out.write(">%s\n" % header)
out.write("%s\n" % seq)
out.close()
fastafile = new_file
outfile = fastafile + ".out"
current_path = os.getcwd()
os.chdir(self.dir())
motifs = []
# Max recommended by ChIPMunk userguide
ncpus = 4
stdout = ""
stderr = ""
for zoops_factor in ["oops", 0.0, 0.5, 1.0]:
cmd = "{} {} {} y {} m:{} 100 10 1 {} 1>{}".format(
bin,
params.get("width", 8),
params.get("width", 20),
zoops_factor,
fastafile,
ncpus,
outfile
)
#print("command: ", cmd)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
std = p.communicate()
stdout = stdout + std[0].decode()
stderr = stderr + std[1].decode()
if "RuntimeException" in stderr:
return [], stdout, stderr
if os.path.exists(outfile):
with open(outfile) as f:
motifs += self.parse(f)
os.chdir(current_path)
return motifs, stdout, stderr
|
Run ChIPMunk and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def parse(self, fo):
"""
Convert ChIPMunk output to motifs
Parameters
----------
fo : file-like
File object containing ChIPMunk output.
Returns
-------
motifs : list
List of Motif instances.
"""
#KDIC|6.124756232026243
#A|517.9999999999999 42.99999999999999 345.99999999999994 25.999999999999996 602.9999999999999 155.99999999999997 2.9999999999999996 91.99999999999999
#C|5.999999999999999 4.999999999999999 2.9999999999999996 956.9999999999999 91.99999999999999 17.999999999999996 22.999999999999996 275.99999999999994
#G|340.99999999999994 943.9999999999999 630.9999999999999 6.999999999999999 16.999999999999996 48.99999999999999 960.9999999999999 14.999999999999998
#T|134.99999999999997 7.999999999999999 19.999999999999996 9.999999999999998 287.99999999999994 776.9999999999999 12.999999999999998 616.9999999999999
#N|999.9999999999998
line = fo.readline()
if not line:
return []
while not line.startswith("A|"):
line = fo.readline()
matrix = []
for _ in range(4):
matrix.append([float(x) for x in line.strip().split("|")[1].split(" ")])
line = fo.readline()
#print matrix
matrix = [[matrix[x][y] for x in range(4)] for y in range(len(matrix[0]))]
#print matrix
m = Motif(matrix)
m.id = "ChIPMunk_w%s" % len(m)
return [m]
|
Convert ChIPMunk output to motifs
Parameters
----------
fo : file-like
File object containing ChIPMunk output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Run Posmo and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
default_params = {}
if params is not None:
default_params.update(params)
width = params.get("width", 8)
basename = "posmo_in.fa"
new_file = os.path.join(self.tmpdir, basename)
shutil.copy(fastafile, new_file)
fastafile = new_file
#pwmfile = fastafile + ".pwm"
motifs = []
current_path = os.getcwd()
os.chdir(self.tmpdir)
for n_ones in range(4, min(width, 11), 2):
x = "1" * n_ones
outfile = "%s.%s.out" % (fastafile, x)
cmd = "%s 5000 %s %s 1.6 2.5 %s 200" % (bin, x, fastafile, width)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
stdout, stderr = p.communicate()
stdout = stdout.decode()
stderr = stderr.decode()
context_file = fastafile.replace(basename, "context.%s.%s.txt" % (basename, x))
cmd = "%s %s %s simi.txt 0.88 10 2 10" % (bin.replace("posmo","clusterwd"), context_file, outfile)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
out, err = p.communicate()
stdout += out.decode()
stderr += err.decode()
if os.path.exists(outfile):
with open(outfile) as f:
motifs += self.parse(f, width, n_ones)
os.chdir(current_path)
return motifs, stdout, stderr
|
Run Posmo and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def parse(self, fo, width, seed=None):
"""
Convert Posmo output to motifs
Parameters
----------
fo : file-like
File object containing Posmo output.
Returns
-------
motifs : list
List of Motif instances.
"""
motifs = []
lines = [fo.readline() for x in range(6)]
while lines[0]:
matrix = [[float(x) for x in line.strip().split("\t")] for line in lines[2:]]
matrix = [[matrix[x][y] for x in range(4)] for y in range(len(matrix[0]))]
m = Motif(matrix)
m.trim(0.1)
m.id = lines[0].strip().split(" ")[-1]
motifs.append(m)
lines = [fo.readline() for x in range(6)]
for i,motif in enumerate(motifs):
if seed:
motif.id = "%s_w%s.%s_%s" % (self.name, width, seed, i + 1)
else:
motif.id = "%s_w%s_%s" % (self.name, width, i + 1)
motif.trim(0.25)
return motifs
|
Convert Posmo output to motifs
Parameters
----------
fo : file-like
File object containing Posmo output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def parse(self, fo):
"""
Convert GADEM output to motifs
Parameters
----------
fo : file-like
File object containing GADEM output.
Returns
-------
motifs : list
List of Motif instances.
"""
motifs = []
nucs = {"A":0,"C":1,"G":2,"T":3}
lines = fo.readlines()
for i in range(0, len(lines), 5):
align = []
pwm = []
pfm = []
m_id = ""
line = lines[i].strip()
m_id = line[1:]
number = m_id.split("_")[0][1:]
if os.path.exists("%s.seq" % number):
with open("%s.seq" % number) as f:
for l in f:
if "x" not in l and "n" not in l:
l = l.strip().upper()
align.append(l)
if not pfm:
pfm = [[0 for x in range(4)] for x in range(len(l))]
for p in range(len(l)):
pfm[p][nucs[l[p]]] += 1
m = [l.strip().split(" ")[1].split("\t") for l in lines[i + 1: i + 5]]
pwm = [[float(m[x][y]) for x in range(4)] for y in range(len(m[0]))]
motifs.append(Motif(pwm))
motifs[-1].id = "{}_{}".format(self.name, m_id)
#motifs[-1].pwm = pwm
if align:
motifs[-1].pfm = pfm
motifs[-1].align = align
return motifs
|
Convert GADEM output to motifs
Parameters
----------
fo : file-like
File object containing GADEM output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Get enriched JASPAR motifs in a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
fname = os.path.join(self.config.get_motif_dir(), "JASPAR2010_vertebrate.pwm")
motifs = read_motifs(fname, fmt="pwm")
for motif in motifs:
motif.id = "JASPAR_%s" % motif.id
return motifs, "", ""
|
Get enriched JASPAR motifs in a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def _run_program(self, bin, fastafile, params=None):
"""
Run MEME and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
"""
default_params = {"width":10, "single":False, "number":10}
if params is not None:
default_params.update(params)
tmp = NamedTemporaryFile(dir=self.tmpdir)
tmpname = tmp.name
strand = "-revcomp"
width = default_params["width"]
number = default_params["number"]
cmd = [bin, fastafile, "-text","-dna","-nostatus","-mod", "zoops","-nmotifs", "%s" % number, "-w","%s" % width, "-maxsize", "10000000"]
if not default_params["single"]:
cmd.append(strand)
#sys.stderr.write(" ".join(cmd) + "\n")
p = Popen(cmd, bufsize=1, stderr=PIPE, stdout=PIPE)
stdout,stderr = p.communicate()
motifs = []
motifs = self.parse(io.StringIO(stdout.decode()))
# Delete temporary files
tmp.close()
return motifs, stdout, stderr
|
Run MEME and predict motifs from a FASTA file.
Parameters
----------
bin : str
Command used to run the tool.
fastafile : str
Name of the FASTA input file.
params : dict, optional
Optional parameters. For some of the tools required parameters
are passed using this dictionary.
Returns
-------
motifs : list of Motif instances
The predicted motifs.
stdout : str
Standard out of the tool.
stderr : str
Standard error of the tool.
|
entailment
|
def parse(self, fo):
"""
Convert MEME output to motifs
Parameters
----------
fo : file-like
File object containing MEME output.
Returns
-------
motifs : list
List of Motif instances.
"""
motifs = []
nucs = {"A":0,"C":1,"G":2,"T":3}
p = re.compile('MOTIF.+MEME-(\d+)\s*width\s*=\s*(\d+)\s+sites\s*=\s*(\d+)')
pa = re.compile('\)\s+([A-Z]+)')
line = fo.readline()
while line:
m = p.search(line)
align = []
pfm = None
if m:
#print(m.group(0))
id = "%s_%s_w%s" % (self.name, m.group(1), m.group(2))
while not line.startswith("//"):
ma = pa.search(line)
if ma:
#print(ma.group(0))
l = ma.group(1)
align.append(l)
if not pfm:
pfm = [[0 for x in range(4)] for x in range(len(l))]
for pos in range(len(l)):
if l[pos] in nucs:
pfm[pos][nucs[l[pos]]] += 1
else:
for i in range(4):
pfm[pos][i] += 0.25
line = fo.readline()
motifs.append(Motif(pfm[:]))
motifs[-1].id = id
motifs[-1].align = align[:]
line = fo.readline()
return motifs
|
Convert MEME output to motifs
Parameters
----------
fo : file-like
File object containing MEME output.
Returns
-------
motifs : list
List of Motif instances.
|
entailment
|
def scan_to_table(input_table, genome, scoring, pwmfile=None, ncpus=None):
"""Scan regions in input table with motifs.
Parameters
----------
input_table : str
Filename of input table. Can be either a text-separated tab file or a
feather file.
genome : str
Genome name. Can be either the name of a FASTA-formatted file or a
genomepy genome name.
scoring : str
"count" or "score"
pwmfile : str, optional
Specify a PFM file for scanning.
ncpus : int, optional
If defined this specifies the number of cores to use.
Returns
-------
table : pandas.DataFrame
DataFrame with motif ids as column names and regions as index. Values
are either counts or scores depending on the 'scoring' parameter.s
"""
config = MotifConfig()
if pwmfile is None:
pwmfile = config.get_default_params().get("motif_db", None)
if pwmfile is not None:
pwmfile = os.path.join(config.get_motif_dir(), pwmfile)
if pwmfile is None:
raise ValueError("no pwmfile given and no default database specified")
logger.info("reading table")
if input_table.endswith("feather"):
df = pd.read_feather(input_table)
idx = df.iloc[:,0].values
else:
df = pd.read_table(input_table, index_col=0, comment="#")
idx = df.index
regions = list(idx)
s = Scanner(ncpus=ncpus)
s.set_motifs(pwmfile)
s.set_genome(genome)
s.set_background(genome=genome)
nregions = len(regions)
scores = []
if scoring == "count":
logger.info("setting threshold")
s.set_threshold(fpr=FPR)
logger.info("creating count table")
for row in s.count(regions):
scores.append(row)
logger.info("done")
else:
s.set_threshold(threshold=0.0)
logger.info("creating score table")
for row in s.best_score(regions, normalize=True):
scores.append(row)
logger.info("done")
motif_names = [m.id for m in read_motifs(pwmfile)]
logger.info("creating dataframe")
return pd.DataFrame(scores, index=idx, columns=motif_names)
|
Scan regions in input table with motifs.
Parameters
----------
input_table : str
Filename of input table. Can be either a text-separated tab file or a
feather file.
genome : str
Genome name. Can be either the name of a FASTA-formatted file or a
genomepy genome name.
scoring : str
"count" or "score"
pwmfile : str, optional
Specify a PFM file for scanning.
ncpus : int, optional
If defined this specifies the number of cores to use.
Returns
-------
table : pandas.DataFrame
DataFrame with motif ids as column names and regions as index. Values
are either counts or scores depending on the 'scoring' parameter.s
|
entailment
|
def run_maelstrom(infile, genome, outdir, pwmfile=None, plot=True, cluster=False,
score_table=None, count_table=None, methods=None, ncpus=None):
"""Run maelstrom on an input table.
Parameters
----------
infile : str
Filename of input table. Can be either a text-separated tab file or a
feather file.
genome : str
Genome name. Can be either the name of a FASTA-formatted file or a
genomepy genome name.
outdir : str
Output directory for all results.
pwmfile : str, optional
Specify a PFM file for scanning.
plot : bool, optional
Create heatmaps.
cluster : bool, optional
If True and if the input table has more than one column, the data is
clustered and the cluster activity methods are also run. Not
well-tested.
score_table : str, optional
Filename of pre-calculated table with motif scores.
count_table : str, optional
Filename of pre-calculated table with motif counts.
methods : list, optional
Activity methods to use. By default are all used.
ncpus : int, optional
If defined this specifies the number of cores to use.
"""
logger.info("Starting maelstrom")
if infile.endswith("feather"):
df = pd.read_feather(infile)
df = df.set_index(df.columns[0])
else:
df = pd.read_table(infile, index_col=0, comment="#")
# Check for duplicates
if df.index.duplicated(keep=False).any():
raise ValueError("Input file contains duplicate regions! "
"Please remove them.")
if not os.path.exists(outdir):
os.mkdir(outdir)
if methods is None:
methods = Moap.list_predictors()
methods = [m.lower() for m in methods]
shutil.copyfile(infile, os.path.join(outdir, "input.table.txt"))
# Copy the motif informatuon
pwmfile = pwmfile_location(pwmfile)
if pwmfile:
shutil.copy2(pwmfile, outdir)
mapfile = re.sub(".p[fw]m$", ".motif2factors.txt", pwmfile)
if os.path.exists(mapfile):
shutil.copy2(mapfile, outdir)
# Create a file with the number of motif matches
if not count_table:
count_table = os.path.join(outdir, "motif.count.txt.gz")
if not os.path.exists(count_table):
logger.info("Motif scanning (counts)")
counts = scan_to_table(infile, genome, "count",
pwmfile=pwmfile, ncpus=ncpus)
counts.to_csv(count_table, sep="\t", compression="gzip")
else:
logger.info("Counts, using: %s", count_table)
# Create a file with the score of the best motif match
if not score_table:
score_table = os.path.join(outdir, "motif.score.txt.gz")
if not os.path.exists(score_table):
logger.info("Motif scanning (scores)")
scores = scan_to_table(infile, genome, "score",
pwmfile=pwmfile, ncpus=ncpus)
scores.to_csv(score_table, sep="\t", float_format="%.3f",
compression="gzip")
else:
logger.info("Scores, using: %s", score_table)
if cluster:
cluster = False
for method in methods:
m = Moap.create(method, ncpus=ncpus)
if m.ptype == "classification":
cluster = True
break
if not cluster:
logger.info("Skipping clustering, no classification methods")
exps = []
clusterfile = infile
if df.shape[1] != 1:
# More than one column
for method in Moap.list_regression_predictors():
if method in methods:
m = Moap.create(method, ncpus=ncpus)
exps.append([method, m.pref_table, infile])
logger.debug("Adding %s", method)
if cluster:
clusterfile = os.path.join(outdir,
os.path.basename(infile) + ".cluster.txt")
df[:] = scale(df, axis=0)
names = df.columns
df_changed = pd.DataFrame(index=df.index)
df_changed["cluster"] = np.nan
for name in names:
df_changed.loc[(df[name] - df.loc[:,df.columns != name].max(1)) > 0.5, "cluster"] = name
df_changed.dropna().to_csv(clusterfile, sep="\t")
if df.shape[1] == 1 or cluster:
for method in Moap.list_classification_predictors():
if method in methods:
m = Moap.create(method, ncpus=ncpus)
exps.append([method, m.pref_table, clusterfile])
if len(exps) == 0:
logger.error("No method to run.")
sys.exit(1)
for method, scoring, fname in exps:
try:
if scoring == "count" and count_table:
moap_with_table(fname, count_table, outdir, method, scoring, ncpus=ncpus)
elif scoring == "score" and score_table:
moap_with_table(fname, score_table, outdir, method, scoring, ncpus=ncpus)
else:
moap_with_bg(fname, genome, outdir, method, scoring, pwmfile=pwmfile, ncpus=ncpus)
except Exception as e:
logger.warn("Method %s with scoring %s failed", method, scoring)
logger.warn(e)
logger.warn("Skipping")
raise
dfs = {}
for method, scoring,fname in exps:
t = "{}.{}".format(method,scoring)
fname = os.path.join(outdir, "activity.{}.{}.out.txt".format(
method, scoring))
try:
dfs[t] = pd.read_table(fname, index_col=0, comment="#")
except:
logging.warn("Activity file for {} not found!\n".format(t))
if len(methods) > 1:
logger.info("Rank aggregation")
df_p = df_rank_aggregation(df, dfs, exps)
df_p.to_csv(os.path.join(outdir, "final.out.csv"), sep="\t")
#df_p = df_p.join(m2f)
# Write motif frequency table
if df.shape[1] == 1:
mcount = df.join(pd.read_table(count_table, index_col=0, comment="#"))
m_group = mcount.groupby(df.columns[0])
freq = m_group.sum() / m_group.count()
freq.to_csv(os.path.join(outdir, "motif.freq.txt"), sep="\t")
if plot and len(methods) > 1:
logger.info("html report")
maelstrom_html_report(
outdir,
os.path.join(outdir, "final.out.csv"),
pwmfile
)
logger.info(os.path.join(outdir, "gimme.maelstrom.report.html"))
|
Run maelstrom on an input table.
Parameters
----------
infile : str
Filename of input table. Can be either a text-separated tab file or a
feather file.
genome : str
Genome name. Can be either the name of a FASTA-formatted file or a
genomepy genome name.
outdir : str
Output directory for all results.
pwmfile : str, optional
Specify a PFM file for scanning.
plot : bool, optional
Create heatmaps.
cluster : bool, optional
If True and if the input table has more than one column, the data is
clustered and the cluster activity methods are also run. Not
well-tested.
score_table : str, optional
Filename of pre-calculated table with motif scores.
count_table : str, optional
Filename of pre-calculated table with motif counts.
methods : list, optional
Activity methods to use. By default are all used.
ncpus : int, optional
If defined this specifies the number of cores to use.
|
entailment
|
def plot_heatmap(self, kind="final", min_freq=0.01, threshold=2, name=True, max_len=50, aspect=1, **kwargs):
"""Plot clustered heatmap of predicted motif activity.
Parameters
----------
kind : str, optional
Which data type to use for plotting. Default is 'final', which will plot the
result of the rang aggregation. Other options are 'freq' for the motif frequencies,
or any of the individual activities such as 'rf.score'.
min_freq : float, optional
Minimum frequency of motif occurrence.
threshold : float, optional
Minimum activity (absolute) of the rank aggregation result.
name : bool, optional
Use factor names instead of motif names for plotting.
max_len : int, optional
Truncate the list of factors to this maximum length.
aspect : int, optional
Aspect ratio for tweaking the plot.
kwargs : other keyword arguments
All other keyword arguments are passed to sns.clustermap
Returns
-------
cg : ClusterGrid
A seaborn ClusterGrid instance.
"""
filt = np.any(np.abs(self.result) >= threshold, 1) & np.any(np.abs(self.freq.T) >= min_freq, 1)
idx = self.result[filt].index
cmap = "RdBu_r"
if kind == "final":
data = self.result
elif kind == "freq":
data = self.freq.T
cmap = "Reds"
elif kind in self.activity:
data = self.activity[dtype]
if kind in ["hypergeom.count", "mwu.score"]:
cmap = "Reds"
else:
raise ValueError("Unknown dtype")
#print(data.head())
#plt.figure(
m = data.loc[idx]
if name:
m["factors"] = [join_max(self.motifs[n].factors, max_len, ",", suffix=",(...)") for n in m.index]
m = m.set_index("factors")
h,w = m.shape
cg = sns.clustermap(m, cmap=cmap, col_cluster=False,
figsize=(2 + w * 0.5 * aspect, 0.5 * h), linewidths=1,
**kwargs)
cg.ax_col_dendrogram.set_visible(False)
plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation=0);
return cg
|
Plot clustered heatmap of predicted motif activity.
Parameters
----------
kind : str, optional
Which data type to use for plotting. Default is 'final', which will plot the
result of the rang aggregation. Other options are 'freq' for the motif frequencies,
or any of the individual activities such as 'rf.score'.
min_freq : float, optional
Minimum frequency of motif occurrence.
threshold : float, optional
Minimum activity (absolute) of the rank aggregation result.
name : bool, optional
Use factor names instead of motif names for plotting.
max_len : int, optional
Truncate the list of factors to this maximum length.
aspect : int, optional
Aspect ratio for tweaking the plot.
kwargs : other keyword arguments
All other keyword arguments are passed to sns.clustermap
Returns
-------
cg : ClusterGrid
A seaborn ClusterGrid instance.
|
entailment
|
def plot_scores(self, motifs, name=True, max_len=50):
"""Create motif scores boxplot of different clusters.
Motifs can be specified as either motif or factor names.
The motif scores will be scaled and plotted as z-scores.
Parameters
----------
motifs : iterable or str
List of motif or factor names.
name : bool, optional
Use factor names instead of motif names for plotting.
max_len : int, optional
Truncate the list of factors to this maximum length.
Returns
-------
g : FacetGrid
Returns the seaborn FacetGrid object with the plot.
"""
if self.input.shape[1] != 1:
raise ValueError("Can't make a categorical plot with real-valued data")
if type("") == type(motifs):
motifs = [motifs]
plot_motifs = []
for motif in motifs:
if motif in self.motifs:
plot_motifs.append(motif)
else:
for m in self.motifs.values():
if motif in m.factors:
plot_motifs.append(m.id)
data = self.scores[plot_motifs]
data[:] = data.scale(data, axix=0)
if name:
data = data.T
data["factors"] = [join_max(self.motifs[n].factors, max_len, ",", suffix=",(...)") for n in plot_motifs]
data = data.set_index("factors").T
data = pd.melt(self.input.join(data), id_vars=["cluster"])
data.columns = ["cluster", "motif", "z-score"]
g = sns.factorplot(data=data, y="motif", x="z-score", hue="cluster", kind="box", aspect=2)
return g
|
Create motif scores boxplot of different clusters.
Motifs can be specified as either motif or factor names.
The motif scores will be scaled and plotted as z-scores.
Parameters
----------
motifs : iterable or str
List of motif or factor names.
name : bool, optional
Use factor names instead of motif names for plotting.
max_len : int, optional
Truncate the list of factors to this maximum length.
Returns
-------
g : FacetGrid
Returns the seaborn FacetGrid object with the plot.
|
entailment
|
def get_version(package, url_pattern=URL_PATTERN):
"""Return version of package on pypi.python.org using json. Adapted from https://stackoverflow.com/a/34366589"""
req = requests.get(url_pattern.format(package=package))
version = parse('0')
if req.status_code == requests.codes.ok:
# j = json.loads(req.text.encode(req.encoding))
j = req.json()
releases = j.get('releases', [])
for release in releases:
ver = parse(release)
if not ver.is_prerelease:
version = max(version, ver)
return version
|
Return version of package on pypi.python.org using json. Adapted from https://stackoverflow.com/a/34366589
|
entailment
|
def get_args(parser):
"""
Converts arguments extracted from a parser to a dict,
and will dismiss arguments which default to NOT_SET.
:param parser: an ``argparse.ArgumentParser`` instance.
:type parser: argparse.ArgumentParser
:return: Dictionary with the configs found in the parsed CLI arguments.
:rtype: dict
"""
args = vars(parser.parse_args()).items()
return {key: val for key, val in args if not isinstance(val, NotSet)}
|
Converts arguments extracted from a parser to a dict,
and will dismiss arguments which default to NOT_SET.
:param parser: an ``argparse.ArgumentParser`` instance.
:type parser: argparse.ArgumentParser
:return: Dictionary with the configs found in the parsed CLI arguments.
:rtype: dict
|
entailment
|
def parse_value(val, parsebool=False):
"""Parse input string and return int, float or str depending on format.
@param val: Input string.
@param parsebool: If True parse yes / no, on / off as boolean.
@return: Value of type int, float or str.
"""
try:
return int(val)
except ValueError:
pass
try:
return float(val)
except:
pass
if parsebool:
if re.match('yes|on', str(val), re.IGNORECASE):
return True
elif re.match('no|off', str(val), re.IGNORECASE):
return False
return val
|
Parse input string and return int, float or str depending on format.
@param val: Input string.
@param parsebool: If True parse yes / no, on / off as boolean.
@return: Value of type int, float or str.
|
entailment
|
def socket_read(fp):
"""Buffered read from socket. Reads all data available from socket.
@fp: File pointer for socket.
@return: String of characters read from buffer.
"""
response = ''
oldlen = 0
newlen = 0
while True:
response += fp.read(buffSize)
newlen = len(response)
if newlen - oldlen == 0:
break
else:
oldlen = newlen
return response
|
Buffered read from socket. Reads all data available from socket.
@fp: File pointer for socket.
@return: String of characters read from buffer.
|
entailment
|
def exec_command(args, env=None):
"""Convenience function that executes command and returns result.
@param args: Tuple of command and arguments.
@param env: Dictionary of environment variables.
(Environment is not modified if None.)
@return: Command output.
"""
try:
cmd = subprocess.Popen(args,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
bufsize=buffSize,
env=env)
except OSError, e:
raise Exception("Execution of command failed.\n",
" Command: %s\n Error: %s" % (' '.join(args), str(e)))
out, err = cmd.communicate(None)
if cmd.returncode != 0:
raise Exception("Execution of command failed with error code: %s\n%s\n"
% (cmd.returncode, err))
return out
|
Convenience function that executes command and returns result.
@param args: Tuple of command and arguments.
@param env: Dictionary of environment variables.
(Environment is not modified if None.)
@return: Command output.
|
entailment
|
def set_nested(self, klist, value):
"""D.set_nested((k1, k2,k3, ...), v) -> D[k1][k2][k3] ... = v"""
keys = list(klist)
if len(keys) > 0:
curr_dict = self
last_key = keys.pop()
for key in keys:
if not curr_dict.has_key(key) or not isinstance(curr_dict[key],
NestedDict):
curr_dict[key] = type(self)()
curr_dict = curr_dict[key]
curr_dict[last_key] = value
|
D.set_nested((k1, k2,k3, ...), v) -> D[k1][k2][k3] ... = v
|
entailment
|
def registerFilter(self, column, patterns, is_regex=False,
ignore_case=False):
"""Register filter on a column of table.
@param column: The column name.
@param patterns: A single pattern or a list of patterns used for
matching column values.
@param is_regex: The patterns will be treated as regex if True, the
column values will be tested for equality with the
patterns otherwise.
@param ignore_case: Case insensitive matching will be used if True.
"""
if isinstance(patterns, basestring):
patt_list = (patterns,)
elif isinstance(patterns, (tuple, list)):
patt_list = list(patterns)
else:
raise ValueError("The patterns parameter must either be as string "
"or a tuple / list of strings.")
if is_regex:
if ignore_case:
flags = re.IGNORECASE
else:
flags = 0
patt_exprs = [re.compile(pattern, flags) for pattern in patt_list]
else:
if ignore_case:
patt_exprs = [pattern.lower() for pattern in patt_list]
else:
patt_exprs = patt_list
self._filters[column] = (patt_exprs, is_regex, ignore_case)
|
Register filter on a column of table.
@param column: The column name.
@param patterns: A single pattern or a list of patterns used for
matching column values.
@param is_regex: The patterns will be treated as regex if True, the
column values will be tested for equality with the
patterns otherwise.
@param ignore_case: Case insensitive matching will be used if True.
|
entailment
|
def unregisterFilter(self, column):
"""Unregister filter on a column of the table.
@param column: The column header.
"""
if self._filters.has_key(column):
del self._filters[column]
|
Unregister filter on a column of the table.
@param column: The column header.
|
entailment
|
def registerFilters(self, **kwargs):
"""Register multiple filters at once.
@param **kwargs: Multiple filters are registered using keyword
variables. Each keyword must correspond to a field name
with an optional suffix:
field: Field equal to value or in list of
values.
field_ic: Field equal to value or in list of
values, using case insensitive
comparison.
field_regex: Field matches regex value or matches
with any regex in list of values.
field_ic_regex: Field matches regex value or matches
with any regex in list of values
using case insensitive match.
"""
for (key, patterns) in kwargs.items():
if key.endswith('_regex'):
col = key[:-len('_regex')]
is_regex = True
else:
col = key
is_regex = False
if col.endswith('_ic'):
col = col[:-len('_ic')]
ignore_case = True
else:
ignore_case = False
self.registerFilter(col, patterns, is_regex, ignore_case)
|
Register multiple filters at once.
@param **kwargs: Multiple filters are registered using keyword
variables. Each keyword must correspond to a field name
with an optional suffix:
field: Field equal to value or in list of
values.
field_ic: Field equal to value or in list of
values, using case insensitive
comparison.
field_regex: Field matches regex value or matches
with any regex in list of values.
field_ic_regex: Field matches regex value or matches
with any regex in list of values
using case insensitive match.
|
entailment
|
def applyFilters(self, headers, table):
"""Apply filter on ps command result.
@param headers: List of column headers.
@param table: Nested list of rows and columns.
@return: Nested list of rows and columns filtered using
registered filters.
"""
result = []
column_idxs = {}
for column in self._filters.keys():
try:
column_idxs[column] = headers.index(column)
except ValueError:
raise ValueError('Invalid column name %s in filter.' % column)
for row in table:
for (column, (patterns,
is_regex,
ignore_case)) in self._filters.items():
col_idx = column_idxs[column]
col_val = row[col_idx]
if is_regex:
for pattern in patterns:
if pattern.search(col_val):
break
else:
break
else:
if ignore_case:
col_val = col_val.lower()
if col_val in patterns:
pass
else:
break
else:
result.append(row)
return result
|
Apply filter on ps command result.
@param headers: List of column headers.
@param table: Nested list of rows and columns.
@return: Nested list of rows and columns filtered using
registered filters.
|
entailment
|
def open(self, host=None, port=0, socket_file=None,
timeout=socket.getdefaulttimeout()):
"""Connect to a host.
With a host argument, it connects the instance using TCP; port number
and timeout are optional, socket_file must be None. The port number
defaults to the standard telnet port (23).
With a socket_file argument, it connects the instance using
named socket; timeout is optional and host must be None.
Don't try to reopen an already connected instance.
"""
self.socket_file = socket_file
if host is not None:
if sys.version_info[:2] >= (2,6):
telnetlib.Telnet.open(self, host, port, timeout)
else:
telnetlib.Telnet.open(self, host, port)
elif socket_file is not None:
self.eof = 0
self.host = host
self.port = port
self.timeout = timeout
self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
self.sock.settimeout(timeout)
self.sock.connect(socket_file)
else:
raise TypeError("Either host or socket_file argument is required.")
|
Connect to a host.
With a host argument, it connects the instance using TCP; port number
and timeout are optional, socket_file must be None. The port number
defaults to the standard telnet port (23).
With a socket_file argument, it connects the instance using
named socket; timeout is optional and host must be None.
Don't try to reopen an already connected instance.
|
entailment
|
def analyze(egg, subjgroup=None, listgroup=None, subjname='Subject',
listname='List', analysis=None, position=0, permute=False,
n_perms=1000, parallel=False, match='exact',
distance='euclidean', features=None, ts=None):
"""
General analysis function that groups data by subject/list number and performs analysis.
Parameters
----------
egg : Egg data object
The data to be analyzed
subjgroup : list of strings or ints
String/int variables indicating how to group over subjects. Must be
the length of the number of subjects
subjname : string
Name of the subject grouping variable
listgroup : list of strings or ints
String/int variables indicating how to group over list. Must be
the length of the number of lists
listname : string
Name of the list grouping variable
analysis : string
This is the analysis you want to run. Can be accuracy, spc, pfr,
temporal or fingerprint
position : int
Optional argument for pnr analysis. Defines encoding position of item
to run pnr. Default is 0, and it is zero indexed
permute : bool
Optional argument for fingerprint/temporal cluster analyses. Determines
whether to correct clustering scores by shuffling recall order for each list
to create a distribution of clustering scores (for each feature). The
"corrected" clustering score is the proportion of clustering scores in
that random distribution that were lower than the clustering score for
the observed recall sequence. Default is False.
n_perms : int
Optional argument for fingerprint/temporal cluster analyses. Number of
permutations to run for "corrected" clustering scores. Default is 1000 (
per recall list).
parallel : bool
Option to use multiprocessing (this can help speed up the permutations
tests in the clustering calculations)
match : str (exact, best or smooth)
Matching approach to compute recall matrix. If exact, the presented and
recalled items must be identical (default). If best, the recalled item
that is most similar to the presented items will be selected. If smooth,
a weighted average of all presented items will be used, where the
weights are derived from the similarity between the recalled item and
each presented item.
distance : str
The distance function used to compare presented and recalled items.
Applies only to 'best' and 'smooth' matching approaches. Can be any
distance function supported by numpy.spatial.distance.cdist.
Returns
----------
result : quail.FriedEgg
Class instance containing the analysis results
"""
if analysis is None:
raise ValueError('You must pass an analysis type.')
if analysis not in analyses.keys():
raise ValueError('Analysis not recognized. Choose one of the following: '
'accuracy, spc, pfr, lag-crp, fingerprint, temporal')
from ..egg import FriedEgg
if hasattr(egg, 'subjgroup'):
if egg.subjgroup is not None:
subjgroup = egg.subjgroup
if hasattr(egg, 'subjname'):
if egg.subjname is not None:
subjname = egg.subjname
if hasattr(egg, 'listgroup'):
if egg.listgroup is not None:
listgroup = egg.listgroup
if hasattr(egg, 'listname'):
if egg.listname is not None:
listname = egg.listname
if features is None:
features = egg.feature_names
opts = {
'subjgroup' : subjgroup,
'listgroup' : listgroup,
'subjname' : subjname,
'parallel' : parallel,
'match' : match,
'distance' : distance,
'features' : features,
'analysis_type' : analysis,
'analysis' : analyses[analysis]
}
if analysis is 'pfr':
opts.update({'position' : 0})
elif analysis is 'pnr':
opts.update({'position' : position})
if analysis is 'temporal':
opts.update({'features' : ['temporal']})
if analysis in ['temporal', 'fingerprint']:
opts.update({'permute' : permute, 'n_perms' : n_perms})
if analysis is 'lagcrp':
opts.update({'ts' : ts})
return FriedEgg(data=_analyze_chunk(egg, **opts), analysis=analysis,
list_length=egg.list_length, n_lists=egg.n_lists,
n_subjects=egg.n_subjects, position=position)
|
General analysis function that groups data by subject/list number and performs analysis.
Parameters
----------
egg : Egg data object
The data to be analyzed
subjgroup : list of strings or ints
String/int variables indicating how to group over subjects. Must be
the length of the number of subjects
subjname : string
Name of the subject grouping variable
listgroup : list of strings or ints
String/int variables indicating how to group over list. Must be
the length of the number of lists
listname : string
Name of the list grouping variable
analysis : string
This is the analysis you want to run. Can be accuracy, spc, pfr,
temporal or fingerprint
position : int
Optional argument for pnr analysis. Defines encoding position of item
to run pnr. Default is 0, and it is zero indexed
permute : bool
Optional argument for fingerprint/temporal cluster analyses. Determines
whether to correct clustering scores by shuffling recall order for each list
to create a distribution of clustering scores (for each feature). The
"corrected" clustering score is the proportion of clustering scores in
that random distribution that were lower than the clustering score for
the observed recall sequence. Default is False.
n_perms : int
Optional argument for fingerprint/temporal cluster analyses. Number of
permutations to run for "corrected" clustering scores. Default is 1000 (
per recall list).
parallel : bool
Option to use multiprocessing (this can help speed up the permutations
tests in the clustering calculations)
match : str (exact, best or smooth)
Matching approach to compute recall matrix. If exact, the presented and
recalled items must be identical (default). If best, the recalled item
that is most similar to the presented items will be selected. If smooth,
a weighted average of all presented items will be used, where the
weights are derived from the similarity between the recalled item and
each presented item.
distance : str
The distance function used to compare presented and recalled items.
Applies only to 'best' and 'smooth' matching approaches. Can be any
distance function supported by numpy.spatial.distance.cdist.
Returns
----------
result : quail.FriedEgg
Class instance containing the analysis results
|
entailment
|
def _analyze_chunk(data, subjgroup=None, subjname='Subject', listgroup=None,
listname='List', analysis=None, analysis_type=None,
pass_features=False, features=None, parallel=False,
**kwargs):
"""
Private function that groups data by subject/list number and performs
analysis for a chunk of data.
Parameters
----------
data : Egg data object
The data to be analyzed
subjgroup : list of strings or ints
String/int variables indicating how to group over subjects. Must be
the length of the number of subjects
subjname : string
Name of the subject grouping variable
listgroup : list of strings or ints
String/int variables indicating how to group over list. Must be
the length of the number of lists
listname : string
Name of the list grouping variable
analysis : function
This function analyzes data and returns it.
pass_features : bool
Logical indicating whether the analyses uses the features field of the
Egg
Returns
----------
analyzed_data : Pandas DataFrame
DataFrame containing the analysis results
"""
# perform the analysis
def _analysis(c):
subj, lst = c
subjects = [s for s in subjdict[subj]]
lists = [l for l in listdict[subj][lst]]
s = data.crack(lists=lists, subjects=subjects)
index = pd.MultiIndex.from_arrays([[subj],[lst]], names=[subjname, listname])
opts = dict()
if analysis_type is 'fingerprint':
opts.update({'columns' : features})
elif analysis_type is 'lagcrp':
if kwargs['ts']:
opts.update({'columns' : range(-kwargs['ts'],kwargs['ts']+1)})
else:
opts.update({'columns' : range(-data.list_length,data.list_length+1)})
return pd.DataFrame([analysis(s, features=features, **kwargs)],
index=index, **opts)
subjgroup = subjgroup if subjgroup else data.pres.index.levels[0].values
listgroup = listgroup if listgroup else data.pres.index.levels[1].values
subjdict = {subj : data.pres.index.levels[0].values[subj==np.array(subjgroup)] for subj in set(subjgroup)}
if all(isinstance(el, list) for el in listgroup):
listdict = [{lst : data.pres.index.levels[1].values[lst==np.array(listgrpsub)] for lst in set(listgrpsub)} for listgrpsub in listgroup]
else:
listdict = [{lst : data.pres.index.levels[1].values[lst==np.array(listgroup)] for lst in set(listgroup)} for subj in subjdict]
chunks = [(subj, lst) for subj in subjdict for lst in listdict[0]]
if parallel:
import multiprocessing
from pathos.multiprocessing import ProcessingPool as Pool
p = Pool(multiprocessing.cpu_count())
res = p.map(_analysis, chunks)
else:
res = [_analysis(c) for c in chunks]
return pd.concat(res)
|
Private function that groups data by subject/list number and performs
analysis for a chunk of data.
Parameters
----------
data : Egg data object
The data to be analyzed
subjgroup : list of strings or ints
String/int variables indicating how to group over subjects. Must be
the length of the number of subjects
subjname : string
Name of the subject grouping variable
listgroup : list of strings or ints
String/int variables indicating how to group over list. Must be
the length of the number of lists
listname : string
Name of the list grouping variable
analysis : function
This function analyzes data and returns it.
pass_features : bool
Logical indicating whether the analyses uses the features field of the
Egg
Returns
----------
analyzed_data : Pandas DataFrame
DataFrame containing the analysis results
|
entailment
|
def retrieveVals(self):
"""Retrieve values for graphs."""
if self.hasGraph('tomcat_memory'):
stats = self._tomcatInfo.getMemoryStats()
self.setGraphVal('tomcat_memory', 'used',
stats['total'] - stats['free'])
self.setGraphVal('tomcat_memory', 'free', stats['free'])
self.setGraphVal('tomcat_memory', 'max', stats['max'])
for (port, stats) in self._tomcatInfo.getConnectorStats().iteritems():
thrstats = stats['threadInfo']
reqstats = stats['requestInfo']
if self.portIncluded(port):
name = "tomcat_threads_%d" % port
if self.hasGraph(name):
self.setGraphVal(name, 'busy',
thrstats['currentThreadsBusy'])
self.setGraphVal(name, 'idle',
thrstats['currentThreadCount']
- thrstats['currentThreadsBusy'])
self.setGraphVal(name, 'max', thrstats['maxThreads'])
name = "tomcat_access_%d" % port
if self.hasGraph(name):
self.setGraphVal(name, 'reqs', reqstats['requestCount'])
name = "tomcat_error_%d" % port
if self.hasGraph(name):
self.setGraphVal(name, 'errors', reqstats['errorCount'])
name = "tomcat_traffic_%d" % port
if self.hasGraph(name):
self.setGraphVal(name, 'rx', reqstats['bytesReceived'])
self.setGraphVal(name, 'tx', reqstats['bytesSent'])
|
Retrieve values for graphs.
|
entailment
|
def function(data, maxt=None):
"""
Calculate the autocorrelation function for a 1D time series.
Parameters
----------
data : numpy.ndarray (N,)
The time series.
Returns
-------
rho : numpy.ndarray (N,)
An autocorrelation function.
"""
data = np.atleast_1d(data)
assert len(np.shape(data)) == 1, \
"The autocorrelation function can only by computed " \
+ "on a 1D time series."
if maxt is None:
maxt = len(data)
result = np.zeros(maxt, dtype=float)
_acor.function(np.array(data, dtype=float), result)
return result / result[0]
|
Calculate the autocorrelation function for a 1D time series.
Parameters
----------
data : numpy.ndarray (N,)
The time series.
Returns
-------
rho : numpy.ndarray (N,)
An autocorrelation function.
|
entailment
|
def retrieveVals(self):
"""Retrieve values for graphs."""
nginxInfo = NginxInfo(self._host, self._port,
self._user, self._password,
self._statuspath, self._ssl)
stats = nginxInfo.getServerStats()
if stats:
if self.hasGraph('nginx_activeconn'):
self.setGraphVal('nginx_activeconn', 'proc', stats['writing'])
self.setGraphVal('nginx_activeconn', 'read', stats['reading'])
self.setGraphVal('nginx_activeconn', 'wait', stats['waiting'])
self.setGraphVal('nginx_activeconn', 'total',
stats['connections'])
if self.hasGraph('nginx_connections'):
self.setGraphVal('nginx_connections', 'handled', stats['handled'])
self.setGraphVal('nginx_connections', 'nothandled',
stats['accepts'] - stats['handled'])
if self.hasGraph('nginx_requests'):
self.setGraphVal('nginx_requests', 'requests', stats['requests'])
if self.hasGraph('nginx_requestsperconn'):
curr_stats = (stats['handled'], stats['requests'])
hist_stats = self.restoreState()
if hist_stats:
prev_stats = hist_stats[0]
else:
hist_stats = []
prev_stats = (0,0)
conns = max(curr_stats[0] - prev_stats[0], 0)
reqs = max(curr_stats[1] - prev_stats[1], 0)
if conns > 0:
self.setGraphVal('nginx_requestsperconn', 'requests',
float(reqs) / float(conns))
else:
self.setGraphVal('nginx_requestsperconn', 'requests', 0)
hist_stats.append(curr_stats)
self.saveState(hist_stats[-self._numSamples:])
|
Retrieve values for graphs.
|
entailment
|
def autoconf(self):
"""Implements Munin Plugin Auto-Configuration Option.
@return: True if plugin can be auto-configured, False otherwise.
"""
nginxInfo = NginxInfo(self._host, self._port,
self._user, self._password,
self._statuspath, self._ssl)
return nginxInfo is not None
|
Implements Munin Plugin Auto-Configuration Option.
@return: True if plugin can be auto-configured, False otherwise.
|
entailment
|
def getStats(self):
"""Query and parse Web Server Status Page.
"""
url = "%s://%s:%d/%s" % (self._proto, self._host, self._port,
self._monpath)
response = util.get_url(url, self._user, self._password)
stats = {}
for line in response.splitlines():
mobj = re.match('([\w\s]+):\s+(\w+)$', line)
if mobj:
stats[mobj.group(1)] = util.parse_value(mobj.group(2))
return stats
|
Query and parse Web Server Status Page.
|
entailment
|
def retrieveVals(self):
"""Retrieve values for graphs."""
apcinfo = APCinfo(self._host, self._port, self._user, self._password,
self._monpath, self._ssl, self._extras)
stats = apcinfo.getAllStats()
if self.hasGraph('php_apc_memory') and stats:
filecache = stats['cache_sys']['mem_size']
usercache = stats['cache_user']['mem_size']
total = stats['memory']['seg_size'] * stats['memory']['num_seg']
free = stats['memory']['avail_mem']
other = total - free - filecache - usercache
self.setGraphVal('php_apc_memory', 'filecache', filecache)
self.setGraphVal('php_apc_memory', 'usercache', usercache)
self.setGraphVal('php_apc_memory', 'other', other)
self.setGraphVal('php_apc_memory', 'free', free)
if self.hasGraph('php_apc_items') and stats:
self.setGraphVal('php_apc_items', 'filecache',
stats['cache_sys']['num_entries'])
self.setGraphVal('php_apc_items', 'usercache',
stats['cache_user']['num_entries'])
if self.hasGraph('php_apc_reqs_filecache') and stats:
self.setGraphVal('php_apc_reqs_filecache', 'hits',
stats['cache_sys']['num_hits'])
self.setGraphVal('php_apc_reqs_filecache', 'misses',
stats['cache_sys']['num_misses'])
self.setGraphVal('php_apc_reqs_filecache', 'inserts',
stats['cache_sys']['num_inserts'])
if self.hasGraph('php_apc_reqs_usercache') and stats:
self.setGraphVal('php_apc_reqs_usercache', 'hits',
stats['cache_user']['num_hits'])
self.setGraphVal('php_apc_reqs_usercache', 'misses',
stats['cache_user']['num_misses'])
self.setGraphVal('php_apc_reqs_usercache', 'inserts',
stats['cache_user']['num_inserts'])
if self.hasGraph('php_apc_expunge') and stats:
self.setGraphVal('php_apc_expunge', 'filecache',
stats['cache_sys']['expunges'])
self.setGraphVal('php_apc_expunge', 'usercache',
stats['cache_user']['expunges'])
if self.hasGraph('php_apc_mem_util_frag'):
self.setGraphVal('php_apc_mem_util_frag', 'util',
stats['memory']['utilization_ratio'] * 100)
self.setGraphVal('php_apc_mem_util_frag', 'frag',
stats['memory']['fragmentation_ratio'] * 100)
if self.hasGraph('php_apc_mem_frag_count'):
self.setGraphVal('php_apc_mem_frag_count', 'num',
stats['memory']['fragment_count'])
if self.hasGraph('php_apc_mem_frag_avgsize'):
self.setGraphVal('php_apc_mem_frag_avgsize', 'size',
stats['memory']['fragment_avg_size'])
|
Retrieve values for graphs.
|
entailment
|
def autoconf(self):
"""Implements Munin Plugin Auto-Configuration Option.
@return: True if plugin can be auto-configured, False otherwise.
"""
apcinfo = APCinfo(self._host, self._port, self._user, self._password,
self._monpath, self._ssl)
return apcinfo is not None
|
Implements Munin Plugin Auto-Configuration Option.
@return: True if plugin can be auto-configured, False otherwise.
|
entailment
|
def getStats(self):
"""Runs varnishstats command to get stats from Varnish Cache.
@return: Dictionary of stats.
"""
info_dict = {}
args = [varnishstatCmd, '-1']
if self._instance is not None:
args.extend(['-n', self._instance])
output = util.exec_command(args)
if self._descDict is None:
self._descDict = {}
for line in output.splitlines():
mobj = re.match('(\S+)\s+(\d+)\s+(\d+\.\d+|\.)\s+(\S.*\S)\s*$',
line)
if mobj:
fname = mobj.group(1).replace('.', '_')
info_dict[fname] = util.parse_value(mobj.group(2))
self._descDict[fname] = mobj.group(4)
return info_dict
|
Runs varnishstats command to get stats from Varnish Cache.
@return: Dictionary of stats.
|
entailment
|
def getDesc(self, entry):
"""Returns description for stat entry.
@param entry: Entry name.
@return: Description for entry.
"""
if len(self._descDict) == 0:
self.getStats()
return self._descDict.get(entry)
|
Returns description for stat entry.
@param entry: Entry name.
@return: Description for entry.
|
entailment
|
def retrieveVals(self):
"""Retrieve values for graphs."""
opcinfo = OPCinfo(self._host, self._port, self._user, self._password,
self._monpath, self._ssl)
stats = opcinfo.getAllStats()
if self.hasGraph('php_opc_memory') and stats:
mem = stats['memory_usage']
keys = ('used_memory', 'wasted_memory', 'free_memory')
map(lambda k:self.setGraphVal('php_opc_memory',k,mem[k]), keys)
if self.hasGraph('php_opc_opcache_statistics') and stats:
st = stats['opcache_statistics']
self.setGraphVal('php_opc_opcache_statistics', 'hits',
st['hits'])
self.setGraphVal('php_opc_opcache_statistics', 'misses',
st['misses'])
if self.hasGraph('php_opc_opcache_hitrate') and stats:
st = stats['opcache_statistics']
self.setGraphVal('php_opc_opcache_hitrate', 'opcache_hit_rate',
st['opcache_hit_rate'])
if self.hasGraph('php_opc_key_status') and stats:
st = stats['opcache_statistics']
wasted = st['num_cached_keys'] - st['num_cached_scripts']
free = st['max_cached_keys'] - st['num_cached_keys']
self.setGraphVal('php_opc_key_status', 'num_cached_scripts', st['num_cached_scripts'])
self.setGraphVal('php_opc_key_status', 'num_wasted_keys', wasted)
self.setGraphVal('php_opc_key_status', 'num_free_keys', free)
|
Retrieve values for graphs.
|
entailment
|
def autoconf(self):
"""Implements Munin Plugin Auto-Configuration Option.
@return: True if plugin can be auto-configured, False otherwise.
"""
opcinfo = OPCinfo(self._host, self._port, self._user, self._password,
self._monpath, self._ssl)
return opcinfo is not None
|
Implements Munin Plugin Auto-Configuration Option.
@return: True if plugin can be auto-configured, False otherwise.
|
entailment
|
def fingerprint_helper(egg, permute=False, n_perms=1000,
match='exact', distance='euclidean', features=None):
"""
Computes clustering along a set of feature dimensions
Parameters
----------
egg : quail.Egg
Data to analyze
dist_funcs : dict
Dictionary of distance functions for feature clustering analyses
Returns
----------
probabilities : Numpy array
Each number represents clustering along a different feature dimension
"""
if features is None:
features = egg.dist_funcs.keys()
inds = egg.pres.index.tolist()
slices = [egg.crack(subjects=[i], lists=[j]) for i, j in inds]
weights = _get_weights(slices, features, distdict, permute, n_perms, match,
distance)
return np.nanmean(weights, axis=0)
|
Computes clustering along a set of feature dimensions
Parameters
----------
egg : quail.Egg
Data to analyze
dist_funcs : dict
Dictionary of distance functions for feature clustering analyses
Returns
----------
probabilities : Numpy array
Each number represents clustering along a different feature dimension
|
entailment
|
def compute_feature_weights(pres_list, rec_list, feature_list, distances):
"""
Compute clustering scores along a set of feature dimensions
Parameters
----------
pres_list : list
list of presented words
rec_list : list
list of recalled words
feature_list : list
list of feature dicts for presented words
distances : dict
dict of distance matrices for each feature
Returns
----------
weights : list
list of clustering scores for each feature dimension
"""
# initialize the weights object for just this list
weights = {}
for feature in feature_list[0]:
weights[feature] = []
# return default list if there is not enough data to compute the fingerprint
if len(rec_list) <= 2:
print('Not enough recalls to compute fingerprint, returning default'
'fingerprint.. (everything is .5)')
for feature in feature_list[0]:
weights[feature] = .5
return [weights[key] for key in weights]
# initialize past word list
past_words = []
past_idxs = []
# loop over words
for i in range(len(rec_list)-1):
# grab current word
c = rec_list[i]
# grab the next word
n = rec_list[i + 1]
# if both recalled words are in the encoding list and haven't been recalled before
if (c in pres_list and n in pres_list) and (c not in past_words and n not in past_words):
# for each feature
for feature in feature_list[0]:
# get the distance vector for the current word
dists = distances[feature][pres_list.index(c),:]
# distance between current and next word
cdist = dists[pres_list.index(n)]
# filter dists removing the words that have already been recalled
dists_filt = np.array([dist for idx, dist in enumerate(dists) if idx not in past_idxs])
# get indices
avg_rank = np.mean(np.where(np.sort(dists_filt)[::-1] == cdist)[0]+1)
# compute the weight
weights[feature].append(avg_rank / len(dists_filt))
# keep track of what has been recalled already
past_idxs.append(pres_list.index(c))
past_words.append(c)
# average over the cluster scores for a particular dimension
for feature in weights:
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
weights[feature] = np.nanmean(weights[feature])
return [weights[key] for key in weights]
|
Compute clustering scores along a set of feature dimensions
Parameters
----------
pres_list : list
list of presented words
rec_list : list
list of recalled words
feature_list : list
list of feature dicts for presented words
distances : dict
dict of distance matrices for each feature
Returns
----------
weights : list
list of clustering scores for each feature dimension
|
entailment
|
def lagcrp_helper(egg, match='exact', distance='euclidean',
ts=None, features=None):
"""
Computes probabilities for each transition distance (probability that a word
recalled will be a given distance--in presentation order--from the previous
recalled word).
Parameters
----------
egg : quail.Egg
Data to analyze
match : str (exact, best or smooth)
Matching approach to compute recall matrix. If exact, the presented and
recalled items must be identical (default). If best, the recalled item
that is most similar to the presented items will be selected. If smooth,
a weighted average of all presented items will be used, where the
weights are derived from the similarity between the recalled item and
each presented item.
distance : str
The distance function used to compare presented and recalled items.
Applies only to 'best' and 'smooth' matching approaches. Can be any
distance function supported by numpy.spatial.distance.cdist.
Returns
----------
prec : numpy array
each float is the probability of transition distance (distnaces indexed by
position, from -(n-1) to (n-1), excluding zero
"""
def lagcrp(rec, lstlen):
"""Computes lag-crp for a given recall list"""
def check_pair(a, b):
if (a>0 and b>0) and (a!=b):
return True
else:
return False
def compute_actual(rec, lstlen):
arr=pd.Series(data=np.zeros((lstlen)*2),
index=list(range(-lstlen,0))+list(range(1,lstlen+1)))
recalled=[]
for trial in range(0,len(rec)-1):
a=rec[trial]
b=rec[trial+1]
if check_pair(a, b) and (a not in recalled) and (b not in recalled):
arr[b-a]+=1
recalled.append(a)
return arr
def compute_possible(rec, lstlen):
arr=pd.Series(data=np.zeros((lstlen)*2),
index=list(range(-lstlen,0))+list(range(1,lstlen+1)))
recalled=[]
for trial in rec:
if np.isnan(trial):
pass
else:
lbound=int(1-trial)
ubound=int(lstlen-trial)
chances=list(range(lbound,0))+list(range(1,ubound+1))
for each in recalled:
if each-trial in chances:
chances.remove(each-trial)
arr[chances]+=1
recalled.append(trial)
return arr
actual = compute_actual(rec, lstlen)
possible = compute_possible(rec, lstlen)
crp = [0.0 if j == 0 else i / j for i, j in zip(actual, possible)]
crp.insert(int(len(crp) / 2), np.nan)
return crp
def nlagcrp(distmat, ts=None):
def lagcrp_model(s):
idx = list(range(0, -s, -1))
return np.array([list(range(i, i+s)) for i in idx])
# remove nan columns
distmat = distmat[:,~np.all(np.isnan(distmat), axis=0)].T
model = lagcrp_model(distmat.shape[1])
lagcrp = np.zeros(ts * 2)
for rdx in range(len(distmat)-1):
item = distmat[rdx, :]
next_item = distmat[rdx+1, :]
if not np.isnan(item).any() and not np.isnan(next_item).any():
outer = np.outer(item, next_item)
lagcrp += np.array(list(map(lambda lag: np.mean(outer[model==lag]), range(-ts, ts))))
lagcrp /= ts
lagcrp = list(lagcrp)
lagcrp.insert(int(len(lagcrp) / 2), np.nan)
return np.array(lagcrp)
def _format(p, r):
p = np.matrix([np.array(i) for i in p])
if p.shape[0]==1:
p=p.T
r = map(lambda x: [np.nan]*p.shape[1] if check_nan(x) else x, r)
r = np.matrix([np.array(i) for i in r])
if r.shape[0]==1:
r=r.T
return p, r
opts = dict(match=match, distance=distance, features=features)
if match is 'exact':
opts.update({'features' : 'item'})
recmat = recall_matrix(egg, **opts)
if not ts:
ts = egg.pres.shape[1]
if match in ['exact', 'best']:
lagcrp = [lagcrp(lst, egg.list_length) for lst in recmat]
elif match is 'smooth':
lagcrp = np.atleast_2d(np.mean([nlagcrp(r, ts=ts) for r in recmat], 0))
else:
raise ValueError('Match must be set to exact, best or smooth.')
return np.nanmean(lagcrp, axis=0)
|
Computes probabilities for each transition distance (probability that a word
recalled will be a given distance--in presentation order--from the previous
recalled word).
Parameters
----------
egg : quail.Egg
Data to analyze
match : str (exact, best or smooth)
Matching approach to compute recall matrix. If exact, the presented and
recalled items must be identical (default). If best, the recalled item
that is most similar to the presented items will be selected. If smooth,
a weighted average of all presented items will be used, where the
weights are derived from the similarity between the recalled item and
each presented item.
distance : str
The distance function used to compare presented and recalled items.
Applies only to 'best' and 'smooth' matching approaches. Can be any
distance function supported by numpy.spatial.distance.cdist.
Returns
----------
prec : numpy array
each float is the probability of transition distance (distnaces indexed by
position, from -(n-1) to (n-1), excluding zero
|
entailment
|
def retrieveVals(self):
"""Retrieve values for graphs."""
if self._diskList:
self._fetchDevAll('disk', self._diskList,
self._info.getDiskStats)
if self._mdList:
self._fetchDevAll('md', self._mdList,
self._info.getMDstats)
if self._partList:
self._fetchDevAll('part', self._partList,
self._info.getPartitionStats)
if self._lvList:
self._fetchDevAll('lv', self._lvList,
self._info.getLVstats)
self._fetchDevAll('fs', self._fsList,
self._info.getFilesystemStats)
|
Retrieve values for graphs.
|
entailment
|
def _configDevRequests(self, namestr, titlestr, devlist):
"""Generate configuration for I/O Request stats.
@param namestr: Field name component indicating device type.
@param titlestr: Title component indicating device type.
@param devlist: List of devices.
"""
name = 'diskio_%s_requests' % namestr
if self.graphEnabled(name):
graph = MuninGraph('Disk I/O - %s - Requests' % titlestr, self._category,
info='Disk I/O - %s Throughput, Read / write requests per second.'
% titlestr,
args='--base 1000 --lower-limit 0',
vlabel='reqs/sec read (-) / write (+)', printf='%6.1lf',
autoFixNames = True)
for dev in devlist:
graph.addField(dev + '_read',
fixLabel(dev, maxLabelLenGraphDual,
repl = '..', truncend=False,
delim = self._labelDelim.get(namestr)),
draw='LINE2', type='DERIVE', min=0, graph=False)
graph.addField(dev + '_write',
fixLabel(dev, maxLabelLenGraphDual,
repl = '..', truncend=False,
delim = self._labelDelim.get(namestr)),
draw='LINE2', type='DERIVE', min=0,
negative=(dev + '_read'),info=dev)
self.appendGraph(name, graph)
|
Generate configuration for I/O Request stats.
@param namestr: Field name component indicating device type.
@param titlestr: Title component indicating device type.
@param devlist: List of devices.
|
entailment
|
def _configDevActive(self, namestr, titlestr, devlist):
"""Generate configuration for I/O Queue Length.
@param namestr: Field name component indicating device type.
@param titlestr: Title component indicating device type.
@param devlist: List of devices.
"""
name = 'diskio_%s_active' % namestr
if self.graphEnabled(name):
graph = MuninGraph('Disk I/O - %s - Queue Length' % titlestr,
self._category,
info='Disk I/O - Number of I/O Operations in Progress for every %s.'
% titlestr,
args='--base 1000 --lower-limit 0', printf='%6.1lf',
autoFixNames = True)
for dev in devlist:
graph.addField(dev,
fixLabel(dev, maxLabelLenGraphSimple,
repl = '..', truncend=False,
delim = self._labelDelim.get(namestr)),
draw='AREASTACK', type='GAUGE', info=dev)
self.appendGraph(name, graph)
|
Generate configuration for I/O Queue Length.
@param namestr: Field name component indicating device type.
@param titlestr: Title component indicating device type.
@param devlist: List of devices.
|
entailment
|
def _fetchDevAll(self, namestr, devlist, statsfunc):
"""Initialize I/O stats for devices.
@param namestr: Field name component indicating device type.
@param devlist: List of devices.
@param statsfunc: Function for retrieving stats for device.
"""
for dev in devlist:
stats = statsfunc(dev)
name = 'diskio_%s_requests' % namestr
if self.hasGraph(name):
self.setGraphVal(name, dev + '_read', stats['rios'])
self.setGraphVal(name, dev + '_write', stats['wios'])
name = 'diskio_%s_bytes' % namestr
if self.hasGraph(name):
self.setGraphVal(name, dev + '_read', stats['rbytes'])
self.setGraphVal(name, dev + '_write', stats['wbytes'])
name = 'diskio_%s_active' % namestr
if self.hasGraph(name):
self.setGraphVal(name, dev, stats['ios_active'])
|
Initialize I/O stats for devices.
@param namestr: Field name component indicating device type.
@param devlist: List of devices.
@param statsfunc: Function for retrieving stats for device.
|
entailment
|
def retrieveVals(self):
"""Retrieve values for graphs."""
for graph_name in self.getGraphList():
for field_name in self.getGraphFieldList(graph_name):
self.setGraphVal(graph_name, field_name, self._stats.get(field_name))
|
Retrieve values for graphs.
|
entailment
|
def retrieveVals(self):
"""Retrieve values for graphs."""
if self.hasGraph('sys_loadavg'):
self._loadstats = self._sysinfo.getLoadAvg()
if self._loadstats:
self.setGraphVal('sys_loadavg', 'load15min', self._loadstats[2])
self.setGraphVal('sys_loadavg', 'load5min', self._loadstats[1])
self.setGraphVal('sys_loadavg', 'load1min', self._loadstats[0])
if self._cpustats and self.hasGraph('sys_cpu_util'):
for field in self.getGraphFieldList('sys_cpu_util'):
self.setGraphVal('sys_cpu_util',
field, int(self._cpustats[field] * 1000))
if self._memstats:
if self.hasGraph('sys_mem_util'):
for field in self.getGraphFieldList('sys_mem_util'):
self.setGraphVal('sys_mem_util',
field, self._memstats[field])
if self.hasGraph('sys_mem_avail'):
for field in self.getGraphFieldList('sys_mem_avail'):
self.setGraphVal('sys_mem_avail',
field, self._memstats[field])
if self.hasGraph('sys_mem_huge'):
for field in ['Rsvd', 'Surp', 'Free']:
fkey = 'HugePages_' + field
if self._memstats.has_key(fkey):
self.setGraphVal('sys_mem_huge', field,
self._memstats[fkey] * self._memstats['Hugepagesize'])
if self.hasGraph('sys_processes'):
if self._procstats is None:
self._procstats = self._sysinfo.getProcessStats()
if self._procstats:
self.setGraphVal('sys_processes', 'running',
self._procstats['procs_running'])
self.setGraphVal('sys_processes', 'blocked',
self._procstats['procs_blocked'])
if self.hasGraph('sys_forks'):
if self._procstats is None:
self._procstats = self._sysinfo.getProcessStats()
if self._procstats:
self.setGraphVal('sys_forks', 'forks',
self._procstats['processes'])
if self.hasGraph('sys_intr_ctxt'):
if self._procstats is None:
self._procstats = self._sysinfo.getProcessStats()
if self._procstats:
for field in self.getGraphFieldList('sys_intr_ctxt'):
self.setGraphVal('sys_intr_ctxt', field,
self._procstats[field])
if self.hasGraph('sys_vm_paging'):
if self._vmstats is None:
self._vmstats = self._sysinfo.getVMstats()
if self._vmstats:
self.setGraphVal('sys_vm_paging', 'in',
self._vmstats['pgpgin'])
self.setGraphVal('sys_vm_paging', 'out',
self._vmstats['pgpgout'])
if self.hasGraph('sys_vm_swapping'):
if self._vmstats is None:
self._vmstats = self._sysinfo.getVMstats()
if self._vmstats:
self.setGraphVal('sys_vm_swapping', 'in',
self._vmstats['pswpin'])
self.setGraphVal('sys_vm_swapping', 'out',
self._vmstats['pswpout'])
|
Retrieve values for graphs.
|
entailment
|
def get(key, default=None):
"""
Searches os.environ. If a key is found try evaluating its type else;
return the string.
returns: k->value (type as defined by ast.literal_eval)
"""
try:
# Attempt to evaluate into python literal
return ast.literal_eval(os.environ.get(key.upper(), default))
except (ValueError, SyntaxError):
return os.environ.get(key.upper(), default)
|
Searches os.environ. If a key is found try evaluating its type else;
return the string.
returns: k->value (type as defined by ast.literal_eval)
|
entailment
|
def save(filepath=None, **kwargs):
"""
Saves a list of keyword arguments as environment variables to a file.
If no filepath given will default to the default `.env` file.
"""
if filepath is None:
filepath = os.path.join('.env')
with open(filepath, 'wb') as file_handle:
file_handle.writelines(
'{0}={1}\n'.format(key.upper(), val)
for key, val in kwargs.items()
)
|
Saves a list of keyword arguments as environment variables to a file.
If no filepath given will default to the default `.env` file.
|
entailment
|
def load(filepath=None):
"""
Reads a .env file into os.environ.
For a set filepath, open the file and read contents into os.environ.
If filepath is not set then look in current dir for a .env file.
"""
if filepath and os.path.exists(filepath):
pass
else:
if not os.path.exists('.env'):
return False
filepath = os.path.join('.env')
for key, value in _get_line_(filepath):
# set the key, value in the python environment vars dictionary
# does not make modifications system wide.
os.environ.setdefault(key, str(value))
return True
|
Reads a .env file into os.environ.
For a set filepath, open the file and read contents into os.environ.
If filepath is not set then look in current dir for a .env file.
|
entailment
|
def _get_line_(filepath):
"""
Gets each line from the file and parse the data.
Attempt to translate the value into a python type is possible
(falls back to string).
"""
for line in open(filepath):
line = line.strip()
# allows for comments in the file
if line.startswith('#') or '=' not in line:
continue
# split on the first =, allows for subsiquent `=` in strings
key, value = line.split('=', 1)
key = key.strip().upper()
value = value.strip()
if not (key and value):
continue
try:
# evaluate the string before adding into environment
# resolves any hanging (') characters
value = ast.literal_eval(value)
except (ValueError, SyntaxError):
pass
#return line
yield (key, value)
|
Gets each line from the file and parse the data.
Attempt to translate the value into a python type is possible
(falls back to string).
|
entailment
|
def initStats(self):
"""Query and parse Apache Web Server Status Page."""
url = "%s://%s:%d/%s?auto" % (self._proto, self._host, self._port,
self._statuspath)
response = util.get_url(url, self._user, self._password)
self._statusDict = {}
for line in response.splitlines():
mobj = re.match('(\S.*\S)\s*:\s*(\S+)\s*$', line)
if mobj:
self._statusDict[mobj.group(1)] = util.parse_value(mobj.group(2))
if self._statusDict.has_key('Scoreboard'):
self._statusDict['MaxWorkers'] = len(self._statusDict['Scoreboard'])
|
Query and parse Apache Web Server Status Page.
|
entailment
|
def get_pres_features(self, features=None):
"""
Returns a df of features for presented items
"""
if features is None:
features = self.dist_funcs.keys()
elif not isinstance(features, list):
features = [features]
return self.pres.applymap(lambda x: {k:v for k,v in x.items() if k in features} if x is not None else None)
|
Returns a df of features for presented items
|
entailment
|
def get_rec_features(self, features=None):
"""
Returns a df of features for recalled items
"""
if features is None:
features = self.dist_funcs.keys()
elif not isinstance(features, list):
features = [features]
return self.rec.applymap(lambda x: {k:v for k,v in x.items() if k != 'item'} if x is not None else None)
|
Returns a df of features for recalled items
|
entailment
|
def info(self):
"""
Print info about the data egg
"""
print('Number of subjects: ' + str(self.n_subjects))
print('Number of lists per subject: ' + str(self.n_lists))
print('Number of words per list: ' + str(self.list_length))
print('Date created: ' + str(self.date_created))
print('Meta data: ' + str(self.meta))
|
Print info about the data egg
|
entailment
|
def save(self, fname, compression='blosc'):
"""
Save method for the Egg object
The data will be saved as a 'egg' file, which is a dictionary containing
the elements of a Egg saved in the hd5 format using
`deepdish`.
Parameters
----------
fname : str
A name for the file. If the file extension (.egg) is not specified,
it will be appended.
compression : str
The kind of compression to use. See the deepdish documentation for
options: http://deepdish.readthedocs.io/en/latest/api_io.html#deepdish.io.save
"""
# put egg vars into a dict
egg = {
'pres' : df2list(self.pres),
'rec' : df2list(self.rec),
'dist_funcs' : self.dist_funcs,
'subjgroup' : self.subjgroup,
'subjname' : self.subjname,
'listgroup' : self.listgroup,
'listname' : self.listname,
'date_created' : self.date_created,
'meta' : self.meta
}
# if extension wasn't included, add it
if fname[-4:]!='.egg':
fname+='.egg'
# save
with warnings.catch_warnings():
warnings.simplefilter("ignore")
dd.io.save(fname, egg, compression=compression)
|
Save method for the Egg object
The data will be saved as a 'egg' file, which is a dictionary containing
the elements of a Egg saved in the hd5 format using
`deepdish`.
Parameters
----------
fname : str
A name for the file. If the file extension (.egg) is not specified,
it will be appended.
compression : str
The kind of compression to use. See the deepdish documentation for
options: http://deepdish.readthedocs.io/en/latest/api_io.html#deepdish.io.save
|
entailment
|
def save(self, fname, compression='blosc'):
"""
Save method for the FriedEgg object
The data will be saved as a 'fegg' file, which is a dictionary containing
the elements of a FriedEgg saved in the hd5 format using
`deepdish`.
Parameters
----------
fname : str
A name for the file. If the file extension (.fegg) is not specified,
it will be appended.
compression : str
The kind of compression to use. See the deepdish documentation for
options: http://deepdish.readthedocs.io/en/latest/api_io.html#deepdish.io.save
"""
egg = {
'data' : self.data,
'analysis' : self.analysis,
'list_length' : self.list_length,
'n_lists' : self.n_lists,
'n_subjects' : self.n_subjects,
'position' : self.position,
'date_created' : self.date_created,
'meta' : self.meta
}
if fname[-4:]!='.fegg':
fname+='.fegg'
with warnings.catch_warnings():
warnings.simplefilter("ignore")
dd.io.save(fname, egg, compression=compression)
|
Save method for the FriedEgg object
The data will be saved as a 'fegg' file, which is a dictionary containing
the elements of a FriedEgg saved in the hd5 format using
`deepdish`.
Parameters
----------
fname : str
A name for the file. If the file extension (.fegg) is not specified,
it will be appended.
compression : str
The kind of compression to use. See the deepdish documentation for
options: http://deepdish.readthedocs.io/en/latest/api_io.html#deepdish.io.save
|
entailment
|
def pnr_helper(egg, position, match='exact',
distance='euclidean', features=None):
"""
Computes probability of a word being recalled nth (in the appropriate recall
list), given its presentation position. Note: zero indexed
Parameters
----------
egg : quail.Egg
Data to analyze
position : int
Position of item to be analyzed
match : str (exact, best or smooth)
Matching approach to compute recall matrix. If exact, the presented and
recalled items must be identical (default). If best, the recalled item
that is most similar to the presented items will be selected. If smooth,
a weighted average of all presented items will be used, where the
weights are derived from the similarity between the recalled item and
each presented item.
distance : str
The distance function used to compare presented and recalled items.
Applies only to 'best' and 'smooth' matching approaches. Can be any
distance function supported by numpy.spatial.distance.cdist.
Returns
----------
prob_recalled : numpy array
each number represents the probability of nth recall for a word presented in given position/index
"""
def pnr(lst, position):
return [1 if pos==lst[position] else 0 for pos in range(1,egg.list_length+1)]
opts = dict(match=match, distance=distance, features=features)
if match is 'exact':
opts.update({'features' : 'item'})
recmat = recall_matrix(egg, **opts)
if match in ['exact', 'best']:
result = [pnr(lst, position) for lst in recmat]
elif match is 'smooth':
result = np.atleast_2d(recmat[:, :, 0])
else:
raise ValueError('Match must be set to exact, best or smooth.')
return np.nanmean(result, axis=0)
|
Computes probability of a word being recalled nth (in the appropriate recall
list), given its presentation position. Note: zero indexed
Parameters
----------
egg : quail.Egg
Data to analyze
position : int
Position of item to be analyzed
match : str (exact, best or smooth)
Matching approach to compute recall matrix. If exact, the presented and
recalled items must be identical (default). If best, the recalled item
that is most similar to the presented items will be selected. If smooth,
a weighted average of all presented items will be used, where the
weights are derived from the similarity between the recalled item and
each presented item.
distance : str
The distance function used to compare presented and recalled items.
Applies only to 'best' and 'smooth' matching approaches. Can be any
distance function supported by numpy.spatial.distance.cdist.
Returns
----------
prob_recalled : numpy array
each number represents the probability of nth recall for a word presented in given position/index
|
entailment
|
def retrieveVals(self):
"""Retrieve values for graphs."""
apacheInfo = ApacheInfo(self._host, self._port,
self._user, self._password,
self._statuspath, self._ssl)
stats = apacheInfo.getServerStats()
if self.hasGraph('apache_access'):
self.setGraphVal('apache_access', 'reqs', stats['Total Accesses'])
if self.hasGraph('apache_bytes'):
self.setGraphVal('apache_bytes', 'bytes',
stats['Total kBytes'] * 1000)
if self.hasGraph('apache_workers'):
self.setGraphVal('apache_workers', 'busy', stats['BusyWorkers'])
self.setGraphVal('apache_workers', 'idle', stats['IdleWorkers'])
self.setGraphVal('apache_workers', 'max', stats['MaxWorkers'])
|
Retrieve values for graphs.
|
entailment
|
def autoconf(self):
"""Implements Munin Plugin Auto-Configuration Option.
@return: True if plugin can be auto-configured, False otherwise.
"""
apacheInfo = ApacheInfo(self._host, self._port,
self._user, self._password,
self._statuspath, self._ssl)
return apacheInfo is not None
|
Implements Munin Plugin Auto-Configuration Option.
@return: True if plugin can be auto-configured, False otherwise.
|
entailment
|
def retrieveVals(self):
"""Retrieve values for graphs."""
ntpinfo = NTPinfo()
ntpstats = ntpinfo.getHostOffsets(self._remoteHosts)
if ntpstats:
for host in self._remoteHosts:
hostkey = re.sub('\.', '_', host)
hoststats = ntpstats.get(host)
if hoststats:
if self.hasGraph('ntp_host_stratums'):
self.setGraphVal('ntp_host_stratums', hostkey,
hoststats.get('stratum'))
if self.hasGraph('ntp_host_offsets'):
self.setGraphVal('ntp_host_offsets', hostkey,
hoststats.get('offset'))
if self.hasGraph('ntp_host_delays'):
self.setGraphVal('ntp_host_delays', hostkey,
hoststats.get('delay'))
|
Retrieve values for graphs.
|
entailment
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.