sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def autoconf(self): """Implements Munin Plugin Auto-Configuration Option. @return: True if plugin can be auto-configured, False otherwise. """ ntpinfo = NTPinfo() ntpstats = ntpinfo.getHostOffsets(self._remoteHosts) return len(ntpstats) > 0
Implements Munin Plugin Auto-Configuration Option. @return: True if plugin can be auto-configured, False otherwise.
entailment
def retrieveVals(self): """Retrieve values for graphs.""" lighttpdInfo = LighttpdInfo(self._host, self._port, self._user, self._password, self._statuspath, self._ssl) stats = lighttpdInfo.getServerStats() if self.hasGraph('lighttpd_access'): self.setGraphVal('lighttpd_access', 'reqs', stats['Total Accesses']) if self.hasGraph('lighttpd_bytes'): self.setGraphVal('lighttpd_bytes', 'bytes', stats['Total kBytes'] * 1000) if self.hasGraph('lighttpd_servers'): self.setGraphVal('lighttpd_servers', 'busy', stats['BusyServers']) self.setGraphVal('lighttpd_servers', 'idle', stats['IdleServers']) self.setGraphVal('lighttpd_servers', 'max', stats['MaxServers'])
Retrieve values for graphs.
entailment
def autoconf(self): """Implements Munin Plugin Auto-Configuration Option. @return: True if plugin can be auto-configured, False otherwise. """ lighttpdInfo = LighttpdInfo(self._host, self._port, self._user, self._password, self._statuspath, self._ssl) return lighttpdInfo is not None
Implements Munin Plugin Auto-Configuration Option. @return: True if plugin can be auto-configured, False otherwise.
entailment
def retrieveVals(self): """Retrieve values for graphs.""" name = 'diskspace' if self.hasGraph(name): for fspath in self._fslist: if self._statsSpace.has_key(fspath): self.setGraphVal(name, fspath, self._statsSpace[fspath]['inuse_pcent']) name = 'diskinode' if self.hasGraph(name): for fspath in self._fslist: if self._statsInode.has_key(fspath): self.setGraphVal(name, fspath, self._statsInode[fspath]['inuse_pcent'])
Retrieve values for graphs.
entailment
def symbolic(self, mtx): """ Perform symbolic object (symbolic LU decomposition) computation for a given sparsity pattern. """ self.free_symbolic() indx = self._getIndx(mtx) if not assumeSortedIndices: # row/column indices cannot be assumed to be sorted mtx.sort_indices() if self.isReal: status, self._symbolic\ = self.funs.symbolic(mtx.shape[0], mtx.shape[1], mtx.indptr, indx, mtx.data, self.control, self.info) else: real, imag = mtx.data.real.copy(), mtx.data.imag.copy() status, self._symbolic\ = self.funs.symbolic(mtx.shape[0], mtx.shape[1], mtx.indptr, indx, real, imag, self.control, self.info) if status != UMFPACK_OK: raise RuntimeError('%s failed with %s' % (self.funs.symbolic, umfStatus[status])) self.mtx = mtx
Perform symbolic object (symbolic LU decomposition) computation for a given sparsity pattern.
entailment
def numeric(self, mtx): """ Perform numeric object (LU decomposition) computation using the symbolic decomposition. The symbolic decomposition is (re)computed if necessary. """ self.free_numeric() if self._symbolic is None: self.symbolic(mtx) indx = self._getIndx(mtx) failCount = 0 while 1: if self.isReal: status, self._numeric\ = self.funs.numeric(mtx.indptr, indx, mtx.data, self._symbolic, self.control, self.info) else: real, imag = mtx.data.real.copy(), mtx.data.imag.copy() status, self._numeric\ = self.funs.numeric(mtx.indptr, indx, real, imag, self._symbolic, self.control, self.info) if status != UMFPACK_OK: if status == UMFPACK_WARNING_singular_matrix: warnings.warn('Singular matrix', UmfpackWarning) break elif status in (UMFPACK_ERROR_different_pattern, UMFPACK_ERROR_invalid_Symbolic_object): # Try again. warnings.warn('Recomputing symbolic', UmfpackWarning) self.symbolic(mtx) failCount += 1 else: failCount += 100 else: break if failCount >= 2: raise RuntimeError('%s failed with %s' % (self.funs.numeric, umfStatus[status]))
Perform numeric object (LU decomposition) computation using the symbolic decomposition. The symbolic decomposition is (re)computed if necessary.
entailment
def free_symbolic(self): """Free symbolic data""" if self._symbolic is not None: self.funs.free_symbolic(self._symbolic) self._symbolic = None self.mtx = None
Free symbolic data
entailment
def free_numeric(self): """Free numeric data""" if self._numeric is not None: self.funs.free_numeric(self._numeric) self._numeric = None self.free_symbolic()
Free numeric data
entailment
def solve(self, sys, mtx, rhs, autoTranspose=False): """ Solution of system of linear equation using the Numeric object. Parameters ---------- sys : constant one of UMFPACK system description constants, like UMFPACK_A, UMFPACK_At, see umfSys list and UMFPACK docs mtx : scipy.sparse.csc_matrix or scipy.sparse.csr_matrix Input. rhs : ndarray Right Hand Side autoTranspose : bool Automatically changes `sys` to the transposed type, if `mtx` is in CSR, since UMFPACK assumes CSC internally Returns ------- sol : ndarray Solution to the equation system. """ if sys not in umfSys: raise ValueError('sys must be in' % umfSys) if autoTranspose and self.isCSR: ## # UMFPACK uses CSC internally... if self.family in umfRealTypes: ii = 0 else: ii = 1 if sys in umfSys_transposeMap[ii]: sys = umfSys_transposeMap[ii][sys] else: raise RuntimeError('autoTranspose ambiguous, switch it off') if self._numeric is not None: if self.mtx is not mtx: raise ValueError('must be called with same matrix as numeric()') else: raise RuntimeError('numeric() not called') indx = self._getIndx(mtx) if self.isReal: rhs = rhs.astype(np.float64) sol = np.zeros((mtx.shape[1],), dtype=np.float64) status = self.funs.solve(sys, mtx.indptr, indx, mtx.data, sol, rhs, self._numeric, self.control, self.info) else: rhs = rhs.astype(np.complex128) sol = np.zeros((mtx.shape[1],), dtype=np.complex128) mreal, mimag = mtx.data.real.copy(), mtx.data.imag.copy() sreal, simag = sol.real.copy(), sol.imag.copy() rreal, rimag = rhs.real.copy(), rhs.imag.copy() status = self.funs.solve(sys, mtx.indptr, indx, mreal, mimag, sreal, simag, rreal, rimag, self._numeric, self.control, self.info) sol.real, sol.imag = sreal, simag # self.funs.report_info( self.control, self.info ) # pause() if status != UMFPACK_OK: if status == UMFPACK_WARNING_singular_matrix: ## Change inf, nan to zeros. warnings.warn('Zeroing nan and inf entries...', UmfpackWarning) sol[~np.isfinite(sol)] = 0.0 else: raise RuntimeError('%s failed with %s' % (self.funs.solve, umfStatus[status])) econd = 1.0 / self.info[UMFPACK_RCOND] if econd > self.maxCond: msg = '(almost) singular matrix! '\ + '(estimated cond. number: %.2e)' % econd warnings.warn(msg, UmfpackWarning) return sol
Solution of system of linear equation using the Numeric object. Parameters ---------- sys : constant one of UMFPACK system description constants, like UMFPACK_A, UMFPACK_At, see umfSys list and UMFPACK docs mtx : scipy.sparse.csc_matrix or scipy.sparse.csr_matrix Input. rhs : ndarray Right Hand Side autoTranspose : bool Automatically changes `sys` to the transposed type, if `mtx` is in CSR, since UMFPACK assumes CSC internally Returns ------- sol : ndarray Solution to the equation system.
entailment
def linsolve(self, sys, mtx, rhs, autoTranspose=False): """ One-shot solution of system of linear equation. Reuses Numeric object if possible. Parameters ---------- sys : constant one of UMFPACK system description constants, like UMFPACK_A, UMFPACK_At, see umfSys list and UMFPACK docs mtx : scipy.sparse.csc_matrix or scipy.sparse.csr_matrix Input. rhs : ndarray Right Hand Side autoTranspose : bool Automatically changes `sys` to the transposed type, if `mtx` is in CSR, since UMFPACK assumes CSC internally Returns ------- sol : ndarray Solution to the equation system. """ if sys not in umfSys: raise ValueError('sys must be in' % umfSys) if self._numeric is None: self.numeric(mtx) else: if self.mtx is not mtx: self.numeric(mtx) sol = self.solve(sys, mtx, rhs, autoTranspose) self.free_numeric() return sol
One-shot solution of system of linear equation. Reuses Numeric object if possible. Parameters ---------- sys : constant one of UMFPACK system description constants, like UMFPACK_A, UMFPACK_At, see umfSys list and UMFPACK docs mtx : scipy.sparse.csc_matrix or scipy.sparse.csr_matrix Input. rhs : ndarray Right Hand Side autoTranspose : bool Automatically changes `sys` to the transposed type, if `mtx` is in CSR, since UMFPACK assumes CSC internally Returns ------- sol : ndarray Solution to the equation system.
entailment
def lu(self, mtx): """ Perform LU decomposition. For a given matrix A, the decomposition satisfies:: LU = PRAQ when do_recip is true LU = P(R^-1)AQ when do_recip is false Parameters ---------- mtx : scipy.sparse.csc_matrix or scipy.sparse.csr_matrix Input. Returns ------- L : csr_matrix Lower triangular m-by-min(m,n) CSR matrix U : csc_matrix Upper triangular min(m,n)-by-n CSC matrix P : ndarray Vector of row permutations Q : ndarray Vector of column permutations R : ndarray Vector of diagonal row scalings do_recip : bool Whether R is R^-1 or R """ # this should probably be changed mtx = mtx.tocsc() self.numeric(mtx) # first find out how much space to reserve (status, lnz, unz, n_row, n_col, nz_udiag)\ = self.funs.get_lunz(self._numeric) if status != UMFPACK_OK: raise RuntimeError('%s failed with %s' % (self.funs.get_lunz, umfStatus[status])) # allocate storage for decomposition data i_type = mtx.indptr.dtype Lp = np.zeros((n_row+1,), dtype=i_type) Lj = np.zeros((lnz,), dtype=i_type) Lx = np.zeros((lnz,), dtype=np.double) Up = np.zeros((n_col+1,), dtype=i_type) Ui = np.zeros((unz,), dtype=i_type) Ux = np.zeros((unz,), dtype=np.double) P = np.zeros((n_row,), dtype=i_type) Q = np.zeros((n_col,), dtype=i_type) Dx = np.zeros((min(n_row,n_col),), dtype=np.double) Rs = np.zeros((n_row,), dtype=np.double) if self.isReal: (status,do_recip) = self.funs.get_numeric(Lp,Lj,Lx,Up,Ui,Ux, P,Q,Dx,Rs, self._numeric) if status != UMFPACK_OK: raise RuntimeError('%s failed with %s' % (self.funs.get_numeric, umfStatus[status])) L = sp.csr_matrix((Lx,Lj,Lp),(n_row,min(n_row,n_col))) U = sp.csc_matrix((Ux,Ui,Up),(min(n_row,n_col),n_col)) R = Rs return (L,U,P,Q,R,bool(do_recip)) else: # allocate additional storage for imaginary parts Lz = np.zeros((lnz,), dtype=np.double) Uz = np.zeros((unz,), dtype=np.double) Dz = np.zeros((min(n_row,n_col),), dtype=np.double) (status,do_recip) = self.funs.get_numeric(Lp,Lj,Lx,Lz,Up,Ui,Ux,Uz, P,Q,Dx,Dz,Rs, self._numeric) if status != UMFPACK_OK: raise RuntimeError('%s failed with %s' % (self.funs.get_numeric, umfStatus[status])) Lxz = np.zeros((lnz,), dtype=np.complex128) Uxz = np.zeros((unz,), dtype=np.complex128) Dxz = np.zeros((min(n_row,n_col),), dtype=np.complex128) Lxz.real,Lxz.imag = Lx,Lz Uxz.real,Uxz.imag = Ux,Uz Dxz.real,Dxz.imag = Dx,Dz L = sp.csr_matrix((Lxz,Lj,Lp),(n_row,min(n_row,n_col))) U = sp.csc_matrix((Uxz,Ui,Up),(min(n_row,n_col),n_col)) R = Rs return (L,U,P,Q,R,bool(do_recip))
Perform LU decomposition. For a given matrix A, the decomposition satisfies:: LU = PRAQ when do_recip is true LU = P(R^-1)AQ when do_recip is false Parameters ---------- mtx : scipy.sparse.csc_matrix or scipy.sparse.csr_matrix Input. Returns ------- L : csr_matrix Lower triangular m-by-min(m,n) CSR matrix U : csc_matrix Upper triangular min(m,n)-by-n CSC matrix P : ndarray Vector of row permutations Q : ndarray Vector of column permutations R : ndarray Vector of diagonal row scalings do_recip : bool Whether R is R^-1 or R
entailment
def order_stick(presenter, egg, dist_dict, strategy, fingerprint): """ Reorders a list according to strategy """ def compute_feature_stick(features, weights, alpha): '''create a 'stick' of feature weights''' feature_stick = [] for f, w in zip(features, weights): feature_stick+=[f]*int(np.power(w,alpha)*100) return feature_stick def reorder_list(egg, feature_stick, dist_dict, tau): def compute_stimulus_stick(s, tau): '''create a 'stick' of feature weights''' feature_stick = [[weights[feature]]*round(weights[feature]**alpha)*100 for feature in w] return [item for sublist in feature_stick for item in sublist] # parse egg pres, rec, features, dist_funcs = parse_egg(egg) # turn pres and features into np arrays pres_arr = np.array(pres) features_arr = np.array(features) # starting with a random word reordered_list = [] reordered_features = [] # start with a random choice idx = np.random.choice(len(pres), 1)[0] # original inds inds = list(range(len(pres))) # keep track of the indices inds_used = [idx] # get the word current_word = pres[idx] # get the features dict current_features = features[idx] # append that word to the reordered list reordered_list.append(current_word) # append the features to the reordered list reordered_features.append(current_features) # loop over the word list for i in range(len(pres)-1): # sample from the stick feature_sample = feature_stick[np.random.choice(len(feature_stick), 1)[0]] # indices left inds_left = [ind for ind in inds if ind not in inds_used] # make a copy of the words filtering out the already used ones words_left = pres[inds_left] # get word distances for the word dists_left = np.array([dist_dict[current_word][word][feature_sample] for word in words_left]) # features left features_left = features[inds_left] # normalize distances dists_left_max = np.max(dists_left) if dists_left_max>0: dists_left_norm = dists_left/np.max(dists_left) else: dists_left_norm = dists_left # get the min dists_left_min = np.min(-dists_left_norm) # invert the word distances to turn distance->similarity dists_left_inv = - dists_left_norm - dists_left_min + .01 # create a word stick words_stick = [] for word, dist in zip(words_left, dists_left_inv): words_stick+=[word]*int(np.power(dist,tau)*100) next_word = np.random.choice(words_stick) next_word_idx = np.where(pres==next_word)[0] inds_used.append(next_word_idx) reordered_list.append(next_word) reordered_features.append(features[next_word_idx][0]) return Egg(pres=[reordered_list], rec=[reordered_list], features=[[reordered_features]], dist_funcs=dist_funcs) # parse egg pres, rec, features, dist_funcs = parse_egg(egg) # get params needed for list reordering features = presenter.get_params('fingerprint').get_features() alpha = presenter.get_params('alpha') tau = presenter.get_params('tau') weights = fingerprint # invert the weights if strategy is destabilize if strategy=='destabilize': weights = 1 - weights # compute feature stick feature_stick = compute_feature_stick(features, weights, alpha) # reorder list return reorder_list(egg, feature_stick, dist_dict, tau)
Reorders a list according to strategy
entailment
def stick_perm(presenter, egg, dist_dict, strategy): """Computes weights for one reordering using stick-breaking method""" # seed RNG np.random.seed() # unpack egg egg_pres, egg_rec, egg_features, egg_dist_funcs = parse_egg(egg) # reorder regg = order_stick(presenter, egg, dist_dict, strategy) # unpack regg regg_pres, regg_rec, regg_features, regg_dist_funcs = parse_egg(regg) # # get the order regg_pres = list(regg_pres) egg_pres = list(egg_pres) idx = [egg_pres.index(r) for r in regg_pres] # compute weights weights = compute_feature_weights_dict(list(regg_pres), list(regg_pres), list(regg_features), dist_dict) # save out the order orders = idx return weights, orders
Computes weights for one reordering using stick-breaking method
entailment
def compute_distances_dict(egg): """ Creates a nested dict of distances """ pres, rec, features, dist_funcs = parse_egg(egg) pres_list = list(pres) features_list = list(features) # initialize dist dict distances = {} # for each word in the list for idx1, item1 in enumerate(pres_list): distances[item1]={} # for each word in the list for idx2, item2 in enumerate(pres_list): distances[item1][item2]={} # for each feature in dist_funcs for feature in dist_funcs: distances[item1][item2][feature] = builtin_dist_funcs[dist_funcs[feature]](features_list[idx1][feature],features_list[idx2][feature]) return distances
Creates a nested dict of distances
entailment
def compute_feature_weights_dict(pres_list, rec_list, feature_list, dist_dict): """ Compute clustering scores along a set of feature dimensions Parameters ---------- pres_list : list list of presented words rec_list : list list of recalled words feature_list : list list of feature dicts for presented words distances : dict dict of distance matrices for each feature Returns ---------- weights : list list of clustering scores for each feature dimension """ # initialize the weights object for just this list weights = {} for feature in feature_list[0]: weights[feature] = [] # return default list if there is not enough data to compute the fingerprint if len(rec_list) < 2: print('Not enough recalls to compute fingerprint, returning default fingerprint.. (everything is .5)') for feature in feature_list[0]: weights[feature] = .5 return [weights[key] for key in weights] # initialize past word list past_words = [] past_idxs = [] # loop over words for i in range(len(rec_list)-1): # grab current word c = rec_list[i] # grab the next word n = rec_list[i + 1] # if both recalled words are in the encoding list and haven't been recalled before if (c in pres_list and n in pres_list) and (c not in past_words and n not in past_words): # for each feature for feature in feature_list[0]: # get the distance vector for the current word # dists = [dist_dict[c][j][feature] for j in dist_dict[c]] # distance between current and next word c_dist = dist_dict[c][n][feature] # filter dists removing the words that have already been recalled # dists_filt = np.array([dist for idx, dist in enumerate(dists) if idx not in past_idxs]) dists_filt = [dist_dict[c][j][feature] for j in dist_dict[c] if j not in past_words] # get indices avg_rank = np.mean(np.where(np.sort(dists_filt)[::-1] == c_dist)[0]+1) # compute the weight weights[feature].append(avg_rank / len(dists_filt)) # keep track of what has been recalled already past_idxs.append(pres_list.index(c)) past_words.append(c) # average over the cluster scores for a particular dimension for feature in weights: with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) weights[feature] = np.nanmean(weights[feature]) return [weights[key] for key in weights]
Compute clustering scores along a set of feature dimensions Parameters ---------- pres_list : list list of presented words rec_list : list list of recalled words feature_list : list list of feature dicts for presented words distances : dict dict of distance matrices for each feature Returns ---------- weights : list list of clustering scores for each feature dimension
entailment
def update(self, egg, permute=False, nperms=1000, parallel=False): """ In-place method that updates fingerprint with new data Parameters ---------- egg : quail.Egg Data to update fingerprint Returns ---------- None """ # increment n self.n+=1 next_weights = np.nanmean(_analyze_chunk(egg, analysis=fingerprint_helper, analysis_type='fingerprint', pass_features=True, permute=permute, n_perms=nperms, parallel=parallel).values, 0) if self.state is not None: # multiply states by n c = self.state*self.n # update state self.state = np.nansum(np.array([c, next_weights]), axis=0)/(self.n+1) else: self.state = next_weights # update the history self.history.append(next_weights)
In-place method that updates fingerprint with new data Parameters ---------- egg : quail.Egg Data to update fingerprint Returns ---------- None
entailment
def order(self, egg, method='permute', nperms=2500, strategy=None, distfun='correlation', fingerprint=None): """ Reorders a list of stimuli to match a fingerprint Parameters ---------- egg : quail.Egg Data to compute fingerprint method : str Method to re-sort list. Can be 'stick' or 'permute' (default: permute) nperms : int Number of permutations to use. Only used if method='permute'. (default: 2500) strategy : str or None The strategy to use to reorder the list. This can be 'stabilize', 'destabilize', 'random' or None. If None, the self.strategy field will be used. (default: None) distfun : str or function The distance function to reorder the list fingerprint to the target fingerprint. Can be any distance function supported by scipy.spatial.distance.cdist. For more info, see: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html (default: euclidean) fingerprint : quail.Fingerprint or np.array Fingerprint (or just the state of a fingerprint) to reorder by. If None, the list will be reordered according to the fingerprint attached to the presenter object. Returns ---------- egg : quail.Egg Egg re-sorted to match fingerprint """ def order_perm(self, egg, dist_dict, strategy, nperm, distperm, fingerprint): """ This function re-sorts a list by computing permutations of a given list and choosing the one that maximizes/minimizes variance. """ # parse egg pres, rec, features, dist_funcs = parse_egg(egg) # length of list pres_len = len(pres) weights = [] orders = [] for i in range(nperms): x = rand_perm(pres, features, dist_dict, dist_funcs) weights.append(x[0]) orders.append(x[1]) weights = np.array(weights) orders = np.array(orders) # find the closest (or farthest) if strategy=='stabilize': closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin=2), weights, distperm)),:].astype(int).tolist() elif strategy=='destabilize': closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin=2), weights, distperm)),:].astype(int).tolist() # return a re-sorted egg return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])], features=[list(features[closest])]) def order_best_stick(self, egg, dist_dict, strategy, nperms, distfun, fingerprint): # parse egg pres, rec, features, dist_funcs = parse_egg(egg) results = Parallel(n_jobs=multiprocessing.cpu_count())( delayed(stick_perm)(self, egg, dist_dict, strategy) for i in range(nperms)) weights = np.array([x[0] for x in results]) orders = np.array([x[1] for x in results]) # find the closest (or farthest) if strategy=='stabilize': closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin=2), weights, distfun)),:].astype(int).tolist() elif strategy=='destabilize': closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin=2), weights, distfun)),:].astype(int).tolist() # return a re-sorted egg return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])], features=[list(features[closest])], dist_funcs=dist_funcs) def order_best_choice(self, egg, dist_dict, nperms, distfun, fingerprint): # get strategy strategy = self.strategy # parse egg pres, rec, features, dist_funcs = parse_egg(egg) results = Parallel(n_jobs=multiprocessing.cpu_count())( delayed(choice_perm)(self, egg, dist_dict) for i in range(nperms)) weights = np.array([x[0] for x in results]) orders = np.array([x[1] for x in results]) # find the closest (or farthest) if strategy=='stabilize': closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin=2), weights, distfun)),:].astype(int).tolist() elif strategy=='destabilize': closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin=2), weights, distfun)),:].astype(int).tolist() # return a re-sorted egg return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])], features=[list(features[closest])], dist_funcs=dist_funcs) # if strategy is not set explicitly, default to the class strategy if strategy is None: strategy = self.strategy dist_dict = compute_distances_dict(egg) if fingerprint is None: fingerprint = self.get_params('fingerprint').state elif isinstance(fingerprint, Fingerprint): fingerprint = fingerprint.state else: print('using custom fingerprint') if (strategy=='random') or (method=='random'): return shuffle_egg(egg) elif method=='permute': return order_perm(self, egg, dist_dict, strategy, nperms, distfun, fingerprint) # elif method=='stick': return order_stick(self, egg, dist_dict, strategy, fingerprint) # elif method=='best_stick': return order_best_stick(self, egg, dist_dict, strategy, nperms, distfun, fingerprint) # elif method=='best_choice': return order_best_choice(self, egg, dist_dict, nperms, fingerprint)
Reorders a list of stimuli to match a fingerprint Parameters ---------- egg : quail.Egg Data to compute fingerprint method : str Method to re-sort list. Can be 'stick' or 'permute' (default: permute) nperms : int Number of permutations to use. Only used if method='permute'. (default: 2500) strategy : str or None The strategy to use to reorder the list. This can be 'stabilize', 'destabilize', 'random' or None. If None, the self.strategy field will be used. (default: None) distfun : str or function The distance function to reorder the list fingerprint to the target fingerprint. Can be any distance function supported by scipy.spatial.distance.cdist. For more info, see: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html (default: euclidean) fingerprint : quail.Fingerprint or np.array Fingerprint (or just the state of a fingerprint) to reorder by. If None, the list will be reordered according to the fingerprint attached to the presenter object. Returns ---------- egg : quail.Egg Egg re-sorted to match fingerprint
entailment
def initStats(self, extras=None): """Query and parse Web Server Status Page. @param extras: Include extra metrics, which can be computationally more expensive. """ url = "%s://%s:%d/%s" % (self._proto, self._host, self._port, self._monpath) response = util.get_url(url, self._user, self._password) #with open('/tmp/opcinfo.json') as f: # response = f.read() self._statusDict = json.loads(response)
Query and parse Web Server Status Page. @param extras: Include extra metrics, which can be computationally more expensive.
entailment
def _getDevMajorMinor(self, devpath): """Return major and minor device number for block device path devpath. @param devpath: Full path for block device. @return: Tuple (major, minor). """ fstat = os.stat(devpath) if stat.S_ISBLK(fstat.st_mode): return(os.major(fstat.st_rdev), os.minor(fstat.st_rdev)) else: raise ValueError("The file %s is not a valid block device." % devpath)
Return major and minor device number for block device path devpath. @param devpath: Full path for block device. @return: Tuple (major, minor).
entailment
def _getUniqueDev(self, devpath): """Return unique device for any block device path. @param devpath: Full path for block device. @return: Unique device string without the /dev prefix. """ realpath = os.path.realpath(devpath) mobj = re.match('\/dev\/(.*)$', realpath) if mobj: dev = mobj.group(1) if dev in self._diskStats: return dev else: try: (major, minor) = self._getDevMajorMinor(realpath) except: return None return self._mapMajorMinor2dev.get((major, minor)) return None
Return unique device for any block device path. @param devpath: Full path for block device. @return: Unique device string without the /dev prefix.
entailment
def _initBlockMajorMap(self): """Parses /proc/devices to initialize device class - major number map for block devices. """ self._mapMajorDevclass = {} try: fp = open(devicesFile, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading device information from file: %s' % devicesFile) skip = True for line in data.splitlines(): if skip: if re.match('block.*:', line, re.IGNORECASE): skip = False else: mobj = re.match('\s*(\d+)\s+([\w\-]+)$', line) if mobj: major = int(mobj.group(1)) devtype = mobj.group(2) self._mapMajorDevclass[major] = devtype if devtype == 'device-mapper': self._dmMajorNum = major
Parses /proc/devices to initialize device class - major number map for block devices.
entailment
def _initDMinfo(self): """Check files in /dev/mapper to initialize data structures for mappings between device-mapper devices, minor device numbers, VGs and LVs. """ self._mapLVtuple2dm = {} self._mapLVname2dm = {} self._vgTree = {} if self._dmMajorNum is None: self._initBlockMajorMap() for file in os.listdir(devmapperDir): mobj = re.match('([a-zA-Z0-9+_.\-]*[a-zA-Z0-9+_.])-([a-zA-Z0-9+_.][a-zA-Z0-9+_.\-]*)$', file) if mobj: path = os.path.join(devmapperDir, file) (major, minor) = self._getDevMajorMinor(path) if major == self._dmMajorNum: vg = mobj.group(1).replace('--', '-') lv = mobj.group(2).replace('--', '-') dmdev = "dm-%d" % minor self._mapLVtuple2dm[(vg,lv)] = dmdev self._mapLVname2dm[file] = dmdev if not vg in self._vgTree: self._vgTree[vg] = [] self._vgTree[vg].append(lv)
Check files in /dev/mapper to initialize data structures for mappings between device-mapper devices, minor device numbers, VGs and LVs.
entailment
def _initFilesystemInfo(self): """Initialize filesystem to device mappings.""" self._mapFSpathDev = {} fsinfo = FilesystemInfo() for fs in fsinfo.getFSlist(): devpath = fsinfo.getFSdev(fs) dev = self._getUniqueDev(devpath) if dev is not None: self._mapFSpathDev[fs] = dev
Initialize filesystem to device mappings.
entailment
def _initSwapInfo(self): """Initialize swap partition to device mappings.""" self._swapList = [] sysinfo = SystemInfo() for (swap,attrs) in sysinfo.getSwapStats().iteritems(): if attrs['type'] == 'partition': dev = self._getUniqueDev(swap) if dev is not None: self._swapList.append(dev)
Initialize swap partition to device mappings.
entailment
def _initDiskStats(self): """Parse and initialize block device I/O stats in /proc/diskstats.""" self._diskStats = {} self._mapMajorMinor2dev = {} try: fp = open(diskStatsFile, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading disk stats from file: %s' % diskStatsFile) for line in data.splitlines(): cols = line.split() dev = cols.pop(2) if len(cols) == 13: self._diskStats[dev] = dict(zip( ('major', 'minor', 'rios', 'rmerges', 'rsect', 'rticks', 'wios', 'wmerges', 'wsect', 'wticks', 'ios_active', 'totticks', 'rqticks'), [int(x) for x in cols])) elif len(cols) == 6: self._diskStats[dev] = dict(zip( ('major', 'minor', 'rios', 'rsect', 'wios', 'wsect'), [int(x) for x in cols])) else: continue self._diskStats[dev]['rbytes'] = ( self._diskStats[dev]['rsect'] * sectorSize) self._diskStats[dev]['wbytes'] = ( self._diskStats[dev]['wsect'] * sectorSize) self._mapMajorMinor2dev[(int(cols[0]), int(cols[1]))] = dev
Parse and initialize block device I/O stats in /proc/diskstats.
entailment
def _initDevClasses(self): """Sort block devices into lists depending on device class and initialize device type map and partition map.""" self._devClassTree = {} self._partitionTree = {} self._mapDevType = {} basedevs = [] otherdevs = [] if self._mapMajorDevclass is None: self._initBlockMajorMap() for dev in self._diskStats: stats = self._diskStats[dev] devclass = self._mapMajorDevclass.get(stats['major']) if devclass is not None: devdir = os.path.join(sysfsBlockdevDir, dev) if os.path.isdir(devdir): if not self._devClassTree.has_key(devclass): self._devClassTree[devclass] = [] self._devClassTree[devclass].append(dev) self._mapDevType[dev] = devclass basedevs.append(dev) else: otherdevs.append(dev) basedevs.sort(key=len, reverse=True) otherdevs.sort(key=len, reverse=True) idx = 0 for partdev in otherdevs: while len(basedevs[idx]) > partdev: idx += 1 for dev in basedevs[idx:]: if re.match("%s(\d+|p\d+)$" % dev, partdev): if not self._partitionTree.has_key(dev): self._partitionTree[dev] = [] self._partitionTree[dev].append(partdev) self._mapDevType[partdev] = 'part'
Sort block devices into lists depending on device class and initialize device type map and partition map.
entailment
def getDevType(self, dev): """Returns type of device dev. @return: Device type as string. """ if self._devClassTree is None: self._initDevClasses() return self._mapDevType.get(dev)
Returns type of device dev. @return: Device type as string.
entailment
def getPartitionList(self): """Returns list of partitions. @return: List of (disk,partition) pairs. """ if self._partList is None: self._partList = [] for (disk,parts) in self.getPartitionDict().iteritems(): for part in parts: self._partList.append((disk,part)) return self._partList
Returns list of partitions. @return: List of (disk,partition) pairs.
entailment
def getDevStats(self, dev, devtype = None): """Returns I/O stats for block device. @param dev: Device name @param devtype: Device type. (Ignored if None.) @return: Dict of stats. """ if devtype is not None: if self._devClassTree is None: self._initDevClasses() if devtype <> self._mapDevType.get(dev): return None return self._diskStats.get(dev)
Returns I/O stats for block device. @param dev: Device name @param devtype: Device type. (Ignored if None.) @return: Dict of stats.
entailment
def getSwapStats(self, dev): """Returns I/O stats for swap partition. @param dev: Device name for swap partition. @return: Dict of stats. """ if self._swapList is None: self._initSwapInfo() if dev in self._swapList: return self.getDevStats(dev) else: return None
Returns I/O stats for swap partition. @param dev: Device name for swap partition. @return: Dict of stats.
entailment
def getLVstats(self, *args): """Returns I/O stats for LV. @param args: Two calling conventions are implemented: - Passing two parameters vg and lv. - Passing only one parameter in 'vg-lv' format. @return: Dict of stats. """ if not len(args) in (1, 2): raise TypeError("The getLVstats must be called with either " "one or two arguments.") if self._vgTree is None: self._initDMinfo() if len(args) == 1: dmdev = self._mapLVname2dm.get(args[0]) else: dmdev = self._mapLVtuple2dm.get(args) if dmdev is not None: return self.getDevStats(dmdev) else: return None
Returns I/O stats for LV. @param args: Two calling conventions are implemented: - Passing two parameters vg and lv. - Passing only one parameter in 'vg-lv' format. @return: Dict of stats.
entailment
def getFilesystemStats(self, fs): """Returns I/O stats for filesystem. @param fs: Filesystem path. @return: Dict of stats. """ if self._mapFSpathDev is None: self._initFilesystemInfo() return self._diskStats.get(self._mapFSpathDev.get(fs))
Returns I/O stats for filesystem. @param fs: Filesystem path. @return: Dict of stats.
entailment
def retrieveVals(self): """Retrieve values for graphs.""" ntpinfo = NTPinfo() stats = ntpinfo.getHostOffset(self._remoteHost) if stats: graph_name = 'ntp_host_stratum_%s' % self._remoteHost if self.hasGraph(graph_name): self.setGraphVal(graph_name, 'stratum', stats.get('stratum')) graph_name = 'ntp_host_stat_%s' % self._remoteHost if self.hasGraph(graph_name): self.setGraphVal(graph_name, 'offset', stats.get('offset')) self.setGraphVal(graph_name, 'delay', stats.get('delay'))
Retrieve values for graphs.
entailment
def getContainerStats(self, limit=None, marker=None): """Returns Rackspace Cloud Files usage stats for containers. @param limit: Number of containers to return. @param marker: Return only results whose name is greater than marker. @return: Dictionary of container stats indexed by container name. """ stats = {} for row in self._conn.list_containers_info(limit, marker): stats[row['name']] = {'count': row['count'], 'size': row['bytes']} return stats
Returns Rackspace Cloud Files usage stats for containers. @param limit: Number of containers to return. @param marker: Return only results whose name is greater than marker. @return: Dictionary of container stats indexed by container name.
entailment
def decode_speech(path, keypath=None, save=False, speech_context=None, sample_rate=44100, max_alternatives=1, language_code='en-US', enable_word_time_offsets=True, return_raw=False): """ Decode speech for a file or folder and return results This function wraps the Google Speech API and ffmpeg to decode speech for free recall experiments. Note: in order for this to work, you must have a Google Speech account, a google speech credentials file referenced in your _bash_profile, and ffmpeg installed on your computer. See our readthedocs for more information on how to set this up: http://cdl-quail.readthedocs.io/en/latest/. Parameters ---------- path : str Path to a wav file, or a folder of wav files. keypath : str Google Cloud Speech API key filepath. This is a JSON file containing credentials that was generated when creating a service account key. If None, assumes you have a local key that is set with an environmental variable. See the speech decoding tutorial for details. save : boolean False by default, but if set to true, will save a pickle with the results object from google speech, and a text file with the decoded words. speech_context : list of str This allows you to give some context to the speech decoding algorithm. For example, this could be the words studied on a given list, or all words in an experiment. sample_rate : float The sample rate of your audio files (default is 44100). max_alternatives : int You can specify the speech decoding to return multiple guesses to the decoding. This will be saved in the results object (default is 1). language_code : str Decoding language code. Default is en-US. See here for more details: https://cloud.google.com/speech/docs/languages enable_word_time_offsets : bool Returns timing information s(onsets/offsets) for each word (default is True). return_raw : boolean Intead of returning the parsed results objects (i.e. the words), you can return the raw reponse object. This has more details about the decoding, such as confidence. Returns ---------- words : list of str, or list of lists of str The results of the speech decoding. This will be a list if only one file is input, or a list of lists if more than one file is decoded. raw : google speech object, or list of objects You can optionally return the google speech object instead of the parsed results by using the return_raw flag. """ # SUBFUNCTIONS def decode_file(file_path, client, speech_context, sample_rate, max_alternatives, enable_word_time_offsets): def recognize(chunk, file_path): """ Subfunction that loops over audio segments to recognize speech """ # export as flac chunk.export(file_path + ".flac", format = "flac", bitrate="44.1k") # open flac file with open(file_path + ".flac", 'rb') as sc: speech_content = sc.read() # initialize speech sample sample = types.RecognitionAudio(content=speech_content) # run speech decoding try: result = client.recognize(opts, sample) except ValueError as e: print(e) result = None return result opts = {} opts['encoding']=enums.RecognitionConfig.AudioEncoding.FLAC opts['language_code'] = language_code opts['sample_rate_hertz'] = sample_rate opts['max_alternatives'] = max_alternatives opts['enable_word_time_offsets'] = enable_word_time_offsets if speech_context: opts['speech_contexts']=[types.SpeechContext(phrases=speech_context)] # read in wav audio = AudioSegment.from_wav(file_path) # segment into 1 minute chunks if len(audio)>60000: segments = list(range(0,len(audio),60000)) if segments[-1]<len(audio): segments.append(len(audio)-1) print('Audio clip is longer than 1 minute. Splitting into %d one minute segments...' % (len(segments)-1)) audio_chunks = [] for i in range(len(segments)-1): audio_chunks.append(audio[segments[i]:segments[i+1]]) else: audio_chunks = [audio] # loop over audio segments results = [] for idx, chunk in enumerate(audio_chunks): results.append(recognize(chunk, file_path+str(idx))) # return list of results return results def parse_response(results): """Parses response from google speech""" words = [] for chunk in results: for result in chunk.results: alternative = result.alternatives[0] print('Transcript: {}'.format(alternative.transcript)) print('Confidence: {}'.format(alternative.confidence)) for word_info in alternative.words: word = word_info.word start_time = word_info.start_time end_time = word_info.end_time print('Word: {}, start_time: {}, end_time: {}'.format( word, start_time.seconds + start_time.nanos * 1e-9, end_time.seconds + end_time.nanos * 1e-9)) words.append((str(word).upper(), start_time.seconds + start_time.nanos * 1e-9, end_time.seconds + end_time.nanos * 1e-9)) return words # def parse_response(results): # """Parses response from google speech""" # words = [] # for idx, result in enumerate(results): # if result is None: # warnings.warn('No speech was decoded for segment %d' % (idx+1)) # words.append(None) # else: # try: # for segment in result: # for chunk in segment.transcript.split(' '): # if chunk != '': # words.append(str(chunk).upper()) # except: # warnings.warn('Error parsing response for segment %d' % (idx+1)) # # return words # MAIN ##################################################################### # initialize speech client if keypath: credentials = service_account.Credentials.from_service_account_file(keypath) scoped_credentials = credentials.with_scopes(['https://www.googleapis.com/auth/cloud-platform']) client = speech.SpeechClient(credentials=scoped_credentials) else: client = speech.SpeechClient() # make a list of files files = [] if path.endswith(".wav"): files = [path] else: listdirectory = os.listdir(path) for filename in listdirectory: if filename.endswith(".wav"): files.append(path + filename) # initialize list of words words = [] raw = [] # loop over files for i, f in enumerate(files): # print progress print('Decoding file ' + str(i+1) + ' of ' + str(len(files))) try: # start timer start = time.time() # decode file results = decode_file(f, client, speech_context, sample_rate, max_alternatives, enable_word_time_offsets) # parsing response parsed_results = parse_response(results) # save the processed file words.append(parsed_results) # save the processed file raw.append(results) if save: # save the raw response in a pickle pickle.dump(results, open(f + ".p", "wb" ) ) # save a text file with just the words pd.DataFrame(parsed_results).to_csv(f + '.txt', header=False, index=False) # print when finished print('Finished file ' + str(i+1) + ' of ' + str(len(files)) + ' in ' + str(round(time.time()-start,2)) + ' seconds.') # handle when something goes wrong except ValueError as e: words.append("Error") print(e) print('Decoding of file ' + str(i) + 'failed. Moving on to next file.') if return_raw: if len(words)>1: return raw else: return raw[0] else: if len(words)>1: return words else: return words[0]
Decode speech for a file or folder and return results This function wraps the Google Speech API and ffmpeg to decode speech for free recall experiments. Note: in order for this to work, you must have a Google Speech account, a google speech credentials file referenced in your _bash_profile, and ffmpeg installed on your computer. See our readthedocs for more information on how to set this up: http://cdl-quail.readthedocs.io/en/latest/. Parameters ---------- path : str Path to a wav file, or a folder of wav files. keypath : str Google Cloud Speech API key filepath. This is a JSON file containing credentials that was generated when creating a service account key. If None, assumes you have a local key that is set with an environmental variable. See the speech decoding tutorial for details. save : boolean False by default, but if set to true, will save a pickle with the results object from google speech, and a text file with the decoded words. speech_context : list of str This allows you to give some context to the speech decoding algorithm. For example, this could be the words studied on a given list, or all words in an experiment. sample_rate : float The sample rate of your audio files (default is 44100). max_alternatives : int You can specify the speech decoding to return multiple guesses to the decoding. This will be saved in the results object (default is 1). language_code : str Decoding language code. Default is en-US. See here for more details: https://cloud.google.com/speech/docs/languages enable_word_time_offsets : bool Returns timing information s(onsets/offsets) for each word (default is True). return_raw : boolean Intead of returning the parsed results objects (i.e. the words), you can return the raw reponse object. This has more details about the decoding, such as confidence. Returns ---------- words : list of str, or list of lists of str The results of the speech decoding. This will be a list if only one file is input, or a list of lists if more than one file is decoded. raw : google speech object, or list of objects You can optionally return the google speech object instead of the parsed results by using the return_raw flag.
entailment
def parse_value(val): """Parse input string and return int, float or str depending on format. @param val: Input string. @return: Value of type int, float or str. """ mobj = re.match('(-{0,1}\d+)\s*(\sseconds|/\s*\w+)$', val) if mobj: return int(mobj.group(1)) mobj = re.match('(-{0,1}\d*\.\d+)\s*(\sseconds|/\s*\w+)$', val) if mobj: return float(mobj.group(1)) re.match('(-{0,1}\d+)\s*([GMK])B$', val) if mobj: return int(mobj.group(1)) * memMultiplier[mobj.group(2)] mobj = re.match('(-{0,1}\d+(\.\d+){0,1})\s*\%$', val) if mobj: return float(mobj.group(1)) / 100 return val
Parse input string and return int, float or str depending on format. @param val: Input string. @return: Value of type int, float or str.
entailment
def _connect(self): """Connect to Squid Proxy Manager interface.""" if sys.version_info[:2] < (2,6): self._conn = httplib.HTTPConnection(self._host, self._port) else: self._conn = httplib.HTTPConnection(self._host, self._port, False, defaultTimeout)
Connect to Squid Proxy Manager interface.
entailment
def _retrieve(self, map): """Query Squid Proxy Server Manager Interface for stats. @param map: Statistics map name. @return: Dictionary of query results. """ self._conn.request('GET', "cache_object://%s/%s" % (self._host, map), None, self._httpHeaders) rp = self._conn.getresponse() if rp.status == 200: data = rp.read() return data else: raise Exception("Retrieval of stats from Squid Proxy Server" "on host %s and port %s failed.\n" "HTTP - Status: %s Reason: %s" % (self._host, self._port, rp.status, rp.reason))
Query Squid Proxy Server Manager Interface for stats. @param map: Statistics map name. @return: Dictionary of query results.
entailment
def _parseCounters(self, data): """Parse simple stats list of key, value pairs. @param data: Multiline data with one key-value pair in each line. @return: Dictionary of stats. """ info_dict = util.NestedDict() for line in data.splitlines(): mobj = re.match('^\s*([\w\.]+)\s*=\s*(\S.*)$', line) if mobj: (key, value) = mobj.groups() klist = key.split('.') info_dict.set_nested(klist, parse_value(value)) return info_dict
Parse simple stats list of key, value pairs. @param data: Multiline data with one key-value pair in each line. @return: Dictionary of stats.
entailment
def _parseSections(self, data): """Parse data and separate sections. Returns dictionary that maps section name to section data. @param data: Multiline data. @return: Dictionary that maps section names to section data. """ section_dict = {} lines = data.splitlines() idx = 0 numlines = len(lines) section = None while idx < numlines: line = lines[idx] idx += 1 mobj = re.match('^(\w[\w\s\(\)]+[\w\)])\s*:$', line) if mobj: section = mobj.group(1) section_dict[section] = [] else: mobj = re.match('(\t|\s)\s*(\w.*)$', line) if mobj: section_dict[section].append(mobj.group(2)) else: mobj = re.match('^(\w[\w\s\(\)]+[\w\)])\s*:\s*(\S.*)$', line) if mobj: section = None if not section_dict.has_key(section): section_dict[section] = [] section_dict[section].append(line) else: if not section_dict.has_key('PARSEERROR'): section_dict['PARSEERROR'] = [] section_dict['PARSEERROR'].append(line) return section_dict
Parse data and separate sections. Returns dictionary that maps section name to section data. @param data: Multiline data. @return: Dictionary that maps section names to section data.
entailment
def getMenu(self): """Get manager interface section list from Squid Proxy Server @return: List of tuples (section, description, type) """ data = self._retrieve('') info_list = [] for line in data.splitlines(): mobj = re.match('^\s*(\S.*\S)\s*\t\s*(\S.*\S)\s*\t\s*(\S.*\S)$', line) if mobj: info_list.append(mobj.groups()) return info_list
Get manager interface section list from Squid Proxy Server @return: List of tuples (section, description, type)
entailment
def getIfaceStats(self): """Return dictionary of Traffic Stats for each Wanpipe Interface. @return: Nested dictionary of statistics for each interface. """ ifInfo = netiface.NetIfaceInfo() ifStats = ifInfo.getIfStats() info_dict = {} for ifname in ifStats: if re.match('^w\d+g\d+$', ifname): info_dict[ifname] = ifStats[ifname] return info_dict
Return dictionary of Traffic Stats for each Wanpipe Interface. @return: Nested dictionary of statistics for each interface.
entailment
def getPRIstats(self, iface): """Return RDSI Operational Stats for interface. @param iface: Interface name. (Ex. w1g1) @return: Nested dictionary of statistics for interface. """ info_dict = {} output = util.exec_command([wanpipemonCmd, '-i', iface, '-c', 'Ta']) for line in output.splitlines(): mobj = re.match('^\s*(Line Code Violation|Far End Block Errors|' 'CRC4 Errors|FAS Errors)\s*:\s*(\d+)\s*$', line, re.IGNORECASE) if mobj: info_dict[mobj.group(1).lower().replace(' ', '')] = int(mobj.group(2)) continue mobj = re.match('^\s*(Rx Level)\s*:\s*>{0,1}\s*([-\d\.]+)db\s*', line, re.IGNORECASE) if mobj: info_dict[mobj.group(1).lower().replace(' ', '')] = float(mobj.group(2)) continue return info_dict
Return RDSI Operational Stats for interface. @param iface: Interface name. (Ex. w1g1) @return: Nested dictionary of statistics for interface.
entailment
def _connect(self): """Connect to FreeSWITCH ESL Interface.""" try: self._eslconn = ESL.ESLconnection(self._eslhost, str(self._eslport), self._eslpass) except: pass if not self._eslconn.connected(): raise Exception( "Connection to FreeSWITCH ESL Interface on host %s and port %d failed." % (self._eslhost, self._eslport) )
Connect to FreeSWITCH ESL Interface.
entailment
def _execCmd(self, cmd, args): """Execute command and return result body as list of lines. @param cmd: Command string. @param args: Comand arguments string. @return: Result dictionary. """ output = self._eslconn.api(cmd, args) if output: body = output.getBody() if body: return body.splitlines() return None
Execute command and return result body as list of lines. @param cmd: Command string. @param args: Comand arguments string. @return: Result dictionary.
entailment
def _execShowCmd(self, showcmd): """Execute 'show' command and return result dictionary. @param cmd: Command string. @return: Result dictionary. """ result = None lines = self._execCmd("show", showcmd) if lines and len(lines) >= 2 and lines[0] != '' and lines[0][0] != '-': result = {} result['keys'] = lines[0].split(',') items = [] for line in lines[1:]: if line == '': break items.append(line.split(',')) result['items'] = items return result
Execute 'show' command and return result dictionary. @param cmd: Command string. @return: Result dictionary.
entailment
def _execShowCountCmd(self, showcmd): """Execute 'show' command and return result dictionary. @param cmd: Command string. @return: Result dictionary. """ result = None lines = self._execCmd("show", showcmd + " count") for line in lines: mobj = re.match('\s*(\d+)\s+total', line) if mobj: return int(mobj.group(1)) return result
Execute 'show' command and return result dictionary. @param cmd: Command string. @return: Result dictionary.
entailment
def retrieveVals(self): """Retrieve values for graphs.""" if self.hasGraph('asterisk_calls') or self.hasGraph('asterisk_channels'): stats = self._ami.getChannelStats(self._chanList) if self.hasGraph('asterisk_calls') and stats: self.setGraphVal('asterisk_calls', 'active_calls', stats.get('active_calls')) self.setGraphVal('asterisk_calls', 'calls_per_min', stats.get('calls_processed')) if self.hasGraph('asterisk_channels') and stats: for field in self._chanList: self.setGraphVal('asterisk_channels', field, stats.get(field)) if 'dahdi' in self._chanList: self.setGraphVal('asterisk_channels', 'mix', stats.get('mix')) if self.hasGraph('asterisk_peers_sip'): stats = self._ami.getPeerStats('sip') if stats: for field in ('online', 'unmonitored', 'unreachable', 'lagged', 'unknown'): self.setGraphVal('asterisk_peers_sip', field, stats.get(field)) if self.hasGraph('asterisk_peers_iax2'): stats = self._ami.getPeerStats('iax2') if stats: for field in ('online', 'unmonitored', 'unreachable', 'lagged', 'unknown'): self.setGraphVal('asterisk_peers_iax2', field, stats.get(field)) if self.hasGraph('asterisk_voip_codecs'): sipstats = self._ami.getVoIPchanStats('sip', self._codecList) or {} iax2stats = self._ami.getVoIPchanStats('iax2', self._codecList) or {} if stats: for field in self._codecList: self.setGraphVal('asterisk_voip_codecs', field, sipstats.get(field,0) + iax2stats.get(field, 0)) self.setGraphVal('asterisk_voip_codecs', 'other', sipstats.get('other', 0) + iax2stats.get('other', 0)) if self.hasGraph('asterisk_conferences'): stats = self._ami.getConferenceStats() if stats: self.setGraphVal('asterisk_conferences', 'rooms', stats.get('active_conferences')) self.setGraphVal('asterisk_conferences', 'users', stats.get('conference_users')) if self.hasGraph('asterisk_voicemail'): stats = self._ami.getVoicemailStats() if stats: self.setGraphVal('asterisk_voicemail', 'accounts', stats.get('accounts')) self.setGraphVal('asterisk_voicemail', 'msg_avg', stats.get('avg_messages')) self.setGraphVal('asterisk_voicemail', 'msg_max', stats.get('max_messages')) self.setGraphVal('asterisk_voicemail', 'msg_total', stats.get('total_messages')) if self.hasGraph('asterisk_trunks') and len(self._trunkList) > 0: stats = self._ami.getTrunkStats(self._trunkList) for trunk in self._trunkList: self.setGraphVal('asterisk_trunks', trunk[0], stats.get(trunk[0])) if self._queues is not None: total_answer = 0 total_abandon = 0 for queue in self._queue_list: stats = self._queues[queue] if self.hasGraph('asterisk_queue_len'): self.setGraphVal('asterisk_queue_len', queue, stats.get('queue_len')) if self.hasGraph('asterisk_queue_avg_hold'): self.setGraphVal('asterisk_queue_avg_hold', queue, stats.get('avg_holdtime')) if self.hasGraph('asterisk_queue_avg_talk'): self.setGraphVal('asterisk_queue_avg_talk', queue, stats.get('avg_talktime')) if self.hasGraph('asterisk_queue_calls'): total_abandon += stats.get('calls_abandoned') total_answer += stats.get('calls_completed') if self.hasGraph('asterisk_queue_abandon_pcent'): prev_stats = self._queues_prev.get(queue) if prev_stats is not None: abandon = (stats.get('calls_abandoned', 0) - prev_stats.get('calls_abandoned', 0)) answer = (stats.get('calls_completed', 0) - prev_stats.get('calls_completed', 0)) total = abandon + answer if total > 0: val = 100.0 * float(abandon) / float(total) else: val = 0 self.setGraphVal('asterisk_queue_abandon_pcent', queue, val) if self.hasGraph('asterisk_queue_calls'): self.setGraphVal('asterisk_queue_calls', 'abandon', total_abandon) self.setGraphVal('asterisk_queue_calls', 'answer', total_answer) if self.hasGraph('asterisk_fax_attempts'): fax_stats = self._ami.getFaxStatsCounters() stats = fax_stats.get('general') if stats is not None: self.setGraphVal('asterisk_fax_attempts', 'send', stats.get('transmit attempts')) self.setGraphVal('asterisk_fax_attempts', 'recv', stats.get('receive attempts')) self.setGraphVal('asterisk_fax_attempts', 'fail', stats.get('failed faxes'))
Retrieve values for graphs.
entailment
def retrieveVals(self): """Retrieve values for graphs.""" fpminfo = PHPfpmInfo(self._host, self._port, self._user, self._password, self._monpath, self._ssl) stats = fpminfo.getStats() if self.hasGraph('php_fpm_connections') and stats: self.setGraphVal('php_fpm_connections', 'conn', stats['accepted conn']) if self.hasGraph('php_fpm_processes') and stats: self.setGraphVal('php_fpm_processes', 'active', stats['active processes']) self.setGraphVal('php_fpm_processes', 'idle', stats['idle processes']) self.setGraphVal('php_fpm_processes', 'total', stats['total processes'])
Retrieve values for graphs.
entailment
def autoconf(self): """Implements Munin Plugin Auto-Configuration Option. @return: True if plugin can be auto-configured, False otherwise. """ fpminfo = PHPfpmInfo(self._host, self._port, self._user, self._password, self._monpath, self._ssl) return fpminfo is not None
Implements Munin Plugin Auto-Configuration Option. @return: True if plugin can be auto-configured, False otherwise.
entailment
def ping(self): """Ping Redis Server and return Round-Trip-Time in seconds. @return: Round-trip-time in seconds as float. """ start = time.time() self._conn.ping() return (time.time() - start)
Ping Redis Server and return Round-Trip-Time in seconds. @return: Round-trip-time in seconds as float.
entailment
def list2pd(all_data, subjindex=None, listindex=None): """ Makes multi-indexed dataframe of subject data Parameters ---------- all_data : list of lists of strings strings are either all presented or all recalled items, in the order of presentation or recall *should also work for presented / recalled ints and floats, if desired Returns ---------- subs_list_of_dfs : multi-indexed dataframe dataframe of subject data (presented or recalled words/items), indexed by subject and list number cell populated by the term presented or recalled in the position indicated by the column number """ # set default index if it is not defined # max_nlists = max(map(lambda x: len(x), all_data)) listindex = [[idx for idx in range(len(sub))] for sub in all_data] if not listindex else listindex subjindex = [idx for idx,subj in enumerate(all_data)] if not subjindex else subjindex def make_multi_index(listindex, sub_num): return pd.MultiIndex.from_tuples([(sub_num,lst) for lst in listindex], names = ['Subject', 'List']) listindex = list(listindex) subjindex = list(subjindex) subs_list_of_dfs = [pd.DataFrame(sub_data, index=make_multi_index(listindex[sub_num], subjindex[sub_num])) for sub_num,sub_data in enumerate(all_data)] return pd.concat(subs_list_of_dfs)
Makes multi-indexed dataframe of subject data Parameters ---------- all_data : list of lists of strings strings are either all presented or all recalled items, in the order of presentation or recall *should also work for presented / recalled ints and floats, if desired Returns ---------- subs_list_of_dfs : multi-indexed dataframe dataframe of subject data (presented or recalled words/items), indexed by subject and list number cell populated by the term presented or recalled in the position indicated by the column number
entailment
def recmat2egg(recmat, list_length=None): """ Creates egg data object from zero-indexed recall matrix Parameters ---------- recmat : list of lists (subs) of lists (encoding lists) of ints or 2D numpy array recall matrix representing serial positions of freely recalled words \ e.g. [[[16, 15, 0, 2, 3, None, None...], [16, 4, 5, 6, 1, None, None...]]] list_length : int The length of each list (e.g. 16) Returns ---------- egg : Egg data object egg data object computed from the recall matrix """ from .egg import Egg as Egg pres = [[[str(word) for word in list(range(0,list_length))] for reclist in recsub] for recsub in recmat] rec = [[[str(word) for word in reclist if word is not None] for reclist in recsub] for recsub in recmat] return Egg(pres=pres,rec=rec)
Creates egg data object from zero-indexed recall matrix Parameters ---------- recmat : list of lists (subs) of lists (encoding lists) of ints or 2D numpy array recall matrix representing serial positions of freely recalled words \ e.g. [[[16, 15, 0, 2, 3, None, None...], [16, 4, 5, 6, 1, None, None...]]] list_length : int The length of each list (e.g. 16) Returns ---------- egg : Egg data object egg data object computed from the recall matrix
entailment
def default_dist_funcs(dist_funcs, feature_example): """ Fills in default distance metrics for fingerprint analyses """ if dist_funcs is None: dist_funcs = dict() for key in feature_example: if key in dist_funcs: pass if key == 'item': pass elif isinstance(feature_example[key], (six.string_types, six.binary_type)): dist_funcs[key] = 'match' elif isinstance(feature_example[key], (int, np.integer, float)) or all([isinstance(i, (int, np.integer, float)) for i in feature_example[key]]): dist_funcs[key] = 'euclidean' return dist_funcs
Fills in default distance metrics for fingerprint analyses
entailment
def stack_eggs(eggs, meta='concatenate'): ''' Takes a list of eggs, stacks them and reindexes the subject number Parameters ---------- eggs : list of Egg data objects A list of Eggs that you want to combine meta : string Determines how the meta data of each Egg combines. Default is 'concatenate' 'concatenate' concatenates keys in meta data dictionary shared between eggs, and copies non-overlapping keys 'separate' keeps the Eggs' meta data dictionaries separate, with each as a list index in the stacked meta data Returns ---------- new_egg : Egg data object A mega egg comprised of the input eggs stacked together ''' from .egg import Egg pres = [egg.pres.loc[sub,:].values.tolist() for egg in eggs for sub in egg.pres.index.levels[0].values.tolist()] rec = [egg.rec.loc[sub,:].values.tolist() for egg in eggs for sub in egg.rec.index.levels[0].values.tolist()] if meta is 'concatenate': new_meta = {} for egg in eggs: for key in egg.meta: if key in new_meta: new_meta[key] = list(new_meta[key]) new_meta[key].extend(egg.meta.get(key)) else: new_meta[key] = egg.meta.get(key) elif meta is 'separate': new_meta = list(egg.meta for egg in eggs) return Egg(pres=pres, rec=rec, meta=new_meta)
Takes a list of eggs, stacks them and reindexes the subject number Parameters ---------- eggs : list of Egg data objects A list of Eggs that you want to combine meta : string Determines how the meta data of each Egg combines. Default is 'concatenate' 'concatenate' concatenates keys in meta data dictionary shared between eggs, and copies non-overlapping keys 'separate' keeps the Eggs' meta data dictionaries separate, with each as a list index in the stacked meta data Returns ---------- new_egg : Egg data object A mega egg comprised of the input eggs stacked together
entailment
def crack_egg(egg, subjects=None, lists=None): ''' Takes an egg and returns a subset of the subjects or lists Parameters ---------- egg : Egg data object Egg that you want to crack subjects : list List of subject idxs lists : list List of lists idxs Returns ---------- new_egg : Egg data object A sliced egg, good on a salad ''' from .egg import Egg if hasattr(egg, 'features'): all_have_features = egg.features is not None else: all_have_features=False opts = {} if subjects is None: subjects = egg.pres.index.levels[0].values.tolist() elif type(subjects) is not list: subjects = [subjects] if lists is None: lists = egg.pres.index.levels[1].values.tolist() elif type(lists) is not list: lists = [lists] idx = pd.IndexSlice pres = egg.pres.loc[idx[subjects,lists],egg.pres.columns] rec = egg.rec.loc[idx[subjects,lists],egg.rec.columns] pres = [pres.loc[sub,:].values.tolist() for sub in subjects] rec = [rec.loc[sub,:].values.tolist() for sub in subjects] if all_have_features: features = egg.features.loc[idx[subjects,lists],egg.features.columns] opts['features'] = [features.loc[sub,:].values.tolist() for sub in subjects] return Egg(pres=pres, rec=rec, **opts)
Takes an egg and returns a subset of the subjects or lists Parameters ---------- egg : Egg data object Egg that you want to crack subjects : list List of subject idxs lists : list List of lists idxs Returns ---------- new_egg : Egg data object A sliced egg, good on a salad
entailment
def df2list(df): """ Convert a MultiIndex df to list Parameters ---------- df : pandas.DataFrame A MultiIndex DataFrame where the first level is subjects and the second level is lists (e.g. egg.pres) Returns ---------- lst : a list of lists of lists of values The input df reformatted as a list """ subjects = df.index.levels[0].values.tolist() lists = df.index.levels[1].values.tolist() idx = pd.IndexSlice df = df.loc[idx[subjects,lists],df.columns] lst = [df.loc[sub,:].values.tolist() for sub in subjects] return lst
Convert a MultiIndex df to list Parameters ---------- df : pandas.DataFrame A MultiIndex DataFrame where the first level is subjects and the second level is lists (e.g. egg.pres) Returns ---------- lst : a list of lists of lists of values The input df reformatted as a list
entailment
def fill_missing(x): """ Fills in missing lists (assumes end lists are missing) """ # find subject with max number of lists maxlen = max([len(xi) for xi in x]) subs = [] for sub in x: if len(sub)<maxlen: for i in range(maxlen-len(sub)): sub.append([]) new_sub = sub else: new_sub = sub subs.append(new_sub) return subs
Fills in missing lists (assumes end lists are missing)
entailment
def parse_egg(egg): """Parses an egg and returns fields""" pres_list = egg.get_pres_items().values[0] rec_list = egg.get_rec_items().values[0] feature_list = egg.get_pres_features().values[0] dist_funcs = egg.dist_funcs return pres_list, rec_list, feature_list, dist_funcs
Parses an egg and returns fields
entailment
def merge_pres_feats(pres, features): """ Helper function to merge pres and features to support legacy features argument """ sub = [] for psub, fsub in zip(pres, features): exp = [] for pexp, fexp in zip(psub, fsub): lst = [] for p, f in zip(pexp, fexp): p.update(f) lst.append(p) exp.append(lst) sub.append(exp) return sub
Helper function to merge pres and features to support legacy features argument
entailment
def r2z(r): """ Function that calculates the Fisher z-transformation Parameters ---------- r : int or ndarray Correlation value Returns ---------- result : int or ndarray Fishers z transformed correlation value """ with np.errstate(invalid='ignore', divide='ignore'): return 0.5 * (np.log(1 + r) - np.log(1 - r))
Function that calculates the Fisher z-transformation Parameters ---------- r : int or ndarray Correlation value Returns ---------- result : int or ndarray Fishers z transformed correlation value
entailment
def z2r(z): """ Function that calculates the inverse Fisher z-transformation Parameters ---------- z : int or ndarray Fishers z transformed correlation value Returns ---------- result : int or ndarray Correlation value """ with np.errstate(invalid='ignore', divide='ignore'): return (np.exp(2 * z) - 1) / (np.exp(2 * z) + 1)
Function that calculates the inverse Fisher z-transformation Parameters ---------- z : int or ndarray Fishers z transformed correlation value Returns ---------- result : int or ndarray Correlation value
entailment
def shuffle_egg(egg): """ Shuffle an Egg's recalls""" from .egg import Egg pres, rec, features, dist_funcs = parse_egg(egg) if pres.ndim==1: pres = pres.reshape(1, pres.shape[0]) rec = rec.reshape(1, rec.shape[0]) features = features.reshape(1, features.shape[0]) for ilist in range(rec.shape[0]): idx = np.random.permutation(rec.shape[1]) rec[ilist,:] = rec[ilist,idx] return Egg(pres=pres, rec=rec, features=features, dist_funcs=dist_funcs)
Shuffle an Egg's recalls
entailment
def retrieveVals(self): """Retrieve values for graphs.""" for iface in self._ifaceList: stats = self._ifaceStats.get(iface) graph_name = 'netiface_traffic_%s' % iface if self.hasGraph(graph_name): self.setGraphVal(graph_name, 'rx', stats.get('rxbytes') * 8) self.setGraphVal(graph_name, 'tx', stats.get('txbytes') * 8) graph_name = 'netiface_errors_%s' % iface if self.hasGraph(graph_name): for field in ('rxerrs', 'txerrs', 'rxframe', 'txcarrier', 'rxdrop', 'txdrop', 'rxfifo', 'txfifo'): self.setGraphVal(graph_name, field, stats.get(field))
Retrieve values for graphs.
entailment
def getPeerStats(self): """Get NTP Peer Stats for localhost by querying local NTP Server. @return: Dictionary of NTP stats converted to seconds. """ info_dict = {} output = util.exec_command([ntpqCmd, '-n', '-c', 'peers']) for line in output.splitlines(): mobj = re.match('\*(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\s+', line) if mobj: info_dict['ip'] = mobj.group(1) cols = line.split() info_dict['stratum'] = int(cols[2]) info_dict['delay'] = float(cols[7]) / 1000.0 info_dict['offset'] = float(cols[8]) / 1000.0 info_dict['jitter'] = float(cols[9]) / 1000.0 return info_dict else: raise Exception("Execution of command failed: %s" % ntpqCmd) return info_dict
Get NTP Peer Stats for localhost by querying local NTP Server. @return: Dictionary of NTP stats converted to seconds.
entailment
def getHostOffset(self, host): """Get NTP Stats and offset of remote host relative to localhost by querying NTP Server on remote host. @param host: Remote Host IP. @return: Dictionary of NTP stats converted to seconds. """ info_dict = {} output = util.exec_command([ntpdateCmd, '-u', '-q', host]) for line in output.splitlines(): mobj = re.match('server.*,\s*stratum\s+(\d),.*' 'offset\s+([\d\.-]+),.*delay\s+([\d\.]+)\s*$', line) if mobj: info_dict['stratum'] = int(mobj.group(1)) info_dict['delay'] = float(mobj.group(3)) info_dict['offset'] = float(mobj.group(2)) return info_dict return info_dict
Get NTP Stats and offset of remote host relative to localhost by querying NTP Server on remote host. @param host: Remote Host IP. @return: Dictionary of NTP stats converted to seconds.
entailment
def getHostOffsets(self, hosts): """Get NTP Stats and offset of multiple remote hosts relative to localhost by querying NTP Servers on remote hosts. @param host: List of Remote Host IPs. @return: Dictionary of NTP stats converted to seconds. """ info_dict = {} output = util.exec_command([ntpdateCmd, '-u', '-q'] + list(hosts)) for line in output.splitlines(): mobj = re.match('server\s+(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}),' '\s*stratum\s+(\d),.*offset\s+([\d\.-]+),' '.*delay\s+([\d\.]+)\s*$', line) if mobj: host_dict = {} host = mobj.group(1) host_dict['stratum'] = int(mobj.group(2)) host_dict['delay'] = float(mobj.group(4)) host_dict['offset'] = float(mobj.group(3)) info_dict[host] = host_dict return info_dict
Get NTP Stats and offset of multiple remote hosts relative to localhost by querying NTP Servers on remote hosts. @param host: List of Remote Host IPs. @return: Dictionary of NTP stats converted to seconds.
entailment
def getUptime(self): """Return system uptime in seconds. @return: Float that represents uptime in seconds. """ try: fp = open(uptimeFile, 'r') line = fp.readline() fp.close() except: raise IOError('Failed reading stats from file: %s' % uptimeFile) return float(line.split()[0])
Return system uptime in seconds. @return: Float that represents uptime in seconds.
entailment
def getLoadAvg(self): """Return system Load Average. @return: List of 1 min, 5 min and 15 min Load Average figures. """ try: fp = open(loadavgFile, 'r') line = fp.readline() fp.close() except: raise IOError('Failed reading stats from file: %s' % loadavgFile) arr = line.split() if len(arr) >= 3: return [float(col) for col in arr[:3]] else: return None
Return system Load Average. @return: List of 1 min, 5 min and 15 min Load Average figures.
entailment
def getCPUuse(self): """Return cpu time utilization in seconds. @return: Dictionary of stats. """ hz = os.sysconf('SC_CLK_TCK') info_dict = {} try: fp = open(cpustatFile, 'r') line = fp.readline() fp.close() except: raise IOError('Failed reading stats from file: %s' % cpustatFile) headers = ['user', 'nice', 'system', 'idle', 'iowait', 'irq', 'softirq', 'steal', 'guest'] arr = line.split() if len(arr) > 1 and arr[0] == 'cpu': return dict(zip(headers[0:len(arr)], [(float(t) / hz) for t in arr[1:]])) return info_dict
Return cpu time utilization in seconds. @return: Dictionary of stats.
entailment
def getProcessStats(self): """Return stats for running and blocked processes, forks, context switches and interrupts. @return: Dictionary of stats. """ info_dict = {} try: fp = open(cpustatFile, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading stats from file: %s' % cpustatFile) for line in data.splitlines(): arr = line.split() if len(arr) > 1 and arr[0] in ('ctxt', 'intr', 'softirq', 'processes', 'procs_running', 'procs_blocked'): info_dict[arr[0]] = arr[1] return info_dict
Return stats for running and blocked processes, forks, context switches and interrupts. @return: Dictionary of stats.
entailment
def getMemoryUse(self): """Return stats for memory utilization. @return: Dictionary of stats. """ info_dict = {} try: fp = open(meminfoFile, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading stats from file: %s' % meminfoFile) for line in data.splitlines(): mobj = re.match('^(.+):\s*(\d+)\s*(\w+|)\s*$', line) if mobj: if mobj.group(3).lower() == 'kb': mult = 1024 else: mult = 1 info_dict[mobj.group(1)] = int(mobj.group(2)) * mult return info_dict
Return stats for memory utilization. @return: Dictionary of stats.
entailment
def getSwapStats(self): """Return information on swap partition and / or files. @return: Dictionary of stats. """ info_dict = {} try: fp = open(swapsFile, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading stats from file: %s' % swapsFile) lines = data.splitlines() if len(lines) > 1: colnames = [name.lower() for name in lines[0].split()] for line in lines[1:]: cols = line.split() info_dict[cols[0]] = dict(zip(colnames[1:], cols[1:])) return info_dict
Return information on swap partition and / or files. @return: Dictionary of stats.
entailment
def getVMstats(self): """Return stats for Virtual Memory Subsystem. @return: Dictionary of stats. """ info_dict = {} try: fp = open(vmstatFile, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading stats from file: %s' % vmstatFile) for line in data.splitlines(): cols = line.split() if len(cols) == 2: info_dict[cols[0]] = cols[1] return info_dict
Return stats for Virtual Memory Subsystem. @return: Dictionary of stats.
entailment
def _connect(self): """Connect to Memcached.""" if self._socketFile is not None: if not os.path.exists(self._socketFile): raise Exception("Socket file (%s) for Memcached Instance not found." % self._socketFile) try: if self._timeout is not None: self._conn = util.Telnet(self._host, self._port, self._socketFile, timeout) else: self._conn = util.Telnet(self._host, self._port, self._socketFile) except: raise Exception("Connection to %s failed." % self._instanceName)
Connect to Memcached.
entailment
def _sendStatCmd(self, cmd): """Send stat command to Memcached Server and return response lines. @param cmd: Command string. @return: Array of strings. """ try: self._conn.write("%s\r\n" % cmd) regex = re.compile('^(END|ERROR)\r\n', re.MULTILINE) (idx, mobj, text) = self._conn.expect([regex,], self._timeout) #@UnusedVariable except: raise Exception("Communication with %s failed" % self._instanceName) if mobj is not None: if mobj.group(1) == 'END': return text.splitlines()[:-1] elif mobj.group(1) == 'ERROR': raise Exception("Protocol error in communication with %s." % self._instanceName) else: raise Exception("Connection with %s timed out." % self._instanceName)
Send stat command to Memcached Server and return response lines. @param cmd: Command string. @return: Array of strings.
entailment
def _parseStats(self, lines, parse_slabs = False): """Parse stats output from memcached and return dictionary of stats- @param lines: Array of lines of input text. @param parse_slabs: Parse slab stats if True. @return: Stats dictionary. """ info_dict = {} info_dict['slabs'] = {} for line in lines: mobj = re.match('^STAT\s(\w+)\s(\S+)$', line) if mobj: info_dict[mobj.group(1)] = util.parse_value(mobj.group(2), True) continue elif parse_slabs: mobj = re.match('STAT\s(\w+:)?(\d+):(\w+)\s(\S+)$', line) if mobj: (slab, key, val) = mobj.groups()[-3:] if not info_dict['slabs'].has_key(slab): info_dict['slabs'][slab] = {} info_dict['slabs'][slab][key] = util.parse_value(val, True) return info_dict
Parse stats output from memcached and return dictionary of stats- @param lines: Array of lines of input text. @param parse_slabs: Parse slab stats if True. @return: Stats dictionary.
entailment
def retrieveVals(self): """Retrieve values for graphs.""" if self._stats is None: serverInfo = MemcachedInfo(self._host, self._port, self._socket_file) stats = serverInfo.getStats() else: stats = self._stats if stats is None: raise Exception("Undetermined error accesing stats.") stats['set_hits'] = stats.get('total_items') if stats.has_key('cmd_set') and stats.has_key('total_items'): stats['set_misses'] = stats['cmd_set'] - stats['total_items'] self.saveState(stats) if self.hasGraph('memcached_connections'): self.setGraphVal('memcached_connections', 'conn', stats.get('curr_connections')) if self.hasGraph('memcached_items'): self.setGraphVal('memcached_items', 'items', stats.get('curr_items')) if self.hasGraph('memcached_memory'): self.setGraphVal('memcached_memory', 'bytes', stats.get('bytes')) if self.hasGraph('memcached_connrate'): self.setGraphVal('memcached_connrate', 'conn', stats.get('total_connections')) if self.hasGraph('memcached_traffic'): self.setGraphVal('memcached_traffic', 'rxbytes', stats.get('bytes_read')) self.setGraphVal('memcached_traffic', 'txbytes', stats.get('bytes_written')) if self.hasGraph('memcached_reqrate'): self.setGraphVal('memcached_reqrate', 'set', stats.get('cmd_set')) self.setGraphVal('memcached_reqrate', 'get', stats.get('cmd_get')) if self.graphHasField('memcached_reqrate', 'del'): self.setGraphVal('memcached_reqrate', 'del', safe_sum([stats.get('delete_hits'), stats.get('delete_misses')])) if self.graphHasField('memcached_reqrate', 'cas'): self.setGraphVal('memcached_reqrate', 'cas', safe_sum([stats.get('cas_hits'), stats.get('cas_misses'), stats.get('cas_badval')])) if self.graphHasField('memcached_reqrate', 'incr'): self.setGraphVal('memcached_reqrate', 'incr', safe_sum([stats.get('incr_hits'), stats.get('incr_misses')])) if self.graphHasField('memcached_reqrate', 'decr'): self.setGraphVal('memcached_reqrate', 'decr', safe_sum([stats.get('decr_hits'), stats.get('decr_misses')])) if self.hasGraph('memcached_statget'): self.setGraphVal('memcached_statget', 'hit', stats.get('get_hits')) self.setGraphVal('memcached_statget', 'miss', stats.get('get_misses')) self.setGraphVal('memcached_statget', 'total', safe_sum([stats.get('get_hits'), stats.get('get_misses')])) if self.hasGraph('memcached_statset'): self.setGraphVal('memcached_statset', 'hit', stats.get('set_hits')) self.setGraphVal('memcached_statset', 'miss', stats.get('set_misses')) self.setGraphVal('memcached_statset', 'total', safe_sum([stats.get('set_hits'), stats.get('set_misses')])) if self.hasGraph('memcached_statdel'): self.setGraphVal('memcached_statdel', 'hit', stats.get('delete_hits')) self.setGraphVal('memcached_statdel', 'miss', stats.get('delete_misses')) self.setGraphVal('memcached_statdel', 'total', safe_sum([stats.get('delete_hits'), stats.get('delete_misses')])) if self.hasGraph('memcached_statcas'): self.setGraphVal('memcached_statcas', 'hit', stats.get('cas_hits')) self.setGraphVal('memcached_statcas', 'miss', stats.get('cas_misses')) self.setGraphVal('memcached_statcas', 'badval', stats.get('cas_badval')) self.setGraphVal('memcached_statcas', 'total', safe_sum([stats.get('cas_hits'), stats.get('cas_misses'), stats.get('cas_badval')])) if self.hasGraph('memcached_statincrdecr'): self.setGraphVal('memcached_statincrdecr', 'incr_hit', stats.get('incr_hits')) self.setGraphVal('memcached_statincrdecr', 'decr_hit', stats.get('decr_hits')) self.setGraphVal('memcached_statincrdecr', 'incr_miss', stats.get('incr_misses')) self.setGraphVal('memcached_statincrdecr', 'decr_miss', stats.get('decr_misses')) self.setGraphVal('memcached_statincrdecr', 'total', safe_sum([stats.get('incr_hits'), stats.get('decr_hits'), stats.get('incr_misses'), stats.get('decr_misses')])) if self.hasGraph('memcached_statevict'): self.setGraphVal('memcached_statevict', 'evict', stats.get('evictions')) if self.graphHasField('memcached_statevict', 'reclaim'): self.setGraphVal('memcached_statevict', 'reclaim', stats.get('reclaimed')) if self.hasGraph('memcached_statauth'): self.setGraphVal('memcached_statauth', 'reqs', stats.get('auth_cmds')) self.setGraphVal('memcached_statauth', 'errors', stats.get('auth_errors')) if self.hasGraph('memcached_hitpct'): prev_stats = self._prev_stats for (field_name, field_hits, field_misses) in ( ('set', 'set_hits', 'set_misses'), ('get', 'get_hits', 'get_misses'), ('del', 'delete_hits', 'delete_misses'), ('cas', 'cas_hits', 'cas_misses'), ('incr', 'incr_hits', 'incr_misses'), ('decr', 'decr_hits', 'decr_misses') ): if prev_stats: if (stats.has_key(field_hits) and prev_stats.has_key(field_hits) and stats.has_key(field_misses) and prev_stats.has_key(field_misses)): hits = stats[field_hits] - prev_stats[field_hits] misses = stats[field_misses] - prev_stats[field_misses] total = hits + misses if total > 0: val = 100.0 * hits / total else: val = 0 self.setGraphVal('memcached_hitpct', field_name, round(val, 2))
Retrieve values for graphs.
entailment
def autoconf(self): """Implements Munin Plugin Auto-Configuration Option. @return: True if plugin can be auto-configured, False otherwise. """ serverInfo = MemcachedInfo(self._host, self._port, self._socket_file) return (serverInfo is not None)
Implements Munin Plugin Auto-Configuration Option. @return: True if plugin can be auto-configured, False otherwise.
entailment
def correlation(a, b): "Returns correlation distance between a and b" if isinstance(a, list): a = np.array(a) if isinstance(b, list): b = np.array(b) a = a.reshape(1, -1) b = b.reshape(1, -1) return cdist(a, b, 'correlation')
Returns correlation distance between a and b
entailment
def euclidean(a, b): "Returns euclidean distance between a and b" return np.linalg.norm(np.subtract(a, b))
Returns euclidean distance between a and b
entailment
def execProcCmd(self, *args): """Execute ps command with positional params args and return result as list of lines. @param *args: Positional params for ps command. @return: List of output lines """ out = util.exec_command([psCmd,] + list(args)) return out.splitlines()
Execute ps command with positional params args and return result as list of lines. @param *args: Positional params for ps command. @return: List of output lines
entailment
def parseProcCmd(self, fields=('pid', 'user', 'cmd',), threads=False): """Execute ps command with custom output format with columns from fields and return result as a nested list. The Standard Format Specifiers from ps man page must be used for the fields parameter. @param fields: List of fields included in the output. Default: pid, user, cmd @param threads: If True, include threads in output. @return: List of headers and list of rows and columns. """ args = [] headers = [f.lower() for f in fields] args.append('--no-headers') args.append('-e') if threads: args.append('-T') field_ranges = [] fmt_strs = [] start = 0 for header in headers: field_width = psFieldWidth.get(header, psDefaultFieldWidth) fmt_strs.append('%s:%d' % (header, field_width)) end = start + field_width + 1 field_ranges.append((start,end)) start = end args.append('-o') args.append(','.join(fmt_strs)) lines = self.execProcCmd(*args) if len(lines) > 0: stats = [] for line in lines: cols = [] for (start, end) in field_ranges: cols.append(line[start:end].strip()) stats.append(cols) return {'headers': headers, 'stats': stats} else: return None
Execute ps command with custom output format with columns from fields and return result as a nested list. The Standard Format Specifiers from ps man page must be used for the fields parameter. @param fields: List of fields included in the output. Default: pid, user, cmd @param threads: If True, include threads in output. @return: List of headers and list of rows and columns.
entailment
def getProcList(self, fields=('pid', 'user', 'cmd',), threads=False, **kwargs): """Execute ps command with custom output format with columns columns from fields, select lines using the filters defined by kwargs and return result as a nested list. The Standard Format Specifiers from ps man page must be used for the fields parameter. @param fields: Fields included in the output. Default: pid, user, cmd @param threads: If True, include threads in output. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: List of headers and list of rows and columns. """ field_list = list(fields) for key in kwargs: col = re.sub('(_ic)?(_regex)?$', '', key) if not col in field_list: field_list.append(col) pinfo = self.parseProcCmd(field_list, threads) if pinfo: if len(kwargs) > 0: pfilter = util.TableFilter() pfilter.registerFilters(**kwargs) stats = pfilter.applyFilters(pinfo['headers'], pinfo['stats']) return {'headers': pinfo['headers'], 'stats': stats} else: return pinfo else: return None
Execute ps command with custom output format with columns columns from fields, select lines using the filters defined by kwargs and return result as a nested list. The Standard Format Specifiers from ps man page must be used for the fields parameter. @param fields: Fields included in the output. Default: pid, user, cmd @param threads: If True, include threads in output. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: List of headers and list of rows and columns.
entailment
def getProcDict(self, fields=('user', 'cmd',), threads=False, **kwargs): """Execute ps command with custom output format with columns format with columns from fields, and return result as a nested dictionary with the key PID or SPID. The Standard Format Specifiers from ps man page must be used for the fields parameter. @param fields: Fields included in the output. Default: user, cmd (PID or SPID column is included by default.) @param threads: If True, include threads in output. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: Nested dictionary indexed by: PID for process info. SPID for thread info. """ stats = {} field_list = list(fields) num_cols = len(field_list) if threads: key = 'spid' else: key = 'pid' try: key_idx = field_list.index(key) except ValueError: field_list.append(key) key_idx = len(field_list) - 1 result = self.getProcList(field_list, threads, **kwargs) if result is not None: headers = result['headers'][:num_cols] lines = result['stats'] if len(lines) > 1: for cols in lines: stats[cols[key_idx]] = dict(zip(headers, cols[:num_cols])) return stats else: return None
Execute ps command with custom output format with columns format with columns from fields, and return result as a nested dictionary with the key PID or SPID. The Standard Format Specifiers from ps man page must be used for the fields parameter. @param fields: Fields included in the output. Default: user, cmd (PID or SPID column is included by default.) @param threads: If True, include threads in output. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: Nested dictionary indexed by: PID for process info. SPID for thread info.
entailment
def getProcStatStatus(self, threads=False, **kwargs): """Return process counts per status and priority. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: Dictionary of process counters. """ procs = self.getProcList(['stat',], threads=threads, **kwargs) status = dict(zip(procStatusNames.values(), [0,] * len(procStatusNames))) prio = {'high': 0, 'low': 0, 'norm': 0, 'locked_in_mem': 0} total = 0 locked_in_mem = 0 if procs is not None: for cols in procs['stats']: col_stat = cols[0] status[procStatusNames[col_stat[0]]] += 1 if '<' in col_stat[1:]: prio['high'] += 1 elif 'N' in col_stat[1:]: prio['low'] += 1 else: prio['norm'] += 1 if 'L' in col_stat[1:]: locked_in_mem += 1 total += 1 return {'status': status, 'prio': prio, 'locked_in_mem': locked_in_mem, 'total': total}
Return process counts per status and priority. @param **kwargs: Keyword variables are used for filtering the results depending on the values of the columns. Each keyword must correspond to a field name with an optional suffix: field: Field equal to value or in list of values. field_ic: Field equal to value or in list of values, using case insensitive comparison. field_regex: Field matches regex value or matches with any regex in list of values. field_ic_regex: Field matches regex value or matches with any regex in list of values using case insensitive match. @return: Dictionary of process counters.
entailment
def retrieveVals(self): """Retrieve values for graphs.""" ntpinfo = NTPinfo() stats = ntpinfo.getPeerStats() if stats: if self.hasGraph('ntp_peer_stratum'): self.setGraphVal('ntp_peer_stratum', 'stratum', stats.get('stratum')) if self.hasGraph('ntp_peer_stats'): self.setGraphVal('ntp_peer_stats', 'offset', stats.get('offset')) self.setGraphVal('ntp_peer_stats', 'delay', stats.get('delay')) self.setGraphVal('ntp_peer_stats', 'jitter', stats.get('jitter'))
Retrieve values for graphs.
entailment
def muninMain(pluginClass, argv=None, env=None, debug=False): """Main Block for Munin Plugins. @param pluginClass: Child class of MuninPlugin that implements plugin. @param argv: List of command line arguments to Munin Plugin. @param env: Dictionary of environment variables passed to Munin Plugin. @param debug: Print debugging messages if True. (Default: False) """ if argv is None: argv = sys.argv if env is None: env = os.environ debug = debug or env.has_key('MUNIN_DEBUG') if len(argv) > 1 and argv[1] == 'autoconf': autoconf = True else: autoconf = False try: plugin = pluginClass(argv, env, debug) ret = plugin.run() if ret: return 0 else: return 1 except Exception: print >> sys.stderr, "ERROR: %s" % repr(sys.exc_info()[1]) if autoconf: print "no" if debug: raise else: if autoconf: return 0 else: return 1
Main Block for Munin Plugins. @param pluginClass: Child class of MuninPlugin that implements plugin. @param argv: List of command line arguments to Munin Plugin. @param env: Dictionary of environment variables passed to Munin Plugin. @param debug: Print debugging messages if True. (Default: False)
entailment
def fixLabel(label, maxlen, delim=None, repl='', truncend=True): """Truncate long graph and field labels. @param label: Label text. @param maxlen: Maximum field label length in characters. No maximum field label length is enforced by default. @param delim: Delimiter for field labels field labels longer than maxlen will preferably be truncated at delimiter. @param repl: Replacement string for truncated part. @param truncend: Truncate the end of label name if True. (Default) The beginning part of label will be truncated if False. """ if len(label) <= maxlen: return label else: maxlen -= len(repl) if delim is not None: if truncend: end = label.rfind(delim, 0, maxlen) if end > 0: return label[:end+1] + repl else: start = label.find(delim, len(label) - maxlen) if start > 0: return repl + label[start:] if truncend: return label[:maxlen] + repl else: return repl + label[-maxlen:]
Truncate long graph and field labels. @param label: Label text. @param maxlen: Maximum field label length in characters. No maximum field label length is enforced by default. @param delim: Delimiter for field labels field labels longer than maxlen will preferably be truncated at delimiter. @param repl: Replacement string for truncated part. @param truncend: Truncate the end of label name if True. (Default) The beginning part of label will be truncated if False.
entailment
def _parseEnv(self, env=None): """Private method for parsing through environment variables. Parses for environment variables common to all Munin Plugins: - MUNIN_STATEFILE - MUNIN_CAP_DIRTY_CONFIG - nested_graphs @param env: Dictionary of environment variables. (Only used for testing. initialized automatically by constructor. """ if not env: env = self._env if env.has_key('MUNIN_STATEFILE'): self._stateFile = env.get('MUNIN_STATEFILE') else: self._stateFile = '/tmp/munin-state-%s' % self.plugin_name if env.has_key('MUNIN_CAP_DIRTY_CONFIG'): self._dirtyConfig = True
Private method for parsing through environment variables. Parses for environment variables common to all Munin Plugins: - MUNIN_STATEFILE - MUNIN_CAP_DIRTY_CONFIG - nested_graphs @param env: Dictionary of environment variables. (Only used for testing. initialized automatically by constructor.
entailment
def _getGraph(self, graph_name, fail_noexist=False): """Private method for returning graph object with name graph_name. @param graph_name: Graph Name @param fail_noexist: If true throw exception if there is no graph with name graph_name. @return: Graph Object or None """ graph = self._graphDict.get(graph_name) if fail_noexist and graph is None: raise AttributeError("Invalid graph name: %s" % graph_name) else: return graph
Private method for returning graph object with name graph_name. @param graph_name: Graph Name @param fail_noexist: If true throw exception if there is no graph with name graph_name. @return: Graph Object or None
entailment
def _getSubGraph(self, parent_name, graph_name, fail_noexist=False): """Private method for returning subgraph object with name graph_name and parent graph with name parent_name. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @param fail_noexist: If true throw exception if there is no subgraph with name graph_name. @return: Graph Object or None """ if not self.isMultigraph: raise AttributeError("Simple Munin Plugins cannot have subgraphs.") if self._graphDict.has_key(parent_name) is not None: subgraphs = self._subgraphDict.get(parent_name) if subgraphs is not None: subgraph = subgraphs.get(graph_name) if fail_noexist and subgraph is None: raise AttributeError("Invalid subgraph name %s" "for graph %s." % (graph_name, parent_name)) else: return subgraph else: raise AttributeError("Parent graph %s has no subgraphs." % (parent_name,)) else: raise AttributeError("Invalid parent graph name %s " "for subgraph %s." % (parent_name, graph_name))
Private method for returning subgraph object with name graph_name and parent graph with name parent_name. @param parent_name: Root Graph Name @param graph_name: Subgraph Name @param fail_noexist: If true throw exception if there is no subgraph with name graph_name. @return: Graph Object or None
entailment
def _getMultigraphID(self, graph_name, subgraph_name=None): """Private method for generating Multigraph ID from graph name and subgraph name. @param graph_name: Graph Name. @param subgraph_name: Subgraph Name. @return: Multigraph ID. """ if self.isMultiInstance and self._instanceName is not None: if subgraph_name is None: return "%s_%s" % (graph_name, self._instanceName) else: return "%s_%s.%s_%s" % (graph_name, self._instanceName, subgraph_name, self._instanceName) else: if subgraph_name is None: return graph_name else: return "%s.%s" % (graph_name, subgraph_name)
Private method for generating Multigraph ID from graph name and subgraph name. @param graph_name: Graph Name. @param subgraph_name: Subgraph Name. @return: Multigraph ID.
entailment
def _formatConfig(self, conf_dict): """Formats configuration directory from Munin Graph and returns multi-line value entries for the plugin config cycle. @param conf_dict: Configuration directory. @return: Multi-line text. """ confs = [] graph_dict = conf_dict['graph'] field_list = conf_dict['fields'] # Order and format Graph Attributes title = graph_dict.get('title') if title is not None: if self.isMultiInstance and self._instanceLabel is not None: if self._instanceLabelType == 'suffix': confs.append("graph_%s %s - %s" % ('title', title, self._instanceLabel,)) elif self._instanceLabelType == 'prefix': confs.append("graph_%s %s - %s" % ('title', self._instanceLabel, title,)) else: confs.append("graph_%s %s" % ('title', title)) for key in ('category', 'vlabel', 'info', 'args', 'period', 'scale', 'total', 'order', 'printf', 'width', 'height'): val = graph_dict.get(key) if val is not None: if isinstance(val, bool): if val: val = "yes" else: val = "no" confs.append("graph_%s %s" % (key, val)) # Order and Format Field Attributes for (field_name, field_attrs) in field_list: for key in ('label', 'type', 'draw', 'info', 'extinfo', 'colour', 'negative', 'graph', 'min', 'max', 'cdef', 'line', 'warning', 'critical'): val = field_attrs.get(key) if val is not None: if isinstance(val, bool): if val: val = "yes" else: val = "no" confs.append("%s.%s %s" % (field_name, key, val)) return "\n".join(confs)
Formats configuration directory from Munin Graph and returns multi-line value entries for the plugin config cycle. @param conf_dict: Configuration directory. @return: Multi-line text.
entailment
def _formatVals(self, val_list): """Formats value list from Munin Graph and returns multi-line value entries for the plugin fetch cycle. @param val_list: List of name-value pairs. @return: Multi-line text. """ vals = [] for (name, val) in val_list: if val is not None: if isinstance(val, float): vals.append("%s.value %f" % (name, val)) else: vals.append("%s.value %s" % (name, val)) else: vals.append("%s.value U" % (name,)) return "\n".join(vals)
Formats value list from Munin Graph and returns multi-line value entries for the plugin fetch cycle. @param val_list: List of name-value pairs. @return: Multi-line text.
entailment
def envGet(self, name, default=None, conv=None): """Return value for environment variable or None. @param name: Name of environment variable. @param default: Default value if variable is undefined. @param conv: Function for converting value to desired type. @return: Value of environment variable. """ if self._env.has_key(name): if conv is not None: return conv(self._env.get(name)) else: return self._env.get(name) else: return default
Return value for environment variable or None. @param name: Name of environment variable. @param default: Default value if variable is undefined. @param conv: Function for converting value to desired type. @return: Value of environment variable.
entailment
def envGetList(self, name, attr_regex = '^\w+$', conv=None): """Parse the plugin environment variables to return list from variable with name list_<name>. The value of the variable must be a comma separated list of items. @param name: Name of list. (Also determines suffix for environment variable name.) @param attr_regex: If the regex is defined, the items in the list are ignored unless they comply with the format dictated by the match regex. @param conv: Function for converting value to desired type. @return: List of items. """ key = "list_%s" % name item_list = [] if self._env.has_key(key): if attr_regex: recomp = re.compile(attr_regex) else: recomp = None for attr in self._env[key].split(','): attr = attr.strip() if recomp is None or recomp.search(attr): if conv is not None: item_list.append(conv(attr)) else: item_list.append(attr) return item_list
Parse the plugin environment variables to return list from variable with name list_<name>. The value of the variable must be a comma separated list of items. @param name: Name of list. (Also determines suffix for environment variable name.) @param attr_regex: If the regex is defined, the items in the list are ignored unless they comply with the format dictated by the match regex. @param conv: Function for converting value to desired type. @return: List of items.
entailment
def envRegisterFilter(self, name, attr_regex = '^\w+$', default = True): """Register filter for including, excluding attributes in graphs through the use of include_<name> and exclude_<name> environment variables. The value of the variables must be a comma separated list of items. @param name: Name of filter. (Also determines suffix for environment variable name.) @param attr_regex: Regular expression string for checking valid items. @param default: Filter default. Applies when the include list is not defined and the attribute is not in the exclude list. """ attrs = {} for prefix in ('include', 'exclude'): key = "%s_%s" % (prefix, name) val = self._env.get(key) if val: attrs[prefix] = [attr.strip() for attr in val.split(',')] else: attrs[prefix] = [] self._filters[name] = MuninAttrFilter(attrs['include'], attrs['exclude'], attr_regex, default)
Register filter for including, excluding attributes in graphs through the use of include_<name> and exclude_<name> environment variables. The value of the variables must be a comma separated list of items. @param name: Name of filter. (Also determines suffix for environment variable name.) @param attr_regex: Regular expression string for checking valid items. @param default: Filter default. Applies when the include list is not defined and the attribute is not in the exclude list.
entailment
def envCheckFilter(self, name, attr): """Check if a specific graph attribute is enabled or disabled through the use of a filter based on include_<name> and exclude_<name> environment variables. @param name: Name of the Filter. @param attr: Name of the Attribute. @return: Return True if the attribute is enabled. """ flt = self._filters.get(name) if flt: return flt.check(attr) else: raise AttributeError("Undefined filter: %s" % name)
Check if a specific graph attribute is enabled or disabled through the use of a filter based on include_<name> and exclude_<name> environment variables. @param name: Name of the Filter. @param attr: Name of the Attribute. @return: Return True if the attribute is enabled.
entailment
def envCheckFlag(self, name, default = False): """Check graph flag for enabling / disabling attributes through the use of <name> environment variable. @param name: Name of flag. (Also determines the environment variable name.) @param default: Boolean (True or False). Default value for flag. @return: Return True if the flag is enabled. """ if self._flags.has_key(name): return self._flags[name] else: val = self._env.get(name) if val is None: return default elif val.lower() in ['yes', 'on']: self._flags[name] = True return True elif val.lower() in ['no', 'off']: self._flags[name] = False return False else: raise AttributeError("Value for flag %s, must be yes, no, on or off" % name)
Check graph flag for enabling / disabling attributes through the use of <name> environment variable. @param name: Name of flag. (Also determines the environment variable name.) @param default: Boolean (True or False). Default value for flag. @return: Return True if the flag is enabled.
entailment