sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def getSpaceUse(self): """Get disk space usage. @return: Dictionary of filesystem space utilization stats for filesystems. """ stats = {} try: out = subprocess.Popen([dfCmd, "-Pk"], stdout=subprocess.PIPE).communicate()[0] except: raise Exception('Execution of command %s failed.' % dfCmd) lines = out.splitlines() if len(lines) > 1: for line in lines[1:]: fsstats = {} cols = line.split() fsstats['device'] = cols[0] fsstats['type'] = self._fstypeDict[cols[5]] fsstats['total'] = 1024 * int(cols[1]) fsstats['inuse'] = 1024 * int(cols[2]) fsstats['avail'] = 1024 * int(cols[3]) fsstats['inuse_pcent'] = int(cols[4][:-1]) stats[cols[5]] = fsstats return stats
Get disk space usage. @return: Dictionary of filesystem space utilization stats for filesystems.
entailment
def retrieveVals(self): """Retrieve values for graphs.""" stats = self._dbconn.getDatabaseStats() databases = stats.get('databases') totals = stats.get('totals') if self.hasGraph('pg_connections'): limit = self._dbconn.getParam('max_connections') self.setGraphVal('pg_connections', 'max_conn', limit) for (db, dbstats) in databases.iteritems(): if self.dbIncluded(db): self.setGraphVal('pg_connections', db, dbstats['numbackends']) self.setGraphVal('pg_connections', 'total', totals['numbackends']) if self.hasGraph('pg_diskspace'): for (db, dbstats) in databases.iteritems(): if self.dbIncluded(db): self.setGraphVal('pg_diskspace', db, dbstats['disk_size']) self.setGraphVal('pg_diskspace', 'total', totals['disk_size']) if self.hasGraph('pg_blockreads'): self.setGraphVal('pg_blockreads', 'blk_hit', totals['blks_hit']) self.setGraphVal('pg_blockreads', 'blk_read', totals['blks_read']) if self.hasGraph('pg_xact'): self.setGraphVal('pg_xact', 'commits', totals['xact_commit']) self.setGraphVal('pg_xact', 'rollbacks', totals['xact_rollback']) if self.hasGraph('pg_tup_read'): self.setGraphVal('pg_tup_read', 'fetch', totals['tup_fetched']) self.setGraphVal('pg_tup_read', 'return', totals['tup_returned']) if self.hasGraph('pg_tup_write'): self.setGraphVal('pg_tup_write', 'delete', totals['tup_deleted']) self.setGraphVal('pg_tup_write', 'update', totals['tup_updated']) self.setGraphVal('pg_tup_write', 'insert', totals['tup_inserted']) lock_stats = None for lock_state in ('all', 'wait',): graph_name = "pg_lock_%s" % lock_state if self.hasGraph(graph_name): if lock_stats is None: lock_stats = self._dbconn.getLockStatsMode() mode_iter = iter(PgInfo.lockModes) for mode in ('AccessExcl', 'Excl', 'ShrRwExcl', 'Shr', 'ShrUpdExcl', 'RwExcl', 'RwShr', 'AccessShr',): self.setGraphVal(graph_name, mode, lock_stats[lock_state].get(mode_iter.next())) stats = None if self.hasGraph('pg_checkpoints'): if stats is None: stats = self._dbconn.getBgWriterStats() self.setGraphVal('pg_checkpoints', 'req', stats.get('checkpoints_req')) self.setGraphVal('pg_checkpoints', 'timed', stats.get('checkpoints_timed')) if self.hasGraph('pg_bgwriter'): if stats is None: stats = self._dbconn.getBgWriterStats() self.setGraphVal('pg_bgwriter', 'backend', stats.get('buffers_backend')) self.setGraphVal('pg_bgwriter', 'clean', stats.get('buffers_clean')) self.setGraphVal('pg_bgwriter', 'chkpoint', stats.get('buffers_checkpoint')) if self._detailGraphs: for (db, dbstats) in databases.iteritems(): if self.dbIncluded(db): if self.hasGraph('pg_blockread_detail'): self.setGraphVal('pg_blockread_detail', db, dbstats['blks_hit'] + dbstats['blks_read']) for (graph_name, attr_name) in ( ('pg_xact_commit_detail', 'xact_commit'), ('pg_xact_rollback_detail', 'xact_rollback'), ('pg_tup_return_detail', 'tup_returned'), ('pg_tup_fetch_detail', 'tup_fetched'), ('pg_tup_delete_detail', 'tup_deleted'), ('pg_tup_update_detail', 'tup_updated'), ('pg_tup_insert_detail', 'tup_inserted'), ): if self.hasGraph(graph_name): self.setGraphVal(graph_name, db, dbstats[attr_name]) lock_stats_db = None for lock_state in ('all', 'wait',): graph_name = "pg_lock_%s_detail" % lock_state if self.hasGraph(graph_name): if lock_stats_db is None: lock_stats_db = self._dbconn.getLockStatsDB() self.setGraphVal(graph_name, db, lock_stats_db[lock_state].get(db, 0)) if self._replGraphs: repl_stats = self._dbconn.getSlaveConflictStats() if self.hasGraph('pg_repl_conflicts'): for field in self.getGraphFieldList('pg_repl_conflicts'): self.setGraphVal('pg_repl_conflicts', field, repl_stats['totals'].get("confl_%s" % field)) if self._detailGraphs and self.hasGraph('pg_repl_conflicts_detail'): for (db, dbstats) in repl_stats['databases'].iteritems(): if self.dbIncluded(db): self.setGraphVal('pg_repl_conflicts_detail', db, sum(dbstats.values()))
Retrieve values for graphs.
entailment
def connect(self, host, port): """Connects via a RS-485 to Ethernet adapter.""" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((host, port)) self._reader = sock.makefile(mode='rb') self._writer = sock.makefile(mode='wb')
Connects via a RS-485 to Ethernet adapter.
entailment
def process(self, data_changed_callback): """Process data; returns when the reader signals EOF. Callback is notified when any data changes.""" # pylint: disable=too-many-locals,too-many-branches,too-many-statements while True: byte = self._reader.read(1) while True: # Search for FRAME_DLE + FRAME_STX if not byte: return if byte[0] == self.FRAME_DLE: next_byte = self._reader.read(1) if not next_byte: return if next_byte[0] == self.FRAME_STX: break else: continue byte = self._reader.read(1) frame = bytearray() byte = self._reader.read(1) while True: if not byte: return if byte[0] == self.FRAME_DLE: # Should be FRAME_ETX or 0 according to # the AQ-CO-SERIAL manual next_byte = self._reader.read(1) if not next_byte: return if next_byte[0] == self.FRAME_ETX: break elif next_byte[0] != 0: # Error? pass frame.append(byte[0]) byte = self._reader.read(1) # Verify CRC frame_crc = int.from_bytes(frame[-2:], byteorder='big') frame = frame[:-2] calculated_crc = self.FRAME_DLE + self.FRAME_STX for byte in frame: calculated_crc += byte if frame_crc != calculated_crc: _LOGGER.warning('Bad CRC') continue frame_type = frame[0:2] frame = frame[2:] if frame_type == self.FRAME_TYPE_KEEP_ALIVE: # Keep alive # If a frame has been queued for transmit, send it. if not self._send_queue.empty(): data = self._send_queue.get(block=False) self._writer.write(data['frame']) self._writer.flush() _LOGGER.info('Sent: %s', binascii.hexlify(data['frame'])) try: if data['desired_states'] is not None: # Set a timer to verify the state changes # Wait 2 seconds as it can take a while for # the state to change. Timer(2.0, self._check_state, [data]).start() except KeyError: pass continue elif frame_type == self.FRAME_TYPE_KEY_EVENT: _LOGGER.info('Key: %s', binascii.hexlify(frame)) elif frame_type == self.FRAME_TYPE_LEDS: _LOGGER.debug('LEDs: %s', binascii.hexlify(frame)) # First 4 bytes are the LEDs that are on; # second 4 bytes_ are the LEDs that are flashing states = int.from_bytes(frame[0:4], byteorder='little') flashing_states = int.from_bytes(frame[4:8], byteorder='little') states |= flashing_states if (states != self._states or flashing_states != self._flashing_states): self._states = states self._flashing_states = flashing_states data_changed_callback(self) elif frame_type == self.FRAME_TYPE_PUMP_SPEED_REQUEST: value = int.from_bytes(frame[0:2], byteorder='big') _LOGGER.debug('Pump speed request: %d%%', value) if self._pump_speed != value: self._pump_speed = value data_changed_callback(self) elif frame_type == self.FRAME_TYPE_PUMP_STATUS: # Pump status messages sent out by Hayward VSP pumps self._multi_speed_pump = True speed = frame[2] # Power is in BCD power = ((((frame[3] & 0xf0) >> 4) * 1000) + (((frame[3] & 0x0f)) * 100) + (((frame[4] & 0xf0) >> 4) * 10) + (((frame[4] & 0x0f)))) _LOGGER.debug('Pump speed: %d%%, power: %d watts', speed, power) if self._pump_power != power: self._pump_power = power data_changed_callback(self) elif frame_type == self.FRAME_TYPE_DISPLAY_UPDATE: parts = frame.decode('latin-1').split() _LOGGER.debug('Display update: %s', parts) try: if parts[0] == 'Pool' and parts[1] == 'Temp': # Pool Temp <temp>°[C|F] value = int(parts[2][:-2]) if self._pool_temp != value: self._pool_temp = value self._is_metric = parts[2][-1:] == 'C' data_changed_callback(self) elif parts[0] == 'Spa' and parts[1] == 'Temp': # Spa Temp <temp>°[C|F] value = int(parts[2][:-2]) if self._spa_temp != value: self._spa_temp = value self._is_metric = parts[2][-1:] == 'C' data_changed_callback(self) elif parts[0] == 'Air' and parts[1] == 'Temp': # Air Temp <temp>°[C|F] value = int(parts[2][:-2]) if self._air_temp != value: self._air_temp = value self._is_metric = parts[2][-1:] == 'C' data_changed_callback(self) elif parts[0] == 'Pool' and parts[1] == 'Chlorinator': # Pool Chlorinator <value>% value = int(parts[2][:-1]) if self._pool_chlorinator != value: self._pool_chlorinator = value data_changed_callback(self) elif parts[0] == 'Spa' and parts[1] == 'Chlorinator': # Spa Chlorinator <value>% value = int(parts[2][:-1]) if self._spa_chlorinator != value: self._spa_chlorinator = value data_changed_callback(self) elif parts[0] == 'Salt' and parts[1] == 'Level': # Salt Level <value> [g/L|PPM| value = float(parts[2]) if self._salt_level != value: self._salt_level = value self._is_metric = parts[3] == 'g/L' data_changed_callback(self) elif parts[0] == 'Check' and parts[1] == 'System': # Check System <msg> value = ' '.join(parts[2:]) if self._check_system_msg != value: self._check_system_msg = value data_changed_callback(self) except ValueError: pass else: _LOGGER.info('Unknown frame: %s %s', binascii.hexlify(frame_type), binascii.hexlify(frame))
Process data; returns when the reader signals EOF. Callback is notified when any data changes.
entailment
def send_key(self, key): """Sends a key.""" _LOGGER.info('Queueing key %s', key) frame = self._get_key_event_frame(key) # Queue it to send immediately following the reception # of a keep-alive packet in an attempt to avoid bus collisions. self._send_queue.put({'frame': frame})
Sends a key.
entailment
def states(self): """Returns a set containing the enabled states.""" state_list = [] for state in States: if state.value & self._states != 0: state_list.append(state) if (self._flashing_states & States.FILTER) != 0: state_list.append(States.FILTER_LOW_SPEED) return state_list
Returns a set containing the enabled states.
entailment
def get_state(self, state): """Returns True if the specified state is enabled.""" # Check to see if we have a change request pending; if we do # return the value we expect it to change to. for data in list(self._send_queue.queue): desired_states = data['desired_states'] for desired_state in desired_states: if desired_state['state'] == state: return desired_state['enabled'] if state == States.FILTER_LOW_SPEED: return (States.FILTER.value & self._flashing_states) != 0 return (state.value & self._states) != 0
Returns True if the specified state is enabled.
entailment
def set_state(self, state, enable): """Set the state.""" is_enabled = self.get_state(state) if is_enabled == enable: return True key = None desired_states = [{'state': state, 'enabled': not is_enabled}] if state == States.FILTER_LOW_SPEED: if not self._multi_speed_pump: return False # Send the FILTER key once. # If the pump is in high speed, it wil switch to low speed. # If the pump is off the retry mechanism will send an additional # FILTER key to switch into low speed. # If the pump is in low speed then we pretend the pump is off; # the retry mechanism will send an additional FILTER key # to switch into high speed. key = Keys.FILTER desired_states.append({'state': States.FILTER, 'enabled': True}) else: # See if this state has a corresponding Key try: key = Keys[state.name] except KeyError: # TODO: send the appropriate combination of keys # to enable the state return False frame = self._get_key_event_frame(key) # Queue it to send immediately following the reception # of a keep-alive packet in an attempt to avoid bus collisions. self._send_queue.put({'frame': frame, 'desired_states': desired_states, 'retries': 10}) return True
Set the state.
entailment
def trace(function, *args, **k) : """Decorates a function by tracing the begining and end of the function execution, if doTrace global is True""" if doTrace : print ("> "+function.__name__, args, k) result = function(*args, **k) if doTrace : print ("< "+function.__name__, args, k, "->", result) return result
Decorates a function by tracing the begining and end of the function execution, if doTrace global is True
entailment
def geocode(self, location) : url = QtCore.QUrl("http://maps.googleapis.com/maps/api/geocode/xml") url.addQueryItem("address", location) url.addQueryItem("sensor", "false") """ url = QtCore.QUrl("http://maps.google.com/maps/geo/") url.addQueryItem("q", location) url.addQueryItem("output", "csv") url.addQueryItem("sensor", "false") """ request = QtNetwork.QNetworkRequest(url) reply = self.get(request) while reply.isRunning() : QtGui.QApplication.processEvents() reply.deleteLater() self.deleteLater() return self._parseResult(reply)
url = QtCore.QUrl("http://maps.google.com/maps/geo/") url.addQueryItem("q", location) url.addQueryItem("output", "csv") url.addQueryItem("sensor", "false")
entailment
def correlate(params, corrmat): """ Force a correlation matrix on a set of statistically distributed objects. This function works on objects in-place. Parameters ---------- params : array An array of of uv objects. corrmat : 2d-array The correlation matrix to be imposed """ # Make sure all inputs are compatible assert all( [isinstance(param, UncertainFunction) for param in params] ), 'All inputs to "correlate" must be of type "UncertainFunction"' # Put each ufunc's samples in a column-wise matrix data = np.vstack([param._mcpts for param in params]).T # Apply the correlation matrix to the sampled data new_data = induce_correlations(data, corrmat) # Re-set the samples to the respective variables for i in range(len(params)): params[i]._mcpts = new_data[:, i]
Force a correlation matrix on a set of statistically distributed objects. This function works on objects in-place. Parameters ---------- params : array An array of of uv objects. corrmat : 2d-array The correlation matrix to be imposed
entailment
def induce_correlations(data, corrmat): """ Induce a set of correlations on a column-wise dataset Parameters ---------- data : 2d-array An m-by-n array where m is the number of samples and n is the number of independent variables, each column of the array corresponding to each variable corrmat : 2d-array An n-by-n array that defines the desired correlation coefficients (between -1 and 1). Note: the matrix must be symmetric and positive-definite in order to induce. Returns ------- new_data : 2d-array An m-by-n array that has the desired correlations. """ # Create an rank-matrix data_rank = np.vstack([rankdata(datai) for datai in data.T]).T # Generate van der Waerden scores data_rank_score = data_rank / (data_rank.shape[0] + 1.0) data_rank_score = norm(0, 1).ppf(data_rank_score) # Calculate the lower triangular matrix of the Cholesky decomposition # of the desired correlation matrix p = chol(corrmat) # Calculate the current correlations t = np.corrcoef(data_rank_score, rowvar=0) # Calculate the lower triangular matrix of the Cholesky decomposition # of the current correlation matrix q = chol(t) # Calculate the re-correlation matrix s = np.dot(p, np.linalg.inv(q)) # Calculate the re-sampled matrix new_data = np.dot(data_rank_score, s.T) # Create the new rank matrix new_data_rank = np.vstack([rankdata(datai) for datai in new_data.T]).T # Sort the original data according to new_data_rank for i in range(data.shape[1]): vals, order = np.unique( np.hstack((data_rank[:, i], new_data_rank[:, i])), return_inverse=True ) old_order = order[: new_data_rank.shape[0]] new_order = order[-new_data_rank.shape[0] :] tmp = data[np.argsort(old_order), i][new_order] data[:, i] = tmp[:] return data
Induce a set of correlations on a column-wise dataset Parameters ---------- data : 2d-array An m-by-n array where m is the number of samples and n is the number of independent variables, each column of the array corresponding to each variable corrmat : 2d-array An n-by-n array that defines the desired correlation coefficients (between -1 and 1). Note: the matrix must be symmetric and positive-definite in order to induce. Returns ------- new_data : 2d-array An m-by-n array that has the desired correlations.
entailment
def plotcorr(X, plotargs=None, full=True, labels=None): """ Plots a scatterplot matrix of subplots. Usage: plotcorr(X) plotcorr(..., plotargs=...) # e.g., 'r*', 'bo', etc. plotcorr(..., full=...) # e.g., True or False plotcorr(..., labels=...) # e.g., ['label1', 'label2', ...] Each column of "X" is plotted against other columns, resulting in a ncols by ncols grid of subplots with the diagonal subplots labeled with "labels". "X" is an array of arrays (i.e., a 2d matrix), a 1d array of MCERP.UncertainFunction/Variable objects, or a mixture of the two. Additional keyword arguments are passed on to matplotlib's "plot" command. Returns the matplotlib figure object containing the subplot grid. """ import matplotlib.pyplot as plt X = [Xi._mcpts if isinstance(Xi, UncertainFunction) else Xi for Xi in X] X = np.atleast_2d(X) numvars, numdata = X.shape fig, axes = plt.subplots(nrows=numvars, ncols=numvars, figsize=(8, 8)) fig.subplots_adjust(hspace=0.0, wspace=0.0) for ax in axes.flat: # Hide all ticks and labels ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) # Set up ticks only on one side for the "edge" subplots... if full: if ax.is_first_col(): ax.yaxis.set_ticks_position("left") if ax.is_last_col(): ax.yaxis.set_ticks_position("right") if ax.is_first_row(): ax.xaxis.set_ticks_position("top") if ax.is_last_row(): ax.xaxis.set_ticks_position("bottom") else: if ax.is_first_row(): ax.xaxis.set_ticks_position("top") if ax.is_last_col(): ax.yaxis.set_ticks_position("right") # Label the diagonal subplots... if not labels: labels = ["x" + str(i) for i in range(numvars)] for i, label in enumerate(labels): axes[i, i].annotate( label, (0.5, 0.5), xycoords="axes fraction", ha="center", va="center" ) # Plot the data for i, j in zip(*np.triu_indices_from(axes, k=1)): if full: idx = [(i, j), (j, i)] else: idx = [(i, j)] for x, y in idx: # FIX #1: this needed to be changed from ...(data[x], data[y],...) if plotargs is None: if len(X[x]) > 100: plotargs = ",b" # pixel marker else: plotargs = ".b" # point marker axes[x, y].plot(X[y], X[x], plotargs) ylim = min(X[y]), max(X[y]) xlim = min(X[x]), max(X[x]) axes[x, y].set_ylim( xlim[0] - (xlim[1] - xlim[0]) * 0.1, xlim[1] + (xlim[1] - xlim[0]) * 0.1 ) axes[x, y].set_xlim( ylim[0] - (ylim[1] - ylim[0]) * 0.1, ylim[1] + (ylim[1] - ylim[0]) * 0.1 ) # Turn on the proper x or y axes ticks. if full: for i, j in zip(list(range(numvars)), itertools.cycle((-1, 0))): axes[j, i].xaxis.set_visible(True) axes[i, j].yaxis.set_visible(True) else: for i in range(numvars - 1): axes[0, i + 1].xaxis.set_visible(True) axes[i, -1].yaxis.set_visible(True) for i in range(1, numvars): for j in range(0, i): fig.delaxes(axes[i, j]) # FIX #2: if numvars is odd, the bottom right corner plot doesn't have the # correct axes limits, so we pull them from other axes if numvars % 2: xlimits = axes[0, -1].get_xlim() ylimits = axes[-1, 0].get_ylim() axes[-1, -1].set_xlim(xlimits) axes[-1, -1].set_ylim(ylimits) return fig
Plots a scatterplot matrix of subplots. Usage: plotcorr(X) plotcorr(..., plotargs=...) # e.g., 'r*', 'bo', etc. plotcorr(..., full=...) # e.g., True or False plotcorr(..., labels=...) # e.g., ['label1', 'label2', ...] Each column of "X" is plotted against other columns, resulting in a ncols by ncols grid of subplots with the diagonal subplots labeled with "labels". "X" is an array of arrays (i.e., a 2d matrix), a 1d array of MCERP.UncertainFunction/Variable objects, or a mixture of the two. Additional keyword arguments are passed on to matplotlib's "plot" command. Returns the matplotlib figure object containing the subplot grid.
entailment
def chol(A): """ Calculate the lower triangular matrix of the Cholesky decomposition of a symmetric, positive-definite matrix. """ A = np.array(A) assert A.shape[0] == A.shape[1], "Input matrix must be square" L = [[0.0] * len(A) for _ in range(len(A))] for i in range(len(A)): for j in range(i + 1): s = sum(L[i][k] * L[j][k] for k in range(j)) L[i][j] = ( (A[i][i] - s) ** 0.5 if (i == j) else (1.0 / L[j][j] * (A[i][j] - s)) ) return np.array(L)
Calculate the lower triangular matrix of the Cholesky decomposition of a symmetric, positive-definite matrix.
entailment
def get(self, uri, params={}): '''A generic method to make GET requests to the OpenDNS Investigate API on the given URI. ''' return self._session.get(urljoin(Investigate.BASE_URL, uri), params=params, headers=self._auth_header, proxies=self.proxies )
A generic method to make GET requests to the OpenDNS Investigate API on the given URI.
entailment
def post(self, uri, params={}, data={}): '''A generic method to make POST requests to the OpenDNS Investigate API on the given URI. ''' return self._session.post( urljoin(Investigate.BASE_URL, uri), params=params, data=data, headers=self._auth_header, proxies=self.proxies )
A generic method to make POST requests to the OpenDNS Investigate API on the given URI.
entailment
def get_parse(self, uri, params={}): '''Convenience method to call get() on an arbitrary URI and parse the response into a JSON object. Raises an error on non-200 response status. ''' return self._request_parse(self.get, uri, params)
Convenience method to call get() on an arbitrary URI and parse the response into a JSON object. Raises an error on non-200 response status.
entailment
def post_parse(self, uri, params={}, data={}): '''Convenience method to call post() on an arbitrary URI and parse the response into a JSON object. Raises an error on non-200 response status. ''' return self._request_parse(self.post, uri, params, data)
Convenience method to call post() on an arbitrary URI and parse the response into a JSON object. Raises an error on non-200 response status.
entailment
def categorization(self, domains, labels=False): '''Get the domain status and categorization of a domain or list of domains. 'domains' can be either a single domain, or a list of domains. Setting 'labels' to True will give back categorizations in human-readable form. For more detail, see https://investigate.umbrella.com/docs/api#categorization ''' if type(domains) is str: return self._get_categorization(domains, labels) elif type(domains) is list: return self._post_categorization(domains, labels) else: raise Investigate.DOMAIN_ERR
Get the domain status and categorization of a domain or list of domains. 'domains' can be either a single domain, or a list of domains. Setting 'labels' to True will give back categorizations in human-readable form. For more detail, see https://investigate.umbrella.com/docs/api#categorization
entailment
def cooccurrences(self, domain): '''Get the cooccurrences of the given domain. For details, see https://investigate.umbrella.com/docs/api#co-occurrences ''' uri = self._uris["cooccurrences"].format(domain) return self.get_parse(uri)
Get the cooccurrences of the given domain. For details, see https://investigate.umbrella.com/docs/api#co-occurrences
entailment
def related(self, domain): '''Get the related domains of the given domain. For details, see https://investigate.umbrella.com/docs/api#relatedDomains ''' uri = self._uris["related"].format(domain) return self.get_parse(uri)
Get the related domains of the given domain. For details, see https://investigate.umbrella.com/docs/api#relatedDomains
entailment
def security(self, domain): '''Get the Security Information for the given domain. For details, see https://investigate.umbrella.com/docs/api#securityInfo ''' uri = self._uris["security"].format(domain) return self.get_parse(uri)
Get the Security Information for the given domain. For details, see https://investigate.umbrella.com/docs/api#securityInfo
entailment
def rr_history(self, query, query_type="A"): '''Get the RR (Resource Record) History of the given domain or IP. The default query type is for 'A' records, but the following query types are supported: A, NS, MX, TXT, CNAME For details, see https://investigate.umbrella.com/docs/api#dnsrr_domain ''' if query_type not in Investigate.SUPPORTED_DNS_TYPES: raise Investigate.UNSUPPORTED_DNS_QUERY # if this is an IP address, query the IP if Investigate.IP_PATTERN.match(query): return self._ip_rr_history(query, query_type) # otherwise, query the domain return self._domain_rr_history(query, query_type)
Get the RR (Resource Record) History of the given domain or IP. The default query type is for 'A' records, but the following query types are supported: A, NS, MX, TXT, CNAME For details, see https://investigate.umbrella.com/docs/api#dnsrr_domain
entailment
def domain_whois(self, domain): '''Gets whois information for a domain''' uri = self._uris["whois_domain"].format(domain) resp_json = self.get_parse(uri) return resp_json
Gets whois information for a domain
entailment
def domain_whois_history(self, domain, limit=None): '''Gets whois history for a domain''' params = dict() if limit is not None: params['limit'] = limit uri = self._uris["whois_domain_history"].format(domain) resp_json = self.get_parse(uri, params) return resp_json
Gets whois history for a domain
entailment
def ns_whois(self, nameservers, limit=DEFAULT_LIMIT, offset=DEFAULT_OFFSET, sort_field=DEFAULT_SORT): '''Gets the domains that have been registered with a nameserver or nameservers''' if not isinstance(nameservers, list): uri = self._uris["whois_ns"].format(nameservers) params = {'limit': limit, 'offset': offset, 'sortField': sort_field} else: uri = self._uris["whois_ns"].format('') params = {'emailList' : ','.join(nameservers), 'limit': limit, 'offset': offset, 'sortField': sort_field} resp_json = self.get_parse(uri, params=params) return resp_json
Gets the domains that have been registered with a nameserver or nameservers
entailment
def search(self, pattern, start=None, limit=None, include_category=None): '''Searches for domains that match a given pattern''' params = dict() if start is None: start = datetime.timedelta(days=30) if isinstance(start, datetime.timedelta): params['start'] = int(time.mktime((datetime.datetime.utcnow() - start).timetuple()) * 1000) elif isinstance(start, datetime.datetime): params['start'] = int(time.mktime(start.timetuple()) * 1000) else: raise Investigate.SEARCH_ERR if limit is not None and isinstance(limit, int): params['limit'] = limit if include_category is not None and isinstance(include_category, bool): params['includeCategory'] = str(include_category).lower() uri = self._uris['search'].format(quote_plus(pattern)) return self.get_parse(uri, params)
Searches for domains that match a given pattern
entailment
def samples(self, anystring, limit=None, offset=None, sortby=None): '''Return an object representing the samples identified by the input domain, IP, or URL''' uri = self._uris['samples'].format(anystring) params = {'limit': limit, 'offset': offset, 'sortby': sortby} return self.get_parse(uri, params)
Return an object representing the samples identified by the input domain, IP, or URL
entailment
def sample(self, hash, limit=None, offset=None): '''Return an object representing the sample identified by the input hash, or an empty object if that sample is not found''' uri = self._uris['sample'].format(hash) params = {'limit': limit, 'offset': offset} return self.get_parse(uri, params)
Return an object representing the sample identified by the input hash, or an empty object if that sample is not found
entailment
def as_for_ip(self, ip): '''Gets the AS information for a given IP address.''' if not Investigate.IP_PATTERN.match(ip): raise Investigate.IP_ERR uri = self._uris["as_for_ip"].format(ip) resp_json = self.get_parse(uri) return resp_json
Gets the AS information for a given IP address.
entailment
def prefixes_for_asn(self, asn): '''Gets the AS information for a given ASN. Return the CIDR and geolocation associated with the AS.''' uri = self._uris["prefixes_for_asn"].format(asn) resp_json = self.get_parse(uri) return resp_json
Gets the AS information for a given ASN. Return the CIDR and geolocation associated with the AS.
entailment
def timeline(self, uri): '''Get the domain tagging timeline for a given uri. Could be a domain, ip, or url. For details, see https://docs.umbrella.com/investigate-api/docs/timeline ''' uri = self._uris["timeline"].format(uri) resp_json = self.get_parse(uri) return resp_json
Get the domain tagging timeline for a given uri. Could be a domain, ip, or url. For details, see https://docs.umbrella.com/investigate-api/docs/timeline
entailment
def abs(x): """ Absolute value """ if isinstance(x, UncertainFunction): mcpts = np.abs(x._mcpts) return UncertainFunction(mcpts) else: return np.abs(x)
Absolute value
entailment
def acos(x): """ Inverse cosine """ if isinstance(x, UncertainFunction): mcpts = np.arccos(x._mcpts) return UncertainFunction(mcpts) else: return np.arccos(x)
Inverse cosine
entailment
def acosh(x): """ Inverse hyperbolic cosine """ if isinstance(x, UncertainFunction): mcpts = np.arccosh(x._mcpts) return UncertainFunction(mcpts) else: return np.arccosh(x)
Inverse hyperbolic cosine
entailment
def asin(x): """ Inverse sine """ if isinstance(x, UncertainFunction): mcpts = np.arcsin(x._mcpts) return UncertainFunction(mcpts) else: return np.arcsin(x)
Inverse sine
entailment
def asinh(x): """ Inverse hyperbolic sine """ if isinstance(x, UncertainFunction): mcpts = np.arcsinh(x._mcpts) return UncertainFunction(mcpts) else: return np.arcsinh(x)
Inverse hyperbolic sine
entailment
def atan(x): """ Inverse tangent """ if isinstance(x, UncertainFunction): mcpts = np.arctan(x._mcpts) return UncertainFunction(mcpts) else: return np.arctan(x)
Inverse tangent
entailment
def atanh(x): """ Inverse hyperbolic tangent """ if isinstance(x, UncertainFunction): mcpts = np.arctanh(x._mcpts) return UncertainFunction(mcpts) else: return np.arctanh(x)
Inverse hyperbolic tangent
entailment
def ceil(x): """ Ceiling function (round towards positive infinity) """ if isinstance(x, UncertainFunction): mcpts = np.ceil(x._mcpts) return UncertainFunction(mcpts) else: return np.ceil(x)
Ceiling function (round towards positive infinity)
entailment
def cos(x): """ Cosine """ if isinstance(x, UncertainFunction): mcpts = np.cos(x._mcpts) return UncertainFunction(mcpts) else: return np.cos(x)
Cosine
entailment
def cosh(x): """ Hyperbolic cosine """ if isinstance(x, UncertainFunction): mcpts = np.cosh(x._mcpts) return UncertainFunction(mcpts) else: return np.cosh(x)
Hyperbolic cosine
entailment
def degrees(x): """ Convert radians to degrees """ if isinstance(x, UncertainFunction): mcpts = np.degrees(x._mcpts) return UncertainFunction(mcpts) else: return np.degrees(x)
Convert radians to degrees
entailment
def exp(x): """ Exponential function """ if isinstance(x, UncertainFunction): mcpts = np.exp(x._mcpts) return UncertainFunction(mcpts) else: return np.exp(x)
Exponential function
entailment
def expm1(x): """ Calculate exp(x) - 1 """ if isinstance(x, UncertainFunction): mcpts = np.expm1(x._mcpts) return UncertainFunction(mcpts) else: return np.expm1(x)
Calculate exp(x) - 1
entailment
def fabs(x): """ Absolute value function """ if isinstance(x, UncertainFunction): mcpts = np.fabs(x._mcpts) return UncertainFunction(mcpts) else: return np.fabs(x)
Absolute value function
entailment
def floor(x): """ Floor function (round towards negative infinity) """ if isinstance(x, UncertainFunction): mcpts = np.floor(x._mcpts) return UncertainFunction(mcpts) else: return np.floor(x)
Floor function (round towards negative infinity)
entailment
def hypot(x, y): """ Calculate the hypotenuse given two "legs" of a right triangle """ if isinstance(x, UncertainFunction) or isinstance(x, UncertainFunction): ufx = to_uncertain_func(x) ufy = to_uncertain_func(y) mcpts = np.hypot(ufx._mcpts, ufy._mcpts) return UncertainFunction(mcpts) else: return np.hypot(x, y)
Calculate the hypotenuse given two "legs" of a right triangle
entailment
def log(x): """ Natural logarithm """ if isinstance(x, UncertainFunction): mcpts = np.log(x._mcpts) return UncertainFunction(mcpts) else: return np.log(x)
Natural logarithm
entailment
def log10(x): """ Base-10 logarithm """ if isinstance(x, UncertainFunction): mcpts = np.log10(x._mcpts) return UncertainFunction(mcpts) else: return np.log10(x)
Base-10 logarithm
entailment
def log1p(x): """ Natural logarithm of (1 + x) """ if isinstance(x, UncertainFunction): mcpts = np.log1p(x._mcpts) return UncertainFunction(mcpts) else: return np.log1p(x)
Natural logarithm of (1 + x)
entailment
def radians(x): """ Convert degrees to radians """ if isinstance(x, UncertainFunction): mcpts = np.radians(x._mcpts) return UncertainFunction(mcpts) else: return np.radians(x)
Convert degrees to radians
entailment
def sin(x): """ Sine """ if isinstance(x, UncertainFunction): mcpts = np.sin(x._mcpts) return UncertainFunction(mcpts) else: return np.sin(x)
Sine
entailment
def sinh(x): """ Hyperbolic sine """ if isinstance(x, UncertainFunction): mcpts = np.sinh(x._mcpts) return UncertainFunction(mcpts) else: return np.sinh(x)
Hyperbolic sine
entailment
def sqrt(x): """ Square-root function """ if isinstance(x, UncertainFunction): mcpts = np.sqrt(x._mcpts) return UncertainFunction(mcpts) else: return np.sqrt(x)
Square-root function
entailment
def tan(x): """ Tangent """ if isinstance(x, UncertainFunction): mcpts = np.tan(x._mcpts) return UncertainFunction(mcpts) else: return np.tan(x)
Tangent
entailment
def tanh(x): """ Hyperbolic tangent """ if isinstance(x, UncertainFunction): mcpts = np.tanh(x._mcpts) return UncertainFunction(mcpts) else: return np.tanh(x)
Hyperbolic tangent
entailment
def trunc(x): """ Truncate the values to the integer value without rounding """ if isinstance(x, UncertainFunction): mcpts = np.trunc(x._mcpts) return UncertainFunction(mcpts) else: return np.trunc(x)
Truncate the values to the integer value without rounding
entailment
def lhd( dist=None, size=None, dims=1, form="randomized", iterations=100, showcorrelations=False, ): """ Create a Latin-Hypercube sample design based on distributions defined in the `scipy.stats` module Parameters ---------- dist: array_like frozen scipy.stats.rv_continuous or rv_discrete distribution objects that are defined previous to calling LHD size: int integer value for the number of samples to generate for each distribution object dims: int, optional if dist is a single distribution object, and dims > 1, the one distribution will be used to generate a size-by-dims sampled design form: str, optional (non-functional at the moment) determines how the sampling is to occur, with the following optional values: - 'randomized' - completely randomized sampling - 'spacefilling' - space-filling sampling (generally gives a more accurate sampling of the design when the number of sample points is small) - 'orthogonal' - balanced space-filling sampling (experimental) The 'spacefilling' and 'orthogonal' forms require some iterations to determine the optimal sampling pattern. iterations: int, optional (non-functional at the moment) used to control the number of allowable search iterations for generating 'spacefilling' and 'orthogonal' designs Returns ------- out: 2d-array, A 2d-array where each column corresponds to each input distribution and each row is a sample in the design Examples -------- Single distribution: - uniform distribution, low = -1, width = 2 >>> import scipy.stats as ss >>> d0 = ss.uniform(loc=-1,scale=2) >>> print lhd(dist=d0,size=5) [[ 0.51031081] [-0.28961427] [-0.68342107] [ 0.69784371] [ 0.12248842]] Single distribution for multiple variables: - normal distribution, mean = 0, stdev = 1 >>> d1 = ss.norm(loc=0,scale=1) >>> print lhd(dist=d1,size=7,dims=5) [[-0.8612785 0.23034412 0.21808001] [ 0.0455778 0.07001606 0.31586419] [-0.978553 0.30394663 0.78483995] [-0.26415983 0.15235896 0.51462024] [ 0.80805686 0.38891031 0.02076505] [ 1.63028931 0.52104917 1.48016008]] Multiple distributions: - beta distribution, alpha = 2, beta = 5 - exponential distribution, lambda = 1.5 >>> d2 = ss.beta(2,5) >>> d3 = ss.expon(scale=1/1.5) >>> print lhd(dist=(d1,d2,d3),size=6) [[-0.8612785 0.23034412 0.21808001] [ 0.0455778 0.07001606 0.31586419] [-0.978553 0.30394663 0.78483995] [-0.26415983 0.15235896 0.51462024] [ 0.80805686 0.38891031 0.02076505] [ 1.63028931 0.52104917 1.48016008]] """ assert dims > 0, 'kwarg "dims" must be at least 1' if not size or not dist: return None def _lhs(x, samples=20): """ _lhs(x) returns a latin-hypercube matrix (each row is a different set of sample inputs) using a default sample size of 20 for each column of X. X must be a 2xN matrix that contains the lower and upper bounds of each column. The lower bound(s) should be in the first row and the upper bound(s) should be in the second row. _lhs(x,samples=N) uses the sample size of N instead of the default (20). Example: >>> x = np.array([[0,-1,3],[1,2,6]]) >>> print 'x:'; print x x: [[ 0 -1 3] [ 1 2 6]] >>> print 'lhs(x):'; print _lhs(x) lhs(x): [[ 0.02989122 -0.93918734 3.14432618] [ 0.08869833 -0.82140706 3.19875152] [ 0.10627442 -0.66999234 3.33814979] [ 0.15202861 -0.44157763 3.57036894] [ 0.2067089 -0.34845384 3.66930908] [ 0.26542056 -0.23706445 3.76361414] [ 0.34201421 -0.00779306 3.90818257] [ 0.37891646 0.15458423 4.15031708] [ 0.43501575 0.23561118 4.20320064] [ 0.4865449 0.36350601 4.45792314] [ 0.54804367 0.56069855 4.60911539] [ 0.59400712 0.7468415 4.69923486] [ 0.63708876 0.9159176 4.83611204] [ 0.68819855 0.98596354 4.97659182] [ 0.7368695 1.18923511 5.11135111] [ 0.78885724 1.28369441 5.2900157 ] [ 0.80966513 1.47415703 5.4081971 ] [ 0.86196731 1.57844205 5.61067689] [ 0.94784517 1.71823504 5.78021164] [ 0.96739728 1.94169017 5.88604772]] >>> print 'lhs(x,samples=5):'; print _lhs(x,samples=5) lhs(x,samples=5): [[ 0.1949127 -0.54124725 3.49238369] [ 0.21128576 -0.13439798 3.65652016] [ 0.47516308 0.39957406 4.5797308 ] [ 0.64400392 0.90890999 4.92379431] [ 0.96279472 1.79415307 5.52028238]] """ # determine the segment size segmentSize = 1.0 / samples # get the number of dimensions to sample (number of columns) numVars = x.shape[1] # populate each dimension out = np.zeros((samples, numVars)) pointValue = np.zeros(samples) for n in range(numVars): for i in range(samples): segmentMin = i * segmentSize point = segmentMin + (np.random.random() * segmentSize) pointValue[i] = (point * (x[1, n] - x[0, n])) + x[0, n] out[:, n] = pointValue # now randomly arrange the different segments return _mix(out) def _mix(data, dim="cols"): """ Takes a data matrix and mixes up the values along dim (either "rows" or "cols"). In other words, if dim='rows', then each row's data is mixed ONLY WITHIN ITSELF. Likewise, if dim='cols', then each column's data is mixed ONLY WITHIN ITSELF. """ data = np.atleast_2d(data) n = data.shape[0] if dim == "rows": data = data.T data_rank = list(range(n)) for i in range(data.shape[1]): new_data_rank = np.random.permutation(data_rank) vals, order = np.unique( np.hstack((data_rank, new_data_rank)), return_inverse=True ) old_order = order[:n] new_order = order[-n:] tmp = data[np.argsort(old_order), i][new_order] data[:, i] = tmp[:] if dim == "rows": data = data.T return data if form is "randomized": if hasattr(dist, "__getitem__"): # if multiple distributions were input nvars = len(dist) x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = _lhs(x, samples=size) dist_data = np.empty_like(unif_data) for i, d in enumerate(dist): dist_data[:, i] = d.ppf(unif_data[:, i]) else: # if a single distribution was input nvars = dims x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = _lhs(x, samples=size) dist_data = np.empty_like(unif_data) for i in range(nvars): dist_data[:, i] = dist.ppf(unif_data[:, i]) elif form is "spacefilling": def euclid_distance(arr): n = arr.shape[0] ans = 0.0 for i in range(n - 1): for j in range(i + 1, n): d = np.sqrt( np.sum( [(arr[i, k] - arr[j, k]) ** 2 for k in range(arr.shape[1])] ) ) ans += 1.0 / d ** 2 return ans def fill_space(data): best = 1e8 for it in range(iterations): d = euclid_distance(data) if d < best: d_opt = d data_opt = data.copy() data = _mix(data) print("Optimized Distance:", d_opt) return data_opt if hasattr(dist, "__getitem__"): # if multiple distributions were input nvars = len(dist) x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = fill_space(_lhs(x, samples=size)) dist_data = np.empty_like(unif_data) for i, d in enumerate(dist): dist_data[:, i] = d.ppf(unif_data[:, i]) else: # if a single distribution was input nvars = dims x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = fill_space(_lhs(x, samples=size)) dist_data = np.empty_like(unif_data) for i in range(nvars): dist_data[:, i] = dist.ppf(unif_data[:, i]) elif form is "orthogonal": raise NotImplementedError( "Sorry. The orthogonal space-filling algorithm hasn't been implemented yet." ) else: raise ValueError('Invalid "form" value: %s' % (form)) if dist_data.shape[1] > 1: cor_matrix = np.zeros((nvars, nvars)) for i in range(nvars): for j in range(nvars): x_data = dist_data[:, i].copy() y_data = dist_data[:, j].copy() x_mean = x_data.mean() y_mean = y_data.mean() num = np.sum((x_data - x_mean) * (y_data - y_mean)) den = np.sqrt( np.sum((x_data - x_mean) ** 2) * np.sum((y_data - y_mean) ** 2) ) cor_matrix[i, j] = num / den cor_matrix[j, i] = num / den inv_cor_matrix = np.linalg.pinv(cor_matrix) VIF = np.max(np.diag(inv_cor_matrix)) if showcorrelations: print("Correlation Matrix:\n", cor_matrix) print("Inverted Correlation Matrix:\n", inv_cor_matrix) print("Variance Inflation Factor (VIF):", VIF) return dist_data
Create a Latin-Hypercube sample design based on distributions defined in the `scipy.stats` module Parameters ---------- dist: array_like frozen scipy.stats.rv_continuous or rv_discrete distribution objects that are defined previous to calling LHD size: int integer value for the number of samples to generate for each distribution object dims: int, optional if dist is a single distribution object, and dims > 1, the one distribution will be used to generate a size-by-dims sampled design form: str, optional (non-functional at the moment) determines how the sampling is to occur, with the following optional values: - 'randomized' - completely randomized sampling - 'spacefilling' - space-filling sampling (generally gives a more accurate sampling of the design when the number of sample points is small) - 'orthogonal' - balanced space-filling sampling (experimental) The 'spacefilling' and 'orthogonal' forms require some iterations to determine the optimal sampling pattern. iterations: int, optional (non-functional at the moment) used to control the number of allowable search iterations for generating 'spacefilling' and 'orthogonal' designs Returns ------- out: 2d-array, A 2d-array where each column corresponds to each input distribution and each row is a sample in the design Examples -------- Single distribution: - uniform distribution, low = -1, width = 2 >>> import scipy.stats as ss >>> d0 = ss.uniform(loc=-1,scale=2) >>> print lhd(dist=d0,size=5) [[ 0.51031081] [-0.28961427] [-0.68342107] [ 0.69784371] [ 0.12248842]] Single distribution for multiple variables: - normal distribution, mean = 0, stdev = 1 >>> d1 = ss.norm(loc=0,scale=1) >>> print lhd(dist=d1,size=7,dims=5) [[-0.8612785 0.23034412 0.21808001] [ 0.0455778 0.07001606 0.31586419] [-0.978553 0.30394663 0.78483995] [-0.26415983 0.15235896 0.51462024] [ 0.80805686 0.38891031 0.02076505] [ 1.63028931 0.52104917 1.48016008]] Multiple distributions: - beta distribution, alpha = 2, beta = 5 - exponential distribution, lambda = 1.5 >>> d2 = ss.beta(2,5) >>> d3 = ss.expon(scale=1/1.5) >>> print lhd(dist=(d1,d2,d3),size=6) [[-0.8612785 0.23034412 0.21808001] [ 0.0455778 0.07001606 0.31586419] [-0.978553 0.30394663 0.78483995] [-0.26415983 0.15235896 0.51462024] [ 0.80805686 0.38891031 0.02076505] [ 1.63028931 0.52104917 1.48016008]]
entailment
def to_uncertain_func(x): """ Transforms x into an UncertainFunction-compatible object, unless it is already an UncertainFunction (in which case x is returned unchanged). Raises an exception unless 'x' belongs to some specific classes of objects that are known not to depend on UncertainFunction objects (which then cannot be considered as constants). """ if isinstance(x, UncertainFunction): return x # ! In Python 2.6+, numbers.Number could be used instead, here: elif isinstance(x, CONSTANT_TYPES): # No variable => no derivative to define: return UncertainFunction([x] * npts) raise NotUpcast("%s cannot be converted to a number with" " uncertainty" % type(x))
Transforms x into an UncertainFunction-compatible object, unless it is already an UncertainFunction (in which case x is returned unchanged). Raises an exception unless 'x' belongs to some specific classes of objects that are known not to depend on UncertainFunction objects (which then cannot be considered as constants).
entailment
def Beta(alpha, beta, low=0, high=1, tag=None): """ A Beta random variate Parameters ---------- alpha : scalar The first shape parameter beta : scalar The second shape parameter Optional -------- low : scalar Lower bound of the distribution support (default=0) high : scalar Upper bound of the distribution support (default=1) """ assert ( alpha > 0 and beta > 0 ), 'Beta "alpha" and "beta" parameters must be greater than zero' assert low < high, 'Beta "low" must be less than "high"' return uv(ss.beta(alpha, beta, loc=low, scale=high - low), tag=tag)
A Beta random variate Parameters ---------- alpha : scalar The first shape parameter beta : scalar The second shape parameter Optional -------- low : scalar Lower bound of the distribution support (default=0) high : scalar Upper bound of the distribution support (default=1)
entailment
def BetaPrime(alpha, beta, tag=None): """ A BetaPrime random variate Parameters ---------- alpha : scalar The first shape parameter beta : scalar The second shape parameter """ assert ( alpha > 0 and beta > 0 ), 'BetaPrime "alpha" and "beta" parameters must be greater than zero' x = Beta(alpha, beta, tag) return x / (1 - x)
A BetaPrime random variate Parameters ---------- alpha : scalar The first shape parameter beta : scalar The second shape parameter
entailment
def Bradford(q, low=0, high=1, tag=None): """ A Bradford random variate Parameters ---------- q : scalar The shape parameter low : scalar The lower bound of the distribution (default=0) high : scalar The upper bound of the distribution (default=1) """ assert q > 0, 'Bradford "q" parameter must be greater than zero' assert low < high, 'Bradford "low" parameter must be less than "high"' return uv(ss.bradford(q, loc=low, scale=high - low), tag=tag)
A Bradford random variate Parameters ---------- q : scalar The shape parameter low : scalar The lower bound of the distribution (default=0) high : scalar The upper bound of the distribution (default=1)
entailment
def Burr(c, k, tag=None): """ A Burr random variate Parameters ---------- c : scalar The first shape parameter k : scalar The second shape parameter """ assert c > 0 and k > 0, 'Burr "c" and "k" parameters must be greater than zero' return uv(ss.burr(c, k), tag=tag)
A Burr random variate Parameters ---------- c : scalar The first shape parameter k : scalar The second shape parameter
entailment
def ChiSquared(k, tag=None): """ A Chi-Squared random variate Parameters ---------- k : int The degrees of freedom of the distribution (must be greater than one) """ assert int(k) == k and k >= 1, 'Chi-Squared "k" must be an integer greater than 0' return uv(ss.chi2(k), tag=tag)
A Chi-Squared random variate Parameters ---------- k : int The degrees of freedom of the distribution (must be greater than one)
entailment
def Erlang(k, lamda, tag=None): """ An Erlang random variate. This distribution is the same as a Gamma(k, theta) distribution, but with the restriction that k must be a positive integer. This is provided for greater compatibility with other simulation tools, but provides no advantage over the Gamma distribution in its applications. Parameters ---------- k : int The shape parameter (must be a positive integer) lamda : scalar The scale parameter (must be greater than zero) """ assert int(k) == k and k > 0, 'Erlang "k" must be a positive integer' assert lamda > 0, 'Erlang "lamda" must be greater than zero' return Gamma(k, lamda, tag)
An Erlang random variate. This distribution is the same as a Gamma(k, theta) distribution, but with the restriction that k must be a positive integer. This is provided for greater compatibility with other simulation tools, but provides no advantage over the Gamma distribution in its applications. Parameters ---------- k : int The shape parameter (must be a positive integer) lamda : scalar The scale parameter (must be greater than zero)
entailment
def Exponential(lamda, tag=None): """ An Exponential random variate Parameters ---------- lamda : scalar The inverse scale (as shown on Wikipedia). (FYI: mu = 1/lamda.) """ assert lamda > 0, 'Exponential "lamda" must be greater than zero' return uv(ss.expon(scale=1.0 / lamda), tag=tag)
An Exponential random variate Parameters ---------- lamda : scalar The inverse scale (as shown on Wikipedia). (FYI: mu = 1/lamda.)
entailment
def ExtValueMax(mu, sigma, tag=None): """ An Extreme Value Maximum random variate. Parameters ---------- mu : scalar The location parameter sigma : scalar The scale parameter (must be greater than zero) """ assert sigma > 0, 'ExtremeValueMax "sigma" must be greater than zero' p = U(0, 1)._mcpts[:] return UncertainFunction(mu - sigma * np.log(-np.log(p)), tag=tag)
An Extreme Value Maximum random variate. Parameters ---------- mu : scalar The location parameter sigma : scalar The scale parameter (must be greater than zero)
entailment
def Fisher(d1, d2, tag=None): """ An F (fisher) random variate Parameters ---------- d1 : int Numerator degrees of freedom d2 : int Denominator degrees of freedom """ assert ( int(d1) == d1 and d1 >= 1 ), 'Fisher (F) "d1" must be an integer greater than 0' assert ( int(d2) == d2 and d2 >= 1 ), 'Fisher (F) "d2" must be an integer greater than 0' return uv(ss.f(d1, d2), tag=tag)
An F (fisher) random variate Parameters ---------- d1 : int Numerator degrees of freedom d2 : int Denominator degrees of freedom
entailment
def Gamma(k, theta, tag=None): """ A Gamma random variate Parameters ---------- k : scalar The shape parameter (must be positive and non-zero) theta : scalar The scale parameter (must be positive and non-zero) """ assert ( k > 0 and theta > 0 ), 'Gamma "k" and "theta" parameters must be greater than zero' return uv(ss.gamma(k, scale=theta), tag=tag)
A Gamma random variate Parameters ---------- k : scalar The shape parameter (must be positive and non-zero) theta : scalar The scale parameter (must be positive and non-zero)
entailment
def LogNormal(mu, sigma, tag=None): """ A Log-Normal random variate Parameters ---------- mu : scalar The location parameter sigma : scalar The scale parameter (must be positive and non-zero) """ assert sigma > 0, 'Log-Normal "sigma" must be positive' return uv(ss.lognorm(sigma, loc=mu), tag=tag)
A Log-Normal random variate Parameters ---------- mu : scalar The location parameter sigma : scalar The scale parameter (must be positive and non-zero)
entailment
def Normal(mu, sigma, tag=None): """ A Normal (or Gaussian) random variate Parameters ---------- mu : scalar The mean value of the distribution sigma : scalar The standard deviation (must be positive and non-zero) """ assert sigma > 0, 'Normal "sigma" must be greater than zero' return uv(ss.norm(loc=mu, scale=sigma), tag=tag)
A Normal (or Gaussian) random variate Parameters ---------- mu : scalar The mean value of the distribution sigma : scalar The standard deviation (must be positive and non-zero)
entailment
def Pareto(q, a, tag=None): """ A Pareto random variate (first kind) Parameters ---------- q : scalar The scale parameter a : scalar The shape parameter (the minimum possible value) """ assert q > 0 and a > 0, 'Pareto "q" and "a" must be positive scalars' p = Uniform(0, 1, tag) return a * (1 - p) ** (-1.0 / q)
A Pareto random variate (first kind) Parameters ---------- q : scalar The scale parameter a : scalar The shape parameter (the minimum possible value)
entailment
def Pareto2(q, b, tag=None): """ A Pareto random variate (second kind). This form always starts at the origin. Parameters ---------- q : scalar The scale parameter b : scalar The shape parameter """ assert q > 0 and b > 0, 'Pareto2 "q" and "b" must be positive scalars' return Pareto(q, b, tag) - b
A Pareto random variate (second kind). This form always starts at the origin. Parameters ---------- q : scalar The scale parameter b : scalar The shape parameter
entailment
def PERT(low, peak, high, g=4.0, tag=None): """ A PERT random variate Parameters ---------- low : scalar Lower bound of the distribution support peak : scalar The location of the distribution's peak (low <= peak <= high) high : scalar Upper bound of the distribution support Optional -------- g : scalar Controls the uncertainty of the distribution around the peak. Smaller values make the distribution flatter and more uncertain around the peak while larger values make it focused and less uncertain around the peak. (Default: 4) """ a, b, c = [float(x) for x in [low, peak, high]] assert a <= b <= c, 'PERT "peak" must be greater than "low" and less than "high"' assert g >= 0, 'PERT "g" must be non-negative' mu = (a + g * b + c) / (g + 2) if mu == b: a1 = a2 = 3.0 else: a1 = ((mu - a) * (2 * b - a - c)) / ((b - mu) * (c - a)) a2 = a1 * (c - mu) / (mu - a) return Beta(a1, a2, a, c, tag)
A PERT random variate Parameters ---------- low : scalar Lower bound of the distribution support peak : scalar The location of the distribution's peak (low <= peak <= high) high : scalar Upper bound of the distribution support Optional -------- g : scalar Controls the uncertainty of the distribution around the peak. Smaller values make the distribution flatter and more uncertain around the peak while larger values make it focused and less uncertain around the peak. (Default: 4)
entailment
def StudentT(v, tag=None): """ A Student-T random variate Parameters ---------- v : int The degrees of freedom of the distribution (must be greater than one) """ assert int(v) == v and v >= 1, 'Student-T "v" must be an integer greater than 0' return uv(ss.t(v), tag=tag)
A Student-T random variate Parameters ---------- v : int The degrees of freedom of the distribution (must be greater than one)
entailment
def Triangular(low, peak, high, tag=None): """ A triangular random variate Parameters ---------- low : scalar Lower bound of the distribution support peak : scalar The location of the triangle's peak (low <= peak <= high) high : scalar Upper bound of the distribution support """ assert low <= peak <= high, 'Triangular "peak" must lie between "low" and "high"' low, peak, high = [float(x) for x in [low, peak, high]] return uv( ss.triang((1.0 * peak - low) / (high - low), loc=low, scale=(high - low)), tag=tag, )
A triangular random variate Parameters ---------- low : scalar Lower bound of the distribution support peak : scalar The location of the triangle's peak (low <= peak <= high) high : scalar Upper bound of the distribution support
entailment
def Uniform(low, high, tag=None): """ A Uniform random variate Parameters ---------- low : scalar Lower bound of the distribution support. high : scalar Upper bound of the distribution support. """ assert low < high, 'Uniform "low" must be less than "high"' return uv(ss.uniform(loc=low, scale=high - low), tag=tag)
A Uniform random variate Parameters ---------- low : scalar Lower bound of the distribution support. high : scalar Upper bound of the distribution support.
entailment
def Weibull(lamda, k, tag=None): """ A Weibull random variate Parameters ---------- lamda : scalar The scale parameter k : scalar The shape parameter """ assert ( lamda > 0 and k > 0 ), 'Weibull "lamda" and "k" parameters must be greater than zero' return uv(ss.exponweib(lamda, k), tag=tag)
A Weibull random variate Parameters ---------- lamda : scalar The scale parameter k : scalar The shape parameter
entailment
def Bernoulli(p, tag=None): """ A Bernoulli random variate Parameters ---------- p : scalar The probability of success """ assert ( 0 < p < 1 ), 'Bernoulli probability "p" must be between zero and one, non-inclusive' return uv(ss.bernoulli(p), tag=tag)
A Bernoulli random variate Parameters ---------- p : scalar The probability of success
entailment
def Binomial(n, p, tag=None): """ A Binomial random variate Parameters ---------- n : int The number of trials p : scalar The probability of success """ assert ( int(n) == n and n > 0 ), 'Binomial number of trials "n" must be an integer greater than zero' assert ( 0 < p < 1 ), 'Binomial probability "p" must be between zero and one, non-inclusive' return uv(ss.binom(n, p), tag=tag)
A Binomial random variate Parameters ---------- n : int The number of trials p : scalar The probability of success
entailment
def Geometric(p, tag=None): """ A Geometric random variate Parameters ---------- p : scalar The probability of success """ assert ( 0 < p < 1 ), 'Geometric probability "p" must be between zero and one, non-inclusive' return uv(ss.geom(p), tag=tag)
A Geometric random variate Parameters ---------- p : scalar The probability of success
entailment
def Hypergeometric(N, n, K, tag=None): """ A Hypergeometric random variate Parameters ---------- N : int The total population size n : int The number of individuals of interest in the population K : int The number of individuals that will be chosen from the population Example ------- (Taken from the wikipedia page) Assume we have an urn with two types of marbles, 45 black ones and 5 white ones. Standing next to the urn, you close your eyes and draw 10 marbles without replacement. What is the probability that exactly 4 of the 10 are white? :: >>> black = 45 >>> white = 5 >>> draw = 10 # Now we create the distribution >>> h = H(black + white, white, draw) # To check the probability, in this case, we can use the underlying # scipy.stats object >>> h.rv.pmf(4) # What is the probability that white count = 4? 0.0039645830580151975 """ assert ( int(N) == N and N > 0 ), 'Hypergeometric total population size "N" must be an integer greater than zero.' assert ( int(n) == n and 0 < n <= N ), 'Hypergeometric interest population size "n" must be an integer greater than zero and no more than the total population size.' assert ( int(K) == K and 0 < K <= N ), 'Hypergeometric chosen population size "K" must be an integer greater than zero and no more than the total population size.' return uv(ss.hypergeom(N, n, K), tag=tag)
A Hypergeometric random variate Parameters ---------- N : int The total population size n : int The number of individuals of interest in the population K : int The number of individuals that will be chosen from the population Example ------- (Taken from the wikipedia page) Assume we have an urn with two types of marbles, 45 black ones and 5 white ones. Standing next to the urn, you close your eyes and draw 10 marbles without replacement. What is the probability that exactly 4 of the 10 are white? :: >>> black = 45 >>> white = 5 >>> draw = 10 # Now we create the distribution >>> h = H(black + white, white, draw) # To check the probability, in this case, we can use the underlying # scipy.stats object >>> h.rv.pmf(4) # What is the probability that white count = 4? 0.0039645830580151975
entailment
def Poisson(lamda, tag=None): """ A Poisson random variate Parameters ---------- lamda : scalar The rate of an occurance within a specified interval of time or space. """ assert lamda > 0, 'Poisson "lamda" must be greater than zero.' return uv(ss.poisson(lamda), tag=tag)
A Poisson random variate Parameters ---------- lamda : scalar The rate of an occurance within a specified interval of time or space.
entailment
def covariance_matrix(nums_with_uncert): """ Calculate the covariance matrix of uncertain variables, oriented by the order of the inputs Parameters ---------- nums_with_uncert : array-like A list of variables that have an associated uncertainty Returns ------- cov_matrix : 2d-array-like A nested list containing covariance values Example ------- >>> x = N(1, 0.1) >>> y = N(10, 0.1) >>> z = x + 2*y >>> covariance_matrix([x,y,z]) [[ 9.99694861e-03 2.54000840e-05 1.00477488e-02] [ 2.54000840e-05 9.99823207e-03 2.00218642e-02] [ 1.00477488e-02 2.00218642e-02 5.00914772e-02]] """ ufuncs = list(map(to_uncertain_func, nums_with_uncert)) cov_matrix = [] for (i1, expr1) in enumerate(ufuncs): coefs_expr1 = [] mean1 = expr1.mean for (i2, expr2) in enumerate(ufuncs[: i1 + 1]): mean2 = expr2.mean coef = np.mean((expr1._mcpts - mean1) * (expr2._mcpts - mean2)) coefs_expr1.append(coef) cov_matrix.append(coefs_expr1) # We symmetrize the matrix: for (i, covariance_coefs) in enumerate(cov_matrix): covariance_coefs.extend(cov_matrix[j][i] for j in range(i + 1, len(cov_matrix))) return cov_matrix
Calculate the covariance matrix of uncertain variables, oriented by the order of the inputs Parameters ---------- nums_with_uncert : array-like A list of variables that have an associated uncertainty Returns ------- cov_matrix : 2d-array-like A nested list containing covariance values Example ------- >>> x = N(1, 0.1) >>> y = N(10, 0.1) >>> z = x + 2*y >>> covariance_matrix([x,y,z]) [[ 9.99694861e-03 2.54000840e-05 1.00477488e-02] [ 2.54000840e-05 9.99823207e-03 2.00218642e-02] [ 1.00477488e-02 2.00218642e-02 5.00914772e-02]]
entailment
def correlation_matrix(nums_with_uncert): """ Calculate the correlation matrix of uncertain variables, oriented by the order of the inputs Parameters ---------- nums_with_uncert : array-like A list of variables that have an associated uncertainty Returns ------- corr_matrix : 2d-array-like A nested list containing covariance values Example ------- >>> x = N(1, 0.1) >>> y = N(10, 0.1) >>> z = x + 2*y >>> correlation_matrix([x,y,z]) [[ 0.99969486 0.00254001 0.4489385 ] [ 0.00254001 0.99982321 0.89458702] [ 0.4489385 0.89458702 1. ]] """ ufuncs = list(map(to_uncertain_func, nums_with_uncert)) data = np.vstack([ufunc._mcpts for ufunc in ufuncs]) return np.corrcoef(data.T, rowvar=0)
Calculate the correlation matrix of uncertain variables, oriented by the order of the inputs Parameters ---------- nums_with_uncert : array-like A list of variables that have an associated uncertainty Returns ------- corr_matrix : 2d-array-like A nested list containing covariance values Example ------- >>> x = N(1, 0.1) >>> y = N(10, 0.1) >>> z = x + 2*y >>> correlation_matrix([x,y,z]) [[ 0.99969486 0.00254001 0.4489385 ] [ 0.00254001 0.99982321 0.89458702] [ 0.4489385 0.89458702 1. ]]
entailment
def var(self): """ Variance value as a result of an uncertainty calculation """ mn = self.mean vr = np.mean((self._mcpts - mn) ** 2) return vr
Variance value as a result of an uncertainty calculation
entailment
def skew(self): r""" Skewness coefficient value as a result of an uncertainty calculation, defined as:: _____ m3 \/beta1 = ------ std**3 where m3 is the third central moment and std is the standard deviation """ mn = self.mean sd = self.std sk = 0.0 if abs(sd) <= 1e-8 else np.mean((self._mcpts - mn) ** 3) / sd ** 3 return sk
r""" Skewness coefficient value as a result of an uncertainty calculation, defined as:: _____ m3 \/beta1 = ------ std**3 where m3 is the third central moment and std is the standard deviation
entailment
def kurt(self): """ Kurtosis coefficient value as a result of an uncertainty calculation, defined as:: m4 beta2 = ------ std**4 where m4 is the fourth central moment and std is the standard deviation """ mn = self.mean sd = self.std kt = 0.0 if abs(sd) <= 1e-8 else np.mean((self._mcpts - mn) ** 4) / sd ** 4 return kt
Kurtosis coefficient value as a result of an uncertainty calculation, defined as:: m4 beta2 = ------ std**4 where m4 is the fourth central moment and std is the standard deviation
entailment
def stats(self): """ The first four standard moments of a distribution: mean, variance, and standardized skewness and kurtosis coefficients. """ mn = self.mean vr = self.var sk = self.skew kt = self.kurt return [mn, vr, sk, kt]
The first four standard moments of a distribution: mean, variance, and standardized skewness and kurtosis coefficients.
entailment
def percentile(self, val): """ Get the distribution value at a given percentile or set of percentiles. This follows the NIST method for calculating percentiles. Parameters ---------- val : scalar or array Either a single value or an array of values between 0 and 1. Returns ------- out : scalar or array The actual distribution value that appears at the requested percentile value or values """ try: # test to see if an input is given as an array out = [self.percentile(vi) for vi in val] except (ValueError, TypeError): if val <= 0: out = float(min(self._mcpts)) elif val >= 1: out = float(max(self._mcpts)) else: tmp = np.sort(self._mcpts) n = val * (len(tmp) + 1) k, d = int(n), n - int(n) out = float(tmp[k] + d * (tmp[k + 1] - tmp[k])) if isinstance(val, np.ndarray): out = np.array(out) return out
Get the distribution value at a given percentile or set of percentiles. This follows the NIST method for calculating percentiles. Parameters ---------- val : scalar or array Either a single value or an array of values between 0 and 1. Returns ------- out : scalar or array The actual distribution value that appears at the requested percentile value or values
entailment
def describe(self, name=None): """ Cleanly show what the four displayed distribution moments are: - Mean - Variance - Standardized Skewness Coefficient - Standardized Kurtosis Coefficient For a standard Normal distribution, these are [0, 1, 0, 3]. If the object has an associated tag, this is presented. If the optional ``name`` kwarg is utilized, this is presented as with the moments. Otherwise, no unique name is presented. Example ======= :: >>> x = N(0, 1, 'x') >>> x.describe() # print tag since assigned MCERP Uncertain Value (x): ... >>> x.describe('foobar') # 'name' kwarg takes precedence MCERP Uncertain Value (foobar): ... >>> y = x**2 >>> y.describe('y') # print name since assigned MCERP Uncertain Value (y): ... >>> y.describe() # print nothing since no tag MCERP Uncertain Value: ... """ mn, vr, sk, kt = self.stats if name is not None: s = "MCERP Uncertain Value (" + name + "):\n" elif self.tag is not None: s = "MCERP Uncertain Value (" + self.tag + "):\n" else: s = "MCERP Uncertain Value:\n" s += " > Mean................... {: }\n".format(mn) s += " > Variance............... {: }\n".format(vr) s += " > Skewness Coefficient... {: }\n".format(sk) s += " > Kurtosis Coefficient... {: }\n".format(kt) print(s)
Cleanly show what the four displayed distribution moments are: - Mean - Variance - Standardized Skewness Coefficient - Standardized Kurtosis Coefficient For a standard Normal distribution, these are [0, 1, 0, 3]. If the object has an associated tag, this is presented. If the optional ``name`` kwarg is utilized, this is presented as with the moments. Otherwise, no unique name is presented. Example ======= :: >>> x = N(0, 1, 'x') >>> x.describe() # print tag since assigned MCERP Uncertain Value (x): ... >>> x.describe('foobar') # 'name' kwarg takes precedence MCERP Uncertain Value (foobar): ... >>> y = x**2 >>> y.describe('y') # print name since assigned MCERP Uncertain Value (y): ... >>> y.describe() # print nothing since no tag MCERP Uncertain Value: ...
entailment
def plot(self, hist=False, show=False, **kwargs): """ Plot the distribution of the UncertainFunction. By default, the distribution is shown with a kernel density estimate (kde). Optional -------- hist : bool If true, a density histogram is displayed (histtype='stepfilled') show : bool If ``True``, the figure will be displayed after plotting the distribution. If ``False``, an explicit call to ``plt.show()`` is required to display the figure. kwargs : any valid matplotlib.pyplot.plot or .hist kwarg """ import matplotlib.pyplot as plt vals = self._mcpts low = min(vals) high = max(vals) p = ss.kde.gaussian_kde(vals) xp = np.linspace(low, high, 100) if hist: h = plt.hist( vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype="stepfilled", normed=True, **kwargs ) plt.ylim(0, 1.1 * h[0].max()) else: plt.plot(xp, p.evaluate(xp), **kwargs) plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1) if show: self.show()
Plot the distribution of the UncertainFunction. By default, the distribution is shown with a kernel density estimate (kde). Optional -------- hist : bool If true, a density histogram is displayed (histtype='stepfilled') show : bool If ``True``, the figure will be displayed after plotting the distribution. If ``False``, an explicit call to ``plt.show()`` is required to display the figure. kwargs : any valid matplotlib.pyplot.plot or .hist kwarg
entailment
def plot(self, hist=False, show=False, **kwargs): """ Plot the distribution of the UncertainVariable. Continuous distributions are plotted with a line plot and discrete distributions are plotted with discrete circles. Optional -------- hist : bool If true, a histogram is displayed show : bool If ``True``, the figure will be displayed after plotting the distribution. If ``False``, an explicit call to ``plt.show()`` is required to display the figure. kwargs : any valid matplotlib.pyplot.plot kwarg """ import matplotlib.pyplot as plt if hist: vals = self._mcpts low = vals.min() high = vals.max() h = plt.hist( vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype="stepfilled", normed=True, **kwargs ) plt.ylim(0, 1.1 * h[0].max()) else: bound = 0.0001 low = self.rv.ppf(bound) high = self.rv.ppf(1 - bound) if hasattr(self.rv.dist, "pmf"): low = int(low) high = int(high) vals = list(range(low, high + 1)) plt.plot(vals, self.rv.pmf(vals), "o", **kwargs) else: vals = np.linspace(low, high, 500) plt.plot(vals, self.rv.pdf(vals), **kwargs) plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1) if show: self.show()
Plot the distribution of the UncertainVariable. Continuous distributions are plotted with a line plot and discrete distributions are plotted with discrete circles. Optional -------- hist : bool If true, a histogram is displayed show : bool If ``True``, the figure will be displayed after plotting the distribution. If ``False``, an explicit call to ``plt.show()`` is required to display the figure. kwargs : any valid matplotlib.pyplot.plot kwarg
entailment
def load_hat(self, path): # pylint: disable=no-self-use """Loads the hat from a picture at path. Args: path: The path to load from Returns: The hat data. """ hat = cv2.imread(path, cv2.IMREAD_UNCHANGED) if hat is None: raise ValueError('No hat image found at `{}`'.format(path)) b, g, r, a = cv2.split(hat) return cv2.merge((r, g, b, a))
Loads the hat from a picture at path. Args: path: The path to load from Returns: The hat data.
entailment
def find_faces(self, image, draw_box=False): """Uses a haarcascade to detect faces inside an image. Args: image: The image. draw_box: If True, the image will be marked with a rectangle. Return: The faces as returned by OpenCV's detectMultiScale method for cascades. """ frame_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) faces = self.cascade.detectMultiScale( frame_gray, scaleFactor=1.3, minNeighbors=5, minSize=(50, 50), flags=0) if draw_box: for x, y, w, h in faces: cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) return faces
Uses a haarcascade to detect faces inside an image. Args: image: The image. draw_box: If True, the image will be marked with a rectangle. Return: The faces as returned by OpenCV's detectMultiScale method for cascades.
entailment
def find_resources(self, rsrc_type, sort=None, yield_pages=False, **kwargs): """Find instances of `rsrc_type` that match the filter in `**kwargs`""" return rsrc_type.find(self, sort=sort, yield_pages=yield_pages, **kwargs)
Find instances of `rsrc_type` that match the filter in `**kwargs`
entailment
def changed(self, message=None, *args): """Marks the object as changed. If a `parent` attribute is set, the `changed()` method on the parent will be called, propagating the change notification up the chain. The message (if provided) will be debug logged. """ if message is not None: self.logger.debug('%s: %s', self._repr(), message % args) self.logger.debug('%s: changed', self._repr()) if self.parent is not None: self.parent.changed() elif isinstance(self, Mutable): super(TrackedObject, self).changed()
Marks the object as changed. If a `parent` attribute is set, the `changed()` method on the parent will be called, propagating the change notification up the chain. The message (if provided) will be debug logged.
entailment
def register(cls, origin_type): """Decorator for mutation tracker registration. The provided `origin_type` is mapped to the decorated class such that future calls to `convert()` will convert the object of `origin_type` to an instance of the decorated class. """ def decorator(tracked_type): """Adds the decorated class to the `_type_mapping` dictionary.""" cls._type_mapping[origin_type] = tracked_type return tracked_type return decorator
Decorator for mutation tracker registration. The provided `origin_type` is mapped to the decorated class such that future calls to `convert()` will convert the object of `origin_type` to an instance of the decorated class.
entailment
def convert(cls, obj, parent): """Converts objects to registered tracked types This checks the type of the given object against the registered tracked types. When a match is found, the given object will be converted to the tracked type, its parent set to the provided parent, and returned. If its type does not occur in the registered types mapping, the object is returned unchanged. """ replacement_type = cls._type_mapping.get(type(obj)) if replacement_type is not None: new = replacement_type(obj) new.parent = parent return new return obj
Converts objects to registered tracked types This checks the type of the given object against the registered tracked types. When a match is found, the given object will be converted to the tracked type, its parent set to the provided parent, and returned. If its type does not occur in the registered types mapping, the object is returned unchanged.
entailment