sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
|---|---|---|
def convert_items(self, items):
"""Generator like `convert_iterable`, but for 2-tuple iterators."""
return ((key, self.convert(value, self)) for key, value in items)
|
Generator like `convert_iterable`, but for 2-tuple iterators.
|
entailment
|
def convert_mapping(self, mapping):
"""Convenience method to track either a dict or a 2-tuple iterator."""
if isinstance(mapping, dict):
return self.convert_items(iteritems(mapping))
return self.convert_items(mapping)
|
Convenience method to track either a dict or a 2-tuple iterator.
|
entailment
|
def changelist_view(self, request, extra_context=None):
"""
If we only have a single preference object redirect to it,
otherwise display listing.
"""
model = self.model
if model.objects.all().count() > 1:
return super(PreferencesAdmin, self).changelist_view(request)
else:
obj = model.singleton.get()
return redirect(
reverse(
'admin:%s_%s_change' % (
model._meta.app_label, model._meta.model_name
),
args=(obj.id,)
)
)
|
If we only have a single preference object redirect to it,
otherwise display listing.
|
entailment
|
def md2rst(md_lines):
'Only converts headers'
lvl2header_char = {1: '=', 2: '-', 3: '~'}
for md_line in md_lines:
if md_line.startswith('#'):
header_indent, header_text = md_line.split(' ', 1)
yield header_text
header_char = lvl2header_char[len(header_indent)]
yield header_char * len(header_text)
else:
yield md_line
|
Only converts headers
|
entailment
|
def aslist(generator):
'Function decorator to transform a generator into a list'
def wrapper(*args, **kwargs):
return list(generator(*args, **kwargs))
return wrapper
|
Function decorator to transform a generator into a list
|
entailment
|
def get_package_release_from_pypi(pkg_name, version, pypi_json_api_url, allowed_classifiers):
"""
No classifier-based selection of Python packages is currently implemented: for now we don't fetch any .whl or .egg
Eventually, we should select the best release available, based on the classifier & PEP 425: https://www.python.org/dev/peps/pep-0425/
E.g. a wheel when available but NOT for tornado 4.3 for example, where available wheels are only for Windows.
Note also that some packages don't have .whl distributed, e.g. https://bugs.launchpad.net/lxml/+bug/1176147
"""
matching_releases = get_package_releases_matching_version(pkg_name, version, pypi_json_api_url)
src_releases = [release for release in matching_releases if release['python_version'] == 'source']
if src_releases:
return select_src_release(src_releases, pkg_name, target_classifiers=('py2.py3-none-any',), select_arbitrary_version_if_none_match=True)
if allowed_classifiers:
return select_src_release(matching_releases, pkg_name, target_classifiers=allowed_classifiers)
raise PypiQueryError('No source supported found for package {} version {}'.format(pkg_name, version))
|
No classifier-based selection of Python packages is currently implemented: for now we don't fetch any .whl or .egg
Eventually, we should select the best release available, based on the classifier & PEP 425: https://www.python.org/dev/peps/pep-0425/
E.g. a wheel when available but NOT for tornado 4.3 for example, where available wheels are only for Windows.
Note also that some packages don't have .whl distributed, e.g. https://bugs.launchpad.net/lxml/+bug/1176147
|
entailment
|
def extract_classifier_and_extension(pkg_name, filename):
"""
Returns a PEP425-compliant classifier (or 'py2.py3-none-any' if it cannot be extracted),
and the file extension
TODO: return a classifier 3-members namedtuple instead of a single string
"""
basename, _, extension = filename.rpartition('.')
if extension == 'gz' and filename.endswith('.tar.gz'):
extension = 'tar.gz'
basename = filename[:-7]
if basename == pkg_name or basename[len(pkg_name)] != '-':
return 'py2.py3-none-any', extension
basename = basename[len(pkg_name)+1:]
classifier_parts = basename.split('-')
if len(classifier_parts) < 3:
return 'py2.py3-none-any', extension
if len(classifier_parts) == 3:
_, _, classifier_parts[0] = classifier_parts[0].rpartition('.')
return '-'.join(classifier_parts[-3:]), extension
|
Returns a PEP425-compliant classifier (or 'py2.py3-none-any' if it cannot be extracted),
and the file extension
TODO: return a classifier 3-members namedtuple instead of a single string
|
entailment
|
def coerce(cls, key, value):
"""Convert plain dictionary to NestedMutable."""
if value is None:
return value
if isinstance(value, cls):
return value
if isinstance(value, dict):
return NestedMutableDict.coerce(key, value)
if isinstance(value, list):
return NestedMutableList.coerce(key, value)
return super(cls).coerce(key, value)
|
Convert plain dictionary to NestedMutable.
|
entailment
|
def is_mod_function(mod, fun):
"""Checks if a function in a module was declared in that module.
http://stackoverflow.com/a/1107150/3004221
Args:
mod: the module
fun: the function
"""
return inspect.isfunction(fun) and inspect.getmodule(fun) == mod
|
Checks if a function in a module was declared in that module.
http://stackoverflow.com/a/1107150/3004221
Args:
mod: the module
fun: the function
|
entailment
|
def is_mod_class(mod, cls):
"""Checks if a class in a module was declared in that module.
Args:
mod: the module
cls: the class
"""
return inspect.isclass(cls) and inspect.getmodule(cls) == mod
|
Checks if a class in a module was declared in that module.
Args:
mod: the module
cls: the class
|
entailment
|
def list_functions(mod_name):
"""Lists all functions declared in a module.
http://stackoverflow.com/a/1107150/3004221
Args:
mod_name: the module name
Returns:
A list of functions declared in that module.
"""
mod = sys.modules[mod_name]
return [func.__name__ for func in mod.__dict__.values()
if is_mod_function(mod, func)]
|
Lists all functions declared in a module.
http://stackoverflow.com/a/1107150/3004221
Args:
mod_name: the module name
Returns:
A list of functions declared in that module.
|
entailment
|
def list_classes(mod_name):
"""Lists all classes declared in a module.
Args:
mod_name: the module name
Returns:
A list of functions declared in that module.
"""
mod = sys.modules[mod_name]
return [cls.__name__ for cls in mod.__dict__.values()
if is_mod_class(mod, cls)]
|
Lists all classes declared in a module.
Args:
mod_name: the module name
Returns:
A list of functions declared in that module.
|
entailment
|
def get_linenumbers(functions, module, searchstr='def {}(image):\n'):
"""Returns a dictionary which maps function names to line numbers.
Args:
functions: a list of function names
module: the module to look the functions up
searchstr: the string to search for
Returns:
A dictionary with functions as keys and their line numbers as values.
"""
lines = inspect.getsourcelines(module)[0]
line_numbers = {}
for function in functions:
try:
line_numbers[function] = lines.index(
searchstr.format(function)) + 1
except ValueError:
print(r'Can not find `{}`'.format(searchstr.format(function)))
line_numbers[function] = 0
return line_numbers
|
Returns a dictionary which maps function names to line numbers.
Args:
functions: a list of function names
module: the module to look the functions up
searchstr: the string to search for
Returns:
A dictionary with functions as keys and their line numbers as values.
|
entailment
|
def format_doc(fun):
"""Formats the documentation in a nicer way and for notebook cells."""
SEPARATOR = '============================='
func = cvloop.functions.__dict__[fun]
doc_lines = ['{}'.format(l).strip() for l in func.__doc__.split('\n')]
if hasattr(func, '__init__'):
doc_lines.append(SEPARATOR)
doc_lines += ['{}'.format(l).strip() for l in
func.__init__.__doc__.split('\n')]
mod_lines = []
argblock = False
returnblock = False
for line in doc_lines:
if line == SEPARATOR:
mod_lines.append('\n#### `{}.__init__(...)`:\n\n'.format(fun))
elif 'Args:' in line:
argblock = True
if GENERATE_ARGS:
mod_lines.append('**{}**\n'.format(line))
elif 'Returns:' in line:
returnblock = True
mod_lines.append('\n**{}**'.format(line))
elif not argblock and not returnblock:
mod_lines.append('{}\n'.format(line))
elif argblock and not returnblock and ':' in line:
if GENERATE_ARGS:
mod_lines.append('- *{}:* {}\n'.format(
*line.split(':')))
elif returnblock:
mod_lines.append(line)
else:
mod_lines.append('{}\n'.format(line))
return mod_lines
|
Formats the documentation in a nicer way and for notebook cells.
|
entailment
|
def main():
"""Main function creates the cvloop.functions example notebook."""
notebook = {
'cells': [
{
'cell_type': 'markdown',
'metadata': {},
'source': [
'# cvloop functions\n\n',
'This notebook shows an overview over all cvloop ',
'functions provided in the [`cvloop.functions` module](',
'https://github.com/shoeffner/cvloop/blob/',
'develop/cvloop/functions.py).'
]
},
],
'nbformat': 4,
'nbformat_minor': 1,
'metadata': {
'language_info': {
'codemirror_mode': {
'name': 'ipython',
'version': 3
},
'file_extension': '.py',
'mimetype': 'text/x-python',
'name': 'python',
'nbconvert_exporter': 'python',
'pygments_lexer': 'ipython3',
'version': '3.5.1+'
}
}
}
classes = list_classes('cvloop.functions')
functions = list_functions('cvloop.functions')
line_numbers_cls = get_linenumbers(classes, cvloop.functions,
'class {}:\n')
line_numbers = get_linenumbers(functions, cvloop.functions)
for cls in classes:
line_number = line_numbers_cls[cls]
notebook['cells'].append(create_description_cell(cls, line_number))
notebook['cells'].append(create_code_cell(cls, isclass=True))
for func in functions:
line_number = line_numbers[func]
notebook['cells'].append(create_description_cell(func, line_number))
notebook['cells'].append(create_code_cell(func))
with open(sys.argv[1], 'w') as nfile:
json.dump(notebook, nfile, indent=4)
|
Main function creates the cvloop.functions example notebook.
|
entailment
|
def prepare_axes(axes, title, size, cmap=None):
"""Prepares an axes object for clean plotting.
Removes x and y axes labels and ticks, sets the aspect ratio to be
equal, uses the size to determine the drawing area and fills the image
with random colors as visual feedback.
Creates an AxesImage to be shown inside the axes object and sets the
needed properties.
Args:
axes: The axes object to modify.
title: The title.
size: The size of the expected image.
cmap: The colormap if a custom color map is needed.
(Default: None)
Returns:
The AxesImage's handle.
"""
if axes is None:
return None
# prepare axis itself
axes.set_xlim([0, size[1]])
axes.set_ylim([size[0], 0])
axes.set_aspect('equal')
axes.axis('off')
if isinstance(cmap, str):
title = '{} (cmap: {})'.format(title, cmap)
axes.set_title(title)
# prepare image data
axes_image = image.AxesImage(axes, cmap=cmap,
extent=(0, size[1], size[0], 0))
axes_image.set_data(np.random.random((size[0], size[1], 3)))
axes.add_image(axes_image)
return axes_image
|
Prepares an axes object for clean plotting.
Removes x and y axes labels and ticks, sets the aspect ratio to be
equal, uses the size to determine the drawing area and fills the image
with random colors as visual feedback.
Creates an AxesImage to be shown inside the axes object and sets the
needed properties.
Args:
axes: The axes object to modify.
title: The title.
size: The size of the expected image.
cmap: The colormap if a custom color map is needed.
(Default: None)
Returns:
The AxesImage's handle.
|
entailment
|
def connect_event_handlers(self):
"""Connects event handlers to the figure."""
self.figure.canvas.mpl_connect('close_event', self.evt_release)
self.figure.canvas.mpl_connect('pause_event', self.evt_toggle_pause)
|
Connects event handlers to the figure.
|
entailment
|
def evt_toggle_pause(self, *args): # pylint: disable=unused-argument
"""Pauses and resumes the video source."""
if self.event_source._timer is None: # noqa: e501 pylint: disable=protected-access
self.event_source.start()
else:
self.event_source.stop()
|
Pauses and resumes the video source.
|
entailment
|
def print_info(self, capture):
"""Prints information about the unprocessed image.
Reads one frame from the source to determine image colors, dimensions
and data types.
Args:
capture: the source to read from.
"""
self.frame_offset += 1
ret, frame = capture.read()
if ret:
print('Capture Information')
print('\tDimensions (HxW): {}x{}'.format(*frame.shape[0:2]))
print('\tColor channels: {}'.format(frame.shape[2] if
len(frame.shape) > 2 else 1))
print('\tColor range: {}-{}'.format(np.min(frame),
np.max(frame)))
print('\tdtype: {}'.format(frame.dtype))
else:
print('No source found.')
|
Prints information about the unprocessed image.
Reads one frame from the source to determine image colors, dimensions
and data types.
Args:
capture: the source to read from.
|
entailment
|
def determine_size(self, capture):
"""Determines the height and width of the image source.
If no dimensions are available, this method defaults to a resolution of
640x480, thus returns (480, 640).
If capture has a get method it is assumed to understand
`cv2.CAP_PROP_FRAME_WIDTH` and `cv2.CAP_PROP_FRAME_HEIGHT` to get the
information. Otherwise it reads one frame from the source to determine
image dimensions.
Args:
capture: the source to read from.
Returns:
A tuple containing integers of height and width (simple casts).
"""
width = 640
height = 480
if capture and hasattr(capture, 'get'):
width = capture.get(cv2.CAP_PROP_FRAME_WIDTH)
height = capture.get(cv2.CAP_PROP_FRAME_HEIGHT)
else:
self.frame_offset += 1
ret, frame = capture.read()
if ret:
width = frame.shape[1]
height = frame.shape[0]
return (int(height), int(width))
|
Determines the height and width of the image source.
If no dimensions are available, this method defaults to a resolution of
640x480, thus returns (480, 640).
If capture has a get method it is assumed to understand
`cv2.CAP_PROP_FRAME_WIDTH` and `cv2.CAP_PROP_FRAME_HEIGHT` to get the
information. Otherwise it reads one frame from the source to determine
image dimensions.
Args:
capture: the source to read from.
Returns:
A tuple containing integers of height and width (simple casts).
|
entailment
|
def _init_draw(self):
"""Initializes the drawing of the frames by setting the images to
random colors.
This function is called by TimedAnimation.
"""
if self.original is not None:
self.original.set_data(np.random.random((10, 10, 3)))
self.processed.set_data(np.random.random((10, 10, 3)))
|
Initializes the drawing of the frames by setting the images to
random colors.
This function is called by TimedAnimation.
|
entailment
|
def read_frame(self):
"""Reads a frame and converts the color if needed.
In case no frame is available, i.e. self.capture.read() returns False
as the first return value, the event_source of the TimedAnimation is
stopped, and if possible the capture source released.
Returns:
None if stopped, otherwise the color converted source image.
"""
ret, frame = self.capture.read()
if not ret:
self.event_source.stop()
try:
self.capture.release()
except AttributeError:
# has no release method, thus just pass
pass
return None
if self.convert_color != -1 and is_color_image(frame):
return cv2.cvtColor(frame, self.convert_color)
return frame
|
Reads a frame and converts the color if needed.
In case no frame is available, i.e. self.capture.read() returns False
as the first return value, the event_source of the TimedAnimation is
stopped, and if possible the capture source released.
Returns:
None if stopped, otherwise the color converted source image.
|
entailment
|
def annotate(self, framedata):
"""Annotates the processed axis with given annotations for
the provided framedata.
Args:
framedata: The current frame number.
"""
for artist in self.annotation_artists:
artist.remove()
self.annotation_artists = []
for annotation in self.annotations:
if annotation[2] > framedata:
return
if annotation[2] == framedata:
pos = annotation[0:2]
shape = self.annotations_default['shape']
color = self.annotations_default['color']
size = self.annotations_default['size']
line = self.annotations_default['line']
if len(annotation) > 3:
shape = annotation[3].get('shape', shape)
color = annotation[3].get('color', color)
size = annotation[3].get('size', size)
line = annotation[3].get('line', line)
if shape == 'CIRC' and hasattr(size, '__len__'):
size = 30
if not hasattr(color, '__len__'):
color = (color,) * 3
if shape == 'RECT':
patch = patches.Rectangle((pos[0] - size[0] // 2,
pos[1] - size[1] // 2),
size[0], size[1], fill=False,
lw=line, fc='none', ec=color)
elif shape == 'CIRC':
patch = patches.CirclePolygon(pos, radius=size, fc='none',
ec=color, lw=line)
self.annotation_artists.append(patch)
self.axes_processed.add_artist(self.annotation_artists[-1])
|
Annotates the processed axis with given annotations for
the provided framedata.
Args:
framedata: The current frame number.
|
entailment
|
def _draw_frame(self, framedata):
"""Reads, processes and draws the frames.
If needed for color maps, conversions to gray scale are performed. In
case the images are no color images and no custom color maps are
defined, the colormap `gray` is applied.
This function is called by TimedAnimation.
Args:
framedata: The frame data.
"""
original = self.read_frame()
if original is None:
self.update_info(self.info_string(message='Finished.',
frame=framedata))
return
if self.original is not None:
processed = self.process_frame(original.copy())
if self.cmap_original is not None:
original = to_gray(original)
elif not is_color_image(original):
self.original.set_cmap('gray')
self.original.set_data(original)
else:
processed = self.process_frame(original)
if self.cmap_processed is not None:
processed = to_gray(processed)
elif not is_color_image(processed):
self.processed.set_cmap('gray')
if self.annotations:
self.annotate(framedata)
self.processed.set_data(processed)
self.update_info(self.info_string(frame=framedata))
|
Reads, processes and draws the frames.
If needed for color maps, conversions to gray scale are performed. In
case the images are no color images and no custom color maps are
defined, the colormap `gray` is applied.
This function is called by TimedAnimation.
Args:
framedata: The frame data.
|
entailment
|
def update_info(self, custom=None):
"""Updates the figure's suptitle.
Calls self.info_string() unless custom is provided.
Args:
custom: Overwrite it with this string, unless None.
"""
self.figure.suptitle(self.info_string() if custom is None else custom)
|
Updates the figure's suptitle.
Calls self.info_string() unless custom is provided.
Args:
custom: Overwrite it with this string, unless None.
|
entailment
|
def info_string(self, size=None, message='', frame=-1):
"""Returns information about the stream.
Generates a string containing size, frame number, and info messages.
Omits unnecessary information (e.g. empty messages and frame -1).
This method is primarily used to update the suptitle of the plot
figure.
Returns:
An info string.
"""
info = []
if size is not None:
info.append('Size: {1}x{0}'.format(*size))
elif self.size is not None:
info.append('Size: {1}x{0}'.format(*self.size))
if frame >= 0:
info.append('Frame: {}'.format(frame))
if message != '':
info.append('{}'.format(message))
return ' '.join(info)
|
Returns information about the stream.
Generates a string containing size, frame number, and info messages.
Omits unnecessary information (e.g. empty messages and frame -1).
This method is primarily used to update the suptitle of the plot
figure.
Returns:
An info string.
|
entailment
|
def main():
"""Sanitizes the loaded *.ipynb."""
with open(sys.argv[1], 'r') as nbfile:
notebook = json.load(nbfile)
# remove kernelspec (venvs)
try:
del notebook['metadata']['kernelspec']
except KeyError:
pass
# remove outputs and metadata, set execution counts to None
for cell in notebook['cells']:
try:
if cell['cell_type'] == 'code':
cell['outputs'] = []
cell['execution_count'] = None
cell['metadata'] = {}
except KeyError:
pass
with open(sys.argv[1], 'w') as nbfile:
json.dump(notebook, nbfile, indent=1)
|
Sanitizes the loaded *.ipynb.
|
entailment
|
def create(self, comment, mentions=()):
"""
create comment
:param comment:
:param mentions: list of pair of code and type("USER", "GROUP", and so on)
:return:
"""
data = {
"app": self.app_id,
"record": self.record_id,
"comment": {
"text": comment,
}
}
if len(mentions) > 0:
_mentions = []
for m in mentions:
if isinstance(m, (list, tuple)):
if len(m) == 2:
_mentions.append({
"code": m[0],
"type": m[1]
})
else:
raise Exception("mention have to have code and target type. ex.[('user_1', 'USER')]")
elif isinstance(m, Mention):
_mentions.append(m.serialize())
data["comment"]["mentions"] = _mentions
resp = self._request("POST", self._url, data)
r = cr.CreateCommentResult(resp)
return r
|
create comment
:param comment:
:param mentions: list of pair of code and type("USER", "GROUP", and so on)
:return:
|
entailment
|
def _consume(iterator, n=None):
"""Advance the iterator n-steps ahead. If n is none, consume entirely."""
# Use functions that consume iterators at C speed.
if n is None:
# feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)
else:
# advance to the empty slice starting at position n
next(itertools.islice(iterator, n, n), None)
|
Advance the iterator n-steps ahead. If n is none, consume entirely.
|
entailment
|
def _slice_required_len(slice_obj):
"""
Calculate how many items must be in the collection to satisfy this slice
returns `None` for slices may vary based on the length of the underlying collection
such as `lst[-1]` or `lst[::]`
"""
if slice_obj.step and slice_obj.step != 1:
return None
# (None, None, *) requires the entire list
if slice_obj.start is None and slice_obj.stop is None:
return None
# Negative indexes are hard without knowing the collection length
if slice_obj.start and slice_obj.start < 0:
return None
if slice_obj.stop and slice_obj.stop < 0:
return None
if slice_obj.stop:
if slice_obj.start and slice_obj.start > slice_obj.stop:
return 0
return slice_obj.stop
return slice_obj.start + 1
|
Calculate how many items must be in the collection to satisfy this slice
returns `None` for slices may vary based on the length of the underlying collection
such as `lst[-1]` or `lst[::]`
|
entailment
|
def stylize(text, styles, reset=True):
"""conveniently styles your text as and resets ANSI codes at its end."""
terminator = attr("reset") if reset else ""
return "{}{}{}".format("".join(styles), text, terminator)
|
conveniently styles your text as and resets ANSI codes at its end.
|
entailment
|
def stylize_interactive(text, styles, reset=True):
"""stylize() variant that adds C0 control codes (SOH/STX) for readline
safety."""
# problem: readline includes bare ANSI codes in width calculations.
# solution: wrap nonprinting codes in SOH/STX when necessary.
# see: https://github.com/dslackw/colored/issues/5
terminator = _c0wrap(attr("reset")) if reset else ""
return "{}{}{}".format(_c0wrap(styles), text, terminator)
|
stylize() variant that adds C0 control codes (SOH/STX) for readline
safety.
|
entailment
|
def attribute(self):
"""Set or reset attributes"""
paint = {
"bold": self.ESC + "1" + self.END,
1: self.ESC + "1" + self.END,
"dim": self.ESC + "2" + self.END,
2: self.ESC + "2" + self.END,
"underlined": self.ESC + "4" + self.END,
4: self.ESC + "4" + self.END,
"blink": self.ESC + "5" + self.END,
5: self.ESC + "5" + self.END,
"reverse": self.ESC + "7" + self.END,
7: self.ESC + "7" + self.END,
"hidden": self.ESC + "8" + self.END,
8: self.ESC + "8" + self.END,
"reset": self.ESC + "0" + self.END,
0: self.ESC + "0" + self.END,
"res_bold": self.ESC + "21" + self.END,
21: self.ESC + "21" + self.END,
"res_dim": self.ESC + "22" + self.END,
22: self.ESC + "22" + self.END,
"res_underlined": self.ESC + "24" + self.END,
24: self.ESC + "24" + self.END,
"res_blink": self.ESC + "25" + self.END,
25: self.ESC + "25" + self.END,
"res_reverse": self.ESC + "27" + self.END,
27: self.ESC + "27" + self.END,
"res_hidden": self.ESC + "28" + self.END,
28: self.ESC + "28" + self.END,
}
return paint[self.color]
|
Set or reset attributes
|
entailment
|
def foreground(self):
"""Print 256 foreground colors"""
code = self.ESC + "38;5;"
if str(self.color).isdigit():
self.reverse_dict()
color = self.reserve_paint[str(self.color)]
return code + self.paint[color] + self.END
elif self.color.startswith("#"):
return code + str(self.HEX) + self.END
else:
return code + self.paint[self.color] + self.END
|
Print 256 foreground colors
|
entailment
|
def reverse_dict(self):
"""reverse dictionary"""
self.reserve_paint = dict(zip(self.paint.values(), self.paint.keys()))
|
reverse dictionary
|
entailment
|
def reset(self, required=False):
"""
Perform a reset and check for presence pulse.
:param bool required: require presence pulse
"""
reset = self._ow.reset()
if required and reset:
raise OneWireError("No presence pulse found. Check devices and wiring.")
return not reset
|
Perform a reset and check for presence pulse.
:param bool required: require presence pulse
|
entailment
|
def readinto(self, buf, *, start=0, end=None):
"""
Read into ``buf`` from the device. The number of bytes read will be the
length of ``buf``.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buf[start:end]``. This will not cause an allocation like
``buf[start:end]`` will so it saves memory.
:param bytearray buf: buffer to write into
:param int start: Index to start writing at
:param int end: Index to write up to but not include
"""
if end is None:
end = len(buf)
for i in range(start, end):
buf[i] = self._readbyte()
|
Read into ``buf`` from the device. The number of bytes read will be the
length of ``buf``.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buf[start:end]``. This will not cause an allocation like
``buf[start:end]`` will so it saves memory.
:param bytearray buf: buffer to write into
:param int start: Index to start writing at
:param int end: Index to write up to but not include
|
entailment
|
def write(self, buf, *, start=0, end=None):
"""
Write the bytes from ``buf`` to the device.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]``. This will not cause an allocation like
``buffer[start:end]`` will so it saves memory.
:param bytearray buf: buffer containing the bytes to write
:param int start: Index to start writing from
:param int end: Index to read up to but not include
"""
if end is None:
end = len(buf)
for i in range(start, end):
self._writebyte(buf[i])
|
Write the bytes from ``buf`` to the device.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]``. This will not cause an allocation like
``buffer[start:end]`` will so it saves memory.
:param bytearray buf: buffer containing the bytes to write
:param int start: Index to start writing from
:param int end: Index to read up to but not include
|
entailment
|
def scan(self):
"""Scan for devices on the bus and return a list of addresses."""
devices = []
diff = 65
rom = False
count = 0
for _ in range(0xff):
rom, diff = self._search_rom(rom, diff)
if rom:
count += 1
if count > self.maximum_devices:
raise RuntimeError(
"Maximum device count of {} exceeded."\
.format(self.maximum_devices))
devices.append(OneWireAddress(rom))
if diff == 0:
break
return devices
|
Scan for devices on the bus and return a list of addresses.
|
entailment
|
def crc8(data):
"""
Perform the 1-Wire CRC check on the provided data.
:param bytearray data: 8 byte array representing 64 bit ROM code
"""
crc = 0
for byte in data:
crc ^= byte
for _ in range(8):
if crc & 0x01:
crc = (crc >> 1) ^ 0x8C
else:
crc >>= 1
crc &= 0xFF
return crc
|
Perform the 1-Wire CRC check on the provided data.
:param bytearray data: 8 byte array representing 64 bit ROM code
|
entailment
|
def _deserialize(cls, json_body, get_value_and_type):
"""
deserialize json to model
:param json_body: json data
:param get_value_and_type: function(f: json_field) -> value, field_type_string(see FieldType)
:return:
"""
instance = cls()
is_set = False
properties = cls._get_property_names(instance)
def get_property_detail(name):
p = [p for p in instance._property_details if p.name == name or p.field_name == name]
return None if len(p) == 0 else p[0]
for k in json_body:
field = json_body[k]
pd = get_property_detail(k)
pn = k if not pd else pd.to_property_name(k)
if pn in properties:
v, t = get_value_and_type(field)
initial_value = getattr(instance, pn)
value = instance._field_to_property(v, t, pd, initial_value)
setattr(instance, pn, value)
is_set = True
return instance if is_set else None
|
deserialize json to model
:param json_body: json data
:param get_value_and_type: function(f: json_field) -> value, field_type_string(see FieldType)
:return:
|
entailment
|
def _serialize(self, convert_to_key_and_value, ignore_missing=False):
"""
serialize model object to dictionary
:param convert_to_key_and_value: function(field_name, value, property_detail) -> key, value
:return:
"""
serialized = {}
properties = self._get_property_names(self)
def get_property_detail(name):
p = [p for p in self._property_details if p.name == name]
return None if len(p) == 0 else p[0]
for p in properties:
pd = get_property_detail(p)
value = self._property_to_field(p, pd)
field_name = p if not pd else pd.to_field_name()
if value is None or (ignore_missing and not value) or (pd and pd.unsent):
continue
else:
key, value = convert_to_key_and_value(field_name, value, pd)
if key:
serialized[key] = value
return serialized
|
serialize model object to dictionary
:param convert_to_key_and_value: function(field_name, value, property_detail) -> key, value
:return:
|
entailment
|
def readinto(self, buf, *, start=0, end=None):
"""
Read into ``buf`` from the device. The number of bytes read will be the
length of ``buf``.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buf[start:end]``. This will not cause an allocation like
``buf[start:end]`` will so it saves memory.
:param bytearray buf: buffer to write into
:param int start: Index to start writing at
:param int end: Index to write up to but not include
"""
self._bus.readinto(buf, start=start, end=end)
if start == 0 and end is None and len(buf) >= 8:
if self._bus.crc8(buf):
raise RuntimeError('CRC error.')
|
Read into ``buf`` from the device. The number of bytes read will be the
length of ``buf``.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buf[start:end]``. This will not cause an allocation like
``buf[start:end]`` will so it saves memory.
:param bytearray buf: buffer to write into
:param int start: Index to start writing at
:param int end: Index to write up to but not include
|
entailment
|
def write(self, buf, *, start=0, end=None):
"""
Write the bytes from ``buf`` to the device.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]``. This will not cause an allocation like
``buffer[start:end]`` will so it saves memory.
:param bytearray buf: buffer containing the bytes to write
:param int start: Index to start writing from
:param int end: Index to read up to but not include
"""
return self._bus.write(buf, start=start, end=end)
|
Write the bytes from ``buf`` to the device.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]``. This will not cause an allocation like
``buffer[start:end]`` will so it saves memory.
:param bytearray buf: buffer containing the bytes to write
:param int start: Index to start writing from
:param int end: Index to read up to but not include
|
entailment
|
def preferences_class_prepared(sender, *args, **kwargs):
"""
Adds various preferences members to preferences.preferences,
thus enabling easy access from code.
"""
cls = sender
if issubclass(cls, Preferences):
# Add singleton manager to subclasses.
cls.add_to_class('singleton', SingletonManager())
# Add property for preferences object to preferences.preferences.
setattr(preferences.Preferences, cls._meta.object_name, property(lambda x: cls.singleton.get()))
|
Adds various preferences members to preferences.preferences,
thus enabling easy access from code.
|
entailment
|
def site_cleanup(sender, action, instance, **kwargs):
"""
Make sure there is only a single preferences object per site.
So remove sites from pre-existing preferences objects.
"""
if action == 'post_add':
if isinstance(instance, Preferences) \
and hasattr(instance.__class__, 'objects'):
site_conflicts = instance.__class__.objects.filter(
sites__in=instance.sites.all()
).only('id').distinct()
for conflict in site_conflicts:
if conflict.id != instance.id:
for site in instance.sites.all():
conflict.sites.remove(site)
|
Make sure there is only a single preferences object per site.
So remove sites from pre-existing preferences objects.
|
entailment
|
def get_queryset(self):
"""
Return the first preferences object for the current site.
If preferences do not exist create it.
"""
queryset = super(SingletonManager, self).get_queryset()
# Get current site
current_site = None
if getattr(settings, 'SITE_ID', None) is not None:
current_site = Site.objects.get_current()
# If site found limit queryset to site.
if current_site is not None:
queryset = queryset.filter(sites=settings.SITE_ID)
if not queryset.exists():
# Create object (for current site) if it doesn't exist.
obj = self.model.objects.create()
if current_site is not None:
obj.sites.add(current_site)
return queryset
|
Return the first preferences object for the current site.
If preferences do not exist create it.
|
entailment
|
def load_iterable(self, iterable, session=None):
'''Load an ``iterable``.
By default it returns a generator of data loaded via the
:meth:`loads` method.
:param iterable: an iterable over data to load.
:param session: Optional :class:`stdnet.odm.Session`.
:return: an iterable over decoded data.
'''
data = []
load = self.loads
for v in iterable:
data.append(load(v))
return data
|
Load an ``iterable``.
By default it returns a generator of data loaded via the
:meth:`loads` method.
:param iterable: an iterable over data to load.
:param session: Optional :class:`stdnet.odm.Session`.
:return: an iterable over decoded data.
|
entailment
|
def search_model(self, q, text, lookup=None):
'''Implements :meth:`stdnet.odm.SearchEngine.search_model`.
It return a new :class:`stdnet.odm.QueryElem` instance from
the input :class:`Query` and the *text* to search.'''
words = self.words_from_text(text, for_search=True)
if not words:
return q
qs = self._search(words, include=(q.model,), lookup=lookup)
qs = tuple((q.get_field('object_id') for q in qs))
return odm.intersect((q,)+qs)
|
Implements :meth:`stdnet.odm.SearchEngine.search_model`.
It return a new :class:`stdnet.odm.QueryElem` instance from
the input :class:`Query` and the *text* to search.
|
entailment
|
def _search(self, words, include=None, exclude=None, lookup=None):
'''Full text search. Return a list of queries to intersect.'''
lookup = lookup or 'contains'
query = self.router.worditem.query()
if include:
query = query.filter(model_type__in=include)
if exclude:
query = query.exclude(model_type__in=include)
if not words:
return [query]
qs = []
if lookup == 'in':
# we are looking for items with at least one word in it
qs.append(query.filter(word__in=words))
elif lookup == 'contains':
#we want to match every single words
for word in words:
qs.append(query.filter(word=word))
else:
raise ValueError('Unknown lookup "{0}"'.format(lookup))
return qs
|
Full text search. Return a list of queries to intersect.
|
entailment
|
def redis_client(address=None, connection_pool=None, timeout=None,
parser=None, **kwargs):
'''Get a new redis client.
:param address: a ``host``, ``port`` tuple.
:param connection_pool: optional connection pool.
:param timeout: socket timeout.
:param timeout: socket timeout.
'''
if not connection_pool:
if timeout == 0:
if not async:
raise ImportError('Asynchronous connection requires async '
'bindings installed.')
return async.pool.redis(address, **kwargs)
else:
kwargs['socket_timeout'] = timeout
return Redis(address[0], address[1], **kwargs)
else:
return Redis(connection_pool=connection_pool)
|
Get a new redis client.
:param address: a ``host``, ``port`` tuple.
:param connection_pool: optional connection pool.
:param timeout: socket timeout.
:param timeout: socket timeout.
|
entailment
|
def to_bytes(s, encoding=None, errors='strict'):
"""Returns a bytestring version of 's',
encoded as specified in 'encoding'."""
encoding = encoding or 'utf-8'
if isinstance(s, bytes):
if encoding != 'utf-8':
return s.decode('utf-8', errors).encode(encoding, errors)
else:
return s
if not is_string(s):
s = string_type(s)
return s.encode(encoding, errors)
|
Returns a bytestring version of 's',
encoded as specified in 'encoding'.
|
entailment
|
def to_string(s, encoding=None, errors='strict'):
"""Inverse of to_bytes"""
encoding = encoding or 'utf-8'
if isinstance(s, bytes):
return s.decode(encoding, errors)
if not is_string(s):
s = string_type(s)
return s
|
Inverse of to_bytes
|
entailment
|
def date_decimal_hook(dct):
'''The default JSON decoder hook. It is the inverse of
:class:`stdnet.utils.jsontools.JSONDateDecimalEncoder`.'''
if '__datetime__' in dct:
return todatetime(dct['__datetime__'])
elif '__date__' in dct:
return todatetime(dct['__date__']).date()
elif '__decimal__' in dct:
return Decimal(dct['__decimal__'])
else:
return dct
|
The default JSON decoder hook. It is the inverse of
:class:`stdnet.utils.jsontools.JSONDateDecimalEncoder`.
|
entailment
|
def flat_to_nested(data, instance=None, attname=None,
separator=None, loads=None):
'''Convert a flat representation of a dictionary to
a nested representation. Fields in the flat representation are separated
by the *splitter* parameters.
:parameter data: a flat dictionary of key value pairs.
:parameter instance: optional instance of a model.
:parameter attribute: optional attribute of a model.
:parameter separator: optional separator. Default ``"__"``.
:parameter loads: optional data unserializer.
:rtype: a nested dictionary'''
separator = separator or JSPLITTER
val = {}
flat_vals = {}
for key, value in iteritems(data):
if value is None:
continue
keys = key.split(separator)
# first key equal to the attribute name
if attname:
if keys.pop(0) != attname:
continue
if loads:
value = loads(value)
# if an instance is available, inject the flat attribute
if not keys:
if value is None:
val = flat_vals = {}
break
else:
continue
else:
flat_vals[key] = value
d = val
lk = keys[-1]
for k in keys[:-1]:
if k not in d:
nd = {}
d[k] = nd
else:
nd = d[k]
if not isinstance(nd, dict):
nd = {'': nd}
d[k] = nd
d = nd
if lk not in d:
d[lk] = value
else:
d[lk][''] = value
if instance and flat_vals:
for attr, value in iteritems(flat_vals):
setattr(instance, attr, value)
return val
|
Convert a flat representation of a dictionary to
a nested representation. Fields in the flat representation are separated
by the *splitter* parameters.
:parameter data: a flat dictionary of key value pairs.
:parameter instance: optional instance of a model.
:parameter attribute: optional attribute of a model.
:parameter separator: optional separator. Default ``"__"``.
:parameter loads: optional data unserializer.
:rtype: a nested dictionary
|
entailment
|
def dict_flat_generator(value, attname=None, splitter=JSPLITTER,
dumps=None, prefix=None, error=ValueError,
recursive=True):
'''Convert a nested dictionary into a flat dictionary representation'''
if not isinstance(value, dict) or not recursive:
if not prefix:
raise error('Cannot assign a non dictionary to a JSON field')
else:
name = '%s%s%s' % (attname, splitter,
prefix) if attname else prefix
yield name, dumps(value) if dumps else value
else:
# loop over dictionary
for field in value:
val = value[field]
key = prefix
if field:
key = '%s%s%s' % (prefix, splitter,
field) if prefix else field
for k, v2 in dict_flat_generator(val, attname, splitter, dumps,
key, error, field):
yield k, v2
|
Convert a nested dictionary into a flat dictionary representation
|
entailment
|
def addmul_number_dicts(series):
'''Multiply dictionaries by a numeric values and add them together.
:parameter series: a tuple of two elements tuples. Each serie is of the form::
(weight,dictionary)
where ``weight`` is a number and ``dictionary`` is a dictionary with
numeric values.
:parameter skip: optional list of field names to skip.
Only common fields are aggregated. If a field has a non-numeric value it is
not included either.'''
if not series:
return
vtype = value_type((s[1] for s in series))
if vtype == 1:
return sum((weight*float(d) for weight, d in series))
elif vtype == 3:
keys = set(series[0][1])
for serie in series[1:]:
keys.intersection_update(serie[1])
results = {}
for key in keys:
key_series = tuple((weight, d[key]) for weight, d in series)
result = addmul_number_dicts(key_series)
if result is not None:
results[key] = result
return results
|
Multiply dictionaries by a numeric values and add them together.
:parameter series: a tuple of two elements tuples. Each serie is of the form::
(weight,dictionary)
where ``weight`` is a number and ``dictionary`` is a dictionary with
numeric values.
:parameter skip: optional list of field names to skip.
Only common fields are aggregated. If a field has a non-numeric value it is
not included either.
|
entailment
|
def Download(campaign=0, queue='build', email=None, walltime=8, **kwargs):
'''
Submits a cluster job to the build queue to download all TPFs for a given
campaign.
:param int campaign: The `K2` campaign to run
:param str queue: The name of the queue to submit to. Default `build`
:param str email: The email to send job status notifications to. \
Default `None`
:param int walltime: The number of hours to request. Default `8`
'''
# Figure out the subcampaign
if type(campaign) is int:
subcampaign = -1
elif type(campaign) is float:
x, y = divmod(campaign, 1)
campaign = int(x)
subcampaign = round(y * 10)
# Submit the cluster job
pbsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'download.pbs')
str_w = 'walltime=%d:00:00' % walltime
str_v = 'EVEREST_DAT=%s,CAMPAIGN=%d,SUBCAMPAIGN=%d' % (
EVEREST_DAT, campaign, subcampaign)
if subcampaign == -1:
str_name = 'download_c%02d' % campaign
else:
str_name = 'download_c%02d.%d' % (campaign, subcampaign)
str_out = os.path.join(EVEREST_DAT, 'k2', str_name + '.log')
qsub_args = ['qsub', pbsfile,
'-q', queue,
'-v', str_v,
'-o', str_out,
'-j', 'oe',
'-N', str_name,
'-l', str_w]
if email is not None:
qsub_args.append(['-M', email, '-m', 'ae'])
# Now we submit the job
print("Submitting the job...")
subprocess.call(qsub_args)
|
Submits a cluster job to the build queue to download all TPFs for a given
campaign.
:param int campaign: The `K2` campaign to run
:param str queue: The name of the queue to submit to. Default `build`
:param str email: The email to send job status notifications to. \
Default `None`
:param int walltime: The number of hours to request. Default `8`
|
entailment
|
def _Download(campaign, subcampaign):
'''
Download all stars from a given campaign. This is
called from ``missions/k2/download.pbs``
'''
# Are we doing a subcampaign?
if subcampaign != -1:
campaign = campaign + 0.1 * subcampaign
# Get all star IDs for this campaign
stars = [s[0] for s in GetK2Campaign(campaign)]
nstars = len(stars)
# Download the TPF data for each one
for i, EPIC in enumerate(stars):
print("Downloading data for EPIC %d (%d/%d)..." %
(EPIC, i + 1, nstars))
if not os.path.exists(os.path.join(EVEREST_DAT, 'k2',
'c%02d' % int(campaign),
('%09d' % EPIC)[:4] + '00000',
('%09d' % EPIC)[4:],
'data.npz')):
try:
GetData(EPIC, season=campaign, download_only=True)
except KeyboardInterrupt:
sys.exit()
except:
# Some targets could be corrupted...
print("ERROR downloading EPIC %d." % EPIC)
exctype, value, tb = sys.exc_info()
for line in traceback.format_exception_only(exctype, value):
ln = line.replace('\n', '')
print(ln)
continue
|
Download all stars from a given campaign. This is
called from ``missions/k2/download.pbs``
|
entailment
|
def Run(campaign=0, EPIC=None, nodes=5, ppn=12, walltime=100,
mpn=None, email=None, queue=None, **kwargs):
'''
Submits a cluster job to compute and plot data for all targets
in a given campaign.
:param campaign: The K2 campaign number. If this is an :py:class:`int`, \
returns all targets in that campaign. If a :py:class:`float` \
in the form `X.Y`, runs the `Y^th` decile of campaign `X`.
:param str queue: The queue to submit to. Default `None` (default queue)
:param str email: The email to send job status notifications to. \
Default `None`
:param int walltime: The number of hours to request. Default `100`
:param int nodes: The number of nodes to request. Default `5`
:param int ppn: The number of processors per node to request. Default `12`
:param int mpn: Memory per node in gb to request. Default no setting.
'''
# Figure out the subcampaign
if type(campaign) is int:
subcampaign = -1
elif type(campaign) is float:
x, y = divmod(campaign, 1)
campaign = int(x)
subcampaign = round(y * 10)
# DEV hack: limit backfill jobs to 10 hours
if EVEREST_DEV and (queue == 'bf'):
walltime = min(10, walltime)
# Convert kwargs to string. This is really hacky. Pickle creates an array
# of bytes, which we must convert into a regular string to pass to the pbs
# script and then back into python. Decoding the bytes isn't enough, since
# we have pesky escaped characters such as newlines that don't behave well
# when passing this string around. My braindead hack is to replace newlines
# with '%%%', then undo the replacement when reading the kwargs. This works
# for most cases, but sometimes pickle creates a byte array that can't be
# decoded into utf-8; this happens when trying to pass numpy arrays around,
# for instance. This needs to be fixed in the future, but for now we'll
# restrict the kwargs to be ints, floats, lists, and strings.
try:
strkwargs = pickle.dumps(kwargs, 0).decode(
'utf-8').replace('\n', '%%%')
except UnicodeDecodeError:
raise ValueError('Unable to pickle `kwargs`. Currently the `kwargs` ' +
'values may only be `int`s, `float`s, `string`s, ' +
'`bool`s, or lists of these.')
# Submit the cluster job
pbsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'run.pbs')
if mpn is not None:
str_n = 'nodes=%d:ppn=%d,feature=%dcore,mem=%dgb' % (
nodes, ppn, ppn, mpn * nodes)
else:
str_n = 'nodes=%d:ppn=%d,feature=%dcore' % (nodes, ppn, ppn)
str_w = 'walltime=%d:00:00' % walltime
str_v = "EVEREST_DAT=%s,NODES=%d," % (EVEREST_DAT, nodes) + \
"EPIC=%d," % (0 if EPIC is None else EPIC) + \
"CAMPAIGN=%d,SUBCAMPAIGN=%d,STRKWARGS='%s'" % \
(campaign, subcampaign, strkwargs)
if EPIC is None:
if subcampaign == -1:
str_name = 'c%02d' % campaign
else:
str_name = 'c%02d.%d' % (campaign, subcampaign)
else:
str_name = 'EPIC%d' % EPIC
str_out = os.path.join(EVEREST_DAT, 'k2', str_name + '.log')
qsub_args = ['qsub', pbsfile,
'-v', str_v,
'-o', str_out,
'-j', 'oe',
'-N', str_name,
'-l', str_n,
'-l', str_w]
if email is not None:
qsub_args.append(['-M', email, '-m', 'ae'])
if queue is not None:
qsub_args += ['-q', queue]
# Now we submit the job
print("Submitting the job...")
subprocess.call(qsub_args)
|
Submits a cluster job to compute and plot data for all targets
in a given campaign.
:param campaign: The K2 campaign number. If this is an :py:class:`int`, \
returns all targets in that campaign. If a :py:class:`float` \
in the form `X.Y`, runs the `Y^th` decile of campaign `X`.
:param str queue: The queue to submit to. Default `None` (default queue)
:param str email: The email to send job status notifications to. \
Default `None`
:param int walltime: The number of hours to request. Default `100`
:param int nodes: The number of nodes to request. Default `5`
:param int ppn: The number of processors per node to request. Default `12`
:param int mpn: Memory per node in gb to request. Default no setting.
|
entailment
|
def _Publish(campaign, subcampaign, strkwargs):
'''
The actual function that publishes a given campaign; this must
be called from ``missions/k2/publish.pbs``.
'''
# Get kwargs from string
kwargs = pickle.loads(strkwargs.replace('%%%', '\n').encode('utf-8'))
# Check the cadence
cadence = kwargs.get('cadence', 'lc')
# Model wrapper
m = FunctionWrapper(EverestModel, season=campaign, publish=True, **kwargs)
# Set up our custom exception handler
sys.excepthook = ExceptionHook
# Initialize our multiprocessing pool
with Pool() as pool:
# Are we doing a subcampaign?
if subcampaign != -1:
campaign = campaign + 0.1 * subcampaign
# Get all the stars
stars = GetK2Campaign(campaign, epics_only=True, cadence=cadence)
# Run
pool.map(m, stars)
|
The actual function that publishes a given campaign; this must
be called from ``missions/k2/publish.pbs``.
|
entailment
|
def Status(season=range(18), model='nPLD', purge=False, injection=False,
cadence='lc', **kwargs):
'''
Shows the progress of the de-trending runs for the specified campaign(s).
'''
# Mission compatibility
campaign = season
# Injection?
if injection:
return InjectionStatus(campaign=campaign, model=model,
purge=purge, **kwargs)
# Cadence
if cadence == 'sc':
model = '%s.sc' % model
if not hasattr(campaign, '__len__'):
if type(campaign) is int:
# Return the subcampaigns
all_stars = [s for s in GetK2Campaign(
campaign, split=True, epics_only=True, cadence=cadence)]
campaign = [campaign + 0.1 * n for n in range(10)]
else:
all_stars = [[s for s in GetK2Campaign(
campaign, epics_only=True, cadence=cadence)]]
campaign = [campaign]
else:
all_stars = [[s for s in GetK2Campaign(
c, epics_only=True, cadence=cadence)] for c in campaign]
print("CAMP TOTAL DOWNLOADED PROCESSED FITS ERRORS")
print("---- ----- ---------- --------- ---- ------")
for c, stars in zip(campaign, all_stars):
if len(stars) == 0:
continue
down = 0
proc = 0
err = 0
fits = 0
bad = []
remain = []
total = len(stars)
if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)):
path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)
for folder in [f for f in os.listdir(path) if f.endswith('00000')]:
for subfolder in os.listdir(os.path.join(path, folder)):
ID = int(folder[:4] + subfolder)
if ID in stars:
if os.path.exists(os.path.join(EVEREST_DAT,
'k2', 'c%02d' % c,
folder,
subfolder, 'data.npz')):
down += 1
if os.path.exists(os.path.join(EVEREST_DAT, 'k2',
'c%02d' % c, folder,
subfolder, FITSFile(
ID, c,
cadence=cadence))):
fits += 1
if os.path.exists(os.path.join(EVEREST_DAT, 'k2',
'c%02d' % c, folder,
subfolder,
model + '.npz')):
proc += 1
elif os.path.exists(os.path.join(EVEREST_DAT, 'k2',
'c%02d' % c, folder,
subfolder,
model + '.err')):
err += 1
bad.append(folder[:4] + subfolder)
if purge:
os.remove(os.path.join(
EVEREST_DAT, 'k2', 'c%02d' % c,
folder, subfolder, model + '.err'))
else:
remain.append(folder[:4] + subfolder)
if proc == total:
cc = ct = cp = ce = GREEN
cd = BLACK if down < total else GREEN
else:
cc = BLACK
ct = BLACK
cd = BLACK if down < total else BLUE
cp = BLACK if proc < down or proc == 0 else BLUE
ce = RED if err > 0 else BLACK
cf = BLACK if fits < total else GREEN
if type(c) is int:
print("%s{:>4d} \033[0m%s{:>8d}\033[0m%s{:>16d}\033[0m%s{:>13d}\033[0m%s{:>10d}\033[0m%s{:>10d}\033[0m".format(c, total, down, proc, fits, err)
% (cc, ct, cd, cp, cf, ce))
else:
print("%s{:>4.1f} \033[0m%s{:>8d}\033[0m%s{:>16d}\033[0m%s{:>13d}\033[0m%s{:>10d}\033[0m%s{:>10d}\033[0m".format(c, total, down, proc, fits, err)
% (cc, ct, cd, cp, cf, ce))
if len(remain) <= 25 and len(remain) > 0 and len(campaign) == 1:
remain.extend([" "] * (4 - (len(remain) % 4)))
print()
for A, B, C, D in zip(remain[::4], remain[1::4],
remain[2::4], remain[3::4]):
if A == remain[0]:
print("REMAIN: %s %s %s %s" % (A, B, C, D))
print()
else:
print(" %s %s %s %s" % (A, B, C, D))
print()
if len(bad) and len(campaign) == 1:
bad.extend([" "] * (4 - (len(bad) % 4)))
print()
for A, B, C, D in zip(bad[::4], bad[1::4], bad[2::4], bad[3::4]):
if A == bad[0]:
print("ERRORS: %s %s %s %s" % (A, B, C, D))
print()
else:
print(" %s %s %s %s" % (A, B, C, D))
print()
|
Shows the progress of the de-trending runs for the specified campaign(s).
|
entailment
|
def InjectionStatus(campaign=range(18), model='nPLD', purge=False,
depths=[0.01, 0.001, 0.0001], **kwargs):
'''
Shows the progress of the injection de-trending runs for
the specified campaign(s).
'''
if not hasattr(campaign, '__len__'):
if type(campaign) is int:
# Return the subcampaigns
all_stars = [s for s in GetK2Campaign(
campaign, split=True, epics_only=True)]
campaign = [campaign + 0.1 * n for n in range(10)]
else:
all_stars = [[s for s in GetK2Campaign(campaign, epics_only=True)]]
campaign = [campaign]
else:
all_stars = [[s for s in GetK2Campaign(
c, epics_only=True)] for c in campaign]
print("CAMP MASK DEPTH TOTAL DONE ERRORS")
print("---- ---- ----- ----- ---- ------")
for c, stars in zip(campaign, all_stars):
if len(stars) == 0:
continue
done = [[0 for d in depths], [0 for d in depths]]
err = [[0 for d in depths], [0 for d in depths]]
total = len(stars)
if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)):
path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)
for folder in os.listdir(path):
for subfolder in os.listdir(os.path.join(path, folder)):
ID = int(folder[:4] + subfolder)
for m, mask in enumerate(['U', 'M']):
for d, depth in enumerate(depths):
if os.path.exists(
os.path.join(
EVEREST_DAT, 'k2', 'c%02d' % c, folder,
subfolder, '%s_Inject_%s%g.npz' %
(model, mask, depth))):
done[m][d] += 1
elif os.path.exists(
os.path.join(
EVEREST_DAT, 'k2', 'c%02d' % c, folder,
subfolder, '%s_Inject_%s%g.err' %
(model, mask, depth))):
err[m][d] += 1
for d, depth in enumerate(depths):
for m, mask in enumerate(['F', 'T']):
if done[m][d] == total:
color = GREEN
else:
color = BLACK
if err[m][d] > 0:
errcolor = RED
else:
errcolor = ''
if type(c) is int:
print("%s{:>4d}{:>8s}{:>14g}{:>10d}{:>10d}%s{:>9d}\033[0m".format(
c, mask, depth, total, done[m][d], err[m][d]) % (color, errcolor))
else:
print("%s{:>4.1f}{:>8s}{:>14g}{:>10d}{:>10d}%s{:>9d}\033[0m".format(
c, mask, depth, total, done[m][d], err[m][d]) % (color, errcolor))
|
Shows the progress of the injection de-trending runs for
the specified campaign(s).
|
entailment
|
def EverestModel(ID, model='nPLD', publish=False, csv=False, **kwargs):
'''
A wrapper around an :py:obj:`everest` model for PBS runs.
'''
if model != 'Inject':
from ... import detrender
# HACK: We need to explicitly mask short cadence planets
if kwargs.get('cadence', 'lc') == 'sc':
EPIC, t0, period, duration = \
np.loadtxt(os.path.join(EVEREST_SRC, 'missions', 'k2',
'tables', 'scmasks.tsv'), unpack=True)
if ID in EPIC and kwargs.get('planets', None) is None:
ii = np.where(EPIC == ID)[0]
planets = []
for i in ii:
planets.append([t0[i], period[i], 1.25 * duration[i]])
kwargs.update({'planets': planets})
# Run the model
m = getattr(detrender, model)(ID, **kwargs)
# Publish?
if publish:
if csv:
m.publish_csv()
else:
m.publish()
else:
from ...inject import Inject
Inject(ID, **kwargs)
return True
|
A wrapper around an :py:obj:`everest` model for PBS runs.
|
entailment
|
def PrimaryHDU(model):
'''
Construct the primary HDU file containing basic header info.
'''
# Get mission cards
cards = model._mission.HDUCards(model.meta, hdu=0)
if 'KEPMAG' not in [c[0] for c in cards]:
cards.append(('KEPMAG', model.mag, 'Kepler magnitude'))
# Add EVEREST info
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
# Create the HDU
header = pyfits.Header(cards=cards)
hdu = pyfits.PrimaryHDU(header=header)
return hdu
|
Construct the primary HDU file containing basic header info.
|
entailment
|
def LightcurveHDU(model):
'''
Construct the data HDU file containing the arrays and the observing info.
'''
# Get mission cards
cards = model._mission.HDUCards(model.meta, hdu=1)
# Add EVEREST info
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
cards.append(('MODEL', model.name, 'Name of EVEREST model used'))
cards.append(('APNAME', model.aperture_name, 'Name of aperture used'))
cards.append(('BPAD', model.bpad, 'Chunk overlap in cadences'))
for c in range(len(model.breakpoints)):
cards.append(
('BRKPT%02d' % (c + 1), model.breakpoints[c],
'Light curve breakpoint'))
cards.append(('CBVNUM', model.cbv_num, 'Number of CBV signals to recover'))
cards.append(('CBVNITER', model.cbv_niter,
'Number of CBV SysRem iterations'))
cards.append(('CBVWIN', model.cbv_win, 'Window size for smoothing CBVs'))
cards.append(('CBVORD', model.cbv_order, 'Order when smoothing CBVs'))
cards.append(('CDIVS', model.cdivs, 'Cross-validation subdivisions'))
cards.append(('CDPP', model.cdpp, 'Average de-trended CDPP'))
cards.append(('CDPPR', model.cdppr, 'Raw CDPP'))
cards.append(('CDPPV', model.cdppv, 'Average validation CDPP'))
cards.append(('CDPPG', model.cdppg, 'Average GP-de-trended CDPP'))
for i in range(99):
try:
cards.append(('CDPP%02d' % (i + 1),
model.cdpp_arr[i] if not np.isnan(
model.cdpp_arr[i]) else 0, 'Chunk de-trended CDPP'))
cards.append(('CDPPR%02d' % (
i + 1), model.cdppr_arr[i] if not np.isnan(
model.cdppr_arr[i]) else 0, 'Chunk raw CDPP'))
cards.append(('CDPPV%02d' % (i + 1),
model.cdppv_arr[i] if not np.isnan(
model.cdppv_arr[i]) else 0, 'Chunk validation CDPP'))
except:
break
cards.append(
('CVMIN', model.cv_min, 'Cross-validation objective function'))
cards.append(
('GITER', model.giter, 'Number of GP optimiziation iterations'))
cards.append(
('GMAXF', model.giter, 'Max number of GP function evaluations'))
cards.append(('GPFACTOR', model.gp_factor,
'GP amplitude initialization factor'))
cards.append(('KERNEL', model.kernel, 'GP kernel name'))
if model.kernel == 'Basic':
cards.append(
('GPWHITE', model.kernel_params[0],
'GP white noise amplitude (e-/s)'))
cards.append(
('GPRED', model.kernel_params[1],
'GP red noise amplitude (e-/s)'))
cards.append(
('GPTAU', model.kernel_params[2],
'GP red noise timescale (days)'))
elif model.kernel == 'QuasiPeriodic':
cards.append(
('GPWHITE', model.kernel_params[0],
'GP white noise amplitude (e-/s)'))
cards.append(
('GPRED', model.kernel_params[1], 'GP red noise amplitude (e-/s)'))
cards.append(('GPGAMMA', model.kernel_params[2], 'GP scale factor'))
cards.append(('GPPER', model.kernel_params[3], 'GP period (days)'))
for c in range(len(model.breakpoints)):
for o in range(model.pld_order):
cards.append(('LAMB%02d%02d' % (c + 1, o + 1),
model.lam[c][o], 'Cross-validation parameter'))
if model.name == 'iPLD':
cards.append(('RECL%02d%02d' % (c + 1, o + 1),
model.reclam[c][o],
'Cross-validation parameter'))
cards.append(('LEPS', model.leps, 'Cross-validation tolerance'))
cards.append(('MAXPIX', model.max_pixels, 'Maximum size of TPF aperture'))
for i, source in enumerate(model.nearby[:99]):
cards.append(('NRBY%02dID' %
(i + 1), source['ID'], 'Nearby source ID'))
cards.append(
('NRBY%02dX' % (i + 1), source['x'], 'Nearby source X position'))
cards.append(
('NRBY%02dY' % (i + 1), source['y'], 'Nearby source Y position'))
cards.append(
('NRBY%02dM' % (i + 1), source['mag'], 'Nearby source magnitude'))
cards.append(('NRBY%02dX0' %
(i + 1), source['x0'], 'Nearby source reference X'))
cards.append(('NRBY%02dY0' %
(i + 1), source['y0'], 'Nearby source reference Y'))
for i, n in enumerate(model.neighbors):
cards.append(
('NEIGH%02d' % i, model.neighbors[i],
'Neighboring star used to de-trend'))
cards.append(('OITER', model.oiter, 'Number of outlier search iterations'))
cards.append(('OPTGP', model.optimize_gp, 'GP optimization performed?'))
cards.append(
('OSIGMA', model.osigma, 'Outlier tolerance (standard deviations)'))
for i, planet in enumerate(model.planets):
cards.append(
('P%02dT0' % (i + 1), planet[0], 'Planet transit time (days)'))
cards.append(
('P%02dPER' % (i + 1), planet[1], 'Planet transit period (days)'))
cards.append(
('P%02dDUR' % (i + 1), planet[2],
'Planet transit duration (days)'))
cards.append(('PLDORDER', model.pld_order, 'PLD de-trending order'))
cards.append(('SATUR', model.saturated, 'Is target saturated?'))
cards.append(('SATTOL', model.saturation_tolerance,
'Fractional saturation tolerance'))
# Add the EVEREST quality flags to the QUALITY array
quality = np.array(model.quality)
quality[np.array(model.badmask, dtype=int)] += 2 ** (QUALITY_BAD - 1)
quality[np.array(model.nanmask, dtype=int)] += 2 ** (QUALITY_NAN - 1)
quality[np.array(model.outmask, dtype=int)] += 2 ** (QUALITY_OUT - 1)
quality[np.array(model.recmask, dtype=int)] += 2 ** (QUALITY_REC - 1)
quality[np.array(model.transitmask, dtype=int)] += 2 ** (QUALITY_TRN - 1)
# When de-trending, we interpolated to fill in NaN fluxes. Here
# we insert the NaNs back in, since there's no actual physical
# information at those cadences.
flux = np.array(model.flux)
flux[model.nanmask] = np.nan
# Create the arrays list
arrays = [pyfits.Column(name='CADN', format='D', array=model.cadn),
pyfits.Column(name='FLUX', format='D', array=flux, unit='e-/s'),
pyfits.Column(name='FRAW', format='D',
array=model.fraw, unit='e-/s'),
pyfits.Column(name='FRAW_ERR', format='D',
array=model.fraw_err, unit='e-/s'),
pyfits.Column(name='QUALITY', format='J', array=quality),
pyfits.Column(name='TIME', format='D',
array=model.time, unit='BJD - 2454833')]
# Add the CBVs
if model.fcor is not None:
arrays += [pyfits.Column(name='FCOR', format='D',
array=model.fcor, unit='e-/s')]
for n in range(model.XCBV.shape[1]):
arrays += [pyfits.Column(name='CBV%02d' %
(n + 1), format='D',
array=model.XCBV[:, n])]
# Did we subtract a background term?
if hasattr(model.bkg, '__len__'):
arrays.append(pyfits.Column(name='BKG', format='D',
array=model.bkg, unit='e-/s'))
# Create the HDU
header = pyfits.Header(cards=cards)
cols = pyfits.ColDefs(arrays)
hdu = pyfits.BinTableHDU.from_columns(cols, header=header, name='ARRAYS')
return hdu
|
Construct the data HDU file containing the arrays and the observing info.
|
entailment
|
def PixelsHDU(model):
'''
Construct the HDU containing the pixel-level light curve.
'''
# Get mission cards
cards = model._mission.HDUCards(model.meta, hdu=2)
# Add EVEREST info
cards = []
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
# Create the HDU
header = pyfits.Header(cards=cards)
# The pixel timeseries
arrays = [pyfits.Column(name='FPIX', format='%dD' %
model.fpix.shape[1], array=model.fpix)]
# The first order PLD vectors for all the neighbors (npixels, ncadences)
X1N = model.X1N
if X1N is not None:
arrays.append(pyfits.Column(name='X1N', format='%dD' %
X1N.shape[1], array=X1N))
cols = pyfits.ColDefs(arrays)
hdu = pyfits.BinTableHDU.from_columns(cols, header=header, name='PIXELS')
return hdu
|
Construct the HDU containing the pixel-level light curve.
|
entailment
|
def ApertureHDU(model):
'''
Construct the HDU containing the aperture used to de-trend.
'''
# Get mission cards
cards = model._mission.HDUCards(model.meta, hdu=3)
# Add EVEREST info
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
# Create the HDU
header = pyfits.Header(cards=cards)
hdu = pyfits.ImageHDU(data=model.aperture,
header=header, name='APERTURE MASK')
return hdu
|
Construct the HDU containing the aperture used to de-trend.
|
entailment
|
def ImagesHDU(model):
'''
Construct the HDU containing sample postage stamp images of the target.
'''
# Get mission cards
cards = model._mission.HDUCards(model.meta, hdu=4)
# Add EVEREST info
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
# The images
format = '%dD' % model.pixel_images[0].shape[1]
arrays = [pyfits.Column(name='STAMP1', format=format,
array=model.pixel_images[0]),
pyfits.Column(name='STAMP2', format=format,
array=model.pixel_images[1]),
pyfits.Column(name='STAMP3', format=format,
array=model.pixel_images[2])]
# Create the HDU
header = pyfits.Header(cards=cards)
cols = pyfits.ColDefs(arrays)
hdu = pyfits.BinTableHDU.from_columns(
cols, header=header, name='POSTAGE STAMPS')
return hdu
|
Construct the HDU containing sample postage stamp images of the target.
|
entailment
|
def HiResHDU(model):
'''
Construct the HDU containing the hi res image of the target.
'''
# Get mission cards
cards = model._mission.HDUCards(model.meta, hdu=5)
# Add EVEREST info
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
# Create the HDU
header = pyfits.Header(cards=cards)
if model.hires is not None:
hdu = pyfits.ImageHDU(
data=model.hires, header=header, name='HI RES IMAGE')
else:
hdu = pyfits.ImageHDU(data=np.empty(
(0, 0), dtype=float), header=header, name='HI RES IMAGE')
return hdu
|
Construct the HDU containing the hi res image of the target.
|
entailment
|
def MakeFITS(model, fitsfile=None):
'''
Generate a FITS file for a given :py:mod:`everest` run.
:param model: An :py:mod:`everest` model instance
'''
# Get the fits file name
if fitsfile is None:
outfile = os.path.join(model.dir, model._mission.FITSFile(
model.ID, model.season, model.cadence))
else:
outfile = os.path.join(model.dir, fitsfile)
if os.path.exists(outfile) and not model.clobber:
return
elif os.path.exists(outfile):
os.remove(outfile)
log.info('Generating FITS file...')
# Create the HDUs
primary = PrimaryHDU(model)
lightcurve = LightcurveHDU(model)
pixels = PixelsHDU(model)
aperture = ApertureHDU(model)
images = ImagesHDU(model)
hires = HiResHDU(model)
# Combine to get the HDUList
hdulist = pyfits.HDUList(
[primary, lightcurve, pixels, aperture, images, hires])
# Output to the FITS file
hdulist.writeto(outfile)
return
|
Generate a FITS file for a given :py:mod:`everest` run.
:param model: An :py:mod:`everest` model instance
|
entailment
|
def get_serializer(name, **options):
'''Retrieve a serializer register as *name*. If the serializer is not
available a ``ValueError`` exception will raise.
A common usage pattern::
qs = MyModel.objects.query().sort_by('id')
s = odm.get_serializer('json')
s.dump(qs)
'''
if name in _serializers:
serializer = _serializers[name]
return serializer(**options)
else:
raise ValueError('Unknown serializer {0}.'.format(name))
|
Retrieve a serializer register as *name*. If the serializer is not
available a ``ValueError`` exception will raise.
A common usage pattern::
qs = MyModel.objects.query().sort_by('id')
s = odm.get_serializer('json')
s.dump(qs)
|
entailment
|
def register_serializer(name, serializer):
'''\
Register a new serializer to the library.
:parameter name: serializer name (it can override existing serializers).
:parameter serializer: an instance or a derived class of a
:class:`stdnet.odm.Serializer` class or a callable.
'''
if not isclass(serializer):
serializer = serializer.__class__
_serializers[name] = serializer
|
\
Register a new serializer to the library.
:parameter name: serializer name (it can override existing serializers).
:parameter serializer: an instance or a derived class of a
:class:`stdnet.odm.Serializer` class or a callable.
|
entailment
|
def MaskSolve(A, b, w=5, progress=True, niter=None):
'''
Finds the solution `x` to the linear problem
A x = b
for all contiguous `w`-sized masks applied to
the rows and columns of `A` and to the entries
of `b`.
Returns an array `X` of shape `(N - w + 1, N - w)`,
where the `nth` row is the solution to the equation
A[![n,n+w)] x = b[![n,n+w)]
where ![n,n+w) indicates that indices in the range
[n,n+w) have been masked.
'''
# Ensure we have choldate installed
if cholupdate is None:
log.info("Running the slow version of `MaskSolve`.")
log.info("Install the `choldate` package for better performance.")
log.info("https://github.com/rodluger/choldate")
return MaskSolveSlow(A, b, w=w, progress=progress, niter=niter)
# Number of data points
N = b.shape[0]
# How many iterations? Default is to go through
# the entire dataset
if niter is None:
niter = N - w + 1
# Our result matrix
X = np.empty((niter, N - w))
# Solve the first two steps explicitly.
for n in range(2):
mask = np.arange(n, w + n)
A_ = np.delete(np.delete(A, mask, axis=0), mask, axis=1)
b_ = np.delete(b, mask)
U = cholesky(A_)
X[n] = cho_solve((U, False), b_)
# Iterate!
for n in prange(1, niter - 1):
# Update the data vector.
b_[n] = b[n]
# Remove a row.
S33 = U[n + 1:, n + 1:]
S23 = U[n, n + 1:]
cholupdate(S33, S23)
# Add a row.
A12 = A[:n, n]
A22 = A[n, n]
A23 = A[n, n + w + 1:]
S11 = U[:n, :n]
S12 = solve_triangular(S11.T, A12, lower=True,
check_finite=False, trans=0, overwrite_b=True)
S22 = np.sqrt(A22 - np.dot(S12.T, S12))
S13 = U[:n, n + 1:]
S23 = (A23 - np.dot(S12.T, S13)) / S22
choldowndate(S33, np.array(S23))
U[:n, n] = S12
U[n, n] = S22
U[n, n + 1:] = S23
U[n + 1:, n + 1:] = S33
# Now we can solve our linear equation
X[n + 1] = cho_solve((U, False), b_)
# Return the matrix
return X
|
Finds the solution `x` to the linear problem
A x = b
for all contiguous `w`-sized masks applied to
the rows and columns of `A` and to the entries
of `b`.
Returns an array `X` of shape `(N - w + 1, N - w)`,
where the `nth` row is the solution to the equation
A[![n,n+w)] x = b[![n,n+w)]
where ![n,n+w) indicates that indices in the range
[n,n+w) have been masked.
|
entailment
|
def MaskSolveSlow(A, b, w=5, progress=True, niter=None):
'''
Identical to `MaskSolve`, but computes the solution
the brute-force way.
'''
# Number of data points
N = b.shape[0]
# How many iterations? Default is to go through
# the entire dataset
if niter is None:
niter = N - w + 1
# Our result matrix
X = np.empty((niter, N - w))
# Iterate! The mask at step `n` goes from
# data index `n` to data index `n+w-1` (inclusive).
for n in prange(niter):
mask = np.arange(n, n + w)
An = np.delete(np.delete(A, mask, axis=0), mask, axis=1)
Un = cholesky(An)
bn = np.delete(b, mask)
X[n] = cho_solve((Un, False), bn)
return X
|
Identical to `MaskSolve`, but computes the solution
the brute-force way.
|
entailment
|
def unmasked(self, depth=0.01):
"""Return the unmasked overfitting metric for a given transit depth."""
return 1 - (np.hstack(self._O2) +
np.hstack(self._O3) / depth) / np.hstack(self._O1)
|
Return the unmasked overfitting metric for a given transit depth.
|
entailment
|
def show(self):
"""Show the overfitting PDF summary."""
try:
if platform.system().lower().startswith('darwin'):
subprocess.call(['open', self.pdf])
elif os.name == 'nt':
os.startfile(self.pdf)
elif os.name == 'posix':
subprocess.call(['xdg-open', self.pdf])
else:
raise IOError("")
except IOError:
log.info("Unable to open the pdf. Try opening it manually:")
log.info(self.pdf)
|
Show the overfitting PDF summary.
|
entailment
|
def season(self):
"""
Return the current observing season.
For *K2*, this is the observing campaign, while for *Kepler*,
it is the current quarter.
"""
try:
self._season
except AttributeError:
self._season = self._mission.Season(self.ID)
if hasattr(self._season, '__len__'):
raise AttributeError(
"Please choose a campaign/season for this target: %s." %
self._season)
return self._season
|
Return the current observing season.
For *K2*, this is the observing campaign, while for *Kepler*,
it is the current quarter.
|
entailment
|
def fcor(self):
'''
The CBV-corrected de-trended flux.
'''
if self.XCBV is None:
return None
else:
return self.flux - self._mission.FitCBVs(self)
|
The CBV-corrected de-trended flux.
|
entailment
|
def mask(self):
'''
The array of indices to be masked. This is the union of the sets of
outliers, bad (flagged) cadences, transit cadences, and :py:obj:`NaN`
cadences.
'''
return np.array(list(set(np.concatenate([self.outmask, self.badmask,
self.transitmask, self.nanmask]))), dtype=int)
|
The array of indices to be masked. This is the union of the sets of
outliers, bad (flagged) cadences, transit cadences, and :py:obj:`NaN`
cadences.
|
entailment
|
def X(self, i, j=slice(None, None, None)):
'''
Computes the design matrix at the given *PLD* order and the given
indices. The columns are the *PLD* vectors for the target at the
corresponding order, computed as the product of the fractional pixel
flux of all sets of :py:obj:`n` pixels, where :py:obj:`n` is the *PLD*
order.
'''
X1 = self.fpix[j] / self.norm[j].reshape(-1, 1)
X = np.product(list(multichoose(X1.T, i + 1)), axis=1).T
if self.X1N is not None:
return np.hstack([X, self.X1N[j] ** (i + 1)])
else:
return X
|
Computes the design matrix at the given *PLD* order and the given
indices. The columns are the *PLD* vectors for the target at the
corresponding order, computed as the product of the fractional pixel
flux of all sets of :py:obj:`n` pixels, where :py:obj:`n` is the *PLD*
order.
|
entailment
|
def plot_info(self, dvs):
'''
Plots miscellaneous de-trending information on the data
validation summary figure.
:param dvs: A :py:class:`dvs.DVS` figure instance
'''
axl, axc, axr = dvs.title()
axc.annotate("%s %d" % (self._mission.IDSTRING, self.ID),
xy=(0.5, 0.5), xycoords='axes fraction',
ha='center', va='center', fontsize=18)
axc.annotate(r"%.2f ppm $\rightarrow$ %.2f ppm" %
(self.cdppr, self.cdpp),
xy=(0.5, 0.2), xycoords='axes fraction',
ha='center', va='center', fontsize=8, color='k',
fontstyle='italic')
axl.annotate("%s %s%02d: %s" %
(self.mission.upper(),
self._mission.SEASONCHAR, self.season, self.name),
xy=(0.5, 0.5), xycoords='axes fraction',
ha='center', va='center', fontsize=12,
color='k')
axl.annotate(self.aperture_name if len(self.neighbors) == 0
else "%s, %d neighbors" %
(self.aperture_name, len(self.neighbors)),
xy=(0.5, 0.2), xycoords='axes fraction',
ha='center', va='center', fontsize=8, color='k',
fontstyle='italic')
axr.annotate("%s %.3f" % (self._mission.MAGSTRING, self.mag),
xy=(0.5, 0.5), xycoords='axes fraction',
ha='center', va='center', fontsize=12,
color='k')
if not np.isnan(self.cdppg) and self.cdppg > 0:
axr.annotate(r"GP %.3f ppm" % (self.cdppg),
xy=(0.5, 0.2), xycoords='axes fraction',
ha='center', va='center', fontsize=8, color='k',
fontstyle='italic')
|
Plots miscellaneous de-trending information on the data
validation summary figure.
:param dvs: A :py:class:`dvs.DVS` figure instance
|
entailment
|
def compute(self):
'''
Compute the model for the current value of lambda.
'''
# Is there a transit model?
if self.transit_model is not None:
return self.compute_joint()
log.info('Computing the model...')
# Loop over all chunks
model = [None for b in self.breakpoints]
for b, brkpt in enumerate(self.breakpoints):
# Masks for current chunk
m = self.get_masked_chunk(b)
c = self.get_chunk(b)
# This block of the masked covariance matrix
mK = GetCovariance(self.kernel, self.kernel_params,
self.time[m], self.fraw_err[m])
# Get median
med = np.nanmedian(self.fraw[m])
# Normalize the flux
f = self.fraw[m] - med
# The X^2 matrices
A = np.zeros((len(m), len(m)))
B = np.zeros((len(c), len(m)))
# Loop over all orders
for n in range(self.pld_order):
# Only compute up to the current PLD order
if (self.lam_idx >= n) and (self.lam[b][n] is not None):
XM = self.X(n, m)
XC = self.X(n, c)
A += self.lam[b][n] * np.dot(XM, XM.T)
B += self.lam[b][n] * np.dot(XC, XM.T)
del XM, XC
# Compute the model
W = np.linalg.solve(mK + A, f)
model[b] = np.dot(B, W)
# Free up some memory
del A, B, W
# Join the chunks after applying the correct offset
if len(model) > 1:
# First chunk
self.model = model[0][:-self.bpad]
# Center chunks
for m in model[1:-1]:
# Join the chunks at the first non-outlier cadence
i = 1
while len(self.model) - i in self.mask:
i += 1
offset = self.model[-i] - m[self.bpad - i]
self.model = np.concatenate(
[self.model, m[self.bpad:-self.bpad] + offset])
# Last chunk
i = 1
while len(self.model) - i in self.mask:
i += 1
offset = self.model[-i] - model[-1][self.bpad - i]
self.model = np.concatenate(
[self.model, model[-1][self.bpad:] + offset])
else:
self.model = model[0]
# Subtract the global median
self.model -= np.nanmedian(self.model)
# Get the CDPP and reset the weights
self.cdpp_arr = self.get_cdpp_arr()
self.cdpp = self.get_cdpp()
self._weights = None
|
Compute the model for the current value of lambda.
|
entailment
|
def compute_joint(self):
'''
Compute the model in a single step, allowing for a light curve-wide
transit model. This is a bit more expensive to compute.
'''
# Init
log.info('Computing the joint model...')
A = [None for b in self.breakpoints]
B = [None for b in self.breakpoints]
# We need to make sure that we're not masking the transits we are
# trying to fit!
# NOTE: If there happens to be an index that *SHOULD* be masked during
# a transit (cosmic ray, detector anomaly), update `self.badmask`
# to include that index.
# Bad data points are *never* used in the regression.
if self.transit_model is not None:
outmask = np.array(self.outmask)
transitmask = np.array(self.transitmask)
transit_inds = np.where(
np.sum([tm(self.time) for tm in self.transit_model],
axis=0) < 0)[0]
self.outmask = np.array(
[i for i in self.outmask if i not in transit_inds])
self.transitmask = np.array(
[i for i in self.transitmask if i not in transit_inds])
# Loop over all chunks
for b, brkpt in enumerate(self.breakpoints):
# Masks for current chunk
m = self.get_masked_chunk(b, pad=False)
c = self.get_chunk(b, pad=False)
# The X^2 matrices
A[b] = np.zeros((len(m), len(m)))
B[b] = np.zeros((len(c), len(m)))
# Loop over all orders
for n in range(self.pld_order):
# Only compute up to the current PLD order
if (self.lam_idx >= n) and (self.lam[b][n] is not None):
XM = self.X(n, m)
XC = self.X(n, c)
A[b] += self.lam[b][n] * np.dot(XM, XM.T)
B[b] += self.lam[b][n] * np.dot(XC, XM.T)
del XM, XC
# Merge chunks. BIGA and BIGB are sparse, but unfortunately
# scipy.sparse doesn't handle sparse matrix inversion all that
# well when the *result* is not itself sparse. So we're sticking
# with regular np.linalg.
BIGA = block_diag(*A)
del A
BIGB = block_diag(*B)
del B
# Compute the full covariance matrix
mK = GetCovariance(self.kernel, self.kernel_params, self.apply_mask(
self.time), self.apply_mask(self.fraw_err))
# The normalized, masked flux array
f = self.apply_mask(self.fraw)
med = np.nanmedian(f)
f -= med
# Are we computing a joint transit model?
if self.transit_model is not None:
# Get the unmasked indices
m = self.apply_mask()
# Subtract off the mean total transit model
mean_transit_model = med * \
np.sum([tm.depth * tm(self.time[m])
for tm in self.transit_model], axis=0)
f -= mean_transit_model
# Now add each transit model to the matrix of regressors
for tm in self.transit_model:
XM = tm(self.time[m]).reshape(-1, 1)
XC = tm(self.time).reshape(-1, 1)
BIGA += med ** 2 * tm.var_depth * np.dot(XM, XM.T)
BIGB += med ** 2 * tm.var_depth * np.dot(XC, XM.T)
del XM, XC
# Dot the inverse of the covariance matrix
W = np.linalg.solve(mK + BIGA, f)
self.model = np.dot(BIGB, W)
# Compute the transit weights and maximum likelihood transit model
w_trn = med ** 2 * np.concatenate([tm.var_depth * np.dot(
tm(self.time[m]).reshape(1, -1), W)
for tm in self.transit_model])
self.transit_depth = np.array(
[med * tm.depth + w_trn[i] for i, tm in
enumerate(self.transit_model)]) / med
# Remove the transit prediction from the model
self.model -= np.dot(np.hstack([tm(self.time).reshape(-1, 1)
for tm in self.transit_model]),
w_trn)
else:
# No transit model to worry about
W = np.linalg.solve(mK + BIGA, f)
self.model = np.dot(BIGB, W)
# Subtract the global median
self.model -= np.nanmedian(self.model)
# Restore the mask
if self.transit_model is not None:
self.outmask = outmask
self.transitmask = transitmask
# Get the CDPP and reset the weights
self.cdpp_arr = self.get_cdpp_arr()
self.cdpp = self.get_cdpp()
self._weights = None
|
Compute the model in a single step, allowing for a light curve-wide
transit model. This is a bit more expensive to compute.
|
entailment
|
def apply_mask(self, x=None):
'''
Returns the outlier mask, an array of indices corresponding to the
non-outliers.
:param numpy.ndarray x: If specified, returns the masked version of \
:py:obj:`x` instead. Default :py:obj:`None`
'''
if x is None:
return np.delete(np.arange(len(self.time)), self.mask)
else:
return np.delete(x, self.mask, axis=0)
|
Returns the outlier mask, an array of indices corresponding to the
non-outliers.
:param numpy.ndarray x: If specified, returns the masked version of \
:py:obj:`x` instead. Default :py:obj:`None`
|
entailment
|
def get_chunk(self, b, x=None, pad=True):
'''
Returns the indices corresponding to a given light curve chunk.
:param int b: The index of the chunk to return
:param numpy.ndarray x: If specified, applies the mask to array \
:py:obj:`x`. Default :py:obj:`None`
'''
M = np.arange(len(self.time))
if b > 0:
res = M[(M > self.breakpoints[b - 1] - int(pad) * self.bpad)
& (M <= self.breakpoints[b] + int(pad) * self.bpad)]
else:
res = M[M <= self.breakpoints[b] + int(pad) * self.bpad]
if x is None:
return res
else:
return x[res]
|
Returns the indices corresponding to a given light curve chunk.
:param int b: The index of the chunk to return
:param numpy.ndarray x: If specified, applies the mask to array \
:py:obj:`x`. Default :py:obj:`None`
|
entailment
|
def get_weights(self):
'''
Computes the PLD weights vector :py:obj:`w`.
..warning :: Deprecated and not thoroughly tested.
'''
log.info("Computing PLD weights...")
# Loop over all chunks
weights = [None for i in range(len(self.breakpoints))]
for b, brkpt in enumerate(self.breakpoints):
# Masks for current chunk
m = self.get_masked_chunk(b)
c = self.get_chunk(b)
# This block of the masked covariance matrix
_mK = GetCovariance(self.kernel, self.kernel_params,
self.time[m], self.fraw_err[m])
# This chunk of the normalized flux
f = self.fraw[m] - np.nanmedian(self.fraw)
# Loop over all orders
_A = [None for i in range(self.pld_order)]
for n in range(self.pld_order):
if self.lam_idx >= n:
X = self.X(n, m)
_A[n] = np.dot(X, X.T)
del X
# Compute the weights
A = np.sum([l * a for l, a in zip(self.lam[b], _A)
if l is not None], axis=0)
W = np.linalg.solve(_mK + A, f)
weights[b] = [l * np.dot(self.X(n, m).T, W)
for n, l in enumerate(self.lam[b]) if l is not None]
self._weights = weights
|
Computes the PLD weights vector :py:obj:`w`.
..warning :: Deprecated and not thoroughly tested.
|
entailment
|
def get_cdpp_arr(self, flux=None):
'''
Returns the CDPP value in *ppm* for each of the
chunks in the light curve.
'''
if flux is None:
flux = self.flux
return np.array([self._mission.CDPP(flux[self.get_masked_chunk(b)],
cadence=self.cadence)
for b, _ in enumerate(self.breakpoints)])
|
Returns the CDPP value in *ppm* for each of the
chunks in the light curve.
|
entailment
|
def get_cdpp(self, flux=None):
'''
Returns the scalar CDPP for the light curve.
'''
if flux is None:
flux = self.flux
return self._mission.CDPP(self.apply_mask(flux), cadence=self.cadence)
|
Returns the scalar CDPP for the light curve.
|
entailment
|
def plot_aperture(self, axes, labelsize=8):
'''
Plots the aperture and the pixel images at the beginning, middle,
and end of the time series. Also plots a high resolution image of
the target, if available.
'''
log.info('Plotting the aperture...')
# Get colormap
plasma = pl.get_cmap('plasma')
plasma.set_bad(alpha=0)
# Get aperture contour
def PadWithZeros(vector, pad_width, iaxis, kwargs):
vector[:pad_width[0]] = 0
vector[-pad_width[1]:] = 0
return vector
ny, nx = self.pixel_images[0].shape
contour = np.zeros((ny, nx))
contour[np.where(self.aperture)] = 1
contour = np.lib.pad(contour, 1, PadWithZeros)
highres = zoom(contour, 100, order=0, mode='nearest')
extent = np.array([-1, nx, -1, ny])
# Plot first, mid, and last TPF image
title = ['start', 'mid', 'end']
for i, image in enumerate(self.pixel_images):
ax = axes[i]
ax.imshow(image, aspect='auto',
interpolation='nearest', cmap=plasma)
ax.contour(highres, levels=[0.5], extent=extent,
origin='lower', colors='r', linewidths=1)
# Check for saturated columns
for x in range(self.aperture.shape[0]):
for y in range(self.aperture.shape[1]):
if self.aperture[x][y] == AP_SATURATED_PIXEL:
ax.fill([y - 0.5, y + 0.5, y + 0.5, y - 0.5],
[x - 0.5, x - 0.5, x + 0.5, x + 0.5],
fill=False, hatch='xxxxx', color='r', lw=0)
ax.axis('off')
ax.set_xlim(-0.7, nx - 0.3)
ax.set_ylim(-0.7, ny - 0.3)
ax.annotate(title[i], xy=(0.5, 0.975), xycoords='axes fraction',
ha='center', va='top', size=labelsize, color='w')
if i == 1:
for source in self.nearby:
ax.annotate('%.1f' % source['mag'],
xy=(source['x'] - source['x0'],
source['y'] - source['y0']),
ha='center', va='center', size=labelsize - 2,
color='w', fontweight='bold')
# Plot hi res image
if self.hires is not None:
ax = axes[-1]
ax.imshow(self.hires, aspect='auto',
extent=(-0.5, nx - 0.5, -0.5, ny - 0.5),
interpolation='bicubic', cmap=plasma)
ax.contour(highres, levels=[0.5], extent=extent,
origin='lower', colors='r', linewidths=1)
ax.axis('off')
ax.set_xlim(-0.7, nx - 0.3)
ax.set_ylim(-0.7, ny - 0.3)
ax.annotate('hires', xy=(0.5, 0.975), xycoords='axes fraction',
ha='center', va='top', size=labelsize, color='w')
else:
ax = axes[-1]
ax.axis('off')
|
Plots the aperture and the pixel images at the beginning, middle,
and end of the time series. Also plots a high resolution image of
the target, if available.
|
entailment
|
def overfit(self, tau=None, plot=True, clobber=False, w=9, **kwargs):
r"""
Compute the masked & unmasked overfitting metrics for the light curve.
This routine injects a transit model given by `tau` at every cadence
in the light curve and recovers the transit depth when (1) leaving
the transit unmasked and (2) masking the transit prior to performing
regression.
:param tau: A function or callable that accepts two arguments, \
`time` and `t0`, and returns an array corresponding to a \
zero-mean, unit depth transit model centered at \
`t0` and evaluated at `time`. \
The easiest way to provide this is to use an instance of \
:py:class:`everest.transit.TransitShape`. Default is \
:py:class:`everest.transit.TransitShape(dur=0.1)`, a transit \
with solar-like limb darkening and a duratio of 0.1 days.
:param bool plot: Plot the results as a PDF? Default :py:obj:`True`
:param bool clobber: Overwrite the results if present? Default \
:py:obj:`False`
:param int w: The size of the masking window in cadences for \
computing the masked overfitting metric. Default `9` \
(about 4.5 hours for `K2` long cadence).
:returns: An instance of `everest.basecamp.Overfitting`.
"""
fname = os.path.join(self.dir, self.name + '_overfit.npz')
figname = os.path.join(self.dir, self.name)
# Compute
if not os.path.exists(fname) or clobber:
# Baseline
med = np.nanmedian(self.fraw)
# Default transit model
if tau is None:
tau = TransitShape(dur=0.1)
# The overfitting metrics
O1 = [None for brkpt in self.breakpoints]
O2 = [None for brkpt in self.breakpoints]
O3 = [None for brkpt in self.breakpoints]
O4 = [None for brkpt in self.breakpoints]
O5 = [None for brkpt in self.breakpoints]
# Loop over all chunks
for b, brkpt in enumerate(self.breakpoints):
# Masks for current chunk
m = self.get_masked_chunk(b, pad=False)
time = self.time[m]
ferr = self.fraw_err[m] / med
y = self.fraw[m] / med - 1
# The metrics we're computing here
O1[b] = np.zeros(len(y)) * np.nan
O2[b] = np.zeros(len(y)) * np.nan
O3[b] = np.zeros(len(y)) * np.nan
O4[b] = np.zeros(len(y)) * np.nan
O5[b] = np.zeros(len(y)) * np.nan
# Compute the astrophysical covariance and its inverse
log.info("Computing the covariance...")
if self.kernel == 'Basic':
wh, am, ta = self.kernel_params
wh /= med
am /= med
kernel_params = [wh, am, ta]
elif self.kernel == 'QuasiPeriodic':
wh, am, ga, pe = self.kernel_params
wh /= med
am /= med
kernel_params = [wh, am, ga, pe]
K = GetCovariance(self.kernel, kernel_params, time, ferr)
Kinv = cho_solve((cholesky(K), False), np.eye(len(time)))
# Loop over all orders
log.info("Computing some large matrices...")
X = [None for n in range(self.pld_order)]
XL = [None for n in range(self.pld_order)]
XLX = [None for n in range(self.pld_order)]
for n in range(self.pld_order):
if (self.lam_idx >= n) and (self.lam[b][n] is not None):
X[n] = self.X(n, m, **kwargs)
XL[n] = (self.lam[b][n] / med ** 2) * X[n]
XLX[n] = np.dot(XL[n], X[n].T)
X = np.hstack(X)
XL = np.hstack(XL)
XLX = np.sum(XLX, axis=0)
# The full covariance
C = XLX + K
# The unmasked linear problem
log.info("Solving the unmasked linear problem...")
m = np.dot(XLX, np.linalg.solve(C, y))
m -= np.nanmedian(m)
f = y - m
R = np.linalg.solve(C, XLX.T).T
# The masked linear problem
log.info("Solving the masked linear problem...")
A = MaskSolve(C, y, w=w)
# Now loop through and compute the metric
log.info("Computing the overfitting metrics...")
for n in prange(len(y)):
#
# *** Unmasked overfitting metric ***
#
# Evaluate the sparse transit model
TAU = tau(time, t0=time[n])
i = np.where(TAU < 0)[0]
TAU = TAU.reshape(-1, 1)
# Fast sparse algebra
AA = np.dot(np.dot(TAU[i].T, Kinv[i, :][:, i]), TAU[i])
BB = np.dot(TAU[i].T, Kinv[i, :])
CC = TAU - np.dot(R[:, i], TAU[i])
O1[b][n] = AA
O2[b][n] = np.dot(BB, CC)
O3[b][n] = np.dot(BB, f)
O4[b][n] = np.dot(BB, y)
#
# *** Masked overfitting metric ***
#
# The current mask and mask centerpoint
mask = np.arange(n, n + w)
j = n + (w + 1) // 2 - 1
if j >= len(y) - w:
continue
# The regularized design matrix
# This is the same as
# XLmX[:, n - 1] = \
# np.dot(XL, np.delete(X, mask, axis=0).T)[:, n - 1]
if n == 0:
XLmX = np.dot(XL, np.delete(X, mask, axis=0).T)
else:
XLmX[:, n - 1] = np.dot(XL, X[n - 1, :].T)
# The linear solution to this step
m = np.dot(XLmX, A[n])
# Evaluate the sparse transit model
TAU = tau(time, t0=time[j])
i = np.where(TAU < 0)[0]
TAU = TAU[i].reshape(-1, 1)
# Dot the transit model in
den = np.dot(np.dot(TAU.T, Kinv[i, :][:, i]), TAU)
num = np.dot(TAU.T, Kinv[i, :])
# Compute the overfitting metric
# Divide this number by a depth
# to get the overfitting for that
# particular depth.
O5[b][j] = -np.dot(num, y - m) / den
# Save!
np.savez(fname, O1=O1, O2=O2, O3=O3, O4=O4, O5=O5)
else:
data = np.load(fname)
O1 = data['O1']
O2 = data['O2']
O3 = data['O3']
O4 = data['O4']
O5 = data['O5']
# Plot
if plot and (clobber or not os.path.exists(figname + '_overfit.pdf')):
log.info("Plotting the overfitting metrics...")
# Masked time array
time = self.apply_mask(self.time)
# Plot the final corrected light curve
ovr = OVERFIT()
self.plot_info(ovr)
# Loop over the two metrics
for kind, axes, axesh in zip(['unmasked', 'masked'],
[ovr.axes1, ovr.axes2],
[ovr.axes1h, ovr.axes2h]):
# Loop over three depths
for depth, ax, axh in zip([0.01, 0.001, 0.0001], axes, axesh):
# Get the metric
if kind == 'unmasked':
metric = 1 - (np.hstack(O2) +
np.hstack(O3) / depth) / np.hstack(O1)
color = 'r'
elif kind == 'masked':
metric = np.hstack(O5) / depth
color = 'b'
else:
raise ValueError("Invalid metric.")
# Median and median absolute deviation
med = np.nanmedian(metric)
mad = np.nanmedian(np.abs(metric - med))
# Plot the metric as a function of time
ax.plot(time, metric, 'k.', alpha=0.5, ms=2)
ax.plot(time, metric, 'k-', alpha=0.1, lw=0.5)
ylim = (-0.2, 1.0)
ax.margins(0, None)
ax.axhline(0, color='k', lw=1, alpha=0.5)
ax.set_ylim(*ylim)
if kind == 'masked' and depth == 0.0001:
ax.set_xlabel('Time (days)', fontsize=14)
else:
ax.set_xticklabels([])
# Plot the histogram
rng = (max(ylim[0], np.nanmin(metric)),
min(ylim[1], np.nanmax(metric)))
axh.hist(metric, bins=30, range=rng,
orientation="horizontal",
histtype="step", fill=False, color='k')
axh.axhline(med, color=color, ls='-', lw=1)
axh.axhspan(med - mad, med + mad, color=color, alpha=0.1)
axh.axhline(0, color='k', lw=1, alpha=0.5)
axh.yaxis.tick_right()
axh.set_ylim(*ax.get_ylim())
axh.set_xticklabels([])
bbox = dict(fc="w", ec="1", alpha=0.5)
info = r"$\mathrm{med}=%.3f$" % med + \
"\n" + r"$\mathrm{mad}=%.3f$" % mad
axh.annotate(info, xy=(0.1, 0.925),
xycoords='axes fraction',
ha="left", va="top", bbox=bbox, color=color)
bbox = dict(fc="w", ec="1", alpha=0.95)
ax.annotate("%s overfitting metric" % kind,
xy=(1-0.035, 0.92),
xycoords='axes fraction',
ha='right', va='top',
bbox=bbox, color=color)
pl.figtext(0.025, 0.77, "depth = 0.01", rotation=90,
ha='left', va='center', fontsize=18)
pl.figtext(0.025, 0.48, "depth = 0.001", rotation=90,
ha='left', va='center', fontsize=18)
pl.figtext(0.025, 0.19, "depth = 0.0001", rotation=90,
ha='left', va='center', fontsize=18)
ovr.fig.savefig(figname + '_overfit.pdf')
log.info("Saved plot to %s_overfit.pdf" % figname)
pl.close()
return Overfitting(O1, O2, O3, O4, O5, figname + '_overfit.pdf')
|
r"""
Compute the masked & unmasked overfitting metrics for the light curve.
This routine injects a transit model given by `tau` at every cadence
in the light curve and recovers the transit depth when (1) leaving
the transit unmasked and (2) masking the transit prior to performing
regression.
:param tau: A function or callable that accepts two arguments, \
`time` and `t0`, and returns an array corresponding to a \
zero-mean, unit depth transit model centered at \
`t0` and evaluated at `time`. \
The easiest way to provide this is to use an instance of \
:py:class:`everest.transit.TransitShape`. Default is \
:py:class:`everest.transit.TransitShape(dur=0.1)`, a transit \
with solar-like limb darkening and a duratio of 0.1 days.
:param bool plot: Plot the results as a PDF? Default :py:obj:`True`
:param bool clobber: Overwrite the results if present? Default \
:py:obj:`False`
:param int w: The size of the masking window in cadences for \
computing the masked overfitting metric. Default `9` \
(about 4.5 hours for `K2` long cadence).
:returns: An instance of `everest.basecamp.Overfitting`.
|
entailment
|
def lnlike(self, model, refactor=False, pos_tol=2.5, neg_tol=50.,
full_output=False):
r"""
Return the likelihood of the astrophysical model `model`.
Returns the likelihood of `model` marginalized over the PLD model.
:param ndarray model: A vector of the same shape as `self.time` \
corresponding to the astrophysical model.
:param bool refactor: Re-compute the Cholesky decomposition? This \
typically does not need to be done, except when the PLD \
model changes. Default :py:obj:`False`.
:param float pos_tol: the positive (i.e., above the median) \
outlier tolerance in standard deviations.
:param float neg_tol: the negative (i.e., below the median) \
outlier tolerance in standard deviations.
:param bool full_output: If :py:obj:`True`, returns the maximum \
likelihood model amplitude and the variance on the amplitude \
in addition to the log-likelihood. In the case of a transit \
model, these are the transit depth and depth variance. Default \
:py:obj:`False`.
"""
lnl = 0
# Re-factorize the Cholesky decomposition?
try:
self._ll_info
except AttributeError:
refactor = True
if refactor:
# Smooth the light curve and reset the outlier mask
t = np.delete(self.time,
np.concatenate([self.nanmask, self.badmask]))
f = np.delete(self.flux,
np.concatenate([self.nanmask, self.badmask]))
f = SavGol(f)
med = np.nanmedian(f)
MAD = 1.4826 * np.nanmedian(np.abs(f - med))
pos_inds = np.where((f > med + pos_tol * MAD))[0]
pos_inds = np.array([np.argmax(self.time == t[i])
for i in pos_inds])
MAD = 1.4826 * np.nanmedian(np.abs(f - med))
neg_inds = np.where((f < med - neg_tol * MAD))[0]
neg_inds = np.array([np.argmax(self.time == t[i])
for i in neg_inds])
outmask = np.array(self.outmask)
transitmask = np.array(self.transitmask)
self.outmask = np.concatenate([neg_inds, pos_inds])
self.transitmask = np.array([], dtype=int)
# Now re-factorize the Cholesky decomposition
self._ll_info = [None for b in self.breakpoints]
for b, brkpt in enumerate(self.breakpoints):
# Masks for current chunk
m = self.get_masked_chunk(b, pad=False)
# This block of the masked covariance matrix
K = GetCovariance(self.kernel, self.kernel_params,
self.time[m], self.fraw_err[m])
# The masked X.L.X^T term
A = np.zeros((len(m), len(m)))
for n in range(self.pld_order):
XM = self.X(n, m)
A += self.lam[b][n] * np.dot(XM, XM.T)
K += A
self._ll_info[b] = [cho_factor(K), m]
# Reset the outlier masks
self.outmask = outmask
self.transitmask = transitmask
# Compute the likelihood for each chunk
amp = [None for b in self.breakpoints]
var = [None for b in self.breakpoints]
for b, brkpt in enumerate(self.breakpoints):
# Get the inverse covariance and the mask
CDK = self._ll_info[b][0]
m = self._ll_info[b][1]
# Compute the maximum likelihood model amplitude
# (for transits, this is the transit depth)
var[b] = 1. / np.dot(model[m], cho_solve(CDK, model[m]))
amp[b] = var[b] * np.dot(model[m], cho_solve(CDK, self.fraw[m]))
# Compute the residual
r = self.fraw[m] - amp[b] * model[m]
# Finally, compute the likelihood
lnl += -0.5 * np.dot(r, cho_solve(CDK, r))
if full_output:
# We need to multiply the Gaussians for all chunks to get the
# amplitude and amplitude variance for the entire dataset
vari = var[0]
ampi = amp[0]
for v, a in zip(var[1:], amp[1:]):
ampi = (ampi * v + a * vari) / (vari + v)
vari = vari * v / (vari + v)
med = np.nanmedian(self.fraw)
return lnl, ampi / med, vari / med ** 2
else:
return lnl
|
r"""
Return the likelihood of the astrophysical model `model`.
Returns the likelihood of `model` marginalized over the PLD model.
:param ndarray model: A vector of the same shape as `self.time` \
corresponding to the astrophysical model.
:param bool refactor: Re-compute the Cholesky decomposition? This \
typically does not need to be done, except when the PLD \
model changes. Default :py:obj:`False`.
:param float pos_tol: the positive (i.e., above the median) \
outlier tolerance in standard deviations.
:param float neg_tol: the negative (i.e., below the median) \
outlier tolerance in standard deviations.
:param bool full_output: If :py:obj:`True`, returns the maximum \
likelihood model amplitude and the variance on the amplitude \
in addition to the log-likelihood. In the case of a transit \
model, these are the transit depth and depth variance. Default \
:py:obj:`False`.
|
entailment
|
def Inject(ID, inj_model='nPLD', t0=None, per=None, dur=0.1, depth=0.001,
mask=False, trn_win=5, poly_order=3, make_fits=False, **kwargs):
'''
Run one of the :py:obj:`everest` models with injected transits and attempt
to recover the transit depth at the end with a simple linear regression
with a polynomial baseline. The depth is stored in the
:py:obj:`inject` attribute of the model (a dictionary) as
:py:obj:`rec_depth`. A control injection is also performed, in which the
transits are injected into the de-trended data; the recovered depth in
the control run is stored in :py:obj:`inject`
as :py:obj:`rec_depth_control`.
:param int ID: The target id
:param str inj_model: The name of the :py:obj:`everest` model to run. \
Default `"nPLD"`
:param float t0: The transit ephemeris in days. Default is to draw from \
the uniform distributon [0., :py:obj:`per`)
:param float per: The injected planet period in days. Default is to draw \
from the uniform distribution [2, 10]
:param float dur: The transit duration in days. Must be in the range \
[0.05, 0.5]. Default 0.1
:param float depth: The fractional transit depth. Default 0.001
:param bool mask: Explicitly mask the in-transit cadences when computing \
the PLD model? Default :py:obj:`False`
:param float trn_win: The size of the transit window in units of the \
transit duration
:param int poly_order: The order of the polynomial used to fit the \
continuum
'''
# Randomize the planet params
if per is None:
a = 3.
b = 10.
per = a + (b - a) * np.random.random()
if t0 is None:
t0 = per * np.random.random()
# Get the actual class
_model = eval(inj_model)
inject = {'t0': t0, 'per': per, 'dur': dur, 'depth': depth, 'mask': mask,
'poly_order': poly_order, 'trn_win': trn_win}
# Define the injection class
class Injection(_model):
'''
The :py:obj:`Injection` class is a special subclass of a
user-selected :py:obj:`everest` model.
See :py:func:`Inject` for more details.
'''
def __init__(self, *args, **kwargs):
'''
'''
self.inject = kwargs.pop('inject', None)
self.parent_class = kwargs.pop('parent_class', None)
self.kwargs = kwargs
super(Injection, self).__init__(*args, **kwargs)
@property
def name(self):
'''
'''
if self.inject['mask']:
maskchar = 'M'
else:
maskchar = 'U'
return '%s_Inject_%s%g' % (self.parent_class,
maskchar, self.inject['depth'])
def load_tpf(self):
'''
Loads the target pixel files and injects transits at the pixel level.
'''
# Load the TPF
super(Injection, self).load_tpf()
log.info("Injecting transits...")
# Inject the transits into the regular data
transit_model = Transit(
self.time, t0=self.inject['t0'], per=self.inject['per'],
dur=self.inject['dur'], depth=self.inject['depth'])
for i in range(self.fpix.shape[1]):
self.fpix[:, i] *= transit_model
self.fraw = np.sum(self.fpix, axis=1)
if self.inject['mask']:
self.transitmask = np.array(list(set(np.concatenate(
[self.transitmask, np.where(transit_model < 1.)[0]]))),
dtype=int)
# Update the PLD normalization
self.get_norm()
def recover_depth(self):
'''
Recovers the injected transit depth from the long
cadence data with a simple LLS solver.
The results are all stored in the :py:obj:`inject`
attribute of the model.
'''
# Control run
transit_model = Transit(
self.time, t0=self.inject['t0'], per=self.inject['per'],
dur=self.inject['dur'], depth=self.inject['depth'])
kwargs = dict(self.kwargs)
kwargs.update({'clobber': False})
control = eval(self.parent_class)(
self.ID, is_parent=True, **kwargs)
control.fraw *= transit_model
# Get params
log.info("Recovering transit depth...")
t0 = self.inject['t0']
per = self.inject['per']
dur = self.inject['dur']
depth = self.inject['depth']
trn_win = self.inject['trn_win']
poly_order = self.inject['poly_order']
for run, tag in zip([self, control], ['', '_control']):
# Compute the model
mask = np.array(
list(set(np.concatenate([run.badmask, run.nanmask]))),
dtype=int)
flux = np.delete(run.flux / np.nanmedian(run.flux), mask)
time = np.delete(run.time, mask)
transit_model = (Transit(time, t0=t0, per=per,
dur=dur, depth=depth) - 1) / depth
# Count the transits
t0 += np.ceil((time[0] - dur - t0) / per) * per
ttimes0 = np.arange(t0, time[-1] + dur, per)
tinds = []
for tt in ttimes0:
# Get indices for this chunk
inds = np.where(np.abs(time - tt) < trn_win * dur / 2.)[0]
# Ensure there's a transit in this chunk, and that
# there are enough points for the polynomial fit
if np.any(transit_model[inds] < 0.) and \
len(inds) > poly_order:
tinds.append(inds)
# Our design matrix
sz = (poly_order + 1) * len(tinds)
X = np.empty((0, 1 + sz), dtype=float)
Y = np.array([], dtype=float)
T = np.array([], dtype=float)
# Loop over all transits
for i, inds in enumerate(tinds):
# Get the transit model
trnvec = transit_model[inds].reshape(-1, 1)
# Normalize the time array
t = time[inds]
t = (t - t[0]) / (t[-1] - t[0])
# Cumulative arrays
T = np.append(T, time[inds])
Y = np.append(Y, flux[inds])
# Polynomial vector
polyvec = np.array(
[t ** o for o in range(0, poly_order + 1)]).T
# Update the design matrix with this chunk
lzeros = np.zeros((len(t), i * (poly_order + 1)))
rzeros = np.zeros(
(len(t), sz - (i + 1) * (poly_order + 1)))
chunk = np.hstack((trnvec, lzeros, polyvec, rzeros))
X = np.vstack((X, chunk))
# Get the relative depth
A = np.dot(X.T, X)
B = np.dot(X.T, Y)
C = np.linalg.solve(A, B)
rec_depth = C[0]
# Get the uncertainties
sig = 1.4826 * \
np.nanmedian(np.abs(flux - np.nanmedian(flux))
) / np.nanmedian(flux)
cov = sig ** 2 * np.linalg.solve(A, np.eye(A.shape[0]))
err = np.sqrt(np.diag(cov))
rec_depth_err = err[0]
# Store the results
self.inject.update(
{'rec_depth%s' % tag: rec_depth,
'rec_depth_err%s' % tag: rec_depth_err})
# Store the detrended, folded data
D = (Y - np.dot(C[1:], X[:, 1:].T) +
np.nanmedian(Y)) / np.nanmedian(Y)
T = (T - t0 - per / 2.) % per - per / 2.
self.inject.update(
{'fold_time%s' % tag: T, 'fold_flux%s' % tag: D})
def plot_final(self, ax):
'''
Plots the injection recovery results.
'''
from mpl_toolkits.axes_grid.inset_locator import inset_axes
ax.axis('off')
ax1 = inset_axes(ax, width="47%", height="100%", loc=6)
ax2 = inset_axes(ax, width="47%", height="100%", loc=7)
# Plot the recovered folded transits
ax1.plot(self.inject['fold_time'],
self.inject['fold_flux'], 'k.', alpha=0.3)
x = np.linspace(np.min(self.inject['fold_time']), np.max(
self.inject['fold_time']), 500)
try:
y = Transit(
x, t0=0., per=self.inject['per'], dur=self.inject['dur'],
depth=self.inject['rec_depth'])
except:
# Log the error, and carry on
exctype, value, tb = sys.exc_info()
for line in traceback.format_exception_only(exctype, value):
l = line.replace('\n', '')
log.error(l)
y = np.ones_like(x) * np.nan
ax1.plot(x, y, 'r-')
ax1.annotate('INJECTED', xy=(0.98, 0.025),
xycoords='axes fraction',
ha='right', va='bottom', fontsize=10, alpha=0.5,
fontweight='bold')
ax1.annotate('True depth:\nRecovered depth:',
xy=(0.02, 0.025),
xycoords='axes fraction',
ha='left', va='bottom', fontsize=6, color='r')
ax1.annotate('%.6f\n%.6f' % (self.inject['depth'],
self.inject['rec_depth']),
xy=(0.4, 0.025),
xycoords='axes fraction',
ha='left', va='bottom', fontsize=6, color='r')
ax1.margins(0, None)
ax1.ticklabel_format(useOffset=False)
# Plot the recovered folded transits (control)
ax2.plot(self.inject['fold_time_control'],
self.inject['fold_flux_control'], 'k.', alpha=0.3)
x = np.linspace(np.min(self.inject['fold_time_control']), np.max(
self.inject['fold_time_control']), 500)
try:
y = Transit(
x, t0=0., per=self.inject['per'], dur=self.inject['dur'],
depth=self.inject['rec_depth_control'])
except:
# Log the error, and carry on
exctype, value, tb = sys.exc_info()
for line in traceback.format_exception_only(exctype, value):
l = line.replace('\n', '')
log.error(l)
y = np.ones_like(x) * np.nan
ax2.plot(x, y, 'r-')
ax2.annotate('CONTROL', xy=(0.98, 0.025), xycoords='axes fraction',
ha='right', va='bottom', fontsize=10, alpha=0.5,
fontweight='bold')
ax2.annotate('True depth:\nRecovered depth:',
xy=(0.02, 0.025),
xycoords='axes fraction',
ha='left', va='bottom', fontsize=6, color='r')
ax2.annotate('%.6f\n%.6f' % (self.inject['depth'],
self.inject['rec_depth_control']),
xy=(0.4, 0.025),
xycoords='axes fraction',
ha='left', va='bottom', fontsize=6, color='r')
ax2.margins(0, None)
ax2.ticklabel_format(useOffset=False)
N = int(0.995 * len(self.inject['fold_flux_control']))
hi, lo = self.inject['fold_flux_control'][np.argsort(
self.inject['fold_flux_control'])][[N, -N]]
fsort = self.inject['fold_flux_control'][np.argsort(
self.inject['fold_flux_control'])]
pad = (hi - lo) * 0.2
ylim = (lo - 2 * pad, hi + pad)
ax2.set_ylim(ylim)
ax1.set_ylim(ylim)
ax2.set_yticklabels([])
for tick in ax1.get_xticklabels() + ax1.get_yticklabels() + \
ax2.get_xticklabels():
tick.set_fontsize(5)
def finalize(self):
'''
Calls the depth recovery routine at the end
of the de-trending step.
'''
super(Injection, self).finalize()
self.recover_depth()
return Injection(ID, inject=inject, parent_class=inj_model,
make_fits=make_fits, **kwargs)
|
Run one of the :py:obj:`everest` models with injected transits and attempt
to recover the transit depth at the end with a simple linear regression
with a polynomial baseline. The depth is stored in the
:py:obj:`inject` attribute of the model (a dictionary) as
:py:obj:`rec_depth`. A control injection is also performed, in which the
transits are injected into the de-trended data; the recovered depth in
the control run is stored in :py:obj:`inject`
as :py:obj:`rec_depth_control`.
:param int ID: The target id
:param str inj_model: The name of the :py:obj:`everest` model to run. \
Default `"nPLD"`
:param float t0: The transit ephemeris in days. Default is to draw from \
the uniform distributon [0., :py:obj:`per`)
:param float per: The injected planet period in days. Default is to draw \
from the uniform distribution [2, 10]
:param float dur: The transit duration in days. Must be in the range \
[0.05, 0.5]. Default 0.1
:param float depth: The fractional transit depth. Default 0.001
:param bool mask: Explicitly mask the in-transit cadences when computing \
the PLD model? Default :py:obj:`False`
:param float trn_win: The size of the transit window in units of the \
transit duration
:param int poly_order: The order of the polynomial used to fit the \
continuum
|
entailment
|
def object(self, session):
'''Instance of :attr:`model_type` with id :attr:`object_id`.'''
if not hasattr(self, '_object'):
pkname = self.model_type._meta.pkname()
query = session.query(self.model_type).filter(**{pkname:
self.object_id})
return query.items(callback=self.__set_object)
else:
return self._object
|
Instance of :attr:`model_type` with id :attr:`object_id`.
|
entailment
|
def GetData(ID, season = None, cadence = 'lc', clobber = False, delete_raw = False,
aperture_name = None, saturated_aperture_name = None,
max_pixels = None, download_only = False, saturation_tolerance = None,
bad_bits = None, **kwargs):
'''
Returns a :py:obj:`DataContainer` instance with the raw data for the target.
:param int ID: The target ID number
:param int season: The observing season. Default :py:obj:`None`
:param str cadence: The light curve cadence. Default `lc`
:param bool clobber: Overwrite existing files? Default :py:obj:`False`
:param bool delete_raw: Delete the FITS TPF after processing it? Default :py:obj:`False`
:param str aperture_name: The name of the aperture to use. Select `custom` to call \
:py:func:`GetCustomAperture`. Default :py:obj:`None`
:param str saturated_aperture_name: The name of the aperture to use if the target is \
saturated. Default :py:obj:`None`
:param int max_pixels: Maximum number of pixels in the TPF. Default :py:obj:`None`
:param bool download_only: Download raw TPF and return? Default :py:obj:`False`
:param float saturation_tolerance: Target is considered saturated if flux is within \
this fraction of the pixel well depth. Default :py:obj:`None`
:param array_like bad_bits: Flagged :py:obj`QUALITY` bits to consider outliers when \
computing the model. Default :py:obj:`None`
'''
raise NotImplementedError('This mission is not yet supported.')
|
Returns a :py:obj:`DataContainer` instance with the raw data for the target.
:param int ID: The target ID number
:param int season: The observing season. Default :py:obj:`None`
:param str cadence: The light curve cadence. Default `lc`
:param bool clobber: Overwrite existing files? Default :py:obj:`False`
:param bool delete_raw: Delete the FITS TPF after processing it? Default :py:obj:`False`
:param str aperture_name: The name of the aperture to use. Select `custom` to call \
:py:func:`GetCustomAperture`. Default :py:obj:`None`
:param str saturated_aperture_name: The name of the aperture to use if the target is \
saturated. Default :py:obj:`None`
:param int max_pixels: Maximum number of pixels in the TPF. Default :py:obj:`None`
:param bool download_only: Download raw TPF and return? Default :py:obj:`False`
:param float saturation_tolerance: Target is considered saturated if flux is within \
this fraction of the pixel well depth. Default :py:obj:`None`
:param array_like bad_bits: Flagged :py:obj`QUALITY` bits to consider outliers when \
computing the model. Default :py:obj:`None`
|
entailment
|
def GetNeighbors(ID, model = None, neighbors = None, mag_range = None,
cdpp_range = None, aperture_name = None,
cadence = 'lc', **kwargs):
'''
Return `neighbors` random bright stars on the same module as `EPIC`.
:param int ID: The target ID number
:param str model: The :py:obj:`everest` model name. Only used when imposing CDPP bounds. Default :py:obj:`None`
:param int neighbors: Number of neighbors to return. Default None
:param str aperture_name: The name of the aperture to use. Select `custom` to call \
:py:func:`GetCustomAperture`. Default :py:obj:`None`
:param str cadence: The light curve cadence. Default `lc`
:param tuple mag_range: (`low`, `high`) values for the Kepler magnitude. Default :py:obj:`None`
:param tuple cdpp_range: (`low`, `high`) values for the de-trended CDPP. Default :py:obj:`None`
'''
raise NotImplementedError('This mission is not yet supported.')
|
Return `neighbors` random bright stars on the same module as `EPIC`.
:param int ID: The target ID number
:param str model: The :py:obj:`everest` model name. Only used when imposing CDPP bounds. Default :py:obj:`None`
:param int neighbors: Number of neighbors to return. Default None
:param str aperture_name: The name of the aperture to use. Select `custom` to call \
:py:func:`GetCustomAperture`. Default :py:obj:`None`
:param str cadence: The light curve cadence. Default `lc`
:param tuple mag_range: (`low`, `high`) values for the Kepler magnitude. Default :py:obj:`None`
:param tuple cdpp_range: (`low`, `high`) values for the de-trended CDPP. Default :py:obj:`None`
|
entailment
|
def get(ID, pipeline='everest2', campaign=None):
'''
Returns the `time` and `flux` for a given EPIC `ID` and
a given `pipeline` name.
'''
log.info('Downloading %s light curve for %d...' % (pipeline, ID))
# Dev version hack
if EVEREST_DEV:
if pipeline.lower() == 'everest2' or pipeline.lower() == 'k2sff':
from . import Season, TargetDirectory, FITSFile
if campaign is None:
campaign = Season(ID)
fits = os.path.join(TargetDirectory(
ID, campaign), FITSFile(ID, campaign))
newdir = os.path.join(KPLR_ROOT, "data", "everest", str(ID))
if not os.path.exists(newdir):
os.makedirs(newdir)
if os.path.exists(fits):
shutil.copy(fits, newdir)
if pipeline.lower() == 'everest2':
s = k2plr.EVEREST(ID, version=2, sci_campaign=campaign)
time = s.time
flux = s.flux
elif pipeline.lower() == 'everest1':
s = k2plr.EVEREST(ID, version=1, sci_campaign=campaign)
time = s.time
flux = s.flux
elif pipeline.lower() == 'k2sff':
s = k2plr.K2SFF(ID, sci_campaign=campaign)
time = s.time
flux = s.fcor
# Normalize to the median flux
s = k2plr.EVEREST(ID, version=2, sci_campaign=campaign)
flux *= np.nanmedian(s.flux)
elif pipeline.lower() == 'k2sc':
s = k2plr.K2SC(ID, sci_campaign=campaign)
time = s.time
flux = s.pdcflux
elif pipeline.lower() == 'raw':
s = k2plr.EVEREST(ID, version=2, raw=True, sci_campaign=campaign)
time = s.time
flux = s.flux
else:
raise ValueError('Invalid pipeline: `%s`.' % pipeline)
return time, flux
|
Returns the `time` and `flux` for a given EPIC `ID` and
a given `pipeline` name.
|
entailment
|
def plot(ID, pipeline='everest2', show=True, campaign=None):
'''
Plots the de-trended flux for the given EPIC `ID` and for
the specified `pipeline`.
'''
# Get the data
time, flux = get(ID, pipeline=pipeline, campaign=campaign)
# Remove nans
mask = np.where(np.isnan(flux))[0]
time = np.delete(time, mask)
flux = np.delete(flux, mask)
# Plot it
fig, ax = pl.subplots(1, figsize=(10, 4))
fig.subplots_adjust(bottom=0.15)
ax.plot(time, flux, "k.", markersize=3, alpha=0.5)
# Axis limits
N = int(0.995 * len(flux))
hi, lo = flux[np.argsort(flux)][[N, -N]]
pad = (hi - lo) * 0.1
ylim = (lo - pad, hi + pad)
ax.set_ylim(ylim)
# Show the CDPP
from .k2 import CDPP
ax.annotate('%.2f ppm' % CDPP(flux),
xy=(0.98, 0.975), xycoords='axes fraction',
ha='right', va='top', fontsize=12, color='r', zorder=99)
# Appearance
ax.margins(0, None)
ax.set_xlabel("Time (BJD - 2454833)", fontsize=16)
ax.set_ylabel("%s Flux" % pipeline.upper(), fontsize=16)
fig.canvas.set_window_title("%s: EPIC %d" % (pipeline.upper(), ID))
if show:
pl.show()
pl.close()
else:
return fig, ax
|
Plots the de-trended flux for the given EPIC `ID` and for
the specified `pipeline`.
|
entailment
|
def get_cdpp(campaign, pipeline='everest2'):
'''
Computes the CDPP for a given `campaign` and a given `pipeline`.
Stores the results in a file under "/missions/k2/tables/".
'''
# Imports
from .k2 import CDPP
from .utils import GetK2Campaign
# Check pipeline
assert pipeline.lower() in Pipelines, 'Invalid pipeline: `%s`.' % pipeline
# Create file if it doesn't exist
file = os.path.join(EVEREST_SRC, 'missions', 'k2',
'tables', 'c%02d_%s.cdpp' % (int(campaign), pipeline))
if not os.path.exists(file):
open(file, 'a').close()
# Get all EPIC stars
stars = GetK2Campaign(campaign, epics_only=True)
nstars = len(stars)
# Remove ones we've done
with warnings.catch_warnings():
warnings.simplefilter("ignore")
done = np.loadtxt(file, dtype=float)
if len(done):
done = [int(s) for s in done[:, 0]]
stars = list(set(stars) - set(done))
n = len(done) + 1
# Open the output file
with open(file, 'a', 1) as outfile:
# Loop over all to get the CDPP
for EPIC in stars:
# Progress
sys.stdout.write('\rRunning target %d/%d...' % (n, nstars))
sys.stdout.flush()
n += 1
# Get the CDPP
try:
_, flux = get(EPIC, pipeline=pipeline, campaign=campaign)
mask = np.where(np.isnan(flux))[0]
flux = np.delete(flux, mask)
cdpp = CDPP(flux)
except (urllib.error.HTTPError, urllib.error.URLError,
TypeError, ValueError, IndexError):
print("{:>09d} {:>15.3f}".format(EPIC, 0), file=outfile)
continue
# Log to file
print("{:>09d} {:>15.3f}".format(EPIC, cdpp), file=outfile)
|
Computes the CDPP for a given `campaign` and a given `pipeline`.
Stores the results in a file under "/missions/k2/tables/".
|
entailment
|
def get_outliers(campaign, pipeline='everest2', sigma=5):
'''
Computes the number of outliers for a given `campaign`
and a given `pipeline`.
Stores the results in a file under "/missions/k2/tables/".
:param int sigma: The sigma level at which to clip outliers. Default 5
'''
# Imports
from .utils import GetK2Campaign
client = k2plr.API()
# Check pipeline
assert pipeline.lower() in Pipelines, 'Invalid pipeline: `%s`.' % pipeline
# Create file if it doesn't exist
file = os.path.join(EVEREST_SRC, 'missions', 'k2',
'tables', 'c%02d_%s.out' % (int(campaign), pipeline))
if not os.path.exists(file):
open(file, 'a').close()
# Get all EPIC stars
stars = GetK2Campaign(campaign, epics_only=True)
nstars = len(stars)
# Remove ones we've done
with warnings.catch_warnings():
warnings.simplefilter("ignore")
done = np.loadtxt(file, dtype=float)
if len(done):
done = [int(s) for s in done[:, 0]]
stars = list(set(stars) - set(done))
n = len(done) + 1
# Open the output file
with open(file, 'a', 1) as outfile:
# Loop over all to get the CDPP
for EPIC in stars:
# Progress
sys.stdout.write('\rRunning target %d/%d...' % (n, nstars))
sys.stdout.flush()
n += 1
# Get the number of outliers
try:
time, flux = get(EPIC, pipeline=pipeline, campaign=campaign)
# Get the raw K2 data
tpf = os.path.join(KPLR_ROOT, "data", "k2",
"target_pixel_files",
"%09d" % EPIC,
"ktwo%09d-c%02d_lpd-targ.fits.gz"
% (EPIC, campaign))
if not os.path.exists(tpf):
client.k2_star(EPIC).get_target_pixel_files(fetch=True)
with pyfits.open(tpf) as f:
k2_qual = np.array(f[1].data.field('QUALITY'), dtype=int)
k2_time = np.array(
f[1].data.field('TIME'), dtype='float64')
mask = []
for b in [1, 2, 3, 4, 5, 6, 7, 8, 9,
11, 12, 13, 14, 16, 17]:
mask += list(np.where(k2_qual & 2 ** (b - 1))[0])
mask = np.array(sorted(list(set(mask))))
# Fill in missing cadences, if any
tol = 0.005
if not ((len(time) == len(k2_time)) and (np.abs(time[0]
- k2_time[0]) < tol) and (np.abs(time[-1]
- k2_time[-1]) < tol)):
ftmp = np.zeros_like(k2_time) * np.nan
j = 0
for i, t in enumerate(k2_time):
if np.abs(time[j] - t) < tol:
ftmp[i] = flux[j]
j += 1
if j == len(time) - 1:
break
flux = ftmp
# Remove flagged cadences
flux = np.delete(flux, mask)
# Remove nans
nanmask = np.where(np.isnan(flux))[0]
flux = np.delete(flux, nanmask)
# Iterative sigma clipping
inds = np.array([], dtype=int)
m = 1
while len(inds) < m:
m = len(inds)
f = SavGol(np.delete(flux, inds))
med = np.nanmedian(f)
MAD = 1.4826 * np.nanmedian(np.abs(f - med))
inds = np.append(inds, np.where(
(f > med + sigma * MAD) | (f < med - sigma * MAD))[0])
nout = len(inds)
ntot = len(flux)
except (urllib.error.HTTPError, urllib.error.URLError,
TypeError, ValueError, IndexError):
print("{:>09d} {:>5d} {:>5d}".format(
EPIC, -1, -1), file=outfile)
continue
# Log to file
print("{:>09d} {:>5d} {:>5d}".format(
EPIC, nout, ntot), file=outfile)
|
Computes the number of outliers for a given `campaign`
and a given `pipeline`.
Stores the results in a file under "/missions/k2/tables/".
:param int sigma: The sigma level at which to clip outliers. Default 5
|
entailment
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.