sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def set_value(self, instance, value): '''Set the ``value`` for this :class:`Field` in a ``instance`` of a :class:`StdModel`.''' setattr(instance, self.attname, self.to_python(value))
Set the ``value`` for this :class:`Field` in a ``instance`` of a :class:`StdModel`.
entailment
def lookup(var_name, contexts=(), start=0): """lookup the value of the var_name on the stack of contexts :var_name: TODO :contexts: TODO :returns: None if not found """ start = len(contexts) if start >=0 else start for context in reversed(contexts[:start]): try: if var_name in context: return context[var_name] except TypeError as te: # we may put variable on the context, skip it continue return None
lookup the value of the var_name on the stack of contexts :var_name: TODO :contexts: TODO :returns: None if not found
entailment
def delimiters_to_re(delimiters): """convert delimiters to corresponding regular expressions""" # caching delimiters = tuple(delimiters) if delimiters in re_delimiters: re_tag = re_delimiters[delimiters] else: open_tag, close_tag = delimiters # escape open_tag = ''.join([c if c.isalnum() else '\\' + c for c in open_tag]) close_tag = ''.join([c if c.isalnum() else '\\' + c for c in close_tag]) re_tag = re.compile(open_tag + r'([#^>&{/!=]?)\s*(.*?)\s*([}=]?)' + close_tag, re.DOTALL) re_delimiters[delimiters] = re_tag return re_tag
convert delimiters to corresponding regular expressions
entailment
def is_standalone(text, start, end): """check if the string text[start:end] is standalone by checking forwards and backwards for blankspaces :text: TODO :(start, end): TODO :returns: the start of next index after text[start:end] """ left = False start -= 1 while start >= 0 and text[start] in spaces_not_newline: start -= 1 if start < 0 or text[start] == '\n': left = True right = re_space.match(text, end) return (start+1, right.end()) if left and right else None
check if the string text[start:end] is standalone by checking forwards and backwards for blankspaces :text: TODO :(start, end): TODO :returns: the start of next index after text[start:end]
entailment
def compiled(template, delimiters=DEFAULT_DELIMITERS): """Compile a template into token tree :template: TODO :delimiters: TODO :returns: the root token """ re_tag = delimiters_to_re(delimiters) # variable to save states tokens = [] index = 0 sections = [] tokens_stack = [] # root token root = Root('root') root.filters = copy.copy(filters) m = re_tag.search(template, index) while m is not None: token = None last_literal = None strip_space = False if m.start() > index: last_literal = Literal('str', template[index:m.start()], root=root) tokens.append(last_literal) # parse token prefix, name, suffix = m.groups() if prefix == '=' and suffix == '=': # {{=| |=}} to change delimiters delimiters = re.split(r'\s+', name) if len(delimiters) != 2: raise SyntaxError('Invalid new delimiter definition: ' + m.group()) re_tag = delimiters_to_re(delimiters) strip_space = True elif prefix == '{' and suffix == '}': # {{{ variable }}} token = Variable(name, name, root=root) elif prefix == '' and suffix == '': # {{ name }} token = Variable(name, name, root=root) token.escape = True elif suffix != '' and suffix != None: raise SyntaxError('Invalid token: ' + m.group()) elif prefix == '&': # {{& escaped variable }} token = Variable(name, name, root=root) elif prefix == '!': # {{! comment }} token = Comment(name, root=root) if len(sections) <= 0: # considered as standalone only outside sections strip_space = True elif prefix == '>': # {{> partial}} token = Partial(name, name, root=root) strip_space = True pos = is_standalone(template, m.start(), m.end()) if pos: token.indent = len(template[pos[0]:m.start()]) elif prefix == '#' or prefix == '^': # {{# section }} or # {{^ inverted }} # strip filter sec_name = name.split('|')[0].strip() token = Section(sec_name, name, root=root) if prefix == '#' else Inverted(name, name, root=root) token.delimiter = delimiters tokens.append(token) # save the tokens onto stack token = None tokens_stack.append(tokens) tokens = [] sections.append((sec_name, prefix, m.end())) strip_space = True elif prefix == '/': tag_name, sec_type, text_end = sections.pop() if tag_name != name: raise SyntaxError("unclosed tag: '" + tag_name + "' Got:" + m.group()) children = tokens tokens = tokens_stack.pop() tokens[-1].text = template[text_end:m.start()] tokens[-1].children = children strip_space = True else: raise SyntaxError('Unknown tag: ' + m.group()) if token is not None: tokens.append(token) index = m.end() if strip_space: pos = is_standalone(template, m.start(), m.end()) if pos: index = pos[1] if last_literal: last_literal.value = last_literal.value.rstrip(spaces_not_newline) m = re_tag.search(template, index) tokens.append(Literal('str', template[index:])) root.children = tokens return root
Compile a template into token tree :template: TODO :delimiters: TODO :returns: the root token
entailment
def _escape(self, text): """Escape text according to self.escape""" ret = EMPTYSTRING if text is None else str(text) if self.escape: return html_escape(ret) else: return ret
Escape text according to self.escape
entailment
def _lookup(self, dot_name, contexts): """lookup value for names like 'a.b.c' and handle filters as well""" # process filters filters = [x for x in map(lambda x: x.strip(), dot_name.split('|'))] dot_name = filters[0] filters = filters[1:] # should support paths like '../../a.b.c/../d', etc. if not dot_name.startswith('.'): dot_name = './' + dot_name paths = dot_name.split('/') last_path = paths[-1] # path like '../..' or ./../. etc. refer_context = last_path == '' or last_path == '.' or last_path == '..' paths = paths if refer_context else paths[:-1] # count path level level = 0 for path in paths: if path == '..': level -= 1 elif path != '.': # ../a.b.c/.. in the middle level += len(path.strip('.').split('.')) names = last_path.split('.') # fetch the correct context if refer_context or names[0] == '': try: value = contexts[level-1] except: value = None else: # support {{a.b.c.d.e}} like lookup value = lookup(names[0], contexts, level) # lookup for variables if not refer_context: for name in names[1:]: try: # a.num (a.1, a.2) to access list index = parse_int(name) name = parse_int(name) if isinstance(value, (list, tuple)) else name value = value[name] except: # not found value = None break; # apply filters for f in filters: try: func = self.root.filters[f] value = func(value) except: continue return value
lookup value for names like 'a.b.c' and handle filters as well
entailment
def _render_children(self, contexts, partials): """Render the children tokens""" ret = [] for child in self.children: ret.append(child._render(contexts, partials)) return EMPTYSTRING.join(ret)
Render the children tokens
entailment
def _render(self, contexts, partials): """render variable""" value = self._lookup(self.value, contexts) # lambda if callable(value): value = inner_render(str(value()), contexts, partials) return self._escape(value)
render variable
entailment
def _render(self, contexts, partials): """render section""" val = self._lookup(self.value, contexts) if not val: # false value return EMPTYSTRING # normally json has types: number/string/list/map # but python has more, so we decide that map and string should not iterate # by default, other do. if hasattr(val, "__iter__") and not isinstance(val, (str, dict)): # non-empty lists ret = [] for item in val: contexts.append(item) ret.append(self._render_children(contexts, partials)) contexts.pop() if len(ret) <= 0: # empty lists return EMPTYSTRING return self._escape(''.join(ret)) elif callable(val): # lambdas new_template = val(self.text) value = inner_render(new_template, contexts, partials, self.delimiter) else: # context contexts.append(val) value = self._render_children(contexts, partials) contexts.pop() return self._escape(value)
render section
entailment
def _render(self, contexts, partials): """render inverted section""" val = self._lookup(self.value, contexts) if val: return EMPTYSTRING return self._render_children(contexts, partials)
render inverted section
entailment
def _render(self, contexts, partials): """render partials""" try: partial = partials[self.value] except KeyError as e: return self._escape(EMPTYSTRING) partial = re_insert_indent.sub(r'\1' + ' '*self.indent, partial) return inner_render(partial, contexts, partials, self.delimiter)
render partials
entailment
def Setup(): ''' Called when the code is installed. Sets up directories and downloads the K2 catalog. ''' if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'cbv')): os.makedirs(os.path.join(EVEREST_DAT, 'k2', 'cbv')) GetK2Stars(clobber=False)
Called when the code is installed. Sets up directories and downloads the K2 catalog.
entailment
def CDPP(flux, mask=[], cadence='lc'): ''' Compute the proxy 6-hr CDPP metric. :param array_like flux: The flux array to compute the CDPP for :param array_like mask: The indices to be masked :param str cadence: The light curve cadence. Default `lc` ''' # 13 cadences is 6.5 hours rmswin = 13 # Smooth the data on a 2 day timescale svgwin = 49 # If short cadence, need to downbin if cadence == 'sc': newsize = len(flux) // 30 flux = Downbin(flux, newsize, operation='mean') flux_savgol = SavGol(np.delete(flux, mask), win=svgwin) if len(flux_savgol): return Scatter(flux_savgol / np.nanmedian(flux_savgol), remove_outliers=True, win=rmswin) else: return np.nan
Compute the proxy 6-hr CDPP metric. :param array_like flux: The flux array to compute the CDPP for :param array_like mask: The indices to be masked :param str cadence: The light curve cadence. Default `lc`
entailment
def GetData(EPIC, season=None, cadence='lc', clobber=False, delete_raw=False, aperture_name='k2sff_15', saturated_aperture_name='k2sff_19', max_pixels=75, download_only=False, saturation_tolerance=-0.1, bad_bits=[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17], get_hires=True, get_nearby=True, **kwargs): ''' Returns a :py:obj:`DataContainer` instance with the raw data for the target. :param int EPIC: The EPIC ID number :param int season: The observing season (campaign). Default :py:obj:`None` :param str cadence: The light curve cadence. Default `lc` :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param bool delete_raw: Delete the FITS TPF after processing it? \ Default :py:obj:`False` :param str aperture_name: The name of the aperture to use. Select \ `custom` to call :py:func:`GetCustomAperture`. Default `k2sff_15` :param str saturated_aperture_name: The name of the aperture to use if \ the target is saturated. Default `k2sff_19` :param int max_pixels: Maximum number of pixels in the TPF. Default 75 :param bool download_only: Download raw TPF and return? Default \ :py:obj:`False` :param float saturation_tolerance: Target is considered saturated \ if flux is within this fraction of the pixel well depth. \ Default -0.1 :param array_like bad_bits: Flagged :py:obj`QUALITY` bits to consider \ outliers when computing the model. \ Default `[1,2,3,4,5,6,7,8,9,11,12,13,14,16,17]` :param bool get_hires: Download a high resolution image of the target? \ Default :py:obj:`True` :param bool get_nearby: Retrieve location of nearby sources? \ Default :py:obj:`True` ''' # Campaign no. if season is None: campaign = Season(EPIC) if hasattr(campaign, '__len__'): raise AttributeError( "Please choose a campaign/season for this target: %s." % campaign) else: campaign = season # Is there short cadence data available for this target? short_cadence = HasShortCadence(EPIC, season=campaign) if cadence == 'sc' and not short_cadence: raise ValueError("Short cadence data not available for this target.") # Local file name filename = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % campaign, ('%09d' % EPIC)[:4] + '00000', ('%09d' % EPIC)[4:], 'data.npz') # Download? if clobber or not os.path.exists(filename): # Get the TPF tpf = os.path.join(KPLR_ROOT, 'data', 'k2', 'target_pixel_files', str(EPIC), 'ktwo%09d-c%02d_lpd-targ.fits.gz' % (EPIC, campaign)) sc_tpf = os.path.join(KPLR_ROOT, 'data', 'k2', 'target_pixel_files', str(EPIC), 'ktwo%09d-c%02d_spd-targ.fits.gz' % (EPIC, campaign)) if clobber or not os.path.exists(tpf): kplr_client.k2_star(EPIC).get_target_pixel_files(fetch=True) with pyfits.open(tpf) as f: qdata = f[1].data # Get the TPF aperture tpf_aperture = (f[2].data & 2) // 2 # Get the enlarged TPF aperture tpf_big_aperture = np.array(tpf_aperture) for i in range(tpf_big_aperture.shape[0]): for j in range(tpf_big_aperture.shape[1]): if f[2].data[i][j] == 1: for n in [(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)]: if n[0] >= 0 and n[0] < tpf_big_aperture.shape[0]: if n[1] >= 0 and n[1] < \ tpf_big_aperture.shape[1]: if tpf_aperture[n[0]][n[1]] == 1: tpf_big_aperture[i][j] = 1 # Is there short cadence data? if short_cadence: with pyfits.open(sc_tpf) as f: sc_qdata = f[1].data # Get K2SFF apertures try: k2sff = kplr.K2SFF(EPIC, sci_campaign=campaign) k2sff_apertures = k2sff.apertures if delete_raw: os.remove(k2sff._file) except: k2sff_apertures = [None for i in range(20)] # Make a dict of all our apertures # We're not getting K2SFF apertures 0-9 any more apertures = {'tpf': tpf_aperture, 'tpf_big': tpf_big_aperture} for i in range(10, 20): apertures.update({'k2sff_%02d' % i: k2sff_apertures[i]}) # Get the header info fitsheader = [pyfits.getheader(tpf, 0).cards, pyfits.getheader(tpf, 1).cards, pyfits.getheader(tpf, 2).cards] if short_cadence: sc_fitsheader = [pyfits.getheader(sc_tpf, 0).cards, pyfits.getheader(sc_tpf, 1).cards, pyfits.getheader(sc_tpf, 2).cards] else: sc_fitsheader = None # Get a hi res image of the target if get_hires: hires = GetHiResImage(EPIC) else: hires = None # Get nearby sources if get_nearby: nearby = GetSources(EPIC) else: nearby = [] # Delete? if delete_raw: os.remove(tpf) if short_cadence: os.remove(sc_tpf) # Get the arrays cadn = np.array(qdata.field('CADENCENO'), dtype='int32') time = np.array(qdata.field('TIME'), dtype='float64') fpix = np.array(qdata.field('FLUX'), dtype='float64') fpix_err = np.array(qdata.field('FLUX_ERR'), dtype='float64') qual = np.array(qdata.field('QUALITY'), dtype=int) # Get rid of NaNs in the time array by interpolating naninds = np.where(np.isnan(time)) time = Interpolate(np.arange(0, len(time)), naninds, time) # Get the motion vectors (if available!) pc1 = np.array(qdata.field('POS_CORR1'), dtype='float64') pc2 = np.array(qdata.field('POS_CORR2'), dtype='float64') if not np.all(np.isnan(pc1)) and not np.all(np.isnan(pc2)): pc1 = Interpolate(time, np.where(np.isnan(pc1)), pc1) pc2 = Interpolate(time, np.where(np.isnan(pc2)), pc2) else: pc1 = None pc2 = None # Do the same for short cadence if short_cadence: sc_cadn = np.array(sc_qdata.field('CADENCENO'), dtype='int32') sc_time = np.array(sc_qdata.field('TIME'), dtype='float64') sc_fpix = np.array(sc_qdata.field('FLUX'), dtype='float64') sc_fpix_err = np.array(sc_qdata.field('FLUX_ERR'), dtype='float64') sc_qual = np.array(sc_qdata.field('QUALITY'), dtype=int) sc_naninds = np.where(np.isnan(sc_time)) sc_time = Interpolate( np.arange(0, len(sc_time)), sc_naninds, sc_time) sc_pc1 = np.array(sc_qdata.field('POS_CORR1'), dtype='float64') sc_pc2 = np.array(sc_qdata.field('POS_CORR2'), dtype='float64') if not np.all(np.isnan(sc_pc1)) and not np.all(np.isnan(sc_pc2)): sc_pc1 = Interpolate( sc_time, np.where(np.isnan(sc_pc1)), sc_pc1) sc_pc2 = Interpolate( sc_time, np.where(np.isnan(sc_pc2)), sc_pc2) else: sc_pc1 = None sc_pc2 = None else: sc_cadn = None sc_time = None sc_fpix = None sc_fpix_err = None sc_qual = None sc_pc1 = None sc_pc2 = None # Static pixel images for plotting pixel_images = [fpix[0], fpix[len(fpix) // 2], fpix[len(fpix) - 1]] # Atomically write to disk. # http://stackoverflow.com/questions/2333872/ # atomic-writing-to-file-with-python if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) f = NamedTemporaryFile("wb", delete=False) np.savez_compressed(f, cadn=cadn, time=time, fpix=fpix, fpix_err=fpix_err, qual=qual, apertures=apertures, pc1=pc1, pc2=pc2, fitsheader=fitsheader, pixel_images=pixel_images, nearby=nearby, hires=hires, sc_cadn=sc_cadn, sc_time=sc_time, sc_fpix=sc_fpix, sc_fpix_err=sc_fpix_err, sc_qual=sc_qual, sc_pc1=sc_pc1, sc_pc2=sc_pc2, sc_fitsheader=sc_fitsheader) f.flush() os.fsync(f.fileno()) f.close() shutil.move(f.name, filename) if download_only: return # Load data = np.load(filename) apertures = data['apertures'][()] pixel_images = data['pixel_images'] nearby = data['nearby'] hires = data['hires'][()] if cadence == 'lc': fitsheader = data['fitsheader'] cadn = data['cadn'] time = data['time'] fpix = data['fpix'] fpix_err = data['fpix_err'] qual = data['qual'] pc1 = data['pc1'] pc2 = data['pc2'] elif cadence == 'sc': fitsheader = data['sc_fitsheader'] cadn = data['sc_cadn'] time = data['sc_time'] fpix = data['sc_fpix'] fpix_err = data['sc_fpix_err'] qual = data['sc_qual'] pc1 = data['sc_pc1'] pc2 = data['sc_pc2'] else: raise ValueError("Invalid value for the cadence.") # Select the "saturated aperture" to check if the star is saturated # If it is, we will use this aperture instead if saturated_aperture_name == 'custom': saturated_aperture = GetCustomAperture(data) else: if saturated_aperture_name is None: saturated_aperture_name = 'k2sff_19' saturated_aperture = apertures[saturated_aperture_name] if saturated_aperture is None: log.error("Invalid aperture selected. Defaulting to `tpf_big`.") saturated_aperture_name = 'tpf_big' saturated_aperture = apertures[saturated_aperture_name] # HACK: Some C05 K2SFF apertures don't match the target pixel file # pixel grid size. This is likely because they're defined on the M67 # superstamp. For now, let's ignore these stars. if saturated_aperture.shape != fpix.shape[1:]: log.error("Aperture size mismatch!") return None # Compute the saturation flux and the 97.5th percentile # flux in each pixel of the saturated aperture. We're going # to compare these to decide if the star is saturated. satflx = SaturationFlux(EPIC, campaign=campaign) * \ (1. + saturation_tolerance) f97 = np.zeros((fpix.shape[1], fpix.shape[2])) for i in range(fpix.shape[1]): for j in range(fpix.shape[2]): if saturated_aperture[i, j]: # Let's remove NaNs... tmp = np.delete(fpix[:, i, j], np.where( np.isnan(fpix[:, i, j]))) # ... and really bad outliers... if len(tmp): f = SavGol(tmp) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) bad = np.where((f > med + 10. * MAD) | (f < med - 10. * MAD))[0] np.delete(tmp, bad) # ... so we can compute the 97.5th percentile flux i97 = int(0.975 * len(tmp)) tmp = tmp[np.argsort(tmp)[i97]] f97[i, j] = tmp # Check if any of the pixels are actually saturated if np.nanmax(f97) <= satflx: log.info("No saturated columns detected.") saturated = False else: log.info("Saturated pixel(s) found. Switching to aperture `%s`." % saturated_aperture_name) aperture_name = saturated_aperture_name saturated = True # Now grab the aperture we'll actually use if aperture_name == 'custom': aperture = GetCustomAperture(data) else: if aperture_name is None: aperture_name = 'k2sff_15' aperture = apertures[aperture_name] if aperture is None: log.error("Invalid aperture selected. Defaulting to `tpf_big`.") aperture_name = 'tpf_big' aperture = apertures[aperture_name] # HACK: Some C05 K2SFF apertures don't match the target pixel file # pixel grid size. This is likely because they're defined on the M67 # superstamp. For now, let's ignore these stars. if aperture.shape != fpix.shape[1:]: log.error("Aperture size mismatch!") return None # Now we check if the aperture is too big. Can lead to memory errors... # Treat saturated and unsaturated stars differently. if saturated: # Need to check if we have too many pixels *after* collapsing columns. # Sort the apertures in decreasing order of pixels, but keep the apert. # chosen by the user first. aperture_names = np.array(list(apertures.keys())) npix_per_aperture = np.array( [np.sum(apertures[k]) for k in aperture_names]) aperture_names = aperture_names[np.argsort(npix_per_aperture)[::-1]] aperture_names = np.append([aperture_name], np.delete( aperture_names, np.argmax(aperture_names == aperture_name))) # Loop through them. Pick the first one that satisfies # the `max_pixels` constraint for aperture_name in aperture_names: aperture = apertures[aperture_name] aperture[np.isnan(fpix[0])] = 0 ncol = 0 apcopy = np.array(aperture) for j in range(apcopy.shape[1]): if np.any(f97[:, j] > satflx): apcopy[:, j] = 0 ncol += 1 if np.sum(apcopy) + ncol <= max_pixels: break if np.sum(apcopy) + ncol > max_pixels: log.error( "No apertures available with fewer than %d pixels. Aborting." % max_pixels) return None # Now, finally, we collapse the saturated columns into single pixels # and make the pixel array 2D ncol = 0 fpixnew = [] ferrnew = [] # HACK: K2SFF sometimes clips the heads/tails of saturated columns # That's really bad, since that's where all the information is. Let's # artificially extend the aperture by two pixels at the top and bottom # of each saturated column. This *could* increase contamination, but # it's unlikely since the saturated target is by definition really # bright ext = 0 for j in range(aperture.shape[1]): if np.any(f97[:, j] > satflx): for i in range(aperture.shape[0]): if (aperture[i, j] == 0) and \ (np.nanmedian(fpix[:, i, j]) > 0): if (i + 2 < aperture.shape[0]) and \ aperture[i + 2, j] == 1: aperture[i, j] = 2 ext += 1 elif (i + 1 < aperture.shape[0]) and \ aperture[i + 1, j] == 1: aperture[i, j] = 2 ext += 1 elif (i - 1 >= 0) and aperture[i - 1, j] == 1: aperture[i, j] = 2 ext += 1 elif (i - 2 >= 0) and aperture[i - 2, j] == 1: aperture[i, j] = 2 ext += 1 if ext: log.info("Extended saturated columns by %d pixel(s)." % ext) for j in range(aperture.shape[1]): if np.any(f97[:, j] > satflx): marked = False collapsed = np.zeros(len(fpix[:, 0, 0])) collapsed_err2 = np.zeros(len(fpix[:, 0, 0])) for i in range(aperture.shape[0]): if aperture[i, j]: if not marked: aperture[i, j] = AP_COLLAPSED_PIXEL marked = True else: aperture[i, j] = AP_SATURATED_PIXEL collapsed += fpix[:, i, j] collapsed_err2 += fpix_err[:, i, j] ** 2 if np.any(collapsed): fpixnew.append(collapsed) ferrnew.append(np.sqrt(collapsed_err2)) ncol += 1 else: for i in range(aperture.shape[0]): if aperture[i, j]: fpixnew.append(fpix[:, i, j]) ferrnew.append(fpix_err[:, i, j]) fpix2D = np.array(fpixnew).T fpix_err2D = np.array(ferrnew).T log.info("Collapsed %d saturated column(s)." % ncol) else: # Check if there are too many pixels if np.sum(aperture) > max_pixels: # This case is simpler: we just pick the largest aperture # that's less than or equal to `max_pixels` keys = list(apertures.keys()) npix = np.array([np.sum(apertures[k]) for k in keys]) aperture_name = keys[np.argmax(npix * (npix <= max_pixels))] aperture = apertures[aperture_name] aperture[np.isnan(fpix[0])] = 0 if np.sum(aperture) > max_pixels: log.error("No apertures available with fewer than " + "%d pixels. Aborting." % max_pixels) return None log.warn( "Selected aperture is too big. Proceeding with aperture " + "`%s` instead." % aperture_name) # Make the pixel flux array 2D aperture[np.isnan(fpix[0])] = 0 ap = np.where(aperture & 1) fpix2D = np.array([f[ap] for f in fpix], dtype='float64') fpix_err2D = np.array([p[ap] for p in fpix_err], dtype='float64') # Compute the background binds = np.where(aperture ^ 1) if RemoveBackground(EPIC, campaign=campaign) and (len(binds[0]) > 0): bkg = np.nanmedian(np.array([f[binds] for f in fpix], dtype='float64'), axis=1) # Uncertainty of the median: # http://davidmlane.com/hyperstat/A106993.html bkg_err = 1.253 * np.nanmedian(np.array([e[binds] for e in fpix_err], dtype='float64'), axis=1) \ / np.sqrt(len(binds[0])) bkg = bkg.reshape(-1, 1) bkg_err = bkg_err.reshape(-1, 1) else: bkg = 0. bkg_err = 0. # Make everything 2D and remove the background fpix = fpix2D - bkg fpix_err = np.sqrt(fpix_err2D ** 2 + bkg_err ** 2) flux = np.sum(fpix, axis=1) ferr = np.sqrt(np.sum(fpix_err ** 2, axis=1)) # Get NaN data points nanmask = np.where(np.isnan(flux) | (flux == 0))[0] # Get flagged data points -- we won't train our model on them badmask = [] for b in bad_bits: badmask += list(np.where(qual & 2 ** (b - 1))[0]) # Flag >10 sigma outliers -- same thing. tmpmask = np.array(list(set(np.concatenate([badmask, nanmask])))) t = np.delete(time, tmpmask) f = np.delete(flux, tmpmask) f = SavGol(f) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) bad = np.where((f > med + 10. * MAD) | (f < med - 10. * MAD))[0] badmask.extend([np.argmax(time == t[i]) for i in bad]) # Campaign 2 hack: the first day or two are screwed up if campaign == 2: badmask.extend(np.where(time < 2061.5)[0]) # TODO: Fix time offsets in first half of # Campaign 0. See note in everest 1.0 code # Finalize the mask badmask = np.array(sorted(list(set(badmask)))) # Interpolate the nans fpix = Interpolate(time, nanmask, fpix) fpix_err = Interpolate(time, nanmask, fpix_err) # Return data = DataContainer() data.ID = EPIC data.campaign = campaign data.cadn = cadn data.time = time data.fpix = fpix data.fpix_err = fpix_err data.nanmask = nanmask data.badmask = badmask data.aperture = aperture data.aperture_name = aperture_name data.apertures = apertures data.quality = qual data.Xpos = pc1 data.Ypos = pc2 data.meta = fitsheader data.mag = fitsheader[0]['KEPMAG'][1] data.pixel_images = pixel_images data.nearby = nearby data.hires = hires data.saturated = saturated data.bkg = bkg return data
Returns a :py:obj:`DataContainer` instance with the raw data for the target. :param int EPIC: The EPIC ID number :param int season: The observing season (campaign). Default :py:obj:`None` :param str cadence: The light curve cadence. Default `lc` :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param bool delete_raw: Delete the FITS TPF after processing it? \ Default :py:obj:`False` :param str aperture_name: The name of the aperture to use. Select \ `custom` to call :py:func:`GetCustomAperture`. Default `k2sff_15` :param str saturated_aperture_name: The name of the aperture to use if \ the target is saturated. Default `k2sff_19` :param int max_pixels: Maximum number of pixels in the TPF. Default 75 :param bool download_only: Download raw TPF and return? Default \ :py:obj:`False` :param float saturation_tolerance: Target is considered saturated \ if flux is within this fraction of the pixel well depth. \ Default -0.1 :param array_like bad_bits: Flagged :py:obj`QUALITY` bits to consider \ outliers when computing the model. \ Default `[1,2,3,4,5,6,7,8,9,11,12,13,14,16,17]` :param bool get_hires: Download a high resolution image of the target? \ Default :py:obj:`True` :param bool get_nearby: Retrieve location of nearby sources? \ Default :py:obj:`True`
entailment
def GetNeighbors(EPIC, season=None, model=None, neighbors=10, mag_range=(11., 13.), cdpp_range=None, aperture_name='k2sff_15', cadence='lc', **kwargs): ''' Return `neighbors` random bright stars on the same module as `EPIC`. :param int EPIC: The EPIC ID number :param str model: The :py:obj:`everest` model name. Only used when \ imposing CDPP bounds. Default :py:obj:`None` :param int neighbors: Number of neighbors to return. Default 10 :param str aperture_name: The name of the aperture to use. Select \ `custom` to call \ :py:func:`GetCustomAperture`. Default `k2sff_15` :param str cadence: The light curve cadence. Default `lc` :param tuple mag_range: (`low`, `high`) values for the Kepler magnitude. \ Default (11, 13) :param tuple cdpp_range: (`low`, `high`) values for the de-trended CDPP. \ Default :py:obj:`None` ''' # Zero neighbors? if neighbors == 0: return [] # Get the IDs # Campaign no. if season is None: campaign = Season(EPIC) if hasattr(campaign, '__len__'): raise AttributeError( "Please choose a campaign/season for this target: %s." % campaign) else: campaign = season epics, kepmags, channels, short_cadence = np.array(GetK2Stars()[ campaign]).T short_cadence = np.array(short_cadence, dtype=bool) epics = np.array(epics, dtype=int) c = GetNeighboringChannels(Channel(EPIC, campaign=season)) # Manage kwargs if aperture_name is None: aperture_name = 'k2sff_15' if mag_range is None: mag_lo = -np.inf mag_hi = np.inf else: mag_lo = mag_range[0] mag_hi = mag_range[1] # K2-specific tweak. The short cadence stars are preferentially # really bright ones, so we won't get many neighbors if we # stick to the default magnitude range! I'm # therefore enforcing a lower magnitude cut-off of 8. if cadence == 'sc': mag_lo = 8. if cdpp_range is None: cdpp_lo = -np.inf cdpp_hi = np.inf else: cdpp_lo = cdpp_range[0] cdpp_hi = cdpp_range[1] targets = [] # First look for nearby targets, then relax the constraint # If still no targets, widen magnitude range for n in range(3): if n == 0: nearby = True elif n == 1: nearby = False elif n == 2: mag_lo -= 1 mag_hi += 1 # Loop over all stars for star, kp, channel, sc in zip(epics, kepmags, channels, short_cadence): # Preliminary vetting if not (((channel in c) if nearby else True) and (kp < mag_hi) \ and (kp > mag_lo) and (sc if cadence == 'sc' else True)): continue # Reject if self or if already in list if (star == EPIC) or (star in targets): continue # Ensure raw light curve file exists if not os.path.exists( os.path.join(TargetDirectory(star, campaign), 'data.npz')): continue # Ensure crowding is OK. This is quite conservative, as we # need to prevent potential astrophysical false positive # contamination from crowded planet-hosting neighbors when # doing neighboring PLD. contam = False data = np.load(os.path.join( TargetDirectory(star, campaign), 'data.npz')) aperture = data['apertures'][()][aperture_name] # Check that the aperture exists! if aperture is None: continue fpix = data['fpix'] for source in data['nearby'][()]: # Ignore self if source['ID'] == star: continue # Ignore really dim stars if source['mag'] < kp - 5: continue # Compute source position x = int(np.round(source['x'] - source['x0'])) y = int(np.round(source['y'] - source['y0'])) # If the source is within two pixels of the edge # of the target aperture, reject the target for j in [x - 2, x - 1, x, x + 1, x + 2]: if j < 0: # Outside the postage stamp continue for i in [y - 2, y - 1, y, y + 1, y + 2]: if i < 0: # Outside the postage stamp continue try: if aperture[i][j]: # Oh-oh! contam = True except IndexError: # Out of bounds... carry on! pass if contam: continue # HACK: This happens for K2SFF M67 targets in C05. # Let's skip them if aperture.shape != fpix.shape[1:]: continue # Reject if the model is not present if model is not None: if not os.path.exists(os.path.join( TargetDirectory(star, campaign), model + '.npz')): continue # Reject if CDPP out of range if cdpp_range is not None: cdpp = np.load(os.path.join(TargetDirectory( star, campaign), model + '.npz'))['cdpp'] if (cdpp > cdpp_hi) or (cdpp < cdpp_lo): continue # Passed all the tests! targets.append(star) # Do we have enough? If so, return if len(targets) == neighbors: random.shuffle(targets) return targets # If we get to this point, we didn't find enough neighbors... # Return what we have anyway. return targets
Return `neighbors` random bright stars on the same module as `EPIC`. :param int EPIC: The EPIC ID number :param str model: The :py:obj:`everest` model name. Only used when \ imposing CDPP bounds. Default :py:obj:`None` :param int neighbors: Number of neighbors to return. Default 10 :param str aperture_name: The name of the aperture to use. Select \ `custom` to call \ :py:func:`GetCustomAperture`. Default `k2sff_15` :param str cadence: The light curve cadence. Default `lc` :param tuple mag_range: (`low`, `high`) values for the Kepler magnitude. \ Default (11, 13) :param tuple cdpp_range: (`low`, `high`) values for the de-trended CDPP. \ Default :py:obj:`None`
entailment
def PlanetStatistics(model='nPLD', compare_to='k2sff', **kwargs): ''' Computes and plots the CDPP statistics comparison between `model` and `compare_to` for all known K2 planets. :param str model: The :py:obj:`everest` model name :param str compare_to: The :py:obj:`everest` model name or \ other K2 pipeline name ''' # Load all planet hosts f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'planets.tsv') epic, campaign, kp, _, _, _, _, _, _ = np.loadtxt( f, unpack=True, skiprows=2) epic = np.array(epic, dtype=int) campaign = np.array(campaign, dtype=int) cdpp = np.zeros(len(epic)) saturated = np.zeros(len(epic), dtype=int) cdpp_1 = np.zeros(len(epic)) # Get the stats for c in set(campaign): # Everest model f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(c), model)) e0, _, _, c0, _, _, _, _, s0 = np.loadtxt(f, unpack=True, skiprows=2) for i, e in enumerate(epic): if e in e0: j = np.argmax(e0 == e) cdpp[i] = c0[j] saturated[i] = s0[j] # Comparison model f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(c), compare_to.lower())) if not os.path.exists(f): continue if compare_to.lower() in ['everest1', 'k2sff', 'k2sc']: e1, c1 = np.loadtxt(f, unpack=True, skiprows=2) else: e1, _, _, c1, _, _, _, _, _ = np.loadtxt( f, unpack=True, skiprows=2) for i, e in enumerate(epic): if e in e1: j = np.argmax(e1 == e) cdpp_1[i] = c1[j] sat = np.where(saturated == 1) unsat = np.where(saturated == 0) # Plot the equivalent of the Aigrain+16 figure fig, ax = pl.subplots(1) fig.canvas.set_window_title( 'K2 Planet Hosts: %s versus %s' % (model, compare_to)) x = kp y = (cdpp - cdpp_1) / cdpp_1 ax.scatter(x[unsat], y[unsat], color='b', marker='.', alpha=0.5, zorder=-1, picker=True) ax.scatter(x[sat], y[sat], color='r', marker='.', alpha=0.5, zorder=-1, picker=True) ax.set_ylim(-1, 1) ax.set_xlim(8, 18) ax.axhline(0, color='gray', lw=2, zorder=-99, alpha=0.5) ax.axhline(0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5) ax.axhline(-0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5) ax.set_title(r'K2 Planet Hosts', fontsize=18) ax.set_ylabel(r'Relative CDPP', fontsize=18) ax.set_xlabel('Kepler Magnitude', fontsize=18) # Pickable points Picker = StatsPicker([ax], [kp], [y], epic, model=model, compare_to=compare_to) fig.canvas.mpl_connect('pick_event', Picker) # Show pl.show()
Computes and plots the CDPP statistics comparison between `model` and `compare_to` for all known K2 planets. :param str model: The :py:obj:`everest` model name :param str compare_to: The :py:obj:`everest` model name or \ other K2 pipeline name
entailment
def ShortCadenceStatistics(campaign=None, clobber=False, model='nPLD', plot=True, **kwargs): ''' Computes and plots the CDPP statistics comparison between short cadence and long cadence de-trended light curves :param campaign: The campaign number or list of campaign numbers. \ Default is to plot all campaigns :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param str model: The :py:obj:`everest` model name :param bool plot: Default :py:obj:`True` ''' # Check campaign if campaign is None: campaign = np.arange(9) else: campaign = np.atleast_1d(campaign) # Update model name model = '%s.sc' % model # Compute the statistics for camp in campaign: sub = np.array(GetK2Campaign( camp, cadence='sc', epics_only=True), dtype=int) outfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(camp), model)) if clobber or not os.path.exists(outfile): with open(outfile, 'w') as f: print("EPIC Kp Raw CDPP " + "Everest CDPP Saturated", file=f) print("--------- ------ --------- " + "------------ ---------", file=f) all = GetK2Campaign(int(camp), cadence='sc') stars = np.array([s[0] for s in all], dtype=int) kpmgs = np.array([s[1] for s in all], dtype=float) for i, _ in enumerate(stars): sys.stdout.write( '\rProcessing target %d/%d...' % (i + 1, len(stars))) sys.stdout.flush() nf = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % camp, ('%09d' % stars[i])[:4] + '00000', ('%09d' % stars[i])[4:], model + '.npz') try: data = np.load(nf) print("{:>09d} {:>15.3f} {:>15.3f} {:>15.3f} {:>15d}".format( stars[i], kpmgs[i], data['cdppr'][()], data['cdpp'][()], int(data['saturated'])), file=f) except: print("{:>09d} {:>15.3f} {:>15.3f} {:>15.3f} {:>15d}".format( stars[i], kpmgs[i], np.nan, np.nan, 0), file=f) print("") if not plot: return # Running lists xsat = [] ysat = [] xunsat = [] yunsat = [] xall = [] yall = [] epics = [] # Plot for camp in campaign: # Load all stars sub = np.array(GetK2Campaign( camp, cadence='sc', epics_only=True), dtype=int) outfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(camp), model)) epic, kp, cdpp6r, cdpp6, saturated = np.loadtxt( outfile, unpack=True, skiprows=2) epic = np.array(epic, dtype=int) saturated = np.array(saturated, dtype=int) # Get only stars in this subcamp inds = np.array([e in sub for e in epic]) epic = epic[inds] kp = kp[inds] # HACK: camp 0 magnitudes are reported only to the nearest tenth, # so let's add a little noise to spread them out for nicer plotting kp = kp + 0.1 * (0.5 - np.random.random(len(kp))) cdpp6r = cdpp6r[inds] cdpp6 = cdpp6[inds] saturated = saturated[inds] sat = np.where(saturated == 1) unsat = np.where(saturated == 0) if not np.any([not np.isnan(x) for x in cdpp6]): continue # Get the long cadence stats compfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(camp), model[:-3])) epic_1, _, _, cdpp6_1, _, _, _, _, saturated = np.loadtxt( compfile, unpack=True, skiprows=2) epic_1 = np.array(epic_1, dtype=int) inds = np.array([e in sub for e in epic_1]) epic_1 = epic_1[inds] cdpp6_1 = cdpp6_1[inds] cdpp6_1 = sort_like(cdpp6_1, epic, epic_1) x = kp y = (cdpp6 - cdpp6_1) / cdpp6_1 # Append to running lists xsat.extend(x[sat]) ysat.extend(y[sat]) xunsat.extend(x[unsat]) yunsat.extend(y[unsat]) xall.extend(x) yall.extend(y) epics.extend(epic) # Plot the equivalent of the Aigrain+16 figure fig, ax = pl.subplots(1) fig.canvas.set_window_title('K2 Short Cadence') ax.scatter(xunsat, yunsat, color='b', marker='.', alpha=0.35, zorder=-1, picker=True) ax.scatter(xsat, ysat, color='r', marker='.', alpha=0.35, zorder=-1, picker=True) ax.set_ylim(-1, 1) ax.set_xlim(8, 18) ax.axhline(0, color='gray', lw=2, zorder=-99, alpha=0.5) ax.axhline(0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5) ax.axhline(-0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5) ax.set_title(r'Short Versus Long Cadence', fontsize=18) ax.set_ylabel(r'Relative CDPP', fontsize=18) ax.set_xlabel('Kepler Magnitude', fontsize=18) # Bin the CDPP yall = np.array(yall) xall = np.array(xall) bins = np.arange(7.5, 18.5, 0.5) by = np.zeros_like(bins) * np.nan for b, bin in enumerate(bins): i = np.where((yall > -np.inf) & (yall < np.inf) & (xall >= bin - 0.5) & (xall < bin + 0.5))[0] if len(i) > 10: by[b] = np.median(yall[i]) ax.plot(bins[:9], by[:9], 'r--', lw=2) ax.plot(bins[8:], by[8:], 'k-', lw=2) # Pickable points Picker = StatsPicker([ax], [xall], [yall], epics, model=model[:-3], compare_to=model[:-3], cadence='sc', campaign=campaign) fig.canvas.mpl_connect('pick_event', Picker) # Show pl.show()
Computes and plots the CDPP statistics comparison between short cadence and long cadence de-trended light curves :param campaign: The campaign number or list of campaign numbers. \ Default is to plot all campaigns :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param str model: The :py:obj:`everest` model name :param bool plot: Default :py:obj:`True`
entailment
def Statistics(season=None, clobber=False, model='nPLD', injection=False, compare_to='kepler', plot=True, cadence='lc', planets=False, **kwargs): ''' Computes and plots the CDPP statistics comparison between `model` and `compare_to` for all long cadence light curves in a given campaign :param season: The campaign number or list of campaign numbers. \ Default is to plot all campaigns :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param str model: The :py:obj:`everest` model name :param str compare_to: The :py:obj:`everest` model name or other \ K2 pipeline name :param bool plot: Default :py:obj:`True` :param bool injection: Statistics for injection tests? Default \ :py:obj:`False` :param bool planets: Statistics for known K2 planets? \ Default :py:obj:`False` ''' # Multi-mission compatibility campaign = season # Is this short cadence? if cadence == 'sc': return ShortCadenceStatistics(campaign=campaign, clobber=clobber, model=model, plot=plot, **kwargs) # Check the campaign if campaign is None: campaign = 0 # Planet hosts only? if planets: return PlanetStatistics(model=model, compare_to=compare_to, **kwargs) # Is this an injection run? if injection: return InjectionStatistics(campaign=campaign, clobber=clobber, model=model, plot=plot, **kwargs) # Compute the statistics sub = np.array([s[0] for s in GetK2Campaign(campaign)], dtype=int) outfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(campaign), model)) if clobber or not os.path.exists(outfile): with open(outfile, 'w') as f: print("EPIC Kp Raw CDPP Everest CDPP" + " Validation Outliers[1] Outliers[2] " + "Datapoints Saturated", file=f) print("--------- ------ --------- ------------" + " ---------- ----------- ----------- " + "---------- ---------", file=f) all = GetK2Campaign(int(campaign)) stars = np.array([s[0] for s in all], dtype=int) kpmgs = np.array([s[1] for s in all], dtype=float) for i, _ in enumerate(stars): sys.stdout.write('\rProcessing target %d/%d...' % (i + 1, len(stars))) sys.stdout.flush() nf = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % campaign, ('%09d' % stars[i])[:4] + '00000', ('%09d' % stars[i])[4:], model + '.npz') try: data = np.load(nf) # Remove NaNs and flagged cadences flux = np.delete(data['fraw'] - data['model'], np.array( list(set(np.concatenate([data['nanmask'], data['badmask']]))))) # Iterative sigma clipping to get 5 sigma outliers inds = np.array([], dtype=int) m = 1 while len(inds) < m: m = len(inds) ff = SavGol(np.delete(flux, inds)) med = np.nanmedian(ff) MAD = 1.4826 * np.nanmedian(np.abs(ff - med)) inds = np.append(inds, np.where( (ff > med + 5. * MAD) | (ff < med - 5. * MAD))[0]) nout = len(inds) ntot = len(flux) # HACK: Backwards compatibility fix try: cdpp = data['cdpp'][()] except KeyError: cdpp = data['cdpp6'][()] print("{:>09d} {:>15.3f} {:>15.3f} {:>15.3f} {:>15.3f} {:>15d} {:>15d} {:>15d} {:>15d}".format( stars[i], kpmgs[i], data['cdppr'][()], cdpp, data['cdppv'][()], len(data['outmask']), nout, ntot, int(data['saturated'])), file=f) except: print("{:>09d} {:>15.3f} {:>15.3f} {:>15.3f} {:>15.3f} {:>15d} {:>15d} {:>15d} {:>15d}".format( stars[i], kpmgs[i], np.nan, np.nan, np.nan, 0, 0, 0, 0), file=f) print("") if plot: # Load all stars epic, kp, cdpp6r, cdpp6, cdpp6v, _, out, tot, saturated = np.loadtxt( outfile, unpack=True, skiprows=2) epic = np.array(epic, dtype=int) out = np.array(out, dtype=int) tot = np.array(tot, dtype=int) saturated = np.array(saturated, dtype=int) # Get only stars in this subcampaign inds = np.array([e in sub for e in epic]) epic = epic[inds] kp = kp[inds] # HACK: Campaign 0 magnitudes are reported only to the nearest tenth, # so let's add a little noise to spread them out for nicer plotting kp = kp + 0.1 * (0.5 - np.random.random(len(kp))) cdpp6r = cdpp6r[inds] cdpp6 = cdpp6[inds] cdpp6v = cdpp6v[inds] out = out[inds] tot = tot[inds] saturated = saturated[inds] sat = np.where(saturated == 1) unsat = np.where(saturated == 0) if not np.any([not np.isnan(x) for x in cdpp6]): raise Exception("No targets to plot.") # Control transparency alpha_kepler = 0.03 alpha_unsat = min(0.1, 2000. / (1 + len(unsat[0]))) alpha_sat = min(1., 180. / (1 + len(sat[0]))) # Get the comparison model stats if compare_to.lower() == 'everest1': epic_1, cdpp6_1 = np.loadtxt( os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_everest1.cdpp' % int(campaign)), unpack=True) cdpp6_1 = sort_like(cdpp6_1, epic, epic_1) # Outliers epic_1, out_1, tot_1 = np.loadtxt( os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_everest1.out' % int(campaign)), unpack=True) out_1 = sort_like(out_1, epic, epic_1) tot_1 = sort_like(tot_1, epic, epic_1) elif compare_to.lower() == 'k2sc': epic_1, cdpp6_1 = np.loadtxt( os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_k2sc.cdpp' % int(campaign)), unpack=True) cdpp6_1 = sort_like(cdpp6_1, epic, epic_1) # Outliers epic_1, out_1, tot_1 = np.loadtxt( os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_k2sc.out' % int(campaign)), unpack=True) out_1 = sort_like(out_1, epic, epic_1) tot_1 = sort_like(tot_1, epic, epic_1) elif compare_to.lower() == 'k2sff': epic_1, cdpp6_1 = np.loadtxt( os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_k2sff.cdpp' % int(campaign)), unpack=True) cdpp6_1 = sort_like(cdpp6_1, epic, epic_1) # Outliers epic_1, out_1, tot_1 = np.loadtxt( os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_k2sff.out' % int(campaign)), unpack=True) out_1 = sort_like(out_1, epic, epic_1) tot_1 = sort_like(tot_1, epic, epic_1) elif compare_to.lower() == 'kepler': kic, kepler_kp, kepler_cdpp6 = np.loadtxt( os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'kepler.cdpp'), unpack=True) else: compfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(campaign), compare_to)) epic_1, _, _, cdpp6_1, _, _, out_1, tot_1, saturated = np.loadtxt( compfile, unpack=True, skiprows=2) epic_1 = np.array(epic_1, dtype=int) inds = np.array([e in sub for e in epic_1]) epic_1 = epic_1[inds] cdpp6_1 = cdpp6_1[inds] out_1 = out_1[inds] tot_1 = tot_1[inds] cdpp6_1 = sort_like(cdpp6_1, epic, epic_1) out_1 = sort_like(out_1, epic, epic_1) tot_1 = sort_like(tot_1, epic, epic_1) # ------ 1. Plot cdpp vs. mag if compare_to.lower() != 'kepler': fig = pl.figure(figsize=(16, 5)) ax = [pl.subplot2grid((120, 120), (0, 0), colspan=35, rowspan=120), pl.subplot2grid((120, 120), (0, 40), colspan=35, rowspan=120), pl.subplot2grid((120, 120), (0, 80), colspan=35, rowspan=55), pl.subplot2grid((120, 120), (65, 80), colspan=35, rowspan=55)] else: fig = pl.figure(figsize=(12, 5)) ax = [pl.subplot2grid((120, 75), (0, 0), colspan=35, rowspan=120), None, pl.subplot2grid((120, 75), (0, 40), colspan=35, rowspan=55), pl.subplot2grid((120, 75), (65, 40), colspan=35, rowspan=55)] fig.canvas.set_window_title( 'K2 Campaign %s: %s versus %s' % (campaign, model, compare_to)) fig.subplots_adjust(left=0.05, right=0.95, bottom=0.125, top=0.9) bins = np.arange(7.5, 18.5, 0.5) if compare_to.lower() != 'kepler': ax[0].scatter(kp[unsat], cdpp6_1[unsat], color='y', marker='.', alpha=alpha_unsat) ax[0].scatter(kp[sat], cdpp6_1[sat], color='y', marker='s', alpha=alpha_sat, s=5) ax[0].scatter(kp[unsat], cdpp6[unsat], color='b', marker='.', alpha=alpha_unsat, picker=True) ax[0].scatter(kp[sat], cdpp6[sat], color='b', marker='s', alpha=alpha_sat, s=5, picker=True) for y, style in zip([cdpp6_1, cdpp6], ['yo', 'bo']): by = np.zeros_like(bins) * np.nan for b, bin in enumerate(bins): i = np.where((y > -np.inf) & (y < np.inf) & (kp >= bin - 0.5) & (kp < bin + 0.5))[0] if len(i) > 10: by[b] = np.median(y[i]) ax[0].plot(bins, by, style, markeredgecolor='w') else: ax[0].scatter(kepler_kp, kepler_cdpp6, color='y', marker='.', alpha=alpha_kepler) ax[0].scatter(kp, cdpp6, color='b', marker='.', alpha=alpha_unsat, picker=True) for x, y, style in zip([kepler_kp, kp], [kepler_cdpp6, cdpp6], ['yo', 'bo']): by = np.zeros_like(bins) * np.nan for b, bin in enumerate(bins): i = np.where((y > -np.inf) & (y < np.inf) & (x >= bin - 0.5) & (x < bin + 0.5))[0] if len(i) > 10: by[b] = np.median(y[i]) ax[0].plot(bins, by, style, markeredgecolor='w') ax[0].set_ylim(-10, 500) ax[0].set_xlim(8, 18) ax[0].set_xlabel('Kepler Magnitude', fontsize=18) ax[0].set_title('CDPP6 (ppm)', fontsize=18) # ------ 2. Plot the equivalent of the Aigrain+16 figure if compare_to.lower() != 'kepler': x = kp y = (cdpp6 - cdpp6_1) / cdpp6_1 yv = (cdpp6v - cdpp6_1) / cdpp6_1 ax[1].scatter(x[unsat], y[unsat], color='b', marker='.', alpha=alpha_unsat, zorder=-1, picker=True) ax[1].scatter(x[sat], y[sat], color='r', marker='.', alpha=alpha_sat, zorder=-1, picker=True) ax[1].set_ylim(-1, 1) ax[1].set_xlim(8, 18) ax[1].axhline(0, color='gray', lw=2, zorder=-99, alpha=0.5) ax[1].axhline(0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5) ax[1].axhline(-0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5) bins = np.arange(7.5, 18.5, 0.5) # Bin the CDPP by = np.zeros_like(bins) * np.nan for b, bin in enumerate(bins): i = np.where((y > -np.inf) & (y < np.inf) & (x >= bin - 0.5) & (x < bin + 0.5))[0] if len(i) > 10: by[b] = np.median(y[i]) ax[1].plot(bins[:9], by[:9], 'k--', lw=2) ax[1].plot(bins[8:], by[8:], 'k-', lw=2) ax[1].set_title(r'Relative CDPP', fontsize=18) ax[1].set_xlabel('Kepler Magnitude', fontsize=18) # ------ 3. Plot the outliers i = np.argsort(out) a = int(0.95 * len(out)) omax = out[i][a] if compare_to.lower() != 'kepler': j = np.argsort(out_1) b = int(0.95 * len(out_1)) omax = max(omax, out_1[j][b]) ax[2].hist(out, 25, range=(0, omax), histtype='step', color='b') if compare_to.lower() != 'kepler': ax[2].hist(out_1, 25, range=(0, omax), histtype='step', color='y') ax[2].margins(0, None) ax[2].set_title('Number of Outliers', fontsize=18) # Plot the total number of data points i = np.argsort(tot) a = int(0.05 * len(tot)) b = int(0.95 * len(tot)) tmin = tot[i][a] tmax = tot[i][b] if compare_to.lower() != 'kepler': j = np.argsort(tot_1) c = int(0.05 * len(tot_1)) d = int(0.95 * len(tot_1)) tmin = min(tmin, tot_1[j][c]) tmax = max(tmax, tot_1[j][d]) ax[3].hist(tot, 25, range=(tmin, tmax), histtype='step', color='b') if compare_to.lower() != 'kepler': ax[3].hist(tot_1, 25, range=(tmin, tmax), histtype='step', color='y') ax[3].margins(0, None) ax[3].set_xlabel('Number of Data Points', fontsize=18) # Pickable points Picker = StatsPicker([ax[0], ax[1]], [kp, kp], [ cdpp6, y], epic, model=model, compare_to=compare_to, campaign=campaign) fig.canvas.mpl_connect('pick_event', Picker) # Show pl.show()
Computes and plots the CDPP statistics comparison between `model` and `compare_to` for all long cadence light curves in a given campaign :param season: The campaign number or list of campaign numbers. \ Default is to plot all campaigns :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param str model: The :py:obj:`everest` model name :param str compare_to: The :py:obj:`everest` model name or other \ K2 pipeline name :param bool plot: Default :py:obj:`True` :param bool injection: Statistics for injection tests? Default \ :py:obj:`False` :param bool planets: Statistics for known K2 planets? \ Default :py:obj:`False`
entailment
def HasShortCadence(EPIC, season=None): ''' Returns `True` if short cadence data is available for this target. :param int EPIC: The EPIC ID number :param int season: The campaign number. Default :py:obj:`None` ''' if season is None: season = Campaign(EPIC) if season is None: return None stars = GetK2Campaign(season) i = np.where([s[0] == EPIC for s in stars])[0] if len(i): return stars[i[0]][3] else: return None
Returns `True` if short cadence data is available for this target. :param int EPIC: The EPIC ID number :param int season: The campaign number. Default :py:obj:`None`
entailment
def InjectionStatistics(campaign=0, clobber=False, model='nPLD', plot=True, show=True, **kwargs): ''' Computes and plots the statistics for injection/recovery tests. :param int campaign: The campaign number. Default 0 :param str model: The :py:obj:`everest` model name :param bool plot: Default :py:obj:`True` :param bool show: Show the plot? Default :py:obj:`True`. \ If :py:obj:`False`, returns the `fig, ax` instances. :param bool clobber: Overwrite existing files? Default :py:obj:`False` ''' # Compute the statistics stars = GetK2Campaign(campaign, epics_only=True) if type(campaign) is int: outfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.inj' % (campaign, model)) else: outfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%04.1f_%s.inj' % (campaign, model)) if clobber or not os.path.exists(outfile): with open(outfile, 'w') as f: print("EPIC Depth UControl URecovered"+ " MControl MRecovered", file=f) print("--------- ---------- ---------- ----------"+ " ---------- ----------", file=f) for i, _ in enumerate(stars): sys.stdout.write('\rProcessing target %d/%d...' % (i + 1, len(stars))) sys.stdout.flush() path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % int(campaign), ('%09d' % stars[i])[:4] + '00000', ('%09d' % stars[i])[4:]) # Loop over all depths for depth in [0.01, 0.001, 0.0001]: try: # Unmasked data = np.load(os.path.join( path, '%s_Inject_U%g.npz' % (model, depth))) assert depth == data['inject'][()]['depth'], "" ucontrol = data['inject'][()]['rec_depth_control'] urecovered = data['inject'][()]['rec_depth'] # Masked data = np.load(os.path.join( path, '%s_Inject_M%g.npz' % (model, depth))) assert depth == data['inject'][()]['depth'], "" mcontrol = data['inject'][()]['rec_depth_control'] mrecovered = data['inject'][()]['rec_depth'] # Log it print("{:>09d} {:>13.8f} {:>13.8f} {:>13.8f} {:>13.8f} {:>13.8f}".format( stars[i], depth, ucontrol, urecovered, mcontrol, mrecovered), file=f) except: pass print("") if plot: # Load the statistics try: epic, depth, ucontrol, urecovered, mcontrol, mrecovered = \ np.loadtxt(outfile, unpack=True, skiprows=2) except ValueError: raise Exception("No targets to plot.") # Normalize to the injected depth ucontrol /= depth urecovered /= depth mcontrol /= depth mrecovered /= depth # Set up the plot fig, ax = pl.subplots(3, 2, figsize=(9, 12)) fig.subplots_adjust(hspace=0.29) ax[0, 0].set_title(r'Unmasked', fontsize=18) ax[0, 1].set_title(r'Masked', fontsize=18) ax[0, 0].set_ylabel( r'$D_0 = 10^{-2}$', rotation=90, fontsize=18, labelpad=10) ax[1, 0].set_ylabel( r'$D_0 = 10^{-3}$', rotation=90, fontsize=18, labelpad=10) ax[2, 0].set_ylabel( r'$D_0 = 10^{-4}$', rotation=90, fontsize=18, labelpad=10) # Define some useful stuff for plotting depths = [1e-2, 1e-3, 1e-4] ranges = [(0.75, 1.25), (0.5, 1.5), (0., 2.)] nbins = [30, 30, 20] ymax = [0.4, 0.25, 0.16] xticks = [[0.75, 0.875, 1., 1.125, 1.25], [ 0.5, 0.75, 1., 1.25, 1.5], [0., 0.5, 1., 1.5, 2.0]] # Plot for i in range(3): # Indices for this plot idx = np.where(depth == depths[i]) for j, control, recovered in zip([0, 1], [ucontrol[idx], mcontrol[idx]], [urecovered[idx], mrecovered[idx]]): # Control ax[i, j].hist(control, bins=nbins[i], range=ranges[i], color='r', histtype='step', weights=np.ones_like(control) / len(control)) # Recovered ax[i, j].hist(recovered, bins=nbins[i], range=ranges[i], color='b', histtype='step', weights=np.ones_like(recovered) / len(recovered)) # Indicate center ax[i, j].axvline(1., color='k', ls='--') # Indicate the fraction above and below if len(recovered): au = len(np.where(recovered > ranges[i][1])[ 0]) / len(recovered) al = len(np.where(recovered < ranges[i][0])[ 0]) / len(recovered) ax[i, j].annotate('%.2f' % al, xy=(0.01, 0.93), xycoords='axes fraction', xytext=(0.1, 0.93), ha='left', va='center', color='b', arrowprops=dict(arrowstyle="->", color='b')) ax[i, j].annotate('%.2f' % au, xy=(0.99, 0.93), xycoords='axes fraction', xytext=(0.9, 0.93), ha='right', va='center', color='b', arrowprops=dict(arrowstyle="->", color='b')) if len(control): cu = len(np.where(control > ranges[i][1])[ 0]) / len(control) cl = len(np.where(control < ranges[i][0])[ 0]) / len(control) ax[i, j].annotate('%.2f' % cl, xy=(0.01, 0.86), xycoords='axes fraction', xytext=(0.1, 0.86), ha='left', va='center', color='r', arrowprops=dict(arrowstyle="->", color='r')) ax[i, j].annotate('%.2f' % cu, xy=(0.99, 0.86), xycoords='axes fraction', xytext=(0.9, 0.86), ha='right', va='center', color='r', arrowprops=dict(arrowstyle="->", color='r')) # Indicate the median if len(recovered): ax[i, j].annotate('M = %.2f' % np.median(recovered), xy=(0.35, 0.5), ha='right', xycoords='axes fraction', color='b', fontsize=16) if len(control): ax[i, j].annotate('M = %.2f' % np.median(control), xy=(0.65, 0.5), ha='left', xycoords='axes fraction', color='r', fontsize=16) # Tweaks ax[i, j].set_xticks(xticks[i]) ax[i, j].set_xlim(xticks[i][0], xticks[i][-1]) ax[i, j].set_ylim(-0.005, ymax[i]) ax[i, j].set_xlabel(r'$D/D_0$', fontsize=16) ax[i, j].get_yaxis().set_major_locator(MaxNLocator(5)) for tick in ax[i, j].get_xticklabels() + \ ax[i, j].get_yticklabels(): tick.set_fontsize(14) if show: pl.show() else: return fig, ax
Computes and plots the statistics for injection/recovery tests. :param int campaign: The campaign number. Default 0 :param str model: The :py:obj:`everest` model name :param bool plot: Default :py:obj:`True` :param bool show: Show the plot? Default :py:obj:`True`. \ If :py:obj:`False`, returns the `fig, ax` instances. :param bool clobber: Overwrite existing files? Default :py:obj:`False`
entailment
def HDUCards(headers, hdu=0): ''' Generates HDU cards for inclusion in the de-trended light curve FITS file. Used internally. ''' if headers is None: return [] if hdu == 0: # Get info from the TPF Primary HDU Header tpf_header = headers[0] entries = ['TELESCOP', 'INSTRUME', 'OBJECT', 'KEPLERID', 'CHANNEL', 'MODULE', 'OUTPUT', 'CAMPAIGN', 'DATA_REL', 'OBSMODE', 'TTABLEID', 'RADESYS', 'RA_OBJ', 'DEC_OBJ', 'EQUINOX', 'KEPMAG'] elif (hdu == 1) or (hdu == 6): # Get info from the TPF BinTable HDU Header tpf_header = headers[1] entries = ['WCSN4P', 'WCAX4P', '1CTY4P', '2CTY4P', '1CUN4P', '2CUN4P', '1CRV4P', '2CRV4P', '1CDL4P', '2CDL4P', '1CRP4P', '2CRP4P', 'WCAX4', '1CTYP4', '2CTYP4', '1CRPX4', '2CRPX4', '1CRVL4', '2CRVL4', '1CUNI4', '2CUNI4', '1CDLT4', '2CDLT4', '11PC4', '12PC4', '21PC4', '22PC4', 'WCSN5P', 'WCAX5P', '1CTY5P', '2CTY5P', '1CUN5P', '2CUN5P', '1CRV5P', '2CRV5P', '1CDL5P', '2CDL5P', '1CRP5P', '2CRP5P', 'WCAX5', '1CTYP5', '2CTYP5', '1CRPX5', '2CRPX5', '1CRVL5', '2CRVL5', '1CUNI5', '2CUNI5', '1CDLT5', '2CDLT5', '11PC5', '12PC5', '21PC5', '22PC5', 'WCSN6P', 'WCAX6P', '1CTY6P', '2CTY6P', '1CUN6P', '2CUN6P', '1CRV6P', '2CRV6P', '1CDL6P', '2CDL6P', '1CRP6P', '2CRP6P', 'WCAX6', '1CTYP6', '2CTYP6', '1CRPX6', '2CRPX6', '1CRVL6', '2CRVL6', '1CUNI6', '2CUNI6', '1CDLT6', '2CDLT6', '11PC6', '12PC6', '21PC6', '22PC6', 'WCSN7P', 'WCAX7P', '1CTY7P', '2CTY7P', '1CUN7P', '2CUN7P', '1CRV7P', '2CRV7P', '1CDL7P', '2CDL7P', '1CRP7P', '2CRP7P', 'WCAX7', '1CTYP7', '2CTYP7', '1CRPX7', '2CRPX7', '1CRVL7', '2CRVL7', '1CUNI7', '2CUNI7', '1CDLT7', '2CDLT7', '11PC7', '12PC7', '21PC7', '22PC7', 'WCSN8P', 'WCAX8P', '1CTY8P', '2CTY8P', '1CUN8P', '2CUN8P', '1CRV8P', '2CRV8P', '1CDL8P', '2CDL8P', '1CRP8P', '2CRP8P', 'WCAX8', '1CTYP8', '2CTYP8', '1CRPX8', '2CRPX8', '1CRVL8', '2CRVL8', '1CUNI8', '2CUNI8', '1CDLT8', '2CDLT8', '11PC8', '12PC8', '21PC8', '22PC8', 'WCSN9P', 'WCAX9P', '1CTY9P', '2CTY9P', '1CUN9P', '2CUN9P', '1CRV9P', '2CRV9P', '1CDL9P', '2CDL9P', '1CRP9P', '2CRP9P', 'WCAX9', '1CTYP9', '2CTYP9', '1CRPX9', '2CRPX9', '1CRVL9', '2CRVL9', '1CUNI9', '2CUNI9', '1CDLT9', '2CDLT9', '11PC9', '12PC9', '21PC9', '22PC9', 'INHERIT', 'EXTNAME', 'EXTVER', 'TELESCOP', 'INSTRUME', 'OBJECT', 'KEPLERID', 'RADESYS', 'RA_OBJ', 'DEC_OBJ', 'EQUINOX', 'EXPOSURE', 'TIMEREF', 'TASSIGN', 'TIMESYS', 'BJDREFI', 'BJDREFF', 'TIMEUNIT', 'TELAPSE', 'LIVETIME', 'TSTART', 'TSTOP', 'LC_START', 'LC_END', 'DEADC', 'TIMEPIXR', 'TIERRELA', 'INT_TIME', 'READTIME', 'FRAMETIM', 'NUM_FRM', 'TIMEDEL', 'DATE-OBS', 'DATE-END', 'BACKAPP', 'DEADAPP', 'VIGNAPP', 'GAIN', 'READNOIS', 'NREADOUT', 'TIMSLICE', 'MEANBLCK', 'LCFXDOFF', 'SCFXDOFF'] elif (hdu == 3) or (hdu == 4) or (hdu == 5): # Get info from the TPF BinTable HDU Header tpf_header = headers[2] entries = ['TELESCOP', 'INSTRUME', 'OBJECT', 'KEPLERID', 'RADESYS', 'RA_OBJ', 'DEC_OBJ', 'EQUINOX', 'WCSAXES', 'CTYPE1', 'CTYPE2', 'CRPIX1', 'CRPIX2', 'CRVAL1', 'CRVAL2', 'CUNIT1', 'CUNIT2', 'CDELT1', 'CDELT2', 'PC1_1', 'PC1_2', 'PC2_1', 'PC2_2', 'WCSNAMEP', 'WCSAXESP', 'CTYPE1P', 'CUNIT1P', 'CRPIX1P', 'CRVAL1P', 'CDELT1P', 'CTYPE2P', 'CUNIT2P', 'CRPIX2P', 'CRVAL2P', 'CDELT2P', 'NPIXSAP', 'NPIXMISS'] else: return [] cards = [] cards.append(('COMMENT', '************************')) cards.append(('COMMENT', '* MISSION INFO *')) cards.append(('COMMENT', '************************')) for entry in entries: try: cards.append(tuple(tpf_header[entry])) except KeyError: pass return cards
Generates HDU cards for inclusion in the de-trended light curve FITS file. Used internally.
entailment
def TargetDirectory(ID, season, relative=False, **kwargs): ''' Returns the location of the :py:mod:`everest` data on disk for a given target. :param ID: The target ID :param int season: The target season number :param bool relative: Relative path? Default :py:obj:`False` ''' if season is None: return None if relative: path = '' else: path = EVEREST_DAT return os.path.join(path, 'k2', 'c%02d' % season, ('%09d' % ID)[:4] + '00000', ('%09d' % ID)[4:])
Returns the location of the :py:mod:`everest` data on disk for a given target. :param ID: The target ID :param int season: The target season number :param bool relative: Relative path? Default :py:obj:`False`
entailment
def DVSFile(ID, season, cadence='lc'): ''' Returns the name of the DVS PDF for a given target. :param ID: The target ID :param int season: The target season number :param str cadence: The cadence type. Default `lc` ''' if cadence == 'sc': strcadence = '_sc' else: strcadence = '' return 'hlsp_everest_k2_llc_%d-c%02d_kepler_v%s_dvs%s.pdf' \ % (ID, season, EVEREST_MAJOR_MINOR, strcadence)
Returns the name of the DVS PDF for a given target. :param ID: The target ID :param int season: The target season number :param str cadence: The cadence type. Default `lc`
entailment
def GetTargetCBVs(model): ''' Returns the design matrix of CBVs for the given target. :param model: An instance of the :py:obj:`everest` model for the target ''' # Get the info season = model.season name = model.name # We use the LC light curves as CBVs; there aren't # enough SC light curves to get a good set if name.endswith('.sc'): name = name[:-3] model.XCBV = sysrem.GetCBVs(season, model=name, niter=model.cbv_niter, sv_win=model.cbv_win, sv_order=model.cbv_order)
Returns the design matrix of CBVs for the given target. :param model: An instance of the :py:obj:`everest` model for the target
entailment
def FitCBVs(model): ''' Fits the CBV design matrix to the de-trended flux of a given target. This is called internally whenever the user accesses the :py:attr:`fcor` attribute. :param model: An instance of the :py:obj:`everest` model for the target ''' # Get cbvs? if model.XCBV is None: GetTargetCBVs(model) # The number of CBVs to use ncbv = model.cbv_num # Need to treat short and long cadences differently if model.cadence == 'lc': # Loop over all the light curve segments m = [None for b in range(len(model.breakpoints))] weights = [None for b in range(len(model.breakpoints))] for b in range(len(model.breakpoints)): # Get the indices for this light curve segment inds = model.get_chunk(b, pad=False) masked_inds = model.get_masked_chunk(b, pad=False) # Regress mX = model.XCBV[masked_inds, :ncbv + 1] A = np.dot(mX.T, mX) B = np.dot(mX.T, model.flux[masked_inds]) try: weights[b] = np.linalg.solve(A, B) except np.linalg.linalg.LinAlgError: # Singular matrix log.warn('Singular matrix!') weights[b] = np.zeros(mX.shape[1]) m[b] = np.dot(model.XCBV[inds, :ncbv + 1], weights[b]) # Vertical alignment if b == 0: m[b] -= np.nanmedian(m[b]) else: # Match the first finite model point on either side of the # break # We could consider something more elaborate in the future i0 = -1 - np.argmax([np.isfinite(m[b - 1][-i]) for i in range(1, len(m[b - 1]) - 1)]) i1 = np.argmax([np.isfinite(m[b][i]) for i in range(len(m[b]))]) m[b] += (m[b - 1][i0] - m[b][i1]) # Join model and normalize m = np.concatenate(m) m -= np.nanmedian(m) else: # Interpolate over outliers so we don't have to worry # about masking the arrays below flux = Interpolate(model.time, model.mask, model.flux) # Get downbinned light curve newsize = len(model.time) // 30 time = Downbin(model.time, newsize, operation='mean') flux = Downbin(flux, newsize, operation='mean') # Get LC breakpoints breakpoints = list(Breakpoints( model.ID, season=model.season, cadence='lc')) breakpoints += [len(time) - 1] # Loop over all the light curve segments m = [None for b in range(len(breakpoints))] weights = [None for b in range(len(breakpoints))] for b in range(len(breakpoints)): # Get the indices for this light curve segment M = np.arange(len(time)) if b > 0: inds = M[(M > breakpoints[b - 1]) & (M <= breakpoints[b])] else: inds = M[M <= breakpoints[b]] # Regress A = np.dot(model.XCBV[inds, :ncbv + 1].T, model.XCBV[inds, :ncbv + 1]) B = np.dot(model.XCBV[inds, :ncbv + 1].T, flux[inds]) weights[b] = np.linalg.solve(A, B) m[b] = np.dot(model.XCBV[inds, :ncbv + 1], weights[b]) # Vertical alignment if b == 0: m[b] -= np.nanmedian(m[b]) else: # Match the first finite model point on either side of the # break # We could consider something more elaborate in the future i0 = -1 - np.argmax([np.isfinite(m[b - 1][-i]) for i in range(1, len(m[b - 1]) - 1)]) i1 = np.argmax([np.isfinite(m[b][i]) for i in range(len(m[b]))]) m[b] += (m[b - 1][i0] - m[b][i1]) # Join model and normalize m = np.concatenate(m) m -= np.nanmedian(m) # Finally, interpolate back to short cadence m = np.interp(model.time, time, m) return m
Fits the CBV design matrix to the de-trended flux of a given target. This is called internally whenever the user accesses the :py:attr:`fcor` attribute. :param model: An instance of the :py:obj:`everest` model for the target
entailment
def StatsToCSV(campaign, model='nPLD'): ''' Generate the CSV file used in the search database for the documentation. ''' statsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (campaign, model)) csvfile = os.path.join(os.path.dirname(EVEREST_SRC), 'docs', 'c%02d.csv' % campaign) epic, kp, cdpp6r, cdpp6, _, _, _, _, saturated = \ np.loadtxt(statsfile, unpack=True, skiprows=2) with open(csvfile, 'w') as f: print('c%02d' % campaign, file=f) for i in range(len(epic)): print('%09d,%.3f,%.3f,%.3f,%d' % (epic[i], kp[i], cdpp6r[i], cdpp6[i], int(saturated[i])), file=f)
Generate the CSV file used in the search database for the documentation.
entailment
def remove(self, item): '''Remove ``item`` for the :class:`zset` it it exists. If found it returns the score of the item removed.''' score = self._dict.pop(item, None) if score is not None: self._sl.remove(score) return score
Remove ``item`` for the :class:`zset` it it exists. If found it returns the score of the item removed.
entailment
def fields(self): '''Return a tuple of ordered fields for this :class:`ColumnTS`.''' key = self.id + ':fields' encoding = self.client.encoding return tuple(sorted((f.decode(encoding) for f in self.client.smembers(key))))
Return a tuple of ordered fields for this :class:`ColumnTS`.
entailment
def do_pending_lookups(event, sender, **kwargs): """Handle any pending relations to the sending model. Sent from class_prepared.""" key = (sender._meta.app_label, sender._meta.name) for callback in pending_lookups.pop(key, []): callback(sender)
Handle any pending relations to the sending model. Sent from class_prepared.
entailment
def Many2ManyThroughModel(field): '''Create a Many2Many through model with two foreign key fields and a CompositeFieldId depending on the two foreign keys.''' from stdnet.odm import ModelType, StdModel, ForeignKey, CompositeIdField name_model = field.model._meta.name name_relmodel = field.relmodel._meta.name # The two models are the same. if name_model == name_relmodel: name_relmodel += '2' through = field.through # Create the through model if through is None: name = '{0}_{1}'.format(name_model, name_relmodel) class Meta: app_label = field.model._meta.app_label through = ModelType(name, (StdModel,), {'Meta': Meta}) field.through = through # The first field field1 = ForeignKey(field.model, related_name=field.name, related_manager_class=makeMany2ManyRelatedManager( field.relmodel, name_model, name_relmodel) ) field1.register_with_model(name_model, through) # The second field field2 = ForeignKey(field.relmodel, related_name=field.related_name, related_manager_class=makeMany2ManyRelatedManager( field.model, name_relmodel, name_model) ) field2.register_with_model(name_relmodel, through) pk = CompositeIdField(name_model, name_relmodel) pk.register_with_model('id', through)
Create a Many2Many through model with two foreign key fields and a CompositeFieldId depending on the two foreign keys.
entailment
def makeMany2ManyRelatedManager(formodel, name_relmodel, name_formodel): '''formodel is the model which the manager .''' class _Many2ManyRelatedManager(Many2ManyRelatedManager): pass _Many2ManyRelatedManager.formodel = formodel _Many2ManyRelatedManager.name_relmodel = name_relmodel _Many2ManyRelatedManager.name_formodel = name_formodel return _Many2ManyRelatedManager
formodel is the model which the manager .
entailment
def session(self, session=None): '''Override :meth:`Manager.session` so that this :class:`RelatedManager` can retrieve the session from the :attr:`related_instance` if available. ''' if self.related_instance: session = self.related_instance.session # we have a session, we either create a new one return the same session if session is None: raise QuerySetError('Related manager can be accessed only from\ a loaded instance of its related model.') return session
Override :meth:`Manager.session` so that this :class:`RelatedManager` can retrieve the session from the :attr:`related_instance` if available.
entailment
def add(self, value, session=None, **kwargs): '''Add ``value``, an instance of :attr:`formodel` to the :attr:`through` model. This method can only be accessed by an instance of the model for which this related manager is an attribute.''' s, instance = self.session_instance('add', value, session, **kwargs) return s.add(instance)
Add ``value``, an instance of :attr:`formodel` to the :attr:`through` model. This method can only be accessed by an instance of the model for which this related manager is an attribute.
entailment
def remove(self, value, session=None): '''Remove *value*, an instance of ``self.model`` from the set of elements contained by the field.''' s, instance = self.session_instance('remove', value, session) # update state so that the instance does look persistent instance.get_state(iid=instance.pkvalue(), action='update') return s.delete(instance)
Remove *value*, an instance of ``self.model`` from the set of elements contained by the field.
entailment
def metaphone_processor(words): '''Double metaphone word processor.''' for word in words: for w in double_metaphone(word): if w: w = w.strip() if w: yield w
Double metaphone word processor.
entailment
def tolerant_metaphone_processor(words): '''Double metaphone word processor slightly modified so that when no words are returned by the algorithm, the original word is returned.''' for word in words: r = 0 for w in double_metaphone(word): if w: w = w.strip() if w: r += 1 yield w if not r: yield word
Double metaphone word processor slightly modified so that when no words are returned by the algorithm, the original word is returned.
entailment
def stemming_processor(words): '''Porter Stemmer word processor''' stem = PorterStemmer().stem for word in words: word = stem(word, 0, len(word)-1) yield word
Porter Stemmer word processor
entailment
def Pool(pool='AnyPool', **kwargs): ''' Chooses between the different pools. If ``pool == 'AnyPool'``, chooses based on availability. ''' if pool == 'MPIPool': return MPIPool(**kwargs) elif pool == 'MultiPool': return MultiPool(**kwargs) elif pool == 'SerialPool': return SerialPool(**kwargs) elif pool == 'AnyPool': if MPIPool.enabled(): return MPIPool(**kwargs) elif MultiPool.enabled(): return MultiPool(**kwargs) else: return SerialPool(**kwargs) else: raise ValueError('Invalid pool ``%s``.' % pool)
Chooses between the different pools. If ``pool == 'AnyPool'``, chooses based on availability.
entailment
def wait(self): """ If this isn't the master process, wait for instructions. """ if self.is_master(): raise RuntimeError("Master node told to await jobs.") status = MPI.Status() while True: # Event loop. # Sit here and await instructions. if self.debug: print("Worker {0} waiting for task.".format(self.rank)) # Blocking receive to wait for instructions. task = self.comm.recv(source=0, tag=MPI.ANY_TAG, status=status) if self.debug: print("Worker {0} got task {1} with tag {2}." .format(self.rank, type(task), status.tag)) # Check if message is special sentinel signaling end. # If so, stop. if isinstance(task, _close_pool_message): if self.debug: print("Worker {0} told to quit.".format(self.rank)) break # Check if message is special type containing new function # to be applied if isinstance(task, _function_wrapper): self.function = task.function if self.debug: print("Worker {0} replaced its task function: {1}." .format(self.rank, self.function)) continue # If not a special message, just run the known function on # the input and return it asynchronously. result = self.function(task) if self.debug: print("Worker {0} sending answer {1} with tag {2}." .format(self.rank, type(result), status.tag)) self.comm.isend(result, dest=0, tag=status.tag) # Kill the process? if self.exit_on_end: sys.exit()
If this isn't the master process, wait for instructions.
entailment
def map(self, function, tasks): """ Like the built-in :py:func:`map` function, apply a function to all of the values in a list and return the list of results. :param function: The function to apply to the list. :param tasks: The list of elements. """ ntask = len(tasks) # If not the master just wait for instructions. if not self.is_master(): self.wait() return if function is not self.function: if self.debug: print("Master replacing pool function with {0}." .format(function)) self.function = function F = _function_wrapper(function) # Tell all the workers what function to use. requests = [] for i in range(self.size): r = self.comm.isend(F, dest=i + 1) requests.append(r) # Wait until all of the workers have responded. See: # https://gist.github.com/4176241 MPI.Request.waitall(requests) if (not self.loadbalance) or (ntask <= self.size): # Do not perform load-balancing - the default load-balancing # scheme emcee uses. # Send all the tasks off and wait for them to be received. # Again, see the bug in the above gist. requests = [] for i, task in enumerate(tasks): worker = i % self.size + 1 if self.debug: print("Sent task {0} to worker {1} with tag {2}." .format(type(task), worker, i)) r = self.comm.isend(task, dest=worker, tag=i) requests.append(r) MPI.Request.waitall(requests) # Now wait for the answers. results = [] for i in range(ntask): worker = i % self.size + 1 if self.debug: print("Master waiting for worker {0} with tag {1}" .format(worker, i)) result = self.comm.recv(source=worker, tag=i) results.append(result) return results else: # Perform load-balancing. The order of the results are likely to # be different from the previous case. for i, task in enumerate(tasks[0:self.size]): worker = i + 1 if self.debug: print("Sent task {0} to worker {1} with tag {2}." .format(type(task), worker, i)) # Send out the tasks asynchronously. self.comm.isend(task, dest=worker, tag=i) ntasks_dispatched = self.size results = [None] * ntask for itask in range(ntask): status = MPI.Status() # Receive input from workers. try: result = self.comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status) except Exception as e: self.close() raise e worker = status.source i = status.tag results[i] = result if self.debug: print("Master received from worker {0} with tag {1}" .format(worker, i)) # Now send the next task to this idle worker (if there are any # left). if ntasks_dispatched < ntask: task = tasks[ntasks_dispatched] i = ntasks_dispatched if self.debug: print("Sent task {0} to worker {1} with tag {2}." .format(type(task), worker, i)) # Send out the tasks asynchronously. self.comm.isend(task, dest=worker, tag=i) ntasks_dispatched += 1 return results
Like the built-in :py:func:`map` function, apply a function to all of the values in a list and return the list of results. :param function: The function to apply to the list. :param tasks: The list of elements.
entailment
def close(self): """ Just send a message off to all the pool members which contains the special :class:`_close_pool_message` sentinel. """ if self.is_master(): for i in range(self.size): self.comm.isend(_close_pool_message(), dest=i + 1)
Just send a message off to all the pool members which contains the special :class:`_close_pool_message` sentinel.
entailment
def commit_when_no_transaction(f): '''Decorator for committing changes when the instance session is not in a transaction.''' def _(self, *args, **kwargs): r = f(self, *args, **kwargs) return self.session.add(self) if self.session is not None else r _.__name__ = f.__name__ _.__doc__ = f.__doc__ return _
Decorator for committing changes when the instance session is not in a transaction.
entailment
def backend(self): '''Returns the :class:`stdnet.BackendStructure`. ''' session = self.session if session is not None: if self._field: return session.model(self._field.model).backend else: return session.model(self).backend
Returns the :class:`stdnet.BackendStructure`.
entailment
def read_backend(self): '''Returns the :class:`stdnet.BackendStructure`. ''' session = self.session if session is not None: if self._field: return session.model(self._field.model).read_backend else: return session.model(self).read_backend
Returns the :class:`stdnet.BackendStructure`.
entailment
def size(self): '''Number of elements in the :class:`Structure`.''' if self.cache.cache is None: return self.read_backend_structure().size() else: return len(self.cache.cache)
Number of elements in the :class:`Structure`.
entailment
def load_data(self, data, callback=None): '''Load ``data`` from the :class:`stdnet.BackendDataServer`.''' return self.backend.execute( self.value_pickler.load_iterable(data, self.session), callback)
Load ``data`` from the :class:`stdnet.BackendDataServer`.
entailment
def values(self): '''Iteratir over values of :class:`PairMixin`.''' if self.cache.cache is None: backend = self.read_backend return backend.execute(backend.structure(self).values(), self.load_values) else: return self.cache.cache.values()
Iteratir over values of :class:`PairMixin`.
entailment
def pair(self, pair): '''Add a *pair* to the structure.''' if len(pair) == 1: # if only one value is passed, the value must implement a # score function which retrieve the first value of the pair # (score in zset, timevalue in timeseries, field value in # hashtable) return (pair[0].score(), pair[0]) elif len(pair) != 2: raise TypeError('add expected 2 arguments, got {0}' .format(len(pair))) else: return pair
Add a *pair* to the structure.
entailment
def remove(self, *keys): '''Remove *keys* from the key-value container.''' dumps = self.pickler.dumps self.cache.remove([dumps(v) for v in keys])
Remove *keys* from the key-value container.
entailment
def count(self, start, stop): '''Count the number of elements bewteen *start* and *stop*.''' s1 = self.pickler.dumps(start) s2 = self.pickler.dumps(stop) return self.backend_structure().count(s1, s2)
Count the number of elements bewteen *start* and *stop*.
entailment
def irange(self, start=0, end=-1, callback=None, withscores=True, **options): '''Return the range by rank between start and end.''' backend = self.read_backend res = backend.structure(self).irange(start, end, withscores=withscores, **options) if not callback: callback = self.load_data if withscores else self.load_values return backend.execute(res, callback)
Return the range by rank between start and end.
entailment
def pop_range(self, start, stop, callback=None, withscores=True): '''pop a range by score from the :class:`OrderedMixin`''' s1 = self.pickler.dumps(start) s2 = self.pickler.dumps(stop) backend = self.backend res = backend.structure(self).pop_range(s1, s2, withscores=withscores) if not callback: callback = self.load_data if withscores else self.load_values return backend.execute(res, callback)
pop a range by score from the :class:`OrderedMixin`
entailment
def ipop_range(self, start=0, stop=-1, callback=None, withscores=True): '''pop a range from the :class:`OrderedMixin`''' backend = self.backend res = backend.structure(self).ipop_range(start, stop, withscores=withscores) if not callback: callback = self.load_data if withscores else self.load_values return backend.execute(res, callback)
pop a range from the :class:`OrderedMixin`
entailment
def push_back(self, value): '''Appends a copy of *value* at the end of the :class:`Sequence`.''' self.cache.push_back(self.value_pickler.dumps(value)) return self
Appends a copy of *value* at the end of the :class:`Sequence`.
entailment
def pop_back(self): '''Remove the last element from the :class:`Sequence`.''' backend = self.backend return backend.execute(backend.structure(self).pop_back(), self.value_pickler.loads)
Remove the last element from the :class:`Sequence`.
entailment
def add(self, value): '''Add *value* to the set''' return self.cache.update((self.value_pickler.dumps(value),))
Add *value* to the set
entailment
def update(self, values): '''Add iterable *values* to the set''' d = self.value_pickler.dumps return self.cache.update(tuple((d(v) for v in values)))
Add iterable *values* to the set
entailment
def discard(self, value): '''Remove an element *value* from a set if it is a member.''' return self.cache.remove((self.value_pickler.dumps(value),))
Remove an element *value* from a set if it is a member.
entailment
def difference_update(self, values): '''Remove an iterable of *values* from the set.''' d = self.value_pickler.dumps return self.cache.remove(tuple((d(v) for v in values)))
Remove an iterable of *values* from the set.
entailment
def pop_front(self): '''Remove the first element from of the list.''' backend = self.backend return backend.execute(backend.structure(self).pop_front(), self.value_pickler.loads)
Remove the first element from of the list.
entailment
def block_pop_back(self, timeout=10): '''Remove the last element from of the list. If no elements are available, blocks for at least ``timeout`` seconds.''' value = yield self.backend_structure().block_pop_back(timeout) if value is not None: yield self.value_pickler.loads(value)
Remove the last element from of the list. If no elements are available, blocks for at least ``timeout`` seconds.
entailment
def block_pop_front(self, timeout=10): '''Remove the first element from of the list. If no elements are available, blocks for at least ``timeout`` seconds.''' value = yield self.backend_structure().block_pop_front(timeout) if value is not None: yield self.value_pickler.loads(value)
Remove the first element from of the list. If no elements are available, blocks for at least ``timeout`` seconds.
entailment
def push_front(self, value): '''Appends a copy of ``value`` to the beginning of the list.''' self.cache.push_front(self.value_pickler.dumps(value))
Appends a copy of ``value`` to the beginning of the list.
entailment
def rank(self, value): '''The rank of a given *value*. This is the position of *value* in the :class:`OrderedMixin` container.''' value = self.value_pickler.dumps(value) return self.backend_structure().rank(value)
The rank of a given *value*. This is the position of *value* in the :class:`OrderedMixin` container.
entailment
def rank(self, dte): '''The rank of a given *dte* in the timeseries''' timestamp = self.pickler.dumps(dte) return self.backend_structure().rank(timestamp)
The rank of a given *dte* in the timeseries
entailment
def ipop(self, index): '''Pop a value at *index* from the :class:`TS`. Return ``None`` if index is not out of bound.''' backend = self.backend res = backend.structure(self).ipop(index) return backend.execute(res, lambda r: self._load_get_data(r, index, None))
Pop a value at *index* from the :class:`TS`. Return ``None`` if index is not out of bound.
entailment
def times(self, start, stop, callback=None, **kwargs): '''The times between times *start* and *stop*.''' s1 = self.pickler.dumps(start) s2 = self.pickler.dumps(stop) backend = self.read_backend res = backend.structure(self).times(s1, s2, **kwargs) return backend.execute(res, callback or self.load_keys)
The times between times *start* and *stop*.
entailment
def itimes(self, start=0, stop=-1, callback=None, **kwargs): '''The times between rank *start* and *stop*.''' backend = self.read_backend res = backend.structure(self).itimes(start, stop, **kwargs) return backend.execute(res, callback or self.load_keys)
The times between rank *start* and *stop*.
entailment
def get_field(self, field): '''A :class:`Q` performs a series of operations and ultimately generate of set of matched elements ``ids``. If on the other hand, a different field is required, it can be specified with the :meth:`get_field` method. For example, lets say a model has a field called ``object_id`` which contains ids of another model, we could use:: qs = session.query(MyModel).get_field('object_id') to obtain a set containing the values of matched elements ``object_id`` fields. :parameter field: the name of the field which will be used to obtained the matched elements value. Must be an index. :rtype: a new :class:`Q` instance. ''' if field != self._get_field: if field not in self._meta.dfields: raise QuerySetError('Model "{0}" has no field "{1}".' .format(self._meta, field)) q = self._clone() q.data['get_field'] = field return q else: return self
A :class:`Q` performs a series of operations and ultimately generate of set of matched elements ``ids``. If on the other hand, a different field is required, it can be specified with the :meth:`get_field` method. For example, lets say a model has a field called ``object_id`` which contains ids of another model, we could use:: qs = session.query(MyModel).get_field('object_id') to obtain a set containing the values of matched elements ``object_id`` fields. :parameter field: the name of the field which will be used to obtained the matched elements value. Must be an index. :rtype: a new :class:`Q` instance.
entailment
def filter(self, **kwargs): '''Create a new :class:`Query` with additional clauses corresponding to ``where`` or ``limit`` in a ``SQL SELECT`` statement. :parameter kwargs: dictionary of limiting clauses. :rtype: a new :class:`Query` instance. For example:: qs = session.query(MyModel) result = qs.filter(group = 'planet') ''' if kwargs: q = self._clone() if self.fargs: kwargs = update_dictionary(self.fargs.copy(), kwargs) q.fargs = kwargs return q else: return self
Create a new :class:`Query` with additional clauses corresponding to ``where`` or ``limit`` in a ``SQL SELECT`` statement. :parameter kwargs: dictionary of limiting clauses. :rtype: a new :class:`Query` instance. For example:: qs = session.query(MyModel) result = qs.filter(group = 'planet')
entailment
def exclude(self, **kwargs): '''Returns a new :class:`Query` with additional clauses corresponding to ``EXCEPT`` in a ``SQL SELECT`` statement. :parameter kwargs: dictionary of limiting clauses. :rtype: a new :class:`Query` instance. Using an equivalent example to the :meth:`filter` method:: qs = session.query(MyModel) result1 = qs.exclude(group = 'planet') result2 = qs.exclude(group__in = ('planet','stars')) ''' if kwargs: q = self._clone() if self.eargs: kwargs = update_dictionary(self.eargs.copy(), kwargs) q.eargs = kwargs return q else: return self
Returns a new :class:`Query` with additional clauses corresponding to ``EXCEPT`` in a ``SQL SELECT`` statement. :parameter kwargs: dictionary of limiting clauses. :rtype: a new :class:`Query` instance. Using an equivalent example to the :meth:`filter` method:: qs = session.query(MyModel) result1 = qs.exclude(group = 'planet') result2 = qs.exclude(group__in = ('planet','stars'))
entailment
def union(self, *queries): '''Return a new :class:`Query` obtained form the union of this :class:`Query` with one or more *queries*. For example, lets say we want to have the union of two queries obtained from the :meth:`filter` method:: query = session.query(MyModel) qs = query.filter(field1 = 'bla').union(query.filter(field2 = 'foo')) ''' q = self._clone() q.unions += queries return q
Return a new :class:`Query` obtained form the union of this :class:`Query` with one or more *queries*. For example, lets say we want to have the union of two queries obtained from the :meth:`filter` method:: query = session.query(MyModel) qs = query.filter(field1 = 'bla').union(query.filter(field2 = 'foo'))
entailment
def intersect(self, *queries): '''Return a new :class:`Query` obtained form the intersection of this :class:`Query` with one or more *queries*. Workds the same way as the :meth:`union` method.''' q = self._clone() q.intersections += queries return q
Return a new :class:`Query` obtained form the intersection of this :class:`Query` with one or more *queries*. Workds the same way as the :meth:`union` method.
entailment
def sort_by(self, ordering): '''Sort the query by the given field :parameter ordering: a string indicating the class:`Field` name to sort by. If prefixed with ``-``, the sorting will be in descending order, otherwise in ascending order. :return type: a new :class:`Query` instance. ''' if ordering: ordering = self._meta.get_sorting(ordering, QuerySetError) q = self._clone() q.data['ordering'] = ordering return q
Sort the query by the given field :parameter ordering: a string indicating the class:`Field` name to sort by. If prefixed with ``-``, the sorting will be in descending order, otherwise in ascending order. :return type: a new :class:`Query` instance.
entailment
def search(self, text, lookup=None): '''Search *text* in model. A search engine needs to be installed for this function to be available. :parameter text: a string to search. :return type: a new :class:`Query` instance. ''' q = self._clone() q.text = (text, lookup) return q
Search *text* in model. A search engine needs to be installed for this function to be available. :parameter text: a string to search. :return type: a new :class:`Query` instance.
entailment
def where(self, code, load_only=None): '''For :ref:`backend <db-index>` supporting scripting, it is possible to construct complex queries which execute the scripting *code* against each element in the query. The *coe* should reference an instance of :attr:`model` by ``this`` keyword. :parameter code: a valid expression in the scripting language of the database. :parameter load_only: Load only the selected fields when performing the query (this is different from the :meth:`load_only` method which is used when fetching data from the database). This field is an optimization which is used by the :ref:`redis backend <redis-server>` only and can be safely ignored in most use-cases. :return: a new :class:`Query` ''' if code: q = self._clone() q.data['where'] = (code, load_only) return q else: return self
For :ref:`backend <db-index>` supporting scripting, it is possible to construct complex queries which execute the scripting *code* against each element in the query. The *coe* should reference an instance of :attr:`model` by ``this`` keyword. :parameter code: a valid expression in the scripting language of the database. :parameter load_only: Load only the selected fields when performing the query (this is different from the :meth:`load_only` method which is used when fetching data from the database). This field is an optimization which is used by the :ref:`redis backend <redis-server>` only and can be safely ignored in most use-cases. :return: a new :class:`Query`
entailment
def search_queries(self, q): '''Return a new :class:`QueryElem` for *q* applying a text search.''' if self.text: searchengine = self.session.router.search_engine if searchengine: return searchengine.search_model(q, *self.text) else: raise QuerySetError('Search not available for %s' % self._meta) else: return q
Return a new :class:`QueryElem` for *q* applying a text search.
entailment
def load_related(self, related, *related_fields): '''It returns a new :class:`Query` that automatically follows the foreign-key relationship ``related``. :parameter related: A field name corresponding to a :class:`ForeignKey` in :attr:`Query.model`. :parameter related_fields: optional :class:`Field` names for the ``related`` model to load. If not provided, all fields will be loaded. This function is :ref:`performance boost <performance-loadrelated>` when accessing the related fields of all (most) objects in your query. If Your model contains more than one foreign key, you can use this function in a generative way:: qs = myquery.load_related('rel1').load_related('rel2','field1','field2') :rtype: a new :class:`Query`.''' field = self._get_related_field(related) if not field: raise FieldError('"%s" is not a related field for "%s"' % (related, self._meta)) q = self._clone() return q._add_to_load_related(field, *related_fields)
It returns a new :class:`Query` that automatically follows the foreign-key relationship ``related``. :parameter related: A field name corresponding to a :class:`ForeignKey` in :attr:`Query.model`. :parameter related_fields: optional :class:`Field` names for the ``related`` model to load. If not provided, all fields will be loaded. This function is :ref:`performance boost <performance-loadrelated>` when accessing the related fields of all (most) objects in your query. If Your model contains more than one foreign key, you can use this function in a generative way:: qs = myquery.load_related('rel1').load_related('rel2','field1','field2') :rtype: a new :class:`Query`.
entailment
def load_only(self, *fields): '''This is provides a :ref:`performance boost <increase-performance>` in cases when you need to load a subset of fields of your model. The boost achieved is less than the one obtained when using :meth:`Query.load_related`, since it does not reduce the number of requests to the database. However, it can save you lots of bandwidth when excluding data intensive fields you don't need. ''' q = self._clone() new_fields = [] for field in fields: if JSPLITTER in field: bits = field.split(JSPLITTER) related = self._get_related_field(bits[0]) if related: q._add_to_load_related(related, JSPLITTER.join(bits[1:])) continue new_fields.append(field) if fields and not new_fields: # if we added a field to the load_related list and not fields are # are left we add the primary key so that other firls are not # loaded. new_fields.append(self._meta.pkname()) fs = unique_tuple(q.fields, new_fields) q.data['fields'] = fs if fs else None return q
This is provides a :ref:`performance boost <increase-performance>` in cases when you need to load a subset of fields of your model. The boost achieved is less than the one obtained when using :meth:`Query.load_related`, since it does not reduce the number of requests to the database. However, it can save you lots of bandwidth when excluding data intensive fields you don't need.
entailment
def dont_load(self, *fields): '''Works like :meth:`load_only` to provides a :ref:`performance boost <increase-performance>` in cases when you need to load all fields except a subset specified by *fields*. ''' q = self._clone() fs = unique_tuple(q.exclude_fields, fields) q.exclude_fields = fs if fs else None return q
Works like :meth:`load_only` to provides a :ref:`performance boost <increase-performance>` in cases when you need to load all fields except a subset specified by *fields*.
entailment
def get(self, **kwargs): '''Return an instance of a model matching the query. A special case is the query on ``id`` which provides a direct access to the :attr:`session` instances. If the given primary key is present in the session, the object is returned directly without performing any query.''' return self.filter(**kwargs).items( callback=self.model.get_unique_instance)
Return an instance of a model matching the query. A special case is the query on ``id`` which provides a direct access to the :attr:`session` instances. If the given primary key is present in the session, the object is returned directly without performing any query.
entailment
def construct(self): '''Build the :class:`QueryElement` representing this query.''' if self.__construct is None: self.__construct = self._construct() return self.__construct
Build the :class:`QueryElement` representing this query.
entailment
def backend_query(self, **kwargs): '''Build and return the :class:`stdnet.utils.async.BackendQuery`. This is a lazy method in the sense that it is evaluated once only and its result stored for future retrieval.''' q = self.construct() return q if isinstance(q, EmptyQuery) else q.backend_query(**kwargs)
Build and return the :class:`stdnet.utils.async.BackendQuery`. This is a lazy method in the sense that it is evaluated once only and its result stored for future retrieval.
entailment
def aggregate(self, kwargs): '''Aggregate lookup parameters.''' meta = self._meta fields = meta.dfields field_lookups = {} for name, value in iteritems(kwargs): bits = name.split(JSPLITTER) field_name = bits.pop(0) if field_name not in fields: raise QuerySetError('Could not filter on model "{0}".\ Field "{1}" does not exist.'.format(meta, field_name)) field = fields[field_name] attname = field.attname lookup = None if bits: bits = [n.lower() for n in bits] if bits[-1] == 'in': bits.pop() elif bits[-1] in range_lookups: lookup = bits.pop() remaining = JSPLITTER.join(bits) if lookup: # this is a range lookup attname, nested = field.get_lookup(remaining, QuerySetError) lookups = get_lookups(attname, field_lookups) lookups.append(lookup_value(lookup, (value, nested))) continue elif remaining: # Not a range lookup, must be a nested filter value = field.filter(self.session, remaining, value) lookups = get_lookups(attname, field_lookups) # If we are here the field must be an index if not field.index: raise QuerySetError("%s %s is not an index. Cannot query." % (field.__class__.__name__, field_name)) if not iterable(value): value = (value,) for v in value: if isinstance(v, Q): v = lookup_value('set', v.construct()) else: v = lookup_value('value', field.serialise(v, lookup)) lookups.append(v) # return [queryset(self, name=name, underlying=field_lookups[name]) for name in sorted(field_lookups)]
Aggregate lookup parameters.
entailment
def models_from_model(model, include_related=False, exclude=None): '''Generator of all model in model.''' if exclude is None: exclude = set() if model and model not in exclude: exclude.add(model) if isinstance(model, ModelType) and not model._meta.abstract: yield model if include_related: exclude.add(model) for field in model._meta.fields: if hasattr(field, 'relmodel'): through = getattr(field, 'through', None) for rmodel in (field.relmodel, field.model, through): for m in models_from_model( rmodel, include_related=include_related, exclude=exclude): yield m for manytomany in model._meta.manytomany: related = getattr(model, manytomany) for m in models_from_model(related.model, include_related=include_related, exclude=exclude): yield m elif not isinstance(model, ModelType) and isclass(model): # This is a class which is not o ModelType yield model
Generator of all model in model.
entailment
def model_iterator(application, include_related=True, exclude=None): '''A generator of :class:`StdModel` classes found in *application*. :parameter application: A python dotted path or an iterable over python dotted-paths where models are defined. Only models defined in these paths are considered. For example:: from stdnet.odm import model_iterator APPS = ('stdnet.contrib.searchengine', 'stdnet.contrib.timeseries') for model in model_iterator(APPS): ... ''' if exclude is None: exclude = set() application = native_str(application) if ismodule(application) or isinstance(application, str): if ismodule(application): mod, application = application, application.__name__ else: try: mod = import_module(application) except ImportError: # the module is not there mod = None if mod: label = application.split('.')[-1] try: mod_models = import_module('.models', application) except ImportError: mod_models = mod label = getattr(mod_models, 'app_label', label) models = set() for name in dir(mod_models): value = getattr(mod_models, name) meta = getattr(value, '_meta', None) if isinstance(value, ModelType) and meta: for model in models_from_model( value, include_related=include_related, exclude=exclude): if (model._meta.app_label == label and model not in models): models.add(model) yield model else: for app in application: for m in model_iterator(app): yield m
A generator of :class:`StdModel` classes found in *application*. :parameter application: A python dotted path or an iterable over python dotted-paths where models are defined. Only models defined in these paths are considered. For example:: from stdnet.odm import model_iterator APPS = ('stdnet.contrib.searchengine', 'stdnet.contrib.timeseries') for model in model_iterator(APPS): ...
entailment
def set_search_engine(self, engine): '''Set the search ``engine`` for this :class:`Router`.''' self._search_engine = engine self._search_engine.set_router(self)
Set the search ``engine`` for this :class:`Router`.
entailment
def register(self, model, backend=None, read_backend=None, include_related=True, **params): '''Register a :class:`Model` with this :class:`Router`. If the model was already registered it does nothing. :param model: a :class:`Model` class. :param backend: a :class:`stdnet.BackendDataServer` or a :ref:`connection string <connection-string>`. :param read_backend: Optional :class:`stdnet.BackendDataServer` for read operations. This is useful when the server has a master/slave configuration, where the master accept write and read operations and the ``slave`` read only operations. :param include_related: ``True`` if related models to ``model`` needs to be registered. Default ``True``. :param params: Additional parameters for the :func:`getdb` function. :return: the number of models registered. ''' backend = backend or self._default_backend backend = getdb(backend=backend, **params) if read_backend: read_backend = getdb(read_backend) registered = 0 if isinstance(model, Structure): self._structures[model] = StructureManager(model, backend, read_backend, self) return model for model in models_from_model(model, include_related=include_related): if model in self._registered_models: continue registered += 1 default_manager = backend.default_manager or Manager manager_class = getattr(model, 'manager_class', default_manager) manager = manager_class(model, backend, read_backend, self) self._registered_models[model] = manager if isinstance(model, ModelType): attr_name = model._meta.name else: attr_name = model.__name__.lower() if attr_name not in self._registered_names: self._registered_names[attr_name] = manager if self._install_global: model.objects = manager if registered: return backend
Register a :class:`Model` with this :class:`Router`. If the model was already registered it does nothing. :param model: a :class:`Model` class. :param backend: a :class:`stdnet.BackendDataServer` or a :ref:`connection string <connection-string>`. :param read_backend: Optional :class:`stdnet.BackendDataServer` for read operations. This is useful when the server has a master/slave configuration, where the master accept write and read operations and the ``slave`` read only operations. :param include_related: ``True`` if related models to ``model`` needs to be registered. Default ``True``. :param params: Additional parameters for the :func:`getdb` function. :return: the number of models registered.
entailment
def from_uuid(self, uuid, session=None): '''Retrieve a :class:`Model` from its universally unique identifier ``uuid``. If the ``uuid`` does not match any instance an exception will raise. ''' elems = uuid.split('.') if len(elems) == 2: model = get_model_from_hash(elems[0]) if not model: raise Model.DoesNotExist( 'model id "{0}" not available'.format(elems[0])) if not session or session.router is not self: session = self.session() return session.query(model).get(id=elems[1]) raise Model.DoesNotExist('uuid "{0}" not recognized'.format(uuid))
Retrieve a :class:`Model` from its universally unique identifier ``uuid``. If the ``uuid`` does not match any instance an exception will raise.
entailment
def flush(self, exclude=None, include=None, dryrun=False): '''Flush :attr:`registered_models`. :param exclude: optional list of model names to exclude. :param include: optional list of model names to include. :param dryrun: Doesn't remove anything, simply collect managers to flush. :return: ''' exclude = exclude or [] results = [] for manager in self._registered_models.values(): m = manager._meta if include is not None and not (m.modelkey in include or m.app_label in include): continue if not (m.modelkey in exclude or m.app_label in exclude): if dryrun: results.append(manager) else: results.append(manager.flush()) return results
Flush :attr:`registered_models`. :param exclude: optional list of model names to exclude. :param include: optional list of model names to include. :param dryrun: Doesn't remove anything, simply collect managers to flush. :return:
entailment
def unregister(self, model=None): '''Unregister a ``model`` if provided, otherwise it unregister all registered models. Return a list of unregistered model managers or ``None`` if no managers were removed.''' if model is not None: try: manager = self._registered_models.pop(model) except KeyError: return if self._registered_names.get(manager._meta.name) == manager: self._registered_names.pop(manager._meta.name) return [manager] else: managers = list(self._registered_models.values()) self._registered_models.clear() return managers
Unregister a ``model`` if provided, otherwise it unregister all registered models. Return a list of unregistered model managers or ``None`` if no managers were removed.
entailment
def register_applications(self, applications, models=None, backends=None): '''A higher level registration functions for group of models located on application modules. It uses the :func:`model_iterator` function to iterate through all :class:`Model` models available in ``applications`` and register them using the :func:`register` low level method. :parameter applications: A String or a list of strings representing python dotted paths where models are implemented. :parameter models: Optional list of models to include. If not provided all models found in *applications* will be included. :parameter backends: optional dictionary which map a model or an application to a backend :ref:`connection string <connection-string>`. :rtype: A list of registered :class:`Model`. For example:: mapper.register_application_models('mylib.myapp') mapper.register_application_models(['mylib.myapp', 'another.path']) mapper.register_application_models(pythonmodule) mapper.register_application_models(['mylib.myapp',pythonmodule]) ''' return list(self._register_applications(applications, models, backends))
A higher level registration functions for group of models located on application modules. It uses the :func:`model_iterator` function to iterate through all :class:`Model` models available in ``applications`` and register them using the :func:`register` low level method. :parameter applications: A String or a list of strings representing python dotted paths where models are implemented. :parameter models: Optional list of models to include. If not provided all models found in *applications* will be included. :parameter backends: optional dictionary which map a model or an application to a backend :ref:`connection string <connection-string>`. :rtype: A list of registered :class:`Model`. For example:: mapper.register_application_models('mylib.myapp') mapper.register_application_models(['mylib.myapp', 'another.path']) mapper.register_application_models(pythonmodule) mapper.register_application_models(['mylib.myapp',pythonmodule])
entailment
def execute_script(self, name, keys, *args, **options): '''Execute a script. makes sure all required scripts are loaded. ''' script = get_script(name) if not script: raise redis.RedisError('No such script "%s"' % name) address = self.address() if address not in all_loaded_scripts: all_loaded_scripts[address] = set() loaded = all_loaded_scripts[address] toload = script.required_scripts.difference(loaded) for name in toload: s = get_script(name) yield self.script_load(s.script) loaded.update(toload) yield script(self, keys, args, options)
Execute a script. makes sure all required scripts are loaded.
entailment
def register(self, model, related=None): '''Register a :class:`StdModel` with this search :class:`SearchEngine`. When registering a model, every time an instance is created, it will be indexed by the search engine. :param model: a :class:`StdModel` class. :param related: a list of related fields to include in the index. ''' update_model = UpdateSE(self, related) self.REGISTERED_MODELS[model] = update_model self.router.post_commit.bind(update_model, model) self.router.post_delete.bind(update_model, model)
Register a :class:`StdModel` with this search :class:`SearchEngine`. When registering a model, every time an instance is created, it will be indexed by the search engine. :param model: a :class:`StdModel` class. :param related: a list of related fields to include in the index.
entailment
def words_from_text(self, text, for_search=False): '''Generator of indexable words in *text*. This functions loop through the :attr:`word_middleware` attribute to process the text. :param text: string from which to extract words. :param for_search: flag indicating if the the words will be used for search or to index the database. This flug is used in conjunction with the middleware flag *for_search*. If this flag is ``True`` (i.e. we need to search the database for the words in *text*), only the middleware functions in :attr:`word_middleware` enabled for searching are used. Default: ``False``. return a *list* of cleaned words. ''' if not text: return [] word_gen = self.split_text(text) for middleware, fors in self.word_middleware: if for_search and not fors: continue word_gen = middleware(word_gen) if isgenerator(word_gen): word_gen = list(word_gen) return word_gen
Generator of indexable words in *text*. This functions loop through the :attr:`word_middleware` attribute to process the text. :param text: string from which to extract words. :param for_search: flag indicating if the the words will be used for search or to index the database. This flug is used in conjunction with the middleware flag *for_search*. If this flag is ``True`` (i.e. we need to search the database for the words in *text*), only the middleware functions in :attr:`word_middleware` enabled for searching are used. Default: ``False``. return a *list* of cleaned words.
entailment
def add_word_middleware(self, middleware, for_search=True): '''Add a *middleware* function to the list of :attr:`word_middleware`, for preprocessing words to be indexed. :param middleware: a callable receving an iterable over words. :param for_search: flag indicating if the *middleware* can be used for the text to search. Default: ``True``. ''' if hasattr(middleware, '__call__'): self.word_middleware.append((middleware, for_search))
Add a *middleware* function to the list of :attr:`word_middleware`, for preprocessing words to be indexed. :param middleware: a callable receving an iterable over words. :param for_search: flag indicating if the *middleware* can be used for the text to search. Default: ``True``.
entailment
def query(self, model): '''Return a query for ``model`` when it needs to be indexed. ''' session = self.router.session() fields = tuple((f.name for f in model._meta.scalarfields if f.type == 'text')) qs = session.query(model).load_only(*fields) for related in self.get_related_fields(model): qs = qs.load_related(related) return qs
Return a query for ``model`` when it needs to be indexed.
entailment
def get_version(version): "Returns a PEP 386-compliant version number from *version*." assert len(version) == 5 assert version[3] in ('alpha', 'beta', 'rc', 'final') parts = 2 if version[2] == 0 else 3 main = '.'.join(map(str, version[:parts])) sub = '' if version[3] == 'alpha' and version[4] == 0: git_changeset = get_git_changeset() if git_changeset: sub = '.dev%s' % git_changeset elif version[3] != 'final': mapping = {'alpha': 'a', 'beta': 'b', 'rc': 'c'} sub = mapping[version[3]] + str(version[4]) return main + sub
Returns a PEP 386-compliant version number from *version*.
entailment
def Get_RpRs(d, **kwargs): ''' Returns the value of the planet radius over the stellar radius for a given depth :py:obj:`d`, given the :py:class:`everest.pysyzygy` transit :py:obj:`kwargs`. ''' if ps is None: raise Exception("Unable to import `pysyzygy`.") def Depth(RpRs, **kwargs): return 1 - ps.Transit(RpRs=RpRs, **kwargs)([kwargs.get('t0', 0.)]) def DiffSq(r): return 1.e10 * (d - Depth(r, **kwargs)) ** 2 return fmin(DiffSq, [np.sqrt(d)], disp=False)
Returns the value of the planet radius over the stellar radius for a given depth :py:obj:`d`, given the :py:class:`everest.pysyzygy` transit :py:obj:`kwargs`.
entailment