sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def Get_rhos(dur, **kwargs): ''' Returns the value of the stellar density for a given transit duration :py:obj:`dur`, given the :py:class:`everest.pysyzygy` transit :py:obj:`kwargs`. ''' if ps is None: raise Exception("Unable to import `pysyzygy`.") assert dur >= 0.01 and dur <= 0.5, "Invalid value for the duration." def Dur(rhos, **kwargs): t0 = kwargs.get('t0', 0.) time = np.linspace(t0 - 0.5, t0 + 0.5, 1000) try: t = time[np.where(ps.Transit(rhos=rhos, **kwargs)(time) < 1)] except: return 0. return t[-1] - t[0] def DiffSq(rhos): return (dur - Dur(rhos, **kwargs)) ** 2 return fmin(DiffSq, [0.2], disp=False)
Returns the value of the stellar density for a given transit duration :py:obj:`dur`, given the :py:class:`everest.pysyzygy` transit :py:obj:`kwargs`.
entailment
def Transit(time, t0=0., dur=0.1, per=3.56789, depth=0.001, **kwargs): ''' A `Mandel-Agol <http://adsabs.harvard.edu/abs/2002ApJ...580L.171M>`_ transit model, but with the depth and the duration as primary input variables. :param numpy.ndarray time: The time array :param float t0: The time of first transit in units of \ :py:obj:`BJD` - 2454833. :param float dur: The transit duration in days. Don't go too crazy on \ this one -- very small or very large values will break the \ inverter. Default 0.1 :param float per: The orbital period in days. Default 3.56789 :param float depth: The fractional transit depth. Default 0.001 :param dict kwargs: Any additional keyword arguments, passed directly \ to :py:func:`pysyzygy.Transit` :returns tmod: The transit model evaluated at the same times as the \ :py:obj:`time` array ''' if ps is None: raise Exception("Unable to import `pysyzygy`.") # Note that rhos can affect RpRs, so we should really do this iteratively, # but the effect is pretty negligible! RpRs = Get_RpRs(depth, t0=t0, per=per, **kwargs) rhos = Get_rhos(dur, t0=t0, per=per, **kwargs) return ps.Transit(t0=t0, per=per, RpRs=RpRs, rhos=rhos, **kwargs)(time)
A `Mandel-Agol <http://adsabs.harvard.edu/abs/2002ApJ...580L.171M>`_ transit model, but with the depth and the duration as primary input variables. :param numpy.ndarray time: The time array :param float t0: The time of first transit in units of \ :py:obj:`BJD` - 2454833. :param float dur: The transit duration in days. Don't go too crazy on \ this one -- very small or very large values will break the \ inverter. Default 0.1 :param float per: The orbital period in days. Default 3.56789 :param float depth: The fractional transit depth. Default 0.001 :param dict kwargs: Any additional keyword arguments, passed directly \ to :py:func:`pysyzygy.Transit` :returns tmod: The transit model evaluated at the same times as the \ :py:obj:`time` array
entailment
def intervals(self, startdate, enddate, parseinterval=None): '''Given a ``startdate`` and an ``enddate`` dates, evaluate the date intervals from which data is not available. It return a list of two-dimensional tuples containing start and end date for the interval. The list could contain 0, 1 or 2 tuples.''' return missing_intervals(startdate, enddate, self.data_start, self.data_end, dateconverter=self.todate, parseinterval=parseinterval)
Given a ``startdate`` and an ``enddate`` dates, evaluate the date intervals from which data is not available. It return a list of two-dimensional tuples containing start and end date for the interval. The list could contain 0, 1 or 2 tuples.
entailment
def front(self, *fields): '''Return the front pair of the structure''' v, f = tuple(self.irange(0, 0, fields=fields)) if v: return (v[0], dict(((field, f[field][0]) for field in f)))
Return the front pair of the structure
entailment
def istats(self, start=0, end=-1, fields=None): '''Perform a multivariate statistic calculation of this :class:`ColumnTS` from *start* to *end*. :param start: Optional index (rank) where to start the analysis. :param end: Optional index (rank) where to end the analysis. :param fields: Optional subset of :meth:`fields` to perform analysis on. If not provided all fields are included in the analysis. ''' backend = self.read_backend return backend.execute( backend.structure(self).istats(start, end, fields), self._stats)
Perform a multivariate statistic calculation of this :class:`ColumnTS` from *start* to *end*. :param start: Optional index (rank) where to start the analysis. :param end: Optional index (rank) where to end the analysis. :param fields: Optional subset of :meth:`fields` to perform analysis on. If not provided all fields are included in the analysis.
entailment
def stats(self, start, end, fields=None): '''Perform a multivariate statistic calculation of this :class:`ColumnTS` from a *start* date/datetime to an *end* date/datetime. :param start: Start date for analysis. :param end: End date for analysis. :param fields: Optional subset of :meth:`fields` to perform analysis on. If not provided all fields are included in the analysis. ''' start = self.pickler.dumps(start) end = self.pickler.dumps(end) backend = self.read_backend return backend.execute( backend.structure(self).stats(start, end, fields), self._stats)
Perform a multivariate statistic calculation of this :class:`ColumnTS` from a *start* date/datetime to an *end* date/datetime. :param start: Start date for analysis. :param end: End date for analysis. :param fields: Optional subset of :meth:`fields` to perform analysis on. If not provided all fields are included in the analysis.
entailment
def imulti_stats(self, start=0, end=-1, series=None, fields=None, stats=None): '''Perform cross multivariate statistics calculation of this :class:`ColumnTS` and other optional *series* from *start* to *end*. :parameter start: the start rank. :parameter start: the end rank :parameter field: name of field to perform multivariate statistics. :parameter series: a list of two elements tuple containing the id of the a :class:`columnTS` and a field name. :parameter stats: list of statistics to evaluate. Default: ['covariance'] ''' stats = stats or self.default_multi_stats backend = self.read_backend return backend.execute( backend.structure(self).imulti_stats(start, end, fields, series, stats), self._stats)
Perform cross multivariate statistics calculation of this :class:`ColumnTS` and other optional *series* from *start* to *end*. :parameter start: the start rank. :parameter start: the end rank :parameter field: name of field to perform multivariate statistics. :parameter series: a list of two elements tuple containing the id of the a :class:`columnTS` and a field name. :parameter stats: list of statistics to evaluate. Default: ['covariance']
entailment
def merge(self, *series, **kwargs): '''Merge this :class:`ColumnTS` with several other *series*. :parameters series: a list of tuples where the nth element is a tuple of the form:: (wight_n, ts_n1, ts_n2, ..., ts_nMn) The result will be calculated using the formula:: ts = weight_1*ts_11*ts_12*...*ts_1M1 + weight_2*ts_21*ts_22*...*ts_2M2 + ... ''' session = self.session if not session: raise SessionNotAvailable('No session available') self.check_router(session.router, *series) return self._merge(*series, **kwargs)
Merge this :class:`ColumnTS` with several other *series*. :parameters series: a list of tuples where the nth element is a tuple of the form:: (wight_n, ts_n1, ts_n2, ..., ts_nMn) The result will be calculated using the formula:: ts = weight_1*ts_11*ts_12*...*ts_1M1 + weight_2*ts_21*ts_22*...*ts_2M2 + ...
entailment
def merged_series(cls, *series, **kwargs): '''Merge ``series`` and return the results without storing data in the backend server.''' router, backend = cls.check_router(None, *series) if backend: target = router.register(cls(), backend) router.session().add(target) target._merge(*series, **kwargs) backend = target.backend return backend.execute( backend.structure(target).irange_and_delete(), target.load_data)
Merge ``series`` and return the results without storing data in the backend server.
entailment
def rank(self, score): '''Return the 0-based index (rank) of ``score``. If the score is not available it returns a negative integer which absolute score is the left most closest index with score less than *score*.''' node = self.__head rank = 0 for i in range(self.__level-1, -1, -1): while node.next[i] and node.next[i].score <= score: rank += node.width[i] node = node.next[i] if node.score == score: return rank - 1 else: return -1 - rank
Return the 0-based index (rank) of ``score``. If the score is not available it returns a negative integer which absolute score is the left most closest index with score less than *score*.
entailment
def make_object(self, state=None, backend=None): '''Create a new instance of :attr:`model` from a *state* tuple.''' model = self.model obj = model.__new__(model) self.load_state(obj, state, backend) return obj
Create a new instance of :attr:`model` from a *state* tuple.
entailment
def is_valid(self, instance): '''Perform validation for *instance* and stores serialized data, indexes and errors into local cache. Return ``True`` if the instance is ready to be saved to database.''' dbdata = instance.dbdata data = dbdata['cleaned_data'] = {} errors = dbdata['errors'] = {} #Loop over scalar fields first for field, value in instance.fieldvalue_pairs(): name = field.attname try: svalue = field.set_get_value(instance, value) except Exception as e: errors[name] = str(e) else: if (svalue is None or svalue is '') and field.required: errors[name] = ("Field '{0}' is required for '{1}'." .format(name, self)) else: if isinstance(svalue, dict): data.update(svalue) elif svalue is not None: data[name] = svalue return len(errors) == 0
Perform validation for *instance* and stores serialized data, indexes and errors into local cache. Return ``True`` if the instance is ready to be saved to database.
entailment
def backend_fields(self, fields): '''Return a two elements tuple containing a list of fields names and a list of field attribute names.''' dfields = self.dfields processed = set() names = [] atts = [] pkname = self.pkname() for name in fields: if name == pkname or name in processed: continue elif name in dfields: processed.add(name) field = dfields[name] names.append(field.name) atts.append(field.attname) else: bname = name.split(JSPLITTER)[0] if bname in dfields: field = dfields[bname] if field.type in ('json object', 'related object'): processed.add(name) names.append(name) atts.append(name) return names, atts
Return a two elements tuple containing a list of fields names and a list of field attribute names.
entailment
def as_dict(self): '''Model metadata in a dictionary''' pk = self.pk id_type = 3 if pk.type == 'auto': id_type = 1 return {'id_name': pk.name, 'id_type': id_type, 'sorted': bool(self.ordering), 'autoincr': self.ordering and self.ordering.auto, 'multi_fields': [field.name for field in self.multifields], 'indices': dict(((idx.attname, idx.unique) for idx in self.indices))}
Model metadata in a dictionary
entailment
def get_state(self, **kwargs): '''Return the current :class:`ModelState` for this :class:`Model`. If ``kwargs`` parameters are passed a new :class:`ModelState` is created, otherwise it returns the cached value.''' dbdata = self.dbdata if 'state' not in dbdata or kwargs: dbdata['state'] = ModelState(self, **kwargs) return dbdata['state']
Return the current :class:`ModelState` for this :class:`Model`. If ``kwargs`` parameters are passed a new :class:`ModelState` is created, otherwise it returns the cached value.
entailment
def uuid(self): '''Universally unique identifier for an instance of a :class:`Model`. ''' pk = self.pkvalue() if not pk: raise self.DoesNotExist( 'Object not saved. Cannot obtain universally unique id') return self.get_uuid(pk)
Universally unique identifier for an instance of a :class:`Model`.
entailment
def backend(self, client=None): '''The :class:`stdnet.BackendDatServer` for this instance. It can be ``None``. ''' session = self.session if session: return session.model(self).backend
The :class:`stdnet.BackendDatServer` for this instance. It can be ``None``.
entailment
def read_backend(self, client=None): '''The read :class:`stdnet.BackendDatServer` for this instance. It can be ``None``. ''' session = self.session if session: return session.model(self).read_backend
The read :class:`stdnet.BackendDatServer` for this instance. It can be ``None``.
entailment
def create_model(name, *attributes, **params): '''Create a :class:`Model` class for objects requiring and interface similar to :class:`StdModel`. We refers to this type of models as :ref:`local models <local-models>` since instances of such models are not persistent on a :class:`stdnet.BackendDataServer`. :param name: Name of the model class. :param attributes: positiona attribute names. These are the only attribute available to the model during the default constructor. :param params: key-valued parameter to pass to the :class:`ModelMeta` constructor. :return: a local :class:`Model` class. ''' params['register'] = False params['attributes'] = attributes kwargs = {'manager_class': params.pop('manager_class', Manager), 'Meta': params} return ModelType(name, (StdModel,), kwargs)
Create a :class:`Model` class for objects requiring and interface similar to :class:`StdModel`. We refers to this type of models as :ref:`local models <local-models>` since instances of such models are not persistent on a :class:`stdnet.BackendDataServer`. :param name: Name of the model class. :param attributes: positiona attribute names. These are the only attribute available to the model during the default constructor. :param params: key-valued parameter to pass to the :class:`ModelMeta` constructor. :return: a local :class:`Model` class.
entailment
def loadedfields(self): '''Generator of fields loaded from database''' if self._loadedfields is None: for field in self._meta.scalarfields: yield field else: fields = self._meta.dfields processed = set() for name in self._loadedfields: if name in processed: continue if name in fields: processed.add(name) yield fields[name] else: name = name.split(JSPLITTER)[0] if name in fields and name not in processed: field = fields[name] if field.type == 'json object': processed.add(name) yield field
Generator of fields loaded from database
entailment
def fieldvalue_pairs(self, exclude_cache=False): '''Generator of fields,values pairs. Fields correspond to the ones which have been loaded (usually all of them) or not loaded but modified. Check the :ref:`load_only <performance-loadonly>` query function for more details. If *exclude_cache* evaluates to ``True``, fields with :attr:`Field.as_cache` attribute set to ``True`` won't be included. :rtype: a generator of two-elements tuples''' for field in self._meta.scalarfields: if exclude_cache and field.as_cache: continue name = field.attname if hasattr(self, name): yield field, getattr(self, name)
Generator of fields,values pairs. Fields correspond to the ones which have been loaded (usually all of them) or not loaded but modified. Check the :ref:`load_only <performance-loadonly>` query function for more details. If *exclude_cache* evaluates to ``True``, fields with :attr:`Field.as_cache` attribute set to ``True`` won't be included. :rtype: a generator of two-elements tuples
entailment
def clear_cache_fields(self): '''Set cache fields to ``None``. Check :attr:`Field.as_cache` for information regarding fields which are considered cache.''' for field in self._meta.scalarfields: if field.as_cache: setattr(self, field.name, None)
Set cache fields to ``None``. Check :attr:`Field.as_cache` for information regarding fields which are considered cache.
entailment
def get_attr_value(self, name): '''Retrieve the ``value`` for the attribute ``name``. The ``name`` can be nested following the :ref:`double underscore <tutorial-underscore>` notation, for example ``group__name``. If the attribute is not available it raises :class:`AttributeError`.''' if name in self._meta.dfields: return self._meta.dfields[name].get_value(self) elif not name.startswith('__') and JSPLITTER in name: bits = name.split(JSPLITTER) fname = bits[0] if fname in self._meta.dfields: return self._meta.dfields[fname].get_value(self, *bits[1:]) else: return getattr(self, name) else: return getattr(self, name)
Retrieve the ``value`` for the attribute ``name``. The ``name`` can be nested following the :ref:`double underscore <tutorial-underscore>` notation, for example ``group__name``. If the attribute is not available it raises :class:`AttributeError`.
entailment
def clone(self, **data): '''Utility method for cloning the instance as a new object. :parameter data: additional which override field data. :rtype: a new instance of this class. ''' meta = self._meta session = self.session pkname = meta.pkname() pkvalue = data.pop(pkname, None) fields = self.todict(exclude_cache=True) fields.update(data) fields.pop('__dbdata__', None) obj = self._meta.make_object((pkvalue, None, fields)) obj.session = session return obj
Utility method for cloning the instance as a new object. :parameter data: additional which override field data. :rtype: a new instance of this class.
entailment
def todict(self, exclude_cache=False): '''Return a dictionary of serialised scalar field for pickling. If the *exclude_cache* flag is ``True``, fields with :attr:`Field.as_cache` attribute set to ``True`` will be excluded.''' odict = {} for field, value in self.fieldvalue_pairs(exclude_cache=exclude_cache): value = field.serialise(value) if value: odict[field.name] = value if self._dbdata and 'id' in self._dbdata: odict['__dbdata__'] = {'id': self._dbdata['id']} return odict
Return a dictionary of serialised scalar field for pickling. If the *exclude_cache* flag is ``True``, fields with :attr:`Field.as_cache` attribute set to ``True`` will be excluded.
entailment
def load_fields(self, *fields): '''Load extra fields to this :class:`StdModel`.''' if self._loadedfields is not None: if self.session is None: raise SessionNotAvailable('No session available') meta = self._meta kwargs = {meta.pkname(): self.pkvalue()} obj = session.query(self).load_only(fields).get(**kwargs) for name in fields: field = meta.dfields.get(name) if field is not None: setattr(self, field.attname, getattr(obj, field.attname, None))
Load extra fields to this :class:`StdModel`.
entailment
def load_related_model(self, name, load_only=None, dont_load=None): '''Load a the :class:`ForeignKey` field ``name`` if this is part of the fields of this model and if the related object is not already loaded. It is used by the lazy loading mechanism of :ref:`one-to-many <one-to-many>` relationships. :parameter name: the :attr:`Field.name` of the :class:`ForeignKey` to load. :parameter load_only: Optional parameters which specify the fields to load. :parameter dont_load: Optional parameters which specify the fields not to load. :return: the related :class:`StdModel` instance. ''' field = self._meta.dfields.get(name) if not field: raise ValueError('Field "%s" not available' % name) elif not field.type == 'related object': raise ValueError('Field "%s" not a foreign key' % name) return self._load_related_model(field, load_only, dont_load)
Load a the :class:`ForeignKey` field ``name`` if this is part of the fields of this model and if the related object is not already loaded. It is used by the lazy loading mechanism of :ref:`one-to-many <one-to-many>` relationships. :parameter name: the :attr:`Field.name` of the :class:`ForeignKey` to load. :parameter load_only: Optional parameters which specify the fields to load. :parameter dont_load: Optional parameters which specify the fields not to load. :return: the related :class:`StdModel` instance.
entailment
def from_base64_data(cls, **kwargs): '''Load a :class:`StdModel` from possibly base64encoded data. This method is used to load models from data obtained from the :meth:`tojson` method.''' o = cls() meta = cls._meta pkname = meta.pkname() for name, value in iteritems(kwargs): if name == pkname: field = meta.pk elif name in meta.dfields: field = meta.dfields[name] else: continue value = field.to_python(value) setattr(o, field.attname, value) return o
Load a :class:`StdModel` from possibly base64encoded data. This method is used to load models from data obtained from the :meth:`tojson` method.
entailment
def DetrendFITS(fitsfile, raw=False, season=None, clobber=False, **kwargs): """ De-trend a K2 FITS file using :py:class:`everest.detrender.rPLD`. :param str fitsfile: The full path to the FITS file :param ndarray aperture: A 2D integer array corresponding to the \ desired photometric aperture (1 = in aperture, 0 = outside \ aperture). Default is to interactively select an aperture. :param kwargs: Any kwargs accepted by :py:class:`everest.detrender.rPLD`. :returns: An :py:class:`everest.Everest` instance. """ # Get info EPIC = pyfits.getheader(fitsfile, 0)['KEPLERID'] if season is None: season = pyfits.getheader(fitsfile, 0)['CAMPAIGN'] if season is None or season == "": season = 0 everestfile = os.path.join( everest.missions.k2.TargetDirectory(EPIC, season), everest.missions.k2.FITSFile(EPIC, season)) # De-trend? if clobber or not os.path.exists(everestfile): # Get raw data data = GetData(fitsfile, EPIC, season, clobber=clobber, **kwargs) # De-trend model = everest.rPLD(EPIC, data=data, season=season, debug=True, clobber=clobber, **kwargs) # Publish it everest.fits.MakeFITS(model) shutil.copyfile(os.path.join(model.dir, model.name + '.pdf'), os.path.join(model.dir, model._mission.DVSFile(model.ID, model.season, model.cadence))) # Return an Everest instance return everest.Everest(EPIC, season=season)
De-trend a K2 FITS file using :py:class:`everest.detrender.rPLD`. :param str fitsfile: The full path to the FITS file :param ndarray aperture: A 2D integer array corresponding to the \ desired photometric aperture (1 = in aperture, 0 = outside \ aperture). Default is to interactively select an aperture. :param kwargs: Any kwargs accepted by :py:class:`everest.detrender.rPLD`. :returns: An :py:class:`everest.Everest` instance.
entailment
def GetData(fitsfile, EPIC, campaign, clobber=False, saturation_tolerance=-0.1, bad_bits=[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17], get_hires=False, get_nearby=False, aperture=None, **kwargs): ''' Returns a :py:obj:`DataContainer` instance with the raw data for the target. :param str fitsfile: The full raw target pixel file path :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param float saturation_tolerance: Target is considered saturated \ if flux is within this fraction of the pixel well depth. \ Default -0.1 :param array_like bad_bits: Flagged :py:obj`QUALITY` bits to consider \ outliers when computing the model. \ Default `[1,2,3,4,5,6,7,8,9,11,12,13,14,16,17]` :param bool get_hires: Download a high resolution image of the target? \ Default :py:obj:`True` :param bool get_nearby: Retrieve location of nearby sources? \ Default :py:obj:`True` ''' # Get the npz file name filename = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % campaign, ('%09d' % EPIC)[:4] + '00000', ('%09d' % EPIC)[4:], 'data.npz') # Create the dir if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) # Check for saved data if not os.path.exists(filename) or clobber: log.info("Fetching data for target...") # Load the tpf with pyfits.open(fitsfile) as f: qdata = f[1].data # Get the header info fitsheader = [pyfits.getheader(fitsfile, 0).cards, pyfits.getheader(fitsfile, 1).cards, pyfits.getheader(fitsfile, 2).cards] # Get a hi res image of the target if get_hires: try: hires = GetHiResImage(EPIC) except ValueError: hires = None else: hires = None # Get nearby sources if get_nearby: try: nearby = GetSources(EPIC) except ValueError: nearby = [] else: nearby = [] # Get the arrays cadn = np.array(qdata.field('CADENCENO'), dtype='int32') time = np.array(qdata.field('TIME'), dtype='float64') fpix = np.array(qdata.field('FLUX'), dtype='float64') fpix_err = np.array(qdata.field('FLUX_ERR'), dtype='float64') qual = np.array(qdata.field('QUALITY'), dtype=int) # Get rid of NaNs in the time array by interpolating naninds = np.where(np.isnan(time)) time = Interpolate(np.arange(0, len(time)), naninds, time) # Get the motion vectors (if available!) pc1 = np.array(qdata.field('POS_CORR1'), dtype='float64') pc2 = np.array(qdata.field('POS_CORR2'), dtype='float64') if not np.all(np.isnan(pc1)) and not np.all(np.isnan(pc2)): pc1 = Interpolate(time, np.where(np.isnan(pc1)), pc1) pc2 = Interpolate(time, np.where(np.isnan(pc2)), pc2) else: pc1 = None pc2 = None # Get the static pixel images for plotting pixel_images = [fpix[0], fpix[len(fpix) // 2], fpix[len(fpix) - 1]] # Get the aperture interactively if aperture is None: aperture = ApertureSelector(time[::10], fpix[::10], title='EPIC %d' % EPIC).aperture if np.sum(aperture) == 0: raise ValueError("Empty aperture!") # Atomically write to disk. # http://stackoverflow.com/questions/2333872/ # atomic-writing-to-file-with-python if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) f = NamedTemporaryFile("wb", delete=False) np.savez_compressed(f, cadn=cadn, time=time, fpix=fpix, fpix_err=fpix_err, qual=qual, aperture=aperture, pc1=pc1, pc2=pc2, fitsheader=fitsheader, pixel_images=pixel_images, nearby=nearby, hires=hires) f.flush() os.fsync(f.fileno()) f.close() shutil.move(f.name, filename) # Load data = np.load(filename) aperture = data['aperture'][()] pixel_images = data['pixel_images'] nearby = data['nearby'][()] hires = data['hires'][()] fitsheader = data['fitsheader'] cadn = data['cadn'] time = data['time'] fpix = data['fpix'] fpix_err = data['fpix_err'] qual = data['qual'] pc1 = data['pc1'] pc2 = data['pc2'] # Compute the saturation flux and the 97.5th percentile # flux in each pixel of the aperture. We're going # to compare these to decide if the star is saturated. satflx = SaturationFlux(EPIC, campaign=campaign) * \ (1. + saturation_tolerance) f97 = np.zeros((fpix.shape[1], fpix.shape[2])) for i in range(fpix.shape[1]): for j in range(fpix.shape[2]): if aperture[i, j]: # Let's remove NaNs... tmp = np.delete(fpix[:, i, j], np.where( np.isnan(fpix[:, i, j]))) # ... and really bad outliers... if len(tmp): f = SavGol(tmp) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) bad = np.where((f > med + 10. * MAD) | (f < med - 10. * MAD))[0] np.delete(tmp, bad) # ... so we can compute the 97.5th percentile flux i97 = int(0.975 * len(tmp)) tmp = tmp[np.argsort(tmp)[i97]] f97[i, j] = tmp # Check if any of the pixels are actually saturated if np.nanmax(f97) <= satflx: log.info("No saturated columns detected.") saturated = False aperture[np.isnan(fpix[0])] = 0 ap = np.where(aperture & 1) fpix2D = np.array([f[ap] for f in fpix], dtype='float64') fpix_err2D = np.array([p[ap] for p in fpix_err], dtype='float64') else: # We need to collapse the saturated columns saturated = True ncol = 0 fpixnew = [] ferrnew = [] for j in range(aperture.shape[1]): if np.any(f97[:, j] > satflx): marked = False collapsed = np.zeros(len(fpix[:, 0, 0])) collapsed_err2 = np.zeros(len(fpix[:, 0, 0])) for i in range(aperture.shape[0]): if aperture[i, j]: if not marked: aperture[i, j] = AP_COLLAPSED_PIXEL marked = True else: aperture[i, j] = AP_SATURATED_PIXEL collapsed += fpix[:, i, j] collapsed_err2 += fpix_err[:, i, j] ** 2 if np.any(collapsed): fpixnew.append(collapsed) ferrnew.append(np.sqrt(collapsed_err2)) ncol += 1 else: for i in range(aperture.shape[0]): if aperture[i, j]: fpixnew.append(fpix[:, i, j]) ferrnew.append(fpix_err[:, i, j]) fpix2D = np.array(fpixnew).T fpix_err2D = np.array(ferrnew).T log.info("Collapsed %d saturated column(s)." % ncol) # Compute the background binds = np.where(aperture ^ 1) if RemoveBackground(EPIC, campaign=campaign) and (len(binds[0]) > 0): bkg = np.nanmedian(np.array([f[binds] for f in fpix], dtype='float64'), axis=1) # Uncertainty of the median: # http://davidmlane.com/hyperstat/A106993.html bkg_err = 1.253 * np.nanmedian(np.array([e[binds] for e in fpix_err], dtype='float64'), axis=1) \ / np.sqrt(len(binds[0])) bkg = bkg.reshape(-1, 1) bkg_err = bkg_err.reshape(-1, 1) else: bkg = 0. bkg_err = 0. # Make everything 2D and remove the background fpix = fpix2D - bkg fpix_err = np.sqrt(fpix_err2D ** 2 + bkg_err ** 2) flux = np.sum(fpix, axis=1) # Get NaN data points nanmask = np.where(np.isnan(flux) | (flux == 0))[0] # Get flagged data points -- we won't train our model on them badmask = [] for b in bad_bits: badmask += list(np.where(qual & 2 ** (b - 1))[0]) # Flag >10 sigma outliers -- same thing. tmpmask = np.array(list(set(np.concatenate([badmask, nanmask])))) t = np.delete(time, tmpmask) f = np.delete(flux, tmpmask) f = SavGol(f) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) bad = np.where((f > med + 10. * MAD) | (f < med - 10. * MAD))[0] badmask.extend([np.argmax(time == t[i]) for i in bad]) # Campaign 2 hack: the first day or two are screwed up if campaign == 2: badmask.extend(np.where(time < 2061.5)[0]) # Finalize the mask badmask = np.array(sorted(list(set(badmask)))) # Interpolate the nans fpix = Interpolate(time, nanmask, fpix) fpix_err = Interpolate(time, nanmask, fpix_err) # Return data = DataContainer() data.ID = EPIC data.campaign = campaign data.cadn = cadn data.time = time data.fpix = fpix data.fpix_err = fpix_err data.nanmask = nanmask data.badmask = badmask data.aperture = aperture data.aperture_name = 'custom' data.apertures = dict(custom=aperture) data.quality = qual data.Xpos = pc1 data.Ypos = pc2 data.meta = fitsheader data.mag = fitsheader[0]['KEPMAG'][1] if type(data.mag) is pyfits.card.Undefined: data.mag = np.nan data.pixel_images = pixel_images data.nearby = nearby data.hires = hires data.saturated = saturated data.bkg = bkg return data
Returns a :py:obj:`DataContainer` instance with the raw data for the target. :param str fitsfile: The full raw target pixel file path :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param float saturation_tolerance: Target is considered saturated \ if flux is within this fraction of the pixel well depth. \ Default -0.1 :param array_like bad_bits: Flagged :py:obj`QUALITY` bits to consider \ outliers when computing the model. \ Default `[1,2,3,4,5,6,7,8,9,11,12,13,14,16,17]` :param bool get_hires: Download a high resolution image of the target? \ Default :py:obj:`True` :param bool get_nearby: Retrieve location of nearby sources? \ Default :py:obj:`True`
entailment
def title(self): ''' Returns the axis instance where the title will be printed ''' return self.title_left(on=False), self.title_center(on=False), \ self.title_right(on=False)
Returns the axis instance where the title will be printed
entailment
def footer(self): ''' Returns the axis instance where the footer will be printed ''' return self.footer_left(on=False), self.footer_center(on=False), \ self.footer_right(on=False)
Returns the axis instance where the footer will be printed
entailment
def top_right(self): ''' Returns the axis instance at the top right of the page, where the postage stamp and aperture is displayed ''' res = self.body_top_right[self.tcount]() self.tcount += 1 return res
Returns the axis instance at the top right of the page, where the postage stamp and aperture is displayed
entailment
def left(self): ''' Returns the current axis instance on the left side of the page where each successive light curve is displayed ''' res = self.body_left[self.lcount]() self.lcount += 1 return res
Returns the current axis instance on the left side of the page where each successive light curve is displayed
entailment
def right(self): ''' Returns the current axis instance on the right side of the page, where cross-validation information is displayed ''' res = self.body_right[self.rcount]() self.rcount += 1 return res
Returns the current axis instance on the right side of the page, where cross-validation information is displayed
entailment
def body(self): ''' Returns the axis instance where the light curves will be shown ''' res = self._body[self.bcount]() self.bcount += 1 return res
Returns the axis instance where the light curves will be shown
entailment
def hashmodel(model, library=None): '''Calculate the Hash id of metaclass ``meta``''' library = library or 'python-stdnet' meta = model._meta sha = hashlib.sha1(to_bytes('{0}({1})'.format(library, meta))) hash = sha.hexdigest()[:8] meta.hash = hash if hash in _model_dict: raise KeyError('Model "{0}" already in hash table.\ Rename your model or the module containing the model.'.format(meta)) _model_dict[hash] = model
Calculate the Hash id of metaclass ``meta``
entailment
def bind(self, callback, sender=None): '''Bind a ``callback`` for a given ``sender``.''' key = (_make_id(callback), _make_id(sender)) self.callbacks.append((key, callback))
Bind a ``callback`` for a given ``sender``.
entailment
def fire(self, sender=None, **params): '''Fire callbacks from a ``sender``.''' keys = (_make_id(None), _make_id(sender)) results = [] for (_, key), callback in self.callbacks: if key in keys: results.append(callback(self, sender, **params)) return results
Fire callbacks from a ``sender``.
entailment
def execute_command(self, cmnd, *args, **options): "Execute a command and return a parsed response" args, options = self.preprocess_command(cmnd, *args, **options) return self.client.execute_command(cmnd, *args, **options)
Execute a command and return a parsed response
entailment
def _range10_90(x): ''' Returns the 10th-90th percentile range of array :py:obj:`x`. ''' x = np.delete(x, np.where(np.isnan(x))) i = np.argsort(x) a = int(0.1 * len(x)) b = int(0.9 * len(x)) return x[i][b] - x[i][a]
Returns the 10th-90th percentile range of array :py:obj:`x`.
entailment
def Campaign(EPIC, **kwargs): ''' Returns the campaign number(s) for a given EPIC target. If target is not found, returns :py:obj:`None`. :param int EPIC: The EPIC number of the target. ''' campaigns = [] for campaign, stars in GetK2Stars().items(): if EPIC in [s[0] for s in stars]: campaigns.append(campaign) if len(campaigns) == 0: return None elif len(campaigns) == 1: return campaigns[0] else: return campaigns
Returns the campaign number(s) for a given EPIC target. If target is not found, returns :py:obj:`None`. :param int EPIC: The EPIC number of the target.
entailment
def GetK2Stars(clobber=False): ''' Download and return a :py:obj:`dict` of all *K2* stars organized by campaign. Saves each campaign to a `.stars` file in the `everest/missions/k2/tables` directory. :param bool clobber: If :py:obj:`True`, download and overwrite \ existing files. Default :py:obj:`False` .. note:: The keys of the dictionary returned by this function are the \ (integer) numbers of each campaign. Each item in the \ :py:obj:`dict` is a list of the targets in the corresponding \ campaign, and each item in that list is in turn a list of the \ following: **EPIC number** (:py:class:`int`), \ **Kp magnitude** (:py:class:`float`), **CCD channel number** \ (:py:class:`int`), and **short cadence available** \ (:py:class:`bool`). ''' # Download if clobber: print("Downloading K2 star list...") stars = kplr_client.k2_star_info() print("Writing star list to disk...") for campaign in stars.keys(): if not os.path.exists(os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables')): os.makedirs(os.path.join( EVEREST_SRC, 'missions', 'k2', 'tables')) with open(os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d.stars' % campaign), 'w') as f: for star in stars[campaign]: print(",".join([str(s) for s in star]), file=f) # Return res = {} for campaign in K2_CAMPAIGNS: f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d.stars' % campaign) if os.path.exists(f): with open(f, 'r') as file: lines = file.readlines() if len(lines[0].split(',')) == 4: # EPIC number, Kp magnitude, channel number, # short cadence available? stars = [[int(l.split(',')[0]), _float(l.split(',')[1]), int(l.split(',')[2]), eval(l.split(',')[3])] for l in lines] else: stars = [[int(l), np.nan, -1, None] for l in lines] res.update({campaign: stars}) return res
Download and return a :py:obj:`dict` of all *K2* stars organized by campaign. Saves each campaign to a `.stars` file in the `everest/missions/k2/tables` directory. :param bool clobber: If :py:obj:`True`, download and overwrite \ existing files. Default :py:obj:`False` .. note:: The keys of the dictionary returned by this function are the \ (integer) numbers of each campaign. Each item in the \ :py:obj:`dict` is a list of the targets in the corresponding \ campaign, and each item in that list is in turn a list of the \ following: **EPIC number** (:py:class:`int`), \ **Kp magnitude** (:py:class:`float`), **CCD channel number** \ (:py:class:`int`), and **short cadence available** \ (:py:class:`bool`).
entailment
def GetK2Campaign(campaign, clobber=False, split=False, epics_only=False, cadence='lc'): ''' Return all stars in a given *K2* campaign. :param campaign: The *K2* campaign number. If this is an :py:class:`int`, \ returns all targets in that campaign. If a :py:class:`float` in \ the form :py:obj:`X.Y`, runs the :py:obj:`Y^th` decile of campaign \ :py:obj:`X`. :param bool clobber: If :py:obj:`True`, download and overwrite existing \ files. Default :py:obj:`False` :param bool split: If :py:obj:`True` and :py:obj:`campaign` is an \ :py:class:`int`, returns each of the subcampaigns as a separate \ list. Default :py:obj:`False` :param bool epics_only: If :py:obj:`True`, returns only the EPIC numbers. \ If :py:obj:`False`, returns metadata associated with each target. \ Default :py:obj:`False` :param str cadence: Long (:py:obj:`lc`) or short (:py:obj:`sc`) cadence? \ Default :py:obj:`lc`. ''' all = GetK2Stars(clobber=clobber) if int(campaign) in all.keys(): all = all[int(campaign)] else: return [] if cadence == 'sc': all = [a for a in all if a[3]] if epics_only: all = [a[0] for a in all] if type(campaign) is int or type(campaign) is np.int64: if not split: return all else: all_split = list(Chunks(all, len(all) // 10)) # HACK: Sometimes we're left with a few targets # dangling at the end. Insert them back evenly # into the first few subcampaigns. if len(all_split) > 10: tmp1 = all_split[:10] tmp2 = all_split[10:] for n in range(len(tmp2)): tmp1[n] = np.append(tmp1[n], tmp2[n]) all_split = tmp1 res = [] for subcampaign in range(10): res.append(all_split[subcampaign]) return res elif type(campaign) is float: x, y = divmod(campaign, 1) campaign = int(x) subcampaign = round(y * 10) return list(Chunks(all, len(all) // 10))[subcampaign] else: raise Exception('Argument `subcampaign` must be an `int` ' + 'or a `float` in the form `X.Y`')
Return all stars in a given *K2* campaign. :param campaign: The *K2* campaign number. If this is an :py:class:`int`, \ returns all targets in that campaign. If a :py:class:`float` in \ the form :py:obj:`X.Y`, runs the :py:obj:`Y^th` decile of campaign \ :py:obj:`X`. :param bool clobber: If :py:obj:`True`, download and overwrite existing \ files. Default :py:obj:`False` :param bool split: If :py:obj:`True` and :py:obj:`campaign` is an \ :py:class:`int`, returns each of the subcampaigns as a separate \ list. Default :py:obj:`False` :param bool epics_only: If :py:obj:`True`, returns only the EPIC numbers. \ If :py:obj:`False`, returns metadata associated with each target. \ Default :py:obj:`False` :param str cadence: Long (:py:obj:`lc`) or short (:py:obj:`sc`) cadence? \ Default :py:obj:`lc`.
entailment
def Channel(EPIC, campaign=None): ''' Returns the channel number for a given EPIC target. ''' if campaign is None: campaign = Campaign(EPIC) if hasattr(campaign, '__len__'): raise AttributeError( "Please choose a campaign/season for this target: %s." % campaign) try: stars = GetK2Stars()[campaign] except KeyError: # Not sure what else to do here! log.warn("Unknown channel for target. Defaulting to channel 2.") return 2 i = np.argmax([s[0] == EPIC for s in stars]) return stars[i][2]
Returns the channel number for a given EPIC target.
entailment
def Module(EPIC, campaign=None): ''' Returns the module number for a given EPIC target. ''' channel = Channel(EPIC, campaign=campaign) nums = {2: 1, 3: 5, 4: 9, 6: 13, 7: 17, 8: 21, 9: 25, 10: 29, 11: 33, 12: 37, 13: 41, 14: 45, 15: 49, 16: 53, 17: 57, 18: 61, 19: 65, 20: 69, 22: 73, 23: 77, 24: 81} for c in [channel, channel - 1, channel - 2, channel - 3]: if c in nums.values(): for mod, chan in nums.items(): if chan == c: return mod return None
Returns the module number for a given EPIC target.
entailment
def Channels(module): ''' Returns the channels contained in the given K2 module. ''' nums = {2: 1, 3: 5, 4: 9, 6: 13, 7: 17, 8: 21, 9: 25, 10: 29, 11: 33, 12: 37, 13: 41, 14: 45, 15: 49, 16: 53, 17: 57, 18: 61, 19: 65, 20: 69, 22: 73, 23: 77, 24: 81} if module in nums: return [nums[module], nums[module] + 1, nums[module] + 2, nums[module] + 3] else: return None
Returns the channels contained in the given K2 module.
entailment
def KepMag(EPIC, campaign=None): ''' Returns the *Kepler* magnitude for a given EPIC target. ''' if campaign is None: campaign = Campaign(EPIC) if hasattr(campaign, '__len__'): raise AttributeError( "Please choose a campaign/season for this target: %s." % campaign) stars = GetK2Stars()[campaign] i = np.argmax([s[0] == EPIC for s in stars]) return stars[i][1]
Returns the *Kepler* magnitude for a given EPIC target.
entailment
def RemoveBackground(EPIC, campaign=None): ''' Returns :py:obj:`True` or :py:obj:`False`, indicating whether or not to remove the background flux for the target. If ``campaign < 3``, returns :py:obj:`True`, otherwise returns :py:obj:`False`. ''' if campaign is None: campaign = Campaign(EPIC) if hasattr(campaign, '__len__'): raise AttributeError( "Please choose a campaign/season for this target: %s." % campaign) if campaign < 3: return True else: return False
Returns :py:obj:`True` or :py:obj:`False`, indicating whether or not to remove the background flux for the target. If ``campaign < 3``, returns :py:obj:`True`, otherwise returns :py:obj:`False`.
entailment
def GetNeighboringChannels(channel): ''' Returns all channels on the same module as :py:obj:`channel`. ''' x = divmod(channel - 1, 4)[1] return channel + np.array(range(-x, -x + 4), dtype=int)
Returns all channels on the same module as :py:obj:`channel`.
entailment
def MASTRADec(ra, dec, darcsec, stars_only=False): ''' Detector location retrieval based upon RA and Dec. Adapted from `PyKE <http://keplergo.arc.nasa.gov/PyKE.shtml>`_. ''' # coordinate limits darcsec /= 3600.0 ra1 = ra - darcsec / np.cos(dec * np.pi / 180) ra2 = ra + darcsec / np.cos(dec * np.pi / 180) dec1 = dec - darcsec dec2 = dec + darcsec # build mast query url = 'http://archive.stsci.edu/k2/epic/search.php?' url += 'action=Search' url += '&k2_ra=' + str(ra1) + '..' + str(ra2) url += '&k2_dec=' + str(dec1) + '..' + str(dec2) url += '&max_records=10000' url += '&selectedColumnsCsv=id,k2_ra,k2_dec,kp' url += '&outputformat=CSV' if stars_only: url += '&ktc_target_type=LC' url += '&objtype=star' # retrieve results from MAST try: lines = urllib.request.urlopen(url) except: log.warn('Unable to retrieve source data from MAST.') lines = '' # collate nearby sources epicid = [] kepmag = [] ra = [] dec = [] for line in lines: line = line.strip().decode('ascii') if (len(line) > 0 and 'EPIC' not in line and 'integer' not in line and 'no rows found' not in line): out = line.split(',') r, d = sex2dec(out[1], out[2]) epicid.append(int(out[0])) kepmag.append(float(out[3])) ra.append(r) dec.append(d) epicid = np.array(epicid) kepmag = np.array(kepmag) ra = np.array(ra) dec = np.array(dec) return epicid, ra, dec, kepmag
Detector location retrieval based upon RA and Dec. Adapted from `PyKE <http://keplergo.arc.nasa.gov/PyKE.shtml>`_.
entailment
def sex2dec(ra, dec): ''' Convert sexadecimal hours to decimal degrees. Adapted from `PyKE <http://keplergo.arc.nasa.gov/PyKE.shtml>`_. :param float ra: The right ascension :param float dec: The declination :returns: The same values, but in decimal degrees ''' ra = re.sub('\s+', '|', ra.strip()) ra = re.sub(':', '|', ra.strip()) ra = re.sub(';', '|', ra.strip()) ra = re.sub(',', '|', ra.strip()) ra = re.sub('-', '|', ra.strip()) ra = ra.split('|') outra = (float(ra[0]) + float(ra[1]) / 60. + float(ra[2]) / 3600.) * 15.0 dec = re.sub('\s+', '|', dec.strip()) dec = re.sub(':', '|', dec.strip()) dec = re.sub(';', '|', dec.strip()) dec = re.sub(',', '|', dec.strip()) dec = dec.split('|') if float(dec[0]) > 0.0: outdec = float(dec[0]) + float(dec[1]) / 60. + float(dec[2]) / 3600. else: outdec = float(dec[0]) - float(dec[1]) / 60. - float(dec[2]) / 3600. return outra, outdec
Convert sexadecimal hours to decimal degrees. Adapted from `PyKE <http://keplergo.arc.nasa.gov/PyKE.shtml>`_. :param float ra: The right ascension :param float dec: The declination :returns: The same values, but in decimal degrees
entailment
def GetSources(ID, darcsec=None, stars_only=False): ''' Grabs the EPIC coordinates from the TPF and searches MAST for other EPIC targets within the same aperture. :param int ID: The 9-digit :py:obj:`EPIC` number of the target :param float darcsec: The search radius in arcseconds. \ Default is four times the largest dimension of the aperture. :param bool stars_only: If :py:obj:`True`, only returns objects \ explicitly designated as `"stars"` in MAST. Default :py:obj:`False` :returns: A list of :py:class:`Source` instances containing \ other :py:obj:`EPIC` targets within or close to this \ target's aperture ''' client = kplr.API() star = client.k2_star(ID) tpf = star.get_target_pixel_files()[0] with tpf.open() as f: crpix1 = f[2].header['CRPIX1'] crpix2 = f[2].header['CRPIX2'] crval1 = f[2].header['CRVAL1'] crval2 = f[2].header['CRVAL2'] cdelt1 = f[2].header['CDELT1'] cdelt2 = f[2].header['CDELT2'] pc1_1 = f[2].header['PC1_1'] pc1_2 = f[2].header['PC1_2'] pc2_1 = f[2].header['PC2_1'] pc2_2 = f[2].header['PC2_2'] pc = np.array([[pc1_1, pc1_2], [pc2_1, pc2_2]]) pc = np.linalg.inv(pc) crpix1p = f[2].header['CRPIX1P'] crpix2p = f[2].header['CRPIX2P'] crval1p = f[2].header['CRVAL1P'] crval2p = f[2].header['CRVAL2P'] cdelt1p = f[2].header['CDELT1P'] cdelt2p = f[2].header['CDELT2P'] if darcsec is None: darcsec = 4 * max(f[2].data.shape) epicid, ra, dec, kepmag = MASTRADec( star.k2_ra, star.k2_dec, darcsec, stars_only) sources = [] for i, epic in enumerate(epicid): dra = (ra[i] - crval1) * np.cos(np.radians(dec[i])) / cdelt1 ddec = (dec[i] - crval2) / cdelt2 sx = pc[0, 0] * dra + pc[0, 1] * ddec + crpix1 + crval1p - 1.0 sy = pc[1, 0] * dra + pc[1, 1] * ddec + crpix2 + crval2p - 1.0 sources.append(dict(ID=epic, x=sx, y=sy, mag=kepmag[i], x0=crval1p, y0=crval2p)) return sources
Grabs the EPIC coordinates from the TPF and searches MAST for other EPIC targets within the same aperture. :param int ID: The 9-digit :py:obj:`EPIC` number of the target :param float darcsec: The search radius in arcseconds. \ Default is four times the largest dimension of the aperture. :param bool stars_only: If :py:obj:`True`, only returns objects \ explicitly designated as `"stars"` in MAST. Default :py:obj:`False` :returns: A list of :py:class:`Source` instances containing \ other :py:obj:`EPIC` targets within or close to this \ target's aperture
entailment
def GetHiResImage(ID): ''' Queries the Palomar Observatory Sky Survey II catalog to obtain a higher resolution optical image of the star with EPIC number :py:obj:`ID`. ''' # Get the TPF info client = kplr.API() star = client.k2_star(ID) k2ra = star.k2_ra k2dec = star.k2_dec tpf = star.get_target_pixel_files()[0] with tpf.open() as f: k2wcs = WCS(f[2].header) shape = np.array(f[1].data.field('FLUX'), dtype='float64')[0].shape # Get the POSS URL hou = int(k2ra * 24 / 360.) min = int(60 * (k2ra * 24 / 360. - hou)) sec = 60 * (60 * (k2ra * 24 / 360. - hou) - min) ra = '%02d+%02d+%.2f' % (hou, min, sec) sgn = '' if np.sign(k2dec) >= 0 else '-' deg = int(np.abs(k2dec)) min = int(60 * (np.abs(k2dec) - deg)) sec = 3600 * (np.abs(k2dec) - deg - min / 60) dec = '%s%02d+%02d+%.1f' % (sgn, deg, min, sec) url = 'https://archive.stsci.edu/cgi-bin/dss_search?v=poss2ukstu_red&' + \ 'r=%s&d=%s&e=J2000&h=3&w=3&f=fits&c=none&fov=NONE&v3=' % (ra, dec) # Query the server r = urllib.request.Request(url) handler = urllib.request.urlopen(r) code = handler.getcode() if int(code) != 200: # Unavailable return None data = handler.read() # Atomically write to a temp file f = NamedTemporaryFile("wb", delete=False) f.write(data) f.flush() os.fsync(f.fileno()) f.close() # Now open the POSS fits file with pyfits.open(f.name) as ff: img = ff[0].data # Map POSS pixels onto K2 pixels xy = np.empty((img.shape[0] * img.shape[1], 2)) z = np.empty(img.shape[0] * img.shape[1]) pwcs = WCS(f.name) k = 0 for i in range(img.shape[0]): for j in range(img.shape[1]): ra, dec = pwcs.all_pix2world(float(j), float(i), 0) xy[k] = k2wcs.all_world2pix(ra, dec, 0) z[k] = img[i, j] k += 1 # Resample grid_x, grid_y = np.mgrid[-0.5:shape[1] - 0.5:0.1, -0.5:shape[0] - 0.5:0.1] resampled = griddata(xy, z, (grid_x, grid_y), method='cubic') # Rotate to align with K2 image. Not sure why, but it is necessary resampled = np.rot90(resampled) return resampled
Queries the Palomar Observatory Sky Survey II catalog to obtain a higher resolution optical image of the star with EPIC number :py:obj:`ID`.
entailment
def SaturationFlux(EPIC, campaign=None, **kwargs): ''' Returns the well depth for the target. If any of the target's pixels have flux larger than this value, they are likely to be saturated and cause charge bleeding. The well depths were obtained from Table 13 of the Kepler instrument handbook. We assume an exposure time of 6.02s. ''' channel, well_depth = np.loadtxt(os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'well_depth.tsv'), unpack=True) satflx = well_depth[channel == Channel(EPIC, campaign=campaign)][0] / 6.02 return satflx
Returns the well depth for the target. If any of the target's pixels have flux larger than this value, they are likely to be saturated and cause charge bleeding. The well depths were obtained from Table 13 of the Kepler instrument handbook. We assume an exposure time of 6.02s.
entailment
def GetChunk(time, breakpoints, b, mask=[]): ''' Returns the indices corresponding to a given light curve chunk. :param int b: The index of the chunk to return ''' M = np.delete(np.arange(len(time)), mask, axis=0) if b > 0: res = M[(M > breakpoints[b - 1]) & (M <= breakpoints[b])] else: res = M[M <= breakpoints[b]] return res
Returns the indices corresponding to a given light curve chunk. :param int b: The index of the chunk to return
entailment
def GetStars(campaign, module, model='nPLD', **kwargs): ''' Returns de-trended light curves for all stars on a given module in a given campaign. ''' # Get the channel numbers channels = Channels(module) assert channels is not None, "No channels available on this module." # Get the EPIC numbers all = GetK2Campaign(campaign) stars = np.array([s[0] for s in all if s[2] in channels and os.path.exists( os.path.join(EVEREST_DAT, 'k2', 'c%02d' % int(campaign), ('%09d' % s[0])[:4] + '00000', ('%09d' % s[0])[4:], model + '.npz'))], dtype=int) N = len(stars) assert N > 0, "No light curves found for campaign %d, module %d." % ( campaign, module) # Loop over all stars and store the fluxes in a list fluxes = [] errors = [] kpars = [] for n in range(N): # De-trended light curve file name nf = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % int(campaign), ('%09d' % stars[n])[:4] + '00000', ('%09d' % stars[n])[4:], model + '.npz') # Get the data data = np.load(nf) t = data['time'] if n == 0: time = t breakpoints = data['breakpoints'] # Get de-trended light curve y = data['fraw'] - data['model'] err = data['fraw_err'] # De-weight outliers and bad timestamps m = np.array(list(set(np.concatenate([data['outmask'], data['badmask'], data['nanmask'], data['transitmask']]))), dtype=int) # Interpolate over the outliers y = np.interp(t, np.delete(t, m), np.delete(y, m)) err = np.interp(t, np.delete(t, m), np.delete(err, m)) # Append to our running lists fluxes.append(y) errors.append(err) kpars.append(data['kernel_params']) return time, breakpoints, np.array(fluxes), \ np.array(errors), np.array(kpars)
Returns de-trended light curves for all stars on a given module in a given campaign.
entailment
def SysRem(time, flux, err, ncbv=5, niter=50, sv_win=999, sv_order=3, **kwargs): ''' Applies :py:obj:`SysRem` to a given set of light curves. :param array_like time: The time array for all of the light curves :param array_like flux: A 2D array of the fluxes for each of the light \ curves, shape `(nfluxes, ntime)` :param array_like err: A 2D array of the flux errors for each of the \ light curves, shape `(nfluxes, ntime)` :param int ncbv: The number of signals to recover. Default 5 :param int niter: The number of :py:obj:`SysRem` iterations to perform. \ Default 50 :param int sv_win: The Savitsky-Golay filter window size. Default 999 :param int sv_order: The Savitsky-Golay filter order. Default 3 ''' nflx, tlen = flux.shape # Get normalized fluxes med = np.nanmedian(flux, axis=1).reshape(-1, 1) y = flux - med # Compute the inverse of the variances invvar = 1. / err ** 2 # The CBVs for this set of fluxes cbvs = np.zeros((ncbv, tlen)) # Recover `ncbv` components for n in range(ncbv): # Initialize the weights and regressors c = np.zeros(nflx) a = np.ones(tlen) f = y * invvar # Perform `niter` iterations for i in range(niter): # Compute the `c` vector (the weights) c = np.dot(f, a) / np.dot(invvar, a ** 2) # Compute the `a` vector (the regressors) a = np.dot(c, f) / np.dot(c ** 2, invvar) # Remove this component from all light curves y -= np.outer(c, a) # Save this regressor after smoothing it a bit if sv_win >= len(a): sv_win = len(a) - 1 if sv_win % 2 == 0: sv_win -= 1 cbvs[n] = savgol_filter(a - np.nanmedian(a), sv_win, sv_order) return cbvs
Applies :py:obj:`SysRem` to a given set of light curves. :param array_like time: The time array for all of the light curves :param array_like flux: A 2D array of the fluxes for each of the light \ curves, shape `(nfluxes, ntime)` :param array_like err: A 2D array of the flux errors for each of the \ light curves, shape `(nfluxes, ntime)` :param int ncbv: The number of signals to recover. Default 5 :param int niter: The number of :py:obj:`SysRem` iterations to perform. \ Default 50 :param int sv_win: The Savitsky-Golay filter window size. Default 999 :param int sv_order: The Savitsky-Golay filter order. Default 3
entailment
def GetCBVs(campaign, model='nPLD', clobber=False, **kwargs): ''' Computes the CBVs for a given campaign. :param int campaign: The campaign number :param str model: The name of the :py:obj:`everest` model. Default `nPLD` :param bool clobber: Overwrite existing files? Default `False` ''' # Initialize logging? if len(logging.getLogger().handlers) == 0: InitLog(file_name=None, screen_level=logging.DEBUG) log.info('Computing CBVs for campaign %d...' % (campaign)) # Output path path = os.path.join(EVEREST_DAT, 'k2', 'cbv', 'c%02d' % campaign) if not os.path.exists(path): os.makedirs(path) # Get the design matrix xfile = os.path.join(path, 'X.npz') if clobber or not os.path.exists(xfile): log.info('Obtaining light curves...') time = None for module in range(2, 25): # Get the light curves lcfile = os.path.join(path, '%d.npz' % module) if clobber or not os.path.exists(lcfile): try: time, breakpoints, fluxes, errors, kpars = GetStars( campaign, module, model=model, **kwargs) except AssertionError: continue np.savez(lcfile, time=time, breakpoints=breakpoints, fluxes=fluxes, errors=errors, kpars=kpars) # Load the light curves lcs = np.load(lcfile) if time is None: time = lcs['time'] breakpoints = lcs['breakpoints'] fluxes = lcs['fluxes'] errors = lcs['errors'] kpars = lcs['kpars'] else: fluxes = np.vstack([fluxes, lcs['fluxes']]) errors = np.vstack([errors, lcs['errors']]) kpars = np.vstack([kpars, lcs['kpars']]) # Compute the design matrix log.info('Running SysRem...') X = np.ones((len(time), 1 + kwargs.get('ncbv', 5))) # Loop over the segments new_fluxes = np.zeros_like(fluxes) for b in range(len(breakpoints)): # Get the current segment's indices inds = GetChunk(time, breakpoints, b) # Update the error arrays with the white GP component for j in range(len(errors)): errors[j] = np.sqrt(errors[j] ** 2 + kpars[j][0] ** 2) # Get de-trended fluxes X[inds, 1:] = SysRem(time[inds], fluxes[:, inds], errors[:, inds], **kwargs).T # Save np.savez(xfile, X=X, time=time, breakpoints=breakpoints) else: # Load from disk data = np.load(xfile) X = data['X'][()] time = data['time'][()] breakpoints = data['breakpoints'][()] # Plot plotfile = os.path.join(path, 'X.pdf') if clobber or not os.path.exists(plotfile): fig, ax = pl.subplots(2, 3, figsize=(12, 8)) fig.subplots_adjust(left=0.05, right=0.95) ax = ax.flatten() for axis in ax: axis.set_xticks([]) axis.set_yticks([]) for b in range(len(breakpoints)): inds = GetChunk(time, breakpoints, b) for n in range(min(6, X.shape[1])): ax[n].plot(time[inds], X[inds, n]) ax[n].set_title(n, fontsize=14) fig.savefig(plotfile, bbox_inches='tight') return X
Computes the CBVs for a given campaign. :param int campaign: The campaign number :param str model: The name of the :py:obj:`everest` model. Default `nPLD` :param bool clobber: Overwrite existing files? Default `False`
entailment
def read_lua_file(dotted_module, path=None, context=None): '''Load lua script from the stdnet/lib/lua directory''' path = path or DEFAULT_LUA_PATH bits = dotted_module.split('.') bits[-1] += '.lua' name = os.path.join(path, *bits) with open(name) as f: data = f.read() if context: data = data.format(context) return data
Load lua script from the stdnet/lib/lua directory
entailment
def parse_info(response): '''Parse the response of Redis's INFO command into a Python dict. In doing so, convert byte data into unicode.''' info = {} response = response.decode('utf-8') def get_value(value): if ',' and '=' not in value: return value sub_dict = {} for item in value.split(','): k, v = item.split('=') try: sub_dict[k] = int(v) except ValueError: sub_dict[k] = v return sub_dict data = info for line in response.splitlines(): keyvalue = line.split(':') if len(keyvalue) == 2: key, value = keyvalue try: data[key] = int(value) except ValueError: data[key] = get_value(value) else: data = {} info[line[2:]] = data return info
Parse the response of Redis's INFO command into a Python dict. In doing so, convert byte data into unicode.
entailment
def zdiffstore(self, dest, keys, withscores=False): '''Compute the difference of multiple sorted. The difference of sets specified by ``keys`` into a new sorted set in ``dest``. ''' keys = (dest,) + tuple(keys) wscores = 'withscores' if withscores else '' return self.execute_script('zdiffstore', keys, wscores, withscores=withscores)
Compute the difference of multiple sorted. The difference of sets specified by ``keys`` into a new sorted set in ``dest``.
entailment
def zpopbyrank(self, name, start, stop=None, withscores=False, desc=False): '''Pop a range by rank. ''' stop = stop if stop is not None else start return self.execute_script('zpop', (name,), 'rank', start, stop, int(desc), int(withscores), withscores=withscores)
Pop a range by rank.
entailment
def delete(self, instance): '''Delete an instance''' flushdb(self.client) if flushdb else self.client.flushdb()
Delete an instance
entailment
def lnprior(x): """Return the log prior given parameter vector `x`.""" per, t0, b = x if b < -1 or b > 1: return -np.inf elif per < 7 or per > 10: return -np.inf elif t0 < 1978 or t0 > 1979: return -np.inf else: return 0.
Return the log prior given parameter vector `x`.
entailment
def lnlike(x, star): """Return the log likelihood given parameter vector `x`.""" ll = lnprior(x) if np.isinf(ll): return ll, (np.nan, np.nan) per, t0, b = x model = TransitModel('b', per=per, t0=t0, b=b, rhos=10.)(star.time) like, d, vard = star.lnlike(model, full_output=True) ll += like return ll, (d,)
Return the log likelihood given parameter vector `x`.
entailment
def check_user(self, username, email): '''username and email (if provided) must be unique.''' users = self.router.user avail = yield users.filter(username=username).count() if avail: raise FieldError('Username %s not available' % username) if email: avail = yield users.filter(email=email).count() if avail: raise FieldError('Email %s not available' % email)
username and email (if provided) must be unique.
entailment
def permitted_query(self, query, group, operations): '''Change the ``query`` so that only instances for which ``group`` has roles with permission on ``operations`` are returned.''' session = query.session models = session.router user = group.user if user.is_superuser: # super-users have all permissions return query roles = group.roles.query() roles = group.roles.query() # query on all roles for group # The throgh model for Role/Permission relationship throgh_model = models.role.permissions.model models[throgh_model].filter(role=roles, permission__model_type=query.model, permission__operations=operations) # query on all relevant permissions permissions = router.permission.filter(model_type=query.model, level=operations) owner_query = query.filter(user=user) # all roles for the query model with appropriate permission level roles = models.role.filter(model_type=query.model, level__ge=level) # Now we need groups which have these roles groups = Role.groups.throughquery( session).filter(role=roles).get_field('group') # I need to know if user is in any of these groups if user.groups.filter(id=groups).count(): # it is, lets get the model with permissions less # or equal permission level permitted = models.instancerole.filter( role=roles).get_field('object_id') return owner_query.union(model.objects.filter(id=permitted)) else: return owner_query
Change the ``query`` so that only instances for which ``group`` has roles with permission on ``operations`` are returned.
entailment
def create_role(self, name): '''Create a new :class:`Role` owned by this :class:`Subject`''' models = self.session.router return models.role.new(name=name, owner=self)
Create a new :class:`Role` owned by this :class:`Subject`
entailment
def assign(self, role): '''Assign :class:`Role` ``role`` to this :class:`Subject`. If this :class:`Subject` is the :attr:`Role.owner`, this method does nothing.''' if role.owner_id != self.id: return self.roles.add(role)
Assign :class:`Role` ``role`` to this :class:`Subject`. If this :class:`Subject` is the :attr:`Role.owner`, this method does nothing.
entailment
def has_permissions(self, object, group, operations): '''Check if this :class:`Subject` has permissions for ``operations`` on an ``object``. It returns the number of valid permissions.''' if self.is_superuser: return 1 else: models = self.session.router # valid permissions query = models.permission.for_object(object, operation=operations) objects = models[models.role.permissions.model] return objects.filter(role=self.role.query(), permission=query).count()
Check if this :class:`Subject` has permissions for ``operations`` on an ``object``. It returns the number of valid permissions.
entailment
def add_permission(self, resource, operation): '''Add a new :class:`Permission` for ``resource`` to perform an ``operation``. The resource can be either an object or a model.''' if isclass(resource): model_type = resource pk = '' else: model_type = resource.__class__ pk = resource.pkvalue() p = Permission(model_type=model_type, object_pk=pk, operation=operation) session = self.session if session.transaction: session.add(p) self.permissions.add(p) return p else: with session.begin() as t: t.add(p) self.permissions.add(p) return t.add_callback(lambda r: p)
Add a new :class:`Permission` for ``resource`` to perform an ``operation``. The resource can be either an object or a model.
entailment
def init_app(self, app, session=None, parameters=None): """Initializes snow extension Set config default and find out which client type to use :param app: App passed from constructor or directly to init_app (factory) :param session: requests-compatible session to pass along to init_app :param parameters: `ParamsBuilder` object passed to `Client` after instantiation :raises: - ConfigError - if unable to determine client type """ if parameters is not None and not isinstance(parameters, ParamsBuilder): raise InvalidUsage("parameters should be a pysnow.ParamsBuilder object, not %r" % type(parameters).__name__) self._session = session self._parameters = parameters app.config.setdefault('SNOW_INSTANCE', None) app.config.setdefault('SNOW_HOST', None) app.config.setdefault('SNOW_USER', None) app.config.setdefault('SNOW_PASSWORD', None) app.config.setdefault('SNOW_OAUTH_CLIENT_ID', None) app.config.setdefault('SNOW_OAUTH_CLIENT_SECRET', None) app.config.setdefault('SNOW_USE_SSL', True) if app.config['SNOW_OAUTH_CLIENT_ID'] and app.config['SNOW_OAUTH_CLIENT_SECRET']: self._client_type_oauth = True elif self._session or (app.config['SNOW_USER'] and app.config['SNOW_PASSWORD']): self._client_type_basic = True else: raise ConfigError("You must supply user credentials, a session or OAuth credentials to use flask-snow")
Initializes snow extension Set config default and find out which client type to use :param app: App passed from constructor or directly to init_app (factory) :param session: requests-compatible session to pass along to init_app :param parameters: `ParamsBuilder` object passed to `Client` after instantiation :raises: - ConfigError - if unable to determine client type
entailment
def connection(self): """Snow connection instance, stores a `pysnow.Client` instance and `pysnow.Resource` instances Creates a new :class:`pysnow.Client` object if it doesn't exist in the app slice of the context stack :returns: :class:`pysnow.Client` object """ ctx = stack.top.app if ctx is not None: if not hasattr(ctx, 'snow'): if self._client_type_oauth: if not self._token_updater: warnings.warn("No token updater has been set. Token refreshes will be ignored.") client = self._get_oauth_client() else: client = self._get_basic_client() if self._parameters: # Set parameters passed on app init client.parameters = self._parameters ctx.snow = client return ctx.snow
Snow connection instance, stores a `pysnow.Client` instance and `pysnow.Resource` instances Creates a new :class:`pysnow.Client` object if it doesn't exist in the app slice of the context stack :returns: :class:`pysnow.Client` object
entailment
def usage(): """Print out a usage message""" global options l = len(options['long']) options['shortlist'] = [s for s in options['short'] if s is not ":"] print("python -m behave2cucumber [-h] [-d level|--debug=level]") for i in range(l): print(" -{0}|--{1:20} {2}".format(options['shortlist'][i], options['long'][i], options['descriptions'][i]))
Print out a usage message
entailment
def main(argv): """Main""" global options opts = None try: opts, args = getopt.getopt(argv, options['short'], options['long']) except getopt.GetoptError: usage() exit(2) for opt, arg in opts: if opt in ("-h", "--help"): usage() exit() elif opt in ("-d", "--debug"): try: arg = int(arg) log.debug("Debug level received: " + str(arg)) except ValueError: log.warning("Invalid log level: " + arg) continue if 0 <= arg <= 5: log.setLevel(60 - (arg*10)) log.critical("Log level changed to: " + str(logging.getLevelName(60 - (arg*10)))) else: log.warning("Invalid log level: " + str(arg)) infile = None outfile = None remove_background = False duration_format = False deduplicate = False for opt, arg in opts: if opt in ("-i", "--infile"): log.info("Input File: " + arg) infile = arg if opt in ("-o", "--outfile"): log.info("Output File: " + arg) outfile = arg if opt in ("-r", "--remove-background"): log.info("Remove Background: Enabled") remove_background = True if opt in ("-f", "--format-duration"): log.info("Format Duration: Enabled") duration_format = True if opt in ("-D", "--deduplicate"): log.info("Deduplicate: Enabled") deduplicate = True if infile is None: log.critical("No input JSON provided.") usage() exit(3) with open(infile) as f: cucumber_output = convert(json.load(f), remove_background=remove_background, duration_format=duration_format, deduplicate=deduplicate) if outfile is not None: with open(outfile, 'w') as f: json.dump(cucumber_output, f, indent=4, separators=(',', ': ')) else: pprint(cucumber_output)
Main
entailment
def direction(theta, phi): '''Return the direction vector of a cylinder defined by the spherical coordinates theta and phi. ''' return np.array([np.cos(phi) * np.sin(theta), np.sin(phi) * np.sin(theta), np.cos(theta)])
Return the direction vector of a cylinder defined by the spherical coordinates theta and phi.
entailment
def projection_matrix(w): '''Return the projection matrix of a direction w.''' return np.identity(3) - np.dot(np.reshape(w, (3,1)), np.reshape(w, (1, 3)))
Return the projection matrix of a direction w.
entailment
def skew_matrix(w): '''Return the skew matrix of a direction w.''' return np.array([[0, -w[2], w[1]], [w[2], 0, -w[0]], [-w[1], w[0], 0]])
Return the skew matrix of a direction w.
entailment
def calc_A(Ys): '''Return the matrix A from a list of Y vectors.''' return sum(np.dot(np.reshape(Y, (3,1)), np.reshape(Y, (1, 3))) for Y in Ys)
Return the matrix A from a list of Y vectors.
entailment
def calc_A_hat(A, S): '''Return the A_hat matrix of A given the skew matrix S''' return np.dot(S, np.dot(A, np.transpose(S)))
Return the A_hat matrix of A given the skew matrix S
entailment
def preprocess_data(Xs_raw): '''Translate the center of mass (COM) of the data to the origin. Return the prossed data and the shift of the COM''' n = len(Xs_raw) Xs_raw_mean = sum(X for X in Xs_raw) / n return [X - Xs_raw_mean for X in Xs_raw], Xs_raw_mean
Translate the center of mass (COM) of the data to the origin. Return the prossed data and the shift of the COM
entailment
def G(w, Xs): '''Calculate the G function given a cylinder direction w and a list of data points Xs to be fitted.''' n = len(Xs) P = projection_matrix(w) Ys = [np.dot(P, X) for X in Xs] A = calc_A(Ys) A_hat = calc_A_hat(A, skew_matrix(w)) u = sum(np.dot(Y, Y) for Y in Ys) / n v = np.dot(A_hat, sum(np.dot(Y, Y) * Y for Y in Ys)) / np.trace(np.dot(A_hat, A)) return sum((np.dot(Y, Y) - u - 2 * np.dot(Y, v)) ** 2 for Y in Ys)
Calculate the G function given a cylinder direction w and a list of data points Xs to be fitted.
entailment
def C(w, Xs): '''Calculate the cylinder center given the cylinder direction and a list of data points. ''' n = len(Xs) P = projection_matrix(w) Ys = [np.dot(P, X) for X in Xs] A = calc_A(Ys) A_hat = calc_A_hat(A, skew_matrix(w)) return np.dot(A_hat, sum(np.dot(Y, Y) * Y for Y in Ys)) / np.trace(np.dot(A_hat, A))
Calculate the cylinder center given the cylinder direction and a list of data points.
entailment
def r(w, Xs): '''Calculate the radius given the cylinder direction and a list of data points. ''' n = len(Xs) P = projection_matrix(w) c = C(w, Xs) return np.sqrt(sum(np.dot(c - X, np.dot(P, c - X)) for X in Xs) / n)
Calculate the radius given the cylinder direction and a list of data points.
entailment
def fit(data, guess_angles=None): '''Fit a list of data points to a cylinder surface. The algorithm implemented here is from David Eberly's paper "Fitting 3D Data with a Cylinder" from https://www.geometrictools.com/Documentation/CylinderFitting.pdf Arguments: data - A list of 3D data points to be fitted. guess_angles[0] - Guess of the theta angle of the axis direction guess_angles[1] - Guess of the phi angle of the axis direction Return: Direction of the cylinder axis A point on the cylinder axis Radius of the cylinder Fitting error (G function) ''' Xs, t = preprocess_data(data) # Set the start points start_points = [(0, 0), (np.pi / 2, 0), (np.pi / 2, np.pi / 2)] if guess_angles: start_points = guess_angles # Fit the cylinder from different start points best_fit = None best_score = float('inf') for sp in start_points: fitted = minimize(lambda x : G(direction(x[0], x[1]), Xs), sp, method='Powell', tol=1e-6) if fitted.fun < best_score: best_score = fitted.fun best_fit = fitted w = direction(best_fit.x[0], best_fit.x[1]) return w, C(w, Xs) + t, r(w, Xs), best_fit.fun
Fit a list of data points to a cylinder surface. The algorithm implemented here is from David Eberly's paper "Fitting 3D Data with a Cylinder" from https://www.geometrictools.com/Documentation/CylinderFitting.pdf Arguments: data - A list of 3D data points to be fitted. guess_angles[0] - Guess of the theta angle of the axis direction guess_angles[1] - Guess of the phi angle of the axis direction Return: Direction of the cylinder axis A point on the cylinder axis Radius of the cylinder Fitting error (G function)
entailment
def connect_producer(self, bootstrap_servers='127.0.0.1:9092', client_id='Robot', **kwargs): """A Kafka client that publishes records to the Kafka cluster. Keyword Arguments: - ``bootstrap_servers``: 'host[:port]' string (or list of 'host[:port]' strings) that the producer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default to `localhost:9092`. - ``client_id`` (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Default: `Robot`. Note: Configuration parameters are described in more detail at http://kafka-python.readthedocs.io/en/master/apidoc/KafkaProducer.html """ self.producer = KafkaProducer(bootstrap_servers=bootstrap_servers, client_id=client_id, **kwargs)
A Kafka client that publishes records to the Kafka cluster. Keyword Arguments: - ``bootstrap_servers``: 'host[:port]' string (or list of 'host[:port]' strings) that the producer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default to `localhost:9092`. - ``client_id`` (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Default: `Robot`. Note: Configuration parameters are described in more detail at http://kafka-python.readthedocs.io/en/master/apidoc/KafkaProducer.html
entailment
def send(self, topic, value=None, timeout=60, key=None, partition=None, timestamp_ms=None): """Publish a message to a topic. - ``topic`` (str): topic where the message will be published - ``value``: message value. Must be type bytes, or be serializable to bytes via configured value_serializer. If value is None, key is required and message acts as a `delete`. - ``timeout`` - ``key``: a key to associate with the message. Can be used to determine which partition to send the message to. If partition is None (and producer's partitioner config is left as default), then messages with the same key will be delivered to the same partition (but if key is None, partition is chosen randomly). Must be type bytes, or be serializable to bytes via configured key_serializer. - ``partition`` (int): optionally specify a partition. If not set, the partition will be selected using the configured `partitioner`. - ``timestamp_ms`` (int): epoch milliseconds (from Jan 1 1970 UTC) to use as the message timestamp. Defaults to current time. """ future = self.producer.send(topic, value=value, key=key, partition=partition, timestamp_ms=timestamp_ms) future.get(timeout=timeout)
Publish a message to a topic. - ``topic`` (str): topic where the message will be published - ``value``: message value. Must be type bytes, or be serializable to bytes via configured value_serializer. If value is None, key is required and message acts as a `delete`. - ``timeout`` - ``key``: a key to associate with the message. Can be used to determine which partition to send the message to. If partition is None (and producer's partitioner config is left as default), then messages with the same key will be delivered to the same partition (but if key is None, partition is chosen randomly). Must be type bytes, or be serializable to bytes via configured key_serializer. - ``partition`` (int): optionally specify a partition. If not set, the partition will be selected using the configured `partitioner`. - ``timestamp_ms`` (int): epoch milliseconds (from Jan 1 1970 UTC) to use as the message timestamp. Defaults to current time.
entailment
def connect_consumer( self, bootstrap_servers='127.0.0.1:9092', client_id='Robot', group_id=None, auto_offset_reset='latest', enable_auto_commit=True, **kwargs ): """Connect kafka consumer. Keyword Arguments: - ``bootstrap_servers``: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default: `127.0.0.1:9092`. - ``client_id`` (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: `Robot`. - ``group_id`` (str or None): name of the consumer group to join for dynamic partition assignment (if enabled), and to use for fetching and committing offsets. If None, auto-partition assignment (via group coordinator) and offset commits are disabled. Default: `None`. - ``auto_offset_reset`` (str): A policy for resetting offsets on OffsetOutOfRange errors: `earliest` will move to the oldest available message, `latest` will move to the most recent. Any other value will raise the exception. Default: `latest`. - ``enable_auto_commit`` (bool): If true the consumer's offset will be periodically committed in the background. Default: `True`. Note: Configuration parameters are described in more detail at http://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html """ self.consumer = KafkaConsumer( bootstrap_servers=bootstrap_servers, auto_offset_reset=auto_offset_reset, client_id=client_id, group_id=group_id, enable_auto_commit=enable_auto_commit, **kwargs )
Connect kafka consumer. Keyword Arguments: - ``bootstrap_servers``: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default: `127.0.0.1:9092`. - ``client_id`` (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: `Robot`. - ``group_id`` (str or None): name of the consumer group to join for dynamic partition assignment (if enabled), and to use for fetching and committing offsets. If None, auto-partition assignment (via group coordinator) and offset commits are disabled. Default: `None`. - ``auto_offset_reset`` (str): A policy for resetting offsets on OffsetOutOfRange errors: `earliest` will move to the oldest available message, `latest` will move to the most recent. Any other value will raise the exception. Default: `latest`. - ``enable_auto_commit`` (bool): If true the consumer's offset will be periodically committed in the background. Default: `True`. Note: Configuration parameters are described in more detail at http://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html
entailment
def assign_to_topic_partition(self, topic_partition=None): """Assign a list of TopicPartitions to this consumer. - ``partitions`` (list of `TopicPartition`): Assignment for this instance. """ if isinstance(topic_partition, TopicPartition): topic_partition = [topic_partition] if not self._is_assigned(topic_partition): self.consumer.assign(topic_partition)
Assign a list of TopicPartitions to this consumer. - ``partitions`` (list of `TopicPartition`): Assignment for this instance.
entailment
def subscribe_topic(self, topics=[], pattern=None): """Subscribe to a list of topics, or a topic regex pattern. - ``topics`` (list): List of topics for subscription. - ``pattern`` (str): Pattern to match available topics. You must provide either topics or pattern, but not both. """ if not isinstance(topics, list): topics = [topics] self.consumer.subscribe(topics, pattern=pattern)
Subscribe to a list of topics, or a topic regex pattern. - ``topics`` (list): List of topics for subscription. - ``pattern`` (str): Pattern to match available topics. You must provide either topics or pattern, but not both.
entailment
def get_position(self, topic_partition=None): """Return offset of the next record that will be fetched. - ``topic_partition`` (TopicPartition): Partition to check """ if isinstance(topic_partition, TopicPartition): return self.consumer.position(topic_partition) else: raise TypeError("topic_partition must be of type TopicPartition, create it with Create TopicPartition keyword.")
Return offset of the next record that will be fetched. - ``topic_partition`` (TopicPartition): Partition to check
entailment
def seek(self, offset, topic_partition=None): """Manually specify the fetch offset for a TopicPartition. - ``offset``: Message offset in partition - ``topic_partition`` (`TopicPartition`): Partition for seek operation """ if isinstance(topic_partition, TopicPartition): self.consumer.seek(topic_partition, offset=offset) else: raise TypeError("topic_partition must be of type TopicPartition, create it with Create TopicPartition keyword.")
Manually specify the fetch offset for a TopicPartition. - ``offset``: Message offset in partition - ``topic_partition`` (`TopicPartition`): Partition for seek operation
entailment
def seek_to_beginning(self, topic_partition=None): """Seek to the oldest available offset for partitions. - ``topic_partition``: Optionally provide specific TopicPartitions, otherwise default to all assigned partitions. """ if isinstance(topic_partition, TopicPartition): self.consumer.seek_to_beginning(topic_partition) else: raise TypeError("topic_partition must be of type TopicPartition, create it with Create TopicPartition keyword.")
Seek to the oldest available offset for partitions. - ``topic_partition``: Optionally provide specific TopicPartitions, otherwise default to all assigned partitions.
entailment
def seek_to_end(self, topic_partition=None): """Seek to the most recent available offset for partitions. - ``topic_partition``: Optionally provide specific `TopicPartitions`, otherwise default to all assigned partitions. """ if isinstance(topic_partition, TopicPartition): self.consumer.seek_to_end(topic_partition) else: raise TypeError("topic_partition must be of type TopicPartition, create it with Create TopicPartition keyword.")
Seek to the most recent available offset for partitions. - ``topic_partition``: Optionally provide specific `TopicPartitions`, otherwise default to all assigned partitions.
entailment
def get_number_of_messages_in_topics(self, topics): """Retrun number of messages in topics. - ``topics`` (list): list of topics. """ if not isinstance(topics, list): topics = [topics] number_of_messages = 0 for t in topics: part = self.get_kafka_partitions_for_topic(topic=t) Partitions = map(lambda p: TopicPartition(topic=t, partition=p), part) number_of_messages += self.get_number_of_messages_in_topicpartition(Partitions) return number_of_messages
Retrun number of messages in topics. - ``topics`` (list): list of topics.
entailment
def get_number_of_messages_in_topicpartition(self, topic_partition=None): """Return number of messages in TopicPartition. - ``topic_partition`` (list of TopicPartition) """ if isinstance(topic_partition, TopicPartition): topic_partition = [topic_partition] number_of_messages = 0 assignment = self.consumer.assignment() self.consumer.unsubscribe() for Partition in topic_partition: if not isinstance(Partition, TopicPartition): raise TypeError("topic_partition must be of type TopicPartition, create it with Create TopicPartition keyword.") self.assign_to_topic_partition(Partition) self.consumer.seek_to_end(Partition) end = self.consumer.position(Partition) self.consumer.seek_to_beginning(Partition) start = self.consumer.position(Partition) number_of_messages += end-start self.consumer.unsubscribe() self.consumer.assign(assignment) return number_of_messages
Return number of messages in TopicPartition. - ``topic_partition`` (list of TopicPartition)
entailment
def poll(self, timeout_ms=0, max_records=None): """Fetch data from assigned topics / partitions. - ``max_records`` (int): maximum number of records to poll. Default: Inherit value from max_poll_records. - ``timeout_ms`` (int): Milliseconds spent waiting in poll if data is not available in the buffer. If 0, returns immediately with any records that are available currently in the buffer, else returns empty. Must not be negative. Default: `0` """ messages = self.consumer.poll(timeout_ms=timeout_ms, max_records=max_records) result = [] for _, msg in messages.items(): for item in msg: result.append(item) return result
Fetch data from assigned topics / partitions. - ``max_records`` (int): maximum number of records to poll. Default: Inherit value from max_poll_records. - ``timeout_ms`` (int): Milliseconds spent waiting in poll if data is not available in the buffer. If 0, returns immediately with any records that are available currently in the buffer, else returns empty. Must not be negative. Default: `0`
entailment
def get(self, request, key): """Validate an email with the given key""" try: email_val = EmailAddressValidation.objects.get(validation_key=key) except EmailAddressValidation.DoesNotExist: messages.error(request, _('The email address you are trying to ' 'verify either has already been verified' ' or does not exist.')) return redirect('/') try: email = EmailAddress.objects.get(address=email_val.address) except EmailAddress.DoesNotExist: email = EmailAddress(address=email_val.address) if email.user and email.user.is_active: messages.error(request, _('The email address you are trying to ' 'verify is already an active email ' 'address.')) email_val.delete() return redirect('/') email.user = email_val.user email.save() email_val.delete() user = User.objects.get(username=email.user.username) user.is_active = True user.save() messages.success(request, _('Email address verified!')) return redirect('user_profile', username=email_val.user.username)
Validate an email with the given key
entailment
def delete(self, request, key): """Remove an email address, validated or not.""" request.DELETE = http.QueryDict(request.body) email_addr = request.DELETE.get('email') user_id = request.DELETE.get('user') if not email_addr: return http.HttpResponseBadRequest() try: email = EmailAddressValidation.objects.get(address=email_addr, user_id=user_id) except EmailAddressValidation.DoesNotExist: pass else: email.delete() return http.HttpResponse(status=204) try: email = EmailAddress.objects.get(address=email_addr, user_id=user_id) except EmailAddress.DoesNotExist: raise http.Http404 email.user = None email.save() return http.HttpResponse(status=204)
Remove an email address, validated or not.
entailment