content
stringlengths
22
815k
id
int64
0
4.91M
def parse_contact_name(row, name_cols, strict=False, type='person'): """Parses a person's name with probablepeople library Concatenates all the contact name columns into a single string and then attempts to parse it into standardized name components and return a subset of the name parts that are useful for comparing contacts. This process eliminates notes and other non-name text from dirty data. Args: row (pd.Series): A record name_cols (list): A list of column names in the record, in order, that when concatenated comprise a person's name strict (boolean, optional): Whether or not to raise a RepeatedLabelError when parsing, if False, the last value of the repeated labels will be used for the parse type (str): Which probableparser to use: 'generic', 'person' or 'company' Returns: A subset (tuple of str, or np.nan) of the standardized name components, namely: (title, first, last, full_name) """ row = row.fillna('') concat = [] for col in name_cols: concat.append(row.get(col, '')) concat = ' '.join(concat) cleaned = re.sub(r'(not\s*available|not\s*provided|n/a)', '', concat, flags=re.IGNORECASE) try: parsed = probablepeople.tag(cleaned, type) except probablepeople.RepeatedLabelError as e: if strict: raise e problem_key, problem_vals, parsed = find_repeated_label(cleaned) parsed = (parsed, '') title = parsed[0].get('PrefixOther', np.nan) first = parsed[0].get('GivenName', np.nan) last = parsed[0].get('Surname', np.nan) try: full_name = first + ' ' + last except TypeError as e: full_name = np.nan return title, first, last, full_name
11,800
def test_userkeys_to_json(): """ GIVEN a Settings model WHEN test the to_json method THEN check the id and more """ uk = UserKeysModel.by_id(1) uk_json = UserKeysModel.to_json(uk) assert uk.id == uk_json['id'] # FIXME : test that key exist, is a string and decrypt it via paramiko => assert uk.key == uk_json['key'] assert uk.user_id == uk_json['user_id'] assert uk.comment == uk_json['comment'] assert uk.authorized_key == uk_json['authorized_key'] assert uk_json['created_at'] == (uk.created_at.isoformat() if uk.created_at else uk.created_at) assert uk_json['updated_at'] == (uk.updated_at.isoformat() if uk.updated_at else uk.updated_at) assert uk_json['deleted_at'] == (uk.deleted_at.isoformat() if uk.deleted_at else uk.deleted_at)
11,801
def write_six_img_grid_w_embedded_names( rgb_img: np.ndarray, pred: np.ndarray, label_img: np.ndarray, id_to_class_name_map: Mapping[int,str], save_fpath: str ) -> None: """ Create a 6-image tile grid with the following structure: ------------------------------------------------------------ RGB Image | Blended RGB+GT Label Map | GT Label Map ------------------------------------------------------------ RGB Image | Blended RGB+Pred Label Map | Predicted Label Map ------------------------------------------------------------ We embed classnames directly into the predicted and ground truth label maps, instead of using a colorbar. Args: - rgb_img: - pred: predicted label map - label_img id_to_class_name_map - save_fpath Returns: - None """ assert label_img.ndim == 2 assert pred.ndim == 2 assert rgb_img.ndim == 3 label_hgrid = form_mask_triple_embedded_classnames( rgb_img, label_img, id_to_class_name_map, save_fpath='dummy.jpg', save_to_disk=False ) pred_hgrid = form_mask_triple_embedded_classnames( rgb_img, pred, id_to_class_name_map, save_fpath='dummy.jpg', save_to_disk=False ) vstack_img = form_vstacked_imgs( img_list=[label_hgrid,pred_hgrid], vstack_save_fpath=save_fpath, save_to_disk=True )
11,802
def build_operator_attribute_dicts(parameters, n_op, prefix="op_"): """ Extracts elements of parameters dict whose keys begin with prefix and generates a list of dicts. The values of the relevant elements of parameters must be either single values or a list of length n_op, or else an exception will be raised. :param parameters: dict (or dict-like config object) containing a superset of operator parameters :type parameters: dict :param n_op: number of operators expected :type n_op: int :param prefix: prefix by which to filter out operator parameters :type prefix: str """ list_op_dicts = [dict() for i in range(n_op)] # initialize list of empty dicts for k in [x for x in parameters if x.startswith(prefix)]: # if only a single value is given, use it for all operators if type(parameters[k]) in [str, int, float, bool, type(None), dict]: for di in list_op_dicts: di[k] = parameters[k] # if a list of values is given and the length matches the number of operators, use them respectively elif len(parameters[k]) == n_op: for i, op in enumerate(list_op_dicts): op[k] = parameters[k][i] elif k == G_OP_REPO_TH_DEF: # TODO # lists as inputs for op for di in list_op_dicts: di[k] = parameters[k] # if parameter has invalid number of values, raise exception else: raise ValueError("Number of values for parameter", k, "equals neither n_op nor 1.", type(parameters[k])) return list_op_dicts
11,803
def stop_spark_standalone(): """ Stop the Spark standalone cluster created from init_spark_standalone (master not specified). """ from zoo.util.spark import SparkRunner SparkRunner.stop_spark_standalone()
11,804
def write_log(title, message=''): """Write formatted log message to stderr.""" sys.stderr.write(''.join([ title.center(40).center(60, '-'), '\n', message ]))
11,805
def mock_data(rootdir, data_dir): """Build mock functional data from available atlases""" mock_dir = os.path.join(data_dir, 'mock') if not os.path.exists(mock_dir): subprocess.run("python setup_mock_data.py".split(), cwd=rootdir) return mock_dir
11,806
def showapi(): """Shows the official API available in jasyscript.py.""" from jasy.core.Inspect import generateApi Console.info(generateApi(__api__))
11,807
def get_peer_addr(ifname): """Return the peer address of given peer interface. None if address not exist or not a peer-to-peer interface. """ for addr in IP.get_addr(label=ifname): attrs = dict(addr.get('attrs', [])) if 'IFA_ADDRESS' in attrs: return attrs['IFA_ADDRESS']
11,808
def eiffel_artifact_created_event(): """Eiffel artifact created event.""" return { "meta": { "id": "7c2b6c13-8dea-4c99-a337-0490269c374d", "time": 1575981274307, "type": "EiffelArtifactCreatedEvent", "version": "3.0.0", }, "links": [], "data": {"identity": "pkg:artifact/created/test@1.0.0"}, }
11,809
def _hash(input_data, initVal=0): """ hash() -- hash a variable-length key into a 32-bit value k : the key (the unaligned variable-length array of bytes) len : the length of the key, counting by bytes level : can be any 4-byte value Returns a 32-bit value. Every bit of the key affects every bit of the return value. Every 1-bit and 2-bit delta achieves avalanche. About 36+6len instructions. The best hash table sizes are powers of 2. There is no need to do mod a prime (mod is so slow!). If you need less than 32 bits, use a bitmask. For example, if you need only 10 bits, do h = (h & hashmask(10)); In which case, the hash table should have hashsize(10) elements. If you are hashing n strings (ub1 **)k, do it like this: for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h); By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this code any way you wish, private, educational, or commercial. It's free. See http://burtleburtle.net/bob/hash/evahash.html Use for hash table lookup, or anything where one collision in 2^32 is acceptable. Do NOT use for cryptographic purposes. """ data = bytes(input_data, encoding='ascii') len_pos = len(data) length = len(data) if length == 0: return 0 a = 0x9e3779b9 b = 0x9e3779b9 c = initVal p = 0 while len_pos >= 12: a += ((data[p + 0]) + ((data[p + 1]) << 8) + ((data[p + 2]) << 16) + ((data[p + 3]) << 24)) b += ((data[p + 4]) + ((data[p + 5]) << 8) + ((data[p + 6]) << 16) + ((data[p + 7]) << 24)) c += ((data[p + 8]) + ((data[p + 9]) << 8) + ((data[p + 10]) << 16) + ((data[p + 11]) << 24)) q = _mix(a, b, c) a = q[0] b = q[1] c = q[2] p += 12 len_pos -= 12 c += length if len_pos >= 11: c += (data[p + 10]) << 24 if len_pos >= 10: c += (data[p + 9]) << 16 if len_pos >= 9: c += (data[p + 8]) << 8 # the first byte of c is reserved for the length if len_pos >= 8: b += (data[p + 7]) << 24 if len_pos >= 7: b += (data[p + 6]) << 16 if len_pos >= 6: b += (data[p + 5]) << 8 if len_pos >= 5: b += (data[p + 4]) if len_pos >= 4: a += (data[p + 3]) << 24 if len_pos >= 3: a += (data[p + 2]) << 16 if len_pos >= 2: a += (data[p + 1]) << 8 if len_pos >= 1: a += (data[p + 0]) q = _mix(a, b, c) a = q[0] b = q[1] c = q[2] return rshift_zero_padded(c, 0)
11,810
def main(): """ Main entry function. Parameters ---------- :return: - """ print("> Allergens analysis <") # ################# # initial processing # ################# load_undesirables() # initial_processing() df_open_food_facts = pd.read_csv(datasets_intermediate_path + "openfoodfacts_cols.csv", low_memory=False, sep=";") df_allergens = pd.read_csv("../data/01_raw/custom_allergens.csv", low_memory=False, sep="\t") # ################# # dataset analysis before clean # ################# dataset_analysis_pre_clean(df_open_food_facts) # ################# # dataset cleaning # ################# start = time.time() clean_dataset(df_open_food_facts, save_title="openfoodfacts_cleaned") clean_allergen_set(df_allergens, save_title="custom_allergens") end = time.time() print(f'Cleaned in: {round((end - start) / 60, 2)}min') # ################# # allergy test # ################# # df_open_food_facts = pd.read_csv(openf_datasets_intermediate_path + "openfoodfacts_cleaned.csv", low_memory=False, sep=";") # recipe_kaggle_df_cleaned = pd.read_csv(kaggle_datasets_processed_path + "train.csv") # Safely evaluate an expression node or a Unicode or Latin-1 encoded string containing a Python expression. The string or node provided may only consist of the following # Python literal structures: strings, numbers, tuples, lists, dicts, booleans, and None. # in this case it is used to evaluate the lists for allergens and ingredients # df_open_food_facts.allergens = df_open_food_facts.allergens.apply(ast.literal_eval) # df_open_food_facts.ingredients_text = df_open_food_facts.ingredients_text.apply(ast.literal_eval) # load_allergen_list() # ################# # dataset analysis after clean # ################# dataset_analysis_post_clean(df_open_food_facts) # # for index, row in recipe_kaggle_df_cleaned.head(n=50).iterrows(): # ingredient_list = row.ingredients.split(",") # check_allergens(ingredient_list) # # for key in found_allergens.keys(): # print(f'{colors.positive}{key}: {", ".join(found_allergens[key])}') # ################# # one hot encoding # ################# df_open_food_facts = pd.read_csv(datasets_intermediate_path + "openfoodfacts_cleaned.csv", low_memory=False, sep="\t") custom_allergens = pd.read_csv(datasets_intermediate_path + "custom_allergens.csv", low_memory=False, sep="\t") custom_allergens.drop('allergens', axis=1, inplace=True) df_hot_encoded = multi_label_binarize_dataframe(df_open_food_facts) df_hot_encoded.drop('allergens', axis=1, inplace=True) df_hot_encoded = df_hot_encoded.append(custom_allergens) df_hot_encoded.to_csv(r"" + openf_datasets_processed_path + "openfoodfacts.csv", index=False, sep='\t', encoding='utf-8') print("> Done <")
11,811
def read_config_option(key, expected_type=None, default_value=None): """Read the specified value from the configuration file. Args: key: the name of the key to read from the config file. expected_type: read the config option as the specified type (if specified) default_value: if the key doesn't exist, just return the default value. If the default value is not specified, the function will throw whatever error was raised by the configuration parser """ logging.info("Reading config option {} with expected type {}".format(key, expected_type)) try: if not expected_type: value = conf_parser.get("Settings", key) if key is "password": logging.info("Got configuration for key {}: ****".format(key)) else: logging.info("Got configuration for key {}: {}".format(key, value)) return conf_parser.get("Settings", key) elif expected_type is bool: return conf_parser.getboolean("Settings", key) except (ValueError, NoOptionError) as e: if default_value: return default_value else: raise
11,812
def simple_password(request): """ Checks a password """ if request.method == "POST": form = PasswordForm(data=request.POST) if form.is_valid(): # TODO: set session with better param request.session["simple_auth"] = True return redirect(form.cleaned_data["url"] or "/") else: form = PasswordForm() return render(request, "simple_auth/password_form.html", {"form": form})
11,813
def removeKeys(array: dict = None, remove: Any = None) -> dict: """ Removes keys from array by given remove value. :param array: dict[Any: Any] :param remove: Any :return: - sorted_dict - dict[Any: Any] """ if remove is None: remove = [] try: sorted_dict = {} for item_key in array: if array[item_key] != remove: sorted_dict[item_key] = array[item_key] return sorted_dict except Exception as e: logging.exception(e)
11,814
def affine2boxmesh(affines): """ :param affines: (n_parts, 6), range (0, 1) :return: """ from trimesh.path.creation import box_outline from trimesh.path.util import concatenate n_parts = len(affines) colors = [[0, 0, 255, 255], # blue [0, 255, 0, 255], # green [255, 0, 0, 255], # red [255, 255, 0, 255], # yellow [0, 255, 255, 255], # cyan [255, 0, 255, 255], # Magenta [160, 32, 240, 255], # purple [255, 255, 240, 255]] # ivory shape_box = [] for idx in range(n_parts): part_trans = affines[idx, :3] part_size = affines[idx, 3:] trans_mat = np.eye(4) # translate to center of axis aligned bounds trans_mat[:3, 3] = part_trans part_box = box_outline(transform=trans_mat, extents=part_size ) shape_box.append(part_box) shape_box = concatenate(shape_box) return shape_box
11,815
def _select_index_code(code): """ 1 - sh 0 - sz """ code = str(code) if code[0] == '3': return 0 return 1
11,816
def get_install_agent_cmd(): """Get OS specific command to install Telegraf agent.""" agent_pkg_deb = "https://packagecloud.io/install/repositories/" \ "wavefront/telegraf/script.deb.sh" agent_pkg_rpm = "https://packagecloud.io/install/repositories/" \ "wavefront/telegraf/script.rpm.sh" dist = system.check_os() cmd = None if not dist: print("Error: Unsupported OS version. Please contact" " support@wavefront.com.") return cmd if dist.strip().startswith(("Oracle Linux Server", "Fedora", "Amazon Linux", "CentOS", "Red Hat Enterprise Linux")): cmd = "curl -s %s | bash" % (agent_pkg_rpm) cmd += " && yum -y -q install telegraf" elif dist.strip().startswith("Ubuntu"): cmd = "curl -s %s | bash" % (agent_pkg_deb) cmd += ' && apt-get -y -qq -o Dpkg::Options::="--force-confold"' \ ' install telegraf' elif dist.strip().lower().startswith("debian"): cmd = "curl -s %s | bash" % (agent_pkg_deb) cmd += ' && apt-get -o Dpkg::Options::="--force-confnew"' \ ' -y install telegraf' elif dist.strip().startswith(("openSUSE", "SUSE Linux Enterprise Server", "SLES")): cmd = "curl -s %s | bash" % (agent_pkg_rpm) cmd += ' && zypper install telegraf' else: message.print_warn("Error: Unsupported OS version: %s." % (dist)) return cmd
11,817
def unpack(manifests: LocalManifestLists) -> Tuple[ServerManifests, bool]: """Convert `manifests` to `ServerManifests` for internal processing. Returns `False` unless all resources in `manifests` are unique. For instance, returns False if two files define the same namespace or the same deployment. The primary use case is to convert the manifests we read from local files into the format Square uses internally for the server manifests as well. Inputs: manifests: LocalManifestLists Returns: ServerManifests: flattened version of `manifests`. """ # Compile a dict that shows which meta manifest was defined in which file. # We will shortly use this information to determine if all resources were # defined exactly once across all files. all_meta: DefaultDict[MetaManifest, list] = collections.defaultdict(list) for fname in manifests: for meta, _ in manifests[fname]: all_meta[meta].append(fname) # Find out if all meta manifests were unique. If not, log the culprits and # return with an error. unique = True for meta, fnames in all_meta.items(): if len(fnames) > 1: unique = False tmp = [str(_) for _ in fnames] logit.error( f"Duplicate ({len(tmp)}x) manifest {meta}. " f"Defined in {str.join(', ', tmp)}" ) if not unique: return ({}, True) # Compile the input manifests into a new dict with the meta manifest as key. out = {k: v for fname in manifests for k, v in manifests[fname]} return (out, False)
11,818
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the switch from config.""" if DATA_KEY not in hass.data: hass.data[DATA_KEY] = {} host = config[CONF_HOST] token = config[CONF_TOKEN] name = config[CONF_NAME] model = config.get(CONF_MODEL) _LOGGER.info("Initializing with host %s (token %s...)", host, token[:5]) devices = [] unique_id = None if model is None: try: miio_device = Device(host, token) device_info = await hass.async_add_executor_job(miio_device.info) model = device_info.model unique_id = f"{model}-{device_info.mac_address}" _LOGGER.info( "%s %s %s detected", model, device_info.firmware_version, device_info.hardware_version, ) except DeviceException: raise PlatformNotReady if model in ["090615.switch.switch01"]: plug = PtxSwitch(host, token, model=model) device = XiaomiPTXSwitch(name, plug, model, unique_id, 1) devices.append(device) hass.data[DATA_KEY][host] = device elif model in ["090615.switch.switch02"]: plug = PtxSwitch(host, token, model=model) device = XiaomiPTXSwitch(name, plug, model, unique_id, 1) devices.append(device) hass.data[DATA_KEY][host] = device plug2 = PtxSwitch(host, token, model=model) device2 = XiaomiPTXSwitch(name, plug2, model, unique_id, 2) devices.append(device2) hass.data[DATA_KEY][host] = device2 elif model in ["090615.switch.switch03"]: plug = PtxSwitch(host, token, model=model) device = XiaomiPTXSwitch(name, plug, model, unique_id, 1) devices.append(device) hass.data[DATA_KEY][host] = device plug2 = PtxSwitch(host, token, model=model) device2 = XiaomiPTXSwitch(name, plug2, model, unique_id, 2) devices.append(device2) hass.data[DATA_KEY][host] = device2 plug3 = PtxSwitch(host, token, model=model) device3 = XiaomiPTXSwitch(name, plug3, model, unique_id, 3) devices.append(device3) hass.data[DATA_KEY][host] = device3 else: _LOGGER.error( "Unsupported device found! Please create an issue at " "https://github.com/volshebniks/python-miio-ptx/issues " "and provide the following data: %s", model, ) return False async_add_entities(devices, update_before_add=True)
11,819
def process_generate_metric_alarms_event(event): """Handles a new event request Placeholder copied from alert_controller implementation """ LOG.info(str(event)) return create_response(200, body="Response to HealthCheck")
11,820
def check_if_usl_forecast_exists(config, stid, run, forecast_date): """ Checks the parent USL directory to see if USL has run for specified stid and run time. This avoids the server automatically returning a "close enough" date instead of an "Error 300: multiple choices." """ run_date = (forecast_date - timedelta(days=1)).replace(hour=int(run)) run_strtime = run_date.strftime('%Y%m%d_%H') api_url = 'http://www.microclimates.org/forecast/{}/'.format(stid) req = Request(api_url) try: response = urlopen(req) except HTTPError: if config['debug'] > 9: print("usl: forecast for %s at run time %s doesn't exist" % (stid, run_date)) raise page = response.read().decode('utf-8', 'ignore') # Look for string of USL run time in the home menu for this station ID (equal to -1 if not found) if page.find(run_strtime) == -1: if config['debug'] > 9: print("usl: forecast for %s at run time %s hasn't run yet" % (stid, run_date)) raise URLError("- usl: no correct date/time choice")
11,821
def get_query_segment_info(collection_name, timeout=None, using="default"): """ Notifies Proxy to return segments information from query nodes. :param collection_name: A string representing the collection to get segments info. :param timeout: An optional duration of time in seconds to allow for the RPC. When timeout is set to None, client waits until server response or error occur. :type timeout: float :return: QuerySegmentInfo: QuerySegmentInfo is the growing segments's information in query cluster. :rtype: QuerySegmentInfo :example: >>> from pymilvus import Collection, FieldSchema, CollectionSchema, DataType, connections, utility >>> connections.connect(alias="default") >>> _DIM = 128 >>> field_int64 = FieldSchema("int64", DataType.INT64, description="int64", is_primary=True) >>> field_float_vector = FieldSchema("float_vector", DataType.FLOAT_VECTOR, description="float_vector", is_primary=False, dim=_DIM) >>> schema = CollectionSchema(fields=[field_int64, field_float_vector], description="get collection entities num") >>> collection = Collection(name="test_get_segment_info", schema=schema) >>> import pandas as pd >>> int64_series = pd.Series(data=list(range(10, 20)), index=list(range(10)))i >>> float_vector_series = [[random.random() for _ in range _DIM] for _ in range (10)] >>> data = pd.DataFrame({"int64" : int64_series, "float_vector": float_vector_series}) >>> collection.insert(data) >>> collection.load() # load collection to memory >>> res = utility.get_query_segment_info("test_get_segment_info") """ return _get_connection(using).get_query_segment_info(collection_name, timeout=timeout)
11,822
def IoU(pred, gt, n_classes, all_iou=False): """Computes the IoU by class and returns mean-IoU""" # print("IoU") iou = [] for i in range(n_classes): if np.sum(gt == i) == 0: iou.append(np.NaN) continue TP = np.sum(np.logical_and(pred == i, gt == i)) FP = np.sum(np.logical_and(pred == i, gt != i)) FN = np.sum(np.logical_and(pred != i, gt == i)) iou.append(TP / (TP + FP + FN)) # nanmean: if a class is not present in the image, it's a NaN result = [np.nanmean(iou), iou] if all_iou else np.nanmean(iou) return result
11,823
def from_torchvision(vision_transform, p=1): """Takes in an arbitary torchvision tranform and wrap it such that it can be applied to a list of images of shape HxWxC Returns a callable class that takes in list of images and target as input NOTE: Due to implementation difficuities, in order to apply the same randomized transform to EACH image, it is best to pass in a deterministic transform like the functional transforms in torchvision and then pass in a p value for the wrapper to roll a number and apply the transform with that probability Additionally, it's also possible to wrap a torchvision functional transform as long as it's a function that takes in an image as it's only argument i.e can write something like: lambda x: some_functional_transform(x,...) """ return TorchvisionWrapper(vision_transform, p=p)
11,824
def is_valid(inputted): """ Essa função irá verificar o QueryDict trago pelo método POST do nosso frontend e fazer uma verificação dos campos an tes de persistir os dados no banco de dados. :param inputted: Query Dict trago pelo POST :return: Um valor booleano """ for key in inputted.keys(): if key != 'complemento': if inputted.get(key) is None: return False elif len(inputted.get(key)) == 0: return False else: pass if key == 'estado': if inputted.get(key) not in country_uf.values(): return False else: pass if key == 'cep': if len(inputted.get(key)) != 8: return False else: cep = inputted.get(key) try: int(cep) except (TypeError, ValueError): return False else: url = f"https://viacep.com.br/ws/{cep}/json/" response = requests.get(url) response = response.json() if 'erro' in response.keys(): return False return True
11,825
def get_ports(context, project_id=None): """Returns all ports of VMs in EOS-compatible format. :param project_id: globally unique neutron tenant identifier """ session = context.session model = db_models.AristaProvisionedVms if project_id: all_ports = (session.query(model). filter(model.project_id == project_id, model.host_id.isnot(None), model.vm_id.isnot(None), model.network_id.isnot(None), model.port_id.isnot(None))) else: all_ports = (session.query(model). filter(model.project_id.isnot(None), model.host_id.isnot(None), model.vm_id.isnot(None), model.network_id.isnot(None), model.port_id.isnot(None))) ports = {} for port in all_ports: if port.port_id not in ports: ports[port.port_id] = port.eos_port_representation() ports[port.port_id]['hosts'].append(port.host_id) return ports
11,826
def WriteSchemaMarkdown(fileName): """ Iterate on the global `OrderedDict` of `EoCalib` sub-classes and write description of each to a markdown file """ with open(fileName, 'w') as fout: for key, val in EO_CALIB_CLASS_DICT.items(): fout.write("## %s\n" % key) val.writeMarkdown(fout) fout.write("\n\n")
11,827
def dispatcher3(request, route_table): """ return an instance of a second DispatcherActor with another name that is not launched the teardown of this fixtures terminate the actor (in case it was started and close its socket) """ dispatcher_actor = DispatcherActor( 'test_dispatcher2-', lambda name, log: FakeFormulaActor(name, FORMULA_SOCKET_ADDR, level_logger=log), route_table, level_logger=LOG_LEVEL) yield dispatcher_actor dispatcher_actor.socket_interface.close() dispatcher_actor.terminate() dispatcher_actor.join()
11,828
def _HMAC(K, C, Mode=hashlib.sha1): """ Generate an HMAC value. The default mode is to generate an HMAC-SHA-1 value w/ the SHA-1 algorithm. :param K: shared secret between client and server. Each HOTP generator has a different and unique secret K. :type K: bytes :param C: 8-byte counter value, the moving factor. This counter MUST be synchronized between the HOTP generator (client) and the HOTP validator (server). :type C: bytes :param Mode: The algorithm to use when generating the HMAC value :type Mode: hashlib.sha1, hashlib.sha256, hashlib.sha512, or hashlib.md5 :return: HMAC result. If HMAC-SHA-1, result is 160-bits (20-bytes) long. :rtype: bytes """ return hmac.new(K, C, Mode).digest()
11,829
def get_reference(planet_name): """ Return reference for a given planet's orbit fit Args: planet_name (str): name of planet. no space Returns: reference (str): Reference of orbit fit """ planet_name = planet_name.lower() if planet_name not in post_dict: raise ValueError("Invalid planet name '{0}'".format(planet_name)) filename, reference = post_dict[planet_name] return reference
11,830
def makedirs(name, *args, **kwargs): """Shim to transparently backport exist_ok to Python < 3.2""" if "exist_ok" in kwargs and python_lt(3, 2): if not os.path.exists(name): os.makedirs(name, *args, **kwargs) else: os.makedirs(name, *args, **kwargs)
11,831
def DefaultPortIfAvailable(): """Returns default port if available. Raises: EmulatorArgumentsError: if port is not available. Returns: int, default port """ if portpicker.is_port_free(_DEFAULT_PORT): return _DEFAULT_PORT else: raise EmulatorArgumentsError( 'Default emulator port [{}] is already in use'.format(_DEFAULT_PORT))
11,832
def mock_hub(hass): """Mock hub.""" mock_integration(hass, MockModule(DOMAIN)) hub = mock.MagicMock() hub.name = "hub" hass.data[DOMAIN] = {DEFAULT_HUB: hub} return hub
11,833
def deferred_setting(name, default): """ Returns a function that calls settings with (name, default) """ return lambda: setting(name, default)
11,834
def watch_cli(optimization_id): """Watch the status of a bespoke optimization.""" pretty.install() console = rich.get_console() print_header(console) from openff.bespokefit.executor import wait_until_complete wait_until_complete(optimization_id)
11,835
def draw_donut(display, coord, box_size, color, bg_color): """Draw a donut at the given location.""" left, top = coord half = int(box_size * 0.5) quarter = int(box_size * 0.25) center = (left + half, top + half) pygame.draw.circle(display, color, center, half - 5) pygame.draw.circle(display, bg_color, center, quarter - 5) return
11,836
def extends_dict(target, source): """ Will copy every key and value of source in target if key is not present in target """ for key, value in source.items(): if key not in target: target[key] = value elif type(target[key]) is dict: extends_dict(target[key], value) elif type(target[key]) is list: target[key] += value return target
11,837
def get_maps_interface_class(zep_inp): """ Takes the input of zephyrus and return the maps of interfaces to classes and viceversa """ interface_to_classes = {} class_to_interfaces = {} for i in zep_inp["components"].keys(): class_name = i.split(settings.SEPARATOR)[-1] interfaces = zep_inp["components"][i]["provides"][0]["ports"] class_to_interfaces[class_name] = interfaces for k in interfaces: if k in interface_to_classes: interface_to_classes[k].append(class_name) else: interface_to_classes[k] = [class_name] return (interface_to_classes,class_to_interfaces)
11,838
def plextv_resources_base_fixture(): """Load base payload for plex.tv resources and return it.""" return load_fixture("plex/plextv_resources_base.xml")
11,839
def _auth(machine='desi.lbl.gov'): """Get authentication credentials. """ from netrc import netrc from requests.auth import HTTPDigestAuth n = netrc() try: u,foo,p = n.authenticators(machine) except: raise ValueError('Unable to get user/pass from $HOME/.netrc for {}'.format(machine)) return HTTPDigestAuth(u,p)
11,840
def test_handle_html_dynmamic_with_encoding(): """Test the handler converting dynamic HTML to utf-8 encoding.""" with open(TEST_VALUE_SOURCES["html_dynamic"]) as f: test_value = f.read() test_bytes = bytes(test_value, ALT_ENCODING) with open(TEST_VALUE_SOURCES["html_dynamic_bytes"], "rb") as f: # Work around the end-of-file-fixer pre-commit hook expected_bytes = f.read().rstrip() hasher = hash_http_content.UrlHasher(HASH_ALGORITHM) result = hasher._handle_html(test_bytes, ALT_ENCODING) assert result.hash == EXPECTED_DIGESTS["html_dynamic"] assert result.contents == expected_bytes
11,841
def relative_date_add(date_rule: str, strict: bool = False) -> float: """Change the string in date rule format to the number of days. E.g 1d to 1, 1y to 365, 1m to 30, -1w to -7""" days = '' if re.search(DateRuleReg, date_rule) is not None: res = re.search(DateRuleReg, date_rule) date_str = res.group(1) if date_str[0] == '-': num = float(date_str[1:-1]) days = '-' else: num = float(date_str[:-1]) rule = date_str[-1:] if rule in DictDayRule: scale = DictDayRule[rule] days = days + str(num * scale) d = float(days) return d else: raise MqValueError('There are no valid day rule for the point provided.') if strict: raise MqValueError(f'invalid date rule {date_rule}') return 0
11,842
def store_survey_elements(survey, recom, df_fri, df_frii): """Match returned recommentations ids with ObjectCatalog entries Parameters ---------- survey: zooniverse_web.models.Survey recom: acton.proto.wrappers.Recommendations df_fri: pandas.DataFrame df_frii: pandas.DataFrame """ # for recommendation_id in recom.recommendations: try: first = df_fri.loc[df_fri['idx'] == recommendation_id, 'first'].item() except ValueError: first = df_frii.loc[df_frii['idx'] == recommendation_id, 'first'].item() # Gather the one question we will use here. try: galaxy = Galaxy.objects.get(first=first) except Galaxy.MultipleObjectsReturned: galaxy = Galaxy.objects.filter(first=first)[0] question = Question.objects.all()[0] # Create survey element survey_element, created = SurveyElement.objects.get_or_create( galaxy=galaxy, question=question, ) # Create survey question for this survey element SurveyQuestion.objects.create(survey_element=survey_element, survey=survey) save_image(galaxy)
11,843
def to_frames_using_nptricks(src: np.ndarray, window_size: int, stride: int) -> np.ndarray: """ np.ndarray をフレーム分けするプリミティブな実装で,分割に`np.lib.stride_tricks.as_strided`関数を使用しており,indexingを使用する`to_frames_using_index`より高速である. Parameters ---------- src: np.ndarray splited source. window_size: int sliding window size. stride: int, stride is int more than 0. Returns ------- frames: np.ndarray a shape of frames is `(num_frames, window_size, *src.shape[1:])`, where num_frames is `(src.shape[0] - window_size) // stride + 1`. """ assert stride > 0, 'ストライドは正の整数である必要がある. stride={}'.format(stride) num_frames = (src.shape[0] - window_size) // stride + 1 ret_shape = (num_frames, window_size, *src.shape[1:]) strides = (stride * src.strides[0], *src.strides) return np.lib.stride_tricks.as_strided(src, shape=ret_shape, strides=strides)
11,844
def global_fit( model_constructor, pdf_transform=False, default_rtol=1e-10, default_atol=1e-10, default_max_iter=int(1e7), learning_rate=1e-6, ): """ Wraps a series of functions that perform maximum likelihood fitting in the `two_phase_solver` method found in the `fax` python module. This allows for the calculation of gradients of the best-fit parameters with respect to upstream parameters that control the underlying model, i.e. the event yields (which are then parameterized by weights or similar). Args: model_constructor: Function that takes in the parameters of the observable, and returns a model object (and background-only parameters) Returns: global_fitter: Callable function that performs global fits. Differentiable :) """ adam_init, adam_update, adam_get_params = optimizers.adam(learning_rate) def make_model(model_pars): m, bonlypars = model_constructor(model_pars) bounds = m.config.suggested_bounds() constrained_mu = ( to_inf(constrained_mu, bounds[0]) if pdf_transform else constrained_mu ) exp_bonly_data = m.expected_data(bonlypars, include_auxdata=True) def expected_logpdf(pars): # maps pars to bounded space if pdf_transform = True return ( m.logpdf(to_bounded_vec(pars, bounds), exp_bonly_data) if pdf_transform else m.logpdf(pars, exp_bonly_data) ) def global_fit_objective(pars): # NLL return -expected_logpdf(pars)[0] return global_fit_objective def global_bestfit_minimized(hyper_param): nll = make_model(hyper_param) def bestfit_via_grad_descent(i, param): # gradient descent g = jax.grad(nll)(param) # param = param - g * learning_rate param = adam_get_params(adam_update(i, g, adam_init(param))) return param return bestfit_via_grad_descent global_solve = twophase.two_phase_solver( param_func=global_bestfit_minimized, default_rtol=default_rtol, default_atol=default_atol, default_max_iter=default_max_iter, ) def global_fitter(init, hyper_pars): solve = global_solve(init, hyper_pars) return solve.value return global_fitter
11,845
def get_connection_string(storage_account_name): """ Checks the environment for variable named AZ_<STORAGE_ACCOUNT_NAME> and returns the corresponding connection string. Raises a ``ConnectionStringNotFound`` exception if environment variable is missing """ conn_string = os.environ.get("AZ_" + storage_account_name.upper(), None) if conn_string is None: raise ConnectionStringError( "Environment variable AZ_" + storage_account_name.upper() + " not found!") else: return conn_string
11,846
def reorder_task( token: 'auth.JWT', task_id: 'typevars.ObjectID', before_id: 'Optional[typevars.ObjectID]' = None, after_id: 'Optional[typevars.ObjectID]' = None ) -> 'List[models.Task]': """Change the position of the task in the list.""" if before_id is None and after_id is None: raise util_errors.APIError( 'One of before_id or after_id must be provided', 400) if task_id == before_id or task_id == after_id: raise util_errors.APIError( 'Task cannot be before or after itself', 400) before = None after = None (task, before, after) = auth.load_owned_objects( models.Task, token, 'get tasks', task_id, before_id, after_id) if before is None: before = after.before if after is None: after = before.after if ( (before is not None and before.after is not after) or (after is not None and after.before is not before)): raise util_errors.APIError( 'Before and after tasks are not adjacent', 400) mutated = [before, after, task, task.before, task.after] if before is not None and task.parent is not before.parent: mutated.extend([task.parent, before.parent]) check_reparent(task, before.parent) elif after is not None and task.parent is not after.parent: mutated.extend([task.parent, after.parent]) check_reparent(task, after.parent) if task.before is not None: task.before.after = task.after elif task.after is not None: task.after.before = None task.before = before task.after = after db.DB.session.commit() return [m for m in set(mutated) if m is not None]
11,847
def get_ldpc_code_params(ldpc_design_filename): """ Extract parameters from LDPC code design file. Parameters ---------- ldpc_design_filename : string Filename of the LDPC code design file. Returns ------- ldpc_code_params : dictionary Parameters of the LDPC code. """ ldpc_design_file = open(ldpc_design_filename) ldpc_code_params = {} [n_vnodes, n_cnodes] = [int(x) for x in ldpc_design_file.readline().split(' ')] [max_vnode_deg, max_cnode_deg] = [int(x) for x in ldpc_design_file.readline().split(' ')] vnode_deg_list = np.array([int(x) for x in ldpc_design_file.readline().split(' ')[:-1]], np.int32) cnode_deg_list = np.array([int(x) for x in ldpc_design_file.readline().split(' ')[:-1]], np.int32) cnode_adj_list = -np.ones([n_cnodes, max_cnode_deg], int) vnode_adj_list = -np.ones([n_vnodes, max_vnode_deg], int) for vnode_idx in range(n_vnodes): vnode_adj_list[vnode_idx, 0:vnode_deg_list[vnode_idx]] = \ np.array([int(x)-1 for x in ldpc_design_file.readline().split('\t')]) for cnode_idx in range(n_cnodes): cnode_adj_list[cnode_idx, 0:cnode_deg_list[cnode_idx]] = \ np.array([int(x)-1 for x in ldpc_design_file.readline().split('\t')]) cnode_vnode_map = -np.ones([n_cnodes, max_cnode_deg], int) vnode_cnode_map = -np.ones([n_vnodes, max_vnode_deg], int) cnode_list = np.arange(n_cnodes) vnode_list = np.arange(n_vnodes) for cnode in range(n_cnodes): for i, vnode in enumerate(cnode_adj_list[cnode, 0:cnode_deg_list[cnode]]): cnode_vnode_map[cnode, i] = cnode_list[np.where(vnode_adj_list[vnode, :] == cnode)] for vnode in range(n_vnodes): for i, cnode in enumerate(vnode_adj_list[vnode, 0:vnode_deg_list[vnode]]): vnode_cnode_map[vnode, i] = vnode_list[np.where(cnode_adj_list[cnode, :] == vnode)] cnode_adj_list_1d = cnode_adj_list.flatten().astype(np.int32) vnode_adj_list_1d = vnode_adj_list.flatten().astype(np.int32) cnode_vnode_map_1d = cnode_vnode_map.flatten().astype(np.int32) vnode_cnode_map_1d = vnode_cnode_map.flatten().astype(np.int32) pmat = np.zeros([n_cnodes, n_vnodes], int) for cnode_idx in range(n_cnodes): pmat[cnode_idx, cnode_adj_list[cnode_idx, :]] = 1 ldpc_code_params['n_vnodes'] = n_vnodes ldpc_code_params['n_cnodes'] = n_cnodes ldpc_code_params['max_cnode_deg'] = max_cnode_deg ldpc_code_params['max_vnode_deg'] = max_vnode_deg ldpc_code_params['cnode_adj_list'] = cnode_adj_list_1d ldpc_code_params['cnode_vnode_map'] = cnode_vnode_map_1d ldpc_code_params['vnode_adj_list'] = vnode_adj_list_1d ldpc_code_params['vnode_cnode_map'] = vnode_cnode_map_1d ldpc_code_params['cnode_deg_list'] = cnode_deg_list ldpc_code_params['vnode_deg_list'] = vnode_deg_list ldpc_design_file.close() return ldpc_code_params
11,848
def find_collection(*, collection, name): """ Looks through the pages of a collection for a resource with the specified name. Returns it, or if not found, returns None """ if isinstance(collection, ProjectCollection): try: # try to use search if it is available # call list() to collapse the iterator, otherwise the NotFound # won't show up until collection_list is used collection_list = list(collection.search(search_params={ "name": { "value": name, "search_method": "EXACT" } })) except NotFound: # Search must not be available yet collection_list = collection.list() else: collection_list = collection.list() matching_resources = [resource for resource in collection_list if resource.name == name] if len(matching_resources) > 1: raise ValueError("Found multiple collections with name '{}'".format(name)) if len(matching_resources) == 1: result = matching_resources.pop() print('Found existing: {}'.format(result)) return result else: return None
11,849
def terms_documents_matrix_ticcl_frequency(in_files): """Returns a terms document matrix and related objects of a corpus A terms document matrix contains frequencies of wordforms, with wordforms along one matrix axis (columns) and documents along the other (rows). Inputs: in_files: list of ticcl frequency files (one per document in the corpus) Returns: corpus: a sparse terms documents matrix vocabulary: the vectorizer object containing the vocabulary (i.e., all word forms in the corpus) """ vocabulary = DictVectorizer() corpus = vocabulary.fit_transform(ticcl_frequency(in_files)) return corpus, vocabulary
11,850
def cvt_continue_stmt(node: pytree.Base, ctx: Ctx) -> ast_cooked.Base: """continue_stmt: 'continue'""" #-# Continue assert ctx.is_REF, [node] return ast_cooked.ContinueStmt()
11,851
def nth_even(n): """Function I wrote that returns the nth even number.""" return (n * 2) - 2
11,852
def _has__of__(obj): """Check whether an object has an __of__ method for returning itself in the context of a container.""" # It is necessary to check both the type (or we get into cycles) # as well as the presence of the method (or mixins of Base pre- or # post-class-creation as done in, e.g., # zopefoundation/Persistence) can fail. return isinstance(obj, ExtensionClass.Base) and hasattr(type(obj), '__of__')
11,853
def diff_main(args, output): """ Different stats depending on the args :param output: :return: """ f = open(os.path.join(output, "avg_methylation_60.out"), "w") all_cpg_format_file_paths = create_chr_paths_dict(args) for chr in tqdm(all_cpg_format_file_paths): v = methylation_diff(all_cpg_format_file_paths[chr]) f.write("chr%s:%s\n" % (chr, v)) print(v)
11,854
def grayscale(img): """ Applies the Grayscale transform This will return an image with only one color channel but NOTE: to see the returned image as grayscale (assuming your grayscaled image is called 'gray') you should call plt.imshow(gray, cmap='gray') """ return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Or use BGR2GRAY if you read an image with cv2.imread()
11,855
def get_pageinfo(response, tracktype='recenttracks'): """Check how many pages of tracks the user have.""" xmlpage = ET.fromstring(response) totalpages = xmlpage.find(tracktype).attrib.get('totalPages') return int(totalpages)
11,856
def test_delete_not_contained_2(multi_tree): """Test that delete leaves the list intact if value not in tree.""" multi_tree.instance.delete(9999999999999) assert multi_tree.instance.size() == multi_tree.size
11,857
def _create_dispatcher_class(cls, classname, bases, dict_): """Create a :class:`._Dispatch` class corresponding to an :class:`.Events` class.""" # there's all kinds of ways to do this, # i.e. make a Dispatch class that shares the '_listen' method # of the Event class, this is the straight monkeypatch. dispatch_base = getattr(cls, 'dispatch', _Dispatch) cls.dispatch = dispatch_cls = type("%sDispatch" % classname, (dispatch_base, ), {}) dispatch_cls._listen = cls._listen for k in dict_: if _is_event_name(k): setattr(dispatch_cls, k, _DispatchDescriptor(dict_[k])) _registrars[k].append(cls)
11,858
def MIN(*args): """Return the minimum of a range or list of Number or datetime""" return _group_function(min, *args)
11,859
def GF(order, irreducible_poly=None, primitive_element=None, verify_irreducible=True, verify_primitive=True, mode="auto", target="cpu"): """ Factory function to construct a Galois field array class of type :math:`\\mathrm{GF}(p^m)`. The created class will be a subclass of :obj:`galois.FieldArray` with metaclass :obj:`galois.FieldMeta`. The :obj:`galois.FieldArray` inheritance provides the :obj:`numpy.ndarray` functionality. The :obj:`galois.FieldMeta` metaclass provides a variety of class attributes and methods relating to the finite field. Parameters ---------- order : int The order :math:`p^m` of the field :math:`\\mathrm{GF}(p^m)`. The order must be a prime power. irreducible_poly : int, galois.Poly, optional Optionally specify an irreducible polynomial of degree :math:`m` over :math:`\\mathrm{GF}(p)` that will define the Galois field arithmetic. An integer may be provided, which is the integer representation of the irreducible polynomial. Default is `None` which uses the Conway polynomial :math:`C_{p,m}` obtained from :func:`galois.conway_poly`. primitive_element : int, galois.Poly, optional Optionally specify a primitive element of the field :math:`\\mathrm{GF}(p^m)`. A primitive element is a generator of the multiplicative group of the field. For prime fields :math:`\\mathrm{GF}(p)`, the primitive element must be an integer and is a primitive root modulo :math:`p`. For extension fields :math:`\\mathrm{GF}(p^m)`, the primitive element is a polynomial of degree less than :math:`m` over :math:`\\mathrm{GF}(p)` or its integer representation. The default is `None` which uses :obj:`galois.primitive_root(p)` for prime fields and :obj:`galois.primitive_element(irreducible_poly)` for extension fields. verify_irreducible : bool, optional Indicates whether to verify that the specified irreducible polynomial is in fact irreducible. The default is `True`. For large irreducible polynomials that are already known to be irreducible (and may take a long time to verify), this argument can be set to `False`. verify_primitive : bool, optional Indicates whether to verify that the specified primitive element is in fact a generator of the multiplicative group. The default is `True`. mode : str, optional The type of field computation, either `"auto"`, `"jit-lookup"`, or `"jit-calculate"`. The default is `"auto"`. The "jit-lookup" mode will use Zech log, log, and anti-log lookup tables for efficient calculation. The "jit-calculate" mode will not store any lookup tables, but instead perform field arithmetic on the fly. The "jit-calculate" mode is designed for large fields that cannot or should not store lookup tables in RAM. Generally, "jit-calculate" mode will be slower than "jit-lookup". The "auto" mode will determine whether to use "jit-lookup" or "jit-calculate" based on the field's size. In "auto" mode, field's with `order <= 2**16` will use the "jit-lookup" mode. target : str, optional The `target` keyword argument from :func:`numba.vectorize`, either `"cpu"`, `"parallel"`, or `"cuda"`. Returns ------- galois.FieldMeta A new Galois field array class that is a subclass of :obj:`galois.FieldArray` with :obj:`galois.FieldMeta` metaclass. Examples -------- Construct a Galois field array class with default irreducible polynomial and primitive element. .. ipython:: python # Construct a GF(2^m) class GF256 = galois.GF(2**8) # Notice the irreducible polynomial is primitive print(GF256.properties) poly = GF256.irreducible_poly Construct a Galois field specifying a specific irreducible polynomial. .. ipython:: python # Field used in AES GF256_AES = galois.GF(2**8, irreducible_poly=galois.Poly.Degrees([8,4,3,1,0])) print(GF256_AES.properties) # Construct a GF(p) class GF571 = galois.GF(571); print(GF571.properties) # Construct a very large GF(2^m) class GF2m = galois.GF(2**100); print(GF2m.properties) # Construct a very large GF(p) class GFp = galois.GF(36893488147419103183); print(GFp.properties) See :obj:`galois.FieldArray` for more examples of what Galois field arrays can do. """ if not isinstance(order, int): raise TypeError(f"Argument `order` must be an integer, not {type(order)}.") p, k = prime_factors(order) if not len(p) == len(k) == 1: s = " + ".join([f"{pp}**{kk}" for pp, kk in zip(p, k)]) raise ValueError(f"Argument `order` must be a prime power, not {order} = {s}.") p, m = p[0], k[0] if m == 1: if not irreducible_poly is None: raise ValueError(f"Argument `irreducible_poly` can only be specified for prime fields, not the extension field GF({p}^{m}).") return GF_prime(p, primitive_element=primitive_element, verify_primitive=verify_primitive, target=target, mode=mode) else: return GF_extension(p, m, primitive_element=primitive_element, irreducible_poly=irreducible_poly, verify_primitive=verify_primitive, verify_irreducible=verify_irreducible, target=target, mode=mode)
11,860
def remove_fields_with_value_none(fields: typing.Dict) -> typing.Dict: """ Remove keys whose value is none :param fields: the fields to clean :return: a copy of fields, without the none values """ fields = dict((key, value) for key, value in fields.items() if value is not None) # Strip out none values return fields
11,861
def _register_services(hass): """Register Mixergy services.""" async def mixergy_set_charge(call): tasks = [ tank.set_target_charge(call.data) for tank in hass.data[DOMAIN].values() if isinstance(tank, Tank) ] results = await asyncio.gather(*tasks) # Note that we'll get a "None" value for a successful call if None not in results: _LOGGER.warning("The request to charge the tank did not succeed") if not hass.services.has_service(DOMAIN, SERVICE_SET_CHARGE): # Register a local handler for scene activation hass.services.async_register( DOMAIN, SERVICE_SET_CHARGE, verify_domain_control(hass, DOMAIN)(mixergy_set_charge), schema=vol.Schema( { vol.Required(ATTR_CHARGE): cv.positive_int } ), )
11,862
def get_repository(repository_id): """ Get the repository service address from accounts service for storing data. :param repository_id: the repository ID :return: url of the repository url :raise: HTTPError """ client = API(options.url_accounts, ssl_options=ssl_server_options()) try: response = yield client.accounts.repositories[repository_id].get() logging.debug(response['data']) raise Return(response['data']) except KeyError: error = 'Cannot find a repository' raise exceptions.HTTPError(404, error)
11,863
def test_all_fields_exist_in_the_json_file(): """ Sprawdź poprawność samego pliku. """ with open(SLOWO_NA_DZIS_PATH, 'r', encoding='UTF-8') as plik: slowo_na_dzis = json.load(plik) for cytat in slowo_na_dzis: pprint(cytat) assert_quote_slowo_na_dzis_json(cytat)
11,864
def make_values(params, point): #240 (line num in coconut source) """Return a dictionary with the values replaced by the values in point, where point is a list of the values corresponding to the sorted params.""" #242 (line num in coconut source) values = {} #243 (line num in coconut source) for i, k in (enumerate)((sorted)(params)): #244 (line num in coconut source) values[k] = point[i] #245 (line num in coconut source) return values
11,865
def elbow_method(data): """ This function will compute elbow method and generate elbow visualization :param data: 2 columns dataframe for cluster analysis :return: Plotly Figures """ distortions = [] K = range(1, 10) for k in K: elbow_kmean = model_kmeans(data, k) distortions.append(elbow_kmean.inertia_) elbow = pd.DataFrame({'k': K, 'inertia': distortions}) fig = go.Figure(data=go.Scatter(x=elbow['k'], y=elbow['inertia'])) fig.update_layout(title='Elbows Methods for finding best K values in KMeans', xaxis_title='K', yaxis_title='Inertia') return fig
11,866
def _configure_logging(verbose=False, debug=False): """Configure the log global, message format, and verbosity settings.""" overall_level = logging.DEBUG if debug else logging.INFO logging.basicConfig( format=('{levelname[0]}{asctime}.{msecs:03.0f} {thread} ' '{filename}:{lineno}] {message}'), datefmt='%m%d %H:%M:%S', style='{', level=overall_level) global log log = logging.getLogger('portserver') # The verbosity controls our loggers logging level, not the global # one above. This avoids debug messages from libraries such as asyncio. log.setLevel(logging.DEBUG if verbose else overall_level)
11,867
def sa_middleware(key: str = DEFAULT_KEY) -> 'Callable': """ SQLAlchemy asynchronous middleware factory. """ @middleware async def sa_middleware_(request: 'Request', handler: 'Callable')\ -> 'StreamResponse': if key in request: raise DuplicateRequestKeyError(key) Session = request.config_dict.get(key) async with Session() as request[key]: return await handler(request) return sa_middleware_
11,868
def load_kmeans_dataset(): """A dataset with two 'time slices' - a slice with two clear clusters along the x axis _now_ timestamp and - a slice with two clear clusters along the y axis with tomorrow's timestamp This will serve at testing if the when clause was applied correctly""" kmeans_example = mldb.create_dataset({ "type": "sparse.mutable", 'id' : 'kmeans_example' }) for i in range(1,3): for j in range(0,100): val_x = float(random.randint(-5, 5)) val_y = float(random.randint(-5, 5)) row = [ ['x', val_x + 10**i, now], ['x', val_x, same_time_tomorrow], ['y', val_y, now], ['y', val_y + 10**i, same_time_tomorrow], ] kmeans_example.record_row('row_%d_%d' % (i, j), row) kmeans_example.commit()
11,869
def _check_id_format(feature_id): """ This function check the id format. """ id_format = "^(\w+).+\S$" if not re.match(id_format, feature_id): msg = "The id field cannot contains whitespaces." raise exceptions.BadRequest({"message": msg})
11,870
def dice_loss(y_true, y_pred): """ dice_loss """ smooth = 1. intersection = K.sum(K.abs(y_true * y_pred), axis=-1) dice_coef = (2. * intersection + smooth) / (K.sum(K.square(y_true),-1) + \ K.sum(K.square(y_pred),-1) + smooth) return 1 - dice_coef
11,871
def webdriver_init(mobile): """ Initialize a mobile/desktop web driver. This initialize a web driver with a default user agent regarding the mobile demand. Default uer agents are defined by MOBILE_USER_AGENT and DESKTOP_USER_AGENT. :param mobile: The mobile flag :type conn: bool :return: A web driver :rtype: WebDriver """ if mobile: return webdriver_init_with_caps(MOBILE_USER_AGENT) else: return webdriver_init_with_caps(DESKTOP_USER_AGENT)
11,872
def calculate_file_hash(f, alg, buf_size): """BUF_SIZE - 64 kb need for large file""" h = hashlib.new(alg) for chunk in iter(lambda: f.read(buf_size), b""): h.update(chunk) return h.hexdigest()
11,873
def update(A, B, DA, DB, f, k, delta_t): """Apply the Gray-Scott update formula""" # compute the diffusion part of the update diff_A = DA * apply_laplacian(A) diff_B = DB * apply_laplacian(B) # Apply chemical reaction reaction = A*B**2 diff_A -= reaction diff_B += reaction # Apply birth/death diff_A += f * (1-A) diff_B -= (k+f) * B A += diff_A * delta_t B += diff_B * delta_t return A, B
11,874
def sha512(data: typing.Optional[bytes] = None): """Returns a sha512 hash object; optionally initialized with a string.""" if data is None: return hashlib.sha512() return hashlib.sha512(data)
11,875
def delete_novel( id_or_url: str, novel_service: BaseNovelService = Provide[Application.services.novel_service], path_service: BasePathService = Provide[Application.services.path_service], ): """delete all records of novel. this includes chapters, and assets""" try: novel = cli_helpers.get_novel(id_or_url) except ValueError: sys.exit(1) logger.info(f"Deleting '{novel.title}' ({novel.id})…") novel_dir = path_service.novel_data_path(novel) if novel_dir.exists(): shutil.rmtree(novel_dir) logger.info( f"Deleted data of novel: {{data.dir}}/{path_service.relative_to_data_dir(novel_dir)}." ) novel_service.delete_novel(novel) logger.info("Deleted novel entry.")
11,876
def combine_small_file_to_big(): """Merge multiple csv into one based on header https://stackoverflow.com/questions/44791212/concatenating-multiple-csv-files-into-a-single-csv-with-the-same-header-python/44791368 """ #import csv files from folder path = r'./' allFiles = glob.glob(path + "/*.csv") allFiles.sort() # glob lacks reliable ordering, so impose your own if output order matters with open('combined_data.csv', 'wb') as outfile: for i, fname in enumerate(allFiles): with open(fname, 'rb') as infile: if i != 0: infile.readline() # Throw away header on all but first file # Block copy rest of file from input to output without parsing shutil.copyfileobj(infile, outfile) print(fname + " has been imported.")
11,877
def _circle_ci_pr(): """Get the current CircleCI pull request (if any). Returns: Optional[int]: The current pull request ID. """ try: return int(os.getenv(env.CIRCLE_CI_PR_NUM, '')) except ValueError: return None
11,878
def get_entropy_of_maxes(): """ Specialized code for retrieving guesses and confidence of largest model of each type from the images giving largest entropy. :return: dict containing the models predictions and confidence, as well as the correct label under "y". """ high_entropy_list = get_high_entropy_mnist_test() d = {} images = [] values = [] for i in high_entropy_list: images.append(i[0]) values.append(i[1]) d["y"] = np.array(values) d["d"] = [] d["f"] = [] model_paths = ["ffnn_models", "dropout_models"] for model in model_paths: pred = model_predictor(model + "/model_50000", np.array(images), np.array(values))[0] for i in pred: d[model[0]].append((np.argmax(i), i)) return d
11,879
def get_all_links() -> List[Dict[str, Any]]: """Returns all links as an iterator""" return get_entire_collection(LINKS_COLLECTION)
11,880
def agent(states, actions): """ creating a DNN using keras """ model = Sequential() model.add(Flatten(input_shape=(1, states))) model.add(Dense(24, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(actions, activation='linear')) return model
11,881
def search_configs(mwdb, formatter, query, limit): """ Search configs """ recent = islice(mwdb.search_configs(query), limit) formatter.print_list(recent, formatter.format_config_list)
11,882
def exercise_2(): """Get Variable Value""" price = 10 print(price)
11,883
def get_package_nvr_from_spec(spec_file): """ Return a list of the NVR required for a given spec file :param spec_file: The path to a spec file :type spec_file: str :return: list of nevra that should be built for that spec file :rtype: str """ # Get the dep name & version spec = rpm.spec(spec_file) package_nvr = spec.sourceHeader[rpm.RPMTAG_NVR] # split the dist from the end of the nvr package_nvr = package_nvr[:package_nvr.rfind('.')] return package_nvr
11,884
def rbo_ext(S, T, p): """Extrapolated RBO value as defined in equation (30). Implementation handles uneven lists but not ties. """ if len(S) > len(T): L, S = S, T else: L, S = T, S l, s = len(L), len(S) xl = overlap(L, S, l) xs = overlap(L, S, s) sum1 = sum(overlap(L, S, d) / d * p ** d for d in range(1, l + 1)) sum2 = sum(xs * (d - s) / (s * d) * p ** d for d in range(s + 1, l + 1)) return (1 - p) / p * (sum1 + sum2) + ((xl - xs) / l + xs / s) * p ** l
11,885
def index(request): """ View of index page """ title = _("Home") posts = Post.objects.all().order_by('-timestamp')[:5] return render(request, 'dashboard/index.html', locals())
11,886
def incremental_str_maker(str_format='{:03.f}'): """Make a function that will produce a (incrementally) new string at every call.""" i = 0 def mk_next_str(): nonlocal i i += 1 return str_format.format(i) return mk_next_str
11,887
def get_time_slider_range(highlighted=True, withinHighlighted=True, highlightedOnly=False): """Return the time range from Maya's time slider. Arguments: highlighted (bool): When True if will return a selected frame range (if there's any selection of more than one frame!) otherwise it will return min and max playback time. withinHighlighted (bool): By default Maya returns the highlighted range end as a plus one value. When this is True this will be fixed by removing one from the last number. Returns: list: List of two floats of start and end frame numbers. """ if highlighted is True: gPlaybackSlider = mel.eval("global string $gPlayBackSlider; " "$gPlayBackSlider = $gPlayBackSlider;") if cmds.timeControl(gPlaybackSlider, query=True, rangeVisible=True): highlightedRange = cmds.timeControl(gPlaybackSlider, query=True, rangeArray=True) if withinHighlighted: highlightedRange[-1] -= 1 return highlightedRange if not highlightedOnly: return [cmds.playbackOptions(query=True, minTime=True), cmds.playbackOptions(query=True, maxTime=True)]
11,888
def update_IW(hyp_D_prev, xikk, xk, Pik_old): """ Do an update of Norm-IW conjugate in an exponential form. """ suff_D = get_suff_IW_conj(xikk, xk, Pik_old) hyp_D = hyp_D_prev + suff_D Dik = get_E_IW_hyp(hyp_D) return Dik, hyp_D
11,889
def test_existing_path_FileLink(): """FileLink: Calling _repr_html_ functions as expected on existing filepath """ tf = NamedTemporaryFile() fl = display.FileLink(tf.name) actual = fl._repr_html_() expected = "<a href='files/%s' target='_blank'>%s</a><br>" % (tf.name,tf.name) nt.assert_equal(actual,expected)
11,890
def compute_state(observations, configuration): """ :param observations: :param configuration: :return StateTensor: """ StateTensorType = configuration.STATE_TYPE return StateTensorType([observations])
11,891
def supports_transfer_syntax(transfer_syntax: pydicom.uid.UID) -> bool: """Return ``True`` if the handler supports the `transfer_syntax`. Parameters ---------- transfer_syntax : uid.UID The Transfer Syntax UID of the *Pixel Data* that is to be used with the handler. """ return transfer_syntax in SUPPORTED_TRANSFER_SYNTAXES
11,892
def test_item_many(testapp, amount): """reStructuredText processor has to work with stream.""" stream = restructuredtext.process( testapp, [ holocron.Item( { "content": "the key is **%d**" % i, "destination": pathlib.Path("1.rst"), } ) for i in range(amount) ], ) assert isinstance(stream, collections.abc.Iterable) assert list(stream) == [ holocron.Item( { "content": "<p>the key is <strong>%d</strong></p>" % i, "destination": pathlib.Path("1.html"), } ) for i in range(amount) ]
11,893
def enhance_user(user, json_safe=False): """ Adds computed attributes to AD user results Args: user: A dictionary of user attributes json_safe: If true, converts binary data into base64, And datetimes into human-readable strings Returns: An enhanced dictionary of user attributes """ if "memberOf" in user.keys(): user["memberOf"] = sorted(user["memberOf"], key=lambda dn: dn.lower()) if "showInAddressBook" in user.keys(): user["showInAddressBook"] = sorted(user["showInAddressBook"], key=lambda dn: dn.lower()) if "lastLogonTimestamp" in user.keys(): user["lastLogonTimestamp"] = _get_last_logon(user["lastLogonTimestamp"]) if "lockoutTime" in user.keys(): user["lockoutTime"] = convert_ad_timestamp(user["lockoutTime"], json_safe=json_safe) if "pwdLastSet" in user.keys(): user["pwdLastSet"] = convert_ad_timestamp(user["pwdLastSet"], json_safe=json_safe) if "userAccountControl" in user.keys(): user["userAccountControl"] = int(user["userAccountControl"]) user["disabled"] = user["userAccountControl"] & 2 != 0 user["passwordExpired"] = user["userAccountControl"] & 8388608 != 0 user["passwordNeverExpires"] = user["userAccountControl"] & 65536 != 0 user["smartcardRequired"] = user["userAccountControl"] & 262144 != 0 if "whenCreated" in user.keys(): user["whenCreated"] = convert_ad_timestamp(user["whenCreated"], json_safe=json_safe) if "msExchRecipientTypeDetails" in user.keys(): user["msExchRecipientTypeDetails"] = int(user["msExchRecipientTypeDetails"]) user["remoteExchangeMailbox"] = user["msExchRecipientTypeDetails"] in remote_exchange_mailbox_values user["exchangeMailbox"] = user["msExchRecipientTypeDetails"] in exchange_mailbox_values.keys() if user["exchangeMailbox"]: user["exchangeMailboxType"] = exchange_mailbox_values[user["msExchRecipientTypeDetails"]] return user
11,894
def create_data(namespace_id, ocs_client): """Creates sample data for the script to use""" double_type = SdsType(id='doubleType', sdsTypeCode=SdsTypeCode.Double) datetime_type = SdsType( id='dateTimeType', sdsTypeCode=SdsTypeCode.DateTime) pressure_property = SdsTypeProperty(id='pressure', sdsType=double_type) temperature_property = SdsTypeProperty(id=SAMPLE_FIELD_TO_CONSOLIDATE_TO, sdsType=double_type) ambient_temperature_property = SdsTypeProperty(id=SAMPLE_FIELD_TO_CONSOLIDATE, sdsType=double_type) time_property = SdsTypeProperty(id='time', sdsType=datetime_type, isKey=True) sds_type_1 = SdsType( id=SAMPLE_TYPE_ID_1, description='This is a sample Sds type for storing Pressure type ' 'events for Data Views', sdsTypeCode=SdsTypeCode.Object, properties=[pressure_property, temperature_property, time_property]) sds_type_2 = SdsType( id=SAMPLE_TYPE_ID_2, description='This is a new sample Sds type for storing Pressure type ' 'events for Data Views', sdsTypeCode=SdsTypeCode.Object, properties=[pressure_property, ambient_temperature_property, time_property]) print('Creating SDS Types...') ocs_client.Types.getOrCreateType(namespace_id, sds_type_1) ocs_client.Types.getOrCreateType(namespace_id, sds_type_2) stream1 = SdsStream( id=SAMPLE_STREAM_ID_1, name=SAMPLE_STREAM_NAME_1, description='A Stream to store the sample Pressure events', typeId=SAMPLE_TYPE_ID_1) stream2 = SdsStream( id=SAMPLE_STREAM_ID_2, name=SAMPLE_STREAM_NAME_2, description='A Stream to store the sample Pressure events', typeId=SAMPLE_TYPE_ID_2) print('Creating SDS Streams...') ocs_client.Streams.createOrUpdateStream(namespace_id, stream1) ocs_client.Streams.createOrUpdateStream(namespace_id, stream2) sample_start_time = datetime.datetime.now() - datetime.timedelta(hours=1) sample_end_time = datetime.datetime.now() values1 = [] values2 = [] def value_with_time(timestamp, value, field_name, value2): """Formats a JSON data object""" return f'{{"time": "{timestamp}", "pressure": {str(value)}, "{field_name}": {str(value2)}}}' print('Generating values...') for i in range(1, 30, 1): timestamp = (sample_start_time + datetime.timedelta(minutes=i * 2) ).isoformat(timespec='seconds') val1 = value_with_time(timestamp, random.uniform( 0, 100), SAMPLE_FIELD_TO_CONSOLIDATE_TO, random.uniform(50, 70)) val2 = value_with_time(timestamp, random.uniform( 0, 100), SAMPLE_FIELD_TO_CONSOLIDATE, random.uniform(50, 70)) values1.append(val1) values2.append(val2) print('Sending values...') ocs_client.Streams.insertValues( namespace_id, SAMPLE_STREAM_ID_1, str(values1).replace("'", "")) ocs_client.Streams.insertValues( namespace_id, SAMPLE_STREAM_ID_2, str(values2).replace("'", "")) return (sample_start_time, sample_end_time)
11,895
def bootstrap_aws(c): """Bootstrap AWS account for use with cdk.""" c.run("cdk bootstrap aws://$AWS_ACCOUNT/$AWS_DEFAULT_REGION")
11,896
def enhanced_feature_extractor_digit(datum): """Feature extraction playground for digits. You should return a util.Counter() of features for this datum (datum is of type samples.Datum). ## DESCRIBE YOUR ENHANCED FEATURES HERE... """ features = basic_feature_extractor_digit(datum) "*** YOUR CODE HERE ***" util.raise_not_defined() return features
11,897
def train_8x8_digits(p=0.9, h=None, noise_strength=0, n_images=2, plot_cve=False): """ Built in autoencoder training and image showing. Uses mnist 8x8 digits. Change noise strength to a value between 0 and 1 to add noise to the test samples. :param p: Total Variance Explained to be used :param h: Number of primary components wanted to be used. If left blank or None, it is found using p. :param noise_strength: Strength of the noise added to the test signal. Use a value between 0 and 1. Recommended between 0.001 and 0.1 anything greater will not be recognizable :param n_images: Amount of images to be shown :param plot_cev: If true, plots the Cumulative Explained Variance vs Number of principle components """ training_samples, training_y, test_samples, test_y, image_shape = load_8x8_digits() auto = autoencoder.autoencoder() auto.pca_train(samples=training_samples, p=p, h=h) if noise_strength != 0: test_samples = add_noise(test_samples, strength=noise_strength) auto.encode(test_samples=test_samples) auto.decode() random_indexes = sample(range(0, len(test_samples)), n_images) for i in random_indexes: plt.subplot(1, 2, 1) plt.title('Test Sample: ' + str(test_y[i])) plt.imshow(test_samples[i].reshape(image_shape), cmap='gray') plt.subplot(1, 2, 2) plt.title('Decoded Sample: ' + str(test_y[i])) plt.imshow(auto.decoded_data[i].reshape(image_shape), cmap='gray') plt.show() if plot_cve: auto.plot_cve()
11,898
def test(): """Run tests""" install() test_setup() sh("%s %s" % (PYTHON, TEST_SCRIPT))
11,899