content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def version_callback(
value: Optional[bool],
) -> None: # pylint: disable=unsubscriptable-object
"""Provides a version option for the CLI"""
if value:
console.print(
f"{app.info.name.title()} " # type: ignore[union-attr]
f"CLI version: {__version__}"
)
raise typer.Exit()
| 11,700
|
def create_schema(hostname='localhost', username=None, password=None,
dbname=None, port=None, schema_name=None):
"""Create test schema."""
cn = create_cn(hostname, password, username, dbname, port)
with cn.cursor() as cr:
cr.execute('DROP SCHEMA IF EXISTS %s CASCADE' % dbname)
cr.execute('CREATE SCHEMA %s' % dbname)
cn.close()
cn = create_cn(hostname, password, username, dbname, port)
return cn
| 11,701
|
def test_load_no_project():
"""Loading a project that does not exist throws an error"""
assert_raises(Exception, inventory.load, PROJECT_NAME)
| 11,702
|
def set_color_in_session(intent, session):
""" Sets the color in the session and prepares the speech to reply to the
user.
"""
card_title = intent['name']
session_attributes = {}
should_end_session = False
if 'Color' in intent['slots']:
favorite_color = intent['slots']['Color']['value']
session_attributes = create_favorite_color_attributes(favorite_color)
speech_output = "I now know the bus stop you are in is " + \
favorite_color + \
". You can ask me where your bus stop is by asking, " \
"what bus stop am I on?"
reprompt_text = "You can ask me where your bus stop is by asking, " \
"what bus stop am I on?"
else:
speech_output = "I'm not sure what bus stop you are in. " \
"Please try again."
reprompt_text = "I'm not sure what bus stop you are in " \
"You can ask me where your bus stop is by asking, " \
"what bus stop am I on?"
return build_response(session_attributes, build_speechlet_response(
card_title, speech_output, reprompt_text, should_end_session))
| 11,703
|
def fpath_to_pgn(fpath):
"""Slices the pgn string from file path.
"""
return fpath.split('/')[-1].split('.jpeg')[0]
| 11,704
|
def scheduler():
"""
The scheduler operation command group.
"""
pass
| 11,705
|
def draw_kinetics_plots(rxn_list, path=None, t_min=(300, 'K'), t_max=(3000, 'K'), t_count=50):
"""
Draws plots of calculated rates and RMG's best values for reaction rates in rxn_list
`rxn_list` has a .kinetics attribute calculated by ARC and an .rmg_reactions list with RMG rates
"""
plt.style.use(str('seaborn-talk'))
t_min = ScalarQuantity(value=t_min[0], units=str(t_min[1]))
t_max = ScalarQuantity(value=t_max[0], units=str(t_max[1]))
temperature = np.linspace(t_min.value_si, t_max.value_si, t_count)
pressure = 1e7 # Pa (=100 bar)
pp = None
if path is not None:
path = os.path.join(path, str('rate_plots.pdf'))
if os.path.exists(path):
os.remove(path)
pp = PdfPages(path)
for rxn in rxn_list:
reaction_order = len(rxn.reactants)
units = ''
conversion_factor = {1: 1, 2: 1e6, 3: 1e12}
if reaction_order == 1:
units = r' (s$^-1$)'
elif reaction_order == 2:
units = r' (cm$^3$/(mol s))'
elif reaction_order == 3:
units = r' (cm$^6$/(mol$^2$ s))'
arc_k = list()
for t in temperature:
arc_k.append(rxn.kinetics.getRateCoefficient(t, pressure) * conversion_factor[reaction_order])
rmg_rxns = list()
for rmg_rxn in rxn.rmg_reactions:
rmg_rxn_dict = dict()
rmg_rxn_dict['rmg_rxn'] = rmg_rxn
rmg_rxn_dict['t_min'] = rmg_rxn.kinetics.Tmin if rmg_rxn.kinetics.Tmin is not None else t_min
rmg_rxn_dict['t_max'] = rmg_rxn.kinetics.Tmax if rmg_rxn.kinetics.Tmax is not None else t_max
k = list()
temp = np.linspace(rmg_rxn_dict['t_min'].value_si, rmg_rxn_dict['t_max'].value_si, t_count)
for t in temp:
k.append(rmg_rxn.kinetics.getRateCoefficient(t, pressure) * conversion_factor[reaction_order])
rmg_rxn_dict['k'] = k
rmg_rxn_dict['T'] = temp
if rmg_rxn.kinetics.isPressureDependent():
rmg_rxn.comment += str(' (at {0} bar)'.format(int(pressure / 1e5)))
rmg_rxn_dict['label'] = rmg_rxn.comment
rmg_rxns.append(rmg_rxn_dict)
_draw_kinetics_plots(rxn.label, arc_k, temperature, rmg_rxns, units, pp)
pp.close()
| 11,706
|
def create_germline_samples_file(germline_samples_filepath, inputdata_symlinks):
"""
Writes a file to disk mapping patient IDs to the directories containing their data.
Side effects: Writes a file to disk
:param germline_samples_filepath: str Path to write out germline samples file
:param inputdata_symlinks: list Relative paths to all symlinks linked to the original data
"""
# Create a dictionary mapping the relative path of the parent folder with each file
inputdata_symlinks_dir_file_map = {
os.path.dirname(k) + '/': os.path.basename(k)
for k in inputdata_symlinks
}
with open(germline_samples_filepath, 'w') as germline_samples:
# Write out the header
germline_samples.write('ID dir\n')
# Write out entry for each patient path
for inputdata_dir, inputdata_file in six.iteritems(inputdata_symlinks_dir_file_map):
# TODO Remove trailing slash after debugging
germline_samples.write('{id} {dir}/\n'.format(
id=os.path.splitext(inputdata_file)[ROOT],
dir=inputdata_dir
))
| 11,707
|
def convert_to_constant(num):
"""
Convert one float argument to Constant, returning the converted object.
:param float num:
Float number to be converted to Constant
:return:
Float number converted to a Constant object
:rtype: object
"""
return Constant(name=str(num), units = null_dimension, value = float(num) )
| 11,708
|
def data_zip(data):
"""
输入数据,返回一个拼接了子项的列表,如([1,2,3], [4,5,6]) -> [[1,4], [2,5], [3,6]]
{"a":[1,2],"b":[3,4]} -> [{"a":1,"b":3}, {"a":2,"b":4}]
:param data: 数组 data
元组 (x, y,...)
字典 {"a":data1, "b":data2,...}
:return: 列表或数组
"""
if isinstance(data, tuple):
return [list(d) for d in zip(*data)]
if isinstance(data, dict):
data_list = []
keys = data.keys()
for i in range(len(data[list(keys)[0]])): # 迭代字典值中的数据
data_dict = {}
for key in keys:
data_dict[key] = data[key][i]
data_list.append(data_dict)
return data_list
return data
| 11,709
|
def _days_in_leap_and_common_years(i_date, f_date):
"""Return the a tuple with number of days in common and leap years (respectively) between initial and final dates.
"""
iy = i_date.year
fy = f_date.year
days_in_leap = 0
days_in_common = 0
if iy == fy:
# same year
delta = f_date - i_date
if _isleap(iy):
days_in_leap += delta.days
else:
days_in_common += delta.days
elif fy - iy >= 1:
# different year
delta1 = i_date.replace(year = iy+1, month=1, day=1) - i_date # days in initial year
delta2 = f_date - f_date.replace(month=1, day=1) # days in final year
if _isleap(iy):
days_in_leap += delta1.days
else:
days_in_common += delta1.days
if _isleap(fy):
days_in_leap += delta2.days
else:
days_in_common += delta2.days
leaps_in_between = [y for y in range(iy+1, fy) if _isleap(y)]
commons_in_between = [y for y in range(iy+1, fy) if not(_isleap(y))]
days_in_leap += len(leaps_in_between) * 366
days_in_common += len(commons_in_between) * 365
#else:
#raise InputError(expr = "Error in days_in_years(), f_date.year must be greater than i_date.year")
return (days_in_leap, days_in_common)
| 11,710
|
async def save_on_shutdown(
app: aiohttp.web.Application
) -> None:
"""Flush the database on shutdown."""
if app["db_conn"] is not None:
await app["db_conn"].close()
| 11,711
|
def make_space_kernel(data, background_kernel, trigger_kernel, time,
time_cutoff=None, space_cutoff=None):
"""Produce a kernel object which evaluates the background kernel, and
the trigger kernel based on the space locations in the data, always using
the fixed time as passed in.
:param data: An array of shape `(3,N)` giving the space-time locations
events. Used when computing the triggered / aftershock events.
:param background_kernel: The kernel object giving the background risk
intensity. We assume this has a method `space_kernel` which gives just
the two dimensional spacial kernel.
:param trigger_kernel: The kernel object giving the trigger / aftershock
risk intensity.
:param time: The fixed time coordinate to evaluate at.
:param time_cutoff: Optional; if set, then we assume the trigger_kernel is
zero for times greater than this value (to speed up evaluation).
:param space_cutoff: Optional; if set, then we assume the trigger_kernel is
zero for space distances greater than this value (to speed up evaluation).
:return: A kernel object which can be called on arrays of (2 dimensional
space) points.
"""
mask = data[0] < time
if time_cutoff is not None:
mask = mask & (data[0] > time - time_cutoff)
data_copy = _np.array(data[:, mask])
return SpaceKernel(time, background_kernel, trigger_kernel, data_copy, space_cutoff)
| 11,712
|
def send_gmail(from_addr, id_rsa_file, passwd_rsa_file, msg):
"""Send email via gmail
"""
try:
s = smtplib.SMTP('smtp.gmail.com',587)
s.ehlo()
s.starttls()
s.ehlo()
### login to gmail with gmail account 'from_addr' and with decripted password file
s.login(from_addr, dec_pass(id_rsa_file, passwd_rsa_file))
s.send_message(msg)
s.close()
except:
print('Email error occured. Email was not able to send.')
| 11,713
|
def get_dim_act_curv(args):
"""
Helper function to get dimension and activation at every layer.
:param args:
:return:
"""
if not args.act:
act = lambda x: x
else:
act = getattr(F, args.act)
acts = [act] * (args.num_layers - 1)
dims = [args.feat_dim]
# Check layer_num and hdden_dim match
if args.num_layers > 1:
hidden_dim = [int(h) for h in args.hidden_dim.split(',')]
if args.num_layers != len(hidden_dim) + 1:
raise RuntimeError('Check dimension hidden:{}, num_layers:{}'.format(args.hidden_dim, args.num_layers) )
dims = dims + hidden_dim
dims += [args.dim]
acts += [act]
n_curvatures = args.num_layers
if args.c_trainable == 1: # NOTE : changed from # if args.c is None:
# create list of trainable curvature parameters
curvatures = [nn.Parameter(torch.Tensor([args.c]).to(args.device)) for _ in range(n_curvatures)]
else:
# fixed curvature
curvatures = [torch.tensor([args.c]) for _ in range(n_curvatures)]
if not args.cuda == -1:
curvatures = [curv.to(args.device) for curv in curvatures]
return dims, acts, curvatures
| 11,714
|
def debug():
"""
Function to return exported resources with types as dict.
"""
return exported_res_dict
| 11,715
|
def write_charset_executable(mysql_charset_script_name, here):
"""Write to disk as an executable the file that will be used to issue the MySQL
statements that change the character set to UTF-8 -- return the absolute path.
"""
mysql_charset_script = os.path.join(here, mysql_charset_script_name)
if not os.path.exists(mysql_charset_script):
with open(mysql_charset_script, 'w') as f:
pass
os.chmod(mysql_charset_script, 0744)
return mysql_charset_script
| 11,716
|
def readTemperature(file):
"""
Returns the temperature of the one wire sensor.
Pass in the file containing the one wire data (ds18b20+)
"""
lines = read_temp_raw(file)
while lines[0].strip()[-3:] != "YES":
time.sleep(0.2)
lines = read_temp_raw(file)
equals_pos = lines[1].find("t=")
if equals_pos != -1:
temp_string = lines[1][equals_pos + 2:]
# convert temperature to C
temp_c = float(temp_string) / 1000.0
return temp_c
return -273.15
| 11,717
|
def test_receipt():
"""
Test event receipt message and attached couplets
"""
# manual process to generate a list of secrets
# root = pysodium.randombytes(pysodium.crypto_pwhash_SALTBYTES)
# secrets = generateSecrets(root=root, count=8)
# Direct Mode coe is controller, val is validator
# set of secrets (seeds for private keys)
coeSecrets = [
'ArwXoACJgOleVZ2PY7kXn7rA0II0mHYDhc6WrBH8fDAc',
'A6zz7M08-HQSFq92sJ8KJOT2cZ47x7pXFQLPB0pckB3Q',
'AcwFTk-wgk3ZT2buPRIbK-zxgPx-TKbaegQvPEivN90Y',
'Alntkt3u6dDgiQxTATr01dy8M72uuaZEf9eTdM-70Gk8',
'A1-QxDkso9-MR1A8rZz_Naw6fgaAtayda8hrbkRVVu1E',
'AKuYMe09COczwf2nIoD5AE119n7GLFOVFlNLxZcKuswc',
'AxFfJTcSuEE11FINfXMqWttkZGnUZ8KaREhrnyAXTsjw',
'ALq-w1UKkdrppwZzGTtz4PWYEeWm0-sDHzOv5sq96xJY'
]
# create signers
coeSigners = [Signer(qb64=secret) for secret in coeSecrets]
assert [signer.qb64 for signer in coeSigners] == coeSecrets
# set of secrets (seeds for private keys)
valSecrets = ['AgjD4nRlycmM5cPcAkfOATAp8wVldRsnc9f1tiwctXlw',
'AKUotEE0eAheKdDJh9QvNmSEmO_bjIav8V_GmctGpuCQ',
'AK-nVhMMJciMPvmF5VZE_9H-nhrgng9aJWf7_UHPtRNM',
'AT2cx-P5YUjIw_SLCHQ0pqoBWGk9s4N1brD-4pD_ANbs',
'Ap5waegfnuP6ezC18w7jQiPyQwYYsp9Yv9rYMlKAYL8k',
'Aqlc_FWWrxpxCo7R12uIz_Y2pHUH2prHx1kjghPa8jT8',
'AagumsL8FeGES7tYcnr_5oN6qcwJzZfLKxoniKUpG4qc',
'ADW3o9m3udwEf0aoOdZLLJdf1aylokP0lwwI_M2J9h0s']
# create signers
valSigners = [Signer(qb64=secret) for secret in valSecrets]
assert [signer.qb64 for signer in valSigners] == valSecrets
# create receipt signer prefixer default code is non-transferable
valSigner = Signer(qb64=valSecrets[0], transferable=False)
valPrefixer = Prefixer(qb64=valSigner.verfer.qb64)
assert valPrefixer.code == MtrDex.Ed25519N
valpre = valPrefixer.qb64
assert valpre == 'B8KY1sKmgyjAiUDdUBPNPyrSz_ad_Qf9yzhDNZlEKiMc'
with openDB(name="controller") as coeLogger, openDB(name="validator") as valLogger:
coeKevery = Kevery(db=coeLogger)
valKevery = Kevery(db=valLogger)
event_digs = [] # list of event digs in sequence to verify against database
# create event stream
kes = bytearray()
sn = esn = 0 # sn and last establishment sn = esn
# create receipt msg stream
res = bytearray()
# Event 0 Inception Transferable (nxt digest not empty)
serder = incept(keys=[coeSigners[esn].verfer.qb64],
nxt=Nexter(keys=[coeSigners[esn + 1].verfer.qb64]).qb64)
assert sn == int(serder.ked["s"], 16) == 0
coepre = serder.ked["i"]
assert coepre == 'DSuhyBcPZEZLK-fcw5tzHn2N46wRCG_ZOoeKtWTOunRA'
event_digs.append(serder.said)
# create sig counter
counter = Counter(CtrDex.ControllerIdxSigs) # default is count = 1
# sign serialization
siger = coeSigners[esn].sign(serder.raw, index=0) # return Siger if index
# attach to key event stream
kes.extend(serder.raw)
kes.extend(counter.qb64b)
kes.extend(siger.qb64b)
# make copy of kes so can use again for valKevery
parsing.Parser().parse(ims=bytearray(kes), kvy=coeKevery)
# coeKevery.process(ims=bytearray(kes)) # create Kever using Kevery
coeKever = coeKevery.kevers[coepre]
assert coeKever.prefixer.qb64 == coepre
assert coeKever.serder.raw == serder.raw
parsing.Parser().parse(ims=kes, kvy=valKevery)
# valKevery.process(ims=kes) # process by Val
assert coepre in valKevery.kevers
valKever = valKevery.kevers[coepre]
assert len(kes) == 0
# create receipt from val to coe
reserder = receipt(pre=coeKever.prefixer.qb64,
sn=coeKever.sn,
said=coeKever.serder.saider.qb64)
# sign event not receipt
valCigar = valSigner.sign(ser=serder.raw) # returns Cigar cause no index
assert valCigar.qb64 == \
'0BbUeX7VXSTUMbR3f5nPRqVZTJ04RuzzbgyE6780JATE9dS2xxPDk2piRMkNzanS6NXP8TioMMiGELLsSGIV87CA'
recnt = Counter(code=CtrDex.NonTransReceiptCouples, count=1)
assert recnt.qb64 == '-CAB'
res.extend(reserder.raw)
res.extend(recnt.qb64b)
res.extend(valPrefixer.qb64b)
res.extend(valCigar.qb64b)
assert res == bytearray(b'{"v":"KERI10JSON000091_","t":"rct","d":"EG4EuTsxPiRM7soX10XXzNsS'
b'1KqXKUp8xsQ-kW_tWHoI","i":"DSuhyBcPZEZLK-fcw5tzHn2N46wRCG_ZOoeKt'
b'WTOunRA","s":"0"}-CABB8KY1sKmgyjAiUDdUBPNPyrSz_ad_Qf9yzhDNZlEKiM'
b'c0BbUeX7VXSTUMbR3f5nPRqVZTJ04RuzzbgyE6780JATE9dS2xxPDk2piRMkNzan'
b'S6NXP8TioMMiGELLsSGIV87CA')
parsing.Parser().parse(ims=res, kvy=coeKevery)
# coeKevery.process(ims=res) # coe process the receipt from val
# check if in receipt database
result = coeKevery.db.getRcts(key=dgKey(pre=coeKever.prefixer.qb64,
dig=coeKever.serder.saider.qb64))
assert bytes(result[0]) == valPrefixer.qb64b + valCigar.qb64b
assert len(result) == 1
# create invalid receipt to escrow use invalid dig and sn so not in db
fake = reserder.said # some other dig
reserder = receipt(pre=coeKever.prefixer.qb64,
sn=2,
said=fake)
# sign event not receipt
valCigar = valSigner.sign(ser=serder.raw) # returns Cigar cause no index
recnt = Counter(code=CtrDex.NonTransReceiptCouples, count=1)
# attach to receipt msg stream
res.extend(reserder.raw)
res.extend(recnt.qb64b)
res.extend(valPrefixer.qb64b)
res.extend(valCigar.qb64b)
parsing.Parser().parse(ims=res, kvy=coeKevery)
# coeKevery.process(ims=res) # coe process the escrow receipt from val
# check if in escrow database
result = coeKevery.db.getUres(key=snKey(pre=coeKever.prefixer.qb64,
sn=2))
assert bytes(result[0]) == fake.encode("utf-8") + valPrefixer.qb64b + valCigar.qb64b
# create invalid receipt stale use valid sn so in database but invalid dig
# so bad receipt
fake = coring.Diger(qb64="E-dapdcC6XR1KWmWDsNl4J_OxcGxNZw1Xd95JH5a34fI").qb64
reserder = receipt(pre=coeKever.prefixer.qb64,
sn=coeKever.sn,
said=fake)
# sign event not receipt
valCigar = valSigner.sign(ser=serder.raw) # returns Cigar cause no index
recnt = Counter(code=CtrDex.NonTransReceiptCouples, count=1)
# attach to receipt msg stream
res.extend(reserder.raw)
res.extend(recnt.qb64b)
res.extend(valPrefixer.qb64b)
res.extend(valCigar.qb64b)
parsing.Parser().parseOne(ims=res, kvy=coeKevery)
# coeKevery.processOne(ims=res) # coe process the escrow receipt from val
# no new receipt at valid dig
result = coeKevery.db.getRcts(key=dgKey(pre=coeKever.prefixer.qb64,
dig=coeKever.serder.saider.qb64))
assert len(result) == 1
# no new receipt at invalid dig
result = coeKevery.db.getRcts(key=dgKey(pre=coeKever.prefixer.qb64,
dig=fake))
assert not result
# Next Event Rotation Transferable
sn += 1
esn += 1
assert sn == esn == 1
serder = rotate(pre=coeKever.prefixer.qb64,
keys=[coeSigners[esn].verfer.qb64],
dig=coeKever.serder.saider.qb64,
nxt=Nexter(keys=[coeSigners[esn + 1].verfer.qb64]).qb64,
sn=sn)
event_digs.append(serder.said)
# create sig counter
counter = Counter(CtrDex.ControllerIdxSigs) # default is count = 1
# sign serialization
siger = coeSigners[esn].sign(serder.raw, index=0) # returns siger
# extend key event stream
kes.extend(serder.raw)
kes.extend(counter.qb64b)
kes.extend(siger.qb64b)
parsing.Parser().parse(ims=bytearray(kes), kvy=coeKevery)
# coeKevery.process(ims=bytearray(kes)) # update key event verifier state
parsing.Parser().parse(ims=kes, kvy=valKevery)
# valKevery.process(ims=kes)
# Next Event Interaction
sn += 1 # do not increment esn
assert sn == 2
assert esn == 1
serder = interact(pre=coeKever.prefixer.qb64,
dig=coeKever.serder.saider.qb64,
sn=sn)
event_digs.append(serder.said)
# create sig counter
counter = Counter(CtrDex.ControllerIdxSigs) # default is count = 1
# sign serialization
siger = coeSigners[esn].sign(serder.raw, index=0)
# extend key event stream
kes.extend(serder.raw)
kes.extend(counter.qb64b)
kes.extend(siger.qb64b)
parsing.Parser().parse(ims=bytearray(kes), kvy=coeKevery)
# coeKevery.process(ims=bytearray(kes)) # update key event verifier state
parsing.Parser().parse(ims=kes, kvy=valKevery)
# valKevery.process(ims=kes)
# Next Event Rotation Transferable
sn += 1
esn += 1
assert sn == 3
assert esn == 2
serder = rotate(pre=coeKever.prefixer.qb64,
keys=[coeSigners[esn].verfer.qb64],
dig=coeKever.serder.saider.qb64,
nxt=Nexter(keys=[coeSigners[esn + 1].verfer.qb64]).qb64,
sn=sn)
event_digs.append(serder.said)
# create sig counter
counter = Counter(CtrDex.ControllerIdxSigs) # default is count = 1
# sign serialization
siger = coeSigners[esn].sign(serder.raw, index=0)
# extend key event stream
kes.extend(serder.raw)
kes.extend(counter.qb64b)
kes.extend(siger.qb64b)
parsing.Parser().parse(ims=bytearray(kes), kvy=coeKevery)
# coeKevery.process(ims=bytearray(kes)) # update key event verifier state
parsing.Parser().parse(ims=kes, kvy=valKevery)
# valKevery.process(ims=kes)
# Next Event Interaction
sn += 1 # do not increment esn
assert sn == 4
assert esn == 2
serder = interact(pre=coeKever.prefixer.qb64,
dig=coeKever.serder.saider.qb64,
sn=sn)
event_digs.append(serder.said)
# create sig counter
counter = Counter(CtrDex.ControllerIdxSigs) # default is count = 1
# sign serialization
siger = coeSigners[esn].sign(serder.raw, index=0)
# extend key event stream
kes.extend(serder.raw)
kes.extend(counter.qb64b)
kes.extend(siger.qb64b)
parsing.Parser().parse(ims=bytearray(kes), kvy=coeKevery)
# coeKevery.process(ims=bytearray(kes)) # update key event verifier state
parsing.Parser().parse(ims=kes, kvy=valKevery)
# valKevery.process(ims=kes)
# Next Event Interaction
sn += 1 # do not increment esn
assert sn == 5
assert esn == 2
serder = interact(pre=coeKever.prefixer.qb64,
dig=coeKever.serder.saider.qb64,
sn=sn)
event_digs.append(serder.said)
# create sig counter
counter = Counter(CtrDex.ControllerIdxSigs) # default is count = 1
# sign serialization
siger = coeSigners[esn].sign(serder.raw, index=0)
# extend key event stream
kes.extend(serder.raw)
kes.extend(counter.qb64b)
kes.extend(siger.qb64b)
parsing.Parser().parse(ims=bytearray(kes), kvy=coeKevery)
# coeKevery.process(ims=bytearray(kes)) # update key event verifier state
parsing.Parser().parse(ims=kes, kvy=valKevery)
# valKevery.process(ims=kes)
# Next Event Interaction
sn += 1 # do not increment esn
assert sn == 6
assert esn == 2
serder = interact(pre=coeKever.prefixer.qb64,
dig=coeKever.serder.saider.qb64,
sn=sn)
event_digs.append(serder.said)
# create sig counter
counter = Counter(CtrDex.ControllerIdxSigs) # default is count = 1
# sign serialization
siger = coeSigners[esn].sign(serder.raw, index=0)
# extend key event stream
kes.extend(serder.raw)
kes.extend(counter.qb64b)
kes.extend(siger.qb64b)
parsing.Parser().parse(ims=bytearray(kes), kvy=coeKevery)
# coeKevery.process(ims=bytearray(kes)) # update key event verifier state
parsing.Parser().parse(ims=kes, kvy=valKevery)
# valKevery.process(ims=kes)
assert coeKever.verfers[0].qb64 == coeSigners[esn].verfer.qb64
db_digs = [bytes(val).decode("utf-8") for val in coeKever.db.getKelIter(coepre)]
assert len(db_digs) == len(event_digs) == 7
assert valKever.sn == coeKever.sn
assert valKever.verfers[0].qb64 == coeKever.verfers[0].qb64 == coeSigners[esn].verfer.qb64
assert not os.path.exists(valKevery.db.path)
assert not os.path.exists(coeKever.db.path)
""" Done Test """
| 11,718
|
def layernorm_backward(dout, cache):
"""
Backward pass for layer normalization.
For this implementation, you can heavily rely on the work you've done already
for batch normalization.
Inputs:
- dout: Upstream derivatives, of shape (N, D)
- cache: Variable of intermediates from layernorm_forward.
Returns a tuple of:
- dx: Gradient with respect to inputs x, of shape (N, D)
- dgamma: Gradient with respect to scale parameter gamma, of shape (D,)
- dbeta: Gradient with respect to shift parameter beta, of shape (D,)
"""
dx, dgamma, dbeta = None, None, None
###########################################################################
# TODO: Implement the backward pass for layer norm. #
# #
# HINT: this can be done by slightly modifying your training-time #
# implementation of batch normalization. The hints to the forward pass #
# still apply! #
###########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
x, x_norm, mu, sigma2, gamma = cache
D, N = x_norm.shape
x_mean0 = x - mu
dgamma = sum(dout*x_norm)
dbeta = sum(dout)
dx_norm = dout * gamma
dx_norm = dx_norm.T
x_norm = x_norm.T
#dsigma2 = -0.5*sum(dx_norm*x_norm/sigma2)
dsigma2 = -0.5*sum(dx_norm * x_mean0)* (sigma2**-1.5)
dmu = - sum(dx_norm / np.sqrt(sigma2)) - 2* dsigma2 * np.mean(x_mean0)
dx = (dx_norm/np.sqrt(sigma2)) + (dsigma2*2*x_mean0/N) + (dmu/N)
dx =dx.T
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
###########################################################################
# END OF YOUR CODE #
###########################################################################
return dx, dgamma, dbeta
| 11,719
|
def energyAct(
grid, deltaE, xA, yA, zA, xB, yB, zB, temp, eList, i, dimensions):
"""Perform swap or not, based on deltaE value"""
kB = 8.617332e-5 # boltzmann constant, w/ ~eV units
kTemp = kB * temp
if deltaE <= 0: # Swap lowers energy, therefore is favourable,
# so perform swap in grid
grid = performSwap(grid, xA, yA, zA, xB, yB, zB, dimensions)
eList[i + 1] = eList[i] + deltaE
else: # i.e. deltaE > 0:
if temp == 0:
thermalEnergy = 0
else:
thermalEnergy = exp((-1 * deltaE) / (kTemp))
R = randint(0, 1000) / 1000
if thermalEnergy > R:
grid = performSwap(grid, xA, yA, zA, xB, yB, zB, dimensions)
eList[i + 1] = eList[i] + deltaE
else:
eList[i + 1] = eList[i]
return grid, eList
| 11,720
|
def submit_job(name, index, script_path):
"""
Function that writes the submission settings in the sge files
inputs:
- name: Computations to run names (list)
- script_path: Path to the created SGE scripts (string)
outputs:
- The function has no outputs
"""
print ("Launching computation: %s" %(name[index]))
| 11,721
|
def lambda_handler(event, context):
"""
Lambda function that transforms input data and stores inital DB entry
Parameters
----------
event: dict, required
context: object, required Lambda Context runtime methods and attributes
Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
Returns
------
Lambda Output Format: dict
"""
log.log_request_and_context(event, context)
labeling_jobs = event["labelingJobs"]
batch_id = event["batchId"]
error_message = ""
"""
Example database entry input for batch
{
"BatchCurrentStep": "INPUT",
"BatchId": "notebook-test-08f874a7",
"BatchMetadataType": "INPUT",
"BatchStatus": "INTERNAL_ERROR",
"LabelingJobs": [
{
"inputConfig": {
"inputManifestS3Uri": "s3://smgt-qa-batch-input-468814823616-us-east-1/two-frame-manifest.manifest"
},
"jobLevel": 1,
"jobModality": "PointCloudObjectDetectionAudit",
"jobName": "notebook-test-08f874a7-first-level",
"jobType": "BATCH",
"labelCategoryConfigS3Uri": "s3://smgt-qa-batch-input-468814823616-us-east-1/first-level-label-category-file.json",
"maxConcurrentTaskCount": 1,
"taskAvailabilityLifetimeInSeconds": 864000,
"taskTimeLimitInSeconds": 604800,
"workteamArn": "arn:aws:sagemaker:us-east-1:468814823616:workteam/private-crowd/first-level"
},
{
"inputConfig": {
"chainFromJobName": "notebook-test-08f874a7-first-level"
},
"jobLevel": 2,
"jobModality": "PointCloudObjectDetectionAudit",
"jobName": "notebook-test-08f874a7-second-level",
"jobType": "BATCH",
"maxConcurrentTaskCount": 1,
"taskAvailabilityLifetimeInSeconds": 864000,
"taskTimeLimitInSeconds": 604800,
"workteamArn": "arn:aws:sagemaker:us-east-1:468814823616:workteam/private-crowd/first-level"
}
]
}
"""
db.insert_transformed_input_batch_metadata(
batch_id=batch_id,
batch_current_step=BatchCurrentStep.INPUT,
batch_status=BatchStatus.IN_PROGRESS,
batch_metadata_type=BatchMetadataType.INPUT,
error_message=error_message,
labeling_jobs=labeling_jobs,
)
return {
"batch_id": batch_id,
}
| 11,722
|
def test_well_rows(experiment):
"""Test experiment well rows."""
rows = [0]
assert experiment.well_rows == rows
| 11,723
|
def getModCase(s, mod):
"""Checks the state of the shift and caps lock keys, and switches the case of the s string if needed."""
if bool(mod & KMOD_RSHIFT or mod & KMOD_LSHIFT) ^ bool(mod & KMOD_CAPS):
return s.swapcase()
else:
return s
| 11,724
|
def plot_D_dt_histogram(all_samples, lens_i=0, true_D_dt=None, save_dir='.'):
"""Plot the histogram of D_dt samples, overlaid with a Gaussian fit and truth D_dt
all_samples : np.array
D_dt MCMC samples
"""
bin_heights, bin_borders, _ = plt.hist(all_samples, bins=200, alpha=0.5, density=True, edgecolor='k', color='tab:blue', range=[0.0, 15000.0])
bin_centers = bin_borders[:-1] + np.diff(bin_borders) / 2
# Compute the mode and std for lognormal
lognorm_stats = h0_utils.get_lognormal_stats(all_samples)
mu = lognorm_stats['mu']
sigma = lognorm_stats['sigma']
mode = lognorm_stats['mode']
std = lognorm_stats['std']
popt = [mu, sigma]
#x_interval_for_fit = np.linspace(bin_borders[0], bin_borders[-1], 10000)
x_interval_for_fit = np.linspace(bin_centers[0], bin_centers[-1], 1000)
# Overlay the fit gaussian pdf
plt.plot(x_interval_for_fit, lognormal(x_interval_for_fit, *popt), color='k', label='fit: mode={:0.1f}, std={:0.1f}'.format(mode, std))
if save_dir is not None:
if true_D_dt is not None:
plt.axvline(x=true_D_dt, linestyle='--', color='red', label='truth')
plt.xlabel(r'$D_{{\Delta t}}$ (Mpc)')
plt.ylabel('density')
plt.title(r'$D_{{\Delta t}}$ posterior for lens {0:04d}'.format(lens_i))
plt.legend()
save_path = os.path.join(save_dir, 'D_dt_histogram_{0:04d}.png'.format(lens_i))
plt.savefig(save_path)
plt.close()
return mu, sigma
| 11,725
|
def should_see_link(self, link_url):
"""Assert a link with the provided URL is visible on the page."""
elements = ElementSelector(
world.browser,
str('//a[@href="%s"]' % link_url),
filter_displayed=True,
)
if not elements:
raise AssertionError("Expected link not found.")
| 11,726
|
def try_provider(package, provider, domain):
"""Try using a provider."""
downloaded_file = None
data = None
apk_name = f'{package}.apk'
temp_file = Path(gettempdir()) / apk_name
link = find_apk_link(provider, domain)
if link:
downloaded_file = download_file(link, temp_file)
if downloaded_file:
data = add_apk(downloaded_file, apk_name)
if data:
return data
return None
| 11,727
|
def acquire_patents():
"""
from search terms
get search results as a dataframe
save to program_generated
"""
work_completed('acquire_patents', 0)
f = os.path.join(retrieve_path('search_terms'))
print('f = ' + str(f))
df_search_terms = pd.read_csv(f)
search_terms = list(df_search_terms['term'])
for term in search_terms:
name_dataset = 'patents'
result_limits = [5, 10, 7000, 8000, 9000, 10000, 15000, 20000]
#result_limits = retrieve_format('patent_result_limits')
query_patents(name_dataset, term, result_limits)
work_completed('acquire_patents', 1)
| 11,728
|
def AcceptGroupApplication(request, callback, customData = None, extraHeaders = None):
"""
Accepts an outstanding invitation to to join a group
https://docs.microsoft.com/rest/api/playfab/groups/groups/acceptgroupapplication
"""
if not PlayFabSettings._internalSettings.EntityToken:
raise PlayFabErrors.PlayFabException("Must call GetEntityToken before calling this method")
def wrappedCallback(playFabResult, error):
if callback:
callback(playFabResult, error)
PlayFabHTTP.DoPost("/Group/AcceptGroupApplication", request, "X-EntityToken", PlayFabSettings._internalSettings.EntityToken, wrappedCallback, customData, extraHeaders)
| 11,729
|
def test_parse_steps():
"""Simple tests for the PartialParse.parse_step function
Warning: these are not exhaustive
"""
_test_parse_step('shift', PartialParse.shift_id, 'tingle', [0, 1], 2, [],
[0, 1, 2], 3, [])
_test_parse_step('left-arc', PartialParse.left_arc_id, 'tingle', [0, 1, 2],
3, [], [0, 2], 3, [(2, 1, 'tingle')])
_test_parse_step('right-arc', PartialParse.right_arc_id, 'koolimpah',
[0, 1, 2], 3, [], [0, 1], 3, [(1, 2, 'koolimpah')])
| 11,730
|
def _plot_line(axis, origin, angle, size_hi, size_lo=0.0, **kwargs):
"""Plot a straight line into ``axis``. The line is described through
the ``origin`` and the ``angle``. It is drawn from ``size_lo`` to
``size_hi``, where both parameters are passed as fractions of said
line. ``kwargs`` are passed to :py:meth:`pylab.plot`.
"""
src = (origin[0] + np.cos(angle) * size_lo, origin[1] + np.sin(angle) * size_lo)
trg = (origin[0] + np.cos(angle) * size_hi, origin[1] + np.sin(angle) * size_hi)
axis.plot((src[0], trg[0]), (src[1], trg[1]), **kwargs)
| 11,731
|
def _get_list(sline):
"""Takes a list of strings and converts them to floats."""
try:
sline2 = convert_to_float(sline)
except ValueError:
print("sline = %s" % sline)
raise SyntaxError('cannot parse %s' % sline)
return sline2
| 11,732
|
def test_unionfind_sim(size, Code, errors, faulty, max_rate, extra_keys):
"""Test initialize function for all configurations."""
Decoder_module = getattr(oss.decoders, "unionfind").sim
if hasattr(Decoder_module, Code.capitalize()):
decoder_module = getattr(Decoder_module, Code.capitalize())
Code_module = getattr(oss.codes, Code).sim
code_module = getattr(Code_module, "FaultyMeasurements") if faulty else getattr(Code_module, "PerfectMeasurements")
code = code_module(size)
code.initialize(*errors)
decoder = decoder_module(code)
error_keys = get_error_keys(errors) + extra_keys
trivial = 0
for _ in range(ITERS):
error_rates = {key: random.random() * max_rate for key in error_keys}
code.random_errors(**error_rates)
decoder.decode()
trivial += code.trivial_ancillas
assert trivial == ITERS
else:
assert True
| 11,733
|
def add_number(partitions, number):
"""
Adds to the partition provided `number` in all its combinations
"""
# Add to each list in partitions add 1
prods = partitions.values()
nKeys = [(1,) + x for x in partitions.keys()]
# apply sum_ones on each partition, and add results to partitions
# Done use reduce, the continues list creation is just too slow
#partitions = reduce(lambda acc, x: acc + sum_ones(x), partitions, [])
newParts = []
newProds = []
for part, prod in zip(nKeys, prods):
npart, nprod = sum_ones(part, prod)
newParts.extend(npart)
newProds.extend(nprod)
# Remove duplicates
return dict(zip(newParts, newProds))
| 11,734
|
def copy_log_init(chron, new_direct_long):
"""
Function to incrementally update new init.csv file
Args:
chron (list): sorted list of temporally related log directories
new_direct_long (str): path of new log directory
"""
for dr in chron:
local = glob.glob(dr + "/*csv")
src = glob.glob(new_direct_long + "/*csv")
if len(src) == 0:
[shutil.copy(loc, new_direct_long) for loc in local]
src = glob.glob(new_direct_long + "/*csv")
# pipeline to merge log.csv
src_init_file = [fl for fl in src if "init.csv" in fl][0]
src_init_df = pd.read_csv(src_init_file)
if "until" not in src_init_df.columns:
src_log_file = [fl for fl in src if "log.csv" in fl][0]
src_log_df = pd.read_csv(src_log_file)
max_epoch = max(src_log_df["epoch"])
src_init_df["until"] = max_epoch
src_init_df.to_csv(src_init_file, index=False)
else:
# pipeline to merge log.csv
src_log_file = [fl for fl in src if "log.csv" in fl][0]
src_log_df = pd.read_csv(src_log_file)
max_epoch = max(src_log_df["epoch"])
local_log_file = [fl for fl in local if "log.csv" in fl][0]
local_log_df = pd.read_csv(local_log_file)
local_log_df["epoch"] = local_log_df["epoch"] + max_epoch
# write combined log.csv to file
src_log_df = pd.concat([src_log_df, local_log_df])
src_log_df.to_csv(src_log_file, index=False)
max_epoch = max(src_log_df["epoch"])
src_init_file = [fl for fl in src if "init.csv" in fl][0]
src_init_df = pd.read_csv(src_init_file)
local_init_file = [fl for fl in local if "init.csv" in fl][0]
local_init_df = pd.read_csv(local_init_file)
local_init_df["until"] = max_epoch
pd.concat([src_init_df, local_init_df]).to_csv(src_init_file,
index=False)
| 11,735
|
def _color_to_rgb(color, input):
"""Add some more flexibility to color choices."""
if input == "hls":
color = colorsys.hls_to_rgb(*color)
elif input == "husl":
color = husl.husl_to_rgb(*color)
color = tuple(np.clip(color, 0, 1))
elif input == "xkcd":
color = xkcd_rgb[color]
return color
| 11,736
|
def run():
"""
如果文件不存在,则创建
:return:
"""
if not os.path.exists('./res'):
os.makedirs('res')
config = get_config()
if not os.path.exists(config['url']) or not os.path.exists(
config['title'] or not os.path.exists(config['content'])):
data_load(config)
if not os.path.exists(config['content_clean']):
data_clean_content(config)
if not os.path.exists(config['content_filter']):
filter_stop_word(config)
if not os.path.exists(config['content_stemming']):
stemming(config)
if not os.path.exists(config['term_list']):
create_term_list(config)
documents = get_content(config)
tf_documents = get_tf(documents)
if not os.path.exists(config['idf']):
create_idf(config, documents)
idf_documents = get_idf(config)
if not os.path.exists(config['tf_idf']):
create_tf_idf(config, tf_documents, idf_documents, documents)
| 11,737
|
def in_days(range_in_days):
"""
Generate time range strings between start and end date where each range is range_in_days days long
:param range_in_days: number of days
:return: list of strings with time ranges in the required format
"""
delta = observation_period_end - observation_period_start # timedelta
period_starts = []
for d in range(0, delta.days + 1, range_in_days):
# print(observation_period_start + timedelta(days=d))
period_starts.append(observation_period_start + timedelta(days=d))
start_end = []
for i, start in enumerate(period_starts[:-1]):
start_end.append((start, period_starts[i+1] - timedelta(days=1)))
time_periods = [start.strftime("%Y%m%d") + ":" + end.strftime("%Y%m%d") for start, end in start_end]
return time_periods
| 11,738
|
def tags_in_file(path: Path) -> List[str]:
"""Return all tags in a file."""
matches = re.findall(r'@([a-zA-Z1-9\-]+)', path.read_text())
return matches
| 11,739
|
def pad_to_longest_in_one_batch(batch):
"""According to the longest item to pad dataset in one batch.
Notes:
usage of pad_sequence:
seq_list = [(L_1, dims), (L_2, dims), ...]
item.size() must be (L, dims)
return (longest_len, len(seq_list), dims)
Args:
batch: [
(noisy_mag_1, noise_mag_1, clean_mag_1, n_frames_1),
(noisy_mag_2, noise_mag_2, clean_mag_2, n_frames_2),
...
]
"""
noisy_mag_list = []
mask_mag_list = []
clean_mag_list = []
n_frames_list = []
for noisy_mag, mask, clean_mag, n_frames in batch:
noisy_mag_list.append(torch.t(torch.tensor(noisy_mag))) # the shape of tensor is (T, F).
mask_mag_list.append(torch.t(torch.tensor(mask)))
clean_mag_list.append(torch.t(torch.tensor(clean_mag)))
n_frames_list.append(n_frames)
noisy_mag_one_batch = pad_sequence(noisy_mag_list) # the shape is (longest T, len(seq_list), F)
mask_one_batch = pad_sequence(mask_mag_list)
clean_mag_one_batch = pad_sequence(clean_mag_list)
noisy_mag_one_batch = noisy_mag_one_batch.permute(1, 0, 2) # the shape is (len(seq_list), longest T, F)
mask_one_batch = mask_one_batch.permute(1, 0, 2)
clean_mag_one_batch = clean_mag_one_batch.permute(1, 0, 2)
# (batch_size, longest T, F)
return noisy_mag_one_batch, mask_one_batch, clean_mag_one_batch, n_frames_list
| 11,740
|
def main():
"""
Process the tokenized text of each review by adding a part-of-speech tag,
removing stop words, performing lemmatization, and finally making bigrams.
These bigrams will be used to classify reviews as incentivized or
non-incentivized.
"""
# NLTK corpora are not present on the other nodes of the cluster,
# we can either load them into memory on the master node or send the zip
# file to the other nodes with sc.addFile(). The first approach worked so
# we went with that. This also avoids using NLTK's lazy loader which ran into
# infinite recursion after being unpickled on the slave nodes by Spark.
root = nltk.data.find('corpora/omw')
reader = nltk.corpus.CorpusReader(root, r'.*/wn-data-.*\.tab',
encoding='utf8')
# WordNet corpus for lemmatization
wn = nltk.corpus.reader.WordNetCorpusReader(
nltk.data.find('corpora/wordnet'), reader)
sc = SparkContext()
# Add the NLTK library
sc.addPyFile('nltk.zip')
sqlContext = SQLContext(sc)
sqlContext.setConf('spark.sql.parquet.compression.codec', 'snappy')
df = sqlContext.read.parquet(DATA_PATH)
# List of English stop words, use set for better search performance
stops = sc.broadcast(set(stopwords.words('english')))
wn = sc.broadcast(wn)
# NLTK's default part-of-speech tagger
tagger = sc.broadcast(PerceptronTagger())
# PoS tagging
tag = UserDefinedFunction(
lambda t: tagger.value.tag(t),
ArrayType(ArrayType(StringType()))
)
# Remove stop words
remstops = UserDefinedFunction(
lambda t: remove_stops(t, stops),
ArrayType(ArrayType(StringType()))
)
# Lemmatize
lem = UserDefinedFunction(
lambda t: lemmatize_tagged_tokens(t, wn),
ArrayType(StringType())
)
# Make bigrams
mk_bg = UserDefinedFunction(lambda t: list(bigrams(t)),
ArrayType(ArrayType(StringType())))
# One function at a time or Spark complains about UDFs
# not being callable
df = df.withColumn('bg', tag(df.tokenized_text))
df = df.withColumn('bg', remstops(df.bg))
df = df.withColumn('bg', lem(df.bg))
df = df.withColumn('bg', mk_bg(df.bg))
# Save the results to HDFS
df.write.mode('overwrite').parquet(BIGRAMS_PATH)
| 11,741
|
def create_instance(c_instance):
""" Creates and returns the Twister script """
return Twister(c_instance)
| 11,742
|
def command_handler(command_type: Type[CommandAPI],
*,
name: str = None) -> Callable[[CommandHandlerFn], Type[CommandHandler]]:
"""
Decorator that can be used to construct a CommandHandler from a simple
function.
.. code-block:: python
@command_handler(Ping)
def handle_ping(connection, msg):
connection.get_base_protocol().send_pong()
"""
if name is None:
name = f'handle_{command_type.__name__}'
def decorator(fn: CommandHandlerFn) -> Type[CommandHandler]:
return type(
name,
(CommandHandler,),
{
'cmd_type': command_type,
'handle': staticmethod(fn),
},
)
return decorator
| 11,743
|
def check_ip_in_lists(ip, db_connection, penalties):
"""
Does an optimized ip lookup with the db_connection. Applies only the maximum penalty.
Args:
ip (str): ip string
db_connection (DBconnector obj)
penalties (dict): Contains tor_penalty, vpn_penalty, blacklist_penalty keys with integer values
Returns:
:int: penalty_added
"""
penalties = {'tor': int(penalties['tor_penalty']), 'vpn': int(penalties['vpn_penalty']), 'blacklist': int(penalties['ip_blacklist_penalty'])}
penalties = sorted(penalties.items(), key=lambda x: x[1])
# sort by penalty value to check in that order and perform early stopping
penalty_added = 0
for penalty_type, penalty_value in penalties:
if penalty_value == 0:
continue
if penalty_type == 'tor':
if db_connection.set_exists('tor_ips', ip):
penalty_added = penalty_value
elif penalty_type == 'blacklist':
if db_connection.set_exists('blacklist_ips', ip):
penalty_added = penalty_value
elif db_connection.set_exists('blacklist_ips', '.'.join(ip.split('.')[:3])):
penalty_added = penalty_value
elif db_connection.set_exists('blacklist_ips', '.'.join(ip.split('.')[:2])):
penalty_added = penalty_value
elif penalty_type == 'vpn':
if db_connection.set_exists('vpn_ips', ip):
penalty_added = penalty_value
elif db_connection.set_exists('vpn_ips', '.'.join(ip.split('.')[:3])):
penalty_added = penalty_value
elif db_connection.set_exists('vpn_ips', '.'.join(ip.split('.')[:2])):
penalty_added = penalty_value
if penalty_added > 0:
break
return penalty_added
| 11,744
|
def scan(fn,
sequences=None,
outputs_info=None,
non_sequences=None,
n_steps=None,
truncate_gradient=-1,
go_backwards=False,
mode=None,
name=None,
options=None,
profile=False):
"""
This function constructs and applies a Scan op to the provided
arguments.
:param fn:
``fn`` is a function that describes the operations involved in one
step of ``scan``. ``fn`` should construct variables describing the
output of one iteration step. It should expect as input theano
variables representing all the slices of the input sequences
and previous values of the outputs, as well as all other arguments
given to scan as ``non_sequences``. The order in which scan passes
these variables to ``fn`` is the following :
* all time slices of the first sequence
* all time slices of the second sequence
* ...
* all time slices of the last sequence
* all past slices of the first output
* all past slices of the second otuput
* ...
* all past slices of the last output
* all other arguments (the list given as `non_sequences` to
scan)
The order of the sequences is the same as the one in the list
`sequences` given to scan. The order of the outputs is the same
as the order of ``outputs_info``. For any sequence or output the
order of the time slices is the same as the one in which they have
been given as taps. For example if one writes the following :
.. code-block:: python
scan(fn, sequences = [ dict(input= Sequence1, taps = [-3,2,-1])
, Sequence2
, dict(input = Sequence3, taps = 3) ]
, outputs_info = [ dict(initial = Output1, taps = [-3,-5])
, dict(initial = Output2, taps = None)
, Output3 ]
, non_sequences = [ Argument1, Argument 2])
``fn`` should expect the following arguments in this given order:
#. ``Sequence1[t-3]``
#. ``Sequence1[t+2]``
#. ``Sequence1[t-1]``
#. ``Sequence2[t]``
#. ``Sequence3[t+3]``
#. ``Output1[t-3]``
#. ``Output1[t-5]``
#. ``Output3[t-1]``
#. ``Argument1``
#. ``Argument2``
The list of ``non_sequences`` can also contain shared variables
used in the function, though ``scan`` is able to figure those
out on its own so they can be skipped. For the clarity of the
code we recommend though to provide them to scan. To some extend
``scan`` can also figure out other ``non sequences`` (not shared)
even if not passed to scan (but used by `fn`). A simple example of
this would be :
.. code-block:: python
import theano.tensor as TT
W = TT.matrix()
W_2 = W**2
def f(x):
return TT.dot(x,W_2)
The function is expected to return two things. One is a list of
outputs ordered in the same order as ``outputs_info``, with the
difference that there should be only one output variable per
output initial state (even if no tap value is used). Secondly
`fn` should return an update dictionary (that tells how to
update any shared variable after each iteration step). The
dictionary can optionally be given as a list of tuples. There is
no constraint on the order of these two list, ``fn`` can return
either ``(outputs_list, update_dictionary)`` or
``(update_dictionary, outputs_list)`` or just one of the two (in
case the other is empty).
To use ``scan`` as a while loop, the user needs to change the
function ``fn`` such that also a stopping condition is returned.
To do so, he/she needs to wrap the condition in an ``until`` class.
The condition should be returned as a third element, for example:
.. code-block:: python
...
return [y1_t, y2_t], {x:x+1}, theano.scan_module.until(x < 50)
Note that a number of steps (considered in here as the maximum
number of steps ) is still required even though a condition is
passed (and it is used to allocate memory if needed). = {}):
:param sequences:
``sequences`` is the list of Theano variables or dictionaries
describing the sequences ``scan`` has to iterate over. If a
sequence is given as wrapped in a dictionary, then a set of optional
information can be provided about the sequence. The dictionary
should have the following keys:
* ``input`` (*mandatory*) -- Theano variable representing the
sequence.
* ``taps`` -- Temporal taps of the sequence required by ``fn``.
They are provided as a list of integers, where a value ``k``
impiles that at iteration step ``t`` scan will pass to ``fn``
the slice ``t+k``. Default value is ``[0]``
Any Theano variable in the list ``sequences`` is automatically
wrapped into a dictionary where ``taps`` is set to ``[0]``
:param outputs_info:
``outputs_info`` is the list of Theano variables or dictionaries
describing the initial state of the outputs computed
recurrently. When this initial states are given as dictionary
optional information can be provided about the output corresponding
to these initial states. The dictionary should have the following
keys:
* ``initial`` -- Theano variable that represents the initial
state of a given output. In case the output is not computed
recursively (think of a map) and does not require a initial
state this field can be skiped. Given that only the previous
time step of the output is used by ``fn`` the initial state
should have the same shape as the output. If multiple time
taps are used, the initial state should have one extra
dimension that should cover all the possible taps. For example
if we use ``-5``, ``-2`` and ``-1`` as past taps, at step 0,
``fn`` will require (by an abuse of notation) ``output[-5]``,
``output[-2]`` and ``output[-1]``. This will be given by
the initial state, which in this case should have the shape
(5,)+output.shape. If this variable containing the initial
state is called ``init_y`` then ``init_y[0]`` *corresponds to*
``output[-5]``. ``init_y[1]`` *correponds to* ``output[-4]``,
``init_y[2]`` corresponds to ``output[-3]``, ``init_y[3]``
coresponds to ``output[-2]``, ``init_y[4]`` corresponds to
``output[-1]``. While this order might seem strange, it comes
natural from splitting an array at a given point. Assume that
we have a array ``x``, and we choose ``k`` to be time step
``0``. Then our initial state would be ``x[:k]``, while the
output will be ``x[k:]``. Looking at this split, elements in
``x[:k]`` are ordered exactly like those in ``init_y``.
* ``taps`` -- Temporal taps of the output that will be pass to
``fn``. They are provided as a list of *negative* integers,
where a value ``k`` implies that at iteration step ``t`` scan
will pass to ``fn`` the slice ``t+k``.
``scan`` will follow this logic if partial information is given:
* If an output is not wrapped in a dictionary, ``scan`` will wrap
it in one assuming that you use only the last step of the output
(i.e. it makes your tap value list equal to [-1]).
* If you wrap an output in a dictionary and you do not provide any
taps but you provide an initial state it will assume that you are
using only a tap value of -1.
* If you wrap an output in a dictionary but you do not provide any
initial state, it assumes that you are not using any form of
taps.
* If you provide a ``None`` instead of a variable or a empty
dictionary ``scan`` assumes that you will not use any taps for
this output (like for example in case of a map)
If ``outputs_info`` is an empty list or None, ``scan`` assumes
that no tap is used for any of the outputs. If information is
provided just for a subset of the outputs an exception is
raised (because there is no convention on how scan should map
the provided information to the outputs of ``fn``)
:param non_sequences:
``non_sequences`` is the list of arguments that are passed to
``fn`` at each steps. One can opt to exclude variable
used in ``fn`` from this list as long as they are part of the
computational graph, though for clarity we encourage not to do so.
:param n_steps:
``n_steps`` is the number of steps to iterate given as an int
or Theano scalar. If any of the input sequences do not have
enough elements, scan will raise an error. If the *value is 0* the
outputs will have *0 rows*. If the value is negative, ``scan``
will run backwards in time. If the ``go_backwards`` flag is already
set and also ``n_steps`` is negative, ``scan`` will run forward
in time. If n stpes is not provided, ``scan`` will figure
out the amount of steps it should run given its input sequences.
:param truncate_gradient:
``truncate_gradient`` is the number of steps to use in truncated
BPTT. If you compute gradients through a scan op, they are
computed using backpropagation through time. By providing a
different value then -1, you choose to use truncated BPTT instead
of classical BPTT, where you go for only ``truncate_gradient``
number of steps back in time.
:param go_backwards:
``go_backwards`` is a flag indicating if ``scan`` should go
backwards through the sequences. If you think of each sequence
as indexed by time, making this flag True would mean that
``scan`` goes back in time, namely that for any sequence it
starts from the end and goes towards 0.
:param name:
When profiling ``scan``, it is crucial to provide a name for any
instance of ``scan``. The profiler will produce an overall
profile of your code as well as profiles for the computation of
one step of each instance of ``scan``. The ``name`` of the instance
appears in those profiles and can greatly help to disambiguate
information.
:param mode:
It is recommended to leave this argument to None, especially
when profiling ``scan`` (otherwise the results are not going to
be accurate). If you prefer the computations of one step of
``scan`` to be done differently then the entire function, you
can use this parameter to describe how the computations in this
loop are done (see ``theano.function`` for details about
possible values and their meaning).
:param profile:
Flag or string. If true, or different from the empty string, a
profile object will be created and attached to the inner graph of
scan. In case ``profile`` is True, the profile object will have the
name of the scan instance, otherwise it will have the passed string.
Profile object collect (and print) information only when running the
inner graph with the new cvm linker ( with default modes,
other linkers this argument is useless)
:rtype: tuple
:return: tuple of the form (outputs, updates); ``outputs`` is either a
Theano variable or a list of Theano variables representing the
outputs of ``scan`` (in the same order as in
``outputs_info``). ``updates`` is a subclass of dictionary
specifying the
update rules for all shared variables used in scan
This dictionary should be passed to ``theano.function`` when
you compile your function. The change compared to a normal
dictionary is that we validate that keys are SharedVariable
and addition of those dictionary are validated to be consistent.
"""
# Note : see the internal documentation of the scan op for naming
# conventions and all other details
if options is None:
options = {}
rvals = scan_utils.canonical_arguments(sequences,
outputs_info,
non_sequences,
go_backwards,
n_steps)
inputs, states_and_outputs_info, parameters, T = rvals
# If we provided a known number of steps ( before compilation)
# and if that number is 1 or -1, then we can skip the Scan Op,
# and just apply the inner function once
# To do that we check here to see the nature of n_steps
T_value = None
if isinstance(n_steps, (float, int)):
T_value = int(n_steps)
else:
try:
T_value = opt.get_scalar_constant_value(n_steps)
except (TypeError, AttributeError):
T_value = None
if T_value in (1, -1):
return one_step_scan(fn,
inputs,
states_and_outputs_info,
parameters,
truncate_gradient)
# 1. Variable representing the current time step
t = scalar_shared(numpy.int64(0), name='t')
# 2. Allocate memory for the states of scan.
mintaps = []
lengths = []
for pos, arg_info in enumerate(states_and_outputs_info):
if arg_info.get('taps', None) == [-1]:
mintaps.append(1)
lengths.append(scalar_shared(numpy.int64(0),
name='l%d' % pos))
arg_info['initial'] = scan_utils.expand(tensor.unbroadcast(
tensor.shape_padleft(arg_info['initial']), 0), T)
elif arg_info.get('taps', None):
if numpy.any(numpy.array(arg_info.get('taps', [])) > 0):
# Make sure we do not have requests for future values of a
# sequence we can not provide such values
raise ValueError('Can not use future taps of outputs',
arg_info)
mintap = abs(numpy.min(arg_info['taps']))
lengths.append(scalar_shared(numpy.int64(0),
name='l%d' % pos))
mintaps.append(mintap)
arg_info['initial'] = scan_utils.expand(
arg_info['initial'][:mintap], T)
else:
mintaps.append(0)
lengths.append(scalar_shared(numpy.int64(0),
name='l%d' % pos))
# 3. Generate arguments for the function passed to scan. This will
# function will return the outputs that need to be computed at every
# timesteps
inputs_slices = [input[t] for input in inputs]
states_slices = []
for n, state in enumerate(states_and_outputs_info):
# Check if it is actually a state and not an output
if mintaps[n] != 0:
for k in state['taps']:
states_slices.append(
state['initial'][(t + mintaps[n] + k) % lengths[n]])
# 4. Construct outputs that are to be computed by the inner
# function of scan
args = inputs_slices + states_slices + parameters
cond, states_and_outputs, updates = \
scan_utils.get_updates_and_outputs(fn(*args))
# User is allowed to provide no information if it only behaves like a
# map
if (len(states_and_outputs) != len(states_and_outputs_info) and
len(states_and_outputs_info) == 0):
mintaps = [0] * len(states_and_outputs)
# 5. Construct the scan op
# 5.1 Construct list of shared variables with updates (those that
# can be treated as states (i.e. of TensorType) and those that can not
# (like Random States)
if cond is not None:
_cond = [cond]
else:
_cond = []
rvals = rebuild_collect_shared(
states_and_outputs + _cond,
updates=updates,
rebuild_strict=True,
copy_inputs_over=True,
no_default_updates=False)
# extracting the arguments
input_variables, cloned_outputs, other_rval = rvals
clone_d, update_d, update_expr, shared_inputs = other_rval
additional_input_states = []
additional_output_states = []
additional_lengths = []
additional_mintaps = []
original_numeric_shared_variables = []
non_numeric_input_states = []
non_numeric_output_states = []
original_non_numeric_shared_variables = []
pos = len(lengths)
for sv in shared_inputs:
if sv in update_d:
if isinstance(sv, (TensorVariable, TensorSharedVariable)):
# We can treat it as a sit sot
nw_state = scan_utils.expand(
tensor.unbroadcast(tensor.shape_padleft(sv), 0), T)
additional_lengths.append(scalar_shared(numpy.int64(0),
name='l%d' % pos))
pos = pos + 1
additional_mintaps.append(1)
additional_input_states.append(nw_state)
additional_output_states.append(
scan_utils.clone(tensor.set_subtensor(
nw_state[(t + 1) % additional_lengths[-1]],
update_d[sv])))
original_numeric_shared_variables.append(sv)
else:
non_numeric_input_states.append(sv)
non_numeric_output_states.append(update_d[sv])
original_non_numeric_shared_variables.append(sv)
# Replace shared variables in the update
_additional_output_states = []
replace = {}
for sv, buf in zip(original_numeric_shared_variables,
additional_input_states):
replace[sv] = buf[t]
for out in additional_output_states:
_additional_output_states.append(
scan_utils.clone(out, replace=replace))
additional_output_states = _additional_output_states
# 5.2 Collect inputs/outputs of the inner function
inputs = []
outputs = []
for n, mintap in enumerate(mintaps):
if mintap != 0:
input_state = states_and_outputs_info[n]['initial']
inputs.append(input_state)
outputs.append(
tensor.set_subtensor(
input_state[(t + mintap) % lengths[n]],
states_and_outputs[n]))
else:
mem_buffer = scan_utils.allocate_memory(
T, states_and_outputs_info[n], states_and_outputs[n])
inputs.append(output)
outputs.append(
tensor.set_subtensor(output[t % lengths[n]],
states_and_outputs[n]))
inputs.extend(additional_input_states)
outputs.extend(additional_output_states)
lengths.extend(additional_lengths)
mintaps.extend(additional_mintaps)
inputs.extend(non_numeric_input_states)
outputs.extend(non_numeric_output_states)
all_other_inputs = gof.graph.inputs(outputs)
parameters = [x for x in all_other_inputs
if (x not in inputs and x not in lengths and x is not t
and isinstance(x, gof.Variable) and
not isinstance(x, gof.Constant))]
inputs.extend(parameters)
# 5.3 Construct the the options dictionary
options['name'] = name
options['profile'] = profile
options['mode'] = mode
options['inplace'] = False
options['gpu'] = False
options['truncate_gradient'] = truncate_gradient
options['hash_inner_graph'] = 0
# 5.4 Construct the ScanOp instance
local_op = scan_op.ScanOp(inputs=inputs,
outputs=outputs,
lengths=lengths,
switches=[],
mintaps=mintaps,
index=t,
options=options,
as_repeatUntil=cond)
# Note that we get here all the outputs followed by the update rules to
# the shared variables we had in our scan
# we know that we have (in this given order):
# * len(states_and_outputs) real outputs
# * len(additional_input_states) updates for numeric shared variable
# * len(non_numeric_input_states) updates for non numeric shared
# variables
scan_inputs = [T] + inputs
scan_outputs_update_rules = scan_utils.to_list(local_op(*scan_inputs))
# 5.5 Collect outputs and add permutation object
scan_outputs = []
for pos in xrange(len(states_and_outputs)):
out = scan_utils.ScanPermutation(mintaps[pos])(
scan_outputs_update_rules[pos], t)
scan_outputs.append(out[mintaps[pos]:])
# 5.6 Construct updates dictionary
update_rules = scan_outputs_update_rules[len(states_and_outputs):]
updates = {}
for v, u in izip(original_numeric_shared_variables,
update_rules[:len(additional_input_states)]):
updates[v] = u[-1]
for v, u in izip(original_non_numeric_shared_variables,
update_rules[len(additional_input_states):]):
updates[v] = u
# Step 5.7 We are done and can return everything back to the user
return scan_outputs, updates
| 11,745
|
def stock_analyst(stock_list):
"""This function accepts a list of data P and outputs the best day to
buy(B) and sell(S) stock.
Args:
stock_list: expects a list of stocks as a parameter
Returns:
a string promting to buy stock if one has not bought stock i.e the
value of stock is less than 1
If the value of stock is > 0 it returns the best days to stock at
value and sell stock at maximum value
"""
B = stock_list.index(min(stock_list))
buy_value = min(stock_list)
sell_value = -1
if buy_value > 1:
for sell_indx in range(B, len(stock_list)):
if sell_value < stock_list[sell_indx]:
sell_value = stock_list[sell_indx]
S = sell_indx
else:
return 'Buy stock first'
return [B, S]
| 11,746
|
def is_sync_available(admin_id):
"""Method to check the synchronization's availability about networks connection.
Args:
admin_id (str): Admin privileges flag.
"""
return r_synchronizer.is_sync_available()
| 11,747
|
def test_boolean005_1861_boolean005_1861_v(mode, save_output, output_format):
"""
TEST :Facet Schemas for string : value=0
"""
assert_bindings(
schema="msData/datatypes/boolean.xsd",
instance="msData/datatypes/boolean005.xml",
class_name="Root",
version="1.1",
mode=mode,
save_output=save_output,
output_format=output_format,
structure_style="filenames",
)
| 11,748
|
def on_second_thought(divider):
"""sort the characters according to number of times they appears in given text,
returns the remaining word as a string
"""
unsorted_list = list(unsorted_string)
# characters occurence determines the order
occurence = collections.Counter(unsorted_list)
# sort by characters frequency in descending order
occurences_list = sorted(unsorted_list, key=occurence.get, reverse=True)
# already sorted, duplicates would provide no value
reduced_list = list(collections.OrderedDict.fromkeys(occurences_list))
divider_position = reduced_list.index(divider)
# everything behind (and including) the divider is irrelevant
return ''.join(reduced_list[:divider_position])
| 11,749
|
def aiohttp_unused_port(loop, aiohttp_unused_port, socket_enabled):
"""Return aiohttp_unused_port and allow opening sockets."""
return aiohttp_unused_port
| 11,750
|
def os_specific_command_line(command_line):
"""
Gets the operating system specific command string.
:param command_line: command line to execute.
:type command_line: str
"""
current_os = os.environ["TEMPLATE_OS"]
command = "/bin/bash -c '{}'" if current_os.lower() == "linux" else "cmd.exe /c \"{}\""
return command.format(command_line)
| 11,751
|
def test_compare_methods(fake_data):
"""Test that fast and "slow" methods yield same answer."""
data, is_random = fake_data
# define model parameters
zmean = 8.0
alpha = 0.9
k0 = 1.0
boxsize = 10.0
rsmooth = 1.0
deconvolve = True
# use slow function
zre1 = zreion.apply_zreion(data, zmean, alpha, k0, boxsize, rsmooth, deconvolve)
# use fast function
zre2 = zreion.apply_zreion_fast(
data, zmean, alpha, k0, boxsize, rsmooth, deconvolve
)
assert np.allclose(zre1, zre2)
return
| 11,752
|
def multi_voters_example():
""" Example of using a combination of many types of voters, which may be seen as multi-kernel learning (MKL).
This particular dataset is easy to solve and combining voters degrades performance. However, it might be a good
idea for more complex datasets.
"""
# MinCq parameters, fixed to a given value as this is a simple example.
mu = 0.001
# We load iris dataset, We convert the labels to be -1 or 1, and we split it in two parts: train and test.
dataset = load_iris()
dataset.target[dataset.target == 0] = -1
dataset.target[dataset.target == 2] = -1
X_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target, random_state=42)
# We create a set of voters of different kind.
voters = voter.KernelVotersGenerator(rbf_kernel, gamma=0.01).generate(X_train)
voters = np.append(voters, voter.KernelVotersGenerator(rbf_kernel, gamma=0.1).generate(X_train))
voters = np.append(voters, voter.KernelVotersGenerator(rbf_kernel, gamma=1).generate(X_train))
voters = np.append(voters, voter.KernelVotersGenerator(rbf_kernel, gamma=10).generate(X_train))
voters = np.append(voters, voter.KernelVotersGenerator(rbf_kernel, gamma=100).generate(X_train))
voters = np.append(voters, voter.KernelVotersGenerator(polynomial_kernel, degree=2).generate(X_train))
voters = np.append(voters, voter.KernelVotersGenerator(polynomial_kernel, degree=3).generate(X_train))
voters = np.append(voters, voter.KernelVotersGenerator(linear_kernel).generate(X_train))
# We train MinCq using these voters, on the training set.
learner = MinCqLearner(mu, voters_type='manual')
learner.fit(X_train, y_train, voters)
# We predict the train and test labels and print the risk.
predictions_train = learner.predict(X_train)
predictions_test = learner.predict(X_test)
print("\nMultiVotersMinCq")
print("-----------")
print("Training set risk: {:.4f}".format(zero_one_loss(y_train, predictions_train)))
print("Testing set risk: {:.4f}\n".format(zero_one_loss(y_test, predictions_test)))
| 11,753
|
def ProgrammingDebug(obj, show_all=False) -> None:
"""return all attributes of a specific objec"""
try:
_LOGGER.debug("%s - ProgrammingDebug: %s", DOMAIN, obj)
for attr in dir(obj):
if attr.startswith('_') and not show_all:
continue
if hasattr(obj, attr ):
_LOGGER.critical("%s - ProgrammingDebug: %s = %s", DOMAIN, attr, getattr(obj, attr))
except Exception as e:
_LOGGER.critical("%s - ProgrammingDebug: failed: %s (%s.%s)", DOMAIN, str(e), e.__class__.__module__, type(e).__name__)
pass
| 11,754
|
def font_variant(name, tokens):
"""Expand the ``font-variant`` shorthand property.
https://www.w3.org/TR/css-fonts-3/#font-variant-prop
"""
return expand_font_variant(tokens)
| 11,755
|
def with_part_names(*part_names):
"""Add part names for garage.parts.assemble.
Call this when you want to assemble these parts but do not want
them to be passed to main.
"""
return lambda main: ensure_app(main).with_part_names(*part_names)
| 11,756
|
def movieServiceProvider(movie_duration_List, flight_duration):
"""
Assuming users will watch exactly two movies.
assuming 2 movies do not have same length
O(n2) time complexity
"""
possible_pairs = []
max_sum = 0
max_sum_max_index = None
for i in range(len(movie_duration_List)):
for j in range(len(movie_duration_List)):
if (i != j and movie_duration_List[i] + movie_duration_List[j] <= flight_duration):
min_new = min(movie_duration_List[i], movie_duration_List[j])
max_new = max(movie_duration_List[i], movie_duration_List[j])
if (min_new, max_new) not in possible_pairs:
sum_new = min_new+ max_new
possible_pairs.append((min_new, max_new))
if sum_new >= max_sum:
if sum_new == max_sum:
if max_sum_max_index != None and possible_pairs[max_sum_max_index][1] < max_new:
max_sum_max_index = len(possible_pairs)-1
else:
max_sum = sum_new
max_sum_max_index = len(possible_pairs)-1
print("movie lengths :", movie_duration_List, "flight duration : ", flight_duration)
print("Total count of possible pair of movies : ",len(possible_pairs))
print("all possible pair of movies : ",possible_pairs)
print("Best possible movie length : ", max_sum)
print("Best possible movie duration : ", possible_pairs[max_sum_max_index])
print("-"*200)
| 11,757
|
def library_view(request):
"""View for image library."""
if request.user.is_authenticated:
the_user = request.user
albums = Album.objects.filter(user=the_user)
context = {'the_user': the_user,
'albums': albums}
return render(request, 'imager_profile/library.html', context)
| 11,758
|
def combine_html_json_pbp(json_df, html_df, game_id, date):
"""
Join both data sources. First try merging on event id (which is the DataFrame index) if both DataFrames have the
same number of rows. If they don't have the same number of rows, merge on: Period', Event, Seconds_Elapsed, p1_ID.
:param json_df: json pbp DataFrame
:param html_df: html pbp DataFrame
:param game_id: id of game
:param date: date of game
:return: finished pbp
"""
# Don't need those columns to merge in
json_df = json_df.drop(['p1_name', 'p2_name', 'p2_ID', 'p3_name', 'p3_ID'], axis=1)
try:
html_df.Period = html_df.Period.astype(int)
# If they aren't equal it's usually due to the HTML containing a challenge event
if html_df.shape[0] == json_df.shape[0]:
json_df = json_df[['period', 'event', 'seconds_elapsed', 'xC', 'yC']]
game_df = pd.merge(html_df, json_df, left_index=True, right_index=True, how='left')
else:
# We always merge if they aren't equal but we check if it's due to a challenge so we can print out a better
# warning message for the user.
# NOTE: May be slightly incorrect. It's possible for there to be a challenge and another issue for one game.
if'CHL' in list(html_df.Event):
shared.print_warning("The number of columns in the Html and Json pbp are different because the"
" Json pbp, for some reason, does not include challenges. Will instead merge on "
"Period, Event, Time, and p1_id.")
else:
shared.print_warning("The number of columns in the Html and json pbp are different because "
"someone fucked up. Will instead merge on Period, Event, Time, and p1_id.")
# Actual Merging
game_df = pd.merge(html_df, json_df, left_on=['Period', 'Event', 'Seconds_Elapsed', 'p1_ID'],
right_on=['period', 'event', 'seconds_elapsed', 'p1_ID'], how='left')
# This is always done - because merge doesn't work well with shootouts
game_df = game_df.drop_duplicates(subset=['Period', 'Event', 'Description', 'Seconds_Elapsed'])
except Exception as e:
shared.print_warning('Problem combining Html Json pbp for game {}'.format(game_id, e))
return
game_df['Game_Id'] = game_id[-5:]
game_df['Date'] = date
return pd.DataFrame(game_df, columns=pbp_columns)
| 11,759
|
def CreateAlerts(config):
""""Creates Stackdriver alerts for logs-based metrics."""
# Stackdriver alerts can't yet be created in Deployment Manager, so create
# them here.
alert_email = config.project.get('stackdriver_alert_email')
if alert_email is None:
logging.warning('No Stackdriver alert email specified, skipping creation '
'of Stackdriver alerts.')
return
project_id = config.project['project_id']
# Create an email notification channel for alerts.
logging.info('Creating Stackdriver notification channel.')
channel = utils.CreateNotificationChannel(alert_email, project_id)
logging.info('Creating Stackdriver alerts.')
utils.CreateAlertPolicy(
'global', 'iam-policy-change-count', 'IAM Policy Change Alert',
('This policy ensures the designated user/group is notified when IAM '
'policies are altered.'), channel, project_id)
utils.CreateAlertPolicy(
'gcs_bucket', 'bucket-permission-change-count',
'Bucket Permission Change Alert',
('This policy ensures the designated user/group is notified when '
'bucket/object permissions are altered.'), channel, project_id)
for data_bucket in config.project.get('data_buckets', []):
# Every bucket with 'expected_users' has an expected-access alert.
if 'expected_users' in data_bucket:
bucket_name = project_id + data_bucket['name_suffix']
metric_name = 'unexpected-access-' + bucket_name
utils.CreateAlertPolicy(
'gcs_bucket', metric_name,
'Unexpected Access to {} Alert'.format(bucket_name),
('This policy ensures the designated user/group is notified when '
'bucket {} is accessed by an unexpected user.'.format(bucket_name)),
channel, project_id)
| 11,760
|
def read_json_file(path):
"""
Given a line-by-line JSON file, this function converts it to
a Python dict and returns all such lines as a list.
:param path: the path to the JSON file
:returns items: a list of dictionaries read from a JSON file
"""
items = list()
with open(path, 'r') as raw_data:
for line in raw_data:
line = json.loads(line)
items.append(line)
return items
| 11,761
|
def get_boss_wage2(employee):
""" Monadic version. """
return bind3(bind3(unit3(employee), Employee.get_boss), Employee.get_wage)
| 11,762
|
def format_history(src, dest, format="basic"):
"""
Formats history based on module
`releases <https://github.com/bitprophet/releases>`_.
@param src source history (file)
@param dest destination (file)
Parameter *format* was added. :epkg:`Sphinx`
extension *release* no longer used but the
formatting is still available.
"""
with open(src, "r", encoding="utf-8") as f:
lines = f.readlines()
new_lines = []
if format == "release":
tag = None
for i in range(0, len(lines)):
line = lines[i].rstrip("\r\t\n ")
if line.startswith("===") and i > 0:
rel = lines[i - 1].rstrip("\r\t\n ")
if "." in rel:
del new_lines[-1]
res = "* :release:`{0}`".format(rel)
res = res.replace("(", "<").replace(")", ">")
if new_lines[-1].startswith("==="):
new_lines.append("")
new_lines.append(res)
tag = None
else:
new_lines.append(line)
elif len(line) > 0:
if line.startswith("**"):
ll = line.lower().strip("*")
if ll in ('bug', 'bugfix', 'bugfixes'):
tag = "bug"
elif ll in ('features', 'feature'):
tag = "feature"
elif ll in ('support', 'support'):
tag = "support"
else:
raise ValueError(
"Line {0}, unable to infer tag from '{1}'".format(i, line))
else:
nline = line.lstrip("* ")
if nline.startswith("`"):
if tag is None:
tag = 'issue'
res = "* :{0}:{1}".format(tag, nline)
if new_lines[-1].startswith("==="):
new_lines.append("")
new_lines.append(res)
else:
new_lines.append(line)
if line.startswith(".. _"):
new_lines.append("")
elif format == "basic":
reg = re.compile("(.*?)`([0-9]+)`:(.*?)[(]([-0-9]{10})[)]")
for line in lines:
match = reg.search(line)
if match:
gr = match.groups()
new_line = "{0}:issue:`{1}`:{2}({3})".format(*gr)
new_lines.append(new_line)
else:
new_lines.append(line.strip("\n\r"))
else:
raise ValueError("Unexpected value for format '{0}'".format(format))
with open(dest, "w", encoding="utf-8") as f:
f.write("\n".join(new_lines))
| 11,763
|
def reverse_migration(apps, schema_editor):
"""There's no need to do anything special to reverse these migrations."""
return
| 11,764
|
def keypoint_angle(kp1, kp2):
"""求两个keypoint的夹角 """
k = [
(kp1.angle - 180) if kp1.angle >= 180 else kp1.angle,
(kp2.angle - 180) if kp2.angle >= 180 else kp2.angle
]
if k[0] == k[1]:
return 0
else:
return abs(k[0] - k[1])
| 11,765
|
def get_args_static_distribute_cells():
"""
Distribute ranges of cells across workers.
:return: list of lists
"""
pop_names_list = []
gid_lists = []
for pop_name in context.pop_names:
count = 0
gids = context.spike_trains[pop_name].keys()
while count < len(gids):
pop_names_list.append(pop_name)
gid_lists.append(gids[count:count+context.gid_block_size])
count += context.gid_block_size
return [pop_names_list, gid_lists]
| 11,766
|
def test_ioc_set_ignored(cbcsdk_mock):
"""Tests setting the ignore status of an IOC."""
cbcsdk_mock.mock_request("PUT", "/threathunter/watchlistmgr/v3/orgs/test/reports/a1b2/iocs/foo/ignore",
IOC_GET_IGNORED)
api = cbcsdk_mock.api
ioc = IOC_V2.create_equality(api, "foo", "process_name", "Alpha")
with pytest.raises(InvalidObjectError):
ioc.ignore()
ioc._report_id = "a1b2"
ioc.ignore()
ioc._info['id'] = None
with pytest.raises(InvalidObjectError):
ioc.ignore()
| 11,767
|
def le(input, other, *args, **kwargs):
"""
In ``treetensor``, you can get less-than-or-equal situation of the two tree tensors with :func:`le`.
Examples::
>>> import torch
>>> import treetensor.torch as ttorch
>>> ttorch.le(
... torch.tensor([[1, 2], [3, 4]]),
... torch.tensor([[1, 1], [4, 4]]),
... )
tensor([[ True, False],
[ True, True]])
>>> ttorch.le(
... ttorch.tensor({
... 'a': [[1, 2], [3, 4]],
... 'b': [1.0, 1.5, 2.0],
... }),
... ttorch.tensor({
... 'a': [[1, 1], [4, 4]],
... 'b': [1.3, 1.2, 2.0],
... }),
... )
<Tensor 0x7ff363bc6198>
├── a --> tensor([[ True, False],
│ [ True, True]])
└── b --> tensor([ True, False, True])
"""
return torch.le(input, other, *args, **kwargs)
| 11,768
|
def linear_to_srgb(data):
"""Convert linear color data to sRGB.
Acessed from https://entropymine.com/imageworsener/srgbformula
Parameters
----------
data: :class:`numpy.ndarray`, required
Array of any shape containing linear data to be converted to sRGB.
Returns
-------
converted: :class:`numpy.ndarray`
Array with the same shape as `data` containing values in sRGB space.
"""
return numpy.where(data <= 0.0031308, data * 12.92, 1.055 * numpy.power(data, 1 / 2.4) - 0.055)
| 11,769
|
def yices_reset_yval_vector(v):
"""Resets a yval (node descriptor) vector, for storing non atomic values in models."""
libyices.yices_reset_yval_vector(pointer(v))
| 11,770
|
async def test_build_and_deploy_prometheus_tester(ops_test, prometheus_tester_charm):
"""Test that Prometheus tester charm can be deployed successfully."""
app_name = "prometheus-tester"
await ops_test.model.deploy(
prometheus_tester_charm, resources=tester_resources, application_name=app_name
)
await ops_test.model.wait_for_idle(apps=[app_name], status="active")
await ops_test.model.block_until(lambda: len(ops_test.model.applications[app_name].units) > 0)
assert ops_test.model.applications[app_name].units[0].workload_status == "active"
await ops_test.model.applications[app_name].remove()
await ops_test.model.block_until(lambda: app_name not in ops_test.model.applications)
await ops_test.model.reset()
| 11,771
|
def circuit_to_dagdependency(circuit):
"""Build a ``DAGDependency`` object from a ``QuantumCircuit``.
Args:
circuit (QuantumCircuit): the input circuits.
Return:
DAGDependency: the DAG representing the input circuit as a dag dependency.
"""
dagdependency = DAGDependency()
dagdependency.name = circuit.name
for register in circuit.qregs:
dagdependency.add_qreg(register)
for register in circuit.cregs:
dagdependency.add_creg(register)
for operation, qargs, cargs in circuit.data:
dagdependency.add_op_node(operation, qargs, cargs)
dagdependency._add_successors()
return dagdependency
| 11,772
|
def node_rgb_color(node_name, linear=True):
"""
Returns color of the given node
:param node_name: str
:param linear: bool, Whether or not the RGB should be in linear space (matches viewport color)
:return:
"""
raise NotImplementedError()
| 11,773
|
def tweets_factory(fixtures_factory):
"""Factory for tweets from YAML file"""
def _tweets_factory(yaml_file):
all_fixtures = fixtures_factory(yaml_file)
return [t for t in all_fixtures if isinstance(t, TweetBase)]
return _tweets_factory
| 11,774
|
def monte_carlo(ds,duration,n,pval,timevar):
"""
pval: two-tailed pval
"""
x=0
mc = np.empty([ds.shape[1],ds.shape[2],n])
while x<n:
dummy = np.random.randint(0, len(ds[timevar])-duration, size=1) # have to adjust size so total number of points is always the same
mc[:,:,x] = ds[int(dummy):int(dummy+duration),::].mean(timevar)
x=x+1
# derive percentile
perc_upper = np.nanpercentile(mc,100-pval,axis=2)
perc_lower = np.nanpercentile(mc,pval,axis=2)
return perc_lower,perc_upper
| 11,775
|
def num_crl(wf_n):
"""Function computes the autocorrelation function from given vectors\
and the Discrete Fourier transform
Args:
wf_n(numpy array, complex): Wave function over time
Returns:
numpy array, complex: The wave function complex over time.
numpy array, complex: The autocorrelation function over time.
numpy array, complex: The Discrete Fourier Transformation function\
over frequency
"""
# setting up the time vector and deleting it from array
time_vc = np.zeros([len(wf_n[0])])
time_vc = wf_n[0]
wf_n = np.delete(wf_n, [0], axis=0)
# the lenth of the vector
t_wf = len(wf_n[0])
p_wf = len(wf_n[:, 0])
# turning array into complex
comp_vc = np.zeros([p_wf, t_wf], dtype=np.complex_)
for n in range(p_wf):
comp_vc[:, n] = wf_n[n * 2] + wf_n[1 + n * 2] * 1j
return comp_vc, time_vc
| 11,776
|
def test_dbt_parse_mocked_all_args():
"""Test mocked dbt parse call with all arguments."""
op = DbtParseOperator(
task_id="dbt_task",
project_dir="/path/to/project/",
profiles_dir="/path/to/profiles/",
profile="dbt-profile",
target="dbt-target",
vars={"target": "override"},
log_cache_events=True,
)
assert op.command == "parse"
config = op.get_dbt_config()
assert isinstance(config, ParseTaskConfig) is True
assert config.project_dir == "/path/to/project/"
assert config.profiles_dir == "/path/to/profiles/"
assert config.profile == "dbt-profile"
assert config.target == "dbt-target"
assert config.vars == '{"target": "override"}'
assert config.log_cache_events is True
| 11,777
|
def resample_time_series(series, period="MS"):
"""
Resample and interpolate a time series dataframe so we have one row
per time period (useful for FFT)
Parameters
----------
df: DataFrame
Dataframe with date as index
col_name: string,
Identifying the column we will pull out
period: string
Period for resampling
Returns
-------
Series:
pandas Series with datetime index, and one column, one row per day
"""
# give the series a date index if the DataFrame is not index by date already
# if df.index.name != 'date':
# series.index = df.date
# just in case the index isn't already datetime type
series.index = pd.to_datetime(series.index)
# resample to get one row per time period
rseries = series.resample(period).mean()
new_series = rseries.interpolate()
return new_series
| 11,778
|
def _timeliness_todo(columns, value, df, dateFormat=None, timeFormat=None):
"""
Returns what (columns, as in spark columns) to compute to get the results requested by
the parameters.
:param columns:
:type columns: list
:param value
:type value: str
:param df:
:type df: DataFrame
:param dateFormat:
:type dateFormat: str
:param timeFormat:
:type timeFormat: str
:return: Pyspark columns representing what to compute.
"""
assert (dateFormat is None or timeFormat is None) and (
not dateFormat is None or not timeFormat is None), "Pass either a dateFormat or a timeFormat, " \
"not both. "
todo = []
types = dict(df.dtypes)
if dateFormat:
value_date = to_date(lit(value), dateFormat)
for c in columns:
if types[c] == "timestamp" or types[c] == "date":
todo.append(sum(when(datediff(value_date, c) > 0, 1).otherwise(0)).alias(c))
elif types[c] == "string":
todo.append(sum(when(datediff(value_date, to_date(c, dateFormat)) > 0, 1).otherwise(0)).alias(c))
else:
print(
"Type of a column on which the timeliness metric is run must be either timestamp, "
"date or string, if the metric is being run on dateFormat.")
exit()
elif timeFormat:
value_long = to_timestamp(lit(value), timeFormat).cast("long")
# check if value contains a date and not only hours, minutes, seconds
has_date = _contains_date(timeFormat)
if has_date:
for c in columns:
if types[c] == "timestamp":
todo.append(sum(when(value_long - col(c).cast("long") > 0, 1).otherwise(0)).alias(c))
elif types[c] == "string":
todo.append(
sum(when(value_long - to_timestamp(col(c), timeFormat).cast("long") > 0, 1).otherwise(0)).alias(
c))
else:
print(
"Type of a column on which the timeliness metric is run must be either timestamp or string, if "
"the metric is being run on a timeFormat")
exit()
else:
for c in columns:
if types[c] == "timestamp":
"""
If there is no years, months, days we must ignore the years, months, days in the timestamp.
"""
value_long = to_timestamp(lit(value), timeFormat)
# remove years, months, days
value_long = value_long.cast("long") - value_long.cast("date").cast("timestamp").cast("long")
# check for difference, but only considering hours, minutes, seconds
todo.append(sum(
when(
value_long - (col(c).cast("long") - col(c).cast("date").cast("timestamp").cast("long")) > 0,
1).otherwise(0)).alias(c))
elif types[c] == "string":
"""
If there are no years, months, days and the column is in the same format, meaning that it also
has no years, months, days, this means that they will be both initialized to the same year, month, day;
so years, months, days will be basically ignored.
"""
todo.append(
sum(when((value_long - to_timestamp(c, timeFormat).cast("long")) > 0, 1).otherwise(0)).alias(c))
else:
print(
"Type of a column on which the timeliness metric is run must be either timestamp or string, if "
"the metric is being run on a timeFormat")
exit()
return todo
| 11,779
|
def test_release_non_existant_alloc():
"""Release allocation that doesn't exist"""
with pytest.raises(LauncherError):
slurm.release_allocation(00000000)
| 11,780
|
def build_arm(
simulator,
n_elem:int=11,
override_params:Optional[dict]=None,
attach_head:bool=None, # TODO: To be implemented
attach_weight:Optional[bool]=None, # TODO: To be implemented
):
""" Import default parameters (overridable) """
param = _OCTOPUS_PROPERTIES.copy() # Always copy parameter for safety
if isinstance(override_params, dict):
param.update(override_params)
""" Import default parameters (non-overridable) """
arm_scale_param = _DEFAULT_SCALE_LENGTH.copy()
""" Set up an arm """
L0 = arm_scale_param['base_length']
r0 = arm_scale_param['base_radius']
arm_pos = np.array([0.0, 0.0, 0.0])
arm_dir = np.array([1.0, 0.0, 0.0])
normal = np.array([0.0, 0.0, 1.0])
rod = CosseratRod.straight_rod(
n_elements=n_elem,
start=arm_pos,
direction=arm_dir,
normal=normal,
**arm_scale_param,
**param,
)
simulator.append(rod)
"""Add gravity forces"""
_g = -9.81
gravitational_acc = np.array([0.0, 0.0, _g])
simulator.add_forcing_to(rod).using(
GravityForces, acc_gravity=gravitational_acc
)
"""Add friction forces (always the last thing before finalize)"""
contact_k = 1e2 # TODO: These need to be global parameter to tune
contact_nu = 1e1
period = 2.0
origin_plane = np.array([0.0, 0.0, -r0])
slip_velocity_tol = 1e-8
froude = 0.1
mu = L0 / (period * period * np.abs(_g) * froude)
if param['friction_symmetry']:
kinetic_mu_array = np.array(
[mu, mu, mu]
) * param['friction_multiplier'] # [forward, backward, sideways]
else:
kinetic_mu_array = np.array(
[mu, 1.5 * mu, 2.0 * mu]
) * param['friction_multiplier'] # [forward, backward, sideways]
static_mu_array = 2 * kinetic_mu_array
simulator.add_forcing_to(rod).using(
AnisotropicFrictionalPlane,
k=contact_k,
nu=contact_nu,
plane_origin=origin_plane,
plane_normal=normal,
slip_velocity_tol=slip_velocity_tol,
static_mu_array=static_mu_array,
kinetic_mu_array=kinetic_mu_array,
)
return rod
| 11,781
|
def check_user(user, pw, DB):
"""
Check if user exists and if password is valid.
Return the user's data as a dict or a string with an error message.
"""
userdata = DB.get(user)
if not userdata:
log.error("Unknown user: %s", user)
return "Unknown user: %s" % user
elif userdata.get(C.Password) != pw:
log.error("Invalid password!")
return "Invalid password!"
return userdata
| 11,782
|
def get_single_response_value(dom_response_list: list, agg_function):
"""
Get value of a single scenario's response.
:param dom_response_list: Single response provided as a list of one term.
:param agg_function: Function to aggregate multiple responses.
:return: Value of such observation.
"""
response_list = extract_list_from_dom(dom_object=dom_response_list[0],
tag_name='Observation',
attribute_name='Value')
if len(response_list) == 0:
response_value = np.NaN
else:
try:
response_value = agg_function([float(item) for item in response_list])
except TypeError:
response_value = np.NaN
return response_value
| 11,783
|
def check_gpu_plugin():
""" Check for the gpuCache plugin load
"""
if not cmds.pluginInfo('gpuCache', query=True, loaded=True):
cmds.loadPlugin('gpuCache')
| 11,784
|
def sharpe_ratio(returns, periods=252):
"""
Create the Sharpe ratio for the strategy, based on a
benchmark of zero (i.e. no risk-free rate information).
Args:
returns (list, Series) - A pandas Series representing
period percentage returns.
periods (int.) Daily (252), Hourly (252*6.5), Minutely(252*6.5*60) etc.
Returns:
float. The result
"""
return np.sqrt(periods) * (np.mean(returns)) / np.std(returns)
| 11,785
|
def is_validated(user):
"""Is this user record validated?"""
# An account is "validated" if it has the `validated` field set to True, or
# no `validated` field at all (for accounts created before the "account
# validation option" was enabled).
return user.get("validated", True)
| 11,786
|
def current_chart_provider_monthly():
""" API for monthly provider chart """
mytime = dubwebdb.CTimes("%Y-%m", request.args.get('time_start'),
request.args.get('time_end'))
myids = dubwebdb.Ids(prv_id=sanitize_list(request.args.get('prvid')),
team_id=sanitize_list(request.args.get('teamid')),
project_id=request.args.get('prjid'),
div_id=None)
csv_only = request.args.get('dl_csv')
if csv_only:
myrows = dubwebdb.get_data_budget_provider(mytime, myids)
return convert_to_download_csv(myrows)
else:
return dubwebdb.get_data_provider(mytime, myids, add_budget=True)
| 11,787
|
def create_round_meander(radius, theta=0, offset=Point()):
"""
Returns a single period of a meandering path based on radius
and angle theta
"""
deg_to_rad = 2 * pi / 360
r = radius
t = theta * deg_to_rad
# The calculation to obtain the 'k' coefficient can be found here:
# http://itc.ktu.lt/itc354/Riskus354.pdf
# "APPROXIMATION OF A CUBIC BEZIER CURVE BY CIRCULAR ARCS AND VICE VERSA"
# by Aleksas Riskus
k = 0.5522847498
# the control points need to be shortened relative to the angle by this factor
j = 2*t/pi
path = "m %s,%s " % (-2*r*cos(t)-offset.x, -offset.y)
path += "c %s,%s %s,%s %s,%s " % (-k*r*j*sin(t),-k*r*j*cos(t), -(r-r*cos(t)),-r*sin(t)+r*k*j, -(r-r*cos(t)),-r*sin(t))
path += "c %s,%s %s,%s %s,%s " % (0,-k*r, r-k*r,-r, r,-r)
path += "c %s,%s %s,%s %s,%s " % (k*r,0, r,r-k*r, r,r)
path += "c %s,%s %s,%s %s,%s " % (0,k*r*j, -(r-r*cos(t)-k*r*j*sin(t)),r*sin(t)-r*k*j*cos(t), -r+r*cos(t),r*sin(t))
path += "c %s,%s %s,%s %s,%s " % (-k*r*j*sin(t),k*r*j*cos(t), -(r-r*cos(t)),r*sin(t)-r*k*j, -(r-r*cos(t)),r*sin(t))
path += "c %s,%s %s,%s %s,%s " % (0,k*r, r-k*r,r, r,r)
path += "c %s,%s %s,%s %s,%s " % (k*r,0, r,-r+k*r, r,-r)
path += "c %s,%s %s,%s %s,%s " % (0,-k*r*j, -(r-r*cos(t)-k*r*j*sin(t)),-r*sin(t)+r*k*j*cos(t), -r+r*cos(t),-r*sin(t))
return path
| 11,788
|
def get_env_info() -> Dict[str, Any]:
"""Get the environment information."""
return {
"k2-version": k2.version.__version__,
"k2-build-type": k2.version.__build_type__,
"k2-with-cuda": k2.with_cuda,
"k2-git-sha1": k2.version.__git_sha1__,
"k2-git-date": k2.version.__git_date__,
"lhotse-version": lhotse.__version__,
"torch-cuda-available": torch.cuda.is_available(),
"torch-cuda-version": torch.version.cuda,
"python-version": sys.version[:3],
"icefall-git-branch": get_git_branch_name(),
"icefall-git-sha1": get_git_sha1(),
"icefall-git-date": get_git_date(),
"icefall-path": str(Path(__file__).resolve().parent.parent),
"k2-path": str(Path(k2.__file__).resolve()),
"lhotse-path": str(Path(lhotse.__file__).resolve()),
"hostname": socket.gethostname(),
"IP address": socket.gethostbyname(socket.gethostname()),
}
| 11,789
|
def load_config(path):
"""Loads the config dict from a file at path; returns dict."""
with open(path, "rb") as f:
config = pickle.load(f)
return config
| 11,790
|
def _check_year(clinicaldf: pd.DataFrame, year_col: int, filename: str,
allowed_string_values: list = []) -> str:
"""Check year columns
Args:
clinicaldf: Clinical dataframe
year_col: YEAR column
filename: Name of file
allowed_string_values: list of other allowed string values
Returns:
Error message
"""
error = ''
if process_functions.checkColExist(clinicaldf, year_col):
# Deal with pre-redacted values and other allowed strings
# first because can't int(text) because there are
# instances that have <YYYY
year_series = clinicaldf[year_col][
~clinicaldf[year_col].isin(allowed_string_values)
]
year_now = datetime.datetime.utcnow().year
try:
years = year_series.apply(
lambda x: datetime.datetime.strptime(
str(int(x)), '%Y').year > year_now
)
# Make sure that none of the years are greater than the current
# year. It can be the same, but can't future years.
assert not years.any()
except Exception:
error = (f"{filename}: Please double check your {year_col} "
"column, it must be an integer in YYYY format "
f"<= {year_now}")
# Tack on allowed string values
if allowed_string_values:
error += " or '{}'.\n".format(
"', '".join(allowed_string_values)
)
else:
error += ".\n"
else:
error = f"{filename}: Must have {year_col} column.\n"
return error
| 11,791
|
def matchups(
sport, datasets, date, file_type, compression, batch_size, groups, output, config, tz, parallel, complete, force
):
"""Retrieves Fox Sports Matchups Data"""
start = time.time()
if force:
os.environ["AUTO_MAKEDIRS"] = "1"
config = config or {}
groups = groups or []
datasets = datasets or []
config = merge_dicts(
read_config(f"fox-sports-{sport}.yaml", layer="data_lake"),
config,
)
logger.info("Configuring Fox Sports Matchups for '{sport}'", sport=sport, config=config)
relations = relationships.Relations()
datasets_map = relations.datasets_map
for group in groups:
for dataset in relations.groups[group]:
create_relation(datasets_map, dataset, *relations.dependencies.get(dataset, []))
datasets_map[dataset]["export"] = True
for dataset in datasets:
create_relation(datasets_map, dataset, *relations.dependencies.get(dataset, []))
datasets_map[dataset]["export"] = True
if complete:
for dataset in datasets_map:
datasets_map[dataset]["fetch"] = True
datasets_map[dataset]["export"] = True
orchestrate = Orchestrator(
date=date,
parallel=parallel,
feeds_config=config,
file_type=file_type,
compression=compression,
batch_size=batch_size,
permissions=datasets_map,
tz=tz,
output=output,
)
orchestrate.start()
if compression in get_supported_extensions():
file_ext = FILE_EXT[file_type] + compression
else:
file_ext = FILE_EXT[file_type]
for uri, record_count in orchestrate.written_files.items():
full_path = uri if uri.endswith(file_ext) else f"{uri}{file_ext}"
logger.info("'{file}' written with {records} records", records=record_count, file=full_path)
logger.info("Process Complete in {total_runtime} seconds!", total_runtime=round(time.time() - start, 4))
| 11,792
|
def test_increment_version():
"""Run test cases to ensure that increment_version works correctly.
This is critical since running release_build.py with the --auto switch
will automatically increment the release versions without prompting the
user to verify the new versions."""
assert increment_version('1.0.3') == '1.0.4'
assert increment_version('1.0.9') == '1.0.10'
assert increment_version('1.1.9') == '1.1.10'
assert increment_version('1.3.0') == '1.3.1'
assert increment_version('1.3.1') == '1.3.2'
assert increment_version('1.9.9') == '1.9.10'
assert increment_version('3.6.22') == '3.6.23'
assert increment_version('3.22.6') == '3.22.7'
assert increment_version('1.0.3.1') == '1.0.4'
assert increment_version('1.0.9.1') == '1.0.10'
assert increment_version('1.1.9.1') == '1.1.10'
assert increment_version('1.3.0.1') == '1.3.1'
assert increment_version('1.3.1.1') == '1.3.2'
assert increment_version('1.9.9.1') == '1.9.10'
assert increment_version('3.6.22.1') == '3.6.23'
assert increment_version('3.22.6.1') == '3.22.7'
assert increment_version('1.0.3', True) == '1.0.4'
assert increment_version('1.0.9', True) == '1.1.0'
assert increment_version('1.1.9', True) == '1.2.0'
assert increment_version('1.3.0', True) == '1.3.1'
assert increment_version('1.3.1', True) == '1.3.2'
assert increment_version('1.9.9', True) == '2.0.0'
assert increment_version('3.6.22', True) == '3.7.0'
assert increment_version('3.22.6', True) == '3.22.7'
| 11,793
|
def flaskbb_load_migrations():
"""Hook for registering additional migrations."""
| 11,794
|
def lower_strings(string_list):
"""
Helper function to return lowercase version of a list of strings.
"""
return [str(x).lower() for x in string_list]
| 11,795
|
def AAprime():
"""
>> AAprime()
aaprime and aprimea
"""
aprimeA = dot(transpose(ATable), ATable)
# Aaprime = dot(ATable1, ATable)
return aprimeA
| 11,796
|
def normalize_group_path(group, suffix=None):
"""
:param group:
:param suffix:
:return:
"""
group = os.path.join('/', group)
if suffix is not None:
if not group.endswith(suffix):
group = os.path.join(group, suffix.rstrip('/'))
return group
| 11,797
|
def _load_dataset(data_filename_or_set, comm, verbosity):
"""Loads a DataSet from the data_filename_or_set argument of functions in this module."""
printer = _baseobjs.VerbosityPrinter.create_printer(verbosity, comm)
if isinstance(data_filename_or_set, str):
if comm is None or comm.Get_rank() == 0:
if _os.path.splitext(data_filename_or_set)[1] == ".pkl":
with open(data_filename_or_set, 'rb') as pklfile:
ds = _pickle.load(pklfile)
else:
ds = _io.read_dataset(data_filename_or_set, True, "aggregate", printer)
if comm is not None: comm.bcast(ds, root=0)
else:
ds = comm.bcast(None, root=0)
else:
ds = data_filename_or_set # assume a Dataset object
return ds
| 11,798
|
def test_blog_pagination(web_server: str, browser: DriverAPI, dbsession: Session, publish_posts):
"""When posts exceed batch size, pagination is activated. Test that it's sane."""
# Direct Splinter browser to the blog showing 5 items per page on page 1
b = browser
b.visit(web_server + "/blog/?batch_num=0&batch_size=5")
# Iterate 5 times navigating with the 'Next' button
for _ in range(5):
# After the last 'Next' the button should be disabled
if _ == 4:
end_of_blog = b.find_by_xpath('//body/main/div[2]/div/div/div//ul/li[3]')
# After 10 iterations the next button should be disabled
assert end_of_blog.has_class("disabled")
b.find_by_xpath('//body/main/div[2]/div/div/div//ul/li[3]/a').first.click()
| 11,799
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.