content
stringlengths
22
815k
id
int64
0
4.91M
def example_data(): """Makes some example objects for db testing""" user = User(username='testo', password='testo', email='testo@test.com', age=35, gender='nb_gf') user2 = User(username='boolean', password='bear', email='bb@test.com', age=32, gender='nb_gf') user3 = User(username='instance', password='cat', email='ic@test.com', age=30, gender='nb_gf') review = Review(user_id=1, game_id=1, score=95, comment=None) review2 = Review(user_id=2, game_id=1, score=95, comment=None) critic_review = CriticReview(game_id=1, critic_code='ign', score=100, name="IGN", link="fake") game = Game(game_id=1, name="Testo", release_date=datetime.datetime.now(), franchise_id=1) current_game = CurrentGame(user_id=1, game_id=1) cover = Cover(game_id=1, url="///testo.png", width=360, height=240) franchise = Franchise(franchise_id=1, name="Testo Stories") genre = Genre(genre="test") developer = Developer(name="Testo Games") platform = Platform(name="Testo360") screenshot = Screenshot(game_id=1, url="///test.png", width=260, height=240) db.session.add_all([user, user2, user3, franchise, game]) db.session.commit() db.session.add_all([review, review2, critic_review, current_game, cover, genre, developer, platform, screenshot]) db.session.commit() gameGenre = GameGenre(game_id=1, genre_id=1) gameDeveloper = GameDeveloper(game_id=1, developer_id=1) gamePlatform = GamePlatform(game_id=1, platform_id=1) db.session.add_all([gameGenre, gamePlatform, gameDeveloper]) db.session.commit()
11,900
def linear_resample(x: Union[ivy.Array, ivy.NativeArray], num_samples: int, axis: int = -1, f: ivy.Framework = None)\ -> Union[ivy.Array, ivy.NativeArray]: """ Performs linear re-sampling on input image. :param x: Input array :type x: array :param num_samples: The number of interpolated samples to take. :type num_samples: int :param axis: The axis along which to perform the resample. Default is last dimension. :type axis: int, optional :param f: Machine learning framework. Inferred from inputs if None. :type f: ml_framework, optional :return: The array after the linear resampling. """ return _cur_framework(x, f=f).linear_resample(x, num_samples, axis)
11,901
def mysql_settings(): """Return a list of dict of settings for connecting to postgresql. Will return the correct settings, depending on which of the environments it is running in. It attempts to set variables in the following order, where later environments override earlier ones. 1. Local 2. Github Actions """ if "GITHUB_ACTIONS" in os.environ: instances = 2 user = password = db = "python_agent" base_port = 8080 else: instances = 1 user = db = USER password = "" base_port = 3306 settings = [ { "user": user, "password": password, "name": db, "host": "127.0.0.1", "port": base_port + instance_num, "namespace": str(os.getpid()), } for instance_num in range(instances) ] return settings
11,902
def fill (surface, rect, colour): """Fill a single colour. Takes a standard (r, g, b) tuple. """ surface.fill(colour, rect)
11,903
def update_milestones(repo, username=None, namespace=None): """Update the milestones of a project.""" repo = flask.g.repo form = pagure.forms.ConfirmationForm() error = False if form.validate_on_submit(): redirect = flask.request.args.get("from") milestones = flask.request.form.getlist("milestones") miles = {} keys = [] for idx in milestones: milestone = flask.request.form.get( "milestone_%s_name" % (idx), None ) date = flask.request.form.get("milestone_%s_date" % (idx), None) active = ( True if flask.request.form.get("milestone_%s_active" % (idx)) else False ) if milestone and milestone.strip(): milestone = milestone.strip() if milestone in miles: flask.flash( "Milestone %s is present multiple times" % milestone, "error", ) error = True break miles[milestone] = { "date": date.strip() if date else None, "active": active, } keys.append(milestone) if not error: try: repo.milestones = miles repo.milestones_keys = keys flask.g.session.add(repo) flask.g.session.commit() flask.flash("Milestones updated") except SQLAlchemyError as err: # pragma: no cover flask.g.session.rollback() flask.flash(str(err), "error") if redirect == "issues": return flask.redirect( flask.url_for( "ui_ns.view_issues", username=username, repo=repo.name, namespace=namespace, ) ) return flask.redirect( flask.url_for( "ui_ns.view_settings", username=username, repo=repo.name, namespace=namespace, ) + "#roadmap-tab" )
11,904
def installedState(item_pl): """Checks to see if the item described by item_pl (or a newer version) is currently installed All tests must pass to be considered installed. Returns 1 if it looks like this version is installed Returns 2 if it looks like a newer version is installed. Returns 0 otherwise. """ foundnewer = False if item_pl.get('softwareupdatename'): availableAppleUpdates = appleupdates.softwareUpdateList() munkicommon.display_debug2( 'Available Apple updates:\n%s' % availableAppleUpdates) if item_pl['softwareupdatename'] in availableAppleUpdates: munkicommon.display_debug1( '%s is in available Apple Software Updates' % item_pl['softwareupdatename']) # return 0 so we're marked as needing to be installed return 0 else: munkicommon.display_debug1( '%s is not in available Apple Software Updates' % item_pl['softwareupdatename']) # return 1 so we're marked as not needing to be installed return 1 # does 'installs' exist and is it non-empty? if item_pl.get('installs', None): installitems = item_pl['installs'] for item in installitems: try: comparison = compareItemVersion(item) if comparison in (-1, 0): return 0 elif comparison == 2: # this item is newer foundnewer = True except munkicommon.Error, errmsg: # some problem with the installs data munkicommon.display_error(errmsg) return 0 # if there is no 'installs' key, then we'll use receipt info # to determine install status. elif 'receipts' in item_pl: receipts = item_pl['receipts'] for item in receipts: try: comparison = compareReceiptVersion(item) if comparison in (-1, 0): # not there or older return 0 elif comparison == 2: foundnewer = True except munkicommon.Error, errmsg: # some problem with the receipts data munkicommon.display_error(errmsg) return 0 # if we got this far, we passed all the tests, so the item # must be installed (or we don't have enough info...) if foundnewer: return 2 else: return 1
11,905
def trapezoid_vectors(t, depth, big_t, little_t): """Trapezoid shape, in the form of vectors, for model. Parameters ---------- t : float Vector of independent values to evaluate trapezoid model. depth : float Depth of trapezoid. big_t : float Full trapezoid duration. little_t : float Ingress/egress duration. Returns ------- output : float Vector of trapezoid model values. """ output = np.full_like(t, 1.0) t = np.abs(t) big_t_half = big_t * 0.5 little_t_half = little_t * 0.5 one_minus_depth = 1.0 - depth output = np.where(t <= big_t_half - little_t_half, one_minus_depth, output) return np.where( np.logical_and(t > big_t_half - little_t_half, t < big_t_half + little_t_half), one_minus_depth + ((depth / little_t) * (t - big_t_half + little_t_half)), output)
11,906
def get_rules(clf, class_names, feature_names): """ Extracts the rules from a decision tree classifier. The keyword arguments correspond to the objects returned by tree.build_tree. Keyword arguments: clf: A sklearn.tree.DecisionTreeClassifier. class_names: A list(str) containing the class names. feature_names: A list(str) containing the feature names. Returns: A list(str) where each element is a rule describing a leaf node. """ tree = clf.tree_ rules = traverse(tree, 0, class_names, feature_names, [], [], [], []) rules = prune_rules(rules, feature_names) n_rules = len(rules) print('\tExtracted', n_rules, 'rule' + ('s.' if n_rules > 1 else '.')) rules_str = [] for (features, thresholds, decisions, class_name) in rules: rule = lists2rule(features, thresholds, decisions, class_name) rules_str.append(rule) return rules_str
11,907
def save_repo(repo, target="/run/install"): """copy a repo to the place where the installer will look for it later.""" newdir = mkdir_seq(os.path.join(target, "DD-")) log.debug("save_repo: copying %s to %s", repo, newdir) subprocess.call(["cp", "-arT", repo, newdir]) return newdir
11,908
def file_parser(localpath = None, url = None, sep = " ", delimiter = "\t"): """ DOCSTRING: INPUT: > 'localpath' : String (str). Ideally expects a local object with a read() method (such as a file handle or StringIO). By default, 'localpath=dummy_file' parameter can be passed to auto-detect and parse one of our dummy 'Payments' file in Amazon format. Acceptable input file extensions include .CSV, .TSV and .TXT. Needs to be passed in within quotes, either single or double quotes. Default 'dummy_file' doesn't require additional quotes. > 'url' : [OPTIONAL] String (str). If supplied with value, 'localpath' needs to be left at default 'None' or else shall output an error message. Expected file type contained within URL should be either in .CSV, .TSV and .TXT format. Needs to be passed in within quotes, either single or double quotes. Default 'url=ur' can be passed w/o additional quotes for fetching dummy data. > 'sep' : [OPTIONAL] String (str). Optional, and isn't expected to be modified unless critical. Powered by Python’s builtin parsing sniffer tool. In addition, separators longer than 1 character and different from '\s+' will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex separators are prone to ignoring quoted data. [Regex example: '\r\t']. > 'delimiter' : [OPTIONAL] String (str). Parameter isn't expected to be modified (Like setting to 'None') unless critical. Alternative argument name for previous argument 'sep', so a careful choice needs to be made. OUTPUT: Shall result into a Pandas DataFrame or TextParser for further data processing. """ # Checking existence of 'filepath' or 'url' parameter before parsing: if localpath == None and url == None: return "Please input EITHER local file path to 'localpath' parameter OR any valid readable URL to 'url' parameter" elif localpath != None and url == None: if localpath.lower().endswith((".txt", ".csv", ".tsv")): data = pd.read_csv(localpath, sep = sep, delimiter=delimiter, parse_dates=[0], infer_datetime_format=True) return data else: return "This file format is not supported. Kindly refer to our functional flow documentation for further assistance!" elif localpath == None and url != None: data = pd.read_csv(url, sep = sep, delimiter=delimiter, parse_dates=[0], infer_datetime_format=True) return data else: return "Please pass valid input for processing."
11,909
def is_list(var, *, debug=False): """ is this a list or tuple? (DOES NOT include str) """ print_debug(debug, "is_list: got type %s" % (type(var))) return isinstance(var, (list, tuple))
11,910
def zonotope_minimize(avfun, avdom, avdfun): """ Minimize a response surface defined on a zonotope. :param function avfun: A function of the active variables. :param ActiveVariableDomain avdom: Contains information about the domain of `avfun`. :param function avdfun: Returns the gradient of `avfun`. :return: ystar, The estimated minimizer of `avfun`. :rtype: ndarray :return: fstar, The estimated minimum of `avfun`. :rtype: float **See Also** optimizers.av_minimize **Notes** This function wraps the scipy.optimize implementation of SLSQP with linear inequality constraints derived from the zonotope. """ n = avdom.subspaces.W1.shape[1] logging.getLogger(__name__).debug('Zonotope minimization in {:d} vars.'.format(n)) opts = {'disp':False, 'maxiter':1e4, 'ftol':1e-9} # a bit of globalization curr_state = np.random.get_state() np.random.seed(42) minf = 1e100 minres = [] for i in range(10): y0 = np.random.normal(size=(1, n)) cons = avdom.constraints result = scopt.minimize(avfun, y0, constraints=cons, method='SLSQP', \ jac=avdfun, options=opts) if not result.success: raise Exception('SLSQP failed with message: {}.'.format(result.message)) if result.fun < minf: minf = result.fun minres = result logging.getLogger(__name__).debug('\tMinimum {:6.4f}.'.format(minf)) np.random.set_state(curr_state) ystar, fstar = minres.x, minres.fun return ystar, fstar
11,911
def node_to_truncated_gr(node, bin_width=0.1): """ Parses truncated GR node to an instance of the :class: openquake.hazardlib.mfd.truncated_gr.TruncatedGRMFD """ # Parse to float dictionary if not all([node.attrib[key] for key in ["minMag", "maxMag", "aValue", "bValue"]]): return None tgr = dict((key, float_(node.attrib[key])) for key in node.attrib) return mfd.truncated_gr.TruncatedGRMFD(min_mag=tgr["minMag"], max_mag=tgr["maxMag"], bin_width=bin_width, a_val=tgr["aValue"], b_val=tgr["bValue"])
11,912
def nt(node, tag): """ returns text of the tag or None if the tag does not exist """ if node.find(tag) is not None and node.find(tag).text is not None: return node.find(tag).text else: return None
11,913
def set_user_favorites(username, **_): """ Sets the user's Favorites Variables: username => Name of the user you want to set the favorites for Arguments: None Data Block: { # Dictionary of "alert": [ "<name_of_query>": # Named queries "*:*", # The actual query to run ... } Result example: { "success": true # Was saving the favorites successful ? } """ data = request.json favorites = { "alert": [], "search": [], "signature": [], "submission": [], "error": [] } for key in data: if key not in favorites: return make_api_response("", err="Invalid favorite type (%s)" % key, status_code=400) favorites.update(data) return make_api_response({"success": STORAGE.user_favorites.save(username, data)})
11,914
def set_kaggle_dir(kaggle_dir, ctx=None): """ manually set kaggle directory that contains API key """ if not os.path.exists(kaggle_dir): click.secho("Error: {} does not exist".format(kaggle_dir), fg="red") exit(1) if not os.path.isdir(kaggle_dir): click.secho("Error: {} is not a directory".format(kaggle_dir), fg="red") exit(1) config = fo.get_config(ctx) config["kaggle_dir"] = kaggle_dir fo.set_config(config, ctx=ctx)
11,915
def corpus(): """语料生成器 """ while True: f = '/root/data_pretrain/data_shuf.json' with open(f) as f: for l in f: l = json.loads(l) for text in text_process(l['text']): yield text
11,916
def delete_token(token_id): """Revoke a specific token in the application auth database. :type token_id: str :param token_id: Token identifier :rtype: tuple :return: None, status code """ client_data = g.client_data if not valid_token_id(token_id): raise MalformedTokenIdException token = current_app.auth_db.lookup_token(token_id) if token is None: raise TokenNotFoundException if not isinstance(token, Token): raise InternalServerErrorException("auth_db.lookup_token did not return a token object") if "admin" in client_data.roles: current_app.auth_db.revoke_token(token_id) else: if token.client_id != client_data.client_id: raise InadequateRolesException("Cannot revoke a token which you do not own") current_app.auth_db.revoke_token(token_id) return "", 204
11,917
async def update_country(identifier: Optional[str] = None, name: Optional[str] = None, capital: Optional[str] = None, country: UpdateCountryModel = Body(...), current_user: AdminModel = Depends(get_current_user)): """ Update a country by name or capital name: - **current user** should be admin - **name**: country name - **capital**: capital name of the country """ variables = locals() options = {'identifier': '_id', 'name': 'name', 'capital': 'capital'} for key in variables.keys(): if variables[key] is not None: return await update_object({options[key]: variables[key]}, country, 'countries') raise HTTPException(status_code=404, detail='Set some parameters')
11,918
def test_api_metrics(mocker, flask_app, api_version): """Test Depot ID TBD. Verify that StatsD is sent statistics about the performance of TAC and IMEI APIs. The metric name should contain the HTTP status code so that the response times can be broken down by status code. """ # Can't import dirbs.api at top level as it configure logging import dirbs.api mocker.patch.object(dirbs.api, 'statsd', auto_spec=True) rv = flask_app.get(url_for('{0}.imei_api'.format(api_version), imei='0117220037002633')) assert rv.status_code == 200 dirbs.api.statsd.timing.assert_any_call('dirbs.api.response_time.imei.{0}.GET.200'.format(api_version), mocker.ANY) dirbs.api.statsd.incr.assert_any_call('dirbs.api.successes.imei.{0}.200'.format(api_version)) dirbs.api.statsd.reset_mock() rv = flask_app.get(url_for('{0}.tac_api'.format(api_version), tac='12345678')) assert rv.status_code == 200 dirbs.api.statsd.timing.assert_any_call('dirbs.api.response_time.tac.{0}.GET.200'.format(api_version), mocker.ANY) dirbs.api.statsd.incr.assert_any_call('dirbs.api.successes.tac.{0}.200'.format(api_version)) for api in ['tac', 'imei']: dirbs.api.statsd.reset_mock() rv = flask_app.get(url_for('{0}.{1}_api'.format(api_version, api), **{api: 'aaaaaaaaaaaaaaaaaaaaaaa'})) assert rv.status_code == 400 dirbs.api.statsd.timing.assert_any_call('dirbs.api.response_time.{0}.{1}.GET.400'.format(api, api_version), mocker.ANY) dirbs.api.statsd.incr.assert_any_call('dirbs.api.failures.{0}.{1}.400'.format(api, api_version)) dirbs.api.statsd.reset_mock() rv = flask_app.post(url_for('{0}.{1}_api'.format(api_version, api), **{api: 'a'})) assert rv.status_code == 405 dirbs.api.statsd.timing.assert_any_call('dirbs.api.response_time.{0}.{1}.POST.405'.format(api, api_version), mocker.ANY) dirbs.api.statsd.incr.assert_any_call('dirbs.api.failures.{0}.{1}.405'.format(api, api_version))
11,919
def twoSum(nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ """method-1 time O(n), traverse all, get rest""" for i in range(len(nums)): res = target - nums[i] if res in nums: return [i, nums.index(res)] else: return []
11,920
def test_model_reset_correctly(tmpdir): """Check that model weights are correctly reset after scaling batch size.""" tutils.reset_seed() model = BatchSizeModel(batch_size=2) # logger file to get meta trainer = Trainer(default_root_dir=tmpdir, max_epochs=1) before_state_dict = deepcopy(model.state_dict()) trainer.tuner.scale_batch_size(model, max_trials=5) after_state_dict = model.state_dict() for key in before_state_dict.keys(): assert torch.all( torch.eq(before_state_dict[key], after_state_dict[key]) ), "Model was not reset correctly after scaling batch size" assert not any(f for f in os.listdir(tmpdir) if f.startswith(".scale_batch_size"))
11,921
def transform_image(image, code_vectors): """ Quantize image using the code_vectors (aka centroids) Return a new image by replacing each RGB value in image with the nearest code vector (nearest in euclidean distance sense) returns: numpy array of shape image.shape """ assert image.shape[2] == 3 and len(image.shape) == 3, \ 'Image should be a 3-D array with size (?,?,3)' assert code_vectors.shape[1] == 3 and len(code_vectors.shape) == 2, \ 'code_vectors should be a 2-D array with size (?,3)' # TODO # - replace each pixel (a 3-dimensional point) by its nearest code vector N, M, D = image.shape flatten = image.reshape(N*M, D) # Assign every pixel to its nearest code vector distances = squared_euclidean_distances(x=flatten, y=code_vectors) assignment = np.argmin(distances, axis=1) compressed = code_vectors[assignment].reshape(N, M, D) return compressed
11,922
def main(): """ Main method that collects the ASN from the spine switches using the native model """ asn_filter = """ <System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device"> <bgp-items> <inst-items> <asn/> </inst-items> </bgp-items> </System> """ for device in DEVICES: with manager.connect(host=device, port=PORT, username=USER, password=PASS, hostkey_verify=False, device_params={'name': 'nexus'}, look_for_keys=False, allow_agent=False) as m: # Add the loopback interface netconf_response = m.get(('subtree', asn_filter)) # Parse the XML response xml_data = netconf_response.data_ele asn = xml_data.find(".//{http://cisco.com/ns/yang/cisco-nx-os-device}asn").text print("The ASN number for {} {} is {}".format(DEVICE_NAMES[device], device, asn))
11,923
def create_linking_context_from_compilation_outputs( *, actions, additional_inputs = [], alwayslink = False, compilation_outputs, feature_configuration, label, linking_contexts = [], module_context, name = None, swift_toolchain, user_link_flags = []): """Creates a linking context from the outputs of a Swift compilation. On some platforms, this function will spawn additional post-compile actions for the module in order to add their outputs to the linking context. For example, if the toolchain that requires a "module-wrap" invocation to embed the `.swiftmodule` into an object file for debugging purposes, or if it extracts auto-linking information from the object files to generate a linker command line parameters file, those actions will be created here. Args: actions: The context's `actions` object. additional_inputs: A `list` of `File`s containing any additional files that are referenced by `user_link_flags` and therefore need to be propagated up to the linker. alwayslink: If True, any binary that depends on the providers returned by this function will link in all of the library's object files, even if some contain no symbols referenced by the binary. compilation_outputs: A `CcCompilationOutputs` value containing the object files to link. Typically, this is the second tuple element in the value returned by `swift_common.compile`. feature_configuration: A feature configuration obtained from `swift_common.configure_features`. label: The `Label` of the target being built. This is used as the owner of the linker inputs created for post-compile actions (if any), and the label's name component also determines the name of the artifact unless it is overridden by the `name` argument. linking_contexts: A `list` of `CcLinkingContext`s containing libraries from dependencies. name: A string that is used to derive the name of the library or libraries linked by this function. If this is not provided or is a falsy value, the name component of the `label` argument is used. module_context: The module context returned by `swift_common.compile` containing information about the Swift module that was compiled. Typically, this is the first tuple element in the value returned by `swift_common.compile`. swift_toolchain: The `SwiftToolchainInfo` provider of the toolchain. user_link_flags: A `list` of strings containing additional flags that will be passed to the linker for any binary that links with the returned linking context. Returns: A tuple of `(CcLinkingContext, CcLinkingOutputs)` containing the linking context to be propagated by the caller's `CcInfo` provider and the artifact representing the library that was linked, respectively. """ extra_linking_contexts = [ cc_info.linking_context for cc_info in swift_toolchain.implicit_deps_providers.cc_infos ] if module_context and module_context.swift: post_compile_linker_inputs = [] # Ensure that the .swiftmodule file is embedded in the final library or # binary for debugging purposes. if should_embed_swiftmodule_for_debugging( feature_configuration = feature_configuration, module_context = module_context, ): post_compile_linker_inputs.append( ensure_swiftmodule_is_embedded( actions = actions, feature_configuration = feature_configuration, label = label, swiftmodule = module_context.swift.swiftmodule, swift_toolchain = swift_toolchain, ), ) # Invoke an autolink-extract action for toolchains that require it. if is_action_enabled( action_name = swift_action_names.AUTOLINK_EXTRACT, swift_toolchain = swift_toolchain, ): autolink_file = derived_files.autolink_flags( actions = actions, target_name = label.name, ) register_autolink_extract_action( actions = actions, autolink_file = autolink_file, feature_configuration = feature_configuration, module_name = module_context.name, object_files = compilation_outputs.objects, swift_toolchain = swift_toolchain, ) post_compile_linker_inputs.append( cc_common.create_linker_input( owner = label, user_link_flags = depset( ["@{}".format(autolink_file.path)], ), additional_inputs = depset([autolink_file]), ), ) extra_linking_contexts.append( cc_common.create_linking_context( linker_inputs = depset(post_compile_linker_inputs), ), ) if not name: name = label.name return cc_common.create_linking_context_from_compilation_outputs( actions = actions, feature_configuration = get_cc_feature_configuration( feature_configuration, ), cc_toolchain = swift_toolchain.cc_toolchain_info, compilation_outputs = compilation_outputs, name = name, user_link_flags = user_link_flags, linking_contexts = linking_contexts + extra_linking_contexts, alwayslink = alwayslink, additional_inputs = additional_inputs, disallow_static_libraries = False, disallow_dynamic_library = True, grep_includes = None, )
11,924
def test_ClangFormat_long_line(): """Test that extremely long lines are not wrapped.""" assert ( java.ClangFormat( """ public class VeryVeryLongNameeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee extends VeryVeryLongNameeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeBase { } """ ) == """ public class VeryVeryLongNameeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee \ extends VeryVeryLongNameeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeBase {} """ )
11,925
def wait_until_uds_reachable(uds_path, return_sock=False): """ Wait until the unix domain socket at `uds_path` is reachable. Returns ------- socket.socket """ from miniworld.util import ConcurrencyUtil sock = ConcurrencyUtil.wait_until_fun_returns_true(lambda x: x[0] is True, uds_reachable, uds_path, return_sock=return_sock)[1] return sock
11,926
def get_relation_count_df( dataset: Dataset, merge_subsets: bool = True, add_labels: bool = True, ) -> pd.DataFrame: """Create a dataframe with relation counts. :param dataset: The dataset. :param add_labels: Whether to add relation labels to the dataframe. :param merge_subsets: Whether to merge subsets, i.e., train/validation/test. :param add_labels: Whether to add entity / relation labels. :return: A dataframe with columns (relation_id, count, relation_label?, subset?) """ return _common( dataset=dataset, triple_func=triple_analysis.get_relation_counts, merge_subsets=merge_subsets, add_labels=add_labels, )
11,927
def set_data(group: h5py.Group, name: str, data: Union[np.ndarray, h5py.Dataset], dtype=None): """ Creates a dataset in Group with Name for data that is either an np.ndarray or a h5py.Dataset already (if using a dataset, it will only create a link to that dataset which is good for saving storage space, but don't do this if you intend to change the data) Args: group (h5py.Group): HDF group to store dataset in name (str): Name with which to store the dataset (will overwrite existing datasets) data (Union[np.ndarray, h5py.Dataset]): Data to be stored, can be np.ndarray or h5py.Dataset Returns: None """ ds = group.get(name, None) if ds is not None: # TODO: Do something better here to make sure I'm not just needlessly rewriting data logger.info(f'Removing dataset {ds.name} with shape {ds.shape} to ' f'replace with data of shape {data.shape}') del group[name] group.create_dataset(name, data.shape, dtype, data)
11,928
def get_tests(run_id): """ Ручка для получения информации о тест (из тест-рана) Выходящий параметр: test_id """ client = APIClient('https://testrail.homecred.it') client.user = 'dmitriy.zverev@homecredit.ru' client.password = 'Qwerty_22' tests = client.send_get('get_tests/%s' % run_id) return tests
11,929
def create_ffs(): """ Create a new Powergate Filecoin Filesystem (FFS) """ powergate = PowerGateClient(app.config["POWERGATE_ADDRESS"]) ffs = powergate.ffs.create() creation_date = datetime.now().replace(microsecond=0) # TODO salt token id filecoin_file_system = Ffs( ffs_id=ffs.id, token=ffs.token, creation_date=creation_date, user_id=current_user.id, ) db.session.add(filecoin_file_system) # Create new FFS wallet and add entry in log table address = powergate.ffs.addrs_list(ffs.token) obj = MessageToDict(address) wallet = obj["addrs"][0]["addr"] wallet = Wallets(created=creation_date, address=wallet, ffs=ffs.id, user_id=current_user.id,) db.session.add(wallet) db.session.commit() new_ffs = Ffs.query.filter_by(ffs_id=ffs.id).first() return new_ffs
11,930
def cleanup_pools(): """Removes all storage pools from ScaleIO created by functional tests.""" for pool in StoragePool.all(): if not _is_test_name(pool): continue pool.delete() assert not [p for p in StoragePool.all() if _is_test_name(p)]
11,931
def store_file(bucket, dataset, key, fileobj): """ Store a file on S3 Parameters ---------- bucket : str dataset : str key : str fileobj : fileobj """ key = parsed_key(dataset, key) total_sent = 0 logging.info("store_file: {}/{}".format(bucket, key)) def cb(bytes_sent): nonlocal total_sent total_sent += bytes_sent logging.debug( "store_file: {}/{} -- transferred {} bytes".format(bucket, key, total_sent) ) s3_client.upload_fileobj(fileobj, bucket, key, Callback=cb)
11,932
def other(player): """Return the other player, for a player PLAYER numbered 0 or 1. >>> other(0) 1 >>> other(1) 0 """ return 1 - player
11,933
def _explored_parameters_in_group(traj, group_node): """Checks if one the parameters in `group_node` is explored. :param traj: Trajectory container :param group_node: Group node :return: `True` or `False` """ explored = False for param in traj.f_get_explored_parameters(): if param in group_node: explored = True break return explored
11,934
def _execute(query, data=None, config_file=DEFAULT_CONFIG_FILE): """Execute SQL query on a postgres db""" # Connect to an existing database. postgres_db_credentials = postgres_db(config_file) conn = psycopg2.connect(dbname=postgres_db_credentials["dbname"], user=postgres_db_credentials["user"], password=postgres_db_credentials["password"], host=postgres_db_credentials["host"], port=postgres_db_credentials["port"]) # Open a cursor to perform database operations. cur = conn.cursor() if data is None: cur.execute(query) elif isinstance(data, list): execute_values(cur, query, data, template=None, page_size=100) else: cur.execute(query, data) conn.commit() if cur.description is None: result = None elif len(cur.description) == 1: result, = cur.fetchone() else: result = cur.fetchall() cur.close() conn.close() return result
11,935
def _construct_out_filename(fname, group_name): """ Construct a specifically formatted output filename. The vrt will be placed adjacent to the HDF5 file, as such write access is required. """ basedir = fname.absolute().parent basename = fname.with_suffix('.vrt').name.replace( 'wagl', group_name ) out_fname = basedir.joinpath(Path(basename)) return out_fname
11,936
def test_add_record(): """ """ groups = groups_description dataset_size = 3 temporal_context = 3 try: shutil.rmtree('/tmp/fake_memmmaps/') except: pass # build dataset memmaps = generate_memmaps(dataset_size, three_groups_record_description, memmaps_description_nested) fake_dataset = DreemDataset(groups, features_description={}, temporal_context=temporal_context) for i, memmap in enumerate(memmaps): fake_dataset.add_record(memmap) assert len(fake_dataset.records) == i + 1, 'Wrong nummber of records in the dataset' assert fake_dataset.records[-1] == memmap, 'The wrong record has been added' try: shutil.rmtree('/tmp/fake_memmmaps/') except: pass
11,937
def _deposit_need_factory(name, **kwargs): """Generate a JSON argument string from the given keyword arguments. The JSON string is always generated the same way so that the resulting Need is equal to any other Need generated with the same name and kwargs. """ if kwargs: for key, value in enumerate(kwargs): if value is None: del kwargs[key] if not kwargs: argument = None else: argument = json.dumps(kwargs, separators=(',', ':'), sort_keys=True) return ParameterizedActionNeed(name, argument)
11,938
def not_equal(version1, version2): """ Evaluates the expression: version1 != version2. :type version1: str :type version2: str :rtype: bool """ return compare(version1, '!=', version2)
11,939
def test_lf_acc_with_strict_match_with_prefixes_without_agg( analysis_corpus, analysis_corpus_y ): """ Test expected accuracies across below spans: Spans: "name_1": Pierre (B-PERSON), Lison (L-PERSON), Pierre(U-PERSON) "name_2": Pierre (B-PERSON), Lison (L-PERSON) "org_1": Norwegian (B-ORG), Computing (I-ORG), Center(L-ORG) "org_2": Norwegian (B-ORG), Computing (L-ORG), Oslo (U-ORG) "place_1": Norwegian (U-NORP), Oslo (U-GPE) Accuracy: name_1: B-PERSON: 19/19 I-PERSON: 19/19 L-PERSON: 19/19 U-PERSON: 19/19 name_2: B-PERSON: 19/19 I-PERSON: 19/19 L-PERSON: 19/19 U-PERSON: 18/19 (misclassifies 2nd Pierre) org_1: B-ORG: 19/19 I-ORG: 19/19 L-ORG: 19/19 U-ORG: 19/19 org_2: B-ORG: 19/19 I-ORG: 18/19 L-ORG: 17/19 U-ORG: 18/19 place_1: B-NORP: 19/19 I-NORP: 19/19 L-NORP: 19/19 U-NORP: 18/19 B-GPE: 19/19 I-GPE: 19/19 L-GPE: 19/19 U-GPE: 19/19 """ labels = ["O"] labels += [ "%s-%s"%(p,l) for l in ["GPE", "NORP", "ORG", "PERSON"] for p in "BILU" ] lf_analysis = LFAnalysis( analysis_corpus, labels, strict_match=True ) result = lf_analysis.lf_empirical_accuracies( *analysis_corpus_y, agg=False ) assert(result['B-PERSON']['name_1'] == 1.0) assert(result['I-PERSON']['name_1'] == 1.0) assert(result['L-PERSON']['name_1'] == 1.0) assert(result['U-PERSON']['name_1'] == 1.0) assert(result['B-PERSON']['name_2'] == 1.0) assert(result['I-PERSON']['name_2'] == 1.0) assert(result['L-PERSON']['name_2'] == 1.0) assert(abs(result['U-PERSON']['name_2'] - 18/19) <= 1e-5) assert(result['B-ORG']['org_1'] == 1.0) assert(result['I-ORG']['org_1'] == 1.0) assert(result['L-ORG']['org_1'] == 1.0) assert(result['U-ORG']['org_1'] == 1.0) assert(result['B-ORG']['org_2'] == 1.0) assert(abs(result['I-ORG']['org_2'] - 18/19) <= 1e-5) assert(abs(result['L-ORG']['org_2'] - 17/19) <= 1e-5) assert(abs(result['U-ORG']['org_2'] - 18/19) <= 1e-5) assert(result['B-NORP']['place_1'] == 1.0) assert(result['I-NORP']['place_1'] == 1.0) assert(result['L-NORP']['place_1'] == 1.0) assert(abs(result['U-NORP']['place_1'] - 18/19) <= 1e-5) assert(result['B-GPE']['place_1'] == 1.0) assert(result['I-GPE']['place_1'] == 1.0) assert(result['L-GPE']['place_1'] == 1.0) assert(result['U-GPE']['place_1'] == 1.0)
11,940
def get_sp_list(): """ Gets all tickers from S&P 500 """ bs = get_soup('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies') sp_companies = bs.find_all('a', class_="external text") return sp_companies
11,941
def loadNecessaryDatabases(): """ loads transport and statmech databases """ from rmgpy.data.statmech import StatmechDatabase from rmgpy.data.transport import TransportDatabase #only load if they are not there already. try: getDB('transport') getDB('statmech') except DatabaseError: logging.info("Databases not found. Making databases") db = RMGDatabase() db.statmech = StatmechDatabase() db.statmech.load(os.path.join(settings['database.directory'],'statmech')) db.transport = TransportDatabase() db.transport.load(os.path.join(settings['database.directory'],'transport'))
11,942
def get_params_nowcast( to, tf, i, j, path, nconst, depthrange='None', depav=False, tidecorr=tidetools.CorrTides): """This function loads all the data between the start and the end date that contains hourly velocities in the netCDF4 nowcast files in the specified depth range. Then masks, rotates and unstaggers the time series. The unstaggering causes the shapes of the returned arrays to be 1 less than those of the input arrays in the y and x dimensions. Finally it calculates tidal ellipse parameters from the u and v time series. Maintains the shape of the velocities enters only loosing the time dimensions. :arg to: The beginning of the date range of interest :type to: datetime object :arg tf: The end of the date range of interest :type tf: datetime object :arg i: x index, must have at least 2 values for unstaggering, will loose the first i during the unstaggering in prepare_vel. :type i: float or list :arg j: y index, must have at least 2 values for unstaggering, will loose the first j during the unstaggering in prepare_vel. :type j: float or list :arg path: Defines the path used(eg. nowcast) :type path: string :arg depthrange: Depth values of interest in meters as a float for a single depth or a list for a range. A float will find the closest depth that is <= the value given. Default is 'None' for the whole water column (0-441m). :type depav: float, string or list. :arg depav: True will depth average over the whole depth profile given. Default is False. :type depav: boolean :arg depth: depth vector corresponding to the depth of the velocities, only requiered if depav=True. :type depth: :py:class:'np.ndarray' or string :returns: params, dep params is dictionary object of the ellipse parameters for each constituent dep is the depths of the ellipse paramters """ u, v, time, dep = ellipse_files_nowcast( to, tf, i, j, path, depthrange=depthrange) u_u, v_v = prepare_vel(u, v, depav=depav, depth=dep) params = get_params(u_u, v_v, time, nconst, tidecorr=tidecorr) return params, dep
11,943
def convert_size(size): """ Helper function to convert ISPMan sizes to readable units. """ return number_to_human_size(int(size)*1024)
11,944
def get_suppressed_output( detections, filter_id: int, iou: float, confidence: float, ) -> tuple: """Filters detections based on the intersection of union theory. :param detections: The tensorflow prediction output. :param filter_id: The specific class to be filtered. :param iou: The intersection of union threshold. :param confidence: The confidence threshold. :returns: tuple of suppressed bbox, suppressed scores and suppressed classes. """ detection_masks = ( detections["detection_masks"] if "detection_masks" in detections else None ) detection_boxes = detections["detection_boxes"] detection_scores = detections["detection_scores"] detection_classes = detections["detection_classes"] return ( _non_max_suppress_bbox( bbox=detection_boxes, scores=detection_scores, classes=detection_classes, filter_class=filter_id, iou=iou, confidence=confidence, ) if detection_masks is None else _non_max_suppress_mask( bbox=detection_boxes, scores=detection_scores, classes=detection_classes, masks=detection_masks, filter_class=filter_id, iou=iou, confidence=confidence, ) )
11,945
def tf_nan_func(func, **kwargs): """ takes function with X as input parameter and applies function only on finite values, helpful for tf value calculation which can not deal with nan values :param func: function call with argument X :param kwargs: other arguments for func :return: executed func output with nan values """ mask = tfm.is_finite(kwargs["X"]) empty_t = tf.cast(tf.fill(mask.shape, np.nan), dtype=kwargs["X"].dtype) for i in kwargs: # workaround of tf.rank(kwargs[i]) > 0, avoid scalar value in mask if kwargs[i].shape != (): # keep only finite kwargs[i] = tf.boolean_mask(kwargs[i], tfm.is_finite(kwargs[i])) res_func = func(**kwargs) full_t = tf.tensor_scatter_nd_update(empty_t, tf.where(mask), res_func) return full_t
11,946
def deep_update(original, new_dict, new_keys_allowed=False, allow_new_subkey_list=None, override_all_if_type_changes=None): """Updates original dict with values from new_dict recursively. If new key is introduced in new_dict, then if new_keys_allowed is not True, an error will be thrown. Further, for sub-dicts, if the key is in the allow_new_subkey_list, then new subkeys can be introduced. Args: original (dict): Dictionary with default values. new_dict (dict): Dictionary with values to be updated new_keys_allowed (bool): Whether new keys are allowed. allow_new_subkey_list (Optional[List[str]]): List of keys that correspond to dict values where new subkeys can be introduced. This is only at the top level. override_all_if_type_changes(Optional[List[str]]): List of top level keys with value=dict, for which we always simply override the entire value (dict), iff the "type" key in that value dict changes. """ allow_new_subkey_list = allow_new_subkey_list or [] override_all_if_type_changes = override_all_if_type_changes or [] for k, value in new_dict.items(): if k not in original and not new_keys_allowed: raise Exception("Unknown config parameter `{}` ".format(k)) # Both orginal value and new one are dicts. if isinstance(original.get(k), dict) and isinstance(value, dict): # Check old type vs old one. If different, override entire value. if k in override_all_if_type_changes and \ "type" in value and "type" in original[k] and \ value["type"] != original[k]["type"]: original[k] = value # Allowed key -> ok to add new subkeys. elif k in allow_new_subkey_list: deep_update(original[k], value, True) # Non-allowed key. else: deep_update(original[k], value, new_keys_allowed) # Original value not a dict OR new value not a dict: # Override entire value. else: original[k] = value return original
11,947
def queued_archive_jobs(): """Fetch the info about jobs waiting in the archive queue. Returns ------- jobs: dict """ jobs = pbs_jobs() return [ job for job in jobs if (job["job_state"] == "Q" and job["queue"] == "archivelong") ]
11,948
def main(): """Start execution of the script""" MiscUtil.PrintInfo("\n%s (RDK v%s; %s): Starting...\n" % (ScriptName, rdBase.rdkitVersion, time.asctime())) (WallClockTime, ProcessorTime) = MiscUtil.GetWallClockAndProcessorTime() # Retrieve command line arguments and options... RetrieveOptions() # Process and validate command line arguments and options... ProcessOptions() # Perform actions required by the script... GenerateConformers() MiscUtil.PrintInfo("\n%s: Done...\n" % ScriptName) MiscUtil.PrintInfo("Total time: %s" % MiscUtil.GetFormattedElapsedTime(WallClockTime, ProcessorTime))
11,949
def getCustomKernelSolutionObj(kernelName, directory=globalParameters["CustomKernelDirectory"]): """Creates the Solution object for a custom kernel""" kernelConfig = getCustomKernelConfig(kernelName, directory) for k, v in kernelConfig.items(): if k != "ProblemType": checkParametersAreValid((k, [v]), validParameters) kernelConfig["KernelLanguage"] = "Assembly" kernelConfig["CustomKernelName"] = kernelName return Solution(kernelConfig)
11,950
def test_experimet_wide_results(): """Test the wide format of results.""" # Clone and fit experiment experiment = clone(EXPERIMENT).fit(DATASETS) ds_names = experiment.results_wide_tbl_.dataset_name.unique() clfs_names = experiment.results_wide_tbl_.classifier.unique() metric_names = experiment.results_wide_tbl_.metric.unique() assert set(ds_names) == set(experiment.datasets_names_) assert len(experiment.results_wide_tbl_) == len(ds_names) * len(clfs_names) * len( metric_names )
11,951
def get_public_key_permissions(session, public_key): # type: (Session, PublicKey) -> List[Permission] """Returns the permissions that this public key has. Namely, this the set of permissions that the public key's owner has, intersected with the permissions allowed by this key's tags Returns: a list of all permissions this public key has """ # TODO: Fix circular dependency from grouper.permissions import permission_intersection my_perms = user_permissions(session, public_key.user) for tag in get_public_key_tags(session, public_key): my_perms = permission_intersection(my_perms, get_public_key_tag_permissions(session, tag)) return list(my_perms)
11,952
def remove_files(file_paths: List[str] = None) -> None: """Remove all files in the list of file paths. Args: file_paths (List[str]): A list of file paths to be deleted. Returns: None: None """ if not file_paths: LOGGER.write('file_paths was None or empty, so not removing files.') return LOGGER.write('Removing files from the target system.') for file_path in file_paths: if Path(file_path).exists(): try: os.remove(file_path) except Exception as ex: LOGGER.write(f'Failed to remove {file_path} with error: {str(ex)}') raise ex LOGGER.write(f'Removal of {file_path} was successful.') LOGGER.write('All files were successfully removed.')
11,953
def _format_breed_name(name): """ Format breed name for displaying INPUT name: raw breed name, str OUTPUT name : cleaned breed name, str """ return name.split('.')[1].replace('_', ' ')
11,954
def test_create_receipt_with_no_receipt(session): """Try creating a receipt with invoice number.""" payment_account = factory_payment_account() payment = factory_payment() payment_account.save() payment.save() invoice = factory_invoice(payment.id, payment_account.id) invoice.save() fee_schedule = FeeSchedule.find_by_filing_type_and_corp_type('CP', 'OTANN') line = factory_payment_line_item(invoice.id, fee_schedule_id=fee_schedule.fee_schedule_id) line.save() PaymentService.update_payment(payment.id, get_payment_request(), 'test') input_data = { 'corpName': 'Pennsular Coop ', 'filingDateTime': '1999', 'fileName': 'coopser' } with pytest.raises(BusinessException) as excinfo: ReceiptService.create_receipt(payment.id, '', input_data, skip_auth_check=True) assert excinfo.type == BusinessException
11,955
def loadIndianPinesData(): """ 加载数据 :return: data, labels """ data_path = os.path.join(os.getcwd( ), '../Indian Pines') data = sio.loadmat(os.path.join(data_path, 'Indian_pines_corrected.mat'))['indian_pines_corrected'] labels = sio.loadmat(os.path.join(data_path, 'Indian_pines_gt.mat'))['indian_pines_gt'] return data, labels
11,956
def _get_attribute_accesses_for_control_flow(node, variable): """ ..code:: python Pass | Break | Continue """ return yield
11,957
def _lint_js_and_ts_files( node_path, eslint_path, files_to_lint, result, verbose_mode_enabled): """Prints a list of lint errors in the given list of JavaScript files. Args: node_path: str. Path to the node binary. eslint_path: str. Path to the ESLint binary. files_to_lint: list(str). A list of filepaths to lint. result: multiprocessing.Queue. A queue to put results of test. verbose_mode_enabled: bool. True if verbose mode is enabled. """ start_time = time.time() num_files_with_errors = 0 num_js_and_ts_files = len(files_to_lint) if not files_to_lint: result.put('') python_utils.PRINT( 'There are no JavaScript or Typescript files to lint.') return python_utils.PRINT('Total js and ts files: ', num_js_and_ts_files) eslint_cmd_args = [node_path, eslint_path, '--quiet'] result_list = [] python_utils.PRINT('Linting JS and TS files.') for _, filepath in enumerate(files_to_lint): if verbose_mode_enabled: python_utils.PRINT('Linting: ', filepath) proc_args = eslint_cmd_args + [filepath] proc = subprocess.Popen( proc_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) encoded_linter_stdout, encoded_linter_stderr = proc.communicate() linter_stdout = encoded_linter_stdout.decode(encoding='utf-8') linter_stderr = encoded_linter_stderr.decode(encoding='utf-8') if linter_stderr: python_utils.PRINT('LINTER FAILED') python_utils.PRINT(linter_stderr) sys.exit(1) if linter_stdout: num_files_with_errors += 1 result_list.append(linter_stdout) if num_files_with_errors: for error in result_list: result.put(error) result.put('%s %s JavaScript and Typescript files' % ( _MESSAGE_TYPE_FAILED, num_files_with_errors)) else: result.put( '%s %s JavaScript and Typescript files linted (%.1f secs)' % ( _MESSAGE_TYPE_SUCCESS, num_js_and_ts_files, time.time() - start_time)) python_utils.PRINT('Js and Ts linting finished.')
11,958
def create_pid_redirected_error_handler(): """Creates an error handler for `PIDRedirectedError` error.""" def pid_redirected_error_handler(e): try: # Check that the source pid and the destination pid are of the same # pid_type assert e.pid.pid_type == e.destination_pid.pid_type # Redirection works only for the item route of the format # `/records/<pid_value>` location = url_for( request.url_rule.endpoint, pid_value=e.destination_pid.pid_value ) data = dict( status=301, message='Moved Permanently.', location=location, ) response = make_response(jsonify(data), data['status']) response.headers['Location'] = location return response except (AssertionError, BuildError, KeyError): raise e return pid_redirected_error_handler
11,959
def is_var_name_with_greater_than_len_n(var_name: str) -> bool: """ Given a variable name, return if this is acceptable according to the filtering heuristics. Here, we try to discard variable names like X, y, a, b etc. :param var_name: :return: """ unacceptable_names = {} if len(var_name) < min_var_name_len: return False elif var_name in unacceptable_names: return False return True
11,960
def stacked_L(robot: RobotPlanar, q: list, q_goal: list): """ Stacks the L matrices for conviencne """ LL = [] LLinv = [] Ts_ee = robot.get_full_pose_fast_lambdify(list_to_variable_dict(q)) Ts_goal = robot.get_full_pose_fast_lambdify(list_to_variable_dict(q_goal)) for ee in robot.end_effectors: T_0_ee = SE2_to_SE3(Ts_ee[ee[0]]) Re = T_0_ee[0:3, 0:3] T_0_goal = SE2_to_SE3(Ts_goal[ee[0]]) Rd = T_0_goal[0:3, 0:3] ll, llinv = L(Rd, Re) LL.append(np.eye(3)) LLinv.append(np.eye(3)) LL.append(ll) LLinv.append(llinv) LL = block_diag(*LL) LLinv = block_diag(*LLinv) return LL, LLinv
11,961
async def help() -> Dict: """Shows this help message.""" return { '/': help.__doc__, '/help': help.__doc__, '/registration/malaysia': format_docstring(get_latest_registration_data_malaysia.__doc__), '/registration/malaysia/latest': format_docstring(get_latest_registration_data_malaysia.__doc__), '/registration/malaysia/{date}': format_docstring(get_registration_data_malaysia.__doc__), '/vaccination/malaysia': format_docstring(get_latest_vax_data_malaysia.__doc__), '/vaccination/malaysia/latest': format_docstring(get_latest_vax_data_malaysia.__doc__), '/vaccination/malaysia/{date}': format_docstring(get_vax_data_malaysia.__doc__), '/registration/state': format_docstring(get_latest_registration_data_state.__doc__), '/registration/state/all/latest': format_docstring(get_latest_registration_data_state.__doc__), '/registration/state/all/{date}': format_docstring(get_registration_data_all_state.__doc__), '/registration/state/{state}/latest': format_docstring(get_latest_registration_data_for_state.__doc__), '/registration/state/{state}/{date}': format_docstring(get_registration_data_state.__doc__), '/vaccination/state': format_docstring(get_latest_vax_data_state.__doc__), '/vaccination/state/all/latest': format_docstring(get_latest_vax_data_state.__doc__), '/vaccination/state/all/{date}': format_docstring(get_vax_data_all_state.__doc__), '/vaccination/state/{state}/latest': format_docstring(get_latest_vax_data_for_state.__doc__), '/vaccination/state/{state}/{date}': format_docstring(get_vax_data_state.__doc__), }
11,962
def eliminate_arrays(clusters, template): """ Eliminate redundant expressions stored in Arrays. """ mapper = {} processed = [] for c in clusters: if not c.is_dense: processed.append(c) continue # Search for any redundant RHSs seen = {} for e in c.exprs: f = e.lhs.function if not f.is_Array: continue v = seen.get(e.rhs) if v is not None: # Found a redundant RHS mapper[f] = v else: seen[e.rhs] = f if not mapper: # Do not waste time processed.append(c) continue # Replace redundancies subs = {} for f, v in mapper.items(): for i in filter_ordered(i.indexed for i in c.scope[f]): subs[i] = v[f.indices] exprs = [] for e in c.exprs: if e.lhs.function in mapper: # Drop the write continue exprs.append(e.xreplace(subs)) processed.append(c.rebuild(exprs)) return processed
11,963
def data_generator(batch_size): """ Args: dataset: Dataset name seq_length: Length of sequence batch_size: Size of batch """ vocab_size = 20000 (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=vocab_size) x_train, y_train, x_test, y_test = tf.ragged.constant(x_train), tf.constant(y_train[..., None]), \ tf.ragged.constant(x_test), tf.constant(y_test[..., None]) # Shuffle only train dataset train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) \ .shuffle(batch_size * 100).batch(batch_size) test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size) return train_dataset, test_dataset, vocab_size
11,964
def now(): """ Get current timestamp Returns: str: timestamp string """ current_time = datetime.now() str_date = current_time.strftime("%d %B %Y, %I:%M:%S %p") return str_date
11,965
def open_mfdataset( fname, convert_to_ppb=True, mech="cb6r3_ae6_aq", var_list=None, fname_pm25=None, surf_only=False, **kwargs ): # Like WRF-chem add var list that just determines whether to calculate sums or not to speed this up. """Method to open RFFS-CMAQ dyn* netcdf files. Parameters ---------- fname : string or list fname is the path to the file or files. It will accept hot keys in strings as well. convert_to_ppb : boolean If true the units of the gas species will be converted to ppbv mech: str Mechanism to be used for calculating sums. Mechanisms supported: "cb6r3_ae6_aq" var_list: list List of variables to include in output. MELODIES-MONET only reads in variables need to plot in order to save on memory and simulation cost especially for vertical data. If None, will read in all model data and calculate all sums. fname_pm25: string or list Optional path to the file or files for precalculated PM2.5 sums. It will accept hot keys in strings as well. surf_only: boolean Whether to save only surface data to save on memory and computational cost (True) or not (False). Returns ------- xarray.DataSet RRFS-CMAQ model dataset in standard format for use in MELODIES-MONET """ # Get dictionary of summed species for the mechanism of choice. dict_sum = dict_species_sums(mech=mech) if var_list is not None: # Read in only a subset of variables and only do calculations if needed. var_list_orig = var_list.copy() # Keep track of the original list before changes. list_calc_sum = [] list_remove_extra = [] # list of variables to remove after the sum to save in memory. for var_sum in [ "PM25", "PM10", "noy_gas", "noy_aer", "nox", "pm25_cl", "pm25_ec", "pm25_ca", "pm25_na", "pm25_nh4", "pm25_no3", "pm25_so4", "pm25_om", ]: if var_sum in var_list: if var_sum == "PM25": var_list.extend(dict_sum["aitken"]) var_list.extend(dict_sum["accumulation"]) var_list.extend(dict_sum["coarse"]) # Keep track to remove these later too list_remove_extra.extend(dict_sum["aitken"]) list_remove_extra.extend(dict_sum["accumulation"]) list_remove_extra.extend(dict_sum["coarse"]) elif var_sum == "PM10": var_list.extend(dict_sum["aitken"]) var_list.extend(dict_sum["accumulation"]) var_list.extend(dict_sum["coarse"]) # Keep track to remove these later too list_remove_extra.extend(dict_sum["aitken"]) list_remove_extra.extend(dict_sum["accumulation"]) list_remove_extra.extend(dict_sum["coarse"]) else: var_list.extend(dict_sum[var_sum]) # Keep track to remove these later too list_remove_extra.extend(dict_sum[var_sum]) var_list.remove(var_sum) list_calc_sum.append(var_sum) # append the other needed species. var_list.append("lat") var_list.append("lon") var_list.append("phalf") var_list.append("tmp") var_list.append("pressfc") var_list.append("dpres") var_list.append("hgtsfc") var_list.append("delz") # Remove duplicates just in case: var_list = list(dict.fromkeys(var_list)) list_remove_extra = list(dict.fromkeys(list_remove_extra)) # Select only those elements in list_remove_extra that are not in var_list_orig list_remove_extra_only = list(set(list_remove_extra) - set(var_list_orig)) # If variables in pm25 files are included remove these as these are not in the main file # And will be added later. for pm25_var in [ "PM25_TOT", "PM25_TOT_NSOM", "PM25_EC", "PM25_NH4", "PM25_NO3", "PM25_SO4", "PM25_OC", "PM25_OM", ]: if pm25_var in var_list: var_list.remove(pm25_var) # open the dataset using xarray dset = xr.open_mfdataset(fname, concat_dim="time", combine="nested", **kwargs)[var_list] else: # Read in all variables and do all calculations. dset = xr.open_mfdataset(fname, concat_dim="time", combine="nested", **kwargs) list_calc_sum = [ "PM25", "PM10", "noy_gas", "noy_aer", "nox", "pm25_cl", "pm25_ec", "pm25_ca", "pm25_na", "pm25_nh4", "pm25_no3", "pm25_so4", "pm25_om", ] if fname_pm25 is not None: # Add the processed pm2.5 species. dset_pm25 = xr.open_mfdataset(fname_pm25, concat_dim="time", combine="nested", **kwargs) dset_pm25 = dset_pm25.drop( labels=["lat", "lon", "pfull"] ) # Drop duplicate variables so can merge. # Slight differences in pfull value between the files, but I assume that these still represent the # same pressure levels from the model dynf* files. # Attributes are formatted differently in pm25 file so remove attributes and use those from dynf* files. dset_pm25.attrs = {} dset = dset.merge(dset_pm25) # Standardize some variable names dset = dset.rename( { "grid_yt": "y", "grid_xt": "x", "pfull": "z", "phalf": "z_i", # Interface pressure levels "lon": "longitude", "lat": "latitude", "tmp": "temperature_k", # standard temperature (kelvin) "pressfc": "surfpres_pa", "dpres": "dp_pa", # Change names so standard surfpres_pa and dp_pa "hgtsfc": "surfalt_m", "delz": "dz_m", } ) # Optional, but when available include altitude info # Calculate pressure. This has to go before sorting because ak and bk # are not sorted as they are in attributes dset["pres_pa_mid"] = _calc_pressure(dset) # Adjust pressure levels for all models such that the surface is first. dset = dset.sortby("z", ascending=False) dset = dset.sortby("z_i", ascending=False) # Note this altitude calcs needs to always go after resorting. # Altitude calculations are all optional, but for each model add values that are easy to calculate. dset["alt_msl_m_full"] = _calc_hgt(dset) dset["dz_m"] = dset["dz_m"] * -1.0 # Change to positive values. # Set coordinates dset = dset.reset_index( ["x", "y", "z", "z_i"], drop=True ) # For now drop z_i no variables use it. dset["latitude"] = dset["latitude"].isel(time=0) dset["longitude"] = dset["longitude"].isel(time=0) dset = dset.reset_coords() dset = dset.set_coords(["latitude", "longitude"]) # These sums and units are quite expensive and memory intensive, # so add option to shrink dataset to just surface when needed if surf_only: dset = dset.isel(z=0).expand_dims("z", axis=1) # Need to adjust units before summing for aerosols # convert all gas species to ppbv if convert_to_ppb: for i in dset.variables: if "units" in dset[i].attrs: if "ppmv" in dset[i].attrs["units"]: dset[i] *= 1000.0 dset[i].attrs["units"] = "ppbv" # convert "ug/kg to ug/m3" for i in dset.variables: if "units" in dset[i].attrs: if "ug/kg" in dset[i].attrs["units"]: # ug/kg -> ug/m3 using dry air density dset[i] = dset[i] * dset["pres_pa_mid"] / dset["temperature_k"] / 287.05535 dset[i].attrs["units"] = r"$\mu g m^{-3}$" # add lazy diagnostic variables # Note that because there are so many species to sum. Summing the aerosols is slowing down the code. if "PM25" in list_calc_sum: dset = add_lazy_pm25(dset, dict_sum) if "PM10" in list_calc_sum: dset = add_lazy_pm10(dset, dict_sum) if "noy_gas" in list_calc_sum: dset = add_lazy_noy_g(dset, dict_sum) if "noy_aer" in list_calc_sum: dset = add_lazy_noy_a(dset, dict_sum) if "nox" in list_calc_sum: dset = add_lazy_nox(dset, dict_sum) if "pm25_cl" in list_calc_sum: dset = add_lazy_cl_pm25(dset, dict_sum) if "pm25_ec" in list_calc_sum: dset = add_lazy_ec_pm25(dset, dict_sum) if "pm25_ca" in list_calc_sum: dset = add_lazy_ca_pm25(dset, dict_sum) if "pm25_na" in list_calc_sum: dset = add_lazy_na_pm25(dset, dict_sum) if "pm25_nh4" in list_calc_sum: dset = add_lazy_nh4_pm25(dset, dict_sum) if "pm25_no3" in list_calc_sum: dset = add_lazy_no3_pm25(dset, dict_sum) if "pm25_so4" in list_calc_sum: dset = add_lazy_so4_pm25(dset, dict_sum) if "pm25_om" in list_calc_sum: dset = add_lazy_om_pm25(dset, dict_sum) # Change the times to pandas format dset["time"] = dset.indexes["time"].to_datetimeindex(unsafe=True) # Turn off warning for now. This is just because the model is in julian time # Drop extra variables that were part of sum, but are not in original var_list # to save memory and computational time. # This is only revevant if var_list is provided if var_list is not None: if bool(list_remove_extra_only): # confirm list not empty dset = dset.drop_vars(list_remove_extra_only) return dset
11,966
def projection(projection_matrix: tf.Tensor, flattened_vector: tf.Tensor) -> tf.Tensor: """Projects `flattened_vector` using `projection_matrix`. Args: projection_matrix: A rank-2 Tensor that specifies the projection. flattened_vector: A flat Tensor to be projected Returns: A flat Tensor returned from projection. """ return tf.reshape( projection_matrix @ (tf.transpose(projection_matrix) @ tf.reshape( flattened_vector, [-1, 1])), [-1])
11,967
def free_vars(e): """Get free variables from expression e. Parameters ---------- e: tvm.relay.Expr The input expression Returns ------- free : List[tvm.relay.Var] The list of free variables """ return _ir_pass.free_vars(e)
11,968
def evaluate(model, epoch, sess, dev_data, vocab, config): """ evaluate model. """ src_vocab, tgt_vocab = vocab print('start evaluate...') total_acc = 0 gold_num = 0 model.dropout = 0 train_batch_iter = create_batch_iter(dev_data, config.batch_size, shuffle=True) for batch in train_batch_iter: feature, target, word_list = pair_data_variable( batch, src_vocab, tgt_vocab, config) gold_num += len(target) loss, acc = sess.run([model.loss_op, model.accuracy], feed_dict={ model.w: feature, model.gold: target }) total_acc += acc accuracy = total_acc / gold_num * 100 print('acc={:.2f}%'.format(accuracy)) _best_acc = best_acc _best_epoch = best_epoch if accuracy > _best_acc: _best_acc = accuracy _best_epoch = epoch print('##Update! best_acc={:.2f}% in epoch {}'.format( _best_acc, _best_epoch)) output_graph_def = convert_variables_to_constants( sess, sess.graph_def, output_node_names=['s/logits']) with tf.gfile.GFile(config.save_dirs + '/' + config.save_model_path, mode='wb') as f: f.write(output_graph_def.SerializeToString()) print('saved model successfully! in ' + config.save_dirs + '/' + config.save_model_path) else: print('not update, best_acc={:.2f}% in epoch {}'.format( _best_acc, _best_epoch))
11,969
def image_as_uint(im, bitdepth=None): """ Convert the given image to uint (default: uint8) If the dtype already matches the desired format, it is returned as-is. If the image is float, and all values are between 0 and 1, the values are multiplied by np.power(2.0, bitdepth). In all other situations, the values are scaled such that the minimum value becomes 0 and the maximum value becomes np.power(2.0, bitdepth)-1 (255 for 8-bit and 65535 for 16-bit). """ if not bitdepth: bitdepth = 8 if not isinstance(im, np.ndarray): raise ValueError("Image must be a numpy array") if bitdepth == 8: out_type = np.uint8 elif bitdepth == 16: out_type = np.uint16 else: raise ValueError("Bitdepth must be either 8 or 16") dtype_str1 = str(im.dtype) dtype_str2 = out_type.__name__ if (im.dtype == np.uint8 and bitdepth == 8) or ( im.dtype == np.uint16 and bitdepth == 16 ): # Already the correct format? Return as-is return im if dtype_str1.startswith("float") and np.nanmin(im) >= 0 and np.nanmax(im) <= 1: _precision_warn(dtype_str1, dtype_str2, "Range [0, 1].") im = im.astype(np.float64) * (np.power(2.0, bitdepth) - 1) + 0.499999999 elif im.dtype == np.uint16 and bitdepth == 8: _precision_warn(dtype_str1, dtype_str2, "Losing 8 bits of resolution.") im = np.right_shift(im, 8) elif im.dtype == np.uint32: _precision_warn( dtype_str1, dtype_str2, "Losing {} bits of resolution.".format(32 - bitdepth), ) im = np.right_shift(im, 32 - bitdepth) elif im.dtype == np.uint64: _precision_warn( dtype_str1, dtype_str2, "Losing {} bits of resolution.".format(64 - bitdepth), ) im = np.right_shift(im, 64 - bitdepth) else: mi = np.nanmin(im) ma = np.nanmax(im) if not np.isfinite(mi): raise ValueError("Minimum image value is not finite") if not np.isfinite(ma): raise ValueError("Maximum image value is not finite") if ma == mi: return im.astype(out_type) _precision_warn(dtype_str1, dtype_str2, "Range [{}, {}].".format(mi, ma)) # Now make float copy before we scale im = im.astype("float64") # Scale the values between 0 and 1 then multiply by the max value im = (im - mi) / (ma - mi) * (np.power(2.0, bitdepth) - 1) + 0.499999999 assert np.nanmin(im) >= 0 assert np.nanmax(im) < np.power(2.0, bitdepth) return im.astype(out_type)
11,970
def unary_operator(op): """ Factory function for making unary operator methods for Factors. """ # Only negate is currently supported. valid_ops = {'-'} if op not in valid_ops: raise ValueError("Invalid unary operator %s." % op) @with_doc("Unary Operator: '%s'" % op) @with_name(unary_op_name(op)) def unary_operator(self): if self.dtype != float64_dtype: raise TypeError( "Can't apply unary operator {op!r} to instance of " "{typename!r} with dtype {dtypename!r}.\n" "{op!r} is only supported for Factors of dtype " "'float64'.".format( op=op, typename=type(self).__name__, dtypename=self.dtype.name, ) ) # This can't be hoisted up a scope because the types returned by # unary_op_return_type aren't defined when the top-level function is # invoked. if isinstance(self, NumericalExpression): return NumExprFactor( "{op}({expr})".format(op=op, expr=self._expr), self.inputs, dtype=float64_dtype, ) else: return NumExprFactor( "{op}x_0".format(op=op), (self,), dtype=float64_dtype, ) return unary_operator
11,971
def get_file( path: str, skip_hidden: bool = True, skip_folder: bool = True, ) -> Iterator[str]: """ 遍历path下的所有文件(不包括文件夹) :param path: 待遍历的路径 :return: 一个返回文件名的迭代器 """ for root, ds, fs in os.walk(path): for file in fs: file_path = os.path.join(root, file) if skip_hidden and is_file_hidden(file_path): continue yield file_path
11,972
def _test_sparsify_densify(self, x, default_value): """Test roundtrip via Sparsify and Densify.""" numpy_source = in_memory_source.NumpySource(x, batch_size=len(x))() (sparse_series,) = sparsify.Sparsify(default_value)(numpy_source[1]) (dense_series,) = densify.Densify(default_value)(sparse_series) cache = {} sparse_tensor = sparse_series.build(cache) dense_tensor = dense_series.build(cache) with self.test_session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) sparse_val, dense_val = sess.run([sparse_tensor, dense_tensor]) coord.request_stop() coord.join(threads) if x.dtype.kind not in ["S", "U"] and np.isnan(default_value): x_values = x[~np.isnan(x)] x_indexes = np.arange(len(x))[~np.isnan(x)].T.reshape(-1, 1) else: x_values = x[x != default_value] x_indexes = np.arange(len(x))[x != default_value].T.reshape(-1, 1) if x.dtype.kind in ["S", "U"]: # Python 2/3 compatibility # TensorFlow always returns bytes, so we just convert the unicode # expectations to bytes also before comparing. expected_x = [item.encode("utf-8") for item in x] expected_x_values = [item.encode("utf-8") for item in x_values] else: expected_x = x expected_x_values = x_values np.testing.assert_array_equal(len(x), sparse_val.dense_shape[0]) np.testing.assert_array_equal(expected_x_values, sparse_val.values) np.testing.assert_array_equal(x_indexes, sparse_val.indices) np.testing.assert_array_equal(expected_x, dense_val)
11,973
def compute_cost_with_regularization(A3, Y, parameters, lambd): """ Implement the cost function with L2 regularization. See formula (2) above. Arguments: A3 -- post-activation, output of forward propagation, of shape (output size, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) parameters -- python dictionary containing parameters of the model Returns: cost - value of the regularized loss function (formula (2)) """ m = Y.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] W3 = parameters["W3"] cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost L2_regularization_cost = (1. / m * lambd / 2) * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) cost = cross_entropy_cost + L2_regularization_cost return cost
11,974
def catalog_area(ra=[], dec=[], make_plot=True, NMAX=5000, buff=0.8, verbose=True): """Compute the surface area of a list of RA/DEC coordinates Parameters ---------- ra, dec : `~numpy.ndarray` RA and Dec. coordinates in decimal degrees make_plot : bool Make a figure. NMAX : int If the catalog has more then `NMAX` entries, draw `NMAX` random samples. buff : float Buffer in arcmin to add around each catalog point. Returns ------- area : float Computed catalog area in square arcminutes fig : `~matplotlib.figure.Figure` Figure object returned if `make_plot==True`. """ import matplotlib.pyplot as plt from shapely.geometry import Polygon, Point, MultiPolygon, MultiLineString from scipy import spatial points = np.array([ra, dec])*1. center = np.mean(points, axis=1) points = (points.T - center)*60. # arcmin points[:, 0] *= np.cos(center[1]/180*np.pi) hull = spatial.ConvexHull(points) edge = points[hull.vertices, :] #pbuff = 1 if len(ra) > NMAX: rnd_idx = np.unique(np.cast[int](np.round(np.random.rand(NMAX)*len(ra)))) else: rnd_idx = np.arange(len(ra)) poly = Point(points[rnd_idx[0], :]).buffer(buff) for i, ix in enumerate(rnd_idx): if verbose: print(NO_NEWLINE + '{0} {1}'.format(i, ix)) poly = poly.union(Point(points[ix, :]).buffer(buff)) # Final (multi)Polygon pjoin = poly.buffer(-buff) if make_plot: fig = plt.figure() ax = fig.add_subplot(111) if isinstance(pjoin, MultiPolygon): for p_i in pjoin: if isinstance(p_i.boundary, MultiLineString): for s in p_i.boundary: p = s.xy ax.plot(p[0], p[1]) else: p = p_i.boundary.xy ax.plot(p[0], p[1]) else: p_i = pjoin if isinstance(p_i.boundary, MultiLineString): for s in p_i.boundary: p = s.xy ax.plot(p[0], p[1]) else: p = p_i.boundary.xy ax.plot(p[0], p[1]) ax.scatter(points[rnd_idx, 0], points[rnd_idx, 1], alpha=0.1, marker='+') ax.set_xlim(ax.get_xlim()[::-1]) ax.set_xlabel(r'$\Delta$RA ({0:.5f})'.format(center[0])) ax.set_ylabel(r'$\Delta$Dec. ({0:.5f})'.format(center[1])) ax.set_title('Total area: {0:.1f} arcmin$^2$'.format(pjoin.area)) ax.grid() fig.tight_layout(pad=0.1) return pjoin.area, fig else: return pjoin.area
11,975
def cli(geotiff_file, meshmask_file, numpy_file, verbosity): """Command-line interface for :py:func:`moad_tools.midoss.geotiff_watermask`. :param str geotiff_file: File path and name of an AIS ship tracks GeoTIFF file to use the pixel lons/lats from to calculate water mask; typically a ShipTrackDensityGeoTIFFs/all_yyyy_mm.tif file. :param str meshmask_file: File path and name of a SalishSeaCast NEMO mesh mask file to use the NEMO grid lons/lats and T-grid water/land maks from to calculate the water mask. :param str numpy_file: File path and name of Numpy array file to write the water mask to. :param str verbosity: Verbosity level of logging messages about the progress of the transformation. Choices are :kbd:`debug, info, warning, error, critical`. :kbd:`warning`, :kbd:`error`, and :kbd:`critical` should be silent unless something bad goes wrong. Default is :kbd:`warning`. """ logging_level = getattr(logging, verbosity.upper()) logging.basicConfig( level=logging_level, format="%(asctime)s geotiff-watermask %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S", stream=sys.stdout, ) watermask = geotiff_watermask(geotiff_file, meshmask_file) write_numpy_file(watermask, numpy_file)
11,976
def main(): """Calculate metrics from collected data, generate plots and tables.""" # metrics and plots for sidechannels fr = print_sidechannel( "reload", start=0, end=250, step=5, threshold=100, direction="-", clusters=[(0, 49), (150, 200), (600, 800)], ) ff = print_sidechannel( "flush", start=110, end=140, step=1, threshold=124, direction="+", clusters=[(100, 200)], ) plot_sidechannel(fr, ff) print() # metrics for attacks calc_metrics_prefix("misprediction") calc_metrics_prefix("ridl") calc_metrics_prefix("wtf") calc_metrics_prefix("zombieload") calc_metrics_prefix("storetoleak") # tables for attacks, as markdown tables to be copied to the documentation print("Tables:") print() print_table_attack("ridl") print_table_attack("wtf") print_table_attack("zombieload")
11,977
def user_page(num_page=1): """Page with list of users route.""" form = SearchUserForm(request.args, meta={'csrf': False}) msg = False if form.validate(): search_by = int(request.args.get('search_by')) order_by = int(request.args.get('order_by')) search_string = str(request.args.get('search')) if len(search_string) >= MIN_SEARCH_STR: condition = user_search(search_string, search_by) else: condition = "" if search_string != "": msg = True order_list = [User.id, User.role_id, User.delete_date] order = order_list[order_by] search_users = db.session.query(User, Role).filter(and_( User.role_id == Role.id, condition)).order_by(order).paginate( per_page=PAGINATE_PAGE, page=num_page, error_out=True) if msg: flash("Search string is too small", category="danger") return render_template('user_page.html', form=form, users=search_users, get="?" + urlencode(request.args)) else: users = db.session.query(User, Role).filter( User.role_id == Role.id).order_by(User.id).paginate( per_page=PAGINATE_PAGE, page=num_page, error_out=True) return render_template('user_page.html', form=form, users=users, get="?" + urlencode(request.args))
11,978
def set_status_label(opened, enabled): """update status button label to reflect indicated state.""" if not opened: label = "closed" elif enabled: label = "enabled" else: label = "disabled" status_button.set_label(label)
11,979
def validate_input(data: ConfigType) -> dict[str, str] | None: """Validate the input by the user.""" try: SIAAccount.validate_account(data[CONF_ACCOUNT], data.get(CONF_ENCRYPTION_KEY)) except InvalidKeyFormatError: return {"base": "invalid_key_format"} except InvalidKeyLengthError: return {"base": "invalid_key_length"} except InvalidAccountFormatError: return {"base": "invalid_account_format"} except InvalidAccountLengthError: return {"base": "invalid_account_length"} except Exception as exc: # pylint: disable=broad-except _LOGGER.exception("Unexpected exception from SIAAccount: %s", exc) return {"base": "unknown"} if not 1 <= data[CONF_PING_INTERVAL] <= 1440: return {"base": "invalid_ping"} return validate_zones(data)
11,980
def _setup_log(): """Configure root logger. """ import logging import sys try: handler = logging.StreamHandler(stream=sys.stdout) except TypeError: # pragma: no cover handler = logging.StreamHandler(strm=sys.stdout) log = get_log() log.addHandler(handler) log.setLevel(logging.WARN) log.propagate = False
11,981
def pypi_archive( name, package = None, version = None, sha256 = None, strip_prefix = "", build_file = None, build_file_content = None, workspace_file = None, workspace_file_content = None, mirrors = None): """Downloads and unpacks a PyPI package archive and adds it to the WORKSPACE as an external. Example: Download and use the "foo" package, version 1.2.3, hosted on PyPI at https://files.pythonhosted.org/packages/source/f/foo/foo-1.2.3.tar.gz. WORKSPACE: load("//tools/workspace:pypi.bzl", "pypi_archive") pypi_archive( name = "foo", version = "1.2.3", build_file = "foo.BUILD", sha256 = "0123456789abcdef...", ) foo.BUILD: load("//tools/skylark:py.bzl", "py_library") py_library( name = "foo", srcs = [ "foo/__init__.py", "foo/bar.py", ], visibility = ["//visibility:public"], ) BUILD: load("//tools/skylark:py.bzl", "py_binary") py_binary( name = "foobar", deps = ["@foo//:foo"], srcs = ["foobar.py"], ) Arguments: name: A unique name for this rule. This argument will be used for the package name if the "package" argument is omitted [Name; required]. package: The name of the PyPI package to download. The "name" argument will be used if this argument is omitted [String; optional]. version: The version of the PyPI package to be downloaded [String; required]. sha256: The expected SHA-256 hash of the archive to download. This argument must match the SHA-256 hash of the downloaded archive. The download will fail if omitted, but the checksum-mismatch error message will offer a suggestion for the correct value of this argument [String; required]. strip_prefix: A directory prefix to strip from the extracted files [String; optional]. build_file: The file to use as the BUILD file for this repository. This argument is an absolute label. Either build_file or build_file_content must be specified, but not both [Label; optional]. build_file_content: The content for the BUILD file for this repository. Either build_file or build_file_content must be specified, but not both [Label; optional]. workspace_file: The file to use as the WORKSPACE file for this repository. This argument is an absolute label. Either workspace_file or workspace_file_content may be specified, or neither, but not both [Label; optional]. workspace_file_content: The content for the WORKSPACE file for this repository. Either workspace_file, workspace_file_content or neither may be specified, but not both [Label; optional]. mirrors: A dict from string to list-of-string with key "pypi", where the list-of-strings are URLs to use, formatted using {package}, {version}, and {p} (where {p} is the first letter of {package}). """ if not package: package = name if not version: fail("The version argument to pypi_archive is required.") if not build_file and not build_file_content: fail("Either the build_file or build_file_content argument to " + "pypi_archive is required.") _pypi_archive( name = name, package = package, version = version, sha256 = sha256, strip_prefix = strip_prefix, build_file = build_file, build_file_content = build_file_content, workspace_file = workspace_file, workspace_file_content = workspace_file_content, mirrors = mirrors, )
11,982
def delete_person(person_id): """Mark as void a person.""" try: person_detail = get_object_or_404(RegPerson, pk=person_id) person_detail.is_void = True person_detail.save(update_fields=["is_void"]) except Exception, e: raise e
11,983
def file_and_path_for_module(modulename): """Find the file and search path for `modulename`. Returns: filename: The filename of the module, or None. path: A list (possibly empty) of directories to find submodules in. """ filename = None path = [] try: spec = importlib.util.find_spec(modulename) except ImportError: pass else: if spec is not None: if spec.origin != "namespace": filename = spec.origin path = list(spec.submodule_search_locations or ()) return filename, path
11,984
def hello_page(request): """Simple view to say hello. It is used to check the authentication system. """ text = "Welcome to test_project" if not request.user.is_anonymous: text = "Welcome '%s' to test_project" % request.user.username return HttpResponse(text, content_type='text/plain')
11,985
def hash_all(bv: Binary_View) -> Dict[str, Function]: """ Iterate over every function in the binary and calculate its hash. :param bv: binary view encapsulating the binary :return: a dictionary mapping hashes to functions """ sigs = {} for function in bv.functions: sigs[hash_function(function)] = function return sigs
11,986
def while_n(): """ Lower case Alphabet letter 'n' pattern using Python while loop""" row = 0 while row<4: col = 0 while col<3: if row==0 and col in (0,1) or row>0 and col%2==0: print('*', end = ' ') else: print(' ', end = ' ') col += 1 print() row += 1
11,987
def apply_deformation( deformation_indices: Union[List[bool], np.ndarray], bsf: np.ndarray ) -> np.ndarray: """Return Hadamard-deformed bsf at given indices.""" n = len(deformation_indices) deformed = np.zeros_like(bsf) if len(bsf.shape) == 1: if bsf.shape[0] != 2*n: raise ValueError( f'Deformation index length {n} does not match ' f'bsf shape {bsf.shape}, which should be {(2*n,)}' ) for i, deform in enumerate(deformation_indices): if deform: deformed[i] = bsf[i + n] deformed[i + n] = bsf[i] else: deformed[i] = bsf[i] deformed[i + n] = bsf[i + n] else: if bsf.shape[1] != 2*n: raise ValueError( f'Deformation index length {n} does not match ' f'bsf shape {bsf.shape}, which should be ' f'{(bsf.shape[0], 2*n)}.' ) for i, deform in enumerate(deformation_indices): if deform: deformed[:, i] = bsf[:, i + n] deformed[:, i + n] = bsf[:, i] else: deformed[:, i] = bsf[:, i] deformed[:, i + n] = bsf[:, i + n] return deformed
11,988
def index(request): """Return the index.html file""" return render(request, 'index.html')
11,989
def execute(cx, stmt, args=(), return_result=False): """ Execute query in 'stmt' over connection 'cx' (with parameters in 'args'). Be careful with query statements that have a '%' in them (say for LIKE) since this will interfere with psycopg2 interpreting parameters. Printing the query will not print AWS credentials IF the string used matches "CREDENTIALS '[^']*'". So be careful or you'll end up sending your credentials to the logfile. """ with cx.cursor() as cursor: executable_statement = mogrify(cursor, stmt, args) printable_stmt = remove_password(executable_statement.decode()) logger.debug("QUERY:\n%s\n;", printable_stmt) # lgtm[py/clear-text-logging-sensitive-data] with Timer() as timer: cursor.execute(executable_statement) if cursor.rowcount is not None and cursor.rowcount > 0: logger.debug( "QUERY STATUS: %s [rowcount=%d] (%s)", cursor.statusmessage, cursor.rowcount, timer ) else: logger.debug("QUERY STATUS: %s (%s)", cursor.statusmessage, timer) if cx.notices and logger.isEnabledFor(logging.DEBUG): for msg in cx.notices: logger.debug("QUERY " + msg.rstrip("\n")) del cx.notices[:] if return_result: return cursor.fetchall()
11,990
def parse_custom_builders(builders: Optional[Iterable[str]]) -> Dict[str, Type[AbstractBuilder]]: """ Parse the custom builders passed using the ``--builder NAME`` option on the command line. :param builders: """ custom_builders: Dict[str, Type[AbstractBuilder]] = {} if builders is None: return custom_builders entry_points = get_entry_points() for builder_name in builders: if builder_name not in entry_points: raise click.BadArgumentUsage( f"Unknown builder {builder_name!r}. \n" f"Is it registered as an entry point under 'whey.builder'?" ) else: custom_builders[builder_name] = entry_points[builder_name].load() return custom_builders
11,991
def construct_user_rnn_inputs(document_feature_size=10, creator_feature_size=None, user_feature_size=None, input_reward=False): """Returns user RNN inputs. Args: document_feature_size: Integer, length of document features. creator_feature_size: Integer or None, length of creator features. If None, no features about creators will be input. user_feature_size: Integer or None, length of user features. If None, no features about users will be input. input_reward: Boolean, whether to input previous reward to RNN layer. """ # Previous consumed document. rnn_input_doc_feature = tf.keras.layers.Input( shape=(None, document_feature_size), name='user_consumed_doc_feature') merged_embedding = rnn_input_doc_feature inputs = [rnn_input_doc_feature] # Previous consumed document-associated creator. if creator_feature_size is not None: # This vector includes creator's observable features and/or creator's hidden # states inferred by creator model. merged_embedding, inputs = _merge_inputs( (None, creator_feature_size), 'user_consumed_doc-creator_feature', merged_embedding, inputs) # User current context. if user_feature_size is not None: merged_embedding, inputs = _merge_inputs( (None, user_feature_size), 'user_current_feature', merged_embedding, inputs) # Previous reward. if input_reward: merged_embedding, inputs = _merge_inputs((None, 1), 'user_previous_reward', merged_embedding, inputs) return merged_embedding, inputs
11,992
def numpy_read(DATAFILE, BYTEOFFSET, NUM, PERMISSION, DTYPE): """ Read NumPy-compatible binary data. Modeled after MatSeis function read_file in util/waveread.m. """ f = open(DATAFILE, PERMISSION) f.seek(BYTEOFFSET, 0) data = np.fromfile(f, dtype=np.dtype(DTYPE), count=NUM) f.close() return data
11,993
def _process_pmid(s: str, sep: str = '|', prefix: str = 'pubmed:') -> str: """Filter for PubMed ids. :param s: string of PubMed ids :param sep: separator between PubMed ids :return: PubMed id """ for identifier in s.split(sep): identifier = identifier.strip() if identifier.startswith(prefix): return identifier
11,994
def main(known_file, comparison, output_type): """ The main function handles the main operations of the script :param known_file: path to known file :param comparison: path to look for similar files :param output_type: type of output to provide :return: None """ # Check output formats if output_type not in OUTPUT_OPTS: logger.error( "Unsupported output format '{}' selected. Please " "use one of {}".format( output_type, ", ".join(OUTPUT_OPTS))) sys.exit(2) elif output_type == 'csv': # Special handling for CSV headers print('"similarity","known_file","known_hash",' '"comp_file","comp_hash"') # Check provided file paths known_file = os.path.abspath(known_file) comparison = os.path.abspath(comparison) # Generate ssdeep signature for known file if not os.path.exists(known_file): logger.error("Error - path {} not found".format( comparison)) sys.exit(1) known_hash = ssdeep.hash_from_file(known_file) # Generate and test ssdeep signature for comparison file(s) if os.path.isdir(comparison): # Process files in folders for root, _, files in os.walk(comparison): for f in files: file_entry = os.path.join(root, f) comp_hash = ssdeep.hash_from_file(file_entry) comp_val = ssdeep.compare(known_hash, comp_hash) output(known_file, known_hash, file_entry, comp_hash, comp_val, output_type) elif os.path.isfile(comparison): # Process a single file comp_hash = ssdeep.hash_from_file(comparison) comp_val = ssdeep.compare(known_hash, comp_hash) output(known_file, known_hash, file_entry, comp_hash, comp_val, output_type) else: logger.error("Error - path {} not found".format( comparison)) sys.exit(1)
11,995
def _classictautstring_TV1(x, w, y, **kwargs): """Classic taut string method for TV1 proximity""" _call(lib.classicTautString_TV1, x, np.size(x), w, y)
11,996
def _get_import(name, module: ast.Module): """ get from import by name """ for stm in ast.walk(module): if isinstance(stm, ast.ImportFrom): for iname in stm.names: if isinstance(iname, ast.alias): if iname.name == name: return 'from ' + str(stm.module) + ' import ' + name if isinstance(stm, ast.Import): pass return None
11,997
def load_FIPS_data(): """ Load FIPS ref table """ directory = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) filename = os.path.join(directory, 'ref_data', 'FIPS_ref_data.csv') df = pd.read_csv(filename) df['fips'] = df['fips'].astype(str) return df
11,998
def show_stats(number): """ Display stats @param number number of times we ran the simulation """ average = SimInterface.score_total / number print(f"Average Score: {average:8.3f}") print(f" Best Score: {SimInterface.minscore:4d}") print(f" Worst Score: {SimInterface.maxscore:4d}") print(f" Losses: {SimInterface.losses:4d}") SimInterface.score_total = 0 SimInterface.minscore = MAX_GUESS_ALLOWED SimInterface.maxscore = 0 SimInterface.losses = 0
11,999