content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def install_hook(profile="default"):
"""Install the hook in a given IPython profile.
Args:
profile: the IPython profile for which to install the hook.
"""
hook_source_path = os.path.join(os.path.dirname(__file__), "hook.py")
ipython_dir = get_ipython_dir()
startup_dir = os.path.join(ipython_dir, "profile_" + profile, "startup")
hook_target_path = os.path.join(startup_dir, "000-ipython-startup-hook.py")
logger.info("Installing hook for IPython profile %s", profile)
logger.debug("Writing hook at %s to %s", hook_source_path, hook_target_path)
with open(hook_source_path) as source, open(hook_target_path, "w") as target:
target.write(source.read().format(name=distname, version=version))
| 12,000
|
def testhsv():
"""Main function to test hsv problems"""
from PIL import ImageFilter
fnames = sys.argv[1:]
fname = fnames[0]
i = 0
basemem = procmem()
print 'Basemem is %s, using image %s of size %s' % (basemem, fname, Image.open(fname).size)
#while 1:
for fname in fnames:
i += 1
im = Image.open(fname).convert('RGB')#.resize((100,100))
t1 = time.time()
#hsv = rgb2hsv(im) # very slow (5s on medium sized image)
#m = im.filter(ImageFilter.FIND_EDGES).convert('L') # fast (0.22s)
#o = getGradientOrientation(im.convert('L')) # slow (2.7s)
t2 = time.time()
mem = procmem() - basemem
print 'Finished iter %d, mem: %s, elapsed: %s' % (i, mem/1024.0, t2-t1)
sys.exit()
| 12,001
|
def number_of_qucosa_metadata_in_elasticsearch(
host: str = SLUB_ELASTICSEARCH_SERVER_URL,
http_auth: Optional[Tuple[str, str]] = None,
index_name: str = "fulltext_qucosa",
) -> int:
"""Return the number of qucosa documents currently available at the SLUB elastic search server.
Parameters
----------
host: str = SLUB_ELASTICSEARCH_SERVER_URL
The hostname of the ElasticSearch server
http_auth: Optional[Tuple[str, str]]
Http basic auth parameters as tuple of username and password. If http_auth is None, but environment variables
`SLUB_ELASTICSEARCH_SERVER_USER` and `SLUB_ELASTICSEARCH_SERVER_PASSWORD` are set, then these are used as
username and password.
index_name: str = "fulltext_qucosa"
The name of the ElasticSearch index to be queried.
Returns
-------
int
the number of qucosa documents
"""
es_server = _initialize_elasticsearch_connection(host, http_auth)
return es_server.count(index=index_name, body={"query": {"match_all": {}}})["count"]
| 12,002
|
def print_png(filename):
"""Print a png file from the current viewport
Parameters
----------
filename : str
The name of the output png file.
"""
from abaqus import session
from abaqusConstants import PNG
viewport=session.viewports[session.currentViewportName]
session.printToFile(fileName=filename,
format=PNG,
canvasObjects=(viewport,))
| 12,003
|
def choose(ctx, *choices: str):
"""Chooses between multiple choices."""
if choices is None:
return
user = ctx.message.author
yield from bot.say('Alright, **@{0}**, I choose: "{1}"'.format(user.display_name, random.choice(choices)))
| 12,004
|
def codegen_py(typeit_schema: TypeitSchema,
top: bool = True,
indent: int = 4) -> Tuple[str, Sequence[str]]:
"""
:param typ: A type (NamedTuple definition) to generate a source for.
:param top: flag to indicate that a toplevel structure is to be generated.
When False, a sub-structure of the toplevel structure is to be generated.
:param indent: keep indentation for source lines.
:return:
"""
typ = typeit_schema.typ
overrides = typeit_schema.overrides
wrappers = typeit_schema.sequence_wrappers
overrides_source: List[str] = []
if typ is None:
type_name = 'None'
elif typ is Any:
type_name = 'Any'
else:
type_name = typ.__name__
required_imports = [
'# ------- generated by typeit -------',
'from typing import Any, NamedTuple, Optional, Sequence',
]
wrapped_type_literal = ('Sequence[' * wrappers) + type_name + (']' * wrappers)
if typ in PythonPrimitives:
required_imports.extend([
'from typeit import TypeConstructor',
])
if wrappers:
generated_definitions = [
f'Main = {wrapped_type_literal}'
]
else:
generated_definitions = []
elif typ is Any:
required_imports.extend([
'from typeit import TypeConstructor',
])
generated_definitions = [
f'Main = {wrapped_type_literal}'
]
else:
required_imports.extend([
'from typeit import TypeConstructor',
])
ind = ' ' * indent
generated_definitions = [f'class {type_name}(NamedTuple):']
hints = get_type_hints(typ)
if not hints:
generated_definitions.extend([
f'{ind}...',
])
for field_name, field_type in hints.items():
# 1. Generate source code for the field
type_literal = literal_for_type(field_type)
if field_type not in BUILTIN_LITERALS_FOR_TYPES:
# field_type: Union[NamedTuple, Sequence]
# TODO: Sequence/List/PVector flag-based
folded_lists_count = type_literal.count('Sequence[')
if folded_lists_count:
# field_type: Sequence[T]
# traverse to the folded object
for __ in range(folded_lists_count):
field_type = field_type.__args__[0]
if field_type not in BUILTIN_LITERALS_FOR_TYPES:
sub, folded_overrides = codegen_py(
TypeitSchema(field_type, overrides, wrappers), False
)
generated_definitions.insert(0, f'{sub}{NEW_LINE}{NEW_LINE}')
overrides_source.extend(folded_overrides)
else:
# field_type: NamedTuple
# Generate a folded structure definition in the global scope
# and then use it for the current field
sub, folded_overrides = codegen_py(
TypeitSchema(field_type, overrides, wrappers), False
)
generated_definitions.insert(0, f'{sub}{NEW_LINE}{NEW_LINE}')
overrides_source.extend(folded_overrides)
generated_definitions.append(f'{ind}{field_name}: {type_literal}')
# 2. Check if the field included into overrides
field_override: Optional[str] = overrides.get(getattr(typ, field_name))
if field_override:
overrides_source.append(
f"{ind}{type_name}.{field_name}: '{field_override}',"
)
if top:
if wrappers:
type_literal = 'Main'
else:
type_literal = type_name
if overrides_source:
overrides_part = [
LINE_SKIP,
LINE_SKIP,
'overrides = {' +
NEW_LINE +
NEW_LINE.join(overrides_source) +
NEW_LINE +
'}'
]
constructor_part = f'TypeConstructor & overrides ^ {type_literal}'
else:
overrides_part = []
constructor_part = f'TypeConstructor ^ {type_literal}'
generated_definitions.extend(overrides_part)
constructor_serializer_def = (
f'mk_{inflection.underscore(type_literal)}, '
f'serialize_{inflection.underscore(type_literal)} = {constructor_part}'
)
generated_definitions.extend([
LINE_SKIP,
LINE_SKIP,
constructor_serializer_def,
LINE_SKIP,
])
# TODO: import Sequence/List/PVector flag-based
generated_definitions = ( required_imports
+ [LINE_SKIP, LINE_SKIP]
+ generated_definitions )
return NEW_LINE.join(generated_definitions), overrides_source
| 12,005
|
def _tuple_to_string(tup):
"""
Converts a tuple of pitches to a string
Params:
* tup (tuple): a tuple of pitch classes, like (11, 10, 5, 9, 3)
Returns:
* string: e.g., 'et593'
"""
def _convert(pitch):
pitch = mod_12(pitch)
if pitch not in (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11):
# should never happen
raise ValueError('unexpected pitch found: %s' % pitch)
if pitch == 10:
return 't'
elif pitch == 11:
return 'e'
else:
return str(pitch)
output = []
for pitch in tup:
output.append(_convert(pitch))
return ''.join(output)
| 12,006
|
def update_file_structure(limit=999):
"""
Opens the hardcoded file containing CIKs to collect data on,
and ensures they have the associated directory.
:return: None
"""
# FUTURE Adapt to CIK_List.pkl
f = open('objects/ref/CIK_List.txt', 'r')
if not os.path.exists('/storage/cik'):
os.mkdir('/storage/cik')
# FUTURE Adapt to a limited child number directory structure
for line in f:
directory = '/storage/cik/' + line.replace('\n', '')
if not os.path.exists(directory):
os.mkdir(directory)
f.close()
| 12,007
|
def dashboard():
"""Logged in Dashboard screen."""
session["redis_test"] = "This is a session variable."
return render_template(
"dashboard.jinja2",
title="Flask-Session Tutorial.",
template="dashboard-template",
current_user=current_user,
body="You are now logged in!",
)
| 12,008
|
def choose_top_k(scores_flat, config):
"""Chooses the top-k beams as successors.
"""
next_beam_scores, word_indices = tf.nn.top_k(scores_flat, k=config.beam_width)
return next_beam_scores, word_indices
| 12,009
|
def train_valid_test_split(data, proportions='50:25:25'):
"""
Splits the data into 3 parts - training, validation and test sets
:param proportions: proportions for the split, like 2:1:1 or 50:30:20
:param data: preprocessed data
:return: X_train, Y_train, target_rtns_train, X_valid, Y_valid, target_rtns_valid, X_test, Y_test, target_rtns_test
"""
features = [c for c in data.columns if c not in ('ret','bin')]
n = len(data)
borders = [float(p) for p in proportions.split(':')]
borders = borders / np.sum(borders)
train_ids = (0, int(np.floor(n * borders[0])))
valid_ids = (train_ids[1] + 1, int(np.floor(n * np.sum(borders[:2]))))
test_ids = (valid_ids[1] + 1, n)
X_train = data[features].iloc[train_ids[0]:train_ids[1], :]
X_valid = data[features].iloc[valid_ids[0]:valid_ids[1], :]
X_test = data[features].iloc[test_ids[0]:test_ids[1], :]
Y_train = data.bin.iloc[train_ids[0]:train_ids[1]]
Y_valid = data.bin.iloc[valid_ids[0]:valid_ids[1]]
Y_test = data.bin.iloc[test_ids[0]:test_ids[1]]
target_rtns_train = data.ret.iloc[train_ids[0]:train_ids[1]]
target_rtns_valid = data.ret.iloc[valid_ids[0]:valid_ids[1]]
target_rtns_test = data.ret.iloc[test_ids[0]:test_ids[1]]
return X_train, Y_train, target_rtns_train, X_valid, Y_valid, target_rtns_valid, X_test, Y_test, target_rtns_test
| 12,010
|
def basis_ders_on_quad_grid(knots, degree, quad_grid, nders, normalization):
"""
Evaluate B-Splines and their derivatives on the quadrature grid.
If called with normalization='M', this uses M-splines instead of B-splines.
Parameters
----------
knots : array_like
Knots sequence.
degree : int
Polynomial degree of B-splines.
quad_grid: 2D numpy.ndarray (ne,nq)
Coordinates of quadrature points of each element in 1D domain,
which can be given by quadrature_grid() or chosen arbitrarily.
nders : int
Maximum derivative of interest.
normalization : str
Set to 'B' for B-splines, and 'M' for M-splines.
Returns
-------
basis: 4D numpy.ndarray
Values of B-Splines and their derivatives at quadrature points in
each element of 1D domain. Indices are
. ie: global element (0 <= ie < ne )
. il: local basis function (0 <= il <= degree)
. id: derivative (0 <= id <= nders )
. iq: local quadrature point (0 <= iq < nq )
"""
# TODO: add example to docstring
ne,nq = quad_grid.shape
basis = np.zeros((ne, degree+1, nders+1, nq))
if normalization == 'M':
scaling = 1. / basis_integrals(knots, degree)
for ie in range(ne):
xx = quad_grid[ie, :]
for iq, xq in enumerate(xx):
span = find_span(knots, degree, xq)
ders = basis_funs_all_ders(knots, degree, xq, span, nders)
if normalization == 'M':
ders *= scaling[None, span-degree:span+1]
basis[ie, :, :, iq] = ders.transpose()
return basis
| 12,011
|
def analyze_jumps(jumps):
"""takes the list of Jump tuples from group_jumps. returns JumpCmp.
fails if input is weird (tell me more).
"""
# todo: more of a decompile, AST approach here? look at uncompyle.
if jumps[-1].head is not None: raise BadJumpTable("last jump not an else")
if len(jumps) < 3: raise BadJumpTable("too few, what's the point")
head0 = jumps[0].head
if head0[-2].code != opcode.opmap['COMPARE_OP'] or head0[-2].arg != 2: raise BadJumpTable('cmp not ==',0)
if head0[-3].code != opcode.opmap['LOAD_CONST']: raise BadJumpTable('cmp right not LOAD_CONST',0)
def compare_head(headi, i):
if len(head0) != len(headi): raise BadJumpTable('length mismatch',i)
if headi[-2].code != opcode.opmap['COMPARE_OP'] or headi[-2].arg != 2: raise BadJumpTable('cmp not ==',i)
# todo below: it would be great if this didn't have to be a constant
if headi[-3].code != opcode.opmap['LOAD_CONST']: raise BadJumpTable('cmp right not LOAD_CONST',i)
if any(h0[1:]!=hi[1:] for h0,hi in zip(head0[:-3],headi[:-3])): raise BadJumpTable('preamble mismatch',i)
for i in range(1,len(jumps)-1): compare_head(jumps[i].head,i)
load_left = head0[:-3] # sans the const, sans the compare, sans the jump
const2offset = {j.head[-3].arg:j.head[0].pos for j in jumps[:-1]}
return JumpCmp(load_left, const2offset)
| 12,012
|
def create_notification_handler(actor, recipient, verb, **kwargs):
"""
Handler function to create a Notification instance.
:requires:
:param actor: User instance of that user who makes the action.
:param recipient: User instance, a list of User instances or string
'global' defining who should be notified.
:param verb: Notification attribute with the right choice from the list.
:optional:
:param action_object: Model instance on which the verb was executed.
:param key: String defining what kind of notification is going to be created.
:param id_value: UUID value assigned to a specific element in the DOM.
"""
key = kwargs.pop("key", "notification")
id_value = kwargs.pop("id_value", None)
if recipient == "global":
users = get_user_model().objects.all().exclude(username=actor.username)
for user in users:
Notification.objects.create(
actor=actor,
recipient=user,
verb=verb,
action_object=kwargs.pop("action_object", None),
)
notification_broadcast(actor, key)
elif isinstance(recipient, list):
for user in recipient:
Notification.objects.create(
actor=actor,
recipient=get_user_model().objects.get(username=user),
verb=verb,
action_object=kwargs.pop("action_object", None),
)
elif isinstance(recipient, get_user_model()):
Notification.objects.create(
actor=actor,
recipient=recipient,
verb=verb,
action_object=kwargs.pop("action_object", None),
)
notification_broadcast(
actor, key, id_value=id_value, recipient=recipient.username
)
else:
pass
| 12,013
|
def data(*args, **kwargs):
"""
The HTML <data> Element links a given content with a
machine-readable translation. If the content is time- or
date-related, the <time> must be used.
"""
return el('data', *args, **kwargs)
| 12,014
|
def process_dir(dir, doc_type = 'Annual Return', parallel = False):
"""
Process all document directories in a directory.
Parameters
----------
dir : str
Relative path to directory containing the document directories
doc_type : str
Type of documents (default = 'Annual Return')
parallel : bool
Process directories in parallel for faster performance
Returns
-------
data_df : pandas.DataFrame
Dataframe containing information about all document directories
processed successfully
failed_df : pandas.DataFrame
Dataframe containing information about all document directories
processed unsuccessfully and their corresponding traceback
"""
doc_data_list = []
failed_list = []
if parallel:
completed = 0
def worker(input, output, failed):
nonlocal completed
for doc_dir in iter(input.get, 'STOP'):
completed += 1
try:
doc_data = process_doc_dir(doc_dir, doc_type)
assert (isinstance(doc_data, pd.DataFrame) or isinstance(doc_data, pd.Series))
output.put(doc_data)
except:
exception = traceback.format_exc(7)
failed.put((doc_dir, exception))
print(f'\t\t****{mp.current_process().name} is at iteration {completed}****')
NUMBER_OF_PROCESSES = mp.cpu_count()
doc_list = [f'{dir}/{doc_dir}' for doc_dir in os.listdir(dir) if os.path.isdir(f'{dir}/{doc_dir}')]
num_doc = len(doc_list)
print(f"\t\t****Total documents to be processed: {num_doc}****\n\n")
task_manager = mp.Manager()
done_manager = mp.Manager()
failed_manager = mp.Manager()
task_queue = task_manager.Queue()
done_queue = done_manager.Queue()
failed_queue = failed_manager.Queue()
for doc_dir in doc_list:
task_queue.put(doc_dir)
for i in range(NUMBER_OF_PROCESSES):
task_queue.put('STOP')
process_list = [mp.Process(name=f'Process {str(i)}',
target=worker,
args=(task_queue, done_queue, failed_queue))
for i in range(NUMBER_OF_PROCESSES)]
for process in process_list:
process.start()
for process in process_list:
process.join()
while not done_queue.empty():
doc_data_list.append(done_queue.get())
while not failed_queue.empty():
failed_list.append(failed_queue.get())
else:
doc_list = [f'{dir}/{doc_dir}'.replace('//', '/') for doc_dir in os.listdir(dir) if os.path.isdir(f'{dir}/{doc_dir}'.replace('//', '/'))]
num_doc = len(doc_list)
print(f"\t\t****Total documents to be processed: {num_doc}****\n\n")
for count, doc_dir in enumerate(doc_list):
print(f'\t\t****{count} items processed out of {num_doc}****')
try:
doc_data = process_doc_dir(doc_dir, doc_type = doc_type)
doc_data_list.append(doc_data)
except:
exception = traceback.format_exc(7)
failed_list.append((doc_dir, exception))
if len(failed_list) != 0:
failed_df = pd.Series(dict(failed_list))
else:
failed_df = pd.Series(['There were no exceptions'])
if len(doc_data_list) != 0:
data_df = pd.concat(doc_data_list, axis = 0, sort=False)
else:
data_df = pd.Series(['No documents were scraped successfully'])
print('\t\t****Task completed****')
print(data_df)
return (data_df, failed_df)
| 12,015
|
def key_I(buf, input_line, cur, count):
"""Move cursor to first non-blank character and start Insert mode.
See Also:
`key_base()`.
"""
pos, _, _ = motion_carret(input_line, cur, 0)
set_cur(buf, input_line, pos)
set_mode("INSERT")
| 12,016
|
def get_crops(nodules, fmt='raw', nodule_shape=(32, 64, 64), batch_size=20, share=0.5, histo=None,
variance=(36, 144, 144), hu_lims=(-1000, 400), **kwargs):
""" Get pipeline that performs preprocessing and crops cancerous/non-cancerous nodules in
a chosen proportion.
Parameters
----------
nodules : pd.DataFrame
contains:
- 'seriesuid': index of patient or series.
- 'z','y','x': coordinates of nodules center.
- 'diameter': diameter, in mm.
fmt : str
can be either 'raw', 'blosc' or 'dicom'.
nodule_shape : tuple, list or ndarray of int
crop shape along (z,y,x).
batch_size : int
number of nodules in batch generated by pipeline.
share : float
share of cancer crops in the batch.
histo : tuple
:func:`numpy.histogramdd` output.
Used for sampling non-cancerous crops
variance : tuple, list or ndarray of float
variances of normally distributed random shifts of
nodules' start positions
hu_lims : tuple, list of float
seq of len=2, representing limits of hu-trimming in normalize_hu-action.
**kwargs
spacing : tuple
(z,y,x) spacing after resize.
shape : tuple
(z,y,x) shape after crop/pad.
method : str
interpolation method ('pil-simd' or 'resize').
See :func:`~radio.CTImagesBatch.resize`.
order : None or int
order of scipy-interpolation (<=5), if used.
padding : str
mode of padding, any supported by :func:`numpy.pad`.
Returns
-------
pipeline
"""
# update args of unify spacing
args_unify_spacing = copy(kwargs_default)
args_unify_spacing.update(kwargs)
# set up other args-dicts
args_sample_nodules = dict(nodule_size=nodule_shape, batch_size=batch_size, share=share,
histo=histo, variance=variance)
# set up the pipeline
pipeline = (Pipeline()
.load(fmt=fmt)
.fetch_nodules_info(nodules=nodules)
.unify_spacing(**args_unify_spacing)
.create_mask()
.normalize_hu(min_hu=hu_lims[0], max_hu=hu_lims[1])
.sample_nodules(**args_sample_nodules)
.run(lazy=True, batch_size=RUN_BATCH_SIZE, shuffle=True)
)
return pipeline
| 12,017
|
def get_dict_from_args(args):
"""Extracts a dict from task argument string."""
d = {}
if args:
for k,v in [p.strip().split('=') for p in args.split(',')]:
d[k] = v
return d
| 12,018
|
def plot_mean_feature_impact(
explanations,
features_name=None,
max_display=None,
):
"""
The same than plot_feature_importance but we will consider the mean explanation value
grouped by feature.
A more informative plot is the summary_plot_tabular.
"""
# sanitize explanations to numpy array
explanations = np.array(explanations)
mean_explanation_per_feature = np.mean(explanations, axis=0)
plot_feature_impact(
mean_explanation_per_feature,
features_name=features_name,
max_display=max_display
)
| 12,019
|
def multi_area_propagation_gpu(input_domain, net_model, thread_number=32):
"""
Propagation of the input domain through the network to obtain the OVERESTIMATION of the output bound.
The process is performed applying the linear combination node-wise and the necessary activation functions.
The process is on GPU, completely parallelized on NVIDIA CUDA GPUs and c++ code.
Parameters
----------
input_domain : list
the input domain expressed as a 3-dim matrix. (a) a list of list for each splitted domain;
(b) a list of bound for each input node and (c) a list of two element for the node, lower and upper
net_model : tf.keras.Model
tensorflow model to analyze, the model must be formatted in the 'tf.keras.Model(inputs, outputs)' format
thread_number : int
number of CUDA thread to use for each CUDA block, the choice is free and does not effect the results,
can however effect the performance
Returns:
--------
reshaped_bound : list
the propagated bound in the same format of the input domain (3-dim)
"""
# Ignore the standard warning from CuPy
import warnings
warnings.filterwarnings("ignore")
# Import the necessary library for the parallelization (Cupy) and also the c++ CUDA code.
import cupy as cp
from netver.utils.cuda_code import cuda_code
# Load network shape, activations and weights
layer_sizes = []
activations = []
full_weights = np.array([])
full_biases = np.array([])
# Iterate on each layer of the network, exluding the input (tf2 stuff)
for layer in net_model.layers[1:]:
# Obtain the activation function list
if layer.activation == tf.keras.activations.linear: activations.append(0)
elif layer.activation == tf.keras.activations.relu: activations.append(1)
elif layer.activation == tf.keras.activations.tanh: activations.append(2)
elif layer.activation == tf.keras.activations.sigmoid: activations.append(3)
# Obtain the netowrk shape as a list
layer_sizes.append(layer.input_shape[1])
# Obtain all the weights for paramters and biases
weight, bias = layer.get_weights()
full_weights = np.concatenate((full_weights, weight.T.reshape(-1)))
full_biases = np.concatenate((full_biases, bias.reshape(-1)))
# Fixe last layer size
layer_sizes.append( net_model.output.shape[1] )
# Initialize the kernel loading the CUDA code
my_kernel = cp.RawKernel(cuda_code, 'my_kernel')
# Convert all the data in cupy array beore the kernel call
max_layer_size = max(layer_sizes)
results_cuda = cp.zeros(layer_sizes[-1] * 2 * len(input_domain), dtype=cp.float32)
layer_sizes = cp.array(layer_sizes, dtype=cp.int32)
activations = cp.array(activations, dtype=cp.int32)
input_domain = cp.array(input_domain, dtype=cp.float32)
full_weights = cp.array(full_weights, dtype=cp.float32)
full_biases = cp.array(full_biases, dtype=cp.float32)
# Define the number of CUDA block
block_number = int(len(input_domain) / thread_number) + 1
# Create and launch the kernel, wait for the sync of all threads
kernel_input = (input_domain, len(input_domain), layer_sizes, len(layer_sizes), full_weights, full_biases, results_cuda, max_layer_size, activations)
my_kernel((block_number, ), (thread_number, ), kernel_input)
cp.cuda.Stream.null.synchronize()
# Reshape the results and convert in numpy array
reshaped_bound = cp.asnumpy(results_cuda).reshape((len(input_domain), net_model.layers[-1].output_shape[1], 2))
#
return reshaped_bound
| 12,020
|
def kernel():
"""Create a ipykernel conda environment separate from this test
environment where jupyter console is installed.
The environments must be separate otherwise we cannot easily check
if kernel start is activating the environment or if it was already
active when the test suite started.
"""
# unique name for the kernel and environment
name = str(uuid4())
env_path = '{}/kernel-env-{name}'.format(gettempdir(), name=name)
stdout = subprocess.check_output(
["conda", "create", "--yes", "--quiet", "--prefix", env_path, "python=3.6", "ipykernel"])
stdout = pexpect.run('/bin/bash -c "source activate {env_path} && \
python -m ipykernel install --user \
--name {name}"'.format(env_path=env_path, name=name))
# query jupyter for the user data directory in a separate command to
# make parsing easier
stdout = pexpect.run('jupyter --data-dir')
user_path = stdout.decode('utf-8').strip()
# the kernel spec resides in the jupyter user data path
spec_path = os.path.join(user_path, 'kernels', name)
yield Kernel(name, os.path.join(spec_path, 'kernel.json'), env_path)
shutil.rmtree(env_path)
| 12,021
|
def opensslCmsSignedDataCreate( conveyedInfoFile, cert, privateKey ):
"""Create a signed CMS encoded object given a conveyed-info file and
base64 encode the response."""
opensslCmdArgs = [ "openssl", "cms", "-sign", "-in", conveyedInfoFile,
"-signer", cert,
"-inkey", privateKey,
"-outform", "der", "-nodetach" ]
conveyedInfoCmsSignedDerBase64 = runOpensslCmd( opensslCmdArgs, [ "base64" ] )
return conveyedInfoCmsSignedDerBase64
| 12,022
|
def auth_error_handler() -> None:
"""Handle authorization error.
Raises an exception that will be handled by Flask-RESTPlus error handling.
"""
raise UnauthorizedException('Invalid credentials.')
| 12,023
|
def compute_kv(config):
"""Parse log data and calling draw"""
result = {}
for _cfg in config['data']:
data = data_parser.log_kv(_cfg['path'], _cfg['phase'], _cfg['keys'])
# clip from start idx
if 'start_iter' in _cfg:
start_idx = 0
for idx, iteration in enumerate(data['iter']):
if iteration >= _cfg['start_iter']:
start_idx = idx
break
data = utils.process_keys(utils.clip, data, start_idx)
# downsampling all points including iter
if 'iter_invl' in _cfg:
invl = int(_cfg['iter_invl'] / (data['iter'][1]-data['iter'][0]))
assert invl >= 1
data = utils.process_keys(utils.downsampling, data, invl)
res_list = {}
# compute max
if _cfg['task'] == 'max':
idx, value = _kv_max(data, _cfg['sort_key'])
# broadcast to other key
res_list['iter'] = data['iter'][idx]
for key in _cfg['keys']:
res_list[key] = data[key][idx]
elif _cfg['task'] == 'min':
idx, value = _kv_min(data, _cfg['sort_key'])
# broadcast to other key
res_list['iter'] = data['iter'][idx]
for key in _cfg['keys']:
res_list[key] = data[key][idx]
# print
print(_cfg['path'])
for res in res_list:
print(' ', res, res_list[res])
# add-in result
result[os.path.basename(_cfg['path'])] = data
return result
| 12,024
|
def cmd_abbreviation(ensoapi, query = None):
""" Search for abbreviation meaning """
ws = WebSearchCmd("http://www.urbandictionary.com/define.php?term=%(query)s")
ws(ensoapi, query)
| 12,025
|
def change_app_header(uri, headers, body):
""" Add Accept header for preview features of Github apps API """
headers["Accept"] = "application/vnd.github.machine-man-preview+json"
return uri, headers, body
| 12,026
|
def fib_fail(n: int) -> int:
"""doesn't work because it's missing the base case"""
return fib_fail(n - 1) + fib_fail(n - 2)
| 12,027
|
def get_grad_hook(mod, grad_in, grad_out, mod_name=None, grad_map=None):
""" The hook to collect gradient. """
assert isinstance(mod_name, str)
assert isinstance(grad_map, dict)
assert len(grad_out) == 1
grad_map[mod_name] = grad_out[0]
| 12,028
|
def int2str(num, radix=10, alphabet=BASE85):
"""helper function for quick base conversions from integers to strings"""
return NumConv(radix, alphabet).int2str(num)
| 12,029
|
def randomize_onesample(a, n_iter=10000, h_0=0, corrected=True,
random_seed=None, return_dist=False):
"""Nonparametric one-sample T test through randomization.
On each iteration, randomly flip the signs of the values in ``a``
and test the mean against 0.
If ``a`` is two-dimensional, it is assumed to be shaped as
(n_observations, n_tests), and a max-statistic based approach
is used to correct the p values for multiple comparisons over tests.
Parameters
----------
a : array-like
input data to test
n_iter : int
number of randomization iterations
h_0 : float, broadcastable to tests in a
null hypothesis for the group mean
corrected : bool
correct the p values in the case of multiple tests
random_seed : int or None
seed to use for random number generator
return_dist : bool
if True, return the null distribution of t statistics
Returns
-------
obs_t : float or array of floats
group mean T statistic(s) corresponding to tests in input
obs_p : float or array of floats
one-tailed p value that the population mean is greater than h_0
(1 - percentile under the null)
dist : ndarray, optional
if return_dist is True, the null distribution of t statistics
"""
a = np.asarray(a, np.float)
if a.ndim < 2:
a = a.reshape(-1, 1)
n_samp, n_test = a.shape
a -= h_0
rs = np.random.RandomState(random_seed)
flipper = (rs.uniform(size=(n_samp, n_iter)) > 0.5) * 2 - 1
flipper = (flipper.reshape(n_samp, 1, n_iter) *
np.ones((n_samp, n_test, n_iter), int))
rand_dist = a[:, :, None] * flipper
err_denom = np.sqrt(n_samp - 1)
std_err = rand_dist.std(axis=0) / err_denom
t_dist = rand_dist.mean(axis=0) / std_err
obs_t = a.mean(axis=0) / (a.std(axis=0) / err_denom)
if corrected:
obs_p = 1 - percentile_score(t_dist.max(axis=0), obs_t) / 100
else:
obs_p = []
for obs_i, null_i in zip(obs_t, t_dist):
obs_p.append(1 - percentile_score(null_i, obs_i) / 100)
obs_p = np.array(obs_p)
if a.shape[1] == 1:
obs_t = np.asscalar(obs_t)
obs_p = np.asscalar(obs_p)
t_dist = t_dist.squeeze()
if return_dist:
return obs_t, obs_p, t_dist
return obs_t, obs_p
| 12,030
|
def git_get_project(
directory: str, token: Optional[str] = None, revisions: Optional[Dict[str, str]] = None
) -> BuiltInCommand:
"""
Create an Evergreen command to clones the tracked project and check current revision.
Also, applies patches if the task was created by a patch build.
:param directory: Directory to clone into.
:param token: Use a token to clone instead of ssh key.
:param revisions: Map of revisions to use for modules.
"""
params = {
"directory": directory,
}
add_if_exists(params, "token", token)
add_if_exists(params, "revisions", revisions)
return BuiltInCommand("git.get_project", params)
| 12,031
|
def main(args=None):
"""ec2mc script's entry point
Args:
args (list): Arguments for argparse. If None, set to sys.argv[1:].
"""
if args is None:
args = sys.argv[1:]
try:
# Classes of available commands in the commands directory
commands = [
configure_cmd.Configure,
aws_setup_cmd.AWSSetup,
server_cmds.Server,
servers_cmds.Servers,
address_cmds.Address,
user_cmds.User
]
# Use argparse to turn args into namedtuple of arguments
cmd_args = _argv_to_cmd_args(args, commands)
# If basic configuration being done, skip config validation
if cmd_args.command != "configure":
# Validate config's config.json
validate_config.main()
# Validate config's aws_setup.json and YAML instance templates
validate_setup.main()
# Create an instance from the appropriate command class
chosen_cmd = next(cmd(cmd_args) for cmd in commands
if cmd.cmd_name() == cmd_args.command)
# Validate IAM user has needed permissions to use the command
halt.assert_empty(chosen_cmd.blocked_actions(cmd_args))
# Use the command
chosen_cmd.main(cmd_args)
except SystemExit:
return False
return True
| 12,032
|
def body_contour(binary_image):
"""Helper function to get body contour"""
contours = find_contours(binary_image)
areas = [cv2.contourArea(cnt) for cnt in contours]
body_idx = np.argmax(areas)
return contours[body_idx]
| 12,033
|
def rule_like(rule, pattern):
"""
Check if JsonLogic rule matches a certain 'pattern'.
Pattern follows the same structure as a normal JsonLogic rule
with the following extensions:
- '@' element matches anything:
1 == '@'
"jsonlogic" == '@'
[1, 2] == '@'
{'+': [1, 2]} == '@'
{'+': [1, 2]} == {'@': [1, 2]}
{'+': [1, 2]} == {'+': '@'}
{'+': [1, 2]} == {'+': ['@', '@']}
{'+': [1, 2]} == {'@': '@'}
- 'number' element matches any numeric value:
1 == 'number'
2.34 == 'number'
[1, 2] == ['number', 'number']
{'+': [1, 2]} == {'+': ['number', 'number']}
- 'string' element matches any string value:
"name" == 'string'
{'cat': ["json", "logic"]} = {'cat': ['string', 'string']}
- 'array' element matches an array of any length:
[] == 'array'
[1, 2, 3] = 'array'
{'+': [1, 2]} == {'+': 'array'}
Use this method to make sure JsonLogic rule is correctly constructed.
"""
if pattern == rule:
return True
if pattern == '@':
return True
if pattern == 'number':
return _is_numeric(rule)
if pattern == 'string':
return _is_string(rule)
if pattern == "array":
return _is_array(rule)
if is_logic(pattern):
if is_logic(rule):
# Both pattern and rule are a valid JsonLogic rule, go deeper
pattern_operator = _get_operator(pattern)
rule_operator = _get_operator(rule)
if pattern_operator == '@' or pattern_operator == rule_operator:
# Operators match, go deeper and try matching values
return rule_like(
_get_values(rule, rule_operator, normalize=False),
_get_values(pattern, pattern_operator, normalize=False))
return False # All above assumptions failed
if _is_array(pattern):
if _is_array(rule):
# Both pattern and rule are arrays, go deeper
if len(pattern) == len(rule):
# Length of pattern and rule arrays are the same,
# go deeper and try matching each value
return all(
rule_like(rule_elem, pattern_elem)
for rule_elem, pattern_elem in zip(rule, pattern))
return False # All above assumptions failed
return False
| 12,034
|
def apt_repo(module, *args):
"""run apt-repo with args and return its output"""
# make args list to use in concatenation
args = list(args)
rc, out, err = module.run_command([APT_REPO_PATH] + args)
if rc != 0:
module.fail_json(msg="'%s' failed: %s" % (' '.join(['apt-repo'] + args), err))
return out
| 12,035
|
async def get_data(
*,
config: Box,
region: Region,
start: Optional[int] = None,
end: Optional[int] = None,
) -> Dict[Any, Any]:
"""Return a new consumer token."""
lookup = f"awattar.{region.name.lower()}"
awattar_config = config[lookup]
endpoint = f"{awattar_config.host}{awattar_config.url}" + "{}"
params = {}
if start:
params["start"] = str(start)
if end:
params["end"] = str(end)
if params:
url = endpoint.format("?" + urlencode(params))
else:
url = endpoint.format("")
timeout = 10.0
log.debug(f"Awattar URL: {url}")
try:
async with httpx.AsyncClient() as client:
response = await client.get(url, timeout=timeout)
except Exception as e:
log.error(f"Caught an exception while fetching data from the Awattar API: {e}")
raise
try:
data = response.json()
except Exception as e:
log.error(f"Could not JSON decode the Awattar response: {e}")
raise
return data
| 12,036
|
def deactivated_equalities_generator(block):
"""
Generator which returns all deactivated equality Constraint components in a
model.
Args:
block : model to be studied
Returns:
A generator which returns all deactivated equality Constraint
components block
"""
for c in total_equalities_generator(block):
if not c.active:
yield c
| 12,037
|
def get_rasterization_params() -> RasterizationParams:
"""
Construct the RasterizationParams namedtuple
from the static configuration file
:return: the rasterization parameters
"""
if cfg is None:
load_cfg()
# get rasterization section
rasterization_dict = cfg[compute_dsm_tag][rasterization_tag]
rasterization_params = RasterizationParams(*rasterization_dict.values())
return rasterization_params
| 12,038
|
def compact(values):
"""Creates a generator (that can be iterated using next()), from a list of
values, avoiding any adjacent duplicates
Args:
values: Iterator of integer values
Returns:
A generator without adjacent duplicates
"""
# check that the iterator is not empty
if values:
# the iterator is not empty
curr = object() # use to keep track of the current (previous value)
for val in values:
# iterating through iterator
if curr != val:
# adjacent values are different, yield this value too
yield val
# update current
curr = val
| 12,039
|
def main():
"""Make a jazz noise here"""
args = get_args()
kmers1 = count_kmers(args.file1, args.kmer)
kmers2 = count_kmers(args.file2, args.kmer)
for common in set(kmers1).intersection(set(kmers2)):
print('{:10} {:5} {:5}'.format(
common, kmers1.get(common), kmers2.get(common)))
| 12,040
|
def rain_attenuation_probability(lat, lon, el, hs=None, Ls=None, P0=None):
"""
The following procedure computes the probability of non-zero rain
attenuation on a given slant path Pr(Ar > 0).
Parameters
----------
lat : number, sequence, or numpy.ndarray
Latitudes of the receiver points
lon : number, sequence, or numpy.ndarray
Longitudes of the receiver points
el : sequence, or number
Elevation angle (degrees)
hs : number, sequence, or numpy.ndarray, optional
Heigh above mean sea level of the earth station (km). If local data for
the earth station height above mean sea level is not available, an
estimate is obtained from the maps of topographic altitude
given in Recommendation ITU-R P.1511.
Ls : number, sequence, or numpy.ndarray, optional
Slant path length from the earth station to the rain height (km). If
data about the rain height is not available, this value is estimated
automatically using Recommendation ITU-R P.838
P0 : number, sequence, or numpy.ndarray, optional
Probability of rain at the earth station, (0 ≤ P0 ≤ 1)
Returns
-------
p: Quantity
Probability of rain attenuation on the slant path (%)
References
----------
[1] Propagation data and prediction methods required for the design of
Earth-space telecommunication systems:
https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf
"""
type_output = get_input_type(lat)
lat = prepare_input_array(lat)
lon = prepare_input_array(lon)
lon = np.mod(lon, 360)
el = prepare_quantity(prepare_input_array(el), u.deg, 'Elevation angle')
hs = prepare_quantity(
hs, u.km, 'Heigh above mean sea level of the earth station')
Ls = prepare_quantity(
Ls, u.km, 'Heigh above mean sea level of the earth station')
P0 = prepare_quantity(P0, u.pct, 'Point rainfall rate')
val = __model.rain_attenuation_probability(lat, lon, el, hs, Ls, P0)
return prepare_output_array(val, type_output) * 100 * u.pct
| 12,041
|
def discover(paths=None):
"""Get the full list of files found in the registered folders
Args:
paths (list, Optional): directories which host preset files or None.
When None (default) it will list from the registered preset paths.
Returns:
list: valid .json preset file paths.
"""
presets = []
for path in paths or preset_paths():
path = os.path.normpath(path)
if not os.path.isdir(path):
continue
# check for json files
glob_query = os.path.abspath(os.path.join(path, "*.json"))
filenames = glob.glob(glob_query)
for filename in filenames:
# skip private files
if filename.startswith("_"):
continue
# check for file size
if not check_file_size(filename):
log.warning("Filesize is smaller than 1 byte for file '%s'",
filename)
continue
if filename not in presets:
presets.append(filename)
return presets
| 12,042
|
def largets_prime_factor(num):
"""
Returns the largest prime factor of num.
"""
prime_factors = []
for n in itertools.count(2):
if n > num:
break
if num%n == 0:
prime_factors.append(n)
while (num%n == 0):
num = num/n
return max(prime_factors)
| 12,043
|
def run():
"""
entrypoint
"""
parser = ArgumentParser(
"kimsufi-checker",
description="tool to perform actions when Kimsufi availabilty changes",
)
parser.add_argument(
"-s",
"--sleep",
metavar="SECONDS",
type=int,
default=60,
help="duration (in seconds) between checks, default: 60",
)
parser.add_argument(
"-z",
"--zone",
dest="zones",
action="append",
metavar="ZONE",
help="check availability in specific zones (example: rbx or gra)",
)
parser.add_argument(
"-x",
"--available",
metavar="COMMAND",
help="command to execute when plan becomes available",
)
parser.add_argument(
"-X",
"--not-available",
metavar="COMMAND",
help="command to execute when plan is not available anymore",
)
parser.add_argument(
"-1",
"--execute-on-init",
action="store_true",
help="execute -x/-X action on first check, by default actions are run when plan status change",
)
parser.add_argument(
"plans", nargs="*", help="plans to check, example 1801sk13 or 1801sk14"
)
args = parser.parse_args()
if len(args.plans) == 0:
data = get_data()
plans = set()
zones = set()
for pref in data["availability"]:
plans.add(pref["reference"])
for zref in pref["zones"]:
zones.add(zref["zone"])
print("List of plans:")
for plan in sorted(plans):
print(" ", plan)
print("List of zones:")
for zone in sorted(zones):
print(" ", zone)
else:
availability = None
while True:
try:
if availability is None:
# first loop
availability = OrderedDict([(p, None) for p in args.plans])
else:
sleep(args.sleep)
data = get_data()
for plan, previous_zones in availability.items():
current_zones = get_available_zones(data, plan, args.zones or [])
availability[plan] = current_zones
if previous_zones is None:
# No previous data
if len(current_zones) == 0:
message(
Fore.YELLOW,
f"Plan {plan} is initially not available",
prefix="",
)
if (
args.execute_on_init
and execute(args.not_available, plan) is None
):
args.not_available = None
else:
message(
Fore.GREEN,
f"Plan {plan} is initially available",
prefix="",
)
if (
args.execute_on_init
and execute(args.available, plan) is None
):
args.available = None
elif previous_zones == current_zones:
# No change
dot(Fore.GREEN if len(previous_zones) else Fore.YELLOW)
elif len(current_zones) == 0:
# Not available anymore
message(Fore.YELLOW, f"Plan {plan} is not available anymore")
if execute(args.not_available, plan) is None:
args.not_available = None
else:
# Becomes available
message(Fore.GREEN, f"Plan {plan} is now available")
if execute(args.available, plan) is None:
args.available = None
except KeyboardInterrupt:
break
except BaseException as e: # pylint: disable=broad-except,invalid-name
message(Fore.RED, f"Error: {e}")
| 12,044
|
def delete_md5(md5):
"""Delete the data of the file that has the MD5 hash."""
file = File.query.filter(File.md5 == md5).one_or_none()
schema = FileSchema()
result = schema.dump(file)
if file is not None:
filename = f"{result['file_name']}.{result['file_type']}"
if not os.path.exists(app.config['UPLOAD_FOLDER']):
os.makedirs(app.config['UPLOAD_FOLDER'])
folder = app.config['UPLOAD_FOLDER']
file_path = os.path.join(folder, filename)
os.remove(file_path)
db.session.delete(file)
db.session.commit()
return make_response(f"File with MD5 hash {md5} deleted.", 200)
else:
abort(404, f"File not found with MD5 hash: {md5}")
| 12,045
|
def compute_eigenvectors(exx, exy, eyy):
"""
exx, eyy can be 1d arrays or 2D arrays
:param exx: strain component, float or 1d array
:param exy: strain component, float or 1d array
:param eyy: strain component, float or 1d array
:rtype: list
"""
e1, e2 = np.zeros(np.shape(exx)), np.zeros(np.shape(exx)); # eigenvalues
v00, v01 = np.zeros(np.shape(exx)), np.zeros(np.shape(exx));
v10, v11 = np.zeros(np.shape(exx)), np.zeros(np.shape(exx)); # eigenvectors
dshape = np.shape(exx);
if len(dshape) == 1:
for i in range(len(exx)):
[e11, e22, v] = eigenvector_eigenvalue(exx[i], exy[i], eyy[i]);
e1[i], e2 = e11, e22; # convention of this code returns negative eigenvalues compared to my other codes
v00[i], v10[i] = v[0][0], v[1][0];
v01[i], v11[i] = v[0][1], v[1][1];
elif len(dshape) == 2:
for j in range(dshape[0]):
for i in range(dshape[1]):
[e11, e22, v] = eigenvector_eigenvalue(exx[j][i], exy[j][i], eyy[j][i]);
e1[j][i], e2[j][i] = e11, e22;
v00[j][i], v01[j][i] = v[0][0], v[0][1];
v10[j][i], v11[j][i] = v[1][0], v[1][1];
return [e1, e2, v00, v01, v10, v11];
| 12,046
|
def name_looks_valid(name: str) -> bool:
"""
Guesses if a name field is valid. Valid is defined as being at least two words, each beginning with a capital
letter and ending with a lowercase letter.
:param name: the name to check
:return: whether this name is considered valid
"""
existing_parts = name.split()
parts_that_look_like_names = list(
filter(lambda part: fullmatch(r"[A-Z](?:[A-Za-z-']+)?[a-z]", part), existing_parts)
)
if len(existing_parts) < 2 or len(parts_that_look_like_names) < 2:
return False
if len(parts_that_look_like_names) > 2 or len(existing_parts) == len(parts_that_look_like_names):
return True
return False
| 12,047
|
def convert_polygons_to_lines(src_polygons, dst_lines, crs=None, add_allone_col=False):
"""Convert polygons to lines.
Arguments:
src_polygons {path to geopandas-readable file} -- Filename of the the polygon vector dataset to be
converted to lines.
dst_lines {[type]} -- Filename where to write the line vector dataset to.
Keyword Arguments:
crs {dict or str} -- Output projection parameters as string or in dictionary format.
This will reproject the data when a crs is given (not {None}) (default: {None}).
add_allone_col {bool} -- Add an additional attribute column with all ones.
This is useful, e.g. in case you want to use the lines with gdal_proximity afterwards (default: {True}).
Returns:
int -- Exit code 0 if successeful.
"""
gdf = gpd.read_file(src_polygons)
geom_coords = gdf["geometry"] # featureset.get(5)["geometry"]["coordinates"]
lines = []
row_ids = []
for i_row, pol in tqdm(enumerate(geom_coords), total=len(geom_coords)):
boundary = pol.boundary
if boundary.type == 'MultiLineString':
for line in boundary:
lines.append(line)
row_ids.append(i_row)
else:
lines.append(boundary)
row_ids.append(i_row)
gdf_lines = gdf.drop("geometry", axis=1).iloc[row_ids, :]
gdf_lines["Coordinates"] = lines
gdf_lines = gpd.GeoDataFrame(gdf_lines, geometry='Coordinates', crs=gdf.crs)
if crs is not None:
gdf_lines = gdf_lines.to_crs(crs)
if add_allone_col:
gdf_lines["ALLONE"] = 1
Path(dst_lines).parent.mkdir(exist_ok=True, parents=True)
gdf_lines.to_file(dst_lines)
return 0
| 12,048
|
def format_decimal(amount):
""" jinja2 filter function for decimal number treatment """
amt_whole = int(amount)
amt_whole_len = len(str(amt_whole))
if amount < 1:
amt_str = '{:0.15f}'.format(amount).rstrip("0").rstrip(".")
elif amt_whole_len < 4:
amt_str = '{:0.3f}'.format(amount).rstrip("0").rstrip(".")
elif amt_whole_len < 6:
amt_str = '{:0.2f}'.format(amount).rstrip("0").rstrip(".")
elif amt_whole_len < 9:
amt_str = '{:0.1f}'.format(amount).rstrip("0").rstrip(".")
else:
amt_str = '{}'.format(amt_whole)
return amt_str
| 12,049
|
def remove_special_char(df, col):
"""Removes special characters such as % and $ from numeric variables and converts them into float"""
df[col] = df[col].replace(regex = True, to_replace = r'[^0-9.\-]', value=r'')
df[col] = df[col].astype("float")
return df[col]
| 12,050
|
def getNonlinearInfo(numHiddenLayers, numBinary, unaryPerBinary):
"""
Generates a 2D list to be used as a nonlinearInfo argument in building an
EQL/EQL-div model
# Arguments
numHiddenLayers: integer, number of hidden layers (i.e. layers
including nonlinear keras layer components)
numBinary: list of integers, available numbers to be used as number of
binary functions in a nonlinear layer component
unaryPerBinary: integer, number of unary function per binary function
in a nonlinear layer component
# Returns
A 2D list of integers with dimension numHiddenLayers x 2. Rows
represent layers, first column is number of unary functions, second
column is number of binary functions
"""
nonlinearInfo = [0 for i in range(numHiddenLayers)]
for i in range(numHiddenLayers):
v = np.random.choice(numBinary) # binary nodes
u = unaryPerBinary * v # unary nodes
nonlinearInfo[i] = [u, v]
return nonlinearInfo
| 12,051
|
def construct_magmad_gateway_payload(gateway_id: str,
hardware_id: str) -> types.Gateway:
"""
Returns a default development magmad gateway entity given a desired gateway
ID and a hardware ID pulled from the hardware secrets.
Args:
gateway_id: Desired gateway ID
hardware_id: Hardware ID pulled from the VM
Returns:
Gateway object with fields filled in with reasonable default values
"""
return types.Gateway(
name='TestGateway',
description='Test Gateway',
tier='default',
id=gateway_id,
device=types.GatewayDevice(
hardware_id=hardware_id,
key=types.ChallengeKey(
key_type='ECHO',
),
),
magmad=types.MagmadGatewayConfigs(
autoupgrade_enabled=True,
autoupgrade_poll_interval=60,
checkin_interval=60,
checkin_timeout=30,
),
)
| 12,052
|
def endpoint(fun):
"""
REST HTTP method endpoints should use this decorator. It converts the return
value of the underlying method to the appropriate output format and
sets the relevant response headers. It also handles RestExceptions,
which are 400-level exceptions in the REST endpoints, AccessExceptions
resulting from access denial, and also handles any unexpected errors
using 500 status and including a useful traceback in those cases.
If you want a streamed response, simply return a generator function
from the inner method.
"""
@wraps(fun)
def endpointDecorator(self, *path, **params):
_setCommonCORSHeaders()
cherrypy.lib.caching.expires(0)
cherrypy.request.girderRequestUid = str(uuid.uuid4())
setResponseHeader('Girder-Request-Uid', cherrypy.request.girderRequestUid)
try:
_preventRepeatedParams(params)
val = fun(self, path, params)
# If this is a partial response, we set the status appropriately
if 'Content-Range' in cherrypy.response.headers:
cherrypy.response.status = 206
val = _mongoCursorToList(val)
if callable(val):
# If the endpoint returned anything callable (function,
# lambda, functools.partial), we assume it's a generator
# function for a streaming response.
cherrypy.response.stream = True
_logRestRequest(self, path, params)
return val()
if isinstance(val, cherrypy.lib.file_generator):
# Don't do any post-processing of static files
return val
if isinstance(val, types.GeneratorType):
val = list(val)
except RestException as e:
val = _handleRestException(e)
except AccessException as e:
val = _handleAccessException(e)
except GirderException as e:
val = _handleGirderException(e)
except ValidationException as e:
val = _handleValidationException(e)
except cherrypy.HTTPRedirect:
raise
except Exception:
# These are unexpected failures; send a 500 status
logger.exception('500 Error')
cherrypy.response.status = 500
val = dict(type='internal', uid=cherrypy.request.girderRequestUid)
if config.getServerMode() == ServerMode.PRODUCTION:
# Sanitize errors in production mode
val['message'] = 'An unexpected error occurred on the server.'
else:
# Provide error details in non-production modes
t, value, tb = sys.exc_info()
val['message'] = '%s: %s' % (t.__name__, repr(value))
val['trace'] = traceback.extract_tb(tb)
resp = _createResponse(val)
_logRestRequest(self, path, params)
return resp
return endpointDecorator
| 12,053
|
def test_secrets_provider_get_expired(mock_name, mock_value, config):
"""
Test SecretsProvider.get() with a cached but expired value
"""
# Create a new provider
provider = parameters.SecretsProvider(config=config)
# Inject value in the internal store
provider.store[(mock_name, None)] = ExpirableValue(mock_value, datetime.now() - timedelta(seconds=60))
# Stub the boto3 client
stubber = stub.Stubber(provider.client)
response = {
"ARN": f"arn:aws:secretsmanager:us-east-1:132456789012:secret/{mock_name}",
"Name": mock_name,
"VersionId": "7a9155b8-2dc9-466e-b4f6-5bc46516c84d",
"SecretString": mock_value,
"CreatedDate": datetime(2015, 1, 1),
}
expected_params = {"SecretId": mock_name}
stubber.add_response("get_secret_value", response, expected_params)
stubber.activate()
try:
value = provider.get(mock_name)
assert value == mock_value
stubber.assert_no_pending_responses()
finally:
stubber.deactivate()
| 12,054
|
def gene_annotations(corpus_path, annotation_path, mer_path):
""" Creates a gene annotation file for each article in the corpus
:param corpus_path: article corpus path
:param mer_path: mer data path
:param annotation_path: genes annotation path
:return: gene annotation file for each article in the corpus
"""
for (dir_path, dir_names, file_names) in os.walk(corpus_path):
for filename in file_names:
annotations = []
gene_annotations = []
save_line = None
article_file = open(corpus_path + filename, 'r', encoding='utf-8')
article = str(article_file.read().encode('utf-8'))
article_file.close()
annotations_genes = os.popen('./' + mer_path + ' ' + article + ' genes').readlines()
# print (annotations_genes)
for annotations_gene in annotations_genes:
annotations_gene = annotations_gene.split('\t')
# annotation line with index, entity name and id
if len(annotations_gene) == 4:
save_line = annotations_gene[0] + '\t' + annotations_gene[1] + '\t' + annotations_gene[2]
gene_annotations.append(str(annotations_gene).replace('[', '').replace('\'', '').replace(']', '').replace(',', '\t').replace('\\', ''))
# annotation with id only
elif len(annotations_gene) == 1:
extra_id = annotations_gene[0].strip('\n')
if save_line:
gene_annotations.append(save_line + '\t' + extra_id + '\n')
for annotations_gene in gene_annotations:
gene_index_1 = annotations_gene.split('\t')[0]
gene_index_2 = annotations_gene.split('\t')[1]
gene_name = annotations_gene.split('\t')[2]
gene_id = annotations_gene.split('\t')[3][:-1]
annotations.append((gene_index_1, gene_index_2, gene_name, gene_id))
# sort by position in text
annotations = sorted(annotations, key=lambda position: int(position[0]))
annotation_file = open(annotation_path + filename, 'w', encoding='utf-8')
for annotation in annotations:
annotation_file.write(annotation[0] + '\t' + annotation[1] + '\t' + annotation[2] + '\t' + annotation[3] + '\n')
annotation_file.close()
return
| 12,055
|
def script_rename_number(config):
""" The scripting version of `rename_number`. This function
applies the rename to the entire directory. It also adds the
tags to the header file of each fits.
Parameters
----------
config : ConfigObj
The configuration object that is to be used for this
function.
Returns
-------
None
"""
# Extract the configuration parameters.
data_directory = core.config.extract_configuration(
config_object=config, keys=['data_directory'])
begin_garbage = core.config.extract_configuration(
config_object=config, keys=['renaming','begin_garbage'])
# Obtain the labels.
labels, raw = rename_number(data_directory=data_directory,
begin_garbage=begin_garbage)
# Add to all file headers. Assume that the order has not
# changed between renaming steps.
core.error.ifas_info("Adding the file number under the `NUMBER` card "
"in the headers of the fits files in {data_dir} "
"based on the file order."
.format(data_dir=data_directory))
fits_files = core.io.get_fits_filenames(data_directory=data_directory)
for (filedex, headerdex) in zip(fits_files, raw):
__ = core.io.append_astropy_header_card(
file_name=filedex, header_cards={'NUMBER':headerdex})
# Finally rename the files based on parallel appending. Glob
# provides the directory.
core.error.ifas_info("Appending the file number to the end of "
"the files in {data_dir}."
.format(data_dir=data_directory))
core.io.rename_by_parallel_append(file_names=fits_files,
appending_names=labels,
directory=None)
return None
| 12,056
|
def jasper10x4(**kwargs):
"""
Jasper 10x4 model from 'Jasper: An End-to-End Convolutional Neural Acoustic Model,'
https://arxiv.org/abs/1904.03288.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.chainer/models'
Location for keeping the model parameters.
"""
return get_jasper(version=("jasper", "10x4"), model_name="jasper10x4", **kwargs)
| 12,057
|
def swap(lst, idx1, idx2):
"""
>>> swap([0, 1, 2], 0, 1)
[1, 0, 2]
>>> swap([0, 1, 2], 0, 0)
[0, 1, 2]
"""
# print("Swapping [{}, {}] from {}".format(idx1, idx2, lst))
lst[idx1], lst[idx2] = lst[idx2], lst[idx1]
# print("resulting to {}".format(lst))
return lst
| 12,058
|
def drawLine(queryDef):
"""画分割线
Args:
queryDef: 查询定义
"""
formatStr = ""
valueList = []
for title in queryDef.titleList:
colDef = queryDef.tableCols[title]
size = colDef.size + 2
formatStr += ('+' + formatString("string", size, False))
valueList.append("-"*size)
formatStr += "+"
print(formatStr % tuple(valueList))
| 12,059
|
def debug_keytester() -> None:
"""Show a keytester widget."""
global _keytester_widget
if (_keytester_widget and
not sip.isdeleted(_keytester_widget) and
_keytester_widget.isVisible()):
_keytester_widget.close()
else:
_keytester_widget = miscwidgets.KeyTesterWidget()
_keytester_widget.show()
| 12,060
|
def substring_index(column, delim=' ', cnt=1):
"""
Returns the substring from string ``column`` before ``cnt`` occurrences of the delimiter ``delim``.
If ``cnt`` is positive, everything the left of the final delimiter (counting from left) is
returned. If ``cnt`` is negative, every to the right of the final delimiter (counting from the
right) is returned. substring_index performs a case-sensitive match when searching for ``delim``.
"""
return _with_expr(exprs.SubstringIndex, column, delim, cnt)
| 12,061
|
def askPrize(mon: int) -> str:
"""
Args :
n:欲查詢的期別
Returns:
查詢結果字串
"""
(date, data) = initData(mon)
date = f"{date}月\n"
ssp_prize = f"特別獎:{data[0]}\n"
sp_prize = f"特獎:{data[1]}\n"
first_prize = f"頭獎:{data[2]}、{data[3]}、{data[4]}\n"
six_prize = f"六獎:{data[2][5:]}、{data[3][5:]}、{data[4][5:]}、{data[5]}\n"
return date + ssp_prize + sp_prize + first_prize + six_prize
| 12,062
|
def maintain_all(delta_day=1):
"""
维护所有的mysql表的分区
"""
storage_rt_list = model_manager.get_storage_rt_objs_by_type(MYSQL)
count = 0
start_time_ts = time.time()
mysql_conns = {}
maintain_failed_rts = []
# 避免此接口执行时间跨天,导致添加的分区发生变化。
add_date = util.get_date_by_diff(delta_day)
add_next_date = util.get_date_by_diff(delta_day + 1)
for rt_storage in storage_rt_list:
try:
# 逐条处理,生成对应的actions,然后执行,避免将actions放入一个dict再遍历一轮
count += 1
cluster_name = rt_storage.storage_cluster_config.cluster_name
physical_tn = rt_storage.physical_table_name
if cluster_name not in mysql_conns:
mysql_cluster = model_manager.get_storage_cluster_config(cluster_name, MYSQL)
if mysql_cluster:
# TODO 处理无法连接mysql的异常
conn = get_mysql_connection(mysql_cluster[CONNECTION])
mysql_conns[cluster_name] = conn
mysql_conn = mysql_conns[cluster_name]
table_info = get_sql_result(mysql_conn, SHOW_TABLE_SQL % physical_tn)
if table_info:
pattern = re.compile(r"PARTITION p(\d+) VALUES LESS THAN")
partitions = pattern.findall(table_info[0][1]) # 包含分区日期的列表
if not partitions:
maintain_failed_rts.append(rt_storage.result_table_id)
continue
if add_date not in partitions:
if MAX_PARTITION in partitions:
add_sql = REORGANIZE_PARTITION % (
physical_tn,
MAX_PARTITION,
add_date,
add_next_date,
MAX_PARTITION,
)
else:
add_sql = ADD_PARTITION % (physical_tn, add_date, add_next_date, MAX_PARTITION)
get_sql_result(mysql_conn, add_sql)
expires_day = util.translate_expires_day(rt_storage.expires)
if expires_day > 0:
# 数据需要过期,则计算数据过期的时间,然后删除对应的分区
delete_date = util.get_date_by_diff(-(expires_day + 1)) # 加一天,expires内的都是需要保留的,超出的需删除
drop_partitions = []
for partition in partitions:
if int(partition) <= int(delete_date):
drop_partitions.append(f"p{partition}")
if drop_partitions:
drop_sql = DROP_PARTITION % (physical_tn, ", ".join(drop_partitions))
get_sql_result(mysql_conn, drop_sql)
else:
maintain_failed_rts.append(rt_storage.result_table_id)
except Exception:
maintain_failed_rts.append(rt_storage.result_table_id)
for conn in list(mysql_conns.values()):
conn.close()
# 记录总共处理的rt数量,以及异常的rt列表
logger.info(
f"{count} mysql rts maintain takes {int(time.time() - start_time_ts)}(s), "
f"failed are {json.dumps(maintain_failed_rts)}"
)
| 12,063
|
def get_letters_df(letters_dict_pickle):
"""Get the letters Pandas Dataframe
Parameters
----------
letters_dict_pickle: string
Path to the dict with the letters text
Returns
-------
Pandas DataFrame
Pandas DataFrame with a columns with the tokens
"""
with open(letters_dict_pickle, 'rb') as handle:
letters_dict = pickle.load(handle)
letters_df = pd.DataFrame(letters_dict, index=[const.LETTER_TEXT]).T
letters_df[const.TOKENIZED] = letters_df[const.LETTER_TEXT].apply(tokenize)
return letters_df
| 12,064
|
def lorenzmod1(XYZ, t, a=0.1, b=4, dz=14, d=0.08):
"""
The Lorenz Mod 1 Attractor.
x0 = (0,1,0)
"""
x, y, z = XYZ
x_dt = -a * x + y**2 - z**2 + a * dz
y_dt = x * (y - b * z) + d
z_dt = -z + x * (b * y + z)
return x_dt, y_dt, z_dt
| 12,065
|
def binomial_p(x, n, p0, reps=10**5, alternative='greater', keep_dist=False, seed=None):
"""
Parameters
----------
sample : array-like
list of elements consisting of x in {0, 1} where 0 represents a failure and
1 represents a seccuess
p0 : int
hypothesized number of successes in n trials
n : int
number of trials
reps : int
number of repetitions (default: 10**5)
alternative : {'greater', 'less', 'two-sided'}
alternative hypothesis to test (default: 'greater')
keep_dis : boolean
flag for whether to store and return the array of values of the test statistics (default: false)
seed : RandomState instance or {None, int, RandomState instance}
If None, the pseudorandom number generator is the RandomState
instance used by `np.random`;
If int, seed is the seed used by the random number generator;
If RandomState instance, seed is the pseudorandom number generator
Returns
-------
float
estimated p-value
float
test statistic
list
distribution of test statistics (only if keep_dist == True)
"""
if n < x:
raise ValueError("Cannot observe more ones than the population size")
prng = get_prng(seed)
def generate():
return prng.binomial(n, p0, 1)[0]
if keep_dist:
permutations = np.empty(reps)
for i in range(reps):
permutations[i] = generate()
if alternative == 'two-sided':
hits_up = np.sum(permutations >= x)
hits_low = np.sum(permutations <= x)
p_value = 2*np.min([hits_up/reps, hits_low/reps, 0.5])
elif alternative == 'greater':
p_value = np.mean(permutations >= x)
else:
p_value = np.mean(permutations <= x)
return p_value, x, permutations
else:
hits_up = 0
hits_low = 0
for i in range(reps):
ts = generate()
hits_up += (ts >= x)
hits_low += (ts <= x)
if alternative == 'two-sided':
p_value = 2*np.min([hits_up/reps, hits_low/reps, 0.5])
elif alternative == 'greater':
p_value = hits_up/reps
else:
p_value = hits_low/reps
return p_value, x
| 12,066
|
def test_docs_by_author1(flask_client, user4):
"""docs_by_author() displays appropriate docs if user logged in."""
response = flask_client.get("/all/author/2", follow_redirects=True)
assert (
b"First user doc" in response.data
and b"Third user doc" in response.data
and b"Second user doc" not in response.data
and b"Fourth user doc" not in response.data
)
| 12,067
|
def is_guild_owner() -> commands.check:
"""
Returns True under the following conditions:
- **ctx.author** is the owner of the guild where this command was called from
"""
def predicate(ctx):
if ctx.guild is None:
raise commands.NoPrivateMessage('This command can only be used in a server.')
author: Member = ctx.author
if author != ctx.guild.owner.id:
commands.MissingPermissions('This command can only be run by the owner of this guild.')
return commands.check(predicate)
| 12,068
|
def round_grade(grade: int) -> int:
"""
Round the grade according to policy.
Parameters
----------
grade: int
Raw grade.
Returns
-------
rounded_grade: int
Rounded grade.
"""
if grade < 38:
rounded_grade = grade
else:
closest_multiple_5 = (grade // 5 + 1) * 5
if (closest_multiple_5 - grade) >= 3:
rounded_grade = grade
else:
rounded_grade = closest_multiple_5
return rounded_grade
| 12,069
|
def patch_indecies(i_max: int, j_max: int, ps: int, pstr: int):
"""
Given the sizes i_max and j_max of an image, it extracts the top-left corner pixel
location of all the patches of size (ps,ps) and distant "pstr"
pixels away from each other. If pstr < ps, the patches are overlapping.
Input:
i_max, j_max - int, sizes of the image
ps - int, patch size
pstr - int, patch stride
Output:
idx - int, array of [total_num_patches, 2], pixels locations
"""
idx = []
for i in range(0, i_max - ps + 1, pstr):
for j in range(0, j_max - ps + 1, pstr):
idx.append([i, j])
return tf.convert_to_tensor(idx)
| 12,070
|
def model_fn():
"""
Defines a convolutional neural network for steering prediction.
"""
model = Sequential()
# Input layer and normalization
model.add(InputLayer(input_shape=(20, 80, 1)))
model.add(Lambda(lambda x: (x / 255.0) - 0.5))
# Convolutional layer 1
model.add(Conv2D(filters=48, kernel_size=(3,3), strides=(1,1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
# Convolutional layer 2
model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
# Dropout for regularization.
model.add(Dropout(0.2))
# Full connected layer
model.add(Flatten())
model.add(Dense(100))
# Predicted steering
model.add(Dense(1))
print(model.summary())
return model
| 12,071
|
def authenticate(request):
"""Return the user model instance associated with the given request
If no user is retrieved, return an instance of `AnonymousUser`
"""
token, _ = get_token_from_request(request)
jwt_info = {
'token': token,
'case': TokenCase.OK,
'payload': None,
}
if not token:
jwt_info['case'] = TokenCase.NO_TOKEN
return get_user(), jwt_info
try:
payload = decode(token)
user_pk = payload[JWT_CONFIG.user_pk_key]
return get_user(user_pk=user_pk), jwt_info
except jwt.ExpiredSignatureError:
jwt_info['case'] = TokenCase.EXPIRED
except jwt.DecodeError:
jwt_info['case'] = TokenCase.DECODE_ERROR
except jwt.InvalidTokenError:
jwt_info['case'] = TokenCase.INVALID_TOKEN
except KeyError:
jwt_info['case'] = TokenCase.MISSING_KEY
return get_user(), jwt_info
| 12,072
|
def test_get_settings(config):
"""
Test function `get_settings` to get application settings.
"""
settings = utils.get_settings()
# Settings should be a non empty dictionary
assert isinstance(settings, dict)
assert settings > 0
| 12,073
|
def _urpc_test_func_2(buf):
"""!
@brief u-RPC variable length data test function.
@param buf A byte string buffer
@return The same byte string repeated three times
"""
return buf*3
| 12,074
|
def test_normal():
"""Test divide_sizes."""
# 8 / 2
res = divide_sizes(8, 2)
assert res == [4, 4]
# 8 / 3
res = divide_sizes(8, 3)
assert res == [3, 3, 2]
# 7 / 3
res = divide_sizes(7, 3)
assert res == [3, 2, 2]
# 1 / 3
res = divide_sizes(1, 3)
assert res == [1, 0, 0]
# 0 / 3
res = divide_sizes(0, 3)
assert res == [0, 0, 0]
# 3 / 0
res = divide_sizes(3, 0)
assert res == []
| 12,075
|
def main():
"""
Use Netmiko to connect to each of the devices. Execute
'show version' on each device. Record the amount of time required to do this
"""
start_time = datetime.now()
for device in devices:
print()
print('#' * 40)
output = show_version(device)
print(output)
print()
print('#' * 40)
print("\nBenoetigte Zeit: " + str(datetime.now() - start_time))
return None
| 12,076
|
def infer_data_type(data_container: Iterable):
"""
For a given container of data, infer the type of data as one of
continuous, categorical, or ordinal.
For now, it is a one-to-one mapping as such:
- str: categorical
- int: ordinal
- float: continuous
There may be better ways that are not currently implemented below. For
example, with a list of numbers, we can check whether the number of unique
entries is less than or equal to 12, but has over 10000+ entries. This
would be a good candidate for floats being categorical.
:param data_container: A generic container of data points.
:type data_container: `iterable`
"""
warnings.warn(
"`infer_data_type` is deprecated! " "Please use `infer_data_family` instead!"
)
# Defensive programming checks.
# 0. Ensure that we are dealing with lists or tuples, and nothing else.
assert isinstance(data_container, list) or isinstance(
data_container, tuple
), "data_container should be a list or tuple."
# 1. Don't want to deal with only single values.
assert (
len(set(data_container)) > 1
), "There should be more than one value in the data container."
# 2. Don't want to deal with mixed data.
assert is_data_homogenous(data_container), "Data are not of a homogenous type!"
# Once we check that the data type of the container is homogenous, we only
# need to check the first element in the data container for its type.
datum = data_container[0]
# Return statements below
# treat binomial data as categorical
# TODO: make tests for this.
if len(set(data_container)) == 2:
return "categorical"
elif isinstance(datum, str):
return "categorical"
elif isinstance(datum, int):
return "ordinal"
elif isinstance(datum, float):
return "continuous"
else:
raise ValueError("Not possible to tell what the data type is.")
| 12,077
|
def test_loader():
"""Test ChunkRequest and the ChunkLoader."""
if not config.async_loading:
return # temporary until we add the @async_only pytest mark
layer = _create_layer()
layer_key = LayerKey.from_layer(layer, (0, 0))
key = ChunkKey(layer_key)
shape = (64, 32)
transpose_shape = (32, 64)
# Just load one array.
data = np.random.random(shape)
chunks = {'image': data}
# Give data2 different data.
data2 = data * 2
# Create the ChunkRequest.
layer_ref = LayerRef.create_from_layer(layer, (0, 0))
request = chunk_loader.create_request(layer_ref, key, chunks)
# Should be compatible with the layer we made it from!
# assert request.is_compatible(layer)
# Load the ChunkRequest.
request, _future = chunk_loader.load_chunk(request)
# Data should only match data not data2.
assert np.all(data == request.image.data)
assert not np.all(data2 == request.image.data)
# request.image is just short-hand for request.chunks['image']
assert np.all(request.image.data == request.chunks['image'].data)
# Since we didn't ask for a thumbnail_source it should be the image.
assert np.all(request.thumbnail_source.data == request.image.data)
# KeyError for chunks that do not exist.
with pytest.raises(KeyError):
request.chunks['missing_chunk_name']
# Test transpose_chunks()
request.transpose_chunks((1, 0))
assert request.image.shape == transpose_shape
| 12,078
|
def test_automatic_label_suffix(setup):
""" Test %% replacement with single field
Sets - Error situation.
Fields email_x should not be blank.
Merely inducing an error to assert for correct field name replacement.
"""
post = deepcopy(setup)
post.add(u'email_1', '')
dynamic_form = WTFormsDynamicFields()
dynamic_form.add_field('email','Email', TextField)
dynamic_form.add_validator('email', InputRequired, message='Please fill in %email%.')
form = dynamic_form.process(SimpleForm,
post)
form.validate()
assert form.errors['email_1'] == ['Please fill in email_1.']
assert form.email_1() == '<input id="email_1" name="email_1" type="text" value="">'
| 12,079
|
def Preprocess(
src: str,
cflags: typing.List[str],
timeout_seconds: int = 60,
strip_preprocessor_lines: bool = True,
):
"""Run input code through the compiler frontend to inline macros.
This uses the repository clang binary.
Args:
src: The source code to preprocess.
cflags: A list of flags to be passed to clang.
timeout_seconds: The number of seconds to allow before killing clang.
strip_preprocessor_lines: Whether to strip the extra lines introduced by
the preprocessor.
Returns:
The preprocessed code.
Raises:
ClangException: In case of an error.
ClangTimeout: If clang does not complete before timeout_seconds.
"""
cmd = [
"timeout",
"-s9",
str(timeout_seconds),
str(CLANG),
"-E",
"-c",
"-",
"-o",
"-",
] + cflags
app.Log(2, "$ %s", " ".join(cmd))
process = subprocess.Popen(
cmd,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True,
)
stdout, stderr = process.communicate(src)
if process.returncode == 9:
raise errors.ClangTimeout(
f"Clang preprocessor timed out after {timeout_seconds}s"
)
elif process.returncode != 0:
raise errors.ClangException(stderr)
if strip_preprocessor_lines:
return StripPreprocessorLines(stdout)
else:
return stdout
| 12,080
|
def mmgen2torchserver(config_file: str,
checkpoint_file: str,
output_folder: str,
model_name: str,
model_version: str = '1.0',
model_type: str = 'unconditional',
force: bool = False):
"""Converts MMGeneration model (config + checkpoint) to TorchServe `.mar`.
Args:
config_file (str): Path of config file. The config should in
MMGeneration format.
checkpoint_file (str): Path of checkpoint. The checkpoint should in
MMGeneration checkpoint format.
output_folder (str): Folder where `{model_name}.mar` will be created.
The file created will be in TorchServe archive format.
model_name (str): Name of the generated ``'mar'`` file. If not None,
used for naming the `{model_name}.mar` file that will be created
under `output_folder`. If None, `{Path(checkpoint_file).stem}`
will be used.
model_version (str, optional): Model's version. Defaults to '1.0'.
model_type (str, optional): Type of the model to be convert. Handler
named ``{model_type}_handler`` would be used to generate ``mar``
file. Defaults to 'unconditional'.
force (bool, optional): If True, existing `{model_name}.mar` will be
overwritten. Default to False.
"""
mmcv.mkdir_or_exist(output_folder)
config = mmcv.Config.fromfile(config_file)
with TemporaryDirectory() as tmpdir:
config.dump(f'{tmpdir}/config.py')
args = Namespace(
**{
'model_file': f'{tmpdir}/config.py',
'serialized_file': checkpoint_file,
'handler':
f'{Path(__file__).parent}/mmgen_{model_type}_handler.py',
'model_name': model_name or Path(checkpoint_file).stem,
'version': model_version,
'export_path': output_folder,
'force': force,
'requirements_file': None,
'extra_files': None,
'runtime': 'python',
'archive_format': 'default'
})
manifest = ModelExportUtils.generate_manifest_json(args)
package_model(args, manifest)
| 12,081
|
def versionString(version):
"""Create version string."""
ver = [str(v) for v in version]
numbers, rest = ver[:2 if ver[2] == '0' else 3], ver[3:]
return '.'.join(numbers) + '-'.join(rest)
| 12,082
|
def any(iterable, pred):
"""Returns True if ANY element in the given iterable is True for the
given pred function"""
warnings.warn(
"pipe.any is deprecated, use the builtin any(...) instead.",
DeprecationWarning,
stacklevel=4,
)
return builtins.any(pred(x) for x in iterable)
| 12,083
|
def loadRatings(ratingstablename, ratingsfilepath, openconnection):
""" Inserting Ratings.dat into the Database """
with openconnection.cursor() as cursor:
sqlDropCommand = "DROP TABLE IF EXISTS {}".format(ratingstablename)
sqlCreateCommand = ''' CREATE TABLE {} (
userid INT NOT NULL,
movieid INT,
rating NUMERIC(2,1),
PRIMARY KEY(userid, movieid, rating))'''.format(ratingstablename)
cursor.execute(sqlDropCommand)
cursor.execute(sqlCreateCommand)
ratingFile = open(ratingsfilepath, "r")
lines = ratingFile.readlines()
i = 0
for line in lines:
fields = line.split("::")
if (i == 20):
break
sqlInsertCommand = "INSERT INTO " + ratingstablename + "(userid, movieid, rating) VALUES ({}, {}, {})".format(str(fields[0]), str(fields[1]), str(fields[2]))
cursor.execute(sqlInsertCommand)
i += 1
ratingFile.close()
cursor.close()
| 12,084
|
def main():
"""
Main entry of program. Set arguments for argument parser, loads the settings and
searches current directory for compilable tex files. At the end prints help or calls
the task selector function to perform one of the tasks.
"""
parser = ap.ArgumentParser()
root_logger = logging.getLogger()
root_logger.handlers.append(logging.StreamHandler(sys.stdout))
config = load_settings()
if not config.log_to_console:
logging.getLogger().removeHandler(logging.getLogger().handlers[1])
compilable_tex_files = util.find_compilable_tex(".")
if config.main_tex not in compilable_tex_files:
logger.warning("Configures main tex file is not detected as compilable.")
compilable_tex_files_names = [os.path.splitext(f)[0] for f in compilable_tex_files]
if len(compilable_tex_files_names) == 0:
compilable_tex_files_names.append(NO_TEX_FOUND_WARNING)
# Reusable arguments
parent_with_tex_file = ap.ArgumentParser(add_help=False)
parent_with_tex_file.add_argument("--maintex",
type=lambda x: ArgumentParserExtensions.is_valid_file(x, parent_with_tex_file),
default=config.main_tex,
help="Specify main tex file")
parent_with_bib = ap.ArgumentParser(add_help=False)
parent_with_bib.add_argument("-b", "--bib", action="store_const", const=True, default=False,
help="Compile bibliography.")
parent_force_action = ap.ArgumentParser(add_help=False)
parent_force_action.add_argument("-f",
action="store_true",
help="Force action "
+ "(do not ask for confirmation when overwriting or deleting files).")
verbose_print = ap.ArgumentParser(add_help=False)
verbose_print.add_argument('-v', '--verbose', action="store_const", const=True, default=False,
help="Activate verbose mode.")
parent_number_ignore_latex_error = ap.ArgumentParser(add_help=False)
parent_number_ignore_latex_error.add_argument('-n', '--number', type=int,
default=config.number_ignore_latex_compile_errors,
help="The number of attempts to ignore latex errors.")
parent_double_translation = ap.ArgumentParser(add_help=False)
parent_double_translation.add_argument("-d", "--double", action="store_const", const=True, default=False,
help="Perform two tex typesetting compilations.")
# Parsers for tasks
task_parsers = parser.add_subparsers(dest='task')
# Make config file
# write_conf_parser =
task_parsers.add_parser('conf',
parents=[parent_force_action],
help=f"Create configuration file ({CONF_FILE}).")
# Language check
lang_check_parser = task_parsers.add_parser('lang', help='Search for language errors.')
lang_check_parser.add_argument("file",
type=lambda x: ArgumentParserExtensions.is_valid_file(x, lang_check_parser),
help="File to check for language errors.")
error_identifiers = config.language_errors.identifiers
if len(error_identifiers) > 0 and len(error_identifiers) != len(set(error_identifiers)):
logging.warning("Multiple text errors with the same identifier.")
for one_error_identifier in set(error_identifiers):
associated_error_message = config.language_errors.get_error_for_identifier(one_error_identifier).error_message
help_message = f"Exclude error: {associated_error_message}."
lang_check_parser.add_argument(f"--{one_error_identifier.strip()}",
action="store_const", const=True, default=False,
help=help_message)
# Free make pdf
# make_parser =
task_parsers.add_parser('cmake',
parents=[parent_with_tex_file, parent_with_bib, verbose_print,
parent_number_ignore_latex_error, parent_double_translation],
help='Translate document.')
# Make pdf
make_compile_parser = task_parsers.add_parser('make',
parents=[parent_with_bib, verbose_print,
parent_number_ignore_latex_error,
parent_double_translation],
help='Translate document.')
make_compile_parser.add_argument("texfile",
nargs="?",
default=filename_stem(config.main_tex),
choices=compilable_tex_files_names,
help="File to compile.")
make_compile_parser.add_argument("--all", action="store_const", const=True, default=False,
help="Translate all independent tex files in the directory.")
make_compile_parser.add_argument("-l", "--listStatus", action="store_const", const=True, default=False,
help="Produce a list of all compile outcomes.")
# Clean
clean_parser = task_parsers.add_parser('clean',
parents=[parent_force_action],
help='Cleans the directory.')
clean_parser.add_argument("-d", type=int, default=config.clean_depth,
help="Set the maximal depth into sub-folders for looking for files to delete.")
clean_parser.add_argument("-l", action="store_const", const=True, default=False,
help="Only list files and do not delete.")
# Make bibliography file
make_bib_file = task_parsers.add_parser('bibfile',
parents=[parent_force_action],
help='Create bib file from citations in aux file.')
make_bib_file.add_argument("-a", "--auxFile",
type=lambda x: ArgumentParserExtensions.is_valid_file(x, make_bib_file),
default=config.main_aux,
help="The aux file.")
make_bib_file.add_argument("-b", "--bibsFolder",
type=lambda x: ArgumentParserExtensions.is_valid_directory(x, make_bib_file),
default=config.bibs_folder,
help="The path to the folder containing the bib files to search for entries.")
make_bib_file.add_argument("-o", "--output", type=str,
default=config.main_bibliography_file,
help="The file to write the bibliography entries into.")
# Git help
git_parser = task_parsers.add_parser("git",
help="Help with git related operations.")
git_action_parsers = git_parser.add_subparsers(dest='action')
git_action_parsers.add_parser("ignore",
help="Add default clean extensions to gitignore.")
credentials_parser = git_action_parsers.add_parser("credentialUsername",
help="Add credential username to local git.")
credentials_parser.add_argument("username",
type=str,
help="The username to use.")
argcomplete.autocomplete(parser)
args = parser.parse_args()
args = vars(args)
if args["task"] is not None:
select_task(args, compilable_tex_files)
else:
parser.print_help()
| 12,085
|
def get_parser():
"""
Parser of nuth kaab independent main
TODO: To clean with main. Keep independent main ?
"""
parser = argparse.ArgumentParser(
os.path.basename(__file__),
description="Universal co-registration method "
"presented in Nuth & Kaab 2011."
"NB : 1) It is supposed that both dsms share common reference"
" (whether it is geoid or ellipsoid)."
" 2) DSMs must be georefenced.",
)
parser.add_argument("dsm_to", type=str, help="master dsm")
parser.add_argument(
"dsm_from", type=str, help="slave dsm you wish to coregister to dsm_to"
)
parser.add_argument(
"-outfile", action="store_true", help="saves output coregistered DSM"
)
parser.add_argument(
"-nb_iters",
dest="nb_iters",
type=int,
default=6,
help="number of iterations",
)
parser.add_argument(
"-dirplot",
dest="plot",
type=str,
default=None,
help="path to output plot directory. "
"Plots are printed if set to None (default)",
)
parser.add_argument(
"-nodata1",
dest="nodata1",
type=str,
default=None,
help="no data value for DSM to compare "
"(default value is read in metadata)",
)
parser.add_argument(
"-nodata2",
dest="nodata2",
type=str,
default=None,
help="no data value for Reference DSM "
"(default value is read in metadata)",
)
parser.add_argument(
"-save_diff",
action="store_true",
help="store on file system a ./initial_dh.tiff and a ./final_dh.tiff "
"with dsms differences before and after coregistration",
)
return parser
| 12,086
|
def build_prev_df_n(
dispositions) -> pd.DataFrame:
"""Build admissions dataframe from Parameters."""
days = np.array(range(0, n_days))
data_dict = dict(
zip(
["day", "hosp", "icu", "vent"],
[days] + [disposition for disposition in dispositions],
)
)
projection = pd.DataFrame.from_dict(data_dict)
# New cases
projection_admits = projection.iloc[:-1, :] - projection.shift(1)
projection_admits["day"] = range(projection_admits.shape[0])
projection_admits.loc[0,'hosp'] = 25
return projection_admits
| 12,087
|
def main() -> VDOMNode:
"""Main entry point."""
vdom = html("<{Heading} />")
return vdom
| 12,088
|
def GT(x=None, y=None):
"""
Compares two values and returns:
true when the first value is greater than the second value.
false when the first value is less than or equivalent to the second value.
See https://docs.mongodb.com/manual/reference/operator/aggregation/gt/
for more details
:param x: first value or expression
:param y: second value or expression
:return: Aggregation operator
"""
if x is None and y is None:
return {'$gt': []}
return {'$gt': [x, y]}
| 12,089
|
def pymongo_formatter(credentials):
"""Returns a DSN for a pymongo-MongoDB connection.
Note that the username and password will still be needed separately in the constructor.
Args:
credentials (dict):
The credentials dictionary from the relationships.
Returns:
(string) A formatted pymongo DSN.
"""
return '{0}:{1}/{2}'.format(
credentials['host'],
credentials['port'],
credentials['path']
)
| 12,090
|
def test_faulty_tessellation():
"""Pass bad arguments to the tessellation."""
with pytest.raises(pqca.exceptions.IrregularCellSize):
pqca.tessellation.Tessellation([[0], [1, 2]])
with pytest.raises(pqca.exceptions.PartitionUnevenlyCoversQubits):
pqca.tessellation.Tessellation([[0], [0]])
with pytest.raises(pqca.exceptions.EmptyCellException):
pqca.tessellation.Tessellation([[]])
with pytest.raises(pqca.exceptions.NoCellsException):
pqca.tessellation.Tessellation([])
| 12,091
|
def sigma_disp_over_vcirc(gal, R=None):
"""The velocity dispersion over circular velocity computed at R=x*Rs [km/s]. Isotropic NFW is assumed.
:param R: radius [kpc]
:param gal: galaxy object
"""
# get Rs
(rho, rs, c) = reconstruct_density_DM(gal, DM_profile='NFW')
# make array of r, preferably with gal.R
if R is None:
x_arr = np.array(gal.R / rs)
ratio_arr = sigma_over_vcirc(x_arr)
else:
R, is_scalar = tl.treat_as_arr(R)
x_arr = np.array(R / rs)
ratio_arr = sigma_over_vcirc(x_arr)
if is_scalar:
ratio_arr = np.squeeze(ratio_arr)
return ratio_arr
| 12,092
|
def repack_model(
inference_script,
source_directory,
dependencies,
model_uri,
repacked_model_uri,
sagemaker_session,
kms_key=None,
):
"""Unpack model tarball and creates a new model tarball with the provided
code script.
This function does the following: - uncompresses model tarball from S3 or
local system into a temp folder - replaces the inference code from the model
with the new code provided - compresses the new model tarball and saves it
in S3 or local file system
Args:
inference_script (str): path or basename of the inference script that
will be packed into the model
source_directory (str): path including all the files that will be packed
into the model
dependencies (list[str]): A list of paths to directories (absolute or
relative) with any additional libraries that will be exported to the
container (default: []). The library folders will be copied to
SageMaker in the same folder where the entrypoint is copied.
Example
The following call >>> Estimator(entry_point='train.py',
dependencies=['my/libs/common', 'virtual-env']) results in the
following inside the container:
>>> $ ls
>>> opt/ml/code
>>> |------ train.py
>>> |------ common
>>> |------ virtual-env
model_uri (str): S3 or file system location of the original model tar
repacked_model_uri (str): path or file system location where the new
model will be saved
sagemaker_session (sagemaker.session.Session): a sagemaker session to
interact with S3.
kms_key (str): KMS key ARN for encrypting the repacked model file
Returns:
str: path to the new packed model
"""
dependencies = dependencies or []
with _tmpdir() as tmp:
model_dir = _extract_model(model_uri, sagemaker_session, tmp)
_create_or_update_code_dir(
model_dir, inference_script, source_directory, dependencies, sagemaker_session, tmp
)
tmp_model_path = os.path.join(tmp, "temp-model.tar.gz")
with tarfile.open(tmp_model_path, mode="w:gz") as t:
t.add(model_dir, arcname=os.path.sep)
_save_model(repacked_model_uri, tmp_model_path, sagemaker_session, kms_key=kms_key)
| 12,093
|
def filters(param: str, default_value: str, base_key: str, key_manager: KeyManager) -> list:
"""Filter combo box selector for parameter"""
update_type = '|filters|'
row = combo_row(param, default_value, base_key, key_manager, update_type)
return row
| 12,094
|
def get_scanner(fs_id):
""" get scanner 3T or 1.5T"""
sc = fs_id.split("_")[2]
if sc in ("15T", "1.5T", "15t", "1.5t"):
scanner = "15T"
elif sc in ("3T", "3t"):
scanner = "3T"
else:
print("scanner for subject " + fs_id + " cannot be identified as either 1.5T or 3T...")
print("Please double check the IDs in the list of subjects")
scanner = "false"
return scanner
| 12,095
|
def _find_query_rank(similarities, library_keys, query_keys):
"""tf.py_func wrapper around _find_query_rank_helper.
Args:
similarities: [batch_size, num_library_elements] float Tensor. These are not
assumed to be sorted in any way.
library_keys: [num_library_elements] string Tensor, where each column j of
similarities corresponds to library_key j.
query_keys: [num_queries] string Tensor
Returns:
query_ranks: a dictionary with keys 'highest', 'lowest' and 'avg', where
each value is a [batch_size] Tensor. The 'lowest' Tensor contains
for each batch the lowest index of a library key that matches the query
key for that batch element when the library keys are sorted in descending
order by similarity score. The 'highest' and 'avg'
Tensors are defined similarly. The first two are tf.int32 and the
final is a tf.float32.
Note that the behavior of these metrics is undefined when there are ties
within a row of similarities.
best_query_similarities: the value of the similarities evaluated at
the lowest query rank.
"""
(highest_rank, lowest_rank, avg_rank, best_query_similarities) = tf.py_func(
_find_query_rank_helper, [similarities, library_keys, query_keys],
(tf.int32, tf.int32, tf.float32, tf.float32),
stateful=False)
query_ranks = {
'highest': highest_rank,
'lowest': lowest_rank,
'avg': avg_rank
}
return query_ranks, best_query_similarities
| 12,096
|
def random_adjust_brightness(image, max_delta=0.2, seed=None):
"""Randomly adjusts brightness. """
delta = tf.random_uniform([], -max_delta, max_delta, seed=seed)
image = tf.image.adjust_brightness(image / 255, delta) * 255
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
return image
| 12,097
|
def get_assign_ops_and_restore_dict(filename, restore_all=False):
"""Helper function to read variable checkpoints from filename.
Iterates through all vars in restore_all=False else all trainable vars. It
attempts to match variables by name and variable shape. Returns a possibly
empty list of assign_ops, and a possibly empty dictionary for tf.train.Saver()
"""
def check_name_and_shape(name, var, shape_map):
if name in shape_map:
# Cannot check variables with unknown sizes such as cudnn rnns
if str(var.shape) == "<unknown>":
# Just return True and hope the shapes match
return True
if var.shape == shape_map[name]:
return True
return False
assign_ops = []
restore_dict = {}
try:
reader = tf.train.NewCheckpointReader(filename)
var_to_shape_map = reader.get_variable_to_shape_map()
variables = tf.trainable_variables()
if restore_all:
variables = tf.get_collection(tf.GraphKeys.VARIABLES)
for var in variables:
idx = var.name.find(":")
if idx != -1:
true_name = var.name[:idx]
loss_idx = re.search("Loss_Optimization", true_name)
if 'EmbeddingMatrix' in true_name:
embed_restore, assign = _restore_embed(var, var_to_shape_map, reader)
if assign:
assign_ops.append(embed_restore)
else:
restore_dict[true_name] = embed_restore
if check_name_and_shape(true_name, var, var_to_shape_map):
tensor = reader.get_tensor(true_name)
if tensor.dtype != var.dtype.as_numpy_dtype():
assign_ops.append(var.assign(tf.cast(tensor, var.dtype)))
else:
restore_dict[true_name] = var
elif loss_idx:
loss_idx = loss_idx.end()
if FP32_TEST.search(true_name):
true_name = FP32_TEST.sub("", true_name)
else:
true_name = (true_name[:loss_idx]
+ "/Loss_Optimization/FP32-master-copy"
+ true_name[loss_idx:])
if check_name_and_shape(true_name, var, var_to_shape_map):
tensor = reader.get_tensor(true_name)
if tensor.dtype != var.dtype.as_numpy_dtype():
assign_ops.append(var.assign(tf.cast(tensor, var.dtype)))
else:
restore_dict[true_name] = var
else:
print("Not restoring {}".format(var.name))
if true_name not in var_to_shape_map:
print("true name [{}] was not in shape map".format(true_name))
else:
if var.shape != var_to_shape_map[true_name]:
print(("var.shape [{}] does not match var_to_shape_map[true_name]"
"[{}]").format(var.shape, var_to_shape_map[true_name]))
print("WARNING: Run will mostly error out due to this")
except Exception as e: # pylint: disable=broad-except
print(str(e))
if "corrupted compressed block contents" in str(e):
print("It's likely that your checkpoint file has been compressed "
"with SNAPPY.")
if ("Data loss" in str(e) and
(any([e in filename for e in [".index", ".meta", ".data"]]))):
proposed_file = ".".join(filename.split(".")[0:-1])
v2_file_error_template = """
It's likely that this is a V2 checkpoint and you need to provide the
filename *prefix*. Try removing the '.' and extension. Try:
inspect checkpoint --file_name = {}"""
print(v2_file_error_template.format(proposed_file))
raise ValueError("Error in loading checkpoint")
return assign_ops, restore_dict
| 12,098
|
def log_creations(model, **extra_kwargs_for_emit):
"""
Sets up signal handlers so that whenever an instance of `model` is created, an Entry will be emitted.
Any further keyword arguments will be passed to the constructor of Entry as-is. As a special case,
if you specify the sentinel value `INSTANCE` as the value of a keyword argument, the newly created
instance of `model` will be passed instead. If the value of the keyword argument is a function,
it will be called with the newly created instance to determine the value of the keyword argument to
the Entry constructor.
For examples on usage, see `feedback/handlers/feedback_message.py`.
"""
meta = model._meta
entry_type_name = '{app_label}.{model_name}.created'.format(
app_label=meta.app_label,
model_name=meta.model_name,
)
@receiver(post_save, sender=model, weak=False)
def on_save_emit_event_log_entry(sender, instance, created, **kwargs):
if not created:
return
kwargs_for_emit = dict()
for key, value in extra_kwargs_for_emit.items():
if value is INSTANCE:
value = instance
elif callable(value):
value = value(instance)
kwargs_for_emit[key] = value
emit(entry_type_name, **kwargs_for_emit)
return on_save_emit_event_log_entry
| 12,099
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.