content
stringlengths
22
815k
id
int64
0
4.91M
def _expand_and_tile(tensor, multiple, dim=0, name=None): """Slice `tensor` shape in 2, then tile along the sliced dimension. A new dimension is inserted in shape of `tensor` before `dim`, then values are tiled `multiple` times along the new dimension. Args: tensor: Input `Tensor` or `SparseTensor`. multiple: Integer, number of times to tile. dim: Integer, dimension along which to tile. name: Name of operation. Returns: `Tensor` result of expanding and tiling `tensor`. Raises: ValueError: if `multiple` is less than 1, or `dim` is not in `[-rank(tensor), rank(tensor)]`. """ if multiple < 1: raise ValueError(f'Invalid argument multiple={multiple} for ' 'expand_and_tile call. `multiple` must be an integer > 0') with ops.name_scope(name, 'expand_and_tile', (tensor, multiple, dim)) as scope: # Sparse. tensor = sparse_tensor.convert_to_tensor_or_sparse_tensor(tensor) if isinstance(tensor, sparse_tensor.SparseTensor): if dim < 0: expand_dims = array_ops.reshape( array_ops.size(tensor.dense_shape) + dim, [1]) else: expand_dims = [dim] expanded_shape = array_ops.concat( (array_ops.slice(tensor.dense_shape, [0], expand_dims), [1], array_ops.slice(tensor.dense_shape, expand_dims, [-1])), 0, name='expanded_shape') expanded = sparse_ops.sparse_reshape( tensor, shape=expanded_shape, name='expand') if multiple == 1: return expanded return sparse_ops.sparse_concat( dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope) # Dense. expanded = array_ops.expand_dims( tensor, dim if (dim >= 0) else (dim - 1), name='expand') if multiple == 1: return expanded ones = array_ops.ones_like(array_ops.shape(tensor)) tile_multiples = array_ops.concat( (ones[:dim], (multiple,), ones[dim:]), 0, name='multiples') return array_ops.tile(expanded, tile_multiples, name=scope)
11,600
def eval_model(opt, print_parser=None): """Evaluates a model. :param opt: tells the evaluation function how to run :param bool print_parser: if provided, prints the options that are set within the model after loading the model :return: the final result of calling report() """ random.seed(42) # load model and possibly print opt agent = create_agent(opt, requireModelExists=True) if print_parser: # show args after loading model print_parser.opt = agent.opt print_parser.print_args() tasks = opt['task'].split(',') reports = [] for task in tasks: task_report = _eval_single_world(opt, agent, task) reports.append(task_report) report = aggregate_task_reports( reports, tasks, micro=opt.get('aggregate_micro', True) ) # print announcements and report print_announcements(opt) print( '[ Finished evaluating tasks {} using datatype {} ]'.format( tasks, opt.get('datatype', 'N/A') ) ) print(report) return report
11,601
def login(request): """ Login with Dummy Test Account. """ if 'user' in request.environ['beaker.session']: return app.redirect('index') users.store_to_session(request, users.create()) return app.redirect('index')
11,602
def safe_plus(x,y): """ Handle "x + y" where x and y could be some combination of ints and strs. """ # Handle Excel Cell objects. Grrr. if excel.is_cell_dict(x): x = x["value"] if excel.is_cell_dict(y): y = y["value"] # Handle NULLs. if (x == "NULL"): x = 0 if (y == "NULL"): y = 0 # Easy case first. if ((isinstance(x, int) or isinstance(x, float)) and (isinstance(y, int) or isinstance(y, float))): return x + y # Fix data types. if (isinstance(y, str)): # NULL string in VB. if (x == 0): x = "" # String concat. return str(x) + y if (isinstance(x, str)): # NULL string in VB. if (y == 0): y = "" # String concat. return x + str(y) # Punt. We are not doing pure numeric addition and # we have already handled string concatentaion. Just # convert things to strings and hope for the best. return str(x) + str(y)
11,603
def full_like(a, fill_value, dtype=types.float32, split=None, device=None, comm=None, order="C"): """ Return a full array with the same shape and type as a given array. Parameters ---------- a : object The shape and data-type of 'a' define these same attributes of the returned array. fill_value : scalar Fill value. dtype : ht.dtype, optional Overrides the data type of the result. split: int, optional The axis along which the array is split and distributed, defaults to None (no distribution). device : str, ht.Device or None, optional Specifies the device the tensor shall be allocated on, defaults to None (i.e. globally set default device). comm: Communication, optional Handle to the nodes holding distributed parts or copies of this tensor. Returns ------- out : ht.DNDarray Array of fill_value with the same shape and type as a. Examples -------- >>> x = ht.zeros((2, 3,)) >>> x tensor([[0., 0., 0.], [0., 0., 0.]]) >>> ht.full_like(a, 1.0) tensor([[1., 1., 1.], [1., 1., 1.]]) """ return __factory_like(a, dtype, split, full, device, comm, fill_value=fill_value, order=order)
11,604
def test_autoimport_list_empty(mocker, credentials): """Test user has no jobs.""" runner = CliRunner() mocked_list_s3_autoimport_jobs = mocker.patch.object( APIClient, "list_s3_autoimport_jobs", return_value=S3ProjectImport(results=[], meta=dict(next=None)), ) res = runner.invoke(autoimport_list, credentials) assert res.exit_code == 0 mocked_list_s3_autoimport_jobs.assert_called_once() assert "" in res.output
11,605
def safedelete(file_path): """os.remove wrapped in minimal exception handling.""" try: os.remove(file_path) except Exception as ex: print('Exception: ' + str(sys.exc_info()[0])) print(ex)
11,606
def gather_pulled_downloads(input_dir, output_dir): """ Gather MPEG stream files from input_dir into a single MP4 file in output_dir """ dash_globstr = f"{input_dir.absolute() / '*.dash'}" dash_glob = glob(dash_globstr) if len(dash_glob) < 1: raise ValueError(f"No dash file found in {input_dir}") elif len(dash_glob) > 1: raise ValueError(f"Multiple dash files found in {input_dir}") else: dash_file = dash_glob[0] m4s_globstr = f"{input_dir.absolute() / '*.m4s'}" m4s_files = sorted(glob(m4s_globstr)) output_mp4 = output_dir.absolute() / "output.mp4" gather_m4s_to_mp4(dash_file, m4s_files, output_mp4) return output_mp4
11,607
def Parallelize(ListIn, f, procs = -1, **kwargs): """This function packages the "starmap" function in multiprocessing, to allow multiple iterable inputs for the parallelized function. Parameters ---------- ListIn: list each item in the list is a tuple of non-keyworded arguments for f. f : func function to be parallelized. Signature must not contain any other non-keyworded arguments other than those passed as iterables. Example: .. highlight:: python .. code-block:: python def multiply(x, y, factor = 1.0): return factor*x*y X = np.linspace(0,1,1000) Y = np.linspace(1,2,1000) XY = [ (x, Y[i]) for i, x in enumerate(X)] # List of tuples Z = Parallelize_MultiIn(XY, multiply, factor = 3.0, procs = 8) Create as many positional arguments as required, but all must be packed into a list of tuples. """ if type(ListIn[0]) != tuple: ListIn = [(ListIn[i],) for i in range(len(ListIn))] reduced_argfunc = functools.partial(f, **kwargs) if procs == -1: opt_procs = int(np.interp(len(ListIn), [1,100,500,1000,3000,5000,10000] ,[1,2,4,8,12,36,48])) procs = min(opt_procs, cpu_count()) if procs == 1: OutList = [reduced_argfunc(*ListIn[iS]) for iS in range(len(ListIn))] else: p = Pool(processes = procs) OutList = p.starmap(reduced_argfunc, ListIn) p.close() p.join() return OutList
11,608
def s3_bucket_with_data(s3_client): """ Dummy s3 buckets with objects. """ bucket_name = 'test-orphan-project-objects' bucket_tag = { 'Key': 'Project', 'Value': 'test-objects' }, # Create bucket s3_client.create_bucket( Bucket=bucket_name, CreateBucketConfiguration={ 'LocationConstraint': 'eu-west-1' } ) # Add tags s3_client.put_bucket_tagging( Bucket=bucket_name, Tagging={ 'TagSet': bucket_tag } ) # Add objects to bucket object_binary_data = b'The quick brown fox jumps over the lazy dog' objects_keys = ['test/object-one', 'test/object-two'] for object_key in objects_keys: s3_client.put_object( Body=object_binary_data, Bucket=bucket_name, Key=object_key ) yield bucket_name
11,609
def run_game(game): """Brain Games Engine. Executing game process Args: game (function): create game question and answer """ print('Welcome to the Brain Games!\n{}\n'.format(game.GAME_DESCRIPTION)) user_name = prompt.string('May I have your name? ') print('Hello, {}!\n'.format(user_name)) for step in range(NUMBER_OF_STEPS): (game_question, game_answer) = game.get_challenge() user_answer = prompt.string( 'Question: {}\nYour answer: '.format(game_question)) if user_answer != game_answer: print("'{}' is wrong answer ;(. Correct answer was '{}'.".format( user_answer, game_answer)) print("Let's try again, {}!".format(user_name)) return print('Correct!') print('Congratulations, {}'.format(user_name))
11,610
def to_terminal(series: Union[pd.Series, List[pd.Series]], title: str = 'resource usage', pu: str = 'cpu', labels: Optional[list] = None): """ Plot a datetime series (or a list of them) to terminal Parameters ------- series: A datetime series or a list of series to be plot title: Title for the plot pu: Processing using (GPU or CPU) for y axis labels: If multiple series, the labels of each ome """ size = os.get_terminal_size() colors = ['blue', 'yellow', 'magenta', 'cyan', 'white', 'green'] if not isinstance(series, list): series = [series] if labels is None: labels = [None for _ in range(len(series))] else: if len(labels) != len(series): raise Exception('Labels do not match inputs') print(title.center(size.columns)) fig = plotille.Figure() fig.color_mode = 'names' fig.x_label = 'Dates' fig.y_label = f'{pu} count' for idx, s in enumerate(series): s = s.map('{:.2f}'.format).astype(float) x = s.index y = s.values q1 = s.quantile(0.1) fig.set_x_limits(min_=min(x), max_=max(x)) fig.set_y_limits(min_=min(y) - q1, max_=max(y) + q1) fig.plot(x, y, lc=colors[idx], label=labels[idx]) print(fig.show(legend=True))
11,611
def main(): """ The main function of the puzzle """ print("The total number of trees on the first trip: %s" % count_trees(map_data)) print("The total number of trees on the second trip: %s" % multi_path(map_data))
11,612
def method_not_found(e): """ Custom response for methods not allowed for the requested URLs :param e: Exception :return: """ return response('failed', 'The method is not allowed for the requested URL', 405)
11,613
def get_total_trainsets(df_anual_data, segments): """ # Fill the training_sets dict :param df_anual_data: :return: """ rows_per_day = int(((60 / 15) * 24)) training_sets = {'ID_SEGMENT': [], 'MES': [], 'COD_LABORALIDAD': [], 'TRAINING_SET': []} for seg_id in segments: # 1) Particionar anual_data por segmento df_seg = df_anual_data.loc[df_anual_data.ID_SEGMENT == seg_id] for month_i in df_seg.FECHA.dt.month.unique(): # 2) Dividir mensual_data en 12 datasets df_month_seg = df_seg.loc[df_seg.FECHA.dt.month == month_i] for code_i in df_month_seg.COD_LABORALIDAD.unique(): # 3) Particionar por dias con mismo código de lab df_month_seg_code = df_month_seg.loc[df_month_seg.COD_LABORALIDAD == code_i] # Fill training_sets dictionary training_sets['ID_SEGMENT'].append(seg_id) training_sets['MES'].append(month_i) training_sets['COD_LABORALIDAD'].append(code_i) training_sets['TRAINING_SET'].append(df_month_seg_code) return training_sets
11,614
def uni2diff(u): """Convert speed and angular rate to wheel speeds.""" v = u[0] omega = u[1] v_L = v - ELL / 2 * omega v_R = v + ELL / 2 * omega return np.array([v_L, v_R])
11,615
def extract_service_and_module(repo_url): """Extract service and module from repository url. :param str repo_url: repository url :return (service, module) :rtype (str, str) """ m = re.match(r'.+[/@]([^\.]+\.[^\.]+)[:/]([^/]+/[^/]+)\.git/?$', repo_url) if not m: m = re.match(r'.+[/@]([^\.]+\.[^\.]+)[:/]([^/]+/[^/]+)/?$', repo_url) if not m: raise Exception( 'cannot detect service and module from {}'.format(repo_url)) service = m.group(1) module = m.group(2) if service not in _pull_request_url.keys(): raise Exception( 'service not supported: {}'.format(service)) return (service, module)
11,616
def triangular(left, mode, right, size=None): """Triangular distribution. Draw samples from the triangular distribution over the interval [left, right]. For full documentation refer to :obj:`numpy.random.triangular`. Limitations ----------- Parameter ``left``, ``mode`` and ``right`` are supported as scalar. Otherwise, :obj:`numpy.random.triangular(left, mode, right, size)` samples are drawn. Output array data type is :obj:`dpnp.float64`. Examples -------- Draw samples from the distribution: >>> df = 2. >>> s = dpnp.random.triangular(-3, 0, 8, 1000000) """ if not use_origin_backend(left): # TODO: # array_like of floats for `left`, `mode`, `right`. if not dpnp.isscalar(left): pass elif not dpnp.isscalar(mode): pass elif not dpnp.isscalar(right): pass elif left > mode: pass elif mode > right: pass elif left == right: pass else: return dpnp_rng_triangular(left, mode, right, size).get_pyobj() return call_origin(numpy.random.triangular, left, mode, right, size)
11,617
def format_hexa(value: str) -> ColorBytes: """ Examples: "bda" => (187, 221, 170, 255) "4fcd" => (68, 255, 204, 221) "60B0C4" => (96, 176, 196, 255) "2BEA40D0" => (43, 234, 64, 208) """ if len(value) in {3, 4}: expanded_color = ''.join(s * 2 for s in value) else: expanded_color = value length = len(expanded_color) if length in {6, 8}: hex_parts = [expanded_color[i:(i + 2)] for i in range(0, length, 2)] return format_color_bytes([int(v, 16) for v in hex_parts]) else: raise ValueError(value)
11,618
def normalize_community_features(features): """ This performs TF-IDF-like normalization of community embedding features. Introduced in: Tang, L., Wang, X., Liu, H., & Wang, L. (2010, July). A multi-resolution approach to learning with overlapping communities. In Proceedings of the First Workshop on Social Media Analytics (pp. 14-22). ACM. Input: - X in R^(nxC_n): The community indicator matrix. Output: - X_norm in R^(nxC_n): The tf-idf + row normalized community indicator matrix. """ # Calculate inverse document frequency. features = normalize_columns(features) # Normalize each row of term frequencies to 1 features = normalize_rows(features) return features
11,619
def __extend_prefixed(pu): """ :param pu: :return: """ parts = pu.split(':') if len(parts) == 1: parts = ('', parts[0]) try: return URIRef(_prefixes[parts[0]] + parts[1]) except KeyError: return BNode(pu)
11,620
def update_plugins_json(plugin_name, plugin_version, assets): """ Update the plugins JSON in s3 with the new URLs for assets. :param plugin_name: The plugin name :param plugin_version: The plugin version. :param assets: A list of local paths that will be changed to new URLs. :return: """ logging.info( 'Updating {plugin_name} {plugin_version} in plugin JSON'.format( plugin_name=plugin_name, plugin_version=plugin_version)) # Convert the local paths to remote URLs in s3. # For example /tmp/tmp000000/plugin.yaml # will become: cloudify/wagons/{plugin_name}/{plugin_version}/plugin.yaml assets = [ASSET_URL_TEMPLATE.format( BUCKET_FOLDER, plugin_name, plugin_version, os.path.basename(asset)) for asset in assets] plugin_dict = get_plugin_new_json( PLUGINS_JSON_PATH, plugin_name, plugin_version, assets) write_json_and_upload_to_s3(plugin_dict, PLUGINS_JSON_PATH, BUCKET_NAME)
11,621
async def test_browse_media( hass, hass_ws_client, mock_plex_server, requests_mock, hubs, hubs_music_library, ): """Test getting Plex clients from plex.tv.""" websocket_client = await hass_ws_client(hass) media_players = hass.states.async_entity_ids("media_player") msg_id = 1 # Browse base of Plex server msg_id += 1 await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], } ) msg = await websocket_client.receive_json() assert msg["id"] == msg_id assert msg["type"] == TYPE_RESULT assert msg["success"] result = msg["result"] assert result[ATTR_MEDIA_CONTENT_TYPE] == "server" assert ( result[ATTR_MEDIA_CONTENT_ID] == PLEX_URI_SCHEME + DEFAULT_DATA[CONF_SERVER_IDENTIFIER] + "/server" ) # Library Sections + Recommended + Playlists assert len(result["children"]) == len(mock_plex_server.library.sections()) + 2 music = next(iter(x for x in result["children"] if x["title"] == "Music")) tvshows = next(iter(x for x in result["children"] if x["title"] == "TV Shows")) playlists = next(iter(x for x in result["children"] if x["title"] == "Playlists")) special_keys = ["Recommended"] requests_mock.get( f"{mock_plex_server.url_in_use}/hubs", text=hubs, ) # Browse into a special folder (server) msg_id += 1 await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: "server", ATTR_MEDIA_CONTENT_ID: PLEX_URI_SCHEME + f"{DEFAULT_DATA[CONF_SERVER_IDENTIFIER]}/server/{special_keys[0]}", } ) msg = await websocket_client.receive_json() assert msg["id"] == msg_id assert msg["type"] == TYPE_RESULT assert msg["success"] result = msg["result"] assert result[ATTR_MEDIA_CONTENT_TYPE] == "server" assert ( result[ATTR_MEDIA_CONTENT_ID] == PLEX_URI_SCHEME + f"{DEFAULT_DATA[CONF_SERVER_IDENTIFIER]}/server/{special_keys[0]}" ) assert len(result["children"]) == 4 # Hardcoded in fixture assert result["children"][0]["media_content_type"] == "hub" assert result["children"][1]["media_content_type"] == "hub" assert result["children"][2]["media_content_type"] == "hub" assert result["children"][3]["media_content_type"] == "hub" # Browse into a special folder (server): Continue Watching msg_id += 1 await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: result["children"][0][ATTR_MEDIA_CONTENT_TYPE], ATTR_MEDIA_CONTENT_ID: result["children"][0][ATTR_MEDIA_CONTENT_ID], } ) msg = await websocket_client.receive_json() assert msg["id"] == msg_id assert msg["type"] == TYPE_RESULT assert msg["success"] result = msg["result"] assert result[ATTR_MEDIA_CONTENT_TYPE] == "hub" assert result["title"] == "Continue Watching" assert result["children"][0]["media_content_id"].endswith("?resume=1") requests_mock.get( f"{mock_plex_server.url_in_use}/hubs/sections/3?includeStations=1", text=hubs_music_library, ) # Browse into a special folder (library) msg_id += 1 library_section_id = 3 await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: "library", ATTR_MEDIA_CONTENT_ID: PLEX_URI_SCHEME + f"{DEFAULT_DATA[CONF_SERVER_IDENTIFIER]}/{library_section_id}/{special_keys[0]}", } ) msg = await websocket_client.receive_json() assert msg["id"] == msg_id assert msg["type"] == TYPE_RESULT assert msg["success"] result = msg["result"] assert result[ATTR_MEDIA_CONTENT_TYPE] == "library" assert ( result[ATTR_MEDIA_CONTENT_ID] == PLEX_URI_SCHEME + f"{DEFAULT_DATA[CONF_SERVER_IDENTIFIER]}/{library_section_id}/{special_keys[0]}" ) assert len(result["children"]) == 1 # Browse into a library radio station hub msg_id += 1 await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: result["children"][0][ATTR_MEDIA_CONTENT_TYPE], ATTR_MEDIA_CONTENT_ID: result["children"][0][ATTR_MEDIA_CONTENT_ID], } ) msg = await websocket_client.receive_json() assert msg["id"] == msg_id assert msg["type"] == TYPE_RESULT assert msg["success"] result = msg["result"] assert result[ATTR_MEDIA_CONTENT_TYPE] == "hub" assert len(result["children"]) == 3 assert result["children"][0]["title"] == "Library Radio" # Browse into a Plex TV show library msg_id += 1 await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: tvshows[ATTR_MEDIA_CONTENT_TYPE], ATTR_MEDIA_CONTENT_ID: str(tvshows[ATTR_MEDIA_CONTENT_ID]), } ) msg = await websocket_client.receive_json() assert msg["id"] == msg_id assert msg["type"] == TYPE_RESULT assert msg["success"] result = msg["result"] assert result[ATTR_MEDIA_CONTENT_TYPE] == "library" result_id = int(URL(result[ATTR_MEDIA_CONTENT_ID]).name) # All items in section + Hubs assert ( len(result["children"]) == len(mock_plex_server.library.sectionByID(result_id).all()) + 1 ) # Browse into a Plex TV show msg_id += 1 mock_show = MockPlexShow() mock_season = next(iter(mock_show)) with patch.object( mock_plex_server, "fetch_item", return_value=mock_show ) as mock_fetch: await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: result["children"][-1][ ATTR_MEDIA_CONTENT_TYPE ], ATTR_MEDIA_CONTENT_ID: str( result["children"][-1][ATTR_MEDIA_CONTENT_ID] ), } ) msg = await websocket_client.receive_json() assert msg["id"] == msg_id assert msg["type"] == TYPE_RESULT assert msg["success"] result = msg["result"] assert result[ATTR_MEDIA_CONTENT_TYPE] == "show" result_id = int(URL(result[ATTR_MEDIA_CONTENT_ID]).name) assert result["title"] == mock_plex_server.fetch_item(result_id).title assert result["children"][0]["title"] == f"{mock_season.title} ({mock_season.year})" # Browse into a Plex TV show season msg_id += 1 mock_episode = next(iter(mock_season)) with patch.object( mock_plex_server, "fetch_item", return_value=mock_season ) as mock_fetch: await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: result["children"][0][ATTR_MEDIA_CONTENT_TYPE], ATTR_MEDIA_CONTENT_ID: str( result["children"][0][ATTR_MEDIA_CONTENT_ID] ), } ) msg = await websocket_client.receive_json() assert mock_fetch.called assert msg["id"] == msg_id assert msg["type"] == TYPE_RESULT assert msg["success"] result = msg["result"] assert result[ATTR_MEDIA_CONTENT_TYPE] == "season" result_id = int(URL(result[ATTR_MEDIA_CONTENT_ID]).name) assert ( result["title"] == f"{mock_season.parentTitle} - {mock_season.title} ({mock_season.year})" ) assert ( result["children"][0]["title"] == f"{mock_episode.seasonEpisode.upper()} - {mock_episode.title}" ) # Browse into a Plex music library msg_id += 1 await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: music[ATTR_MEDIA_CONTENT_TYPE], ATTR_MEDIA_CONTENT_ID: str(music[ATTR_MEDIA_CONTENT_ID]), } ) msg = await websocket_client.receive_json() assert msg["success"] result = msg["result"] result_id = int(URL(result[ATTR_MEDIA_CONTENT_ID]).name) assert result[ATTR_MEDIA_CONTENT_TYPE] == "library" assert result["title"] == "Music" # Browse into a Plex artist msg_id += 1 mock_artist = MockPlexArtist() mock_album = next(iter(MockPlexArtist())) mock_track = next(iter(MockPlexAlbum())) with patch.object( mock_plex_server, "fetch_item", return_value=mock_artist ) as mock_fetch: await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: result["children"][-1][ ATTR_MEDIA_CONTENT_TYPE ], ATTR_MEDIA_CONTENT_ID: str( result["children"][-1][ATTR_MEDIA_CONTENT_ID] ), } ) msg = await websocket_client.receive_json() assert mock_fetch.called assert msg["success"] result = msg["result"] result_id = int(URL(result[ATTR_MEDIA_CONTENT_ID]).name) assert result[ATTR_MEDIA_CONTENT_TYPE] == "artist" assert result["title"] == mock_artist.title assert result["children"][0]["title"] == "Radio Station" assert result["children"][1]["title"] == f"{mock_album.title} ({mock_album.year})" # Browse into a Plex album msg_id += 1 await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: result["children"][-1][ATTR_MEDIA_CONTENT_TYPE], ATTR_MEDIA_CONTENT_ID: str(result["children"][-1][ATTR_MEDIA_CONTENT_ID]), } ) msg = await websocket_client.receive_json() assert msg["success"] result = msg["result"] result_id = int(URL(result[ATTR_MEDIA_CONTENT_ID]).name) assert result[ATTR_MEDIA_CONTENT_TYPE] == "album" assert ( result["title"] == f"{mock_artist.title} - {mock_album.title} ({mock_album.year})" ) assert result["children"][0]["title"] == f"{mock_track.index}. {mock_track.title}" # Browse into a non-existent TV season unknown_key = 99999999999999 requests_mock.get( f"{mock_plex_server.url_in_use}/library/metadata/{unknown_key}", status_code=HTTPStatus.NOT_FOUND, ) msg_id += 1 await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: result["children"][0][ATTR_MEDIA_CONTENT_TYPE], ATTR_MEDIA_CONTENT_ID: str(unknown_key), } ) msg = await websocket_client.receive_json() assert msg["id"] == msg_id assert msg["type"] == TYPE_RESULT assert not msg["success"] assert msg["error"]["code"] == ERR_UNKNOWN_ERROR # Browse Plex playlists msg_id += 1 await websocket_client.send_json( { "id": msg_id, "type": "media_player/browse_media", "entity_id": media_players[0], ATTR_MEDIA_CONTENT_TYPE: playlists[ATTR_MEDIA_CONTENT_TYPE], ATTR_MEDIA_CONTENT_ID: str(playlists[ATTR_MEDIA_CONTENT_ID]), } ) msg = await websocket_client.receive_json() assert msg["id"] == msg_id assert msg["type"] == TYPE_RESULT assert msg["success"] result = msg["result"] assert result[ATTR_MEDIA_CONTENT_TYPE] == "playlists" result_id = result[ATTR_MEDIA_CONTENT_ID]
11,622
def angle(u: Vec, v: Vec) -> float: """ Returns the cosine (angle) between two vectors u and v :param u: (Vec) vector u :param v: (Vec) vector v :return: The scaled dot product, cosine of u and v's angle """ if u.is_zero or v.is_zero: raise ValueError("Angle with lower dimensional 0 vector cannot be determined") l_u = u.length l_v = v.length return u.dot(v) / (l_u * l_v)
11,623
def find_most_similar(top_k, probs, cache_dict, num=10): """返回最相似的num张照片的文件名,如果找到相似的, 则返回一个包括匹配元组的列表,否则返回一个空列表 top_k : 包含最佳分类的索引的列表 probs : 包含最佳分类索引对应的概率 cache_dict: 缓存中的索引和概率 num : 返回最近匹配的数目 """ similar = [] for filename in cache_dict: score = 0 count = 0 other_top_k, other_probs = cache_dict[filename] for i, t in enumerate(top_k): if t in other_top_k: prob = probs[i] other_prob = other_probs[other_top_k.tolist().index(t)] score += abs(prob-other_prob) count += 1 if count > 0: score = score / count similar.append((filename, score)) if similar: similar.sort(key=lambda item: item[1]) # 根据score升序排序 return similar[:num] return similar
11,624
def load(url_or_handle, allow_unsafe_formats=False, cache=None, **kwargs): """Load a file. File format is inferred from url. File retrieval strategy is inferred from URL. Returned object type is inferred from url extension. Args: url_or_handle: a (reachable) URL, or an already open file handle allow_unsafe_formats: set to True to allow saving unsafe formats (eg. pickles) cache: whether to attempt caching the resource. Defaults to True only if the given URL specifies a remote resource. Raises: RuntimeError: If file extension or URL is not supported. """ # handle lists of URLs in a performant manner if isinstance(url_or_handle, (list, tuple)): return _load_urls(url_or_handle, cache=cache, **kwargs) ext, decompressor_ext = _get_extension(url_or_handle) try: ext = ext.lower() if ext in loaders: loader = loaders[ext] elif ext in unsafe_loaders: if not allow_unsafe_formats: raise ValueError(f"{ext} is considered unsafe, you must explicitly allow its use by passing allow_unsafe_formats=True") loader = unsafe_loaders[ext] else: raise KeyError(f'no loader found for {ext}') decompressor = decompressors[decompressor_ext] if decompressor_ext is not None else nullcontext message = "Using inferred loader '%s' due to passed file extension '%s'." log.debug(message, loader.__name__[6:], ext) return load_using_loader(url_or_handle, decompressor, loader, cache, **kwargs) except KeyError: log.warning("Unknown extension '%s', attempting to load as image.", ext) try: with read_handle(url_or_handle, cache=cache) as handle: result = _load_img(handle) except Exception as e: message = "Could not load resource %s as image. Supported extensions: %s" log.error(message, url_or_handle, list(loaders)) raise RuntimeError(message.format(url_or_handle, list(loaders))) else: log.info("Unknown extension '%s' successfully loaded as image.", ext) return result
11,625
def evaluate_full_batch(model, minibatch, mode='val'): """ Full batch evaluation: for validation and test sets only. When calculating the F1 score, we will mask the relevant root nodes. """ time_s = time.time() loss, preds, labels = model.eval_step(*minibatch.one_batch(mode=mode)) torch.cuda.synchronize() time_e = time.time() node_val_test = minibatch.node_val if mode == 'val' else minibatch.node_test f1_scores = calc_f1(to_numpy(labels[node_val_test]), to_numpy(preds[node_val_test]), model.sigmoid_loss) # node_test=minibatch.node_test # f1_test=calc_f1(to_numpy(labels[node_test]),to_numpy(preds[node_test]),model.sigmoid_loss) # printf(' ******TEST: loss = {:.4f}\tmic = {:.4f}\tmac = {:.4f}'.format(loss,f1_test[0],f1_test[1]),style='yellow') del labels del preds return loss, f1_scores[0], f1_scores[1], time_e - time_s
11,626
def berlekamp_massey(s): """Given a sequence of LFSR outputs, find the coefficients of the LFSR.""" C, B, L, m, b = [1], [1], 0, 1, 1 for n in range(len(s)): d = s[n] for i in range(1, L + 1): d ^= mul(C[i], s[n - i]) if d == 0: m += 1 else: T = list(C) while len(C) <= len(B) + m: C += [0] t = mul(d, inv(b)) for i in range(len(B)): C[i + m] ^= mul(t, B[i]) if 2 * L <= n: L, B, b, m = n + 1 - L, T, d, 1 else: m += 1 return C[0:L + 1]
11,627
def vocab_from_file(vocabfile): """ Generates vocabulary from a vocabulary file in JSON Outputs vocabulary and inverted vocabulary """ with smart_open(vocabfile, 'r') as f: inv_vocab = json.loads(f.read()) vocabulary = {} for no, word in enumerate(inv_vocab): vocabulary[word] = no print('Vocabulary size = %d' % len(vocabulary), file=sys.stderr) return vocabulary, inv_vocab
11,628
def verify_pool_type(pooltype): """ :type pooltype: str :param pooltype: Pool type :raises: ValueError: Invalid Pool type """ valid_pool_types = ['Transactional', 'Repository', 'Archival', 'Iops-Optimized', 'Balanced', 'Throughput-Optimized', 'Depot'] if pooltype not in valid_pool_types: raise ValueError('"{0}" is not a valid pool type. Allowed values are: {1}'.format(pooltype, str(valid_pool_types)))
11,629
def sample(image: type_alias.TensorLike, warp: type_alias.TensorLike, resampling_type: ResamplingType = ResamplingType.BILINEAR, border_type: BorderType = BorderType.ZERO, pixel_type: PixelType = PixelType.HALF_INTEGER, name: Optional[str] = None) -> tf.Tensor: """Samples an image at user defined coordinates. Note: The warp maps target to source. In the following, A1 to An are optional batch dimensions. Args: image: A tensor of shape `[B, H_i, W_i, C]`, where `B` is the batch size, `H_i` the height of the image, `W_i` the width of the image, and `C` the number of channels of the image. warp: A tensor of shape `[B, A_1, ..., A_n, 2]` containing the x and y coordinates at which sampling will be performed. The last dimension must be 2, representing the (x, y) coordinate where x is the index for width and y is the index for height. resampling_type: Resampling mode. Supported values are `ResamplingType.NEAREST` and `ResamplingType.BILINEAR`. border_type: Border mode. Supported values are `BorderType.ZERO` and `BorderType.DUPLICATE`. pixel_type: Pixel mode. Supported values are `PixelType.INTEGER` and `PixelType.HALF_INTEGER`. name: A name for this op. Defaults to "sample". Returns: Tensor of sampled values from `image`. The output tensor shape is `[B, A_1, ..., A_n, C]`. Raises: ValueError: If `image` has rank != 4. If `warp` has rank < 2 or its last dimension is not 2. If `image` and `warp` batch dimension does not match. """ with tf.name_scope(name or "sample"): image = tf.convert_to_tensor(image, name="image") warp = tf.convert_to_tensor(warp, name="warp") shape.check_static(image, tensor_name="image", has_rank=4) shape.check_static( warp, tensor_name="warp", has_rank_greater_than=1, has_dim_equals=(-1, 2)) shape.compare_batch_dimensions( tensors=(image, warp), last_axes=0, broadcast_compatible=False) if pixel_type == PixelType.HALF_INTEGER: warp -= 0.5 if resampling_type == ResamplingType.NEAREST: warp = tf.math.round(warp) if border_type == BorderType.DUPLICATE: image_size = tf.cast(tf.shape(image)[1:3], dtype=warp.dtype) height, width = tf.unstack(image_size, axis=-1) warp_x, warp_y = tf.unstack(warp, axis=-1) warp_x = tf.clip_by_value(warp_x, 0.0, width - 1.0) warp_y = tf.clip_by_value(warp_y, 0.0, height - 1.0) warp = tf.stack((warp_x, warp_y), axis=-1) return tfa_image.resampler(image, warp)
11,630
def show_record(record, show_logs=True, truncate_logs=None, truncate_result=10000, header_width=100, show_result ='deep', hang=True): """ Show the results of an experiment record. :param record: :param show_logs: :param truncate_logs: :param truncate_result: :param header_width: :param show_result: :param hang: :return: """ string = get_record_full_string(record, show_logs=show_logs, show_result=show_result, truncate_logs=truncate_logs, truncate_result=truncate_result, header_width=header_width, include_bottom_border=False) has_matplotlib_figures = any(loc.endswith('.pkl') for loc in record.get_figure_locs()) if has_matplotlib_figures: record.show_figures(hang=hang) print(string)
11,631
def normalize_parameter(kv): """ Translate a parameter into standard form. """ (k, v) = kv if k[0] == 'requiressl' and v in ('1', True): k[0] = 'sslmode' v = 'require' elif k[0] == 'dbname': k[0] = 'database' elif k[0] == 'sslmode': v = v.lower() return (tuple(k),v)
11,632
def pulse_broadening(DM, f_ctr): """ pulse_broadening(DM, f_ctr): Return the approximate pulse broadening (tau) in ms due to scattering based on the rough relation in Cordes' 'Pulsar Observations I' paper. 'f_ctr' should be in MHz. The approximate error is 0.65 in log(tau). """ logDM = Num.log10(DM) return 10.0**(-3.59 + 0.129*logDM + 1.02*logDM**2.0 - 4.4*Num.log10(f_ctr/1000.0))/1000.0
11,633
def generate_wavefunction_coefficients(dir_name: str): """ Generate wavefunction.h5 file using amset. Parameters ---------- dir_name : str Directory containing WAVECAR and vasprun.xml files (can be gzipped). Returns ------- dict A dictionary with the keys: - "dir_name" (str): containing the directory where the wavefunction.h5 file was generated. - "log" (str): The output log from ``amset wave``. - "ibands" (Tuple[List[int], ...]): The bands included in the wavefunction.h5 file. Given as a tuple of one or two lists (one for each spin channel). The bands indices are zero indexed. """ from amset.tools.wavefunction import wave dir_name = strip_hostname(dir_name) # TODO: Handle hostnames properly. fc = FileClient() files = fc.listdir(dir_name) vasprun_file = Path(dir_name) / get_zfile(files, "vasprun.xml") wavecar_file = Path(dir_name) / get_zfile(files, "WAVECAR") # wavecar can't be gzipped, so copy it to current directory and unzip it fc.copy(wavecar_file, wavecar_file.name) fc.gunzip(wavecar_file.name) args = ["--wavecar=WAVECAR", f"--vasprun={vasprun_file}"] runner = CliRunner() result = runner.invoke(wave, args, catch_exceptions=False) ibands = _extract_ibands(result.output) # remove WAVECAR from current directory fc.remove("WAVECAR") return {"dir_name": str(Path.cwd()), "log": result.output, "ibands": ibands}
11,634
def logged_in_student(browser, override_allowed_hosts, base_test_data): """ Fixture for a logged-in student user Returns: User: User object """ return LoginPage(browser).log_in_via_admin(base_test_data.student_user, DEFAULT_PASSWORD)
11,635
def test_encoding_and_decoding(): """Tests the encoding and decoding of components.""" test_components: Dict[ValidatorName, List[Validator]] = { ValidatorName.SCRIPT: [ ScriptValidator(script="black", args=["-l", "100"]), ScriptValidator( script="black", args=["-l", "100"], failure_level=ValidationResultLevel.WARNING ), ScriptValidator(script="black", args=["-l", "100"], per_item=True), ScriptValidator(script="black", args=["-l", "100"], run_on_changes=True), ScriptValidator( script="black", args=["-l", "100"], failure_level=ValidationResultLevel.WARNING, per_item=True, ), ScriptValidator( script="black", args=["-l", "100"], failure_level=ValidationResultLevel.WARNING, run_on_changes=True, ), ScriptValidator(script="black", args=["-l", "100"], per_item=True, run_on_changes=True), ScriptValidator( script="black", args=["-l", "100"], failure_level=ValidationResultLevel.WARNING, per_item=True, run_on_changes=True, ), ], } for name in ValidatorName: assert name in test_components, f"No test components for Validator {name}" for name, components in test_components.items(): assert name in ValidatorName, f"{name} is not a valid ValidatorName" for component in components: assert ( component.name == name ), f"Testing validator of name {component.name} for name {name}" assert ( FACTORY.get_instance(json.loads(json.dumps(component.bundle()))) == component ), f"Component {component} does not bundle and unbundle correctly"
11,636
def test_model(data_set=None, langider=None, lang_to_idx=None, ) -> np.ndarray: """ Tests a given langid.py model on the given data set. :param data_set: data set to test on :param langider: model to test :param lang_to_idx: mapping of languages to ids """ import numpy as np langs = data_set.get_tag_set() pred_prob = np.zeros((len(data_set), len(langs) + 1)) dataloader = DataLoader(data_set) for i, elem in enumerate(tqdm(dataloader)): text = elem['text'][0] label = elem['label'][0] ranking = langider.rank(text) for lang, prob in ranking: pred_prob[i, lang_to_idx[lang]] = prob pred_prob[i, len(langs)] = lang_to_idx[label] return pred_prob
11,637
def test_copy_axis(): """Sometimes we remove an axis. So when we copy it, we need to make sure that the new dataset doesn't have the removed axis. """ # remove one axis data = create_data() data = math(data, axis='chan', operator_name='mean') assert len(data.axis) == 1 output = data._copy(axis=True) assert len(data.axis) == len(output.axis) output = data._copy(axis=False) assert len(data.axis) == len(output.axis)
11,638
def mapquest_search(text): """ Search on Mapquest (https://www.mapquest.com) Parameters ----------- text:- The query which you want to search about (str) """ mapquest=f"https://www.mapquest.com/search/results?query={text}" open(mapquest)
11,639
def search(querry, lim=5): """Search the querry in youtube and return lim number of results. Querry is the keyword, i:e name of the song lim is the number of songs that will be added to video array and returned """ # Replace all the spaces with + querry = querry.replace(' ', '+') url = "https://www.youtube.com/results?search_query={}".format(querry) response = urlopen(url) html = response.read() soup = BeautifulSoup(html, "html.parser") count = 0 for vid in soup.findAll(attrs={'class': 'yt-uix-tile-link'}): if lim == count: break url = vid['href'] data = scan_video(url) if not data: break video.append(data) urls.append(url) count += 1 return (video, urls)
11,640
def calculate_center_of_mass(symbols, coordinates): """Calculate the center of mass of a molecule. The center of mass is weighted by each atom's weight. Parameters ---------- symbols : list A list of elements for the molecule coordinates : np.ndarray The coordinates of the molecule. Returns ------- center_of_mass: np.ndarray The center of mass of the molecule. Notes ----- The center of mass is calculated with the formula .. math:: \\vec{R}=\\frac{1}{M} \\sum_{i=1}^{n} m_{i}\\vec{r_{}i} """ total_mass = calculate_molecular_mass(symbols) center_of_mass = np.array([0.0, 0.0, 0.0]) for atom_number in range(len(symbols)): atom_type = symbols[atom_number] mass_of_atom = atomic_weights[atom_type] atom_position = coordinates[atom_number] center_of_mass += mass_of_atom * atom_position center_of_mass = center_of_mass / total_mass return center_of_mass
11,641
def test_tool_exec_command_dash_help_reverse(help_option): """Execute a command (that needs no params) asking for help.""" cmd = create_command('somecommand', 'This command does that.') command_groups = COMMAND_GROUPS + [('group', 'help text', [cmd])] dispatcher = Dispatcher([help_option, 'somecommand'], command_groups) with patch('charmcraft.helptexts.get_command_help') as mock: mock.return_value = 'test help' with pytest.raises(CommandError) as cm: dispatcher.run() error = cm.value # check the given information to the builder args = mock.call_args[0] assert args[0] == COMMAND_GROUPS assert args[1].__class__ == cmd assert sorted(x[0] for x in args[2]) == [ '-h, --help', '-p, --project-dir', '-q, --quiet', '-v, --verbose'] # check the result of the full help builder is what is shown assert error.argsparsing assert str(error) == "test help" assert error.retcode == 0
11,642
def __iadd__(self, other): """Pythonic use of concat Example: xs += ys Returns self.concat(self, other)""" return self.concat(self, other)
11,643
def AddSqlServerAuditBucketPath(parser): """Adds the `--audit-bucket-path` flag to the parser.""" parser.add_argument( '--audit-bucket-path', required=False, hidden=True, help=('Path in Google Cloud Storage to upload generated audit files. ' 'The URI is in the form gs://bucketName/folderName. ' 'Only available for SQL Server instances.'))
11,644
def remove_stopwords(texts, stop_words): """ Define functions for stopwords :param texts: Processed texts from main module :return: Texts that already removed a stopwords """ return [[word for word in simple_preprocess(str(doc)) if word not in stop_words] for doc in texts]
11,645
def patch_aggregated_metadata(context): """ Patches context in aggregated pages """ for metadata in context["posts"]: metadata.body = patch_links( metadata.body, metadata.link[:11], # first 11 characters is path (YYYY/MM/DD/) metadata.link[11:], # following characters represent filename True) # hyperlink title to post metadata.body = strip_xml_declaration(metadata.body)
11,646
def dumps(obj): """Output json with formatting edits + object handling.""" return json.dumps(obj, indent=4, sort_keys=True, cls=CustomEncoder)
11,647
def find_asg_using_amis(ami_ids): """ take a list of ami ids and return a dictionary of launch configs that use them """ # ref: return = { ami_id : "lc_arns":[]} ami_ids = listify(ami_ids) result = {id: [] for id in ami_ids} client_asg = boto3.client('autoscaling') lc = client_asg.describe_launch_configurations() for a_lc in lc['LaunchConfigurations']: if a_lc['ImageId'] in ami_ids: result[a_lc['ImageId']].append(a_lc['LaunchConfigurationARN']) return result
11,648
def tokenize_nmt(text, num_examples=None): """Tokenize the English-French dataset.""" source, target = [], [] for i, line in enumerate(text.split('\n')): if num_examples and i > num_examples: break parts = line.split('\t') if len(parts) == 2: source.append(parts[0].split(' ')) target.append(parts[1].split(' ')) return source, target
11,649
def op_habit(queryUserId): """ 節目操作習慣推薦模組 """ print("****** Start processing op_habit Module! ******\n", file=sys.stderr) tmpStr = "" tmpCount = [] playLog = PlayLog.query.filter_by(user=queryUserId).all() # Find the playlog list of `user` = 1 for i in range(len(playLog)): # Traverse all the playlog # Use the `play_log_id` to find the corresponding opLog list opLog = OperationLog.query.filter(OperationLog.play_log == playLog[i].play_log_id).all() #Save the play_log and corresponding count tmpCount.append({ 'play_log' : playLog[i].play_log_id, 'count' : len(opLog) }) for i in range(0, len(tmpCount)-1): for j in range(0, len(tmpCount)-1-i): if tmpCount[j]['count'] < tmpCount[j+1]['count']: tmp = tmpCount[j] tmpCount[j] = tmpCount[j+1] tmpCount[j+1] = tmp # print(tmpCount) # for i in range(0, 4): # # print(tmpCount[i]['play_log']) # playLog_back = PlayLog.query.filter_by(play_log_id=tmpCount[i]['play_log']).first() # tmpStr += str(playLog_back.audio) + "," # playLog_back = PlayLog.query.filter_by(play_log_id=tmpCount[4]['play_log']).first() # tmpStr += str(playLog_back.audio) # user = User.query.filter_by(id=queryUserId).first() # user.operation_ranks = tmpStr # db.session.commit() print("****** Processing hot_play Module done! ******\n", file=sys.stderr)
11,650
def setup_snicar(input_file): """Builds impurity array and instances of all classes according to config in yaml file. Args: None Returns: ice: instance of Ice class illumination: instance of Illumination class rt_config: instance of RTConfig class model_config: instance of ModelConfig class plot_config: instance of PlotConfig class display_config: instance of DisplayConfig class """ impurities = build_impurities_array(input_file) ( ice, illumination, rt_config, model_config, plot_config, ) = build_classes(input_file) return ( ice, illumination, rt_config, model_config, plot_config, impurities, )
11,651
def plot_history(history, figsize=(8, 5)): """Plot metric values through training Args: history: object returned by model.fit(, callbacks=[History(), ...]) metric: metric name from model.metrics_names """ # Setup the figure object figsize=(figsize[0]*len(history.model.metrics_names), figsize[1]) fig = plt.figure(figsize=figsize) for i, metric in enumerate(history.model.metrics_names): plt.subplot(1, len(history.model.metrics_names), i+1) plt.plot(history.epoch, history.history[metric], label=f'train') plt.plot(history.epoch, history.history['val_'+metric], label=f'valid') plt.legend() plt.xlabel("epoch") plt.ylabel(metric) plt.title(metric) plt.tight_layout()
11,652
async def list_model_config(model_name: str): """ Lists all the model's configuration. :param model_name: Model name :return: List of model's configuration """ try: return ApiResponse(data=dl_service.get_config(model_name)) except ApplicationError as e: raise e except Exception: raise ApplicationError('unexpected server error')
11,653
def _save_video(f, filename, directory): """ The uploaded video file is saved. """ destination_file = open(os.path.join(directory, filename), 'wb+') for chunk in f.chunks(): destination_file.write(chunk) destination_file.close()
11,654
def signup_post(request): """Получаем данные пользователя с формы и заносим их в базу проверяя, если удачно то предоставляем вход в базу потом дополнительные идентификац""" mess = "login please" data = get_post( request ) mail = data.POST['mail'] name = data.POST['name'] captcha = data.POST['captcha'] hash = data.POST['hash'] password = data.POST['password'] address = data.POST['addres'] phone = data.POST['phone'] # date = time.strftime("%H:%M:%S %d.%m.%Y") # date=time.time() passw = getmd5(password) if not check_captcha(hash, captcha): hash, raw = get_captcha(hash) mess="Неправильно введен проверочный код" return templ('app.auth:signup', request, dict(name=name, mail=mail, address=address, phone=phone, hash = hash, mess = mess.decode('UTF-8')) ) #проверяем есть ли такие пользователи в базе если нет то регистрируем if not request.db.doc.find_one({'_id':'user:'+name}): doc = {'_id': 'user:'+name, 'name': name, 'password': passw, 'mail': mail, "type": "table_row", "rate":0, "doc_type": "des:users", "doc": {"user":"user:"+name, "name": {'ru':name, 'en':name}, "old": "33", "phone":phone, "address": address, 'date': create_date(), "home": "false" } } request.db.doc.save(doc) request.db.doc.update({'_id':'role:simple_users'}, {'$set':{'users.user:'+name:'true'}} ) mess = "Поздравляем, можете войти." else: mess = "Такой логин уже есть выберите другой" return templ('libs.auth:login', request, dict(mess = mess.decode('UTF-8')) )
11,655
def make_onehot(label, num_classes, axis=-1): """ Create one hot tensor based on the input tensor Args: label: input tensor, the value must be positive integer and less than num_class num_classes: the number of class in one hot tensor axis: The axis to fill (default: -1, a new inner-most axis). Returns: :onehot tensor Examples: >>> make_onehot(np.array([[1, 2],[1, 3]]).long(), 4, axis=-1) tensor([[[0., 1., 1., 0.], [0., 1., 0., 1.]], <BLANKLINE> [[0., 0., 0., 0.], [0., 0., 0., 0.]]]) """ shp=label.shape flatten_label=label.reshape(-1) result=np.eye(num_classes) result=result[flatten_label.astype(np.int64)] if axis!=-1 and axis!=ndim(label)-1: result=np.swapaxes(axis,-1) return result
11,656
def test_random_fourier_feature_layer_compute_covariance_of_inducing_variables( basis_func_cls, batch_size ): """ Ensure that the random fourier feature map can be used to approximate the covariance matrix between the inducing point vectors of a sparse GP, with the condition that the number of latent GP models is greater than one. """ n_components = 10000 kernel = gpflow.kernels.SquaredExponential() fourier_features = basis_func_cls(kernel, n_components, dtype=tf.float64) x_new = tf.ones(shape=(2 * batch_size + 1, 1), dtype=tf.float64) u = fourier_features(x_new) approx_kernel_matrix = inner_product(u, u) actual_kernel_matrix = kernel.K(x_new, x_new) np.testing.assert_allclose(approx_kernel_matrix, actual_kernel_matrix, atol=5e-2)
11,657
def kohn_sham_iteration( state, num_electrons, xc_energy_density_fn, interaction_fn, enforce_reflection_symmetry): """One iteration of Kohn-Sham calculation. Note xc_energy_density_fn must be wrapped by jax.tree_util.Partial so this function can take a callable. When the arguments of this callable changes, e.g. the parameters of the neural network, kohn_sham_iteration() will not be recompiled. Args: state: KohnShamState. num_electrons: Integer, the number of electrons in the system. The first num_electrons states are occupid. xc_energy_density_fn: function takes density (num_grids,) and returns the energy density (num_grids,). interaction_fn: function takes displacements and returns float numpy array with the same shape of displacements. enforce_reflection_symmetry: Boolean, whether to enforce reflection symmetry. If True, the system are symmetric respecting to the center. Returns: KohnShamState, the next state of Kohn-Sham iteration. """ if enforce_reflection_symmetry: xc_energy_density_fn = _flip_and_average_fn( xc_energy_density_fn, locations=state.locations, grids=state.grids) hartree_potential = get_hartree_potential( density=state.density, grids=state.grids, interaction_fn=interaction_fn) xc_potential = get_xc_potential( density=state.density, xc_energy_density_fn=xc_energy_density_fn, grids=state.grids) ks_potential = hartree_potential + xc_potential + state.external_potential xc_energy_density = xc_energy_density_fn(state.density) # Solve Kohn-Sham equation. density, total_eigen_energies, gap = solve_noninteracting_system( external_potential=ks_potential, num_electrons=num_electrons, grids=state.grids) total_energy = ( # kinetic energy = total_eigen_energies - external_potential_energy total_eigen_energies - get_external_potential_energy( external_potential=ks_potential, density=density, grids=state.grids) # Hartree energy + get_hartree_energy( density=density, grids=state.grids, interaction_fn=interaction_fn) # xc energy + get_xc_energy( density=density, xc_energy_density_fn=xc_energy_density_fn, grids=state.grids) # external energy + get_external_potential_energy( external_potential=state.external_potential, density=density, grids=state.grids) ) if enforce_reflection_symmetry: density = utils.flip_and_average( locations=state.locations, grids=state.grids, array=density) return state._replace( density=density, total_energy=total_energy, hartree_potential=hartree_potential, xc_potential=xc_potential, xc_energy_density=xc_energy_density, gap=gap)
11,658
def calculate_reliability(data): """ Calculates the reliability rating of the smartcab during testing. """ success_ratio = data['success'].sum() * 1.0 / len(data) if success_ratio == 1: # Always meets deadline return ("A+", "green") else: if success_ratio >= 0.90: return ("A", "green") elif success_ratio >= 0.80: return ("B", "green") elif success_ratio >= 0.70: return ("C", "#EEC700") elif success_ratio >= 0.60: return ("D", "#EEC700") else: return ("F", "red")
11,659
def sort_and_index(file_name, sorted_prefix=None): """ Sorts and indexes the bam file given by file_name. """ if sorted_prefix is None: sorted_prefix = file_name.replace('.bam', '') + '_sorted' sorted_name = sorted_prefix + '.bam' log_subprocess.check_call(['samtools','sort', '-o', sorted_name, file_name]) pysam.index(sorted_name)
11,660
def cache_mat_calc(dra, ddc, dra_err, ddc_err, ra_rad, dc_rad, ra_dc_cor=None, l_max=1, fit_type="full", num_iter=None): """Calculate cache matrix for future use Parameters ---------- dra/ddc : array of float R.A.(*cos(Dec.))/Dec. differences dra_err/ddc_err : array of float formal uncertainty of dra(*cos(dc_rad))/ddc ra_rad/dc_rad : array of float Right ascension/Declination in radian ra_dc_cov/ra_dc_cor : array of float covariance/correlation coefficient between dra and ddc, default is None fit_type : string flag to determine which parameters to be fitted 'full' for T- and S-vectors both 'T' for T-vectors only 'S' for S-vectors only Returns ---------- pmt : array of float estimation of (d1, d2, d3, r1, r2, r3) sig : array of float uncertainty of x cor_mat : matrix matrix of correlation coefficient. """ # Maxium number of sources processed per time # According to my test, 100 should be a good choice if num_iter is None: num_iter = 100 div = dra.size // num_iter rem = dra.size % num_iter suffix_array = [] if rem: suffix_array.append("{:05d}".format(0)) if not ra_dc_cor is None: nor_mat_calc_for_cache(dra_err[: rem], ddc_err[: rem], ra_rad[: rem], dc_rad[: rem], ra_dc_cor=ra_dc_cor[: rem], l_max=l_max, fit_type=fit_type, suffix=suffix_array[0]) else: nor_mat_calc_for_cache(dra_err[: rem], ddc_err[: rem], ra_rad[: rem], dc_rad[: rem], l_max=l_max, fit_type=fit_type, suffix=suffix_array[0]) for i in range(div): sta = rem + i * num_iter end = sta + num_iter suffix_array.append("{:05d}".format(i+1)) if not ra_dc_cor is None: nor_mat_calc_for_cache(dra_err[sta: end], ddc_err[sta: end], ra_rad[sta: end], dc_rad[sta: end], ra_dc_cor=ra_dc_cor[sta: end], l_max=l_max, fit_type=fit_type, suffix=suffix_array[-1]) else: nor_mat_calc_for_cache(dra_err[sta: end], ddc_err[sta: end], ra_rad[sta: end], dc_rad[sta: end], l_max=l_max, fit_type=fit_type, suffix=suffix_array[-1]) return suffix_array
11,661
def get_android_replacements(): """Gets a dictionary of all android-specific replacements to be made.""" replacements = {} compileSdk = 'compileSdkVersion {}'.format(COMPILE_SDK_VERSION) targetSdk = 'targetSdkVersion {}'.format(TARGET_SDK_VERSION) buildToolsVersion = 'buildToolsVersion \'{}\''.format(BUILD_TOOLS_VERSION) replacements[COMPILE_SDK_RE] = compileSdk replacements[TARGET_SDK_RE] = targetSdk replacements[BUILD_TOOLS_RE] = buildToolsVersion return replacements
11,662
def process_long_term_idle_users( slack_data_dir: str, users: List[ZerverFieldsT], slack_user_id_to_zulip_user_id: SlackToZulipUserIDT, added_channels: AddedChannelsT, added_mpims: AddedMPIMsT, dm_members: DMMembersT, zerver_userprofile: List[ZerverFieldsT], ) -> Set[int]: """Algorithmically, we treat users who have sent at least 10 messages or have sent a message within the last 60 days as active. Everyone else is treated as long-term idle, which means they will have a slightly slower first page load when coming back to Zulip. """ all_messages = get_messages_iterator(slack_data_dir, added_channels, added_mpims, dm_members) sender_counts: Dict[str, int] = defaultdict(int) recent_senders: Set[str] = set() NOW = float(timezone_now().timestamp()) for message in all_messages: timestamp = float(message["ts"]) slack_user_id = get_message_sending_user(message) if not slack_user_id: continue if slack_user_id in recent_senders: continue if NOW - timestamp < 60: recent_senders.add(slack_user_id) sender_counts[slack_user_id] += 1 for (slack_sender_id, count) in sender_counts.items(): if count > 10: recent_senders.add(slack_sender_id) long_term_idle = set() for slack_user in users: if slack_user["id"] in recent_senders: continue zulip_user_id = slack_user_id_to_zulip_user_id[slack_user["id"]] long_term_idle.add(zulip_user_id) for user_profile_row in zerver_userprofile: if user_profile_row["id"] in long_term_idle: user_profile_row["long_term_idle"] = True # Setting last_active_message_id to 1 means the user, if # imported, will get the full message history for the # streams they were on. user_profile_row["last_active_message_id"] = 1 return long_term_idle
11,663
def tb_view(model, logdir=None, cmd=None): """Visualises a :model: in TensorBoard. (That is, everything in the model's Graph, which may actually be much larger than the model itself.) TensorBoard should automatically open; it is inconsistent whether the browser will automatically come to the front though. Extra arguments: :logdir: is the directory to save the model to prior to opening it in TensorBoard. Defaults to a randomly-named temporary directory. :cmd: is any command to call before launching TensorBoard, for example to open a virtual environment. This can be arbitrary shell code. """ if logdir is None: logdir = f'/tmp/{tools.uuid2()}' inp = model.input if isinstance(inp, (tuple, list)): inp = inp[0] graph = inp.graph tf.summary.FileWriter(logdir=logdir, graph=graph).flush() def run_tensorboard(): if cmd: tools.shell(f'{cmd}; tensorboard --logdir {logdir}') else: tools.shell(f'tensorboard --logdir {logdir}') thread = threading.Thread(target=run_tensorboard) thread.start() time.sleep(2) # todo: actually detect when tensorboard is ready and open then. But this is almost always right. webbrowser.open_new_tab('http://localhost:6006') thread.join()
11,664
def clear_cache(): """ Clears internal cache. Returns something that can be given back to restore_cache. """ global FS_CACHE old = FS_CACHE FS_CACHE = {} return old
11,665
def extend_gdf(gdf_disjoint, id_col): """ Add duplicates of intersecting geometries to be able to add the constants. This function adds rows with duplicate geometries and creates the new `id` column for each of the new rows. This function is called by another function `complete_disjoint_geoms`. """ tqdm_max = len(gdf_disjoint) ext = pd.DataFrame(columns=list(gdf_disjoint.columns) + [id_col + "_set"]) for _, row in tqdm(gdf_disjoint.iterrows(), total=tqdm_max): num = len(row[id_col]) data = np.array([list(row[id_col]), [row["geometry"]] * num]).T ext_new = pd.DataFrame(data, columns=gdf_disjoint.columns) ext_new[id_col + "_set"] = [row[id_col]] * num ext = ext.append(ext_new, ignore_index=True) return ext
11,666
def schedule_news_updates(update_interval:int, update_name:str)->dict: """ Functionality: --------------- Schedules a new news data update Parameters: --------------- update_interval: int The time until the scheduler should update the news data update_name: str The name of the update that has caused the scheduling of the news data update Returns: --------------- a key-value pair: dict Returns a dictionary with the key being the update name and the value being news scheduler object """ return({update_name:news_scheduler.enter(update_interval, 1, update_news, ())})
11,667
def test_basic_greetings(): """The bot should respond sensibly to common greeting words""" sent = "hello" resp = broback(sent) assert resp == GREETING_RESPONSES[1]
11,668
def ValidateResponse(data): """Validate a JSON-RPC response object. Args: data: The JSON-RPC object (dict). Raises: ProtocolError: if the object format is not correct. """ ValidateBasicJSONRPCData(data) if 'response' not in data: raise ProtocolError('JSON is not a valid response')
11,669
def get_digits(text): """ Returns all numeric characters (digits) in string *text* in a new (concatenated) **string**. Example: >>> get_digits('Test123') '123' >>> int(get_digits('The answer is 42')) 42 :param text: The string to search. :type text: str, unicode :rtype: str, unicode """ _vld.pass_if(_vld.is_text(text), TypeError, "'text' attribute must be a string (got {!r})".format(text)) return EMPTY_STR.join(s for s in text if s.isdigit())
11,670
def make(): """ генератор 1 расстановки = 1 горизонтали""" # ставим 1 слона to = random.choice((1, 3, 5, 7)) f1[to-1] = "B" fp.remove(to) # ставим 2 слона to = random.choice((2, 4, 6, 8)) f1[to-1] = "B" fp.remove(to) # ставим ферзя to = random.choice(fp) f1[to-1] = "Q" fp.remove(to) # ставим 1 коня to = random.choice(fp) f1[to-1] = "N" fp.remove(to) # ставим 2 коня to = random.choice(fp) f1[to-1] = "N" fp.remove(to) # ставим 1 ладью to = fp.pop(0) f1[to-1] = "R" # ставим 2 ладью to = fp.pop() f1[to-1] = "R" # ставим короля to = fp.pop() f1[to-1] = "K"
11,671
def test_all(args): """ Measure FPS of all configurations. """ agent_types = [ "Baxter_ik", "Baxter_impedance", "Sawyer_ik", "Sawyer_impedance", "Cursor_ik", ] rendering_qualities = ["no_200", "low_200", "high_200", "low_500", "high_500"] furniture_ids = [0, 9, 6] results = {} for agent in agent_types: results[agent] = {} for rendering in rendering_qualities: results[agent][rendering] = {} for furniture_id in furniture_ids: if rendering.startswith("no"): args.unity = False args.visual_ob = False elif rendering.startswith("low"): args.unity = True args.quality = 0 args.visual_ob = True elif rendering.startswith("high"): args.unity = True args.quality = 4 args.visual_ob = True if "200" in rendering: args.screen_width = 200 args.screen_height = 200 else: args.screen_width = 500 args.screen_height = 500 background_name = "Simple" # set parameters for the environment (env, furniture_id, background) env_name = "Furniture{}Env".format(agent.split("_")[0]) args.env = env_name args.control_type = agent.split("_")[1] args.furniture_id = furniture_id args.background = background_name print() print( "Creating environment (robot: {}, furniture: {}, background: {})".format( env_name, furniture_names[furniture_id], background_name ) ) FPS = [] for i in range(2): # make environment following arguments env = make_env(env_name, args) # reset the environment with new furniture and background env.reset(furniture_id, background_name) # measure FPS of simulation and rendering done = False st = time.time() step = 0 while not done and step < 500: step += 1 ob, rew, done, info = env.step(env.action_space.sample()) FPS.append(step / (time.time() - st)) # close the environment instance env.close() print("fps = {:.2f}".format(np.mean(FPS))) results[agent][rendering][furniture_id] = np.mean(FPS) # output summary for agent in agent_types: print(agent) for rendering in rendering_qualities: output = "\t".join( [ "{:.2f}".format(results[agent][rendering][furniture_id]) for furniture_id in furniture_ids ] ) print(rendering, output)
11,672
def embed_tiles_in_json_sprite(tile_list, as_bytes=True, out_file=None): """Make a big rectangle containing the images for a brainsprite. Parameters: ----------- tile_list : list List of 2d square numpy arrays to stick in a mosaic Returns: -------- mosaic : np.ndarray Mosaic of tile images """ # Tiles are squares tile_size = tile_list[0].shape[0] num_tiles = len(tile_list) num_tile_rows = nearest_square(num_tiles) num_tile_cols = int(np.ceil(num_tiles/num_tile_rows)) mosaic = np.zeros((num_tile_rows * tile_size, num_tile_cols * tile_size)) i_indices, j_indices = np.unravel_index(np.arange(num_tiles), (num_tile_rows, num_tile_cols)) i_tile_offsets = tile_size * i_indices j_tile_offsets = tile_size * j_indices for tile, i_offset, j_offset in zip(tile_list, i_tile_offsets, j_tile_offsets): mosaic[i_offset:(i_offset + tile_size), j_offset:(j_offset + tile_size)] = tile if as_bytes: img = mplfig(mosaic, out_file, as_bytes=as_bytes) return dict(img=img, N=num_tile_rows, M=num_tile_cols, pix=tile_size, num_slices=num_tiles) return dict(mosaic=mosaic, N=num_tile_rows, M=num_tile_cols, pix=tile_size, num_slices=num_tiles)
11,673
def test_compare_eq3(): """ not not (two == 2), 20x """ n = 20 while n: not not (two == 2) n -= 1
11,674
def removeUnicode(text): """ Removes unicode strings like "\u002c" and "x96" """ text = re.sub(r'(\\u[0-9A-Fa-f]+)',r'', text) text = re.sub(r'[^\x00-\x7f]',r'',text) return text
11,675
def mark_word(page, text): """ Underline each word that contains 'text'. """ wlist = page.getText("words") # make the word list for w in wlist: # scan through all words on page if text in w[4]: # w[4] is the word's string r = fitz.Rect(w[:4]) # make rect from word bbox highlight = page.addHighlightAnnot(r) highlight.setColors({"stroke":(0, 0, 1), "fill":(0.75, 0.8, 0.95)}) highlight.update() # underline return
11,676
def mfcc(tf, n_mfcc, fs, fmin=0.0, fmax=None): """ Extract MFCC vectors Args: tf : single-channel time-frequency domain signal, indexed by 'tf' n_mfcc : number of coefficients fs : sample rate fmin : (default 0) minimal frequency in Hz fmax : (default fs/2) maximal frequency in Hz Returns: mfcc : MFCC """ if fmax is None: fmax = fs / 2.0 n_frame, n_fbin = tf.shape # get filter weights freq = np.fft.fftfreq(n_fbin) fbw = mel_freq_fbank_weight(n_mfcc, freq, fs, fmin=fmin, fmax=fmax) # get log power sigpow = np.real(tf * tf.conj()) logfpow = np.log(np.einsum('bf,tf->tb', fbw, sigpow) + 1e-20) # DCT mfcc = scipy.fft.dct(logfpow) return mfcc
11,677
def transform(fname, metadata=False): """ This function reads a Mission Analysis Orbit file and performs a matrix transformation on it. Currently only from the Mercury Equatorial frame to the Earth Equatorial frame. :param fname: The path to the orbit file. :type fname: str. :param metadata: Flag to return the metadata dictionary :type state: bool. :returns: numpy.array -- the return code. """ furnsh("/Users/jmcaulif/Code/naif/generic/lsk/naif0010.tls") logging.basicConfig(level=logging.INFO) mdata = {} data = {} with open(fname, 'r') as fh: for line in fh: t, x, y, z, vx, vy, vz = [float(x) for x in line.split()] T = np.array([[0.98159386604468, 0.19098031873327, 0.0], [-0.16775718426422, 0.86223242348167, 0.47792549108063], [0.09127436261733, -0.46912873047114, 0.87840037851502]]) Tinv = linalg.inv(T) r = np.array([[x, y, z]]) v = np.array([[vx, vy, vz]]) r_new = Tinv.dot(r.T).T v_new = Tinv.dot(v.T).T x, y, z = r_new[0] vx, vy, vz = v_new[0] t = et2utc(t * 86400, 'isoc', 2) print("{} {:9.2f} {:9.2f} {:9.2f} {:9.6f} {:9.6f} {:9.6f}". format(t, x, y, z, vx, vy, vz)) fh.close() if metadata: return data, mdata else: return data
11,678
def query_repository(repo_name, index_uuid, token, display_results=False): """ Display the ids ('subjects') of all items indexed in a repository. :param repo_name: Textual name of repository to query, corresponds to 'name' field in conf file. :param index_name: Name of index, mapped by us to a UUID. :param display_results: Print ids to standard output :return: List of result ids """ LOGGER.info("Querying index %s for repository %s" % (index_uuid, repo_name)) querylimit = 20 headers = {'Authorization' : ('Bearer ' + token), 'Content-Type' : 'application/json'} queryobj = {"@datatype": "GSearchRequest", "@version": "2016-11-09", "advanced": True, "offset": 0, "limit": querylimit, "q": "*", "filters": [ {"@datatype": "GFilter", "@version": "2016-11-09", "type": "match_any", "field_name": "https://frdr\\.ca/schema/1\\.0#origin\\.id", "values": [""]}]} result_ids = [] queryobj["filters"][0]["values"][0] = repo_name offset = 0 while True: r = requests.post('https://' + _api_host + '/v1/index/' + index_uuid + '/search', headers=headers, json=queryobj) search_results = json.loads(r.text) results_count = search_results['count'] LOGGER.info("Got %i results" % (results_count)) if results_count == 0: break for result in search_results['gmeta']: result_ids.append(result['subject']) offset = offset + querylimit queryobj["offset"] = offset if display_results: print('\n'.join(result_ids)) return result_ids
11,679
def clean_weight_func(value, kpi, scorecard): """ ensure that the total weight values are not more than 100% """ if scorecard: try: scorecard_kpis = ScorecardKPI.objects.filter(scorecard=scorecard) except ScorecardKPI.DoesNotExist: pass else: if kpi and kpi.id: # this kpi already exists # we remove it from the queryset so that its weight # is not summed up below scorecard_kpis = scorecard_kpis.exclude(kpi=kpi) sum_dict = scorecard_kpis.aggregate( weight_sum=Coalesce(Sum('kpi__weight'), Value(0))) # sum of all weights in the scorecard, excluding the # current one weight_sum = sum_dict['weight_sum'] # ensure that the sums does not go above 100% if (value + weight_sum) > Decimal(100): raise forms.ValidationError( _('The sum of the weights in a Scorecard cannot exceed' ' 100%. Please reduce the value of this weight, or' ' of other weights in this scorecard.'))
11,680
def power(x1, x2, out=None, where=True, dtype=None): """ First array elements raised to powers from second array, element-wise. Raises each base in `x1` to the positionally-corresponding power in `x2`. Note: Numpy arguments `casting`, `order`, `dtype`, `subok`, `signature`, and `extobj` are not supported. When `where` is provided, `out` must have a tensor value. `out` is not supported for storing the result, however it can be used in combination with `where` to set the value at indices for which `where` is set to False. On GPU, the supported dtypes are np.float16, and np.float32. Args: x1 (Tensor): the bases. x2 (Tensor): the exponents. out (Tensor or None, optional): defaults to None. where (Tensor or None, optional): For any non-default value of type other than :class:`Tensor` or :class:`None`, the output retains its original value. This condition is broadcasted over the input. At locations where the condition is `True`, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default ``out=None``, locations within it where the condition is `False` will remain uninitialized. dtype (:class:`mindspore.dtype`, optional): defaults to None. Overrides the dtype of the output Tensor. Returns: Tensor or scalar, the bases in `x1` raised to the exponents in `x2`. This is a scalar if both `x1` and `x2` are scalars. Raises: TypeError: if the input is not a tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x1 = np.full((3, 2), [1, 2]).astype('float32') >>> x2 = np.full((3, 2), [3, 4]).astype('float32') >>> output = np.power(x1, x2) >>> print(output) [[ 1, 16], [ 1, 16], [ 1, 16]] """ return _apply_tensor_op(F.tensor_pow, x1, x2, out=out, where=where, dtype=dtype)
11,681
def _str2bool(s): """文字列からboolへの変換""" return s.lower() in ["true", "t", "yes", "1"]
11,682
def _generate_nonce(length=42): """ Generate an alpha numeric string that is unique for each request. Twitter used a 42 character alpha-numeric (case-sensitive) string in the API documentation. However, they note "any approach which produces a relatively random alphanumeric string should be OK here." I opted not to use a cryptographically secure source of entropy. `SystemRandom` is convenient, but it uses file IO to connect to `/dev/urandom`. Adding `async` machinery here seems like expensive complexity. """ return "".join(random.choice(ALPHANUMERIC) for _ in range(length))
11,683
def env_vars_delete(env_var_id, deployment_name, version_name, assume_yes, quiet): """ Delete an environment variable. \b - When deployment_name and version_name are provided: the environment variable will be deleted on deployment version level. - When a deployment name is provided, but not a version name: the environment variable will be deleted on deployment level. - When no deployment_name nor a version name is provided: the environment variable will be deleted on project level. """ project_name = get_current_project(error=True) if version_name and not deployment_name: raise Exception("Missing option <deployment_name>") client = init_client() confirm_message = "Are you sure you want to delete environment variable " try: if version_name: response = client.deployment_version_environment_variables_get( project_name=project_name, deployment_name=deployment_name, version=version_name, id=env_var_id ) if assume_yes or click.confirm(confirm_message + "<%s> of deployment <%s> version <%s> in project <%s>?" % (response.name, deployment_name, version_name, project_name)): client.deployment_version_environment_variables_delete( project_name=project_name, deployment_name=deployment_name, version=version_name, id=env_var_id ) elif deployment_name: response = client.deployment_environment_variables_get( project_name=project_name, deployment_name=deployment_name, id=env_var_id ) if assume_yes or click.confirm(confirm_message + "<%s> of deployment <%s> in project <%s>?" % (response.name, deployment_name, project_name)): client.deployment_environment_variables_delete( project_name=project_name, deployment_name=deployment_name, id=env_var_id ) else: response = client.project_environment_variables_get(project_name=project_name, id=env_var_id) if assume_yes or click.confirm(confirm_message + "<%s> of project <%s>?" % (response.name, project_name)): client.project_environment_variables_delete(project_name=project_name, id=env_var_id) except api.exceptions.ApiException as e: if hasattr(e, "status") and e.status == 404: click.echo("%s %s" % (click.style('Warning:', fg='yellow'), WARNING_MSG)) raise e client.api_client.close() if not quiet: click.echo("Environment variable was successfully deleted")
11,684
def is_expired(image_id: str) -> bool: """ Check whether entry is expired (based on timestamp encoded in the image_id) """ ts = expiration(image_id) now = datetime.now(timezone.utc) if ts is None: log.debug("Invalid cache entry ID: %s", image_id) return True log.debug("entry: %s (expiration ts: %s)", image_id, ts.isoformat()) return ts < now
11,685
def int_(value): """Validate that the config option is an integer. Automatically also converts strings to ints. """ check_not_templatable(value) if isinstance(value, int): return value if isinstance(value, float): if int(value) == value: return int(value) raise Invalid( f"This option only accepts integers with no fractional part. Please remove the fractional part from {value}" ) value = string_strict(value).lower() base = 10 if value.startswith("0x"): base = 16 try: return int(value, base) except ValueError: # pylint: disable=raise-missing-from raise Invalid(f"Expected integer, but cannot parse {value} as an integer")
11,686
def explode(screen): """Convert a string representing a screen display into a list of lists.""" return [list(row) for row in screen.split('\n')]
11,687
def covert_to_bin(): """ save dataset with bin format :return: no return """ dataset = lstm_create_dataset(config.preprocess_path, config.batch_size, training=False) img_path = os.path.join(config.result_path, "00_data") os.makedirs(img_path) label_list = [] for i, data in enumerate(dataset.create_dict_iterator(output_numpy=True)): file_name = "LSTM_data_bs" + str(config.batch_size) + "_" + str(i) + ".bin" file_path = img_path + "/" + file_name data['feature'].tofile(file_path) label_list.append(data['label']) print('processed {}.'.format(file_name)) # save as npy np.save(config.result_path + "label_ids.npy", label_list) # save as txt sentence_labels = np.array(label_list) sentence_labels = sentence_labels.reshape(-1, 1).astype(np.int32) np.savetxt(config.result_path + "labels.txt", sentence_labels) print("=" * 20, "export bin files finished", "=" * 20)
11,688
def merge_csv_files(directory, out): """\ Merges the CSV files in the provided `directory` into one CSV file. :param str directory: Path where to find the CSV files :param str out: Resulting file name. """ f = open(out, 'w', encoding='utf-8') writer = csv.writer(f) writerow = writer.writerow writerow(['URL', 'Draft Date', 'Document Number', 'Film Number', 'From', 'Subject', 'TAGS', 'To']) cnt = 0 for fn in sorted(glob.glob(directory + '*.csv'), key=lambda fn: int(os.path.basename(fn).split('.')[0])): with open(fn, 'r', encoding='utf-8') as inputfile: reader = csv.reader(inputfile) for row in reader: cnt += 1 writerow(row) f.close() return cnt
11,689
def test_get_system_service_sdp(sros_parser, parsed_system_sdp): """ Test extracting system SDPs """ result = sros_parser.get_system_service_sdp() assert result, parsed_system_sdp
11,690
def basic_info(user, keys): """Prints a table of basic user information""" table = formatting.KeyValueTable(['Title', 'Basic Information']) table.align['Title'] = 'r' table.align['Basic Information'] = 'l' table.add_row(['Id', user.get('id', '-')]) table.add_row(['Username', user.get('username', '-')]) if keys: for key in user.get('apiAuthenticationKeys'): table.add_row(['APIKEY', key.get('authenticationKey')]) table.add_row(['Name', "%s %s" % (user.get('firstName', '-'), user.get('lastName', '-'))]) table.add_row(['Email', user.get('email')]) table.add_row(['OpenID', user.get('openIdConnectUserName')]) address = "%s %s %s %s %s %s" % ( user.get('address1'), user.get('address2'), user.get('city'), user.get('state'), user.get('country'), user.get('postalCode')) table.add_row(['Address', address]) table.add_row(['Company', user.get('companyName')]) table.add_row(['Created', user.get('createDate')]) table.add_row(['Phone Number', user.get('officePhone')]) if user.get('parentId', False): table.add_row(['Parent User', utils.lookup(user, 'parent', 'username')]) table.add_row(['Status', utils.lookup(user, 'userStatus', 'name')]) table.add_row(['PPTP VPN', user.get('pptpVpnAllowedFlag', 'No')]) table.add_row(['SSL VPN', user.get('sslVpnAllowedFlag', 'No')]) for login in user.get('unsuccessfulLogins', {}): login_string = "%s From: %s" % (login.get('createDate'), login.get('ipAddress')) table.add_row(['Last Failed Login', login_string]) break for login in user.get('successfulLogins', {}): login_string = "%s From: %s" % (login.get('createDate'), login.get('ipAddress')) table.add_row(['Last Login', login_string]) break return table
11,691
def iobes_iob(tags): """ IOBES -> IOB """ new_tags = [] for i, tag in enumerate(tags): if tag == 'rel': new_tags.append(tag) elif tag.split('-')[0] == 'B': new_tags.append(tag) elif tag.split('-')[0] == 'I': new_tags.append(tag) elif tag.split('-')[0] == 'S': new_tags.append(tag.replace('S-', 'B-')) elif tag.split('-')[0] == 'E': new_tags.append(tag.replace('E-', 'I-')) elif tag.split('-')[0] == 'O': new_tags.append(tag) else: raise Exception('Invalid format!') return new_tags
11,692
def draw_handler(canvas): """ Event handler that is responsible for all drawing. It receives "canvas" object and draws the "Pong" table, the "moving" ball and the scores of each "Player". It is also responsible for testing whether the ball touches/collides with the "gutters" or the "paddles". """ # These are (global) numbers; vertical "position" of # each "paddle". global paddle1_pos, paddle2_pos # These are (global) numbers; "score" of each "Player". global score1, score2 # These are vectors stored as (global) "[x,y]" lists; # ball "position" and "velocity". global ball_pos, ball_vel # This is (global) number; keeps track of the time in # "seconds". global seconds # Draw middle line and "gutters" of "Pong" table. canvas.draw_line([WIDTH / 2, 0], [WIDTH / 2, HEIGHT], LINE_WIDTH, COLOR) canvas.draw_line([PAD_WIDTH, 0], [PAD_WIDTH, HEIGHT], LINE_WIDTH, COLOR) canvas.draw_line([WIDTH - PAD_WIDTH, 0], [WIDTH - PAD_WIDTH, HEIGHT], LINE_WIDTH, COLOR) # "Postpone" the beginning of new game if "Timer" is # already running by "reseting" ball "position" at the # middle of the table. if timer.is_running(): ball_pos = [WIDTH / 2, HEIGHT / 2] # Print message about the remaining time until the # beginning of the new game by referencing the # global "seconds" counter. canvas.draw_text("new game will start in " + str(NEW_GAME_DELAY - seconds) + " seconds" + ("." * (NEW_GAME_DELAY - seconds)), [WIDTH // 12, 3 * HEIGHT // 4], 3 * FONT_SIZE // 10, COLOR, FONT_FACE) else: # "Timer" has expired; update ball "position" for # the new game. ball_pos[0] += ball_vel[0] ball_pos[1] += ball_vel[1] # Test whether the ball touches/collides with the left # "gutter" (offset from the left edge of the "canvas" # by the width of the "paddle"). if ball_pos[0] <= (BALL_RADIUS + PAD_WIDTH): # Check whether the ball is actually striking left # "paddle" when it touches left "gutter". If so, # reflect the ball back into play; ball's "velocity" # increased by the "acceleration" configured. if ((paddle1_pos - HALF_PAD_HEIGHT) <= ball_pos[1] <= (paddle1_pos + HALF_PAD_HEIGHT)): ball_vel[0] = -ball_vel[0] * BALL_VELOCITY_ACCELERATION else: # Ball touched "gutter". Respawn the ball in # the center of the table headed towards the # opposite "gutter" and of course update score # of "Player" 2 (right) by the "points" # configured. score2 += POINTS # Start a game of "Pong". Start also a "Timer" # to "postpone" the beginning of the new game. if not timer.is_running(): timer.start() spawn_ball(RIGHT) # Test whether the ball touches/collides with the right # "gutter" (offset from the right edge of the "canvas" # by the width of the "paddle"). elif ball_pos[0] >= ((WIDTH - 1) - BALL_RADIUS - PAD_WIDTH): # Check whether the ball is actually striking right # "paddle" when it touches right "gutter". If so, # reflect the ball back into play; ball's "velocity" # increased by the "acceleration" configured. if ((paddle2_pos - HALF_PAD_HEIGHT) <= ball_pos[1] <= (paddle2_pos + HALF_PAD_HEIGHT)): ball_vel[0] = -ball_vel[0] * BALL_VELOCITY_ACCELERATION else: # Ball touched "gutter". Respawn the ball in # the center of the table headed towards the # opposite "gutter" and of course update score # of "Player" 1 (left) by the "points" # configured. score1 += POINTS # Start a game of "Pong". Start also a "Timer" # to "postpone" the beginning of the new game. if not timer.is_running(): timer.start() spawn_ball(LEFT) # Collide and reflect off of top side of the "canvas". elif ball_pos[1] <= BALL_RADIUS: ball_vel[1] = -ball_vel[1] # Collide and reflect off of bottom side of the "canvas". elif ball_pos[1] >= ((HEIGHT - 1) - BALL_RADIUS): ball_vel[1] = -ball_vel[1] # Draw a ball moving across the "Pong" table. canvas.draw_circle(ball_pos, BALL_RADIUS, 2 * LINE_WIDTH, COLOR, COLOR) # Update paddle's vertical "position", by # referencing the two global variables that contain the # vertical "velocities" of the "paddle". Keep "paddle" # on the screen by calling the proper "helper" function. if keep_paddle_on_screen(paddle1_pos, paddle1_vel): paddle1_pos += paddle1_vel if keep_paddle_on_screen(paddle2_pos, paddle2_vel): paddle2_pos += paddle2_vel # Draw left and right "paddles" in their respective # "gutters". canvas.draw_polygon([[0, paddle1_pos - HALF_PAD_HEIGHT], [PAD_WIDTH, paddle1_pos - HALF_PAD_HEIGHT], [PAD_WIDTH, paddle1_pos + HALF_PAD_HEIGHT], [0, paddle1_pos + HALF_PAD_HEIGHT]], LINE_WIDTH, COLOR, COLOR) canvas.draw_polygon([[WIDTH - PAD_WIDTH, paddle2_pos - HALF_PAD_HEIGHT], [WIDTH , paddle2_pos - HALF_PAD_HEIGHT], [WIDTH, paddle2_pos + HALF_PAD_HEIGHT], [WIDTH - PAD_WIDTH, paddle2_pos + HALF_PAD_HEIGHT]], LINE_WIDTH, COLOR, COLOR) # Draw scores; # but first get the width of the "score" text in pixels # for each "Player"; useful in (later) computing the # position to draw the "score" text - centered justified # on the "canvas field" of each player. score_textwidth_in_px = frame.get_canvas_textwidth(str(score1), FONT_SIZE, FONT_FACE) score_point_x = (WIDTH // 4) - (score_textwidth_in_px // 2) score_point_y = (HEIGHT // 4) canvas.draw_text(str(score1), [score_point_x, score_point_y], FONT_SIZE, COLOR, FONT_FACE) score_textwidth_in_px = frame.get_canvas_textwidth(str(score2), FONT_SIZE, FONT_FACE) score_point_x = (3 * WIDTH // 4) - (score_textwidth_in_px // 2) score_point_y = (HEIGHT // 4) canvas.draw_text(str(score2), [score_point_x, score_point_y], FONT_SIZE, COLOR, FONT_FACE) return None
11,693
def tf_idf(df, vocab): """[summary] https://towardsdatascience.com/natural-language-processing-feature-engineering-using-tf-idf-e8b9d00e7e76 Args: docs ([type]): [description] """ docs = [] for text in df['text'].tolist(): docs += [text] vectorizer = TfidfVectorizer(tokenizer=token_list, lowercase=False, vocabulary=vocab) vectors = vectorizer.fit_transform(docs) feature_names = vectorizer.get_feature_names() dense = vectors.todense() denselist = dense.tolist() tfidf_matrix = pd.DataFrame(denselist, columns=feature_names) return tfidf_matrix
11,694
def runtest_teardown(item: IPyNbFile, nextitem: typing.Optional[IPyNbFile]) -> None: """Propagate cell failure.""" # Do the normal teardown item.teardown() # Inform next cell of the notebook of failure of any previous cells if hasattr(item, "_force_skip"): if nextitem is not None and nextitem.name != "Cell 0": nextitem._force_skip = True
11,695
def test_tree_2_nodes_left_unbalanced(one_t): """Tree with 2 nodes and left sided should return balance of 1.""" one_t.insert(9) assert one_t.balance() == 1
11,696
def setup_checkpoint_dir(cfg, args, phase): """Create checkpoint directory # ROUND2-TODO: let's make this checkpoint director way more involved. Specific to user, to model, to config name, etc. """ root_dir = os.path.join( cfg["checkpoints_dir"], cfg["model"]["name"], args.config_name ) ckpt_dir = os.path.join(root_dir, "checkpoints") if not os.path.exists(ckpt_dir): if phase == "train": os.makedirs(ckpt_dir) else: raise FileNotFoundError("Checkpoint directory doesn't exist!") return ckpt_dir, root_dir
11,697
def get_activation_func(activation): """Turns a string activation function name into a function. """ if isinstance(activation, string_types): # Get the activation function. activation = activation.lower() if activation == "tanh": activation_func = tanh elif activation == "abstanh": activation_func = abs_tanh elif activation in ["sig", "sigmoid"]: activation_func = sigmoid elif activation in ["rec", "relu"]: activation_func = rectify elif activation in ["prelu_shelf"]: activation_func = parametric_flat_relu elif activation == "relu_max": activation_func = rectify_max # For performance comparisons with abs version of rectify elif activation in ["rec_para", "prelu"]: activation_func = parametric_rectifier elif activation == "maxout": activation_func = maxout elif activation == "linear": activation_func = linear else: raise ValueError("Unrecognized activation: {}".format(activation)) else: activation_func = activation return activation_func
11,698
def number_of_cores(): """ number_of_cores() Detect the number of cores in this system. """ # Linux, Unix and MacOS: if hasattr(os, "sysconf"): if "SC_NPROCESSORS_ONLN" in os.sysconf_names: # Linux & Unix: ncpus = os.sysconf("SC_NPROCESSORS_ONLN") if isinstance(ncpus, int) and ncpus > 0: return ncpus else: # OSX: return int(os.popen2("sysctl -n hw.ncpu")[1].read()) # Windows: if "NUMBER_OF_PROCESSORS" in os.environ: ncpus = int(os.environ["NUMBER_OF_PROCESSORS"]) if ncpus > 0: return ncpus return 1
11,699