blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
c8596050613ddd18b404c32750a3793b9e419fc6
dff24f8c37afd9a031fcd9d5be49ff6557149279
/model/PartCapsuleNet.py
f49e7ba734e3b673a37d447aa34aec8738a2f008
[ "MIT" ]
permissive
ajdillhoff/3dhpe-udd
a08ddc7a54f8901f708b1fb7ef91d504c0643433
5a77818670060710dff2b1b617a96481e5dc20a0
refs/heads/master
2020-09-23T06:29:34.757943
2020-09-03T17:22:35
2020-09-03T17:22:35
225,428,163
1
0
null
null
null
null
UTF-8
Python
false
false
4,519
py
import torch import torch.nn as nn import torch.nn.functional as F def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.stride = stride self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Capsule(nn.Module): def __init__(self, conv_block, num_pose_features, num_point_features): super(Capsule, self).__init__() self.num_pose_features = num_pose_features self.num_point_features = num_point_features # Pose encoder self.conv_block = conv_block self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.pose_fc = nn.Linear(512, self.num_pose_features) # Point map decoder up = nn.Upsample(mode='bilinear', scale_factor=2) u1 = nn.Conv2d(512, 128, kernel_size=3, stride=1, padding=1) u2 = nn.Conv2d(128, 1, kernel_size=3, stride=1, padding=1) self.map_decoder = nn.Sequential(*[ up, u1, nn.ReLU(inplace=True), up, u2, nn.ReLU(inplace=True), nn.Flatten(), nn.Linear(28*28, num_point_features), nn.ReLU(inplace=True) ]) def forward(self, x): conv_out = self.conv_block(x) pose_out = self.avgpool(conv_out) pose_out = pose_out.squeeze(-1).squeeze(-1) pose_out = self.pose_fc(pose_out) map_out = self.map_decoder(conv_out) return torch.cat((pose_out, map_out), -1) class PartCapsuleNet(nn.Module): def __init__(self, layers, num_parts=1, num_features=4, point_features=1024): super(PartCapsuleNet, self).__init__() self.num_parts = num_parts self.num_features = num_features self.point_features = point_features block = BasicBlock self.inplanes = 64 self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self.make_layer(block, 64, layers[0]) self.layer2 = self.make_layer(block, 128, layers[1], stride=2) self.layer3 = self.make_layer(block, 256, layers[2], stride=2) self.capsules = nn.ModuleList([self.create_capsule(block) for i in range(num_parts)]) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') def create_capsule(self, block): self.inplanes = 256 b1 = self.make_layer(block, 512, 1, stride=2) capsule = Capsule(b1, self.num_features, self.point_features) return capsule def make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes: downsample = nn.Sequential( conv1x1(self.inplanes, planes, stride) ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) output = [capsule(x).unsqueeze(1) for capsule in self.capsules] output = torch.cat(output, 1) return output
[ "ajdillhoff@gmail.com" ]
ajdillhoff@gmail.com
46578a876b572f705fd240a207db106194fe2d29
3c6505934caec3fcdc9ed533f87aad8617255c1c
/PG17.py
4d89b4c165d26b672325618b3928bb46a67ef791
[]
no_license
teamchz/pythonProject
d7d566bb6413ee94258d8452fd3737dd89a72ab9
581b5e60f18141fb021baea7b9f0a7c62a75903f
refs/heads/master
2023-01-04T05:57:56.228449
2020-11-02T09:39:03
2020-11-02T09:39:03
306,906,496
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
def progress(n): global money if n == 0: return money else: return progress(n-1) * 1.05 money = 10000 print(progress(30))
[ "teamchz@gmail.com" ]
teamchz@gmail.com
27e43e9d33a28d66d39c58401890ea2ae4378934
71cf8ce77bd73ae0bf1794654e9cf4c5445aad86
/pyblake2/bench.py
ea6eb8876e8d273a2c8d85f5d757a0961331c10d
[ "MIT" ]
permissive
bryant/pyblake2
d2b7298401d929cea24b5b8275dc3136b12ff2d8
47cd6da3b06ae71b73289da6510526fc992f595b
refs/heads/master
2016-09-06T09:58:04.476570
2013-04-06T08:18:23
2013-04-06T18:15:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
from pyblake2 import Blake2b b = Blake2b() payload = ''.join(chr(i) for i in xrange(256)) * 4000 b(payload)
[ "bryant.wong@stonybrook.edu" ]
bryant.wong@stonybrook.edu
e6f5c41e185e736d4772e6ccc91ba53bfe5ba936
d8d3b0629f3ae207a36d406c40ca3e963b60aebf
/setup.py
0ca4cd92144ab24b67f53327a0e3bc149203b120
[]
no_license
pepebonet/bbgMod
7db940916cdc2d458a4f6782da8221c05ee9c572
e86fc4f2c00aba3972622331142baf4d677aacd6
refs/heads/master
2022-06-12T04:32:06.101946
2020-05-05T07:18:15
2020-05-05T07:18:15
252,757,969
0
0
null
null
null
null
UTF-8
Python
false
false
873
py
from os import path from setuptools import setup, find_packages VERSION = "0.1" DESCRIPTION = "Deeplearning tool" directory = path.dirname(path.abspath(__file__)) # Get requirements from the requirements.txt file with open(path.join(directory, 'requirements.txt')) as f: required = f.read().splitlines() # Get the long description from the README file with open(path.join(directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='bbgMod', version=VERSION, description=DESCRIPTION, long_description=long_description, long_description_content_type='text/markdown', url="", author="Miguel Grau & Jose Bonet", author_email="-", packages=find_packages(), install_requires=required, entry_points={ 'console_scripts': [ 'bbgMod = bbgmod.bbgMod:cli', ] } )
[ "jose.bonet@irbbarcelona.org" ]
jose.bonet@irbbarcelona.org
a49f3d3e0d40c24c70d0cb23ce2a51ac5fd2af44
f22d4319e6f848202fe847f9190b78ceaae8ed12
/envExemplo/Lista09/Lista09ExPOO12.py
7a98654d33705d72f5c682217478f62f45d25783
[]
no_license
AlexandreLouzada/Pyquest
7ecc0a3e3002df169bd53ae99e66c54019782698
29f0e67e5902fad0fc336ece63c9e5d3868d6b09
refs/heads/master
2023-08-30T22:54:46.438567
2023-08-21T19:04:39
2023-08-21T19:04:39
248,549,732
10
4
null
null
null
null
UTF-8
Python
false
false
1,538
py
class Produto: def __init__(self, codigo, nome, quantidade): self.codigo = codigo self.nome = nome self.quantidade = quantidade def mostrar_detalhes(self): print("Detalhes do Produto:") print(f"Código: {self.codigo}") print(f"Nome: {self.nome}") print(f"Quantidade: {self.quantidade}") def adicionar_estoque(self, quantidade): self.quantidade += quantidade def __str__(self): return f"Código: {self.codigo}\nNome: {self.nome}\nQuantidade: {self.quantidade}" def __eq__(self, other): if isinstance(other, Produto): return self.codigo == other.codigo return False def __lt__(self, other): if isinstance(other, Produto): return self.quantidade < other.quantidade raise TypeError("Incompatível com a comparação") def __len__(self): return self.quantidade # Exemplo de uso dos métodos e atributos da classe Produto produto1 = Produto(1, "Camiseta", 10) produto2 = Produto(2, "Calça", 5) produto1.mostrar_detalhes() # Exibe os detalhes do produto1 produto2.mostrar_detalhes() # Exibe os detalhes do produto2 print(len(produto1)) # Retorna a quantidade do produto1 produto1.adicionar_estoque(5) # Adiciona 5 unidades ao estoque do produto1 print(produto1) # Exibe a representação em string do produto1 print(produto1 == produto2) # Compara se o produto1 é igual ao produto2 print(produto1 < produto2) # Compara se o produto1 é menor que o produto2
[ "professorlouzada@gmail.com" ]
professorlouzada@gmail.com
05a4111cad8b7254f2fa80e1235f86b814ba4854
02ec51c28d0c0e17a0621646ee571f72202e5c41
/deepseg/dataset.py
4a85a993bd2634342b2573cd634a23db65c27df2
[ "Apache-2.0" ]
permissive
luozhouyang/deepseg
4934bcef01ba6bd8debcd89a8f1fdc3f7ef8a788
3759af585f32fb5d543ddd5af71c47f16d7e73d2
refs/heads/master
2023-09-06T05:46:48.495346
2021-01-16T13:02:58
2021-01-16T13:02:58
155,837,694
28
8
Apache-2.0
2023-03-25T00:52:11
2018-11-02T08:40:19
Python
UTF-8
Python
false
false
6,528
py
import logging import os import re import tensorflow as tf def read_vocab_file(vocab_file): words = [] with open(vocab_file, mode='rt', encoding='utf8') as fin: for line in fin: line = line.rstrip('\n').strip() if not line: continue words.append(line) vocab = {} for i, v in enumerate(words): vocab[v] = i return vocab def build_tags(words): tokens, tags = [], [] for word in words: if len(word) == 1: tokens.append(word) tags.append('O') continue for i, c in enumerate(word): if i == 0: tokens.append(c) tags.append('B') else: tokens.append(c) tags.append('I') return tokens, tags def read_files(input_files, callback=None): if isinstance(input_files, str): input_files = [input_files] for f in input_files: if not os.path.exists(f): logging.warning('File %s does not exist.', f) continue with open(f, mode='rt', encoding='utf8') as fin: for line in fin: line = line.rstrip('\n') if not line: continue if callback: callback(line) logging.info('Read file %s finished.', f) logging.info('Read all files finished.') def read_train_files(input_files, sep=' '): features, labels = [], [] def collect_fn(line): tokens, tags = build_tags(re.split(sep, line)) if len(tokens) != len(tags): return features.append(tokens) labels.append(tags) read_files(input_files, callback=collect_fn) return features, labels def read_predict_files(input_files): features = [] def collect_fn(line): tokens = [w.strip() for w in line if w.strip()] features.append(tokens) read_files(input_files, callback=collect_fn) return features class LabelMapper: def __init__(self): self.label2id = { 'O': 0, 'B': 1, 'I': 2 } self.id2label = {v: k for k, v in self.label2id.items()} def encode(self, labels): ids = [self.label2id.get(label, 0) for label in labels] return ids def decode(self, ids): labels = [self.id2label.get(_id, 'O') for _id in ids] return labels class TokenMapper: def __init__(self, vocab_file, unk_token='[UNK]', pad_token='[PAD]'): self.token2id = read_vocab_file(vocab_file) self.id2token = {v: k for k, v in self.token2id.items()} assert len(self.token2id) == len(self.id2token) self.unk_token = unk_token self.unk_id = self.token2id[self.unk_token] self.pad_token = pad_token self.pad_id = self.token2id[self.pad_token] def encode(self, tokens): ids = [self.token2id.get(token, self.unk_id) for token in tokens] return ids def decode(self, ids): tokens = [self.id2token.get(_id, self.unk_token) for _id in ids] return tokens class DatasetBuilder: def __init__(self, token_mapper, label_mapper, **kwargs): self.token_mapper = token_mapper self.label_mapper = label_mapper self.feature_pad_id = self.token_mapper.pad_id self.label_pad_id = self.label_mapper.label2id['O'] def build_train_dataset( self, input_files, batch_size=32, buffer_size=1000000, sequence_maxlen=None, bucket_boundaries=[50, 100, 150, 200, 250, 300, 350, 400, 450, 500], repeat=1, **kwargs): features, labels = read_train_files(input_files, sep=kwargs.get('sep', ' ')) features = [self.token_mapper.encode(x) for x in features] labels = [self.label_mapper.encode(x) for x in labels] features = tf.ragged.constant(features, dtype=tf.int32) labels = tf.ragged.constant(labels, dtype=tf.int32) x_dataset = tf.data.Dataset.from_tensor_slices(features) # convert ragged tensor to tensor x_dataset = x_dataset.map(lambda x: x) y_dataset = tf.data.Dataset.from_tensor_slices(labels) y_dataset = y_dataset.map(lambda y: y) dataset = tf.data.Dataset.zip((x_dataset, y_dataset)) if sequence_maxlen is not None and sequence_maxlen > 0: dataset = dataset.filter(lambda x, y: tf.size(x) < sequence_maxlen) dataset = dataset.repeat(repeat) dataset = dataset.shuffle(buffer_size=buffer_size, reshuffle_each_iteration=True) bucket_batch_sizes = [batch_size] * (len(bucket_boundaries) + 1) dataset = dataset.apply(tf.data.experimental.bucket_by_sequence_length( element_length_func=lambda x, _: tf.size(x[0]), bucket_boundaries=bucket_boundaries, bucket_batch_sizes=bucket_batch_sizes, padded_shapes=([None], [None]), padding_values=(self.token_mapper.pad_id, self.label_mapper.label2id['O']) )) # dataset = dataset.padded_batch( # batch_size=batch_size, # padded_shapes=([None], [None]), # padding_values=(self.token_mapper.pad_id, self.label_mapper.label2id['O']) # ) return dataset def build_valid_dataset( self, input_files, batch_size=32, buffer_size=100000, sequence_maxlen=None, bucket_boundaries=[50, 100, 150, 200, 250, 300, 350, 400, 450, 500], repeat=1, **kwargs): return self.build_train_dataset( input_files, batch_size, buffer_size, sequence_maxlen=sequence_maxlen, bucket_boundaries=bucket_boundaries, repeat=repeat, **kwargs) def build_predict_dataset(self, input_files, batch_size, **kwargs): features = read_predict_files(input_files) features = [self.token_mapper.encode(x) for x in features] features = tf.ragged.constant(features, dtype=tf.int32) dataset = tf.data.Dataset.from_tensor_slices(features) dataset = dataset.map(lambda x: x) dataset = dataset.padded_batch( batch_size=batch_size, padded_shapes=[None], padding_values=self.token_mapper.pad_id ) # dataset = dataset.map(lambda x: (x, None)) return dataset
[ "zhouyang.luo@gmail.com" ]
zhouyang.luo@gmail.com
205adc6a7e58f4313d71b4cfc42c1bba51e03ec8
d85a04ad00942081027e56ab69a7734d27bcc6d8
/simple-cnn/util/data_processor.py
e49e7043fa7e0245f4cd59bc805dfe6e29f35988
[]
no_license
Nash2325138/DL_contest2_codes_viewing
ecc9f1a1ed97c70acf27f379c9b801da7069aef0
82ca637a97726e18ab902c1eaee18cd42fba6ed0
refs/heads/master
2021-08-22T06:37:50.613075
2017-11-29T14:58:02
2017-11-29T14:58:02
112,488,710
0
0
null
null
null
null
UTF-8
Python
false
false
903
py
#!/usr/bin/env python3 import numpy as np import pickle as pkl import tensorflow as tf from PIL import Image from train.params import * from util.bbox_transform import * def preprocess_train_data(df): width = par_img_width() height = par_img_height() boxes_resize = df['boxes'].copy() for img in range(len(boxes_resize)): image = Image.open('/home/Public/JPEGImages/' + df['image_name'][img]) w = image.size[0] h = image.size[1] boxes = boxes_resize[img] boxes[:, [0, 2]] = boxes[:, [0, 2]] * (width / w) boxes[:, [1, 3]] = boxes[:, [1, 3]] * (height / h) boxes_resize[img] = np.array( [df['gt_classes'][img][0]] + bbox_transform( np.array([0, 0, width - 1, height - 1]), boxes[0]).tolist()) new_df = df.copy() new_df['one_gt'] = boxes_resize return new_df
[ "j2325138@gmail.com" ]
j2325138@gmail.com
013d119c7e6c94b89935d95ed0ebb30cce151760
b6fc54cff7037f5e4ef26cb4a645d5ea5a6fecdf
/000562HeadFirstPy/000562_01_01_p079_Range_20200225.py
76af97dd475972c7f62f1a8d29ef28ecd5ded55e
[ "Apache-2.0" ]
permissive
SafonovMikhail/python_000577
5483eaf2f7c73bc619ce1f5de67d8d689d2e7dd4
f2dccac82a37df430c4eb7425b5d084d83520409
refs/heads/master
2022-12-08T10:53:57.202746
2022-12-07T09:09:51
2022-12-07T09:09:51
204,713,341
0
0
null
null
null
null
UTF-8
Python
false
false
265
py
# range print('range(5):\t\t\t\t', range(5)) print('list(range(0, 5)):\t\t', list(range(0, 5))) print('list(range(5, 10)):\t\t', list(range(5, 10))) print('list(range(0, 10, 2)):\t', list(range(0, 10, 2))) print('list(range(10, 0, -2)):\t', list(range(10, 0, -2)))
[ "ms33@inbox.ru" ]
ms33@inbox.ru
ac2b7e9aab22ce7a5f8cf75c707dfeacedc7298e
a538f10ff195c1708fb60a87198eeb939129c7fa
/sos_app/login.py
6e15303b7d4c69e6d47371846386c76d380715c1
[]
no_license
sharmaprateek/sos
e2d5124b1c4ece72a6fdff1ab3d4c98a59a008b9
b1e697a7ae6f1bc5350d6bab0ec4a636ea76a0ad
refs/heads/master
2021-01-10T19:05:48.045019
2014-12-14T20:44:41
2014-12-14T20:44:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,822
py
from django.http import HttpResponse, HttpResponseRedirect from django.template import RequestContext, loader from django.views.decorators.csrf import csrf_exempt from django.contrib.auth.decorators import login_required from django.contrib.auth import authenticate, login, logout @csrf_exempt def user_login(request): post = request.POST if request.user: logout(request) print request if post == {}: template = loader.get_template('sos_app/login.html') context = RequestContext(request, {}) return HttpResponse(template.render(context)) else: username = post['username'] password = post['password'] # do this way for now # update_database(None) user = authenticate(username=username, password=password) if user: if user.is_active: # If the account is valid and active, we can log the user in. # We'll send the user back to the homepage. login(request, user) template = loader.get_template('sos_app/login.html') context = RequestContext(request, {}) return HttpResponse(template.render(context)) else: # An inactive account was used - no logging in! return HttpResponse("Your account is disabled.") else: # Bad login details were provided. So we can't log the user in. print "Invalid login details: {0}, {1}".format(username, password) return HttpResponse("Invalid login details supplied.") @login_required def user_logout(request): logout(request) nextURL = "/clusters/" if ('next' in request.GET): nextURL = request.GET['next'] return HttpResponseRedirect(nextURL)
[ "prateek.sharma@delphix.com" ]
prateek.sharma@delphix.com
e54ed7f655645acc151f4ce37ea3e07d86ced540
434e97ced79dd752239512b1f7eb58f400e09212
/1. Single Linked List/1. Simple Linked List.py
650090aa9e668a738513c97ddcb7bc43c36dcf1a
[]
no_license
bipulhstu/Data-Structures-and-Algorithms-Through-Python-in-Depth
22aa2de2f3b68ebf4a640d99adf9e5fa47c3a988
f53d9053b045a496536259f29b696f9b331e55d2
refs/heads/master
2020-04-05T20:00:35.765508
2018-11-12T05:29:20
2018-11-12T05:29:20
157,160,846
2
0
null
null
null
null
UTF-8
Python
false
false
365
py
class Node: def __init__(self,data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None if __name__ == "__main__": llist = LinkedList() llist.head = Node(6) second = Node(3) third = Node(4) #linked llist.head.next = second second.next = third
[ "bipulhstu@gmail.com" ]
bipulhstu@gmail.com
c0563edd5ffa2d7bea4dd77f4ffab00fc1caba0f
b35d346d5e2d379453805a32e56efb734fb3a783
/hf/3hf/10rejtettuzi.py
4f9c6ed2caaa7bd4684b55182f0958e49f2b6cdc
[]
no_license
firstvan/Python
19e6e3063cb14065e86f2e58315fb46cd47053f6
a9495af9bb00f280b4ddb3a9a0dd21de4d7c83d4
refs/heads/master
2020-04-08T07:34:47.117847
2014-12-01T16:51:33
2014-12-01T16:51:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
556
py
#!/usr/bin/env python2 import sys szoveg ='''Cbcq Dgyk! Dmeybh kce cew yrwyg hmrylyaqmr: rylsjb kce y Nwrfml npmepykmxyqg lwcjtcr! Aqmimjjyi: Ynyb''' def main(): szoveg1='' for ch in szoveg: a = chr(ord(ch) + 2) if a == '{': szoveg1 += 'a' elif a =='[': szoveg1 += 'A' elif a =='<': szoveg1 += ':' elif ch =='!' or ch == ' ' or ch == '\n': szoveg1 += ch else: szoveg1 += a print szoveg1 if __name__ == "__main__": main();
[ "firstvan@live.com" ]
firstvan@live.com
e272f1bdf83a3217db0d3d28ac63b47e6ed78a94
33363e4ceb2088bcc2ce3e70349e5024e3229f58
/python/cugraph/centrality/katz_centrality.py
d5ed93622382c55d44b3af2ae27eb9a15f15d1c3
[ "Apache-2.0" ]
permissive
hieuqtran/cugraph
b8c1e9a39a8627db330f05061a5b655f8546579f
ed867e5db69639ceaf09fffc3aea1027ff09bfe5
refs/heads/master
2020-09-02T00:51:46.420739
2019-10-17T17:56:36
2019-10-17T17:56:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,831
py
# Copyright (c) 2019, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cugraph.centrality import katz_centrality_wrapper def katz_centrality(G, alpha=0.1, max_iter=100, tol=1.0e-6, nstart=None, normalized=True): """ Compute the Katz centrality for the nodes of the graph G. cuGraph does not currently support the 'beta' and 'weight' parameters as seen in the corresponding networkX call. This implementation is based on a relaxed version of Katz defined by Foster with a reduced computational complexity of O(n+m) Foster, K.C., Muth, S.Q., Potterat, J.J. et al. Computational & Mathematical Organization Theory (2001) 7: 275. https://doi.org/10.1023/A:1013470632383 Parameters ---------- G : cuGraph.Graph cuGraph graph descriptor with connectivity information. The graph can contain either directed or undirected edges where undirected edges are represented as directed edges in both directions. alpha : float Attenuation factor with a default value of 0.1. If alpha is not less than 1/(lambda_max) where lambda_max is the maximum degree GDF_CUDA_ERROR is returned max_iter : int The maximum number of iterations before an answer is returned. This can be used to limit the execution time and do an early exit before the solver reaches the convergence tolerance. If this value is lower or equal to 0 cuGraph will use the default value, which is 100. tolerance : float Set the tolerance the approximation, this parameter should be a small magnitude value. The lower the tolerance the better the approximation. If this value is 0.0f, cuGraph will use the default value which is 1.0e-6. Setting too small a tolerance can lead to non-convergence due to numerical roundoff. Usually values between 1e-2 and 1e-6 are acceptable. nstart : cudf.Dataframe GPU Dataframe containing the initial guess for katz centrality. nstart['vertex'] : cudf.Series Contains the vertex identifiers nstart['values'] : cudf.Series Contains the katz centrality values of vertices normalized : bool If True normalize the resulting katz centrality values Returns ------- df : cudf.DataFrame GPU data frame containing two cudf.Series of size V: the vertex identifiers and the corresponding katz centrality values. df['vertex'] : cudf.Series Contains the vertex identifiers df['katz_centrality'] : cudf.Series Contains the katz centrality of vertices Examples -------- >>> M = cudf.read_csv('datasets/karate.csv', delimiter=' ', >>> dtype=['int32', 'int32', 'float32'], header=None) >>> sources = cudf.Series(M['0']) >>> destinations = cudf.Series(M['1']) >>> G = cugraph.Graph() >>> G.add_edge_list(sources, destinations, None) >>> kc = cugraph.katz_centrality(G) """ df = katz_centrality_wrapper.katz_centrality(G.graph_ptr, alpha, max_iter, tol, nstart, normalized) return df
[ "kaatish@nvidia.com" ]
kaatish@nvidia.com
f83ef861fff3787e8ddea902f0faa23e23325946
c426f269e8f7598d78b0a3bcc5629bfe447d12f6
/PythonProjects/Python3EssentialTraining/10_InheritanceAndPolymorphism.py
26d1a776323f3c76f703c6d3289aa4356d761e02
[]
no_license
DmitryVakhrushev/Python
8d05d083f63822622f43ea5d873b98ef4e8cfd15
9dd2f37bcdce25a5cc0146adb4513ed2e539b650
refs/heads/master
2022-11-13T18:39:44.131820
2020-06-28T02:29:17
2020-06-28T02:29:17
243,847,823
0
0
null
null
null
null
UTF-8
Python
false
false
1,815
py
#------------------------------------------------------------------- # Lesson 10: Greater reusability with inheritance and polymorphism #------------------------------------------------------------------- # Each class (Duck, Person, Dog) inherites "AnimalActions" class # Class AnimalActions has 4 methods # Other classes have dictionaries with different strings # Each method of AnimalAction class becomes avaliable for each other class class AnimalActions: def quack(self): return self.strings['quack'] def feathers(self): return self.strings['feathers'] def bark(self): return self.strings['bark'] def fur(self): return self.strings['fur'] class Duck(AnimalActions): strings = dict( quack = "Quaaaaak!", feathers = "The duck has grey and white feathers.", bark = "The duck cannot bark.", fur = "The duck has no fur." ) class Person(AnimalActions): strings = dict( quack = "The person imitates a duck.", feathers = "The person takes a feather from the ground and shows it.", bark = "The person says woof!", fur = "The person puts on a fur coat." ) class Dog(AnimalActions): strings = dict( quack = "The dog cannot quack.", feathers = "The dog has no feathers.", bark = "Arf!", fur = "The dog has white fur with black spots." ) def in_the_doghouse(dog): print(dog.bark()) print(dog.fur()) def in_the_forest(duck): print(duck.quack()) print(duck.feathers()) def main(): donad = Duck() john = Person() fido = Dog() print("- In the forest:") for o in (donad, john, fido): in_the_doghouse(o) print("- In the doghouse:") for o in (donad, john, fido): in_the_doghouse(o) if __name__ == "__main__": main()
[ "dm.vakhrushev@gmail.com" ]
dm.vakhrushev@gmail.com
f8906983156698e016b2c1b42eaacae61431e5bd
dea470247c097fc7e3af3e6921365a47c16f3b2e
/others/SSIM/configs/_base_/datasets/coco_detection.py
78d1f516957855ad1e3b51dab1db02e3e2744406
[ "Apache-2.0" ]
permissive
gist-ailab/mmdetection
e4cdf47a7d58fd24ba5657e63b998ea400d7acbb
ba73ebe80c1af2517dc27ae04b7ac549a6b859ca
refs/heads/master
2023-07-26T04:05:58.330144
2023-07-18T04:18:36
2023-07-18T04:18:36
583,538,372
0
1
Apache-2.0
2023-04-11T18:42:27
2022-12-30T04:35:47
Python
UTF-8
Python
false
false
1,774
py
# dataset settings dataset_type = 'CocoDataset' data_root = '/SSDb/sung/dataset/coco/' # data_root = '/home/jovyan/sung/dataset/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox')
[ "hogili89@gist.ac.kr" ]
hogili89@gist.ac.kr
c9a5215f2c1b60e591fdd67e7e6bf37c9b83b335
4f0536090506380b7a6f73c810be453ebc19d8d6
/arena/rollout_worker.py
9ac8487e6ed692c28d4bfb3a1a2dc5fc461b4f1d
[ "MIT", "Apache-2.0" ]
permissive
YuhangSong/Arena-Baselines
9c9ac3f077210796bec889f71f7a5f66b5873726
e3e1b2cf0714ff8d35d3297932a4ad483b7e384e
refs/heads/master
2021-06-28T06:08:21.559251
2021-04-05T21:45:52
2021-04-05T21:45:52
178,899,988
36
8
Apache-2.0
2019-08-15T02:21:19
2019-04-01T16:08:45
ASP
UTF-8
Python
false
false
16,894
py
from ray.rllib.evaluation.rollout_worker import * from ray.rllib.evaluation.rollout_worker import _validate_env, _validate_and_canonicalize, _has_tensorflow_graph from gym import wrappers class ArenaRolloutWorker(RolloutWorker): """arena-spec, support monitor for MultiAgentEnv """ @DeveloperAPI def __init__(self, env_creator, policy, policy_mapping_fn=None, policies_to_train=None, tf_session_creator=None, batch_steps=100, batch_mode="truncate_episodes", episode_horizon=None, preprocessor_pref="deepmind", sample_async=False, compress_observations=False, num_envs=1, observation_filter="NoFilter", clip_rewards=None, clip_actions=True, env_config=None, model_config=None, policy_config=None, worker_index=0, monitor_path=None, log_dir=None, log_level=None, callbacks=None, input_creator=lambda ioctx: ioctx.default_sampler_input(), input_evaluation=frozenset([]), output_creator=lambda ioctx: NoopOutput(), remote_worker_envs=False, remote_env_batch_wait_ms=0, soft_horizon=False, no_done_at_end=False, seed=None, _fake_sampler=False): """Initialize a rollout worker. Arguments: env_creator (func): Function that returns a gym.Env given an EnvContext wrapped configuration. policy (class|dict): Either a class implementing Policy, or a dictionary of policy id strings to (Policy, obs_space, action_space, config) tuples. If a dict is specified, then we are in multi-agent mode and a policy_mapping_fn should also be set. policy_mapping_fn (func): A function that maps agent ids to policy ids in multi-agent mode. This function will be called each time a new agent appears in an episode, to bind that agent to a policy for the duration of the episode. policies_to_train (list): Optional whitelist of policies to train, or None for all policies. tf_session_creator (func): A function that returns a TF session. This is optional and only useful with TFPolicy. batch_steps (int): The target number of env transitions to include in each sample batch returned from this worker. batch_mode (str): One of the following batch modes: "truncate_episodes": Each call to sample() will return a batch of at most `batch_steps * num_envs` in size. The batch will be exactly `batch_steps * num_envs` in size if postprocessing does not change batch sizes. Episodes may be truncated in order to meet this size requirement. "complete_episodes": Each call to sample() will return a batch of at least `batch_steps * num_envs` in size. Episodes will not be truncated, but multiple episodes may be packed within one batch to meet the batch size. Note that when `num_envs > 1`, episode steps will be buffered until the episode completes, and hence batches may contain significant amounts of off-policy data. episode_horizon (int): Whether to stop episodes at this horizon. preprocessor_pref (str): Whether to prefer RLlib preprocessors ("rllib") or deepmind ("deepmind") when applicable. sample_async (bool): Whether to compute samples asynchronously in the background, which improves throughput but can cause samples to be slightly off-policy. compress_observations (bool): If true, compress the observations. They can be decompressed with rllib/utils/compression. num_envs (int): If more than one, will create multiple envs and vectorize the computation of actions. This has no effect if if the env already implements VectorEnv. observation_filter (str): Name of observation filter to use. clip_rewards (bool): Whether to clip rewards to [-1, 1] prior to experience postprocessing. Setting to None means clip for Atari only. clip_actions (bool): Whether to clip action values to the range specified by the policy action space. env_config (dict): Config to pass to the env creator. model_config (dict): Config to use when creating the policy model. policy_config (dict): Config to pass to the policy. In the multi-agent case, this config will be merged with the per-policy configs specified by `policy`. worker_index (int): For remote workers, this should be set to a non-zero and unique value. This index is passed to created envs through EnvContext so that envs can be configured per worker. monitor_path (str): Write out episode stats and videos to this directory if specified. log_dir (str): Directory where logs can be placed. log_level (str): Set the root log level on creation. callbacks (dict): Dict of custom debug callbacks. input_creator (func): Function that returns an InputReader object for loading previous generated experiences. input_evaluation (list): How to evaluate the policy performance. This only makes sense to set when the input is reading offline data. The possible values include: - "is": the step-wise importance sampling estimator. - "wis": the weighted step-wise is estimator. - "simulation": run the environment in the background, but use this data for evaluation only and never for learning. output_creator (func): Function that returns an OutputWriter object for saving generated experiences. remote_worker_envs (bool): If using num_envs > 1, whether to create those new envs in remote processes instead of in the current process. This adds overheads, but can make sense if your envs remote_env_batch_wait_ms (float): Timeout that remote workers are waiting when polling environments. 0 (continue when at least one env is ready) is a reasonable default, but optimal value could be obtained by measuring your environment step / reset and model inference perf. soft_horizon (bool): Calculate rewards but don't reset the environment when the horizon is hit. no_done_at_end (bool): Ignore the done=True at the end of the episode and instead record done=False. seed (int): Set the seed of both np and tf to this value to to ensure each remote worker has unique exploration behavior. _fake_sampler (bool): Use a fake (inf speed) sampler for testing. """ global _global_worker _global_worker = self policy_config = policy_config or {} if (tf and policy_config.get("eager") and not policy_config.get("no_eager_on_workers")): tf.enable_eager_execution() if log_level: logging.getLogger("ray.rllib").setLevel(log_level) if worker_index > 1: disable_log_once_globally() # only need 1 worker to log elif log_level == "DEBUG": enable_periodic_logging() env_context = EnvContext(env_config or {}, worker_index) self.policy_config = policy_config self.callbacks = callbacks or {} self.worker_index = worker_index model_config = model_config or {} policy_mapping_fn = (policy_mapping_fn or (lambda agent_id: DEFAULT_POLICY_ID)) if not callable(policy_mapping_fn): raise ValueError( "Policy mapping function not callable. If you're using Tune, " "make sure to escape the function with tune.function() " "to prevent it from being evaluated as an expression.") self.env_creator = env_creator self.sample_batch_size = batch_steps * num_envs self.batch_mode = batch_mode self.compress_observations = compress_observations self.preprocessing_enabled = True self.last_batch = None self._fake_sampler = _fake_sampler # arena-spec self.env = _validate_env(env_creator(env_context).unwrapped) # arena-spec if isinstance(self.env, MultiAgentEnv) or \ isinstance(self.env, BaseEnv): # if isinstance(self.env, BaseEnv): def wrap(env): return env # we can't auto-wrap these env types elif is_atari(self.env) and \ not model_config.get("custom_preprocessor") and \ preprocessor_pref == "deepmind": # Deepmind wrappers already handle all preprocessing self.preprocessing_enabled = False if clip_rewards is None: clip_rewards = True def wrap(env): env = wrap_deepmind( env, dim=model_config.get("dim"), framestack=model_config.get("framestack")) if monitor_path: env = gym.wrappers.Monitor(env, monitor_path, resume=True) return env else: def wrap(env): if monitor_path: env = gym.wrappers.Monitor(env, monitor_path, resume=True) return env self.env = wrap(self.env) def make_env(vector_index): return wrap( env_creator( env_context.copy_with_overrides( vector_index=vector_index, remote=remote_worker_envs))) self.tf_sess = None # arena-spec policy_dict = _validate_and_canonicalize(policy, self.env.unwrapped) self.policies_to_train = policies_to_train or list(policy_dict.keys()) # set numpy and python seed if seed is not None: np.random.seed(seed) random.seed(seed) if not hasattr(self.env, "seed"): raise ValueError("Env doesn't support env.seed(): {}".format( self.env)) self.env.seed(seed) try: import torch torch.manual_seed(seed) except ImportError: logger.info("Could not seed torch") if _has_tensorflow_graph(policy_dict) and not (tf and tf.executing_eagerly()): if (ray.is_initialized() and ray.worker._mode() != ray.worker.LOCAL_MODE and not ray.get_gpu_ids()): logger.debug("Creating policy evaluation worker {}".format( worker_index) + " on CPU (please ignore any CUDA init errors)") if not tf: raise ImportError("Could not import tensorflow") with tf.Graph().as_default(): if tf_session_creator: self.tf_sess = tf_session_creator() else: self.tf_sess = tf.Session( config=tf.ConfigProto( gpu_options=tf.GPUOptions(allow_growth=True))) with self.tf_sess.as_default(): # set graph-level seed if seed is not None: tf.set_random_seed(seed) self.policy_map, self.preprocessors = \ self._build_policy_map(policy_dict, policy_config) else: self.policy_map, self.preprocessors = self._build_policy_map( policy_dict, policy_config) self.multiagent = set(self.policy_map.keys()) != {DEFAULT_POLICY_ID} # arena-spec if self.multiagent: if not ((isinstance(self.env.unwrapped, MultiAgentEnv) or isinstance(self.env.unwrapped, ExternalMultiAgentEnv)) or isinstance(self.env.unwrapped, BaseEnv)): raise ValueError( "Have multiple policies {}, but the env ".format( self.policy_map) + "{} is not a subclass of BaseEnv, MultiAgentEnv or " "ExternalMultiAgentEnv?".format(self.env)) self.filters = { policy_id: get_filter(observation_filter, policy.observation_space.shape) for (policy_id, policy) in self.policy_map.items() } if self.worker_index == 0: logger.info("Built filter map: {}".format(self.filters)) # Always use vector env for consistency even if num_envs = 1 self.async_env = BaseEnv.to_base_env( self.env, make_env=make_env, num_envs=num_envs, remote_envs=remote_worker_envs, remote_env_batch_wait_ms=remote_env_batch_wait_ms) self.num_envs = num_envs if self.batch_mode == "truncate_episodes": unroll_length = batch_steps pack_episodes = True elif self.batch_mode == "complete_episodes": unroll_length = float("inf") # never cut episodes pack_episodes = False # sampler will return 1 episode per poll else: raise ValueError("Unsupported batch mode: {}".format( self.batch_mode)) self.io_context = IOContext(log_dir, policy_config, worker_index, self) self.reward_estimators = [] for method in input_evaluation: if method == "simulation": logger.warning( "Requested 'simulation' input evaluation method: " "will discard all sampler outputs and keep only metrics.") sample_async = True elif method == "is": ise = ImportanceSamplingEstimator.create(self.io_context) self.reward_estimators.append(ise) elif method == "wis": wise = WeightedImportanceSamplingEstimator.create( self.io_context) self.reward_estimators.append(wise) else: raise ValueError( "Unknown evaluation method: {}".format(method)) if sample_async: self.sampler = AsyncSampler( self.async_env, self.policy_map, policy_mapping_fn, self.preprocessors, self.filters, clip_rewards, unroll_length, self.callbacks, horizon=episode_horizon, pack=pack_episodes, tf_sess=self.tf_sess, clip_actions=clip_actions, blackhole_outputs="simulation" in input_evaluation, soft_horizon=soft_horizon, no_done_at_end=no_done_at_end) self.sampler.start() else: self.sampler = SyncSampler( self.async_env, self.policy_map, policy_mapping_fn, self.preprocessors, self.filters, clip_rewards, unroll_length, self.callbacks, horizon=episode_horizon, pack=pack_episodes, tf_sess=self.tf_sess, clip_actions=clip_actions, soft_horizon=soft_horizon, no_done_at_end=no_done_at_end) self.input_reader = input_creator(self.io_context) assert isinstance(self.input_reader, InputReader), self.input_reader self.output_writer = output_creator(self.io_context) assert isinstance(self.output_writer, OutputWriter), self.output_writer logger.debug( "Created rollout worker with env {} ({}), policies {}".format( self.async_env, self.env, self.policy_map))
[ "yuhangsong.china@gmail.com" ]
yuhangsong.china@gmail.com
95e35d4976bbcfc3afac960c917a0777e0d4dda7
2d3c2c7e21acd846960adf0b23e5329fdf84f2cd
/math_progam_2.3.py
6387a52990cbdda12efa6a96f7dbc6dad56e3368
[]
no_license
yeaagreed/Math-Program
6021f9042876e56299d6a0a7b78fa0e91ee990cf
e8165c0da8c9631284fed8efb84e22af72292b6f
refs/heads/main
2023-07-27T13:29:24.596394
2021-09-14T23:54:59
2021-09-14T23:54:59
399,730,727
0
0
null
null
null
null
UTF-8
Python
false
false
6,230
py
## # math_teacher.py # 18/08/2021 # SF def student_menu(): """Student Module""" print("""\n\n---------------Welcome to Who Wants to be a Mathionaire!--------------- Who Wants to be a Mathionaire will test your ability at maths while rewarding you with money. Questions will progressively get harder, increasing in age level until you get one wrong As you get more questions correct, the reward will increase, but if you get one wrong you lose your whole reward. """) print("\n##### Lets go, first question #####") reward = 10 answer = 0 i = 0 grade = 1 while True: # Steps the grade up every 3 questions i += 1 if i % 3 == 0: grade += 1 answer, operation = question_generation(grade, i) # If the user got it correct if answer == True: print("Good job, you got it correct!!") # Adds random reward on reward *= random.uniform(1, 3) print("Your reward is now ${:.0f}".format(reward)) # Checks if user still wants to play quit_YN = input("\nTo continue play press enter or N to quit: ").upper().strip() while quit_YN != "" and quit_YN != "N": quit_YN = input("Please press enter or N" + "\nTo continue play press enter or N to quit: ").upper().strip() if quit_YN == "N": print("Congratulations you won {:.0f}$ in total\n".format(reward)) break # If user did not get it correct else: print("Unlucky that is incorrect.\n" + "You lost all your money\n\n") break return grade, operation def question_generation(grade, i): """Generates questions""" # Only do all operators if above grade two if grade > 2: operations = ["/", "x", "+", "-"] operation = random.choice(operations) number_1, number_2 = number_picker(grade) # Checks if plus or minus operator answer = plus_or_minus(operation, number_1, number_2) if operation == "x": answer = number_1*number_2 # Need to make sure division gives a int answer elif operation == "/": while True: if number_1%number_2 == 0: answer = number_1/number_2 break else: number_1, number_2 = number_picker(grade) # If not above grade two, only do plus or minus else: operations = ["+", "-"] operation = random.choice(operations) number_1, number_2 = number_picker(grade) # Checks if plus or minus operator answer = plus_or_minus(operation, number_1, number_2) while True: try: user_answer = int(input("\nWhat is {} {} {}: ".format(number_1, operation, number_2))) break except: print("Please enter an whole number") question_info[i] = [operation, number_1, number_2, answer, user_answer, grade] # Check if answer is correct if answer == user_answer: operation = False return True, operation else: return False, operation def number_picker(grade): """Picks two random numbers""" number_1 = random.randint(0, grade * 10) number_2 = random.randint(1, grade * 10) return number_1, number_2 def plus_or_minus(operation, number_1, number_2): "Checks if plus or minus operator then executes the operator" if operation == "+": answer = number_1 + number_2 return answer elif operation == "-": answer = number_1 - number_2 return answer def teacher_menu(grade, operation): """Reads the teachers options""" while True: print("""\n#####Teacher Description##### (G) for grade summary (T) for students weaknessed (S) to see questions and answers of last student (Q) to quit""") mode = input("Please enter your option: ").lower() if mode == "g": grade_summary(grade) elif mode == "t": weakness(operation) elif mode == "s": question_print() elif mode == "q": print("\nExiting to main menu\n") break def grade_summary(grade): """Gives Teacher a grade summary""" if grade == None: print("Math program has not been run yet by a student") return print("\nYour student is working comfortably " + "at grade number {}.".format(grade-1) + "\nGrade {} is challenging for them".format(grade)) def weakness(operation): """Gives the students weak operator""" if operation == False: print("We have not identified a weak operator for your students") return print("\nYour students are struggling with {}".format(operation)) def question_print(): """Prints the questions that have been""" for question in question_info: print("\nGrade: {}".format(question_info[question][5]) + "\nWhat is {} {} {}: ".format(question_info[question][1], question_info[question][0], question_info[question][2]) + "\nStudent Answer: {}".format(question_info[question][4]) + "\nCorrect answer: {}\n".format(question_info[question][3])) def main_menu(): grade = None operation = False while True: print("""Welcome to Who wants to be a mathionaire!!" (P) to play (T) for teacher menu (Q) to quit""") mode = input("Please enter your option: ").lower() if mode == "p": grade, operation = student_menu() elif mode == "t": teacher_menu(grade, operation) elif mode == "q": print("Thank you for playing") break else: print("Please enter either P, T or Q") if __name__ == "__main__": import random question_info = {} main_menu()
[ "noreply@github.com" ]
yeaagreed.noreply@github.com
bc1927651feb362fb11038e4a1b6b12a240f8b33
20bd15d181c403f0ba6ea269761937aabf34b3c1
/embeds/embed_common.py
64ff561a912817ef4f6388cd8c2012c28e5f5d73
[]
no_license
XinliYu/PyModels
1ee96e5a544bddf6d6e7d54fa82bab195640d901
d9b0978f8829e599dee51463c9e437ad20e54c9f
refs/heads/master
2020-05-22T13:28:18.009886
2019-05-21T18:30:29
2019-05-21T18:30:29
186,359,076
2
0
null
null
null
null
UTF-8
Python
false
false
510
py
def find_analogies(w1, w2, w3): for w in (w1, w2, w3): if w not in word2vec: print("%s not in dictionary" % w) return king = word2vec[w1] man = word2vec[w2] woman = word2vec[w3] v0 = king - man + woman distances = pairwise_distances(v0.reshape(1, D), embedding, metric=metric).reshape(V) idxs = distances.argsort()[:4] for idx in idxs: word = idx2word[idx] if word not in (w1, w2, w3): best_word = word break print(w1, "-", w2, "=", best_word, "-", w3)
[ "xyu350@gatech.edu" ]
xyu350@gatech.edu
cf8ec172f833dec2b1f41077e0893166865d5c4f
8004831758776360a421b6cb458b48a120d1586e
/chapter_4/slices.py
4b85a2707d73238969cf98a296ba46482258709c
[]
no_license
scott-gordon72/python_crash_course
025d15952d7372c2a40780b7038008f9b39c42d2
605f1f7e8d90534bd9cb63f44098d95dec739e50
refs/heads/master
2022-06-04T19:29:40.142291
2020-04-25T01:13:48
2020-04-25T01:13:48
255,947,783
0
0
null
null
null
null
UTF-8
Python
false
false
539
py
import math cubes_list = [] for i in range(1, 11): cubes_list.append(i) cubes_list_comprehension = [cube ** 3 for cube in cubes_list] print(cubes_list_comprehension) print( f"The first three items in the list of cubes are:{cubes_list_comprehension[:3]}") cube_middle = int((len(cubes_list_comprehension) / 2) - 1) print(cube_middle) print( f"The items from the middle of the cube list are: {cubes_list_comprehension[cube_middle-1:cube_middle+2]}") print(f"The last three items in a list are: {cubes_list_comprehension[-3:]}")
[ "scott.gordon72@outlook.com" ]
scott.gordon72@outlook.com
5d1b4ee00dd806c681b392173175892dcc7fa2b7
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-vas/huaweicloudsdkvas/v2/model/stop_task_request.py
fe99f6e141c1773022da7df217fec7c46e3a8df1
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,639
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class StopTaskRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'service_name': 'str', 'task_id': 'str' } attribute_map = { 'service_name': 'service_name', 'task_id': 'task_id' } def __init__(self, service_name=None, task_id=None): """StopTaskRequest - a model defined in huaweicloud sdk""" self._service_name = None self._task_id = None self.discriminator = None self.service_name = service_name self.task_id = task_id @property def service_name(self): """Gets the service_name of this StopTaskRequest. 服务名称 :return: The service_name of this StopTaskRequest. :rtype: str """ return self._service_name @service_name.setter def service_name(self, service_name): """Sets the service_name of this StopTaskRequest. 服务名称 :param service_name: The service_name of this StopTaskRequest. :type: str """ self._service_name = service_name @property def task_id(self): """Gets the task_id of this StopTaskRequest. 指定的服务作业ID :return: The task_id of this StopTaskRequest. :rtype: str """ return self._task_id @task_id.setter def task_id(self, task_id): """Sets the task_id of this StopTaskRequest. 指定的服务作业ID :param task_id: The task_id of this StopTaskRequest. :type: str """ self._task_id = task_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, StopTaskRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
04c1467478361ba2732edb5915c0b5761c73dc42
0da798d9578988a40354f97e94dc6d272cedc82f
/main.py
8d61ed18583e5ae7817db7232da6837e26fb0cf9
[]
no_license
dmancy/Euler-1D-Solver
1d9d44717b2d5904a46e22c4b208db5ea25b06a2
579a1e6cec77b2270ef7607fe5d44e8d9d4895c9
refs/heads/master
2023-03-13T06:39:39.479136
2021-03-08T22:19:42
2021-03-08T22:19:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
949
py
#Python libraries import matplotlib.pyplot as plt import numpy as np import tikzplotlib from Grid import Grid from State import State from Solver import Solver from Riemann import Riemann from Euler import Euler from plot import plot #Number of cells N_cells = 100 #Grid step delta_x = 1 #Number of faces N_faces = N_cells + 1 #Generation of face positions faces = np.arange(-N_cells//2, N_cells//2+1, delta_x) #Grid generation grid = Grid(faces) #Specific heat ratio gamma = 1.4 #Initial condition U_initial = [State("Left", gamma, 1, 0, 2) if grid.cell_position[i] <= 0 else State("Right", gamma, 1, 0, 1) for i in range(N_cells)] #Time parameters t0 = 0 t_final = 25 #Exact solution Riemann_problem = Riemann(1., 0., 2., 1., 0., 1., 1.4) Courant_number = 0.7 solution = Euler(U_initial, grid, Courant_number, t0, t_final, "Steger_Warming") plot(Riemann_problem, solution, grid, t_final, Courant_number) #Plot Figures plt.show()
[ "mancydamien@gmail.com" ]
mancydamien@gmail.com
50aa2c4e21a87d6584cca67efa345d843c5d8901
d31baab88d4f0c652a87d21f872759b75bb636ea
/augmentation.py
0b1cc07fc5534024a664493de76bd0b131501d5c
[]
no_license
ahmetkucuk/flare-prediction
6841063f43a600d370839129ce3eb03de9cbfa9f
9d16a790658f9a5e17f8a4c7317e918fd9c7502f
refs/heads/master
2018-12-20T15:29:24.403037
2017-04-30T05:12:27
2017-04-30T05:12:27
86,946,432
0
0
null
null
null
null
UTF-8
Python
false
false
2,679
py
import numpy as np from collections import deque NO_AUGMENTATION = -1 STRETCH_AUGMENTATION = 1 SQUEEZE_AUGMENTATION = 2 SHIFT_AUGMENTATION = 3 MIRROR_AUGMENTATION = 4 FLIP_AUGMENTATION = 5 REVERSE_AUGMENTATION = 6 def mirror_augmentation(data, labels): new_labels = list(labels) new_data = (np.array(data).astype(np.float32)*-1).tolist() return new_data, new_labels def flip_augmentation(data, labels): new_labels = list(labels) mid_point = int(len(data)/2) new_data = data[mid_point:] + data[:mid_point] return new_data, new_labels def reverse_augmentation(data, labels): new_labels = list(labels) new_data = list(data) new_data.reverse() return new_data, new_labels def stretch_augmentation(data, labels): new_data = [] new_labels = [] for (single_record, label) in zip(data, labels): double_record = double_array(single_record) ts_length = len(double_record) new_single_record = [] for i in range(ts_length / 2): new_single_record.append(double_record[i]) new_data.append(new_single_record) new_labels.append(label) new_single_record = [] for i in range(ts_length / 2, ts_length, 1): new_single_record.append(double_record[i]) new_data.append(new_single_record) new_labels.append(label) return new_data, new_labels def double_array(data): if len(data) == 0: return data new_data = [] prev = np.array(data[0], dtype=float) for i in range(len(data)): d_array = np.array(data[i], dtype=float) new_data.append(((d_array + prev) / 2.0).tolist()) new_data.append(data[i]) prev = np.array(data[i], dtype=float) return new_data def squeeze_augmentation(data, labels): new_data = [] new_labels = [] for (single_record, label) in zip(data, labels): ts_length = len(single_record) new_single_record = [] for i in range(0, ts_length, 2): new_single_record.append(single_record[i]) for i in range(1, ts_length, 2): new_single_record.append(single_record[i]) new_data.append(new_single_record) new_labels.append(label) return new_data, new_labels def shift_2d_list(list2d, rotate=1): d1_len = len(list2d) new_list2d = [] for i in range(d1_len): data = list2d[i] items = deque(data) items.rotate(rotate) new_list2d.append(list(items)) return new_list2d def t_list(list): return np.asarray(list).T.tolist() def shift_augmentation(data, labels, rotate): new_data = [] new_labels = [] for (single_record, label) in zip(data, labels): single_record = t_list(single_record) single_record = shift_2d_list(single_record, rotate=rotate) single_record = t_list(single_record) new_data.append(single_record) new_labels.append(label) return new_data, new_labels
[ "ahmetkucuk92@gmail.com" ]
ahmetkucuk92@gmail.com
d2bace887ae8d6e8f98a445073d1abb6dba3225e
27a9b251f4cda1c94f7aafd8a7b3a47be38fcd55
/scripts/create_task_database_psych.py
8a1be30522ec903f599dd38dc0385e87e5cf951f
[]
no_license
openstax/research-wrst
f6ccd0e700f965dc2d356584dbeb4a88a4c16ede
a984a48e59d9bb2457edef5ac38506ef5836a7da
refs/heads/master
2023-07-19T23:46:32.477195
2021-09-02T19:09:12
2021-09-02T19:09:12
238,274,285
1
0
null
null
null
null
UTF-8
Python
false
false
4,422
py
import pandas as pd import itertools import numpy as np import re import sys sys.path.append('..') from wrst.app import create_app from wrst.database import db from wrst.database.models import Tasks from wrst.logic.experiment import Experiment sentences_file = "../textbook_data/book/psychology_14_1_final.csv" terms_file = "../textbook_data/terms/processed/term_psychology_14_1.csv" def extract_rex_ch_sec(rex_link): pattern = "^\d{,2}\-\d{,2}" tmp = rex_link.split("/")[-1] chsec = "".join(re.findall(pattern, tmp)).split("-") # chsec = rex_link.split('/')[-1][0:3].split('-') chsec = [int(c) for c in chsec] return chsec def get_term_list(text, all_terms): text_lower = text.lower().replace('.', '').replace(',', '').replace('?', '').replace(';', '').replace('(', '').replace(')', '') words = set(text_lower.split()) term_list = set(all_terms) compound_terms = set([t for t in term_list if " " in t]) # Extract simple single-word matches as well as full text matches terms_simple = all_terms & words terms_compound = set([c for c in compound_terms if c in text_lower]) # Get all the simple terms that are substrings of the compound terms terms_simple_dup = set( [t for t in terms_simple if any([t in t2 for t2 in terms_compound])] ) # Get the "final" term list final_term_list = list(terms_simple | (terms_compound - terms_simple_dup)) # Finally, check each term to see if it a substring of any other term in the list. If so, kill it with fire! occ_count = [ (t1, np.sum([t1 in t2 for t2 in final_term_list])) for t1 in final_term_list ] final_term_list = [t[0] for t in occ_count if t[1] == 1] return final_term_list def create_book_dataframe(sentences_file, all_terms): df_book = pd.read_csv(sentences_file) # Do term extraction, etc df_book["terms"] = df_book["sentence"].apply(lambda x: get_term_list(x, all_terms)) df_book["N_terms"] = df_book["terms"].apply(lambda x: len(x)) df_book_tmp = df_book.copy() df_book = df_book[df_book["N_terms"] >= 2] df_book["sentence_id"] = list(range(0, len(df_book))) return df_book, df_book_tmp def get_base_term(term, df_terms): # Find the term in the dataframe, return it's base pair term = term.lower() dft = df_terms[df_terms["term"]==term] return dft["base_term"].iloc[0] app = create_app() app.app_context().push() # Read out the sentences and term files # Weave everything together to create the task db table, which contains each possible exercise for participants # First, purge whatever is in the Task table currently db.session.query(Tasks).delete() db.session.commit() # Get the terms dataframe and the set of all terms df_terms = pd.read_csv( terms_file ) df_terms["term"] = df_terms["term"].apply(lambda x: x.lower()) all_terms = set(df_terms["term"].unique().tolist()) print("I have foune {} total terms".format(df_terms.shape[0])) # Get the book dataframe, filtered down to sentences allowed in the current experiment df_book, df_book_full = create_book_dataframe(sentences_file, all_terms) # Now go through each sentence and assemble a task for each pairwise combination of terms found therein task_count = 0 task_list = [] for ii in range(0, df_book.shape[0]): sentence = df_book.iloc[ii] terms = sentence["terms"] for term_combination in itertools.combinations(terms, 2): task = Tasks( task_id=task_count, paragraph_id=sentence["paragraph_idx"], sentence_id=sentence["sentence_id"], sentence=sentence["sentence"], term_1=term_combination[0], term_2=term_combination[1], type_1=df_terms[df_terms["term"]==term_combination[0]].iloc[0]["type"], type_2=df_terms[df_terms["term"] == term_combination[1]].iloc[0]["type"], base_term_1=get_base_term(term_combination[0], df_terms), base_term_2=get_base_term(term_combination[1], df_terms) ) task_list.append(task) task_count += 1 db.session.bulk_save_objects(task_list) db.session.commit() # print("Finished doing Ch. {} Sec. {}".format(chapter, section)) print("I found {} valid sentences having at least two terms".format(df_book.shape[0])) print("I found {} total tasks that can be completed".format(task_count)) print("I wrote {} tasks to the db".format(len(task_list)))
[ "andrew.e.waters@gmail.com" ]
andrew.e.waters@gmail.com
ef36e1c1a2b4b5b64e1e2ba1f028e6f8b4fe565b
275135c409644b46a551ded2165649145f95a032
/BotosanLayer.py
2fde92550b06df6a68d18e1534fe5ebbf77f072f
[ "MIT" ]
permissive
gokomo/BotoSan
1094dda9eac70e191767bd1ce665b506170c068e
8869f8016b9ab07d4cbaed1170ae12c329dcdb30
refs/heads/master
2021-06-21T06:48:00.887990
2017-08-14T21:40:18
2017-08-14T21:40:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,669
py
# coding=utf-8 import random import time import logging import RegexMatcher from DateHelper import DateHelper from yowsup.layers.interface import YowInterfaceLayer, ProtocolEntityCallback from yowsup.layers.protocol_messages.protocolentities import TextMessageProtocolEntity from yowsup.layers.protocol_presence.protocolentities import * from yowsup.layers.protocol_chatstate.protocolentities import * from yowsup.common.tools import Jid from yowsup.layers.protocol_media.protocolentities import * class BotosanLayer(YowInterfaceLayer): def __init__(self): super(BotosanLayer, self).__init__() self.regex = RegexMatcher.RegexMatcher() self.logger = logging.getLogger("botosan.logger") @ProtocolEntityCallback("message") def onMessage(self, messageProtocolEntity): # Ack immediately then take a while to respond self.toLower(messageProtocolEntity.ack()) self.toLower(messageProtocolEntity.ack(True)) if DateHelper.determineIfBotosanShouldRespond(messageProtocolEntity.getTimestamp()): self.sleepBotosan() if messageProtocolEntity.getType() == 'text': if messageProtocolEntity.isGroupMessage(): self.onGroupMessage(messageProtocolEntity) else: self.onTextMessage(messageProtocolEntity) elif messageProtocolEntity.getType() == 'media': self.onMediaMessage(messageProtocolEntity) if messageProtocolEntity.getType() == 'text' and self.regex.doesMatchAPattern(messageProtocolEntity): message_to_send = self.regex.matchPatterns(messageProtocolEntity) if message_to_send is not None: self.simulateBotosanPreparingAnswer(messageProtocolEntity, messageToSend=message_to_send) else: self.logger.info("No pattern match.") @ProtocolEntityCallback("receipt") def onReceipt(self, entity): self.toLower(entity.ack()) def setBotosanOnline(self): self.toLower(AvailablePresenceProtocolEntity()) def setBotosanDisconnect(self): self.toLower(UnavailablePresenceProtocolEntity()) def setBotosanPresence(self): self.toLower(PresenceProtocolEntity(name="Botosan")) def setBotosanTyping(self, message): self.toLower(OutgoingChatstateProtocolEntity( OutgoingChatstateProtocolEntity.STATE_TYPING, message.getFrom() )) def stopBotosanTyping(self, message): self.toLower(OutgoingChatstateProtocolEntity( OutgoingChatstateProtocolEntity.STATE_PAUSED, message.getFrom() )) def simulateBotosanPreparingAnswer(self, messageProtocol, messageToSend): self.setBotosanPresence() self.setBotosanOnline() self.sleepBotosan() self.setBotosanTyping(messageProtocol) self.sleepBotosan(minTime=2.0, maxTime=4.0) self.stopBotosanTyping(messageProtocol) self.sleepBotosan() self.toLower(messageToSend) @staticmethod def sleepBotosan(minTime=0.2, maxTime=0.6): """ Sleeps botosan for a random amount of time between min and max, defaults to 0.2 and 0.6 if none are provided. :param minTime: Minimum amount of time to sleep :param maxTime: Maximum amount of time to sleep """ time.sleep(random.uniform(minTime, maxTime)) def onTextMessage(self, messageProtocolEntity): """Log the body and phone from which it originated""" self.logger.info("Echoing %s to %s" % (messageProtocolEntity.getBody(), messageProtocolEntity.getFrom(True))) def onMediaMessage(self, messageProtocolEntity): if messageProtocolEntity.getMediaType() == "image": self.logger.info("Echoing image %s to %s" % (messageProtocolEntity.url, messageProtocolEntity.getFrom(True))) elif messageProtocolEntity.getMediaType() == "location": self.logger.info("Echoing location (%s, %s) to %s" % ( messageProtocolEntity.getLatitude(), messageProtocolEntity.getLongitude(), messageProtocolEntity.getFrom(False))) elif messageProtocolEntity.getMediaType() == "vcard": self.logger.info("Echoing vcard (%s, %s) to %s" % ( messageProtocolEntity.getName(), messageProtocolEntity.getCardData(), messageProtocolEntity.getFrom(True))) def onGroupMessage(self, message): self.logger.info("Group Message: [%s] === [%s]-[%s]\t%s" % ( message.getAuthor(), message.getParticipant(), message.getFrom(), message.getBody()))
[ "freddyloher@gmail.com" ]
freddyloher@gmail.com
b7c5da7117ce9730e6e185f03a1ba51ec604b2da
d1808d8cc5138489667b7845466f9c573591d372
/notebooks/Ambient Seismic Noise/Probabilistic Power Spectral Densities.py
ea3a14af430a40fdedd483965e6a4b0dd1899483
[]
no_license
krischer/seismo_live
e140777900f6246a677bc28b6e68f0a168ec41ab
fcc615aee965bc297e8d53da5692abb2ecd6fd0c
refs/heads/master
2021-10-20T22:17:42.276096
2019-11-27T23:21:16
2019-11-28T10:44:21
44,953,995
69
59
null
2020-05-22T11:00:52
2015-10-26T08:00:42
Python
UTF-8
Python
false
false
5,442
py
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.2.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # <div style='background-image: url("../share/images/header.svg") ; padding: 0px ; background-size: cover ; border-radius: 5px ; height: 250px'> # <div style="float: right ; margin: 50px ; padding: 20px ; background: rgba(255 , 255 , 255 , 0.7) ; width: 50% ; height: 150px"> # <div style="position: relative ; top: 50% ; transform: translatey(-50%)"> # <div style="font-size: xx-large ; font-weight: 900 ; color: rgba(0 , 0 , 0 , 0.8) ; line-height: 100%">Noise</div> # <div style="font-size: large ; padding-top: 20px ; color: rgba(0 , 0 , 0 , 0.5)">Lab: Probabilistic Power Spectral Densities</div> # </div> # </div> # </div> # # # Seismo-Live: http://seismo-live.org # # ##### Authors: # * Tobias Megies ([@megies](https://github.com/megies)) # # --- # %matplotlib inline import matplotlib.pyplot as plt plt.style.use("bmh") plt.rcParams['figure.figsize'] = 10, 6 # * read waveform data from file `data/GR.FUR..BHN.D.2015.361` (station `FUR`, [LMU geophysical observatory in Fürstenfeldbruck](https://www.geophysik.uni-muenchen.de/observatory/seismology)) # * read corresponding station metadata from file `data/station_FUR.stationxml` # * print info on both waveforms and station metadata # + from obspy import read, read_inventory st = read("data/GR.FUR..BHN.D.2015.361") inv = read_inventory("data/station_FUR.stationxml") print(st) print(inv) inv.plot(projection="ortho"); # - # * compute probabilistic power spectral densities using `PPSD` class from obspy.signal, see http://docs.obspy.org/tutorial/code_snippets/probabilistic_power_spectral_density.html (but use the inventory you read from StationXML as metadata) # * plot the processed `PPSD` (`plot()` method attached to `PPSD` object) # + from obspy.signal import PPSD tr = st[0] ppsd = PPSD(stats=tr.stats, metadata=inv) ppsd.add(tr) ppsd.plot() # - # Since longer term stacks would need too much waveform data and take way too long to compute, we prepared one year continuous data preprocessed for a single channel of station `FUR` to play with.. # # * load long term pre-computed PPSD from file `PPSD_FUR_HHN.npz` using `PPSD`'s `load_npz()` staticmethod (i.e. it is called directly from the class, not an instance object of the class) # * plot the PPSD (default is full time-range, depending on how much data and spread is in the data, adjust `max_percentage` option of `plot()` option) (might take a couple of minutes..!) # * do a cumulative plot (which is good to judge non-exceedance percentage dB thresholds) # + from obspy.signal import PPSD ppsd = PPSD.load_npz("data/PPSD_FUR_HHN.npz") # - ppsd.plot(max_percentage=10) ppsd.plot(cumulative=True) # * do different stacks of the data using the [`calculate_histogram()` (see docs!)](http://docs.obspy.org/packages/autogen/obspy.signal.spectral_estimation.PPSD.calculate_histogram.html) method of `PPSD` and visualize them # * compare differences in different frequency bands qualitatively (anthropogenic vs. "natural" noise).. # * nighttime stack, daytime stack # * advanced exercise: Use the `callback` option and use some crazy custom callback function in `calculate_histogram()`, e.g. stack together all data from birthdays in your family.. or all German holidays + Sundays in the time span.. or from dates of some bands' concerts on a tour.. etc. ppsd.calculate_histogram(time_of_weekday=[(-1, 0, 2), (-1, 22, 24)]) ppsd.plot(max_percentage=10) ppsd.calculate_histogram(time_of_weekday=[(-1, 8, 16)]) ppsd.plot(max_percentage=10) # * do different stacks of the data using the [`calculate_histogram()` (see docs!)](http://docs.obspy.org/packages/autogen/obspy.signal.spectral_estimation.PPSD.calculate_histogram.html) method of `PPSD` and visualize them # * compare differences in different frequency bands qualitatively (anthropogenic vs. "natural" noise).. # * weekdays stack, weekend stack ppsd.calculate_histogram(time_of_weekday=[(1, 0, 24), (2, 0, 24), (3, 0, 24), (4, 0, 24), (5, 0, 24)]) ppsd.plot(max_percentage=10) ppsd.calculate_histogram(time_of_weekday=[(6, 0, 24), (7, 0, 24)]) ppsd.plot(max_percentage=10) # * do different stacks of the data using the [`calculate_histogram()` (see docs!)](http://docs.obspy.org/packages/autogen/obspy.signal.spectral_estimation.PPSD.calculate_histogram.html) method of `PPSD` and visualize them # * compare differences in different frequency bands qualitatively (anthropogenic vs. "natural" noise).. # * seasonal stacks (e.g. northern hemisphere autumn vs. spring/summer, ...) ppsd.calculate_histogram(month=[10, 11, 12, 1]) ppsd.plot(max_percentage=10) ppsd.calculate_histogram(month=[4, 5, 6, 7]) ppsd.plot(max_percentage=10) # * do different stacks of the data using the [`calculate_histogram()` (see docs!)](http://docs.obspy.org/packages/autogen/obspy.signal.spectral_estimation.PPSD.calculate_histogram.html) method of `PPSD` and visualize them # * compare differences in different frequency bands qualitatively (anthropogenic vs. "natural" noise).. # * stacks by specific month # * maybe even combine several of above restrictions.. (e.g. only nighttime on weekends)
[ "lion.krischer@gmail.com" ]
lion.krischer@gmail.com
026f2b1121016680fce1de335e8f080d67989dce
bc9ad33b3a6e89b3b6d68ec4e2ef25e35b90d5a0
/students_api/serializers.py
4db1e71ba39fc1c397d2155c49117a4d1c014353
[]
no_license
AndreasPatakis/students-rest-api
d56db8a478a0e117a004f200e4b5871087b30ccb
480dc64e7ae9927b0c84d4d3b633e90919de6de6
refs/heads/main
2023-07-15T02:12:16.048230
2021-08-31T13:55:01
2021-08-31T13:55:01
387,763,957
0
0
null
null
null
null
UTF-8
Python
false
false
1,745
py
from rest_framework import serializers from students_api import models class StudentInfoSerializer(serializers.ModelSerializer): class Meta: model = models.StudentInfo fields = ['id','first_name','last_name','email','home_university','outgoing_university','created_on'] extra_kwargs = { 'created_on':{ 'read_only':True } } class UserStudentSerializer(serializers.ModelSerializer): """Serializer for UserStudent model""" class Meta: model = models.UserStudent fields = ['id','name', 'email', 'password'] extra_kwargs = { 'password':{ 'write_only':True, 'style':{'input_type': 'password'} } } def create(self, validated_data): """We overwrite create method so that we use our custom create_user from UserStudent model""" user = models.UserStudent.objects.create_user( email=validated_data['email'], name=validated_data['name'], password=validated_data['password'] ) return user def update(self, instance, validated_data): """We overwrite update method so it hashes the password""" if 'password' in validated_data: password = validated_data.pop('password') instance.set_password(password) return super().update(instance, validated_data) class StudentNotesSerializer(serializers.ModelSerializer): """Serializer for the StudentNotes model""" class Meta: model = models.StudentNotes fields = ('id','user_student', 'note_text', 'created_on') extra_kwargs = { 'user_student':{'read_only':True} }
[ "andreaspatakis@gmail.com" ]
andreaspatakis@gmail.com
abaab192266b62fecf1d3ed43812d90398d0cb17
5526613640c53bd4193d5c08dc5b192e359271d9
/phase_2-3/ML/Models.py
5e26467f8be473f11872366d1447bb06b1300182
[ "MIT" ]
permissive
Coke-Zhang/Deep-Docking-NonAutomated
4451234defbc002362b3600756425d728bdc7741
a55178dd910e7827dafcc3e0ffaed12277df8307
refs/heads/main
2023-07-05T05:50:11.236359
2021-08-17T20:16:32
2021-08-17T20:16:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,733
py
""" Version 1.1.0 The model to be used in deep docking James Gleave """ import keras from ML.lasso_regularizer import Lasso from ML.DDMetrics import * from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import (Input, Dense, Activation, BatchNormalization, Dropout, LSTM, Conv2D, MaxPool2D, Flatten, Embedding, MaxPooling1D, Conv1D) from tensorflow.keras.regularizers import * import warnings warnings.filterwarnings('ignore') # TODO Give user option to make their own model class Models: def __init__(self, hyperparameters, output_activation, name="model"): """ Class to hold various NN architectures allowing for cleaner code when determining which architecture is best suited for DD. :param hyperparameters: a dictionary holding the parameters for the models: ('bin_array', 'dropout_rate', 'learning_rate', 'num_units') """ self.hyperparameters = hyperparameters self.output_activation = output_activation self.name = name def original(self, input_shape): x_input = Input(input_shape, name="original") x = x_input for j, i in enumerate(self.hyperparameters['bin_array']): if i == 0: x = Dense(self.hyperparameters['num_units'], name="Hidden_Layer_%i" % (j + 1))(x) x = BatchNormalization()(x) x = Activation('relu')(x) else: x = Dropout(self.hyperparameters['dropout_rate'])(x) x = Dense(1, activation=self.output_activation, name="Output_Layer")(x) model = Model(inputs=x_input, outputs=x, name='Progressive_Docking') return model def dense_dropout(self, input_shape): """This is the most simple neural architecture. Four dense layers, batch normalization, relu activation, and dropout. """ # The model input x_input = Input(input_shape, name='dense_dropout') x = x_input # Model happens here... x = Dense(self.hyperparameters['num_units'], name="Hidden_Layer_1")(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Dropout(self.hyperparameters['dropout_rate'])(x) x = Dense(self.hyperparameters['num_units'], name="Hidden_Layer_2")(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Dropout(self.hyperparameters['dropout_rate'])(x) x = Dense(self.hyperparameters['num_units'], name="Hidden_Layer_3")(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Dropout(self.hyperparameters['dropout_rate'])(x) x = Dense(self.hyperparameters['num_units'], name="Hidden_Layer_4")(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Dropout(self.hyperparameters['dropout_rate'])(x) # output x = Dense(1, activation=self.output_activation, name="Output_Layer")(x) model = Model(inputs=x_input, outputs=x, name='Progressive_Docking') return model def wide_net(self, input_shape): """ A simple square model """ # The model input x_input = Input(input_shape, name='wide_net') x = x_input # The width coefficient width_coef = len(self.hyperparameters['bin_array'])//2 for i, layer in enumerate(self.hyperparameters['bin_array']): if layer == 0: layer_name = "Hidden_Dense_Layer_" + str(i//2) x = Dense(self.hyperparameters['num_units'] * width_coef, name=layer_name)(x) x = Activation('relu')(x) else: x = BatchNormalization()(x) x = Dropout(self.hyperparameters['dropout_rate'])(x) # output x = Dense(1, activation=self.output_activation, name="Output_Layer")(x) model = Model(inputs=x_input, outputs=x, name='Progressive_Docking') return model def shared_layer(self, input_shape): """This Model uses a shared layer""" # The model input x_input = Input(input_shape, name="shared_layer") # Here is a layer that will be shared shared_layer = Dense(input_shape[0], name="Shared_Hidden_Layer") # Apply the layer twice x = shared_layer(x_input) x = shared_layer(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Dropout(self.hyperparameters['dropout_rate'])(x) # Apply dropout and normalization x = Dense(self.hyperparameters['num_units'], name="Hidden_Layer")(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Dropout(self.hyperparameters['dropout_rate'])(x) for i, layer in enumerate(self.hyperparameters['bin_array']): if layer == 0: layer_name = "Hidden_Layer_" + str(i) x = Dense(self.hyperparameters['num_units']//i, name=layer_name)(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Dropout(self.hyperparameters['dropout_rate'])(x) # output x = Dense(1, activation=self.output_activation, name="output_layer")(x) model = Model(inputs=x_input, outputs=x, name='Progressive_Docking') return model @staticmethod def get_custom_objects(): return {"Lasso": Lasso} @staticmethod def get_available_modes(): modes = [] for attr in Models.__dict__: if attr[0] != '_' and attr != "get_custom_objects" and attr != "get_available_modes": modes.append(attr) return modes class TunerModel: def __init__(self, input_shape): self.input_shape = input_shape def build_tuner_model(self, hp): """ This method should be used with keras tuner. """ # Create the hyperparameters num_hidden_layers = hp.Int('hidden_layers', min_value=1, max_value=4, step=1) num_units = hp.Int("num_units", min_value=128, max_value=1024) dropout_rate = hp.Float("dropout_rate", min_value=0.0, max_value=0.8) learning_rate = hp.Float('learning_rate', min_value=0.00001, max_value=0.001) epsilon = hp.Float('epsilon', min_value=1e-07, max_value=1e-05) kernel_reg_func = [None, Lasso, l1, l2][hp.Choice("kernel_reg", values=[0, 1, 2, 3])] reg_amount = hp.Float("reg_amount", min_value=0.0, max_value=0.001, step=0.0001) # Determine how the layer(s) are shared share_layer = hp.Boolean("shared_layer") if share_layer: share_all = hp.Boolean("share_all") shared_layer_units = hp.Int("num_units", min_value=128, max_value=1024) shared_layer = Dense(shared_layer_units, name="shared_hidden_layer") if not share_all: where_to_share = set() layer_connections = hp.Int("num_shared_layer_connections", min_value=1, max_value=num_hidden_layers) for layer in range(layer_connections): where_to_share.add(hp.Int("where_to_share", min_value=0, max_value=num_hidden_layers, step=1)) # Build the model according to the hyperparameters inputs = Input(shape=self.input_shape, name="input") x = inputs # Determine number of hidden layers for layer_num in range(num_hidden_layers): # If we are not using a kernel regulation function or not... if kernel_reg_func is None: x = Dense(num_units, name="dense_" + str(layer_num))(x) else: x = Dense(num_units, kernel_regularizer=kernel_reg_func(reg_amount), name="dense_" + str(layer_num))(x) # If we are using a common shared layer, then connect it. if (share_layer and share_all) or (share_layer and layer_num in where_to_share): x = BatchNormalization()(x) x = Activation('relu')(x) x = Dropout(dropout_rate)(x) x = shared_layer(x) # Apply these to every layer x = BatchNormalization()(x) x = Activation('relu')(x) x = Dropout(dropout_rate)(x) outputs = Dense(1, activation='sigmoid', name="output_layer")(x) model = Model(inputs=inputs, outputs=outputs) model.compile(optimizer=keras.optimizers.Adam(learning_rate=learning_rate, epsilon=epsilon), loss=keras.losses.BinaryCrossentropy(), metrics=['accuracy', "AUC", "Precision", "Recall", DDMetrics.scaled_performance]) print(model.summary()) return model
[ "j.gleave.james@gmail.com" ]
j.gleave.james@gmail.com
6c47c751b632674e2e0ad4d9a57dc7dea040b04d
b02eeeeef39a55e89c4cb0abfd19df903f3bd41a
/gen/pb_python/flyteidl/service/flyteadmin/test/test_admin_pager_duty_notification.py
79062cc22e761815e110c4f9c4667a88a215871a
[ "Apache-2.0" ]
permissive
nuclyde-io/flyteidl
af0b81c621c45c05120468ccdfdbcac8e776b5e6
376cfc2990f610dfc9f7a63e5bef84785241fb6b
refs/heads/master
2023-07-16T19:02:34.683059
2021-02-03T03:07:16
2021-02-03T03:07:16
336,040,693
0
0
Apache-2.0
2021-08-20T05:16:37
2021-02-04T18:06:03
null
UTF-8
Python
false
false
1,044
py
# coding: utf-8 """ flyteidl/service/admin.proto No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: version not set Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import flyteadmin from flyteadmin.models.admin_pager_duty_notification import AdminPagerDutyNotification # noqa: E501 from flyteadmin.rest import ApiException class TestAdminPagerDutyNotification(unittest.TestCase): """AdminPagerDutyNotification unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAdminPagerDutyNotification(self): """Test AdminPagerDutyNotification""" # FIXME: construct object with mandatory attributes with example values # model = flyteadmin.models.admin_pager_duty_notification.AdminPagerDutyNotification() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "kumare@lyft.com" ]
kumare@lyft.com
bdfac2cd61e44faa51a89c9a34c72d969a59e1f1
bac982f419e9160176c979c15d733870039cf083
/genThumbnail/pages/tests.py
aa8380c963c04db37d3f30b263c8965b2659126b
[]
no_license
mukuls9971/generateThumbnail
cfcf6ff8e62f80f6425e3917c0b7b85758224733
e49e2be0b28227fe10112d56461f398f099f8a89
refs/heads/master
2022-12-26T06:09:46.283747
2019-08-25T09:29:37
2019-08-25T09:29:37
204,172,131
1
0
null
2022-12-08T06:04:08
2019-08-24T14:58:15
Python
UTF-8
Python
false
false
256
py
from django.urls import reverse from django.test import TestCase class GenThumbnail(TestCase): def serverUp(self): response = self.client.get(reverse('pages:generateThumbnailView')) self.assertEqual(response.status_code, 200)
[ "mukul9971@gmail.com" ]
mukul9971@gmail.com
90eb24001dac503770a3e79bbaf167297f1ef847
6741d2d956ecaa84f7bac4205de7ac6f3e78d5b1
/bin/libs/DataStruc.py
24b69bad7ed8374684a4c5ec57db8f5c5a6cd33c
[]
no_license
huohongjian/stock3
dee9e1a8730bcbe9999ef14addc2d7861fcb13e9
57b3f6f298693309252cb3c34c0ec64f450f4ce9
refs/heads/master
2021-05-12T09:38:31.946794
2019-04-11T07:29:59
2019-04-11T07:29:59
117,325,435
1
0
null
null
null
null
UTF-8
Python
false
false
1,876
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # author: HuoHongJian # date : 2018-01-22 class LinkedDict(): def __init__(self, maxLength=10): self.maxLength = maxLength self.length = 0 self.buffer = {} self.head = None self.last = None def clear(self): self.buffer = {} def size(self): return self.length def has(self, key): return key in self.buffer def isHead(self, key): return key == self.head def isLast(self, key): return key == self.last def remove(self, key): if self.has(key): prevKey = self.buffer.get(key).get('prev') nextKey = self.buffer.get(key).get('next') if self.isHead(key): self.head = nextKey self.buffer[nextKey]['prev'] = None elif self.isLast(key): self.last = prevKey self.buffer[prevKey]['next'] = None else: self.buff[prevKey]['next'] = nextKey self.buff[nextKey]['prev'] = prevKey del self.buffer[key] self.length -= 1 def add(self, key, data): if self.length > self.maxLength: self.remove(self.head) node = { 'data': data, 'prev': self.last, 'next': None, } if self.head is None: self.head = key else: self.buffer[self.last]['next'] = key self.last = key self.buffer[key] = node self.length += 1 def get(self, key): if self.has(key): node = self.buffer[key] if not self.isLast(key): prevKey = node.get('prev') nextKey = node.get('next') if self.isHead(key): self.head = nextKey self.buffer[nextKey]['prev'] = None else: self.buffer[prevKey]['next'] = nextKey self.buffer[nextKey]['prev'] = prevKey self.buffer[self.last]['next'] = key node['prev'] = self.last node['next'] = None self.last = key print('get from cache') return node.get('data') def getHead(self): return self.get(self.head) def getLast(self): return self.get(self.last)
[ "hhj@cwork.FreeBSD.cn" ]
hhj@cwork.FreeBSD.cn
982f0da4ad46edb7ce2b9cdb7e87f69614147d69
33c2d31fa51ff47507d40bcf50308ee1c36637c7
/listings/views.py
65a7229a4b47faef2603d31450403bf4d1dc9d6b
[]
no_license
hataung/Django-Python-Backend-Project-for-MaasDev
cc1aa4cf6e96be5f9f72fdd3a5ee3a1d0689ed45
93e32cf1fff0c0a44a18a12773522afc783e3d63
refs/heads/master
2020-12-02T11:37:11.806004
2019-12-30T23:26:51
2019-12-30T23:26:51
230,993,337
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
from django.shortcuts import render from .models import Listing def index(request): listings = Listing.objects.all() context = { 'listings': listings } return render(request, 'listings/listings.html', context) def listing(request): return render(request, 'listings/listing.html') def search(request): return render(request, 'listings/search.html')
[ "hataung@gmail.com" ]
hataung@gmail.com
57b0621f9b678f50a2a4a7b4115417ccddb6ec5b
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Flask/Book_evaluator/venv/Lib/encodings/iso8859_7.py
548579285f31d0307074b640f799b13507d8cd4f
[]
no_license
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:b352eca3b819488f64fb3338fd93f39c1e30f32bb13f2f9c577925e58f2960e4 size 12844
[ "nateweiler84@gmail.com" ]
nateweiler84@gmail.com
5a89fbeca9a6f09ba1a9cb2766d6401f3cfe9c37
ff2adf0c96aee0e76f145ecb148969c295a7684a
/BionsMLenv/bin/pip
f8ee14b098b870153f3cdf50177c000b3227c073
[]
no_license
Romitha/BionsFlask
ff305a5c8e8ca352c0aed526397431e10dcd340b
b07cee56c656535386afa19723ca90ac177af570
refs/heads/master
2023-05-31T19:13:17.355540
2019-12-05T10:43:22
2019-12-05T10:43:22
226,051,566
0
0
null
2023-05-22T22:34:47
2019-12-05T08:21:45
C++
UTF-8
Python
false
false
283
#!/home/janith/Documents/Python/Bions/BionsRealTimeMLFlask/BionsMLenv/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "janith@datampowered.com.au" ]
janith@datampowered.com.au
f4290df45807ae3421e74367c8c802d41d3876cd
cca89a7bbe2da907a38eb00e9a083f57597273f0
/38. 外观数列/pythonCode.py
4e6c06fc944b194ff8272cb5d208bd2633070cec
[]
no_license
xerprobe/LeetCodeAnswer
cc87941ef2a25c6aa1366e7a64480dbd72750670
ea1822870f15bdb1a828a63569368b7cd10c6ab8
refs/heads/master
2022-09-23T09:15:42.628793
2020-06-06T16:29:59
2020-06-06T16:29:59
270,215,362
0
0
null
null
null
null
UTF-8
Python
false
false
1,339
py
class Solution: def countAndSay(self, n: int) -> str: if(n > 1): s = self.countAndSay(n-1) cache = 1 res = '' for i in range(1,len(s)): if(s[i-1] == s[i]): cache += 1 else: res = res + str(cache) + s[i-1] cache = 1 return res + str(cache) + s[-1] else: return '1' ''' 「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述。前五项如下: 1. 1 2. 11 3. 21 4. 1211 5. 111221 1 被读作  "one 1"  ("一个一") , 即 11。 11 被读作 "two 1s" ("两个一"), 即 21。 21 被读作 "one 2",  "one 1" ("一个二" ,  "一个一") , 即 1211。 给定一个正整数 n(1 ≤ n ≤ 30),输出外观数列的第 n 项。 注意:整数序列中的每一项将表示为一个字符串。   示例 1: 输入: 1 输出: "1" 解释:这是一个基本样例。 示例 2: 输入: 4 输出: "1211" 解释:当 n = 3 时,序列是 "21",其中我们有 "2" 和 "1" 两组,"2" 可以读作 "12",也就是出现频次 = 1 而 值 = 2;类似 "1" 可以读作 "11"。所以答案是 "12" 和 "11" 组合在一起,也就是 "1211"。 '''
[ "changwenhao1@qq.com" ]
changwenhao1@qq.com
9493d35e5d07b571524679c86f2b3ec92f2cf783
a414569f6e54d8b208301515e6e3ed2e71f71264
/linkedlist/ck189/delete-middle-node.py
7142d2969300961003faa8da17b247b574861b21
[]
no_license
MoranLi/algoritm-and-data-structure
ea17778f208d4a158e6649765521b95b5ee5a6ba
7a38253d99e4a18809649aaa15506d01bf1d9846
refs/heads/master
2020-03-30T06:42:45.620795
2018-10-23T02:12:05
2018-10-23T02:12:05
150,883,361
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
import random def delete_middle(listx): del listx[len(listx)/2] return listx list1 = [] for x in range(0,10): list1.append(random.randint(0,5)) print(list1) print(delete_middle(list1))
[ "moran.li@usask.ca" ]
moran.li@usask.ca
5503154045f9544e51b2e9b4ceda3ff597290bee
a50180753b613c3bbdc2b25b31b6cd344152e086
/http_server/modified_http_server.py
dfc22291784420eada96ad69797a6a434e9700b2
[]
no_license
add-skill/API-Development-Guide
38affc41ecb8af27622d813e4627ea114ac94d2d
6f9f97bbaf1bb28d1b8cc7b24714e6a698a000f2
refs/heads/master
2023-03-18T16:45:16.979959
2020-04-22T10:12:40
2020-04-22T10:12:40
257,858,173
1
0
null
2021-03-20T03:32:57
2020-04-22T09:46:57
Python
UTF-8
Python
false
false
1,248
py
from http.server import BaseHTTPRequestHandler, HTTPServer, SimpleHTTPRequestHandler from urllib.parse import urlparse from urllib.parse import parse_qs class MyHttpRequestHandler(SimpleHTTPRequestHandler): def do_GET(self): if self.path == '/': self.path = 'addskillwebpage.html' return SimpleHTTPRequestHandler.do_GET(self) # Sending an '200 OK' response self.send_response(200) # Setting the header self.send_header("Content-type", "text/html") # Whenever using 'send_header', you also have to call 'end_headers' self.end_headers() # Extract query param name = 'World' query_components = parse_qs(urlparse(self.path).query) if 'name' in query_components: name = query_components["name"][0] # Some custom HTML code, possibly generated by another function html = f"<html><head></head><body><h1>Hello {name}!</h1></body></html>" # Writing the HTML contents with UTF-8 self.wfile.write(bytes(html, "utf8")) return PORT = 8000 my_server = HTTPServer(('localhost', PORT), MyHttpRequestHandler) print("Serving on port ", PORT) # Star the server my_server.serve_forever()
[ "akdeswa@microsoft.com" ]
akdeswa@microsoft.com
a4dccc8a1ad8197482bc566d88feabfacd628ce4
e91011e80191d415cdec4b155a721559b5f0c2fd
/NeuralNetworks-tensorflow/CNN/transfer_learning/simple_transfer_learning.py
a26e378111014657fc4a3538bae8fd50df079acd
[]
no_license
zhaocc1106/machine_learn
1cb70366f61d38251715094e07152e0d04e3be01
d1b70b2a954f4665b628ba252b03c1a74b95559f
refs/heads/master
2023-05-31T14:24:27.467600
2023-05-12T02:12:11
2023-05-12T02:12:11
125,951,974
15
3
null
null
null
null
UTF-8
Python
false
false
6,066
py
# # Copyright (c) 2019 Baidu.com, Inc. All Rights Reserved # """ This is a simple transfer learning model via tf hub(https://tfhub.dev/). Copy the codes into colab of google to run, otherwise can't access tf hub. Need install tf-hub as follow: pip install -U --pre tf-hub-nightly Authors: zhaochaochao(zhaochaochao@baidu.com) Date: 2019/6/19 下午8:32 """ # Common libs. import os import shutil import math # 3rd-part libs. import numpy as np import tensorflow_hub as tf_hub import tensorflow.keras as keras import matplotlib.pyplot as plt IMAGE_SHAPE = (224, 224) PRE_TRAINED_MODEL_URL = "https://tfhub.dev/google/tf2-preview/mobilenet_v2" \ "/feature_vector/2" IMAGE_SIZE = 3670 * 0.8 # 80% data use to training. NUM_CLASS = 5 EPOCH = 10 BATCH_SIZE = 100 MODEL_PATH = "/tmp/simple_transfer_learning/" WEIGHTS_PATH = "/tmp/simple_transfer_learning/model_weights.h5" def load_image_data(): """Load the flower image datas. Returns: The image class names and image data generator of training and validation. """ data_root = keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) # Use 20% image to validate. datagen_kwargs = dict(rescale=1. / 255, validation_split=.20) image_generator = keras.preprocessing.image.ImageDataGenerator( **datagen_kwargs) # Load training image data set. train_image_data = image_generator.flow_from_directory(str(data_root), subset="training", target_size=IMAGE_SHAPE, batch_size=BATCH_SIZE) # Load test image data set. vali_image_data = image_generator.flow_from_directory(str(data_root), subset="validation", target_size=IMAGE_SHAPE, batch_size=BATCH_SIZE) class_names = sorted(train_image_data.class_indices.items(), key=lambda pair: pair[1]) # {0: 'daisy', 1: 'dandelion', 2: 'roses', 3: 'sunflowers', 4: 'tulips'} class_names = {value: key for key, value in class_names} return class_names, train_image_data, vali_image_data def build_model(pre_trained_model_url): """Build the transfer learning network model. Args: pre_trained_model: The pre-trained model url of tensorflow hub (https://tfhub.dev/s?module-type=image-feature-vector). Returns: The transfer learning network model. """ # Construct the feature extractor layer via tf hub model. feature_extractor_layer = tf_hub.KerasLayer(handle=pre_trained_model_url, trainable=False, input_shape=[224, 224, 3]) model = keras.Sequential([ feature_extractor_layer, keras.layers.Dropout(rate=0.2), # Add softmax layer. keras.layers.Dense(units=NUM_CLASS, activation="softmax", kernel_regularizer=keras.regularizers.l2(0.0001)) ]) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.categorical_crossentropy, metrics=["accuracy"]) model.summary() return model def train(model, train_image_data, vali_image_data, epoch): """Train the model. Args: model: The network model. image_data: The image data generator. epoch: The epoch number. """ # Define fit callbacks. callbacks = [ # Tensorboard callback. keras.callbacks.TensorBoard(log_dir=MODEL_PATH) ] if os.path.exists(MODEL_PATH): shutil.rmtree(MODEL_PATH) step_per_epoch = math.ceil(IMAGE_SIZE / BATCH_SIZE) model.fit_generator( generator=train_image_data, epochs=epoch, steps_per_epoch=step_per_epoch, validation_data=vali_image_data, validation_steps=1, callbacks=callbacks ) model.save_weights(filepath=WEIGHTS_PATH, overwrite=True) def predict(model, image_data, image_labels, class_names): """Predict the classes of image_data. Args: model: The model. image_data: The test image data. image_labels: The true image labels. class_names: The class names directory. """ # Predict the labels. predict_labels = model.predict(image_data) predict_labels = np.argmax(predict_labels, axis=1) image_labels = np.argmax(image_labels, axis=1) print("Predict labels:\n", str(predict_labels)) print("True labels:\n", str(image_labels)) # Plot the image classification results. plt.figure(figsize=(10, 9)) plt.subplots_adjust(hspace=0.5) for n in range(30): plt.subplot(6, 5, n + 1) plt.imshow(image_data[n]) color = "green" if predict_labels[n] == image_labels[n] else "red" plt.title(class_names[predict_labels[n]], color=color) plt.axis('off') _ = plt.suptitle("Model predictions (green: correct, red: incorrect)") plt.show() if __name__ == "__main__": class_names, train_image_data, vali_image_data = load_image_data() print("class names:\n", str(class_names)) # Build network model. model = build_model(PRE_TRAINED_MODEL_URL) # Train the model. train(model, train_image_data, vali_image_data, EPOCH) # Test the model # Load model model_loaded = build_model(PRE_TRAINED_MODEL_URL) model_loaded.load_weights(WEIGHTS_PATH) # Get test image data. test_image_data, test_image_labels = vali_image_data.next() test_image_data = test_image_data[: 30] test_image_labels = test_image_labels[: 30] # Predict. predict(model_loaded, test_image_data, test_image_labels, class_names)
[ "zhaochaochao@baidu.com" ]
zhaochaochao@baidu.com
30ff18bf4236dcf8755197d6ade87af5518874be
6238dc5b5818f54295547cf4cb1afa5553ddfb94
/taobao/top/api/rest/SimbaAdgroupAdgroupcatmatchsGetRequest.py
24e2de0cbe6edc91e0df8f31993d210f8c2e1e8c
[]
no_license
liaosiwei/guagua
8208bb82b1df5506dcb86c1a7094c849ea5576a6
ee6025813e83568dc25beb52279c86f8bd33f1a4
refs/heads/master
2016-09-06T16:45:00.798633
2013-05-03T04:02:35
2013-05-03T04:02:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
''' Created by auto_sdk on 2013-04-14 16:35:32 ''' from top.api.base import RestApi class SimbaAdgroupAdgroupcatmatchsGetRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.adgroup_ids = None self.nick = None def getapiname(self): return 'taobao.simba.adgroup.adgroupcatmatchs.get'
[ "liaosiweiorxiaowei@gmail.com" ]
liaosiweiorxiaowei@gmail.com
0406509ee9f8401da8685b1a85441948fddffe9d
8e216c3e3d4e9887d02311c82b2a7a747f0e093a
/py/2021/day1/part1.py
b004e3a8ae628084fc64631811bad16a358c2888
[]
no_license
Antetokounpo/Advent-of-Code
9f07f09a6c08f69db4a8dc3559e354549e4aa215
607d5754cdf27f52858214563dccbc23f8f1b5a9
refs/heads/master
2023-07-21T19:30:15.845750
2023-07-10T01:32:11
2023-07-10T01:32:11
224,746,966
2
0
null
null
null
null
UTF-8
Python
false
false
140
py
from AOC import read_input ds = read_input().splitlines() ds = list(map(int, ds)) print([j>i for i, j in zip(ds[:-1], ds[1:])].count(True))
[ "antor.232@outlook.com" ]
antor.232@outlook.com
88780208078048052dcd6df32f8d029888d6a13c
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_minesweeper.py
058fff249bf41fa4e8d0d821acb7b0d187f2bb06
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
#calss header class _MINESWEEPER(): def __init__(self,): self.name = "MINESWEEPER" self.definitions = [u'a ship that is used to discover if mines (= bombs) are present and to remove them from the sea'] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
8a789384c12f9a48619251e8bc9e1a677abad00a
e3bd7f1175997e68424484c8f782a018192104a3
/tweets/migrations/0002_tweet_parent.py
d01d2b59df2196fff742cc40629e66def344de7c
[]
no_license
GolouHamady/tweet
a0495a3d97b5a7a260892ea9e00b9d4f5462627f
efc9f79568e806eb530806cf713bbdcf88b5e83b
refs/heads/master
2023-05-10T10:26:10.096892
2020-12-06T02:15:32
2020-12-06T02:15:32
266,257,008
0
0
null
2021-06-10T23:41:36
2020-05-23T03:40:50
Python
UTF-8
Python
false
false
477
py
# Generated by Django 2.1.7 on 2019-04-21 11:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('tweets', '0001_initial'), ] operations = [ migrations.AddField( model_name='tweet', name='parent', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to='tweets.Tweet'), ), ]
[ "BARRY@dev.groupe.adg" ]
BARRY@dev.groupe.adg
02e308e90fc57cec8266fc26f0efd6dcd6c50976
f12e0cb6bedec951db6e39574176534902bb8e66
/tcs.py
ee3f0705e2b5493ff4128784df8436513221913c
[]
no_license
Denni007/PythonLearning
3827c43c0560f0fd5e2ac3029948e52c0b98882d
5b4db5c2703991bfecda881e116f7c411957e80f
refs/heads/master
2020-04-12T16:11:53.145822
2019-08-07T18:00:42
2019-08-07T18:00:42
162,605,345
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
a=input() a=a[::-1] l=[] sum = 0 for i in range(len(a)): if(a[i]=='A'): l.append(10) elif(a[i]=='B'): l.append(11) elif(a[i]=='C'): l.append(12) elif(a[i]=='D'): l.append(13) elif(a[i]=='E'): l.append(14) elif(a[i]=='F'): l.append(15) elif(a[i]=='G'): l.append(16) else: c=a[i] l.append(c) sum=sum+(17**i)*int(l[i]) print(sum)
[ "kukadiyadenish@gmail.com" ]
kukadiyadenish@gmail.com
6feb5e761a4ee0937e105cf7bfd8ca6c3a35b827
1fc94118f1a088109abaf6ca2ffa531d43f4b005
/src/Computational Photography/HDR/HDR/HDR.py
e35e27617d7c01da4c1c32faa40d83cff23d27fe
[]
no_license
lealzhan/opencv_python
b2e805228a57082079ea4317e078cf9f4b713840
4ac3c8bcc8a2fe3d259c3a5d2c4f4d7c216f820e
refs/heads/master
2021-01-01T04:02:34.672980
2017-07-15T06:43:41
2017-07-15T06:43:41
97,108,231
0
0
null
null
null
null
UTF-8
Python
false
false
3,524
py
#http://docs.opencv.org/3.2.0/d2/df0/tutorial_py_hdr.html import cv2 import numpy as np def Test(): ################################# #### Exposure_sequence_HDR() #### ################################# # Loading exposure images into a list img_fn = ["img0.jpg", "img1.jpg", "img2.jpg", "img3.jpg"] img_list = [cv2.imread(fn) for fn in img_fn] exposure_times = np.array([15.0, 2.5, 0.25, 0.0333], dtype=np.float32) # Merge exposures to HDR image merge_debvec = cv2.createMergeDebevec() hdr_debvec = merge_debvec.process(img_list, times=exposure_times.copy()) merge_robertson = cv2.createMergeRobertson() hdr_robertson = merge_robertson.process(img_list, times=exposure_times.copy()) # Tonemap HDR image tonemap1 = cv2.createTonemapDurand(gamma=2.2) res_debvec = tonemap1.process(hdr_debvec.copy()) tonemap2 = cv2.createTonemapDurand(gamma=1.3) res_robertson = tonemap2.process(hdr_robertson.copy()) # Exposure fusion using Mertens (don't need exposure time and tone mapping, it already give result in [0,1]) merge_mertens = cv2.createMergeMertens() res_mertens = merge_mertens.process(img_list) # Convert datatype to 8-bit and save res_debvec_8bit = np.clip(res_debvec*255, 0, 255).astype('uint8') res_robertson_8bit = np.clip(res_robertson*255, 0, 255).astype('uint8') res_mertens_8bit = np.clip(res_mertens*255, 0, 255).astype('uint8') cv2.imwrite("ldr_debvec.jpg", res_debvec_8bit) cv2.imwrite("ldr_robertson.jpg", res_robertson_8bit) cv2.imwrite("fusion_mertens.jpg", res_mertens_8bit) ################################################# #### Estimate camera response function (CRF) #### ################################################# #The camera response function (CRF) gives us the #connection between the scene radiance to the measured intensity values. cal_debvec = cv2.createCalibrateDebevec() crf_debvec = cal_debvec.process(img_list, times=exposure_times) hdr_debvec = merge_debvec.process(img_list, times=exposure_times.copy(), response=crf_debvec.copy()) cal_robertson = cv2.createCalibrateRobertson() crf_robertson = cal_robertson.process(img_list, times=exposure_times) hdr_robertson = merge_robertson.process(img_list, times=exposure_times.copy(), response=crf_robertson.copy()) #robertson is similar to Debevec def HDRDebevec(img_fn, exposure_times, if_crf=False): img_list = [cv2.imread(fn) for fn in img_fn] if if_crf : merge_debvec = cv2.createMergeDebevec() cal_debvec = cv2.createCalibrateDebevec() crf_debvec = cal_debvec.process(img_list, times=exposure_times) hdr_debvec = merge_debvec.process(img_list, times=exposure_times.copy(), response=crf_debvec.copy()) else: merge_debvec = cv2.createMergeDebevec() hdr_debvec = merge_debvec.process(img_list, times=exposure_times.copy()) tonemap1 = cv2.createTonemapDurand(gamma=2.2) res_debvec = tonemap1.process(hdr_debvec.copy()) res_debvec_8bit = np.clip(res_debvec*255, 0, 255).astype('uint8') cv2.imwrite("ldr_debvec_0.jpg", res_debvec_8bit) def HDRMertens(img_fn, exposure_times): img_list = [cv2.imread(fn) for fn in img_fn] merge_mertens = cv2.createMergeMertens() res_mertens = merge_mertens.process(img_list) res_mertens_8bit = np.clip(res_mertens*255, 0, 255).astype('uint8') cv2.imwrite("fusion_mertens_0.jpg", res_mertens_8bit) if __name__ == '__main__': img_fn = ["img0.jpg", "img1.jpg", "img2.jpg", "img3.jpg"] exposure_times = np.array([15.0, 2.5, 0.25, 0.0333], dtype=np.float32) HDRDebevec(img_fn, exposure_times, False) HDRMertens(img_fn, exposure_times)
[ "lealzhan@126.com" ]
lealzhan@126.com
0e534268fd1c901e0b8d1118a09ec70546910e4d
fc772efe3eccb65e4e4a8da7f2b2897586b6a0e8
/Controller/glance/registry/client/v2/api.py
9d3854fd49122f539d7ee02cd2e0203bbd79972e
[]
no_license
iphonestack/Openstack_Kilo
9ae12505cf201839631a68c9ab4c041f737c1c19
b0ac29ddcf24ea258ee893daf22879cff4d03c1f
refs/heads/master
2021-06-10T23:16:48.372132
2016-04-18T07:25:40
2016-04-18T07:25:40
56,471,076
0
2
null
2020-07-24T02:17:46
2016-04-18T02:32:43
Python
UTF-8
Python
false
false
3,640
py
# Copyright 2013 Red Hat, Inc # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Registry's Client V2 """ import os from oslo.config import cfg from glance.common import exception from glance import i18n import glance.openstack.common.log as logging from glance.registry.client.v2 import client LOG = logging.getLogger(__name__) _ = i18n._ CONF = cfg.CONF _registry_client = 'glance.registry.client' CONF.import_opt('registry_client_protocol', _registry_client) CONF.import_opt('registry_client_key_file', _registry_client) CONF.import_opt('registry_client_cert_file', _registry_client) CONF.import_opt('registry_client_ca_file', _registry_client) CONF.import_opt('registry_client_insecure', _registry_client) CONF.import_opt('registry_client_timeout', _registry_client) CONF.import_opt('use_user_token', _registry_client) CONF.import_opt('admin_user', _registry_client) CONF.import_opt('admin_password', _registry_client) CONF.import_opt('admin_tenant_name', _registry_client) CONF.import_opt('auth_url', _registry_client) CONF.import_opt('auth_strategy', _registry_client) CONF.import_opt('auth_region', _registry_client) _CLIENT_CREDS = None _CLIENT_HOST = None _CLIENT_PORT = None _CLIENT_KWARGS = {} def configure_registry_client(): """ Sets up a registry client for use in registry lookups """ global _CLIENT_KWARGS, _CLIENT_HOST, _CLIENT_PORT try: host, port = CONF.registry_host, CONF.registry_port except cfg.ConfigFileValueError: msg = _("Configuration option was not valid") LOG.error(msg) raise exception.BadRegistryConnectionConfiguration(msg) except IndexError: msg = _("Could not find required configuration option") LOG.error(msg) raise exception.BadRegistryConnectionConfiguration(msg) _CLIENT_HOST = host _CLIENT_PORT = port _CLIENT_KWARGS = { 'use_ssl': CONF.registry_client_protocol.lower() == 'https', 'key_file': CONF.registry_client_key_file, 'cert_file': CONF.registry_client_cert_file, 'ca_file': CONF.registry_client_ca_file, 'insecure': CONF.registry_client_insecure, 'timeout': CONF.registry_client_timeout, } if not CONF.use_user_token: configure_registry_admin_creds() def configure_registry_admin_creds(): global _CLIENT_CREDS if CONF.auth_url or os.getenv('OS_AUTH_URL'): strategy = 'keystone' else: strategy = CONF.auth_strategy _CLIENT_CREDS = { 'user': CONF.admin_user, 'password': CONF.admin_password, 'username': CONF.admin_user, 'tenant': CONF.admin_tenant_name, 'auth_url': CONF.auth_url, 'strategy': strategy, 'region': CONF.auth_region, } def get_registry_client(cxt): global _CLIENT_CREDS, _CLIENT_KWARGS, _CLIENT_HOST, _CLIENT_PORT kwargs = _CLIENT_KWARGS.copy() if CONF.use_user_token: kwargs['auth_token'] = cxt.auth_token if _CLIENT_CREDS: kwargs['creds'] = _CLIENT_CREDS return client.RegistryClient(_CLIENT_HOST, _CLIENT_PORT, **kwargs)
[ "wwang@linx-info.com" ]
wwang@linx-info.com
94da3b5459ec2a866efc488c0c16c7c18ce2774a
b76116a922d8fc33c610738a59919669bf85535a
/Roam Research (Second Brain)/todoist_activity.py
4a105696f715ec16acdc4c4096d39697d459766d
[]
no_license
hjneuhaus/eyecreality-public
05505fea202b64abbbf2f1cb2d8fb155acdd5441
388b3c8a17abb663de472c192958b491fa41bbe4
refs/heads/main
2023-05-27T08:43:17.619209
2021-05-25T21:43:36
2021-05-25T21:43:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,305
py
from todoist.api import TodoistAPI import json import matplotlib.pyplot as plt import config from datetime import datetime api = TodoistAPI(config.todoistAPI) outputJSON = api.activity.get(page=1,limit=100) outputDirectory = "Roam Research (Second Brain)/Roam Import/" projects = [] dates = [] project_counts = [] all_activity = [] complete = [] api.sync() #Creating a Callable Function to import Tasks def contentToRoam(data): export = "" for d in data: dateFormatted = custom_strftime('[[%B {S}, %Y]]', datetime.strptime(d["date"], '%Y-%m-%d')) export = export + f"- {dateFormatted}\n" for t in d["proj_tasks"]: export = export + f" - [[{t['project']}]]\n" for st in t["tasks"]: doneCheckbox = "{{DONE}}" export = export + f" - {doneCheckbox} {st} \n" outputFile = open(outputDirectory+"Todoist Todos.md", "w") outputFile.write(export) outputFile.close() # Needed Files for Date Format for Roam def suffix(d): return 'th' if 11<=d<=13 else {1: 'st', 2: 'nd', 3: 'rd'}.get(d%10, 'th') def custom_strftime(format, t): return t.strftime(format).replace('{S}', str(t.day) + suffix(t.day)) #Beginning of Code for p in api.state['projects']: projName = p['name'] # Substituting ProjectNames for More Readable Resources # projectSubstitition = [{"old": "OriginalProjectName", "new": "ReadableName"}, ...] for re in config.projectSubstitution: if re["old"] == projName: projName = re["new"] proj = {"id": p["id"], "name": projName} projects.append(proj) #Get All Activity for x in outputJSON["events"]: print(x) all_activity.append({"project": x['parent_project_id'], "event_type": x['event_type'], "id": x['object_id'], "eventDate": x['event_date'][0:10], "task": x['extra_data']['content'] }) #Build Content for Graphs and Exports for ip in projects: added_count = 0 updated_count = 0 completed_count = 0 updated_items = [] for aa in all_activity: if aa["project"] == ip["id"]: if aa["event_type"] == "added": added_count = added_count + 1 if aa["event_type"] == "updated": updated_count = updated_count + 1 updated_items.append(aa["id"]) if aa["event_type"] == "completed": completed_count = completed_count + 1 dates.append(aa["eventDate"][0:10]) event = {"date": aa['eventDate'][0:10], "name": aa['task'], "project":aa['project'], "id": aa['id'] } complete.append(event) #Only Adding Projects that have Item Counts if added_count != 0 and updated_count != 0 and completed_count != 0: project_counts.append({"project": ip["name"], "added_items": added_count, "updated_count": updated_count, "completed_count": completed_count, "updated_items": updated_items }) #MatPlotLib Creation barChartAxes =[] barChartCompletedValues = [] barChartUniqueUpdatedCount = [] dateAxes = [] dateCompletedValues=[] for pp in project_counts: barChartAxes.append(pp["project"]) barChartCompletedValues.append(pp["completed_count"]) barChartUniqueUpdatedCount.append(len(set(pp["updated_items"]))) #print(pp["project"] + "-" + str(pp["updated_items"]) + " - " + str(len(set(pp["updated_items"])))) fig, ax = plt.subplots() ax.bar(barChartAxes, barChartCompletedValues, .35, label='Completed Tasks') ax.bar(barChartAxes, barChartUniqueUpdatedCount, .35, bottom=barChartCompletedValues, label='Unique Delayed Tasks') ax.set_title('Velocity for Week') ax.legend plt.savefig('Roam Research (Second Brain)/Roam Import/todoist_barchart.png') #Building Content for Roam todoExport = [] for d in sorted(set(dates)): print(d) publish =[] for p in projects: roamProject = p["name"] taskList = [] for c in complete: if p["id"] == c["project"] and c["date"] == d: taskList.append(c["name"]) if len(taskList) > 0: publish.append({"project" : roamProject, "tasks": taskList}) todoExport.append({"date": d, "proj_tasks" : publish}) contentToRoam(todoExport)
[ "andrewcrider@brillada.com" ]
andrewcrider@brillada.com
a5cac3550aff9d6295a3027084f78fff9f8ac6f0
94dd6607af2184dce5115fcdce2b0b330cad052f
/regatta.py
1f918022a8df2d332c8ccc6397c5da1d4a56fe10
[]
no_license
Already-inst/testA
02dfc1df5f750d5552f55a673af2f79f4ac9d1f5
91c83a4a2bb6d4d7c872dbf8dd4103952020b75c
refs/heads/master
2022-11-24T03:59:07.394474
2022-11-09T11:52:42
2022-11-09T11:52:42
240,494,743
0
0
null
2020-02-20T14:09:13
2020-02-14T11:36:40
Ruby
UTF-8
Python
false
false
54
py
SLACK_TOKEN_LAC = "xoxb-54123987-asdfglttzzekhrnemo"
[ "elacaille0+restricted@gmail.com" ]
elacaille0+restricted@gmail.com
c8dbdaceaddbb40c066ca040a9c2ee8c28e4fa69
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/196/usersdata/265/78476/submittedfiles/atividade.py
3765fcc073afbf3178b15cab93d01bb6cdb42c43
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
185
py
# -*- coding: utf-8 -*- import math n=int(input('digite o valor de n: ')) i=1 soma=0 if (n<0): n=n*(-1) else: n=n while (i<n): soma=(i/(n)) n=n-1 i=i+1 print(soma)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
b57e43d52ac04a1a6aafbe6d416506910a590a71
37e87b3d5e1ee9009f0ea0671bc0c6edf0e233b7
/787_3.py
194ee7b81f126d774550c6d0683ab09e69646e87
[]
no_license
Jane11111/Leetcode2021
d9f4987792938597bf89ff72ba6bbcb4a3f9d081
a95b871578aae0103066962c33b8c0f4ec22d0f2
refs/heads/master
2023-07-14T21:29:41.196752
2021-08-23T03:28:02
2021-08-23T03:28:02
344,804,297
2
0
null
null
null
null
UTF-8
Python
false
false
718
py
# -*- coding: utf-8 -*- # @Time : 2021-08-15 10:49 # @Author : zxl # @FileName: 787_3.py class Solution: def findCheapestPrice(self, n: int, flights , src: int, dst: int, k: int) -> int: dis = [float('inf') for i in range(n)] dis[src] = 0 while k+1: old_dis = [item for item in dis] for f,t,p in flights: if dis[f]!=float('inf'): dis[t] = min(old_dis[f]+p,dis[t]) k -=1 if dis[dst] == float('inf'): return -1 return int(dis[dst]) obj = Solution() n = 4 flights = [[0,1,1],[0,2,5],[1,2,1],[2,3,1]] src = 0 dst = 3 k = 1 ans = obj.findCheapestPrice(n,flights,src,dst,k) print(ans)
[ "791057615@qq.com" ]
791057615@qq.com
aebbed9f4be141876d5534da14664d51688d3af2
d6ad73da7d5087882aea80f500057e7201675a94
/10966_물놀이를가자/s1.py
a3e6f6322a60c41468b0f0a39344cd6aced85663
[]
no_license
Ysh096/swea
8bcd6038c96705f8a8d83bb5391d5f061bf98e52
3d018e5d3e6cea69268a025a117542f9e4a96702
refs/heads/master
2023-04-15T05:17:52.933799
2021-04-22T11:44:00
2021-04-22T11:44:00
340,567,861
0
0
null
null
null
null
UTF-8
Python
false
false
1,054
py
import sys from collections import deque sys.stdin = open('input.txt') def bfs(): result = 0 deq = deque(w_pos) while deq: i, j = deq.popleft() for k in range(4): nr = i + dr[k] nc = j + dc[k] if not (0 <= nr < N and 0 <= nc < M): continue # 이동한 곳이 땅이고 방문하지 않았으면 if visited[nr][nc] < 0: visited[nr][nc] = visited[i][j] + 1 result += visited[nr][nc] deq.append((nr, nc)) return result T = int(input()) for tc in range(1, T+1): N, M = map(int, input().split()) visited = [[-1] * M for _ in range(N)] jido = [] w_pos = [] for i in range(N): temp = list(input()) jido.append(temp) for j in range(M): if temp[j] == 'W': w_pos.append((i, j)) visited[i][j] = 0 # 물임을 표시 dr = [-1, 1, 0, 0] dc = [0, 0, -1, 1] result = bfs() print('#{} {}'.format(tc, result))
[ "skk7541@gmail.com" ]
skk7541@gmail.com
ee5739a0303713f51d6c14a2cd5201480f0e6f37
7b51d315d9d60f6c1ec0bad7caf4de1c690bae61
/stanford-nlp-uses/pos-tagging.py
35ab6c8ca6c4973caf5f4f01ec24a0aeeb99e7f7
[]
no_license
ritamnrg/absa
1758b3f847ca4cf8ee97661f738105994b9ce691
503cd89a5ff70cbd5ef738aed56d7cf4bab2d061
refs/heads/master
2021-04-26T23:28:28.670229
2018-03-07T04:41:47
2018-03-07T04:41:47
124,001,080
0
0
null
null
null
null
UTF-8
Python
false
false
704
py
# -*- coding: utf-8 -*- from stanfordcorenlp import StanfordCoreNLP nlp = StanfordCoreNLP("stanford-corenlp-full-2018-01-31") # res = nlp.annotate("I love you. I hate him. You are nice. He is dumb", # properties={ # 'annotators': 'sentiment', # 'outputFormat': 'json', # 'timeout': 1000, # }) # for s in res["sentences"]: # print ("%d: '%s': %s %s" % (s["index"]," ".join([t["word"] for t in s["tokens"]]), s["sentimentValue"], s["sentiment"])) sentence = 'Guangdong University of Foreign Studies is located in Guangzhou.' print(nlp.pos_tag(sentence)) print(nlp.dependency_parse(sentence))
[ "if414007@students.del.ac.id" ]
if414007@students.del.ac.id
5ea906c630642fc75e024f7419a93c0ffdfcec28
dca0254ddb5681d9ed8903d71f5d1cfec6cfd3f0
/hw4/task4_main.py
72df1239971428480fad8fea13c7647f8865bcb3
[]
no_license
HectorLector/nn17
7d54a5e35d4e9b34d895ab135d1d3f24929bf601
f5f038cf8e0701cb97d8ca34c656816bf0eae211
refs/heads/master
2021-09-03T17:36:43.206153
2018-01-10T19:11:29
2018-01-10T19:11:29
109,736,230
0
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
#!/usr/bin/env python3 import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from task4_data import generate_data tf.reset_default_graph() # for iPython convenience # how to define recurrent layers in tensorflow: cell_type = 'simple' #cell_type = 'gru' #cell_type = 'lstm' # define recurrent layer if cell_type == 'simple': cell = tf.nn.rnn_cell.BasicRNNCell(num_hidden) elif cell_type == 'lstm': cell = tf.nn.rnn_cell.LSTMCell(num_hidden) elif cell_type == 'gru': cell = tf.nn.rnn_cell.GRUCell(num_hidden) else: raise ValueError('bad cell type.') # wrap this layer in a recurrent neural network outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32) # notes: # - this tensor is unrolled in time (it contains the hidden states of all time # points) # - the recurrent weights are encapsuled, we do not need to define them # - you should only use the outputs (not the hidden states) for creating the # output neuron # get the unit outputs at the last time step last_outputs = outputs[:,-1,:] # use on top of this a sigmoid neuron for sequence classification # ...
[ "d.seywald@student.tugraz.at" ]
d.seywald@student.tugraz.at
53c433d0713154b6c2857dacae4582305191deec
3a6e71c36e7d5a5b0b2e0d4aecb8de7c743efc5f
/url.py
52e84ac36917fc112a64513e50d5d4b0b68dbc6e
[]
no_license
woowooh/12306auto
3c5be8e988d0ded65e18b69798a457c0cc64d869
ec31ea64136ce5cea35e861c61580e415f0a223b
refs/heads/master
2021-01-25T14:32:30.610168
2018-03-03T15:14:19
2018-03-03T15:14:19
123,702,514
0
0
null
null
null
null
UTF-8
Python
false
false
43
py
https://kyfw.12306.cn/otn/leftTicket/query?
[ "woowooh@outlook.com" ]
woowooh@outlook.com
ee0788af1f5d22772e783da7a2f03386ccdfa5cf
f061e90f3488b33608e672d5746fb5c5e10f4a2d
/weiboscrapy-1.1.0/mian.py
e88d774eb6748d922bc8fa4c58c7ca9c3a9559fc
[]
no_license
Asenli/spider
617200502830a06782d88ab5b6cfcd7272532acb
753b15fdcbd3ca92e274da7c6df7d0bfae898d86
refs/heads/master
2020-03-22T12:44:55.140658
2018-08-12T01:57:20
2018-08-12T01:57:20
140,059,670
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
from scrapy import cmdline cmdline.execute(['scrapy','crawl', 'weibocn'])
[ "634163114@qq.com" ]
634163114@qq.com
5d524861359bf7aa6efd4cb5039526f1713f9996
c5746efe18a5406764c041d149d89c0e0564c5a5
/4. Python 爬虫工程师/1. 爬虫/Day7/selenium_qqmail.py
9e1ae747143cf548d202b8c5801fb50b6563f1ef
[]
no_license
ShaoxiongYuan/PycharmProjects
fc7d9eeaf833d3711211cd2fafb81dd277d4e4a3
5111d4c0a7644c246f96e2d038c1a10b0648e4bf
refs/heads/master
2021-12-15T05:45:42.117000
2021-11-23T06:45:16
2021-11-23T06:45:16
241,294,858
3
1
null
2021-02-20T15:29:07
2020-02-18T07:06:08
Jupyter Notebook
UTF-8
Python
false
false
454
py
from selenium import webdriver driver = webdriver.Chrome() driver.maximize_window() driver.get('https://mail.qq.com') i_node = driver.find_element_by_xpath('//*[@id="login_frame"]') driver.switch_to.frame(i_node) driver.find_element_by_xpath('//*[@id="switcher_plogin"]').click() driver.find_element_by_id('u').send_keys('2379773801@qq.com') driver.find_element_by_id('p').send_keys('65460035maomao') driver.find_element_by_id('login_button').click()
[ "stevenpp123@sina.com" ]
stevenpp123@sina.com
0eed086909dfa9ba0e05bf6c5182a0d96d5ea294
9d1a59da79df4eec9fd0abdc7bf00b8ff14e0111
/Part2/part2.py
d95a054f6c3e898035dcd3e4f94db8fa354c19be
[]
no_license
2019-bgmp/demultiplexing-anniewly
f3c1fc1552e5d003ae30fb1c5539f096380a7f08
0297d4925619b2400b5faa00bc88ba1feb2aa674
refs/heads/master
2020-08-06T06:40:08.477702
2019-11-12T09:53:24
2019-11-12T09:53:24
212,875,403
0
0
null
null
null
null
UTF-8
Python
false
false
5,346
py
import numpy as np import gzip def convert_phred(string): """Converts a string of characters into phred scores""" return [ord(x)-33 for x in string] complement={"A":"T","T":"A","G":"C","C":"G","N":"N"} def rev_complement(string): return ''.join([complement[x] for x in string[::-1]]) def cutoff(q1,q2,q3,q4): """Return True if the average score of the biological reads is below 25 or if any base of the indexes is below 10""" if np.mean(convert_phred(q1))<25: return True if np.mean(convert_phred(q4))<25: return True if min(convert_phred(q2)) <10: return True if min(convert_phred(q3)) <10: return True return False def check_match(r2,r3): """Return True if two things are the same otherwise return false""" if r2 == r3: return True return False ## Read in indexes barcodes=[] with open('/projects/bgmp/shared/2017_sequencing/indexes.txt') as fb: [barcodes.append(x.split()[4])for x in fb.readlines()[1:]] print(barcodes) #open all file that is going to be written in and make a dictionary #dictionary that has barcodes as key and file as value ## start a dictionary to count reads for each index filedict_R1={} filedict_R2={} barcounts = {} for i in barcodes: filedict_R1.update({i:open("R1_"+str(i)+".fq","a")}) filedict_R2.update({i:open("R2_"+str(i)+".fq","a")}) barcounts.update({i:0}) f1= open("unknown_R1.fq","a") f2= open("unknown_R2.fq","a") f3= open("hopped_R1.fq","a") f4= open("hopped_R2.fq","a") ## start a counter for unknow, matched and hopped reads counter_unknow = 0 counter_matched = 0 counter_hopped = 0 ## Read in files filenames = ['/projects/bgmp/shared/2017_sequencing/1294_S1_L008_R1_001.fastq.gz','/projects/bgmp/shared/2017_sequencing/1294_S1_L008_R2_001.fastq.gz','/projects/bgmp/shared/2017_sequencing/1294_S1_L008_R3_001.fastq.gz','/projects/bgmp/shared/2017_sequencing/1294_S1_L008_R4_001.fastq.gz'] with gzip.open(filenames[0],'rt') as R1, gzip.open(filenames[1],'rt') as R2, gzip.open(filenames[2],'rt') as R3, gzip.open(filenames[3],'rt') as R4: ## while True: record_R1=[] record_R2=[] record_R3=[] record_R4=[] for i in range(4): record_R1 = np.append(record_R1,R1.readline().splitlines() ) record_R2 = np.append(record_R2,R2.readline().splitlines() ) record_R3 = np.append(record_R3,R3.readline().splitlines() ) record_R4 = np.append(record_R4,R4.readline().splitlines() ) if record_R1[0] =='': break record_R3[1] = rev_complement(record_R3[1]) ## Check if indexes are one of our indexes, otherwise output in unknown if record_R2[1] in barcodes and record_R3[1] in barcodes: ## quality check if cutoff(record_R1[3],record_R2[3],record_R3[3],record_R4[3]): record_R1[0] += str(record_R2[1])+ '_' + str(record_R3[1]) record_R4[0] += str(record_R2[1])+ '_' + str(record_R3[1]) # f1= open("unknown_R1.fq","a") f1.write('\n'.join((record_R1))+'\n') # f1.close() # f2= open("unknown_R2.fq","a") f2.write('\n'.join((record_R4))+'\n') # f2.close() counter_unknow+=1 ## match check elif check_match(record_R2[1],record_R3[1]): record_R1[0] += str(record_R2[1])+ '_' + str(record_R3[1]) record_R4[0] += str(record_R2[1])+ '_' + str(record_R3[1]) # f1= open("R1_"+str(record_R2[1])+".fq","a") filedict_R1[record_R2[1]].write('\n'.join(record_R1)+'\n') # f1.close() # f2= open("R2_"+str(record_R3[1])+".fq","a") filedict_R2[record_R3[1]].write('\n'.join(record_R4)+'\n') # f2.close() counter_matched+=1 barcounts[record_R2[1]]+=1 ## the rest is hopped reads else: record_R1[0] += str(record_R2[1])+ '_' + str(record_R3[1]) record_R4[0] += str(record_R2[1])+ '_' + str(record_R3[1]) # f1= open("hopped_R1.fq","a") f3.write('\n'.join((record_R1))+'\n') # f3.close() # f2= open("hopped_R2.fq","a") f4.write('\n'.join((record_R4))+'\n') # f2.close() counter_hopped+=1 else: record_R1[0] += str(record_R2[1])+ '_' + str(record_R3[1]) record_R4[0] += str(record_R2[1])+ '_' + str(record_R3[1]) # print(record_R1) # f1= open("unknown_R1.fq","a") f1.write('\n'.join(record_R1)+'\n') # f1.close() # f2= open("unknown_R2.fq","a") f2.write('\n'.join(record_R4)+'\n') # f2.close() counter_unknow+=1 print("The number of unknow reads is " + str(counter_unknow)) print("The number of matched reads is " + str(counter_matched)) print("The number of hopped reads is " + str(counter_hopped)) for i in barcodes: print("The percentage of " + str(i) + "is" + str(barcounts[i]/counter_matched)) #Percentage of reads from each sample #Overall amount of index swapping #Any figures/any other relevant data your code output
[ "annie@Annies-MacBook.local" ]
annie@Annies-MacBook.local
2bebdc36e6a65509c698c83f4d0b5a1a4db2c21a
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
/dockerized-gists/36834b68b7b4d6366f38/snippet.py
1d9db68c22a47a3e4ee4b7af2bcab5032498c11c
[ "MIT" ]
permissive
gistable/gistable
26c1e909928ec463026811f69b61619b62f14721
665d39a2bd82543d5196555f0801ef8fd4a3ee48
refs/heads/master
2023-02-17T21:33:55.558398
2023-02-11T18:20:10
2023-02-11T18:20:10
119,861,038
76
19
null
2020-07-26T03:14:55
2018-02-01T16:19:24
Python
UTF-8
Python
false
false
3,281
py
#!/usr/bin/env python import sqlite3 import threading from time import time, sleep, gmtime, strftime import serial import requests # global variales # sqlite database location dbname = 'templog.db' # serial device DEVICE = '/dev/ttyAMA0' BAUD = 9600 ser = serial.Serial(DEVICE, BAUD) # timeout in seconds for waiting to read temperature from sensors TIMEOUT = 30 # weather underground data WUKEY = '' STATION = '' # time between weather underground samples in seconds SAMPLE = 30 * 60 def log_temperature(temp): """ Store the temperature in the database. """ conn = sqlite3.connect(dbname) curs = conn.cursor() curs.execute("INSERT INTO temps values(datetime('now', 'localtime'), '{0}', '{1}' )".format(temp['temperature'], temp['id'])) conn.commit() conn.close() def get_temp(): """ Retrieves the temperature from the sensor. Returns -100 on error, or the temperature as a float. """ global ser tempvalue = -100 deviceid = '??' voltage = 0 fim = time() + TIMEOUT while (time() < fim) and (tempvalue == -100): n = ser.inWaiting() if n != 0: data = ser.read(n) nb_msg = len(data) / 12 for i in range(0, nb_msg): msg = data[i*12:(i+1)*12] deviceid = msg[1:3] if msg[3:7] == "TMPA": tempvalue = msg[7:] if msg[3:7] == "BATT": voltage = msg[7:11] if voltage == "LOW": voltage = 0 else: sleep(5) return {'temperature':tempvalue, 'id':deviceid} def get_temp_wu(): """ Retrieves temperature(s) from weather underground (wu) and stores it to the database """ try: conn = sqlite3.connect(dbname) curs = conn.cursor() query = "SELECT baudrate, port, id, active FROM sensors WHERE id like 'W_'" curs.execute(query) rows = curs.fetchall() #print(rows) conn.close() if rows != None: for row in rows[:]: WUKEY = row[1] STATION = row[0] if int(row[3]) > 0: try: url = "http://api.wunderground.com/api/{0}/conditions/q/{1}.json".format(WUKEY, STATION) r = requests.get(url) data = r.json() log_temperature({'temperature': data['current_observation']['temp_c'], 'id': row[2]}) except Exception as e: raise except Exception as e: text_file = open("debug.txt", "a+") text_file.write("{0} ERROR:\n{1}\n".format(strftime("%Y-%m-%d %H:%M:%S", gmtime()), str(e))) text_file.close() def main(): """ Program starts here. """ get_temp_wu() t = threading.Timer(SAMPLE, get_temp_wu) t.start() while True: temperature = get_temp() if temperature['temperature'] != -100: log_temperature(temperature) if t.is_alive() == False: t = threading.Timer(SAMPLE, get_temp_wu) t.start() if __name__ == "__main__": main()
[ "gistshub@gmail.com" ]
gistshub@gmail.com
8080b7c3c35e7127dba17d798bcb4d651b39886c
18693f41ef3c8600db5c6ffd35efbabd257cbbe3
/evaluation/trajectory/kitti-01/convert.py
343147f4fc8724420296116690d011e4ff1bcc7a
[]
no_license
QinHarry/my_imu_slam
d1edb20cc264de1679143befda9a5ed30e2c5526
9ee6ac86e0363622756981fd51836be17d3eba5c
refs/heads/master
2020-07-30T03:19:07.559623
2019-11-04T00:04:57
2019-11-04T00:04:57
210,068,280
2
0
null
null
null
null
UTF-8
Python
false
false
835
py
orb = [] gt = [] vins = [] with open('vins.kitti', 'r') as f: vins = f.readlines() with open('01.txt', 'r') as f: gt = f.readlines() with open('kitti-orb-origin.kitti', 'r') as f: orb = f.readlines() m = min(len(vins), len(gt), len(orb)) rate1 = 1.0 * len(vins) / m rate2 = 1.0 * len(gt) / m rate3 = 1.0 * len(orb) / m orbStr = '' gtStr = '' vinsStr = '' for i in range(m): index = round(i * rate1) if index < len(vins): vinsStr = vinsStr + vins[index] index = round(i * rate2) if index < len(gt): gtStr = gtStr + gt[index] index = round(i * rate3) if index < len(orb): orbStr = orbStr + orb[index] with open('vins-new.kitti', 'w') as f: f.write(vinsStr) with open('gt.kitti', 'w') as f: f.write(gtStr) with open('orb.kitti', 'w') as f: f.write(orbStr)
[ "282588926@qq.com" ]
282588926@qq.com
9050ae88bb42afcba500311172f766cff4c50560
17224a0e717291c31b5ec454dea5a27d4d1c6602
/feeder.py
a4313d67cd6abe2428e29f07334016104b8b4619
[]
no_license
junggil/newswall
4ef6059750ddd78d5ac4f763d14225b3346f358a
057d9c307eeecde4c4455bb70f937fc91663f7dc
refs/heads/master
2021-05-26T21:10:10.494209
2011-09-08T00:58:39
2011-09-08T00:58:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,015
py
# -*- coding: utf-8 -*- import feedparser from random import choice from pickle import dump, load from time import time, localtime, asctime class GoogleNews(object): TEMPLATE = 'http://news.google.com/news?pz=1&cf=all&ned=%(territory)s&hl=%(language)s&topic=%(topic)s&output=rss' FEED = { 'ko' : { 'ned' : 'kr', 'topics' : { 'w' : u'국제', 'b' : u'경제', 'y' : u'사회', 'l' : u'문화/생활', 'p' : u'정치', 't' : u'정보과학', 'e' : u'연예', 's' : u'스포츠', 'po' : u'인기뉴스', }, 'lang' : u'한국어' }, 'us' : { 'ned' : 'en', 'topics' : { 'w' : u'WORLD', 'm' : u'HEALTH', 'b' : u'BUSINESS', 'e' : u'ENTERTAIN', 'tc' : u'TECHNOLOGY', 'snc' : u'SCIENCE', 's' : u'SPORTS', 'ir' : u'SPOTLIGHT', }, 'lang' : u'English' }, 'zh-CN' : { 'ned' : 'cn', 'topics' : { 'b' : u'财经', 'y' : u'社会', 'w' : u'国际/港台', 't' : u'科技', 'e' : u'娱乐', 's' : u'体育', 'po' : u'热门报道', }, 'lang' : u'中文' } } def __init__(self, locale): self.locale = locale def checkPickledFeed(self): return False def getRSS(self, topic): if not self.checkPickledFeed(): return feedparser.parse(self.TEMPLATE % {'topic' : topic, 'territory' : self.FEED[self.locale]['ned'], 'language' : self.locale, }).entries def getAllTopics(self): return self.FEED[self.locale]['topics'] @classmethod def getAllLocales(self): return self.FEED.keys() @classmethod def getLangFromLocale(cls, locale): return cls.FEED[locale]['lang']
[ "sooshia@gmail.com" ]
sooshia@gmail.com
f774dd4085a2eb26479a0d5c41795e3381d0bc21
70e97bd9ff4e09f740ec666fbf5ae09a93b1a12e
/UDP/UDP_Server.py
74e01e86ba6aafd8e69f01ee93708d001985b9a5
[]
no_license
ayman-elkassas/Practical-Own
c241c8b5b6b4195d66a8bb47d0c753b84c05d27b
b303c6cc9c661362e5ba7cdc12a86c63d94d80da
refs/heads/master
2021-01-09T06:33:55.362618
2017-02-05T18:05:28
2017-02-05T18:05:28
81,011,019
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
import socket #determine ip type ( IPv4,IPv6 ) and transimision protocol type ( TCP OR UDP ) sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) sock.bind(("127.0.0.1",3000)) #bind means join or connect data,address=sock.recvfrom(1024) text = data.decode('ascii')
[ "aymanelkassas88@gmail.com" ]
aymanelkassas88@gmail.com
8c49138d00e10f5b67630ddf9bf794ad29d79d14
9a30ca725bdec0795093f5318eb28564afe88ffd
/sawtooth-module/validator/sawtooth_validator/server/core.py
7ead70e9ab2e303bfc58bee4a1614078ae46d12c
[ "CC-BY-4.0", "Apache-2.0", "Zlib", "MIT" ]
permissive
cylon56/Cross-chain-Cryptoasset
7d8b62cf4f2f4ca8150315d060048e7206700619
26d13ebeb16ec2b64cace31a61e265a2f3165557
refs/heads/master
2020-03-24T22:40:18.597344
2018-08-06T20:21:43
2018-08-06T20:21:43
143,096,979
0
0
null
null
null
null
UTF-8
Python
false
false
19,287
py
# Copyright 2016, 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ import hashlib import logging import os import signal import time import threading from sawtooth_validator.concurrent.threadpool import \ InstrumentedThreadPoolExecutor from sawtooth_validator.execution.context_manager import ContextManager from sawtooth_validator.consensus.notifier import ConsensusNotifier from sawtooth_validator.consensus.proxy import ConsensusProxy from sawtooth_validator.database.indexed_database import IndexedDatabase from sawtooth_validator.database.lmdb_nolock_database import LMDBNoLockDatabase from sawtooth_validator.database.native_lmdb import NativeLmdbDatabase from sawtooth_validator.journal.block_validator import BlockValidator from sawtooth_validator.journal.publisher import BlockPublisher from sawtooth_validator.journal.chain import ChainController from sawtooth_validator.journal.genesis import GenesisController from sawtooth_validator.journal.batch_sender import BroadcastBatchSender from sawtooth_validator.journal.block_sender import BroadcastBlockSender from sawtooth_validator.journal.block_store import BlockStore from sawtooth_validator.journal.block_cache import BlockCache from sawtooth_validator.journal.completer import Completer from sawtooth_validator.journal.responder import Responder from sawtooth_validator.journal.batch_injector import \ DefaultBatchInjectorFactory from sawtooth_validator.networking.dispatch import Dispatcher from sawtooth_validator.journal.chain_id_manager import ChainIdManager from sawtooth_validator.execution.executor import TransactionExecutor from sawtooth_validator.state.batch_tracker import BatchTracker from sawtooth_validator.state.merkle import MerkleDatabase from sawtooth_validator.state.settings_view import SettingsViewFactory from sawtooth_validator.state.settings_cache import SettingsObserver from sawtooth_validator.state.settings_cache import SettingsCache from sawtooth_validator.state.identity_view import IdentityViewFactory from sawtooth_validator.state.state_view import StateViewFactory from sawtooth_validator.gossip.permission_verifier import PermissionVerifier from sawtooth_validator.gossip.permission_verifier import IdentityCache from sawtooth_validator.gossip.identity_observer import IdentityObserver from sawtooth_validator.networking.interconnect import Interconnect from sawtooth_validator.gossip.gossip import Gossip from sawtooth_validator.server.events.broadcaster import EventBroadcaster from sawtooth_validator.journal.receipt_store import TransactionReceiptStore from sawtooth_validator.server import network_handlers from sawtooth_validator.server import component_handlers from sawtooth_validator.server import consensus_handlers LOGGER = logging.getLogger(__name__) class Validator: def __init__(self, bind_network, bind_component, bind_consensus, endpoint, peering, seeds_list, peer_list, data_dir, config_dir, identity_signer, scheduler_type, permissions, minimum_peer_connectivity, maximum_peer_connectivity, state_pruning_block_depth, network_public_key=None, network_private_key=None, roles=None): """Constructs a validator instance. Args: bind_network (str): the network endpoint bind_component (str): the component endpoint endpoint (str): the zmq-style URI of this validator's publically reachable endpoint peering (str): The type of peering approach. Either 'static' or 'dynamic'. In 'static' mode, no attempted topology buildout occurs -- the validator only attempts to initiate peering connections with endpoints specified in the peer_list. In 'dynamic' mode, the validator will first attempt to initiate peering connections with endpoints specified in the peer_list and then attempt to do a topology buildout starting with peer lists obtained from endpoints in the seeds_list. In either mode, the validator will accept incoming peer requests up to max_peers. seeds_list (list of str): a list of addresses to connect to in order to perform the initial topology buildout peer_list (list of str): a list of peer addresses data_dir (str): path to the data directory config_dir (str): path to the config directory identity_signer (str): cryptographic signer the validator uses for signing """ # -- Setup Global State Database and Factory -- # global_state_db_filename = os.path.join( data_dir, 'merkle-{}.lmdb'.format(bind_network[-2:])) LOGGER.debug( 'global state database file is %s', global_state_db_filename) global_state_db = NativeLmdbDatabase( global_state_db_filename, indexes=MerkleDatabase.create_index_configuration()) state_view_factory = StateViewFactory(global_state_db) # -- Setup Receipt Store -- # receipt_db_filename = os.path.join( data_dir, 'txn_receipts-{}.lmdb'.format(bind_network[-2:])) LOGGER.debug('txn receipt store file is %s', receipt_db_filename) receipt_db = LMDBNoLockDatabase(receipt_db_filename, 'c') receipt_store = TransactionReceiptStore(receipt_db) # -- Setup Block Store -- # block_db_filename = os.path.join( data_dir, 'block-{}.lmdb'.format(bind_network[-2:])) LOGGER.debug('block store file is %s', block_db_filename) block_db = IndexedDatabase( block_db_filename, BlockStore.serialize_block, BlockStore.deserialize_block, flag='c', indexes=BlockStore.create_index_configuration()) block_store = BlockStore(block_db) # The cache keep time for the journal's block cache must be greater # than the cache keep time used by the completer. base_keep_time = 1200 block_cache = BlockCache( block_store, keep_time=int(base_keep_time * 9 / 8), purge_frequency=30) # -- Setup Thread Pools -- # component_thread_pool = InstrumentedThreadPoolExecutor( max_workers=10, name='Component') network_thread_pool = InstrumentedThreadPoolExecutor( max_workers=10, name='Network') client_thread_pool = InstrumentedThreadPoolExecutor( max_workers=5, name='Client') sig_pool = InstrumentedThreadPoolExecutor( max_workers=3, name='Signature') # -- Setup Dispatchers -- # component_dispatcher = Dispatcher() network_dispatcher = Dispatcher() # -- Setup Services -- # component_service = Interconnect( bind_component, component_dispatcher, secured=False, heartbeat=False, max_incoming_connections=20, monitor=True, max_future_callback_workers=10) zmq_identity = hashlib.sha512( time.time().hex().encode()).hexdigest()[:23] secure = False if network_public_key is not None and network_private_key is not None: secure = True network_service = Interconnect( bind_network, dispatcher=network_dispatcher, zmq_identity=zmq_identity, secured=secure, server_public_key=network_public_key, server_private_key=network_private_key, heartbeat=True, public_endpoint=endpoint, connection_timeout=120, max_incoming_connections=100, max_future_callback_workers=10, authorize=True, signer=identity_signer, roles=roles) # -- Setup Transaction Execution Platform -- # context_manager = ContextManager(global_state_db) batch_tracker = BatchTracker(block_store) settings_cache = SettingsCache( SettingsViewFactory(state_view_factory), ) transaction_executor = TransactionExecutor( service=component_service, context_manager=context_manager, settings_view_factory=SettingsViewFactory(state_view_factory), scheduler_type=scheduler_type, invalid_observers=[batch_tracker]) component_service.set_check_connections( transaction_executor.check_connections) event_broadcaster = EventBroadcaster( component_service, block_store, receipt_store) # -- Consensus Engine -- # consensus_thread_pool = InstrumentedThreadPoolExecutor( max_workers=3, name='Consensus') consensus_dispatcher = Dispatcher() consensus_service = Interconnect( bind_consensus, consensus_dispatcher, secured=False, heartbeat=False, max_incoming_connections=20, monitor=True, max_future_callback_workers=10) consensus_notifier = ConsensusNotifier(consensus_service) # -- Setup P2P Networking -- # gossip = Gossip( network_service, settings_cache, lambda: block_store.chain_head, block_store.chain_head_state_root, consensus_notifier, endpoint=endpoint, peering_mode=peering, initial_seed_endpoints=seeds_list, initial_peer_endpoints=peer_list, minimum_peer_connectivity=minimum_peer_connectivity, maximum_peer_connectivity=maximum_peer_connectivity, topology_check_frequency=1 ) completer = Completer( block_store, gossip, cache_keep_time=base_keep_time, cache_purge_frequency=30, requested_keep_time=300) self._completer = completer block_sender = BroadcastBlockSender(completer, gossip) batch_sender = BroadcastBatchSender(completer, gossip) chain_id_manager = ChainIdManager(data_dir) identity_view_factory = IdentityViewFactory( StateViewFactory(global_state_db)) id_cache = IdentityCache(identity_view_factory) # -- Setup Permissioning -- # permission_verifier = PermissionVerifier( permissions, block_store.chain_head_state_root, id_cache) identity_observer = IdentityObserver( to_update=id_cache.invalidate, forked=id_cache.forked) settings_observer = SettingsObserver( to_update=settings_cache.invalidate, forked=settings_cache.forked) # -- Setup Journal -- # batch_injector_factory = DefaultBatchInjectorFactory( block_cache=block_cache, state_view_factory=state_view_factory, signer=identity_signer) block_publisher = BlockPublisher( transaction_executor=transaction_executor, block_cache=block_cache, state_view_factory=state_view_factory, settings_cache=settings_cache, block_sender=block_sender, batch_sender=batch_sender, chain_head=block_store.chain_head, identity_signer=identity_signer, data_dir=data_dir, config_dir=config_dir, permission_verifier=permission_verifier, batch_observers=[batch_tracker], batch_injector_factory=batch_injector_factory) block_validator = BlockValidator( block_cache=block_cache, state_view_factory=state_view_factory, transaction_executor=transaction_executor, identity_signer=identity_signer, data_dir=data_dir, config_dir=config_dir, permission_verifier=permission_verifier) chain_controller = ChainController( block_store=block_store, block_cache=block_cache, block_validator=block_validator, state_database=global_state_db, chain_head_lock=block_publisher.chain_head_lock, consensus_notifier=consensus_notifier, state_pruning_block_depth=state_pruning_block_depth, data_dir=data_dir, observers=[ event_broadcaster, receipt_store, batch_tracker, identity_observer, settings_observer ]) genesis_controller = GenesisController( context_manager=context_manager, transaction_executor=transaction_executor, completer=completer, block_store=block_store, state_view_factory=state_view_factory, identity_signer=identity_signer, data_dir=data_dir, config_dir=config_dir, chain_id_manager=chain_id_manager, batch_sender=batch_sender) responder = Responder(completer) completer.set_on_block_received(chain_controller.queue_block) completer.set_chain_has_block(chain_controller.has_block) self._incoming_batch_sender = None # -- Register Message Handler -- # network_handlers.add( network_dispatcher, network_service, gossip, completer, responder, network_thread_pool, sig_pool, chain_controller.has_block, self.has_batch, permission_verifier, block_publisher, consensus_notifier) component_handlers.add( component_dispatcher, gossip, context_manager, transaction_executor, completer, block_store, batch_tracker, global_state_db, self.get_chain_head_state_root_hash, receipt_store, event_broadcaster, permission_verifier, component_thread_pool, client_thread_pool, sig_pool, block_publisher, identity_signer.get_public_key().as_hex()) # -- Store Object References -- # self._component_dispatcher = component_dispatcher self._component_service = component_service self._component_thread_pool = component_thread_pool self._network_dispatcher = network_dispatcher self._network_service = network_service self._network_thread_pool = network_thread_pool consensus_proxy = ConsensusProxy( block_cache=block_cache, chain_controller=chain_controller, block_publisher=block_publisher, gossip=gossip, identity_signer=identity_signer, settings_view_factory=SettingsViewFactory(state_view_factory), state_view_factory=state_view_factory) consensus_handlers.add( consensus_dispatcher, consensus_thread_pool, consensus_proxy, consensus_notifier) self._consensus_dispatcher = consensus_dispatcher self._consensus_service = consensus_service self._consensus_thread_pool = consensus_thread_pool self._client_thread_pool = client_thread_pool self._sig_pool = sig_pool self._context_manager = context_manager self._transaction_executor = transaction_executor self._genesis_controller = genesis_controller self._gossip = gossip self._block_publisher = block_publisher self._chain_controller = chain_controller self._block_validator = block_validator def start(self): self._component_dispatcher.start() self._component_service.start() if self._genesis_controller.requires_genesis(): self._genesis_controller.start(self._start) else: self._start() def _start(self): self._consensus_dispatcher.start() self._consensus_service.start() self._network_dispatcher.start() self._network_service.start() self._gossip.start() self._incoming_batch_sender = self._block_publisher.start() self._chain_controller.start() self._completer.set_on_batch_received(self._incoming_batch_sender.send) signal_event = threading.Event() signal.signal(signal.SIGTERM, lambda sig, fr: signal_event.set()) # This is where the main thread will be during the bulk of the # validator's life. while not signal_event.is_set(): signal_event.wait(timeout=20) def stop(self): self._gossip.stop() self._component_dispatcher.stop() self._network_dispatcher.stop() self._network_service.stop() self._component_service.stop() self._consensus_service.stop() self._consensus_dispatcher.stop() self._network_thread_pool.shutdown(wait=True) self._component_thread_pool.shutdown(wait=True) self._client_thread_pool.shutdown(wait=True) self._sig_pool.shutdown(wait=True) self._transaction_executor.stop() self._context_manager.stop() self._block_publisher.stop() self._chain_controller.stop() self._block_validator.stop() threads = threading.enumerate() # This will remove the MainThread, which will exit when we exit with # a sys.exit() or exit of main(). threads.remove(threading.current_thread()) while threads: if len(threads) < 4: LOGGER.info( "remaining threads: %s", ", ".join( ["{} ({})".format(x.name, x.__class__.__name__) for x in threads])) for t in threads.copy(): if not t.is_alive(): t.join() threads.remove(t) if threads: time.sleep(1) LOGGER.info("All threads have been stopped and joined") def has_batch(self, batch_id): if self._block_publisher.has_batch(batch_id): return True if self._incoming_batch_sender and \ self._incoming_batch_sender.has_batch(batch_id): return True return False def get_chain_head_state_root_hash(self): return self._chain_controller.chain_head.state_root_hash
[ "michaelnlewellen@gmail.com" ]
michaelnlewellen@gmail.com
c840b0eca1e96539f3f005041cccea99ee8a46a8
36a2f42d887959f7819b0477a4f8c259f9f57c21
/utils/file_handler.py
cbea7614612e226dd12daf452f1023de45f26322
[]
no_license
khaxis/image_tags
25cf57a649e8678558199051daf6c3e685b1501e
2765f48a268775fe53902723493988451990a7c1
refs/heads/master
2021-01-11T06:35:02.633260
2017-06-08T08:22:05
2017-06-08T08:22:05
71,862,274
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
""" The idea of this module is to abstract files handeling. Historicaly they have been stored on local disk. Moving to the cloud now. """ import io from boto import storage_uri SCHEME = 'gs' def get_file_stream(file_path): content = storage_uri(file_path, SCHEME) content_stream = io.BytesIO() content.get_contents_to_file(content_stream) content_stream.seek(0) return content_stream def upload_file_stream(file_path, fp): content = storage_uri(file_path, SCHEME) content.set_contents_from_file(fp) if __name__ == '__main__': with open('/tmp/a') as fp: upload_file_stream('image_tags/tmp/a', fp)
[ "khaxis@gmail.com" ]
khaxis@gmail.com
42d5447390d6c320fc2a9c365f222566a5e00d58
5c7089ceddd2503ec79a6d81eb2140ac8cd64209
/snuggle/web/routing/oauth.py
e3d4c9f1eda322e528eef85c4d6764990ebf19cd
[ "MIT" ]
permissive
halfak/snuggle
a7e12ed0b82d6dca3c5a1154ef77e2a281306439
384818aaf8a783013b076ada3c74226f10e5dc18
refs/heads/master
2022-04-07T03:30:06.500679
2016-10-30T23:14:23
2016-10-30T23:14:23
72,371,739
2
0
MIT
2020-02-28T13:51:05
2016-10-30T19:52:01
JavaScript
UTF-8
Python
false
false
451
py
import json from bottle import post, get, request from snuggle.web import processing from snuggle.web.util import preprocessors # /oauth/initiate/ @get("/oauth/initiate/") @preprocessors.session def oauth_initiate(session): return processing.processor.oauth.initiate(session) # /oauth/callback/ @get("/oauth/callback/") @preprocessors.session def oauth_callback(session): return processing.processor.oauth.complete(session, request.query_string)
[ "aaron.halfaker@gmail.com" ]
aaron.halfaker@gmail.com
60e4627fb8813e7e21791775e0fd18e5130e7bf0
975704b9d73e39275ef8f7b2cf70ce0f52e78bba
/Table.py
84b7a351807a9ee17f9857b2b32a3b6804ee28ec
[]
no_license
kunu2804/PythonLab
680d9a787d47d9ea3edec0f21c32d2bd3c06f323
daeb2d1aa58eed746e9a6bbbf520e4f1934b81a3
refs/heads/main
2023-08-22T21:08:52.471494
2021-10-11T16:04:37
2021-10-11T16:04:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
581
py
# Q. Write a program to print multiplication table for a given number using for as well as while loop # By - Kunal Baraniya num = int(input("Enter Number: ")) print("Table of " + str(num) + " =") while(num>0): for i in range(1,11): print(num, 'x', i, '=', num*i) break # Output: Enter Number: 2 # Table of 2 = # 2 x 1 = 2 # 2 x 2 = 4 # 2 x 3 = 6 # 2 x 4 = 8 # 2 x 5 = 10 # 2 x 6 = 12 # 2 x 7 = 14 # 2 x 8 = 16 # 2 x 9 = 18 # 2 x 10 = 20
[ "noreply@github.com" ]
kunu2804.noreply@github.com
9599c70352c7192bda1d9c5a4e92ced129563c66
c1ad83f59be8bce846a09fe2b4cc36269d130192
/project/data_prep/clean_scisumm.py
9e53d461e85b6178c141f86357fbe17bd891a983
[]
no_license
heikalb/CMPT825
d498b8977d2a451c5673f16c549506bf7ea2a9b7
467abb2168babd518662df32f2674c877d4dec2f
refs/heads/master
2023-05-11T12:15:20.655939
2019-12-23T22:58:40
2019-12-23T22:58:40
220,340,940
0
0
null
2023-03-24T22:57:45
2019-11-07T22:32:52
Jupyter Notebook
UTF-8
Python
false
false
2,186
py
""" Clean article and abstract data in the Scisumm dataset and place them in separate files. """ # coding: utf-8 import os from xml.dom import minidom import xml art_xmls = [] summary_xmls = [] human_summary_txts = [] articles = [] summaries = [] # Get paths of article XMLs for r, d, f in os.walk('../data/scisumm-corpus'): for f_ in f: if '.xml' in f_: art_xmls.append(os.path.join(r, f_)) elif 'human.txt' in f_: human_summary_txts.append(os.path.join(r, f_)) # Get abstracts and article contents for art_xml in art_xmls: try: ref_xml = minidom.parse(art_xml) except xml.parsers.expat.ExpatError: print('Parsing error: ', art_xml) continue # Get article contents article_xml = ref_xml.getElementsByTagName('SECTION') article_str = '' for sect in article_xml: sect = sect.getElementsByTagName('S') sect_string = ''.join([s.childNodes[0].nodeValue.replace('\n', '').strip() for s in sect]) article_str += sect_string if not article_str: continue # Get abstracts try: abstract = ref_xml.getElementsByTagName('ABSTRACT')[0] abs_sents = abstract.getElementsByTagName('S') except: continue abs_string = ''.join([s.childNodes[0].nodeValue.replace('\n', '').strip() for s in abs_sents]) summaries.append(abs_string) articles.append(article_str) # Get human-made summary if available, duplicate article if there is one for human_sum in human_summary_txts: if art_xml.split('/')[-1][:-4] in human_sum.split('/')[-1]: articles.append(article_str) s = str(open(human_sum, 'rb').read()).replace('\n', '').strip() summaries.append(s) # Save data into files art_save_file = open('../data/scisumm-corpus/cleaned_data/articles_cleaned.txt', 'w') art_save_file.write('\n'.join(articles)) art_save_file.close() summary_save_file = open('../data/scisumm-corpus/cleaned_data/abstracts_cleaned.txt', 'w') summary_save_file.write('\n'.join(summaries)) summary_save_file.close() print('#Articles: ', len(articles)) print('#Summaries: ', len(summaries)) exit(0)
[ "heikal93@gmail.com" ]
heikal93@gmail.com
3d7cdbb64b99d5a7c4a1331681e23069ff80eb8a
8475b07b53ec6de9ff92a65cad8d06d4e0732e34
/SinglyLinkedLists/python/DoublyLinked.py
4386d69dfc92d3dd7448321d508bfb747cedaaab
[]
no_license
p-cap/algo-data-structures
2461293c9daf8d5e9af22e74e3979d8fd3ed1add
3512c81eef868bfb647a0fb386816ff1231913ae
refs/heads/main
2023-03-05T00:07:36.849024
2021-02-19T17:17:19
2021-02-19T17:17:19
336,418,559
0
0
null
null
null
null
UTF-8
Python
false
false
861
py
class PcapDoublyLinkedList(object): def __init__(self): self.head = None class PcapNode(): def __init__(self, value): self.value = value self.next = None self.previous = None # decalred the list pcapList = PcapDoublyLinkedList() # declared the nodes pcapHead = PcapNode("Uno") pcapNode2 = PcapNode("Dos") pcapNode3 = PcapNode("Tres") # assign head to the list class pcapList.head = pcapHead # link all 3 modes together pcapHead.next = pcapNode2 pcapHead.previous = None pcapNode2.next = pcapNode3 pcapNode2.previous = pcapHead pcapNode3.next = None pcapNode3.previous = pcapNode2 print(pcapHead.value) print(pcapHead.next.value) print(pcapHead.next.next.value) print("#######################################") print(pcapNode3.value) print(pcapNode3.previous.value) print(pcapNode3.previous.previous.value)
[ "slashedeye@gmail.com" ]
slashedeye@gmail.com
7c1c6656e90b5178411fe365e4ba970c5ad541e1
d07307e15105fef3d9ba604f55af34835d7533e7
/dlapp/main/urls.py
9aeaeee5c0ea57e4452031f85886f6b6afecac8d
[]
no_license
jun-16/animalai
ededda46b5e2b9901a2b5e3a1111732a3b777754
eb315bd1d33f3a210aa16b04586c026926751800
refs/heads/master
2020-03-08T08:20:59.611004
2019-04-14T06:25:05
2019-04-14T06:25:05
128,020,214
0
0
null
null
null
null
UTF-8
Python
false
false
267
py
from django.conf.urls import url from . import views from main.views import Home, upload #urlpatterns = [url(r'^$', views.index, name='index')] urlpatterns = [ url(r'^$', Home.as_view(), name='home'), url(r'^upload/$', upload, name='upload'), ]
[ "junichiro.sumitomo@e-gravity.co.jp" ]
junichiro.sumitomo@e-gravity.co.jp
80d068801eeb173da337bf4ab7b7b3e4eda4576c
8d33ae757ce4e566f2525483f9b40579708de043
/healpix_to_mesh.py
fadb021b3e4b895da8b3f6f97773a4cd5cb82cb6
[]
no_license
joezuntz/3dprint
2bab71bee8fea3506e632b19b3c9f1515db0b119
9836af734d5ab9689f4e5e6e1051c112cc028e04
refs/heads/master
2020-06-24T16:57:09.964409
2019-07-29T09:21:48
2019-07-29T09:21:48
199,022,921
1
0
null
null
null
null
UTF-8
Python
false
false
2,802
py
import healpy import stl import numpy as np def healpix_to_mesh(healpix_map, vmin=None, vmax=None, radius_variation=0.05, hemisphere='both'): """Make an STL mesh from a healpix map. """ npix = healpix_map.size nside = healpy.npix2nside(npix) # May which to cap the maximum variation if vmin is None: vmin = healpix_map.min() if vmax is None: vmax = healpix_map.max() # For this to be 3D we scale the point radius by this amount scale_min = 1 - radius_variation scale_max = 1 + radius_variation pix = np.arange(npix, dtype=int) # get the full list of pixel corners pix_corners = healpy.boundaries(nside, pix) if hemisphere == 'north' or 'hemisphere' == 'south': _, _, z = healpy.pix2vec(nside, np.arange(npix)) if hemisphere == 'north': w = z >= 0 elif hemisphere == 'south': w = z < 0 pix = pix[w] npix = len(pix) elif hemisphere != 'both': raise ValueError("hemisphere parameter must be 'north', 'south', or 'both'") # Scale the pixel corners according to the surrounding pixel values, # to make this a 3D thing for i in pix: # This is inefficient - vertices are shared between pixels, so # we could avoid calculating this scale more than once for each pixel # This is probably four times slower than it has to be. for j in range(4): xyz = pix_corners[i,:,j] # Use healpy to interpolate the neighbouring pixels to this # one to a single scalar value theta, phi = healpy.vec2ang(xyz) f = healpy.get_interp_val(healpix_map, theta, phi) # Convert from intetnsity to radius scaling s = scale_min + (scale_max-scale_min)*(f-vmin)/(vmax-vmin) # Avoid going beyond the maximum radius variation s = np.clip(s, scale_min, scale_max) # Scale the vertex pix_corners[i,:,j] *= s # Make an output mesh object mesh = stl.mesh.Mesh(np.zeros(npix*2, dtype=stl.mesh.Mesh.dtype)) # Divide each pixel into two triangles and assign the vertices # of those triangles to the mesh vectors for i in pix: f = 2*i mesh.vectors[f,0] = pix_corners[i,:,0] mesh.vectors[f,1] = pix_corners[i,:,1] mesh.vectors[f,2] = pix_corners[i,:,2] f = 2*i + 1 mesh.vectors[f,0] = pix_corners[i,:,2] mesh.vectors[f,1] = pix_corners[i,:,3] mesh.vectors[f,2] = pix_corners[i,:,0] return mesh def example(): T = healpy.read_map('wmap_ilc_9yr_v5.fits') T = healpy.ud_grade(T, nside_out=32) M = healpix_to_mesh(T, hemisphere='both') M.save('wmap_ilc_9yr_v5.stl') if __name__ == '__main__': example()
[ "joezuntz@googlemail.com" ]
joezuntz@googlemail.com
68dd71a34db06a3e7a917ed02689051115f6ad75
d138deda43e36f6c79c5e3a9ef1cc62c6a92e881
/python/paddle/fluid/dygraph/dygraph_to_static/program_translator.py
7c039efeb1d34b772c15206f8cc372cbd8f1884f
[ "Apache-2.0" ]
permissive
seiriosPlus/Paddle
51afd6f5c85c3ce41dd72953ee659d1539c19f90
9602a182b2a4979247c09df1ec283fc39cb4a981
refs/heads/develop
2021-08-16T16:05:10.848535
2020-12-27T15:15:19
2020-12-27T15:15:19
123,257,829
2
0
Apache-2.0
2019-12-10T08:22:01
2018-02-28T08:57:42
C++
UTF-8
Python
false
false
41,809
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import collections import gast import inspect import six import textwrap import threading import warnings import weakref from paddle.fluid import framework from paddle.fluid import in_dygraph_mode from paddle.fluid.dygraph import layers from paddle.fluid.data_feeder import check_type from paddle.fluid.layers.utils import flatten from paddle.fluid.dygraph.base import param_guard from paddle.fluid.dygraph.base import switch_to_static_graph from paddle.fluid.dygraph.dygraph_to_static import DygraphToStaticAst from paddle.fluid.dygraph.dygraph_to_static import error from paddle.fluid.dygraph.dygraph_to_static import logging_utils from paddle.fluid.dygraph.dygraph_to_static.origin_info import attach_origin_info from paddle.fluid.dygraph.dygraph_to_static.origin_info import create_and_update_origin_info_map from paddle.fluid.dygraph.dygraph_to_static.origin_info import update_op_callstack_with_origin_info from paddle.fluid.dygraph.dygraph_to_static.partial_program import partial_program_from from paddle.fluid.dygraph.dygraph_to_static.utils import ast_to_func from paddle.fluid.dygraph.dygraph_to_static.utils import ast_to_source_code from paddle.fluid.dygraph.dygraph_to_static.utils import func_to_source_code from paddle.fluid.dygraph.dygraph_to_static.utils import input_specs_compatible from paddle.fluid.dygraph.dygraph_to_static.utils import type_name from paddle.fluid.dygraph.dygraph_to_static.utils import unwrap from paddle.fluid.dygraph.dygraph_to_static.utils import make_hashable from paddle.fluid.dygraph.dygraph_to_static.function_spec import FunctionSpec from paddle.fluid.dygraph.dygraph_to_static.function_spec import get_buffers, get_parameters from paddle.fluid.wrapped_decorator import signature_safe_contextmanager __all__ = ['ProgramTranslator', 'convert_to_static'] # For each traced function, we set `max_traced_program_count` = 10 to consider caching performance. # Once exceeding the threshold, we will raise warning to users to make sure the conversion is as expected. MAX_TRACED_PROGRAM_COUNT = 10 class FunctionCache(object): """ Caches the transformed functions to avoid redundant conversions of the same function. """ def __init__(self): # Caches the converted static functions. {dygraph_func: static_func} self._converted_static_func_caches = dict() # Caches the converted ast node for same source code. {source_code: ast_root} self._code_to_ast_caches = dict() self._dygraph_to_static = DygraphToStaticAst() def convert_with_cache(self, func): """ Returns the cached static function or converts it when first encounters the function. """ # If hit cache, return it directly. static_func = self._converted_static_func_caches.get(func, None) if static_func is None: static_func = self._convert(func) self._converted_static_func_caches[func] = static_func return static_func def _convert(self, func): """ Converts dygraph function into static function. For two functions with same dedent code, the second function will reuse the transformed ast node of previous one. For example: # A.py def foo(x, y): z = x + y return z # B.py def foo(x, y): z = x + y return z If the conversion of A.foo happens after B.foo, it will reuse the transformed ast node of B.foo to speed up the conversion. """ # Note: In Python2, it will raise OSError when inspect function # with decorator directly and function.__wrapped__ holds the actual function. func = unwrap(func) source_code = func_to_source_code(func) # TODO(liym27): # Consider this case: source_code in self._code_to_ast_caches, # but actually they are methods in different classes. # Maybe use (__class__, source_code) as key if source_code in self._code_to_ast_caches: root_wrapper = self._code_to_ast_caches[source_code] else: root = gast.parse(source_code) root = attach_origin_info(root, func) root_wrapper = self._dygraph_to_static.get_static_ast(root) self._code_to_ast_caches[source_code] = root_wrapper # Get static function from AST static_func, file_name = ast_to_func(root_wrapper.node, func) create_and_update_origin_info_map(root_wrapper.node, static_func) return static_func def exist(self, func): return func in self._converted_static_func_caches _CACHE_LOCK = threading.Lock() _FUNCTION_CACHE = FunctionCache() def convert_to_static(function): """ Transforms function of dygraph into static function using the cache mechanism. Args: function(callable): The function with dygraph layers that will be converted into static layers. """ with _CACHE_LOCK: static_func = _FUNCTION_CACHE.convert_with_cache(function) return static_func class CacheKey(object): """ Cached key for ProgramCache. """ __slots__ = [ 'function_spec', 'input_args_with_spec', 'input_kwargs_with_spec', 'class_instance' ] def __init__(self, function_spec, input_args_with_spec, input_kwargs_with_spec, class_instance): """ Initializes a cache key. Args: functions_spec(FunctionSpec): a FunctionSpec instance of decorated function. input_args_with_spec(list[InputSpec]): actual input args with some arguments replaced by InputSpec. input_kwargs_with_spec(list[{string:InputSpec}]): actual input kwargs with some arguments replaced by InputSpec. class_instance(object): a instance of class `Layer`. """ self.function_spec = function_spec self.input_args_with_spec = input_args_with_spec self.input_kwargs_with_spec = input_kwargs_with_spec self.class_instance = class_instance @classmethod def from_func_and_args(cls, function_spec, args, kwargs, class_instance): """ Generated a CacheKey instance by given inputs. Args: functions_spec(FunctionSpec): a FunctionSpec instance of decorated function. args(tuple): tuple of actual inputs arguments. kwargs(dict): dict of actual inputs keyword arguments. class_instance(object): a instance of class `Layer`. """ # 1. filter `self` in args if args and isinstance(args[0], layers.Layer): args = args[1:] # 2. convert tensor and numpy array into InputSpec _args, _kwargs = function_spec.unified_args_and_kwargs(args, kwargs) input_args_with_spec, input_kwargs_with_spec = function_spec.args_to_input_spec( _args, _kwargs) # 3. check whether hit the cache or build a new program for the input arguments return CacheKey(function_spec, input_args_with_spec, input_kwargs_with_spec, class_instance) def __hash__(self): error_msg = "Arguments to a `@paddle.jit.to_static` must be a hashable Python objects (or nested structures of these types)." return hash((id(self.function_spec), make_hashable(self.input_args_with_spec, error_msg), make_hashable(self.input_kwargs_with_spec, error_msg), self.class_instance)) def __eq__(self, other): return (type(self) is type(other)) and hash(self) == hash(other) def __neq__(self, other): return not self == other def __repr__(self): return "id(function_spec): {}, input_args_with_spec: {}, input_kwargs_with_spec: {}, class_instance: {}".format( id(self.function_spec), self.input_args_with_spec, self.input_kwargs_with_spec, self.class_instance) def unwrap_decorators(func): """ Unwraps a decorated function and returns the decorator list and inner target. """ decorators = [] cur = func while True: if isinstance(cur, StaticFunction): decorators.append(cur) # Note: if `cur` is a method, keep it as bound method of class. instance = cur._class_instance if instance is not None: cur = cur.dygraph_function.__get__(instance) else: cur = cur.dygraph_function else: break return decorators, cur class StaticFunction(object): """ Wrapper class to Manage program conversion of decorated function. """ def __init__(self, function, input_spec=None): """ Initializes a `StaticFunction`. Args: function(callable): A function or method that will be converted into static program. input_spec(list[InputSpec]): list of InputSpec to specify the `shape/dtype/name` information for each input argument, default None. """ # save the instance `self` while decorating a method of class. if inspect.ismethod(function): self._dygraph_function = getattr(function, '__func__') self._class_instance = getattr(function, '__self__') else: self._dygraph_function = function self._class_instance = None self._input_spec = input_spec self._function_spec = FunctionSpec(function, input_spec) self._program_cache = ProgramCache() self._descriptor_cache = weakref.WeakKeyDictionary() # Note: Hold a reference to ProgramTranslator for switching `enable_to_static`. self._program_trans = ProgramTranslator() def __get__(self, instance, owner): """ Overrides this method to parse the class instance and call bound method correctly. For example: ''' class Net(Layer): def __init__(self): pass @paddle.jit.to_static def forward(self, x, y): return x + y net = Net() out = net(x, y) ''' In above case, `net(x, y)` will call `net.forward(x, y)` firstly that is a bound method of `Net` instance. After decorated by `@paddle.jit.to_static`, it will firstly to call `__get__` to parse the class instance correctly instead of the `StaticFunction` instance. """ if instance not in self._descriptor_cache: if instance is None: return self # Note(Aurelius84): To construct new instance of StaticFunction when we # first encouter the bound function of layer and cache it. new_static_layer = self._clone() new_static_layer._class_instance = instance self._descriptor_cache[instance] = new_static_layer return self._descriptor_cache[instance] def _clone(self): return self.__class__(self._dygraph_function, self._input_spec) def __call__(self, *args, **kwargs): """ Supports to call the returned instance with input `args` and `kwargs` directly. Args: *args(tuple): tuple of all input arguments from original decorated function. **kwargs(dict): dict of all input keyward arguments from original decorated function. Return: Outputs of decorated function. """ # 1. call dygraph function directly if not enable `declarative` if not self._program_trans.enable_to_static: # NOTE(liym27): # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message) # will show up **only once**. StaticFunction.__call__ will run many times, it is appropriate to # display this warning message only once. warnings.warn( "The decorator '@paddle.jit.to_static' does NOT work when setting ProgramTranslator.enable to False. " "We will just return dygraph output. If you would like to get static graph output, please call API " "ProgramTranslator.enable(True)") return self._call_dygraph_function(*args, **kwargs) if not in_dygraph_mode(): raise RuntimeError( "Failed to run the callable object {} decorated by '@paddle.jit.to_static', " "because it is NOT in dynamic mode. Please disable the static mode to enter dynamic mode with the " "following API: paddle.disable_static().".format( self.dygraph_function)) # 2. trace ops from dygraph layers and cache the generated program. args, kwargs = self._function_spec.unified_args_and_kwargs(args, kwargs) try: concrete_program, partial_program_layer = self.get_concrete_program( *args, **kwargs) # 3. synchronize self.training attribute. if isinstance(self._class_instance, layers.Layer): partial_program_layer.training = self._class_instance.training # 4. return outputs. try: return partial_program_layer(args) except Exception as e: if not hasattr(e, error.ERROR_DATA): # runtime error error.attach_error_data(e, in_runtime=True) raise except Exception as e: error_data = getattr(e, error.ERROR_DATA, None) if error_data: error_data.raise_new_exception() else: logging_utils.warn( "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'" " if you can't handle this {} yourself.".format(type(e))) raise e def _call_dygraph_function(self, *args, **kwargs): """ Calls dygraph function directly and returns the outputs. Args: *args(tuple): tuple of all input arguments from original decorated function. **kwargs(dict): dict of all input keyward arguments from original decorated function. Return: Outputs of dygraph function. """ if self._class_instance is not None: dygraph_function = self._dygraph_function.__get__( self._class_instance) else: dygraph_function = self._dygraph_function return dygraph_function(*args, **kwargs) def get_concrete_program(self, *args, **kwargs): """ Returns traced concrete program and inner executable partial layer. Args: *args(tuple): input arguments values or InputSpec **kwargs(dict) : input kwargs values. Returns: Traced ConcreteProgram and executable translated Layer. """ # 1. unify args/kwargs and replace Tensor with InputSpec if len(args) != len(self._function_spec.args_name): args, kwargs = self._function_spec.unified_args_and_kwargs(args, kwargs) input_args_with_spec, input_kwargs_with_spec = self._function_spec.args_to_input_spec( args, kwargs) # 2. generate cache key cache_key = CacheKey(self._function_spec, input_args_with_spec, input_kwargs_with_spec, self._class_instance) # 3. check whether hit the cache or build a new program for the input arguments concrete_program, partial_program_layer = self._program_cache[cache_key] return concrete_program, partial_program_layer def get_traced_count(self): """ Returns the number of traced programs for the decorated function. """ return len(self._program_cache) @property def code(self): """ Returns the source code of transformed static function for debugging. """ static_func = convert_to_static(self._dygraph_function) source_code = func_to_source_code(static_func) return source_code @property def dygraph_function(self): """ Returns the original decorated function. """ return self._dygraph_function @property def concrete_program(self): """ Returns recent ConcreteProgram instance of decorated function. Examples: .. code-block:: python import paddle from paddle.jit import to_static from paddle.static import InputSpec paddle.disable_static() def foo(x, y): z = x + y return z # usage 1: decorated_foo = to_static(foo, input_spec=[InputSpec([10], name='x'), InputSpec([10], name='y')]) print(decorated_foo.concrete_program) # usage 2: decorated_foo = to_static(foo) out_foo = decorated_foo(paddle.rand([10]), paddle.rand([10])) print(decorated_foo.concrete_program) """ return self.concrete_program_specify_input_spec(input_spec=None) def concrete_program_specify_input_spec(self, input_spec=None): """ Returns recent ConcreteProgram instance of decorated function while specifying input_spec. If the self._function_spec already has input_spce, it will check the compatibility of input input_spec and the self._function_spec.input_spec. If input input_spec=None, then this method uses self._function_spec.input_spec args: input_spec (list[InputSpec], optional): Describes the input of the translate function. """ # if specific the `input_spec`, the length of program_cache will always 1, # else, return the last one. cached_program_len = len(self._program_cache) # If specific `input_spec`, apply convertion from dygraph layers into static Program. if cached_program_len == 0: if input_spec is None: input_spec = self._function_spec.input_spec elif self._function_spec.input_spec is not None: if not input_specs_compatible( flatten(input_spec), flatten(self._function_spec.input_spec)): raise ValueError( "The `input_spec`: {} used to construct concrete_program is conflict with the `input_spec`: {} in `@paddle.jit.to_static`". format(input_spec, self._function_spec.input_spec)) has_input_spec = (input_spec is not None) if has_input_spec: concrete_program, _ = self.get_concrete_program(*input_spec) return concrete_program else: raise ValueError( "No valid transformed program for {}.\n\t Please specific `input_spec` in `@paddle.jit.to_static` or feed input tensor to call the decorated function at once.\n". format(self._function_spec)) # If more than one programs have been cached, return the recent converted program by default. elif cached_program_len > 1: logging_utils.warn( "Current {} has more than one cached programs: {}, the last traced progam will be return by default.". format(self._function_spec, cached_program_len)) cache_key, (concrete_program, partial_layer) = self._program_cache.last() return concrete_program @property def inputs(self): """ Returns input tensors of recent converted static program. """ concrete_program = self.concrete_program inputs = [ var for var in flatten(concrete_program.inputs) if isinstance(var, framework.Variable) ] return inputs @property def outputs(self): """ Returns output tensors of recent converted static program. """ concrete_program = self.concrete_program outputs = [ var for var in flatten(concrete_program.outputs) if isinstance(var, framework.Variable) ] return outputs @property def main_program(self): """ Returns recent converted static main program. """ concrete_program = self.concrete_program main_program = concrete_program.main_program return main_program @property def program_cache(self): return self._program_cache @property def function_spec(self): return self._function_spec # Flag that indicates whether running code under `@declarative` _in_declarative_mode_ = False def in_declarative_mode(): """ Return a bool value that indicates whether running code under `@declarative` """ return _in_declarative_mode_ @signature_safe_contextmanager def _switch_declarative_mode_guard_(is_declarative=True): global _in_declarative_mode_ original_val = _in_declarative_mode_ _in_declarative_mode_ = is_declarative yield _in_declarative_mode_ = original_val def _verify_init_in_dynamic_mode(class_instance): """ Verifies the instance is initialized in dynamic mode. """ if isinstance(class_instance, layers.Layer): if not class_instance._init_in_dynamic_mode: raise RuntimeError( " `paddle.jit.to_static` is only available in dynamic mode. Please call `paddle.disable_static()` before " "initializing your Layer class `{}` . Because parameters of Layer class should be initialized firstly " "in dynamic mode while applying transformation.".format( class_instance)) class ConcreteProgram(object): __slots__ = [ 'inputs', 'outputs', 'main_program', "startup_program", "parameters", "function" ] def __init__(self, inputs, outputs, parameters, function, main_program, startup_program=None): self.inputs = inputs self.outputs = outputs self.main_program = main_program self.startup_program = startup_program self.parameters = parameters self.function = function @staticmethod @switch_to_static_graph def from_func_spec(func_spec, input_spec, input_kwargs_spec, class_instance): """ Builds the main_program with specialized inputs and returns outputs of program as fetch_list. Args: func_spec(FunctionSpec): A FunctionSpec instance for decorated function. input_spec(list[InputSpec]): """ # verify the instance is initialized in imperative mode. _verify_init_in_dynamic_mode(class_instance) # Transforms dygraph function into static function and caches it. dygraph_function = func_spec.dygraph_function static_func = convert_to_static(dygraph_function) main_program, startup_program = framework.Program(), framework.Program() # Note: The random seed should be synchronized into cached program # if set in `fluid.dygraph_guard` because some ops rely on it, such as # `fluid.layers.dropout`. main_program.random_seed = framework.default_main_program().random_seed startup_program.random_seed = framework.default_startup_program( ).random_seed with framework.program_guard(main_program, startup_program): with _switch_declarative_mode_guard_(is_declarative=True): # 1. Adds `fluid.data` layers for input if needed inputs = func_spec.to_static_inputs_with_spec(input_spec, main_program) kwargs = func_spec.to_static_inputs_with_spec(input_kwargs_spec, main_program) if class_instance: inputs = tuple([class_instance] + list(inputs)) # 2. Gets all ParamBases and buffered VarBases in the function all_parameters_and_buffers = _extract_indeed_params_buffers( class_instance) # 3. Builds program only once and returns the output Variables. with param_guard(get_parameters( class_instance, False)), param_guard( get_buffers(class_instance, False)): try: if kwargs: outputs = static_func(*inputs, **kwargs) else: outputs = static_func(*inputs) except BaseException as e: # NOTE: If e is raised in compile time, e should be attached to ERROR_DATA here. error.attach_error_data(e) error_data = getattr(e, error.ERROR_DATA, None) if error_data: error_data.raise_new_exception() raise if outputs is not None: need_wrap_into_list = not isinstance(outputs, ( tuple, list)) or len(outputs) == 1 if need_wrap_into_list: outputs = [outputs] main_program = update_op_callstack_with_origin_info(main_program) return ConcreteProgram( inputs=inputs, outputs=outputs, parameters=all_parameters_and_buffers, function=dygraph_function, main_program=main_program, startup_program=startup_program) def _extract_indeed_params_buffers(class_instance): """ To filter not initialzed buffers. """ params = list(get_parameters(class_instance).values()) buffers = list(get_buffers(class_instance).values()) buffers = [buffer for buffer in buffers if len(buffer.shape) != 0] return params + buffers class ProgramCache(object): """ Wrapper class for the program functions defined by dygraph function. """ def __init__(self): self._caches = collections.OrderedDict() def _build_once(self, cache_key): concrete_program = ConcreteProgram.from_func_spec( func_spec=cache_key.function_spec, input_spec=cache_key.input_args_with_spec, input_kwargs_spec=cache_key.input_kwargs_with_spec, class_instance=cache_key.class_instance) return concrete_program, partial_program_from(concrete_program) def __getitem__(self, item): if not isinstance(item, CacheKey): raise ValueError('type(item) should be CacheKey, but received %s' % type_name(item)) if item not in self._caches: self._caches[item] = self._build_once(item) # Note: raise warnings if number of traced program is more than `max_tracing_count` current_tracing_count = len(self._caches) if current_tracing_count > MAX_TRACED_PROGRAM_COUNT: logging_utils.warn( "Current traced program number: {} > `max_tracing_count`:{}. Too much cached programs will bring expensive overhead. " "The reason may be: (1) passing tensors with different shapes, (2) passing python objects instead of tensors.". format(current_tracing_count, MAX_TRACED_PROGRAM_COUNT)) return self._caches[item] def get_program(self, item): if not isinstance(item, CacheKey): raise ValueError( "Input item's type should be FunctionSpec, but received %s" % type_name(item)) if item not in self._caches: raise RuntimeError( "Failed to find program for input item, please decorate input function by `@paddle.jit.to_static`." ) return self._caches[item] def last(self): assert len( self._caches) >= 1, "No valid cached program in ProgramCache." key = next(reversed(self._caches.keys())) return key, self._caches[key] def __len__(self): return len(self._caches) def concrete_programs(self): return [cp for key, (cp, _) in six.iteritems(self._caches)] def synchronized(func): func.__lock__ = threading.Lock() def lock_func(*args, **kwargs): with func.__lock__: return func(*args, **kwargs) return lock_func class ProgramTranslator(object): """ Class to translate dygraph function into static graph function. The object of this class is a singleton. Args: None. Returns: ProgramTranslator: the singleton object. Examples: .. code-block:: python import paddle # Two methods get same object because ProgramTranslator is a singleton paddle.jit.ProgramTranslator() paddle.jit.ProgramTranslator.get_instance() """ _singleton_lock = threading.Lock() _instance = None @synchronized def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance = object.__new__(cls, *args, **kwargs) cls._instance._initialized = False return cls._instance @classmethod def get_instance(cls): if cls._instance is None: with cls._singleton_lock: cls._instance = cls() return cls._instance @classmethod def reset(cls): if cls._instance is not None: cls._instance._initialized = False cls._instance.__init__() def __init__(self): # To make sure that calls __init__ only once. if self._initialized: return self._initialized = True self._program_cache = ProgramCache() self.enable_to_static = True def enable(self, enable_to_static): """ Enable or disable the converting from imperative to static graph by ProgramTranslator globally. Args: enable_to_static (bool): True or False to enable or disable converting to static. Returns: None. Examples: .. code-block:: python import paddle @paddle.jit.to_static def func(x): if paddle.mean(x) > 0: x_v = x - 1 else: x_v = x + 1 return x_v prog_trans = paddle.jit.ProgramTranslator() prog_trans.enable(False) x = paddle.ones([1, 2]) # ProgramTranslator is disabled so the func is run in dygraph print(func(x)) # [[0. 0.]] """ check_type(enable_to_static, "enable_to_static", bool, "ProgramTranslator.enable") self.enable_to_static = enable_to_static def get_output(self, dygraph_func, *args, **kwargs): """ Returns the output dygraph Tensor for dygraph function. The dygraph function will be translated into static graph function so the under beneath numerical result will be calculated by static graph mode. Args: dygraph_func (callable): the dygraph function. *args (tuple): the input argument of dygraph_func. **kwargs (dict): the input argument of dygraph_func. Returns: Tensor or tuple of Tensors: the dygraph Tensor containing digital result. Examples: .. code-block:: python import paddle def func(x): if paddle.mean(x) > 0: x_v = x - 1 else: x_v = x + 1 return x_v prog_trans = paddle.jit.ProgramTranslator() x = paddle.ones([1, 2]) x_v = prog_trans.get_output(func, x) print(x_v) # [[0. 0.]] """ assert callable( dygraph_func ), "Input dygraph_func is not a callable in ProgramTranslator.get_output" if not self.enable_to_static: # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message) # will show up **only once**. warnings.warn( "The ProgramTranslator.get_output doesn't work when setting ProgramTranslator.enable to False. " "We will just return dygraph output. " "Please call ProgramTranslator.enable(True) if you would like to get static output." ) return dygraph_func(*args, **kwargs) try: function_spec = FunctionSpec(dygraph_func) cache_key = CacheKey.from_func_and_args(function_spec, args, kwargs, getattr(dygraph_func, '__self__', None)) _, partial_program_layer = self._program_cache[cache_key] if args and isinstance(args[0], layers.Layer): # Synchronize self.training attribute. partial_program_layer.training = args[0].training args = args[1:] try: return partial_program_layer(args) except BaseException as e: # NOTE: # 1. If e is raised in compile time, e should have been attached to ERROR_DATA before; # 2. If e raised in runtime, e should be attached to ERROR_DATA here. if not hasattr(e, error.ERROR_DATA): # runtime error error.attach_error_data(e, in_runtime=True) raise except BaseException as e: error_data = getattr(e, error.ERROR_DATA, None) if error_data: error_data.raise_new_exception() else: logging_utils.warn( "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'" " if you can't handle this {} yourself.".format(type(e))) raise e def get_func(self, dygraph_func): """ Returns a callable function which converts imperative dygraph APIs of the input dygraph_func into declarative net-building APIs, which means it doesn't return immediate digital result as get_output does. Users should handle Program and Executor by themselves. Args: dygraph_func (callable): the dygraph function. Returns: callable: converting imperative dygraph APIs into declarative net-building APIs. Examples: .. code-block:: python import paddle def func(x): if paddle.mean(x) > 0: x_v = x - 1 else: x_v = x + 1 return x_v prog_trans = paddle.jit.ProgramTranslator() static_func = prog_trans.get_func(func) print(callable(static_func)) # True """ assert callable( dygraph_func ), "Input dygraph_func is not a callable in ProgramTranslator.get_func" if not self.enable_to_static: logging_utils.warn( "The ProgramTranslator.get_func doesn't work when setting ProgramTranslator.enable to False. We will " "just return dygraph output. Please call ProgramTranslator.enable(True) if you would like to get static output." ) return dygraph_func static_func = convert_to_static(dygraph_func) return static_func def get_program(self, dygraph_func, *args, **kwargs): """ Returns the translated static program and input/output Tensors from dygraph function. The users can use the program to run by executor. Args: dygraph_func (callable): the dygraph function. *args (tuple): the input argument of dygraph_func. **kwargs (dict): the input argument of dygraph_func. Returns: tuple of (main_program, startup_program, inputs, outputs) whose types are (Program, Program, list of Tensors, list of Tensors). main_program: the converted main program. startup_program: the converted startup program. inputs: list of input Tensors which need to be fed. outputs: list of output Tensors which users can fetch. Examples: .. code-block:: python import paddle def func(x): if paddle.mean(x) > 0: x_v = x - 1 else: x_v = x + 1 return x_v prog_trans = paddle.jit.ProgramTranslator() x = paddle.ones([1, 2]) main_prog, start_prog, inputs, outputs = prog_trans.get_program(func, x) print([i.name for i in inputs]) # [u'generated_tensor_0'] the feed input Tensor name representing x print([o.name for o in outputs]) # [u'_generated_var_4'] the fetch output Tensor name representing x_v """ assert callable( dygraph_func ), "Input dygraph_func is not a callable in ProgramTranslator.get_program" if not self.enable_to_static: logging_utils.warn( "The ProgramTranslator.get_program doesn't work when setting ProgramTranslator.enable to False." "We will just return dygraph output. " "Please call ProgramTranslator.enable(True) if you would like to get static output." ) return dygraph_func(*args, **kwargs) function_spec = FunctionSpec(dygraph_func) cache_key = CacheKey.from_func_and_args(function_spec, args, kwargs, getattr(dygraph_func, '__self__', None)) concrete_program, partial_program_layer = self._program_cache[cache_key] # Note: concrete_program hold all input/output infos include non-Variable input_vars = [ var for var in concrete_program.inputs if isinstance(var, framework.Variable) ] output_vars = [ var for var in concrete_program.outputs if isinstance(var, framework.Variable) ] return concrete_program.main_program, \ concrete_program.startup_program, \ input_vars, \ output_vars def get_code(self, dygraph_func): """ Returns the translated static function string code from dygraph function. Args: dygraph_func (callable): the dygraph function. Returns: str: the string code of translated static function. Examples: .. code-block:: python import paddle def func(x): if paddle.mean(x) > 0: x_v = x - 1 else: x_v = x + 1 return x_v prog_trans = paddle.jit.ProgramTranslator() code = prog_trans.get_code(func) print(type(code)) # <class 'str'> """ assert callable( dygraph_func ), "Input dygraph_func is not a callable in ProgramTranslator.get_code" # Gets AST from dygraph function unwrap_func = unwrap(dygraph_func) raw_code = inspect.getsource(unwrap_func) code = textwrap.dedent(raw_code) root = gast.parse(code) # Transform AST dygraph_to_static = DygraphToStaticAst() root_wrapper = dygraph_to_static.get_static_ast(root) # Get source_code source_code = ast_to_source_code(root_wrapper.node) return source_code def get_program_cache(self): """ Returns the ProgramCache instance. This method is used by PaddlePaddle developers to manage program cache in ProgramTranslator. Normal users don't have to call this method. Returns: ProgramCache: ProgramCache instance of ProgramTranslator. Examples: .. code-block:: python import paddle prog_trans = paddle.jit.ProgramTranslator() prog_cache = prog_trans.get_program_cache() """ return self._program_cache
[ "noreply@github.com" ]
seiriosPlus.noreply@github.com
c6e3bcb4f3247eab5377cf6364e3705af4e21173
4d81a1065f1e487aebae794d5637d37423efd345
/PyTest_2/test_file_11.py
fad377384ac463f312929453ca675996dcfde478
[]
no_license
amanoj319319319/EclipsePython
b10cc787125f681e8cb134301c20c450e52e5154
d366839e03c13daf052874e44aafe21d0f9d437d
refs/heads/master
2022-09-08T03:47:08.013223
2020-06-01T06:12:14
2020-06-01T06:12:14
267,015,649
0
0
null
null
null
null
UTF-8
Python
false
false
1,363
py
##https://www.tutorialspoint.com/pytest/pytest_tutorial.pdf #https://www.guru99.com/pytest-tutorial.html import unittest import pytest from selenium import webdriver import time import pytest_ordering import pytest_html from selenium.webdriver.common.by import By import pytest_rerunfailures class Test_Testing2(): a=10 b=20 @pytest.yield_fixture(scope="module") def setup(self): print("it will be printed only once before execution of a module") global driver driver = webdriver.Chrome() driver.maximize_window() driver.implicitly_wait(6) yield print ("i will be printed after only once after execution of a module") driver.close() # @pytest.mark.skip("Dont want to excute this test in this batch") #st @pytest.mark.skipif(a<b , reason="a is less than b") # @pytest.mark.smoke # @pytest.mark.flasky(reruns=2) def test_method_1(self,setup): driver.get("https://learn.letskodeit.com") print ("Title of the page is:-",driver.titl) # @pytest.mark.regression # @pytest.mark.flasky(reruns=3,reruns_delay=6) def test_method_2(self,setup): driver.get("https://learn.letskodeit.com/p/practice") print ("Title of the page is:-",driver.title) ele=driver.find_element_by_id("name").send_keys("Manoj") time.sleep(5)
[ "a.manoj16@gmail.com" ]
a.manoj16@gmail.com
b8947586aa09a52a9513dc0465110568bb8d6273
53994cd9f5e7170190ad0cc92f206338f1d9ee51
/server.py
96075e32ee7b07068d7db1a04ff1cf3aa3377d57
[]
no_license
onatc/SimpleSiri
02f446cc28a97cb72778adc7d7899aa1a5fa71a7
fd369104e4c3008c85ffafb801f65bc5b5f574df
refs/heads/master
2020-03-09T11:58:01.523389
2018-04-09T13:15:22
2018-04-09T13:15:22
128,773,829
0
0
null
null
null
null
UTF-8
Python
false
false
1,952
py
#!/usr/bin/env python3 import wolframalpha import serverKeys import os import sys import socket import pickle import hashlib from cryptography.fernet import Fernet host = '' port = int(sys.argv[2]) backlog = int(sys.argv[4]) size = int(sys.argv[6]) client = wolframalpha.Client(serverKeys.wolfram_alpha_appid) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((host,port)) print('[Checkpoint] Created socket at 0.0.0.0 on port',port,'\n') print('[Checkpoint] Listening for client connections\n') s.listen(backlog) while 1: cli, address = s.accept() print('[Checkpoint] Accepted client connection from',address[0],'on port',port,'\n') data = cli.recv(size) print('[Checkpoint] Received data: ',data,'\n') data_tuple = pickle.loads(data) key = data_tuple[0] question_enc = data_tuple[1] checksum = data_tuple[2] # Check checksum if (hashlib.md5(question_enc).hexdigest() != checksum): print('[Checkpoint] Checksum is INVALID\n') else: print('[Checkpoint] Checksum is VALID\n') # Decrypt f = Fernet(key) question_dec = f.decrypt(question_enc) print('[Checkpoint] Decrypt: Using Key:',key,'\nPlaintext:',question_dec,'\n') question = question_dec.decode('utf-8') print('[Checkpoint] Speaking:',question,'\n') os.system('espeak "{}" 2>/dev/null'.format(question)) print('[Checkpoint] Sending question to Wolfram Alpha:',question,'\n') res = client.query(question) answer = next(res.results).text print('[Checkpoint] Received answer from Wolfram Alpha: ',answer,'\n') if answer: # Encrypt answer_enc = f.encrypt(str.encode(answer)) print('[Checkpoint] Encrypt: Generated Key:',key,'\nCiphertext:',answer_enc,'\n') checksum = hashlib.md5(answer_enc).hexdigest() print('[Checkpoint] Generated MD5 Checksum:',checksum,'\n') data = (answer_enc, checksum) payload = pickle.dumps(data) print('[Checkpoint] Sending data:',payload,'\n') cli.send(payload) cli.close()
[ "noreply@github.com" ]
onatc.noreply@github.com
bdc1abbcea60534d7378d0d3b011e9518c61bde7
f94c3f8ca0876444714518950fb3776cd32b3c56
/area/migrations/0001_initial.py
7e5bf70e96bba5ee0fc2227b469e11b25ac8db7b
[]
no_license
dengshilong/test-django
13abe65c48e2eb5f83b3fbf1ddb2c8e66f392f29
853f342cb3d7958d120beafe54028c4e8fc2c822
refs/heads/master
2020-04-02T13:00:00.577137
2016-11-19T03:24:46
2016-11-19T03:24:46
62,448,833
1
0
null
null
null
null
UTF-8
Python
false
false
1,529
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-07-02 12:28 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import django.db.models.manager import mptt.fields class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Area', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50, unique=True)), ('lft', models.PositiveIntegerField(db_index=True, editable=False)), ('rght', models.PositiveIntegerField(db_index=True, editable=False)), ('tree_id', models.PositiveIntegerField(db_index=True, editable=False)), ('level', models.PositiveIntegerField(db_index=True, editable=False)), ('parent', mptt.fields.TreeForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='children', to='area.Area', verbose_name='\u4e0a\u7ea7\u533a\u57df')), ], options={ 'db_table': 'area', 'verbose_name': '\u7701/\u5e02/\u5730\u533a(\u53bf)', 'verbose_name_plural': '\u7701/\u5e02/\u5730\u533a(\u53bf)', }, managers=[ ('_default_manager', django.db.models.manager.Manager()), ], ), ]
[ "dengshilong1988@gmail.com" ]
dengshilong1988@gmail.com
4b3ef732583128e53e0513d15cfa521e048c6f99
1a6af3dae05e649f7106b4c487dc48b7bf2ee06d
/nlu/streamlit/08_sentence_embedding_manifolds.py
688d9f87822f56bbe1a30d5d3a73d2386eca4016
[ "Apache-2.0" ]
permissive
JohnSnowLabs/spark-nlp-workshop
8911e11a82e2f5f6cd8774ed36753a0215528381
25531c9501219ee9874090d02c02985596e6f432
refs/heads/master
2023-08-31T03:37:10.689274
2023-08-30T18:40:50
2023-08-30T18:40:50
145,453,331
947
587
Apache-2.0
2023-09-14T13:01:23
2018-08-20T18:06:12
Jupyter Notebook
UTF-8
Python
false
false
362
py
import nlu text= """You can visualize any of the 100 + Sentence Embeddings with 10+ dimension reduction algorithms and view the results in 3D, 2D, and 1D which can be colored by various classifier labels! """ nlu.enable_streamlit_caching() # Optional caching the models, recommended nlu.load('embed_sentence.bert').viz_streamlit_sentence_embed_manifold(text)
[ "66001253+ahmedlone127@users.noreply.github.com" ]
66001253+ahmedlone127@users.noreply.github.com
5a7772e786b1242b8206f85b33f5ba4a4d87888c
66bd051d9d2bbbdec5c7fdd4021bc73c6c7c7294
/Mission_to_Mars/Scraper.py
e6cc60696e2e21823069cabfc73f62ff2c7dafe1
[]
no_license
Crobinson17/web-scraping-challenge
90527d8fba9e7e8907b7b102f7d5f7a3e06c6d06
2b1addaa2240e73d237970d492f74b6d3f811a03
refs/heads/main
2023-05-26T14:48:41.619007
2021-06-10T05:38:27
2021-06-10T05:38:27
371,876,919
0
0
null
null
null
null
UTF-8
Python
false
false
3,600
py
from splinter import Browser from bs4 import BeautifulSoup as soup import pandas as pd import requests import pymongo import os from webdriver_manager.chrome import ChromeDriverManager def init_browser(): executable_path = {'executable_path': ChromeDriverManager().install()} return Browser('chrome', **executable_path, headless=False) browser = init_browser() def mars_news(browser): # Mars News URL news_url = "https://mars.nasa.gov/news/" browser.visit(news_url) html = browser.html article = soup(html, 'html.parser') # Most Recent Mars News article = soup.find("div", class_="list_text") news_title = article.find_all('div', class_='content_title')[0].text news_p = article.find_all('div', class_='article_teaser_body')[0].text news_date = article.find("div", class_="list_date").text def featured_image(browser): # Mars Image jpl_nasa_url = 'https://www.jpl.nasa.gov' images_url = 'https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars' browser.visit(images_url) html = browser.html browser.visit(images_url) #Full Image full_image = browser.find_by_tag('button')[1] full_image.click() html = browser.html images_soup = soup(html, 'html.parser') def Mars_Facts(): # Mars facts to be scraped, converted into html table facts_url = 'http://space-facts.com/mars/' tables = pd.read_html(facts_url) Facts_df = tables[2] Facts_df.columns = ["Description", "Value"] mars_html_table = Facts_df.to_html() mars_html_table.replace('\n', '') def hemisphere(browser): hemisphere_url = "https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars" browser.visit(hemisphere_url) hemisphere_image_urls = [] # Get a List of All the Hemisphere links = browser.find_by_css("a.product-item h3") for item in range(len(links)): hemisphere = {} # Find Element on Each Loop browser.find_by_css("a.product-item h3")[item].click() # Find Sample Image Anchor Tag & Extract <href> sample_element = browser.find_link_by_text("Sample").first hemisphere["img_url"] = sample_element["href"] # Get Hemisphere Title hemisphere["title"] = browser.find_by_css("h2.title").text # Append Hemisphere Object to List hemisphere_image_urls.append(hemisphere) # Navigate Backwards browser.back() return hemisphere_image_urls def scrape_hemisphere(html_text): hemisphere_soup = soup(html_text, "html.parser") try: title_element = hemisphere_soup.find("h2", class_="title").get_text() sample_element = hemisphere_soup.find("a", text="Sample").get("href") except AttributeError: title_element = None sample_element = None hemisphere = { "title": title_element, "img_url": sample_element } return hemisphere def scrape_all(): executable_path = {'executable_path': ChromeDriverManager().install()} return Browser('chrome', **executable_path, headless=False) browser = init_browser() browser = init_browser() news_title, news_paragraph = mars_news(browser) data = { "news_title": news_title, "news_paragraph": news_paragraph, "featured_image_url": featured_image, "fact_table": str(Mars_Facts), "hemisphere_images": hemisphere(browser) } return data if __name__ == "__main__": print(scrape_all())
[ "noreply@github.com" ]
Crobinson17.noreply@github.com
d0a158d1a2258f7f6db2c3798c6bd1c3ba01b883
42f5eaf16bfd7076cb5a598cf2f239faa575f28b
/05-grpc-google-cloud-speech/python/google/ads/googleads/v1/common/ad_asset_pb2.py
ccd03074fc01282c95108b7ddb565cf08ab53d4e
[]
no_license
jiriklepl/IMW-2019
ab0e1c791a794ccf8a6a8d8d4e732c29acee134c
921c85d3c8132114ad90db8deb52eb5ddc06c720
refs/heads/master
2020-08-28T13:29:15.087785
2019-12-15T17:12:24
2019-12-15T17:12:24
217,711,235
0
0
null
null
null
null
UTF-8
Python
false
true
8,409
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads/v1/common/ad_asset.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.googleads.v1.enums import served_asset_field_type_pb2 as google_dot_ads_dot_googleads_dot_v1_dot_enums_dot_served__asset__field__type__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from google.protobuf import wrappers_pb2 as google_dot_protobuf_dot_wrappers__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads/v1/common/ad_asset.proto', package='google.ads.googleads.v1.common', syntax='proto3', serialized_options=b'\n\"com.google.ads.googleads.v1.commonB\014AdAssetProtoP\001ZDgoogle.golang.org/genproto/googleapis/ads/googleads/v1/common;common\242\002\003GAA\252\002\036Google.Ads.GoogleAds.V1.Common\312\002\036Google\\Ads\\GoogleAds\\V1\\Common\352\002\"Google::Ads::GoogleAds::V1::Common', serialized_pb=b'\n-google/ads/googleads/v1/common/ad_asset.proto\x12\x1egoogle.ads.googleads.v1.common\x1a;google/ads/googleads/v1/enums/served_asset_field_type.proto\x1a\x1cgoogle/api/annotations.proto\x1a\x1egoogle/protobuf/wrappers.proto\"\x9d\x01\n\x0b\x41\x64TextAsset\x12*\n\x04text\x18\x01 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12\x62\n\x0cpinned_field\x18\x02 \x01(\x0e\x32L.google.ads.googleads.v1.enums.ServedAssetFieldTypeEnum.ServedAssetFieldType\";\n\x0c\x41\x64ImageAsset\x12+\n\x05\x61sset\x18\x01 \x01(\x0b\x32\x1c.google.protobuf.StringValue\";\n\x0c\x41\x64VideoAsset\x12+\n\x05\x61sset\x18\x01 \x01(\x0b\x32\x1c.google.protobuf.StringValue\"A\n\x12\x41\x64MediaBundleAsset\x12+\n\x05\x61sset\x18\x01 \x01(\x0b\x32\x1c.google.protobuf.StringValueB\xe7\x01\n\"com.google.ads.googleads.v1.commonB\x0c\x41\x64\x41ssetProtoP\x01ZDgoogle.golang.org/genproto/googleapis/ads/googleads/v1/common;common\xa2\x02\x03GAA\xaa\x02\x1eGoogle.Ads.GoogleAds.V1.Common\xca\x02\x1eGoogle\\Ads\\GoogleAds\\V1\\Common\xea\x02\"Google::Ads::GoogleAds::V1::Commonb\x06proto3' , dependencies=[google_dot_ads_dot_googleads_dot_v1_dot_enums_dot_served__asset__field__type__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,google_dot_protobuf_dot_wrappers__pb2.DESCRIPTOR,]) _ADTEXTASSET = _descriptor.Descriptor( name='AdTextAsset', full_name='google.ads.googleads.v1.common.AdTextAsset', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='text', full_name='google.ads.googleads.v1.common.AdTextAsset.text', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pinned_field', full_name='google.ads.googleads.v1.common.AdTextAsset.pinned_field', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=205, serialized_end=362, ) _ADIMAGEASSET = _descriptor.Descriptor( name='AdImageAsset', full_name='google.ads.googleads.v1.common.AdImageAsset', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='asset', full_name='google.ads.googleads.v1.common.AdImageAsset.asset', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=364, serialized_end=423, ) _ADVIDEOASSET = _descriptor.Descriptor( name='AdVideoAsset', full_name='google.ads.googleads.v1.common.AdVideoAsset', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='asset', full_name='google.ads.googleads.v1.common.AdVideoAsset.asset', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=425, serialized_end=484, ) _ADMEDIABUNDLEASSET = _descriptor.Descriptor( name='AdMediaBundleAsset', full_name='google.ads.googleads.v1.common.AdMediaBundleAsset', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='asset', full_name='google.ads.googleads.v1.common.AdMediaBundleAsset.asset', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=486, serialized_end=551, ) _ADTEXTASSET.fields_by_name['text'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ADTEXTASSET.fields_by_name['pinned_field'].enum_type = google_dot_ads_dot_googleads_dot_v1_dot_enums_dot_served__asset__field__type__pb2._SERVEDASSETFIELDTYPEENUM_SERVEDASSETFIELDTYPE _ADIMAGEASSET.fields_by_name['asset'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ADVIDEOASSET.fields_by_name['asset'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ADMEDIABUNDLEASSET.fields_by_name['asset'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE DESCRIPTOR.message_types_by_name['AdTextAsset'] = _ADTEXTASSET DESCRIPTOR.message_types_by_name['AdImageAsset'] = _ADIMAGEASSET DESCRIPTOR.message_types_by_name['AdVideoAsset'] = _ADVIDEOASSET DESCRIPTOR.message_types_by_name['AdMediaBundleAsset'] = _ADMEDIABUNDLEASSET _sym_db.RegisterFileDescriptor(DESCRIPTOR) AdTextAsset = _reflection.GeneratedProtocolMessageType('AdTextAsset', (_message.Message,), { 'DESCRIPTOR' : _ADTEXTASSET, '__module__' : 'google.ads.googleads.v1.common.ad_asset_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v1.common.AdTextAsset) }) _sym_db.RegisterMessage(AdTextAsset) AdImageAsset = _reflection.GeneratedProtocolMessageType('AdImageAsset', (_message.Message,), { 'DESCRIPTOR' : _ADIMAGEASSET, '__module__' : 'google.ads.googleads.v1.common.ad_asset_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v1.common.AdImageAsset) }) _sym_db.RegisterMessage(AdImageAsset) AdVideoAsset = _reflection.GeneratedProtocolMessageType('AdVideoAsset', (_message.Message,), { 'DESCRIPTOR' : _ADVIDEOASSET, '__module__' : 'google.ads.googleads.v1.common.ad_asset_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v1.common.AdVideoAsset) }) _sym_db.RegisterMessage(AdVideoAsset) AdMediaBundleAsset = _reflection.GeneratedProtocolMessageType('AdMediaBundleAsset', (_message.Message,), { 'DESCRIPTOR' : _ADMEDIABUNDLEASSET, '__module__' : 'google.ads.googleads.v1.common.ad_asset_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v1.common.AdMediaBundleAsset) }) _sym_db.RegisterMessage(AdMediaBundleAsset) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
[ "jiriklepl@seznam.cz" ]
jiriklepl@seznam.cz
bf6ac9b7698ee3bb2912c54fec4693bfd0c6b505
7f57e37222fa7d97e6b9abc592e353f87de36025
/print_temp.py
c28cbf1fcc22d1c4a0b3e2ea6558ae1ebf8a1d04
[]
no_license
asanchez78/DS18B20-temperature-log
db4dde404d62965ba59e765cff2e108a1aa73b1d
6059076d065038c99d58f9c3458ffbad2889696c
refs/heads/master
2021-05-09T23:29:09.760489
2018-01-24T16:13:14
2018-01-24T16:13:14
118,789,313
0
0
null
null
null
null
UTF-8
Python
false
false
909
py
#!/usr/bin/python3 import os import glob import time import datetime from decimal import * os.system('modprobe w1-gpio') os.system('modprobe w1-therm') base_dir = '/sys/bus/w1/devices/' device_folder = glob.glob(base_dir + '28*')[0] device_file = device_folder + '/w1_slave' def read_temp_raw(): f = open(device_file, 'r') lines = f.readlines() f.close() return lines def read_temp(): lines = read_temp_raw() while lines[0].strip()[-3:] != 'YES': time.sleep(0.2) lines = read_temp_raw() equals_pos = lines[1].find('t=') if equals_pos != -1: temp_string = lines[1][equals_pos+2:] temp_c = float(temp_string) / 1000.0 temp_f = temp_c * 9.0 / 5.0 + 32.0 # return temp_c, temp_f return temp_f while True: temp = read_temp() theTime = str(datetime.datetime.now()) print(theTime + "\n") print(temp) time.sleep(3)
[ "anthony@xebix.com" ]
anthony@xebix.com
ce279df001f150b795732de3fb5d8ae56714c416
e34f21d6836d6837b6856968162148891c29390c
/processing.py
78cb92d6e2670f6205a6b8912ea97d5deb5b2b38
[]
no_license
MuztaghAta/handwirtten-digit-recognization
f7dcd0e7333ec134e835e37295ac2e48bb79157a
e83e7522663be453333265c4074e816a4fa0193c
refs/heads/master
2022-12-14T19:00:13.858079
2020-02-01T14:42:59
2020-02-01T14:42:59
164,705,898
0
0
null
2022-11-21T22:43:49
2019-01-08T18:06:12
Python
UTF-8
Python
false
false
3,290
py
"""This program pre-processes self-captured images containing handwritten digits so that the trained NN model can recognize efficiently. The idea is to convert digits in the original image to digits that have the same format with MNIST images that were used to train the NN model. References: http://www.hackevolve.com/recognize-handwritten-digits-1/ """ import cv2 import imutils import numpy as np import matplotlib.image as mpimg def processing(path): """Process image: resize, grey, remove noise, normalize """ # load image i_orig = mpimg.imread(path) # resize but keep the aspect ratio i_resize = imutils.resize(i_orig, width=320) # convert to grays cale image i_gray = cv2.cvtColor(i_resize, cv2.COLOR_BGR2GRAY) # Blackhat to reveal dark regions on a light background kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) i_black_hat = cv2.morphologyEx(i_gray, cv2.MORPH_BLACKHAT, kernel) # threshold the image to further reduce noise _, i_thresh = cv2.threshold(i_black_hat, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # dilate the image to grow foreground pixels i_dilate = cv2.dilate(i_thresh, None) # check processing results # plt.imshow(i_dilate) # i_resize, i_gray, i_black_hat, i_thresh, i_dilate # plt.show() return i_resize, i_dilate def segmentation(i_resize, i_dilate, flat=False): """Segment the processed image and extract the digits in the image """ _, contours, _ = cv2.findContours(i_dilate.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) img = i_resize.copy() digits = [] boxes = [] i = 0 for cnt in contours: # Check the area of contour, if it is very small ignore it if cv2.contourArea(cnt) < 10: continue # filtered contours are detected (x, y, w, h) = cv2.boundingRect(cnt) # take ROI (i.e. digits) of the contour roi = i_dilate[y:y+h, x:x+w] # resize to a size of MNIST data without border roi = cv2.resize(roi, (20, 20)) # add border with black (background) pixels black = [0, 0, 0] roi = cv2.copyMakeBorder(roi, 4, 4, 4, 4, cv2.BORDER_CONSTANT, value=black) # resize to a size compatible with MNIST data roi = cv2.resize(roi, (28, 28)) # save (before normalization) the digits as image files for checking cv2.imwrite('roi' + str(i) + '.png', roi) # normalize the image since the MNIST data were normalized roi = roi / 255.0 if flat: # reshape to a flat vector for fully connected network model roi = np.reshape(roi, (784,)) else: # reshape to a array for CNN model roi = np.reshape(roi, (28, 28, 1)) # mark the digits on the image cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) digits.append(roi) # or roi_array boxes.append((x, y, w, h)) i += 1 # check if segmentation correct # cv2.imshow('Image', img) # cv2.waitKey(0) digits = np.array(digits) return digits, boxes
[ "noreply@github.com" ]
MuztaghAta.noreply@github.com
cdda453cc0a86c9b79620fc9b24b4a61db406d90
03922080543f7ef49ee594c7cd774ca7567cc57e
/algoritmos/exercicio.py
92df7cf8459adc8cc591944293ed06255ece0c0d
[]
no_license
Elaineshield/aula-cc
ae3219a645a47b89ffcc9aedac7505ba0eeed497
8fb782d643a6f5c1b92c677718231ceec6ab1fec
refs/heads/main
2023-04-09T17:44:03.094971
2021-04-23T00:31:04
2021-04-23T00:31:04
360,719,046
0
0
null
2021-04-23T00:37:26
2021-04-23T00:37:26
null
UTF-8
Python
false
false
16
py
# qualquer coisa
[ "rainhadeles2000brokenbones@gmail.com" ]
rainhadeles2000brokenbones@gmail.com
7e858475947aaf17e9d62c60f18dcbf653d58043
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_wallowing.py
9ea44930d85d69937dbebfd471045b0321491801
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
242
py
from xai.brain.wordbase.verbs._wallow import _WALLOW #calss header class _WALLOWING(_WALLOW, ): def __init__(self,): _WALLOW.__init__(self) self.name = "WALLOWING" self.specie = 'verbs' self.basic = "wallow" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
dee3659b5ed35d15e0d69828401fdbc5fa5646f3
ff90afd185dddadd654d5b12ff385ccb8305aff4
/QuotesBot.py
30caa8610838c50b2d1da555c2e271b1971dfe02
[]
no_license
MaicoLeberle/QuotesBot
ffee622d1f1d42fa1c05e1de7874515f790d003d
66541a71c85b04537400f02aa9e9cac5fbb03c78
refs/heads/main
2023-06-01T04:14:45.746652
2021-06-11T14:59:55
2021-06-11T14:59:55
375,852,454
0
1
null
null
null
null
UTF-8
Python
false
false
10,331
py
import logging import sys from random import randint import pandas import datetime from telegram import Update, ForceReply, ParseMode from telegram.ext import \ Updater, CommandHandler, MessageHandler, Filters, CallbackContext # Enable logging, mostly for debugging logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO) logger = logging.getLogger(__name__) """ Send our greetings to the user. """ def start_command(update: Update, context: CallbackContext) -> None: user = update.effective_user update.message.reply_markdown_v2(fr'Hi {user.mention_markdown_v2()}\!') update.message.reply_text("Type /help to list commands.",\ parse_mode=ParseMode.MARKDOWN) """ Clear all scheduled quotes. """ def finish_command(update: Update, context: CallbackContext) -> None: for job in context.job_queue.jobs(): job.schedule_removal() update.message.reply_text( "The schedule has been *cleared*.", parse_mode=ParseMode.MARKDOWN) """ List all commands and their specifications. """ def help_command(update: Update, context: CallbackContext) -> None: msg = "" msg += "*/start* - welcomes you.\n" msg += "*/now* - prints the current date and time " \ "(in *YYYY:MM:DD - HH:MM:SS* format).\n" msg += "*/random_quote* - immediately sends a quote.\n" msg += "*/set_period* <PARAMETER> - schedule periodic quotes. " \ " Supported format for PARAMETER: *HH:MM:SS*.\n" msg += "*/once* <PARAMETER> - schedules a one-time-only quote."\ "Supported format for PARAMETER: *HH:MM:SS*.\n" msg += "*/set_quotes* <PARAMETER> - used to resume or pause the scheduler"\ " (note: pausing the scheduler does not remove the scheduled quotes)."\ "PARAMETER must be either *on* or *off*.\n" msg += "*/finish* clears the schedule, removing all pending quotes.\n" msg += "\n*/help* prints this message.\n" update.message.reply_text(msg, parse_mode=ParseMode.MARKDOWN) """ Non-command messages will be echoed. """ def echo(update: Update, context: CallbackContext) -> None: update.message.reply_text(update.message.text) """ Send date and time in YYYY:MM:DD - HH:MM:SS format. """ def now_command(update: Update, context: CallbackContext) -> None: update.message.reply_text(\ datetime.datetime.now().strftime("%Y.%m.%d - %H:%M:%S")) """ Enable or disable all scheduled jobs. """ def set_quotes_command(update: Update, context: CallbackContext) -> None: params = context.args if len(params) != 1: update.message.reply_text( "The set_quotes command takes a parameter, either \"on\" or " "\"off\".") else: toggle = params[0].upper().strip() if toggle == "ON": for job in context.job_queue.jobs(): job.enabled = True context.job_queue.start() update.message.reply_text(\ "Schedule is *active*.", parse_mode=ParseMode.MARKDOWN) elif toggle == "OFF": for job in context.job_queue.jobs(): job.enabled = False update.message.reply_text(\ "The whole schedule has been *paused*.",\ parse_mode=ParseMode.MARKDOWN) else: update.message.reply_text("The set_quotes command takes a \ parameter, either \"on\" or \"off\".") """ Schedule a new job to be issued periodically. """ def set_period_command(update: Update, context: CallbackContext) -> None: period_param = context.args if len(period_param) != 1: update.message.reply_text(\ "The set\_period command takes a parameter."\ " Supported format: *HH:MM:SS*, where 00 <= *HH* <= 99, "\ "00 <= *MM* <= 59 and 00 <= *SS* <= 59.",\ parse_mode=ParseMode.MARKDOWN) else: context.job_queue.start() # Split the time parameter in hours, minutes and seconds param = period_param[0].strip().split(':',3) if not valid_time(param): update.message.reply_text(\ "The set_period command takes a " \ "parameter representing the time between quotes. " \ "Supported format: *HH:MM:SS*, where 00 <= *HH* <= 99, " \ "00 <= *MM* <= 59 and 00 <= *SS* <= 59.",\ parse_mode=ParseMode.MARKDOWN) else: hours = int(param[0]) minutes = int(param[1]) seconds = int(param[2]) # Finally, we schedule the job. period = datetime.timedelta(hours=hours,minutes=minutes,\ seconds=seconds) context.job_queue.run_repeating(\ random_quote, period, context=update.message.chat_id) update.message.reply_text(\ "A random quote will be issued every *" + \ period_param[0].strip() + "*.", parse_mode=ParseMode.MARKDOWN) """ Schedule a one-time-only quote. """ def once_command(update: Update, context: CallbackContext) -> None: period_param = context.args if len(period_param) != 1: update.message.reply_text(\ "The */once* command takes a time parameter. Supported format: "\ "*HH:MM:SS*, where 00 <= *HH* <= 99, 00 <= *MM* <= 59 and "\ "00 <= *SS* <= 59.", parse_mode=ParseMode.MARKDOWN) else: context.job_queue.start() # Split the time parameter in hours, minutes and seconds param = period_param[0].strip().split(':',3) if not valid_time(param): update.message.reply_text(\ "The once command takes a time parameter."\ " Supported format: HH:MM:SS, where 00 <= HH <= 99, "\ "00 <= MM <= 59 and 00 <= SS <= 59.") else: hours = int(param[0]) minutes = int(param[1]) seconds = int(param[2]) # Finally, we schedule the job. period = datetime.timedelta(\ hours=hours, minutes=minutes,seconds=seconds) context.job_queue.run_once(\ random_quote, period, context=update.message.chat_id) update.message.reply_text(\ "A random quote will be issued in *" + \ period_param[0].strip() + "*.", parse_mode=ParseMode.MARKDOWN) """ Auxiliary function for once_command and set_period_command. """ def random_quote(context: CallbackContext) -> None: # Open the JSON file containing the quotes, and convert it to a Pandas # DataFrame (iterable). data_frame = pandas.read_json("quotes.json") quote_number = randint(0,len(data_frame)) msg = '\"' + str(data_frame["quoteText"][quote_number]) + '\" - ' + \ str(data_frame["quoteAuthor"][quote_number]) context.bot.send_message(chat_id=context.job.context,text=msg) """ Check that the input parameter has the right format. """ def valid_time(param: str) -> (str, str, str): # First, check that we exactly three elements (hours, minutes, seconds). if not (len(param) == 3): return False # Second, check if these elements are made of digits. if not (param[0].isdigit() and param[1].isdigit() and param[2].isdigit()): return False # Next, cast these elements to integerss, and check that they belong in the # appropriate range. hours = int(param[0]) minutes = int(param[1]) seconds = int(param[2]) if 0 > hours or hours > 99 or \ 0 > minutes or minutes > 59 \ or 0 > seconds or seconds > 59: return False return True """ Send a random quote. """ def random_quote_command(update: Update, context: CallbackContext) -> None: params = context.args if len(params) != 0: update.message.reply_text("Discarding the provided parameters - the " "random_quote command takes none.") # Open the JSON file containing the quotes, and convert it to a Pandas # DataFrame (iterable). data_frame = pandas.read_json("quotes.json") quote_number = randint(0,len(data_frame)) msg = '\"' + str(data_frame["quoteText"][quote_number]) + '\" - ' + \ str(data_frame["quoteAuthor"][quote_number]) update.message.reply_text(msg) def main() -> None: if len(sys.argv) != 2: print("Only supported usage: BaseBot.py <TOKEN>") sys.exit() # Start the bot by creating the Updater and passing it the input token. token = sys.argv[1] try: updater = Updater(token) except telegram.error.InvalidToken: print(\ "The given token does not correspond to any working Telegram bot.") sys.exit() # Get the dispatcher and register the handlers corresponding to the # commands recognized by the bot. dispatcher = updater.dispatcher dispatcher.add_handler( CommandHandler("start", start_command)) dispatcher.add_handler( CommandHandler("finish", finish_command)) dispatcher.add_handler( CommandHandler("help", help_command)) dispatcher.add_handler( CommandHandler("now", now_command)) dispatcher.add_handler( CommandHandler("set_quotes", set_quotes_command)) dispatcher.add_handler( CommandHandler("set_period", set_period_command)) dispatcher.add_handler( CommandHandler("once", once_command)) dispatcher.add_handler( CommandHandler("random_quote", random_quote_command)) # Echo all non-command messages. dispatcher.add_handler( MessageHandler(Filters.text & ~Filters.command, echo)) # Start the Bot. updater.start_polling() # Run the bot until pressing Ctrl-C. updater.idle() if __name__ == '__main__': main()
[ "maico.leberle@gmail.com" ]
maico.leberle@gmail.com
14ec9fc3a79b66b285606d350d30ad3ab04e350f
64d89e2c0468ce6a7a55a6c3415b7fce4f049ea1
/Taller de Estructuras de Control Selectivas/Ejercicio_11.py
1006690172dd281146550084445d15a8a26d613a
[ "MIT" ]
permissive
JRobayo99/Talleres-de-algotimos
16c544725de5aff3b6c6c804d8958837b7acc13f
684ad3a4a21ada2f8347a6bae6eaa845d5abb2dc
refs/heads/main
2023-07-31T07:29:08.939938
2021-09-19T21:14:41
2021-09-19T21:14:41
392,040,364
0
0
null
null
null
null
UTF-8
Python
false
false
266
py
tf=int(input("Ingrese la tempratura en grados Fahrenheit: ")) if(tf > 85): print("Natación") elif(70 < tf and tf<=85): print("Tenis") elif(31 < tf and tf<=70): print("Golf") elif(9<tf and tf<=32): print("Esquí") elif(tf<=10): print("Marcha")
[ "jramire23664@universidadean.edu.co" ]
jramire23664@universidadean.edu.co
07da54663e83619ebf814394a3a05b0043f02146
0fa00ecf2dd671515dc001d4b14049ec6a0c1f1c
/custom_components/spook/services.py
827880ce6115fd6c994621ecc4451b0afda60ebd
[ "Unlicense" ]
permissive
bacco007/HomeAssistantConfig
d91a5368344f50abbea881bd1e6dfc57a0e456ca
8548d9999ddd54f13d6a307e013abcb8c897a74e
refs/heads/master
2023-08-30T07:07:33.571959
2023-08-29T20:00:00
2023-08-29T20:00:00
230,585,631
98
16
Unlicense
2023-09-09T08:28:39
2019-12-28T09:05:02
Python
UTF-8
Python
false
false
10,941
py
"""Spook - Not your homie.""" from __future__ import annotations from abc import ABC, abstractmethod from dataclasses import dataclass, field import importlib from pathlib import Path from typing import TYPE_CHECKING, Any, final import voluptuous as vol from homeassistant.core import ( HomeAssistant, Service, ServiceCall, ServiceResponse, SupportsResponse, callback, ) from homeassistant.helpers.entity_component import DATA_INSTANCES, EntityComponent from homeassistant.helpers.entity_platform import DATA_ENTITY_PLATFORM from homeassistant.helpers.service import ( SERVICE_DESCRIPTION_CACHE, _load_services_file, async_register_admin_service, async_set_service_schema, ) from homeassistant.loader import async_get_integration from .const import DOMAIN, LOGGER if TYPE_CHECKING: from homeassistant.helpers.entity import Entity class AbstractSpookServiceBase(ABC): """Abstract base class to hold a Spook service.""" hass: HomeAssistant domain: str service: str schema: dict[str | vol.Marker, Any] | None = None def __init__(self, hass: HomeAssistant) -> None: """Initialize the service.""" self.hass = hass @abstractmethod @callback def async_register(self) -> None: """Handle the service call.""" raise NotImplementedError @final @callback def async_unregister(self) -> None: """Unregister the service from Home Assistant.""" LOGGER.debug( "Unregistering Spook service: %s.%s", self.domain, self.service, ) self.hass.services.async_remove(self.domain, self.service) class ReplaceExistingService(AbstractSpookServiceBase): """Service replaces/may replace an existing service.""" overriden_service: Service | None = None class AbstractSpookService(AbstractSpookServiceBase): """Abstract class to hold a Spook service.""" supports_response: SupportsResponse = SupportsResponse.NONE @final @callback def async_register(self) -> None: """Register the service with Home Assistant.""" # Only register the service if the domain is the spook integration # or if the target integration is loaded. if self.domain != DOMAIN and self.domain not in self.hass.config.components: LOGGER.debug( "Not registering Spook %s.%s service, %s is not loaded", self.domain, self.service, self.domain, ) LOGGER.debug( "Registering Spook service: %s.%s", self.domain, self.service, ) self.hass.services.async_register( domain=self.domain, service=self.service, service_func=self.async_handle_service, schema=vol.Schema(self.schema) if self.schema else None, supports_response=self.supports_response, ) @abstractmethod async def async_handle_service(self, call: ServiceCall) -> ServiceResponse: """Handle the service call.""" raise NotImplementedError class AbstractSpookAdminService(AbstractSpookServiceBase): """Abstract class to hold a Spook admin service.""" @final @callback def async_register(self) -> None: """Register the service with Home Assistant.""" if self.domain != DOMAIN and self.domain not in self.hass.config.components: LOGGER.debug( "Not registering Spook %s.%s admin service, %s is not loaded", self.domain, self.service, self.domain, ) return LOGGER.debug( "Registering Spook admin service: %s.%s", self.domain, self.service, ) async_register_admin_service( hass=self.hass, domain=self.domain, service=self.service, service_func=self.async_handle_service, schema=vol.Schema(self.schema) if self.schema else None, ) @abstractmethod async def async_handle_service(self, call: ServiceCall) -> None: """Handle the service call.""" raise NotImplementedError class AbstractSpookEntityService(AbstractSpookServiceBase): """Abstract class to hold a Spook entity service.""" platform: str required_features: list[int] | None = None supports_response: SupportsResponse = SupportsResponse.NONE @final @callback def async_register(self) -> None: """Register the service with Home Assistant.""" LOGGER.debug( "Registering Spook entity service: %s.%s for platform %s", self.domain, self.service, self.platform, ) if not ( platform := next( platform for platform in self.hass.data[DATA_ENTITY_PLATFORM][self.domain] if platform.domain == self.platform ) ): msg = ( f"Could not find platform {self.platform} for domain " f"{self.domain} to register service: " f"{self.domain}.{self.service}", ) raise RuntimeError(msg) platform.async_register_entity_service( name=self.service, func=self.async_handle_service, schema=self.schema, required_features=self.required_features, supports_response=self.supports_response, ) @abstractmethod async def async_handle_service( self, entity: Entity, call: ServiceCall, ) -> ServiceResponse: """Handle the service call.""" raise NotImplementedError class AbstractSpookEntityComponentService(AbstractSpookServiceBase): """Abstract class to hold a Spook entity component service.""" required_features: list[int] | None = None supports_response: SupportsResponse = SupportsResponse.NONE @final @callback def async_register(self) -> None: """Register the service with Home Assistant.""" LOGGER.debug( "Registering Spook entity component service: %s.%s", self.domain, self.service, ) if self.domain not in self.hass.data[DATA_INSTANCES]: msg = ( f"Could not find entity component {self.domain} to register " f"service: {self.domain}.{self.service}", ) raise RuntimeError(msg) component: EntityComponent[Entity] = self.hass.data[DATA_INSTANCES][self.domain] component.async_register_entity_service( name=self.service, func=self.async_handle_service, schema=self.schema, required_features=self.required_features, supports_response=self.supports_response, ) @abstractmethod async def async_handle_service( self, entity: Entity, call: ServiceCall, ) -> ServiceResponse: """Handle the service call.""" raise NotImplementedError @dataclass class SpookServiceManager: """Class to manage Spook services.""" hass: HomeAssistant _services: set[AbstractSpookService] = field(default_factory=set) _service_schemas: dict[str, Any] = field(default_factory=dict) def __post_init__(self) -> None: """Post initialization.""" LOGGER.debug("Spook service manager initialized") async def async_setup(self) -> None: """Set up the Spook services.""" LOGGER.debug("Setting up Spook services") integration = await async_get_integration(self.hass, DOMAIN) self._service_schemas = await self.hass.async_add_executor_job( _load_services_file, self.hass, integration, ) # Load all services for module_file in Path(__file__).parent.rglob("ectoplasms/*/services/*.py"): if module_file.name == "__init__.py": continue module_path = str(module_file.relative_to(Path(__file__).parent))[ :-3 ].replace("/", ".") module = importlib.import_module(f".{module_path}", __package__) service = module.SpookService(self.hass) if isinstance( service, ReplaceExistingService, ) and self.hass.services.has_service(service.domain, service.service): LOGGER.debug( "Unregistering service that will be overriden service: %s.%s", service.domain, service.service, ) # pylint: disable=protected-access service.overriden_service = ( self.hass.services._services[service.domain] # noqa: SLF001 ).pop(service.service) self.async_register_service(service) @callback def async_register_service(self, service: AbstractSpookService) -> None: """Register a Spook service.""" service.async_register() self._services.add(service) # Override service description with Spook's if the service is not # for the Spook integration. if service.domain != DOMAIN and ( service_schema := self._service_schemas.get( f"{service.domain}_{service.service}", ) ): LOGGER.debug( "Injecting Spook service schema for: %s.%s", service.domain, service.service, ) async_set_service_schema( self.hass, domain=service.domain, service=service.service, schema=service_schema, ) @callback def async_on_unload(self) -> None: """Tear down the Spook services.""" LOGGER.debug("Tearing down Spook services") for service in self._services: LOGGER.debug( "Unregistering service: %s.%s", service.domain, service.service, ) service.async_unregister() if ( isinstance(service, ReplaceExistingService) and service.overriden_service ): LOGGER.debug( "Restoring service that was overriden previously: %s.%s", service.domain, service.service, ) # pylint: disable-next=protected-access self.hass.services._services.setdefault( # noqa: SLF001 service.domain, {}, )[service.service] = service.overriden_service # Flush service description schema cache self.hass.data.pop(SERVICE_DESCRIPTION_CACHE, None)
[ "thomas@thomasbaxter.info" ]
thomas@thomasbaxter.info
812dd0904f388324462562aab2d50b93971aaeed
d243e017ad9248b7852359797453b8078ab055df
/bin/extract_bookings_single_attachment.py
a3953b7a46f7d6c469f2dd3e432ae5b904e893f3
[]
no_license
capitolmuckrakr/lvmpd_emails
5d436907b694df5fde5472a970ca5e81cfbd6b97
ff0d0752819ed03a61954dac4a405c7f85d41a1a
refs/heads/master
2022-12-09T07:41:17.232160
2020-09-01T13:58:41
2020-09-01T13:58:41
109,310,617
1
0
null
null
null
null
UTF-8
Python
false
false
2,796
py
from __future__ import print_function from bs4 import BeautifulSoup import re, pandas as pd, sys def extract_booking(booking): booking_page = open(booking) soup = BeautifulSoup(booking_page,'html.parser') table = soup.find_all('table')[-1] table = [row for row in table][1] ws_fixer = re.compile(r"\s+") cols = [ws_fixer.sub("_",col.text) for col in [row for row in table.find_all('tr')][0].find_all('td')] if cols[0] == '': cols[0] = 'Row' rows = table.find_all('tr')[1:] t1 = pd.DataFrame(columns=cols, index = range(1,len(rows)+1)) row_marker = 0 for row in rows: column_marker = 0 columns = row.find_all('td') for column in columns: t1.iat[row_marker,column_marker] = column.get_text() column_marker+=1 row_marker+=1 columns_to_fill = ['Booking_Date','Arrest_Date','Time', 'ID_Number', 'First_Name','S', 'R', 'Age', 'Charge_Date','Charges', 'Type', 'Event_Number', 'Arrest_Officer','St','Last_Name', 'Middle_Name']# some values are not repeated across rows and need to be filled in for col_name in columns_to_fill: col = '' previous = '' new_col = [] if col_name in t1.columns: for i,x in t1[col_name].iteritems(): if x == '': if not col_name in ['Last_Name', 'Middle_Name']: x = previous else: if not previous == '': if t1.loc[i,'First_Name'] == t1.loc[i - 1,'First_Name']: x = previous col = x previous = col new_col.append(col) t1[col_name] = new_col t1['Time'] = pd.to_datetime(t1['Booking_Date'] + ' ' + t1['Time']) t1['Booking_Date'] = pd.to_datetime(t1['Booking_Date']) for option_col in ['Arrest_Date','Charge_Date']: if option_col in t1.columns: t1[option_col] = pd.to_datetime(t1[option_col]) t1.Charges.replace(ws_fixer," ",regex=True,inplace=True) t1.Last_Name.replace(ws_fixer," ",regex=True,inplace=True) t1.First_Name.replace(ws_fixer," ",regex=True,inplace=True) t1.Middle_Name.replace(ws_fixer," ",regex=True,inplace=True) if list(t1.Row.astype(int)) == list(t1.index): del t1['Row'] col_names = {c:c.lower() for c in list(t1.columns)} col_names['ID_Number'] = 'id' col_names['S']='sex' col_names['R']='race' col_names['St']='state_' col_names['Time']='booking_time' t1.rename(columns=col_names,inplace=True) t1['filename'] = booking.split('/')[-1] return t1 if __name__ == '__main__': booking_file = sys.argv[1] booking = extract_booking(booking_file) print(booking.to_csv())
[ "alex@capitolmuckraker.com" ]
alex@capitolmuckraker.com
413efcc1e21b7e2d3f6ce520a53c0c72361966b3
bc06438b13fac1bf1f5e67689ab384b840fd1d66
/src/Repository.py
7b8ffafa04c81ff3fb35c40cd1335f393cacc9b2
[]
no_license
vanpana/Vertebral-Check
2a68691687481e346abafd5d4e01632c2da5a1e5
20dd07c17380b368ad03cd5b0ca7ce1f3f7912c3
refs/heads/master
2020-03-14T14:01:30.462122
2018-05-03T11:16:32
2018-05-03T11:16:32
131,644,910
0
0
null
null
null
null
UTF-8
Python
false
false
598
py
from random import shuffle class Repository: def __init__(self, filename): self.data = {} self.__load_data_from_file(filename) def __load_data_from_file(self, filename): with open(filename, 'r') as file: for line in file: line = line.strip("\n").split(",") if not line[-1] in self.data: self.data[line[-1]] = [] self.data[line[-1]].append([float(x) for x in line[:-1]]) def shuffle(self): # Shuffles the data set [shuffle(self.data[key]) for key in self.data]
[ "van.panaite@gmail.com" ]
van.panaite@gmail.com
723b1623f4a7e4d3638578844dbe53a0e285fdaa
7da8b92ff8b128ae2cdb0c36af5a15c211ff070b
/toolutils/readconfig.py
acc14cda87b770896eba34dcfc9ecccca0a7cd82
[]
no_license
XIAOJIEZO/auto_web
a30d6f8377dad93d04b8a953a4c5cfd8cc46bed9
4019597d1b455bf48cde418abe7d0159b6831550
refs/heads/main
2023-06-07T02:15:24.270390
2021-06-21T15:12:56
2021-06-21T15:12:56
372,169,117
0
0
null
null
null
null
UTF-8
Python
false
false
286
py
import yaml class ReadConfig(object): def __init__(self): with open(r'config/GlobalGonfig.yaml', 'r', encoding='utf8') as f: self.__result = f.read() def get_test_host(self): return yaml.load(self.__result, Loader=yaml.FullLoader)["HOST"]["TEST"]
[ "Liujie26018" ]
Liujie26018
452c687b93acd18841ab408b2da5e5db7a0a0179
50a8f856343923b972f549d88ff3253c66e91229
/looppay300.py
c5a19484266b3e95bcca99d4ee52ac1a284029a9
[]
no_license
yudhaprimadiansyah/MyRandomPythonScript
d34ec525a6f7180d0804340595310b5a57d840d6
82e1300362bcdb26b1cece2652f773b9a695da8e
refs/heads/master
2021-03-28T14:18:02.719209
2020-03-17T03:21:37
2020-03-17T03:21:37
247,869,486
2
0
null
null
null
null
UTF-8
Python
false
false
206
py
file = open("payload.py", 'w') data = "" string = "0123456789ABCDEF" payload = "" for i in string: for a in string: payload += "(('"+a+"'*3)+('"+i+"'*4)+'\\x"+i+a+"')+" file.write(payload) file.close()
[ "yudhaprimadiansyah@gmail.com" ]
yudhaprimadiansyah@gmail.com
5ccf71e79cc611640bbb4fcc4e86577cadc47f1f
0cbc02dd7d1efbe61de04dcf1c6eccb6496bf074
/month01/day16_adv/test/test01_generator.py
db25cdc6cf2900234371d72c41e67431d2e088a1
[]
no_license
fsym-fs/Python_AID
0b1755c15e20b214940041e81bedb2d5ec99e3f9
f806bb02cdb1670cfbea6e57846abddf3972b73b
refs/heads/master
2021-03-20T06:57:45.441245
2020-05-27T14:13:45
2020-05-27T14:13:45
247,187,064
0
0
null
null
null
null
UTF-8
Python
false
false
830
py
""" 参照enumeration自定义my_enumeration函数 将list01中,长度大于2的元素设置为空字符串 """ # list01 = ["唐僧", "猪八戒", "悟空"] # dict01 = {"唐僧": 101, "猪八戒": 102, "悟空": 103} # for i in enumerate(list01): # print(i) # # # def my_enumeration(a): # index = 0 # for item in a: # yield (index, item) # index += 1 # # # for i in my_enumeration(list01): # print(i) # for i, k in my_enumeration(dict01.items()): # print(i, k) "自定义my_zip函数" list01 = [ [1,2,3], [4,5,6], [7,8,9] ] for i in zip(*list01): print(i) def my_zip(*args): li = [] for i in range(len(args)): for j in range(len(args[i])): li.append(args[j][i]) yield tuple(li) li = [] for i in my_zip(*list01): print(i)
[ "1085414029@qq.com" ]
1085414029@qq.com
48cbdbd8b37d6f37e77826c455bf1a4d78b8583f
76b6c2b41ba11ca0ca86d3ae9baa5f189a9c6534
/lib/__init__.py
f2a59c20c32f71fcefe96e1e24b91e5df0c843c9
[]
no_license
startagain2016/J2ExpSuite
8faea7ac777604c9a221299f9577ac0bf4261fd2
232d08fe1e274e328bbb8f3e982040f7ba4b4a72
refs/heads/master
2023-03-22T00:02:22.015037
2020-06-23T09:10:44
2020-06-23T09:10:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
61
py
from lib.Color import Vcolors from lib.Urldeal import urldeal
[ "noreply@github.com" ]
startagain2016.noreply@github.com
f76e1d26afef9c3db74abb87ed94e348cbea7826
0c497f3053a44ea12b6209b9343871ce5f967ea4
/Simulator/power_consum_measure.py
4e5f95416f6a0a7e5671872f70e16becfc6aed3f
[]
no_license
9511batayan/Eclipse
fcab1aa9883348de51bd3a9016019f85a9ac71b6
564f4da014dcb36009a436baa9f03ca82c45699e
refs/heads/master
2022-08-17T16:57:26.448704
2018-08-07T16:10:14
2018-08-07T16:10:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
''' Created on 2018/08/03 @author: 皓司 ''' from MobileSensorNode import MobileSensorNode import math def main(): robot=MobileSensorNode(5,5) x=robot.getx() y=robot.gety() for i : dis=math.sqrt(i*i+y*y) output=robot.current_com_power_consum(dis) i +=2.5 if(i>=10): break print(output) if __name__ == '__main__': main()
[ "14ec043@ms.dendai.ac.jp" ]
14ec043@ms.dendai.ac.jp
fc6f327544eb21819c633b2eb0612a5fb4929879
62b51f02fb209cf036fdbcf00523efdaf318bb2d
/wuaiwow/models/__init__.py
98a8f6eac2f210d4cc56d4b16d37561d3ee5a95a
[ "BSD-2-Clause" ]
permissive
NlxF/wuaiwow
58f916ac1855a671908350206f1bb1b1ed1395c9
6e4ddd4a2bd98f78aa53f05314ca02f72b579053
refs/heads/master
2020-04-23T22:30:03.784811
2019-04-10T12:03:49
2019-04-10T12:03:49
171,503,902
0
1
null
null
null
null
UTF-8
Python
false
false
772
py
# coding:utf-8 from users import (User, UserIp, UserInvitation, Characters, Permission, Role, Message, UserMessage, UserOnline, PermissionRole, permission_has_role, role_is_admin) from info import Donate, GuildInfo, Agreement from prompt import AlivePrompt, LevelPrompt, RacePrompt, JobPrompt, GenderPrompt, MoneyPrompt from news import News, Sidebar from tasks import TaskResult __all__ = ['User', 'UserIp', 'UserOnline', 'UserInvitation', 'Characters', 'GuildInfo', 'Donate', 'Agreement', 'AlivePrompt', 'LevelPrompt', 'RacePrompt', 'JobPrompt', 'GenderPrompt', 'MoneyPrompt', 'News', 'Sidebar', 'Permission', 'Role', 'Message', 'UserMessage', 'PermissionRole', 'permission_has_role', 'role_is_admin','TaskResult']
[ "luxiaofei911@gmail.com" ]
luxiaofei911@gmail.com
55f45f1d5d803ee3ba85a0e03a7b60a7cc2865db
0a2f6950f662a441e967af8009826c20444d16f9
/code_20201031/scrapy_20200529/scrapy_20200529/items.py
9b5944b512150ac85167ed6ef9e17a8d4fbf9c5b
[]
no_license
nxhuy-github/code_20201031
5827028bc4c3842342055ba4224d8581cc56b770
b034827a293d9acfa1376e5f43e77e417c190985
refs/heads/main
2023-01-04T23:57:26.031054
2020-10-31T18:37:21
2020-10-31T18:37:21
308,937,305
0
0
null
null
null
null
UTF-8
Python
false
false
295
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class Scrapy20200529Item(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass
[ "nxhuy2611@gmail.com" ]
nxhuy2611@gmail.com
dcb6a27e3447c048454e9444d9290b87e271567a
e632216f8f6de621269a008ccef78b1a1d76e89e
/first/venv/bin/pip3.7
c7278d9940bc527b25a53a94316d0f6cec694a2d
[]
no_license
Giuseppe-Meo/python-pi-example
d250114c156e6271c6994fda0a243efe33adec84
d84e921a5d100015ae8016d186edecff7f0477ee
refs/heads/master
2022-11-05T14:07:00.760047
2020-06-23T20:23:56
2020-06-23T20:23:56
274,478,206
0
0
null
null
null
null
UTF-8
Python
false
false
257
7
#!/home/giusepps/PycharmProjects/first/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "gm17417@essex.ac.uk" ]
gm17417@essex.ac.uk
15fee65ff908675945f192902b93b79cf9fb3874
587dda9745b55127e29fa7588dc501ce21c761a9
/scraper/findhome/pipelines.py
a4eda7de20f2d16ac859827922aa6f06f01e653b
[]
no_license
tayfun/findhome
e7dd842c0e7683fa214a99b012fd6216db948d97
a0bd8f13f51ea043dfe50f838419846d75a9d2ee
refs/heads/master
2021-01-10T02:52:28.950045
2015-10-11T11:12:26
2015-10-11T11:12:26
44,049,094
0
0
null
null
null
null
UTF-8
Python
false
false
288
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html class FindhomePipeline(object): def process_item(self, item, spider): return item
[ "totayfun@gmail.com" ]
totayfun@gmail.com
99e7b2d501dbb03573e08ed3e6e37b95c7453772
bb375781e942087f7dae0a1c4d1da6584c5e6af3
/settings.py
f9854a3588fea27e284b56250709fcd8e32770ac
[]
no_license
magmax/DjangoBasic
ed3a93a16188cb63e18339f71ec3961239f736ad
99f028664bc91457722b7e2eb439bec3750688e8
refs/heads/master
2021-01-23T13:28:48.766257
2011-08-15T07:44:51
2011-08-15T07:44:51
2,208,662
0
0
null
null
null
null
UTF-8
Python
false
false
5,049
py
# Django settings for myblog project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', 'your_email@example.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'database.db', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # URL prefix for admin static files -- CSS, JavaScript and images. # Make sure to use a trailing slash. # Examples: "http://foo.com/static/admin/", "/static/admin/". ADMIN_MEDIA_PREFIX = '/static/admin/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'wsplw$5-^1vzvqnnw44u+kke#uhz%i5ut&(sgu6)aor8hr$-o)' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) ROOT_URLCONF = 'myblog.urls' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: # 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
[ "miguelangel.garcia@gmail.com" ]
miguelangel.garcia@gmail.com
07bda099dee874a5f2c802b1c82fb169bd649c23
7794e80641a611a77ae9d7d42bd2009edb1e8a47
/algoritmos_fabio01_parte02/f1_p2_q7_dias_horas_minutos.py
fd0de9b0a300711937af1f545b0fad305f6e4799
[]
no_license
rogeriosilva-ifpi/ifpi_ads_algoritmos_2020
bec767ff82f4a9444d552f22017f26b2915e6357
bd194b8fcefbdf4b66245e216e546632e1db279e
refs/heads/master
2022-12-09T15:28:45.730262
2020-09-03T12:51:14
2020-09-03T12:51:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
346
py
# Leia um número inteiro de minutos, calcule e escreva quantos dias, quantas horas e quantos minutos ele corresponde. minuto = int(input('Digite o número em minutos: ')) dias = minuto // 1440 horas = minuto % 1440 // 60 minutos = horas % 60 print(f'{minuto} minutos equivalem a {dias} dia(s) {horas} horas(s) e {minutos} minuto(s)')
[ "noreply@github.com" ]
rogeriosilva-ifpi.noreply@github.com
f2cd458719a1b2a6c45725aba38870be9cf8ff30
37181d99530026ddb3a58e2864a55096bf9003a5
/DataMining/HW1/Amazon/Utility.py
3c691e1753b5ff147492fe19c4b118bcbda7e946
[]
no_license
ktapsyman/Nccucs_work
de0ddaf93a5063efbe19f2832a97e91e4618725e
4a09b08851a29f848555fa8a881e72e64f8f0dc3
refs/heads/master
2018-09-16T04:17:50.786908
2018-06-20T01:56:46
2018-06-20T01:56:46
105,001,391
0
0
null
null
null
null
UTF-8
Python
false
false
144
py
import pandas as pd def ReadTrainingData(Filepath): return pd.read_csv(Filepath) def ReadTestingData(Filepath): return pd.read_csv(Filepath)
[ "ktapsyman@gmail.com" ]
ktapsyman@gmail.com
eb6622db95220cd2835e245ac0a2705598911330
1a25d9db773325e0e9e53385208b629fe697c635
/Push/BrowserComponent.py
9ceb5cd1c004c55b2d0109b92e89939ea0128066
[]
no_license
konszpic/AbletonLive9_RemoteScripts
d01f1b99c4d81cff48728c4e68e04a6ab170c40f
b80d4a4c4add6357f9c807dcdec47b24a2a708f8
refs/heads/master
2021-01-24T20:01:41.888125
2013-11-21T08:18:01
2013-11-21T08:18:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
33,575
py
#Embedded file name: /Users/versonator/Jenkins/live/Projects/AppLive/Resources/MIDI Remote Scripts/Push/BrowserComponent.py from __future__ import with_statement from functools import partial from itertools import izip, chain, imap import string import re import consts import Live FilterType = Live.Browser.FilterType DeviceType = Live.Device.DeviceType from _Framework import Task from _Framework.CompoundComponent import CompoundComponent from _Framework.Util import first, find_if, index_if, clamp, in_range, BooleanContext, nop, const, lazy_attribute, memoize from _Framework.DisplayDataSource import DisplayDataSource from _Framework.SubjectSlot import subject_slot, subject_slot_group, SlotManager, Subject from ScrollableList import ActionListItem, ActionList, ListComponent, DefaultItemFormatter class VirtualBrowserItem(object): """ Quacks like a Live.Browser.BrowserItem """ source = '' is_device = False is_loadable = False def __init__(self, name = '', children_query = nop, is_folder = False): self.name = name self.is_folder = is_folder self.children_query = children_query @lazy_attribute def children(self): return self.children_query() @property def is_selected(self): return find_if(lambda x: x.is_selected, self.children) def __str__(self): return self.name class BrowserListItem(ActionListItem): """ List item representing a browser element """ def __str__(self): import os return os.path.splitext(self.content.name)[0] if self.content else '' def action(self): if self.container and self.container.browser: self.container.browser.load_item(self.content) @property def supports_action(self): return self.container and self.container.browser and self.content != None and self.content.is_loadable class BrowserList(ActionList): """ Component for representing lists of browser items """ browser = None item_type = BrowserListItem def __init__(self, browser = None, *a, **k): super(BrowserList, self).__init__(*a, **k) self.browser = browser class BrowserModel(Subject, SlotManager): """ A browser model provides the data to a browser component as a sequence of BrowserLists. The BrowserComponent will use equality to discard equivalent models and prevent unnecessary updating, override it when neccesary. """ __subject_events__ = ('content_lists', 'selection_updated') empty_list_messages = [] def __init__(self, browser = None, *a, **k): super(BrowserModel, self).__init__(*a, **k) self._browser = browser def can_be_exchanged(self, model): return isinstance(model, BrowserModel) def exchange_model(self, model): """ Tries to replace itself with the settings of a given model. Returns true if it succeeds or false if the current model can not represent the same set of values. """ if self.can_be_exchanged(model): self._browser = model._browser return True return False @property def content_lists(self): """ Returns a set of ActionLists that hold the hierarchy of content for the browser. """ return NotImplementedError def update_content(self): """ Called when the browser contents have changed. """ raise NotImplementedError def update_selection(self): """ Called when the browser selection might have changed. """ raise NotImplementedError @property def browser(self): return self._browser def make_content_list(self): return BrowserList(browser=self._browser) class EmptyBrowserModel(BrowserModel): """ A browser model that never returns anything, to be used for hotswap targets that do not make sense in the L9C. """ empty_list_messages = ['Nothing to browse'] @property def content_lists(self): return tuple() def update_content(self): self.notify_content_lists() def update_selection(self): pass def can_be_exchanged(self, model): return isinstance(model, EmptyBrowserModel) and super(EmptyBrowserModel, self).can_be_exchanged(model) class FullBrowserModel(BrowserModel): """ A browser model that provides an abstract hierarchical query model for simpler implementation. Note that this can result in endless nesting, which the BrowserComponent does not support so far. It always provides at least two columns. """ empty_list_messages = ['<no tags>', '<no devices>', '<no presets>', '<no presets>'] def __init__(self, *a, **k): super(FullBrowserModel, self).__init__(*a, **k) self._contents = [] self._num_contents = 0 self._push_content_list() self._inside_item_activated_notification = BooleanContext() def get_root_children(self): """ Query for the initial items. """ return self.browser.tags def get_children(self, item, level): """ Query for children of node. """ return item.children @property def content_lists(self): return map(first, self._contents[:self._num_contents]) def can_be_exchanged(self, model): return isinstance(model, FullBrowserModel) and super(FullBrowserModel, self).can_be_exchanged(model) def update_content(self): root, _ = self._contents[0] root.assign_items(self.get_root_children()) self.update_selection() def update_selection(self): target = self._browser.hotswap_target last_seleced_list_index = None if self._browser.hotswap_target != None: if isinstance(target, Live.DrumPad.DrumPad) and (not target.chains or not target.chains[0].devices): for content_list in self.content_lists: content_list.select_item_index_with_offset(0, 0) else: list_index = 0 while list_index < self._num_contents: content_list, _ = self._contents[list_index] items = content_list.items index = index_if(lambda x: x.content.is_selected, items) if in_range(index, 0, len(items)): content_list.select_item_index_with_offset(index, 2) last_seleced_list_index = list_index list_index += 1 if last_seleced_list_index != None: self.notify_selection_updated(last_seleced_list_index) def _push_content_list(self): if self._num_contents < len(self._contents): self._num_contents += 1 content = self._contents[self._num_contents - 1] else: raise self._num_contents == len(self._contents) or AssertionError content = self.make_content_list() level = len(self._contents) slot = self.register_slot(content, partial(self._on_item_activated, level), 'item_activated') self._contents.append((content, slot)) self._num_contents = len(self._contents) return content def _pop_content_list(self): raise self._num_contents > 1 or AssertionError self._num_contents -= 1 def _fit_content_lists(self, requested_lists): """ Ensures that there are exactly 'request_lists' number of content lists. Returns whether a change was needed or not. """ raise requested_lists > 0 or AssertionError if requested_lists != self._num_contents: while requested_lists < self._num_contents: self._pop_content_list() while requested_lists > self._num_contents: self._push_content_list() def _finalize_content_lists_change(self): """ After a series of push/pop/fit operations, this makes sure that we only have as many content lists referenced as necessary. """ while self._num_contents < len(self._contents): _, slot = self._contents.pop() self.disconnect_disconnectable(slot) raise self._num_contents == len(self._contents) or AssertionError def _on_item_activated(self, level): old_num_contents = self._num_contents with self._inside_item_activated_notification(): contents, _ = self._contents[level] selected = contents.selected_item if selected != None: is_folder = selected.content.is_folder children = self.get_children(selected.content, level) if selected != None else [] (children or is_folder or level < 1) and self._fit_content_lists(level + 2) child_contents, _ = self._contents[level + 1] child_contents.assign_items(children) else: self._fit_content_lists(level + 1) if not self._inside_item_activated_notification: self._finalize_content_lists_change() if old_num_contents != self._num_contents: self.notify_content_lists() class BrowserQuery(object): """ Base class for browser queries. Is capable of creating a subfolder for wrapping all results of the query. """ def __init__(self, subfolder = None, *a, **k): self.subfolder = subfolder def __call__(self, browser): if self.subfolder: return [VirtualBrowserItem(name=self.subfolder, children_query=partial(self.query, browser), is_folder=True)] else: return self.query(browser) def query(self, browser): raise NotImplementedError class PathBrowserQuery(BrowserQuery): """ Includes the element for the given path. """ def __init__(self, path = tuple(), *a, **k): super(PathBrowserQuery, self).__init__(*a, **k) raise path or AssertionError self.path = path def query(self, browser): return self._find_item(self.path, browser.tags, browser) or [] def _find_item(self, path, items = None, browser = None): name = path[0] elem = find_if(lambda x: x.name == name, items) if elem: return [elem] if len(path) == 1 else self._find_item(path[1:], elem.children) class TagBrowserQuery(BrowserQuery): """ Query that merges the contents of the specified subtrees of the browser. It will first merge the contents of all the paths specified in the 'include' list. A path is either the name of a tag or a list with the name of the tag/folders that describe the path. Then it drops the items that are in the 'exclude' list. """ def __init__(self, include = tuple(), exclude = tuple(), *a, **k): super(TagBrowserQuery, self).__init__(*a, **k) self.include = include self.exclude = exclude def query(self, browser): return filter(lambda item: item.name not in self.exclude, sum(map(partial(self._extract_path, browser=browser), self.include), tuple())) def _extract_path(self, path, items = None, browser = None): if isinstance(path, (str, unicode)): path = [path] if items is None: items = browser.tags if path: name = path[0] elem = find_if(lambda x: x.name == name, items) if elem: items = self._extract_path(path[1:], elem.children) return tuple(items) class SourceBrowserQuery(TagBrowserQuery): """ Like TagBrowserQuery, but adds a top-level source selection. """ def __init__(self, *a, **k): super(SourceBrowserQuery, self).__init__(*a, **k) def query(self, browser): root = super(SourceBrowserQuery, self).query(browser) groups = dict() for item in root: groups.setdefault(item.source, []).append(item) return map(lambda (k, g): VirtualBrowserItem(name=k, children_query=const(g)), sorted(groups.items(), key=first)) class PlacesBrowserQuery(BrowserQuery): """ Query that fetches all places of the browser """ def __init__(self, *a, **k): super(PlacesBrowserQuery, self).__init__(*a, **k) def query(self, browser): return tuple(browser.packs) + tuple(browser.places) class QueryingBrowserModel(FullBrowserModel): """ Browser model that takes query objects to build up the model hierarchy """ empty_list_messages = ['<no devices>', '<no presets>', '<no presets>', '<no presets>'] def __init__(self, queries = [], *a, **k): super(QueryingBrowserModel, self).__init__(*a, **k) self.queries = queries def get_root_children(self): browser = self.browser return chain(*imap(lambda q: q(browser), self.queries)) def can_be_exchanged(self, model): return isinstance(model, QueryingBrowserModel) and super(QueryingBrowserModel, self).can_be_exchanged(model) def exchange_model(self, model): if super(QueryingBrowserModel, self).exchange_model(model): self.queries = model.queries return True PLACES_LABEL = 'Places' def make_midi_effect_browser_model(browser): midi_effects = TagBrowserQuery(include=['MIDI Effects']) max = TagBrowserQuery(include=[['Max for Live', 'Max MIDI Effect']], subfolder='Max for Live') places = PlacesBrowserQuery(subfolder=PLACES_LABEL) return QueryingBrowserModel(browser=browser, queries=[midi_effects, max, places]) def make_audio_effect_browser_model(browser): audio_effects = TagBrowserQuery(include=['Audio Effects']) max = TagBrowserQuery(include=[['Max for Live', 'Max Audio Effect']], subfolder='Max for Live') places = PlacesBrowserQuery(subfolder=PLACES_LABEL) return QueryingBrowserModel(browser=browser, queries=[audio_effects, max, places]) def make_instruments_browser_model(browser): instrument_rack = PathBrowserQuery(path=['Instruments', 'Instrument Rack']) drums = SourceBrowserQuery(include=['Drums'], exclude=['Drum Hits'], subfolder='Drum Rack') instruments = TagBrowserQuery(include=['Instruments'], exclude=['Drum Rack', 'Instrument Rack']) drum_hits = TagBrowserQuery(include=[['Drums', 'Drum Hits']], subfolder='Drum Hits') max = TagBrowserQuery(include=[['Max for Live', 'Max Instrument']], subfolder='Max for Live') places = PlacesBrowserQuery(subfolder=PLACES_LABEL) return QueryingBrowserModel(browser=browser, queries=[instrument_rack, drums, instruments, max, drum_hits, places]) def make_drum_pad_browser_model(browser): drums = TagBrowserQuery(include=[['Drums', 'Drum Hits']]) samples = SourceBrowserQuery(include=['Samples'], subfolder='Samples') instruments = TagBrowserQuery(include=['Instruments']) max = TagBrowserQuery(include=[['Max for Live', 'Max Instrument']], subfolder='Max for Live') places = PlacesBrowserQuery(subfolder=PLACES_LABEL) return QueryingBrowserModel(browser=browser, queries=[drums, samples, instruments, max, places]) def make_fallback_browser_model(browser): return EmptyBrowserModel(browser=browser) def filter_type_for_hotswap_target(target): """ Returns the appropriate browser filter type for a given hotswap target. """ if isinstance(target, Live.Device.Device): if target.type == DeviceType.instrument: return FilterType.instrument_hotswap elif target.type == DeviceType.audio_effect: return FilterType.audio_effect_hotswap elif target.type == DeviceType.midi_effect: return FilterType.midi_effect_hotswap else: FilterType.disabled elif isinstance(target, Live.DrumPad.DrumPad): return FilterType.drum_pad_hotswap elif isinstance(target, Live.Chain.Chain): return filter_type_for_hotswap_target(target.canonical_parent) if target else FilterType.disabled return FilterType.disabled def make_browser_model(browser, filter_type = None): """ Factory that returns an appropriate browser model depending on the browser filter type and hotswap target. """ factories = {FilterType.instrument_hotswap: make_instruments_browser_model, FilterType.drum_pad_hotswap: make_drum_pad_browser_model, FilterType.audio_effect_hotswap: make_audio_effect_browser_model, FilterType.midi_effect_hotswap: make_midi_effect_browser_model} if filter_type == None: filter_type = filter_type_for_browser(browser) return factories.get(filter_type, make_fallback_browser_model)(browser) def filter_type_for_browser(browser): filter_type = filter_type_for_hotswap_target(browser.hotswap_target) if filter_type == FilterType.disabled: filter_type = browser.filter_type return filter_type def make_stem_cleaner(stem): """ Returns a function that can be used to remove the stem from a sentence """ if stem[-1] == 's': stem = stem[:-1] if len(stem) > 2: return _memoized_stem_cleaner(stem) return nop @memoize def _memoized_stem_cleaner(stem): ellipsis = consts.CHAR_ELLIPSIS rule1 = re.compile(u'([a-z])' + stem + u's?([ A-Z])') rule2 = re.compile(u'[' + ellipsis + ' \\-]' + stem + u's?([\\-' + ellipsis + u' A-Z])') rule3 = re.compile(u'' + stem + u's?$') def cleaner(short_name): short_name = ' ' + short_name short_name = rule1.sub(u'\\1' + ellipsis + u'\\2', short_name) short_name = rule2.sub(ellipsis + u'\\1', short_name) short_name = rule3.sub(ellipsis, short_name) return short_name.strip(' ') return cleaner def split_stem(sentence): """ Splits camel cased sentence into words """ sentence = re.sub('([a-z])([A-Z])', u'\\1 \\2', sentence) return sentence.split() _stripper_double_spaces = re.compile(u' [\\- ]*') _stripper_double_ellipsis = re.compile(consts.CHAR_ELLIPSIS + u'+') _stripper_space_ellipsis = re.compile(u'[\\- ]?' + consts.CHAR_ELLIPSIS + u'[\\- ]?') def full_strip(string): """ Strip string for double spaces and dashes """ string = _stripper_double_spaces.sub(' ', string) string = _stripper_double_ellipsis.sub(consts.CHAR_ELLIPSIS, string) string = _stripper_space_ellipsis.sub(consts.CHAR_ELLIPSIS, string) return string.strip(' ') class BrowserComponent(CompoundComponent): """ Component for controlling the Live library browser. It has 4 browsing columns that are controlled by encoders and state buttons. The contents of these lists are provided by a browser model -- see BrowserModel and derivatives. """ __subject_events__ = ('load_item',) NUM_COLUMNS = 4 COLUMN_SIZE = 4 def __init__(self, browser = None, *a, **k): super(BrowserComponent, self).__init__(*a, **k) self._browser = browser or self.application().browser self._browser_model = make_fallback_browser_model(self._browser) num_data_sources = self.NUM_COLUMNS * self.COLUMN_SIZE self._data_sources = map(DisplayDataSource, ('',) * num_data_sources) self._last_loaded_item = None self._default_item_formatter = DefaultItemFormatter() self._list_components = self.register_components(*[ ListComponent() for _ in xrange(self.NUM_COLUMNS) ]) for i, component in enumerate(self._list_components): component.do_trigger_action = lambda item: self._do_load_item(item) component.last_action_item = lambda : self._last_loaded_item component.item_formatter = partial(self._item_formatter, i) self._select_buttons = [] self._state_buttons = [] self._encoder_controls = [] self._enter_button = None self._exit_button = None self._shift_button = None self._on_list_item_action.replace_subjects(self._list_components) self._on_hotswap_target_changed.subject = self._browser self._on_filter_type_changed.subject = self._browser self._on_browser_full_refresh.subject = self._browser self._scroll_offset = 0 self._max_scroll_offset = 0 self._max_hierarchy = 0 self._last_filter_type = None self._skip_next_preselection = False self._browser_model_dirty = True self._on_content_lists_changed() def set_display_line1(self, display): self.set_display_line_with_index(display, 0) def set_display_line2(self, display): self.set_display_line_with_index(display, 1) def set_display_line3(self, display): self.set_display_line_with_index(display, 2) def set_display_line4(self, display): self.set_display_line_with_index(display, 3) def set_enter_button(self, button): self._enter_button = button self._on_enter_value.subject = button self._update_navigation_button_state() def set_exit_button(self, button): self._exit_button = button self._on_exit_value.subject = button self._update_navigation_button_state() def set_display_line_with_index(self, display, index): if display: sources = self._data_sources[index::self.COLUMN_SIZE] display.set_data_sources(sources) def set_select_buttons(self, buttons): for button in buttons or []: if button: button.reset() self._on_select_matrix_value.subject = buttons or None self._select_buttons = buttons buttons = buttons or (None, None, None, None, None, None, None, None) for component, button in izip(self._list_components, buttons[1::2]): self._set_button_if_enabled(component, 'action_button', button) for component, button in izip(self._list_components, buttons[::2]): if self._shift_button and self._shift_button.is_pressed(): self._set_button_if_enabled(component, 'prev_page_button', button) self._set_button_if_enabled(component, 'select_prev_button', None) else: self._set_button_if_enabled(component, 'prev_page_button', None) self._set_button_if_enabled(component, 'select_prev_button', button) def set_state_buttons(self, buttons): for button in buttons or []: if button: button.reset() self._on_state_matrix_value.subject = buttons or None self._state_buttons = buttons buttons = buttons or (None, None, None, None, None, None, None, None) for component, button in izip(self._list_components, buttons[::2]): if self._shift_button and self._shift_button.is_pressed(): self._set_button_if_enabled(component, 'next_page_button', button) self._set_button_if_enabled(component, 'select_next_button', None) else: self._set_button_if_enabled(component, 'next_page_button', None) self._set_button_if_enabled(component, 'select_next_button', button) for button in buttons[1::2]: if button and self.is_enabled(): button.set_light('DefaultButton.Disabled') def set_shift_button(self, button): self._shift_button = button self._on_shift_button.subject = button @subject_slot('value') def _on_shift_button(self, value): self.set_select_buttons(self._select_buttons) self.set_state_buttons(self._state_buttons) def _set_button_if_enabled(self, component, name, button): setter = getattr(component, 'set_' + name) if component.is_enabled(explicit=True): setter(button) else: setter(None) if button and self.is_enabled(): button.set_light('DefaultButton.Disabled') def set_encoder_controls(self, encoder_controls): if encoder_controls: num_active_lists = len(self._browser_model.content_lists) - self._scroll_offset num_assignable_lists = min(num_active_lists, len(encoder_controls) / 2) index = 0 for component in self._list_components[:num_assignable_lists - 1]: component.set_encoder_controls(encoder_controls[index:index + 2]) index += 2 self._list_components[num_assignable_lists - 1].set_encoder_controls(encoder_controls[index:]) else: for component in self._list_components: component.set_encoder_controls([]) self._encoder_controls = encoder_controls def update(self): if self.is_enabled(): self.set_state_buttons(self._state_buttons) self.set_select_buttons(self._select_buttons) self._update_browser_model() self._update_navigation_button_state() def reset_load_memory(self): self._update_load_memory(None) def _do_load_item(self, item): self.do_load_item(item) self._update_load_memory(item) self._skip_next_preselection = True def reset_skip_next_preselection(): self._skip_next_preselection = False self._tasks.add(Task.run(reset_skip_next_preselection)) def _update_load_memory(self, item): self._last_loaded_item = item for component in self._list_components: component.update() def do_load_item(self, item): item.action() self.notify_load_item(item.content) def back_to_top(self): self._set_scroll_offset(0) def _set_scroll_offset(self, offset): self._scroll_offset = offset self._on_content_lists_changed() scrollable_list = self._list_components[-1].scrollable_list if scrollable_list: scrollable_list.request_notify_item_activated() def _update_navigation_button_state(self): if self._exit_button: self._exit_button.set_light(self._scroll_offset > 0) if self._enter_button: self._enter_button.set_light(self._scroll_offset < self._max_scroll_offset) def _shorten_item_name(self, shortening_limit, list_index, item_name): """ Creates the name of an item shortened by removing words from the parents name """ def is_short_enough(item_name): return len(item_name) <= 9 content_lists = self._browser_model.content_lists parent_lists = reversed(content_lists[max(0, list_index - 3):list_index]) for content_list in parent_lists: if is_short_enough(item_name): break parent_name = unicode(content_list.selected_item) stems = split_stem(parent_name) for stem in stems: short_name = make_stem_cleaner(stem)(item_name) short_name = full_strip(short_name) item_name = short_name if len(short_name) > 4 else item_name if is_short_enough(item_name): break return item_name[:-1] if len(item_name) >= shortening_limit and item_name[-1] == consts.CHAR_ELLIPSIS else item_name def _item_formatter(self, depth, index, item, action_in_progress): display_string = '' separator_length = len(self._data_sources[self.COLUMN_SIZE * depth].separator) shortening_limit = 16 - separator_length if item: item_name = 'Loading...' if action_in_progress else self._shorten_item_name(shortening_limit, depth + self._scroll_offset, unicode(item)) display_string = consts.CHAR_SELECT if item and item.is_selected else ' ' display_string += item_name if depth == len(self._list_components) - 1 and item.is_selected and self._scroll_offset < self._max_hierarchy: display_string = string.ljust(display_string, consts.DISPLAY_LENGTH / 4 - 1) shortening_limit += 1 display_string = display_string[:shortening_limit] + consts.CHAR_ARROW_RIGHT if depth == 0 and self._scroll_offset > 0: prefix = consts.CHAR_ARROW_LEFT if index == 0 else ' ' display_string = prefix + display_string return display_string[:shortening_limit + 1] @subject_slot('value') def _on_enter_value(self, value): if value: self._set_scroll_offset(min(self._max_scroll_offset, self._scroll_offset + 1)) @subject_slot('value') def _on_exit_value(self, value): if value: self._set_scroll_offset(max(0, self._scroll_offset - 1)) @subject_slot('hotswap_target') def _on_hotswap_target_changed(self): if not self._skip_next_preselection: self._set_scroll_offset(0) self._update_browser_model() @subject_slot('filter_type') def _on_filter_type_changed(self): self._update_browser_model() @subject_slot('full_refresh') def _on_browser_full_refresh(self): self._browser_model_dirty = True def _update_browser_model(self): if self.is_enabled(): self._do_update_browser_model() def _do_update_browser_model(self): filter_type = filter_type_for_browser(self._browser) if filter_type != self._last_filter_type: self._last_filter_type = filter_type new_model = make_browser_model(self._browser, filter_type) if self._browser_model and self._browser_model.can_be_exchanged(new_model) and new_model.can_be_exchanged(self._browser_model): self._browser_model.exchange_model(new_model) new_model.disconnect() else: self.disconnect_disconnectable(self._browser_model) self._browser_model = self.register_slot_manager(new_model) self._on_content_lists_changed.subject = self._browser_model self._on_selection_updated.subject = self._browser_model for contents in self._browser_model.content_lists: contents.selected_item_index = 0 self._browser_model.update_content() elif self._browser_model_dirty: self._browser_model.update_content() elif not self._skip_next_preselection: self._browser_model.update_selection() self._skip_next_preselection = False self._browser_model_dirty = False @subject_slot_group('item_action') def _on_list_item_action(self, item, _): self.notify_load_item(item.content) @subject_slot('selection_updated') def _on_selection_updated(self, index): more_content_available = len(self._browser_model.content_lists) > self.NUM_COLUMNS + self._scroll_offset required_scroll_offset = index - (self.NUM_COLUMNS - 1) if more_content_available and required_scroll_offset > self._scroll_offset: self._set_scroll_offset(self._scroll_offset + 1) self._browser_model.update_selection() @subject_slot('content_lists') def _on_content_lists_changed(self): components = self._list_components contents = self._browser_model.content_lists[self._scroll_offset:] messages = self._browser_model.empty_list_messages scroll_depth = len(self._browser_model.content_lists) - len(self._list_components) self._max_scroll_offset = max(0, scroll_depth + 2) self._max_hierarchy = max(0, scroll_depth) for component, content, message in map(None, components, contents, messages): if component != None: component.scrollable_list = content component.empty_list_message = message active_lists = len(contents) num_head = clamp(active_lists - 1, 0, self.NUM_COLUMNS - 1) head = components[:num_head] last = components[num_head:] def set_data_sources_with_separator(component, sources, separator): for source in sources: source.separator = separator component.set_data_sources(sources) component.set_enabled(True) for idx, component in enumerate(head): offset = idx * self.COLUMN_SIZE sources = self._data_sources[offset:offset + self.COLUMN_SIZE] set_data_sources_with_separator(component, sources, '|') if last: offset = num_head * self.COLUMN_SIZE scrollable_list = last[0].scrollable_list if scrollable_list and find_if(lambda item: item.content.is_folder, scrollable_list.items): sources = self._data_sources[offset:offset + self.COLUMN_SIZE] map(DisplayDataSource.clear, self._data_sources[offset + self.COLUMN_SIZE:]) else: sources = self._data_sources[offset:] set_data_sources_with_separator(last[0], sources, '') for component in last[1:]: component.set_enabled(False) self.set_select_buttons(self._select_buttons) self.set_state_buttons(self._state_buttons) self.set_encoder_controls(self._encoder_controls) self._update_navigation_button_state() @subject_slot('value') def _on_select_matrix_value(self, value, *_): pass @subject_slot('value') def _on_state_matrix_value(self, value, *_): pass @subject_slot('value') def _on_encoder_matrix_value(self, value, *_): pass
[ "julien@julienbayle.net" ]
julien@julienbayle.net
32c67e306f3164cb62c7f999d0694d5a526f9726
ab2c7c93cac411cb7419e1813987c101931d3d5b
/boundary_checking/test_Range4.py
2c9ae0d77bb1d3925112218795dd487982cbf492
[]
no_license
vash-hsu/python
574ca2a4ef76e8a36f489010403c8e699ddf5b88
ad3de1dafbe61d1180ab3e2283f758de3d4edd68
refs/heads/master
2021-01-21T21:43:26.649602
2016-05-11T16:21:22
2016-05-11T16:21:22
18,483,788
1
0
null
null
null
null
UTF-8
Python
false
false
6,450
py
#!/usr/bin/env python import unittest from Range4 import Range from Range4 import div_mod def log_print(label, message): print("%s: %s" % (label, message)) def log_title(message): log_print('CASE', message) def log_desc(message): log_print('DESC', message) class BoundaryTest4Range(unittest.TestCase): @classmethod def setUpClass(cls): cls.my_start, cls.my_stop, cls.my_step = (3, 19, 3) def setUp(self): print('') title = '.'.join(self.id().split('.')[1:]) log_title(title) # def tearDown(self): # print def test_hardcode_happy_path_index(self): my_start, my_stop, my_step = (3, 17, 4) common_example = Range(my_start, my_stop, my_step) ''' [0, 1, 2, 3] = [3, 7, 11, 15] ''' self.assertEqual(common_example[0], 3) self.assertEqual(common_example[1], 7) self.assertEqual(common_example[2], 11) self.assertEqual(common_example[3], 15) with self.assertRaises(IndexError): example = common_example[4] def test_hardcode_happy_path_slice(self): my_start, my_stop, my_step = (3, 17, 4) common_example = Range(my_start, my_stop, my_step) ''' [0, 1, 2, 3] = [3, 7, 11, 15] [0:2] = [3, 7] [2:4] = [11, 15] [3:5] = [15, ] ''' self.assertEqual(common_example[0:2], [3, 7]) self.assertEqual(common_example[2:4], [11, 15]) self.assertEqual(common_example[3:5], [15, ]) def test_RAT_happy_path_index(self): my_start, my_stop, my_step = (self.my_start, self.my_stop, self.my_step) common_example = Range(my_start, my_stop, my_step) for i in xrange(1, (my_stop-my_start)/my_step): result = common_example[i] expected = i*my_step + my_start msg = ['to validate', str(result), 'whose offset', "[%d]" % i, 'exists in', str(list(common_example)), "equivalent to %d" % expected] log_desc(' '.join(msg)) self.assertIn(result, common_example) self.assertEqual(result, expected) def test_RAT_happy_path_slice(self): my_start, my_stop, my_step = (self.my_start, self.my_stop, self.my_step) common_example = Range(my_start, my_stop, my_step) for i in xrange(1, (my_stop-my_start)/my_step): result = common_example[i:i+2] for j in result: msg = ['to validate', str(j), 'from', str(result), 'whose slice', "[%d:%d]" % (i, i+2), 'exists in', str(list(common_example))] log_desc(' '.join(msg)) self.assertIn(j, common_example, "%s, whose slice [%d:%d] is not defined in %s" % (str(j), i, i+2, str(list(common_example))) ) def test_FAST_upper_bound_slice(self): my_start, my_stop, my_step = (self.my_start, self.my_stop, self.my_step) common_example = Range(my_start, my_stop, my_step) upper_bound = (my_stop - my_start)/my_step + 1 for i in xrange(upper_bound - 1, upper_bound): result = common_example[i:i+2] for j in result: msg = ['to validate', str(j), 'from', str(result), 'whose slice', "[%d:%d]" % (i, i+2), 'exists in', str(list(common_example))] log_desc(' '.join(msg)) self.assertIn(j, common_example, "%s, whose slice [%d:%d] is not defined in %s" % (str(j), i, i+2, str(list(common_example))) ) def test_FAST_lower_bound_slice(self): my_start, my_stop, my_step = (self.my_start, self.my_stop, self.my_step) common_example = Range(my_start, my_stop, my_step) i = 0 result = common_example[i:i+2] for j in result: msg = ['to validate', str(j), 'from', str(result), 'whose slice', "[%d:%d]" % (i, i+2), 'exists in', str(list(common_example))] log_desc(' '.join(msg)) self.assertIn(j, common_example, "%s, whose slice [%d:%d] is not defined in %s" % (str(j), i, i+2, str(list(common_example))) ) def test_hardcode_div_mod(self): self.assertEqual(div_mod(10, 3), (3, 1)) self.assertEqual(div_mod(10, 2), (5, 0)) def test_hardcode_range_len_getitem(self): example = Range(1) self.assertEqual(len(example), 1) self.assertEqual(example[0], 0) example = Range(2) self.assertEqual(len(example), 2) self.assertEqual(example[0], 0) self.assertEqual(example[1], 1) def test_FET_range_empty_from0to0(self): # empty set, where 0 ~ 0 parameter = 0 example = Range(parameter) expected = 0 msg = ['to validate length of', str(list(example)), 'from Range(%d)' % parameter, 'which should be equal to %d' % expected] log_desc(' '.join(msg)) self.assertEqual(len(example), expected) def test_FET_range_minimal_set(self): # minimal set, where 0 ~ 1 example = Range(0, 1) expected = 1 msg = ['to validate length of', str(list(example)), 'from Range(0, 1)', 'which should be equal to %d' % expected] log_desc(' '.join(msg)) self.assertEqual(len(example), expected) def test_FET_range_large_step(self): # minimal set, where step larger than distance between start and end example = Range(1, 3, 4) expected = 1 msg = ['to validate length of', str(list(example)), 'from Range(1, 3, 4)', 'which should be equal to %d' % expected] log_desc(' '.join(msg)) self.assertEqual(len(example), expected) def test_FET_range_out_of_order(self): # empyt set, where out-of-order example = Range(2, 1) expected = 0 msg = ['to validate length of', str(list(example)), 'from Range(2, 1)', 'which should be equal to %d' % expected] log_desc(' '.join(msg)) self.assertEqual(len(example), expected) if __name__ == '__main__': unittest.main()
[ "vash.hsu@gmail.com" ]
vash.hsu@gmail.com
6f24047a7dd29849aee3c48d35c190d56f99b757
16beed9ab443dee7cacefea9c3db8c8ca381d1ab
/scripts/BreakpointsSave.py
16385c3128c5773ae81b923bcc07601e3454bae0
[]
no_license
YuKnight/jeb2-samplecode
4cc010757345c6ec6f7fee0913fa0388686b0e4e
a26b0597da66ff41eaff54c7a35aed0266512fdf
refs/heads/master
2020-04-29T11:57:03.043105
2019-02-08T23:09:01
2019-02-08T23:09:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,599
py
""" JEB script to save (persist) the breakpoints (location and state) of the current debugging session to a file. - Breakpoints file: [JEB]/bin/breakpoints.txt - See converse script to reload breakpoints onto a debugging session: BreakpointsLoad.py The breakpoints file is JSON formatted and can be edited manually as well. Structure ProjectName: DebuggerName: BreakpointsList: (= dictionary with "address" and "enabled" keys) Example: { "/analysis/appcheck-debug.apk.jdb2": { "VM": [ { "address": "Lcom/xyz/appcheck/AppCheck$1;-><init>(Lcom/xyz/appcheck/AppCheck;)V+4h", "enabled": true }, { "address": "Lcom/xyz/appcheck/AppCheck$1;->run()V+2h", "enabled": true } ] } "/analysis/malware_yil1.apk.jdb2": { "VM": [ { "address": "Lcom/malyy/a/b/c;->f()V+0h", "enabled": false } ] } } Refer to SCRIPTS.TXT for more information. """ import json import os import time from com.pnfsoftware.jeb.client.api import IScript from com.pnfsoftware.jeb.core import RuntimeProjectUtil from com.pnfsoftware.jeb.core.units.code.debug import IDebuggerUnit class BreakpointsSave(IScript): def run(self, ctx): engctx = ctx.getEnginesContext() if not engctx: print('Back-end engines not initialized') return projects = engctx.getProjects() if not projects: print('There is no opened project') return prj = projects[0] prjname = prj.getName() prgdir = ctx.getProgramDirectory() bpfile = os.path.join(prgdir, 'breakpoints.txt') with open(bpfile, 'r+') as f: try: bpdict = json.load(f) except: bpdict = {} #print('Current breakpoints file:', bpdict) units = RuntimeProjectUtil.findUnitsByType(prj, IDebuggerUnit, False) if not units: print('No unit available') return d = {} cnt = 0 for dbg in units: # may be null for a detached debugger bplist = dbg.getBreakpoints() if bplist: a = [] for bp in bplist: address = bp.getAddress() enabled = bp.isEnabled() #print('- Debugger: %s (for %s): %s (%s)' % (dbg.getName(), dbg.getPotentialDebuggees(), address, 'enabled' if enabled else 'disabled')) a.append({'address': address, 'enabled': enabled}) cnt += 1 d[dbg.getName()] = a bpdict[prjname] = d with open(bpfile, 'w') as f: try: json.dump(bpdict, f, indent=True) except Exception as e: print('ERROR: Cannot save to breakpoints file: %s' % e) print('Breakpoints saved: %d.' % cnt)
[ "nico@pnfsoftware.com" ]
nico@pnfsoftware.com
f760fe424b29472e41c81cbbd59ab91d8e8e2170
d0701226f795ed1e4da862d9f51320fe04026336
/free-python/turtle1.py
d922ada07c916bb3f20cb45fe3916ce1b7815af1
[]
no_license
gitdxb/learning-python
329a8250c56088c7d90a33ae20aa34188eec2a4a
afdd4769f0b2f87eba3fdbd4d8995e201641fe68
refs/heads/master
2023-02-11T10:21:32.756320
2021-01-05T19:54:40
2021-01-05T19:54:40
288,846,055
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
from turtle import Turtle tina = Turtle() def draw(name, r, col): name.color(col) name.dot(r*2) draw(tina, 150, "blue") draw(tina, 100, "red") draw(tina, 50, "yellow")
[ "trantambls@gmail.com" ]
trantambls@gmail.com
479e5ba6b20dc98c79280fad0aef7d90f72fb86d
0a7d49300a547eecc823b78a891057f1017db1b2
/net_spider/dou_log.py
31cba7e5c57b7bf034e514b7b4d8ad0eb22a1577
[]
no_license
PeterZhangxing/codewars
f315b2ce610207e84a2f0927bc47b4b1dd89bee4
8e4dfaaeae782a37f6baca4c024b1c2a1dc83cba
refs/heads/master
2020-09-22T12:09:59.419919
2020-03-02T12:52:55
2020-03-02T12:52:55
224,330,565
0
0
null
null
null
null
UTF-8
Python
false
false
2,327
py
from selenium import webdriver import time import requests from lxml import etree import random class DouBanSpider(object): def __init__(self,username,passwd,browser="Chrome",base_url="https://www.douban.com/"): self.base_url = base_url if hasattr(webdriver,browser): self.driver = getattr(webdriver,browser)() else: raise NameError("no such browser!") if not username or not passwd: raise ValueError("username and password cannot be null") self.username = username self.passwd = passwd self.get_logged_cookie() def get_logged_cookie(self): # 请求豆瓣登录页面 self.driver.get("https://www.douban.com/") # 切换到包括登录信息的iframe log_iframe = self.driver.find_element_by_xpath("//div[@class='login']/iframe") self.driver.switch_to.frame(log_iframe) # 点击,从手机认证码切换至用户名密码登录 self.driver.find_element_by_class_name("account-tab-account").click() # 填写用户名密码 self.driver.find_element_by_id("username").send_keys(self.username) self.driver.find_element_by_id("password").send_keys(self.passwd) # 发送登录请求 sleep_time = random.randint(2,5) time.sleep(sleep_time) try: self.driver.find_element_by_link_text("登录豆瓣").click() except Exception as e: exit(str(e)) # 等待3秒后,获取cookie,关闭浏览器 time.sleep(6) self.logged_cookie = {i['name']:i["value"] for i in self.driver.get_cookies()} self.driver.quit() def get_user_name(self): # 使用刚才利用selenium获取的cookie,爬取登录后的页面内容 dou_html_str = requests.get( url="https://www.douban.com/", cookies=self.logged_cookie, ).content.decode() formated_html = etree.HTML(dou_html_str) nickname = formated_html.xpath( "//div[@class='top-nav-info']//li[@class='nav-user-account']/a[@class='bn-more']/span[1]/text()")[0] return nickname.split("的")[0] if __name__ == '__main__': myspider = DouBanSpider("18687027119","zx20_05") nick_name = myspider.get_user_name() print(nick_name)
[ "964725349@qq.com" ]
964725349@qq.com
c7bf08d78ff048e8a26e5a89ca4ffdf7a27c0bd8
5123ec1c7bee26de2810affc240802563a372777
/mapthree/venv/bin/runxlrd.py
c4ec9823dbbf7593699816cadd30b79d5dcbd54c
[ "MIT" ]
permissive
bitbyt3r/mapthree
7371fed9dbbc2b655129b35ec86e1acfcf76ec7f
8579330b0f5dcae8a3bb4dcd7658b084628e3b0f
refs/heads/master
2020-12-03T03:56:48.074806
2017-08-01T21:39:06
2017-08-01T21:39:06
95,790,480
0
0
null
null
null
null
UTF-8
Python
false
false
16,333
py
#!/extra/mark25/mapthree/mapthree/venv/bin/python3 # Copyright (c) 2005-2012 Stephen John Machin, Lingfo Pty Ltd # This script is part of the xlrd package, which is released under a # BSD-style licence. from __future__ import print_function cmd_doc = """ Commands: 2rows Print the contents of first and last row in each sheet 3rows Print the contents of first, second and last row in each sheet bench Same as "show", but doesn't print -- for profiling biff_count[1] Print a count of each type of BIFF record in the file biff_dump[1] Print a dump (char and hex) of the BIFF records in the file fonts hdr + print a dump of all font objects hdr Mini-overview of file (no per-sheet information) hotshot Do a hotshot profile run e.g. ... -f1 hotshot bench bigfile*.xls labels Dump of sheet.col_label_ranges and ...row... for each sheet name_dump Dump of each object in book.name_obj_list names Print brief information for each NAME record ov Overview of file profile Like "hotshot", but uses cProfile show Print the contents of all rows in each sheet version[0] Print versions of xlrd and Python and exit xfc Print "XF counts" and cell-type counts -- see code for details [0] means no file arg [1] means only one file arg i.e. no glob.glob pattern """ options = None if __name__ == "__main__": PSYCO = 0 import xlrd import sys, time, glob, traceback, gc from xlrd.timemachine import xrange, REPR class LogHandler(object): def __init__(self, logfileobj): self.logfileobj = logfileobj self.fileheading = None self.shown = 0 def setfileheading(self, fileheading): self.fileheading = fileheading self.shown = 0 def write(self, text): if self.fileheading and not self.shown: self.logfileobj.write(self.fileheading) self.shown = 1 self.logfileobj.write(text) null_cell = xlrd.empty_cell def show_row(bk, sh, rowx, colrange, printit): if bk.ragged_rows: colrange = range(sh.row_len(rowx)) if not colrange: return if printit: print() if bk.formatting_info: for colx, ty, val, cxfx in get_row_data(bk, sh, rowx, colrange): if printit: print("cell %s%d: type=%d, data: %r, xfx: %s" % (xlrd.colname(colx), rowx+1, ty, val, cxfx)) else: for colx, ty, val, _unused in get_row_data(bk, sh, rowx, colrange): if printit: print("cell %s%d: type=%d, data: %r" % (xlrd.colname(colx), rowx+1, ty, val)) def get_row_data(bk, sh, rowx, colrange): result = [] dmode = bk.datemode ctys = sh.row_types(rowx) cvals = sh.row_values(rowx) for colx in colrange: cty = ctys[colx] cval = cvals[colx] if bk.formatting_info: cxfx = str(sh.cell_xf_index(rowx, colx)) else: cxfx = '' if cty == xlrd.XL_CELL_DATE: try: showval = xlrd.xldate_as_tuple(cval, dmode) except xlrd.XLDateError as e: showval = "%s:%s" % (type(e).__name__, e) cty = xlrd.XL_CELL_ERROR elif cty == xlrd.XL_CELL_ERROR: showval = xlrd.error_text_from_code.get(cval, '<Unknown error code 0x%02x>' % cval) else: showval = cval result.append((colx, cty, showval, cxfx)) return result def bk_header(bk): print() print("BIFF version: %s; datemode: %s" % (xlrd.biff_text_from_num[bk.biff_version], bk.datemode)) print("codepage: %r (encoding: %s); countries: %r" % (bk.codepage, bk.encoding, bk.countries)) print("Last saved by: %r" % bk.user_name) print("Number of data sheets: %d" % bk.nsheets) print("Use mmap: %d; Formatting: %d; On demand: %d" % (bk.use_mmap, bk.formatting_info, bk.on_demand)) print("Ragged rows: %d" % bk.ragged_rows) if bk.formatting_info: print("FORMATs: %d, FONTs: %d, XFs: %d" % (len(bk.format_list), len(bk.font_list), len(bk.xf_list))) if not options.suppress_timing: print("Load time: %.2f seconds (stage 1) %.2f seconds (stage 2)" % (bk.load_time_stage_1, bk.load_time_stage_2)) print() def show_fonts(bk): print("Fonts:") for x in xrange(len(bk.font_list)): font = bk.font_list[x] font.dump(header='== Index %d ==' % x, indent=4) def show_names(bk, dump=0): bk_header(bk) if bk.biff_version < 50: print("Names not extracted in this BIFF version") return nlist = bk.name_obj_list print("Name list: %d entries" % len(nlist)) for nobj in nlist: if dump: nobj.dump(sys.stdout, header="\n=== Dump of name_obj_list[%d] ===" % nobj.name_index) else: print("[%d]\tName:%r macro:%r scope:%d\n\tresult:%r\n" % (nobj.name_index, nobj.name, nobj.macro, nobj.scope, nobj.result)) def print_labels(sh, labs, title): if not labs:return for rlo, rhi, clo, chi in labs: print("%s label range %s:%s contains:" % (title, xlrd.cellname(rlo, clo), xlrd.cellname(rhi-1, chi-1))) for rx in xrange(rlo, rhi): for cx in xrange(clo, chi): print(" %s: %r" % (xlrd.cellname(rx, cx), sh.cell_value(rx, cx))) def show_labels(bk): # bk_header(bk) hdr = 0 for shx in range(bk.nsheets): sh = bk.sheet_by_index(shx) clabs = sh.col_label_ranges rlabs = sh.row_label_ranges if clabs or rlabs: if not hdr: bk_header(bk) hdr = 1 print("sheet %d: name = %r; nrows = %d; ncols = %d" % (shx, sh.name, sh.nrows, sh.ncols)) print_labels(sh, clabs, 'Col') print_labels(sh, rlabs, 'Row') if bk.on_demand: bk.unload_sheet(shx) def show(bk, nshow=65535, printit=1): bk_header(bk) if 0: rclist = xlrd.sheet.rc_stats.items() rclist = sorted(rclist) print("rc stats") for k, v in rclist: print("0x%04x %7d" % (k, v)) if options.onesheet: try: shx = int(options.onesheet) except ValueError: shx = bk.sheet_by_name(options.onesheet).number shxrange = [shx] else: shxrange = range(bk.nsheets) # print("shxrange", list(shxrange)) for shx in shxrange: sh = bk.sheet_by_index(shx) nrows, ncols = sh.nrows, sh.ncols colrange = range(ncols) anshow = min(nshow, nrows) print("sheet %d: name = %s; nrows = %d; ncols = %d" % (shx, REPR(sh.name), sh.nrows, sh.ncols)) if nrows and ncols: # Beat the bounds for rowx in xrange(nrows): nc = sh.row_len(rowx) if nc: _junk = sh.row_types(rowx)[nc-1] _junk = sh.row_values(rowx)[nc-1] _junk = sh.cell(rowx, nc-1) for rowx in xrange(anshow-1): if not printit and rowx % 10000 == 1 and rowx > 1: print("done %d rows" % (rowx-1,)) show_row(bk, sh, rowx, colrange, printit) if anshow and nrows: show_row(bk, sh, nrows-1, colrange, printit) print() if bk.on_demand: bk.unload_sheet(shx) def count_xfs(bk): bk_header(bk) for shx in range(bk.nsheets): sh = bk.sheet_by_index(shx) nrows, ncols = sh.nrows, sh.ncols print("sheet %d: name = %r; nrows = %d; ncols = %d" % (shx, sh.name, sh.nrows, sh.ncols)) # Access all xfindexes to force gathering stats type_stats = [0, 0, 0, 0, 0, 0, 0] for rowx in xrange(nrows): for colx in xrange(sh.row_len(rowx)): xfx = sh.cell_xf_index(rowx, colx) assert xfx >= 0 cty = sh.cell_type(rowx, colx) type_stats[cty] += 1 print("XF stats", sh._xf_index_stats) print("type stats", type_stats) print() if bk.on_demand: bk.unload_sheet(shx) def main(cmd_args): import optparse global options, PSYCO usage = "\n%prog [options] command [input-file-patterns]\n" + cmd_doc oparser = optparse.OptionParser(usage) oparser.add_option( "-l", "--logfilename", default="", help="contains error messages") oparser.add_option( "-v", "--verbosity", type="int", default=0, help="level of information and diagnostics provided") oparser.add_option( "-m", "--mmap", type="int", default=-1, help="1: use mmap; 0: don't use mmap; -1: accept heuristic") oparser.add_option( "-e", "--encoding", default="", help="encoding override") oparser.add_option( "-f", "--formatting", type="int", default=0, help="0 (default): no fmt info\n" "1: fmt info (all cells)\n" ) oparser.add_option( "-g", "--gc", type="int", default=0, help="0: auto gc enabled; 1: auto gc disabled, manual collect after each file; 2: no gc") oparser.add_option( "-s", "--onesheet", default="", help="restrict output to this sheet (name or index)") oparser.add_option( "-u", "--unnumbered", action="store_true", default=0, help="omit line numbers or offsets in biff_dump") oparser.add_option( "-d", "--on-demand", action="store_true", default=0, help="load sheets on demand instead of all at once") oparser.add_option( "-t", "--suppress-timing", action="store_true", default=0, help="don't print timings (diffs are less messy)") oparser.add_option( "-r", "--ragged-rows", action="store_true", default=0, help="open_workbook(..., ragged_rows=True)") options, args = oparser.parse_args(cmd_args) if len(args) == 1 and args[0] in ("version", ): pass elif len(args) < 2: oparser.error("Expected at least 2 args, found %d" % len(args)) cmd = args[0] xlrd_version = getattr(xlrd, "__VERSION__", "unknown; before 0.5") if cmd == 'biff_dump': xlrd.dump(args[1], unnumbered=options.unnumbered) sys.exit(0) if cmd == 'biff_count': xlrd.count_records(args[1]) sys.exit(0) if cmd == 'version': print("xlrd: %s, from %s" % (xlrd_version, xlrd.__file__)) print("Python:", sys.version) sys.exit(0) if options.logfilename: logfile = LogHandler(open(options.logfilename, 'w')) else: logfile = sys.stdout mmap_opt = options.mmap mmap_arg = xlrd.USE_MMAP if mmap_opt in (1, 0): mmap_arg = mmap_opt elif mmap_opt != -1: print('Unexpected value (%r) for mmap option -- assuming default' % mmap_opt) fmt_opt = options.formatting | (cmd in ('xfc', )) gc_mode = options.gc if gc_mode: gc.disable() for pattern in args[1:]: for fname in glob.glob(pattern): print("\n=== File: %s ===" % fname) if logfile != sys.stdout: logfile.setfileheading("\n=== File: %s ===\n" % fname) if gc_mode == 1: n_unreachable = gc.collect() if n_unreachable: print("GC before open:", n_unreachable, "unreachable objects") if PSYCO: import psyco psyco.full() PSYCO = 0 try: t0 = time.time() bk = xlrd.open_workbook(fname, verbosity=options.verbosity, logfile=logfile, use_mmap=mmap_arg, encoding_override=options.encoding, formatting_info=fmt_opt, on_demand=options.on_demand, ragged_rows=options.ragged_rows, ) t1 = time.time() if not options.suppress_timing: print("Open took %.2f seconds" % (t1-t0,)) except xlrd.XLRDError as e: print("*** Open failed: %s: %s" % (type(e).__name__, e)) continue except KeyboardInterrupt: print("*** KeyboardInterrupt ***") traceback.print_exc(file=sys.stdout) sys.exit(1) except BaseException as e: print("*** Open failed: %s: %s" % (type(e).__name__, e)) traceback.print_exc(file=sys.stdout) continue t0 = time.time() if cmd == 'hdr': bk_header(bk) elif cmd == 'ov': # OverView show(bk, 0) elif cmd == 'show': # all rows show(bk) elif cmd == '2rows': # first row and last row show(bk, 2) elif cmd == '3rows': # first row, 2nd row and last row show(bk, 3) elif cmd == 'bench': show(bk, printit=0) elif cmd == 'fonts': bk_header(bk) show_fonts(bk) elif cmd == 'names': # named reference list show_names(bk) elif cmd == 'name_dump': # named reference list show_names(bk, dump=1) elif cmd == 'labels': show_labels(bk) elif cmd == 'xfc': count_xfs(bk) else: print("*** Unknown command <%s>" % cmd) sys.exit(1) del bk if gc_mode == 1: n_unreachable = gc.collect() if n_unreachable: print("GC post cmd:", fname, "->", n_unreachable, "unreachable objects") if not options.suppress_timing: t1 = time.time() print("\ncommand took %.2f seconds\n" % (t1-t0,)) return None av = sys.argv[1:] if not av: main(av) firstarg = av[0].lower() if firstarg == "hotshot": import hotshot, hotshot.stats av = av[1:] prof_log_name = "XXXX.prof" prof = hotshot.Profile(prof_log_name) # benchtime, result = prof.runcall(main, *av) result = prof.runcall(main, *(av, )) print("result", repr(result)) prof.close() stats = hotshot.stats.load(prof_log_name) stats.strip_dirs() stats.sort_stats('time', 'calls') stats.print_stats(20) elif firstarg == "profile": import cProfile av = av[1:] cProfile.run('main(av)', 'YYYY.prof') import pstats p = pstats.Stats('YYYY.prof') p.strip_dirs().sort_stats('cumulative').print_stats(30) elif firstarg == "psyco": PSYCO = 1 main(av[1:]) else: main(av)
[ "mark@hackafe.net" ]
mark@hackafe.net