blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
6520b992ca2c8cb414b63226a294c939a1321829
d8c7821feb6288d9406e8300d44a5bd0e1721f44
/tests/test_bestip.py
4cf35df7f4568f2d178104b393627f52c9a4527d
[ "MIT" ]
permissive
darwinwen/mootdx
aa28f2f933727bcd1852230df8c81baef53f221b
71f390dcabfabe884c77bfd0f947c857b44af7a6
refs/heads/master
2023-08-11T07:58:28.774341
2021-09-22T06:39:18
2021-09-22T06:39:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
320
py
import unittest from pathlib import Path from mootdx import config class TestBestIP(unittest.TestCase): def setUp(self) -> None: conf = Path.home() / '.mootdx' / 'config.json' conf.unlink() def test_config_setup(self): config.setup() if __name__ == '__main__': unittest.main()
[ "ibopo@126.com" ]
ibopo@126.com
53059ec1496f3a49add846de1ceb5c1407985d80
56b86dc09bd8f23323b1e0cc1ef1f5d7012a6a13
/constant.py
bcbd90112604d608cd4ab25c68b5491edcdb4908
[]
no_license
hirenchalodiya1/aryabhatta-scripts
d5222b549164dfe51398c79f76127485c1a2a8be
972c47a23258dbf2e195585b2308e0529b7c2c00
refs/heads/main
2021-06-26T05:11:09.764240
2021-06-08T08:48:30
2021-06-08T08:48:30
218,305,875
0
0
null
2019-10-29T14:24:41
2019-10-29T14:24:40
null
UTF-8
Python
false
false
69
py
from decouple import config BASE_URL = config("BASE_URL", cast=str)
[ "hirenchalodiya99@gmail.com" ]
hirenchalodiya99@gmail.com
f15ffb0a2d4c5067568f7169e5e32b68f119fadf
a6135977d88f405099aa5487b24567a91f9f17a9
/setup.py
5573e9e91de72d3399eb89fe483a91aeacb2c959
[ "MIT" ]
permissive
mylh/scrapeblock
dac5042e5dce811129fe26535a4cc374764c0df4
68c1c2b77c42f5c0121dc65305e6fff51afcb3ca
refs/heads/master
2021-01-12T12:03:56.481438
2016-12-03T11:17:06
2016-12-03T11:17:06
69,112,705
0
0
null
null
null
null
UTF-8
Python
false
false
3,359
py
from setuptools import setup, find_packages setup( name='scrapeblock', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version='0.1', description='Block scrapers by IP on Cloudflare by analyzing webserver logs', # The project's main homepage. url='https://github.com/mylh/scrapeblock', # Author details author='mylh', author_email='s317011@gmail.com', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # # How mature is this project? Common values are # # 3 - Alpha # # 4 - Beta # # 5 - Production/Stable 'Development Status :: 4 - Beta', # # Indicate who your project is intended for 'Intended Audience :: DevOps', # 'Topic :: Software Development :: Build Tools', # # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # # Specify the Python versions you support here. In particular, ensure # # that you indicate whether you support Python 2, Python 3 or both. # 'Programming Language :: Python :: 2', # 'Programming Language :: Python :: 2.6', # 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], # What does your project relate to? keywords='antibot cloudflare ban', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests*']), # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=[ 'requests', 'click', 'logbook', 'PyYAML==3.11', 'python-dateutil', ], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] # extras_require={ # 'dev': ['check-manifest'], # 'test': ['coverage'], # }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. # package_data={ # 'sample': ['package_data.dat'], # }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], entry_points={ 'console_scripts': [ 'scrapeblock=scrapeblock.cli:cli', ], } )
[ "s317011@gmail.com" ]
s317011@gmail.com
9521e3a1b1a99aff90c4e224ac15617d2049819f
dc7f63c70b3c25f4698dd19e103df94a0e30fd0c
/PyGameStart/практика/e.py
e1f36892319c294fdddcff0e6ea712ed8e700703
[]
no_license
NikitaPoskrebyshev/Practice
76e9f1e54bf737fd2f06618fcbe2fb4e9100b24e
df2a4894d9735f34236ad0ec441ba01bf468f92d
refs/heads/master
2023-01-02T19:43:00.836131
2020-10-26T14:57:24
2020-10-26T14:57:24
293,818,908
0
0
null
null
null
null
UTF-8
Python
false
false
887
py
import pygame as pg from random import randint as rn pg.init() wind = pg.display.set_mode([825, 540]) white = (255, 255, 255) black = (000, 000, 000) green = (0, 200, 64) yellow = (255, 255, 0) red = (255, 0, 0) gray = (125, 125, 125) x1 = red x2 = yellow x3 = green fps = 30 clock = pg.time.Clock() n = 0 f = 0 while True: clock.tick(fps) if n % 15 in [0, 1, 2]: x1, x2, x3 = red, gray, gray elif n % 15 in [3] elif n % 9 in [3, 4, 5]: x1, x2, x3 = gray, yellow, gray else: x1, x2, x3 = gray, gray, green pg.draw.circle(wind, x1, (250, 100), 50) pg.draw.circle(wind, x2, (250, 200), 50) pg.draw.circle(wind, x3, (250, 300), 50) pg.display.update() pg.display.set_caption(str(n)) f += 1 if f == 30: n += 1 f = 0 for event in pg.event.get(): if event.type == pg.QUIT: exit()
[ "box051604@hotmail.com" ]
box051604@hotmail.com
938e8dd79fb4aa182dc486774b8744540aeb5bf8
56ae394db9ed7b4d041aaa485d0f7a297b66d727
/nBayesClassifier.py
ddffde680fad09677f4baf36e680feff3d13056c
[]
no_license
CSL551/ailab2_nBayes
0eb581f21e5c8f3de7a0736d21efe510a7dfbb08
2f3c4bd4835470b6bca55c8b2c148953b3cfa796
refs/heads/master
2021-01-21T14:52:33.885981
2017-06-24T04:18:21
2017-06-24T04:18:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,883
py
from __future__ import division import numpy as np from scipy.sparse import vstack from getFeature import X, y def nBayesClassifier(traindata, trainlabel, testdata, testlabel, threshold): n = traindata.shape[0] # number of training samples m = traindata.shape[1] # size of Bag of Words p_wi_pos = np.zeros(m) # P(wordi | positive) p_wi_neg = np.zeros(m) # P(wordi | negtive) countpos = 0 # total number of positive training samples countneg = 0 # total number of negtive training samples # training process print "begin training" for i in xrange(n): x = traindata.getrow(i) if trainlabel[i] == 1: for j in x.nonzero()[1]: p_wi_pos[j] += x[0, j] countpos += 1 else: for j in x.nonzero()[1]: p_wi_neg[j] += x[0, j] countneg += 1 if countpos > 0: p_wi_pos /= countpos if countneg > 0: p_wi_neg /= countneg for i in xrange(n): p_wi_pos[i] = min(p_wi_pos[i], 1) p_wi_neg[i] = min(p_wi_neg[i], 1) p_pos = countpos / (countpos + countneg) p_neg = 1 - p_pos p_wi = p_wi_pos * p_pos + p_wi_neg * p_neg # test process print "begin test" n1 = (testdata.shape)[0] # number of test samples p_test = np.zeros(n1) # postive and negtive probabilities for test samples for i in xrange(n1): p_test[i] = p_pos x = testdata.getrow(i) for wid in x.nonzero()[1]: wcount = x[0, wid] if p_wi_pos[wid] > 0: # ensure conditional probability is nonzero p_test[i] *= (p_wi_pos[wid] ** wcount) p_test[i] /= (p_wi[wid] ** wcount) y_pred = np.zeros(n1) correct_count = 0 for i in xrange(n1): if p_test[i] >= threshold: y_pred[i] = 1 else: y_pred[i] = -1 if y_pred[i] == testlabel[i]: correct_count += 1 return y_pred, correct_count / n1 n = (X.shape)[0] foldsize = n // 5 with open("cross_validation.txt", "w") as f: for threshold in [0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9]: f.write("when threshold is {}, ".format(threshold)) avg_accuracy = 0.0 for i in xrange(5): begin = i * foldsize end = begin + foldsize traindata = vstack((X[:begin, :], X[end:, :])) trainlabel = np.concatenate((y[:begin], y[end:])) testdata = X[begin:end, :] testlabel = y[begin:end] (y_pred, accuracy) = nBayesClassifier(traindata, trainlabel, testdata, testlabel, threshold) avg_accuracy += accuracy avg_accuracy /= 5 f.write("the average accuracy is {}.\n".format(avg_accuracy)) #nBayesClassifier(X[0 : int(0.8 * n)][:], y[0 : int(0.8 * n)], X[int(0.8 * n) : n][:], y[int(0.8 * n) : n], 0.5)
[ "wjszzyx@sohu.com" ]
wjszzyx@sohu.com
b1db8ab3edf1feb0d31266aff843f54b894baf65
217d69e096e96a50a85a9888424d9b368ce0e605
/models/engine/file_storage.py
222e10f34c8e23860f96a1e5c8ce1c1fc5e328fe
[]
no_license
02KellyV/Example_airbnb
e6cae8b98252b1544245038d33ba4106596861f2
daebcf30d2bb8345d15fa3a957b192e1ae0374b2
refs/heads/master
2021-01-07T10:59:27.347146
2020-02-19T16:50:33
2020-02-19T16:50:33
241,670,426
0
0
null
null
null
null
UTF-8
Python
false
false
1,415
py
import json import os.path from models.base_model import BaseModel class FileStorage: """Class for Serializes and Deserializes""" __file_path = "file.json" #is a file __objects = {} #is a dict def all(self): """returns the dict __objects""" return self.__objects def new(self, obj): """sets in __objects the key <obj class name>.id and assign obj entire""" key = obj.__class__.__name__ + "." + obj.id #class name of an obj + id self.__objects[key] = obj #self.__objects.update({key, obj}) def save(self): """serializes __objects to the JSON file (path: __file_path)""" newdict_objs = {} #to store the info that will save for key, val in self.__objects: #pass trought for each key/val newdict_objs[key] = val.to_dict() with open(self.__file_path, 'w') as json_f: #file handling json_f.write(json.dumps(newdict_objs)) #dumps: encode json data #converts dict object into JSON string data format and write to file def reload(self): """deserializes the JSON file to __objects""" if os.path.isfile(self.__file_path): with open(self.__file_path, 'r') as json_f: othrdict_objs = json.loads(json_f) #loads: decode json data for key, val in othrdict_objs.items(): self.__objects[key] = BaseModel(**val)
[ "900@holbertonschool.com" ]
900@holbertonschool.com
f3ca0981b6eac4ddc276ebdf8e53f165944caf80
6022bddd63001e4f259cbf472237976c3c2d8be3
/Restricted_cover_drone/SA for drone Mk5.3.py
1ef0e95ebdab530bdff1403dcfae6739e1c7b56f
[]
no_license
iaminsu/Python
772bfe661fa0abae6c11d899ddc388f36f9f3ac7
29b518e3075c4b7cc2d798fed28271b5790573d1
refs/heads/master
2021-01-16T18:07:28.212444
2017-02-20T20:00:51
2017-02-20T20:00:51
100,039,101
0
0
null
null
null
null
UTF-8
Python
false
false
36,304
py
#Simulated annealing for location optimization of recharging stations for drone delivery system #MCLP # # 1. using pre-made dictionary from ArcGIS to use attribute tables: read order always follows FID, so it is maintained. # 2. spatial relationship is assessed by shapley # - ESP distance should be utilzed to measure distance between locations # - ArcGIS is way too slow # 3. Spatially_restricted interchange heuristic # - # 4. Brown field: part of solution is fixed (warehouses) # 5. Point demand representation #Mk2: # - add distance restriction #mk4: # dual objective, but minimizing both of them # by turning demand obj into uncovered demand #mk5: # new approach: no dual objective, only considering covered demand for obejctive value # minimizing graph generation & evaluation # eliminate redundancy # new interchagne algorithm # Bug fix: network removal #new interchange algorithm #Issues: solution is fixed after some point. Need to change either or both of greedy_fill and # spatial_interchange_mk3 #Mk5.2 #fix issue with new dictionary files #Mk5.3 #modification in SA algorithm # - "remember" the best solution ever, and if the final solution is inferior then the recored best solution, roll back to the best. import pysal, shapefile, networkx, time, cPickle, random, math, copy, Convexpath_module from shapely.geometry import Point, Polygon, LineString, MultiPoint, MultiPolygon from collections import defaultdict path = "/Users/insuhong/Dropbox/research/Distance restricted covering model/Locating recharging station/data4/" ffDict = "FF_old_Dictsample_sites_2.shp_sample_demand_2_p.shp_obstacles_p.shp.txt" obstacles_f = "obstacles_p" fdDict = "FD_Dictsample_sites_2.shp_sample_demand_2_p.shp_obstacles_p.shp.txt" demand_Dict = "demands.txt" facilities_f = "sample_sites_2.shp" demands_f = "sample_demand_2_p.shp" ffcords = "FF_coords_Dictsample_sites_2.shp_sample_demand_2_p.shp_obstacles_p.shp.txt" #loading matrices & initialize variables def generateGeometry(in_shp): resultingGeometry = [] if in_shp.header['Shape Type'] == 1: for i in range(len(in_shp)): resultingGeometry.append(Point(in_shp.get_shape(i)['X'], in_shp.get_shape(i)['Y'])) elif in_shp.header['Shape Type'] == 3: for i in range(len(in_shp)): resultingGeometry.append(LineString(in_shp.get_shape(i)['Vertices'])) elif in_shp.header['Shape Type'] == 5: for i in range(len(in_shp)): resultingGeometry.append(Polygon(in_shp.get_shape(i)['Vertices'])) return resultingGeometry def cal_obj(in_solution): covered = [] obj = 0 for site in in_solution: for i in F_Ddict[site]: covered.append(i[0]) covered = list(set(covered)) #print covered for de in covered: obj += float(dDict[de]) return obj def chk_isolation(in_sol, wh_ids): #return false if sites are linked to any of warehouses #assume that the system allows separate delivery network from each warehouse result = [] for i in in_sol: if len(result) == 0: result.append(facil_shp[i].buffer(fd_fullPayload)) else: result[0] = result[0].union(facil_shp[i].buffer(fd_fullPayload)) if result[0].type == "MultiPolygon": indi = True for poly in result[0]: indi_poly = False for warehouse in wh_ids: if poly.intersects(facil_shp[warehouse]): indi_poly = True if indi_poly == False: indi = False break if indi == True: return False else: return True else: return False def chk_feasibility(in_solution, save): feasibility = True covers = {} for site in in_solution: if len(covers) == 0: covers[in_solution.index(site)] = facil_shp[site].buffer(fd_fullPayload) else: in_list = [] for key in covers: if covers[key].intersects(facil_shp[site]): in_list.append(key) area = covers[key].union(facil_shp[site].buffer(fd_fullPayload)) covers[key] = area if len(in_list) == 0: covers[in_solution.index(site)] = facil_shp[site].buffer(fd_fullPayload) elif len(in_list) > 1: chunk = covers[in_list[0]] for i in in_list: chunk = chunk.union(covers[i]) for i in in_list: covers.pop(i) covers[in_solution.index(site)] = chunk for key in covers: indi = False for warehouse in warehouses_ID: if covers[key].intersects(facil_shp[warehouse]): indi = True break if indi == False: feasibility = False if save == True: w = shapefile.Writer(shapefile.POLYGON) w.field('net') for key in covers: w.poly(parts=[[list(x) for x in list(covers[key].exterior.coords)]]) w.record('ff') w.save(path + "area") return feasibility def chk_feasibility_all (in_solution, save): feasibility = True covers = {} for site in in_solution: if len(covers) == 0: covers[in_solution.index(site)] = facil_shp[site].buffer(fd_fullPayload) else: in_list = [] for key in covers: if covers[key].intersects(facil_shp[site]): in_list.append(key) area = covers[key].union(facil_shp[site].buffer(fd_fullPayload)) covers[key] = area if len(in_list) == 0: covers[in_solution.index(site)] = facil_shp[site].buffer(fd_fullPayload) elif len(in_list) > 1: chunk = covers[in_list[0]] for i in in_list: chunk = chunk.union(covers[i]) for i in in_list: covers.pop(i) covers[in_solution.index(site)] = chunk if len(covers) == 1: feasibility = True else: feasibility = False if save == True: w = shapefile.Writer(shapefile.POLYGON) w.field('net') for key in covers: w.poly(parts=[[list(x) for x in list(covers[key].exterior.coords)]]) w.record('ff') w.save(path + "area") return feasibility #network-based feasibility check? def nn_distance(in_solution): distance_list = [] for site in in_solution: dis_list = [] for i in [x for x in in_solution if not x == site]: dis_list.append((facil_shp[site].distance(facil_shp[i]), i)) dis_list.sort() distance_list.append((dis_list[0][0], site, dis_list[0][1])) distance_list.sort() return distance_list def removal(in_solution, remove_no): nn_dist = nn_distance(in_solution) #print nn_dist for i in range(remove_no): if nn_dist[i][2] in in_solution: in_solution.remove(nn_dist[i][2]) return in_solution def delivery_network(in_solution, s_file, in_name = "temp_graph"): arc_list = [] arc_shp_list = [] connectivity = True resultingGraph = networkx.Graph() for i in range(len(in_solution)-1): sites = [x[0] for x in F_Fdict[in_solution[i]]] for j in range(i+1, len(in_solution)): if in_solution[j] in sites: resultingGraph.add_edge((facil_shp[in_solution[i]].x, facil_shp[in_solution[i]].y), (facil_shp[in_solution[j]].x, facil_shp[in_solution[j]].y), weight = F_Fdict2[in_solution[i]][in_solution[j]]) arc_list.append("ESP_" + str(in_solution[i]) + "_" + str(in_solution[j]) + ".shp") for i in range(len(warehouse_coords)-1): for j in range(i+1, len(warehouse_coords)): try: route = networkx.dijkstra_path(resultingGraph, warehouse_coords[i], warehouse_coords[j]) except: connectivity = False break if connectivity == False: break for site in in_solution: for whouse in warehouse_coords: try: route = networkx.dijkstra_path(resultingGraph, (facil_shp[site].x, facil_shp[site].y), whouse) except: connectivity = False break if connectivity == False: break if connectivity == True: if s_file == True: w = shapefile.Writer(shapefile.POLYLINE) w.field('nem') for line in arc_shp_list: w.line(parts=[[ list(x) for x in list(line.coords)]]) w.record('chu') w.save(path + in_name) return resultingGraph else: return None def delivery_network_mk2(in_solution, s_file, in_name = "temp_graph"): arc_list = [] arc_shp_list = [] connectivity = True resultingGraph = networkx.Graph() for i in range(len(in_solution)-1): sites = [x[0] for x in F_Fdict[in_solution[i]]] for j in range(i+1, len(in_solution)): if in_solution[j] in sites: resultingGraph.add_edge((facil_shp[in_solution[i]].x, facil_shp[in_solution[i]].y), (facil_shp[in_solution[j]].x, facil_shp[in_solution[j]].y), weight = F_Fdict2[in_solution[i]][in_solution[j]]) arc_list.append("ESP_" + str(in_solution[i]) + "_" + str(in_solution[j]) + ".shp") if s_file == True: for arc in arc_list: arc_pysal = pysal.IOHandlers.pyShpIO.shp_file(path+arc) arc_shp = generateGeometry(arc_pysal) arc_shp_list.extend(arc_shp) w = shapefile.Writer(shapefile.POLYLINE) w.field('nem') for line in arc_shp_list: w.line(parts=[[ list(x) for x in list(line.coords)]]) w.record('chu') w.save(path + in_name) return resultingGraph def delivery_network_mk3(in_solution, s_file, in_name = "temp_graph"): #check connectivity between warehouses arc_list = [] arc_shp_list = [] connectivity = True resultingGraph = networkx.Graph() for i in range(len(in_solution)-1): sites = [x[0] for x in F_Fdict[in_solution[i]]] for j in range(i+1, len(in_solution)): if in_solution[j] in sites: resultingGraph.add_edge((facil_shp[in_solution[i]].x, facil_shp[in_solution[i]].y), (facil_shp[in_solution[j]].x, facil_shp[in_solution[j]].y), weight = F_Fdict2[in_solution[i]][in_solution[j]]) arc_list.append("ESP_" + str(in_solution[i]) + "_" + str(in_solution[j]) + ".shp") for i in range(len(warehouse_coords)-1): for j in range(i+1, len(warehouse_coords)): try: route = networkx.dijkstra_path(resultingGraph, warehouse_coords[i], warehouse_coords[j]) except: connectivity = False break if connectivity == False: break if connectivity == True: if s_file == True: w = shapefile.Writer(shapefile.POLYLINE) w.field('nem') for line in arc_shp_list: w.line(parts=[[ list(x) for x in list(line.coords)]]) w.record('chu') w.save(path + in_name) return resultingGraph else: return None def generate_graph(in_solution): arc_list = [] arc_shp_list = [] for i in range(len(in_solution)-1): sites = [x[0] for x in F_Fdict[in_solution[i]]] for j in range(i+1, len(in_solution)): if in_solution[j] in sites: arc_list.append("ESP_" + str(in_solution[i]) + "_" + str(in_solution[j]) + ".shp") resultingGraph = networkx.Graph() for arc in arc_list: arc_pysal = pysal.IOHandlers.pyShpIO.shp_file(path+arc) arc_shp = generateGeometry(arc_pysal) arc_shp_list.extend(arc_shp) for line in arc_shp: resultingGraph.add_edge(list(line.coords)[0], list(line.coords)[1], weight = line.length) w = shapefile.Writer(shapefile.POLYLINE) w.field('nem') for line in arc_shp_list: w.line(parts=[[ list(x) for x in list(line.coords)]]) w.record('chu') w.save(path + "in_name") return resultingGraph def restricted_cadidates(in_solution): #for spatial_interchange: candis = [] for site in in_solution: for i in F_Fdict[site]: if i[1] > min_dist: candis.append(i[0]) too_close = [] for site in in_solution: too_close.extend(F_F_close_d[site]) candis = list(set(candis)) candis = [x for x in candis if x not in in_solution] candis = [x for x in candis if x not in too_close] return candis def spatial_interchange(in_solution): print "interchange start" c = restricted_cadidates(in_solution) print len(c) flag = True while flag == True: flag = False while len(c) != 0: candi = random.choice(c) c.remove(candi) current_obj = [in_solution, cal_obj(in_solution)] removable_solution = [x for x in in_solution if x not in warehouses_ID] for site in removable_solution: temp_sol = [] temp_sol.extend(removable_solution) temp_sol.remove(site) temp_sol.append(candi) temp_sol.extend(warehouses_ID) temp_obj = cal_obj(temp_sol) if temp_obj > current_obj[1]: if chk_isolation(temp_sol, warehouses_ID) == False: #prevent island in solution flag = True current_obj = [temp_sol, temp_obj] if flag == True: in_solution = current_obj[0] print "interchange finished" return in_solution def spatial_interchange_fast(in_solution): #print "interchange start" c = restricted_cadidates(in_solution) #print len(c) flag = True while flag == True: flag = False while len(c) != 0: candi = random.choice(c) c.remove(candi) current_obj = [in_solution, cal_obj(in_solution)] removable_solution = [x for x in in_solution if x not in warehouses_ID] for site in removable_solution: temp_sol = [] temp_sol.extend(removable_solution) temp_sol.remove(site) temp_sol.append(candi) temp_sol.extend(warehouses_ID) temp_obj = cal_obj(temp_sol) if temp_obj > current_obj[1]: if chk_isolation(temp_sol, warehouses_ID) == False: #prevent island in solution flag = True current_obj = [temp_sol, temp_obj] break if flag == True: in_solution = current_obj[0] flag = False break #print "interchange finished" return in_solution def spatial_interchage_mk2(in_solution): flag = True while flag == True: current_obj = [in_solution, cal_obj(in_solution)] removable_solution = [x for x in in_solution if x not in warehouses_ID] for site in removable_solution: temp_sol = copy.copy(removable_solution) temp_sol.remove(site) candis = restricted_cadidates(temp_sol) candis = [x for x in candis if not x == site] for c in candis: temp2_sol = copy.copy(temp_sol) if c == site: continue else: temp2_sol.append(c) temp2_sol.extend(warehouses_ID) temp2_obj = cal_obj(temp2_sol) if temp2_obj > current_obj[1]: if delivery_network_mk3(temp2_sol, False) != None: #if chk_feasibility_all(temp2_sol, False): flag = False in_solution = [] in_solution = copy.copy(temp2_sol) break if flag == False: break return in_solution def spatial_interchage_mk3(in_solution): #modified interchange algorithm #conventional interchange algorithm cannot be applied since candidate set needs to be updated after any change in #current solution. So, this interchange algorithm iterate for each site in current solution, #1) if a site is critical site: find better site that can maintaining connection #2) if a site is not critical site: find better site from restricted candidate set for all other sites in current solution current_obj = [in_solution, cal_obj(in_solution)] in_graph = delivery_network_mk2(in_solution, False) temp_sol = copy.copy(in_solution) for site in temp_sol: if site not in warehouses_ID: temp_sol2 = copy.copy(in_solution) temp_sol2.remove(site) if delivery_network_mk3(temp_sol2, False) == None: #site is critical node #then only candidates that can restablish connection are considered adj_nodes = in_graph[(facil_shp[site].x, facil_shp[site].y)].keys() candis = restricted_cadidates([adj_nodes[0]]) for i in adj_nodes: candis = [x for x in candis if x in restricted_cadidates[[i]]] for c in candis: temp2_obj = cal_obj(temp_sol2 + [c]) if temp2_obj > current_obj[1]: in_solution = temp_sol2 + [c] current_obj = [in_solution, cal_obj(in_solution)] else: #non-critical node candis = restricted_cadidates(temp_sol2) for c in candis: temp2_obj = cal_obj(temp_sol2 + [c]) if temp2_obj > current_obj[1]: if delivery_network(temp_sol2, False) != None: in_solution = temp_sol2 + [c] current_obj = [in_solution, cal_obj(in_solution)] return in_solution def spatial_interchage_mk4(in_solution): #modified interchange algorithm #conventional interchange algorithm cannot be applied since candidate set needs to be updated after any change in #current solution. This interchange algorithm *change only 1* site!! #1) if a site is critical site: find better site that can maintaining connection #2) if a site is not critical site: find better site from restricted candidate set for all other sites in current solution current_obj = [in_solution, cal_obj(in_solution)] in_graph = delivery_network_mk2(in_solution, False) temp_sol = copy.copy(in_solution) for site in temp_sol: indi = False if site not in warehouses_ID: temp_sol2 = copy.copy(in_solution) temp_sol2.remove(site) if delivery_network_mk3(temp_sol2, False) == None: #site is critical node #then only candidates that can restablish connection are considered adj_nodes = in_graph[(facil_shp[site].x, facil_shp[site].y)].keys() candis = restricted_cadidates([adj_nodes[0]]) for i in adj_nodes: if len(candis) == 0: candis = restricted_cadidates([F_FCoords[i]]) else: candis = [x for x in candis if x in restricted_cadidates([F_FCoords[i]])] for c in candis: temp2_obj = cal_obj(temp_sol2 + [c]) if temp2_obj > current_obj[1]: in_solution = temp_sol2 + [c] current_obj = [in_solution, cal_obj(in_solution)] indi = True else: #non-critical node candis = restricted_cadidates(temp_sol2) for c in candis: temp2_obj = cal_obj(temp_sol2 + [c]) if temp2_obj > current_obj[1]: if delivery_network(temp_sol2, False) != None: in_solution = temp_sol2 + [c] current_obj = [in_solution, cal_obj(in_solution)] indi = True if indi == True: break return in_solution def greedy_fill(in_solution=[]): isolation = True tt = 0 while isolation == True: obj_time = 0 new_sol = [] stime = time.time() new_sol = copy.copy(in_solution) c_obj = cal_obj(new_sol) loop_no = 0 pool_len = 0 while len(new_sol) < p: loop_no += 1 #print new_sol pool = restricted_cadidates(new_sol) pool_len += len(pool) temp = [] stime_l = time.time() for i in pool: temp_obj = cal_obj(new_sol + [i]) temp.append((temp_obj, i)) etime_l = time.time() obj_time += etime_l - stime_l temp.sort() temp.reverse() c_obj = temp[0][0] new_sol = new_sol + [temp[0][1]] if delivery_network(new_sol, False) != None: #if chk_feasibility_all(new_sol, False): in_solution =[] in_solution = copy.copy(new_sol) isolation = False etime = time.time() tt += etime - stime if tt > 600: print "greedy failed" print tt print new_sol nn = delivery_network_mk2(new_sol, True, "failed_greedy") chk_feasibility_all(new_sol, True) f = raw_input() #print "total time: ", tt #print "obj time: ", obj_time #print "average pool: ", float(pool_len)/loop_no return in_solution def greedy_fill_mk2(in_solution): pass def random_fill(in_solution=[]): isolation = True tt = 0 while isolation == True: stime = time.time() new_sol = [] new_sol = copy.copy(in_solution) while len(new_sol) < p: random_pool = restricted_cadidates(new_sol) new_sol.append(random.choice(random_pool)) if chk_feasibility_all(new_sol, False): in_solution = [] in_solution = copy.copy(new_sol) isolation = False #etime = time.time() #tt += etime - stime #if tt > 20: #print tt #print new_sol #chk_feasibility_all(new_sol, True) #f = raw_input() return in_solution def random_fill_mk2(in_solution): # 1)2 warehouses case: # - generate a corridor using ESP between them # - random select facilities in the corridor until warehoused are connected # - random select remaining facilities # 2)More-than-2 warehouses case: # - generate a convex hull for warehouses # - derive centroid of convex hull # - generate a corridor based on the ESPs that connect from warehoused to centroid # - random select facilities in the corridor until warehoused are connected # - random select remaining facilities isolation = True if len(warehouses_ID) == 2: w_origin = facil_shp[warehouses_ID[0]] w_destination = facil_shp[warehouses_ID[1]] a = Convexpath_module.Convexpath_shapely(path, w_origin, w_destination, obstacles_shp) w_esp = a.esp #esp is Linestring object w_corridor = w_esp.buffer(fd_delivery*0.5) else: w_points = [] for i in warehouse_coords: w_points.append(i) w_mp = MultiPoint(w_points) w_ch = w_mp.convex_hull w_cp = w_ch.centroid w_corridor = [] for i in warehouse_coords: a = Convexpath_module.Convexpath_shapely(path, Point(i), w_cp, obstacles_shp) w_corridor.append(a) #w = shapefile.Writer(shapefile.POLYGON) #w.field('net') #for obs in [w_corridor]: #w.poly(parts=[[list(x) for x in list(obs.exterior.coords)]]) #w.record('ff') #w.save(path + "w_corridor") while isolation == True: new_sol = [] new_sol = copy.copy(in_solution) while len(new_sol) < p: if delivery_network_mk3(new_sol, False) == None: random_pool = restricted_cadidates(new_sol) #print new_sol #print random_pool corridor_pool = [] for i in random_pool: if w_corridor.intersects(facil_shp[i]): corridor_pool.append(i) if len(corridor_pool) != 0: new_sol.append(random.choice(corridor_pool)) else: new_sol.append(random.choice(random_pool)) else: random_pool = restricted_cadidates(new_sol) new_sol.append(random.choice(random_pool)) if delivery_network(new_sol, False) != None: in_solution = [] in_solution = copy.copy(new_sol) isolation = False return in_solution def network_removal (in_solution): #remove certain number of sites from solution. But if a site is part of critical link between warehouses, #the site will not be removed. #sites are randomly selected (not based on nn distance) #if some sites are separated from the delivery network, remove them also regardless of removal number. remove_no = int(remove_percent * len(in_solution)) sol_wo_wh = [x for x in in_solution if not x in warehouses_ID] while remove_no > 0: r_site = random.choice(sol_wo_wh) temp = copy.copy(sol_wo_wh) temp.extend(warehouses_ID) temp.remove(r_site) temp_graph = delivery_network(temp) #print temp #print remove_no if temp_graph != None: sol_wo_wh.remove(r_site) remove_no -= 1 sol_wo_wh.extend(warehouses_ID) temp_graph = delivery_network(sol_wo_wh) additional_removal = [] for site in sol_wo_wh: if site not in warehouses_ID: site_coords = (facil_shp[site].x, facil_shp[site].y) for whouse in warehouse_coords: try: route = networkx.dijkstra_path(temp_graph, site_coords, whouse) except: additional_removal.append(site) break sol_wo_wh = [x for x in sol_wo_wh if not x in additional_removal] return sol_wo_wh def network_removal_mk2 (in_solution): #remove certain number of sites from solution. But if a site is part of critical link between warehouses, #the site will not be removed. #sites are randomly selected (not based on nn distance) #if some sites are separated from the delivery network, remove them also regardless of removal number. remove_no = int(remove_percent * len(in_solution)) #print remove_no removable_sites = [] #print "in_solution:", in_solution for site in in_solution: if site not in warehouses_ID: temp = copy.copy(in_solution) temp.remove(site) temp_graph = delivery_network_mk3(temp, False) if temp_graph != None: removable_sites.append(site) if len(removable_sites) < remove_no: remove_no = len(removable_sites) #print "removeable,", removable_sites #print remove_no while remove_no > 0: r_site = random.choice(removable_sites) removable_sites.remove(r_site) in_solution.remove(r_site) temp_graph2 = delivery_network_mk3(in_solution, False) if temp_graph2 == None: in_solution.append(r_site) else: remove_no -= 1 #print "removed", in_solution temp_graph = delivery_network_mk2(in_solution, True) additional_removal = [] #print temp_graph for site in in_solution: if site not in warehouses_ID: site_coords = (facil_shp[site].x, facil_shp[site].y) for whouse in warehouse_coords: try: route = networkx.dijkstra_path(temp_graph, site_coords, whouse) except networkx.exception.NetworkXNoPath: additional_removal.append(site) break except KeyError: additional_removal.append(site) in_solution = [x for x in in_solution if not x in additional_removal] if len(in_solution) < 5: print "shit again?" print "r", additional_removal print in_solution r = raw_input() return in_solution f_FF = open(path + ffDict) f_FD = open(path + fdDict) f_demand = open(path + demand_Dict, 'rb') F_Fdict = cPickle.load(f_FF) F_Fdict2 = defaultdict(dict) for i in F_Fdict: for j in F_Fdict[i]: F_Fdict2[i][j[0]] = j[1] #F_Fdict2 = cPickle.load(open(path + ff2Dict)) F_Ddict = cPickle.load(f_FD) F_FCoords = cPickle.load(open(path+ ffcords)) facil_pysal = pysal.IOHandlers.pyShpIO.shp_file(path+facilities_f) demand_pysal = pysal.IOHandlers.pyShpIO.shp_file(path + demands_f) obstacles_pysal = pysal.IOHandlers.pyShpIO.shp_file(path + obstacles_f) obstacles_shp = generateGeometry(obstacles_pysal) dDict = cPickle.load(f_demand) facil_shp = generateGeometry(facil_pysal) demand_shp = generateGeometry(demand_pysal) warehouses_ID = [127,324] #id_f of warehouses warehouse_coords = [] for warehouse in warehouses_ID: warehouse_coords.append((facil_shp[warehouse].x, facil_shp[warehouse].y)) solution_sites = [] covered_demand = [] objective_value = 0 p = 25 # temperature = 30 #end temperature max_iter = 3 #iteration limit terminate_temp = 1 temp_ratio = 0.15 sa_count = 0 remove_percent = 0.2 fd_fullPayload = 5 * 5280 fd_empty = 10 * 5280 fd_delivery = 3.33 *5280 min_dist = fd_delivery *0.6 rc = 0.001 rc_obj = 0.1 total_demand = 0.0 F_F_close_d = defaultdict(list) for i in F_Fdict: for j in F_Fdict[i]: if j[1] <= min_dist: F_F_close_d[i].append(j[0]) for i in dDict: total_demand += float(dDict[i]) #initializing seed solution (random) print "initializing solution" solution_sites.extend(warehouses_ID) solution_sites = random_fill_mk2(solution_sites) #print solution_sites solution_graph = delivery_network_mk2(solution_sites, True) print "solution initialized" best_solution = [solution_sites, cal_obj(solution_sites)] while temperature > 0.5: current_solution = copy.copy(solution_sites) current_graph = delivery_network_mk2(current_solution, True, "currrent_graph") current_obj = cal_obj(current_solution) print "current Objective value: ", current_obj new_solution = copy.copy(current_solution) s_time = time.time() new_solution = network_removal_mk2 (new_solution) e_time = time.time() #print "removed", new_solution #print "removal time 2: ", e_time - s_time #print "fill start" #print "removed obj: ", cal_obj(new_solution) new_solution = spatial_interchage_mk4(new_solution) #print "improved obj before greedy: ", cal_obj(new_solution) s_time = time.time() new_solution = greedy_fill(new_solution) n_graph = delivery_network_mk2(new_solution, True, "greey_graph") e_time = time.time() #print "fill time: ", e_time - s_time #print new_solution #print "spatial interchange start" s_time = time.time() new_solution = spatial_interchage_mk4(new_solution) e_time = time.time() #print "interchange time: ", e_time - s_time new_graph = delivery_network_mk2(new_solution, True, "new_solution") new_obj = cal_obj(new_solution) print new_obj #print new_obj - current_obj if new_obj > current_obj: if new_obj < best_solution[1]: sa_count += 1 print "SA COUNT: ", sa_count if random.random() < math.exp((new_obj - best_solution[1])*rc/temperature): solution_sites = new_solution print "new but not best" if sa_count >= max_iter: sa_count = 0 temperature = temperature - (temperature * temp_ratio) print "new temperature: ", temperature if temperature < terminate_temp: break else: solution_sites = best_solution[0] print "ignore new one roll back to the best" if sa_count >= max_iter: sa_count = 0 temperature = temperature - (temperature * temp_ratio) print "new temperature: ", temperature if temperature < terminate_temp: break else: solution_sites = new_solution best_solution = [new_solution, new_obj] sa_count = 0 print "new solution accepted" print "best solution so far: ", best_solution[1] #print "new objective value: ", new_obj #print "new solution: ", solution_sites else: if sa_count >= max_iter: sa_count = 0 temperature = temperature - (temperature * temp_ratio) print "new temperature: ", temperature if temperature < terminate_temp: break else: sa_count += 1 print "SA COUNT: ", sa_count #print (new_obj - current_obj)*rc/temperature if math.exp((new_obj - current_obj)*rc/temperature) == 1: print "stucted" print "s" if random.random() < math.exp((new_obj - current_obj)*rc/temperature): solution_sites = new_solution #print "bad solution accepted" print "new but bad objective: ", new_obj #print "new but bad solution: ", new_solution if sa_count >= max_iter: sa_count = 0 temperature = temperature - (temperature * temp_ratio) print "new temperature: ", temperature if temperature < terminate_temp: break else: if sa_count >= max_iter: sa_count = 0 temperature = temperature - (temperature * temp_ratio) print "new temperature: ", temperature if temperature < terminate_temp: break print "solution" solution_obj = cal_obj(solution_sites) if solution_obj > best_solution[1]: print "final solution: ", solution_sites print "Objective value: ", solution_obj final_graph = delivery_network_mk2(solution_sites, True, "final_solution") else: print "final solution: ", best_solution[0] print "Objective value: ", best_solution[1] final_graph = delivery_network_mk2(best_solution[0], True, "final_solution")
[ "iaminsu@gmail.com" ]
iaminsu@gmail.com
7fddcf6995bd4055ff3467b8b17574821ff7e605
141711061038d0a88eab8182e574fcdb2a70c57e
/instagramcrawler/pipelines.py
3a1f7d4033c538bfbfe01f1033e358f39e222a74
[]
no_license
NISH1001/instagramcrawler
c0293bfa5e4db6356eefca9980f540acdf114443
13e789bd2aeae70012b4c1e3e318dd8611b05f9b
refs/heads/master
2021-01-20T18:36:02.749125
2016-07-25T12:14:49
2016-07-25T12:14:49
64,131,184
10
3
null
null
null
null
UTF-8
Python
false
false
1,355
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import json class InstagramcrawlerPipeline(object): def __init__(self): self.owner = {} self.followers_data = [] self.following_data= [] self.filename = "./data/dump.json" def process_item(self, item, spider): print("-" * 50) data = dict(item) # pipeline the item accordingly if item['item_type'] == "owner": del data['item_type'] self.owner = data elif item['item_type'] == "follower": del data['item_type'] self.followers_data.append(data) else: del data['item_type'] self.following_data.append(data) return data # when spider closes, dump the data to json def close_spider(self, spider): print("-" * 50) print("inside close_spider()") data = self.owner data['followers'] = self.followers_data data['following'] = self.following_data self.dump(self.filename, data) def dump(self, filename, data): configstr = json.dumps(data, indent=4) with open(filename, "w") as outfile: outfile.write(configstr)
[ "nishanpantha@gmail.com" ]
nishanpantha@gmail.com
f88d91ca6023dd9b7839346963706e6bbbc89ea8
2591b2b409b8cefedd6b226f0381aafea2aa123c
/leads/signals.py
88fc047ef17a8bcc1b5cfff148eed68560c6d1b4
[ "MIT" ]
permissive
coderj001/Django-CRM
ae5f0cb6b6c5b5dba1e0713c32978f49b021e39f
7cca0df5d39b92082781047c1f0a11129179f257
refs/heads/master
2023-08-14T02:38:26.534561
2021-09-15T06:38:45
2021-09-15T06:38:45
369,114,686
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
from django.db.models.signals import post_save from django.dispatch import receiver from leads.models import User, UserProfile @receiver(post_save, sender=User) def post_user_created_signal(sender, instance, created, **kwargs): if created: UserProfile.objects.create(user=instance)
[ "amirajubolchi001@gmail.com" ]
amirajubolchi001@gmail.com
c9e7bc67c4d70d25125930d72994a97f87a38b50
003d49fa17fea3644ae71151e44a45dfccb96d3d
/tests/system/pfrbeat.py
66974c6977d26b87a11277dbf1c37c11ca70491a
[ "Apache-2.0" ]
permissive
tak7iji/pfrbeat
b5ba75a842a92cb07e11e2874d9a19fbee6f00d4
72a61f93d44d50d65b1397e1df92bdf3fd8ca381
refs/heads/master
2020-01-27T10:03:23.779745
2016-09-06T00:43:48
2016-09-06T00:43:48
67,460,066
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
import sys sys.path.append('../../vendor/github.com/elastic/beats/libbeat/tests/system') from beat.beat import TestCase class BaseTest(TestCase): @classmethod def setUpClass(self): self.beat_name = "pfrbeat" self.build_path = "../../build/system-tests/" self.beat_path = "../../pfrbeat.test"
[ "tak7iji@gmail.com" ]
tak7iji@gmail.com
e51b2093ee74eae80647ebd11a071cc3e3629f30
e6356a713dac5a13cced51e4ebaf6b67ea275184
/Arduino_Control_Sistem_1.02_64bit.py
db564204bda9772218f56d94fd7ef3729c44fc7b
[ "MIT" ]
permissive
olegzh7505/Arduino-Control-System
88e2834b504daf4ff6b6ef3b1f7188b3bf8c38ae
90ba3d1d07c9a48a3552241739663e36c4f26d1c
refs/heads/main
2023-01-18T18:58:56.716226
2020-11-20T15:24:51
2020-11-20T15:24:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,408
py
import sys from PyQt5.QtWidgets import QWidget, QApplication, QLabel, QFileDialog, QSlider, QMenu, QMenuBar, QLCDNumber from PyQt5.QtWidgets import QPushButton, QLineEdit, QCheckBox, QRadioButton, QButtonGroup, QAction from PyQt5.QtCore import Qt from threading import Thread import serial import glob # Разработцик - HollowHunter # https://habr.com/ru/users/HollowHunter/ def serial_ports(): # Функция со stackoverflow, автор - Thomas # https://stackoverflow.com/users/300783/thomas """ Lists serial port names :raises EnvironmentError: On unsupported or unknown platforms :returns: A list of the serial ports available on the system """ if sys.platform.startswith('win'): ports = ['COM%s' % (i + 1) for i in range(256)] elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): # this excludes your current terminal "/dev/tty" ports = glob.glob('/dev/tty[A-Za-z]*') elif sys.platform.startswith('darwin'): ports = glob.glob('/dev/tty.*') else: raise EnvironmentError('Unsupported platform') result = [] for port in ports: try: s = serial.Serial(port) s.close() result.append(port) except (OSError, serial.SerialException): pass return result class Main_window(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 150, 700, 500) self.setWindowTitle('Контроллер сериал порта') self.obg_list = [] # список со всеми нодами speeds = ['1200', '2400', '4800', '9600', '19200', '38400', '57600', '115200'] self.file_name = '' self.now_port = '' self.now_speed = 9600 menu_line = QMenuBar(self) file = menu_line.addMenu("Файл") new = QAction('Новый', self) file.addAction(new) new.triggered.connect(self.new_progect) open = QAction("Открыть", self) file.addAction(open) open.triggered.connect(self.open_file) save = QAction("Сохранить", self) save.setShortcut("Ctrl+S") file.addAction(save) save.triggered.connect(self.save_file) save_us = QAction("Сохранить как", self) file.addAction(save_us) save_us.triggered.connect(self.clear_fname) save_us.triggered.connect(self.save_file) author = file.addMenu('Автор') for elem in ['Habr:\tHollowHunter', 'GitHub:\tHollowHunter', 'AlexGyver Community:\tHollowHunter']: a = QAction(elem, self) author.addAction(a) create = menu_line.addMenu('Создать') btn = QAction('Кнопка', self) create.addAction(btn) sld = QAction('Слайдер', self) create.addAction(sld) edt = QAction('Поле для ввода', self) create.addAction(edt) inp = QAction('Вход данных', self) create.addAction(inp) create.triggered[QAction].connect(self.spawn_new_node) ard = menu_line.addMenu('Подключение ардуино') self.port = ard.addMenu('Порт:') self.port.triggered[QAction].connect(self.change_port) self.udate = QAction('Обновить порты', self) self.port.addAction(self.udate) self.display_port = QAction('Текущий порт: None', self) self.port.addAction(self.display_port) port_list = serial_ports() for i in serial_ports(): edt = QAction(i, self) self.port.addAction(edt) if len(port_list) == 1: self.now_port = port_list[0] self.display_port.setText('Текущий порт: ' + port_list[0]) speed = ard.addMenu('Скорость') self.speed_viewier = QAction('Текущая скорость: 9600', self) speed.addAction(self.speed_viewier) for elem in speeds: n = QAction(elem, self) speed.addAction(n) speed.triggered[QAction].connect(self.change_speed) self.connect_btn = QAction('Подключить', self) ard.addAction(self.connect_btn) self.connect_btn.triggered.connect(self.connect) dis = QAction('Отключить', self) ard.addAction(dis) dis.triggered.connect(self.disConnect) comand_type = ard.addMenu('Тип сигнала') self.type_viewier = QAction('Текущий сигнал: ${indx} {comand};') comand_type.addAction(self.type_viewier) self.read_ser = Thread(target=self.read_serial_port, daemon=True) self.read_ser.start() def read_serial_port(self): global ser while 1: try: string = ser.readline() if string != None: for elem in self.obg_list: if type(elem) == Input_serial_Node: elem.displayValue(string.decode()[:-1]) except Exception: pass def copy_node(self, parametrs): parametrs[3] = str(int(parametrs[3]) + 70) self.close() self.obg_list.append([Button_Node, Slider_Node, Edit_Node, Input_serial_Node][int(parametrs[0])](self, parametrs)) self.show() def mouseMoveEvent(self, event): global trigered_node if trigered_node != None and event.x() >= 0 and event.y() >= 0: trigered_node.ubdate_cord(event.x(), event.y()) def keyPressEvent(self, event): if not event.isAutoRepeat(): for elem in self.obg_list: if elem.is_keyword(): elem.change_key_state(1, event.key()) def keyReleaseEvent(self, event): if not event.isAutoRepeat(): for elem in self.obg_list: if elem.is_keyword(): elem.change_key_state(1, event.key(), True) def mouseReleaseEvent(self, event): global trigered_node trigered_node = None def open_file(self): print(serial_ports()) fname = QFileDialog.getOpenFileName(self, 'Выбрать файл', '', 'Arduino Node Save (*.ans);;Все файлы (*)')[0] print(fname) if fname != '': self.close() with open(fname, 'r', encoding='utf8') as f_r: save_file = f_r.read().split('\n') save_file = list(filter(lambda elem: elem != '', save_file)) for i in range(len(self.obg_list)): self.obg_list[i].del_widgets() self.obg_list.clear() for elem in save_file: if elem[0] == '#': continue e = elem.split('$') self.obg_list.append([Button_Node, Slider_Node, Edit_Node, Input_serial_Node][int(e[0])](self, e)) self.file_name = fname self.show() def clear_fname(self): self.file_name = '' def save_file(self): if self.file_name == '': fname = QFileDialog.getSaveFileName(self, 'сохранение', '', 'Arduino Node Save (*.ans)')[0] else: fname = self.file_name self.obg_list = list(filter(lambda elem: elem.is_delete(), self.obg_list)) if fname != '': with open(fname, 'w', encoding='utf8') as f_w: for elem in self.obg_list: print('$'.join(elem.parametrs_return()), file=f_w) self.file_name = fname def new_progect(self): for i in range(len(self.obg_list)): self.obg_list[i].del_widgets() self.obg_list.clear() self.file_name = '' def spawn_new_node(self, event): self.close() if event.text() == 'Кнопка': self.obg_list.append(Button_Node(self)) elif event.text() == 'Слайдер': self.obg_list.append(Slider_Node(self)) elif event.text() == 'Поле для ввода': self.obg_list.append(Edit_Node(self)) elif event.text() == 'Вход данных': self.obg_list.append(Input_serial_Node(self)) self.show() def change_port(self, action): print('hi', action.text()) if action.text()[:13] == 'Текущий порт:' or action.text() == 'Обновить порты': self.close() self.port.clear() self.udate = QAction('Обновить порты', self) self.port.addAction(self.udate) self.display_port = QAction('Текущий порт: ' + self.now_port, self) self.port.addAction(self.display_port) for i in serial_ports(): edt = QAction(i, self) self.port.addAction(edt) self.show() else: self.display_port.setText('Текущий порт: ' + action.text()) self.now_port = action.text() def change_speed(self, action): try: self.now_speed = int(action.text()) self.speed_viewier.setText('Текущая скорость: ' + action.text()) except ValueError: pass def connect(self): if self.now_port != '': try: global ser ser = serial.Serial(self.now_port, self.now_speed) self.connect_btn.setText('Подключено') except Exception: self.connect_btn.setText('Не подключено') def disConnect(self): global ser ser.close() ser = Hollow_serial() self.connect_btn.setText('Подключить') class Hollow_serial: def write(self, data): pass def readline(self): return None class Node: def __init__(self, main_obg, name, first_x, first_y): # переменные кординат левого верхнего угла нода self.main_window_obg = main_obg # обьект основного окна self.flag = True # флаг для стрелочки настроек self.x = int(first_x) self.y = int(first_y) self.delete = True self.left_com = '$' self.middle_com = ' ' self.right_com = ';' self.node_name = QLabel(self.main_window_obg) self.node_name.setText(name) self.node_name.resize(self.node_name.sizeHint()) self.name = name self.control_btn = QPushButton('...', self.main_window_obg) self.control_btn.resize(20, 20) self.control_btn.pressed.connect(self.press_control_btn) self.control_btn.clicked.connect(self.released_control_btn) self.delete_btn = QPushButton('✖', self.main_window_obg) self.delete_btn.resize(20, 20) self.delete_btn.clicked.connect(self.del_widgets) self.copy_btn = QPushButton('❐', self.main_window_obg) self.copy_btn.resize(20, 20) self.copy_btn.clicked.connect(self.copy_widget) self.settings_btn = QPushButton('▲', self.main_window_obg) self.settings_btn.resize(20, 20) self.settings_btn.clicked.connect(self.open_setings) self.text_set1 = QLabel(self.main_window_obg) self.text_set1.setText('Имя нода:') self.input_line1 = QLineEdit(name, self.main_window_obg) self.input_line1.textChanged.connect(self.change_name) self.input_line1.resize(60, 23) self.arr_of_elem = [(self.node_name, 42, 1), (self.control_btn, 0, 0), (self.settings_btn, 21, 0), (self.text_set1, 1, 54), (self.input_line1, 62, 51), (self.delete_btn, -21, 0), (self.copy_btn, 0, -21)] self.ubdate_cord(first_x, first_y) def press_control_btn(self): global trigered_node trigered_node = self def released_control_btn(self): global trigered_node trigered_node = None def ubdate_cord(self, x, y): for elem in self.arr_of_elem: elem[0].move(x + elem[1], y + elem[2]) self.x = x self.y = y def change_name(self): self.node_name.setText(self.input_line1.text()) self.node_name.resize(self.node_name.sizeHint()) self.name = self.input_line1.text() def copy_widget(self): self.main_window_obg.copy_node(self.parametrs_return()) def is_delete(self): return self.delete class Button_Node(Node): def __init__(self, main_obg, parametrs=['0', 'Вкл', '50', '50', '1', '1', '0', '1', 'выкл', '1', 'Кнопка', 'None', '0']): super().__init__(main_obg, parametrs[10], int(parametrs[2]), int(parametrs[3])) self.main_window_obg = main_obg self.index_comand = parametrs[4] self.first_comand = parametrs[5] # Первая команда self.second_comand = parametrs[6] # Вторая команда self.btn_flag = True # Отправка первой или второй команды self.parametr_btn = False # наличие второй команды self.btn_name = parametrs[1] self.two_btn_name = parametrs[8] self.size_big_btn = float(parametrs[7]) self.mode = int(parametrs[9]) # тип кнопки 1 - одна команда 2 - две попеременно 3 - две "нажал отпустил" self.key_state = bool(int(parametrs[12])) self.key_btn = int(parametrs[11]) if parametrs[11] != 'None' else None self.key_flag = False # |--------------------------------------------| обьявление виджетов self.big_btn = QPushButton(self.btn_name, self.main_window_obg) self.big_btn.clicked.connect(self.enter_comand) self.big_btn.pressed.connect(self.enter_comand_for_3_mode) self.text_set2 = QLabel(self.main_window_obg) self.text_set2.setText('Имя кнопки 1:') self.input_line2 = QLineEdit(self.btn_name, self.main_window_obg) self.input_line2.textChanged.connect(self.change_btn_name_1) self.input_line2.resize(60, 23) self.text_set3 = QLabel(self.main_window_obg) self.text_set3.setText('Индекс:') self.input_line3 = QLineEdit(self.index_comand, self.main_window_obg) self.input_line3.textChanged.connect(self.change_index) self.input_line3.resize(60, 23) self.text_set4 = QLabel(self.main_window_obg) self.text_set4.setText('Команда 1:') self.input_line4 = QLineEdit(self.first_comand, self.main_window_obg) self.input_line4.textChanged.connect(self.change_first_parametr) self.input_line4.resize(60, 23) self.text_set5 = QLabel(self.main_window_obg) self.text_set5.setText('Размер:') self.input_line5 = QLineEdit(str(self.size_big_btn), self.main_window_obg) self.input_line5.editingFinished.connect(self.change_size_big_btn) self.input_line5.resize(60, 23) self.rb_group = QButtonGroup(self.main_window_obg) self.rb1 = QRadioButton("Один сигнал", self.main_window_obg) self.rb1.move(50, 50) if self.mode == 1: self.rb1.click() self.rb1.clicked.connect(self.update_type) self.rb2 = QRadioButton("Два сигнала попеременно", self.main_window_obg) self.rb2.move(80, 50) if self.mode == 2: self.rb2.click() self.rb2.clicked.connect(self.update_type) self.rb3 = QRadioButton('Два сигнала "нажал-отпустил"', self.main_window_obg) self.rb3.move(120, 50) if self.mode == 3: self.rb3.click() self.rb3.clicked.connect(self.update_type) self.rb_group.addButton(self.rb1) self.rb_group.addButton(self.rb2) self.rb_group.addButton(self.rb3) self.text_set7 = QLabel(self.main_window_obg) self.text_set7.setText('Команда 2:') self.input_line7 = QLineEdit(self.second_comand, self.main_window_obg) self.input_line7.textChanged.connect(self.change_second_parametr) self.input_line7.resize(60, 23) self.text_set8 = QLabel(self.main_window_obg) self.text_set8.setText('Имя кнопки 2:') self.input_line8 = QLineEdit(self.two_btn_name, self.main_window_obg) self.input_line8.textChanged.connect(self.change_btn_name_2) self.input_line8.resize(60, 23) self.key_chekBox = QCheckBox('Использовать клавиши', self.main_window_obg) self.key_chekBox.stateChanged.connect(self.change_key_state) if self.key_state: self.key_chekBox.click() self.lit = QLabel(self.main_window_obg) if self.key_btn != None: self.lit.setText(chr(self.key_btn)) # |--------------------------------------------| # Список всех виджетов нода и их относительных координат self.arr_of_elem.extend([(self.big_btn, 0, 21), (self.text_set2, 0, 78), (self.input_line2, 84, 76), (self.text_set3, 0, 102), (self.input_line3, 46, 100), (self.text_set4, 0, 128), (self.input_line4, 66, 125), (self.text_set5, 0, 152), (self.input_line5, 50, 150), (self.rb1, 0, 170), (self.rb2, 0, 190), (self.rb3, 0, 210), (self.text_set7, 0, 232), (self.input_line7, 66, 230), (self.text_set8, 0, 257), (self.input_line8, 84, 255), (self.key_chekBox, 0, 280), (self.lit, 0, 50)]) # Список всех виджетов настроек self.elems_of_settings = [self.text_set1, self.input_line1, self.text_set2, self.input_line2, self.input_line3, self.text_set3, self.text_set4, self.input_line4, self.text_set5, self.input_line5, self.rb1, self.rb2, self.rb3, self.text_set7, self.input_line7, self.text_set8, self.input_line8, self.key_chekBox, self.delete_btn, self.copy_btn] # Список дополнительных настроек self.additional_widgets = [self.text_set7, self.input_line7, self.text_set8, self.input_line8] for elem in self.elems_of_settings: elem.hide() self.big_btn.resize(int(100 * self.size_big_btn), int(30 * self.size_big_btn)) self.ubdate_cord(self.x, self.y) self.update_type() for elem in self.additional_widgets: elem.hide() self.change_key_state(None, self.key_btn) def del_widgets(self): if self.delete: for elem in self.arr_of_elem: elem[0].deleteLater() self.delete = False def parametrs_return(self): return ['0', self.btn_name, str(self.x), str(self.y), self.index_comand, self.first_comand, self.second_comand, str(self.size_big_btn), self.two_btn_name, str(self.mode), self.name, str(self.key_btn), str(int(self.key_state))] def enter_comand(self): global ser if self.mode == 2: comand = self.left_com + self.index_comand + \ self.middle_com + self.first_comand + self.right_com if self.btn_flag else \ self.left_com + self.index_comand + \ self.middle_com + self.second_comand + self.right_com print('2', comand) if self.btn_flag: ser.write(comand.encode()) self.big_btn.setText(self.btn_name) self.btn_flag = False else: ser.write(comand.encode()) self.big_btn.setText(self.two_btn_name) self.btn_flag = True elif self.mode == 1: comand = self.left_com + self.index_comand + \ self.middle_com + self.first_comand + self.right_com self.big_btn.setText(self.btn_name) ser.write(comand.encode()) print(comand) elif self.mode == 3: comand = self.left_com + self.index_comand + \ self.middle_com + self.first_comand + self.right_com self.big_btn.setText(self.btn_name) ser.write(comand.encode()) print(comand) def enter_comand_for_3_mode(self): global ser if self.mode == 3: comand = self.left_com + self.index_comand + \ self.middle_com + self.second_comand + self.right_com self.big_btn.setText(self.two_btn_name) ser.write(comand.encode()) print(comand) def change_btn_name_1(self): self.big_btn.setText(self.input_line2.text()) self.btn_name = self.input_line2.text() self.big_btn.resize(self.big_btn.sizeHint()) def change_btn_name_2(self): self.two_btn_name = self.input_line8.text() def change_index(self): self.index_comand = self.input_line3.text() def change_parametr_btn(self): self.parametr_btn = not self.parametr_btn if self.parametr_btn: for elem in [self.text_set2]: elem.show() else: for elem in [self.text_set2]: elem.hide() def change_first_parametr(self): self.first_comand = self.input_line4.text() def change_second_parametr(self): self.second_comand = self.input_line7.text() def change_size_big_btn(self): self.size_big_btn = float(self.input_line5.text()) self.big_btn.resize(int(100 * self.size_big_btn), int(30 * self.size_big_btn)) def change_key_state(self, data, key=None, released=False): # self.key_state = not self.key_state try: if self.key_chekBox.isChecked() and key == None: self.key_state = True self.key_flag = True self.key_chekBox.setText('Нажмите на клавишу') elif key != None and self.key_flag: self.key_chekBox.setText('Нажата клавиша:' + chr(key)) self.lit.setText(chr(key)) #self.lit.resize(self.lit.sizeHint()) self.btn_flag = True self.key_btn = key self.key_flag = False elif self.key_btn == key and data != None: if self.mode == 3 and released: self.enter_comand() elif self.mode == 3 and not released: self.enter_comand_for_3_mode() elif not released: self.big_btn.click() elif not self.key_chekBox.isChecked(): self.key_btn = key self.lit.setText('') self.key_state = False self.key_chekBox.setText('Использовать клавиши') except Exception: pass def update_type(self): if self.rb1.isChecked(): self.mode = 1 self.big_btn.setCheckable(False) for elem in self.additional_widgets: elem.hide() elif self.rb2.isChecked(): self.mode = 2 self.big_btn.setCheckable(True) for elem in self.additional_widgets: elem.show() elif self.rb3.isChecked(): self.mode = 3 self.big_btn.setCheckable(False) for elem in self.additional_widgets: elem.show() def open_setings(self): if self.flag: self.settings_btn.setText('▼') self.flag = False for elem in self.elems_of_settings: elem.show() if self.mode == 1: for elem in self.additional_widgets: elem.hide() self.big_btn.resize(100, 30) self.lit.hide() else: self.settings_btn.setText('▲') self.flag = True for elem in self.elems_of_settings: elem.hide() self.big_btn.resize(int(100 * self.size_big_btn), int(30 * self.size_big_btn)) self.lit.show() def is_keyword(self): return True if self.key_state else False class Slider_Node(Node): def __init__(self, main_obg, parametrs=['1', 'Слайдер', '50', '50', '10', 1, 1, '', '0', '100']): super().__init__(main_obg, parametrs[1], int(parametrs[2]), int(parametrs[3])) self.index_comand = parametrs[4] self.size_slider = float(parametrs[5]) self.mode = int(parametrs[6]) # тип слайдера self.value_sld = 0 self.binding = int(parametrs[7]) if parametrs[7] != '' else '' self.min = int(parametrs[8]) self.max = int(parametrs[9]) # |--------------------------------------------| обьявление виджетов self.sld = QSlider(Qt.Horizontal, self.main_window_obg) self.sld.setFocusPolicy(Qt.NoFocus) self.sld.setGeometry(30, 40, 100, 30) self.sld.valueChanged[int].connect(self.changeValue) self.sld.sliderReleased.connect(self.enter_comand) self.sld.setMinimum(self.min) self.sld.setMaximum(self.max) self.sld.resize(int(100 * self.size_slider), 30) self.text_set2 = QLabel(self.main_window_obg) self.text_set2.setText('None') self.text_set3 = QLabel(self.main_window_obg) self.text_set3.setText('Индекс:') self.input_line3 = QLineEdit(self.index_comand, self.main_window_obg) self.input_line3.textChanged.connect(self.change_index) self.input_line3.resize(60, 23) self.text_set5 = QLabel(self.main_window_obg) self.text_set5.setText('Размер:') self.input_line5 = QLineEdit(str(self.size_slider), self.main_window_obg) self.input_line5.editingFinished.connect(self.change_size_sld) self.input_line5.resize(60, 23) self.text_set4 = QLabel(self.main_window_obg) self.text_set4.setText('Минимум:') self.input_line4 = QLineEdit(str(self.min), self.main_window_obg) self.input_line4.textChanged.connect(self.change_minimum) self.input_line4.resize(60, 23) self.text_set6 = QLabel(self.main_window_obg) self.text_set6.setText('Максимум:') self.input_line6 = QLineEdit(str(self.max), self.main_window_obg) self.input_line6.textChanged.connect(self.change_maximum) self.input_line6.resize(60, 23) self.text_set7 = QLabel(self.main_window_obg) self.text_set7.setText('Привязка:') self.input_line7 = QLineEdit(str(self.binding), self.main_window_obg) self.input_line7.textChanged.connect(self.change_binding) self.input_line7.resize(60, 23) self.rb_group = QButtonGroup(self.main_window_obg) self.rb1 = QRadioButton("Отправка при отпуске", self.main_window_obg) self.rb1.move(50, 50) if self.mode == 1: self.rb1.click() self.rb1.clicked.connect(self.update_type) self.rb2 = QRadioButton("Отправка при изменении", self.main_window_obg) self.rb2.move(80, 50) if self.mode == 2: self.rb2.click() self.rb2.clicked.connect(self.update_type) self.rb_group.addButton(self.rb1) self.rb_group.addButton(self.rb2) # |--------------------------------------------| # Список всех виджетов нода и их относительных координат self.arr_of_elem.extend([(self.text_set2, 0, 50), (self.sld, 0, 21), (self.text_set3, 0, 76), (self.input_line3, 46, 75), (self.text_set4, 0, 102), (self.input_line4, 63, 100), (self.text_set6, 0, 127), (self.input_line6, 63, 125), (self.text_set5, 0, 152), (self.input_line5, 50, 150), (self.text_set7, 0, 177), (self.input_line7, 63, 175), (self.rb1, 0, 195), (self.rb2, 0, 215)]) # Список всех виджетов настроек self.elems_of_settings = [self.text_set1, self.input_line1, self.input_line3, self.text_set3, self.text_set5, self.input_line5, self.rb1, self.rb2, self.text_set4, self.text_set6, self.input_line4, self.input_line6, self.text_set7, self.input_line7, self.delete_btn, self.copy_btn] # Список дополнительных настроек for elem in self.elems_of_settings: elem.hide() # self.big_btn.resize(int(100 * self.size_big_btn), int(30 * self.size_big_btn)) self.ubdate_cord(self.x, self.y) def del_widgets(self): if self.delete: for elem in self.arr_of_elem: elem[0].deleteLater() self.delete = False def parametrs_return(self): return ['1', self.name, str(self.x), str(self.y), self.index_comand, str(self.size_slider), str(self.mode), str(self.binding), str(self.min), str(self.max)] def enter_comand(self): if self.mode == 1: global ser comand = self.left_com + self.index_comand + \ self.middle_com + str(self.value_sld) + self.right_com ser.write(comand.encode()) if self.binding != '': try: self.sld.setValue(int(self.binding)) comand = self.left_com + self.index_comand + \ self.middle_com + str(self.value_sld) + self.right_com ser.write(comand.encode()) except ValueError: pass def change_index(self): self.index_comand = self.input_line3.text() def change_size_sld(self): try: self.size_slider = float(self.input_line5.text()) self.sld.resize(int(100 * self.size_slider), 30) except ValueError: pass def change_binding(self): self.binding = self.input_line7.text() def changeValue(self, value='X_X'): global ser self.value_sld = value self.text_set2.setText(str(value)) self.text_set2.resize(self.text_set2.sizeHint()) if self.mode == 2: comand = self.left_com + self.index_comand + \ self.middle_com + str(self.value_sld) + self.right_com ser.write(comand.encode()) def change_maximum(self): try: self.max = int(self.input_line6.text()) self.sld.setMaximum(self.max) except ValueError: pass def change_minimum(self): try: self.min = int(self.input_line6.text()) self.sld.setMinimum(self.min) except ValueError: pass def update_type(self): if self.rb1.isChecked(): self.mode = 1 elif self.rb2.isChecked(): self.mode = 2 def open_setings(self): if self.flag: self.settings_btn.setText('▼') self.flag = False for elem in self.elems_of_settings: elem.show() self.text_set2.hide() else: self.settings_btn.setText('▲') self.flag = True for elem in self.elems_of_settings: elem.hide() self.text_set2.show() def is_keyword(self): return False class Edit_Node(Node): def __init__(self, main_obg, parametrs=['2', 'Ввод', '50', '50', '5']): super().__init__(main_obg, parametrs[1], int(parametrs[2]), int(parametrs[3])) self.index_comand = parametrs[4] # |--------------------------------------------| обьявление виджетов self.edit = QLineEdit('', self.main_window_obg) self.edit.editingFinished.connect(self.enter_comand) self.last_comand1 = QLabel(self.main_window_obg) self.last_comand1.setText('None') self.last_comand2 = QLabel(self.main_window_obg) self.last_comand2.setText('None') self.last_comand3 = QLabel(self.main_window_obg) self.last_comand3.setText('None') self.text_set3 = QLabel(self.main_window_obg) self.text_set3.setText('Индекс:') self.input_line3 = QLineEdit(self.index_comand, self.main_window_obg) self.input_line3.textChanged.connect(self.change_index) self.input_line3.resize(60, 23) # self.text_set4 = QLabel(self.main_window_obg) # self.text_set4.setText('F(x)') # self.input_line4 = QLineEdit('0', self.main_window_obg) # self.input_line4.textChanged.connect(self.change_minimum) # self.input_line4.resize(60, 23) # |--------------------------------------------| # Список всех виджетов нода и их относительных координат self.arr_of_elem.extend([(self.last_comand1, 0, 50), (self.last_comand2, 50, 50), (self.last_comand3, 100, 50), (self.edit, 0, 25), (self.text_set3, 0, 76), (self.input_line3, 46, 75)]) # Список всех виджетов настроек self.elems_of_settings = [self.text_set1, self.input_line1, self.input_line3, self.text_set3, self.delete_btn, self.copy_btn] # Список дополнительных настроек for elem in self.elems_of_settings: elem.hide() # self.big_btn.resize(int(100 * self.size_big_btn), int(30 * self.size_big_btn)) self.ubdate_cord(self.x, self.y) def del_widgets(self): if self.delete: for elem in self.arr_of_elem: elem[0].deleteLater() self.delete = False def parametrs_return(self): return ['2', self.name, str(self.x), str(self.y), self.index_comand] def enter_comand(self): global ser if self.edit.text() != '': comand = self.left_com + self.index_comand + \ self.middle_com + self.edit.text() + self.right_com ser.write(comand.encode()) self.last_comand3.setText(self.last_comand2.text()) self.last_comand2.setText(self.last_comand1.text()) self.last_comand1.setText(self.edit.text()) self.last_comand1.resize(self.last_comand1.sizeHint()) self.last_comand2.resize(self.last_comand2.sizeHint()) self.last_comand3.resize(self.last_comand3.sizeHint()) self.edit.setText('') def change_index(self): self.index_comand = self.input_line3.text() def changeValue(self, value='X_X'): global ser self.value_sld = value self.last_comand1.setText(str(value)) self.last_comand1.resize(self.last_comand1.sizeHint()) if self.mode == 2: comand = comand = self.left_com + self.index_comand + \ self.middle_com + str(self.value_sld) + self.right_com print('enter', comand) ser.write(comand.encode()) def open_setings(self): if self.flag: self.settings_btn.setText('▼') self.flag = False for elem in self.elems_of_settings: elem.show() self.last_comand1.hide() self.last_comand2.hide() self.last_comand3.hide() else: self.settings_btn.setText('▲') self.flag = True for elem in self.elems_of_settings: elem.hide() self.last_comand1.show() self.last_comand2.show() self.last_comand3.show() def is_keyword(self): return False class Input_serial_Node(Node): def __init__(self, main_obg, parametrs=['3', 'Ввод', '50', '50', '5', '1']): super().__init__(main_obg, parametrs[1], int(parametrs[2]), int(parametrs[3])) self.index_comand = parametrs[4] self.sizeLCD = float(parametrs[5]) # |--------------------------------------------| обьявление виджетов self.numberLCD = QLCDNumber(self.main_window_obg) self.numberLCD.resize(int(80 * self.sizeLCD), int(27 * self.sizeLCD)) self.text_set3 = QLabel(self.main_window_obg) self.text_set3.setText('Индекс:') self.input_line3 = QLineEdit(self.index_comand, self.main_window_obg) self.input_line3.textChanged.connect(self.change_index) self.input_line3.resize(60, 23) self.text_set4 = QLabel(self.main_window_obg) self.text_set4.setText('Размер:') self.input_line4 = QLineEdit(str(self.sizeLCD), self.main_window_obg) self.input_line4.editingFinished.connect(self.change_size_lcd) self.input_line4.resize(60, 23) # |--------------------------------------------| # Список всех виджетов нода и их относительных координат self.arr_of_elem.extend([(self.numberLCD, 0, 21), (self.text_set3, 0, 76), (self.input_line3, 48, 75), (self.text_set4, 0, 102), (self.input_line4, 48, 100)]) # Список всех виджетов настроек self.elems_of_settings = [self.input_line1, self.text_set1, self.input_line3, self.text_set3, self.delete_btn, self.input_line4, self.text_set4, self.copy_btn] # Список дополнительных настроек for elem in self.elems_of_settings: elem.hide() # self.big_btn.resize(int(100 * self.size_big_btn), int(30 * self.size_big_btn)) self.ubdate_cord(self.x, self.y) def del_widgets(self): if self.delete: for elem in self.arr_of_elem: elem[0].deleteLater() self.delete = False def change_size_lcd(self): try: self.sizeLCD = float(self.input_line4.text()) self.numberLCD.resize(int(80 * self.sizeLCD), int(27 * self.sizeLCD)) except ValueError: pass def parametrs_return(self): return ['3', self.name, str(self.x), str(self.y), self.index_comand, str(self.sizeLCD)] def change_index(self): self.index_comand = self.input_line3.text() def displayValue(self, value='error'): try: indx = value.split()[0] com = value.split()[1] if indx == self.index_comand: self.numberLCD.display(com) except: pass def open_setings(self): if self.flag: self.settings_btn.setText('▼') self.flag = False for elem in self.elems_of_settings: elem.show() self.numberLCD.resize(80, 27) else: self.settings_btn.setText('▲') self.flag = True for elem in self.elems_of_settings: elem.hide() self.numberLCD.resize(int(80 * self.sizeLCD), int(27 * self.sizeLCD)) def is_keyword(self): return False ser = Hollow_serial() trigered_node = None # глобальная переменная для перетаскивания кнопок app = QApplication(sys.argv) ex = Main_window() ex.show() sys.exit(app.exec())
[ "noreply@github.com" ]
olegzh7505.noreply@github.com
442b035527b9fdc7e66642b0c37964b41e238554
ded10c2f2f5f91c44ec950237a59225e8486abd8
/.history/2/matrix_squaring_20200421184046.py
07c3efd241b763cb74404048ea5fb45bbb30e3b3
[]
no_license
jearistiz/Statistical-Physics-Projects
276a86407b32ded4e06b32efb2fadbd8eff8daed
d9c5b16a50856e148dc8604d92b6de3ea21fc552
refs/heads/master
2022-11-05T03:41:23.623050
2020-06-28T06:36:05
2020-06-28T06:36:05
254,909,897
1
0
null
null
null
null
UTF-8
Python
false
false
23,095
py
# -*- coding: utf-8 -*- from __future__ import division import os import numpy as np import matplotlib.pyplot as plt from time import time import pandas as pd # Author: Juan Esteban Aristizabal-Zuluaga # date: 20200414 def rho_free(x,xp,beta): """Uso: devuelve elemento de matriz dsnsidad para el caso de una partícula libre en un toro infinito.""" return (2.*np.pi*beta)**(-0.5) * np.exp(-(x-xp)**2 / (2 * beta) ) def harmonic_potential(x): """Devuelve valor del potencial armónico para una posición x dada""" return 0.5*x**2 def anharmonic_potential(x): """Devuelve valor de potencial anarmónico para una posición x dada""" # return np.abs(x)*(1+np.cos(x)) #el resultado de este potencial es interesante return 0.5*x**2 - x**3 + x**4 def QHO_canonical_ensemble(x,beta): """ Uso: calcula probabilidad teórica cuántica de encontrar al oscilador armónico (inmerso en un baño térmico a temperatura inversa beta) en la posición x. Recibe: x: float -> posición beta: float -> inverso de temperatura en unidades reducidas beta = 1/T. Devuelve: probabilidad teórica cuántica en posición x para temperatura inversa beta. """ return (np.tanh(beta/2.)/np.pi)**0.5 * np.exp(- x**2 * np.tanh(beta/2.)) def Z_QHO(beta): """Uso: devuelve valor de función de partición para el QHO unidimensional""" return 0.5/np.sinh(beta/2) def E_QHO_avg_theo(beta): """Uso: devuelve valor de energía interna para el QHO unidimensional""" return 0.5/np.tanh(0.5*beta) def rho_trotter(x_max = 5., nx = 101, beta=1, potential=harmonic_potential): """ Uso: devuelve matriz densidad en aproximación de Trotter para altas temperaturas y bajo influencia del potencial "potential". Recibe: x_max: float -> los valores de x estarán en el intervalo (-x_max,x_max). nx: int -> número de valores de x considerados (igualmente espaciados). beta: float -> inverso de temperatura en unidades reducidas. potential: func -> potencial de interacción. Debe ser función de x. Devuelve: rho: numpy array, shape=(nx,nx) -> matriz densidad en aproximación de Trotter para altas temperaturas y potencial dado. grid_x: numpy array, shape=(nx,) -> valores de x en los que está evaluada rho. dx: float -> separación entre valores contiguos de grid_x """ nx = int(nx) # Si nx es par lo cambiamos al impar más cercano para incluir al 0 en valores de x if nx%2 == 0: nx = nx + 1 # Valor de la discretización de posiciones según x_max y nx dados como input dx = 2 * x_max/(nx-1) # Lista de valores de x teniendo en cuenta discretización y x_max grid_x = [i*dx for i in range(-int((nx-1)/2),int((nx-1)/2 + 1))] # Construcción de matriz densidad dada por aproximación de Trotter rho = np.array([ [ rho_free(x , xp, beta) * np.exp(-0.5*beta*(potential(x)+potential(xp))) for x in grid_x] for xp in grid_x]) return rho, grid_x, dx def density_matrix_squaring(rho, grid_x, N_iter = 1, beta_ini = 1, print_steps=True): """ Uso: devuelve matriz densidad luego de aplicarle algoritmo matrix squaring N_iter veces. En la primera iteración se usa matriz de densidad dada por el input rho (a temperatura inversa beta_ini); en las siguientes iteraciones se usa matriz densidad generada por la iteración inmediatamente anterior. El sistema asociado a la matriz densidad obtenida (al final de aplicar el algoritmo) está a temperatura inversa beta_fin = beta_ini * 2**(N_iter). Recibe: rho: numpy array, shape=(nx,nx) -> matriz densidad discretizada en valores dados por x_grid. grid_x: numpy array, shape=(nx,) -> valores de x en los que está evaluada rho. N_iter: int -> número de iteraciones del algoritmo. beta_ini: float -> valor de inverso de temperatura asociado a la matriz densidad rho dada como input. print_steps: bool -> decide si muestra valores de beta en cada iteración. Devuelve: rho: numpy array, shape=(nx,nx) -> matriz densidad de estado rho a temperatura inversa igual a beta_fin. trace_rho: float -> traza de la matriz densidad a temperatura inversa igual a beta_fin. Por la definición que tomamos de rho, ésta es equivalente a la función partición a dicha temperatura. beta_fin: float -> temperatura inversa del sistema asociado a rho. """ # Valor de discretixación de las posiciones dx = grid_x[1] - grid_x[0] # Cálculo del valor de beta_fin según valores beta_ini y N_iter dados como input beta_fin = beta_ini * 2 ** N_iter # Imprime infromación relevante if print_steps: print('\nbeta_ini = %.3f'%beta_ini, '\n----------------------------------------------------------------') # Itera algoritmo matrix squaring for i in range(N_iter): rho = dx * np.dot(rho,rho) # Imprime información relevante if print_steps: print(u'Iteración %d) 2^%d * beta_ini --> 2^%d * beta_ini'%(i, i, i+1)) if print_steps: print('----------------------------------------------------------------\n' + u'beta_fin = %.3f'%beta_fin) # Calcula traza de rho trace_rho = np.trace(rho)*dx return rho, trace_rho, beta_fin def save_csv(data, data_headers=None, file_name='file.csv', relevant_info=None, print_data=True): """ Uso: data debe contener listas que serán las columnas de un archivo CSV que se guardará con nombre file_name. relevant_info agrega comentarios en primeras líneas del archivo. Recibe: data: array of arrays, shape=(nx,ny) -> cada columna es una columna del archivo. data_headers: numpy array, shape=(nx,) -> nombres de las columnas file_name: str -> nombre del archivo en el que se guardarán datos. relevant_info: list of str -> información que se agrega como comentario en primeras líneas. Cada elemento de esta lista se agrega como una nueva línea. print_data: bool -> decide si imprime datos guardados, en pantalla. Devuelve: data_pdDF: pd.DataFrame -> archivo con datos formato "pandas data frame". guarda archivo con datos e inforamación relevante en primera línea. """ # Almacena datos de probabilifad en diccionario: grid_x para posiciones y x_weights para # valores de densidad de probabilidad. data = np.array(data) number_of_columns = len(data.transpose()) if file_name=='file.csv': script_dir = os.path.dirname(os.path.abspath(__file__)) #path completa para este script file_name = script_dir + '/' + file_name if data_headers is None: data_pdDF = pd.DataFrame(data) print( 'Nota: no se especificaron headers.\n'+ 'Los headers usados en el archivo serán los números 0, 1, 2,...') elif len(data_headers)!=number_of_columns: data_pdDF = pd.DataFrame(data) print( 'Nota: no hay suficientes headers en data_headers para función save_csv().\n'+ 'Los headers usados en el archivo serán los números 0, 1, 2,...') else: data_pdDF = pd.DataFrame(data,columns=data_headers) # Crea archivo CSV y agrega comentarios relevantes dados como input if relevant_info is not None: with open(file_name,mode='w') as file_csv: for info in list(relevant_info): file_csv.write('# '+info+'\n') file_csv.close() # Usamos pandas para escribir en archivo en formato csv. with open(file_name,mode='a') as file_csv: data_pdDF.to_csv(file_csv) file_csv.close() else: with open(file_name,mode='w') as file_csv: data_pdDF.to_csv(file_csv) file_csv.close() # Imprime datos en pantalla. if print_data==True: print(data_pdDF) return data_pdDF def run_pi_x_sq_trotter(x_max=5., nx=201, N_iter=7, beta_fin=4, potential=harmonic_potential, potential_string = 'harmonic_potential', print_steps=True, save_data=True, file_name=None, relevant_info=None, plot=True, save_plot=True, show_plot=True): """ Uso: corre algoritmo matrix squaring iterativamente (N_iter veces). En la primera iteración se usa una matriz densidad en aproximación de Trotter a temperatura inversa beta_ini = beta_fin * 2**(-N_iter) para potencial dado por potential; en las siguientes iteraciones se usa matriz densidad generada por la iteración inmediatamente anterior. Además ésta función guarda datos de pi(x;beta) vs. x en archivo de texto y grafica pi(x;beta) comparándolo con teoría para el oscilador armónico cuántico. Recibe: x_max: float -> los valores de x estarán en el intervalo (-x_max,x_max). nx: int -> número de valores de x considerados. N_iter: int -> número de iteraciones del algoritmo matrix squaring. beta_ini: float -> valor de inverso de temperatura que queremos tener al final de aplicar el algoritmo matrix squaring iterativamente. potential: func -> potencial de interacción usado en aproximación de trotter. Debe ser función de x. potential_string: str -> nombre del potencial (con éste nombramos los archivos que se generan). print_steps: bool -> decide si imprime los pasos del algoritmo matrix squaring. save_data: bool -> decide si guarda los datos en archivo .csv. plot: bool -> decide si grafica. save_plot: bool -> decide si guarda la figura. show_plot: bool -> decide si muestra la figura en pantalla. Devuelve: rho: numpy array, shape=(nx,nx) -> matriz densidad de estado rho a temperatura inversa igual a beta_fin. trace_rho: float -> traza de la matriz densidad a temperatura inversa igual a beta_fin. Por la definición que tomamos de "rho", ésta es equivalente a la función partición en dicha temperatura. grid_x: numpy array, shape=(nx,) -> valores de x en los que está evaluada rho. """ # Cálculo del valor de beta_ini según valores beta_fin y N_iter dados como input beta_ini = beta_fin * 2**(-N_iter) # Cálculo de rho con aproximación de Trotter rho, grid_x, dx = rho_trotter(x_max, nx, beta_ini, potential) grid_x = np.array(grid_x) # Aproximación de rho con matrix squaring iterado N_iter veces. rho, trace_rho, beta_fin_2 = density_matrix_squaring( rho, grid_x, N_iter, beta_ini, print_steps ) print( '---------------------------------------------------------' + '---------------------------------------------------------\n' u'Matrix squaring: beta_ini = %.3f --> beta_fin = %.3f'%(beta_ini, beta_fin_2) + u' N_iter = %d Z(beta_fin) = Tr(rho(beta_fin)) = %.3E \n'%(N_iter,trace_rho) + '---------------------------------------------------------' + '---------------------------------------------------------') # Normalización de rho a 1 y cálculo de densidades de probabilidad para valores en grid_x. rho_normalized = np.copy(rho)/trace_rho x_weights = np.diag(rho_normalized) # Guarda datos en archivo .csv. script_dir = os.path.dirname(os.path.abspath(__file__)) #path completa para este script if save_data==True: # Nombre del archivo .csv en el que guardamos valores de pi(x;beta_fin). if file_name is None: csv_file_name = script_dir+u'/pi_x-ms-%s-beta_fin_%.3f-x_max_%.3f-nx_%d-N_iter_%d.csv'\ %(potential_string,beta_fin,x_max,nx,N_iter) else: csv_file_name = script_dir + '/'+ file_name # Información relevante para agregar como comentario al archivo csv. if relevant_info is None: relevant_info = [ 'pi(x;beta_fin) computed using matrix squaring algorithm and' + \ ' Trotter approximation. Parameters:', u'%s x_max = %.3f nx = %d '%(potential_string,x_max,nx) + \ u'N_iter = %d beta_ini = %.3f '%(N_iter,beta_ini,) + \ u'beta_fin = %.3f'%beta_fin ] # Guardamos valores de pi(x;beta_fin) en archivo csv. pi_x_data = [grid_x.copy(),x_weights.copy()] pi_x_data_headers = ['position_x','prob_density'] pi_x_data = save_csv(pi_x_data,pi_x_data_headers,csv_file_name,relevant_info,print_data=0) # Gráfica y comparación con teoría if plot == True: plt.figure(figsize=(8,5)) plt.plot(grid_x, x_weights, label = 'Matrix squaring +\nfórmula de Trotter.\n$N=%d$ iteraciones\n$dx=%.3E$'%(N_iter,dx)) plt.plot(grid_x, QHO_canonical_ensemble(grid_x,beta_fin), label=u'Valor teórico QHO') plt.xlabel(u'x') plt.ylabel(u'$\pi^{(Q)}(x;\\beta)$') plt.legend(loc='best',title=u'$\\beta=%.2f$'%beta_fin) plt.tight_layout() if save_plot==True: if file_name is None: plot_file_name = script_dir+u'/pi_x-ms-plot-%s-beta_fin_%.3f-x_max_%.3f-nx_%d-N_iter_%d.eps'%(potential_string,beta_fin,x_max,nx,N_iter) else: plot_file_name = script_dir+u'/pi_x-ms-plot-'+file_name+'.eps' plt.savefig(plot_file_name) if show_plot==True: plt.show() plt.close() return rho, trace_rho, grid_x def Z_several_values( temp_min=1./10, temp_max=1/2., N_temp=10, save_Z_csv=True, Z_file_name = None, relevant_info_Z = None, print_Z_data = True, x_max=7., nx=201, N_iter=7, potential = harmonic_potential, potential_string = 'harmonic_potential', print_steps=False, save_pi_x_data=False, pi_x_file_name=None, relevant_info_pi_x=None, plot=False, save_plot=False, show_plot=False ): """ """ beta_max = 1./temp_min beta_min = 1./temp_max N_temp = int(N_temp) beta_array = np.linspace(beta_max,beta_min,N_temp) Z = [] for beta_fin in beta_array: rho, trace_rho, grid_x = \ run_pi_x_sq_trotter( x_max, nx, N_iter, beta_fin, potential, potential_string, print_steps, save_pi_x_data, file_name, relevant_info, plot, save_plot, show_plot) Z.append(trace_rho) Z_data = np.array([beta_array.copy(),1./beta_array.copy(),Z.copy()],dtype=float) if save_Z_csv == True: if Z_file_name is None: script_dir = os.path.dirname(os.path.abspath(__file__)) #path completa para este script Z_file_name = 'Z-ms-%s-beta_max_%.3f-'%(potential_string,1./temp_min) +\ 'beta_min_%.3f-N_temp_%d-x_max_%.3f-'%(1./temp_max,N_temp,x_max) +\ 'nx_%d-N_iter_%d.csv'%(nx, N_iter) Z_file_name = script_dir + '/' + Z_file_name if relevant_info_Z is None: relevant_info_Z = [ 'Partition function at several temperatures', '%s beta_max = %.3f '%(potential_string,1./temp_min) + \ 'beta_min = %.3f N_temp = %d '%(1./temp_max,N_temp) + \ 'x_max = %.3f nx = %d N_iter = %d'%(x_max,nx, N_iter) ] Z_data_headers = ['beta','temperature','Z'] Z_data = save_csv( Z_data.transpose(), Z_data_headers, Z_file_name, relevant_info_Z, print_data = False ) if print_Z_data == True: print(Z_data) return Z_data def average_energy( read_Z_data=True, generate_Z_data=False, Z_file_name = None, plot_energy=True, save_plot_E=True, show_plot_E=True, E_plot_name=None, temp_min=1./10, temp_max=1/2., N_temp=10, save_Z_csv=True, relevant_info_Z = None, print_Z_data = True, x_max=7., nx=201, N_iter=7, potential = harmonic_potential, potential_string = 'harmonic_potential', print_steps=False, save_pi_x_data=False, pi_x_file_name=None, relevant_info_pi_x=None, plot_pi_x=False, save_plot_pi_x=False, show_plot_pi_x=False ): """ """ if read_Z_data: Z_file_read = pd.read_csv(Z_file_name, index_col=0, comment='#') elif generate_Z_data: t_0 = time() Z_data = Z_several_values( temp_min, temp_max, N_temp, save_Z_csv, Z_file_name, relevant_info_Z, print_Z_data, x_max, nx, N_iter, potential, potential_string,print_steps, save_pi_x_data, pi_x_file_name, relevant_info_pi_x, plot_pi_x,save_plot_pi_x, show_plot_pi_x) t_1 = time() print( '--------------------------------------------------------------------------\n' + '%d values of Z(beta) generated --> %.3f sec.'%(N_temp,t_1-t_0)) Z_file_read = Z_data else: print( 'Elegir si se generan o se leen los datos para la función partición, Z.\n' + 'Estas opciones son mutuamente exluyentes. Si se seleccionan las dos, el' + 'algoritmo escoge leer los datos.') # READ DATA IS OK beta_read = Z_file_read['beta'] temp_read = Z_file_read['temperature'] Z_read = Z_file_read['Z'] E_avg = np.gradient(-np.log(Z_read),beta_read) if plot_energy: plt.figure(figsize=(8,5)) plt.plot(temp_read,E_avg,label=u'$\langle E \\rangle$ via path integral\nnaive sampling') plt.plot(temp_read,E_QHO_avg_theo(beta_read),label=u'$\langle E \\rangle$ teórico') plt.legend(loc='best') plt.xlabel(u'$T$') plt.ylabel(u'$\langle E \\rangle$') if save_plot_E: if E_plot_name is None: script_dir = os.path.dirname(os.path.abspath(__file__)) E_plot_name='E-ms-plot-%s-beta_max_%.3f-'%(potential_string,1./temp_min) +\ 'beta_min_%.3f-N_temp_%d-x_max_%.3f-'%(1./temp_max,N_temp,x_max) +\ 'nx_%d-N_iter_%d.eps'%(nx, N_iter) E_plot_name = script_dir + '/' + E_plot_name plt.savefig(E_plot_name) if show_plot_E: plt.show() plt.close() return E_avg, beta_read.to_numpy() def average_error(x,xp): """ Uso: calcula error ponderado por el número de """ x, xp = np.arraylist(x), np.arraylist(xp) N = len( x ) if N != len(xp): raise Exception( 'x and xp must have same lenght.' ) else: return np.sum((x-xp)**2)**0.5 / N def optimization(nx_min, nx_max, N_iter_min, N_iter_max, beta_fin): if nx_min%2==0: nx_min += 1 if nx_max%2==1: nx_max += 1 dx_grid = [] beta_ini_grid = [] return # Usar latex en texto de figuras y agrandar tamaño de fuente plt.rc('text', usetex=True) plt.rcParams.update({'font.size':15,'text.latex.unicode':True}) # Obtenemos path para guardar archivos en el mismo directorio donde se ubica el script script_dir = os.path.dirname(os.path.abspath(__file__)) ################################################################################################# # Corre algoritmo matrix squaring # # # Decide si corre esta parte del algoritmo run_ms_algorithm = True # Parámetros físicos del algoritmo x_max = 5. nx = 501 N_iter = 14 beta_fin = 4 potential, potential_string = harmonic_potential, 'harmonic_potential' # Parámetros técnicos print_steps = False save_data = False file_name = None relevant_info = None plot = True save_plot = False show_plot = True if run_ms_algorithm: rho, trace_rho, grid_x = \ run_pi_x_sq_trotter( x_max, nx, N_iter, beta_fin, potential, potential_string, print_steps, save_data, file_name, relevant_info, plot, save_plot, show_plot) # # ################################################################################################# ################################################################################################# # Algoritmo para cálculo de energía interna # # # Decide si corre esta parte del algoritmo calculate_avg_energy = False # Parámetros técnicos función partición y cálculo de energía read_Z_data = False generate_Z_data = True Z_file_name = None plot_energy = True save_plot_E = True show_plot_E = True E_plot_name = None #script_dir + 'E.eps' # Parámetros físicos para calcular Z y <E> temp_min = 1./10 temp_max = 1./2 N_temp = 10 potential, potential_string = harmonic_potential, 'harmonic_potential' # Más parámetros técnicos save_Z_csv = True relevant_info_Z = None print_Z_data = False x_max = 7. nx = 201 N_iter = 7 print_steps = False save_pi_x_data = False pi_x_file_name = None relevant_info_pi_x = None plot_pi_x = False save_plot_pi_x = False show_plot_pi_x = False if calculate_avg_energy: average_energy( read_Z_data, generate_Z_data, Z_file_name, plot_energy, save_plot_E, show_plot_E, E_plot_name, temp_min, temp_max, N_temp, save_Z_csv, relevant_info_Z, print_Z_data, x_max, nx, N_iter, potential, potential_string, print_steps, save_pi_x_data, pi_x_file_name, relevant_info_pi_x,plot_pi_x, save_plot_pi_x, show_plot_pi_x) # # #################################################################################################
[ "jeaz.git@gmail.com" ]
jeaz.git@gmail.com
b75d87acdf164ee9e6dbbcfb5307c98cc1673af6
484a2df8f642cd6c44f7eb98befa8771b18abbaa
/anagram_021.py
d9cd23c90c1e59af97e1c73c275a3971ac0991c4
[]
no_license
abasse-lab/CA117_PYTHON_LABS
78b57bdc0aa563516c14447e02fe8301e5a18333
2dff2d55d8302051face20f2e06fb815624c5fd7
refs/heads/master
2022-09-13T18:15:39.643000
2020-05-29T22:49:52
2020-05-29T22:49:52
259,939,123
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
#!/usr/bin/env python3 import sys for line in sys.stdin: [left, right] = line.strip().split() list_str1 = list(left) list_str1.sort() list_str2 = list(right) list_str2.sort() if list_str1 == list_str2: print(True) else: print(False)
[ "noreply@github.com" ]
abasse-lab.noreply@github.com
8d8785cec29f765e4ce2ba0c02fb28ab59b55104
bb00f6dad7248296db3e1f708ce099bdea53bba1
/漫画爬虫/动漫之家.py
cc176550cc684fccbf115f638836f514e7df4d3e
[]
no_license
sengeiou/python
b91f1537cd9eb87ae99f46c4c8b21b285111f415
cbef6445df3ef59ac3b4cb7e706ce8a2976ee2ed
refs/heads/master
2023-05-28T23:33:51.913149
2021-06-12T09:36:26
2021-06-12T09:41:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,479
py
import requests import os import re from bs4 import * from contextlib import * from tqdm import * from time import * # 创建保存目录 save_dir = '妖神记' if save_dir not in os.listdir('./'): os.mkdir(save_dir) target_url = "https://www.dmzj.com/info/yaoshenji.html" # 获取动漫章节链接和章节名 r = requests.get(url = target_url) bs = BeautifulSoup(r.text, 'lxml') list_con_li = bs.find('ul', class_="list_con_li") cartoon_list = list_con_li.find_all('a') chapter_names = [] chapter_urls = [] for cartoon in cartoon_list: href = cartoon.get('href') name = cartoon.text chapter_names.insert(0, name) chapter_urls.insert(0, href) # 下载漫画 for i, url in enumerate(tqdm(chapter_urls)): download_header = { 'Referer': url } name = chapter_names[i] # 去掉. while '.' in name: name = name.replace('.', '') chapter_save_dir = os.path.join(save_dir, name) if name not in os.listdir(save_dir): os.mkdir(chapter_save_dir) r = requests.get(url = url) html = BeautifulSoup(r.text, 'lxml') script_info = html.script pics = re.findall('\d{13,14}', str(script_info)) for j, pic in enumerate(pics): if len(pic) == 13: pics[j] = pic + '0' pics = sorted(pics, key=lambda x:int(x)) chapterpic_hou = re.findall('\|(\d{5})\|', str(script_info))[0] chapterpic_qian = re.findall('\|(\d{4})\|', str(script_info))[0] for idx, pic in enumerate(pics): if pic[-1] == '0': url = 'https://images.dmzj.com/img/chapterpic/' + chapterpic_qian + '/' + chapterpic_hou + '/' + pic[:-1] + '.jpg' else: url = 'https://images.dmzj.com/img/chapterpic/' + chapterpic_qian + '/' + chapterpic_hou + '/' + pic + '.jpg' pic_name = '%03d.jpg' % (idx + 1) pic_save_path = os.path.join(chapter_save_dir, pic_name) with closing(requests.get(url, headers = download_header, stream = True)) as response: chunk_size = 1024 content_size = int(response.headers['content-length']) if response.status_code == 200: with open(pic_save_path, "wb") as file: for data in response.iter_content(chunk_size=chunk_size): file.write(data) else: print('链接异常') sleep(10)
[ "leyuxuan1230@aliyun.com" ]
leyuxuan1230@aliyun.com
5dec90b58863acc02eace86c46807f72c1e085a4
a4d339bc0794f7a1770e63ee78035d6e6c52b2ec
/src/myLineSearch.py
2b1257d61938431e381442de22a668f43bdb6dff
[]
no_license
matthiasware/nlp-solver
ab82fcc1296df026a969b8ae11609427ac6907d1
df9c750378155d091624c7816a0f766accd09afd
refs/heads/master
2020-04-12T11:58:19.681705
2018-12-20T00:40:35
2018-12-20T00:40:35
162,478,297
0
0
null
null
null
null
UTF-8
Python
false
false
17,176
py
from __future__ import division, print_function, absolute_import from warnings import warn from scipy.optimize import minpack2 import numpy as np from scipy._lib.six import xrange __all__ = ['LineSearchWarning', 'line_search_wolfe1', 'line_search_wolfe2', 'scalar_search_wolfe1', 'scalar_search_wolfe2', 'line_search_armijo'] class LineSearchWarning(RuntimeWarning): pass def line_search_wolfe1(f, fprime, xk, pk, gfk=None, old_fval=None, old_old_fval=None, args=(), c1=1e-4, c2=0.9, amax=50, amin=1e-8, xtol=1e-14): if gfk is None: gfk = fprime(xk) if isinstance(fprime, tuple): eps = fprime[1] fprime = fprime[0] newargs = (f, eps) + args gradient = False else: newargs = args gradient = True gval = [gfk] gc = [0] fc = [0] def phi(s): fc[0] += 1 return f(xk + s*pk, *args) def derphi(s): gval[0] = fprime(xk + s*pk, *newargs) if gradient: gc[0] += 1 else: fc[0] += len(xk) + 1 return np.dot(gval[0], pk) derphi0 = np.dot(gfk, pk) stp, fval, old_fval = scalar_search_wolfe1( phi, derphi, old_fval, old_old_fval, derphi0, c1=c1, c2=c2, amax=amax, amin=amin, xtol=xtol) return stp, fc[0], gc[0], fval, old_fval, gval[0] def scalar_search_wolfe1(phi, derphi, phi0=None, old_phi0=None, derphi0=None, c1=1e-4, c2=0.9, amax=50, amin=1e-8, xtol=1e-14): if phi0 is None: phi0 = phi(0.) if derphi0 is None: derphi0 = derphi(0.) if old_phi0 is not None and derphi0 != 0: alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) if alpha1 < 0: alpha1 = 1.0 else: alpha1 = 1.0 phi1 = phi0 derphi1 = derphi0 isave = np.zeros((2,), np.intc) dsave = np.zeros((13,), float) task = b'START' maxiter = 100 for i in xrange(maxiter): print('alpha1', alpha1) print('phi1', phi1) print('derphi1', derphi1) stp, phi1, derphi1, task = minpack2.dcsrch(alpha1, phi1, derphi1, c1, c2, xtol, task, amin, amax, isave, dsave) print(stp) if task[:2] == b'FG': alpha1 = stp phi1 = phi(stp) derphi1 = derphi(stp) else: break else: # maxiter reached, the line search did not converge stp = None if task[:5] == b'ERROR' or task[:4] == b'WARN': stp = None # failed return stp, phi1, phi0 line_search = line_search_wolfe1 def line_search_wolfe2(f, myfprime, xk, pk, gfk=None, old_fval=None, old_old_fval=None, args=(), c1=1e-4, c2=0.9, amax=None, extra_condition=None, maxiter=10): fc = [0] gc = [0] gval = [None] gval_alpha = [None] def phi(alpha): fc[0] += 1 # f3 = f(xk + alpha * pk, *args) # print('called f with alpha = ', alpha, f3) return f(xk + alpha * pk, *args) if isinstance(myfprime, tuple): def derphi(alpha): fc[0] += len(xk) + 1 eps = myfprime[1] fprime = myfprime[0] newargs = (f, eps) + args gval[0] = fprime(xk + alpha * pk, *newargs) # store for later use gval_alpha[0] = alpha return np.dot(gval[0], pk) else: fprime = myfprime def derphi(alpha): gc[0] += 1 gval[0] = fprime(xk + alpha * pk, *args) # store for later use gval_alpha[0] = alpha # g3 = np.dot(gval[0], pk) # print("called f' with alpha = ", alpha, g3) return np.dot(gval[0], pk) if gfk is None: gfk = fprime(xk, *args) derphi0 = np.dot(gfk, pk) if extra_condition is not None: # Add the current gradient as argument, to avoid needless # re-evaluation def extra_condition2(alpha, phi): if gval_alpha[0] != alpha: derphi(alpha) x = xk + alpha * pk return extra_condition(alpha, x, phi, gval[0]) else: extra_condition2 = None alpha_star, phi_star, old_fval, derphi_star = scalar_search_wolfe2( phi, derphi, old_fval, old_old_fval, derphi0, c1, c2, amax, extra_condition2, maxiter=maxiter) # print('and now here') # print('alpha_star', alpha_star) if derphi_star is None: warn('The line search algorithm did not converge', LineSearchWarning) else: # derphi_star is a number (derphi) -- so use the most recently # calculated gradient used in computing it derphi = gfk*pk # this is the gradient at the next step no need to compute it # again in the outer loop. derphi_star = gval[0] return alpha_star, fc[0], gc[0], phi_star, old_fval, derphi_star def scalar_search_wolfe2(phi, derphi=None, phi0=None, old_phi0=None, derphi0=None, c1=1e-4, c2=0.9, amax=None, extra_condition=None, maxiter=10): if phi0 is None: phi0 = phi(0.) if derphi0 is None and derphi is not None: derphi0 = derphi(0.) alpha0 = 0 if old_phi0 is not None and derphi0 != 0: alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) else: alpha1 = 1.0 if alpha1 < 0: alpha1 = 1.0 phi_a1 = phi(alpha1) #derphi_a1 = derphi(alpha1) evaluated below phi_a0 = phi0 derphi_a0 = derphi0 if extra_condition is None: extra_condition = lambda alpha, phi: True # print('#' * 20) for i in xrange(maxiter): if alpha1 == 0 or (amax is not None and alpha0 == amax): # alpha1 == 0: This shouldn't happen. Perhaps the increment has # slipped below machine precision? # alpha_star = None # phi_star = phi0 # phi0 = old_phi0 # derphi_star = None if alpha1 == 0: alpha_star = None phi_star = phi0 phi0 = old_phi0 derphi_star = None msg = 'Rounding errors prevent the line search from converging' # else: # msg = "The line search algorithm could not find a solution " + \ # "less than or equal to amax: %s" % amax warn(msg, LineSearchWarning) break alpha_star = alpha0 phi_star = phi_a0 derphi_star = derphi_a0 return alpha_star, phi_star, phi0, derphi_star if (phi_a1 > phi0 + c1 * alpha1 * derphi0) or \ ((phi_a1 >= phi_a0) and (i > 1)): # print('1') alpha_star, phi_star, derphi_star = \ _zoom(alpha0, alpha1, phi_a0, phi_a1, derphi_a0, phi, derphi, phi0, derphi0, c1, c2, extra_condition) break derphi_a1 = derphi(alpha1) if (abs(derphi_a1) <= -c2*derphi0): # print('4') if extra_condition(alpha1, phi_a1): alpha_star = alpha1 phi_star = phi_a1 derphi_star = derphi_a1 break if (derphi_a1 >= 0): # print('2') alpha_star, phi_star, derphi_star = \ _zoom(alpha1, alpha0, phi_a1, phi_a0, derphi_a1, phi, derphi, phi0, derphi0, c1, c2, extra_condition) break # print('5') alpha2 = 2 * alpha1 # increase by factor of two on each iteration if amax is not None: alpha2 = min(alpha2, amax) alpha0 = alpha1 alpha1 = alpha2 phi_a0 = phi_a1 phi_a1 = phi(alpha1) derphi_a0 = derphi_a1 else: # stopping test maxiter reached # print('3') # print('alpha1', alpha1) alpha_star = alpha1 phi_star = phi_a1 derphi_star = derphi_a1 # print('we are here') # print(alpha_star, phi_star, phi0, derphi_star) # warn('The line search algorithm did not converge', LineSearchWarning) return alpha_star, phi_star, phi0, derphi_star def _cubicmin(a, fa, fpa, b, fb, c, fc): with np.errstate(divide='raise', over='raise', invalid='raise'): try: C = fpa db = b - a dc = c - a denom = (db * dc) ** 2 * (db - dc) d1 = np.empty((2, 2)) d1[0, 0] = dc ** 2 d1[0, 1] = -db ** 2 d1[1, 0] = -dc ** 3 d1[1, 1] = db ** 3 [A, B] = np.dot(d1, np.asarray([fb - fa - C * db, fc - fa - C * dc]).flatten()) A /= denom B /= denom radical = B * B - 3 * A * C xmin = a + (-B + np.sqrt(radical)) / (3 * A) except ArithmeticError: return None if not np.isfinite(xmin): return None return xmin def _quadmin(a, fa, fpa, b, fb): with np.errstate(divide='raise', over='raise', invalid='raise'): try: D = fa C = fpa db = b - a * 1.0 B = (fb - D - C * db) / (db * db) xmin = a - C / (2.0 * B) except ArithmeticError: return None if not np.isfinite(xmin): return None return xmin def _zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, phi, derphi, phi0, derphi0, c1, c2, extra_condition): """ Part of the optimization algorithm in `scalar_search_wolfe2`. """ maxiter = 20 i = 0 delta1 = 0.2 # cubic interpolant check delta2 = 0.1 # quadratic interpolant check phi_rec = phi0 a_rec = 0 while True: # interpolate to find a trial step length between a_lo and # a_hi Need to choose interpolation here. Use cubic # interpolation and then if the result is within delta * # dalpha or outside of the interval bounded by a_lo or a_hi # then use quadratic interpolation, if the result is still too # close, then use bisection dalpha = a_hi - a_lo if dalpha < 0: a, b = a_hi, a_lo else: a, b = a_lo, a_hi # minimizer of cubic interpolant # (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi) # # if the result is too close to the end points (or out of the # interval) then use quadratic interpolation with phi_lo, # derphi_lo and phi_hi if the result is stil too close to the # end points (or out of the interval) then use bisection if (i > 0): cchk = delta1 * dalpha a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, a_rec, phi_rec) if (i == 0) or (a_j is None) or (a_j > b - cchk) or (a_j < a + cchk): qchk = delta2 * dalpha a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi) if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk): a_j = a_lo + 0.5*dalpha # Check new value of a_j phi_aj = phi(a_j) if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): phi_rec = phi_hi a_rec = a_hi a_hi = a_j phi_hi = phi_aj else: derphi_aj = derphi(a_j) if abs(derphi_aj) <= -c2*derphi0 and extra_condition(a_j, phi_aj): a_star = a_j val_star = phi_aj valprime_star = derphi_aj break if derphi_aj*(a_hi - a_lo) >= 0: phi_rec = phi_hi a_rec = a_hi a_hi = a_lo phi_hi = phi_lo else: phi_rec = phi_lo a_rec = a_lo a_lo = a_j phi_lo = phi_aj derphi_lo = derphi_aj i += 1 if (i > maxiter): # print('a_j', a_j) # better this than nothing a_star = a_j val_star = phi_aj valprime_star = derphi(a_j) break # Failed to find a conforming step size a_star = None val_star = None valprime_star = None break return a_star, val_star, valprime_star def line_search_armijo(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1): xk = np.atleast_1d(xk) fc = [0] def phi(alpha1): fc[0] += 1 return f(xk + alpha1*pk, *args) if old_fval is None: phi0 = phi(0.) else: phi0 = old_fval # compute f(xk) -- done in past loop derphi0 = np.dot(gfk, pk) alpha, phi1 = scalar_search_armijo(phi, phi0, derphi0, c1=c1, alpha0=alpha0) return alpha, fc[0], phi1 def line_search_BFGS(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1): """ Compatibility wrapper for `line_search_armijo` """ r = line_search_armijo(f, xk, pk, gfk, old_fval, args=args, c1=c1, alpha0=alpha0) return r[0], r[1], 0, r[2] def scalar_search_armijo(phi, phi0, derphi0, c1=1e-4, alpha0=1, amin=0): """Minimize over alpha, the function ``phi(alpha)``. Uses the interpolation algorithm (Armijo backtracking) as suggested by Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57 alpha > 0 is assumed to be a descent direction. Returns ------- alpha phi1 """ phi_a0 = phi(alpha0) if phi_a0 <= phi0 + c1*alpha0*derphi0: return alpha0, phi_a0 # Otherwise compute the minimizer of a quadratic interpolant: alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0) phi_a1 = phi(alpha1) if (phi_a1 <= phi0 + c1*alpha1*derphi0): return alpha1, phi_a1 # Otherwise loop with cubic interpolation until we find an alpha which # satifies the first Wolfe condition (since we are backtracking, we will # assume that the value of alpha is not too small and satisfies the second # condition. while alpha1 > amin: # we are assuming alpha>0 is a descent direction factor = alpha0**2 * alpha1**2 * (alpha1-alpha0) a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \ alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0) a = a / factor b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \ alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0) b = b / factor alpha2 = (-b + np.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a) phi_a2 = phi(alpha2) if (phi_a2 <= phi0 + c1*alpha2*derphi0): return alpha2, phi_a2 if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96: alpha2 = alpha1 / 2.0 alpha0 = alpha1 alpha1 = alpha2 phi_a0 = phi_a1 phi_a1 = phi_a2 # Failed to find a suitable step length return None, phi_a1 def _nonmonotone_line_search_cruz(f, x_k, d, prev_fs, eta, gamma=1e-4, tau_min=0.1, tau_max=0.5): f_k = prev_fs[-1] f_bar = max(prev_fs) alpha_p = 1 alpha_m = 1 alpha = 1 while True: xp = x_k + alpha_p * d fp, Fp = f(xp) if fp <= f_bar + eta - gamma * alpha_p**2 * f_k: alpha = alpha_p break alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k) xp = x_k - alpha_m * d fp, Fp = f(xp) if fp <= f_bar + eta - gamma * alpha_m**2 * f_k: alpha = -alpha_m break alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k) alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p) alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m) return alpha, xp, fp, Fp def _nonmonotone_line_search_cheng(f, x_k, d, f_k, C, Q, eta, gamma=1e-4, tau_min=0.1, tau_max=0.5, nu=0.85): alpha_p = 1 alpha_m = 1 alpha = 1 while True: xp = x_k + alpha_p * d fp, Fp = f(xp) if fp <= C + eta - gamma * alpha_p**2 * f_k: alpha = alpha_p break alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k) xp = x_k - alpha_m * d fp, Fp = f(xp) if fp <= C + eta - gamma * alpha_m**2 * f_k: alpha = -alpha_m break alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k) alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p) alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m) # Update C and Q Q_next = nu * Q + 1 C = (nu * Q * (C + eta) + fp) / Q_next Q = Q_next return alpha, xp, fp, Fp, C, Q
[ "matthias@mitterreiter.de" ]
matthias@mitterreiter.de
829b749f4cee3c98575c7f598245c168f036ea5e
67b0379a12a60e9f26232b81047de3470c4a9ff9
/hotline/utils.py
e2f6ee454c726943242857094b18b04a9eb73a3a
[]
no_license
vintkor/whitemandarin
8ea9022b889fac718e0858873a07c586cf8da729
5afcfc5eef1bb1cc2febf519b04a4819a7b9648f
refs/heads/master
2021-05-06T03:35:09.367375
2017-12-20T15:43:08
2017-12-20T15:43:08
114,904,110
0
0
null
null
null
null
UTF-8
Python
false
false
7,242
py
# -*- coding: utf-8 -*- from grab import Grab from pyquery import PyQuery as pq import json import os from cms.local_settings import PROJECT_PATH import re from shop.models import * import time def scanhot(pageurl): proxy = Proxy.objects.filter(banned=False).order_by('?') if proxy: proxy = proxy[0] else: time.sleep(60) return scanhot(pageurl) goog = Grab(timeout=30) goog.setup(proxy=proxy.hostport, proxy_userpwd=proxy.userpass) goog.go(pageurl) if goog.doc.pyquery('.g-recaptcha').eq(0): proxy.banned = True proxy.save() return scanhot(pageurl) return goog def get_hotline_data2(sresult): # g = Grab(timeout=30) # g.load_proxylist(os.path.dirname(os.path.realpath(__file__)) + "/proxy1.txt", source_type='text_file', proxy_type='http', auto_change=True) # g.go(sresult) g = scanhot(sresult) pitems = g.pyquery('div#gallery-box > a') # import codecs # file = codecs.open(PROJECT_PATH + '/../6.txt', "w", "utf-8") # file.write(g.response.unicode_body()) # file.close() images = [] videosresults = [] mainproperties = [] advensedroperties = [] # assert False, pitems.length for pitem in pitems: images.append(pitem.attrib['href']) # self.stdout.write() videos = g.pyquery('img.ico.g_statistic') for pitem in videos: videosresults.append(pitem.attrib['data-hl_gallery_video_hash']) # self.stdout.write(pitem.attrib['data-hl_gallery_video_hash']) # assert False, videos.length prophtml = pq(g.response.unicode_body()) properties = prophtml('table#full-props-list > tr') mproperties = prophtml('div#short-props-list > table > tr') # assert False, len(properties) try: name = prophtml('h1.title-24.p_b-5').outer_html() name = re.sub(r'<[^>]*?>', '', name).strip() name = re.sub("^\s+|\n|\r|\s+$", '', name) hotline_name = re.sub(r'\s+', ' ', name).replace('"', '') except: hotline_name = "" hotline = sresult.split('hotline.ua')[1] try: price = prophtml('a.range-price.orng strong')[0].text.split(u' – ') price_min = int(price[0].replace(' ','').replace(u'\xa0', '')) price_max = int(price[1].replace(' ','').replace(u'\xa0', '')) except: price_min = 0 price_max = 0 # price_max = re.sub(r'\s+', ' ', price_max) # assert False, price_max # file = codecs.open(PROJECT_ROOT + '/static/test2.txt', "w", "utf-8") # file.write(price_max) # file.close() # assert False, price for prop in properties: prop_pq = pq(prop) try: name = prop_pq('th').outer_html() name = re.sub(r'<[^>]*?>', '', name).strip().replace('"', '') prop_new = prop_pq('td').outer_html() prop_new = re.sub(r'<[^>]*?>', '', prop_new).strip().replace('"', '') advensedroperties.append({'name': name, 'prop': prop_new}) except: pass for prop in properties: try: prop_pq = pq(prop) name = prop_pq('th').outer_html() name = re.sub(r'<[^>]*?>', '', name).strip().replace('"', '') prop_new = prop_pq('td').outer_html() prop_new = re.sub(r'<[^>]*?>', '', prop_new).strip().replace('"', '') mainproperties.append({'name': name, 'prop': prop_new}) except: pass return { 'url': hotline, 'name': hotline_name, 'photos': images, 'videos': videosresults, 'properties': advensedroperties, 'price_min': price_min, 'price_max': price_max, } def get_hotline_data(sresult, ppitem=False, save=True): # g = Grab(timeout=30) # g.load_proxylist(os.path.dirname(os.path.realpath(__file__)) + "/proxy1.txt", source_type='text_file', proxy_type='http', auto_change=True) # g.go(sresult) g = scanhot(sresult) pitems = g.pyquery('div#gallery-box > a') # import codecs # file = codecs.open(PROJECT_PATH + '/../6.txt', "w", "utf-8") # file.write(g.response.unicode_body()) # file.close() images = [] videosresults = [] mainproperties = [] advensedroperties = [] # assert False, pitems.length for pitem in pitems: images.append(pitem.attrib['href']) # self.stdout.write() videos = g.pyquery('img.ico.g_statistic') for pitem in videos: videosresults.append(pitem.attrib['data-hl_gallery_video_hash']) # self.stdout.write(pitem.attrib['data-hl_gallery_video_hash']) # assert False, videos.length prophtml = pq(g.response.unicode_body()) properties = prophtml('table#full-props-list > tr') mproperties = prophtml('div#short-props-list > table > tr') # assert False, len(properties) try: name = prophtml('h1.title-24.p_b-5').outer_html() name = re.sub(r'<[^>]*?>', '', name).strip() name = re.sub("^\s+|\n|\r|\s+$", '', name) hotline_name = re.sub(r'\s+', ' ', name).replace('"', '') except: hotline_name = "" hotline = sresult.split('hotline.ua')[1] try: price = prophtml('a.range-price.orng strong')[0].text.split(u' – ') price_min = int(price[0].replace(' ','').replace(u'\xa0', '')) price_max = int(price[1].replace(' ','').replace(u'\xa0', '')) except: price_min = 0 price_max = 0 # price_max = re.sub(r'\s+', ' ', price_max) # assert False, price_max # file = codecs.open(PROJECT_ROOT + '/static/test2.txt', "w", "utf-8") # file.write(price_max) # file.close() # assert False, price for prop in properties: prop_pq = pq(prop) try: name = prop_pq('th').outer_html() name = re.sub(r'<[^>]*?>', '', name).strip().replace('"', '') prop_new = prop_pq('td').outer_html() prop_new = re.sub(r'<[^>]*?>', '', prop_new).strip().replace('"', '') advensedroperties.append({'name': name, 'prop': prop_new}) except: pass for prop in properties: try: prop_pq = pq(prop) name = prop_pq('th').outer_html() name = re.sub(r'<[^>]*?>', '', name).strip().replace('"', '') prop_new = prop_pq('td').outer_html() prop_new = re.sub(r'<[^>]*?>', '', prop_new).strip().replace('"', '') mainproperties.append({'name': name, 'prop': prop_new}) except: pass if save: # self.stdout.write(hotline) ppitem.hotline = hotline ppitem.hotline_name = hotline_name ppitem.hotline_photos = json.dumps(images) ppitem.hotline_videos = json.dumps(videosresults) ppitem.hotline_mainfilters = json.dumps(mainproperties) ppitem.hotline_filters = json.dumps(advensedroperties) ppitem.hotline_price_min = price_min ppitem.hotline_price_max = price_max ppitem.save() else: return { 'url': hotline, 'name': hotline_name, 'photos': images, 'videos': videosresults, 'properties': advensedroperties, 'price_min': price_min, 'price_max': price_max, }
[ "alkv84@yandex.ru" ]
alkv84@yandex.ru
5afb22c8a9dc87d352c40841a189e5ed0c9e9ddf
197e8216091b4e55f01fd837327f1f64301b7f7d
/abballsitesmrr/__init__.py
fd77e8c8517e2a2d69ca7dd6c7139921f184cde1
[]
no_license
jcarter62/getabbflow
1b2bce976ce3e438f6c33fc713d71e4eec33890f
69bc89808c8df12ec72ee2cbcb9b0b01d91ca277
refs/heads/master
2022-12-12T12:00:47.391918
2020-01-04T01:17:34
2020-01-04T01:17:34
214,252,662
0
0
null
2022-12-08T06:42:29
2019-10-10T18:08:41
Python
UTF-8
Python
false
false
463
py
from abbsitemrr import AbbSiteMRR from abbsites import AbbSites class AbbAllSitesMRR: def __init__(self): self.sites = AbbSites() self.data = [] sitemrr = AbbSiteMRR() for s in self.sites.names: sitemrr.set_name(name=s) if sitemrr.record is None: pass else: self.data.append(sitemrr.record) self.data.sort(key=lambda x: x['site']) return
[ "jcarter62@gmail.com" ]
jcarter62@gmail.com
8f8dd3be93c994a551cfa0c126b84be79eaa9ca9
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/0/bgl.py
806981be4c75fcf9e99552991750506b610faa08
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'bgL': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
[ "juliettaylorswift@gmail.com" ]
juliettaylorswift@gmail.com
48b7105c6dfd465db3b3a7c65c2cc69ff8163601
b2fef77e77f77b6cfd83da4ec2f89cbe73330844
/tests/test_vis_cam.py
bb3ff7237aa5aa39cfa85a7a1bc925671d1024e8
[ "Apache-2.0" ]
permissive
Project-MONAI/MONAI
8ef2593cc5fd1cd16e13464f927fe563fe3f5bac
e48c3e2c741fa3fc705c4425d17ac4a5afac6c47
refs/heads/dev
2023-09-02T00:21:04.532596
2023-09-01T06:46:45
2023-09-01T06:46:45
214,485,001
4,805
996
Apache-2.0
2023-09-14T15:19:30
2019-10-11T16:41:38
Python
UTF-8
Python
false
false
3,088
py
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest import torch from parameterized import parameterized from monai.networks.nets import DenseNet, DenseNet121, SEResNet50 from monai.visualize import CAM # 2D TEST_CASE_0 = [ { "model": "densenet2d", "shape": (2, 1, 48, 64), "feature_shape": (2, 1, 1, 2), "target_layers": "class_layers.relu", "fc_layers": "class_layers.out", }, (2, 1, 48, 64), ] # 3D TEST_CASE_1 = [ { "model": "densenet3d", "shape": (2, 1, 6, 6, 6), "feature_shape": (2, 1, 2, 2, 2), "target_layers": "class_layers.relu", "fc_layers": "class_layers.out", }, (2, 1, 6, 6, 6), ] # 2D TEST_CASE_2 = [ { "model": "senet2d", "shape": (2, 3, 64, 64), "feature_shape": (2, 1, 2, 2), "target_layers": "layer4", "fc_layers": "last_linear", }, (2, 1, 64, 64), ] # 3D TEST_CASE_3 = [ { "model": "senet3d", "shape": (2, 3, 8, 8, 48), "feature_shape": (2, 1, 1, 1, 2), "target_layers": "layer4", "fc_layers": "last_linear", }, (2, 1, 8, 8, 48), ] class TestClassActivationMap(unittest.TestCase): @parameterized.expand([TEST_CASE_0, TEST_CASE_1, TEST_CASE_2, TEST_CASE_3]) def test_shape(self, input_data, expected_shape): if input_data["model"] == "densenet2d": model = DenseNet121(spatial_dims=2, in_channels=1, out_channels=3) if input_data["model"] == "densenet3d": model = DenseNet( spatial_dims=3, in_channels=1, out_channels=3, init_features=2, growth_rate=2, block_config=(6,) ) if input_data["model"] == "senet2d": model = SEResNet50(spatial_dims=2, in_channels=3, num_classes=4) if input_data["model"] == "senet3d": model = SEResNet50(spatial_dims=3, in_channels=3, num_classes=4) device = "cuda:0" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() cam = CAM(nn_module=model, target_layers=input_data["target_layers"], fc_layers=input_data["fc_layers"]) image = torch.rand(input_data["shape"], device=device) result = cam(x=image, layer_idx=-1) fea_shape = cam.feature_map_size(input_data["shape"], device=device) self.assertTupleEqual(fea_shape, input_data["feature_shape"]) self.assertTupleEqual(result.shape, expected_shape) if __name__ == "__main__": unittest.main()
[ "noreply@github.com" ]
Project-MONAI.noreply@github.com
2058bf85584d80481f537ccf94197056e073335b
4bc29617a307de54a7fe300c8e863f03321bd003
/lib/python3.8/site-packages/trytond/model/modelsql.py
9be8b62e7d562ca328830c8ccd9579d121aff876
[]
no_license
Davidoff2103/tryton-training
f594970e77646f0ffeb42eb4f903252ff0b6c201
8d1ec4f2b623f7ca48f38bfda2ac15c01ded35a7
refs/heads/master
2023-06-01T11:55:05.400233
2021-06-09T10:06:56
2021-06-09T10:06:56
375,275,666
0
0
null
null
null
null
UTF-8
Python
false
false
62,268
py
# This file is part of Tryton. The COPYRIGHT file at the top level of # this repository contains the full copyright notices and license terms. import datetime from itertools import islice, chain from collections import OrderedDict from functools import wraps from sql import (Table, Column, Literal, Desc, Asc, Expression, Null, NullsFirst, NullsLast) from sql.functions import CurrentTimestamp, Extract from sql.conditionals import Coalesce from sql.operators import Or, And, Operator, Equal from sql.aggregate import Count, Max from trytond.model import ModelStorage, ModelView from trytond.model import fields from trytond import backend from trytond.tools import reduce_ids, grouped_slice, cursor_dict from trytond.transaction import Transaction from trytond.pool import Pool from trytond.cache import LRUDict from trytond.exceptions import ConcurrencyException from trytond.rpc import RPC from trytond.config import config from .modelstorage import cache_size, is_leaf class Constraint(object): __slots__ = ('_table',) def __init__(self, table): assert isinstance(table, Table) self._table = table @property def table(self): return self._table def __str__(self): raise NotImplementedError @property def params(self): raise NotImplementedError class Check(Constraint): __slots__ = ('_expression',) def __init__(self, table, expression): super(Check, self).__init__(table) assert isinstance(expression, Expression) self._expression = expression @property def expression(self): return self._expression def __str__(self): return 'CHECK(%s)' % self.expression @property def params(self): return self.expression.params class Unique(Constraint): __slots__ = ('_columns',) def __init__(self, table, *columns): super(Unique, self).__init__(table) assert all(isinstance(col, Column) for col in columns) self._columns = tuple(columns) @property def columns(self): return self._columns @property def operators(self): return tuple(Equal for c in self._columns) def __str__(self): return 'UNIQUE(%s)' % (', '.join(map(str, self.columns))) @property def params(self): p = [] for column in self.columns: p.extend(column.params) return tuple(p) class Exclude(Constraint): __slots__ = ('_excludes', '_where') def __init__(self, table, *excludes, **kwargs): super(Exclude, self).__init__(table) assert all(isinstance(c, Expression) and issubclass(o, Operator) for c, o in excludes), excludes self._excludes = tuple(excludes) where = kwargs.get('where') if where is not None: assert isinstance(where, Expression) self._where = where @property def excludes(self): return self._excludes @property def columns(self): return tuple(c for c, _ in self._excludes) @property def operators(self): return tuple(o for _, o in self._excludes) @property def where(self): return self._where def __str__(self): exclude = ', '.join('%s WITH %s' % (column, operator._operator) for column, operator in self.excludes) where = '' if self.where: where = ' WHERE ' + str(self.where) return 'EXCLUDE (%s)' % exclude + where @property def params(self): p = [] for column, operator in self._excludes: p.extend(column.params) if self.where: p.extend(self.where.params) return tuple(p) def no_table_query(func): @wraps(func) def wrapper(cls, *args, **kwargs): if callable(cls.table_query): raise NotImplementedError("On table_query") return func(cls, *args, **kwargs) return wrapper class ModelSQL(ModelStorage): """ Define a model with storage in database. """ _table = None # The name of the table in database _order = None _order_name = None # Use to force order field when sorting on Many2One _history = False table_query = None @classmethod def __setup__(cls): super(ModelSQL, cls).__setup__() cls._sql_constraints = [] cls._order = [('id', 'ASC')] cls._sql_error_messages = {} if issubclass(cls, ModelView): cls.__rpc__.update({ 'history_revisions': RPC(), }) cls._table = config.get('table', cls.__name__, default=cls._table) if not cls._table: cls._table = cls.__name__.replace('.', '_') assert cls._table[-9:] != '__history', \ 'Model _table %s cannot end with "__history"' % cls._table @classmethod def __table__(cls): if callable(cls.table_query): return cls.table_query() else: return Table(cls._table) @classmethod def __table_history__(cls): if not cls._history: raise ValueError('No history table') return Table(cls._table + '__history') @classmethod def __table_handler__(cls, module_name=None, history=False): TableHandler = backend.get('TableHandler') return TableHandler(cls, module_name, history=history) @classmethod def __register__(cls, module_name): cursor = Transaction().connection.cursor() TableHandler = backend.get('TableHandler') super(ModelSQL, cls).__register__(module_name) if callable(cls.table_query): return pool = Pool() # Initiate after the callable test to prevent calling table_query which # may rely on other model being registered sql_table = cls.__table__() # create/update table in the database table = cls.__table_handler__(module_name) if cls._history: history_table = cls.__table_handler__(module_name, history=True) history_table.index_action('id', action='add') for field_name, field in cls._fields.items(): if field_name == 'id': continue sql_type = field.sql_type() if not sql_type: continue default = None if field_name in cls._defaults: def default(): default_ = cls._clean_defaults({ field_name: cls._defaults[field_name](), })[field_name] return field.sql_format(default_) table.add_column(field_name, field._sql_type, default=default) if cls._history: history_table.add_column(field_name, field._sql_type) if isinstance(field, (fields.Integer, fields.Float)): # migration from tryton 2.2 table.db_default(field_name, None) if isinstance(field, (fields.Boolean)): table.db_default(field_name, False) if isinstance(field, fields.Many2One): if field.model_name in ('res.user', 'res.group'): # XXX need to merge ir and res ref = field.model_name.replace('.', '_') else: ref_model = pool.get(field.model_name) if (issubclass(ref_model, ModelSQL) and not callable(ref_model.table_query)): ref = ref_model._table # Create foreign key table if missing if not TableHandler.table_exist(ref): TableHandler(ref_model) else: ref = None if field_name in ['create_uid', 'write_uid']: # migration from 3.6 table.drop_fk(field_name) elif ref: table.add_fk(field_name, ref, field.ondelete) table.index_action( field_name, action=field.select and 'add' or 'remove') required = field.required # Do not set 'NOT NULL' for Binary field as the database column # will be left empty if stored in the filestore or filled later by # the set method. if isinstance(field, fields.Binary): required = False table.not_null_action( field_name, action=required and 'add' or 'remove') for field_name, field in cls._fields.items(): if isinstance(field, fields.Many2One) \ and field.model_name == cls.__name__ \ and field.left and field.right: left_default = cls._defaults.get(field.left, lambda: None)() right_default = cls._defaults.get(field.right, lambda: None)() cursor.execute(*sql_table.select(sql_table.id, where=(Column(sql_table, field.left) == left_default) | (Column(sql_table, field.left) == Null) | (Column(sql_table, field.right) == right_default) | (Column(sql_table, field.right) == Null), limit=1)) if cursor.fetchone(): cls._rebuild_tree(field_name, None, 0) for ident, constraint, _ in cls._sql_constraints: table.add_constraint(ident, constraint) if cls._history: cls._update_history_table() history_table = cls.__table_history__() cursor.execute(*sql_table.select(sql_table.id, limit=1)) if cursor.fetchone(): cursor.execute( *history_table.select(history_table.id, limit=1)) if not cursor.fetchone(): columns = [n for n, f in cls._fields.items() if f.sql_type()] cursor.execute(*history_table.insert( [Column(history_table, c) for c in columns], sql_table.select(*(Column(sql_table, c) for c in columns)))) cursor.execute(*history_table.update( [history_table.write_date], [None])) @classmethod def _update_history_table(cls): if cls._history: history_table = cls.__table_handler__(history=True) for field_name, field in cls._fields.items(): if not field.sql_type(): continue history_table.add_column(field_name, field._sql_type) @classmethod def _get_error_messages(cls): res = super(ModelSQL, cls)._get_error_messages() res += list(cls._sql_error_messages.values()) for _, _, error in cls._sql_constraints: res.append(error) return res @classmethod def __raise_integrity_error( cls, exception, values, field_names=None, transaction=None): pool = Pool() TableHandler = backend.get('TableHandler') if field_names is None: field_names = list(cls._fields.keys()) if transaction is None: transaction = Transaction() for field_name in field_names: if field_name not in cls._fields: continue field = cls._fields[field_name] # Check required fields if (field.required and field.sql_type() and field_name not in ('create_uid', 'create_date')): if values.get(field_name) is None: cls.raise_user_error('required_field', error_args=cls._get_error_args(field_name)) if isinstance(field, fields.Many2One) and values.get(field_name): Model = pool.get(field.model_name) create_records = transaction.create_records.get( field.model_name, set()) delete_records = transaction.delete_records.get( field.model_name, set()) target_records = Model.search([ ('id', '=', field.sql_format(values[field_name])), ], order=[]) if not ((target_records or (values[field_name] in create_records)) and (values[field_name] not in delete_records)): error_args = cls._get_error_args(field_name) error_args['value'] = values[field_name] cls.raise_user_error('foreign_model_missing', error_args=error_args) for name, _, error in cls._sql_constraints: if TableHandler.convert_name(name) in str(exception): cls.raise_user_error(error) for name, error in cls._sql_error_messages.items(): if TableHandler.convert_name(name) in str(exception): cls.raise_user_error(error) @classmethod def history_revisions(cls, ids): pool = Pool() ModelAccess = pool.get('ir.model.access') User = pool.get('res.user') cursor = Transaction().connection.cursor() ModelAccess.check(cls.__name__, 'read') table = cls.__table_history__() user = User.__table__() revisions = [] for sub_ids in grouped_slice(ids): where = reduce_ids(table.id, sub_ids) cursor.execute(*table.join(user, 'LEFT', Coalesce(table.write_uid, table.create_uid) == user.id) .select( Coalesce(table.write_date, table.create_date), table.id, user.name, where=where)) revisions.append(cursor.fetchall()) revisions = list(chain(*revisions)) revisions.sort(reverse=True) # SQLite uses char for COALESCE if revisions and isinstance(revisions[0][0], str): strptime = datetime.datetime.strptime format_ = '%Y-%m-%d %H:%M:%S.%f' revisions = [(strptime(timestamp, format_), id_, name) for timestamp, id_, name in revisions] return revisions @classmethod def _insert_history(cls, ids, deleted=False): transaction = Transaction() cursor = transaction.connection.cursor() if not cls._history: return user = transaction.user table = cls.__table__() history = cls.__table_history__() columns = [] hcolumns = [] if not deleted: fields = cls._fields else: fields = { 'id': cls.id, 'write_uid': cls.write_uid, 'write_date': cls.write_date, } for fname, field in sorted(fields.items()): if not field.sql_type(): continue columns.append(Column(table, fname)) hcolumns.append(Column(history, fname)) for sub_ids in grouped_slice(ids): if not deleted: where = reduce_ids(table.id, sub_ids) cursor.execute(*history.insert(hcolumns, table.select(*columns, where=where))) else: if transaction.database.has_multirow_insert(): cursor.execute(*history.insert(hcolumns, [[id_, CurrentTimestamp(), user] for id_ in sub_ids])) else: for id_ in sub_ids: cursor.execute(*history.insert(hcolumns, [[id_, CurrentTimestamp(), user]])) @classmethod def _restore_history(cls, ids, datetime, _before=False): if not cls._history: return transaction = Transaction() cursor = transaction.connection.cursor() table = cls.__table__() history = cls.__table_history__() columns = [] hcolumns = [] fnames = sorted(n for n, f in cls._fields.items() if f.sql_type()) for fname in fnames: columns.append(Column(table, fname)) if fname == 'write_uid': hcolumns.append(Literal(transaction.user)) elif fname == 'write_date': hcolumns.append(CurrentTimestamp()) else: hcolumns.append(Column(history, fname)) def is_deleted(values): return all(not v for n, v in zip(fnames, values) if n not in ['id', 'write_uid', 'write_date']) to_delete = [] to_update = [] for id_ in ids: column_datetime = Coalesce(history.write_date, history.create_date) if not _before: hwhere = (column_datetime <= datetime) else: hwhere = (column_datetime < datetime) hwhere &= (history.id == id_) horder = (column_datetime.desc, Column(history, '__id').desc) cursor.execute(*history.select(*hcolumns, where=hwhere, order_by=horder, limit=1)) values = cursor.fetchone() if not values or is_deleted(values): to_delete.append(id_) else: to_update.append(id_) values = list(values) cursor.execute(*table.update(columns, values, where=table.id == id_)) rowcount = cursor.rowcount if rowcount == -1 or rowcount is None: cursor.execute(*table.select(table.id, where=table.id == id_)) rowcount = len(cursor.fetchall()) if rowcount < 1: cursor.execute(*table.insert(columns, [values])) if to_delete: for sub_ids in grouped_slice(to_delete): where = reduce_ids(table.id, sub_ids) cursor.execute(*table.delete(where=where)) cls._insert_history(to_delete, True) if to_update: cls._insert_history(to_update) @classmethod def restore_history(cls, ids, datetime): 'Restore record ids from history at the date time' cls._restore_history(ids, datetime) @classmethod def restore_history_before(cls, ids, datetime): 'Restore record ids from history before the date time' cls._restore_history(ids, datetime, _before=True) @classmethod def __check_timestamp(cls, ids): transaction = Transaction() cursor = transaction.connection.cursor() table = cls.__table__() if not transaction.timestamp: return for sub_ids in grouped_slice(ids): where = Or() for id_ in sub_ids: try: timestamp = transaction.timestamp.pop( '%s,%s' % (cls.__name__, id_)) except KeyError: continue if timestamp is None: continue sql_type = fields.Char('timestamp').sql_type().base where.append((table.id == id_) & (Extract('EPOCH', Coalesce(table.write_date, table.create_date) ).cast(sql_type) != timestamp)) if where: cursor.execute(*table.select(table.id, where=where, limit=1)) if cursor.fetchone(): raise ConcurrencyException( 'Records were modified in the meanwhile') @classmethod @no_table_query def create(cls, vlist): DatabaseIntegrityError = backend.get('DatabaseIntegrityError') transaction = Transaction() cursor = transaction.connection.cursor() pool = Pool() Translation = pool.get('ir.translation') super(ModelSQL, cls).create(vlist) table = cls.__table__() modified_fields = set() defaults_cache = {} # Store already computed default values new_ids = [] vlist = [v.copy() for v in vlist] for values in vlist: # Clean values for key in ('create_uid', 'create_date', 'write_uid', 'write_date', 'id'): if key in values: del values[key] modified_fields |= set(values.keys()) # Get default values default = [] for f in cls._fields.keys(): if (f not in values and f not in ('create_uid', 'create_date', 'write_uid', 'write_date', 'id')): if f in defaults_cache: values[f] = defaults_cache[f] else: default.append(f) if default: defaults = cls.default_get(default, with_rec_name=False) defaults = cls._clean_defaults(defaults) values.update(defaults) defaults_cache.update(defaults) insert_columns = [table.create_uid, table.create_date] insert_values = [transaction.user, CurrentTimestamp()] # Insert record for fname, value in values.items(): field = cls._fields[fname] if not hasattr(field, 'set'): insert_columns.append(Column(table, fname)) insert_values.append(field.sql_format(value)) try: if transaction.database.has_returning(): cursor.execute(*table.insert(insert_columns, [insert_values], [table.id])) id_new, = cursor.fetchone() else: id_new = transaction.database.nextid( transaction.connection, cls._table) if id_new: insert_columns.append(table.id) insert_values.append(id_new) cursor.execute(*table.insert(insert_columns, [insert_values])) else: cursor.execute(*table.insert(insert_columns, [insert_values])) id_new = transaction.database.lastid(cursor) new_ids.append(id_new) except DatabaseIntegrityError as exception: transaction = Transaction() with Transaction().new_transaction(), \ Transaction().set_context(_check_access=False): cls.__raise_integrity_error( exception, values, transaction=transaction) raise transaction.create_records.setdefault(cls.__name__, set()).update(new_ids) translation_values = {} fields_to_set = {} for values, new_id in zip(vlist, new_ids): for fname, value in values.items(): field = cls._fields[fname] if (getattr(field, 'translate', False) and not hasattr(field, 'set')): translation_values.setdefault( '%s,%s' % (cls.__name__, fname), {})[new_id] = value if hasattr(field, 'set'): args = fields_to_set.setdefault(fname, []) actions = iter(args) for ids, val in zip(actions, actions): if val == value: ids.append(new_id) break else: args.extend(([new_id], value)) if translation_values: for name, translations in translation_values.items(): Translation.set_ids(name, 'model', Transaction().language, list(translations.keys()), list(translations.values())) for fname in sorted(fields_to_set, key=cls.index_set_field): fargs = fields_to_set[fname] field = cls._fields[fname] field.set(cls, fname, *fargs) cls._insert_history(new_ids) field_names = list(cls._fields.keys()) cls._update_mptt(field_names, [new_ids] * len(field_names)) cls.__check_domain_rule(new_ids, 'create') records = cls.browse(new_ids) for sub_records in grouped_slice(records, cache_size()): cls._validate(sub_records) cls.trigger_create(records) return records @classmethod def read(cls, ids, fields_names=None): pool = Pool() Rule = pool.get('ir.rule') Translation = pool.get('ir.translation') ModelAccess = pool.get('ir.model.access') if not fields_names: fields_names = [] for field_name in list(cls._fields.keys()): if ModelAccess.check_relation(cls.__name__, field_name, mode='read'): fields_names.append(field_name) super(ModelSQL, cls).read(ids, fields_names=fields_names) transaction = Transaction() cursor = Transaction().connection.cursor() if not ids: return [] # construct a clause for the rules : domain = Rule.domain_get(cls.__name__, mode='read') fields_related = {} datetime_fields = [] for field_name in fields_names: if field_name == '_timestamp': continue if '.' in field_name: field, field_related = field_name.split('.', 1) fields_related.setdefault(field, []) fields_related[field].append(field_related) else: field = cls._fields[field_name] if hasattr(field, 'datetime_field') and field.datetime_field: datetime_fields.append(field.datetime_field) result = [] table = cls.__table__() in_max = transaction.database.IN_MAX history_order = None history_clause = None history_limit = None if (cls._history and transaction.context.get('_datetime') and not callable(cls.table_query)): in_max = 1 table = cls.__table_history__() column = Coalesce(table.write_date, table.create_date) history_clause = (column <= Transaction().context['_datetime']) history_order = (column.desc, Column(table, '__id').desc) history_limit = 1 columns = [] for f in fields_names + list(fields_related.keys()) + datetime_fields: field = cls._fields.get(f) if field and field.sql_type(): columns.append(field.sql_column(table).as_(f)) elif f == '_timestamp' and not callable(cls.table_query): sql_type = fields.Char('timestamp').sql_type().base columns.append(Extract('EPOCH', Coalesce(table.write_date, table.create_date) ).cast(sql_type).as_('_timestamp')) if len(columns): if 'id' not in fields_names: columns.append(table.id.as_('id')) tables = {None: (table, None)} if domain: tables, dom_exp = cls.search_domain( domain, active_test=False, tables=tables) from_ = convert_from(None, tables) for sub_ids in grouped_slice(ids, in_max): sub_ids = list(sub_ids) red_sql = reduce_ids(table.id, sub_ids) where = red_sql if history_clause: where &= history_clause if domain: where &= dom_exp cursor.execute(*from_.select(*columns, where=where, order_by=history_order, limit=history_limit)) fetchall = list(cursor_dict(cursor)) if not len(fetchall) == len({}.fromkeys(sub_ids)): if domain: where = red_sql if history_clause: where &= history_clause where &= dom_exp cursor.execute(*from_.select(table.id, where=where, order_by=history_order, limit=history_limit)) rowcount = cursor.rowcount if rowcount == -1 or rowcount is None: rowcount = len(cursor.fetchall()) if rowcount == len({}.fromkeys(sub_ids)): cls.raise_user_error('access_error', cls.__name__) cls.raise_user_error('read_error', cls.__name__) result.extend(fetchall) else: result = [{'id': x} for x in ids] cachable_fields = [] for column in columns: # Split the output name to remove SQLite type detection fname = column.output_name.split()[0] if fname == '_timestamp': continue field = cls._fields[fname] if not hasattr(field, 'get'): if getattr(field, 'translate', False): translations = Translation.get_ids( cls.__name__ + ',' + fname, 'model', Transaction().language, ids) for row in result: row[fname] = translations.get(row['id']) or row[fname] if fname != 'id': cachable_fields.append(fname) # all fields for which there is a get attribute getter_fields = [f for f in fields_names + list(fields_related.keys()) + datetime_fields if f in cls._fields and hasattr(cls._fields[f], 'get')] if getter_fields and cachable_fields: cache = transaction.get_cache().setdefault( cls.__name__, LRUDict(cache_size())) for row in result: if row['id'] not in cache: cache[row['id']] = {} for fname in cachable_fields: cache[row['id']][fname] = row[fname] func_fields = {} for fname in getter_fields: field = cls._fields[fname] if isinstance(field, fields.Function): key = (field.getter, getattr(field, 'datetime_field', None)) func_fields.setdefault(key, []) func_fields[key].append(fname) elif getattr(field, 'datetime_field', None): for row in result: with Transaction().set_context( _datetime=row[field.datetime_field]): date_result = field.get([row['id']], cls, fname, values=[row]) row[fname] = date_result[row['id']] else: # get the value of that field for all records/ids getter_result = field.get(ids, cls, fname, values=result) for row in result: row[fname] = getter_result[row['id']] for key in func_fields: field_list = func_fields[key] fname = field_list[0] field = cls._fields[fname] _, datetime_field = key if datetime_field: for row in result: with Transaction().set_context( _datetime=row[datetime_field]): date_results = field.get([row['id']], cls, field_list, values=[row]) for fname in field_list: date_result = date_results[fname] row[fname] = date_result[row['id']] else: getter_results = field.get(ids, cls, field_list, values=result) for fname in field_list: getter_result = getter_results[fname] for row in result: row[fname] = getter_result[row['id']] to_del = set() fields_related2values = {} for fname in list(fields_related.keys()) + datetime_fields: if fname not in fields_names: to_del.add(fname) if fname not in cls._fields: continue if fname not in fields_related: continue fields_related2values.setdefault(fname, {}) field = cls._fields[fname] if field._type in ('many2one', 'one2one'): if hasattr(field, 'model_name'): Target = pool.get(field.model_name) else: Target = field.get_target() if getattr(field, 'datetime_field', None): for row in result: if row[fname] is None: continue with Transaction().set_context( _datetime=row[field.datetime_field]): date_target, = Target.read([row[fname]], fields_related[fname]) target_id = date_target.pop('id') fields_related2values[fname].setdefault(target_id, {}) fields_related2values[ fname][target_id][row['id']] = date_target else: for target in Target.read( [r[fname] for r in result if r[fname]], fields_related[fname]): target_id = target.pop('id') fields_related2values[fname].setdefault(target_id, {}) for row in result: fields_related2values[ fname][target_id][row['id']] = target elif field._type == 'reference': for row in result: if not row[fname]: continue model_name, record_id = row[fname].split(',', 1) if not model_name: continue record_id = int(record_id) if record_id < 0: continue Target = pool.get(model_name) target, = Target.read([record_id], fields_related[fname]) del target['id'] fields_related2values[fname][row[fname]] = target if to_del or fields_related or datetime_fields: for row in result: for fname in fields_related: if fname not in cls._fields: continue field = cls._fields[fname] for related in fields_related[fname]: related_name = '%s.%s' % (fname, related) value = None if row[fname]: if field._type in ('many2one', 'one2one'): value = fields_related2values[fname][ row[fname]][row['id']][related] elif field._type == 'reference': model_name, record_id = row[fname ].split(',', 1) if model_name: record_id = int(record_id) if record_id >= 0: value = fields_related2values[fname][ row[fname]][related] row[related_name] = value for field in to_del: del row[field] return result @classmethod @no_table_query def write(cls, records, values, *args): DatabaseIntegrityError = backend.get('DatabaseIntegrityError') transaction = Transaction() cursor = transaction.connection.cursor() pool = Pool() Translation = pool.get('ir.translation') Config = pool.get('ir.configuration') assert not len(args) % 2 # Remove possible duplicates from all records all_records = list(OrderedDict.fromkeys( sum(((records, values) + args)[0:None:2], []))) all_ids = [r.id for r in all_records] all_field_names = set() # Call before cursor cache cleaning trigger_eligibles = cls.trigger_write_get_eligibles(all_records) super(ModelSQL, cls).write(records, values, *args) table = cls.__table__() cls.__check_timestamp(all_ids) cls.__check_domain_rule(all_ids, 'write', nodomain='write_error') fields_to_set = {} actions = iter((records, values) + args) for records, values in zip(actions, actions): ids = [r.id for r in records] values = values.copy() # Clean values for key in ('create_uid', 'create_date', 'write_uid', 'write_date', 'id'): if key in values: del values[key] columns = [table.write_uid, table.write_date] update_values = [transaction.user, CurrentTimestamp()] store_translation = Transaction().language == Config.get_language() for fname, value in values.items(): field = cls._fields[fname] if not hasattr(field, 'set'): if (not getattr(field, 'translate', False) or store_translation): columns.append(Column(table, fname)) update_values.append(field.sql_format(value)) for sub_ids in grouped_slice(ids): red_sql = reduce_ids(table.id, sub_ids) try: cursor.execute(*table.update(columns, update_values, where=red_sql)) except DatabaseIntegrityError as exception: transaction = Transaction() with Transaction().new_transaction(), \ Transaction().set_context(_check_access=False): cls.__raise_integrity_error( exception, values, list(values.keys()), transaction=transaction) raise for fname, value in values.items(): field = cls._fields[fname] if (getattr(field, 'translate', False) and not hasattr(field, 'set')): Translation.set_ids( '%s,%s' % (cls.__name__, fname), 'model', transaction.language, ids, [value] * len(ids)) if hasattr(field, 'set'): fields_to_set.setdefault(fname, []).extend((ids, value)) field_names = list(values.keys()) cls._update_mptt(field_names, [ids] * len(field_names), values) all_field_names |= set(field_names) for fname in sorted(fields_to_set, key=cls.index_set_field): fargs = fields_to_set[fname] field = cls._fields[fname] field.set(cls, fname, *fargs) cls._insert_history(all_ids) cls.__check_domain_rule(all_ids, 'write') for sub_records in grouped_slice(all_records, cache_size()): cls._validate(sub_records, field_names=all_field_names) cls.trigger_write(trigger_eligibles) @classmethod @no_table_query def delete(cls, records): DatabaseIntegrityError = backend.get('DatabaseIntegrityError') transaction = Transaction() cursor = transaction.connection.cursor() pool = Pool() Translation = pool.get('ir.translation') ids = list(map(int, records)) if not ids: return table = cls.__table__() if transaction.delete and transaction.delete.get(cls.__name__): ids = ids[:] for del_id in transaction.delete[cls.__name__]: for i in range(ids.count(del_id)): ids.remove(del_id) cls.__check_timestamp(ids) cls.__check_domain_rule(ids, 'delete') has_translation = False tree_ids = {} for fname, field in cls._fields.items(): if (isinstance(field, fields.Many2One) and field.model_name == cls.__name__ and field.left and field.right): tree_ids[fname] = [] for sub_ids in grouped_slice(ids): where = reduce_ids(field.sql_column(table), sub_ids) cursor.execute(*table.select(table.id, where=where)) tree_ids[fname] += [x[0] for x in cursor.fetchall()] if (getattr(field, 'translate', False) and not hasattr(field, 'set')): has_translation = True foreign_keys_tocheck = [] foreign_keys_toupdate = [] foreign_keys_todelete = [] for _, model in pool.iterobject(): if callable(getattr(model, 'table_query', None)): continue if not issubclass(model, ModelStorage): continue for field_name, field in model._fields.items(): if (isinstance(field, fields.Many2One) and field.model_name == cls.__name__): if field.ondelete == 'CASCADE': foreign_keys_todelete.append((model, field_name)) elif field.ondelete == 'SET NULL': if field.required: foreign_keys_tocheck.append((model, field_name)) else: foreign_keys_toupdate.append((model, field_name)) else: foreign_keys_tocheck.append((model, field_name)) transaction.delete.setdefault(cls.__name__, set()).update(ids) cls.trigger_delete(records) def get_related_records(Model, field_name, sub_ids): if issubclass(Model, ModelSQL): foreign_table = Model.__table__() foreign_red_sql = reduce_ids( Column(foreign_table, field_name), sub_ids) cursor.execute(*foreign_table.select(foreign_table.id, where=foreign_red_sql)) records = Model.browse([x[0] for x in cursor.fetchall()]) else: with transaction.set_context(active_test=False): records = Model.search([(field_name, 'in', sub_ids)]) return records for sub_ids, sub_records in zip( grouped_slice(ids), grouped_slice(records)): sub_ids = list(sub_ids) red_sql = reduce_ids(table.id, sub_ids) transaction.delete_records.setdefault(cls.__name__, set()).update(sub_ids) for Model, field_name in foreign_keys_toupdate: if (not hasattr(Model, 'search') or not hasattr(Model, 'write')): continue records = get_related_records(Model, field_name, sub_ids) if records: Model.write(records, { field_name: None, }) for Model, field_name in foreign_keys_todelete: if (not hasattr(Model, 'search') or not hasattr(Model, 'delete')): continue records = get_related_records(Model, field_name, sub_ids) if records: Model.delete(records) for Model, field_name in foreign_keys_tocheck: with Transaction().set_context(_check_access=False): if Model.search([ (field_name, 'in', sub_ids), ], order=[]): error_args = Model._get_error_args(field_name) cls.raise_user_error('foreign_model_exist', error_args=error_args) super(ModelSQL, cls).delete(list(sub_records)) try: cursor.execute(*table.delete(where=red_sql)) except DatabaseIntegrityError as exception: transaction = Transaction() with Transaction().new_transaction(): cls.__raise_integrity_error( exception, {}, transaction=transaction) raise if has_translation: Translation.delete_ids(cls.__name__, 'model', ids) cls._insert_history(ids, deleted=True) cls._update_mptt(list(tree_ids.keys()), list(tree_ids.values())) @classmethod def __check_domain_rule(cls, ids, mode, nodomain=None): pool = Pool() Rule = pool.get('ir.rule') table = cls.__table__() cursor = Transaction().connection.cursor() domain = Rule.domain_get(cls.__name__, mode=mode) tables = {None: (table, None)} if domain or nodomain: if domain: tables, dom_exp = cls.search_domain( domain, active_test=False, tables=tables) from_ = convert_from(None, tables) for sub_ids in grouped_slice(ids): sub_ids = list(set(sub_ids)) where = reduce_ids(table.id, sub_ids) if domain: where &= dom_exp cursor.execute(*from_.select(table.id, where=where)) rowcount = cursor.rowcount if rowcount == -1 or rowcount is None: rowcount = len(cursor.fetchall()) if rowcount != len(sub_ids): if domain: cls.raise_user_error('access_error', cls.__name__) else: cls.raise_user_error(nodomain, cls.__name__) @classmethod def search(cls, domain, offset=0, limit=None, order=None, count=False, query=False): pool = Pool() Rule = pool.get('ir.rule') transaction = Transaction() cursor = transaction.connection.cursor() super(ModelSQL, cls).search( domain, offset=offset, limit=limit, order=order, count=count) # Get domain clauses tables, expression = cls.search_domain(domain) # Get order by order_by = [] order_types = { 'DESC': Desc, 'ASC': Asc, } null_ordering_types = { 'NULLS FIRST': NullsFirst, 'NULLS LAST': NullsLast, None: lambda _: _ } if order is None or order is False: order = cls._order for oexpr, otype in order: fname, _, extra_expr = oexpr.partition('.') field = cls._fields[fname] otype = otype.upper() try: otype, null_ordering = otype.split(' ', 1) except ValueError: null_ordering = None Order = order_types[otype] NullOrdering = null_ordering_types[null_ordering] forder = field.convert_order(oexpr, tables, cls) order_by.extend((NullOrdering(Order(o)) for o in forder)) # construct a clause for the rules : domain = Rule.domain_get(cls.__name__, mode='read') if domain: tables, dom_exp = cls.search_domain( domain, active_test=False, tables=tables) expression &= dom_exp main_table, _ = tables[None] table = convert_from(None, tables) if count: cursor.execute(*table.select(Count(Literal('*')), where=expression, limit=limit, offset=offset)) return cursor.fetchone()[0] # execute the "main" query to fetch the ids we were searching for columns = [main_table.id.as_('id')] if (cls._history and transaction.context.get('_datetime') and not query): columns.append(Coalesce( main_table.write_date, main_table.create_date).as_('_datetime')) columns.append(Column(main_table, '__id').as_('__id')) if not query: columns += [f.sql_column(main_table).as_(n) for n, f in cls._fields.items() if not hasattr(f, 'get') and n != 'id' and not getattr(f, 'translate', False) and f.loading == 'eager'] if not callable(cls.table_query): sql_type = fields.Char('timestamp').sql_type().base columns += [Extract('EPOCH', Coalesce(main_table.write_date, main_table.create_date) ).cast(sql_type).as_('_timestamp')] select = table.select(*columns, where=expression, order_by=order_by, limit=limit, offset=offset) if query: return select cursor.execute(*select) rows = list(cursor_dict(cursor, transaction.database.IN_MAX)) cache = transaction.get_cache() if cls.__name__ not in cache: cache[cls.__name__] = LRUDict(cache_size()) delete_records = transaction.delete_records.setdefault(cls.__name__, set()) def filter_history(rows): if not (cls._history and transaction.context.get('_datetime')): return rows def history_key(row): return row['_datetime'], row['__id'] ids_history = {} for row in rows: key = history_key(row) if row['id'] in ids_history: if key < ids_history[row['id']]: continue ids_history[row['id']] = key to_delete = set() history = cls.__table_history__() for sub_ids in grouped_slice([r['id'] for r in rows]): where = reduce_ids(history.id, sub_ids) cursor.execute(*history.select( history.id.as_('id'), history.write_date.as_('write_date'), where=where & (history.write_date != Null) & (history.create_date == Null) & (history.write_date <= transaction.context['_datetime']))) for deleted_id, delete_date in cursor.fetchall(): history_date, _ = ids_history[deleted_id] if isinstance(history_date, str): strptime = datetime.datetime.strptime format_ = '%Y-%m-%d %H:%M:%S.%f' history_date = strptime(history_date, format_) if history_date <= delete_date: to_delete.add(deleted_id) return filter(lambda r: history_key(r) == ids_history[r['id']] and r['id'] not in to_delete, rows) # Can not cache the history value if we are not sure to have fetch all # the rows for each records if (not (cls._history and transaction.context.get('_datetime')) or len(rows) < transaction.database.IN_MAX): rows = list(filter_history(rows)) keys = None for data in islice(rows, 0, cache.size_limit): if data['id'] in delete_records: continue if keys is None: keys = list(data.keys()) for k in keys[:]: if k in ('_timestamp', '_datetime', '__id'): keys.remove(k) continue field = cls._fields[k] if not getattr(field, 'datetime_field', None): keys.remove(k) continue for k in keys: del data[k] cache[cls.__name__].setdefault(data['id'], {}).update(data) if len(rows) >= transaction.database.IN_MAX: if (cls._history and transaction.context.get('_datetime') and not query): columns = columns[:3] else: columns = columns[:1] cursor.execute(*table.select(*columns, where=expression, order_by=order_by, limit=limit, offset=offset)) rows = filter_history(list(cursor_dict(cursor))) return cls.browse([x['id'] for x in rows]) @classmethod def search_domain(cls, domain, active_test=True, tables=None): ''' Return SQL tables and expression Set active_test to add it. ''' transaction = Transaction() domain = cls._search_domain_active(domain, active_test=active_test) if tables is None: tables = {} if None not in tables: if cls._history and transaction.context.get('_datetime'): tables[None] = (cls.__table_history__(), None) else: tables[None] = (cls.__table__(), None) def convert(domain): if is_leaf(domain): fname = domain[0].split('.', 1)[0] field = cls._fields[fname] expression = field.convert_domain(domain, tables, cls) if not isinstance(expression, (Operator, Expression)): return convert(expression) return expression elif not domain or list(domain) in (['OR'], ['AND']): return Literal(True) elif domain[0] == 'OR': return Or((convert(d) for d in domain[1:])) else: return And((convert(d) for d in ( domain[1:] if domain[0] == 'AND' else domain))) expression = convert(domain) if cls._history and transaction.context.get('_datetime'): table, _ = tables[None] expression &= (Coalesce(table.write_date, table.create_date) <= transaction.context['_datetime']) return tables, expression @classmethod def _update_mptt(cls, field_names, list_ids, values=None): cursor = Transaction().connection.cursor() for field_name, ids in zip(field_names, list_ids): field = cls._fields[field_name] if (isinstance(field, fields.Many2One) and field.model_name == cls.__name__ and field.left and field.right): if (values is not None and (field.left in values or field.right in values)): raise Exception('ValidateError', 'You can not update fields: "%s", "%s"' % (field.left, field.right)) # Nested creation require a rebuild # because initial values are 0 # and thus _update_tree can not find the children table = cls.__table__() parent = cls.__table__() cursor.execute(*table.join(parent, condition=Column(table, field_name) == parent.id ).select(table.id, where=(Column(parent, field.left) == 0) & (Column(parent, field.right) == 0), limit=1)) nested_create = cursor.fetchone() if not nested_create and len(ids) < 2: for id_ in ids: cls._update_tree(id_, field_name, field.left, field.right) else: cls._rebuild_tree(field_name, None, 0) @classmethod def _rebuild_tree(cls, parent, parent_id, left): ''' Rebuild left, right value for the tree. ''' cursor = Transaction().connection.cursor() table = cls.__table__() right = left + 1 cursor.execute(*table.select(table.id, where=Column(table, parent) == parent_id)) childs = cursor.fetchall() for child_id, in childs: right = cls._rebuild_tree(parent, child_id, right) field = cls._fields[parent] if parent_id: cursor.execute(*table.update( [Column(table, field.left), Column(table, field.right)], [left, right], where=table.id == parent_id)) return right + 1 @classmethod def _update_tree(cls, record_id, field_name, left, right): ''' Update left, right values for the tree. Remarks: - the value (right - left - 1) / 2 will not give the number of children node ''' cursor = Transaction().connection.cursor() table = cls.__table__() left = Column(table, left) right = Column(table, right) field = Column(table, field_name) cursor.execute(*table.select(left, right, field, where=table.id == record_id)) fetchone = cursor.fetchone() if not fetchone: return old_left, old_right, parent_id = fetchone if old_left == old_right == 0: cursor.execute(*table.select(Max(right), where=field == Null)) old_left, = cursor.fetchone() old_left += 1 old_right = old_left + 1 cursor.execute(*table.update([left, right], [old_left, old_right], where=table.id == record_id)) size = old_right - old_left + 1 parent_right = 1 if parent_id: cursor.execute(*table.select(right, where=table.id == parent_id)) parent_right = cursor.fetchone()[0] else: cursor.execute(*table.select(Max(right), where=field == Null)) fetchone = cursor.fetchone() if fetchone: parent_right = fetchone[0] + 1 cursor.execute(*table.update([left], [left + size], where=left >= parent_right)) cursor.execute(*table.update([right], [right + size], where=right >= parent_right)) if old_left < parent_right: left_delta = parent_right - old_left right_delta = parent_right - old_left left_cond = old_left right_cond = old_right else: left_delta = parent_right - old_left - size right_delta = parent_right - old_left - size left_cond = old_left + size right_cond = old_right + size cursor.execute(*table.update([left, right], [left + left_delta, right + right_delta], where=(left >= left_cond) & (right <= right_cond))) @classmethod def validate(cls, records): super(ModelSQL, cls).validate(records) transaction = Transaction() database = transaction.database connection = transaction.connection has_constraint = database.has_constraint lock = database.lock cursor = transaction.connection.cursor() # Works only for a single transaction ids = list(map(int, records)) for _, sql, error in cls._sql_constraints: if has_constraint(sql): continue table = sql.table if isinstance(sql, (Unique, Exclude)): lock(connection, cls._table) columns = list(sql.columns) columns.insert(0, table.id) in_max = transaction.database.IN_MAX // (len(columns) + 1) for sub_ids in grouped_slice(ids, in_max): where = reduce_ids(table.id, sub_ids) if isinstance(sql, Exclude) and sql.where: where &= sql.where cursor.execute(*table.select(*columns, where=where)) where = Literal(False) for row in cursor.fetchall(): clause = table.id != row[0] for column, operator, value in zip( sql.columns, sql.operators, row[1:]): if value is None: # NULL is always unique clause &= Literal(False) clause &= operator(column, value) where |= clause if isinstance(sql, Exclude) and sql.where: where &= sql.where cursor.execute( *table.select(table.id, where=where, limit=1)) if cursor.fetchone(): cls.raise_user_error(error) elif isinstance(sql, Check): for sub_ids in grouped_slice(ids): red_sql = reduce_ids(table.id, sub_ids) cursor.execute(*table.select(table.id, where=~sql.expression & red_sql, limit=1)) if cursor.fetchone(): cls.raise_user_error(error) def convert_from(table, tables): # Don't nested joins as SQLite doesn't support right, condition = tables[None] if table: table = table.join(right, 'LEFT', condition) else: table = right for k, sub_tables in tables.items(): if k is None: continue table = convert_from(table, sub_tables) return table
[ "davidoff.d777@gmail.com" ]
davidoff.d777@gmail.com
b71eeb68d50f96ca1b3d4b185d6a8abb13b6cd2f
ceecb47aff5436666847866d947cb36438ca409b
/linktv/build/lib/linktv/spiders/linktv.py
08114c7cf7247f38b0f5fdfc5fdbc5e48b7155f4
[]
no_license
jinserk/muffin
87865b829a47dd64fd84734e27ea83d4fcfa0dc5
9aa30bfa35a8a2b1405b62d1f04d5f77194735c1
refs/heads/master
2021-01-12T14:36:06.265577
2017-01-12T19:07:22
2017-01-12T19:07:22
72,035,064
0
0
null
2016-10-26T19:00:10
2016-10-26T19:00:10
null
UTF-8
Python
false
false
1,840
py
# -*- coding: utf-8 -*- from scrapy.spiders import Spider, Rule from scrapy import Selector, Request from linktv.items import LinkTvItem from urllib.parse import unquote programs = [ { "name": "JTBC 뉴스룸", "keyword": "jtbc 뉴스룸", }, { "name": "JTBC 이규연의 스포트라이트", "keyword": "이규연의 스포트라이트", }, { "name": "JTBC 썰전", "keyword": "썰전", }, { "name": "SBS 그것이 알고싶다", "keyword": "그것이 알고 싶다 -", }, ] class LinkTvSpider(Spider): name = "linktv" allowed_domains = ["linktv.us"] def start_requests(self): for program in programs: name = program["name"] url = "http://linktv.us/cast/search/q/1|{}|0/page/1".format(program["keyword"]) yield Request(url=url, meta={'name': name}, callback=self.parse_program) def parse_program(self, response): name = response.meta['name'] hxs = Selector(response) urls = hxs.xpath('//a[@class="list-group-item"]') for url in urls: date = url.xpath('span[@class="pull-right text-muted small"]/em/text()').extract() link = url.xpath("@href").extract() url = 'http://linktv.us{}'.format(''.join(link)) yield Request(url=url, meta={'name': name, 'date':date}, callback=self.parse_link) def parse_link(self, response): name = response.meta['name'] date = response.meta['date'] hxs = Selector(response) urls = hxs.xpath('//a[@class="btn btn-info btn-outline btn-block"]').xpath("@href").extract() links = [unquote(url.split('=')[-1]) for url in urls] item = LinkTvItem() item['name'] = name item['date'] = date item['link'] = links return item
[ "jinserk.baik@gmail.com" ]
jinserk.baik@gmail.com
09fbb02ab8030b7f82df484b5ad485863f4c58ab
da2dd7e904e3bbe9d3b8b13e6fdf3b573f463569
/crypto_tools/mersenne_twister_rng.py
bfcc92de84db98e8b0dc815ce9a2689a1bc59e4c
[]
no_license
c60cb859/cryptopals
35430f87f9dbe9a8817f24aca6dd77cec4c6a01d
8b4202189005943d6b102c5cafa1382a2e1cf191
refs/heads/master
2021-05-26T07:41:38.545991
2020-02-27T11:48:38
2020-02-27T11:48:38
127,932,373
0
0
null
null
null
null
UTF-8
Python
false
false
1,763
py
#!/usr/bin/env python3 class MersenneTwister19937: def __init__(self, seed=5489): (self.w, self.n, self.m, self.r) = (32, 624, 397, 31) self.a = 0x9908B0DF (self.u, self.d) = (11, 0xFFFFFFFF) (self.s, self.b) = (7, 0x9D2C5680) (self.t, self.c) = (15, 0xEFC60000) self.l = 18 self.f = 1812433253 # masks (to apply with an '&' operator) # --------------------------------------- # zeroes out all bits except "the w-r highest bits" # (i.e. with our parameters the single highest bit, since w-r=1) self.high_mask = ((1 << self.w) - 1) - ((1 << self.r) - 1) # zeroes out all bits excepts "the r lowest bits" self.low_mask = (1 << self.r) - 1 self.state = list() self.state.append(seed) for i in range(1, self.n): prev = self.state[-1] # the "& d" is to take only the lowest 32 bits of the result x = (self.f * (prev ^ (prev >> (self.w - 2))) + i) & self.d self.state.append(x) def twist(self, x): if x % 2 == 1: return (x >> 1) ^ self.a return x >> 1 def __iter__(self): return self def __next__(self): while True: x = self.state[self.m] ^ self.twist((self.state[0] & self.high_mask) + (self.state[1] & self.low_mask)) # tempering transform and output y = x ^ ((x >> self.u) & self.d) y = y ^ ((y << self.s) & self.b) y = y ^ ((y << self.t) & self.c) y = y ^ (y >> self.l) # note that it's the 'x' value # that we insert in the state self.state.pop(0) self.state.append(x) return y
[ "theis.christensen@pentest.ngs" ]
theis.christensen@pentest.ngs
73da815963b6122dd39391ee1e80d2ff67b5aa34
1df6bfec4e2edf134f3ae8283707309db06733de
/wsgi.py
a0c796789a151cf5aaf869d2111223942c1a2b84
[]
no_license
stevexxs/pythia
6ec03c62dfd415edcc6aff561021de051a605586
55abe950e4c6ae76b92262f1a1ec419dcf2fdb9b
refs/heads/master
2023-06-04T14:39:27.609006
2019-05-03T07:11:37
2019-05-03T07:11:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
52
py
from frontend import create_app app = create_app()
[ "b.raml@gmx.at" ]
b.raml@gmx.at
938d4d33647520d61fcc953ba447d54b7d39c433
e5262127f206d3be9e5ff8eca492e2486faba664
/tests/test_yggdrasil.py
4a1c1b1efbfc1cd6c2c41f9a5e2d994879caff15
[]
no_license
zerophiel/yggdrasil
49243f05c7db4585a9dbaa4cdeaf9388224dad5c
92306cfb818905f1ebf22b6335499ab8ecbb9e1c
refs/heads/master
2023-02-16T01:10:32.757974
2021-01-05T10:24:55
2021-01-05T10:24:55
326,955,644
3
0
null
null
null
null
UTF-8
Python
false
false
90
py
from yggdrasil import __version__ def test_version(): assert __version__ == '0.1.0'
[ "danuarta.wiratama@gdn-commerce.com" ]
danuarta.wiratama@gdn-commerce.com
8175ba5b64c0cc6a4d580ae71756d221b1c17067
d2781dd08e2daff0c0917c8586d01c68fa930c7b
/absortium/tests/unit/test_withdrawal.py
3774a57ee850fcc6db18224ff363e9cdf24614ff
[]
no_license
absortium/backend
0ce377f987371a3726f5a64caebfd7ed8e257f1b
39bc7118be34db7aefe5f80bd4225a4b22750224
refs/heads/master
2021-01-21T04:39:54.245505
2016-07-23T08:38:35
2016-07-23T08:38:35
55,866,077
0
1
null
2016-07-21T14:54:38
2016-04-09T20:42:15
Python
UTF-8
Python
false
false
3,186
py
__author__ = 'andrew.shvv@gmail.com' from django.contrib.auth import get_user_model from rest_framework.status import HTTP_404_NOT_FOUND from core.utils.logging import getLogger from absortium.tests.base import AbsoritumUnitTest logger = getLogger(__name__) class WithdrawalTest(AbsoritumUnitTest): def setUp(self): super().setUp() self.flush_bitcoin_client_operations() self.flush_ethereum_client_operations() def test_precision_btc(self, *args, **kwargs): account = self.get_account('btc') self.make_deposit(account, "10") self.make_withdrawal(account, "10") self.check_account_amount(account, "0") self.make_deposit(account, "0.1") self.make_withdrawal(account, "0.1") self.check_account_amount(account, "0") def test_precision_eth(self, *args, **kwargs): account = self.get_account('eth') self.make_deposit(account, "10") self.make_withdrawal(account, "10") self.check_account_amount(account, "0") self.make_deposit(account, "0.1") self.make_withdrawal(account, "0.1") self.check_account_amount(account, "0") def test_smaller_than_min(self): account = self.get_account('btc') self.make_deposit(account, "1") with self.assertRaises(AssertionError): self.make_withdrawal(account, "0.000000001") def test_permissions(self, *args, **kwargs): account = self.get_account('btc') self.make_deposit(account) withdrawal = self.make_withdrawal(account) # Create hacker user User = get_user_model() hacker = User(username="hacker") hacker.save() # Authenticate hacker self.client.force_authenticate(hacker) # Try to get withdrawal info from another account url = '/api/withdrawals/{pk}/'.format(pk=withdrawal['pk']) response = self.client.get(url, format='json') self.assertEqual(response.status_code, HTTP_404_NOT_FOUND) def test_withdrawal_without_money(self): account = self.get_account('btc') with self.assertRaises(AssertionError): self.make_withdrawal(account) def test_malformed(self, *args, **kwargs): account = self.get_account('btc') malformed_amount = "asdmnajsid" with self.assertRaises(AssertionError): self.make_withdrawal(account, amount=malformed_amount) malformed_amount = "-1" with self.assertRaises(AssertionError): self.make_withdrawal(account, amount=malformed_amount) def test_send_btc(self, *args, **kwargs): account = self.get_account('btc') self.make_deposit(account, "10") self.make_withdrawal(account, "10") self.check_account_amount(account, "0") self.assertEqual(len(self.get_bitcoin_wallet_operations()), 1) def test_send_eth(self, *args, **kwargs): account = self.get_account('eth') self.make_deposit(account, "10") self.make_withdrawal(account, "10") self.check_account_amount(account, "0") self.assertEqual(len(self.get_ethereum_wallet_operations()), 1)
[ "andrew.shvv@gmail.com" ]
andrew.shvv@gmail.com
698b888ca730050b7d005f2c4393960ce3de2414
7b1ffeb62370b70d5890ec7d2abc6f36f557e2d0
/pygame1.py
fe9c486327f0478b114f8d1de356c4502b8f23f5
[]
no_license
avinash317-tech/Python-Car-Game
fa96eb05458d537b561fa25c47307220a3126b35
b2aa4fe34613037c2338601a68eb2db93357e237
refs/heads/main
2023-08-16T01:02:41.816485
2021-10-18T05:47:29
2021-10-18T05:47:29
418,224,663
0
0
null
null
null
null
UTF-8
Python
false
false
6,153
py
import pygame import time import random pygame.init() ############# crash_sound = pygame.mixer.Sound("crash.wav") ############# display_width = 800 display_height = 600 black = (0, 0, 0) white = (255, 255, 255) red = (200, 0, 0) green = (0, 200, 0) bright_red = (255, 0, 0) bright_green = (0, 255, 0) block_color = (53, 115, 255) car_width = 73 gameDisplay = pygame.display.set_mode((display_width, display_height)) pygame.display.set_caption('A bit Racey') clock = pygame.time.Clock() carImg = pygame.image.load('car2.png') gameIcon = pygame.image.load('car2.png') pygame.display.set_icon(gameIcon) pause = False # crash = True def things_dodged(count): font = pygame.font.SysFont("comicsansms", 25) text = font.render("Dodged: " + str(count), True, black) gameDisplay.blit(text, (0, 0)) def things(thingx, thingy, thingw, thingh, color): pygame.draw.rect(gameDisplay, color, [thingx, thingy, thingw, thingh]) def car(x, y): gameDisplay.blit(carImg, (x, y)) def text_objects(text, font): textSurface = font.render(text, True, black) return textSurface, textSurface.get_rect() def crash(): #################################### pygame.mixer.Sound.play(crash_sound) pygame.mixer.music.stop() #################################### largeText = pygame.font.SysFont("comicsansms", 115) TextSurf, TextRect = text_objects("You Crashed", largeText) TextRect.center = ((display_width / 2), (display_height / 2)) gameDisplay.blit(TextSurf, TextRect) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() button("Play Again", 150, 450, 100, 50, green, bright_green, game_loop) button("Quit", 550, 450, 100, 50, red, bright_red, quitgame) pygame.display.update() clock.tick(15) def button(msg, x, y, w, h, ic, ac, action=None): mouse = pygame.mouse.get_pos() click = pygame.mouse.get_pressed() if x + w > mouse[0] > x and y + h > mouse[1] > y: pygame.draw.rect(gameDisplay, ac, (x, y, w, h)) if click[0] == 1 and action != None: action() else: pygame.draw.rect(gameDisplay, ic, (x, y, w, h)) smallText = pygame.font.SysFont("comicsansms", 20) textSurf, textRect = text_objects(msg, smallText) textRect.center = ((x + (w / 2)), (y + (h / 2))) gameDisplay.blit(textSurf, textRect) def quitgame(): pygame.quit() quit() def unpause(): global pause pygame.mixer.music.unpause() pause = False def paused(): ############ pygame.mixer.music.pause() ############# largeText = pygame.font.SysFont("comicsansms", 115) TextSurf, TextRect = text_objects("Paused", largeText) TextRect.center = ((display_width / 2), (display_height / 2)) gameDisplay.blit(TextSurf, TextRect) while pause: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() button("Continue", 150, 450, 100, 50, green, bright_green, unpause) button("Quit", 550, 450, 100, 50, red, bright_red, quitgame) pygame.display.update() clock.tick(15) def game_intro(): intro = True while intro: for event in pygame.event.get(): # print(event) if event.type == pygame.QUIT: pygame.quit() quit() gameDisplay.fill(white) largeText = pygame.font.SysFont("comicsansms", 115) TextSurf, TextRect = text_objects("A bit Racey", largeText) TextRect.center = ((display_width / 2), (display_height / 2)) gameDisplay.blit(TextSurf, TextRect) button("GO!", 150, 450, 100, 50, green, bright_green, game_loop) button("Quit", 550, 450, 100, 50, red, bright_red, quitgame) pygame.display.update() clock.tick(15) def game_loop(): global pause ############ pygame.mixer.music.load('back1.mp3') pygame.mixer.music.play(-1) ############ x = (display_width * 0.45) y = (display_height * 0.8) x_change = 0 thing_startx = random.randrange(0, display_width) thing_starty = -600 thing_speed = 4 thing_width = 100 thing_height = 100 thingCount = 1 dodged = 0 gameExit = False while not gameExit: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: x_change = -5 if event.key == pygame.K_RIGHT: x_change = 5 if event.key == pygame.K_p: pause = True paused() if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT: x_change = 0 x += x_change gameDisplay.fill(white) things(thing_startx, thing_starty, thing_width, thing_height, block_color) thing_starty += thing_speed car(x, y) things_dodged(dodged) if x > display_width - car_width or x < 0: crash() if thing_starty > display_height: thing_starty = 0 - thing_height thing_startx = random.randrange(0, display_width) dodged += 1 thing_speed += 1 thing_width += (dodged * 1.2) if y < thing_starty + thing_height: print('y crossover') if x > thing_startx and x < thing_startx + thing_width or x + car_width > thing_startx and x + car_width < thing_startx + thing_width: print('x crossover') crash() pygame.display.update() clock.tick(60) game_intro() game_loop() pygame.quit() quit()
[ "noreply@github.com" ]
avinash317-tech.noreply@github.com
7172130cab710add3a596cbcab9a3103ab2dd3ee
40a1ca8ddbdcd96a58703913f98b29b435a42745
/anagram.py
a805ced2f202e63172f8bb33fb011b4b390d8811
[]
no_license
GaganDureja/Algorithm-practice
3eaca2cfc03fcee3671b87b5efda1f950fd36212
d40e08287754594d016801a093becc3f69f4bcc1
refs/heads/master
2023-05-06T11:58:35.471799
2021-06-01T03:49:58
2021-06-01T03:49:58
292,361,813
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
# This problem was asked by Google. # Given a word W and a string S, find all starting indices in S which are anagrams of W. # For example, given that W is "ab", and S is "abxaba", return 0, 3, and 4. def anagram(w,s): res = [] for x in range(len(s)): word = s[x:x+len(w)] if word==w or word==w[::-1]: res.append(x) return res print(anagram('ab','abxaba'))
[ "gagandureja675@gmail.com" ]
gagandureja675@gmail.com
972072b1a04087179602c473ad273ca40eae9021
fd39c53fe453616b0226deebc723c71089cb116f
/app/api/V2/user_model.py
11d6ea8aaedf037381f9fb50983d76d187e240e0
[]
no_license
ogol254/myblog
e31921ba4980d494038b7d71b8f05988a37e39cc
b993da3833a369edb9bc60ba3a98fc5452a01477
refs/heads/master
2020-04-17T04:15:52.290793
2019-02-21T14:49:50
2019-02-21T14:49:50
166,222,061
2
3
null
null
null
null
UTF-8
Python
false
false
1,634
py
from ...database_config import init_db from basemodel import BaseModel class UserModel(BaseModel): """docstring for UserModel""" def __init__(self, name="name", email="email", password="password", username="username"): self.name = name self.email = email self.password = password self.username = username # method to save user data def save(self): user = { "name": self.name, "username": self.username, "email": self.email, "password": self.password } con = init_db() cur = con.cursor() if BaseModel().check_exist('users', 'email', self.email) == True: return "user already exists" query = """ INSERT INTO users (name, username, email, password) VALUES \ ( %(name)s, %(username)s, %(email)s, %(password)s) RETURNING user_id """ cur.execute(query, user) user_id = cur.fetchone()[0] con.commit() con.close() return user_id def logout(self, token): con = init_db() cur = con.cursor() query = "INSERT INTO blacklist (tokens) VALUES ('{}');".format(token) cur.execute(query) con.commit() cur.close() def get_user_by_username(self, username): """return user from the db given a username""" database = init_db() curr = database.cursor() curr.execute( """SELECT user_id, password \ FROM users WHERE username = '%s'""" % (username)) data = curr.fetchone() curr.close() return data
[ "abramogol@gmail.com" ]
abramogol@gmail.com
5b09ee0528a4588f11696753640e5c1ab43f86da
62e08ad817198ec770a2be7e230c4b39902632bf
/DataScienceChallenge6/supermarché/supermarche/supermarche/spiders/superSpider.py
f95e00033f4da7796d15c9c7d48f0ae21b6a4591
[]
no_license
mgirardot/DataScienceChallenges
c13dd04a07329ec2f3405c095ad0376b6e97c7c0
b115b3e74b35593b789a6f1e36d262a0ad798c26
refs/heads/master
2021-01-15T08:49:23.105573
2017-10-09T04:20:22
2017-10-09T04:20:22
68,781,459
1
1
null
null
null
null
UTF-8
Python
false
false
27,538
py
import scrapy from scrapy import Spider from scrapy.selector import Selector from supermarche.items import SupermarcheItem from scrapy.http import HtmlResponse class SupermarcheSpider(Spider): name="supermarche" allowed_domains = [] #urls = ["http://www.750g.com/recettes_plats.htm?page="+str(x) for x in range(2,2186)] start_urls = ["http://courses.carrefour.fr/drive/tous-les-rayons/fruits-et-legumes/fruits/PID0/1785471", "http://courses.carrefour.fr/drive/tous-les-rayons/fruits-et-legumes/legumes/PID0/1785457", "http://courses.carrefour.fr/drive/tous-les-rayons/fruits-et-legumes/fruits-secs-et-legumes-secs/PID0/1785470", "http://courses.carrefour.fr/drive/tous-les-rayons/viandes-et-poissons/rotisserie/PID0/1890458", "http://courses.carrefour.fr/drive/tous-les-rayons/viandes-et-poissons/boucherie/PID0/1785554", "http://courses.carrefour.fr/drive/tous-les-rayons/viandes-et-poissons/volaille/PID0/1785551", "http://courses.carrefour.fr/drive/tous-les-rayons/viandes-et-poissons/poissonnerie/PID0/1785563", "http://courses.carrefour.fr/drive/tous-les-rayons/pains-et-patisserie/boulangerie/PID0/1785573", "http://courses.carrefour.fr/drive/tous-les-rayons/pains-et-patisserie/viennoiserie/PID0/1785574", "http://courses.carrefour.fr/drive/tous-les-rayons/pains-et-patisserie/patisserie/PID0/1785575", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/beurres-et-margarines/PID0/1785213", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/cremes-fraiches/PID0/1785188", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/oeufs/PID0/1785197", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/lait-et-boissons-lactees/PID0/1785205", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/fromages-a-la-coupe/PID0/1785178", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/fromages-d-hiver/PID0/1785187", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/camemberts-coulommiers-et-bries/PID0/1785173", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/fromages-de-caractere/PID0/1879060", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/fromages-rapes/PID0/1785174", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/fromages-enfants/PID0/1785175", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/roqueforts-et-bleus/PID0/1785176", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/chevres-et-brebis/PID0/1785177", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/gruyeres-et-comtes/PID0/1785184", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/gruyeres-et-comtes/PID0/1785184", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/fromages-a-tartiner/PID0/1785185", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/fromages/fromages-en-tranches-pour-salade-et-aperitif/PID0/1785186", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/yaourts/yaourts-nature-et-fromages-blancs/PID0/1785204", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/yaourts/yaourts-aux-fruits-et-aromatises/PID0/1785199", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/yaourts/yaourts-enfants/PID0/1785200", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/yaourts/yaourts-a-boire/PID0/1785201", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/yaourts/yaourts-sante-et-minceur/PID0/1785202", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/yaourts/yaourts-bio-et-soja/PID0/1785203", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/desserts/cremes-desserts/PID0/1785193", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/desserts/mousses-et-liegeois/PID0/1785194", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/desserts/flans-riz-et-semoule/PID0/1785195", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/desserts/desserts-patissiers/PID0/1785196", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/compotes-fraiches/PID0/1785211", "http://courses.carrefour.fr/drive/tous-les-rayons/cremerie/jus-de-fruits-frais/PID0/1785212", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/charcuterie/charcuterie-a-la-coupe/PID0/1785093", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/charcuterie/foies-gras-rillettes-et-pates/PID0/1785092", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/charcuterie/jambons-blancs/PID0/1785097", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/charcuterie/jambons-de-volaille/PID0/1785098", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/charcuterie/jambons-crus-et-charcuterie-tranchee/PID0/1785099", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/charcuterie/lardons-et-des/PID0/1785100", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/charcuterie/knacks/PID0/1785101", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/charcuterie/saucisses-et-boudins/PID0/1785102", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/charcuterie/saucissons/PID0/1785103", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/traiteur/saveurs-d-asie/PID0/2047958", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/traiteur/traiteur-traditionnel/PID0/1785074", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/traiteur/aperitif-dinatoire/PID0/1785080", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/traiteur/crudites-et-taboules/PID0/1785081", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/traiteur/snacks-croques-et-galettes/PID0/1785082", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/traiteur/plats-cuisines-et-soja/PID0/1785083", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/traiteur/pizza-et-quiches/PID0/1785071", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/traiteur/cordons-bleus-et-nuggets/PID0/1785072", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/traiteur/pates-fraiches-et-gnocchis/PID0/1785073", "http://courses.carrefour.fr/drive/tous-les-rayons/charcuterie-traiteur/traiteur/pates-a-tartes/PID0/1785079", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/aperitifs-entrees-et-snacks/PID0/1785225", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/pizzas-et-tartes/PID0/1785237", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/plats-cuisines/PID0/1785243", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/legumes-et-frites/PID0/1785221", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/steaks-haches/PID0/1785235", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/panes-et-volailles/PID0/1785236", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/poissons/PID0/1785238", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/patisseries-surgelees/PID0/1785218", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/glaces/cremes-glacees-et-sorbets-en-bac/PID0/1785230", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/glaces/pots-de-glace/PID0/1785231", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/glaces/cones-et-batonnets/PID0/1785232", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/glaces/barres-glacees/PID0/1785233", "http://courses.carrefour.fr/drive/tous-les-rayons/surgeles/glaces/glaces-enfant/PID0/1785234", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pour-l-aperitif/chips/PID0/1785313", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pour-l-aperitif/biscuits-aperitif/PID0/1785314", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pour-l-aperitif/cacahuetes-pistaches-/PID0/1785315", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pour-l-aperitif/olives-et-tartinables/PID0/1785316", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/soupes-et-croutons/briques/PID0/1785287", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/soupes-et-croutons/soupes-deshydratees/PID0/1785288", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/soupes-et-croutons/croutons-et-accompagnements/PID0/1785289", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/les-plats-cuisines/plats-individuels/PID0/1785306", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/les-plats-cuisines/raviolis-et-pates/PID0/1785302", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/les-plats-cuisines/couscous-et-taboules/PID0/1785303", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/les-plats-cuisines/cassoulets/PID0/1785304", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/les-plats-cuisines/cassoulets/PID0/1785304", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/les-plats-cuisines/choucroutes-petits-sales-etc-/PID0/1785305", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/conserves-de-legumes/mais-asperges-palmiers-/PID0/1785281", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/conserves-de-legumes/ratatouilles-et-legumes-cuisines/PID0/1785282", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/conserves-de-legumes/champignons-et-tomates/PID0/1785283", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/conserves-de-legumes/flageolets-et-legumes-secs/PID0/1785284", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/conserves-de-legumes/petits-pois-et-jardinieres/PID0/1785278", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/conserves-de-legumes/haricots-verts-et-legumes-verts/PID0/1785279", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/conserves-de-legumes/salsifis-marrons-et-autres-legumes/PID0/1785280", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/conserves-de-poisson/thon/PID0/1785274", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/conserves-de-poisson/sardines-et-maquereaux/PID0/1785275", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/conserves-de-poisson/autres-conserves-de-la-mer/PID0/1785276", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/conserves/pates-et-foies-gras/PID0/1785285", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pates-et-sauces-pour-les-pates/pates-longues-spaghettis-tagliatelles-etc-/PID0/1785292", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pates-et-sauces-pour-les-pates/pates-longues-spaghettis-tagliatelles-etc-/PID0/1785292", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pates-et-sauces-pour-les-pates/pates-courtes-coquillettes-tortis-etc-/PID0/1785293", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pates-et-sauces-pour-les-pates/pates-a-farcir-lasagnes-canellonis-etc-/PID0/1785294", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pates-et-sauces-pour-les-pates/pates-cuisson-rapide/PID0/1785295", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pates-et-sauces-pour-les-pates/sauces-pour-les-pates/PID0/1785291", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/riz-puree-ble-et-semoule/riz/PID0/1785250", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/riz-puree-ble-et-semoule/sachets-express/PID0/1785251", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/riz-puree-ble-et-semoule/purees/PID0/1785252", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/riz-puree-ble-et-semoule/ble-semoule-et-legumes-secs/PID0/1785253", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/huiles-d-olive/PID0/1785266", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/huile-tournesol-friture-/PID0/1785268", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/vinaigres/PID0/1785270", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/vinaigrettes-et-jus-de-citron/PID0/1785271", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/cornichons-olives-et-condiments/PID0/1785258", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/moutardes/PID0/1785262", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/ketchup-mayonnaises-et-sauces-froides/PID0/1785263", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/burger-bbq-samourai/PID0/1785264", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/sauces-pour-les-pates-et-le-riz/PID0/1785265", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/concentres-et-coulis-de-tomate/PID0/1785267", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/huiles-vinaigres-condiments-et-sauces/bechamels-et-sauces-a-napper/PID0/1785269", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/epices-et-aides-culinaires/sel-et-poivre/PID0/1785308", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/epices-et-aides-culinaires/epices-et-herbes/PID0/1785309", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/epices-et-aides-culinaires/bouillons-et-fonds-de-sauce/PID0/1785310", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/epices-et-aides-culinaires/fecule-et-chapelure/PID0/1785311", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/pains-de-mie/PID0/1785254", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/produits-du-monde/mediterranee/PID0/1785298", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/produits-du-monde/tex-mex-et-usa/PID0/1785299", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/produits-du-monde/asie/PID0/1785300", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-salee/produits-du-monde/halal/PID0/1785297", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/bonbons-et-chocolats/tablettes-chocolat-au-lait-et-blanc/PID0/1785375", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/bonbons-et-chocolats/tablettes-chocolat-noir/PID0/1785376", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/bonbons-et-chocolats/tablettes-chocolat-patissier/PID0/1785377", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/bonbons-et-chocolats/tablettes-chocolat-patissier/PID0/1785377", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/bonbons-et-chocolats/confiseries-chocolatees/PID0/1785378", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/bonbons-et-chocolats/bonbons/PID0/1785381", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/bonbons-et-chocolats/chewings-gums-et-confiseries-de-poche/PID0/1785383", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/cereales-enfants/PID0/1785322", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/cereales-adultes/PID0/1785323", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/mueslis-et-avoines/PID0/2203708", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/barres-cereales/PID0/1785324", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/biscuits-petit-dejeuner/PID0/1785325", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/assortiment-viennoiseries/PID0/1785326", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/biscottes-pains-grilles-et-galettes/PID0/1785327", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/pain-de-mie/PID0/1785328", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/viennoiseries/PID0/2203709", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/confitures/PID0/1785329", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/petit-dejeuner/pates-a-tartiner-et-miels/PID0/1785319", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/cafes-et-thes/cafes-moulus-et-en-grains/PID0/1785348", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/cafes-et-thes/cafes-dosettes/PID0/1785350", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/cafes-et-thes/cafes-solubles-et-capuccinos/PID0/1785343", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/cafes-et-thes/filtres-et-detartrants/PID0/1785344", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/cafes-et-thes/thes/PID0/1785345", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/cafes-et-thes/infusions/PID0/1785346", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/cafes-et-thes/chocolats-en-poudre/PID0/1785347", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/cafes-et-thes/laits-en-poudre-et-concentres/PID0/1785349", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/biscuits-au-chocolat-ou-a-la-vanille/PID0/1785367", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/biscuits-aux-fruits/PID0/1785357", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/biscuits-petit-dejeuner/PID0/1785358", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/cookies/PID0/1785359", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/petits-beurres-et-biscuits-secs/PID0/1785360", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/assortiment-de-biscuits-et-miniardises/PID0/1785361", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/barres-de-cereales-et-chocolatees/PID0/1785362", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/barres-de-cereales-et-chocolatees/PID0/1785362", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/madeleines/PID0/1785363", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/quatre-quarts-et-pains-d-epices/PID0/2203714", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/marbre-et-brownies/PID0/2203715", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/marbre-et-brownies/PID0/2203715", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/gouters-pockets/PID0/2203716", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/biscuits-et-gateaux/biscuits-bio-et-dietetiques/PID0/1785366", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/compotes-fruits-au-sirop-et-cremes-desserts/compotes/PID0/1785333", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/compotes-fruits-au-sirop-et-cremes-desserts/fruits-au-sirop/PID0/1785334", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/compotes-fruits-au-sirop-et-cremes-desserts/cremes-dessert/PID0/1785335", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/sucres-farines-et-preparation-gateaux/sucres-et-edulcorants/PID0/1785337", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/sucres-farines-et-preparation-gateaux/farines/PID0/1785338", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/sucres-farines-et-preparation-gateaux/preparation-pour-gateaux-et-flans/PID0/1785339", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/sucres-farines-et-preparation-gateaux/aide-a-la-patisserie/PID0/1785340", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/dietetique/sans-gluten/PID0/1785370", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/dietetique/biscuits-galettes-et-cereales/PID0/2203721", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/dietetique/boissons/PID0/2203722", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/dietetique/thes-et-infusions/PID0/2203719", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/dietetique/edulcorants/PID0/2203720", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/dietetique/repas-minceur-et-barres/PID0/1785371", "http://courses.carrefour.fr/drive/tous-les-rayons/epicerie-sucree/dietetique/complements-alimentaires/PID0/1785372", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/eaux/PID0/1785594", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/laits/PID0/2182158", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/jus-de-fruits/jus-d-orange/PID0/1785628", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/jus-de-fruits/jus-de-pamplemousse-agrumes/PID0/2182175", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/jus-de-fruits/jus-multifruits/PID0/1785629", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/jus-de-fruits/jus-de-pommes-et-raisins/PID0/1785624", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/jus-de-fruits/ananas-et-autres-jus-de-fruits/PID0/1785625", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/jus-de-fruits/formats-pockets/PID0/1785626", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/jus-de-fruits/jus-de-tomates-et-legumes/PID0/1785627", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/jus-de-fruits/jus-de-fruits-frais/PID0/2182176", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/colas-et-boissons-gazeuses/PID0/1785589", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/boissons-aux-fruits-et-thes-glaces/PID0/1785630", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/cave-a-vins/vins-rouges/bordeaux-et-sud-ouest/PID0/1785610", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/cave-a-vins/vins-rouges/vallee-du-rhone/PID0/1785611", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/cave-a-vins/vins-rouges/bourgogne-et-beaujolais/PID0/1785612", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/cave-a-vins/vins-rouges/languedoc-provence-et-autres/PID0/1785613", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/cave-a-vins/vins-rouges/languedoc-provence-et-autres/PID0/1785613", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/cave-a-vins/vins-rouges/vins-de-pays-et-vins-de-table-rouge/PID0/2182170", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/cave-a-vins/vins-blancs/PID0/1785599", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/cave-a-vins/vins-roses/PID0/1785605", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/cave-a-vins/fontaines-a-vin/PID0/2182169", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/cave-a-vins/vins-etrangers/PID0/2182171", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/champagnes-et-vins-petillants/PID0/1785633", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/bieres-et-cidres/bieres-blondes-rafraichissantes/PID0/1785584", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/bieres-et-cidres/bieres-blanches-et-aromatisees/PID0/1785585", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/bieres-et-cidres/bieres-de-degustation/PID0/1785586", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/bieres-et-cidres/bieres-sans-alcool-et-panaches/PID0/1785587", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/bieres-et-cidres/cidres/PID0/1785588", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/bieres-et-cidres/futs-pression/PID0/2182166", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/aperitifs-et-alcools/whisky/PID0/1785621", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/aperitifs-et-alcools/pastis-anises/PID0/1785622", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/aperitifs-et-alcools/vin-doux-portos-amers/PID0/1785615", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/aperitifs-et-alcools/rhums/PID0/1785616", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/aperitifs-et-alcools/vodkas-gins-et-tequila/PID0/1785617", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/aperitifs-et-alcools/punch-et-cocktails/PID0/1785618", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/aperitifs-et-alcools/liqueurs-et-digestifs/PID0/1785619", "http://courses.carrefour.fr/drive/tous-les-rayons/boissons-et-cave-a-vins/aperitifs-et-alcools/aperitifs-sans-alcool/PID0/1785620" ] def parse(self, response): self.log('parsing details of: %s' % response.url) try: hxs = Selector(response) #open items item = SupermarcheItem() #collect marques = hxs.xpath("//body/div[@id='allContainer']/div[@id='cf-main']/div[@id='Frame1']/div[@id='cf-mainWrap1']/div[@id='cf-mainWrap2']/div[@id='cf-mainWrap3']/div[@id='cf-mainWrap4']/div[@id='sub-main']/div[@class='gridTwoLeft']/div[@class='wrapper clearfix']/div[@class='content']/div[@class='content t-zone']/div[@class='table productList']/ul/li[@class='product']/div[@class='productWrap ']/div[@class='productHead']/h3/a/span/text()").extract() quantites = hxs.xpath("//body/div[@id='allContainer']/div[@id='cf-main']/div[@id='Frame1']/div[@id='cf-mainWrap1']/div[@id='cf-mainWrap2']/div[@id='cf-mainWrap3']/div[@id='cf-mainWrap4']/div[@id='sub-main']/div[@class='gridTwoLeft']/div[@class='wrapper clearfix']/div[@class='content']/div[@class='content t-zone']/div[@class='table productList']/ul/li[@class='product']/div/div[@class='productMain clearfix']/div[@class='specs priceSpecs']/span[@class='unit']/text()").extract() for i in range(len(marques)): item['marque'] = marques[i] item['quantite'] = quantites[i] yield item except AttributeError: self.log('No data to extract from : %s' % response.url)
[ "michael.girardot@seekpeak-bioinformatics.com" ]
michael.girardot@seekpeak-bioinformatics.com
19008f4be538236c43a869bb96bc9f4d0daba38c
ced144c64a0c14fef118fe5f065c314b7086e254
/dmart_01/manage.py
f5009bc2a34d4dca431c84d675615630bc33aa7c
[]
no_license
MaheshwaraVaijapur/dmat_sep_2019
b65894a8f445ba7db449a8d2e37ac55208d80859
2f45810afa2ea2390fe4d7c267acb2b010439f77
refs/heads/master
2020-08-01T19:40:14.455945
2019-09-26T13:20:27
2019-09-26T13:20:27
211,095,095
0
0
null
null
null
null
UTF-8
Python
false
false
649
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dmart_01.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "maheshbca2010@gmail.com" ]
maheshbca2010@gmail.com
1d842b90bbd62ad9a447dee16b344d98a669de77
e115b66c4424847b54a860b977ceebe1904ba056
/account/urls.py
9ddca5f881abe25c3600af336e352412be80ae3c
[]
no_license
godwon2095/class_lion_blog
f569eb743bf57c1a2c09e50d48fd3e17d42cf27a
2659f2aaea9d542ce64d3f28530ca3c30fe82cfb
refs/heads/master
2020-04-26T18:36:16.295572
2019-03-06T15:46:20
2019-03-06T15:46:20
173,749,138
0
0
null
null
null
null
UTF-8
Python
false
false
245
py
from django import contrib from django.urls import path from . import views urlpatterns = [ path('sign_up/', views.sign_up, name="sign_up"), path('login/', views.login, name="login"), path('logout/', views.logout, name="logout"), ]
[ "jsw2095@naver.com" ]
jsw2095@naver.com
be40302caea9f370748207f19aff7057559d9750
b054e40b3d075608dba92900297d540fd2003388
/carshare/migrations/0011_remove_booking_ended.py
0d609ef9e8eb7e41c86ba05eb42d2e769e8de965
[]
no_license
Plonq/vroom-car-share
baf90ddb216560e11e3aba0b5ee2986632dfd55c
972030d9c570e68b2ff11092192bba3ea18d39f1
refs/heads/master
2021-03-19T15:26:15.539797
2018-04-02T23:03:44
2018-04-02T23:03:44
102,409,040
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-10-23 02:04 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('carshare', '0010_auto_20171020_1002'), ] operations = [ migrations.RemoveField( model_name='booking', name='ended', ), ]
[ "s3527782@student.rmit.edu.au" ]
s3527782@student.rmit.edu.au
9ee8a0be78745b7d81f293379b4dcffea3619463
23c4ada084136d0924c4b2c7ca27df5bdc52a01c
/tkping/giftool.py
ee2b0e58f73f412c84e3fbd215ac00254e7a2a5e
[]
no_license
feht34/python-sample
bc3715ca75134f179cc35682be0079fccc92e890
471d49ef3ef2f16ca7bf968ab3a0b944b1c2edc4
refs/heads/master
2021-01-20T06:57:21.771363
2015-04-21T04:14:08
2015-04-21T04:14:08
31,693,353
0
0
null
null
null
null
UTF-8
Python
false
false
1,915
py
__author__ = 'tieh' import tkinter as tk GIFSTART = \ 'R0lGODlhIAAgAPQAAP9rAP9rAf9xCv9yDP90EP92E/93Fv94Fv+BJv+IM/+ZT/+aUf+gW/+vdv+xeP+0fv+3hP+4hP+5hv+7if/F'\ 'm//Rr//dxP/dxf/exv/v5P/27//28P/48v/7+P/+/QAAACH5BAEAAB8ALAAAAAAgACAAAAWr4CeOZGmeaKqqldO8cCzPslN9D6Dv'\ 'fO//ukcBICgYj8ikMikADAGTlXQ04UWn0uruilVpddwu6gsVe60pTGSDJYdLC8CB4smiUYpdArNyp/I7AQwZKX54PgMRHSeGJ4A+'\ 'CBwmjSZxP5GTd46IioyaJo86g4WfJY97faUkcQV0dltpEGxTlGYltbZUqrkfuLy+uVpDRUvFxgVNBTlAzM1BHy000tMvNrzX2CIh'\ 'ADs=' GIFSTOP = \ 'R0lGODlhIAAgAPIAAP9rAP+CJ/+DKv/EmQAAAAAAAAAAAAAAACH5BAEAAAQALAAAAAAgACAAAANiSLrc/jDKSau9OOsNhwhgKI6B'\ 'MFACoK5suwpU4M5tENM4YE9yPu+Snq92GxJ5xmMwyQJGhEwnBJqUPqhGqwM71Da4Pi8DnBMvyDizAk1TE9g/FPNF8ZDuIRNnz+/7'\ '/4CBEgkAOw==' def showgif(): root = tk.Tk() p = tk.PhotoImage(data=GIF) l = tk.Label(image=p) l.pack() root.mainloop() def b64gif(): import base64 with open(r'e:\mat\icon\iconsplace\aqua-view-details-32.gif', 'rb') as f: sb64 = base64.b64encode(f.read()).decode() for i in range(0, len(sb64), 100): print(" '%s'\\" % sb64[i:i+100]) class ImgBtton(tk.Button): def __init__(self, master=None, *args, **kw): tk.Button.__init__(self, master, *args, **kw) self.config(relief=tk.FLAT) self.config(cursor='hand2') self.config(compound='left') self.bind('<Enter>', self.onenter) self.bind('<Leave>', self.onleave) self.oldbg = self.cget('bg') def onenter(self, event): self.config(bg='#3385FF') def onleave(self, event): self.config(bg=self.oldbg) def showbutton(): root = tk.Tk() p = tk.PhotoImage(data=GIFSTOP) btn = ImgBtton(root, text='Start', image=p) btn.pack() root.mainloop() if __name__ == '__main__': #showgif() b64gif() #showbutton()
[ "feht@163.com" ]
feht@163.com
678429b9b73a52b1c7a0a63b74d9de48672c29ec
f47629de7b55945c8e686a201f635b9d66523605
/keras-pipeline.py
527f018e2ebba88b34074ec269e96dfc860af9aa
[]
no_license
skrillberg/DTSL
a71e7469acbc479c216612cc4189d81024ed069f
f8994fef1f680474df3ba5399b4e87a10398e848
refs/heads/master
2021-08-30T04:22:08.153110
2017-12-16T01:10:49
2017-12-16T01:10:49
109,423,456
0
1
null
null
null
null
UTF-8
Python
false
false
8,284
py
import pandas as pd import numpy as np import matplotlib.pyplot as plt import os.path import datetime as dt import keras from keras.layers.advanced_activations import LeakyReLU from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM import sklearn as sk import sklearn.preprocessing as proc from keras.utils import plot_model import pydot import tensorflow as tf import graphviz # this function expands the data so the lstm is fed short time series sequences def expand_data(xdata,timesteps): data_shape=(xdata.shape[0],timesteps,xdata.shape[1]) # define shape of expanded data to include repeated timesteps x_large = np.zeros(data_shape) for i in range(timesteps,xdata.shape[0]-1): for j in range(0,timesteps): x_large[i,j,:]=xdata[i-timesteps+j,:] #x_large[i,j,:]=xdata[i-j,:] # reversed version return x_large #cleans data by dropping features and creating year, day, hour features and creating y-labels def clean_data(data): drop_features=['PCP06','PCP24','SKC','GUS'] # drop dirty or non-important data columns data_pruned=data.drop(drop_features, axis=1) data_pruned['DateTime']=pd.to_datetime(data_pruned['DateTime']) # cast the date time column to datetime format data_pruned=data_pruned.set_index('DateTime') #sets index as a datetime index data_pruned['DateTime']=data_pruned.index # datetime column is also set to index, i had to do this because DateTime was removed by set_index data_resampled=data_pruned.resample('H').mean() # resample data by the hour data_resampled=data_resampled.fillna(method='pad') # fills empty values by filling in with previous values. this needs to be improved data_resampled['DateTime']=data_resampled.index #creates a DateTime column from the datetime index #add columns for year, year day, and hour data_resampled['year'] = data_resampled['DateTime'].apply(lambda x: x.timetuple().tm_year-2014) data_resampled['y_day'] = data_resampled['DateTime'].apply(lambda x: x.timetuple().tm_yday) data_resampled['hour'] = data_resampled['DateTime'].apply(lambda x: x.timetuple().tm_hour) data_resampled=data_resampled.drop('DateTime',axis=1) #drop the datetime column #shifting data to create y labels shifted_realtime=data_resampled[['HB_NORTH_RealTime','LZ_RAYBN_RealTime']].shift(-1,freq='24H') #shifts grid data forward 24 hours shifted_realtime.columns=['HB_NORTH_24H','LZ_RAYBN_24H'] # names columns #merge input data with y labels to create a full dataset full_data=pd.merge(data_resampled,shifted_realtime,how='inner',left_index=True,right_index=True) full_data=full_data.fillna(0) #fill nas with 0 print(full_data.columns) full_data=full_data.drop(['EB1_MNSES_RealTime','Unnamed: 0','USAF'],axis=1) return full_data #function that takes a cleaned dataframe that includes y labels and outputs scaled and normalized #data that is in the correct format for keras LSTM. Also splits test data def preprocess_data(data,lookback): return (x_train,y_train,x_test,y_test) #####################Loading and Cleaning Data ############################### ############################################################################## #data=pd.read_csv('../merged_grid_and_weather.csv') # reads merged data data=pd.read_csv('../all_the_data.csv') # reads merged data full_data=clean_data(data) new_data=full_data[['HB_NORTH_RealTime','LZ_RAYBN_RealTime','PCP01','TEMP','GasSpotPrice', 'GasPriceDailyVariation', 'GasTradedVolume', 'OilBarrelPrice', 'year', 'y_day', 'hour', 'HB_NORTH_24H', 'LZ_RAYBN_24H']] ################### Reshaping data so it is compatible with keras ################################ ################################################################################################## scale=1 # reshape data timesteps=1; #leave this as 1 for now lookback=1 #the number of hours in the past that the lstm looks at time=full_data.index #create an index for time that we can use to plot things x_train=new_data.drop(['HB_NORTH_24H','LZ_RAYBN_24H'],axis=1) # create training data scaler=proc.StandardScaler().fit(x_train) #x_train=proc.scale(x_train,axis=0) #scale data so it is zero mean and unit variance x_train=scaler.transform(x_train) #x_train=proc.normalize(x_train,axis=0) #normalize data so it is u x_train=x_train[:24000,:]/scale # only data datapoints up to hour 24000 #TODO: save normalization and scaler so we can apply it consistently to test data y_train=full_data[['HB_NORTH_24H','LZ_RAYBN_24H']] # create y_train data #expand data so its dimensions are nsamples X lookback X features newData=expand_data(x_train,lookback) # #x_train=x_train.reshape(x_train.shape[0]/timesteps,timesteps,x_train.shape[1]) y_train=y_train.as_matrix() # cast as a ndarray #scale and normalize y_train #y_train=proc.scale(np.nan_to_num(y_train),axis=0) scaler2=proc.StandardScaler().fit(y_train) y_train=scaler2.transform(np.nan_to_num(y_train)) #y_train=proc.normalize(np.nan_to_num(y_train),axis=0) #set the point where samples are split for testing and training test_split=5000 y=y_train/scale #save y_train in another variable, sorry this is confusing and not good practice y_train=y[lookback:test_split,:] #takes a splice of y to create the ytrain data y_test=y[test_split:24000,:] #creat ytest # split data x_train=newData[lookback:test_split,:,:] x_test=newData[test_split:24000,:,:] ################## Keras Neural Network Design, Training, and Prediction ###################################################### ############################################################################################################################### # design network input_shape=(x_train.shape[1], x_train.shape[2]) model = Sequential() #network layers########################### model.add(LSTM(25,return_sequences=True,input_shape=input_shape,activation='selu')) #model.add(keras.layers.LeakyReLU()) model.add(LSTM(10)) model.add(keras.layers.LeakyReLU(alpha=0.3)) model.add(Dense(10)) model.add(keras.layers.LeakyReLU(alpha=0.3)) model.add(Dense(5)) model.add(keras.layers.LeakyReLU(alpha=0.3)) #model.add(keras.layers.LeakyReLU(alpha=0.3)) model.add(Dense(2)) model.add(keras.layers.LeakyReLU(alpha=0.3)) #model.add(keras.layers.LeakyReLU(alpha=0.3)) #network compiling######################### model.compile(loss='mae', optimizer='adam') #fit network history = model.fit(x_train, y_train[0::timesteps], epochs=50, batch_size=1000, validation_split=0.1,verbose=2, shuffle=False) # plot history #plt.plot(history.history['loss'], label='train') #plt.plot(history.history['val_loss'], label='test') #plot_model(model, to_file='model.png',show_shapes=True) #predct and plot data####################### yhat=model.predict(x_train,batch_size=x_train.shape[0]) yhat_test=model.predict(x_test,batch_size=x_test.shape[0]) plt.plot(time[lookback:test_split],y_train[:,0],time[lookback:test_split],yhat[:,0]) plt.figure() plt.plot(time[test_split:24000],scaler2.inverse_transform(y_test*scale)[:,0],time[test_split:24000],scaler2.inverse_transform(yhat_test*scale)[:,0],time[test_split:24000],full_data['HB_NORTH_DayAhead'].as_matrix()[test_split+24:24000+24]) plt.legend() #############plot error###################### error = (scaler2.inverse_transform(scale* yhat_test)[:,0]-scaler2.inverse_transform(scale* y_test)[:,0]) industry_pred_error = (full_data['HB_NORTH_DayAhead'].as_matrix()[test_split:24000] - full_data['HB_NORTH_RealTime'].as_matrix()[test_split:24000] ) plt.figure() plt.hist(error,bins='auto') plt.hist(industry_pred_error,bins='auto') #plt.plot(industry_pred_error) print( np.mean(np.abs(industry_pred_error)) ) print( np.mean(np.abs(error))) with tf.Session(): print(keras.losses.mean_absolute_percentage_error(yhat_test[:,0],y_test[:,0]).eval()) print(keras.losses.mean_absolute_percentage_error(yhat_test[:,0],y_test[:,0]).eval()) percent_error = ( yhat_test[:,0] - y_test[:,0] ) / y_test[:,0] print(np.mean(np.abs(percent_error))) #plt.figure() #plt.plot(error) plt.figure() plt.plot(percent_error) #plt.figure() #plt.hist(percent_error,bins='auto') plt.show()
[ "brian.kilberg@gmail.com" ]
brian.kilberg@gmail.com
a82788b8e5de0a6b7d3b686e334b982166d16950
543fd700f68d778e515cef372622091d9598ed53
/gym_virtual_office/envs/__init__.py
93c354afb1b988be1e2d0f94ede6fb60f5535649
[]
no_license
gravesec/gym-virtual-office
f964dbf24ee030769de409bc62aed35f3c6d4c92
033c91bad5dd74ecfd681eee88dab214e8dbfded
refs/heads/main
2023-03-16T11:45:49.166798
2021-03-02T20:29:52
2021-03-02T20:29:52
310,744,005
1
0
null
null
null
null
UTF-8
Python
false
false
72
py
from gym_virtual_office.envs.virtual_office_env import VirtualOfficeEnv
[ "graves@ualberta.ca" ]
graves@ualberta.ca
2c04b37f2803ad958fabfab7ebe717d712fcdb86
7b8ff0f8642fcb2cfbe75cae2c19b82ee0f765de
/torch_code/seg_of_rectum/div_of_regtum/emb_train.py
99ace8cfbd042f7feddee4a18070a8dba58aeaa0
[]
no_license
Moeo3/nevertrustanyone
9c8b5f6aa410a88dc547e922b2f144a095fa3fc9
b957b5d34d311e602c1ab8af306081ae0c4b765e
refs/heads/master
2023-02-15T20:01:17.380376
2021-01-10T18:15:23
2021-01-10T18:15:23
325,161,965
0
0
null
null
null
null
UTF-8
Python
false
false
3,972
py
from dice_loss import DiceLoss from unet import UNet from emb_dataset import EmbDataset import torch from torch.optim import Adam from torch.optim.lr_scheduler import StepLR import os from torch.utils.data import DataLoader import xlwt from torch.nn import BatchNorm2d, Conv2d from torch.nn.init import kaiming_normal_ def init_weight(model): for m in model.modules(): if isinstance(m, BatchNorm2d): m.weight.data.fill_(1) m.bias.data.fill_(0) elif isinstance(m, Conv2d): kaiming_normal_(m.weight.data) if m.bias is not None: m.bias.data.fill_(0) def save_ckpt(ckpt_path, model_name, epoch, dict): ckpt_path = os.path.join(ckpt_path, model_name) epoch = str(epoch).zfill(2) if not os.path.exists(ckpt_path): os.mkdir(ckpt_path) save_path = os.path.join(ckpt_path, f'epoch{epoch}.pth') torch.save(dict, save_path) def epoch_step(net, dataloader, opt, loss, train_phrase, device): if train_phrase == 'train': net.train() train_tag = True else: net.eval() train_tag = False dice_loss_total = 0. for step, batch in enumerate(dataloader): features = batch['features'].to(device) labels = batch['labels'].to(device) if train_tag: opt.zero_grad() pred = net(features) dice_loss = loss(labels, pred) dice_loss_total = dice_loss_total + dice_loss.item() if train_tag: dice_loss.backward() opt.step() return dice_loss_total / len(dataloader) def re_train(net, train_dataloader, val_dataloader, ckpt_path, xls_path): wb = xlwt.Workbook() ws = wb.add_sheet('dice_loss') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = net.float().to(device) net.apply(init_weight) opt = Adam(net.parameters(), lr=2e-4) sch = StepLR(opt, step_size=10, gamma=0.5) loss = DiceLoss() max_epoch = 101 cnt = 0 stop_cnt = 10 min_dice_loss = 1. stop_flag = False for i in range(max_epoch): train_dice_loss = epoch_step(net, train_dataloader, opt, loss, 'train', device) val_dice_loss = epoch_step(net, val_dataloader, opt, loss, 'val', device) loss_list = [train_dice_loss, val_dice_loss] print(f'in epoch{i}: train dice loss is {train_dice_loss}, test dice loss is {val_dice_loss}') for j in range(len(loss_list)): ws.write(i, j, loss_list[j]) if val_dice_loss < min_dice_loss: min_dice_loss = val_dice_loss save_ckpt(ckpt_path, 'emb', i, net.state_dict()) cnt = 0 else: cnt = cnt + 1 if cnt == stop_cnt: stop_flag = True break sch.step() if not stop_flag: save_ckpt(ckpt_path, 'emb', i, net.state_dict()) wb.save(os.path.join(xls_path, 'seg_of_rectum_emb.xls')) if __name__ == "__main__": img_path = '/home/zhangqianru/data/seg_of_rectum/div_of_rectum/origin_img_2Dslice' mask_path = '/home/zhangqianru/data/seg_of_rectum/div_of_rectum/seg_label_2Dslice' model_res_path = '/home/zhangqianru/data/seg_of_rectum/div_of_rectum/model_results/mask' ckpt_path = '/home/zhangqianru/data/seg_of_rectum/div_of_rectum/ckpt' xls_path = '/home/zhangqianru/data/seg_of_rectum/div_of_rectum/xls' model_set = ['unet', 'unet_3layers', 'unet_3layers_with_vgg_loss', 'unet_with_vgg_loss'] train_dataset = EmbDataset(img_path, mask_path, model_res_path, model_set, 'train') val_dataset = EmbDataset(img_path, mask_path, model_res_path, model_set, 'val') channels_in = len(train_dataset.model_set) + 1 net = UNet(channels_in, 1) train_dataloader = DataLoader(train_dataset, batch_size=3, shuffle=True) val_dataloader = DataLoader(val_dataset, batch_size=3, shuffle=False) re_train(net, train_dataloader, val_dataloader, ckpt_path, xls_path) pass
[ "moeo3@hotmail.com" ]
moeo3@hotmail.com
8a0763af473c434edf81585b62087042c138499c
418e890e4d56535830c3ac46d5de45666f4d7cc4
/experiments/migrations/0003_auto_20160808_1507.py
a8c9469f53cf89e1784f1e739deedf7c7d6eb324
[]
no_license
alonappleboim/labdb
87d161451143017318588d8cdf9cbd09128b29cd
5a04fe57350d69176cc832964fa20ebd9248b558
refs/heads/master
2021-01-20T19:27:23.659832
2016-08-08T14:34:01
2016-08-08T14:34:01
64,955,363
0
0
null
null
null
null
UTF-8
Python
false
false
1,136
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-08-08 12:07 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('experiments', '0002_auto_20160808_0004'), ] operations = [ migrations.RemoveField( model_name='experiment', name='description', ), migrations.RemoveField( model_name='experimentmetafile', name='description', ), migrations.AddField( model_name='experiment', name='desc', field=models.TextField(default='', max_length=2000, verbose_name='description'), preserve_default=False, ), migrations.AddField( model_name='experimentmetafile', name='desc', field=models.TextField(blank=True, max_length=2000, verbose_name='description'), ), migrations.AlterField( model_name='experiment', name='title', field=models.CharField(max_length=120, unique=True), ), ]
[ "alonappleboim@gmail.com" ]
alonappleboim@gmail.com
543e8cec710889161acb56067571833d8ab5fefa
d8b7d6f4f947a4c72b9efa996d0ecd6156ff1818
/apps/operation/migrations/0001_initial.py
7a228366dc5e7f34bcf10249c8f459cd461b6103
[]
no_license
MjSeven/MxOnlie
71a0f563d5558b40085d39e806b1963ae366356f
3f7fd83c7adbed899a3f4fdf69b2a3900b6d0de9
refs/heads/master
2020-03-23T16:32:23.654166
2018-07-25T08:16:31
2018-07-25T08:16:31
141,816,170
0
0
null
null
null
null
UTF-8
Python
false
false
3,441
py
# Generated by Django 2.0.7 on 2018-07-21 22:04 import datetime from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='CourseComments', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comments', models.CharField(max_length=250, verbose_name='评论')), ('add_time', models.DateTimeField(default=datetime.datetime.now, verbose_name='评论时间')), ], options={ 'verbose_name': '课程评论', 'verbose_name_plural': '课程评论', }, ), migrations.CreateModel( name='UserAsk', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, verbose_name='姓名')), ('mobile', models.CharField(max_length=11, verbose_name='手机')), ('course_name', models.CharField(max_length=50, verbose_name='课程名')), ('add_time', models.DateTimeField(default=datetime.datetime.now, verbose_name='添加时间')), ], options={ 'verbose_name': '用户咨询', 'verbose_name_plural': '用户咨询', }, ), migrations.CreateModel( name='UserCourse', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('add_time', models.DateTimeField(default=datetime.datetime.now, verbose_name='添加时间')), ], options={ 'verbose_name': '用户课程', 'verbose_name_plural': '用户课程', }, ), migrations.CreateModel( name='UserFavorite', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('fav_id', models.IntegerField(default=0)), ('fav_type', models.IntegerField(choices=[(1, '课程'), (2, '课程机构'), (3, '讲师')], default=1, verbose_name='收藏类型')), ('add_time', models.DateTimeField(default=datetime.datetime.now, verbose_name='评论时间')), ], options={ 'verbose_name': '用户收藏', 'verbose_name_plural': '用户收藏', }, ), migrations.CreateModel( name='UserMessage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user', models.IntegerField(default=0, verbose_name='接收用户')), ('message', models.CharField(max_length=500, verbose_name='消息内容')), ('has_read', models.BooleanField(default=False, verbose_name='是否已读')), ('add_time', models.DateTimeField(default=datetime.datetime.now, verbose_name='添加时间')), ], options={ 'verbose_name': '用户消息', 'verbose_name_plural': '用户消息', }, ), ]
[ "yuchenmj@163.com" ]
yuchenmj@163.com
1df2a2aed62fe4a0e04dc66c6288fd1f89c5ef0e
01d2b09cb905be1de4ad4454ff9aa3ebcd139613
/python/gutenberg.py
88c3237847d88af81abf316c0e7d2f0e159dcdb9
[]
no_license
quickly3/fun-python
d468678ed16bdb8e5fd732e5fe1721fa98e8258f
fc2086c8e68817fb8af540330f2b095316416dc6
refs/heads/master
2020-11-30T08:27:37.455682
2019-12-27T03:17:15
2019-12-27T03:17:15
230,356,148
0
0
null
null
null
null
UTF-8
Python
false
false
271
py
#!/usr/bin/python # -*- coding: UTF-8 -*- # import nltk # # print nltk.corpus.gutenberg.fileids() # emma = nltk.corpus.gutenberg.words('austen-emma.txt') # print len(set([w.lower() for w in emma])) tup = (1,2); # print type(tup) # list1 = list(tup) print list1[1]
[ "hongbin@inceptionpad.com" ]
hongbin@inceptionpad.com
d027b8a7f8bb72ba4af08fb477f9304a181f3206
b4821fc60d7b61d1df00159f0fa0640379b14aaa
/Python_Algos/store_and_products/store_and_products.py
497060201873ac96b7811d2c57a0a9098dfd1989
[]
no_license
Lstedmanfalls/Algorithms
fefdfc1b7398e385544bedb9e899745e614593e9
8fa5a0c9acb1da779a8b3539a9e9cfb5792e093b
refs/heads/main
2023-08-20T05:26:40.115860
2021-10-25T19:07:12
2021-10-25T19:07:12
392,750,762
1
0
null
null
null
null
UTF-8
Python
false
false
1,228
py
from product_class_module import Product from store_class_module import Store Safeway = Store("Safeway") banana = Product("banana", 100, "fruit") mango = Product("mango", 50, "fruit") cheese = Product("cheese", 10, "dairy") Safeway.add_product(banana) # Adding banana Safeway.add_product(mango) # Adding mango Safeway.add_product(cheese) # Adding cheese Safeway.store_info() # Checking that products were added banana.print_info() # Checking banana's info mango.print_info() # Checking mango's info cheese.print_info() # Checking cheese's info mango.update_price(.5, True).print_info() # Checking that mango price incresed banana.update_price(.5, False).print_info() # Checking that banana price decreased Safeway.inflation(.5) # Checking inflation method banana.print_info() # Checking that banana price increased cheese.print_info() # Checking that cheese price increased Safeway.set_clearance("fruit", .5) # Checking clearance method banana.print_info() # Checking that banana price decreased mango.print_info() # Checking that mango price decreased cheese.print_info() # Checking that cheese price did not change Safeway.sell_product(mango) # Checking mango sale Safeway.store_info() # Checking that mango was removed
[ "lstedmanfalls@gmail.com" ]
lstedmanfalls@gmail.com
66afb570ab66ba33b317f752ad254d54d1f581bb
b44874df0d6edd7eed451d798f72d3dc098b075d
/sndacspylib/test/basic_unit_test.py
404828f73338c94c68a1b2602d8647316dc22a48
[]
no_license
grandcloud/sndacs-python
2d8069ac74c86983b2b421462a7641b081705302
c47f0367e857bb18af5df96f0d13a2ff4a60a1ab
refs/heads/master
2020-05-31T18:14:46.401348
2012-10-19T03:07:28
2012-10-19T03:07:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,486
py
''' Created on Jul 12, 2012 ''' from sndacspylib.snda_cs_config import * import sndacspylib.snda_cs.cs_rest as CSRest import sndacspylib.snda_cs.cs_util as CSUtil import uuid # initialize connection connection = CSRest.SNDAAuthConnection(Config.CSProperties['AccessKey'], Config.CSProperties['SecretKey'], True) # initialize service service = CSUtil.SNDA_CS(ConnectionObject = connection) # list buckets bucket_list = service.get_list_of_buckets() for item in bucket_list: print bucket_list[item] bucket_name = str(uuid.uuid4()) # add bucket service.add_bucket(bucket_name, 'huadong-1') object_name = str(uuid.uuid4()) # initialize object object = CSUtil.SNDA_Object(connection, bucket_name, object_name) # add object object.put_object_from_file("filepath/file") # head object infos = object.get_object_info() print infos.metadata print infos.size print infos.last_modified # get object object.get_object_to_file("filepath/file.bak") import commands md5sum1 = commands.getoutput("md5sum filepath/file").split()[0] md5sum2 = commands.getoutput("md5sum filepath/file.bak").split()[0] print md5sum1 print md5sum2 # initialize bucket bucket = CSUtil.SNDA_Bucket(connection, bucket_name) # list object object_list = bucket.get_list_of_keys_in_bucket("", "") for item in object_list: print item # add object from string object.put_object_from_string('I am a string.') # delete object object.delete_object() # delete bucket service.delete_bucket(bucket_name)
[ "jiangwenhan@snda.com" ]
jiangwenhan@snda.com
03d83e89ff0074fa7995b211731b30a6d56ffff5
93494ae79b2de58a6e27abf6ebd973f3375e5a85
/spider_9939/db_handle.py
4ffe3d8ba6a786decfba2f87d66f1c073318a3e4
[]
no_license
EstelleYang/spider_news
5d5a04fc317e02b933ce7073d640f99d2e07900b
59c0172cdeeb9ffb2b077cbf71603081da924250
refs/heads/master
2020-05-04T20:46:28.359781
2019-04-04T07:50:32
2019-04-04T07:50:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
# -*- coding: utf-8 -*- # @Time : 2019-04-04 3:01 PM # @Author : jiuyang # @File : db_handle.py # 连接数据库,操作数据入库等
[ "1635375337@qq.com" ]
1635375337@qq.com
af6040330d3ea4df2b34a2bbeaed87e050733e77
6583b7f11175c40106fb7cc0037578abae125f42
/ucc/codegen/order_triples.py
7237463432be110765267840efc34374fa6de361
[]
no_license
FREDY1969/tampa-bay-python-avr
02f913ee8373bfab4ef88902844476080b560226
e0311815ebf81b5e1b128f621bf1f15b4fa28289
refs/heads/master
2020-04-24T17:45:03.787951
2011-10-23T17:58:09
2011-10-23T17:58:09
40,279,869
0
0
null
null
null
null
UTF-8
Python
false
false
25,707
py
# order_triples.py import sys import itertools from ucc.database import crud Debug = False def order_children(): update_order_constraints() with crud.db_transaction(): iterations = 0 re_triple_count = re_block_count = re_fun_count = 0 tp_order_count = 1 # force calc_reg_est_for_triples first time through tl_triple_order_count = 0 total = 1 # force first run through the loop while total: total = 0 if tp_order_count or re_fun_count: re_triple_count = calc_reg_est_for_triples() total += re_triple_count else: re_triple_count = 0 if re_triple_count: re_block_count = calc_reg_est_for_blocks() total += re_block_count else: re_block_count = 0 if re_block_count: re_fun_count = calc_reg_est_for_functions() total += re_fun_count else: re_fun_count = 0 if re_triple_count: tp_order_count = update_triple_parameter_orders() total += tp_order_count else: tp_order_count = 0 iterations += 1 update_top_level_triple_orders() calc_master_order() return iterations def update_order_constraints(): with crud.db_transaction(): print("propogate_links iterations:", propogate_links(), file=sys.stderr) delete_extranious_links() add_transitive_links() def propogate_links(): r'''Propogate links upward through the heirarchy. Propogate both sides of every constraint up through all of the parents to the roots of both sides. This will create a lot of extranious links (including links where the predecessor and successor are the same triple!) which we'll clean up later. Returns the number of times it looped. ''' total = 1 # force first run through the loop iterations = 0 while total: # Add links from parents of predecessors: total = crud.execute(''' insert or ignore into triple_order_constraints (predecessor, successor, orig_pred, orig_succ) select tp.parent_id, tos.successor, tos.orig_pred, tos.orig_succ from triple_order_constraints tos inner join triple_parameters tp on tos.predecessor = tp.parameter_id ''')[0] # Add links to parents of successors: total += crud.execute(''' insert or ignore into triple_order_constraints (predecessor, successor, orig_pred, orig_succ) select tos.predecessor, tp.parent_id, tos.orig_pred, tos.orig_succ from triple_order_constraints tos inner join triple_parameters tp on tos.successor = tp.parameter_id ''')[0] iterations += 1 return iterations def delete_extranious_links(): # When node A has both the predecessor and successor of a constraint as # (deep) children; we don't need predecessor constraints from an outside # node B that might be sharing those children, since it doesn't matter # whether B is done before or after A (in either case the predecessor gets # done before the successor: B -> A runs P in B, then S in A, and A -> B # runs P and S in A). # # This doesn't apply to outside successor links. In this case, the order # does matter (B -> A runs S in B, then P in A). # # Note that in this case node A will have a constraint showing A as both # predecessor and successor. This is how we'll identify these nodes. # # So delete all links from predecessors to nodes that link the predecessor # to themselves as the successor. (This also deletes nodes that have # predecessor = successor). crud.execute(''' delete from triple_order_constraints where exists (select null from triple_order_constraints tos where triple_order_constraints.orig_pred = tos.orig_pred and triple_order_constraints.orig_succ = tos.orig_succ and triple_order_constraints.successor = tos.successor and tos.predecessor = tos.successor) ''') # Then clean up by deleting all links where both the predecessor and # successor are the same node, and all links that aren't between siblings. crud.execute(''' delete from triple_order_constraints where predecessor = successor or (not exists ( -- sibling relationship between predecessor and successor select null from triple_parameters ptp inner join triple_parameters stp on ptp.parent_id = stp.parent_id and ptp.parameter_num != stp.parameter_num where ptp.parameter_id = predecessor and stp.parameter_id = successor) and not exists ( -- predecessor and successor top-levels for same block select null from triples pt inner join triples st on pt.block_id = st.block_id and pt.use_count = 0 and st.use_count = 0 and pt.id != st.id where pt.id = predecessor and st.id = successor)) ''') # And finally delete all but one of duplicate predecessor, successor links # (this destroys orig_pred and orig_succ which aren't needed any more). crud.execute(''' delete from triple_order_constraints where exists (select null from triple_order_constraints tos where tos.predecessor = triple_order_constraints.predecessor and tos.successor = triple_order_constraints.successor and (tos.orig_pred < triple_order_constraints.orig_pred or tos.orig_pred = triple_order_constraints.orig_pred and tos.orig_succ < triple_order_constraints.orig_succ)) ''') def add_transitive_links(): r'''Add transitive links. E.g., where A->B and B->C, add A->C. Returns the number times it ran the SQL command. ''' for depth in itertools.count(1): rowcount = crud.execute(''' insert or replace into triple_order_constraints (predecessor, successor, depth) select tos_p.predecessor, tos_s.successor, tos_p.depth + 1 from triple_order_constraints tos_p inner join triple_order_constraints tos_s on tos_p.successor = tos_s.predecessor where tos_p.depth = ? and tos_s.depth = 1 ''', (depth,))[0] if rowcount == 0: return depth def calc_reg_est_for_triples(): r'''Calc triples.register_est. Triples must have an evaluation_order for all of their triple_parameters. Returns the number of triples updated. ''' total = crud.execute(''' update triples set register_est = max( (select max(1, count(*)) from triple_parameters tp where tp.parent_id = triples.id) + ifnull((select num_extra_regs from operator_info io where io.operator = triples.operator), 0), case when triples.operator = 'call_direct' then (select sym.register_est from symbol_table sym where triples.symbol_id = sym.id) else 0 end, (select ifnull(max(child.register_est + tp2.evaluation_order - 1), 0) from triple_parameters tp2 inner join triples child on tp2.parameter_id = child.id where tp2.parent_id = triples.id)) where triples.register_est isnull and not exists (select null from triple_parameters tp where tp.parent_id = triples.id and tp.evaluation_order isnull) and (triples.operator != 'call_direct' or (select sym.register_est notnull from symbol_table sym where triples.symbol_id = sym.id)) ''')[0] if Debug: print("update triples total", total, file=sys.stderr) return total def calc_reg_est_for_blocks(): r'''Calc blocks.register_est. Blocks must have a register_est for all of their top-level triples. Returns the number of blocks updated. ''' # calc register_est for all blocks who have a register_est for all of # their top-level triples. total = crud.execute(''' update blocks set register_est = (select ifnull(max(t.register_est), 0) from triples t where t.block_id = blocks.id and t.use_count = 0) where blocks.register_est isnull and not exists (select null from triples t where t.block_id = blocks.id and t.use_count = 0 and t.register_est isnull) ''')[0] if Debug: print("update blocks total", total, file=sys.stderr) return total def calc_reg_est_for_functions(): r'''Calc symbol_table.register_est for kind in ('function', 'task'). Functions/tasks must have at least one block and have a register_est for all of their blocks. Returns the number of symbols updated. ''' total = crud.execute(''' update symbol_table set register_est = (select max(b.register_est) from blocks b where b.word_symbol_id = symbol_table.id) + (select count(*) from symbol_table v where v.context = symbol_table.id and v.kind in ('parameter', 'var')) where symbol_table.kind in ('function', 'task') and symbol_table.register_est isnull and exists (select null from blocks b where b.word_symbol_id = symbol_table.id) and not exists (select null from blocks b where b.word_symbol_id = symbol_table.id and b.register_est isnull) ''')[0] if Debug: print("update symbol_table total", total, file=sys.stderr) return total def update_triple_parameter_orders(): r'''Calculates and updates the triple_parameters.evaluation_order column. This works on the level of the set of parameters to each triples node who still need it. All of the triples parameters must have a register_est. Returns the number of triple_parameters updated. ''' # Create table to assign sequential evaluation_order numbers to # sorted triple_parameters. crud.execute(''' create temp table param_order ( seq_num integer not null primary key, -- assigned seq number tp_id int not null, -- triple_parameters id parent_id int not null -- parent triple id ) ''') # Load temp param_order table with all sets of triple_parameters that # are ready to order. total = crud.execute(''' insert into param_order (tp_id, parent_id) select tp.id, tp.parent_id from triple_parameters tp where tp.parent_id in (select t.id from triples t where t.register_est isnull and not exists (select null from triple_parameters ctp inner join triples c on ctp.parameter_id = c.id where ctp.parent_id = t.id and c.register_est isnull)) order by tp.parent_id, max((select t.register_est * 1000 from triples t where tp.parameter_id = t.id ), (select ifnull(max(t.register_est * 1000 + tos.depth), 0) from triple_order_constraints tos inner join triples t on tos.successor = t.id where tos.predecessor = tp.parameter_id )) desc, tp.parameter_num ''')[0] if Debug: print("insert param_order total", total, file=sys.stderr) if total: # Copy the assigned seq_nums from param_order to triple_parameters. rowcount = crud.execute(''' update triple_parameters set evaluation_order = (select 1 + po.seq_num - (select min(sibling_po.seq_num) from param_order sibling_po where sibling_po.parent_id = triple_parameters .parent_id) from param_order po where po.tp_id = triple_parameters.id) where exists (select null from param_order po where po.tp_id = triple_parameters.id) ''')[0] if Debug: print("update triple_parameters total", rowcount, file=sys.stderr) # We're done with the param_order table. crud.execute(''' drop table param_order ''') return total def update_top_level_triple_orders(): r'''Calculates and updates the triples.order_in_block column. This works on a block level for all blocks who still need it, and all of whose top-level triples have a register_est. Returns the number of triples updated. ''' # Create table to assign sequential evaluation_order numbers to # sorted top-level triples. crud.execute(''' create temp table param_order ( seq_num integer not null primary key, -- assigned seq number block_id int not null, triple_id int not null ) ''') # Load temp param_order table with all sets of top-level triples that # are ready to order. total = crud.execute(''' insert into param_order (block_id, triple_id) select t.block_id, t.id from triples t where t.use_count = 0 and t.order_in_block isnull and not exists (select null from triples sib where sib.use_count = 0 and t.block_id = sib.block_id and sib.register_est isnull) order by t.block_id, ifnull((select 0 from blocks b where t.block_id = b.id and b.last_triple_id = t.id ), (select ifnull(max(tos.depth) + 1, 1) from triple_order_constraints tos where tos.predecessor = t.id )) desc, t.id ''')[0] if Debug: print("insert param_order total", total, file=sys.stderr) if total: # Copy the assigned seq_nums from param_order to triples. rowcount = crud.execute(''' update triples set order_in_block = (select 1 + po.seq_num - (select min(block_po.seq_num) from param_order block_po where block_po.block_id = triples.block_id) from param_order po where po.triple_id = triples.id) where id in (select triple_id from param_order) ''')[0] if Debug: print("update triples total", rowcount, file=sys.stderr) # We're done with the param_order table. crud.execute(''' drop table param_order ''') return total def calc_master_order(): with crud.db_transaction(): calc_tree_sizes() calc_abs_offsets() mark_ghost_links() calc_abs_order_in_block() calc_parent_seq_num() def calc_tree_sizes(): r'''Calculate all triples.tree_size figures. Tree_size is the number of triples in the tree rooted at that triple (counting the triple itself). ''' total = 1 while total: total = crud.execute(''' update triples set tree_size = (select ifnull(sum(child.tree_size), 0) + 1 from triple_parameters tp inner join triples child on tp.parameter_id = child.id where tp.parent_id = triples.id) where tree_size isnull and not exists (select null from triple_parameters tp inner join triples child on tp.parameter_id = child.id where tp.parent_id = triples.id and child.tree_size isnull) ''')[0] def calc_abs_offsets(): r'''Calculate abs_offsets for top-level triples and triple_parameters. The abs_offset is the offset from the start of the block to the tree rooted at that node. The abs_offsets stored in the triple_parameters stand for the parameter_id tree. ''' # first for top-level triples: crud.execute(''' update triples set abs_offset = (select ifnull(sum(prior.tree_size), 0) from triples prior where prior.block_id = triples.block_id and prior.use_count = 0 and prior.order_in_block < triples.order_in_block) where use_count = 0 ''') # then for triple_parameters: total = 1 while total: total = crud.execute(''' update triple_parameters set abs_offset = (select ifnull(min(parent.abs_offset), (select t.abs_offset from triples t where triple_parameters.parent_id = t.id)) from triple_parameters parent where parent.parameter_id = triple_parameters.parent_id) + (select ifnull(sum(prior.tree_size), 0) from triple_parameters tp inner join triples prior on tp.parameter_id = prior.id where tp.parent_id = triple_parameters.parent_id and tp.evaluation_order < triple_parameters.evaluation_order) where abs_offset isnull and not exists (select null from triple_parameters parent where parent.parameter_id = triple_parameters.parent_id and parent.abs_offset isnull) ''')[0] def mark_ghost_links(): r'''Set triple_parameter.ghost for links to ghost triples. Ghost triples have already been evaluated by the time this triple_parameter is needed. So the triple is a ghost, and code is not generated for it here. ''' crud.execute(''' update triple_parameters set ghost = 1 where triple_parameters.abs_offset > (select min(tp.abs_offset) from triple_parameters tp where triple_parameters.parameter_id = tp.parameter_id) ''') def calc_abs_order_in_block(): r'''Calc abs_order_in_block for triples and triple_parameters. The abs_order_in_block in triple_parameters is for the parameter_id triple. This is later copied to the triples in reg_alloc.py. ''' # first for top-level triples. Note that the root node is always # evaluated last, so we just add the tree_size to the abs_offset of the # start of the tree: crud.execute(''' update triples set abs_order_in_block = abs_offset + tree_size where use_count = 0 ''') # then for triple_parameters: crud.execute(''' update triple_parameters set abs_order_in_block = abs_offset + case when ghost then 1 else (select tree_size from triples child where triple_parameters.parameter_id = child.id) end ''') def calc_parent_seq_num(): r'''Calculate triple_parameters.parent_seq_num. The parent_seq_num gives sequential numbers to all parents of the same triple. The numbers are in the order that the triple_parameters will be used in the code generation. But the numbers do not start from 1 for each set of parents... ''' # Create table to assign sequential numbers to sorted triple_parameters. crud.execute(''' create temp table param_order ( seq_num integer not null primary key, -- assigned seq number tp_id int not null ) ''') # Load temp param_order table with all triple_parameters. total = crud.execute(''' insert into param_order (tp_id) select id from triple_parameters order by parameter_id, abs_order_in_block ''')[0] if Debug: print("insert param_order total", total, file=sys.stderr) # Copy the assigned seq_nums from param_order to triple_parameters. crud.execute(''' update triple_parameters set parent_seq_num = (select seq_num from param_order po where triple_parameters.id = po.tp_id) ''') # We're done with the param_order table. crud.execute(''' drop table param_order ''') # Set triple_parameters.last_parameter_use for all last parameters: crud.execute(''' update triple_parameters set last_parameter_use = 1 where not exists (select null from triple_parameters tp where tp.parameter_id = triple_parameters.parameter_id and tp.parent_seq_num > triple_parameters.parent_seq_num) ''')
[ "dangyogi@gmail.com" ]
dangyogi@gmail.com
e74d1421fdda784ab35448a784c31e015b6e5490
7dd173951a33396aecbc370c8f5dd5747d32ab60
/Project2/tryLA.py
92abe3f0939e3a1be2d8af660aa47033580f018e
[]
no_license
lassekva/CompPhysFYS4150
ee2c9abb784a1640ad0e5cff86a7a47008e6778d
f4febc61bdce167ef3af1590fd16ef4111b4b5ed
refs/heads/master
2020-03-27T05:27:06.870560
2018-11-19T12:24:35
2018-11-19T12:24:35
146,020,511
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
import numpy as np from numpy import linalg as LA w, v =LA.eig(np.diag((10,2,6))) d= np.diag((1,2,3,4,5)) print (w)
[ "noreply@github.com" ]
lassekva.noreply@github.com
efe175e6885e0ddfe3cbd66e3a647f749c4ff403
a78d39ecab243eedaec441a1a483b3aaa36328d1
/rest_api_test/test_2.py
b85361ce3c2d5addeabe11cccbed0f9f055089f4
[]
no_license
SoufianLa/hackerrankps
b570cf9400d5c957b541a01a9793f54c4041ae54
0fb23fabe8271747d93545003734633d934bf772
refs/heads/master
2022-12-30T05:32:01.374515
2020-10-20T16:18:49
2020-10-20T16:18:49
304,647,747
1
0
null
null
null
null
UTF-8
Python
false
false
1,002
py
#!/bin/python3 import math import os import random import re import sys import requests sys.stdin = open('input_.txt', 'r') sys.stdout = open('output_.txt', 'w') # # Complete the 'getNumDraws' function below. # # The function is expected to return an INTEGER. # The function accepts INTEGER year as parameter. # def getTotalByPage(url, page): number_page = 0 url = url + "&page=" + str(page) rsp = requests.get(url).json() data = rsp["data"] #number_page += sum(x.get('team1goals') == x.get('team1goals') for x in data) number_page += len(data) return number_page def getNumDraws(year): number = 0 for j in range(11): url = "https://jsonmock.hackerrank.com/api/football_matches?team1goals="+str(j)+"&team2goals="+str(j)+"&year="+str(year) first_call = requests.get(url).json() number += first_call["total"] return number if __name__ == '__main__': year = int(input().strip()) result = getNumDraws(year) print(result)
[ "s.lagnaoui@revotrends.com" ]
s.lagnaoui@revotrends.com
67a7c2953576faefbf87733f908a58464756ee94
e67509d6e9c34959e915407696cf53544e1fe86d
/analytics/GA/forms.py
66fd1ed9310763edbbc3be53bad5bd73184158ac
[]
no_license
ryuzaki07/analytics
3d33f8b4803cd526f8bdd1f6534ee897d8e75c13
d2502eeb22acc51c897c0c6b61125c6b4df8881a
refs/heads/main
2023-06-02T09:47:50.850076
2021-06-16T12:01:15
2021-06-16T12:01:15
377,456,829
0
0
null
null
null
null
UTF-8
Python
false
false
318
py
import datetime from django import forms # input_formats=['%m-%d-%Y'] class DateForm(forms.Form): start_date = forms.CharField(widget=forms.TextInput( attrs={'placeholder': "Format: yyyy-m-d"})) end_date = forms.CharField(widget=forms.TextInput( attrs={'placeholder': "Format: yyyy-m-d"}))
[ "rahulnair.rn34@gmail.com" ]
rahulnair.rn34@gmail.com
3a7b36b87c048318de11c4a405e323e93507b808
cfcd8deee58c343d7747d40cb4e695c837f833e2
/linked_list.py
1fae3f631768d9a01ccf53e6ce231c855a1d8acd
[]
no_license
lkramer37/TDD-DataStructures
bbd85a7a794466f64823a698f93acf5713c9b32c
9b5398ad8c1918dc7ebd90d97f507bfda7a429fa
refs/heads/master
2022-04-13T05:02:24.334309
2020-03-28T21:11:35
2020-03-28T21:11:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,852
py
class Node: def __init__(self, data, next=None): self.data = data self.next = next # def __repr__(self): # return 'Node <{}>'.format(self.data) class LinkedList: def __init__(self, head=None): self.head = head # super().__init__() def length(self): if self.head is None: return 0 curr = self.head size = 0 while curr is not None: size = size + 1 curr = curr.next return size def append(self, data): new_node = Node(data, None) if self.head: current = self.head while current.next: current = current.next current.next = new_node else: self.head = new_node return new_node def insert(self, index, data): # Adds element after specified index i = 1 curr = self.head while i < index - 1 and curr is not None: curr = curr.next i = i + 1 if curr is None: print("Index out of bound") else: new_node = Node(data) new_node.next = curr.next curr.next = new_node def delete(self, data_str): # Removes first item with specified value curr = self.head prev = None while curr and curr.data != data_str: prev = curr curr = curr.next if prev is None: self.head = curr.next elif curr: prev.next = curr.next curr.next = None def remove(self, index): # Removes the element at the specified position curr = self.head prev = None x = 0 while x < index: prev = curr curr = curr.next x += 1 # Unlink it from the list if prev is None: self.head = curr.next elif curr: prev.next = curr.next curr.next = None return curr def search(self, data_str): # Return first node that matches data_str if self.head is None: print("List has no elements") return curr = self.head while curr is not None: if curr.data == data_str: print(data_str + " found in list") return True curr = curr.next print(data_str + " not found in list") return False def is_empty(self): return self.head is None def print_list(self): if self.head is None: print("List has no element") return else: curr = self.head while curr is not None: print(curr.data, " ") curr = curr.next if __name__ == '__main__': print("Main in linked_list.py")
[ "lkramer37@nevada.unr.edu" ]
lkramer37@nevada.unr.edu
ff0c763f59407b9d3c0c063c09791c3c69e2368e
cd486d096d2c92751557f4a97a4ba81a9e6efebd
/17/addons/script.module.globalscrapers/lib/globalscrapers/sources/seriescr.py
f637099fe8f2d4e1f64cb40b9e4e65e81b496072
[]
no_license
bopopescu/firestick-loader-kodi-data
2f8cb72b9da67854b64aa76f720bdad6d4112926
e4d7931d8f62c94f586786cd8580108b68d3aa40
refs/heads/master
2022-04-28T11:14:10.452251
2020-05-01T03:12:13
2020-05-01T03:12:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,157
py
# -*- coding: utf-8 -*- import re,urllib,urlparse from resources.lib.modules import cleantitle from resources.lib.modules import client from resources.lib.modules import source_utils from resources.lib.modules import debrid from resources.lib.modules import dom_parser2 class source: def __init__(self): self.priority = 1 self.language = ['en'] self.domains = ['seriescr.com'] self.base_link = 'http://seriescr.com' self.search_link = '/search/%s/feed/rss2/' def tvshow(self, imdb, tvdb, tvshowtitle, localtvshowtitle, aliases, year): try: url = {'imdb': imdb, 'tvdb': tvdb, 'tvshowtitle': tvshowtitle, 'year': year} url = urllib.urlencode(url) return url except: return def episode(self, url, imdb, tvdb, title, premiered, season, episode): try: if url is None: return url = urlparse.parse_qs(url) url = dict([(i, url[i][0]) if url[i] else (i, '') for i in url]) url['title'], url['premiered'], url['season'], url['episode'] = title, premiered, season, episode url = urllib.urlencode(url) return url except: return def sources(self, url, hostDict, hostprDict): try: sources = [] if url is None: return sources if debrid.status() is False: raise Exception() data = urlparse.parse_qs(url) data = dict([(i, data[i][0]) if data[i] else (i, '') for i in data]) hdlr = 'S%02dE%02d' % (int(data['season']), int(data['episode'])) query = '%s S%02dE%02d' % (data['tvshowtitle'], int(data['season']), int(data['episode'])) query = re.sub('(\\\|/| -|:|;|\*|\?|"|\'|<|>|\|)', ' ', query) url = self.search_link % urllib.quote_plus(query) r = urlparse.urljoin(self.base_link, url) r = client.request(r) r = client.parseDOM(r, 'item') title = client.parseDOM(r, 'title')[0] if hdlr in title: r = re.findall('<h3.+?>(.+?)</h3>\s*<h5.+?<strong>(.+?)</strong.+?h3.+?adze.+?href="(.+?)">.+?<h3', r[0], re.DOTALL) for name, size, url in r: quality, info = source_utils.get_release_quality(name, url) try: size = re.sub('i', '', size) div = 1 if size.endswith(('GB', 'GiB')) else 1024 size = float(re.sub('[^0-9|/.|/,]', '', size)) / div size = '%.2f GB' % size info.append(size) except: pass info = ' | '.join(info) valid, host = source_utils.is_host_valid(url, hostDict) sources.append({'source': host, 'quality': quality, 'language': 'en', 'url': url, 'info': info, 'direct': False, 'debridonly': True}) return sources except: return sources def resolve(self, url): return url
[ "esc0rtd3w@gmail.com" ]
esc0rtd3w@gmail.com
2f33f46275259d3eede73d45d21a854246a06e16
caa81c9b08b1f7e0828f40aed68d2f2bf570ef88
/chat/apps.py
c98bc032e94eeefa6f2b5c5805fc99cc98915fc2
[]
no_license
yp-palF/THEMATRIX
796d36c5dd5ba31f9d2abc72aa4b69fa009dfb34
e1498e893af5684f01481cfdb73a1a32b587413a
refs/heads/master
2021-05-31T13:15:15.400600
2016-05-20T10:44:41
2016-05-20T10:44:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
123
py
from __future__ import unicode_literals from django.apps import AppConfig class ChatConfig(AppConfig): name = 'chat'
[ "saurav24081996@gmail.com" ]
saurav24081996@gmail.com
3db8eab299daa982f64741500b0a3586eca703b6
6bc1be8e25c5f31dac6cafb09a09f6e8bba8003a
/config/settings.py
1bab7b13e7c3766df9df970c53e21a82582b6e62
[]
no_license
Kaburumwenda/azure-demo
babc2c5383c0b0896f3fe4318d68279b891d195b
0787c56b8c4503e403cd1b89c5818328b4866839
refs/heads/main
2023-06-30T03:16:15.232420
2021-08-07T20:24:08
2021-08-07T20:24:08
393,784,718
0
0
null
null
null
null
UTF-8
Python
false
false
3,478
py
""" Django settings for config project. Generated by 'django-admin startproject' using Django 3.2.6. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-eb@jkw7#z(=xguf$2l(^0alzu)&#-ijwada$5bp^7b%7-ef+6m' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': BASE_DIR / 'db.sqlite3', # } # } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'capital', 'USER': 'root', 'PASSWORD': 'cummings@2021', 'HOST': '52.151.192.131', 'PORT': '', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "yuskaburu@gmail.com" ]
yuskaburu@gmail.com
7f2c8daad868cf8914c36ee7c6ae01d7827cd9c5
7168a7451c0c28de2e25ee444656fc7e959268ae
/faker_seed_db.py
3af4ec93275ae79f7b60079d056f243dcbee59e7
[]
no_license
carlosbelen/HW_wk6_dy3_Create-Employee-API
70a726dc22cfc4333fb8952e4bbf0380dc4c528a
1bae7d795aab4f3c5cc920a5e70da11d59d961c5
refs/heads/master
2023-01-12T10:14:23.093854
2020-11-05T06:29:53
2020-11-05T06:29:53
310,208,774
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
from faker import Faker # Creation of faker profile helper function def getProfile(): fake = Faker() return fake.profile() # Gather Data and place inside of database import os from flask_employee_api.models import Employee from flask_employee_api import db def seedData(): for seed_num in range(10): data = getProfile() employee = Employee(data['name'],\ data['sex'],data['address'], data['ssn'],data['mail'] ) db.session.add(employee) db.session.commit() seedData()
[ "carlosbelen2004@hotmail.com" ]
carlosbelen2004@hotmail.com
c5c3103aec323910fe8b642e66cc48c188cab8ff
ee9e93c8b84cc8f4467e501f4c45900058818b23
/melbwireless/oldsite/templatetags/oldsite.py
a1c9051b979ba13e81a468a2c0928bb348ddca81
[]
no_license
tysonclugg/Melbourne-Wireless
a433552a58ce94d040c4e69282681dc79ba8c713
91a196a85c24f3ad83d79f94291bd238ff2a662b
refs/heads/master
2021-01-25T06:00:43.508617
2014-07-11T12:02:15
2014-07-11T12:02:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
from django import template register = template.Library() @register.simple_tag(takes_context=True) def oldurl(context): request = context['request'] resolver_match = request.resolver_match try: path = resolver_match.func.old_url_format.format(**resolver_match.kwargs) except AttributeError: path = request.path return 'http://www.melbournewireless.org.au{0}'.format(path)
[ "tclugg@www.melbournewireless.org.au" ]
tclugg@www.melbournewireless.org.au
5f21e049f53c4df8a97983ff285708d760a80dc5
a24b3316e29d1f45de8dd3ddc414bf87b5fdf489
/Lion.py
7effeba92ec04d7b7d93abfcae47d9406aa64adc
[]
no_license
yamuo/python_sample
fd854cf414074d7e1914ef34ea41c8153e176d74
bbefbc7da456dd00649f88fc293211f6d28338bd
refs/heads/master
2020-03-23T01:48:05.265745
2018-07-16T04:59:09
2018-07-16T04:59:09
140,938,093
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
class Lion: def __init__(self, name): self.name = name def __repr__(self): return self.name lion = Lion("Dilbert") print(lion)
[ "s-yamashita@MacBook-2.local" ]
s-yamashita@MacBook-2.local
6cd8b0dc089aaae77c9808304e6170342021b2c0
f5244ad34315c4fa6373da1aefde1057a116dd48
/biblioteca/urls.py
00f221e30484ba12836bc9435c97647d09e84aa3
[]
no_license
Douglas1688/biblioteca
52af997cbb64aa343e896507ef4fd4228ea833c6
20636d3362675d435fa5cc956dcb3f5da9f25f5d
refs/heads/master
2023-07-07T01:26:07.642647
2021-08-13T01:34:58
2021-08-13T01:34:58
394,445,675
0
0
null
null
null
null
UTF-8
Python
false
false
1,346
py
"""biblioteca URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include # from django.contrib.auth.views import LoginView,LogoutView from django.contrib.auth.decorators import login_required from apps.libro.views import Inicio from apps.usuario.views import Login, logoutUsuario urlpatterns = [ path('admin/', admin.site.urls), path('libro/',include(('apps.libro.urls','libro'))), path('',login_required(Inicio.as_view()),name='index'), path('accounts/login/',Login.as_view(),name='login'), path('logout/',login_required(logoutUsuario),name='logout'), # path('logout/',LogoutView.as_view(),name='logout'), # path('crear_autor/',include(('apps.libro.urls','crear_autor'))), ]
[ "douglas.vasquezp@hotmail.com" ]
douglas.vasquezp@hotmail.com
b5cbb3671e765470ae75b2b8f8ea2f446253aef2
fe6c8c865fbbf7307945fa961a658244d33667ea
/Basics/Subclasses1.py
a94d2bf2018728abca885f4a9c6d6ff3d2338d59
[]
no_license
DianaBelePublicRepos/PythonBasics
56b0df6242194c73ac003364ce49e3404434351c
38aee369a8f21a6952d3e041b828e6dfeb694d78
refs/heads/master
2021-02-07T01:21:37.777839
2020-05-08T21:52:26
2020-05-08T21:52:26
243,967,056
0
0
null
2020-03-27T16:33:47
2020-02-29T12:43:40
Python
UTF-8
Python
false
false
1,019
py
import datetime as dt class Member: expiry_days = 365 def __init__(self, firstname, lastname): self.firstname = firstname self.lastname = lastname self.date_joined = dt.date.today() self.expiry_date = dt.date.today() + dt.timedelta(days = Member.expiry_days) self.secret_code = ' ' def showexpiry(self): return f"{self.firstname} {self.lastname} expires on {self.expiry_date}" class Admin(Member): #Admin accounts don't expire for 100 years expiry_days = 365.2422 * 100 #Subclass parameters def __init__(self, firstname, lastname, secret_code): super().__init__(firstname, lastname) #Assign the remaining params to this object self.secret_code = secret_code #Subclass for Users class User(Member): pass Ann = Admin("Annie", "Angst", "PRESTO") print(Ann.firstname, Ann.lastname, Ann.expiry_date, Ann.secret_code) Uli = User('Uli', 'Ungula') print(Uli.firstname, Uli.lastname, Uli.expiry_date, Uli.secret_code)
[ "dianabeleemea@gmail.com" ]
dianabeleemea@gmail.com
b8edac9b6181c5ca77aae404ac0283232bea11bd
39d86711fffe0de8cc8797a3aaed2edcbb034741
/Case/test002.py
aa9a265bf5110539cc436538a54be7f2deafbaeb
[]
no_license
explorer369/appium
aadaec94906270c62181b63da897004d246379fb
a3866ac4424c5214bd62bb90ff69424a0667d347
refs/heads/master
2021-01-21T18:33:07.351013
2017-05-24T14:53:56
2017-05-24T14:53:56
92,018,962
0
0
null
null
null
null
GB18030
Python
false
false
3,133
py
import logging,os,sys,time,unittest,xlrd reload(sys) sys.setdefaultencoding('GBK') def open_excel(file= 'file.xls'): try: data = xlrd.open_workbook(file) return data except Exception,e: print str(e) #根据索引获取Excel表格中的数据 参数:file:Excel文件路径 colnameindex:表头列名所在行的所以 ,by_index:表的索引 def excel_table_byindex(file= 'file.xls',colnameindex=0,by_index=0): data = open_excel(file) table = data.sheets()[by_index] nrows = table.nrows #行数 ncols = table.ncols #列数 colnames = table.row_values(colnameindex) #某一行数据 list =[] for rownum in range(1,nrows): row = table.row_values(rownum) if row: app = {} for i in range(len(colnames)): app[colnames[i]] = row[i] list.append(app) return list class AndroidTest(unittest.TestCase): func = getattr(__import__('find'),'find_name') #func()# 相当于执行find.py的foo函数 def setUp(self): SettingDevice.Setting_device(self) def tearDown(self): self.driver.available_ime_engines() #恢复输入法 self.driver.close_app() self.driver.quit() def test12309click(self): time.sleep(5) listdata = excel_table_byindex('data.xls',0) if(len(listdata) <= 0 ): assert 0,u"Excel数据库异常" for i in range(0,int(len(listdata))): print 'Excel中共有:%s 行数据'%(len(listdata)) time.sleep(6) self.func("id","com.wxws.myticket:id/tv_ticket_cjkx",get_element='text') #点击城际快线 self.func("id","com.wxws.myticket:id/etBecity") self.driver.find_element_by_id('com.wxws.myticket:id/etSearch').send_keys(listdata[i]['username']) self.func('class_names','android.widget.TextView',1) time.sleep(1) # self.func("id","com.wxws.myticket:id/tv_cancel") self.func("id","com.wxws.myticket:id/etEncity") self.driver.find_element_by_id('com.wxws.myticket:id/etSearch').send_keys(listdata[i]['password']) time.sleep(2) self.func('class_names','android.widget.TextView',1) self.func("id","com.wxws.myticket:id/btnQuery") self.func('class_names','android.widget.LinearLayout',1) time.sleep(1) # self.func("xpath","//android.widget.TextView[@text='退票说明']") # time.sleep(1) # self.func("id","com.wxws.myticket:id/imgLeft") time.sleep(1) self.func("class_name","android.widget.Button") time.sleep(1) self.func("id","com.wxws.myticket:id/layout_Picker") time.sleep(1) self.func('class_names','android.widget.LinearLayout',1) #显示金额详情 #self.func("id","com.wxws.myticket:id/rl_desc_price") #提交订单 # self.func("id","com.wxws.myticket:id/btnPay") #立即支付 # self.func("name"," 立即支付 ")
[ "noreply@github.com" ]
explorer369.noreply@github.com
4947b1b86a1df54dd6417cb1e3f5dd88fea11dbf
51ec068b7a41dd1a184bc39ca0596300f3d1a910
/spiders/halftime.py
e3803ac91c630fbc9d68a1b4c09ab10562279e7c
[]
no_license
wbglaeser/odds-checker
3549a51370e3f8736d3e53fb5d8f42ffe84aa382
c3299b63fb34283c2eeeb973296c689338137827
refs/heads/master
2021-01-24T21:42:32.554940
2018-04-06T11:44:06
2018-04-06T11:44:06
123,275,923
1
0
null
null
null
null
UTF-8
Python
false
false
12,564
py
###################################### ### BUILT LOGGER ### ###################################### import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) stream_handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - [{}] - %(levelname)s : %(message)s'.format(__name__)) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) ###################################### ### Import Modules ### ###################################### import time from bs4 import BeautifulSoup import datetime import numpy as np from random import uniform from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import TimeoutException, NoSuchElementException, ElementNotInteractableException from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver import ActionChains # Import items class from backend.items import Halftime # Modules for proxy from browsermobproxy import Server ###################################### ### Main function ### ###################################### # Define Class class HalftimeBrowser(): def __init__(self,country): self.country = country # Set browser profile def set_profile(self,add_on): profile = webdriver.FirefoxProfile() profile._install_extension(add_on) return profile # INITIALISE DRIVER def init_driver(self,profile): # Start browser driver = webdriver.Firefox(firefox_profile=profile) WebDriverWait(driver, 5) return driver # LOAD WEBSITE def open_url(self,driver): url_stem = "https://www.oddschecker.com/football/" if self.country == "germany": driver.get(url_stem + "germany/bundesliga") elif self.country == "england": driver.get(url_stem + "english/premier-league") elif self.country == "spain": driver.get(url_stem + "spain/la-liga-primera") elif self.country == "italy": driver.get(url_stem + "italy/serie-a") elif self.country == "france": driver.get(url_stem + "france/league-1") # GET RID OF ADD THAT POPS UP self.remove_popup(driver, 0) # LOG logger.info('Starting Page Opened.') # RETRIEVE ITEMS def retrieve_teams(self, driver, database, timestamp): # Retrieve Page Type button_selector, page_type = self.retrieve_page_type(driver.page_source) # Set starting window start_window = driver.window_handles[0] count = 1 # Loop through Different Games for game in self.wait_pl_pres(driver, 'tr.match-on '): # Move to Second Page self.move_to_game_page(game, driver, button_selector) self.remove_popup(driver, 1) # self.move_to_odds_page(driver, page_type) driver.close() driver.switch_to_window(start_window) # # Retrieve Halftime Button if existent # options_count, code = self.retrieve_options_index(driver) # if code == 1: # game_info = self.extract_game_info(driver,timestamp) # # ------> HALFTIME ODDS # self.wait(driver,'//*[@id="table-tabs-row"]/ul/li[{}]/a'.format(options_count)).click() # # Collect odds for the different providers and pass them on to the database # self.provider_odds(driver,database,game_info) # print('Game {} successfully fetched'.format(count)) # else: # print('There is no halftime/fulltime odds for game {} yet'.format(count)) # driver.close() # # count = count + 1 # else: # print('Element not found') ###################################### ### Action Function ### ###################################### def move_to_game_page(self, game, driver, button_selector): """ This function opens the next page and adjusts the window switch. """ try: all_odds_button = self.wait_pres(game, button_selector.replace(' ', '.')) # Move on all_odds_button.send_keys(Keys.SHIFT, Keys.ALT, Keys.ENTER) logger.info('Moved On to Second Page.') except TimeoutException as ex: logger.error(ex) # Obtain and switch to new window handle WebDriverWait(driver, 10).until(EC.number_of_windows_to_be(2)) game_window = driver.window_handles[1] driver.switch_to_window(game_window) logger.info('Window Handle is switched.') def move_to_odds_page(self, driver, page_type): logger.info('Moving on to Odds Page.') if page_type == 'NEW': self.wait_pres(driver, 'div.market-dd.select-coupon-wrap > ' 'div.selected-coupon > ' 'div.market-item.selected.beta-caption1').click() additional_options = self.wait_pl_vis(driver, 'div.market-lists > ' 'ul.market-list.beta-3col-table > li >' ' a.market-item.beta-caption1') for item in additional_options: option = item.get_property('title') print(option) if option == 'Half Time/Full Time': item.click() logger.info('Moved on to Odds Page.') break # elif page_type == 'OLD': else: logger.info('Not Moving on to Odds Page.') # Extract team information def extract_game_info(self, driver, timestamp): #  Messy splitting of team names. teams = self.wait_pres(driver, '//*[@id="betting-odds"]/div/section/div/header/h1').text home_team = teams.split(' v ')[0].replace(" ", "") time.sleep(0.5 * uniform(0, 1)) container = teams.split(' v ')[1] away_team = container.split(' Winner')[0].replace(" ", "") time.sleep(0.5 * uniform(0, 1)) # Messy splitting of date & time datetime = self.wait_pres(driver, '//*[@id="betting-odds"]/div/section/div/div/div/div/span').text day = datetime.split(' / ')[0] clock = datetime.split(' / ')[1] #  Build identifier variable day_ = day.split(' ')[1][:2] month = day.split(' ')[2][:3] h_team = home_team[:5] a_team = away_team[:5] identifier = h_team + '_' + a_team + '_' + day_ + '_' + month # save the info in list game_info = [home_team, away_team, day, clock, identifier, timestamp] return game_info # Extract the data by provider def provider_odds(self, driver, database, game_info): # Set up index for the different providers provider_indices = np.arange(2, 31) provider_indices = np.delete(provider_indices, 25) # Loop through each of the odds providers for i in provider_indices: # Quick nap time.sleep(0.5 * uniform(0, 1)) # Only include providers that have odds if self.wait_pres(driver, '//*[@id="t1"]/tr[1]/td[{}]'.format(i)).get_attribute('data-odig') != "0": item = Halftime() # Assign Game Info to Database Field game_info_features = ['home_team', 'away_team', 'date', 'time','identifier', 'accessed', 'provider'] for index, feature_id in enumerate(game_info_features): if index != 6: item[feature_id] = game_info[index] else: item[feature_id] = self.wait(driver, '//*[@id="oddsTableContainer"]/table/thead/tr[4]/td[{}]/aside/a'.format( i)).get_attribute('title') # Assign Odds to Database Field game_odds_identifier = ['home_home', 'away_away', 'draw_home', 'draw_draw', 'draw_away', 'home_draw', 'away_draw', 'away_home', 'home_away'] for index, odd_id in game_odds_identifier: item[odd_id] = self.wait(driver, '//*[@id="t1"]/tr[{}]/td[{}]'.format(index+1,i)).get_attribute( 'data-odig') database.process_item(item) ###################################### ### Auxiliary Function ### ###################################### # This break function runs through the toolbar to check whether halftime/fulltime odds exists/ and find their index def retrieve_options_index(self, driver): code = 0 for index, option in enumerate(self.wait_pl_pres(driver,'//*[@id="table-tabs-row"]/ul/li')): if option.text == "Half Time/Full Time": code = 1 options_count = index + 1 # ?? break return options_count, code # Check whether game is in play def check_in_play(self, odds): button = odds.get_attribute('class') not_in_play = "button beta-callout btn-1-small" if button == not_in_play: code = 1 else: code = 0 return code # Wait for element def wait_vis(self, driver, css_selector): """ This function returns an element identified by via the given xpath. """ return WebDriverWait(driver, 10).until(EC.visibility_of_element_located((By.CSS_SELECTOR, css_selector))) # Wait for element def wait_click(self, driver, css_selector): """ This function returns an element identified by via the given xpath. """ return WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.CSS_SELECTOR, css_selector))) # Wait for element def wait_pres(self, driver, css_selector): """ This function returns an element identified by via the given xpath. """ return WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.CSS_SELECTOR, css_selector))) # wait for handle def wait_pl_vis(self, driver, css_selector): """ This function assigns all elements identified by via the given xpath to a list. """ return WebDriverWait(driver, 10).until(EC.visibility_of_all_elements_located((By.CSS_SELECTOR, css_selector))) # wait for handle def wait_pl_pres(self, driver, css_selector): """ This function assigns all elements identified by via the given xpath to a list. """ return WebDriverWait(driver, 10).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, css_selector))) def retrieve_page_type(self, driver_html): """ This function checks for the page type and retrieves the button class name.""" try: if 'class="button beta-callout btn-1-small"' in driver_html: page_type = 'OLD' button_selector = 'a.button beta-callout btn-1-small' elif 'class="beta-callout"' in driver_html: page_type = 'NEW' button_selector = 'a.beta-callout' logger.info('Page Type: {}'.format(page_type)) except TimeoutException: logger.error('No Button Found.') return button_selector, page_type def remove_popup(self, driver, button_type): """ This function removes popup adds. """ # Identify type of Popup if button_type == 0: buttons = self.wait_pl_pres(driver, 'div.content-wrapper >' ' span.inside-close-button.choose-uk') elif button_type == 1: buttons = self.wait_pl_pres(driver,'div#promo-modal.modal-dialog.active.offers-2 > ' 'div.modal-dialog-inner > div.content-wrapper > ' 'span.inside-close-button') time.sleep(2) # Otherwise the click does not work... # Remove Popup for button in buttons: try: button.click() logger.info('Popup Add Removed.') except BaseException as ex: logger.error(ex) pass del buttons
[ "w.glaeser@lse.ac.uk" ]
w.glaeser@lse.ac.uk
0a3714dda87472ba3477cbe0437c0752168772be
f6a55d65f72512b6d75a0ea6f2296b808b7e7157
/firstWEB/urls.py
d22d87f85e8dd6d436fe89e36b62afd4c7adb23f
[]
no_license
leeo2020/django-demo
1312abb5122d2ec68f1ea676ffc8f871013093e6
d253c0ea6f6c15ff89d11e755e1123ca0b5465c0
refs/heads/master
2023-04-20T07:55:26.497403
2021-05-13T10:15:57
2021-05-13T10:15:57
366,958,399
0
0
null
null
null
null
UTF-8
Python
false
false
155
py
from django.urls import path from . import views urlpatterns = [ path('', views.index), path('calc/', views.calc), path('rst/', views.rst) ]
[ "3145875098@qq.com" ]
3145875098@qq.com
1205967ca2fdd7378f1b0a3c2d76aefc99b71035
a5578f52de105b1d7dda2cc94b0dbfc7ddc7c91f
/src/manage.py
7db8da291e0fab6d2288f2e6631198e4333b3ad1
[]
no_license
segimanzanares/acs-django
4842004882d82debc6d8370c353a40c34cc4fcb7
893a585616af06e21960cb09c222b79992f4dbeb
refs/heads/master
2020-03-27T14:26:21.229015
2018-08-30T19:37:28
2018-08-30T19:37:28
146,662,496
1
0
null
null
null
null
UTF-8
Python
false
false
535
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'acs.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "segifredo.manzanares@copyleft.com.mx" ]
segifredo.manzanares@copyleft.com.mx
5857b51e19b6f474acf8a96eb7ed7d80c8d0d712
ef91b74131b8791800d2365982edbfaf515ef54a
/day2/list_special.py
9d3c2702dcf822503aa42d3cbb47c7dce942b0f9
[]
no_license
akatkar/python-training-examples
ec749f58698fc1cfa458246ce11069f94d25027e
8afa2e347c079a84740f4559e78c1be55eed5226
refs/heads/master
2020-05-16T03:32:22.613770
2019-04-22T09:15:14
2019-04-22T09:25:17
182,726,662
1
1
null
null
null
null
UTF-8
Python
false
false
156
py
list1 = [1,2,3,4,5] list2 = [6,7,8,9,10] for i in range(len(list1)): a = list1[i] + list2[i] print(a) for a, b in zip(list1,list2): print(a+b)
[ "alikatkar@gmail.com" ]
alikatkar@gmail.com
34bff3a0e0d3bff94503e438ba33e80cc26d37af
aee140df90baac9ce843d1468606672742731d8e
/accounts/views/signup.py
98d0d12a195bee4a548f1c1c031d8284b25da06c
[]
no_license
stevartz/event-calendar
06c56f389c529400c3dcb157a8b003401bbf393e
d2d337da0bddac5af4c07cd5a8b6de04d6a2df94
refs/heads/main
2023-08-19T02:17:44.353101
2021-09-23T15:36:06
2021-09-23T15:36:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
from django.views.generic import View from django.shortcuts import render, redirect from accounts.forms import SignUpForm class SignUpView(View): """ User registration view """ template_name = 'accounts/signup.html' form_class = SignUpForm def get(self, request, *args, **kwargs): forms = self.form_class() context = { 'form': forms } return render(request, self.template_name, context) def post(self, request, *args, **kwargs): forms = self.form_class(request.POST) if forms.is_valid(): forms.save() return redirect('accounts:signin') context = { 'form': forms } return render(request, self.template_name, context)
[ "sajib1066@gmail.com" ]
sajib1066@gmail.com
f39212fbdf011e70d20c0e51c1c82fab0f25700c
cd2aaf0097f2e244aa4a22c9da7133dd0e2f2fb8
/Saylani/python-code-master/17Sep2017/storingdata/storing6.py
cd00788649b22429c68f8d458a45ff91c0b1f3e3
[]
no_license
EnggQasim/SSUET-2017-Module-I
349ea6e9b0554fa8c55899622bf0ee97fd19b685
cd41ab8e768616ca56ddaa1d7662283f653674f9
refs/heads/master
2020-03-25T10:36:38.330710
2018-09-30T13:17:38
2018-09-30T13:17:38
143,698,684
1
2
null
null
null
null
UTF-8
Python
false
false
138
py
import json stu = {} filename = 'numbers2.json' with open(filename) as f_obj: stu = json.load(f_obj) print(stu); print(stu["name"]);
[ "m.qasim077@gmail.com" ]
m.qasim077@gmail.com
ab02463eb2fc0360da5da67ea204eb492611ded2
844d948e39d58018ad88dfc55a01b05a5b0b6a78
/backend/RapidRevision/views.py
e20d81acb34dedf7a1448824774e14311b2c3fe7
[]
no_license
a-exploit/RapidRevison
77b7012cf68d6b6b39f3046d7ca1515459013aa0
bddf9a349907bb1625f9786c0e706819ae846e86
refs/heads/master
2023-01-06T10:19:39.917871
2020-09-06T19:48:55
2020-09-06T19:48:55
211,389,944
0
1
null
2023-01-04T11:38:57
2019-09-27T19:39:14
JavaScript
UTF-8
Python
false
false
2,535
py
from django.shortcuts import render # Create your views here. from django.http import HttpResponse import requests from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import generics, mixins, status, viewsets from youtube_transcript_api import YouTubeTranscriptApi from rest_framework.decorators import api_view # class AddMembers(APIView): # def post(request,id): # list2=[] # list2=YouTubeTranscriptApi.get_transcript("E8lWqYvdCjQ") # with open('/home/Untitled_2.txt', 'w+') as f: # for item in list2: # f.write("%s\n" % item.get("text")) # print(request.POST) # return Response( status=status.HTTP_200_OK) @api_view(['GET', 'POST']) def transcript(request): if request.method == 'POST': list2=[] list3=[] subs='' summary='' list2=YouTubeTranscriptApi.get_transcript(request.data.get('id')) # with open('/home/Untitled_2.txt', 'w+') as f: for item in list2: subs=subs+"\n"+item.get("text") import requests r = requests.post( "https://api.deepai.org/api/summarization", data={ 'text': subs, }, headers={'api-key': 'bf8f2858-977c-4111-9331-48a15f4201bd'} ) print(r.json().get('output')) summary=r.json().get('output') return Response(subs,status=status.HTTP_200_OK) @api_view(['GET', 'POST']) def summary(request): if request.method == 'POST': list2=[] list3=[] subs='' summary='' list2=YouTubeTranscriptApi.get_transcript(request.data.get('id')) # with open('/home/Untitled_2.txt', 'w+') as f: for item in list2: subs=subs+"\n"+item.get("text") import requests r = requests.post( "https://api.deepai.org/api/summarization", data={ 'text': subs, }, headers={'api-key': 'bf8f2858-977c-4111-9331-48a15f4201bd'} ) print(r.json().get('output')) summary=r.json().get('output') return Response(summary,status=status.HTTP_200_OK) @api_view(['GET', 'POST']) def keywords(request): if request.method == 'POST': list2=[] list3=[] subs='' summary='' list2=YouTubeTranscriptApi.get_transcript(request.data.get('id')) # with open('/home/Untitled_2.txt', 'w+') as f: for item in list2: subs=subs+"\n"+item.get("text") import requests r = requests.post( "https://api.deepai.org/api/text-tagging", data={ 'text': subs, }, headers={'api-key': 'bf8f2858-977c-4111-9331-48a15f4201bd'} ) print(r.json().get('output')) keywords=r.json().get('output') return Response(keywords,status=status.HTTP_200_OK)
[ "choudharyritik3@gmail.com" ]
choudharyritik3@gmail.com
cbe572794cf3d14a5d9ee5e9c76677166b3ef83a
45199b72fdcddb9e24a132d961d0698d7603ad9f
/Day2810_HW_SoundcloudPatterns/components/player_bar.py
a90c04a97716d31ae2e2533f00c61f53fa3b3a8d
[]
no_license
2gisprojectT/terehov-soundcloud
21db3aac98699b139abd07125e2ebdabc08ac130
16704541b98f0e017e3b6930efc1aa15f1e50184
refs/heads/master
2021-01-23T17:31:04.549841
2014-11-14T09:52:29
2014-11-14T09:52:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
309
py
from Day2810_HW_SoundcloudPatterns.components.base_component import BaseComponent class PlayerBar(BaseComponent): _selectors = { "title": "playbackTitle__link" } def title(self): title = self.element.find_element_by_class_name(self._selectors["title"]) return title.text
[ "alexey.terekhov@bk.ru" ]
alexey.terekhov@bk.ru
1a5b707d2641c2e6f5cf7187340d9d81e08873ed
acbe6bd6cefaf8b12070d7258dab30e4f7fcebed
/lib/libdbr/dateinfo.py
22020e47cbc869a9b5bd6362b55c8f991e4efb49
[ "MIT" ]
permissive
RogueScholar/debreate
02c98c5a78d33041798410f0e3b99e80fda65d00
dfe9bcac7333a53082b3a2ae169806cf604d59f6
refs/heads/master
2023-06-07T11:49:03.821969
2023-04-28T02:14:25
2023-04-28T02:14:25
253,707,766
0
0
MIT
2023-05-28T15:24:17
2020-04-07T06:34:47
Python
UTF-8
Python
false
false
3,135
py
# **************************************************** # * Copyright © 2023 - Jordan Irwin (AntumDeluge) * # **************************************************** # * This software is licensed under the MIT license. * # * See: LICENSE.txt for details. * # **************************************************** ## Date & time formatting. # # @module libdbr.dateinfo from datetime import datetime from time import strftime ## Formatting methods for dates & times # # Formats: # DEFAULT (none), CL (changelog), LOG (logger) class dtfmt: DEFAULT = 0 CL = 1 LOG = 2 STAMP = 3 ## Prepends a zero to single-digit numbers # # TODO: use use standard Python methods to pad with zeros # # @param number # Integer to be modified. # @return # String representation of digit. def digitToString(number): if number < 10: return "0{}".format(number) return str(number) ## Retrieves the current year. # # @param fmt # dtfmt to use. # @param tostring # If true, convert returned value to string. # @return # Integer or string representation of year. def getYear(fmt=dtfmt.DEFAULT, tostring=True): year = strftime("%Y") if not tostring: year = int(year) return year ## Retrieves the current month. # # @param tostring # If true, convert returned value to string. # @return # Integer or string representation of month. def getMonth(tostring=True): month = strftime("%m") if not tostring: month = int(month) return month ## Retrieves the current day of the month. # # @param tostring # If true, convert returned value to string. # @return # Integer or string representation of day. def getDay(tostring=True): day = strftime("%d") if not tostring: day = int(day) return day ## Retrieves today's date. # # @param fmt # dtfmt to use. # @return # String representation of date. def getDate(fmt=dtfmt.DEFAULT): yr = getYear() if fmt == dtfmt.CL: # format: Wkdy, DD Mon YYYY return "{} {}".format(strftime("%a, %d %b"), yr) if fmt == dtfmt.STAMP: # format YYYYMMDD_HHMMSSmmm return "{}_{}".format(strftime("%Y%m%d"), getTime(fmt)) # format: YYYY-MM-DD return "{}-{}".format(yr, strftime("%m-%d")) ## Retrieves current time. # # @param fmt # dtfmt to use. # @return # String representation of time. def getTime(fmt=dtfmt.DEFAULT): ms = None current_time = None if fmt in (dtfmt.LOG, dtfmt.STAMP,): ms = datetime.now().strftime("%f")[:3] if fmt == dtfmt.STAMP: # format: HHMMSSmmm current_time = "{}{}".format(strftime("%H%M%S"), ms) else: # format: HH:MM:SS.mmm current_time = "{}.{}".format(strftime("%T"), ms) else: # format: HH:MM:SS current_time = strftime("%H:%M:%S") return current_time ## Retrieves current time zone. # # @param fmt # dtfmt to use. # @return # String representation of timezone. def getTimeZone(fmt=dtfmt.DEFAULT): return strftime("%z") ## Retrievies a date string formatted for Debian changelog. def getDebianizedDate(): return "{} {} {}".format(getDate(dtfmt.CL), getTime(dtfmt.CL), getTimeZone(dtfmt.CL))
[ "antumdeluge@gmail.com" ]
antumdeluge@gmail.com
9af2a24dc7f424453169bb1a738a452996857e21
be8ea690e2516e9e66788eed28f6c2f48c03b5b2
/code/wikiParser/cleanContext.py
846a1c854b0224fcc22b7883812458053062fffc
[]
no_license
ZhouDavid/UnderGraduProject
28feb808cab9cd3867217c0207371ed1b1aea322
075645d30cb0d1ac5680ed015a379810178ccb59
refs/heads/master
2021-01-22T18:10:40.552534
2017-06-22T10:20:50
2017-06-22T10:20:50
85,063,754
2
0
null
null
null
null
UTF-8
Python
false
false
629
py
#coding:utf-8 def cleanContext(contextFileName,minContextNum): newContexts=[] contexts = open(contextFileName,'rb').readlines() tmp='' for c in contexts: c = c.decode('utf-8').strip() if len(tmp)<minContextNum: tmp+=c else: newContexts.append(tmp) tmp=c if len(tmp)<minContextNum: newContexts.append(tmp) return newContexts if __name__ == '__main__': contexts = cleanContext('E:\\Graduation-Project\\code\\wikiParser\\test',200) contexts = [(c+'\n').encode('utf-8') for c in contexts] open('test2','wb').writelines(contexts)
[ "Jianyu Zhou" ]
Jianyu Zhou
dcee3efa896d28f24f72b0dc92e85b26353f6ca8
97b146cf569430818d37f3e376b10e456c106526
/server/TCP_MultiThreaded_HTML_Server.py
406bce88f5321ae3bbd2df6e858e686e5b7e01d2
[]
no_license
RedOneLima/simple-HTTP-server
76b202817294c3e07b7bd199e3531125c0763e76
1003c606fa8c56c80d5122258a432390acc479f2
refs/heads/master
2021-01-11T18:50:09.625512
2017-01-21T16:30:27
2017-01-21T16:30:27
79,636,503
0
0
null
null
null
null
UTF-8
Python
false
false
2,652
py
import threading import SocketServer import datetime class ThreadedTCPRequestHandler(SocketServer.BaseRequestHandler): def handle(self): server_name = 'Simple Python Server 2.7'#name sent as server name while 1: try: in_data = self.request.recv(1024)#listen/recv data = in_data.split('\n')#seperate the incoming data from single string to a list request_header = str(data[0]).split('/')#seperate the request from the file name request = request_header[0]#save request(get) file_name= request_header[1]#save file name http_version = data[2]#not used user_agent = data[3]#not used except Exception:#when connection is closed print 'Client {} on {} closed'.format(self.client_address, threading.current_thread().name) break else: if str(request).upper() == 'GET': request_code = '200 OK' try: file = open(file_name,'r') request_file = file.read() except IOError: request_code = '404 Not Found' else: request_code = '400 Bad Request' print 'From {} on {}: \n{}'.format(self.client_address,threading.current_thread().name, in_data) if request_code == '200 OK': response =('\n'+request_code+'\nDate: '+str(datetime.datetime.now())+'\nServer: '+server_name+'\n\n'+str(request_file)+'\r\n\r\n\r\n\r\n') print 'To {} on {}: {}'.format(self.client_address, threading.current_thread().name,'\n'+request_code+'\nDate: '+str(datetime.datetime.now())+'\nServer: '+server_name+'\n\n') self.request.sendall(response) else: response = ('\n'+request_code+'\nDate: '+str(datetime.datetime.now())+'\nServer: '+server_name+'\n\n') print 'To {} on {}: \n{}'.format(self.client_address,threading.current_thread().name, response) self.request.sendall(response) class ThreadedTCPServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer): pass if __name__ == "__main__": HOST, PORT = 'cs3700.msudenver.edu',5120 server = ThreadedTCPServer((HOST,PORT), ThreadedTCPRequestHandler)#create a threaded TCP server server_thread = threading.Thread(target=server.serve_forever)#run the threaded server until terminated server_thread.start() print "Server loop running in thread:", server_thread.name
[ "khewitt08@live.com" ]
khewitt08@live.com
a25dfc1f724f24ab65af4e9aff7d73130e692da4
9a10c0e704867c38b5eb79e6a4718378538d4d3a
/django实现类博客和BBS系统/bin/EdmureBlog/web/views/home.py
c429387da7a058150d42618e007c6c76fcdf5f24
[]
no_license
shisanjun/django
811788319d779530aea7302ec7e1a434ded05b93
27019a08657ce30517c7e8d4684ece62bf3e154b
refs/heads/master
2022-03-11T05:41:55.581388
2022-02-22T07:15:59
2022-02-22T07:15:59
120,069,444
0
0
null
null
null
null
UTF-8
Python
false
false
11,153
py
#!/usr/bin/env python # -*- coding:utf-8 -*- from django.shortcuts import render,HttpResponse from django.shortcuts import redirect from repository import models from utils.authication import login from utils import pagination from django.urls import reverse import json from django.db.models import Max,Count from collections import Counter def index(request): """ 博客首页,展示全部博文 :param request: :return: """ type=request.GET.get("type","0") if type=="0": article_lists = models.Article.objects.all().order_by("-nid") else: article_lists = models.Article.objects.filter(article_type=type).order_by("-nid") current_page = request.GET.get('p', 1) current_page = int(current_page) val = request.COOKIES.get('per_page_count',10) val = int(val) page_obj = pagination.Page(current_page=current_page,data_count=len(article_lists),per_page_count=val) data = article_lists[page_obj.start:page_obj.end] page_str = page_obj.page_str(reverse("index")) article_type=models.Article.type_choices read_count_objs=models.Article.objects.values("nid","read_count","title").annotate(read_count_max=Max("read_count")).order_by("-read_count_max")[:7] commnet_count_objs=models.Article.objects.values("nid","comment_count","title").annotate(comment_count_max=Max("comment_count")).order_by("-comment_count_max")[:7] return render(request, 'index.html', {'article_lists': data, "page_str":page_str, "article_type":article_type, "read_count_objs":read_count_objs, "commnet_count_objs":commnet_count_objs, }) def month_group(): #按年月分组 article_objs2=models.Article.objects.annotate(num_comment=Count("nid")).filter(create_time__isnull=False).order_by("-num_comment") year_month_list=[(p.create_time.year,p.create_time.month) for p in article_objs2] year_month_dict=Counter(year_month_list) date_list=[(key[0],key[1],year_month_dict[key]) for key in year_month_dict] date_list.sort(reverse=True) return date_list def menu(site): blog_home = models.Blog.objects.filter(site=site).select_related('user').first() fans_count=models.UserFans.objects.filter(user_id=blog_home.user.nid).count() relate_fans_count=models.UserFans.objects.filter(follower_id=blog_home.user.nid).count() category_objs=models.Category.objects.filter(blog_id=blog_home.nid) tag_objs=models.Tag.objects.filter(blog_id=blog_home.nid) article_objs=models.Article.objects.filter(blog_id=blog_home.nid).order_by("-nid") month_objs=month_group return { "blog_home":blog_home, "fans_count":fans_count, "relate_fans_count":relate_fans_count, "category_objs":category_objs, "tag_objs":tag_objs, "article_objs":article_objs, "month_objs":month_objs, "site":site } @login def home(request,site): """ 博主个人首页 :param request: :param site: 博主的网站后缀如:http://xxx.com/wupeiqi.html :return: """ render_objs=menu(site) blog_home=render_objs.get("blog_home") article_objs=models.Article.objects.filter(blog_id=blog_home.nid).order_by("-nid") render_objs["article_objs"]=article_objs return render(request, 'home.html',render_objs ) def filter(request, site, condition, val): """ 分类显示 :param request: :param site: :param condition: :param val: :return: """ user_home = models.Blog.objects.filter(site=site).select_related('user').first() if not user_home: return redirect('/') template_name = "home_summary_list.html" if condition == 'tag': # print("tag") template_name = "home_summary_list.html" article_list = models.Article.objects.filter(tags__nid=val, blog=user_home).all() # print(article_list) elif condition == 'category': template_name = "home_summary_list.html" article_list = models.Article.objects.filter(category__nid=val, blog=user_home).all() elif condition == 'date': template_name = "home_summary_list.html" article_list = models.Article.objects.filter(blog=user_home).extra( where=['date_format(create_time,"%%Y%%m")=%s'], params=[val, ]).all() else: article_list = [] menu_dict=menu(site) menu_dict["article_list"]=article_list return render(request, template_name,menu_dict) def detail(request, site, nid): """ 博文详细页 :param request: :param site: :param nid: :return: """ render_dict=menu(site) blog_home=render_dict.get("blog_home") article_obj=models.Article.objects.filter(blog_id=blog_home.nid,nid=nid).first() #阅读加1 article_obj.read_count=int(article_obj.read_count)+1 article_obj.save() comment_objs=models.Comment.objects.filter(article_id=nid) render_dict["article_obj"]=article_obj render_dict["comment_objs"]=comment_objs return render(request, 'home_detail.html',render_dict) def up_article(request): res={"status":False,"data":None} if request.method=="GET": username=request.GET.get("site") article_id=request.GET.get("nid") user_obj=models.UserInfo.objects.filter(username=username).first() article_obj=models.Article.objects.filter(nid=article_id).first() updown_obj=models.UpDown.objects.filter(article_id=article_id,user_id=user_obj.nid).first() #不存在 if updown_obj is None: models.UpDown.objects.create(article_id=article_id,user_id=user_obj.nid,up=True) #文章踩加1 article_obj.up_count+=1 article_obj.save() res["status"]=True #赞存在 else: #是赞还是踩 if not updown_obj.up:#不是赞 #踩改成赞 updown_obj.up=True updown_obj.save() article_obj.up_count+=1 article_obj.down_count-=1 article_obj.save() res["status"]=True return HttpResponse(json.dumps(res)) def down_article(request): res={"status":False,"data":None} if request.method=="GET": username=request.GET.get("site") article_id=request.GET.get("nid") user_obj=models.UserInfo.objects.filter(username=username).first() article_obj=models.Article.objects.filter(nid=article_id).first() updown_obj=models.UpDown.objects.filter(article_id=article_id,user_id=user_obj.nid).first() #赞不存在 if updown_obj is None: models.UpDown.objects.create(article_id=article_id,user_id=user_obj.nid,up=False) #文章踩加1 article_obj.down_count+=1 article_obj.save() res["status"]=True #赞存在 else: #是赞还是踩 if updown_obj.up: #是赞 #赞改成踩 updown_obj.up=False updown_obj.save() article_obj.down_count+=1 article_obj.up_count-=1 article_obj.save() res["status"]=True return HttpResponse(json.dumps(res)) def replay_article(request): """ 评论文章 :param request: :return: """ # print(request.POST) ret={"status":False,"data":None,"error":None} if request.method=="POST": article_id=request.POST.get("article_id") content=request.POST.get("content") username=request.POST.get("username") user_obj=models.UserInfo.objects.filter(username=username).first() try: comment_obj=models.Comment.objects.create(content=content,article_id=article_id,user_id=user_obj.nid) article_obj=models.Article.objects.filter(nid=article_id).first() #评论加1 article_obj.comment_count+=1 article_obj.save() ret["status"]=True except: ret["status"]=False ret["error"]="创建失败" return HttpResponse(json.dumps(ret)) def fans_add(request): """ 添加关注 :param request: :return: """ ret={"status":False,"data":None,"error":None} if request.method=="GET": site=request.GET.get("site") username=request.GET.get("username") if site==username: ret["error"]="用户不能添加自己为粉丝" else: site_obj=models.UserInfo.objects.filter(username=site).first() fan_user_obj=models.UserInfo.objects.filter(username=username).first() try: fan_obj=models.UserFans.objects.create(user_id=site_obj.nid,follower_id=fan_user_obj.nid) ret["status"]=True ret["data"]="关注成功,您已是[%s]的粉丝"%site except: ret["error"]="已是[%s]的粉丝" %site return HttpResponse(json.dumps(ret)) def fans_cancel(request): """ 取消关注 :param request: :return: """ ret={"status":False,"data":None,"error":None} if request.method=="GET": site=request.GET.get("site") username=request.GET.get("username") if site==username: ret["error"]="用户不能添加或者取消自己为粉丝" else: site_obj=models.UserInfo.objects.filter(username=site).first() fan_user_obj=models.UserInfo.objects.filter(username=username).first() fan_obj=models.UserFans.objects.filter(user_id=site_obj.nid,follower_id=fan_user_obj.nid) if fan_obj is not None: fan_obj.delete() ret["status"]=True ret["data"]="已取消为[%s]的粉丝"%site return HttpResponse(json.dumps(ret)) def show_article(request,article_id): """ 查看文章 :param request: :param article_id: :return: """ if request.method=="GET": article_obj=models.Article.objects.filter(nid=article_id).first() return redirect("/%s/%s.html" %(article_obj.blog.site,article_id)) def replay_otheruser(request): """ 回复其他人 :param request: :return: """ ret={"status":False,"data":None,"error":None} if request.method=="POST": comment_id=request.POST.get("comment_id") replay_comment=request.POST.get("replay_comment") article_id=request.POST.get("article_id") username=request.POST.get("username") user_obj=models.UserInfo.objects.filter(username=username).first() comment_user=request.POST.get("comment_user") comment_obj=models.Comment.objects.create( reply_id=comment_id, content=replay_comment, article_id=article_id, user_id=user_obj.nid ) if comment_obj is not None: ret["status"]=True return HttpResponse(json.dumps(ret))
[ "lixiang_0510@126.com" ]
lixiang_0510@126.com
65c468ee4af139e0b2068f1aa77294ffbc4aab21
bc2918dd2e5192cca4cd053a13beedd72bca6cc2
/accounts/models.py
0a1128937a8bbe8b1354bc5dbfe5189046f9e8b1
[]
no_license
hussainjhaveri/testrepo
02c7eac8e2f185eae96730beb1ada13ed2879716
baba7f5782ff6268b491732ed482343b08ae805d
refs/heads/master
2023-01-08T14:59:25.474759
2020-11-13T01:39:20
2020-11-13T01:39:20
312,435,528
0
0
null
null
null
null
UTF-8
Python
false
false
366
py
from django.contrib.auth.models import User from django.db import models types = [('dog','dog'),('cat','cat'),('bird','bird')] class Pets(models.Model): name = models.CharField(max_length=100,null= False) species = models.CharField(max_length=10, choices=types ) age = models.IntegerField() owner = models.ForeignKey(User,on_delete= models.CASCADE )
[ "jhaverihussain@gmail.com" ]
jhaverihussain@gmail.com
2a0ca8f479f28e49d1b41af55a3c769c0c9453d6
a39a9e6033d0148a37f25b7d7b5af4b1ec4b8c5f
/speech_recognition/pytorch/train.py
69ac1a270be0fc7297161ca18c1aa53b791a726c
[]
no_license
arnav-s/BlockSparse
180470e779eb259ec5a862a3ddd75b2d4d38f84c
50225daaf46803a0a684f9b17c940ef4841e90fa
refs/heads/master
2020-05-22T00:07:59.795846
2019-05-11T18:04:13
2019-05-11T18:04:13
186,165,600
1
0
null
null
null
null
UTF-8
Python
false
false
13,935
py
import argparse import errno import json import os import time import sys import numpy as np import random from collections import OrderedDict import torch from torch.autograd import Variable from warpctc_pytorch import CTCLoss import torch.nn.functional as F ### Import Data Utils ### sys.path.append('../') from data.bucketing_sampler import BucketingSampler, SpectrogramDatasetWithLength from data.data_loader import AudioDataLoader, SpectrogramDataset from decoder import GreedyDecoder from model import DeepSpeech, supported_rnns import params from eval_model import eval_model ########################################################### # Comand line arguments, handled by params except seed # ########################################################### parser = argparse.ArgumentParser(description='DeepSpeech training') parser.add_argument('--checkpoint', dest='checkpoint', action='store_true', help='Enables checkpoint saving of model') parser.add_argument('--save_folder', default='models/', help='Location to save epoch models') parser.add_argument('--model_path', default='models/deepspeech_final.pth.tar', help='Location to save best validation model') parser.add_argument('--continue_from', default='', help='Continue from checkpoint model') parser.add_argument('--seed', default=0xdeadbeef, type=int, help='Random Seed') parser.add_argument('--acc', default=23.0, type=float, help='Target WER') parser.add_argument('--start_epoch', default=-1, type=int, help='Number of epochs at which to start from') def to_np(x): return x.data.cpu().numpy() class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def get_initial_slope(x,block_size): #85% sparsity q = np.percentile(x,85) #based on heuristics in paper, change as you need theta = q*100*2/(2*(0.2*params.epochs-2)+3*(0.4*params.epochs-0.2*params.epochs)) return theta*pow(block_size,0.25) def get_threshold(model, pruning_perc): all_weights = [] for p in model.parameters(): if len(p.data.size()) != 1: all_weights += list(p.cpu().data.abs().numpy().flatten()) threshold = np.percentile(np.array(all_weights), pruning_perc) return threshold def get_blocks(x,size): l=[] r,c = x.shape for i in range(0,r,size): for j in range(0,c,size): l.append(x[i:i+size,j:j+size]) return np.array(l) def weight_prune(arr,threshold,size): ''' Prune pruning_perc% weights globally (not layer-wise) arXiv: 1606.09274 ''' '''all_weights = [] for p in model.parameters(): if len(p.data.size()) != 1: all_weights += list(p.cpu().data.abs().numpy().flatten()) threshold = np.percentile(np.array(all_weights), pruning_perc) ''' # generate mask #y = [np.max(arr[i]) for i in range(len(arr))] '''masks = [] for p in model.parameters(): if len(p.data.size()) != 1: pruned_inds = p.data.abs() > threshold masks.append(pruned_inds.float()) ''' blk_arr = get_blocks(arr,size) y = [np.max(blk_arr[i]) for i in range(len(blk_arr))] print(len(y)) pruned_inds = np.abs(y) > threshold print(pruned_inds) '''for i in range(len(y)): reshaped_mask = np.full(blk_arr[i].shape,pruned_inds[i])''' r,c = arr.shape ctr = 0 #print(len(reshaped_mask)) for i in range(0,r,size): for j in range(0,c,size): #print(ctr) #print(blk_arr[0]) #print(reshaped_mask) arr[i:i+size,j:j+size] = arr[i:i+size,j:j+size]*pruned_inds[ctr] ctr+=1 def main(): args = parser.parse_args() torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) if params.rnn_type == 'gru' and params.rnn_act_type != 'tanh': print("ERROR: GRU does not currently support activations other than tanh") sys.exit() if params.rnn_type == 'rnn' and params.rnn_act_type != 'relu': print("ERROR: We should be using ReLU RNNs") sys.exit() print("=======================================================") for arg in vars(args): print("***%s = %s " % (arg.ljust(25), getattr(args, arg))) print("=======================================================") save_folder = args.save_folder loss_results, cer_results, wer_results = torch.Tensor(params.epochs), torch.Tensor(params.epochs), torch.Tensor(params.epochs) best_wer = None try: os.makedirs(save_folder) except OSError as e: if e.errno == errno.EEXIST: print('Directory already exists.') else: raise criterion = CTCLoss() with open(params.labels_path) as label_file: labels = str(''.join(json.load(label_file))) audio_conf = dict(sample_rate=params.sample_rate, window_size=params.window_size, window_stride=params.window_stride, window=params.window, noise_dir=params.noise_dir, noise_prob=params.noise_prob, noise_levels=(params.noise_min, params.noise_max)) train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=params.train_manifest, labels=labels, normalize=True, augment=params.augment) test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=params.val_manifest, labels=labels, normalize=True, augment=False) train_loader = AudioDataLoader(train_dataset, batch_size=params.batch_size, num_workers=1) test_loader = AudioDataLoader(test_dataset, batch_size=params.batch_size, num_workers=1) rnn_type = params.rnn_type.lower() assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru" model = DeepSpeech(rnn_hidden_size = params.hidden_size, nb_layers = params.hidden_layers, labels = labels, rnn_type = supported_rnns[rnn_type], audio_conf = audio_conf, bidirectional = False, rnn_activation = params.rnn_act_type, bias = params.bias) parameters = model.parameters() optimizer = torch.optim.SGD(parameters, lr=params.lr, momentum=params.momentum, nesterov=True, weight_decay = params.l2) decoder = GreedyDecoder(labels) if args.continue_from: print("Loading checkpoint model %s" % args.continue_from) package = torch.load(args.continue_from) model.load_state_dict(package['state_dict']) optimizer.load_state_dict(package['optim_dict']) start_epoch = int(package.get('epoch', 1)) - 1 # Python index start at 0 for training start_iter = package.get('iteration', None) if start_iter is None: start_epoch += 1 # Assume that we saved a model after an epoch finished, so start at the next epoch. start_iter = 0 else: start_iter += 1 avg_loss = int(package.get('avg_loss', 0)) if args.start_epoch != -1: start_epoch = args.start_epoch loss_results[:start_epoch], cer_results[:start_epoch], wer_results[:start_epoch] = package['loss_results'][:start_epoch], package[ 'cer_results'][:start_epoch], package['wer_results'][:start_epoch] print(loss_results) epoch = start_epoch else: avg_loss = 0 start_epoch = 0 start_iter = 0 avg_training_loss = 0 if params.cuda: model = torch.nn.DataParallel(model).cuda() print(model) print("Number of parameters: %d" % DeepSpeech.get_param_size(model)) batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() ctc_time = AverageMeter() #can affect performance (tuning needed) threshold = 1 curr_iter = 0 all_weights = [] for p in model.parameters(): if len(p.data.size()) != 1: all_weights += list(p.cpu().data.abs().numpy().flatten()) #second param is block size slope = get_initial_slope(np.array(all_weights),8*8) wanted_weights = [] for k in model.state_dict().keys(): if 'rnn' in k: wanted_weights.append(k) for epoch in range(start_epoch, params.epochs): model.train() end = time.time() for i, (data) in enumerate(train_loader, start=start_iter): curr_iter+=1 if i == len(train_loader): break if curr_iter%100==0: threshold = threshold*slope inputs, targets, input_percentages, target_sizes = data # measure data loading time data_time.update(time.time() - end) inputs = Variable(inputs, requires_grad=False) target_sizes = Variable(target_sizes, requires_grad=False) targets = Variable(targets, requires_grad=False) if params.cuda: inputs = inputs.cuda() out = model(inputs) out = out.transpose(0, 1) # TxNxH seq_length = out.size(0) sizes = Variable(input_percentages.mul_(int(seq_length)).int(), requires_grad=False) ctc_start_time = time.time() loss = criterion(out, targets, sizes, target_sizes) ctc_time.update(time.time() - ctc_start_time) loss = loss / inputs.size(0) # average the loss by minibatch loss_sum = loss.data.sum() inf = float("inf") if loss_sum == inf or loss_sum == -inf: print("WARNING: received an inf loss, setting loss value to 0") loss_value = 0 else: loss_value = loss.data[0] avg_loss += loss_value losses.update(loss_value, inputs.size(0)) # compute gradient optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm(model.parameters(), params.max_norm) # SGD step optimizer.step() if params.cuda: torch.cuda.synchronize() new_state_dict = model.state_dict().copy() if(epoch>=0.2*(params.epochs)&(epoch<=0.4*(params.epochs))): for w in wanted_weights: weight_prune(new_state_dict[w],threshold,8) model.load_state_dict(new_state_dict,strict=False) # measure elapsed time batch_time.update(time.time() - end) end = time.time() print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'CTC Time {ctc_time.val:.3f} ({ctc_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format( (epoch + 1), (i + 1), len(train_loader), batch_time=batch_time, data_time=data_time, ctc_time=ctc_time, loss=losses)) del loss del out #Add function to keep zeroed out terms avg_loss /= len(train_loader) print('Training Summary Epoch: [{0}]\t' 'Average Loss {loss:.3f}\t' .format( epoch + 1, loss=avg_loss, )) start_iter = 0 # Reset start iteration for next epoch total_cer, total_wer = 0, 0 model.eval() wer, cer = eval_model( model, test_loader, decoder) loss_results[epoch] = avg_loss wer_results[epoch] = wer cer_results[epoch] = cer print('Validation Summary Epoch: [{0}]\t' 'Average WER {wer:.3f}\t' 'Average CER {cer:.3f}\t'.format( epoch + 1, wer=wer, cer=cer)) if args.checkpoint: file_path = '%s/deepspeech_%d.pth.tar' % (save_folder, epoch + 1) torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results, wer_results=wer_results, cer_results=cer_results), file_path) # anneal lr optim_state = optimizer.state_dict() optim_state['param_groups'][0]['lr'] = optim_state['param_groups'][0]['lr'] / params.learning_anneal optimizer.load_state_dict(optim_state) print('Learning rate annealed to: {lr:.6f}'.format(lr=optim_state['param_groups'][0]['lr'])) if best_wer is None or best_wer > wer: print("Found better validated model, saving to %s" % args.model_path) torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results, wer_results=wer_results, cer_results=cer_results) , args.model_path) best_wer = wer avg_loss = 0 #If set to exit at a given accuracy, exit if params.exit_at_acc and (best_wer <= args.acc): break print("=======================================================") print("***Best WER = ", best_wer) for arg in vars(args): print("***%s = %s " % (arg.ljust(25), getattr(args, arg))) print("=======================================================") if __name__ == '__main__': main()
[ "sharma55@wisc.edu" ]
sharma55@wisc.edu
158fdcbd64d47adb841046556b8f916b283a7524
40029281c27f748dfdb7e2b2b52186f239caeed8
/metadataanalysis_client/models/translate_text_response.py
82c5cc1c1bbfbc6dc48df5d6e64e664881f99cac
[]
no_license
daletcoreil/metadataanalysis-client-python-sdk
d30001c2f91c94f6aca3627735280e641839e4a1
9b4b495fe3f5f1d5c7d28e126def9c311c5518e5
refs/heads/master
2021-06-20T15:54:36.426663
2021-05-04T06:41:55
2021-05-04T06:41:55
207,790,626
0
0
null
null
null
null
UTF-8
Python
false
false
4,868
py
# coding: utf-8 """ Dalet Metadata Analysis API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: 2.1.0 Contact: cortexsupport@dalet.com Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from metadataanalysis_client.configuration import Configuration class TranslateTextResponse(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'detected_source_language': 'str', 'text': 'str' } attribute_map = { 'detected_source_language': 'detectedSourceLanguage', 'text': 'text' } def __init__(self, detected_source_language=None, text=None, local_vars_configuration=None): # noqa: E501 """TranslateTextResponse - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._detected_source_language = None self._text = None self.discriminator = None if detected_source_language is not None: self.detected_source_language = detected_source_language self.text = text @property def detected_source_language(self): """Gets the detected_source_language of this TranslateTextResponse. # noqa: E501 The source language that was detected by the API in case it was not specified in the request. # noqa: E501 :return: The detected_source_language of this TranslateTextResponse. # noqa: E501 :rtype: str """ return self._detected_source_language @detected_source_language.setter def detected_source_language(self, detected_source_language): """Sets the detected_source_language of this TranslateTextResponse. The source language that was detected by the API in case it was not specified in the request. # noqa: E501 :param detected_source_language: The detected_source_language of this TranslateTextResponse. # noqa: E501 :type: str """ self._detected_source_language = detected_source_language @property def text(self): """Gets the text of this TranslateTextResponse. # noqa: E501 Translated text. # noqa: E501 :return: The text of this TranslateTextResponse. # noqa: E501 :rtype: str """ return self._text @text.setter def text(self, text): """Sets the text of this TranslateTextResponse. Translated text. # noqa: E501 :param text: The text of this TranslateTextResponse. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and text is None: # noqa: E501 raise ValueError("Invalid value for `text`, must not be `None`") # noqa: E501 self._text = text def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TranslateTextResponse): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, TranslateTextResponse): return True return self.to_dict() != other.to_dict()
[ "daletcoreil@gmail.com" ]
daletcoreil@gmail.com
584a6b3e4bd12b8b30b38ac831abcad5b37fc763
bd8bc7abe0f774f84d8275c43b2b8c223d757865
/153_FindMinimumInRotatedSortedArray/findMin.py
03031fab7b0e95317febbbd14ece87fb911503d3
[ "MIT" ]
permissive
excaliburnan/SolutionsOnLeetcodeForZZW
bde33ab9aebe9c80d9f16f9a62df72d269c5e187
64018a9ead8731ef98d48ab3bbd9d1dd6410c6e7
refs/heads/master
2023-04-07T03:00:06.315574
2021-04-21T02:12:39
2021-04-21T02:12:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,236
py
# 解法一: 二分法-我的解法 # 执行用时 :32 ms, 在所有 Python3 提交中击败了 98.51% 的用户 # 内存消耗 : 13.2 MB, 在所有 Python3 提交中击败了 44.85% 的用户 class Solution: def findMin(self, nums: List[int]) -> int: left, right = 0, len(nums) - 1 if left == right or nums[left] < nums[right]: return nums[left] while left < right: if right - left == 1: return min(nums[left], nums[right]) mid = (left + right) // 2 if nums[left] < nums[mid] and nums[right] < nums[mid]: left = mid + 1 else: right = mid return nums[left] # 解法二:选用 nums[right] < nums[mid], 不用nums[left] class Solution: def findMin(self, nums: List[int]) -> int: left, right = 0, len(nums) - 1 while left < right: mid = left + (right - left) // 2 # 之所以不用nums[left] < nums[mid] # 是因为,对于[2, 1]这样的会停在2,故用right不用left if nums[right] < nums[mid]: left = mid + 1 else: right = mid return nums[left]
[ "noreply@github.com" ]
excaliburnan.noreply@github.com
0566b5c4f01c740c616a63dbd55f70956d87d809
6771baa15cec59d12430396ce4db207ce908105d
/Class1/src/information.py
ffbf4e76fc34d2b21e5f359fd0a8d0d33560ebef
[]
no_license
ChandanaKotta/TA-ImageAnalysis-IIITB
6bda5cc7e8cb81118f266d44b9d03b0ec65161f1
74670bded3241fab2ca221449bed441ff141a58a
refs/heads/master
2021-05-12T10:47:42.196999
2018-09-08T22:16:21
2018-09-08T22:16:21
117,361,382
2
2
null
null
null
null
UTF-8
Python
false
false
1,031
py
# play with bits # the idea of this code is to illustrate the importance of bits in capturing information. # The bits to the left (in each pixel comprised of say 8 bits) capture the maximum amount of information. import cv2 import numpy as np mona_lisa = cv2.imread("../images/mona.jpg") height, width, channels = mona_lisa.shape # the position of the bit that shall be manipulated. bit_number = 0 cv2.imshow("mona",mona_lisa) cv2.waitKey(0) fused = np.zeros((height,width,3)) for i in range(height): for j in range(width): b,g,r = mona_lisa[i,j] # convert from uint8 to bits, replace each pixel's nth bit with 0. Repeat for all three channels. b = np.unpackbits(b) b[bit_number] = 0 g = np.unpackbits(g) g[bit_number] = 0 r = np.unpackbits(r) r[bit_number] = 0 mona_lisa[i,j,0] = np.packbits(b) mona_lisa[i,j,1] = np.packbits(g) mona_lisa[i,j,2] = np.packbits(r) cv2.imshow("altered",mona_lisa) real_mona = cv2.imread("../images/mona.jpg") cv2.imshow("real",real_mona) cv2.waitKey(0)
[ "chandanakotta@gmail.com" ]
chandanakotta@gmail.com
d459870071e09d60bcb4aa723e0973b623318343
449175eb373ebc622221552e43b46c9378adb618
/grader/files_mai/6210545629_task1.py
5e86412ce6df9538532eeedebe470a0a0bfb0bd7
[]
no_license
NutthanichN/grading-helper
911d39211e070eafc9ffee6978f9270a0be38016
971c605effb4f59e9e22a32503337b3e671f120c
refs/heads/master
2022-12-12T22:46:15.062462
2020-09-08T06:50:12
2020-09-08T06:50:12
293,724,530
0
1
null
null
null
null
UTF-8
Python
false
false
3,668
py
def check_valid_input(s): """ *** DOCTESTS IS HERE *** >>> check_valid_input("rock") True >>> check_valid_input("paper") True >>> check_valid_input("scissors") True >>> check_valid_input("snape") False """ """*** CODE IS HERE ***""" if s == "rock": return True elif s == "paper": return True elif s == "scissors": return True else: return False def convert_to_num(s): """ *** DOCTESTS IS HERE *** >>> convert_to_num("rock") 0 >>> convert_to_num("paper") 1 >>> convert_to_num("scissors") 2 >>> convert_to_num("snape") Error: should not reach this if input is a valid one """ """*** CODE IS HERE ***""" if s == "rock": return 0 elif s == "paper": return 1 elif s == "scissors": return 2 else: print("Error: should not reach this if input is a valid one") def convert_to_string(n): """ *** DOCTESTS IS HERE *** >>> convert_to_string(0) 'rock' >>> convert_to_string(1) 'paper' >>> convert_to_string(2) 'scissors' >>> convert_to_string(1150) Error: should not reach this if input is a valid one """ """*** CODE IS HERE ***""" if n == 0: return "rock" elif n == 1: return "paper" elif n == 2: return "scissors" else: print("Error: should not reach this if input is a valid one") def game_decision(player_choice_num, computer_choice_num): """ *** DOCTESTS IS HERE *** >>> game_decision(0,0) Both ties! >>> game_decision(0,1) Computer wins! >>> game_decision(0,2) Player wins! >>> game_decision(1,0) Player wins! >>> game_decision(1,1) Both ties! >>> game_decision(1,2) Computer wins! >>> game_decision(2,0) Computer wins! >>> game_decision(2,1) Player wins! >>> game_decision(2,2) Both ties! """ """*** CODE IS HERE ***""" if player_choice_num == computer_choice_num: print("Both ties!") elif ((player_choice_num + 1) % 3) == computer_choice_num: print("Computer wins!") else: print("Player wins!") # apply the rules of rock-paper-scissors # rock-0 ; paper-1 ; scissors-2 # instead of this ugly if-elif-else nested block """ if player_choice_num == 0: if computer_choice_num == 0: print("Both ties!") elif computer_choice_num == 1: print("Computer wins!") else: print("Player wins!") elif player_choice_num == 1: if computer_choice_num == 1: print("Both ties!") elif computer_choice_num == 2: print("Computer wins!") else: print("Player wins!") else: if computer_choice_num == 2: print("Both ties!") elif computer_choice_num == 0: print("Computer wins!") else: print("Player wins!") """ def main() -> None: # get an input from a player and validate valid = False while valid == False: player_choice = input("Enter your choice: ") valid = check_valid_input(player_choice) if valid == False: print("Invalid choice. Enter again.") # random a response from a computer and print out player and computer choices import random computer_choice_num = random.randint(0, 2) computer_choice = convert_to_string(computer_choice_num) player_choice_num = convert_to_num(player_choice) print("Players chooses ", player_choice) print("Computer chooses ", computer_choice) # do this game_decision(player_choice_num, computer_choice_num) if __name__ == "__main__": main()
[ "monaprom134@gmail.com" ]
monaprom134@gmail.com
46c3a80401427317e414ee45d8f5efe5cd1b83d7
1ea7432ec4aac84bf767f9afdb91dc74f08000a1
/radio_locator/locator/views.py
418dc2111dc98d693c53a80a714b265ae3aa50a6
[]
no_license
skevy/Radio-Locator
4c9cd4952edb1a256c56e6ecae0e9e3b9e1905b5
1001bb3525377426d8ddc1629022c35ad265bf81
refs/heads/master
2020-11-26T19:36:17.371851
2011-03-30T23:11:12
2011-03-30T23:11:12
1,489,733
0
0
null
null
null
null
UTF-8
Python
false
false
1,105
py
import json from django.http import HttpResponse, HttpResponseNotFound from django.contrib.gis.geos import Point from radio_locator.locator.models import Station def all_stations(request): if "lat" not in request.GET or "lng" not in request.GET: return HttpResponseNotFound() loc = Point(float(request.GET['lng']), float(request.GET['lat'])) stations = {} stations['high'] = [] stations['medium'] = [] high_stations = Station.objects.filter(local_range__contains=loc).distance(loc).order_by('distance') medium_stations = Station.objects.filter(distant_range__contains=loc).exclude(pk__in=[s.pk for s in high_stations]).distance(loc).order_by('-frequency') for s in high_stations: station = s.serialize() station.update(distance=s.distance.m) stations['high'].append(station) for s in medium_stations: station = s.serialize() station.update(distance=s.distance.m) stations['medium'].append(station) return HttpResponse(json.dumps(stations), mimetype="application/json")
[ "adam.skevy@mac.com" ]
adam.skevy@mac.com
96d55f8c49b1198534b1c8054dc9d7895a5fca2a
1a29735113eeb8061527c9e785fb3e16abe10449
/lib/pymod/pymod/test/command/reload.py
3f874458ab5cf4f6a0255d419c26515b89816da9
[]
no_license
tjfulle/Modulecmd.py
db3fb96db63e42666056e8086f433a779f5bfc86
42e3d34b76a53f4ff557e96ba2af3cb83b963ad2
refs/heads/master
2023-02-21T10:16:49.408099
2021-11-18T06:29:59
2021-11-18T06:29:59
141,306,544
0
0
null
2019-05-09T04:51:09
2018-07-17T15:09:16
Python
UTF-8
Python
false
false
1,455
py
import pytest import pymod.mc import pymod.environ from pymod.main import PymodCommand @pytest.fixture() def modules_path(tmpdir, namespace, modulecmds): m = modulecmds one = tmpdir.mkdir("1") one.join("a.py").write(m.setenv("a")) one.join("b.py").write(m.setenv("b") + m.load("c")) one.join("c.py").write(m.setenv("c") + m.load("d")) one.join("d.py").write(m.setenv("d")) ns = namespace() ns.path = one.strpath return ns @pytest.mark.unit def test_command_reload_1(modules_path, mock_modulepath): load = PymodCommand("load") reload = PymodCommand("reload") mock_modulepath(modules_path.path) load("a") assert pymod.environ.get("a") == "a" reload("a") assert pymod.environ.get("a") == "a" # Reference count should not change a = pymod.modulepath.get("a") assert a.refcount == 1 @pytest.mark.unit def test_command_reload_2(modules_path, mock_modulepath): load = PymodCommand("load") reload = PymodCommand("reload") mock_modulepath(modules_path.path) load("a") load("b") assert pymod.environ.get("a") == "a" assert pymod.environ.get("b") == "b" assert pymod.environ.get("c") == "c" assert pymod.environ.get("d") == "d" reload("a") assert pymod.environ.get("a") == "a" # Reference count should not change a = pymod.modulepath.get("a") b = pymod.modulepath.get("b") assert a.refcount == 1 assert b.refcount == 1
[ "tjfulle@sandia.gov" ]
tjfulle@sandia.gov
56cad70066f044e0659afde47b14bf62cd2aa4fe
5ea6abae27053fec4963a850b05a08ad2e6e7ff2
/Program_Tuple_3.py
863db410b74622654c5fdbb235fa0511aa14763a
[]
no_license
prathusha-kunka/miniproject
a35814d6f93c00a18a5dd393b3e0a1751ecfba81
35f83d9e762d0bcf5b6fd6ab69068adc9a0fa1bd
refs/heads/main
2023-06-24T16:32:01.986588
2021-07-10T15:23:32
2021-07-10T15:23:32
384,718,918
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
# Python code to convert into dictionary def Convert(tup, di): for a, b in tup: di.setdefault(a, []).append(b) return di # Driver Code tups = [("Prathusha", 10), ("Rathnakar", 12), ("Pavan", 14), ("Srikanth", 20), ("Sunita", 25), ("Pavitra", 30)] dictionary = {} print (Convert(tups, dictionary))
[ "noreply@github.com" ]
prathusha-kunka.noreply@github.com
8da24a5596bf65aee4468dea4c35a93036848704
c4d913a3811bc83e7a3838c0efdf3424b73b1ac4
/imagedownloader/requester/migrations/0007_auto__add_field_area_hourly_longitude__del_field_satellite_longitude.py
b2b6277b8f4df35b8f832db0906b576dbb751c91
[]
no_license
tomasdelvechio/solar_radiation_model
d967b50b645fec3215339ed1785ffa4423b395a4
c306c4e4311fd887e9985401b8e2731bbf372583
refs/heads/master
2021-01-18T01:46:30.739622
2014-04-14T00:08:30
2014-04-14T00:08:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,495
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Area.hourly_longitude' db.add_column('requester_area', 'hourly_longitude', self.gf('django.db.models.fields.DecimalField')(default='0.00', max_digits=5, decimal_places=2), keep_default=False) # Deleting field 'Satellite.longitude' db.delete_column('requester_satellite', 'longitude') def backwards(self, orm): # Deleting field 'Area.hourly_longitude' db.delete_column('requester_area', 'hourly_longitude') # Adding field 'Satellite.longitude' db.add_column('requester_satellite', 'longitude', self.gf('django.db.models.fields.DecimalField')(default='0.00', max_digits=5, decimal_places=2), keep_default=False) models = { 'requester.account': { 'Meta': {'object_name': 'Account'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'password': ('django.db.models.fields.TextField', [], {}) }, 'requester.area': { 'Meta': {'object_name': 'Area'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'east_longitude': ('django.db.models.fields.DecimalField', [], {'max_digits': '5', 'decimal_places': '2'}), 'hourly_longitude': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '5', 'decimal_places': '2'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.TextField', [], {}), 'north_latitude': ('django.db.models.fields.DecimalField', [], {'max_digits': '4', 'decimal_places': '2'}), 'south_latitude': ('django.db.models.fields.DecimalField', [], {'max_digits': '4', 'decimal_places': '2'}), 'west_longitude': ('django.db.models.fields.DecimalField', [], {'max_digits': '5', 'decimal_places': '2'}) }, 'requester.automaticdownload': { 'Meta': {'object_name': 'AutomaticDownload'}, 'area': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['requester.Area']"}), 'channels': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['requester.Channel']", 'symmetrical': 'False'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'email_server': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['requester.EmailAccount']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'max_simultaneous_request': ('django.db.models.fields.IntegerField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'paused': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'root_path': ('django.db.models.fields.TextField', [], {}), 'time_range': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['requester.UTCTimeRange']"}), 'title': ('django.db.models.fields.TextField', [], {'db_index': 'True'}) }, 'requester.channel': { 'Meta': {'object_name': 'Channel'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'in_file': ('django.db.models.fields.TextField', [], {'null': 'True', 'db_index': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.TextField', [], {'db_index': 'True'}), 'satellite': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['requester.Satellite']"}) }, 'requester.emailaccount': { 'Meta': {'object_name': 'EmailAccount', '_ormbases': ['requester.Account']}, 'account_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['requester.Account']", 'unique': 'True', 'primary_key': 'True'}), 'hostname': ('django.db.models.fields.TextField', [], {}), 'port': ('django.db.models.fields.IntegerField', [], {}), 'username': ('django.db.models.fields.EmailField', [], {'max_length': '75'}) }, 'requester.file': { 'Meta': {'object_name': 'File'}, 'begin_download': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'db_index': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'downloaded': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'end_download': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'localname': ('django.db.models.fields.TextField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['requester.Order']"}), 'remotename': ('django.db.models.fields.TextField', [], {}), 'size': ('django.db.models.fields.IntegerField', [], {}) }, 'requester.ftpserveraccount': { 'Meta': {'object_name': 'FTPServerAccount', '_ormbases': ['requester.ServerAccount']}, 'hostname': ('django.db.models.fields.TextField', [], {}), 'serveraccount_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['requester.ServerAccount']", 'unique': 'True', 'primary_key': 'True'}) }, 'requester.goesrequest': { 'Meta': {'object_name': 'GOESRequest', '_ormbases': ['requester.Request']}, 'request_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['requester.Request']", 'unique': 'True', 'primary_key': 'True'}) }, 'requester.order': { 'Meta': {'object_name': 'Order'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'downloaded': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'empty_flag': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'identification': ('django.db.models.fields.TextField', [], {'db_index': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'request': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['requester.Request']", 'unique': 'True'}), 'server': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['requester.FTPServerAccount']", 'null': 'True'}) }, 'requester.request': { 'Meta': {'object_name': 'Request'}, 'automatic_download': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['requester.AutomaticDownload']"}), 'begin': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'end': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'requester.satellite': { 'Meta': {'object_name': 'Satellite'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'identification': ('django.db.models.fields.TextField', [], {}), 'in_file': ('django.db.models.fields.TextField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.TextField', [], {}), 'request_server': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['requester.WebServerAccount']"}) }, 'requester.serveraccount': { 'Meta': {'object_name': 'ServerAccount', '_ormbases': ['requester.Account']}, 'account_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['requester.Account']", 'unique': 'True', 'primary_key': 'True'}), 'username': ('django.db.models.fields.TextField', [], {}) }, 'requester.utctimerange': { 'Meta': {'object_name': 'UTCTimeRange'}, 'begin': ('django.db.models.fields.DateTimeField', [], {}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'end': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'requester.webserveraccount': { 'Meta': {'object_name': 'WebServerAccount', '_ormbases': ['requester.ServerAccount']}, 'serveraccount_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['requester.ServerAccount']", 'unique': 'True', 'primary_key': 'True'}), 'url': ('django.db.models.fields.TextField', [], {}) } } complete_apps = ['requester']
[ "eloy.colell@gmail.com" ]
eloy.colell@gmail.com
62c0d10762ebddcf27c793df08917dc21ab905fa
b3493b4708c2aa7acced06d21ed308d210787543
/burga/iteracion_en _rango/rango4.py
acd2c0b5ab40638960e765a2a428c409cb17fbb0
[]
no_license
arianaburga/trab07.burga.bravo
0ca0ae5a324f262163c713dc166ba807f9c48484
0955d374f5de3fb782b2d9ed65985ff88e018b25
refs/heads/master
2020-09-14T05:47:14.752471
2019-11-24T18:17:07
2019-11-24T18:17:07
223,038,205
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
# Imprimir los numeros que empiece desde-8 al 30 for i in range(-8,31): print(i) #fin_iterador_en_rango print("Fin del bucle")
[ "aburgam@unprg.edu.pe" ]
aburgam@unprg.edu.pe
e154e27e5c18326a8003714696ff81fb7c15c329
71c736fdcd2860dd59feb03aa05f0a8cb4bde585
/randomforest_clf.py
72fb573eb9f2089d09314228bfe50fd0b21a5681
[]
no_license
burhanbilen/RandomForestClassifier-ile-Veri-Siniflandirma
e77cc5bf2eee714c9ad5b1d2b4063d4630b0c435
4df3a4e38646111e38815f8fc1459710b814eb90
refs/heads/main
2022-12-31T10:54:31.655500
2020-10-12T11:58:54
2020-10-12T11:58:54
303,376,257
0
0
null
null
null
null
UTF-8
Python
false
false
1,069
py
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix df = pd.read_csv('krediVeriseti.csv', delimiter = ';') df["evDurumu"].replace({"evsahibi": 1, "kiraci": 0}, inplace=True) df["telefonDurumu"].replace({"var": 1, "yok": 0}, inplace=True) df["KrediDurumu"].replace({"krediver": 1, "verme": 0}, inplace=True) print(df.head()) X = np.array(df.iloc[:,:5]) y = np.array(df.iloc[:,5:]).reshape(len(df["KrediDurumu"]),) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state = 42) #print(X_train.shape, X_test.shape) #print(y_train.shape, y_test.shape) sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) clf = RandomForestClassifier(max_depth = 5, n_estimators = 20) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) print(score) y_tahmin = clf.predict(X_test) print(confusion_matrix(y_test, y_tahmin))
[ "noreply@github.com" ]
burhanbilen.noreply@github.com
291ba780cc47412365fdc0e1e22d4319fa79c276
5bc40f29628b2c2f4b9d3fba3f4ad0f70935d325
/python_local/xflib.py
60f9bc033db1b8a2b9896e5fb266d2f6ae62db34
[]
no_license
asousa/thesis_figures
697bb88819ba22c1b669f2dea1b4fb2d1f38b66e
b3ad9f353b1636820b7af2c99efe4eed24b5bcf4
refs/heads/master
2022-12-01T11:04:07.436896
2020-08-09T07:43:53
2020-08-09T07:43:53
109,327,398
0
0
null
null
null
null
UTF-8
Python
false
false
9,034
py
import ctypes as ct import datetime import numpy as np class xflib(object): ''' A wrapper class for the xform-double coordinate transformation library. (The fortran one Forrest used in the raytracer) ''' def __init__(self, lib_path='libxformd.so'): self.D2R = 3.141592653589793238462643/180. self.R2D = 180./3.141592653589793238462643 # data types self.i2 = ct.c_int*2 self.d3 = ct.c_double*3 # load shared library ct.cdll.LoadLibrary(lib_path) self.xf = ct.CDLL(lib_path) # methods self.geo2sm_l = self.xf.geo_to_sm_d_ self.sm2geo_l = self.xf.sm_to_geo_d_ self.geo2mag_l= self.xf.geo_to_mag_d_ self.mag2geo_l= self.xf.mag_to_geo_d_ self.s2c_l = self.xf.pol_to_cart_d_ self.c2s_l = self.xf.cart_to_pol_d_ self.gse2sm_l = self.xf.gse_to_sm_d_ self.sm2gse_l = self.xf.sm_to_gse_d_ def s2c(self, x_in): ''' spherical to cartesian (degrees) x_in: rad, lat, lon x_out: x, y, z ''' # print x_in lat_in = ct.c_double(x_in[1]*self.D2R) lon_in = ct.c_double(x_in[2]*self.D2R) rad_in = ct.c_double(x_in[0]) cx_out = self.d3() self.s2c_l(ct.byref(lat_in), ct.byref(lon_in), ct.byref(rad_in), cx_out) return [x for x in cx_out] def c2s(self, x_in): ''' cartesian to spherical (degrees) x_in: x, y, z x_out: rad, lat, lon ''' cx_in = self.d3(*x_in) lat = ct.c_double() lon = ct.c_double() rad = ct.c_double() self.c2s_l(cx_in, ct.byref(lat), ct.byref(lon), ct.byref(rad)) return [rad.value, lat.value*self.R2D, lon.value*self.R2D] def geo2sm(self, x_in, time_in): ''' Geographic (cartesian) to Solar Magnetic ''' # Construct yearday: yearday = int(1000*time_in.year + time_in.timetuple().tm_yday) milliseconds_day = int((time_in.second + time_in.minute*60 + time_in.hour*60*60)*1e3 + time_in.microsecond*1e-3) ct_in = self.i2() ct_in[0] = yearday ct_in[1] = milliseconds_day # print yearday # print milliseconds_day cx_in = self.d3(*x_in) cx_out = self.d3() self.geo2sm_l(ct_in, cx_in, cx_out) return [x for x in cx_out] def sm2geo(self, x_in, time_in): ''' Solar Magnetic to Geographic (cartesian) ''' # Construct yearday: yearday = int(1000*time_in.year + time_in.timetuple().tm_yday) milliseconds_day = int((time_in.second + time_in.minute*60 + time_in.hour*60*60)*1e3 + time_in.microsecond*1e-3) ct_in = self.i2() ct_in[0] = yearday ct_in[1] = milliseconds_day # print yearday # print milliseconds_day cx_in = self.d3(*x_in) cx_out = self.d3() self.sm2geo_l(ct_in, cx_in, cx_out) return [x for x in cx_out] def geo2mag(self, x_in, time_in): ''' Geographic (cartesian) to magnetic dipole (cartesian) ''' yearday = int(1000*time_in.year + time_in.timetuple().tm_yday) milliseconds_day = int((time_in.second + time_in.minute*60 + time_in.hour*60*60)*1e3 + time_in.microsecond*1e-3) ct_in = self.i2() ct_in[0] = yearday ct_in[1] = milliseconds_day cx_in = self.d3(*x_in) cx_out = self.d3() self.geo2mag_l(ct_in, cx_in, cx_out) return [x for x in cx_out] def mag2geo(self, x_in, time_in): ''' Magnetic dipole (cartesian) to geographic (cartesian) ''' yearday = int(1000*time_in.year + time_in.timetuple().tm_yday) milliseconds_day = int((time_in.second + time_in.minute*60 + time_in.hour*60*60)*1e3 + time_in.microsecond*1e-3) ct_in = self.i2() ct_in[0] = yearday ct_in[1] = milliseconds_day cx_in = self.d3(*x_in) cx_out = self.d3() self.mag2geo_l(ct_in, cx_in, cx_out) return [x for x in cx_out] def rllgeo2rllmag(self, x_in, time_in): ''' Geographic (r, lat, lon) to Geomagnetic (r, lat, lon) ''' xtmp = self.s2c(x_in) xtmp = self.geo2mag(xtmp, time_in) return self.c2s(xtmp) def rllgeo2sm(self, x_in, time_in): ''' geographic (radius, lat, lon) to Solar Magnetic (cartesian) ''' xtmp = self.s2c(x_in) return self.geo2sm(xtmp, time_in) def sm2rllgeo(self, x_in, time_in): ''' Solar Magnetic (cartesian) geographic (radius, lat, lon) ''' xtmp = self.sm2geo(x_in, time_in) return self.c2s(xtmp) def rllmag2sm(self, x_in, time_in): ''' magnetic dipole (radius, lat, lon) to Solar Magnetic (cartesian) ''' xtmp = self.s2c(x_in) xtmp = self.mag2geo(xtmp, time_in) return self.geo2sm(xtmp, time_in) def sm2rllmag(self, x_in, time_in): ''' Solar Magnetic (cartesian) to magnetic dipole (radius, lat, lon) ''' xtmp = self.sm2geo(x_in, time_in) xtmp = self.geo2mag(xtmp, time_in) return self.c2s(xtmp) def mag2sm(self, x_in, time_in): ''' magnetic dipole (cartesian) to Solar Magnetic (cartesian) ''' xtmp = self.mag2geo(x_in, time_in) return self.geo2sm(xtmp, time_in) def sm2mag(self, x_in, time_in): ''' Solar Magnetic (cartesian) to magnetic dipole (cartesian) ''' xtmp = self.sm2geo(x_in, time_in) return self.geo2mag(xtmp, time_in) def transform_data_sph2car(self, lat, lon, d_in): D2R = np.pi/180. M = np.zeros([3,3]) d_out = np.zeros(3) theta = D2R*(90. - lat) phi = D2R*lon st = np.sin(theta) sp = np.sin(phi) ct = np.cos(theta) cp = np.cos(phi) M[0,0] = st*cp; M[0,1] = ct*cp; M[0,2] = -sp; M[1,0] = st*sp; M[1,1] = ct*sp; M[1,2] = cp; M[2,0] = ct; M[2,1] = -st; M[2,2] = 0; d_out = np.dot(M, d_in) return d_out def gse2sm(self, x_in, time_in): yearday = int(1000*time_in.year + time_in.timetuple().tm_yday) milliseconds_day = int((time_in.second + time_in.minute*60 + time_in.hour*60*60)*1e3 + time_in.microsecond*1e-3) ct_in = self.i2() ct_in[0] = yearday ct_in[1] = milliseconds_day cx_in = self.d3(*x_in) cx_out = self.d3() self.gse2sm_l(ct_in, cx_in, cx_out) return [x for x in cx_out] def sm2gse(self, x_in, time_in): yearday = int(1000*time_in.year + time_in.timetuple().tm_yday) milliseconds_day = int((time_in.second + time_in.minute*60 + time_in.hour*60*60)*1e3 + time_in.microsecond*1e-3) ct_in = self.i2() ct_in[0] = yearday ct_in[1] = milliseconds_day cx_in = self.d3(*x_in) cx_out = self.d3() self.sm2gse_l(ct_in, cx_in, cx_out) return [x for x in cx_out] def lon2MLT(self, itime, lon): # // Input: itime, lon in geomagnetic dipole coords. # // Output: MLT in fractional hours # // Ref: "Magnetic Coordinate Systems", Laundal and Richmond # // Space Science Review 2016, DOI 10.1007/s11214-016-0275-y ut_hr = itime.hour + itime.minute/60 # /1000.0/60.0; #// Milliseconds to fractional hours (UT) A1 = [1, 51.48, 0]; #// Location of Greenwich (for UT reference) B1 = [0, 0, 0]; # B1[3] // Location of Greenwich in geomag self.s2c(A1); self.geo2mag(A1, itime); self.c2s(A1); return np.mod(ut_hr + (lon - A1[2])/15.0, 24); def MLT2lon(self, itime, mlt): # // Input: itime, mlt in fractional hours # // Output: longitude in geomagnetic coordinates # // Ref: "Magnetic Coordinate Systems", Laundal and Richmond # // Space Science Review 2016, DOI 10.1007/s11214-016-0275-y ut_hr = itime.hour + itime.minute/60 # /1000.0/60.0; #// Milliseconds to fractional hours (UT) A1 = [1, 51.48, 0]; #// Location of Greenwich (for UT reference) B1 = [0, 0, 0]; # B1[3] // Location of Greenwich in geomag self.s2c(A1); self.geo2mag(A1, itime); self.c2s(A1); return 15.*(mlt - ut_hr) + A1[2] # xf = xflib(lib_path='/shared/users/asousa/WIPP/3dWIPP/python/libxformd.so') # x_in = [1.,45,17] # time_in = datetime.datetime(2001, 1, 1, 0, 0, 00); # print x_in # x_in = xf.s2c(x_in) # print x_in # # x_in = xf.c2s(x_in) # # print x_in # x_in = xf.geo2sm(x_in, time_in) # print x_in # x_in = xf.sm2geo(x_in, time_in) # print x_in # x_in = xf.geo2mag(x_in, time_in) # print x_in # x_in = xf.mag2geo(x_in, time_in) # print x_in
[ "asousa@stanford.edu" ]
asousa@stanford.edu
7c71dce2587c67fcd1f2b8dac1459501c7454aa7
ad13583673551857615498b9605d9dcab63bb2c3
/output/instances/nistData/list/duration/Schema+Instance/NISTXML-SV-IV-list-duration-enumeration-1-4.py
06b2f14b172e8529e7d41ea4ce7da0de48fe9cf1
[ "MIT" ]
permissive
tefra/xsdata-w3c-tests
397180205a735b06170aa188f1f39451d2089815
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
refs/heads/main
2023-08-03T04:25:37.841917
2023-07-29T17:10:13
2023-07-30T12:11:13
239,622,251
2
0
MIT
2023-07-25T14:19:04
2020-02-10T21:59:47
Python
UTF-8
Python
false
false
774
py
from output.models.nist_data.list_pkg.duration.schema_instance.nistschema_sv_iv_list_duration_enumeration_1_xsd.nistschema_sv_iv_list_duration_enumeration_1 import NistschemaSvIvListDurationEnumeration1 from output.models.nist_data.list_pkg.duration.schema_instance.nistschema_sv_iv_list_duration_enumeration_1_xsd.nistschema_sv_iv_list_duration_enumeration_1 import NistschemaSvIvListDurationEnumeration1Type obj = NistschemaSvIvListDurationEnumeration1( value=NistschemaSvIvListDurationEnumeration1Type.P2018_Y03_M29_DT16_H33_M43_S_P2028_Y05_M22_DT23_H02_M30_S_P2001_Y08_M05_DT10_H25_M39_S_P1978_Y11_M04_DT20_H31_M10_S_P1999_Y04_M08_DT19_H26_M37_S_P2017_Y08_M24_DT18_H51_M57_S_P1987_Y05_M29_DT14_H30_M09_S_P1983_Y03_M09_DT03_H26_M56_S_P1985_Y06_M11_DT00_H54_M42_S )
[ "tsoulloftas@gmail.com" ]
tsoulloftas@gmail.com
73df98dca78d75db99f30a6d10a2d21b1fbb876b
e170cea70c4e92f9d741a23553376dfd72669482
/ProjectCheckPoint9_Outliers/ProjectCheckPoint9_Outliers.py
b9e4e824e4d08f5e94dde739145b545237dd23f1
[]
no_license
demikaiser/AutoInsuranceClaimPrediction
9adc00ed57c993586ba004d0c82abde66e24a177
0e03dbe1a6664d9d29e3250a44489b69da1d0601
refs/heads/master
2020-04-17T03:59:12.315195
2019-01-17T10:52:56
2019-01-17T10:52:56
166,208,662
0
0
null
null
null
null
UTF-8
Python
false
false
28,713
py
# EXPERIMENT FOR JUSTIN'S BIG IMPROVEMENT # Default Libraries import math import inspect import itertools # Data Science Libraries import numpy as np import pandas as pd import sklearn_pandas # sklearn Library (https://scikit-learn.org) import sklearn.model_selection import sklearn.linear_model import sklearn.neighbors import sklearn.metrics import sklearn.tree import sklearn.ensemble import sklearn.naive_bayes import sklearn.neural_network from sklearn.externals import joblib import xgboost from imblearn.over_sampling import SMOTE, ADASYN import sklearn.decomposition class DataScienceModeler: c_X = None c_Y = None c_x_train = None c_x_test = None c_y_train = None c_y_test = None c_x_train_SMOTE = None c_y_train_SMOTE = None c_x_train_ADASYN = None c_y_train_ADASYN = None r_X = None r_Y = None r_x_train = None r_x_test = None r_y_train = None r_y_test = None o_X = None o_Y = None o_x_train = None o_x_test = None o_y_train = None o_y_test = None TESTSET_X = None COMPETITIONSET_X = None ############################################################################ # Data Pre-Processing # ############################################################################ def __init__(self): log_file_name = "log-" + str(pd.Timestamp.now()) log_file_name = log_file_name.replace(":", "") self.log_file_handler = open("logs//" + log_file_name, "w") def __del__(self): self.log_file_handler.close() def load_trainingset(self, shuffle, PARAMETER): self.log("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@:" + str(PARAMETER)) print("<==== ====", inspect.stack()[0][3], "==== ====>") df = pd.read_csv("trainingset.csv") continuous_features = ["1", "2", "6", "8", "10"] categorical_features = ["3", "4", "5", "7", "9", "11", "12", "13", "14", "15", "16", "17", "18"] df['Claimed'] = np.where(df['ClaimAmount'] > 0, 1, 0) df['Outlier'] = np.where(df['ClaimAmount'] > PARAMETER, 1, 0) col_list = list(df.columns) col_list.remove('rowIndex') col_list.remove('Claimed') col_list.remove('ClaimAmount') col_list.remove('Outlier') col_list.insert(0, 'Outlier') col_list.insert(0, 'ClaimAmount') col_list.insert(0, 'Claimed') col_list.insert(0, 'rowIndex') df = df[col_list] df = pd.get_dummies( df, columns=["feature" + n for n in categorical_features], dtype=np.int64 ) transform_mapper = sklearn_pandas.DataFrameMapper([ ('rowIndex', None), ('Claimed', None), ('ClaimAmount', None), ('Outlier', None), ], default=sklearn.preprocessing.StandardScaler()) standardized = transform_mapper.fit_transform(df.copy()) df = pd.DataFrame(standardized, columns=df.columns) print("0. Prepare the Final Data Sets (Classification)") self.c_X = df.drop(['rowIndex', 'Claimed', 'ClaimAmount', 'Outlier'], axis=1) self.c_Y = df.Claimed # <Polynomial Features> # poly = sklearn.preprocessing.PolynomialFeatures(2, include_bias=True) # self.c_X = poly.fit_transform(self.c_X) # <Power Transformer> # power = sklearn.preprocessing.PowerTransformer() # power.fit(self.c_X) # self.c_X = power.transform(self.c_X) # <Quantile Transform> # self.c_X = sklearn.preprocessing.quantile_transform(self.c_X, axis=0, n_quantiles=1000, # output_distribution='normal', ignore_implicit_zeros=False, # subsample=100000, random_state=None, copy=False) self.c_x_train, self.c_x_test, self.c_y_train, self.c_y_test = sklearn.model_selection\ .train_test_split(self.c_X, self.c_Y, test_size=0.30, shuffle=shuffle) # self.c_x_train = self.c_x_train.values # self.c_x_test = self.c_x_test.values # self.c_y_train = self.c_y_train.values # self.c_y_test = self.c_y_test.values # # print("0. SMOTE") # self.c_x_train_SMOTE, self.c_y_train_SMOTE = SMOTE().fit_resample(self.c_x_train, self.c_y_train) # # print("0. ADASYN") # self.c_x_train_ADASYN, self.c_y_train_ADASYN = ADASYN().fit_resample(self.c_x_train, self.c_y_train) print("0. Prepare the Final Data Sets (Regression)") self.r_X = df.drop(['rowIndex', 'Claimed', 'ClaimAmount', 'Outlier'], axis=1) self.r_Y = df.ClaimAmount self.r_x_train, self.r_x_test, self.r_y_train, self.r_y_test = sklearn.model_selection\ .train_test_split(self.r_X, self.r_Y, test_size=0.30, shuffle=shuffle) print("0. Prepare the Final Data Sets (Outlier)") self.o_X = df.drop(['rowIndex', 'Claimed', 'ClaimAmount', 'Outlier'], axis=1) self.o_Y = df.Outlier self.o_x_train, self.o_x_test, self.o_y_train, self.o_y_test = sklearn.model_selection\ .train_test_split(self.o_X, self.o_Y, test_size=0.30, shuffle=shuffle) print("0. Aggressive Regression") df_aggressive_regression = df[: int(0.7 * df.shape[0])] df_aggressive_regression = df_aggressive_regression[df_aggressive_regression['ClaimAmount'] > 0] print(df_aggressive_regression.shape) OUTLIER_CUTOFF = 4647 df_aggressive_regression = df_aggressive_regression[df_aggressive_regression['ClaimAmount'] < OUTLIER_CUTOFF] self.r_x_train_aggressive = df_aggressive_regression.drop(['rowIndex', 'Claimed', 'ClaimAmount'], axis=1) self.r_y_train_aggressive = df_aggressive_regression.ClaimAmount # print(df_aggressive_regression.shape) def load_testset(self, shuffle): print("<==== ====", inspect.stack()[0][3], "==== ====>") df = pd.read_csv("competitionset.csv") continuous_features = ["1", "2", "6", "8", "10"] categorical_features = ["3", "4", "5", "7", "9", "11", "12", "13", "14", "15", "16", "17", "18"] col_list = list(df.columns) col_list.remove('rowIndex') col_list.insert(0, 'rowIndex') df = df[col_list] df = pd.get_dummies( df, columns=["feature" + n for n in categorical_features], dtype=np.int64 ) transform_mapper = sklearn_pandas.DataFrameMapper([ ('rowIndex', None), ], default=sklearn.preprocessing.StandardScaler()) standardized = transform_mapper.fit_transform(df.copy()) df = pd.DataFrame(standardized, columns=df.columns) print("0. Prepare the Final Data Sets (Regression)") self.TESTSET_X = df.drop(['rowIndex'], axis=1) def load_competitionset(self, shuffle): pass def select_features_regression(self, num_features): print("<==== ====", inspect.stack()[0][3], "==== ====>") feature_select_model = sklearn.tree.DecisionTreeRegressor() trans = sklearn.feature_selection.RFE(feature_select_model, n_features_to_select=num_features) self.r_x_train = trans.fit_transform(self.r_x_train, self.r_y_train) self.r_x_test = trans.fit_transform(self.r_x_test, self.r_y_test) def select_features_classification(self, num_features): print("<==== ====", inspect.stack()[0][3], "==== ====>") feature_select_model = sklearn.tree.DecisionTreeClassifier() trans = sklearn.feature_selection.RFE(feature_select_model, n_features_to_select=num_features) self.c_x_train = trans.fit_transform(self.c_x_train, self.c_y_train) self.c_x_test = trans.fit_transform(self.c_x_test, self.c_y_test) ############################################################################ # Utilities # ############################################################################ def print_regression_performance_metrics(self, y_test, y_pred): label_prediction_difference = np.subtract(y_test, y_pred) MAE = np.mean(np.absolute(label_prediction_difference)) self.log("MAE: " + str(MAE)) return MAE def print_classification_performance_metrics(self, y_test, y_pred): confusion_matrix = sklearn.metrics.confusion_matrix(y_test, y_pred) self.log("Confusion Matrix:") self.log(str(confusion_matrix)) # tn, fp, fn, tp = sklearn.metrics.confusion_matrix(y_test, y_pred).ravel() # self.log("TN:", tn, "FP", fp, "FN", fn, "TP", tp) f1_score = sklearn.metrics.f1_score(y_test, y_pred) self.log("F1 Performance Score: %.6f%%" % (f1_score * 100)) return f1_score ############################################################################ # Model Execution # ############################################################################ def experiment00(self): self.load_trainingset(False) #### #### #### #### Classification Model #### #### #### #### model_classification = xgboost.XGBClassifier(learning_rate=0.05, n_estimators=1000, max_depth=30, min_child_weight=1, gamma=0.1, subsample=0.8, colsample_bytree=0.8, objective='binary:logistic', nthread=4, booster='gbtree', scale_pos_weight=20, seed=27, reg_lambda=1, reg_alpha=.005) model_classification = model_classification.fit(self.c_x_train, self.c_y_train) #### #### #### #### Regression Model #### #### #### #### # model_regression = xgboost.XGBRegressor(objective='reg:linear', colsample_bytree=0.85, # eta=0.01, max_depth=9, alpha=10, n_estimators=1, # booster='gbtree', min_child_weight=0, gamma=0, # subsample=0.8, reg_alpha=100, max_delta_step=1) # # model_regression = model_regression.fit(self.r_x_train, self.r_y_train) #### #### #### #### Prediction Process #### #### #### #### TAU = 0.701 y_pred_prob = model_classification.predict_proba(self.c_x_test) y_pred_prob = pd.DataFrame(y_pred_prob)[1] y_pred_classification = \ y_pred_prob.apply( lambda x: 1 if x > TAU else 0 ).values # y_pred_regression = model_regression.predict(self.r_x_test) # y_pred_regression = y_pred_classification * y_pred_regression self.print_classification_performance_metrics(self.c_y_test, y_pred_classification) # self.print_regression_performance_metrics(self.r_y_test, y_pred_regression) # EXP y_pred_classification = model_classification.predict(self.c_x_test) self.print_classification_performance_metrics(self.c_y_test, y_pred_classification) def experiment01(self, PARAMETER_TO_EXPLORE): self.load_trainingset(False) #### #### #### #### Classification Model #### #### #### #### # 0.47 model_classification = xgboost.XGBClassifier(learning_rate=0.1, n_estimators=100, max_depth=30, min_child_weight=1, gamma=0.1, subsample=0.8, colsample_bytree=0.8, colsample_bylevel=1, objective='binary:logistic', nthread=4, n_jobs=2, booster='gbtree', scale_pos_weight=20, seed=0, reg_lambda=1, reg_alpha=0.1) # model_classification = xgboost.XGBClassifier(learning_rate=0.0001, n_estimators=100, # max_depth=1000, min_child_weight=1, gamma=0.1, # subsample=0.8, colsample_bytree=0.8, colsample_bylevel=1, # objective='binary:logistic', nthread=4, n_jobs=2, # booster='gbtree', scale_pos_weight=20, # seed=0, reg_lambda=1, reg_alpha=0.1, # grow_policy='depthwise', max_leaves=1000, # ) def xgb_f1(y, t): t = t.get_label() y_bin = [1. if y_cont > 0.5 else 0. for y_cont in y] return 'f1', sklearn.metrics.f1_score(t, y_bin) model_classification = model_classification.fit(self.c_x_train, self.c_y_train, eval_metric=xgb_f1, eval_set=[(self.c_x_test, self.c_y_test)], verbose=True) #### #### #### #### Regression Model #### #### #### #### model_regression = xgboost.XGBRegressor(learning_rate=0.01, n_estimators=1, objective='reg:linear', colsample_bytree=0.85, max_depth=100, alpha=10, booster='gbtree', min_child_weight=0, gamma=0, subsample=0.8, reg_alpha=100, max_delta_step=1) model_regression = model_regression.fit(self.r_x_train_aggressive, self.r_y_train_aggressive, eval_metric='mae', eval_set=[(self.r_x_test, self.r_y_test)], verbose=True) #### #### #### #### Prediction Process #### #### #### #### TAU_LIST = np.arange(0.001, 0.999, 0.05) tau_best = -1 f1_score_best = -1 confusion_matrix_bext = "" mae_best = -1 y_pred_prob = model_classification.predict_proba(self.c_x_test) y_pred_prob = pd.DataFrame(y_pred_prob)[1] for TAU in TAU_LIST: self.log("---- ---- ---- ---- TAU:" + str(TAU) + " ---- ---- ---- ----") y_pred_classification = \ y_pred_prob.apply( lambda x: 1 if x > TAU else 0 ).values y_pred_regression = model_regression.predict(self.r_x_test) y_pred_final = y_pred_classification * y_pred_regression f1_current = self.print_classification_performance_metrics(self.c_y_test, y_pred_classification) mae_current = self.print_regression_performance_metrics(self.r_y_test, y_pred_final) if f1_current > f1_score_best: f1_score_best = f1_current tau_best = TAU confusion_matrix_bext = str(sklearn.metrics.confusion_matrix(self.c_y_test, y_pred_classification)) mae_best = mae_current self.log("<==== ==== ==== ==== REFRENCE - BEST METRICS ==== ==== ==== ====>") self.log("Best Tau: " + str(tau_best)) self.log("Best F1 Score: " + str(f1_score_best)) self.log(confusion_matrix_bext) self.log("Best MAE: " + str(mae_best)) self.log("<<<< <<<< <<<< <<<< REFRENCE - TRAINING METRICS >>>> >>>> >>>> >>>>") c_y_pred_reference = model_classification.predict(self.c_x_train) self.print_classification_performance_metrics(self.c_y_train, c_y_pred_reference) self.log(str(model_classification)) r_y_pred_reference = model_regression.predict(self.r_x_train) # r_y_pred_reference = pd.DataFrame(r_y_pred_reference)[0] # r_y_pred_reference = \ # r_y_pred_reference.apply( # lambda x: 0.0000000001 # if x > 0 else 0 # ).values final_y_pred_reference = c_y_pred_reference * r_y_pred_reference self.print_regression_performance_metrics(self.r_y_train, final_y_pred_reference) self.log("<<<< <<<< <<<< <<<< REFRENCE - ALL 0s MAE >>>> >>>> >>>> >>>>") y_pred_classification = \ y_pred_prob.apply( lambda x: 1 if x > tau_best else 0 ).values y_pred_regression = model_regression.predict(self.r_x_test) y_pred_regression = pd.DataFrame(y_pred_regression)[0] y_pred_regression = \ y_pred_regression.apply( lambda x: 0.0000000001 if x > 0 else 0 ).values y_pred_final = y_pred_classification * y_pred_regression self.print_regression_performance_metrics(self.r_y_test, y_pred_final) def experiment02(self): self.load_trainingset(False) model_classification_1 = xgboost.XGBClassifier(learning_rate=0.1, n_estimators=100, max_depth=30, min_child_weight=1, gamma=0.1, subsample=0.8, colsample_bytree=0.8, colsample_bylevel=1, objective='binary:logistic', nthread=4, n_jobs=2, booster='gbtree', scale_pos_weight=20, seed=0, reg_lambda=1, reg_alpha=0.1) def xgb_f1(y, t): t = t.get_label() y_bin = [1. if y_cont > 0.5 else 0. for y_cont in y] return 'f1', sklearn.metrics.f1_score(t, y_bin) model_classification_1.fit(self.c_x_train, self.c_y_train, eval_metric=xgb_f1, eval_set=[(self.c_x_test, self.c_y_test)], verbose=True) y_pred_classification_1 = model_classification_1.predict(self.c_x_test) # model_classification_2 = sklearn.tree.ExtraTreeClassifier( # class_weight=None, criterion='gini', max_depth=None, # max_features='auto', max_leaf_nodes=None, # min_impurity_decrease=0.0, min_impurity_split=None, # min_samples_leaf=1, min_samples_split=2, # min_weight_fraction_leaf=0.0, random_state=None, # splitter='random') model_classification_2 = sklearn.naive_bayes.BernoulliNB( alpha=0.01, binarize=0.0, class_prior=None, fit_prior=True) # model_classification_2 = sklearn.ensemble.RandomForestClassifier( # bootstrap=True, class_weight=None, criterion='gini', # max_depth=None, max_features='auto', max_leaf_nodes=None, # min_impurity_decrease=0.0, min_impurity_split=None, # min_samples_leaf=1, min_samples_split=2, # min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None, # oob_score=False, random_state=2, verbose=0, warm_start=False) # model_classification_2 = sklearn.ensemble.BaggingClassifier( # base_estimator=None, n_estimators=100, max_samples=1.0, max_features=1.0, # bootstrap=True, bootstrap_features=True, oob_score=False, warm_start=False, # n_jobs=None, random_state=None, verbose=3) # model_classification_2 = sklearn.neural_network.MLPClassifier( # activation='tanh', alpha=0.01, batch_size='auto', beta_1=0.9, # beta_2=0.999, early_stopping=False, epsilon=1e-08, # hidden_layer_sizes=(70, 70, 70), learning_rate='constant', # learning_rate_init=0.001, max_iter=300, momentum=0.9, # n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5, # random_state=None, shuffle=True, solver='adam', tol=0.0001, # validation_fraction=0.1, verbose=3, warm_start=False) # model_classification_2 = sklearn.svm.SVC( # probability=True, verbose=True # ) # model_classification_2 = sklearn.neighbors.KNeighborsClassifier( # n_neighbors=5 # ) model_classification_2.fit(self.c_x_train, self.c_y_train) y_pred_classification_2 = model_classification_2.predict_proba(self.c_x_test) y_pred_classification_2 = pd.DataFrame(y_pred_classification_2)[0] y_pred_classification_2 = \ y_pred_classification_2.apply( lambda x: 1 if x > 0.1 else 0 ).values #### #### #### #### Prediction Process #### #### #### #### # TAU_LIST = np.arange(0.001, 0.999, 0.01) # # tau_best = -1 # f1_score_best = -1 # confusion_matrix_bext = "" # mae_best = -1 # # y_pred_prob = model_classification_2.predict_proba(self.c_x_test) # y_pred_prob = pd.DataFrame(y_pred_prob)[1] # # for TAU in TAU_LIST: # self.log("---- ---- ---- ---- TAU:" + str(TAU) + " ---- ---- ---- ----") # y_pred_classification_2 = \ # y_pred_prob.apply( # lambda x: 1 # if x > TAU else 0 # ).values # # y_pred_final = np.add(y_pred_classification_1, y_pred_classification_2) # y_pred_final = pd.DataFrame(y_pred_final)[0] # y_pred_final = \ # y_pred_final.apply( # lambda x: 1 # if x > 0 else 0 # ).values # # f1_current = self.print_classification_performance_metrics(self.c_y_test, y_pred_final) # # if f1_current > f1_score_best: # f1_score_best = f1_current # tau_best = TAU # confusion_matrix_bext = str(sklearn.metrics.confusion_matrix(self.c_y_test, y_pred_final)) # # self.log("<==== ==== ==== ==== REFRENCE - BEST METRICS (C_TOTAL) ==== ==== ==== ====>") # self.log("Best Tau: " + str(tau_best)) # self.log("Best F1 Score: " + str(f1_score_best)) # self.log(confusion_matrix_bext) # # self.log("<==== ==== ==== ==== REFRENCE - BEST METRICS (C1) ==== ==== ==== ====>") # self.print_classification_performance_metrics(self.c_y_test, y_pred_classification_1) model_final = sklearn.ensemble.VotingClassifier( estimators=[('xgboost', model_classification_1), ('nb', model_classification_2)], voting='soft', weights=[1.8, 1], n_jobs=None, flatten_transform=None) model_final.fit(self.c_x_train, self.c_y_train) y_pred = model_final.predict(self.c_x_test) self.print_classification_performance_metrics(self.c_y_test, y_pred) def experiment03(self): self.load_trainingset(False) self.load_testset(False) model_classification_1 = xgboost.XGBClassifier(learning_rate=0.1, n_estimators=100, max_depth=30, min_child_weight=1, gamma=0.1, subsample=0.8, colsample_bytree=0.8, colsample_bylevel=1, objective='binary:logistic', nthread=4, n_jobs=2, booster='gbtree', scale_pos_weight=20, seed=0, reg_lambda=1, reg_alpha=0.1) model_classification_1.fit(self.c_X, self.c_Y) model_classification_2 = sklearn.naive_bayes.BernoulliNB( alpha=0.01, binarize=0.0, class_prior=None, fit_prior=True) model_classification_2.fit(self.c_X, self.c_Y) model_final = sklearn.ensemble.VotingClassifier( estimators=[('xgboost', model_classification_1), ('nb', model_classification_2)], voting='soft', weights=[1.8, 1], n_jobs=None, flatten_transform=None) model_final.fit(self.c_X, self.c_Y) y_pred_final = model_final.predict(self.TESTSET_X) #### #### #### #### EXPERIMENT!!!!!!! #### #### #### #### y_pred_final = pd.DataFrame(y_pred_final)[0] y_pred_final = \ y_pred_final.apply( lambda x: 0.000001 if x != 0.0 else 0 ).values # Make the submission file. submission = pd.DataFrame(y_pred_final, columns=['ClaimAmount']) submission.to_csv("submission.csv", index=True, index_label='rowIndex') # Print out success message. print("COMPLETE: submission.csv created!") def experiment04(self): for value in range(10, 3000, 10): self.load_trainingset(False, value) model_classification_1 = xgboost.XGBClassifier(learning_rate=0.1, n_estimators=100, max_depth=30, min_child_weight=1, gamma=0.1, subsample=0.8, colsample_bytree=0.8, colsample_bylevel=1, objective='binary:logistic', nthread=4, n_jobs=2, booster='gbtree', scale_pos_weight=20, seed=0, reg_lambda=1, reg_alpha=0.1) model_classification_1.fit(self.o_x_train, self.o_y_train) y_pred_final = model_classification_1.predict(self.o_x_test) self.print_classification_performance_metrics(self.c_y_test, y_pred_final) def train(self): # Load the training set. self.load_trainingset(False) #### #### #### #### Classification Model #### #### #### #### model_classification = xgboost.XGBClassifier(learning_rate=0.1, n_estimators=100, max_depth=30, min_child_weight=1, gamma=0.1, subsample=0.8, colsample_bytree=0.8, colsample_bylevel=1, objective='binary:logistic', nthread=4, n_jobs=2, booster='gbtree', scale_pos_weight=20, seed=0, reg_lambda=1, reg_alpha=0.1) model_classification = model_classification.fit(self.c_X, self.c_Y) #### #### #### #### Regression Model #### #### #### #### model_regression = xgboost.XGBRegressor(objective='reg:linear', colsample_bytree=0.85, eta=0.01, max_depth=9, alpha=10, n_estimators=1, booster='gbtree', min_child_weight=0, gamma=0, subsample=0.8, reg_alpha=100, max_delta_step=1) model_regression = model_regression.fit(self.r_X, self.r_Y) #### #### #### #### Save Models #### #### #### #### joblib.dump(model_classification, 'model_classification') joblib.dump(model_regression, 'model_regression') def assess(self): # Load the test set. self.load_testset(False) #### #### #### #### Prediction Process #### #### #### #### model_classification = joblib.load('model_classification') model_regression = joblib.load('model_regression') #### #### #### #### Prediction Process #### #### #### #### TAU = 0.701 y_pred_prob = model_classification.predict_proba(self.TESTSET_X) y_pred_prob = pd.DataFrame(y_pred_prob)[1] y_pred_classification = \ y_pred_prob.apply( lambda x: 1 if x > TAU else 0 ).values y_pred_regression = model_regression.predict(self.TESTSET_X) y_pred_final = y_pred_classification * y_pred_regression #### #### #### #### EXPERIMENT!!!!!!! #### #### #### #### y_pred_final = pd.DataFrame(y_pred_final)[0] y_pred_final = \ y_pred_final.apply( lambda x: 0.000001 if x != 0.0 else 0 ).values # Make the submission file. submission = pd.DataFrame(y_pred_final, columns=['ClaimAmount']) submission.to_csv("submission.csv", index=True, index_label='rowIndex') # Print out success message. print("COMPLETE: submission.csv created!") def log(self, message): self.log_file_handler.write(message + "\n") print(message) ################################################################################ # Main # ################################################################################ if __name__ == "__main__": # DataScienceModeler().experiment01(0.1) # DataScienceModeler().experiment02() # DataScienceModeler().experiment03() DataScienceModeler().experiment04() # DataScienceModeler().train() # DataScienceModeler().assess()
[ "demikaiser13@gmail.com" ]
demikaiser13@gmail.com
d5390cd3fc4c7e11dd95d9a7a65f7771fc6c78ab
ff14c66f799511240c7c60b31f596506a71cf908
/0409/0409/meow/views.py
52c1b60cd5ffe3394f3932df211e93b38b673b1e
[]
no_license
tp6m35p4/JerryHW
bc13c73c5bbea5007c3d261db6f53196e5421aa8
27ae1e152f52a3b080f44d6cc96a18b64212a15f
refs/heads/master
2021-04-06T08:19:01.396037
2018-05-09T05:19:38
2018-05-09T05:19:38
125,303,452
0
1
null
null
null
null
UTF-8
Python
false
false
158
py
from django.shortcuts import render from django.http import HttpResponse # Create your views here. def index(request): return HttpResponse("Hello I'm Here.")
[ "tp6m35p4@gmail.com" ]
tp6m35p4@gmail.com
fd49ae7016a0ac3a6fdc35521bd8a09a22ee5974
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/right_eye/case_and_part/man_or_hand/ask_bad_number_by_large_child/want_hand_at_right_case/other_child.py
db2e3c9028494251d2f2119fdfeb68e0bc8bb6e7
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
189
py
#! /usr/bin/env python def fact(str_arg): company(str_arg) print('few_man') def company(str_arg): print(str_arg) if __name__ == '__main__': fact('last_child_and_child')
[ "jingkaitang@gmail.com" ]
jingkaitang@gmail.com
0c0da40ba3c1e233fa9350f6e73e4cf4b791d500
704e6f1297c6f9377f804639abec16b954459304
/左神/02/z_n_06_旋转正方形矩阵.py
8862ce3d3f227c483d4e6b35828fcd503fc1b4a1
[]
no_license
Pysuper/LetCODE
a6d30a3f13445fee903d2823bc6835c1398a4362
a42098599bac4188eccb447de146434bc236a70a
refs/heads/master
2021-05-25T23:21:55.515406
2021-04-19T10:40:56
2021-04-19T10:40:56
253,962,304
1
0
null
null
null
null
UTF-8
Python
false
false
335
py
# !/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/4/15 22:11 # @Author : Zheng Xingtao # @File : z_n_06_旋转正方形矩阵.py """ 旋转正方形矩阵 【题目】 给定一个整型正方形矩阵matrix,请把该矩阵调整成顺时针旋转90度的样子。 【要求】 额外空间复杂度为O(1)。 """
[ "1821764535@qq.com" ]
1821764535@qq.com
5182128bfddbdf8b4bed4d80cd569be3a13fe406
eabba17ce7e4aa5c05b19c3e6c3655c8bbad64c7
/src/optimizer/flash.py
dd5f6fe873be55fce8435560356622933b8c2828
[]
no_license
FahmidMorshed/proper-learning-SATD
d1fc819667ffd7107ac7194d8e6c1e98fd3e5df4
09c6cae621cb706d887066576e6f8264b24a094a
refs/heads/master
2020-04-14T17:56:32.300784
2019-12-12T01:05:01
2019-12-12T01:05:01
164,000,176
0
0
null
null
null
null
UTF-8
Python
false
false
4,086
py
import random from sklearn.metrics import confusion_matrix from sklearn.model_selection import StratifiedShuffleSplit from sklearn.tree import DecisionTreeRegressor from optimizer.tuner import DT_TUNER import numpy as np BUDGET = 10 POOL_SIZE = 10000 INIT_POOL_SIZE = 10 def tune_dt(x_train, y_train, project_name): tuner = DT_TUNER() sss = StratifiedShuffleSplit(n_splits=1, test_size=.2, random_state=0) for train_index, tune_index in sss.split(x_train, y_train): x_train_flash, x_tune_flash = x_train[train_index], x_train[tune_index] y_train_flash, y_tune_flash = y_train.iloc[train_index], y_train.iloc[tune_index] best_conf = tune_with_flash(tuner, x_train_flash, y_train_flash, x_tune_flash, y_tune_flash, project_name, random_seed=1) return best_conf def tune_with_flash(tuner, x_train, y_train, x_tune, y_tune, project_name, random_seed=0): import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) random.seed(random_seed) print("DEFAULT F1: " + str(measure_fitness(tuner, x_train, y_train, x_tune, y_tune, tuner.default_config))) this_budget = BUDGET # Make initial population param_search_space = tuner.generate_param_pools(POOL_SIZE) # Evaluate initial pool evaluted_configs = random.sample(param_search_space, INIT_POOL_SIZE) #param_search_space = list(set(param_search_space) - (set(evaluted_configs))) f_scores = [measure_fitness(tuner, x_train, y_train, x_tune, y_tune, configs) for configs in evaluted_configs] # Filtering NaN case evaluted_configs, f_scores = filter_no_info(project_name, evaluted_configs, f_scores) print(project_name + " | F Score of init pool: " + str(f_scores)) # hold best values ids = np.argsort(f_scores)[::-1][:1] best_f = f_scores[ids[0]] best_config = evaluted_configs[ids[0]] # converting str value to int for CART to work evaluted_configs = [tuner.transform_to_numeric(x) for x in evaluted_configs] param_search_space = [tuner.transform_to_numeric(x) for x in param_search_space] # number of eval eval = 0 while this_budget > 0: cart_model = DecisionTreeRegressor(random_state=0) cart_model.fit(evaluted_configs, f_scores) next_config_id = acquisition_fn(param_search_space, cart_model) next_config = param_search_space.pop(next_config_id) next_config_normal = tuner.reverse_transform_from_numeric(next_config) next_f = measure_fitness(tuner, x_train, y_train, x_tune, y_tune, next_config_normal) if np.isnan(next_f) or next_f == 0: continue f_scores.append(next_f) evaluted_configs.append(next_config) if isBetter(next_f, best_f): best_config = next_config_normal best_f = next_f this_budget += 1 print(project_name + " | new F: " + str(best_f) + " budget " + str(this_budget)) this_budget -= 1 eval += 1 print(project_name + " | Eval: " + str(eval)) return best_config def acquisition_fn(search_space, cart_model): predicted = cart_model.predict(search_space) ids = np.argsort(predicted)[::-1][:1] val = predicted[ids[0]] return ids[0] def isBetter(new, old): return old < new def measure_fitness(tuner, x_train, y_train, x_tune, y_tune, configs): clf = tuner.get_clf(configs) clf.fit(x_train, y_train) y_pred = clf.predict(x_tune) cmat = confusion_matrix(y_tune, y_pred) return calc_f(cmat) def calc_f(cmat): # Precision # --------- prec = cmat[1, 1] / (cmat[1, 1] + cmat[0, 1]) # Recall # ------ recall = cmat[1, 1] / (cmat[1, 1] + cmat[1, 0]) # F1 Score # -------- f1 = 2 * (prec * recall) / (prec + recall) return f1 def filter_no_info(label, evaluated_configs, fscores): for i, score in enumerate(fscores): if np.isnan(score) or score == 0: del evaluated_configs[i] del fscores[i] return evaluated_configs, fscores
[ "ffahid@ncsu.edu" ]
ffahid@ncsu.edu
fc41caa47540e6d53c846a96c85678df4e9dad14
df3853b41ed05d86f5bcd992fcc265f637c67784
/big_deal/13.py
307bc522e9c62b66886a18c198eac20a92395433
[]
no_license
KseniaMIPT/Adamasta
6ab0121519581dbbbf6ae788d1da85f545f718d1
e91c34c80834c3f4bf176bc4bf6bf790f9f72ca3
refs/heads/master
2021-01-10T16:48:31.141709
2016-11-23T21:02:25
2016-11-23T21:02:25
43,350,507
1
0
null
null
null
null
UTF-8
Python
false
false
726
py
import pprint import copy def digraph_from_input(): N = int(input()) digraph = {} for i in range(N): line = input().split() if line[0] not in digraph: digraph[line[0]] = {line[1]} else: digraph[line[0]].add(line[1]) if line[1] not in digraph: digraph[line[1]] = set() return digraph def square_graph(graph): new_graph = copy.deepcopy(graph) for key in graph: for node in graph[key]: for far_node in graph[node]: if far_node not in graph[key]: new_graph[key].add(far_node) return new_graph digraph = digraph_from_input() graph = square_graph(digraph) pprint.pprint(graph)
[ "ksenia22.11@yandex.ru" ]
ksenia22.11@yandex.ru
de0b8eb5c42bafb75c648bb89135bbf3180a9711
453f1c74dfeb4e42489bff82d2c278b809b7e30f
/sparse_array.py
c04ce1e8253c8750dc00c246a236a7c253061b77
[]
no_license
zixizhong123/7-16-21
a8696baa331787533211df7817aca64f992f5759
f306678da122c0019016722f43f0fdcbbc177121
refs/heads/main
2023-06-26T16:36:03.351714
2021-07-26T17:53:11
2021-07-26T17:53:11
386,723,678
0
0
null
null
null
null
UTF-8
Python
false
false
462
py
# problem overview: https://www.hackerrank.com/challenges/sparse-arrays/problem def matchingStrings(strings, queries): result = [] reference = {} for s_item in strings: if s_item in reference: reference[s_item] += 1 else: reference[s_item] = 1 for q_item in queries: if q_item in reference: result.append(reference[q_item]) else: result.append(0) return result
[ "zixi.zhong567@gmail.com" ]
zixi.zhong567@gmail.com
39ed07c21541243ac2a44a54ab21ceb442986115
b0e36e26ed289c2ffccc0d57a6dafe4614f5a426
/cv2license.py
d89431018dc02e2dd72975c3fb6fe0fd884b27f1
[ "MIT" ]
permissive
kushalasn/Plate-geometry-using-opencv
a740e78876e9c00b1fa8a237529e7ab7a2b46882
7f39fc9c8d19864f1c5d0770f21a850d00bf7243
refs/heads/master
2020-08-09T00:11:27.616144
2019-10-09T15:34:23
2019-10-09T15:34:23
213,955,791
0
0
null
null
null
null
UTF-8
Python
false
false
1,575
py
import cv2 import imutils import numpy as np from PIL import Image img = cv2.imread('D:/data folder/image_0438.jpg',cv2.IMREAD_COLOR) img = cv2.resize(img, (620,480) ) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #convert to grey scale gray = cv2.bilateralFilter(gray, 11, 17, 17) #Blur to reduce noise edged = cv2.Canny(gray, 30, 200) #Perform Edge detection # find contours in the edged image, keep only the largest # ones, and initialize our screen contour cnts = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:10] screenCnt = None # loop over our contours for c in cnts: # approximate the contour peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.018 * peri, True) # if our approximated contour has four points, then # we can assume that we have found our screen if len(approx) == 4: screenCnt = approx break if screenCnt is None: detected = 0 print( "No contour detected") else: detected = 1 if detected == 1: cv2.drawContours(img, [screenCnt], -1, (0, 255, 0), 3) # Masking the part other than the number plate mask = np.zeros(gray.shape,np.uint8) new_image = cv2.drawContours(mask,[screenCnt],0,255,-1,) new_image = cv2.bitwise_and(img,img,mask=mask) # Now crop (x, y) = np.where(mask == 255) (topx, topy) = (np.min(x), np.min(y)) (bottomx, bottomy) = (np.max(x), np.max(y)) Cropped = gray[topx:bottomx+1, topy:bottomy+1] cv2.imshow(Cropped) cv2.WaitKey(1) cv2.destroyAllWindows()
[ "noreply@github.com" ]
kushalasn.noreply@github.com
db920bd11474bf967edf13751c6246c0a8481735
081afb9d33619fe5c17d8d06c7a95d1bee8a4906
/gpic_dl.py
73e06452b614b3765685bea7c013cb123c6312de
[]
no_license
seekertrue/patent
9d2ebe1bea551929da8418c965ffd06743d2bd54
0766441ceb0ae01129a3cd33abbf3e09b303b655
refs/heads/master
2022-11-11T05:23:47.935682
2020-06-28T03:40:53
2020-06-28T03:40:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,923
py
# -*- coding: utf-8 -*- import random, time, os, shutil from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from urllib.parse import unquote as up from selenium.common.exceptions import TimeoutException from selenium.webdriver.common.by import By import selenium.webdriver.support.expected_conditions as EC import selenium.webdriver.support.ui as ui ''' @FileName : gpic_dl.py @Created : 2020/04/17 @Updated : 2020/04/18 @Author : goonhope@gmail.com @Function : 专利清单及全文下载_广东省知识产权公共信息综合服务平台(需要登录) @url : http://s.gpic.gd.cn/route/hostingplatform/search/searchIndex ''' class ChromeDriver(object): def __init__(self, driver): self.driver = driver self.driver.maximize_window() def init_page(self,url=r"http://s.gpic.gd.cn/route/hostingplatform/search/searchIndex"): self.driver.get(url) self.driver.implicitly_wait(2) def show(self,css,timeout=25, gone=False): located = EC.visibility_of_element_located((By.CSS_SELECTOR , css)) try: ui.WebDriverWait(self.driver, timeout).until(located) if not gone else \ ui.WebDriverWait(self.driver, timeout).until_not(located) return True except TimeoutException: return False def input_key(self,ids,css="input.el-input__inner"): if isinstance(ids,str): input_el = self.driver.find_element_by_css_selector(css) input_el.clear() input_el.send_keys(ids) else: input_el = self.driver.find_elements_by_css_selector(css)[:2] if len(ids) == len(input_el): for x,i in zip(input_el,ids): ActionChains(self.driver).double_click(x).perform() # x.clear() x.send_keys(i) else: print("check input_key function") time.sleep(0.5) def click_by_css(self, css="li.el-menu-item.pull-right a"): search_el = self.driver.find_element_by_css_selector(css) search_el.click() time.sleep(3) def download(self, css="label[class^=el-radio-button]",list_pdf=True,xn="公司"): ''''下载''' search_el = self.driver.find_elements_by_css_selector(css) num = 0 if list_pdf else 3 # 0 清单 3打包pdf文件 search_el[num].click() self.click_by_css("div.el-col.el-col-24 > button") # time.sleep(slp) dcss = "div.el-col.el-col-24 > div > a" self.click_by_css(dcss) if self.show(dcss) else None xname = self.driver.find_element_by_css_selector(dcss).get_attribute("href") xname = up(os.path.split(xname)[-1]) # url解码 move_file(xname, xn) def grapHtml(self, css="span[class^='infoInlineSpan']"): content = [x.text.split(":")[-1].strip() for x in self.driver.find_elements_by_css_selector(css)] content = "\t".join(content) [print(i, sep="\t") if _%5 != 4 else print(i) for _,i in enumerate(content)] def go(self,ids,company): """执行程序""" self.init_page() self.click_by_css() self.input_key(ids,) self.click_by_css("div.el-form-item__content>button") self.input_key(company) self.click_by_css("button") self.driver.switch_to.window(self.driver.window_handles[1]) self.click_by_css("div.tool-item>div>button") time.sleep(random.uniform(2,3)) self.click_by_css("div>div.tool-item>a") self.download(xn=company) # 下载list self.click_by_css("div.el-col.el-col-24 > button") # 关闭 self.click_by_css("div>div.tool-item>a") self.download(xn=company,list_pdf=False) # 下载pdf self.driver.quit() def move_file(xname,xn,show=True): ''''移动到指定目录''' dir_default = r"D:\Downloads" # chrome 默认下载目录 subdir = r"D:\Temp" # 移动到目录 xo = os.path.join(dir_default, xname) for x in ["有限公司","科技"]: xn = xn.replace(x,"") xn = xn + "_专利清单_2020" + os.path.splitext(xname)[-1] fxn = os.path.join(dir_default, xn) time.sleep(2) if not os.path.exists(xo) else None # 等待文件下载 os.renames(xo, fxn) time.sleep(2) oxn = os.path.join(subdir, xn) # 最终文件 os.remove(oxn) if os.path.exists(oxn) else None # 二次删除原有 shutil.move(fxn, subdir) # 移动 os.system("start %s" % subdir) if show else None return True if os.path.exists(oxn) else False def main(): """专利 下载""" company = input("查询:") ids = ("*************","*****") # 账号密码 driver = webdriver.Chrome() cd = ChromeDriver(driver) try: cd.go(ids, company) except Exception as e: print(str(e)) if __name__ == "__main__": main()
[ "noreply@github.com" ]
seekertrue.noreply@github.com
2b67df35926f8719de9439d943145dbd149ddec2
12c04c1c1751f2eedf651f386b674a8f7f85cf76
/fixture/soap.py
a4d64479bb890bca9a4eac739fc7a6c97f027858
[]
no_license
araevskiy/python_training_mantis
72b79441f2775a0908a66a1b47409524ae8cd924
33f54ab8a538bdf9cafb4fbdcbe9440d1becfc10
refs/heads/master
2023-03-05T21:04:46.097521
2021-02-13T17:36:33
2021-02-13T17:36:33
337,806,014
0
0
null
null
null
null
UTF-8
Python
false
false
910
py
from suds.client import Client from suds import WebFault from model.project import Project class SoapHelper: def __init__(self, app): self.app = app def can_login(self, username, password, baseURL): client = Client(baseURL + 'api/soap/mantisconnect.php?wsdl') try: client.service.mc_login(username, password) return True except WebFault: return False def get_project_list(self, username, password, baseURL): client = Client(baseURL + 'api/soap/mantisconnect.php?wsdl') def convert(project): return Project(identifier=str(project.id), name=project.name, description=project.description) try: list_projects = client.service.mc_projects_get_user_accessible(username, password) return list(map(convert, list_projects)) except WebFault: return False
[ "aeg2611@gmail.com" ]
aeg2611@gmail.com
6eae88ca2e62179b92a37e3ede88af8e8da3f9d7
7a4d0c70b3fea5996907fc5b09f97cbc8c394a9b
/torch_connectomics/data/dataset/dataset_mask_skeleton_central.py
f2de1da521f2eb4cb9b93bc5a9aa2c63459c4180
[ "MIT" ]
permissive
al093/pytorch_connectomics
af09672382088af10150ceb5a107142ff9a2e43e
52821951233b061102380fc0d2521843652c580a
refs/heads/master
2021-06-28T03:19:09.629623
2021-01-29T21:46:20
2021-01-29T21:46:20
188,486,004
2
0
MIT
2020-09-22T08:49:09
2019-05-24T20:51:20
Python
UTF-8
Python
false
false
11,267
py
from __future__ import print_function, division import numpy as np import torch import torch.utils.data import scipy from scipy.ndimage import label as scipy_label import scipy.ndimage.morphology as morphology from scipy import spatial import skimage from .misc import crop_volume, rebalance_binary_class from torch_connectomics.utils.vis import save_data class MaskAndSkeletonCentralDataset(torch.utils.data.Dataset): def __init__(self, volume, label=None, skeleton=None, sample_input_size=(8, 64, 64), sample_label_size=None, sample_stride=(1, 1, 1), augmentor=None, mode='train', seed_points=None, pad_size=None, multisegment_gt=True): if mode == 'test': for x in seed_points: assert len(x) == 1 self.mode = mode self.input = volume self.label = label self.skeleton = skeleton self.augmentor = augmentor # data augmentation # samples, channels, depths, rows, cols self.input_size = [np.array(x.shape) for x in self.input] # volume size, could be multi-volume input self.sample_input_size = np.array(sample_input_size) # model input size self.sample_label_size = np.array(sample_label_size) # model label size self.seed_points = seed_points self.half_input_sz = (sample_input_size//2) self.seed_points_offset = pad_size - self.half_input_sz self.sample_num = np.array([(np.sum([y.shape[0] for y in x])) for x in self.seed_points]) self.sample_num_a = np.sum(self.sample_num) self.sample_num_c = np.cumsum([0] + list(self.sample_num)) # specifies if there are multiple segments in the GT, if yes then we need to keep only the central segment while calling get_item self.multisegment_gt = multisegment_gt self.dilation_sel = scipy.ndimage.generate_binary_structure(3, 1) def __len__(self): # number of seed points return self.sample_num_a def __getitem__(self, index): vol_size = self.sample_input_size valid_mask = None # Train Mode Specific Operations: if self.mode == 'train': # 2. get input volume seed = np.random.RandomState(index) # if elastic deformation: need different receptive field # change vol_size first pos = self.get_pos_seed(seed) out_label = crop_volume(self.label[pos[0]], vol_size, pos[1:]) out_input = crop_volume(self.input[pos[0]], vol_size, pos[1:]) out_skeleton = crop_volume(self.skeleton[pos[0]], vol_size, pos[1:]) # select the center segment and delete the rest # this is needed only for parallel fibers, for the single neuron prediction only perform cc and remove # the non central segments if self.multisegment_gt: seg_id_to_keep = out_label[tuple(self.half_input_sz)] out_label = self.keep_seg(out_label, seg_id_to_keep) out_skeleton = self.keep_seg(out_skeleton, seg_id_to_keep) # import pdb; pdb.set_trace() # Remove non central segment if out_skeleton.sum() == 0: save_data(out_skeleton, 'skel.h5') save_data(out_label, 'segment.h5') print('Skeleton is empty after cropping from original volume.') assert False if out_label.sum() == 0: save_data(out_skeleton, 'skel.h5') save_data(out_label, 'segment.h5') print('Out label is empty.') assert False out_label = out_label.copy() out_skeleton = out_skeleton.copy() out_input = out_input.copy() # out_label = self.remove_non_central_seg(out_label) # out_skeleton_temp = out_skeleton # out_skeleton = out_skeleton * out_label # remove any skeleton part outside the segment, ensure a copy is created # if out_skeleton.sum() == 0: # save_data(out_skeleton_temp, 'cropped_selected_skel.h5') # save_data(out_skeleton, 'processed_skel.h5') # save_data(out_label, 'segment.h5') # print('Skeleton is empty after removing non central part. Should not happen') # assert False # 3. augmentation if self.augmentor is not None: # augmentation data = {'image':out_input, 'label':out_label.astype(np.float32), 'input_label':out_skeleton.astype(np.float32)} augmented = self.augmentor(data, random_state=seed) out_input, out_label, out_skeleton = augmented['image'], augmented['label'], augmented['input_label'] out_input = out_input.astype(np.float32) out_label = out_label.astype(np.float32) out_skeleton = out_skeleton.astype(np.float32) if (out_label.shape[0] != 64): import pdb; pdb.set_trace() if out_skeleton.sum() == 0: print('Skeleton is empty after Aug. Should not happen') assert False # Test Mode Specific Operations: elif self.mode == 'test': # test mode pos = self.get_pos_test(index) out_input = crop_volume(self.input[pos[0]], vol_size, pos[1:]) out_label = None if self.label is None else crop_volume(self.label[pos[0]], vol_size, pos[1:]) if out_skeleton is not None and out_label is not None: out_flux = self.compute_flux(out_label, out_skeleton) out_flux = torch.from_numpy(out_flux) out_skeleton = torch.from_numpy(out_skeleton) out_skeleton = out_skeleton.unsqueeze(0) if out_label is not None: out_label = torch.from_numpy(out_label) # did not create a copy because remove non central seg creates a copy out_label = out_label.unsqueeze(0) # Turn input to Pytorch Tensor, unsqueeze once to include the channel dimension: out_input = torch.from_numpy(out_input.copy()) out_input = out_input.unsqueeze(0) if self.mode == 'train': # TODO if masked loss around center is needed use this mask for rebalancing # mask = morphology.binary_dilation(out_label[0].numpy(), structure=np.ones((5, 5, 5))) # mask = mask.astype(np.float32) # Rebalancing temp = 1.0 - out_label.clone() weight_factor, weight = rebalance_binary_class(temp, mask=None) # torch.from_numpy(mask) flux_weight = self.compute_flux_weights(out_label, out_skeleton) if(out_label.shape[1] != 64): import pdb; pdb.set_trace() return pos, out_input, out_label, out_flux, out_skeleton, weight, weight_factor, flux_weight else: return pos, out_input def get_pos_dataset(self, index): return np.argmax(index < self.sample_num_c) - 1 # which dataset def get_pos_seed(self, seed, offset=None): pos = [0, 0, 0, 0] # pick a dataset did = self.get_pos_dataset(seed.randint(self.sample_num_a)) pos[0] = did # pick a mask bin # p = [0.45, 0.15, 0.10, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05] size_bin = np.random.choice(len(self.seed_points[did])) # pick a index idx = np.random.randint(self.seed_points[did][size_bin].shape[0]) # pick a position if offset is None: pos[1:] = self.seed_points[did][size_bin][idx] + self.seed_points_offset else: pos[1:] = self.seed_points[did][size_bin][idx] + offset return pos def get_pos_test(self, index): did = self.get_pos_dataset(index) idx = index - self.sample_num_c[did] pos = self.seed_points[did][0][idx] pos = pos + self.seed_points_offset return np.concatenate(([did], pos)) def get_vol(self, pos): out_input = crop_volume(self.input[pos[0]], self.sample_input_size, pos[1:]) out_input = torch.from_numpy(out_input.copy()) out_input = out_input.unsqueeze(0) return out_input def keep_seg(self, label, seg_id_to_keep): return label == seg_id_to_keep def remove_non_central_seg(self, label): out_label, _ = scipy_label(label) if out_label[tuple(self.half_input_sz)] == 0: print('Center pixel is not inside 2nd inference\'s GT segmentation.') print('This probably happened due to augmentation') # Find nearby segment id and use that for now seg_ids = np.unique(out_label[self.half_input_sz[0]-5:self.half_input_sz[0]+6, self.half_input_sz[1]-5:self.half_input_sz[1]+6, self.half_input_sz[2]-5:self.half_input_sz[2]+6]) seg_ids = seg_ids[seg_ids > 0] if seg_ids.shape[0] > 1: print('More than 1 disconnected segments near the center. This should have never happened!') print('Using the first segment') c_seg_id = seg_ids[0] out_label = (out_label == c_seg_id) else: out_label = (out_label == out_label[tuple(self.half_input_sz)]) return out_label def compute_flux(self, segment, skeleton): skeleton_points = np.transpose(np.nonzero(skeleton)) # Finding closest points to skeleton kdtree = spatial.KDTree(skeleton_points) points = np.transpose(np.nonzero(segment)) _, idxs = kdtree.query(points) dir_vec = skeleton_points[idxs] - points factor = np.sqrt((np.sum(dir_vec**2, axis=1)) + np.finfo(np.float32).eps) dir_vec = dir_vec / np.expand_dims(factor, axis=1) # Creating direction field direction = np.zeros((3,) + segment.shape, dtype=np.float32) direction[0, tuple(points[:,0]), tuple(points[:,1]), tuple(points[:,2])] = dir_vec[:, 0] direction[1, tuple(points[:,0]), tuple(points[:,1]), tuple(points[:,2])] = dir_vec[:, 1] direction[2, tuple(points[:,0]), tuple(points[:,1]), tuple(points[:,2])] = dir_vec[:, 2] return direction def compute_skeleton(self, segment): seg_d = scipy.ndimage.zoom(segment, zoom=[1, 0.20, 0.20], order=3) seg_d = (seg_d > 0) down_res = seg_d.shape for _ in range(3): seg_d = scipy.ndimage.morphology.binary_dilation(seg_d, structure=self.dilation_sel) # Computing Skeleton skeleton_downsampled = skimage.morphology.skeletonize_3d(seg_d) # nodes = np.stack(skel_object.get_nodes()).astype(np.uint16) def compute_flux_weights(self, label, skeleton): weight = torch.zeros_like(label) label = label > 0 skeleton = skeleton > 0 total_vol = label.sum().float() skl_vol = skeleton.sum().float() non_skl_vol = total_vol - skl_vol weight[skeleton] = non_skl_vol/total_vol weight[label & ~skeleton] = skl_vol/total_vol return weight
[ "verma.alok001@gmail.com" ]
verma.alok001@gmail.com
0d2d0fe4366f57197fefd87674a593074be7748d
586eed41a9a37611b19ab7d79db0b49121799f66
/Adventure_Python_Game.py
3b6cd2d023a9db27bc1cd4e3cc0ea5274403c2ab
[]
no_license
eduardocor89/Adventure-game
d180a6e998222bd1276b8a97d65ec7e9cdbc0abe
9b6ae352dbaa755607aa2e1257c556f18b53e1d1
refs/heads/main
2023-03-04T17:14:21.774942
2021-02-13T20:21:10
2021-02-13T20:21:10
338,030,202
0
0
null
null
null
null
UTF-8
Python
false
false
3,975
py
import time import random items = [] people = ["Adolf Hitler", "Benito Musoline", "King Leopold", "Alexander Hamilton"] enemy = random.choice(people) def print_pause(message): '''prints out messages slowly''' time.sleep(1) print(message) time.sleep(1) def intro(): '''Describes the world to player''' print_pause("You find yourself standing in an open field, " "filled with grass and yellow wildflowers.") print_pause("Rumor has it that the wicked " + enemy + " is somewhere around here, and has been terrifying" " the nearby village.\n") def landing(): '''Where the player starts the world''' print_pause("Enter 1 to knock on the door of the house.\n" "Enter 2 to peer into the cave. \n" "What would you like to do?") option = valid_input("Please enter 1 or 2\n", ['1', '2']) if option == '1': house() elif option == '2': cave() def valid_input(prompt, options): while True: option = input(prompt).lower() if option in options: return option print_pause("Sorry, I don't understand " + option + ".") def house(): '''What happens inside house''' print_pause("You approach the door of the house") print_pause("You are about to knock when the door opens" " and out steps " + enemy) print_pause("Eep! This is the enemy's house!") print_pause(enemy + " attacks you!") fight() def fight(): '''Player fights''' if 'sword' not in items: print_pause("You feel a bit under-prepared for this," " what with only having a tiny dagger") action = valid_input("Would you like to 1 fight, or 2 run away?\n", ['1', '2']) if action == '2': print_pause("You run back into the field. " "Luckily, you don't seem to have been followed.") landing() else: print_pause("You do your best...") print_pause("but your dagger is no match for " + enemy) print_pause("you have been defeated!") restart_game() else: action = valid_input("Would you like to 1 fight, or 2 run away?\n", ['1', '2']) if action == '2': print_pause("You run back into the field." "Luckily, you don't seem to have been followed.") landing() else: print_pause("As " + enemy + " moves to attack," " you unsheath your new sword.") print_pause("The Sword of Ogoroth shines brightly" " in your hand") print_pause("as you brace yourself for the attack.") print_pause("But " + enemy + " takes one look " "at your shiny new toy and runs away!") print_pause("You have rid the town of " + enemy) print_pause("\nYOU ARE VICTORIOUS\n") restart_game() def cave(): '''Cave''' print_pause("You peer cautiously into the cave.") print_pause("It turns out to be only a very small cave.") print_pause("Your eye catches a glint of metal behind a rock.") print_pause("You have found the magical Sword of Ogoroth!") print_pause("You discard your silly old dagger and" " take the sword with you.") print_pause("You walk back out to the field.\n") items.append("sword") landing() def restart_game(): '''Play again?''' print_pause("\n\nGAME OVER\n") again = valid_input("\nWould you like to play again?\n" "Enter 'yes' or 'no'\n", ["yes", "no"]) if "yes" in again: print_pause("\nExcellent! Restarting the game...\n\n") play_game() elif "no" in again: print_pause("\nGoodbye, brave warrior") def play_game(): intro() landing() play_game()
[ "noreply@github.com" ]
eduardocor89.noreply@github.com
b34f36df8a12a3eb0da4a3bac62f1312dd42b488
9102c3a5fa3a5b0202d61206973d0ea167f7a4d0
/August/30-LargestComponentSizebyCommonFactor.py
c772458c707ab0f764caae19f088bad275b69fc5
[]
no_license
Madhav-Somanath/LeetCode
8e1b39e106cec238e5a2a3acb3eb267f5c36f781
b6950f74d61db784095c71df5115ba10be936c65
refs/heads/master
2023-01-08T15:10:00.249806
2020-10-31T14:45:43
2020-10-31T14:45:43
255,654,520
0
0
null
null
null
null
UTF-8
Python
false
false
1,300
py
""" Given a non-empty array of unique positive integers A, consider the following graph: There are A.length nodes, labelled A[0] to A[A.length - 1]; There is an edge between A[i] and A[j] if and only if A[i] and A[j] share a common factor greater than 1. Return the size of the largest connected component in the graph. """ class DSU: def __init__(self, N): self.p = list(range(N)) def find(self, x): if self.p[x] != x: self.p[x] = self.find(self.p[x]) return self.p[x] def union(self, x, y): xr, yr = self.find(x), self.find(y) self.p[xr] = yr class Solution: def primes_set(self,n): for i in range(2, int(math.sqrt(n))+1): if n % i == 0: return self.primes_set(n//i) | set([i]) return set([n]) def largestComponentSize(self, A: List[int]) -> int: n = len(A) UF = DSU(n) primes = defaultdict(list) for i, num in enumerate(A): pr_set = self.primes_set(num) for q in pr_set: primes[q].append(i) for _, indexes in primes.items(): for i in range(len(indexes)-1): UF.union(indexes[i], indexes[i+1]) return max(Counter([UF.find(i) for i in range(n)]).values())
[ "madhav.somanath@gmail.com" ]
madhav.somanath@gmail.com
32dfd32e42ef76c7c13cde82e6183c5ec91ceb2b
f8bc54c4eeeadee96df0c42e0c0274bf82e4fc16
/test/test_CalcRating.py
d35b4dc4dbb8c1bcacd03dd054e8c5a48b9e8ab7
[]
no_license
Di-98/PTLab1
7f08b27313f8ac50a1f4e1d4faf10d3e191baf2d
74ae325c50c38cd50e03f5314843d764b961b011
refs/heads/main
2023-08-01T23:43:31.974359
2021-09-28T13:44:06
2021-09-28T13:44:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,628
py
from typing import Dict, Tuple from Types import DataType from CalcRating import CalcRating import pytest RatingsType = Dict[str, float] class TestCalcRating(): @pytest.fixture() def input_data(self) -> Tuple[DataType, RatingsType]: data: DataType = { "Абрамов Петр Сергеевич": [ ("математика", 80), ("русский язык", 76), ("программирование", 100) ], "Петров Игорь Владимирович": [ ("математика", 61), ("русский язык", 80), ("программирование", 78), ("литература", 97) ] } rating_scores: RatingsType = { "Абрамов Петр Сергеевич": 85.3333, "Петров Игорь Владимирович": 79.0000 } return data, rating_scores def test_init_calc_rating(self, input_data: Tuple[DataType, RatingsType]) -> None: calc_rating = CalcRating(input_data[0]) assert input_data[0] == calc_rating.data def test_calc(self, input_data: Tuple[DataType, RatingsType]) -> None: rating = CalcRating(input_data[0]).calc() for student in rating.keys(): rating_score = rating[student] assert pytest.approx(rating_score, abs=0.001) == input_data[1][student]
[ "alexey.bezruchenko@yandex.ru" ]
alexey.bezruchenko@yandex.ru
64477e95e1a0ae9e1812c0c114cf87a0cbb5dcb2
25476f58ab74593902c0db71dd8e560dafa5442a
/tools/platform-tools/systrace/catapult/devil/devil/devil_env_test.py
e78221a07000fb52b7f967318a310e761555e43d
[ "BSD-3-Clause", "Apache-2.0", "ISC", "GPL-2.0-only", "LicenseRef-scancode-public-domain", "BSD-2-Clause", "NCSA", "LicenseRef-scancode-unicode", "LGPL-2.1-only", "OpenSSL", "blessing", "MIT", "NICTA-1.0", "LicenseRef-scancode-protobuf", "GPL-2.0-or-later", "LicenseRef-scancode-openssl", "Libpng", "LicenseRef-scancode-ssleay-windows", "LicenseRef-scancode-pcre", "Zlib" ]
permissive
CanciuCostin/android-spyware
859771d8ba17b434f3f330b08d6b28f9b26a5068
be9c2989a76214462b9fe5869c79ffbe86151f13
refs/heads/master
2023-04-11T11:34:01.983825
2023-03-26T12:25:01
2023-03-26T12:25:01
253,235,389
360
104
MIT
2023-03-03T12:59:41
2020-04-05T12:58:20
HTML
UTF-8
Python
false
false
1,978
py
#!/usr/bin/env python # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # pylint: disable=protected-access import logging import sys import unittest from devil import devil_env _sys_path_before = list(sys.path) with devil_env.SysPath(devil_env.PYMOCK_PATH): _sys_path_with_pymock = list(sys.path) import mock # pylint: disable=import-error _sys_path_after = list(sys.path) class DevilEnvTest(unittest.TestCase): def testSysPath(self): self.assertEquals(_sys_path_before, _sys_path_after) self.assertEquals( _sys_path_before + [devil_env.PYMOCK_PATH], _sys_path_with_pymock) def testGetEnvironmentVariableConfig_configType(self): with mock.patch('os.environ.get', mock.Mock(side_effect=lambda _env_var: None)): env_config = devil_env._GetEnvironmentVariableConfig() self.assertEquals('BaseConfig', env_config.get('config_type')) def testGetEnvironmentVariableConfig_noEnv(self): with mock.patch('os.environ.get', mock.Mock(side_effect=lambda _env_var: None)): env_config = devil_env._GetEnvironmentVariableConfig() self.assertEquals({}, env_config.get('dependencies')) def testGetEnvironmentVariableConfig_adbPath(self): def mock_environment(env_var): return '/my/fake/adb/path' if env_var == 'ADB_PATH' else None with mock.patch('os.environ.get', mock.Mock(side_effect=mock_environment)): env_config = devil_env._GetEnvironmentVariableConfig() self.assertEquals( { 'adb': { 'file_info': { 'linux2_x86_64': { 'local_paths': ['/my/fake/adb/path'], }, }, }, }, env_config.get('dependencies')) if __name__ == '__main__': logging.getLogger().setLevel(logging.DEBUG) unittest.main(verbosity=2)
[ "costin.canciu@ibm.com" ]
costin.canciu@ibm.com
4c3630fa7f9aa1f52b6fa1a39a51fe053f26f1ad
df93cf07a45ff105402bcb828dc2bf2ed9b6d952
/exercicio-012.py
a1a0046a297c72a4d5d35944ce23140716103d7d
[]
no_license
carlosmachadojr/Curso-em-Video-Python-3
d19807191ab967fa26f9332eeef31ab7a6f1ed5e
c3c2faa8d68e7a9738aeb4973f9371149837fe54
refs/heads/master
2021-02-11T15:57:47.220758
2020-03-07T02:38:28
2020-03-07T02:38:28
244,507,162
1
0
null
null
null
null
UTF-8
Python
false
false
1,152
py
##### PORCENTAGEM - CÁLCULO DE DESCONTOS ##### """ CURSO EM VÍDEO - EXERCÍCIO PYTHON 12: Faça um algoritmo que leia o preço de um produto e mostre seu novo preço, com 5% de desconto. Link: https://youtu.be/4MAmKOT9FeU """ ############################################################################### ### INÍCIO DO PROGRAMA ######################################################## ############################################################################### separador_1 = '\n' + '-'*80 + '\n' separador_2 = '\n' + '-'*25 + '\n' print(separador_1) preco = round(float(input('Qual o preço do produto? R$ ')) , 2) desconto = 5 # em % novo_preco = round(preco * (1 - desconto/100) , 2) print(separador_2) print('Com o desconto de 5' + '% ' + 'o produto que custa ' + 'R$ {} passa a custar R$ {}.'.format(preco , novo_preco)) print(separador_1) ############################################################################### ### FIM DO PROGRAMA ########################################################### ###############################################################################
[ "noreply@github.com" ]
carlosmachadojr.noreply@github.com
d3416b979f79b7c5103f2e5dbe93fec870fc97b6
8015f1c62a2cb4efd21aa8938336913bf8117868
/bamap/ba3712.pngMap.py
908829e20f14429ced9cb9035658d7b8b75c9d77
[]
no_license
GamerNoTitle/Beepers-and-OLED
675b5e3c179df0f0e27b42bf594c43860d03b9af
afe1340e5394ae96bda5f9022a8a66824368091e
refs/heads/master
2020-04-20T00:09:47.122471
2019-04-29T04:59:35
2019-04-29T04:59:35
168,515,579
4
2
null
null
null
null
UTF-8
Python
false
false
8,468
py
ba3712.pngMap = [ '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111000111111111111111111111110', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111100111111111111111111111111111111111111111111111111111111111111111111111110001111111111111111111111111111111111110', '11111111111111111101111111111111111111111111111111111111111111111111111111111111111111110001111111111111111111111111111111111111', '11111111111111111100111111111111111111111111111111111111111111111111111111111111111110000111111111111111111111111111111111111111', '11111111111111111101111111111111111111111111111111111111111111111111111111111111000000000011111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111000000000011111111111111111111111111111111111111', '10111111111111111111111111111111111111111111111111111111111111111111111111111111000000000111111111111111111111111111111111111111', '10011111111111111111100111111111111111111111111111111111111111111111111111111010000000000111111111111111111111111111111111111111', '01001111111111111111111111111111111111111111111111111111111111111111111111001000000000011111111111111111111111111111111111111111', '00001111111111111111111111111111111111111111111111111111111111111111111000000000000000001111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111000000000000000111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000111111101000000000000001011111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111100000000000000000111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111110000000000000001001111111111111111111111111111111111111111111', '11111111111100111111111111111111111111111111111111111111111111111100000000000000000111111111111111111111111111111111111111111111', '11111111111000011111111111111111111111111111111111111111111111111100000000000000000111111111111111111111111111111111111111111111', '11111111111101011111111111111111111111111111111111111111111111110000000000000000000111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111001111111111111111111111111000000000000000001111111111111111111111111111111111111111111111', '11111111111110001011111111111111111111111111111111111111111111110000000000000000001111111111111111111111111111111111111111111111', '00010111111110011111111111111111111111111111111111111111111111110000000000000000001111111111111111111111111111111111111111111111', '00001111111110001111111111111111111111111111111111111111111111111000000000000001011111111111111111111111111111111111111111111111', '01010111111111111111111111111111111111111111111111111111111111111100000000000011111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111000000000010011111111111111111111111111111111111111111111111', '11111111111111110111111111111111111111111111111111111111111111111111000000000000111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111000000000000001111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111100000000000000011111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111000000000000001011111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111100000000000000011111111111111111111111111111111111111001111', '11111111111111111111111111111111111111111111111111111111111111111110000000000000001111111111111111111111111111111111111110111111', '11111111111111111111111111111111111111111111111111111111111111111100000000000000000111111111111111111111111111111111111110011111', '11111111111111111111111111111111111111111111111111111111111100000000000000000000001111111111111111111111111111111111111110001111', '11111111111111111111111111111111111111111111111111111111111111110000000000000000001111111111111111111111111111111111111111001111', '11111111111111111111111111111111111111111111111111111111111111110000000000000000001111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111110000000000000000001111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111000000000000000001111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111000001000000000001111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111000000000000000001111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111000000000000000001111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111000111111111111111111111110000000000000000001111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111110000000000000000000111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111110000000000000000000011111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111010000000000000000000011111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111110100000000000000000000111111111111111111111111111111111111111111111', '11111111111111111100111111100111111111111111111111111111111110000000000000000000000011111111111111111111111111111111111111111111', '11111111111111111100111111100111111111111111111111111111110000000000000000000000000001111111111111111111111111111111111111111111', '11111111111111111110111111100111111111111111111111111111000000000000000000000000000001111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111100000000000000000000000000000000111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000000000000000000000111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111110000000000000000000000000000000000000000111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111110000000000000000000000000000000000000000111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111110000000000000000000000000000000000000000000111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111100000000000000000000000000000000000000000000111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111100000000000000000000000000000000000000000000001111111111111111111111111111111111111111', '11111111111111111111111111111111111111111100000000000000000000000000000000000000000000001111111111111111111111111111111111111111', '11111111111111111111111111111111111111110000000000000000000000000000000000000000000000001111111111111111111111111111111111111111', '11111111111111111111111111111111111111100001000000000000000000000000000000000000000000001111111111111111111111111111111111111111', '11111111111111111111111111111111111111001101110000000000000000000000000000000000000000000011111111111111111111111111111111111111', '11111111111111111111111111111111111111111111110001000000000000000000000000000000000000000011111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111110000000000000000000000000000000000000011111111111111111111111111111111111111', '11111111110111111111111111111111111111111111111111101000000000000000000000000000000000000011111111111111111111111111111111111111', '11111111100001111111111111111111111111111111111111111000000000000000000000000000000000000011111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111100000000000000000000000000000000111111111111111111111111111111111111111', ]
[ "bili33@87ouo.top" ]
bili33@87ouo.top
568bb4d357653572b46fb50c13970053985c3718
4f409291f40ed615300710260a1a014f29b9dbbb
/env_health_dashboard/server_locations.py
9474d1cb9f3679296680a94e7e25cf4601e213d2
[]
no_license
wenxian/env-health-dashboard
34ac7f12ed7c996fa9a7a3ef41df18c9e7138572
04d5e36aceb4be5750aeba8b692e0ec271476fed
refs/heads/master
2021-01-23T13:17:29.760500
2014-05-21T18:18:47
2014-05-21T18:18:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
455
py
SFLY_JIRA = "https://bugs.tinyprints.com" SFLY_CHINA_JENKINS = "http://china.stage.shutterfly.com:2010/" SFLY_TRE_JENKINS = "http://tre-jenkins.internal.shutterfly.com:8080/" ALEXANDRIA_SERVER = "http://test-results.internal.shutterfly.com" def get_server(job_repository): if job_repository == "tre-jenkins": path_server = SFLY_TRE_JENKINS if job_repository == "china": path_server = SFLY_CHINA_JENKINS return path_server
[ "wyang@shutterfly.com" ]
wyang@shutterfly.com