blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
748c60e91fc5cc74b95f5054423b643030571a96
bd2dec1356593b427b46311e88cad58702ccc2e4
/main.py
2eca735650e5713712848256d57e85eb0a8a2817
[]
no_license
rxw/csgo_matches
7b3af8a09717e44a1a0f7ee9c2fe5790407489c4
8c0bc21a2d1a53dc5723cc76526ecd4a6d8b3bf5
refs/heads/master
2022-06-15T18:16:38.025499
2020-05-04T22:41:47
2020-05-04T22:41:47
260,381,161
0
0
null
null
null
null
UTF-8
Python
false
false
327
py
#!bin/python import json import requests if __name__ == '__main__': with open('creds.json', 'r') as f: json_creds = f.read() creds = json.loads(json_creds) api_url = 'https://api.pandascore.co' stats_url = '/csgo/matches' r = requests.get(api_url + stats_url, params=creds) print(r.text)
[ "tato@uribe.com.mx" ]
tato@uribe.com.mx
11c395ef17817d7f1fad83e8372a60bc573b9489
c1f6a9f37dc2852c7fcc5d996b242172b176775b
/plugins/general.py
91fc4559af33c14573bd69fc13790b627139f79a
[]
no_license
rasperepodvipodvert/vk_page_cover
b883e03b8157237b80fe9551e58cb49f643a20ae
c7d7970f4c2adbcb99e5b2330cf896e150819d44
refs/heads/master
2020-03-29T18:37:35.659098
2018-09-27T10:48:26
2018-09-27T10:48:26
150,223,809
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
def get_btc_cost(coin): url = 'https://api.cryptonator.com/api/ticker/%s-usd' % coin import urllib.request, json data=[] with urllib.request.urlopen(url) as url: data = json.loads(url.read().decode()) return data['ticker']['price']
[ "ivan@filatovz.ru" ]
ivan@filatovz.ru
e0b6078e03d52085af1e4c60300dba7c10eeb40a
db29394afc70f72840497f5796b210382ce83541
/tictacbot/tictactoe_bot.py
6906a772497cc74a7e9f8934c96f48c3af98019e
[]
no_license
AFakeman/tictacbot
bd8e5d25f9eddff0bc938c776d0f4ca219f9ff13
28f350d91596ff3a5e24d7a09c69192883f5682b
refs/heads/master
2021-01-17T07:30:44.388045
2017-03-11T22:53:32
2017-03-11T22:53:32
83,735,136
0
0
null
2017-03-11T20:15:08
2017-03-02T23:24:41
Python
UTF-8
Python
false
false
2,147
py
from .tictactoe_game import TicTacToe, inspect, xy opposite = TicTacToe.opposite def calculate_attr(lane, turn, field_size, at_price=2, def_price=3, reinforce_price=2): if lane["_"] == 0: return "atk", 0 if lane[opposite(turn)] == 0 and lane[turn] == 0: # We should attack! return "atk", at_price elif lane[opposite(turn)] != 0 and lane[turn] == 0: # We should protect! return "def", def_price ** lane[opposite(turn)] elif lane[opposite(turn)] == 0 and lane[turn] != 0: # We should reinforce! return "frc", reinforce_price ** lane[turn] else: return "atk", 0 class TicTacPlayer: @staticmethod def move(game): field_size = game.field_size turn = game.turn vert_counts = [inspect(game.field, (0, 1), (i, 0), field_size) for i in range(field_size)] hor_counts = [inspect(game.field, (1, 0), (0, i), field_size) for i in range(field_size)] diag1_count = inspect(game.field, (1, 1), (0, 0), field_size) diag2_count = inspect(game.field, (1, -1), (0, field_size - 1), field_size) vert_lanes = [calculate_attr(vert_counts[i], turn, field_size) for i in range(field_size)] hor_lanes = [calculate_attr(hor_counts[i], turn, field_size) for i in range(field_size)] diag1 = calculate_attr(diag1_count, turn, field_size) diag2 = calculate_attr(diag2_count, turn, field_size) scores = {} for x in range(field_size): for y in range(field_size): score = 0 if x == y: score += diag1[1] if x == field_size - 1 - y: score += diag2[1] score += vert_lanes[x][1] score += hor_lanes[y][1] scores[(x, y)] = score max_cell = (-1, -1) max_score = -1 for x in range(field_size): for y in range(field_size): if (max_score < scores[(x, y)]) and game.field[xy(field_size, x, y)] == '_': max_score = scores[(x, y)] max_cell = (x, y) game.move(*max_cell)
[ "anton_suslov@me.com" ]
anton_suslov@me.com
86289ab2c33ce91e7ef21b22dc256d3fb72b684d
49ac20f39a1b35b54ae47c7cfc47203165b37e4e
/deepblue/06.03_yolov5_model/yolo_rewrite/test.py
a4322c84a9f06760caaee1f48db726f0c56d3b74
[]
no_license
walkerwzy/walker_jupyter_lab
30dedb2199534c166f5a315e2ed6cc7b54c5d548
626624100f4c3b19828755a773e1579e41ae38c8
refs/heads/master
2023-08-11T18:36:08.041160
2021-09-30T07:54:37
2021-09-30T07:54:37
371,611,661
0
0
null
null
null
null
UTF-8
Python
false
false
7,080
py
import os import cv2 import json import argparse import data_provider import dataset import heads import maptool import models import nn_utils import sys_utils import torch import torch.nn as nn import numpy as np from torch.utils.data import DataLoader from tqdm import tqdm from sys_utils import _single_instance_logger as logger class Config: def __init__(self): self.base_directory = "workspace" self.batch_size = 32 self.name = "default" # 实验名称 def get_path(self, path): return f"{self.base_directory}/{self.name}/{path}" def __repr__(self): return json.dumps(self.__dict__, indent=4, ensure_ascii=False) def get_test_dataset(self): if self.dataset == "VOC": provider = data_provider.VOCProvider("/data-rbd/wish/four_lesson/dataset/voc2007/VOCdevkitTest/VOC2007") elif self.dataset == "COCO": provider = data_provider.COCOProvider("/data-rbd/wish/four_lesson/dataset/coco2017", "2017", "val") else: assert False, f"Unknow dataset {self.dataset}" return dataset.Dataset(False, config.image_size, provider, config.batch_size) def get_dataloader_with_dataset(self, dataset): batch_size = config.batch_size num_workers = min([os.cpu_count(), batch_size, 8]) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True, collate_fn=dataset.collate_fn) return dataloader def test(model, test_loader, head, epoch=0): model.eval() param = next(model.parameters()) device = param.device dtype = param.dtype batch_size = test_loader.batch_size with torch.no_grad(): groundtruth_annotations = {} detection_annotations = {} # test loader是使用centerAffine进行的 # normalize_annotations格式是[image_id, class_index, cx, cy, width, height] for batch_index, (images, normalize_annotations, visual) in enumerate(tqdm(test_loader, desc=f"Eval map {epoch:03d} epoch")): images = images.to(device, non_blocking=True).type(dtype) predicts = model(images) # 检测目标,得到的结果是[left, top, right, bottom, confidence, classes] objects = head.detect(predicts, confidence_threshold=0.001, nms_threshold=0.6) batch, channels, image_height, image_width = images.shape visual_image_id, visual_image, visual_annotations, restore_info = visual num_batch = images.shape[0] normalize_annotations = normalize_annotations.to(device) restore_info = normalize_annotations.new_tensor(restore_info) # pad_left, pad_top, origin_width, origin_height, scale pixel_annotations = nn_utils.convert_to_pixel_annotation(normalize_annotations[:, [2, 3, 4, 5, 0, 1]], image_width, image_height) for i in range(num_batch): index = torch.where(pixel_annotations[:, 4] == i)[0] if len(index) == 0: continue padx, pady, origin_width, origin_height, scale = restore_info[i] pixel_annotations[index, :4] = (pixel_annotations[index, :4] - restore_info[i, [0, 1, 0, 1]]) / scale for left, top, right, bottom, image_id, class_id in pixel_annotations.cpu().numpy(): image_id = int(image_id) + batch_index * batch_size class_id = int(class_id) if image_id not in groundtruth_annotations: groundtruth_annotations[image_id] = [] groundtruth_annotations[image_id].append([left, top, right, bottom, 0, class_id]) for image_index, image_objs in enumerate(objects): image_objs[:, 0].clamp_(0, image_width) image_objs[:, 1].clamp_(0, image_height) image_objs[:, 2].clamp_(0, image_width) image_objs[:, 3].clamp_(0, image_height) padx, pady, origin_width, origin_height, scale = restore_info[image_index] image_objs[:, :4] = (image_objs[:, :4] - restore_info[image_index, [0, 1, 0, 1]]) / scale image_id = image_index + batch_index * batch_size detection_annotations[image_id] = image_objs.cpu().numpy() # merge groundtruth_annotations for image_id in groundtruth_annotations: groundtruth_annotations[image_id] = np.array(groundtruth_annotations[image_id], dtype=np.float32) map_result = maptool.MAPTool(groundtruth_annotations, detection_annotations, test_loader.dataset.provider.label_map) map05, map075, map05095 = map_result.map model_score = map05 * 0.1 + map05095 * 0.9 logger.info(f"Eval {epoch:03d} epoch, mAP@.5 [{map05:.6f}], mAP@.75 [{map075:.6f}], mAP@.5:.95 [{map05095:.6f}], Time: {map_result.compute_time:.2f} second") return model_score if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--name", type=str, help="实验名称", default="debug") parser.add_argument("--batch_size", type=int, help="批大小", default=32) parser.add_argument("--network", type=str, help="网络的配置文件", default="models/yolov5m.yaml") parser.add_argument("--weight", type=str, help="权重", default="/datav/wish/yolov5-2.0/cocom.pt") parser.add_argument("--dataset", type=str, help="数据集", default="COCO") parser.add_argument("--size", type=int, help="尺寸", default=640) parser.add_argument("--device", type=int, help="GPU号", default=1) args = parser.parse_args() config = Config() config.name = args.name config.device = f"cuda:{args.device}" torch.cuda.set_device(config.device) config.image_size = args.size config.weight = args.weight config.network = args.network config.dataset = args.dataset config.batch_size = args.batch_size sys_utils.setup_single_instance_logger(config.get_path("logs/log.log")) logger.info(f"Startup, config: \n{config}") checkpoint = torch.load(config.weight, map_location="cpu") from_yolo_raw_checkpoint = "model.24.anchors" in checkpoint dataset = config.get_test_dataset() num_classes = dataset.provider.num_classes model = models.Yolo(num_classes, config.network) model.eval() model.to(config.device) if from_yolo_raw_checkpoint: logger.info("Use yolo raw checkpoint") checkpoint['anchors'] = checkpoint['model.24.anchors'] del checkpoint['model.24.anchors'] del checkpoint['model.24.anchor_grid'] head = heads.YoloHead(num_classes, model.anchors, model.strides) model.fuse() model.load_state_dict(checkpoint) else: model.load_state_dict(checkpoint) head = heads.YoloHead(num_classes, model.anchors, model.strides) model.fuse() model.half() dataloader = config.get_dataloader_with_dataset(dataset) test(model, dataloader, head)
[ "walker.wzy@gmail.com" ]
walker.wzy@gmail.com
159d50b91a1bdd3c41155ba8242ed42980a94bda
783382412a7cb93685d50069b041acbc06519ef3
/utils/average.py
0bec757eaa23685174dc5e5408db4a90a682485a
[]
no_license
scy99ycs/customAnime
8a49e828a92b7f0b23f4b8bd03d61aa4e7324e79
37a2232229f6b620a1f8ea41efebab046fcc0057
refs/heads/master
2021-10-28T15:02:06.963470
2019-04-24T07:04:40
2019-04-24T07:04:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
802
py
""" Average Tracker for training """ class AverageTracker: """ Average Tracker implementation for loss """ def __init__(self, name): self._name = name self.value = 0 self.n = 0 pass def __call__(self): return self.get_value() def __len__(self): return self.n @property def name(self): return self._name @name.setter def name(self, value): raise AttributeError('Cannot modify name of average tracker') def update(self, value, n=1): self.value = ((self.value * self.n) + (value * n)) / (self.n + n) self.n += n def get_value(self): return self.value def initialize(self): self.value = 0 self.n = 0
[ "noreply@github.com" ]
scy99ycs.noreply@github.com
69cd294a1199dd3224de74f4c1484c5f7a3cc684
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-6194.py
dff1f4eda2df9e68e045ed549fd8b7621d226b5d
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,757
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: $Type, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
d233c9f5599649fd4c199b8ab075c4f34ddd9e85
466574c2399c11c6c0aa11fda8bd5a9c80c05582
/earthbeat.py
68550468bbab46ce951be6c0646820708c0a1dda
[]
no_license
aborilov/Earthbeat
167fdd76825508416514a9df9b35e521ddbb1d59
d63a202a7f27972047929782854ce550f1e5dfa9
refs/heads/master
2021-01-01T20:35:28.158758
2013-11-15T13:25:40
2013-11-15T13:25:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,473
py
import os import urllib import datetime import logging logging.getLogger().setLevel(logging.DEBUG) from google.appengine.api import users from google.appengine.ext import db import jinja2 import webapp2 import counter JINJA_ENVIRONMENT = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname(__file__)), extensions=['jinja2.ext.autoescape'], autoescape=True) openIdProviders = ( 'Gmail.com', # shorter alternative: "Gmail.com" 'Yahoo.com', 'MySpace.com', 'AOL.com', 'MyOpenID.com', # add more here ) class Mood(db.Model): mood = db.BooleanProperty(indexed=True) name = db.StringProperty(required=True) date = db.DateTimeProperty() class User(db.Model): mood = db.BooleanProperty(indexed=True) name = db.StringProperty(required=True) date = db.DateTimeProperty() class MainPage(webapp2.RequestHandler): def post(self): user = users.get_current_user() if user: user_id = user.user_id() mood = self.request.get("mood") if mood: if mood == "smile": change_mood(user_id, True) else: change_mood(user_id, False) self.redirect('/') def get(self): user = users.get_current_user() if user: template_values = { 'user': user.nickname(), } mood = user_mood(user.user_id()) if mood is None: template_values['mood'] = "" else: if mood: template_values['mood'] = "happy" else: template_values['mood'] = "sad" template_values['smile_count'] = counter.get_count("smile_count") template_values['cry_count'] = counter.get_count("cry_count") template = JINJA_ENVIRONMENT.get_template('index.html') self.response.write(template.render(template_values)) else: self.response.out.write('Hello world! Sign in at: ') for p in openIdProviders: p_name = p.split('.')[0] # take "AOL" from "AOL.com" p_url = p.lower() # "AOL.com" -> "aol.com" self.response.out.write('[<a href="%s">%s</a>]' % ( users.create_login_url(federated_identity=p_url), p_name)) def user_mood(user_id): q = db.Query(User).filter( "name", user_id).fetch(limit=1) if q and q[0].date.date() == datetime.datetime.now().date(): return q[0].mood return None def increment(mood): if mood: counter.increment("smile_count") else: counter.increment("cry_count") def change_mood(user_id, mood): q = db.Query(User).filter( "name", user_id).fetch(limit=1) now = datetime.datetime.now() if q: user = q[0] if 1: # user.mood != mood and user.date.date() != now.date(): user.mood = mood user.date = now user.put() poll(user_id, mood) increment(mood) else: u = User(mood=mood, name=user_id, date=now) u.put() poll(user_id, mood) increment(mood) def poll(user_id, mood): m = Mood(mood=mood, name=user_id, date=datetime.datetime.now()) m.put() application = webapp2.WSGIApplication([ ('/', MainPage), ], debug=True)
[ "aborilov@gmail.com" ]
aborilov@gmail.com
f7210d705131460adae2a46d876fa95f9dae8a85
434da792d4c3ebf1089cb17044c1715731c5e1e5
/Base/BaseYaml.py
afa04397f842a9386838168abc980b29eb7bbbe4
[]
no_license
testervic/AutoApp
d21bbb744ed542a1b8d1c9908ccce9be1bb935a9
1cdb5df3c268717beb9b746c5b0646606bfa6001
refs/heads/master
2020-09-29T18:11:08.646327
2019-12-23T08:55:55
2019-12-23T08:55:55
227,090,893
1
0
null
null
null
null
UTF-8
Python
false
false
2,160
py
# -*- coding:utf-8 -*- import yaml from yaml.scanner import ScannerError import os def getYam(path): try: with open(path, encoding='utf-8') as f: x = yaml.load(f, Loader=yaml.FullLoader) return [True, x] except FileNotFoundError: print("==用例文件不存在==") app = {'check': [{'element_info': '', 'operate_type': 'get_value', 'find_type': 'ids', 'info': '用例文件不存在'}], 'testinfo': [{'title': '', 'id': '', 'info': '', "msg": ""}], 'testcase': [{'element_info': '', 'info': '', 'operate_type': '', 'find_type': ''}, {'element_info': '', 'msg': "", 'operate_type': '', 'find_type': '', 'info': ''}, {'element_info': '', 'msg': '', 'operate_type': '', 'find_type': '', 'info': ''}, {'element_info': '', 'info': '', 'operate_type': '', 'find_type': ''}]} return [False, app] except yaml.scanner.ScannerError: app = {'check': [{'element_info': '', 'operate_type': 'get_value', 'find_type': 'ids', 'info': '用例文件格式错误'}], 'testinfo': [{'title': '', 'id': '', 'info': '', "msg": " "}], 'testcase': [{'element_info': '', 'info': '', 'operate_type': '', 'find_type': ''}, {'element_info': '', 'msg': "", 'operate_type': '', 'find_type': '', 'info': ''}, {'element_info': '', 'msg': '', 'operate_type': '', 'find_type': '', 'info': ''}, {'element_info': '', 'info': '', 'operate_type': '', 'find_type': ''}]} print("==用例格式错误==") return [False, app] if __name__ == '__main__': import os PATH = lambda p: os.path.abspath( os.path.join(os.path.dirname(__file__), p) ) t = getYam(PATH("../yaml/test.yaml")) print(t) # port = str(random.randint(4700, 4900)) # bpport = str(random.randint(4700, 4900)) # devices = "DU2TAN15AJ049163" # # cmd1 = "appium --session-override -p %s -bp %s -U %s" % (port, bpport, devices) # print(cmd1) # os.popen(cmd1)
[ "469858846@qq.com" ]
469858846@qq.com
8b4b265605947d75c547d6ce871b082b102f0527
1cb689e6fe6171b671f8ee89bda376026ad149d8
/Heisenberg/xy_loss.py
ba6f0b387725eb94c72ed2b7f6355c1927785d39
[]
no_license
BlazStojanovic/QptimalSampling
be66ad28cdee20057cdbc8e5b6468f9fb086b059
6bc98d0bf30dcbdfbb7cca84a9beb35e72fc7143
refs/heads/main
2023-07-17T09:34:22.140162
2021-08-20T10:04:35
2021-08-20T10:04:35
355,513,391
0
0
null
null
null
null
UTF-8
Python
false
false
11
py
xxz_loss.py
[ "csc2006@csc20-laptop-06" ]
csc2006@csc20-laptop-06
8b1cb5d2f1d0e67df487661a59631b7b206cf622
a2bf77957f205aebd49cdeac24278099d1fdaab6
/tasks.py
29f9927f8e6a3db3797efae499519ba52ad71a2e
[ "MIT" ]
permissive
gerardobort/luigi-slack
bf247ba079945ed5323445199f0768494201b00f
25672f529eb1b81e0989b15edbcde26b72f835d2
refs/heads/master
2021-01-20T20:02:53.493878
2016-07-21T20:38:52
2016-07-21T20:38:52
63,797,798
3
0
null
null
null
null
UTF-8
Python
false
false
620
py
from __future__ import print_function import json import luigi from luigi.format import UTF8 @luigi.Task.event_handler(luigi.Event.SUCCESS) def celebrate_success(task): """Will be called directly after a successful execution of `run` on any Task subclass (i.e. all luigi Tasks) """ print("YAY! :D") @luigi.Task.event_handler(luigi.Event.FAILURE) def mourn_failure(task, exception): """Will be called directly after a failed execution of `run` on any JobTask subclass """ print("OUGH! :(") from slack import * from chatterbot import * if __name__ == "__main__": luigi.run()
[ "gerardo.bort@rga.com" ]
gerardo.bort@rga.com
2841e95e5b631e7efb363c7224bbe1c0da796466
7133a0e900c2cd9b30f4f34aad80a2c1648d8cbc
/Activity4.py
14526be810d690a8a218c012832fbd3d70a4350c
[]
no_license
Deepika-Purushan/Python_Activities
671db6db37da3ebf5b5f4f1029882df54658eb5f
54745f505c0112ff8c6f4fa6ae9631a330cacd66
refs/heads/master
2022-12-27T13:32:14.469587
2020-10-03T15:27:32
2020-10-03T15:27:32
293,711,675
0
0
null
null
null
null
UTF-8
Python
false
false
1,754
py
""" Using Loops: Enhance the previously written Rock-Paper-Scissors code so that it asks the user if they want to play another round. If they say 'Yes', the game should begin again. If they say 'No', the game should exit. """ # Get the users names U1=input("Enter player1 Name: ") U2=input("Enter player2 Name: ") while True : # Get the users choices Player1_answer = input(U1 + ", do you want to choose rock, paper or scissors? ").lower() Player2_answer = input(U2 + ", do you want to choose rock, paper or scissors? ").lower() print(Player1_answer) print(Player2_answer) # Run the algorithm to see who win if Player1_answer == Player2_answer: print("It's a tie!") elif Player1_answer == 'rock': if Player2_answer == 'scissors': print("Rock wins!") else: print("Paper wins!") elif Player1_answer == 'scissors': if Player2_answer == 'paper': print("Scissors win!") else: print("Rock wins!") elif Player1_answer == 'paper': if Player2_answer == 'rock': print("Paper wins!") else: print("Scissors win!") else: print("Invalid input! You have not entered rock, paper or scissors, try again.") # Get the users choices Play_again1 = input(U1 + ", do you want to play again ").lower() Play_again2 = input(U2 + ", do you want to play again ").lower() if (Play_again1 == 'yes' and Play_again2 == 'yes'): pass elif (Play_again1 == 'no' and Play_again2 == 'no'): raise SystemExit else: print("Invalid Input. Exiting the flow") raise SystemExit
[ "noreply@github.com" ]
Deepika-Purushan.noreply@github.com
a66564dda6b8d9dbd83ae9ed5fad79389511b718
0c25b0d44a9f9f669d16adee7ff879cf1245a700
/config.py
d848b34673cc10b823407d9d2196c632fae5d714
[ "MIT" ]
permissive
collector-m/best_voxelnet_ever
720c2ee7a3ee68d0b0bbe2d9f5efa76cfa784347
c175dfb777f9b37d4f4c331df737cc208946acde
refs/heads/master
2022-01-26T04:20:29.252955
2019-07-09T11:53:09
2019-07-09T11:53:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,685
py
#!/usr/bin/env python # -*- coding:UTF-8 -*- """VoxelNet config system. """ import os import os.path as osp import numpy as np from time import strftime, localtime from easydict import EasyDict as edict import math __C = edict() # Consumers can get config by: # import config as cfg cfg = __C # for dataset dir __C.DATA_DIR = osp.abspath(osp.join(os.sep, 'data', 'object')) # for gpu allocation __C.GPU_AVAILABLE = '0' __C.GPU_USE_COUNT = len(__C.GPU_AVAILABLE.split(',')) __C.GPU_MEMORY_FRACTION = 1 # selected object __C.DETECT_OBJ = 'Car' # Pedestrian/Cyclist if __C.DETECT_OBJ == 'Car': __C.Y_MIN = -40 __C.Y_MAX = 40 __C.X_MIN = 0 __C.X_MAX = 70.4 __C.VOXEL_X_SIZE = 0.2 __C.VOXEL_Y_SIZE = 0.2 __C.VOXEL_POINT_COUNT = 35 __C.INPUT_WIDTH = int((__C.X_MAX - __C.X_MIN) / __C.VOXEL_X_SIZE) __C.INPUT_HEIGHT = int((__C.Y_MAX - __C.Y_MIN) / __C.VOXEL_Y_SIZE) __C.FEATURE_RATIO = 2 __C.FEATURE_WIDTH = int(__C.INPUT_WIDTH / __C.FEATURE_RATIO) __C.FEATURE_HEIGHT = int(__C.INPUT_HEIGHT / __C.FEATURE_RATIO) else: __C.Y_MIN = -20 __C.Y_MAX = 20 __C.X_MIN = 0 __C.X_MAX = 48 __C.VOXEL_X_SIZE = 0.2 __C.VOXEL_Y_SIZE = 0.2 __C.VOXEL_POINT_COUNT = 45 __C.INPUT_WIDTH = int((__C.X_MAX - __C.X_MIN) / __C.VOXEL_X_SIZE) __C.INPUT_HEIGHT = int((__C.Y_MAX - __C.Y_MIN) / __C.VOXEL_Y_SIZE) __C.FEATURE_RATIO = 2 __C.FEATURE_WIDTH = int(__C.INPUT_WIDTH / __C.FEATURE_RATIO) __C.FEATURE_HEIGHT = int(__C.INPUT_HEIGHT / __C.FEATURE_RATIO) # set the log image scale factor __C.BV_LOG_FACTOR = 4 # for data set type __C.DATA_SETS_TYPE = 'kitti' # Root directory of project __C.CHECKPOINT_DIR = osp.join('checkpoint') __C.LOG_DIR = osp.join('log') # for data preprocess # sensors __C.VELODYNE_ANGULAR_RESOLUTION = 0.08 / 180 * math.pi __C.VELODYNE_VERTICAL_RESOLUTION = 0.4 / 180 * math.pi __C.VELODYNE_HEIGHT = 1.73 # rgb if __C.DATA_SETS_TYPE == 'kitti': __C.IMAGE_WIDTH = 1242 __C.IMAGE_HEIGHT = 375 __C.IMAGE_CHANNEL = 3 # top if __C.DATA_SETS_TYPE == 'kitti': __C.TOP_Y_MIN = -30 __C.TOP_Y_MAX = +30 __C.TOP_X_MIN = 0 __C.TOP_X_MAX = 80 __C.TOP_Z_MIN = -4.2 __C.TOP_Z_MAX = 0.8 __C.TOP_X_DIVISION = 0.1 __C.TOP_Y_DIVISION = 0.1 __C.TOP_Z_DIVISION = 0.2 __C.TOP_WIDTH = (__C.TOP_X_MAX - __C.TOP_X_MIN) // __C.TOP_X_DIVISION __C.TOP_HEIGHT = (__C.TOP_Y_MAX - __C.TOP_Y_MIN) // __C.TOP_Y_DIVISION __C.TOP_CHANNEL = (__C.TOP_Z_MAX - __C.TOP_Z_MIN) // __C.TOP_Z_DIVISION # for 2d proposal to 3d proposal __C.PROPOSAL3D_Z_MIN = -2.3 # -2.52 __C.PROPOSAL3D_Z_MAX = 1.5 # -1.02 # for RPN basenet choose __C.USE_VGG_AS_RPN = 0 __C.USE_RESNET_AS_RPN = 0 __C.USE_RESNEXT_AS_RPN = 0 # for camera and lidar coordination convert if __C.DATA_SETS_TYPE == 'kitti': # cal mean from train set __C.MATRIX_P2 = ([[719.787081, 0., 608.463003, 44.9538775], [0., 719.787081, 174.545111, 0.1066855], [0., 0., 1., 3.0106472e-03], [0., 0., 0., 0]]) # cal mean from train set __C.MATRIX_T_VELO_2_CAM = ([ [7.49916597e-03, -9.99971248e-01, -8.65110297e-04, -6.71807577e-03], [1.18652889e-02, 9.54520517e-04, -9.99910318e-01, -7.33152811e-02], [9.99882833e-01, 7.49141178e-03, 1.18719929e-02, -2.78557062e-01], [0, 0, 0, 1] ]) # cal mean from train set __C.MATRIX_R_RECT_0 = ([ [0.99992475, 0.00975976, -0.00734152, 0], [-0.0097913, 0.99994262, -0.00430371, 0], [0.00729911, 0.0043753, 0.99996319, 0], [0, 0, 0, 1] ]) # Faster-RCNN/SSD Hyper params if __C.DETECT_OBJ == 'Car': # car anchor __C.ANCHOR_L = 3.9 __C.ANCHOR_W = 1.6 __C.ANCHOR_H = 1.56 __C.ANCHOR_Z = -1.0 - cfg.ANCHOR_H/2 __C.RPN_POS_IOU = 0.6 __C.RPN_NEG_IOU = 0.45 elif __C.DETECT_OBJ == 'Pedestrian': # pedestrian anchor __C.ANCHOR_L = 0.8 __C.ANCHOR_W = 0.6 __C.ANCHOR_H = 1.73 __C.ANCHOR_Z = -0.6 - cfg.ANCHOR_H/2 __C.RPN_POS_IOU = 0.5 __C.RPN_NEG_IOU = 0.35 if __C.DETECT_OBJ == 'Cyclist': # cyclist anchor __C.ANCHOR_L = 1.76 __C.ANCHOR_W = 0.6 __C.ANCHOR_H = 1.73 __C.ANCHOR_Z = -0.6 - cfg.ANCHOR_H/2 __C.RPN_POS_IOU = 0.5 __C.RPN_NEG_IOU = 0.35 # for rpn nms __C.RPN_NMS_POST_TOPK = 20 __C.RPN_NMS_THRESH = 0.1 __C.RPN_SCORE_THRESH = 0.96 # utils __C.CORNER2CENTER_AVG = True # average version or max version if __name__ == '__main__': print('__C.ROOT_DIR = ' + __C.ROOT_DIR) print('__C.DATA_SETS_DIR = ' + __C.DATA_SETS_DIR)
[ "fschaeffler@gmx.de" ]
fschaeffler@gmx.de
209038d26392ee257736b0dc27c13919c17ac550
0ae2bb21d7ca71a691e33cb044a0964d380adda2
/Linkedin/LC139WrodBreak.py
b450b2041308a27de08b2a8551aa987cc89370d2
[]
no_license
xwang322/Coding-Interview
5d27ec92d6fcbb7b929dd98bb07c968c1e1b2a04
ee5beb79038675ce73c6d147ba9249d9a5ca346a
refs/heads/master
2020-03-10T08:18:34.980557
2018-06-24T03:37:12
2018-06-24T03:37:12
129,282,263
2
6
null
2018-04-19T19:31:24
2018-04-12T16:41:28
Python
UTF-8
Python
false
false
307
py
class Solution(object): def wordBreak(self, s, wordDict): dp = [False for i in range(len(s)+1)] dp[0] = True for i in range(1, len(dp)): for j in range(i): if s[j:i] in wordDict and dp[j]: dp[i] = True return dp[-1]
[ "noreply@github.com" ]
xwang322.noreply@github.com
d05de92fbd33752bb64b60d6d4d79c1047be5ebe
acd6dd3a0eb2bfb2e8db59d4d2d2fde49b908138
/depth-stream/ex5_rgbd_overlayed.py
4a6e8f4a0ac05ed789a69bbea3a9ffa7d2e0e906
[ "MIT" ]
permissive
jaykim9898/Pothole-Crack-Detection_MRCNN
65aab6b42c5a8913ab46b1b07e69008613d5af83
f25b4a6c55119d746f4a9bb1c3c14314b8be5501
refs/heads/master
2023-03-19T18:59:30.336108
2018-12-11T03:40:09
2018-12-11T03:40:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,231
py
#!/usr/bin/env python ''' Created on 19Jun2015 Stream rgb and depth video side-by-side using openni2 opencv-python (cv2). RGB is overlayed on top on readable-depth. In addition, streams are aligned, mirror-corrected, and synchronized. Requires the following libraries: 1. OpenNI-Linux-<Platform>-2.2 <Library and driver> 2. primesense-2.2.0.30 <python bindings> 3. Python 2.7+ 4. OpenCV 2.4.X Current features: 1. Convert primensense oni -> numpy 2. Stream and display rgb || depth || rgbd overlayed 3. Keyboard commands press esc to exit press s to save current screen and distancemap 4. Sync and registered depth & rgb streams 5. Print distance to center pixel 6. Masks and overlays rgb stream on the depth stream NOTE: 1. On device streams: IR and RGB streams do not work together Depth & IR = OK Depth & RGB = OK RGB & IR = NOT OK @author: Carlos Torres <carlitos408@gmail.com> ''' import numpy as np import cv2 from primesense import openni2 # , nite2 from primesense import _openni2 as c_api ## Path of the OpenNI redistribution OpenNI2.so or OpenNI2.dll # Windows # dist = 'C:\Program Files\OpenNI2\Redist\OpenNI2.dll' # OMAP # dist = '/home/carlos/Install/kinect/OpenNI2-Linux-ARM-2.2/Redist/' # Linux dist = '/home/carlos/Install/openni2/OpenNI-Linux-x64-2.2/Redist' ## initialize openni and check openni2.initialize( dist) # 'C:\Program Files\OpenNI2\Redist\OpenNI2.dll') # accepts the path of the OpenNI redistribution if (openni2.is_initialized()): print "openNI2 initialized" else: print "openNI2 not initialized" ## Register the device dev = openni2.Device.open_any() ## create the streams stream rgb_stream = dev.create_color_stream() depth_stream = dev.create_depth_stream() ##configure the depth_stream # print 'Get b4 video mode', depth_stream.get_video_mode() depth_stream.set_video_mode( c_api.OniVideoMode(pixelFormat=c_api.OniPixelFormat.ONI_PIXEL_FORMAT_DEPTH_1_MM, resolutionX=320, resolutionY=240, fps=30)) ## Check and configure the mirroring -- default is True # print 'Mirroring info1', depth_stream.get_mirroring_enabled() depth_stream.set_mirroring_enabled(False) rgb_stream.set_mirroring_enabled(False) ## start the stream rgb_stream.start() depth_stream.start() ## synchronize the streams dev.set_depth_color_sync_enabled(True) # synchronize the streams ## IMPORTANT: ALIGN DEPTH2RGB (depth wrapped to match rgb stream) dev.set_image_registration_mode(openni2.IMAGE_REGISTRATION_DEPTH_TO_COLOR) ##help(dev.set_image_registration_mode) def get_rgb(): """ Returns numpy 3L ndarray to represent the rgb image. """ bgr = np.fromstring(rgb_stream.read_frame().get_buffer_as_uint8(), dtype=np.uint8).reshape(240, 320, 3) rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) return rgb # get_rgb def get_depth(): """ Returns numpy ndarrays representing the raw and ranged depth images. Outputs: dmap:= distancemap in mm, 1L ndarray, dtype=uint16, min=0, max=2**12-1 d4d := depth for dislay, 3L ndarray, dtype=uint8, min=0, max=255 Note1: fromstring is faster than asarray or frombuffer Note2: .reshape(120,160) #smaller image for faster response OMAP/ARM default video configuration .reshape(240,320) # Used to MATCH RGB Image (OMAP/ARM) Requires .set_video_mode """ dmap = np.fromstring(depth_stream.read_frame().get_buffer_as_uint16(), dtype=np.uint16).reshape(240, 320) # Works & It's FAST d4d = np.uint8(dmap.astype(float) * 255 / 2 ** 12 - 1) # Correct the range. Depth images are 12bits d4d = 255 - cv2.cvtColor(d4d, cv2.COLOR_GRAY2RGB) return dmap, d4d # get_depth def mask_rgbd(d4d, rgb, th=0): """ Overlays images and uses some blur to slightly smooth the mask (3L ndarray, 3L ndarray) -> 3L ndarray th:= threshold """ mask = d4d.copy() # mask = cv2.GaussianBlur(mask, (5,5),0) idx = (mask > th) mask[idx] = rgb[idx] return mask # mask_rgbd ## main loop s = 0 done = False while not done: key = cv2.waitKey(1) & 255 ## Read keystrokes if key == 27: # terminate print "\tESC key detected!" done = True elif chr(key) == 's': # screen capture print "\ts key detected. Saving image and distance map {}".format(s) cv2.imwrite("ex5_" + str(s) + '.png', canvas) np.savetxt("ex5dmap_" + str(s) + '.out', dmap) # s+=1 # uncomment for multiple captures # if ## Streams # RGB rgb = get_rgb() # DEPTH dmap, d4d = get_depth() # Overlay rgb over the depth stream rgbd = mask_rgbd(d4d, rgb) # canvas canvas = np.hstack((d4d, rgb, rgbd)) ## Distance map print 'Center pixel is {} mm away'.format(dmap[119, 159]) ## Display the stream cv2.imshow('depth || rgb || rgbd', canvas) # end while ## Release resources cv2.destroyAllWindows() rgb_stream.stop() depth_stream.stop() openni2.unload() print("Terminated")
[ "jerofad1992@gmail.com" ]
jerofad1992@gmail.com
8152a7e29b7c4824b0d7872ace8893b23c1601e3
7334bd8a1d64662b13222916f4f9fa7565ac29c2
/uliweb/contrib/objcache/__init__.py
be115be84dbb5796acd07603f6416025152862a8
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
nl0x7c2/uliweb
9a1a021a80dc9b9b922df9f0ffb019a01ff6da7d
1e48e216bce2b105d2fb5776cc3162c83df04fa8
refs/heads/master
2020-12-26T00:53:11.692556
2014-01-15T00:52:13
2014-01-15T00:52:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,623
py
from uliweb import functions from uliweb.utils.common import log, flat_list def get_fields(tablename): from uliweb import settings tables = settings.get_var('OBJCACHE_TABLES') if not tablename in tables: return return tables[tablename] def get_id(engine, tablename, id): return "objcache:%s:%s:%d" % (engine, tablename, id) def get_redis(): try: redis = functions.get_redis() except Exception, e: log.exception(e) redis = None return redis def check_enable(): from uliweb import settings if settings.OBJCACHE.enable: return True def get_object(model, tablename, id): """ Get cached object from redis if id is None then return None: """ from uliweb.utils.common import log if not id: return if not check_enable(): return redis = get_redis() if not redis: return _id = get_id(model.get_engine_name(), tablename, id) try: if redis.exists(_id): v = redis.hgetall(_id) o = model.load(v) log.debug("objcache:get:id="+_id) return o except Exception, e: log.exception(e) def set_object(model, tablename, instance, fields=None): """ Only support simple condition, for example: Model.c.id == n """ from uliweb import settings from uliweb.utils.common import log if not check_enable(): return if not fields: fields = get_fields(tablename) if fields: redis = get_redis() if not redis: return v = instance.dump(fields) _id = get_id(model.get_engine_name(), tablename, instance.id) try: pipe = redis.pipeline() r = pipe.delete(_id).hmset(_id, v).expire(_id, settings.get_var('OBJCACHE/timeout')).execute() log.debug("objcache:set:id="+_id) except Exception, e: log.exception(e) else: log.debug("There is no fields defined or not configured, so it'll not saved in cache, [%s:%d]" % (tablename, instance.id)) def post_save(model, instance, created, data, old_data): from uliweb.utils.common import log from uliweb import response if not check_enable(): return tablename = model.tablename fields = get_fields(tablename) if fields: #if response is False, then it means you may in batch program #so it can't use post_commit machenism def f(): #check if the record has changed flag = created if not flag: flag = bool(filter(lambda x:x in data, fields)) if flag: set_object(model, tablename, instance) log.debug("objcache:post_save:id=%d" % instance.id) if response: response.post_commit = f else: f() def post_delete(model, instance): from uliweb.utils.common import log from uliweb import response if not check_enable(): return tablename = model.tablename if get_fields(tablename): def f(): _id = get_id(model.get_engine_name(), tablename, instance.id) redis = get_redis() if not redis: return try: redis.delete(_id) log.debug("objcache:post_delete:id="+_id) except Exception, e: log.exception(e) if response: response.post_commit = f else: f()
[ "limodou@gmail.com" ]
limodou@gmail.com
70c19f6c60566e5868ad044c2d17ad4a71f68c3b
7b0d9a419adb0c2317ddcd496924d577cea8e370
/accounts/views.py
1bb00dd8fc5b783dcb4ed53f80f01dfd1ab89462
[]
no_license
progmenEugene/Yowithpro
df186975b7a49208c5603b20a876e11cdc924d21
26b1fa8ed166feee699546b463dd4a38b3d39d81
refs/heads/master
2020-04-02T18:38:35.561621
2018-10-25T17:01:45
2018-10-25T17:01:45
154,707,662
0
0
null
null
null
null
UTF-8
Python
false
false
4,737
py
from django.shortcuts import render from django.shortcuts import render from django import forms # Create your views here. from django.contrib.auth.forms import PasswordResetForm from django.shortcuts import redirect from django.views.generic import CreateView from django.contrib import messages from .forms import RegistrationForm, TeacherProfileUpdateForm, UserUpdateForm from .models import User, TeacherProfile, VideoLink from django.views.generic import TemplateView, ListView, DetailView, CreateView, UpdateView, DeleteView from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.contrib.auth.decorators import login_required def home(request): return render(request, 'home.html') class SignUpView(TemplateView): template_name = 'registration/signup.html' class RegistrationView(CreateView): template_name = 'accounts/user_form.html' form_class = RegistrationForm success_url = 'accounts:register-done' model = User def form_valid(self, form): obj = form.save(commit=False) obj.set_password(User.objects.make_random_password()) obj.is_active = True # PasswordResetForm won't send to inactive users. obj.save() # This form only requires the "email" field, so will validate. reset_form = PasswordResetForm(self.request.POST) reset_form.is_valid() # Must trigger validation # Copied from django/contrib/auth/views.py : password_reset opts = { #'use_https': self.request.is_secure(), 'email_template_name': 'registration/verification.html', 'subject_template_name': 'registration/verification_subject.txt', 'request': self.request, # 'html_email_template_name': provide an HTML content template if you desire. } # This form sends the email on save() reset_form.save(**opts) return redirect('register-done') # profile view for teacher and maybe for buyer @login_required def profile(request): if request.method == 'POST': u_form = UserUpdateForm(request.POST, instance=request.user) p_form = TeacherProfileUpdateForm(request.POST, request.FILES, instance=request.user.profile) if u_form.is_valid() and p_form.is_valid(): u_form.save() p_form.save() TeacherProfile.objects.create(**{ 'name' : 'name', 'city': 'city', 'club': 'club', 'url_link': 'url.com', 'desctiption': 'desc' }) messages.success(request, 'Your account has been updated!') return redirect('profile') else: u_form = UserUpdateForm(instance=request.user) p_form = TeacherProfileUpdateForm(instance=request.user.profile) context = { 'u_form': u_form, 'p_form': p_form } return render(request, 'accounts/profile.html', context) #Videos links view def videolink(request): context = {'videos': VideoLink.objects.all()} return render(request, 'accounts/videolink.html') #Add video links for teacher profile class VideoLinksView(ListView): model = VideoLink template_name = 'accounts/videolink.html' #<app>/<model>_<viewstype> context_object_name = 'videos' ordering = ['-pub_date'] class VideoDetailView(DetailView): model = VideoLink template_name = 'accounts/videolink_detail.html' class DateInput(forms.DateInput): input_type = 'date' class VideoCreateView(LoginRequiredMixin, CreateView): model = VideoLink template_name = 'accounts/videolink_form.html' fields = ['title','title_image', 'link_url', 'pub_date', 'short_description'] def form_valid(self, form): form.instance.teacher = self.request.user return super().form_valid(form) class VideoUpdateView(LoginRequiredMixin, UserPassesTestMixin, UpdateView): model = VideoLink fields = ['title', 'title_image', 'link_url', 'pub_date', 'short_description'] template_name = 'accounts/videolink_form.html' def form_valid(self, form): form.instance.teacher = self.request.user return super().form_valid(form) def test_func(self): video = self.get_object() if self.request.user == video.teacher: return True return False class VideoDeleteView(LoginRequiredMixin, UserPassesTestMixin, DeleteView): model = VideoLink success_url = '/' template_name = 'accounts/videolink_confirm_delete.html' def test_func(self): video = self.get_object() if self.request.user == video.teacher: return True return False
[ "ecompx@gmail.com" ]
ecompx@gmail.com
0f8f7522464a74d1b19a0325fe6df93394c0064f
ad8939b540fd50ca47df2b6c70d9548646dea7ad
/elevatorController.py
4880381f07f02f3868e5a5e827ab22cda6bd326a
[]
no_license
MohitHasija/Elevator
30c27efdedd8001c71f31db8bad6b22398e2e9c9
a2158e40b4681faf53164915af0c37c98b392411
refs/heads/master
2021-03-28T04:43:57.404903
2020-03-16T23:52:47
2020-03-16T23:52:47
247,837,625
0
0
null
null
null
null
UTF-8
Python
false
false
2,798
py
from copy import copy class ElevatorController(object): def __init__(self, elevator): # An unordered set of floor numbers that have been requested self.requested_floors = set() # An ordered list of floors that have been visited self.visited_floors = [] # Number of floors traveled since the elevator was started self.num_floors_traveled = 0 # current number of floor self.current_floor = elevator.current_floor # total number of eccessible floors by elevator self.num_floors = elevator.num_floors # Registers a request to visit a specific floor def validate_floor_call(self, floor): # This condition excludes negative and out of range floor values. return floor >= 0 and floor <= self.num_floors def request_floor_from_inside(self, floor): # This condition excludes negative and out of range floor values. if self.validate_floor_call(floor) and floor != self.current_floor: self.requested_floors.add(floor) def request_floor(self,current_floor, floor): if current_floor != floor and self.validate_floor_call(floor): self.requested_floors.add(floor) if current_floor != self.current_floor: self.requested_floors.add(current_floor) # Computes number of floors passed when traveling from the current floor to # the given floor (including the given floor itself) def get_floor_difference(self, floor): return abs(self.current_floor - floor) # Travels to the given floor to pick up or drop off passengers def visit_floor(self, floor): self.num_floors_traveled += self.get_floor_difference(floor) self.current_floor = floor self.visited_floors.append(self.current_floor) # discard() will not raise an exception if floor does not exist self.requested_floors.discard(self.current_floor) # Starts elevator and travels computed route according to current requests def travel(self): # Visit next closest requested floor until all requested floors have # been visited print("The floors to visit are:", self.requested_floors) while len(self.requested_floors) != 0: closest_floor = min( self.requested_floors, key=self.get_floor_difference) floor_to_visit = closest_floor if floor_to_visit == self.current_floor: copy_of_requested_floors = copy(self.requested_floors) copy_of_requested_floors.discard(self.current_floor) floor_to_visit = min(copy_of_requested_floors, key=self.get_floor_difference) print("The floor to visit is:", floor_to_visit) self.visit_floor(floor_to_visit)
[ "noreply@github.com" ]
MohitHasija.noreply@github.com
5c8a45629c42a37606e1aca5b46aa155f01e6fe9
73788c28a6c9742f0e7b4ee99ac4a7f854f40611
/htdocs/plotting/auto/scripts100/p123.py
d4ec82a54a6e8952157960bce7110f06cf8fa756
[]
no_license
nbackas/iem
b8c7a356c68865a66b808962e1f09460b74df73f
d22e6d7b1b94db3bb081fb08619f83fb5b6784b7
refs/heads/master
2020-12-31T03:04:22.144156
2016-03-21T19:09:16
2016-03-21T19:09:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,071
py
import psycopg2 from pyiem.network import Table as NetworkTable from pandas.io.sql import read_sql import datetime import numpy as np def get_description(): """ Return a dict describing how to call this plotter """ d = dict() d['data'] = True d['report'] = True d['description'] = """ """ d['arguments'] = [ dict(type='station', name='station', default='IA2203', label='Select Station'), ] return d def wrap(cnt, s=None): if cnt > 0: return s or cnt else: return "" def contiguous_regions(condition): # http://stackoverflow.com/questions/4494404 """Finds contiguous True regions of the boolean array "condition". Returns a 2D array where the first column is the start index of the region and the second column is the end index.""" # Find the indicies of changes in "condition" # d = np.diff(condition) d = np.subtract(condition[1:], condition[:-1], dtype=np.float) idx, = d.nonzero() # We need to start things after the change in "condition". Therefore, # we'll shift the index by 1 to the right. idx += 1 if condition[0]: # If the start of condition is True prepend a 0 idx = np.r_[0, idx] if condition[-1]: # If the end of condition is True, append the length of the array idx = np.r_[idx, condition.size] # Edit # Reshape the result into two columns idx.shape = (-1, 2) return idx def plotter(fdict): """ Go """ import matplotlib matplotlib.use('agg') pgconn = psycopg2.connect(database='coop', host='iemdb', user='nobody') cursor = pgconn.cursor() station = fdict.get('station', 'IA0200') table = "alldata_%s" % (station[:2], ) nt = NetworkTable("%sCLIMATE" % (station[:2], )) res = """\ # IEM Climodat http://mesonet.agron.iastate.edu/climodat/ # Report Generated: %s # Climate Record: %s -> %s # Site Information: [%s] %s # Contact Information: Daryl Herzmann akrherz@iastate.edu 515.294.5978 # First occurance of record consecutive number of days # above or below a temperature threshold """ % (datetime.date.today().strftime("%d %b %Y"), nt.sts[station]['archive_begin'].date(), datetime.date.today(), station, nt.sts[station]['name']) res += "# %-27s %-27s %-27s %-27s\n" % (" Low Cooler Than", " Low Warmer Than", " High Cooler Than", " High Warmer Than") res += "%3s %5s %10s %10s %5s %10s %10s %5s %10s %10s %5s %10s %10s\n" % ( 'TMP', 'DAYS', 'BEGIN DATE', 'END DATE', 'DAYS', 'BEGIN DATE', 'END DATE', 'DAYS', 'BEGIN DATE', 'END DATE', 'DAYS', 'BEGIN DATE', 'END DATE') cursor.execute("""SELECT high, low from """+table+""" WHERE station = %s and day >= '1900-01-01' ORDER by day ASC """, (station, )) highs = np.zeros((cursor.rowcount,), 'f') lows = np.zeros((cursor.rowcount,), 'f') for i, row in enumerate(cursor): highs[i] = row[0] lows[i] = row[1] startyear = max([1900, nt.sts[station]['archive_begin'].year]) for thres in range(-20, 101, 2): condition = lows < thres max_bl = 0 max_bl_ts = datetime.date.today() for start, stop in contiguous_regions(condition): if (stop - start) > max_bl: max_bl = int(stop - start) max_bl_ts = datetime.date(startyear, 1, 1) + datetime.timedelta( days=int(stop)) condition = lows >= thres max_al = 0 max_al_ts = datetime.date.today() for start, stop in contiguous_regions(condition): if (stop - start) > max_al: max_al = int(stop - start) max_al_ts = datetime.date(startyear, 1, 1) + datetime.timedelta(days=int(stop)) condition = highs < thres max_bh = 0 max_bh_ts = datetime.date.today() for start, stop in contiguous_regions(condition): if (stop - start) > max_bh: max_bh = int(stop - start) max_bh_ts = datetime.date(startyear, 1, 1) + datetime.timedelta(days=int(stop)) condition = highs >= thres max_ah = 0 max_ah_ts = datetime.date.today() for start, stop in contiguous_regions(condition): if (stop - start) > max_ah: max_ah = int(stop - start) max_ah_ts = datetime.date(startyear, 1, 1) + datetime.timedelta( days=int(stop)) res += ("%3i %5s %10s %10s %5s %10s %10s " "%5s %10s %10s %5s %10s %10s\n" ) % (thres, wrap(max_bl), wrap(max_bl, (max_bl_ts - datetime.timedelta(days=max_bl)).strftime("%m/%d/%Y")), wrap(max_bl, max_bl_ts.strftime("%m/%d/%Y") ), wrap(max_al), wrap(max_al, (max_al_ts - datetime.timedelta(days=max_al)).strftime("%m/%d/%Y")), wrap(max_al, max_al_ts.strftime("%m/%d/%Y") ), wrap(max_bh), wrap(max_bh, (max_bh_ts - datetime.timedelta(days=max_bh)).strftime("%m/%d/%Y")), wrap(max_bh, max_bh_ts.strftime("%m/%d/%Y") ), wrap(max_ah), wrap(max_ah, (max_ah_ts - datetime.timedelta(days=max_ah)).strftime("%m/%d/%Y")), wrap(max_ah, max_ah_ts.strftime("%m/%d/%Y"))) return None, None, res if __name__ == '__main__': plotter(dict())
[ "akrherz@iastate.edu" ]
akrherz@iastate.edu
2d159e24ba80c94043bcb9a70bb40d4b96fdcecb
249f85611a80ae84dcab037072918f9822335e29
/venv/bin/pycodestyle
b4d483c96fdb2863f603194c4d145e09aa612b4e
[]
no_license
bharathjinka09/bharath-shop
06b110c740fbb27b7e759b30c0ca1971dfb8b7be
09683c1dbc2e9bc3b2795d2e53252e04b911069d
refs/heads/master
2022-12-02T03:01:03.347749
2020-08-18T06:59:17
2020-08-18T06:59:17
288,379,827
0
0
null
null
null
null
UTF-8
Python
false
false
253
#!/home/mieone/Downloads/bharath-shop/venv/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from pycodestyle import _main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(_main())
[ "bharathjinka09@gmail.com" ]
bharathjinka09@gmail.com
62b0191ac1f15c6d995aef12697f424b29a02230
33ce3289835670440bf1ae43ea11752c1fd50f1c
/examples/settings-sound-phone_ringtone.py
03d9bc99214bcfc2fa39eda97648244896370354
[ "Apache-2.0" ]
permissive
fknight3/AndroidViewClient
66a1476dd2c5981bc24f2e76fa77f0e2a619cc60
2bb7d970153ef5b3c97a11cd13695bce473b0053
refs/heads/master
2020-03-30T20:53:57.024955
2018-10-04T17:30:02
2018-10-04T17:30:02
151,608,962
0
0
Apache-2.0
2018-10-04T17:17:26
2018-10-04T17:17:26
null
UTF-8
Python
false
false
2,034
py
#! /usr/bin/env python ''' Copyright (C) 2012 Diego Torres Milano Created on Sep 8, 2012 @author: diego @see: http://code.google.com/p/android/issues/detail?id=36544 ''' import re import sys import os # This must be imported before MonkeyRunner and MonkeyDevice, # otherwise the import fails. # PyDev sets PYTHONPATH, use it try: for p in os.environ['PYTHONPATH'].split(':'): if not p in sys.path: sys.path.append(p) except: pass try: sys.path.append(os.path.join(os.environ['ANDROID_VIEW_CLIENT_HOME'], 'src')) except: pass from androidviewclient3.viewclient import ViewClient, View device, serialno = ViewClient.connectToDeviceOrExit() DEBUG = True FLAG_ACTIVITY_NEW_TASK = 0x10000000 # We are not using Settings as the bug describes because there's no WiFi dialog in emulator componentName = 'com.android.settings/.Settings' device.startActivity(component=componentName, flags=FLAG_ACTIVITY_NEW_TASK) ViewClient.sleep(3) vc = ViewClient(device=device, serialno=serialno) if DEBUG: vc.traverse(transform=ViewClient.TRAVERSE_CIT) sound = vc.findViewWithText('Sound') if sound: sound.touch() vc.dump() phoneRingtone = vc.findViewWithText('Phone ringtone') if phoneRingtone: phoneRingtone.touch() vc.dump() vespa = vc.findViewWithText('Vespa') if vespa: vespa.touch() ViewClient.sleep(1) ok = vc.findViewById('id/button1') if ok: ok.touch() vc.dump() vespa = vc.findViewWithText('Vespa') # If for some reason the dialog is still there we will have Vespa and OK ok = vc.findViewById('id/button1') if vespa and not ok: print("OK") else: print("FAIL to set ringtone Vespa") sys.exit(1) else: print("'OK' not found", file=sys.stderr) else: print("'Phone ringtone' not found", file=sys.stderr) else: print("'Sound' not found", file=sys.stderr)
[ "info@bojanpotocnik.com" ]
info@bojanpotocnik.com
428db1642996487e7b9b0f6c10ead23b07ea7d2f
64cd7a8be396ff3f9d4c1284d495ca5fc3bd30b8
/gae/handlers/registrations.py
d6d16dbd04916c304150edad22f156ecf3647bdc
[]
no_license
andrefreitas/learning
19aadb4842030e739c8daa9dc7fc1a77aa66649e
44bdca0b5c71b2813b6aa4c3cfcf3ff11a7cb5d1
refs/heads/master
2020-05-30T14:45:05.219696
2015-09-24T22:04:30
2015-09-24T22:04:30
34,902,089
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
import webapp2 from models import * from views import template class RegistrationsHandler(webapp2.RequestHandler): def post(self): name = self.request.get('name') email = self.request.get('email') course = self.request.get('course') r = Registration(name=name, email=email, course=course) r.put() self.response.write(template('confirmation.html')) def get(self): registrations = Registration.all() template_values = {"registrations": registrations} self.response.write(template('registrations.html', template_values))
[ "p.andrefreitas@gmail.com" ]
p.andrefreitas@gmail.com
b72f0285fc8fa50ebaee4beadd95c015d4f60e27
895d1a33771c7b2d8678d585ad3964173542a251
/combined_dataset/combined_dataset.py
891a6932875a3ddf626c320037d53489d11f2489
[]
no_license
StrangeCloud9/NameDis
f905dab2fc919c4eed44d4c1591bd6d17593c33b
ec50586f4d88c423ddbaf1c4f3bb7d2d94c30d4b
refs/heads/master
2021-01-23T08:49:06.184932
2017-09-06T08:47:58
2017-09-06T08:47:58
102,555,363
1
0
null
null
null
null
UTF-8
Python
false
false
6,606
py
# coding:utf-8 import os from lxml import html import re import pymysql as MySQLdb import random conn = MySQLdb.connect(host='202.120.36.29', port=6033, user='groupleader', passwd='onlyleaders', db='mag-new-160205', charset="utf8") cursor = conn.cursor() class Paper: def __init__(self, paper_id, title, year, venue_id, affiliation_id, coauthors, label, author): self.paper_id = paper_id self.title = title self.year = year self.venue_id = venue_id self.affiliation_id = affiliation_id self.coauthors = coauthors self.label = label self.label_predicted = 0 self.author = author def get_file_list(dir, file_list): newDir = dir if os.path.isfile(dir): file_list.append(dir.decode('gbk')) elif os.path.isdir(dir): for s in os.listdir(dir): # if s == "xxx": # continue newDir = os.path.join(dir, s) get_file_list(newDir, file_list) return file_list def generate_paper_instance_list(file): author_name = file.split('\\')[-1].replace('.xml', '') author_name = author_name.lower() author_name = re.sub('[^A-Za-z0-9]', ' ', author_name) author_name = re.sub('\s{2,}', ' ', author_name) tree = html.parse(file) root = tree.getroot() paper_instance_list = list() for node in root.xpath('//publication'): label = node.xpath('label')[0].text title = node.xpath('title')[0].text title = title.lower() if title[-1] == '.': title = title[:-1] title = re.sub('[^A-Za-z0-9]', ' ', title) title = re.sub('\s{2,}', ' ', title) quest_paper_by_title = 'SELECT PaperID FROM Papers WHERE NormalizedPaperTitle="%s"' cursor.execute(quest_paper_by_title % title) ps = cursor.fetchall() paper_ids = list() if len(ps) == 1: paper_ids.append(ps[0][0]) if len(ps) >= 2: for p in ps: quest_author_by_paper = 'SELECT AuthorName FROM Authors INNER JOIN' \ ' (SELECT AuthorID FROM PaperAuthorAffiliations AS PAA WHERE PaperID="%s") AS TB2' \ ' ON Authors.AuthorID = TB2.AuthorID' cursor.execute(quest_author_by_paper % p[0]) authors = cursor.fetchall() for author in authors: if author[0] == author_name.lower(): paper_ids.append(p[0]) for paper_id in paper_ids: # get affiliation and coauthors quest_affiliation = 'SELECT AuthorName,AffiliationID FROM Authors INNER JOIN' \ ' (SELECT AuthorID,AffiliationID FROM PaperAuthorAffiliations WHERE PaperID="%s") AS TB ' \ 'ON Authors.AuthorID = TB.AuthorID' cursor.execute(quest_affiliation % paper_id) author_affiliations = cursor.fetchall() himself = None for ai in range(len(author_affiliations)): if author_affiliations[ai][0] == author_name.lower(): himself = ai break if himself is None: tmp1 = author_name.split() for ai in range(len(author_affiliations)): tmp2 = author_affiliations[ai][0].split() if tmp1[-1] == tmp2[-1] and tmp1[0][0] == tmp2[0][0]: himself = ai break elif tmp1[-1] == tmp2[0] and tmp1[0][0] == tmp2[-1][0]: himself = ai break # get affiliation if himself is None: affiliation_id = author_affiliations[-1][1] else: affiliation_id = author_affiliations[himself][1] # get coauthors coauthors = set() for ai in range(len(author_affiliations)): if ai != himself: coauthor_name = author_affiliations[ai][0] coauthors.add(coauthor_name) # get venue, title and year venue_id = None year = None quest_info_by_paper = 'SELECT NormalizedPaperTitle, ConferenceSeriesIDMappedToVenueName, ' \ 'JournalIDMappedToVenueName, PaperPublishYear FROM Papers WHERE PaperID = "%s"' cursor.execute(quest_info_by_paper % paper_id) rs = cursor.fetchall() if len(rs) != 0: # fill in paper_venue_dict if rs[0][1] is not None: venue_id = rs[0][1] elif rs[0][2] is not None: venue_id = rs[0][2] year = rs[0][3] paper_instance = Paper(paper_id, title, year, venue_id, affiliation_id, coauthors, label, author_name) paper_instance_list.append(paper_instance) return paper_instance_list if __name__ == '__main__': file_list = get_file_list('./tj_dataset', []) avg_pairwise_precision = 0.0 avg_pairwise_recall = 0.0 avg_pairwise_f1 = 0.0 # file_list = ['./tj_dataset/Keith Edwards.xml'] for file in file_list: full_similarity_dict = dict() all_papers = generate_paper_instance_list(file) f_name = file+".txt" f_name = f_name.replace(".xml","") f_name =f_name.replace(" ","") File = open(f_name,"a") cnt = 0 for paper in all_papers: #print (paper.paper_id) #print (paper.title) #print (paper.year) #print (paper.venue_id) #print (paper.affiliation_id) #print (paper.coauthors) #print (paper.author) t = "" for n in paper.coauthors: t+=n t+="," t = t[:-1] t.encode('utf8') if(paper.venue_id == None): paper.venue_id = str(random.randint(1,2000000)) if(paper.affiliation_id == None): paper.affiliation_id = str(random.randint(1,20000)) #print (str(cnt)+";"+str(paper.label)+";"+paper.author+";"+t+str(paper.title)+";"+str(paper.venue_id)+";"+str(paper.year)+"\n") File.write(str(cnt)+";"+str(paper.label)+";"+paper.author.encode("utf-8")+";"+t.encode("utf8")+";"+str(paper.title)+";"+str(paper.affiliation_id)+";"+str(paper.venue_id)+";"+str(paper.year)+"\n") cnt+=1 File.close()
[ "326902993@qq.com" ]
326902993@qq.com
e84a546a9eb69ba590b9d78efab3999ecec10f66
743305c980318628b80b972fd467fe099379988c
/Modulos/Academica/views.py
ed05b65fe5ade8d9ebb03c42af1e6fe82318bad9
[]
no_license
Johang74/Gestion-Universidad-Basico
7ff02a8b083feca989630c8ce2e1b835bb797936
d63b68dad0962c419aeadd50cc542003424a7487
refs/heads/master
2022-11-17T07:12:33.551184
2020-07-18T17:58:20
2020-07-18T17:58:20
280,685,298
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
from django.shortcuts import render # Create your views here. def formulario(request): return render(request, 'formulario.html') def contactar(request): pass
[ "johang0297@gmail.com" ]
johang0297@gmail.com
b069607cd616397c9afb35f5f17d3d06dbaa218e
4d8d1b72b531073265d5697a07a019ce55f70547
/restore_model.py
38ac66e5a67c9a21c6811eb4c0eed3a9b718f388
[]
no_license
yjy0625/pix2pix-tf
75feb18b917c1fe108412b4476f2193c15fc3cec
79073ff8ed4c2d0b803746eae4d497523e66ebf1
refs/heads/master
2020-03-28T08:53:08.619814
2019-02-06T18:40:28
2019-02-06T18:40:28
147,996,323
1
0
null
null
null
null
UTF-8
Python
false
false
807
py
import tensorflow as tf import tensorflow.contrib.slim as slim import os def get_restorer(FLAGS): checkpoint_dir_path = os.path.join('./', FLAGS.checkpoint_dir, FLAGS.version) checkpoint_path = tf.train.latest_checkpoint(checkpoint_dir_path) restorer = None if checkpoint_path != None: if FLAGS.restore: print('----- Restoring from Model -----') model_variables = slim.get_model_variables() restorer = tf.train.Saver(model_variables) else: restorer = tf.train.Saver() print("Model restored from :", checkpoint_path) else: if not os.path.exists(checkpoint_dir_path): os.makedirs(checkpoint_dir_path) print("Model not found. Training from scratch.") return restorer, checkpoint_path
[ "jingyuny@usc.edu" ]
jingyuny@usc.edu
d6d8f63f4cda415d7c624e8325d5a901be794395
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03399/s953862554.py
bc9df3aeb190f77d1e5da24f3410b5437cd2a8a6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
164
py
def main(): A = int(input()) B = int(input()) C = int(input()) D = int(input()) print(min(A, B)+min(C, D)) if __name__ == "__main__": main()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
d09fd5269e5e9a371ba79ad2612ea62ed9b72c02
0abb9d8b66e110b1439ea53fc63ef482465fef71
/dbmgr/migrations/0004_auto_20180206_1513.py
cf9e3cd2e3d8616a5011bfb5741135716fc9b9c3
[]
no_license
sohjunjie/ntu-ureca-us-stock-prediction
6bfea7adefabf6a6a60d952675ec2e6f6b361fe5
4caa6acd94560b15a632374b116c4e4109e7fded
refs/heads/master
2020-03-27T21:35:41.155542
2018-09-03T06:19:57
2018-09-03T06:19:57
147,159,695
0
2
null
null
null
null
UTF-8
Python
false
false
459
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2018-02-06 15:13 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dbmgr', '0003_newspaperfeed'), ] operations = [ migrations.AlterField( model_name='ustwitternewsfeed', name='feedid', field=models.BigIntegerField(unique=True), ), ]
[ "junjie.soh93@gmail.com" ]
junjie.soh93@gmail.com
0b1452ebc0f8f166f42bd1488e7d2622af0c014c
b1984d708438c465b2f4a4be09a2ba8861d8e042
/test.py
54ad6a894b7e2ffa1cdf3d6a3b9912eaba7a778c
[]
no_license
marktsai0316/tests
176878cc4dca49324e0e5f5ba04da96f1518cec0
65d80564e1565efb197543010a591ac747b8427a
refs/heads/master
2023-04-21T05:24:12.903376
2019-06-05T21:19:25
2019-06-05T21:19:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,509
py
#!/usr/bin/python import time from ctypes import * from operator import itemgetter page_size = 4096 eviction_len= 8*1024*1024 probe_len = 8192 * page_size # assure every of the 256 accessed addresses gets an own page c_lines = 12 # count cache lies s_lines = 64 # size per cache line c_sets = 8192 # count cache sets hit_treshold = 1.25 # treshold to distinguish cache hit from miss (miss takes 1.15 time as long to read) # note on treshold: based on tests, includes operation delay, trimmed to pure "read and store" (no xor etc.) step_shift = 12 arr_step = 1<<step_shift arr_size = arr_step<<13 probebuf = bytearray(probe_len) evictbuf = bytearray(eviction_len) x_len = 16 x_arr = bytearray(20) for i in range(len(x_arr)): x_arr[i] = i def victim_function(x): #print("Accessing idx {0} of test array (=value)".format(x)) # access probe array based on result of x_arr access if (x < x_len): a = probebuf[x_arr[x] * page_size] def evict_cache(): a = 0 step = 64 for i in range(0, len(evictbuf), step): a = evictbuf[i] def read_idx(idx): addr=idx*page_size # measure read start = time.perf_counter() a = probebuf[addr] elapsed = time.perf_counter() - start #print("read idx {0}: {1:.12f} seconds".format(idx ,elapsed)) return elapsed time.perf_counter() # fill evictbuf print("Filling evict buffer, used for cache eviction") for i in range(len(evictbuf)): evictbuf[i] = (i%255) + 1 # fill probebuf print("Filling probe buffer, used to leak values") for i in range(len(probebuf)): probebuf[i] = (i%255) + 1 res={} for i in range(256): res[i]=0 goodguess=False attempt=0 while not goodguess: attempt += 1 # train victim victim_function(11) victim_function(1) victim_function(9) # flush cache print("Round {0} ... flush cache".format(attempt)) evict_cache() ##### here's the place to cache an access to the probe array ###### victim_function(15) # measure read for probeidx in range(256): testidx=probeidx # print("Testing idx {0}".format(testidx)) e1 = read_idx(testidx) e2 = read_idx(testidx) if (e1 < e2*hit_treshold): print("hit {0}".format(testidx)) res[testidx] += 1 # print top5 results so = sorted(res.items(), key=itemgetter(1), reverse=True) print(so[:5]) # we abort a soon as the best guess has 2-times as many hits as its successor (minimum 10 hits) if ((so[0][1] > 20) and (so[0][1] > 2*so[1][1])): goodguess=True result=so[0][0] print("Value estimated after {0} rounds is: {1}".format(attempt, result))
[ "mame8282@googlemail.com" ]
mame8282@googlemail.com
f3ab5d2b31cba0edb5e33649760867797e54a5f0
05c15f476044624acaf137390bd28c60ae886aa1
/socialdistance.py
7efd773238059330157451e78a315b63616231d0
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
vineet019/social-distance
d55bada7890017178c96f522af9f4c4f8acea98b
7b24da1712e0335c4e51520023fa1ec5af6c66f9
refs/heads/master
2022-12-16T04:33:04.694168
2020-09-24T01:52:36
2020-09-24T01:52:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,553
py
""" Copyright (C) 2020 Intel Corporation SPDX-License-Identifier: BSD-3-Clause """ import json from collections import OrderedDict from itertools import combinations import cv2 import os from libs.draw import Draw from libs.geodist import social_distance, get_crop from libs.geometric import get_polygon, get_point, get_line from libs.person_trackers import PersonTrackers, TrackableObject from libs.validate import validate from openvino.inference_engine import IENetwork, IECore class SocialDistance(object): def __init__(self): config_file_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "config.json") with open(config_file_path) as f: cfg = json.load(f) validate(cfg) self.running = True self.videosource = cfg.get("video") self.model_modelfile = cfg.get("pedestrian_model_weights") self.model_configfile = cfg.get("pedestrian_model_description") self.model_modelfile_reid = cfg.get("reidentification_model_weights") self.model_configfile_reid = cfg.get("reidentification_model_description") self.coords = cfg.get("coords") # OPENVINO VARS self.ov_input_blob = None self.out_blob = None self.net = None self.ov_n = None self.ov_c = None self.ov_h = None self.ov_w = None self.ov_input_blob_reid = None self.out_blob_reid = None self.net_reid = None self.ov_n_reid = None self.ov_c_reid = None self.ov_h_reid = None self.ov_w_reid = None # PROCESSOR VARS self.confidence_threshold = .85 self.iterations = 4 # ~ 5 feets self.trackers = [] self.max_disappeared = 90 self.polygon = None self.trackers = PersonTrackers(OrderedDict()) self.min_w = 99999 self.max_w = 1 def load_openvino(self): try: ie = IECore() net = IENetwork.from_ir(model=self.model_configfile, weights=self.model_modelfile) self.ov_input_blob = next(iter(net.inputs)) self.out_blob = next(iter(net.outputs)) self.net = ie.load_network(network=net, num_requests=2, device_name="CPU") # Read and pre-process input image self.ov_n, self.ov_c, self.ov_h, self.ov_w = net.inputs[self.ov_input_blob].shape del net except Exception as e: raise Exception(f"Load Openvino error:{e}") self.load_openvino_reid() def load_openvino_reid(self): try: ie = IECore() net = IENetwork.from_ir(model=self.model_configfile_reid, weights=self.model_modelfile_reid) self.ov_input_blob_reid = next(iter(net.inputs)) self.out_blob_reid = next(iter(net.outputs)) self.net_reid = ie.load_network(network=net, num_requests=2, device_name="CPU") # Read and pre-process input image self.ov_n_reid, self.ov_c_reid, self.ov_h_reid, self.ov_w_reid = net.inputs[self.ov_input_blob_reid].shape del net except Exception as e: raise Exception(f"Load Openvino reidentification error:{e}") def config_env(self, frame): h, w = frame.shape[:2] self.trackers.clear() polylist = [] for pair in self.coords: polylist.append([int(pair[0] * w / 100), int(pair[1] * h / 100)]) self.polygon = get_polygon(polylist) def get_frame(self): h = w = None try: cap = cv2.VideoCapture(self.videosource) except Exception as e: raise Exception(f"Video source error: {e}") while self.running: has_frame, frame = cap.read() if has_frame: if frame.shape[1] > 2000: frame = cv2.resize(frame, (int(frame.shape[1] * .3), int(frame.shape[0] * .3))) elif frame.shape[1] > 1000: frame = cv2.resize(frame, (int(frame.shape[1] * .8), int(frame.shape[0] * .8))) if w is None or h is None: h, w = frame.shape[:2] print(frame.shape) self.config_env(frame) yield frame else: self.running = False return None def process_frame(self, frame): _frame = frame.copy() trackers = [] frame = cv2.resize(frame, (self.ov_w, self.ov_h)) frame = frame.transpose((2, 0, 1)) frame = frame.reshape((self.ov_n, self.ov_c, self.ov_h, self.ov_w)) self.net.start_async(request_id=0, inputs={self.ov_input_blob: frame}) if self.net.requests[0].wait(-1) == 0: res = self.net.requests[0].outputs[self.out_blob] frame = _frame h, w = frame.shape[:2] out = res[0][0] for i, detection in enumerate(out): confidence = detection[2] if confidence > self.confidence_threshold and int(detection[1]) == 1: # 1 => CLASS Person xmin = int(detection[3] * w) ymin = int(detection[4] * h) xmax = int(detection[5] * w) ymax = int(detection[6] * h) if get_line([[xmin, ymax], [xmax, ymax]]).length < self.min_w: self.min_w = get_line([[xmin, ymax], [xmax, ymax]]).length elif get_line([[xmin, ymax], [xmax, ymax]]).length > self.max_w: self.max_w = get_line([[xmin, ymax], [xmax, ymax]]).length cX = int((xmin + xmax) / 2.0) cY = int(ymax) point = get_point([cX, cY]) if not self.polygon.contains(point): continue trackers.append( TrackableObject((xmin, ymin, xmax, ymax), None, (cX, cY)) ) Draw.rectangle(frame, (xmin, ymin, xmax, ymax), "green", 2) for tracker in trackers: person = frame[tracker.bbox[1]:tracker.bbox[3], tracker.bbox[0]:tracker.bbox[2]] try: person = cv2.resize(person, (self.ov_w_reid, self.ov_h_reid)) except cv2.error as e: print(f"CV2 RESIZE ERROR: {e}") continue person = person.transpose((2, 0, 1)) # Change data layout from HWC to CHW person = person.reshape((self.ov_n_reid, self.ov_c_reid, self.ov_h_reid, self.ov_w_reid)) self.net_reid.start_async(request_id=0, inputs={self.ov_input_blob: person}) if self.net_reid.requests[0].wait(-1) == 0: res = self.net_reid.requests[0].outputs[self.out_blob_reid] tracker.reid = res self.trackers.similarity(trackers) if len(self.trackers.trackers) > 0: track_tuples = list(combinations(self.trackers.trackers.keys(), 2)) for trackup in track_tuples: l1 = self.trackers.trackers[trackup[0]].bbox l2 = self.trackers.trackers[trackup[1]].bbox if l1[3] < l2[3]: a = (l1[0], l1[3]) b = (l1[2], l1[3]) c = (l2[0], l2[3]) d = (l2[2], l2[3]) else: c = (l1[0], l1[3]) d = (l1[2], l1[3]) a = (l2[0], l2[3]) b = (l2[2], l2[3]) h, w = frame.shape[:2] result = social_distance((h, w), a, b, c, d, self.iterations, self.min_w, self.max_w) if result["alert"]: xmin, ymin, xmax, ymax = get_crop(l1, l2) Draw.rectangle(frame, l1, "yellow", 2) Draw.rectangle(frame, l2, "yellow", 2) Draw.rectangle(frame, (xmin, ymin, xmax, ymax), "red", 3) return frame def render(self, frame): cv2.namedWindow("output", cv2.WINDOW_NORMAL) frame = cv2.resize(frame, (960, 540)) cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): exit() def run(self): self.load_openvino() for frame in self.get_frame(): frame = self.process_frame(frame) self.render(frame) if __name__ == '__main__': try: sd = SocialDistance() sd.run() except Exception as exception: print(exception)
[ "mateo.guzman@intel.com" ]
mateo.guzman@intel.com
82122190857142b5874736d7b35ee3e46af75abd
1421d61938dafd86bf8195d0e24acb454e10ddb4
/env/bin/easy_install
84515a2c52d9864d43279b66c3975d52ed18078c
[ "MIT" ]
permissive
EitanAugust/bme590hrm
61cd9df1a37347ef545f4430fae907b2e5856b7b
c8be75c44e124ee8a25d4cf0e1a17f739a8b5a58
refs/heads/master
2021-01-25T10:49:39.899559
2018-03-02T03:50:50
2018-03-02T03:50:50
123,371,359
0
0
null
2018-03-02T03:50:51
2018-03-01T02:34:02
Python
UTF-8
Python
false
false
287
#!/Users/eitanaugust/Documents/BME_590_Python/bme590hrm/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "eitanaugust@Eitans-MacBook-Pro.local" ]
eitanaugust@Eitans-MacBook-Pro.local
e9b6db9a20f3e7de962bd3db279279e0f855907b
d9b59a931808a33703f80dee957f2fcbb19c9691
/blackout_data/time_between.py
3c091067dcf641de1fa7f3464495af66c27945e2
[]
no_license
mahdifirouzi/Cascade
8cfa6f9d06a1428a4385046814e9e640404d648f
f75e97bcc34ecd1f57bbc0bb1b33e44d313aab8a
refs/heads/master
2023-03-18T17:38:46.820688
2011-09-06T21:03:18
2011-09-06T21:03:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
515
py
#!/usr/bin/python import csv_reader import sys, os import datetime import numpy reader = csv_reader.Reader(sys.argv[1]) data = reader.get_columns(['year','month','day','Northeast']) #data = reader.exclude_on(data,[3]) days_between = [] for i in range(len(data)-1): event = datetime.date(int(data[i,0]),int(data[i,1]),int(data[i,2])) next_event = datetime.date(int(data[i+1,0]),int(data[i+1,1]),int(data[i+1,2])) days_between.append((next_event - event).days) numpy.savetxt(sys.argv[2],days_between)
[ "aavardaro@gmail.com" ]
aavardaro@gmail.com
80c34a1e44e07c68d76c231b58ed93ad3b7d7d09
12cad3e1f1ee44f1d74c3843c821fbe44c59c353
/example.py
fa265995ed1b757bc941c981d6ea6e57ef0ace14
[]
no_license
DarrylEgbertNangoi-GitHub/CourseraIntroduction
a9d5bccb94e927ca8e20230517d2eb9560da7747
d780266fee3d07cd79d77a4cf62e1c95bd640779
refs/heads/main
2023-03-19T01:49:10.986096
2021-03-08T09:52:47
2021-03-08T09:52:47
345,601,082
0
0
null
null
null
null
UTF-8
Python
false
false
102
py
def git_opeation(): print("I am adding example.py file to the remote repository.") git_opeation()
[ "darryl.nangoi@binus.ac.id" ]
darryl.nangoi@binus.ac.id
4b9a9e21bf5314a39049967c13d1cf3f98b46bc5
a6d2e07eea20f63579d6cd31044d26c7f786b8e4
/lib/model/train_val.py
e547fdaf8bb316d5deead1842c64c910020fb862
[]
no_license
gaobb/CASD
4b0d882d4d7e12d3e8cef7f6842da6e226bc4c3d
9e45a282992a9411b1790f5009353716cb649626
refs/heads/master
2023-08-22T07:44:57.510863
2021-10-19T03:06:59
2021-10-19T03:06:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,513
py
# -------------------------------------------------------- # Tensorflow Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Xinlei Chen and Zheqi He # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorboardX as tb from model.config import cfg import roi_data_layer.roidb as rdl_roidb from roi_data_layer.layer import RoIDataLayer import utils.timer try: import cPickle as pickle except ImportError: import pickle import torch import torch.optim as optim import numpy as np import os import glob import time import torch.nn.functional as F from torch import nn def update_learning_rate(optimizer, cur_lr, new_lr): """Update learning rate""" if cur_lr != new_lr: ratio = _get_lr_change_ratio(cur_lr, new_lr) param_keys = [] for ind, param_group in enumerate(optimizer.param_groups): param_group['lr'] = new_lr param_keys += param_group['params'] def _get_lr_change_ratio(cur_lr, new_lr): eps = 1e-10 ratio = np.max( (new_lr / np.max((cur_lr, eps)), cur_lr / np.max((new_lr, eps))) ) return ratio def scale_lr(optimizer, scale): """Scale the learning rate of the optimizer""" for param_group in optimizer.param_groups: param_group['lr'] *= scale class SolverWrapper(object): """ A wrapper class for the training process """ def __init__(self, network, imdb, roidb, valroidb, output_dir, tbdir, pretrained_model=None): self.net = network self.imdb = imdb self.roidb = roidb self.valroidb = valroidb self.output_dir = output_dir self.tbdir = tbdir # Simply put '_val' at the end to save the summaries from the validation set self.tbvaldir = tbdir + '_val' if not os.path.exists(self.tbvaldir): os.makedirs(self.tbvaldir) self.pretrained_model = pretrained_model def snapshot(self, iter): if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) # Store the model snapshot filename = cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}'.format(iter) + '.pth' filename = os.path.join(self.output_dir, filename) torch.save(self.net.state_dict(), filename) print('Wrote snapshot to: {:s}'.format(filename)) # Also store some meta information, random state, etc. nfilename = cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}'.format(iter) + '.pkl' nfilename = os.path.join(self.output_dir, nfilename) # current state of numpy random st0 = np.random.get_state() # current position in the database cur = self.data_layer._cur # current shuffled indexes of the database perm = self.data_layer._perm # current position in the validation database cur_val = self.data_layer_val._cur # current shuffled indexes of the validation database perm_val = self.data_layer_val._perm # Dump the meta info with open(nfilename, 'wb') as fid: pickle.dump(st0, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(cur, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(perm, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(cur_val, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(perm_val, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(iter, fid, pickle.HIGHEST_PROTOCOL) return filename, nfilename def from_snapshot(self, sfile, nfile): print('Restoring model snapshots from {:s}'.format(sfile)) self.net.load_state_dict(torch.load(str(sfile))) print('Restored.') # Needs to restore the other hyper-parameters/states for training, (TODO xinlei) I have # tried my best to find the random states so that it can be recovered exactly # However the Tensorflow state is currently not available with open(nfile, 'rb') as fid: st0 = pickle.load(fid) cur = pickle.load(fid) perm = pickle.load(fid) cur_val = pickle.load(fid) perm_val = pickle.load(fid) last_snapshot_iter = pickle.load(fid) np.random.set_state(st0) self.data_layer._cur = cur self.data_layer._perm = perm self.data_layer_val._cur = cur_val self.data_layer_val._perm = perm_val return last_snapshot_iter def construct_graph(self): # Set the random seed torch.manual_seed(cfg.RNG_SEED) # Build the main computation graph self.net.create_architecture(self.imdb.num_classes, tag='default', anchor_scales=cfg.ANCHOR_SCALES, anchor_ratios=cfg.ANCHOR_RATIOS) # Define the loss # loss = layers['total_loss'] # Set learning rate and momentum lr = cfg.TRAIN.LEARNING_RATE params = [] for key, value in dict(self.net.named_parameters()).items(): if value.requires_grad: if 'refine' in key and 'bias' in key: params += [{'params':[value],'lr':10*lr*(cfg.TRAIN.DOUBLE_BIAS + 1), 'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}] elif 'refine' in key and 'bias' not in key: params += [{'params':[value],'lr':10*lr, 'weight_decay': getattr(value, 'weight_decay', cfg.TRAIN.WEIGHT_DECAY)}] elif 'refine' not in key and 'bias' in key: params += [{'params':[value],'lr':lr*(cfg.TRAIN.DOUBLE_BIAS + 1), 'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}] else: params += [{'params':[value],'lr':lr, 'weight_decay': getattr(value, 'weight_decay', cfg.TRAIN.WEIGHT_DECAY)}] self.optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM) # Write the train and validation information to tensorboard self.writer = tb.writer.FileWriter(self.tbdir) self.valwriter = tb.writer.FileWriter(self.tbvaldir) return lr, self.optimizer def find_previous(self): sfiles = os.path.join(self.output_dir, cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_*.pth') sfiles = glob.glob(sfiles) sfiles.sort(key=os.path.getmtime) # Get the snapshot name in pytorch redfiles = [] for stepsize in cfg.TRAIN.STEPSIZE: redfiles.append(os.path.join(self.output_dir, cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}.pth'.format(stepsize+1))) #sfiles = [ss for ss in sfiles if ss not in redfiles] nfiles = os.path.join(self.output_dir, cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_*.pkl') nfiles = glob.glob(nfiles) nfiles.sort(key=os.path.getmtime) redfiles = [redfile.replace('.pth', '.pkl') for redfile in redfiles] #nfiles = [nn for nn in nfiles if nn not in redfiles] lsf = len(sfiles) assert len(nfiles) == lsf return lsf, nfiles, sfiles def initialize(self): # Initial file lists are empty np_paths = [] ss_paths = [] # Fresh train directly from ImageNet weights print('Loading initial model weights from {:s}'.format(self.pretrained_model)) self.net.load_pretrained_cnn(torch.load(self.pretrained_model)) print('Loaded.') # Need to fix the variables before loading, so that the RGB weights are changed to BGR # For VGG16 it also changes the convolutional weights fc6 and fc7 to # fully connected weights last_snapshot_iter = 0 lr = cfg.TRAIN.LEARNING_RATE stepsizes = list(cfg.TRAIN.STEPSIZE) return lr, last_snapshot_iter, stepsizes, np_paths, ss_paths def restore(self, sfile, nfile): # Get the most recent snapshot and restore np_paths = [nfile] ss_paths = [sfile] # Restore model from snapshots last_snapshot_iter = self.from_snapshot(sfile, nfile) # Set the learning rate lr_scale = 1 stepsizes = [] for stepsize in cfg.TRAIN.STEPSIZE: if last_snapshot_iter > stepsize: lr_scale *= cfg.TRAIN.GAMMA else: stepsizes.append(stepsize) scale_lr(self.optimizer, lr_scale) lr = cfg.TRAIN.LEARNING_RATE * lr_scale return lr, last_snapshot_iter, stepsizes, np_paths, ss_paths def remove_snapshot(self, np_paths, ss_paths): to_remove = len(np_paths) - cfg.TRAIN.SNAPSHOT_KEPT for c in range(to_remove): nfile = np_paths[0] os.remove(str(nfile)) np_paths.remove(nfile) to_remove = len(ss_paths) - cfg.TRAIN.SNAPSHOT_KEPT for c in range(to_remove): sfile = ss_paths[0] # To make the code compatible to earlier versions of Tensorflow, # where the naming tradition for checkpoints are different os.remove(str(sfile)) ss_paths.remove(sfile) def train_model(self, max_iters): # Build data layers for both training and validation set self.data_layer = RoIDataLayer(self.roidb, self.imdb.num_classes) self.data_layer_val = RoIDataLayer(self.valroidb, self.imdb.num_classes, random=True) # Construct the computation graph lr, train_op = self.construct_graph() # Find previous snapshots if there is any to restore from lsf, nfiles, sfiles = self.find_previous() # Initialize the variables or restore them from the last snapshot if lsf == 0: lr, last_snapshot_iter, stepsizes, np_paths, ss_paths = self.initialize() else: lr, last_snapshot_iter, stepsizes, np_paths, ss_paths = self.restore(str(sfiles[-1]), str(nfiles[-1])) iter = last_snapshot_iter + 1 last_summary_time = time.time() # Make sure the lists are not empty stepsizes.append(max_iters) stepsizes.reverse() next_stepsize = stepsizes.pop() self.net.train() self.net.to(self.net._device) while iter < max_iters + 1: # Learning rate if iter == next_stepsize + 1: # Add snapshot here before reducing the learning rate self.snapshot(iter) lr *= cfg.TRAIN.GAMMA scale_lr(self.optimizer, cfg.TRAIN.GAMMA) next_stepsize = stepsizes.pop() #if ((iter -1) % cfg.TRAIN.MIL_RECURRENT_STEP) == 0: # num_epoch = int((iter - 1) / cfg.TRAIN.MIL_RECURRENT_STEP) + 1 # cfg.TRAIN.MIL_RECURRECT_WEIGHT = ((num_epoch - 1)/20.0)/1.5 #if iter == cfg.TRAIN.MIL_RECURRENT_STEP + 1: # cfg.TRAIN.MIL_RECURRECT_WEIGHT = cfg.TRAIN.MIL_RECURRECT_WEIGHT * 10 utils.timer.timer.tic() # Get training data, one batch at a time blobs = self.data_layer.forward(iter) now = time.time() if iter == 1 or now - last_summary_time > cfg.TRAIN.SUMMARY_INTERVAL: # Compute the graph with summary cls_det_loss, refine_loss_1, refine_loss_2, consistency_loss, total_loss, summary = \ self.net.train_step_with_summary(blobs, self.optimizer, iter) # cls_det_loss, refine_loss_1, refine_loss_2, total_loss, summary = \ # self.net.train_step_with_summary(blobs, self.optimizer, iter) #for _sum in summary: self.writer.add_summary(_sum, float(iter)) # Also check the summary on the validation set #blobs_val = self.data_layer_val.forward() #summary_val = self.net.get_summary(blobs_val, iter, drop_block) #summary_val = self.net.get_summary(blobs_val, iter) #for _sum in summary_val: self.valwriter.add_summary(_sum, float(iter)) last_summary_time = now else: # Compute the graph without summary #cls_det_loss, refine_loss_1, refine_loss_2, total_loss = self.net.train_step(blobs, self.optimizer, iter) cls_det_loss, refine_loss_1, refine_loss_2, consistency_loss, total_loss = self.net.train_step(blobs,self.optimizer,iter) utils.timer.timer.toc() # Display training information if iter % (cfg.TRAIN.DISPLAY) == 0: # print('iter: %d / %d, total loss: %.6f\n >>> cls_det_loss: %.6f\n ' # '>>> refine_loss_1: %.6f\n >>> refine_loss_2: %.6f\n >>> lr: %f' % \ # (iter, max_iters, total_loss, cls_det_loss, refine_loss_1, refine_loss_2, lr)) print('iter: %d / %d, total loss: %.6f\n >>> cls_det_loss: %.6f\n ' '>>> refine_loss_1: %.6f\n >>> refine_loss_2: %.6f\n >>> consistency_loss: %.6f\n >>> lr: %f' % \ (iter, max_iters, total_loss, cls_det_loss, refine_loss_1, refine_loss_2, consistency_loss, lr)) print('speed: {:.3f}s / iter'.format(utils.timer.timer.average_time())) # for k in utils.timer.timer._average_time.keys(): # print(k, utils.timer.timer.average_time(k)) # Snapshotting if iter % cfg.TRAIN.SNAPSHOT_ITERS == 0: last_snapshot_iter = iter ss_path, np_path = self.snapshot(iter) np_paths.append(np_path) ss_paths.append(ss_path) # Remove the old snapshots if there are too many if len(np_paths) > cfg.TRAIN.SNAPSHOT_KEPT: self.remove_snapshot(np_paths, ss_paths) iter += 1 if last_snapshot_iter != iter - 1: self.snapshot(iter - 1) self.writer.close() self.valwriter.close() def get_training_roidb(imdb): """Returns a roidb (Region of Interest database) for use in training.""" if cfg.TRAIN.USE_FLIPPED: print('Appending horizontally-flipped training examples...') imdb.append_flipped_images() print('done') print('Preparing training data...') rdl_roidb.prepare_roidb(imdb) print('done') return imdb.roidb def filter_roidb(roidb): """Remove roidb entries that have no usable RoIs.""" def is_valid(entry): # Valid images have: # (1) At least one foreground RoI OR # (2) At least one background RoI overlaps = entry['max_overlaps'] # find boxes with sufficient overlap fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0] # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) & (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0] # image is only valid if such boxes exist valid = len(fg_inds) > 0 or len(bg_inds) > 0 return valid num = len(roidb) filtered_roidb = [entry for entry in roidb if is_valid(entry)] num_after = len(filtered_roidb) print('Filtered {} roidb entries: {} -> {}'.format(num - num_after, num, num_after)) return filtered_roidb def train_net(network, imdb, roidb, valroidb, output_dir, tb_dir, pretrained_model=None, max_iters=40000): """Train a Faster R-CNN network.""" roidb = filter_roidb(roidb) valroidb = filter_roidb(valroidb) sw = SolverWrapper(network, imdb, roidb, valroidb, output_dir, tb_dir, pretrained_model=pretrained_model) print('Solving...') sw.train_model(max_iters) print('done solving')
[ "huangzy666666@gmail.com" ]
huangzy666666@gmail.com
76289dc29e23594f8f88518fc2be3110d6f1fd27
6f2d0c4e5f89d163241b8aa32b8ab8cf030ac59f
/sma/migrations/0002_attendance_grade_mentor_school_session_schedule_student_student_group_mentor_assignment.py
43747906e0891bdef54fb5dfa8e56fa0d4f7e76c
[]
no_license
johnpgarza/omk-oldest
cc4f1578b19ee7c40ac1757608b8c20b25f34842
2992bbc12a0f1e31243db9e8bded75d46ec208eb
refs/heads/master
2023-08-19T08:48:22.017632
2020-04-26T01:00:38
2020-04-26T01:00:38
258,906,307
0
0
null
2021-09-22T18:55:37
2020-04-26T00:52:29
JavaScript
UTF-8
Python
false
false
6,475
py
# Generated by Django 3.0.4 on 2020-03-20 04:28 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('sma', '0001_initial'), ] operations = [ migrations.CreateModel( name='Grade', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('grade_num', models.CharField(max_length=100)), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('updated_date', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='Mentor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('mentor_first_name', models.CharField(max_length=100)), ('mentor_middle_name', models.CharField(blank=True, max_length=100)), ('mentor_last_name', models.CharField(max_length=100)), ('mentor_email', models.EmailField(max_length=100)), ('mentor_address', models.CharField(max_length=200)), ('mentor_city', models.CharField(max_length=50)), ('mentor_state', models.CharField(max_length=50)), ('mentor_zip', models.CharField(max_length=10)), ('mentor_phone', models.CharField(max_length=50)), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('updated_date', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='School', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('school_name', models.CharField(max_length=100)), ('school_address', models.CharField(max_length=200)), ('school_city', models.CharField(max_length=50)), ('school_state', models.CharField(max_length=50)), ('school_zip', models.CharField(max_length=10)), ('school_email', models.EmailField(max_length=100)), ('school_phone', models.CharField(max_length=50)), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('updated_date', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='Student_Group_Mentor_Assignment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('group_name', models.CharField(max_length=100)), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('updated_date', models.DateTimeField(auto_now_add=True)), ('grade', models.ForeignKey(blank=True, default='', null=True, on_delete=django.db.models.deletion.CASCADE, to='sma.Grade')), ('mentor', models.ForeignKey(blank=True, default='', null=True, on_delete=django.db.models.deletion.CASCADE, to='sma.Mentor')), ('school', models.ForeignKey(blank=True, default='', null=True, on_delete=django.db.models.deletion.CASCADE, to='sma.School')), ], ), migrations.CreateModel( name='Student', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('student_first_name', models.CharField(max_length=100)), ('student_middle_name', models.CharField(blank=True, max_length=100)), ('student_last_name', models.CharField(max_length=100)), ('student_gender', models.CharField(max_length=100)), ('student_dateofbirth', models.DateTimeField(max_length=50)), ('student_email', models.EmailField(max_length=100)), ('student_address', models.CharField(max_length=200)), ('student_city', models.CharField(max_length=50)), ('student_state', models.CharField(max_length=50)), ('student_zip', models.CharField(max_length=10)), ('student_phone', models.CharField(max_length=50)), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('updated_date', models.DateTimeField(auto_now_add=True)), ('grade', models.ForeignKey(blank=True, default='', null=True, on_delete=django.db.models.deletion.CASCADE, to='sma.Grade')), ('school', models.ForeignKey(blank=True, default='', null=True, on_delete=django.db.models.deletion.CASCADE, to='sma.School')), ], ), migrations.CreateModel( name='Session_Schedule', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('session_location', models.CharField(max_length=50)), ('session_start_date', models.DateTimeField(max_length=20)), ('session_end_date', models.DateTimeField(max_length=20)), ('group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sma.Student_Group_Mentor_Assignment')), ('mentor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sma.Mentor')), ], ), migrations.CreateModel( name='Attendance', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('attendance', models.CharField(max_length=100)), ('attendance_grade_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sma.Grade')), ('attendance_mentor_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sma.Mentor')), ('attendance_session_ID', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sma.Session_Schedule')), ('attendance_student_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sma.Student')), ], ), ]
[ "jgarza@unomaha.edu" ]
jgarza@unomaha.edu
f5584a8dbc7c3d9effdab81e3e631e40c0e4f0f0
586aba25a13b90a21c90949fad303f8499cee42f
/model/positional_encoding.py
28f7b714267d2324960ead55848c7b940ff984c6
[]
no_license
leejaeyong7/tc-nerf
c95301370eb41158f110bb0bc00760f52273708a
49bd2cf7afd6f69278a1fc9a7b2bada2351f86ca
refs/heads/main
2023-03-28T04:11:59.694524
2021-04-01T03:48:41
2021-04-01T03:48:41
309,032,701
1
0
null
null
null
null
UTF-8
Python
false
false
795
py
import torch from torch import nn class PositionalEncoding(nn.Module): def __init__(self, N_freqs, logscale=True): """ Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...) in_channels: number of input channels (3 for both xyz and direction) """ super(PositionalEncoding, self).__init__() self.N_freqs = N_freqs self.funcs = [torch.sin, torch.cos] if logscale: self.freq_bands = 2**torch.linspace(0, N_freqs-1, N_freqs) else: self.freq_bands = torch.linspace(1, 2**(N_freqs-1), N_freqs) def forward(self, x): out = [x] for freq in self.freq_bands: for func in self.funcs: out += [func(freq*x)] return torch.cat(out, -1)
[ "leejaeyong7@gmail.com" ]
leejaeyong7@gmail.com
e68d468cc348fa28a58ca4b6567a053ae7440b3c
bdf574f292aa1617d6591cc58ba19ceb27a517be
/Instagram menteri.py
de9ff2c21417f9d354f7c634a7bccfbbfcfc1435
[]
no_license
digilab-cfds/Profiling_Menteri_2019
ddcd9a2d21524dfd2c91cc2b2db1b8c1d0e6b20b
9190242a98eae27cc78a64de4cda9b81328cc4d2
refs/heads/master
2020-09-08T12:08:29.816908
2019-11-12T04:23:03
2019-11-12T04:23:03
221,129,056
0
0
null
null
null
null
UTF-8
Python
false
false
2,422
py
#%% #Login Instagram from InstagramAPI import InstagramAPI api = InstagramAPI("username", "password") if (api.login()): #api.getSelfUserFeed() print("Login succes!") else: print("Can't login!") #%% listNama = ['mohmahfudmd', 'airlanggahartarto','muhadjir_effendy' ,'luhut_binsar_pandjaitan','prabowo','retno_marsudi' ,'smindrawati','agusgumiwangk','syahrulyasinlimpo' ,'siti.nurbayabakar','edhy.prabowo','sofyan.djalil','erickthohir' ,'wishnutama','bambangbrodjonegoro'] listId = [9503537257,3010352830,3898729931,2883229423,2142213578,6157128675, 4142926332,7139255865,2090763378 ,6329551081,5469831536, 3668403949,259804442,6668780,5844048390] #%% import pandas as pd def getInfo(username, user_id): api.getUsernameInfo(user_id) data = api.LastJson followers = data['user']['follower_count'] post = data['user']['media_count'] print('Username : ', username) print('Followers : ', followers) print('Posts : ', post) more_available = True max_id = '' result = 0 comment = 0 like = 0 while more_available: api.getUserFeed(user_id, max_id) media = api.LastJson post2 = media['num_results'] for i in range(int(post2)): check = 'comment_likes_enabled' in media['items'][i] #print(check) if check==True: c = media['items'][i]['comment_count'] comment += c else: c = 0 comment += c l = media['items'][i]['like_count'] like += l #print(media['items'][i]['comment_count']) #print(media['items'][i]['like_count']) result += api.LastJson['num_results'] #print('result : ',result) more_available = api.LastJson['more_available'] if more_available == False: print ('total post :', result) else: max_id = api.LastJson['next_max_id'] #print(max_id) print('Total Comments : ', comment) print('Total Likes : ', like) d = [followers, post, comment, like] return d #%% for i in range(len(listNama)): output.append(getInfo(listNama[i],listId[i])) df = pd.DataFrame(output) df.columns = ['Total Followers','Total Post','Total Comments', 'Total Likes']
[ "noreply@github.com" ]
digilab-cfds.noreply@github.com
66d24fc1b4e5f725e474f09fb23c79522bd46f9a
eb8d4c754ca229b83af47b3b9fe4488ffff6d4a6
/estrutura-de-repeticao/exercicio21.py
809b25edcd4e3b42617012296539bd9cf10a878c
[ "MIT" ]
permissive
diegolinkk/exercicios-python-brasil
1e5e712e057e9819b8c14b1aa1c40fb94d6e31a1
3bf7bdf0e98cdd06c115eedae4fa01e0c25fdba5
refs/heads/main
2023-07-15T09:54:36.309310
2021-08-15T00:12:18
2021-08-15T00:12:18
358,438,830
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
#Faça um programa que peça um número inteiro e determine se ele é ou não um número primo. # Um número primo é aquele que é divisível somente por ele mesmo e por 1. numero = int(input("Digite um número: ")) divisor = numero contador_divisoes_inteiras = 0 while divisor >=1: if (numero % divisor) == 0: contador_divisoes_inteiras +=1 divisor -=1 if contador_divisoes_inteiras <= 2: print("O número é primo") else: print("O número não é primo")
[ "diegolinkk@gmail.com" ]
diegolinkk@gmail.com
8912a74e600a883095b5af30146b2029ad3057ed
6b20e6a11842cf2f2624ec4f0387fab5305b4a09
/Nave.py
c4842d0e1577ffd99422f8ee1426c1bdb34a7bc9
[ "Apache-2.0" ]
permissive
Albertojserr/Mi-Primer-Ejercicio-POO
3c14adbc19dcb4f6d039d301d2a12ce966141b96
3de8df95be8cd9894ea68c225822b1f9d4be6423
refs/heads/main
2023-08-27T19:27:22.451102
2021-10-29T14:52:50
2021-10-29T14:52:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,131
py
from Guerrero import Guerrero from Marciano import Marciano from Terricola import Terricola class Nave(): def __init__(self, warrior_type, name="Millenium Falcon", crew=1): if(not isinstance(crew,int)): raise TypeError("crew is the number of warriors and should be an int") elif(crew < 0): raise ValueError("crew is the number of warriors and should be an int > 0") elif(warrior_type == Marciano): self.__type = warrior_type self.__name = name self.__crew = list() for i in range (0,crew): marciano_name="marciano" + str(i) self.__crew.append(Marciano(marciano_name)) elif(warrior_type == Terricola): self.__type = warrior_type self.__name = name self.__crew = list() for i in range (0,crew): terricola_name="terricola" + str(i) self.__crew.append(Terricola(terricola_name)) else: raise TypeError("TYPE of GUERREROS WRONG") print("Created a ship " + self.__name + " of " + str(self.__type) + " with " + str(crew) + " members") def __str__(self): return self.__name + " OF " + str(len(self.__crew)) + " " + str(self.__type) def get_shot(self,shot): if(not isinstance(shot,int)): raise TypeError("shot should be an int") elif(shot == -1): # A shot from a dead member pass elif(shot < 0 or shot > Guerrero.get_maxTarget()): raise ValueError("shot OUT OF RANGE") for i in range(0,len(self.__crew)): if(self.__type == Marciano or self.__type == Terricola): self.__crew[i].get_shot(shot) else: raise TypeError("TYPE of GUERREROS WRONG in the crew " + self.__crew) def shoot(self,warrior): if(warrior >= 0 and warrior < len(self.__crew)): return self.__crew[warrior].shoot() else: raise ValueError("The warrior: " + str(warrior) + " does not exist in the ship: " + self.__name) def membersAlive(self): membersAlive=0 # I AM LAUNCHING AN IMPOSSIBLE EXCEPTION, SINCE IT CANT BE ANY NAVE WITH OTHER TYPE THAN MARCIANO OR TERRICOLA # Read Constructor to double check it. That is why the exception is not documented if(self.__type == Marciano or self.__type ==Terricola): for warrior in self.__crew: #We access the member of the grandparent class (SerVivo), that is shared by all warriors (Marciano and Terricola)! if(warrior.is_vivo()): membersAlive+=1 else: raise TypeError("TYPE of GUERREROS WRONG ") return membersAlive def isWarriorAlive(self, warrior): if(warrior >= 0 and warrior < len(self.__crew)): return self.__crew[warrior].is_vivo() else: raise ValueError("The warrior: " + str(warrior) + " does not exist in the ship: " + self.__name) def number_of_members(self): return len(self.__crew)
[ "alberto.j.serrano@gmail.com" ]
alberto.j.serrano@gmail.com
c6698562cc25684f53c90e7da85446bb439283a9
2ea49bfaa6bc1b9301b025c5b2ca6fde7e5bb9df
/contributions/mattia.penati/python/Data Structures/2016-09-13.py
78ee8b992e510f221264d582a1fae6cf11e8a12f
[]
no_license
0x8801/commit
18f25a9449f162ee92945b42b93700e12fd4fd77
e7692808585bc7e9726f61f7f6baf43dc83e28ac
refs/heads/master
2021-10-13T08:04:48.200662
2016-12-20T01:59:47
2016-12-20T01:59:47
76,935,980
1
0
null
null
null
null
UTF-8
Python
false
false
151
py
Best way to implement a simple `queue` `Module`s everywhere! Special attributes of objects and classes Get the most of `int`s Get the most of `float`s
[ "mattia.penati@gmail.com" ]
mattia.penati@gmail.com
8ae147a4aa7b33753aea023f8e8f2d064f2e8ae8
aa196fe070c406ba2c1751081b9afccecb1abd5a
/src/04_CollectionGeneratorFromItemSets.py
efc7420c96eb2dcf62976975d1b8b41a8ad7e1d5
[]
no_license
iii-dch/dataset
929f54285febfe7399b2ff1368da5efb7b4a0b4e
ebc6bf924ccb33780d55caa61a91f7db0754c4e2
refs/heads/master
2021-06-22T23:39:34.907627
2021-04-27T01:47:11
2021-04-27T01:47:11
175,349,706
0
0
null
null
null
null
UTF-8
Python
false
false
4,669
py
import sys import json import argparse import requests import os import glob import yaml import shutil import datetime from classes.downloader import Downloader manifest_path = "../docs/iiif/collection" Downloader.initDir(manifest_path) f = open("settings.yml", "r+") settings = yaml.load(f) prefix = settings["github_pages_url"] # ldファイルを使う files = glob.glob("../docs/api/item_sets/*.json") api_url = settings["api_url"] for i in range(len(files)): if i % 100 == 0: print(str(i+1)+"/" + str(len(files))) file = files[i] with open(file) as f: obj = json.load(f) id = str(obj["o:id"]) url = api_url.replace( "/api", "/iiif") + "/collection/" + id collection = requests.get(url).json() ''' manifest_uri = api_url.replace( "/api", "/iiif") + "/" + str(id) + "/manifest" # 画像なし if len(obj["o:media"]) == 0: continue new_manifest_uri = manifest_uri_prefix + \ "/" + id + "/manifest.json" medias = obj["o:media"] canvases = [] metadata = [] for key in obj: if ":" in key and "o:" not in key: values = obj[key] for value in values: metadata.append({ "label" : value["property_label"], "value" : value["@id"] if "@id" in value else value["@value"], "term" : key }) thumbnail = None for j in range(len(medias)): mid = medias[j]["@id"] mpath = "../docs/api/media/" + mid.split("/")[-1]+".json" with open(mpath) as f: mdata = json.load(f) url = mdata["o:source"] h = 1 w = 1 index = str(j+1) canvas = { "@id": manifest_uri_prefix +"/" + id + "/canvas/p"+index, "@type": "sc:Canvas", "height": h, "images": [ { "@id": manifest_uri_prefix +"/" + id + "/annotation/p"+index.zfill(4)+"-image", "@type": "oa:Annotation", "motivation": "sc:painting", "on": manifest_uri_prefix +"/" + id + "/canvas/p"+index, "resource": { "@id": url, "@type": "dctypes:Image", "format": "image/jpeg", "height": h, "width": w } } ], "label": "["+index+"]", "thumbnail": { "@id": url, }, "width": w } canvases.append(canvas) if j == 0: thumbnail = url manifest_json = { "@context": "http://iiif.io/api/presentation/2/context.json", "@id": new_manifest_uri, "@type": "sc:Manifest", "label": obj["dcterms:title"][0]["@value"], "metadata" : metadata, "thumbnail" : thumbnail, "attribution" : "東洋文庫 / Toyo Bunko", "seeAlso" : prefix + "/api/items/"+ id + ".json", "sequences": [ { "@id": manifest_uri_prefix +"/" + id + "/sequence/normal", "@type": "sc:Sequence", "canvases" : canvases } ] } if "dcterms:rights" in obj: manifest_json["license"] = obj["dcterms:rights"][0]["@id"] manifest_dir = manifest_path+"/"+id os.makedirs(manifest_dir, exist_ok=True) with open(manifest_dir+"/manifest.json", 'w') as outfile: json.dump(manifest_json, outfile, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': ')) manifest = dict() manifests.append(manifest) manifest["@id"] = new_manifest_uri manifest["@type"] = "sc:Manifest" manifest["label"] = obj["dcterms:title"][0]["@value"] manifest["thumbnail"] = thumbnail manifest["metadata"] = metadata if i == 0: collection["thumbnail"] = thumbnail ''' output_path = "../docs/iiif/collection/{}.json".format(id) fw = open(output_path, 'w') json.dump(collection, fw, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': '))
[ "na.kamura.1263@gmail.com" ]
na.kamura.1263@gmail.com
bf97ef06b952d115433a1b4263db21b5ebfb4b54
d056699ecbe8bcebf4ce63c7d590b7cb9eff6331
/old/policy.py
8b81fee7be775f47a04dbf2b39425032a9108a19
[ "MIT" ]
permissive
QuMuLab/tempopem
66258eefb194fee0969530c8618d6de0bc08aa3e
1d578d9fb6b3bc87295527b152f142fe9dcd8546
refs/heads/master
2021-05-22T17:40:51.131378
2020-04-04T15:02:29
2020-04-04T15:02:29
253,025,451
2
0
null
null
null
null
UTF-8
Python
false
false
9,344
py
import networkx as nx NODE_COUNT = 0 class PolicyNode(object): def __init__(self): global NODE_COUNT NODE_COUNT += 1 self.high = None self.low = None self.fluent = None self.action = None self.parents = [] self.hash_val = None self.score = None def is_true(self): return (self.action is not None) and (self.action is not False) def is_false(self): return False == self.action def set_high(self, high): self.high = high high.add_parent(self) def set_low(self, low): self.low = low low.add_parent(self) def add_parent(self, p): self.parents.append(p) def __repr__(self): return self.__str__() def __hash__(self): return self.id() def __cmp__(self, other): return self.__hash__() == other.__hash__() def __eq__(self, other): return self.__cmp__(other) def __neq__(self, other): return not self.__cmp__(other) class InnerNode(PolicyNode): def __init__(self, fluent): PolicyNode.__init__(self) self.fluent = fluent def label(self): return str(self.fluent) def id(self): if self.hash_val is None: self.hash_val = hash("%s/%d/%d" % (str(self.fluent), hash(self.high), hash(self.low))) return self.hash_val def __str__(self): return "(%s: %s / %s)" % (str(self.fluent), str(self.high), str(self.low)) class LeafNode(PolicyNode): def __init__(self, action): PolicyNode.__init__(self) self.action = action self.high = self self.low = self def label(self): return str(self.action) def id(self): if self.hash_val is None: self.hash_val = hash(self.label()) return self.hash_val def __str__(self): return str(self.action) FALSE = LeafNode(False) LOOKUP_TABLE = {} # Maps fg and h to the proper root NODE_LOOKUP = {} # Maps a node's id to the node itself def compute_coverage(policy, max_depth, depth): if not policy.score: if policy.high.__class__ == InnerNode: high_score = compute_coverage(policy.high, max_depth, depth+1) else: if policy.high is not FALSE: high_score = 2 ** (max_depth - depth - 1) else: high_score = 0 if policy.low.__class__ == InnerNode: low_score = compute_coverage(policy.low, max_depth, depth+1) else: if policy.low is not FALSE: low_score = 2 ** (max_depth - depth - 1) else: low_score = 0 policy.score = high_score + low_score return policy.score def generate_graph(policy): graph = nx.DiGraph() nodes = set() def build_graph(node): if node not in nodes: nodes.add(node) graph.add_node(node) if node.__class__ == InnerNode: build_graph(node.high) build_graph(node.low) if node.high == node.low: graph.add_edge(node, node.high, high = -1) else: graph.add_edge(node, node.high, high = 1) graph.add_edge(node, node.low, high = 0) build_graph(policy) return graph def generate_dot(policy, graph = None): if not graph: graph = generate_graph(policy) dot_string = "\ndigraph Policy {\n" for node in graph.nodes(): dot_string += " %d [label=\"%s\"];\n" % (hash(node), node.label()) for (u,v) in graph.edges(): if hash(u) != hash(v): is_high = graph.get_edge_data(u,v)['high'] if 0 != is_high: dot_string += " %d -> %d;\n" % (hash(u), hash(v)) if 1 != is_high: dot_string += " %d -> %d [style=dotted];\n" % (hash(u), hash(v)) dot_string += "}\n" return dot_string def generate_dump(policy, graph = None): if not graph: graph = generate_graph(policy) dump_string = "%d\n" % policy.num_fluents dump_string += "%d\n" % policy.id() dump_string += "%d\n" % graph.number_of_nodes() for node in graph.nodes(): dump_string += "%d/%s\n" % (node.id(), node.label()) edge_count = 0 edge_dump = "" for (u,v) in graph.edges(): if hash(u) != hash(v): is_high = graph.get_edge_data(u,v)['high'] if 0 != is_high: edge_dump += "%d/%d/h\n" % (u.id(), v.id()) edge_count += 1 if 1 != is_high: edge_dump += "%d/%d/l\n" % (u.id(), v.id()) edge_count += 1 dump_string += "%d\n" % edge_count dump_string += edge_dump return dump_string def generate_stats(policy, graph = None): if not graph: graph = generate_graph(policy) return (graph.number_of_nodes(), graph.number_of_edges()) def ITE(fg, h): global FALSE, LOOKUP_TABLE, NODE_LOOKUP if (fg.__class__ == InnerNode) and (h.__class__ == InnerNode): if not (fg.fluent == h.fluent): print fg.fluent print h.fluent assert fg.fluent == h.fluent # Base cases if fg.is_true(): return fg if FALSE == fg: return h if FALSE == h: return fg if fg.id() == h.id(): return h # Check hash on (fg, h) hash_val = "%d/%d" % (fg.id(), h.id()) if hash_val in LOOKUP_TABLE: return LOOKUP_TABLE[hash_val] T = ITE(fg.high, h.high) E = ITE(fg.low, h.low) ##################################################################### ## Attempt to hash the individual nodes to avoid re-creating them. ## ##################################################################### new_node_key = "%s/%d/%d" % (str(fg.fluent), hash(T), hash(E)) if new_node_key in NODE_LOOKUP: root = NODE_LOOKUP[new_node_key] else: root = InnerNode(fg.fluent) root.set_high(T) if T.id() == E.id(): root.set_low(T) else: root.set_low(E) NODE_LOOKUP[new_node_key] = root #root = InnerNode(fg.fluent) #root.set_high(T) # #if T.id() == E.id(): # root.set_low(T) #else: # root.set_low(E) # Insert (fg, h) -> root into the table LOOKUP_TABLE[hash_val] = root #print "fg: %s" % str(fg) #print "h: %s" % str(h) #print "T: %s" % str(T) #print "E: %s" % str(E) #print "ITE: %s\n" % str(root) return root def generate_primitive_policy(prec_set, ordering): unseen = prec_set.prec if not unseen: return LeafNode(prec_set.candidate) prev_f = ordering[0] current = InnerNode(prev_f) root = current for f in ordering[1:]: if prev_f in unseen: saw_previous = True unseen.remove(prev_f) else: saw_previous = False if 0 == len(unseen): act_node = LeafNode(prec_set.candidate) current.set_high(act_node) current.set_low(FALSE) return root choice = InnerNode(f) current.set_high(choice) if saw_previous: current.set_low(FALSE) else: current.set_low(choice) current = choice prev_f = f if prev_f in unseen: unseen.remove(prev_f) if 0 == len(unseen): act_node = LeafNode(prec_set.candidate) current.set_high(act_node) current.set_low(FALSE) return root print "Error: Prec set wasn't used up by the ordering: %s / %s" % (str(prec_set), str(ordering)) return None def generate_variable_ordering(reg_list, mapping): seen = set() ordering = [] for r in reg_list: for item in r: for ps in mapping[item]: new_vars = set(ps.prec) - seen ordering.extend(sorted(list(new_vars), cmp=lambda x,y: cmp(str(x), str(y)))) seen |= new_vars return ordering def generate_policy(reg_list, mapping): global LOOKUP_TABLE LOOKUP_TABLE = {} # Get the ordering ordering = generate_variable_ordering(reg_list, mapping) #print "Ordering:\n%s" % "\n".join([str(item) for item in ordering]) import sys # Generate all of the primitive policies prim_policies = [] for r in reg_list: for item in r: for ps in mapping[item]: prim_policies.append(generate_primitive_policy(ps, ordering)) #for pp in prim_policies: #print pp #print "<<<" #global NODE_COUNT #print "Node count: %d" % NODE_COUNT # Iteratively create our large policy policy = prim_policies.pop(0) print "Iteratively building the ITE..." last = 0.0 top_num = float(len(prim_policies)) while prim_policies: #print str(sys.getsizeof(prim_policies[-1])) progress = (top_num - float(len(prim_policies))) / top_num if progress + 0.1 > last: last += 0.1 print "%3.1f%% Complete" % (progress * 100) #print len(prim_policies) #print "Current: %s" % str(policy) policy = ITE(policy, prim_policies.pop(0)) print "\nNodes used: %d\n" % NODE_COUNT policy.num_fluents = len(ordering) return policy
[ "christian.muise@gmail.com" ]
christian.muise@gmail.com
4914ad00a676e04f4ad6a79cb4558ee4d81d7cf5
a61136759e6af85ca4b0a5c3e0de5885bca50406
/IndividualOptions/BarrierOptions/BarrierKnockInCallPut4.py
7f00e14186191835be9f0a4eb069eb87a14338d8
[]
no_license
JorisVlaar/F4E-Project-Part-2-Group-29
c626436ce0f557cda17377ea8b8d33f54935ff1b
7c2d28e770ab89ed8371f2c97839ba966cb7a253
refs/heads/main
2023-09-02T08:15:45.385603
2021-11-02T11:56:30
2021-11-02T11:56:30
416,730,420
0
0
null
null
null
null
UTF-8
Python
false
false
6,130
py
# A Program to find the value of an EU Call option using the binomial tree method from Tool import findStockPrices as fsp import math def find_values(prices, PExercise, option): if option == "Call": for i in range(len(prices)): prices[i] = max(0, prices[i] - PExercise) elif option == "Put": for i in range(len(prices)): prices[i] = max(0, PExercise - prices[i]) return prices def find_value(prices, periods, q, R): step = periods values = [] for i in range(periods): top = 0 for j in range(step): value = ((q * prices[top]) + ((1 - q) * prices[top + 1])) * (1 / R) values.append(value) top += 1 prices = list.copy(values) values.clear() step -= 1 return prices def find_line_position(KIPrice, PStock, u, d): position = 0 if KIPrice > PStock: while PStock * u < KIPrice: position += 1 PStock = PStock * u if KIPrice < PStock: while PStock * d > KIPrice: position += 1 PStock = PStock * d return position def find_paths(periods): values = [] previous = [] for i in range(1, periods+1): values.append(1) for j in range(len(previous)-1): values.append(previous[j]+previous[j+1]) values.append(1) previous = list.copy(values) values.clear() return previous def find_paths_via(lines, step): paths = 0 previous = [] step2 = 0 for i in range(1, int(lines) + 1): if i == 1: paths += 1 elif i == 2: for j in range(1, step + 2): paths += 1 previous.append(1) elif i > 2: for k in previous: step2 += k for j in range(0, step + 1): paths += step2 pop = previous.pop(j) previous.insert(j, step2) step2 -= pop lines -= 1 previous.clear() for i in range(1, int(lines) + 1): if i == 1: paths += 1 elif i == 2: for j in range(1, step + 2): paths += 1 previous.append(1) elif i > 2: for k in previous: step2 += k for j in range(0, step + 1): paths += step2 pop = previous.pop(j) previous.insert(j, step2) step2 -= pop return paths def some_name(prices, periods, KIPrice, PStock, linePosition): lines = int(periods/2) step = lines if periods % 2 == 0: step -= 1 for i in range(1, 1 + linePosition): if periods % 2 == 0: if i % 2 == 0: step -= 1 else: lines -= 1 else: if i % 2 == 0: lines -= 1 else: step -= 1 if lines <= 0: lines = 0 if step <= 0: step = 0 actualPrices = [] if KIPrice > PStock: index = 0 for k in prices: if k >= KIPrice: print(find_paths(periods)[index]) actualPrices.append(find_paths(periods)[index]) index += 1 linesCopy = lines for i in range(linesCopy): actualPrices.append(find_paths_via(lines, step)) index += 1 lines -= 1 step += 1 if lines == 1: step = 0 for j in range(len(actualPrices), len(prices)): actualPrices.append(0) return actualPrices elif KIPrice < PStock: index = len(prices) - 1 for k in prices: if k <= KIPrice: actualPrices.append(find_paths(periods)[index]) index -= 1 actualPrices.reverse() linesCopy = lines for i in range(linesCopy): actualPrices.append(find_paths_via(lines, step)) index -= 1 lines -= 1 step += 1 if lines == 1: step = 0 for j in range(len(actualPrices), len(prices)): actualPrices.append(0) actualPrices.reverse() return actualPrices def find_value_probability(prices, paths, pathsVia, R, periods): value = 0 path = 0 for i in paths: path += i for i in range(len(prices)): value += (prices[i] / pow(R, periods)) * (pathsVia[i]/path) return value # inputs: PStock = 41 PExercise = 37 KnockInPrice = 42 volatility = 0.4 maturity = 90 / 365 periodLength = 30 / 365 interest = 0.1 opttype = "Put" # Option Type 'C' or 'P' # computed values: periods = int(maturity / periodLength) u = math.exp(volatility * math.sqrt(periodLength)) d = 1 / u R = math.exp(interest * periodLength) q = (R - d) / (u - d) stockPrices = fsp.find_final_prices(PStock, u, d, periods) optionPayOff = find_values(list.copy(stockPrices), PExercise, opttype) print(stockPrices) print(optionPayOff) print(find_value(optionPayOff, periods, q, R)[0]) print("-------") print(some_name(stockPrices, periods, KnockInPrice, PStock, find_line_position(KnockInPrice, PStock, u, d))) print(find_value_probability(optionPayOff, find_paths(periods), some_name(stockPrices, periods, KnockInPrice, PStock, find_line_position(KnockInPrice, PStock, u, d)), R, periods)) # value = 100000000000000000000000 # periods = 5 # while periods <= 80: # print(periods) # periodLength = maturity/periods # u = math.exp(volatility * math.sqrt(periodLength)) # d = 1 / u # R = math.exp(interest * periodLength) # q = (R - d) / (u - d) # stockPrices = fsp.find_final_prices(PStock, u, d, periods) # optionPayOff = find_values(list.copy(stockPrices), PExercise, opttype) # value1 = find_value_probability(optionPayOff, find_paths(periods), some_name(stockPrices, periods, KnockInPrice, PStock, find_line_position(KnockInPrice, PStock, u, d)), R, periods) # print(value1) # if value1 > value: # value = value1 # periods += 1 # # print("-------") # print(value)
[ "j.f.vlaar@student.utwente.nl" ]
j.f.vlaar@student.utwente.nl
a86c159050ee04f45dbaea716accb29cd8f21b10
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5631572862566400_0/Python/Yaksha/C.py
42b9cbfef65ada5bb000995cbdc1565d9b560d9e
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
2,372
py
def solveEndedLoops(endedLoops): longestList = 0 reverseEndedLoops = [x[::-1] for x in endedLoops] for (index, item) in enumerate(endedLoops): if len(item) > longestList: longestList = len(item) for (index2, item2) in enumerate(reverseEndedLoops): if index == index2: continue if len(item) + len(item2) - 1 < longestList: continue if item[-1] in item2: pos = item2.index(item[-1]) newlist = item + item2[pos+1:] else: newlist = item + item2 if len(newlist) < longestList: continue if len(newlist) == len(set(newlist)): if len(newlist) > longestList: longestList = len(newlist) return longestList def solveloops(n, BFF): BFF = [-1] + BFF circularLoops = [] endedloops = [] closedPairs = [] for i in range(1, len(BFF)): loop = [i] next = BFF[i] while True: if len(loop) == 2 and next == loop[0]: closedPairs.append(loop) break if len(loop) > 2 and next == loop[0]: circularLoops.append(loop) break if len(loop) > 2 and next == loop[-2]: endedloops.append(loop) break if next in loop: break loop.append(next) next = BFF[next] maxClosedPairs = len(closedPairs) if circularLoops: maxCircurlarLoops = max([len(x) for x in circularLoops]) else: maxCircurlarLoops = 0 maxEndedLoops = solveEndedLoops(endedloops) print(closedPairs) print(circularLoops) print(endedloops) return max([maxClosedPairs, maxCircurlarLoops, maxEndedLoops]) FILENAME = "C-small-attempt2" with open(FILENAME + ".in") as infile: with open(FILENAME + ".out", 'w') as outfile: numCases = int(infile.readline()) for i in range(numCases): numKids = int(infile.readline()) bffs = infile.readline().split() bffs = [int(x) for x in bffs] outfile.write("Case #%d: %s\n" % (i + 1, solveloops(numKids, bffs)))
[ "alexandra1.back@gmail.com" ]
alexandra1.back@gmail.com
d2bd8e2345dc2cf48c72ef12d9b46d5b9429970c
50c7d7f94263b250bba1ded2b247925ff4e28cf8
/server/marsHandler.py
b96b6048794c4275cb2580e66a13e9bfd1ffe581
[ "MIT" ]
permissive
jmaggio14/goddard
8bce241ed19b27249b3707f98784bbf13c90d0ea
f34755c9fbd982b2965d9b23685df0f21ebaff08
refs/heads/master
2021-01-12T13:25:32.669157
2016-09-25T18:43:23
2016-09-25T18:43:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,779
py
# Copyright (c) 2016, Jeffrey Maggio and Joseph Bartelmo # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial # portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import threading import sys import logging from select import select sys.path.insert(0, '../mars') import run as Mars #note as long as __main__ is defined this will write a usage violation to the console MARS_EXIT_COMMAND = 'exit' class MarsThread(threading.Thread): ''' The idea here is that the client will connect And we want to keep mars chugging when the client losses connection. We want to easily reconnnect, so we stick with queues here, mars won't stop until mars is explicitly stopped or watchdog stop is triggered ''' def __init__(self, configuration, marsCommandQueue, marsConnectionQueue, marsOnlineQueue, debugEnabled = False): super(MarsThread, self).__init__() self._stop = threading.Event() self.config = configuration self.marsCommandQueue = marsCommandQueue self.marsConnectionQueue = marsConnectionQueue self.marsOnlineQueue = marsOnlineQueue self.debugEnabled = debugEnabled def run(self): Mars.run(self.config, self.marsCommandQueue, self.marsConnectionQueue, self.marsOnlineQueue, self.debugEnabled) ''' Here we are on death. Usually Because mars quit, we would expect all logging to stop, but it persists because we still have the server up. To prevent logging handlers from just getting indefinitely larger, we remove them all on quit of mars ''' debugLog = logging.getLogger('mars_logging') telemetryLog = logging.getLogger('telemetry_logging') debugLog.handlers = [] telemetryLog.handlers = [] def stop(self): self.marsCommandQueue.put(MARS_EXIT_COMMAND)
[ "joebartelmo@gmail.com" ]
joebartelmo@gmail.com
604a43b12f74c9ec9bf3bce3255baee25371282e
d445c40666165b0fea9b7cb00de882b5aaa7882a
/src/py/wxyz_core/src/wxyz/core/widget_json.py
cb607e01ded9e0ce61065d5b17a69e59b9b01c42
[ "BSD-3-Clause" ]
permissive
nrbgt/wxyz
9e5d995b4eb76ddbdd459940ecefe6d5a5c326d3
663cf6593f4c0ca12f7b94b61e34c0a8d3cbcdfd
refs/heads/master
2023-05-13T07:55:19.518188
2020-02-23T02:07:17
2020-02-23T02:07:17
296,402,747
1
0
BSD-3-Clause
2020-09-17T17:56:30
2020-09-17T17:56:29
null
UTF-8
Python
false
false
1,454
py
""" Widgets for working with JSON """ # pylint: disable=no-self-use import json import jsonpointer import jsonschema from .base import Fn, T, W @W.register class JSON(Fn): """ A JSON parsing functional widget """ _model_name = T.Unicode("JSONModel").tag(sync=True) value = T.Union( [T.Dict(), T.List(), T.Unicode(), T.Int(), T.Float()], allow_none=True ).tag(sync=True) def the_function(self, source): """ parse some JSON """ return json.loads(source) @W.register class JSONPointer(Fn): """ A JSON pointer resolver """ _model_name = T.Unicode("JSONPointerModel").tag(sync=True) source = T.Dict(allow_none=True).tag(sync=True) pointer = T.Unicode(allow_none=True).tag(sync=True) _observed_traits = ["source", "pointer"] def the_function(self, source, pointer): """ point at some json """ return jsonpointer.resolve_pointer(source, pointer) @W.register class JSONSchema(Fn): """ A JSON schema validator """ _model_name = T.Unicode("JSONSchemaModel").tag(sync=True) source = T.Dict(allow_none=True).tag(sync=True) schema = T.Dict(allow_none=True).tag(sync=True) value = T.Dict(allow_none=True).tag(sync=True) _observed_traits = ["source", "schema"] def the_function(self, source, schema): """ validate some JSON """ jsonschema.validate(source, schema) return source
[ "nick.bollweg@gmail.com" ]
nick.bollweg@gmail.com
c1aaf6c50d07538695d2394c07416afb1c37b478
44ff65fdce9ba204bbc1673c2bec1cc46e70bda5
/projeto/dimensoes/migrations/0001_initial.py
c2c840d1fcaf8141e410eff1c5508d32a38bb974
[]
no_license
leopesi/pool_budget
4c0c7ac7b718bacc6312585d3519497ac9c641d9
30e81e07a91659a16e84cd04eff20ea4e6a9c6dd
refs/heads/main
2022-12-13T08:54:50.762224
2022-03-22T00:56:16
2022-03-22T00:56:16
249,777,827
1
0
null
2022-12-08T03:52:48
2020-03-24T17:47:39
Python
UTF-8
Python
false
false
3,597
py
# Generated by Django 4.0.3 on 2022-03-22 00:33 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='ClienteModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome', models.CharField(max_length=30)), ('sobrenome', models.CharField(max_length=30)), ('estado', models.CharField(blank=True, max_length=15)), ('cidade', models.CharField(blank=True, max_length=20)), ('bairro', models.CharField(blank=True, max_length=20)), ('rua', models.CharField(blank=True, max_length=100)), ('numero_casa', models.CharField(blank=True, max_length=10)), ('cep', models.CharField(blank=True, max_length=20)), ('telefone', models.IntegerField(blank=True, default=0)), ('email', models.EmailField(blank=True, help_text='Ex. clinte@gmail.com', max_length=50)), ], options={ 'ordering': ['nome', 'sobrenome'], }, ), migrations.CreateModel( name='DimensaoModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comprimento', models.FloatField(default=0, help_text='Ex. 8.00', max_length=3)), ('largura', models.FloatField(default=0, help_text='Ex. 4.00', max_length=5)), ('prof_inicial', models.FloatField(max_length=5)), ('prof_final', models.FloatField(default=0, help_text='Ex. 1.40', max_length=3)), ('largura_calcada', models.FloatField(blank=True, default=1, help_text='Ex. 1.00', max_length=3)), ('espessura', models.CharField(max_length=3)), ('fornecedor', models.CharField(max_length=8)), ('profundidade_media', models.CharField(default=0, max_length=25)), ('area_calcada', models.CharField(max_length=25)), ('perimetro', models.CharField(max_length=25)), ('m2_facial', models.CharField(max_length=25)), ('m2_parede', models.CharField(max_length=25)), ('m2_total', models.CharField(max_length=25)), ('m3_total', models.CharField(max_length=25)), ('m3_real', models.CharField(max_length=25)), ('filtro', models.CharField(max_length=30)), ('motobomba', models.CharField(max_length=30)), ('tampa_casa_maquinas', models.CharField(max_length=30)), ('sacos_areia', models.CharField(max_length=30)), ('status', models.CharField(blank=True, choices=[('Em negociação', 'Em negociação'), ('Contrato', 'Contrato'), ('Encerrado', 'Encerrado')], default='Em negociação', help_text='Status do Orçamento', max_length=15)), ('data', models.DateTimeField(blank=True, null=True)), ('cliente', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='dimensoes.clientemodel')), ('usuario', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "leopesi@yahoo.com.br" ]
leopesi@yahoo.com.br
fb77ea07cc1f0e776b2b58f3e6ea4ece9b9419b9
6afa0b5bc5c50ed4d90800a7eae118976f47d9f7
/lib/core/engines/censys.py
0d731cd7f784d2438bda73d08c19472683a81a64
[]
no_license
qq431169079/webHunter
7efccb39cc4e91d8eae2e25ded0a24c3084bab92
bc3cbed64ef71b6fac4c209797c222c8768f4723
refs/heads/master
2020-04-24T22:37:09.512532
2016-01-18T04:21:57
2016-01-18T04:21:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,809
py
#!/usr/bin/env python # coding: utf-8 import re import urlparse import thirdparty.requests as requests from lib.core.engines import Engine from lib.core.engines import EngineError from lib.core.engines import EngineConnectionError from lib.utils.agents import random_user_agent from lib.utils.common import dict2query from lib.utils.common import query2dict from lib.utils.common import patch_url from lib.parse.confparse import conf _NAME = 'Censys' _SITE = 'https://www.censys.io/' _DESC = ('Censys Search, a search engine that allows computer scientists to ' 'ask questions about the devices and networks that compose the Internet.') class Censys(Engine): def __init__(self): self.maximum = 1000 self.pmax = 25 self.sreq = requests.Session() self.sreq.headers['User-Agent'] = random_user_agent() super(Censys, self).__init__(_NAME, _SITE, _DESC) def _init(self): try: self.sreq.get(self._site) except Exception, ex: err = 'Failed to connect "%s", ' % self._site err += str(ex) raise EngineConnectionError(err) def _is_over_limit(self, link, limit): q = urlparse.urlparse(link).query d = query2dict(q) return (int(d['page']) * int(self.pmax)) <= limit @staticmethod def _fetch_next_page(prev_link, content): q = urlparse.urlparse(prev_link).query d = query2dict(q) prev_page = d.get('page', '') if prev_page: match = re.search(r'<a href=(?P<next>[^">]*)>' + str(int(prev_page)+1) + r'</a>', content) next_link = match.group('next') if match else '' next_link = patch_url(prev_link, next_link) else: next_link = '' return next_link def _fetch_page_content(self, link): try: content = self.sreq.get(link).content except any: content = '' # err = str(ex) return content def _process_redirection(self, res): # TODO pass def search(self, keyword, limit, search_type=''): self._init() try: self._login() except any: pass if limit > self.maximum: limit = self.maximum d = { 'q': keyword, 'page': str(1), } q = dict2query(d) if search_type in ['ipv4', 'domain']: link = urlparse.urljoin((self._site, ('/%s?' % search_type) + q)) else: link = urlparse.urljoin(self._site, '/domain?' + q) while self._is_over_limit(link, limit): print link content = self._fetch_page_content(link) link = self._fetch_next_page(link, content) if not link: break yield content def _login(self): username = conf.get('censys', 'username') password = conf.get('censys', 'password') def fetch_csrf_token(login_url): _res = self.sreq.get(login_url) match = re.search(r'name="csrf_token" value="(?P<csrf_token>[^">].*)"', _res.content) _csrf_token = match.group('csrf_token') if match else '' match = re.search(r'name="came_from" value= "(?P<came_from>[^">].*)"', _res.content) _came_from = match.group('came_from') if match else '' return _csrf_token, _came_from i_url = 'https://www.censys.io/login' csrf_token, came_from = fetch_csrf_token(i_url) if csrf_token and came_from: post = { 'csrf_token': csrf_token, 'came_from': came_from, 'login': username, 'password': password } self.sreq.post(i_url, data=post)
[ "rickchen.vip@gmail.com" ]
rickchen.vip@gmail.com
afa1946040cf0c093e0c91e5c89128b08e964dd3
ac62bd27af62efb8d8310a71016532d9b9177e54
/new_project.py
1375c03b01eb07afd5a0b68b8cf87cfa1bd233c8
[ "Zlib" ]
permissive
lilingfeng-2016/glfm
fcd840da07fdcaa6141d3d0f28b78a1c24b53e8d
3b62129e519eba758cc42e3da08ec12ff214a70a
refs/heads/master
2021-01-11T18:45:06.292753
2017-01-15T21:21:43
2017-01-15T21:21:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,099
py
#!/usr/bin/python import getpass, os, re, shutil, sys print "" print "Create a new GLFM project" print "" # # Gets a line of input. The input is stripped of spaces. # If the input is empty, default_value is returned # def get_input(prompt, default_value): value = raw_input(prompt + " [" + default_value + "]: ") if not value: return default_value else: value = value.strip() if len(value) == 0: return default_value else: return value def name_safe(value): return re.match(r'^[a-zA-Z\d_]*$', value) is not None def package_safe(value): # From http://stackoverflow.com/questions/5205339/regular-expression-matching-fully-qualified-java-classes return re.match(r'^([a-zA-Z_$][a-zA-Z\d_$]*\.)*[a-zA-Z_$][a-zA-Z\d_$]*$', value) is not None # # Read EMSCRIPTEN_ROOT from ~/.emscripten # dot_emscripten = os.path.expanduser("~/.emscripten") if os.path.exists(dot_emscripten): exec(open(dot_emscripten, 'r').read()) if 'EMSCRIPTEN_ROOT' in globals(): emsdk_path = os.path.dirname(os.path.dirname(EMSCRIPTEN_ROOT)) else: print "Warning: Emscripten does not appear to be installed" emsdk_path = "~/emsdk_portable" # # Get project variables # while True: app_name = get_input("App name (without spaces)", "GLFMApp") if name_safe(app_name): break else: print "Illegal name! The app name can only contain letters, numbers, and an underscore." while True: package_name = get_input("App package name", "com." + getpass.getuser() + "." + app_name) if package_safe(package_name): break else: print "Illegal package name! The app name can only contain letters and numbers," print "and each component must start with a letter." emsdk_path = get_input("Emscripten emsdk path", emsdk_path) # # Find a default output dir that doesn't already exist (so that nothing is overridden) # output_dir = "../" + app_name output_dir_n = 1 while os.path.exists(output_dir): output_dir_n += 1 output_dir = "../" + app_name + `output_dir_n` output_dir = get_input("Project path", output_dir) print "" if os.path.exists(output_dir): print "Project path '" + output_dir + "' already exists. Exiting." exit(1) # # Confirm creation # print "Project summary:" print " App name:", app_name print " App package name:", package_name print " Emscripten emsdk path:", emsdk_path print " Project path:", output_dir confirm = get_input("Create (y/n)?", "y") if confirm != "Y" and confirm != "y": print "" print "Project creation canceled" exit(1) #################################################################################################### ignored_files = (".DS_Store", "Thumbs.db", "Desktop.ini") ignored_paths = ( "example/platform/android/app/build", "example/platform/android/.gradle", "example/platform/android/.idea", "example/platform/emscripten/bin", "example/platform/ios/GLFMExample.xcodeproj/project.xcworkspace", "example/platform/ios/GLFMExample.xcodeproj/xcuserdata", ) def do_name_replace(s): s = s.replace("GLFMExample", app_name) return s def do_replace(s): s = s.replace("GLFMExample", app_name) s = s.replace("com.brackeen.glfmexample", package_name) s = s.replace("com.brackeen.${PRODUCT_NAME:rfc1034identifier}", package_name) return s def copy_android_buildfile(src_file, dst_file): with open(dst_file, "wt") as fout: with open(src_file, "rt") as fin: for line in fin: line = line.replace("../../../../include", "../../../glfm/include"); line = line.replace("../../../../src", "../../../glfm/src"); fout.write(do_replace(line)) def copy_emscripten_makefile(src_file, dst_file): with open(dst_file, "wt") as fout: with open(src_file, "rt") as fin: for line in fin: if line.startswith("GLFM_ROOT :="): fout.write("GLFM_ROOT := ../../glfm\n") elif line.startswith("APP_ROOT :="): fout.write("APP_ROOT := ../..\n") else: fout.write(do_replace(line)) def copy_ios_project_file(src_file, dst_file): with open(dst_file, "wt") as fout: with open(src_file, "rt") as fin: for line in fin: line = line.replace("path = ../../..;", "path = ../../glfm;") fout.write(do_replace(line)) def copy_generic_project_file(src_file, dst_file): with open(dst_file, "wt") as fout: with open(src_file, "rt") as fin: for line in fin: fout.write(do_replace(line)) def copy_template(src_dir, dst_dir): if src_dir in ignored_paths: return if not os.path.exists(dst_dir): os.makedirs(dst_dir) for name in os.listdir(src_dir): if name in ignored_files: continue src = os.path.join(src_dir, name) dst = os.path.join(dst_dir, do_name_replace(name)) if os.path.isfile(src): if name == "Makefile": copy_emscripten_makefile(src, dst) elif name == "build.gradle": copy_android_buildfile(src, dst) elif name == "project.pbxproj": copy_ios_project_file(src, dst) elif (name == "AndroidManifest.xml" or name == "strings.xml" or name.endswith(".plist") or name.endswith(".java")): copy_generic_project_file(src, dst) else: shutil.copy2(src, dst) elif os.path.isdir(src): copy_template(src, dst) os.makedirs(output_dir) # Copy GLFM shutil.copytree("include", output_dir + "/glfm/include") shutil.copytree("src", output_dir + "/glfm/src") # Copy example shutil.copytree("example/src", output_dir + "/src") shutil.copytree("example/assets", output_dir + "/assets") # Copy project files copy_template("example/platform/android", output_dir + "/platform/android"); copy_template("example/platform/emscripten", output_dir + "/platform/emscripten"); # iOS: package names require dash instead of underscore package_name = package_name.replace("_", "-") copy_template("example/platform/ios", output_dir + "/platform/ios"); # Special case: create a Makefile.local for emscripten with open(output_dir + "/platform/emscripten/Makefile.local", "wt") as fout: fout.write("EMSCRIPTEN_PATH = " + emsdk_path) # Woop! print "" print "Done."
[ "brackeen@gmail.com" ]
brackeen@gmail.com
c6156546305358f3903c211d335238a40cae8906
19c4de6bfbd8536aeb323b52fa54d9b73a0efe5f
/for.py
191ae0a262fcc8a252b1dac8c44825be9989bbe2
[]
no_license
GiovanniSinosini/cycle_condictions
a39e51ada7931342e51200a2adc3268506d7cc94
7ee645668e8f376a8570d9a90a7d253cbe021ecc
refs/heads/master
2021-02-08T05:52:10.505497
2020-03-01T08:54:03
2020-03-01T08:54:03
244,116,120
2
0
null
null
null
null
UTF-8
Python
false
false
430
py
def main(): # Read number ''' print("Calculate the multiplication table of a number") numero = 0 while numero <=0: numero = int(input("Enter number: ")) if numero <= 0: print ("Error: Number must be greather than zero!") for i in range(1, 11): res = numero * i print("%d x %d = %d" % (numero, i, res)) ''' for i in range(10, 0, -1): print(i) main()
[ "carvalho.sino@gmail.com" ]
carvalho.sino@gmail.com
b3eadaa9fcf766d67cddeb553303e33ebfc63f42
b696b2e86ba95f2922383c8e7cf59aa6939e2196
/polls/models.py
a9494fae6072be3fa41db3e82b1fa2c74834b5c5
[]
no_license
Ihsara/form_example_django
14756d7a7b0ad2de5dd0b0b815c45c27e7fce334
bce7d454e142a1c1f10600251ccc95488f3035ff
refs/heads/master
2020-05-03T12:43:40.524198
2019-03-31T02:52:06
2019-03-31T02:52:06
178,634,179
0
0
null
null
null
null
UTF-8
Python
false
false
640
py
import datetime from django.db import models from django.utils import timezone class Question(models.Model): question_text = models.CharField(max_length=200) pub_date = models.DateTimeField('date published') def __str__(self): return self.question_text class Choice(models.Model): question = models.ForeignKey(Question, on_delete=models.CASCADE) choice_text = models.CharField(max_length=200) votes = models.IntegerField(default=0) def __str__(self): return self.choice_text def was_published_recently(self): return self.pub_date >= timezone.now() - datetime.timedelta(days=1)
[ "longchau21@gmail.com" ]
longchau21@gmail.com
840c1e455245c805ebe1b93b7d10959995f0bd81
d030630f6579d836243b794c6769af0452e03f22
/Notes/Workshop_0/Exercise - Number Guessing Game.py
f277f0fbccb3776e503cc5cafc4dfc6fd5dc57fd
[]
no_license
LinesKing/System-Optimisation-Machine-Learning-ELEN90088_2021_SM1
6625de1d99f7d4cdc25ced6346aa4f59f0e9c59e
f7c65df658e7fe66c63d4ed35071ff13ad2b6a5f
refs/heads/main
2023-06-25T03:22:20.503772
2021-07-29T02:20:53
2021-07-29T02:20:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
990
py
import random target = random.random() print("target= {}".format(target)) max = 1 # initial maximum min = 0 # initial minimum guess = (max + min)/2 # First guess count = 0 # guessing times bias = abs(target - guess) # guessing bias tolerance = 1.0e-06 # The number depending on a solver's stopping criteria. while bias > tolerance: if guess < target: print("guess {} = {} is smaller than target".format(count,guess)) min = guess # If the guess number is small, assign the result of this guess to min as the next minimum guess = (guess + max)/2 count += 1 bias = abs(target - guess) # guessing bias else: print("guess {} = {} is bigger than target".format(count,guess)) max = guess# If the guess number is large, assign the result of this guess to max as the next maximum guess = (min + guess)/2 count += 1 bias = abs(target - guess) # guessing bias print("Total guessing times are {}".format(count))
[ "lineslk97@gmail.com" ]
lineslk97@gmail.com
245bea7ae2c8f01f18c4cbc04c206d1ac32509b4
f7b935819a37b944ae160cad3faba042c477196b
/movie/admin.py
e2f054cef92f7722f9218de2691fcc2c44ef3bdf
[]
no_license
greyfivenine/cinemasite
d98e7d6a4ff41002c4dc7add92301a23fe0354b5
bf1ae48d48c26d5eb7bf2db4e993642ac42d2376
refs/heads/master
2020-05-23T22:37:34.771285
2019-05-16T09:21:15
2019-05-16T09:21:15
186,977,537
0
0
null
null
null
null
UTF-8
Python
false
false
2,501
py
from django.contrib import admin from .models import Movie, About, Comment, Schedule, Place from .forms import AdminScheduleForm # Register your models here. class CommentFilter(admin.SimpleListFilter): title = 'Фильм' parameter_name = 'movie_slug' def lookups(self, request, model_admin): movies = set([movie for movie in Movie.objects.filter(soon=False)]) return [(m.slug, m.title) for m in movies] def queryset(self, request, queryset): if self.value(): return queryset.filter(comment_film__slug__iexact=self.value()) class PlaceFilter(admin.SimpleListFilter): title = 'Фильм' parameter_name = 'movie_slug' def lookups(self, request, model_admin): movies = set([movie for movie in Movie.objects.filter(soon=False)]) return [(m.slug, m.title) for m in movies] def queryset(self, request, queryset): if self.value(): return queryset.filter(schedule__movie_name__slug__iexact=self.value()) class ScheduleInline(admin.TabularInline): model = Schedule class MovieAdmin(admin.ModelAdmin): class Meta: model = Movie prepopulated_fields = {'slug': ('title',)} list_display = ['title', 'country', 'genre', 'duration', 'soon'] inlines = [ ScheduleInline, ] class CommentAdmin(admin.ModelAdmin): class Meta: model = Comment list_display = ['comment_author', 'comment_film', 'comment_date'] list_filter = (CommentFilter, 'comment_author',) class ScheduleAdmin(admin.ModelAdmin): class Meta: model = Schedule form = AdminScheduleForm list_display = ['movie_name', 'movie_date', 'movie_price', 'movie_format'] class PlaceAdmin(admin.ModelAdmin): class Meta: model = Place list_filter = (PlaceFilter, 'hall_row', 'hall_place',) search_fields = ['schedule__movie_name__title', '=hall_row', '=hall_place'] list_display = ['get_movie_name', 'get_movie_date', 'hall_row', 'hall_place', 'is_bought'] def get_movie_name(self, obj): return obj.schedule.movie_name.title get_movie_name.short_description = 'Название фильма' def get_movie_date(self, obj): return obj.schedule.movie_date get_movie_date.short_description = 'Дата сеанса' admin.site.register(Movie, MovieAdmin) admin.site.register(About) admin.site.register(Comment, CommentAdmin) admin.site.register(Schedule, ScheduleAdmin) admin.site.register(Place, PlaceAdmin)
[ "mustakimov.99@gmail.com" ]
mustakimov.99@gmail.com
1f44c10841bb3f121b2f3a9f454497acd09bae7b
e1d7a04507712e69408a7ae1ec33061bd4c691db
/venv/Lib/site-packages/pvlib/pvsystem.py
8a20e5fdeff9c954edd7dbbb4611731e94ac306b
[]
no_license
Mervolt/pp
5d0d70e6e70004284816cae37eac038332a892fe
ce0371c79183af8bb3856671aad5b55a81380b4c
refs/heads/master
2023-06-25T19:17:27.756515
2021-07-31T23:04:10
2021-07-31T23:04:10
363,100,023
0
0
null
null
null
null
UTF-8
Python
false
false
85,009
py
""" The ``pvsystem`` module contains functions for modeling the output and performance of PV modules and inverters. """ from collections import OrderedDict import io import os from urllib.request import urlopen import warnings import numpy as np import pandas as pd from pvlib._deprecation import deprecated from pvlib import (atmosphere, iam, inverter, irradiance, singlediode as _singlediode, temperature) from pvlib.tools import _build_kwargs from pvlib.location import Location from pvlib._deprecation import pvlibDeprecationWarning # a dict of required parameter names for each DC power model _DC_MODEL_PARAMS = { 'sapm': { 'A0', 'A1', 'A2', 'A3', 'A4', 'B0', 'B1', 'B2', 'B3', 'B4', 'B5', 'C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'Isco', 'Impo', 'Voco', 'Vmpo', 'Aisc', 'Aimp', 'Bvoco', 'Mbvoc', 'Bvmpo', 'Mbvmp', 'N', 'Cells_in_Series', 'IXO', 'IXXO', 'FD'}, 'desoto': { 'alpha_sc', 'a_ref', 'I_L_ref', 'I_o_ref', 'R_sh_ref', 'R_s'}, 'cec': { 'alpha_sc', 'a_ref', 'I_L_ref', 'I_o_ref', 'R_sh_ref', 'R_s', 'Adjust'}, 'pvsyst': { 'gamma_ref', 'mu_gamma', 'I_L_ref', 'I_o_ref', 'R_sh_ref', 'R_sh_0', 'R_s', 'alpha_sc', 'EgRef', 'cells_in_series'}, 'singlediode': { 'alpha_sc', 'a_ref', 'I_L_ref', 'I_o_ref', 'R_sh_ref', 'R_s'}, 'pvwatts': {'pdc0', 'gamma_pdc'} } def _combine_localized_attributes(pvsystem=None, location=None, **kwargs): """ Get and combine attributes from the pvsystem and/or location with the rest of the kwargs. """ if pvsystem is not None: pv_dict = pvsystem.__dict__ else: pv_dict = {} if location is not None: loc_dict = location.__dict__ else: loc_dict = {} new_kwargs = dict( list(pv_dict.items()) + list(loc_dict.items()) + list(kwargs.items()) ) return new_kwargs # not sure if this belongs in the pvsystem module. # maybe something more like core.py? It may eventually grow to # import a lot more functionality from other modules. class PVSystem: """ The PVSystem class defines a standard set of PV system attributes and modeling functions. This class describes the collection and interactions of PV system components rather than an installed system on the ground. It is typically used in combination with :py:class:`~pvlib.location.Location` and :py:class:`~pvlib.modelchain.ModelChain` objects. The class supports basic system topologies consisting of: * `N` total modules arranged in series (`modules_per_string=N`, `strings_per_inverter=1`). * `M` total modules arranged in parallel (`modules_per_string=1`, `strings_per_inverter=M`). * `NxM` total modules arranged in `M` strings of `N` modules each (`modules_per_string=N`, `strings_per_inverter=M`). The class is complementary to the module-level functions. The attributes should generally be things that don't change about the system, such the type of module and the inverter. The instance methods accept arguments for things that do change, such as irradiance and temperature. Parameters ---------- surface_tilt: float or array-like, default 0 Surface tilt angles in decimal degrees. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) surface_azimuth: float or array-like, default 180 Azimuth angle of the module surface. North=0, East=90, South=180, West=270. albedo : None or float, default None The ground albedo. If ``None``, will attempt to use ``surface_type`` and ``irradiance.SURFACE_ALBEDOS`` to lookup albedo. surface_type : None or string, default None The ground surface type. See ``irradiance.SURFACE_ALBEDOS`` for valid values. module : None or string, default None The model name of the modules. May be used to look up the module_parameters dictionary via some other method. module_type : None or string, default 'glass_polymer' Describes the module's construction. Valid strings are 'glass_polymer' and 'glass_glass'. Used for cell and module temperature calculations. module_parameters : None, dict or Series, default None Module parameters as defined by the SAPM, CEC, or other. temperature_model_parameters : None, dict or Series, default None. Temperature model parameters as defined by the SAPM, Pvsyst, or other. modules_per_string: int or float, default 1 See system topology discussion above. strings_per_inverter: int or float, default 1 See system topology discussion above. inverter : None or string, default None The model name of the inverters. May be used to look up the inverter_parameters dictionary via some other method. inverter_parameters : None, dict or Series, default None Inverter parameters as defined by the SAPM, CEC, or other. racking_model : None or string, default 'open_rack' Valid strings are 'open_rack', 'close_mount', and 'insulated_back'. Used to identify a parameter set for the SAPM cell temperature model. losses_parameters : None, dict or Series, default None Losses parameters as defined by PVWatts or other. name : None or string, default None **kwargs Arbitrary keyword arguments. Included for compatibility, but not used. See also -------- pvlib.location.Location pvlib.tracking.SingleAxisTracker """ def __init__(self, surface_tilt=0, surface_azimuth=180, albedo=None, surface_type=None, module=None, module_type=None, module_parameters=None, temperature_model_parameters=None, modules_per_string=1, strings_per_inverter=1, inverter=None, inverter_parameters=None, racking_model=None, losses_parameters=None, name=None, **kwargs): self.surface_tilt = surface_tilt self.surface_azimuth = surface_azimuth # could tie these together with @property self.surface_type = surface_type if albedo is None: self.albedo = irradiance.SURFACE_ALBEDOS.get(surface_type, 0.25) else: self.albedo = albedo # could tie these together with @property self.module = module if module_parameters is None: self.module_parameters = {} else: self.module_parameters = module_parameters self.module_type = module_type self.racking_model = racking_model if temperature_model_parameters is None: self.temperature_model_parameters = \ self._infer_temperature_model_params() else: self.temperature_model_parameters = temperature_model_parameters self.modules_per_string = modules_per_string self.strings_per_inverter = strings_per_inverter self.inverter = inverter if inverter_parameters is None: self.inverter_parameters = {} else: self.inverter_parameters = inverter_parameters if losses_parameters is None: self.losses_parameters = {} else: self.losses_parameters = losses_parameters self.name = name if kwargs: warnings.warn( 'Arbitrary PVSystem kwargs are deprecated and will be ' 'removed in v0.9', pvlibDeprecationWarning ) def __repr__(self): attrs = ['name', 'surface_tilt', 'surface_azimuth', 'module', 'inverter', 'albedo', 'racking_model', 'module_type', 'temperature_model_parameters'] return ('PVSystem:\n ' + '\n '.join( f'{attr}: {getattr(self, attr)}' for attr in attrs)) def get_aoi(self, solar_zenith, solar_azimuth): """Get the angle of incidence on the system. Parameters ---------- solar_zenith : float or Series. Solar zenith angle. solar_azimuth : float or Series. Solar azimuth angle. Returns ------- aoi : Series The angle of incidence """ aoi = irradiance.aoi(self.surface_tilt, self.surface_azimuth, solar_zenith, solar_azimuth) return aoi def get_irradiance(self, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=None, airmass=None, model='haydavies', **kwargs): """ Uses the :py:func:`irradiance.get_total_irradiance` function to calculate the plane of array irradiance components on a tilted surface defined by ``self.surface_tilt``, ``self.surface_azimuth``, and ``self.albedo``. Parameters ---------- solar_zenith : float or Series. Solar zenith angle. solar_azimuth : float or Series. Solar azimuth angle. dni : float or Series Direct Normal Irradiance ghi : float or Series Global horizontal irradiance dhi : float or Series Diffuse horizontal irradiance dni_extra : None, float or Series, default None Extraterrestrial direct normal irradiance airmass : None, float or Series, default None Airmass model : String, default 'haydavies' Irradiance model. kwargs Extra parameters passed to :func:`irradiance.get_total_irradiance`. Returns ------- poa_irradiance : DataFrame Column names are: ``total, beam, sky, ground``. """ # not needed for all models, but this is easier if dni_extra is None: dni_extra = irradiance.get_extra_radiation(solar_zenith.index) if airmass is None: airmass = atmosphere.get_relative_airmass(solar_zenith) return irradiance.get_total_irradiance(self.surface_tilt, self.surface_azimuth, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=dni_extra, airmass=airmass, model=model, albedo=self.albedo, **kwargs) def get_iam(self, aoi, iam_model='physical'): """ Determine the incidence angle modifier using the method specified by ``iam_model``. Parameters for the selected IAM model are expected to be in ``PVSystem.module_parameters``. Default parameters are available for the 'physical', 'ashrae' and 'martin_ruiz' models. Parameters ---------- aoi : numeric The angle of incidence in degrees. aoi_model : string, default 'physical' The IAM model to be used. Valid strings are 'physical', 'ashrae', 'martin_ruiz' and 'sapm'. Returns ------- iam : numeric The AOI modifier. Raises ------ ValueError if `iam_model` is not a valid model name. """ model = iam_model.lower() if model in ['ashrae', 'physical', 'martin_ruiz']: param_names = iam._IAM_MODEL_PARAMS[model] kwargs = _build_kwargs(param_names, self.module_parameters) func = getattr(iam, model) return func(aoi, **kwargs) elif model == 'sapm': return iam.sapm(aoi, self.module_parameters) elif model == 'interp': raise ValueError(model + ' is not implemented as an IAM model' 'option for PVSystem') else: raise ValueError(model + ' is not a valid IAM model') def calcparams_desoto(self, effective_irradiance, temp_cell, **kwargs): """ Use the :py:func:`calcparams_desoto` function, the input parameters and ``self.module_parameters`` to calculate the module currents and resistances. Parameters ---------- effective_irradiance : numeric The irradiance (W/m2) that is converted to photocurrent. temp_cell : float or Series The average cell temperature of cells within a module in C. **kwargs See pvsystem.calcparams_desoto for details Returns ------- See pvsystem.calcparams_desoto for details """ kwargs = _build_kwargs(['a_ref', 'I_L_ref', 'I_o_ref', 'R_sh_ref', 'R_s', 'alpha_sc', 'EgRef', 'dEgdT', 'irrad_ref', 'temp_ref'], self.module_parameters) return calcparams_desoto(effective_irradiance, temp_cell, **kwargs) def calcparams_cec(self, effective_irradiance, temp_cell, **kwargs): """ Use the :py:func:`calcparams_cec` function, the input parameters and ``self.module_parameters`` to calculate the module currents and resistances. Parameters ---------- effective_irradiance : numeric The irradiance (W/m2) that is converted to photocurrent. temp_cell : float or Series The average cell temperature of cells within a module in C. **kwargs See pvsystem.calcparams_cec for details Returns ------- See pvsystem.calcparams_cec for details """ kwargs = _build_kwargs(['a_ref', 'I_L_ref', 'I_o_ref', 'R_sh_ref', 'R_s', 'alpha_sc', 'Adjust', 'EgRef', 'dEgdT', 'irrad_ref', 'temp_ref'], self.module_parameters) return calcparams_cec(effective_irradiance, temp_cell, **kwargs) def calcparams_pvsyst(self, effective_irradiance, temp_cell): """ Use the :py:func:`calcparams_pvsyst` function, the input parameters and ``self.module_parameters`` to calculate the module currents and resistances. Parameters ---------- effective_irradiance : numeric The irradiance (W/m2) that is converted to photocurrent. temp_cell : float or Series The average cell temperature of cells within a module in C. Returns ------- See pvsystem.calcparams_pvsyst for details """ kwargs = _build_kwargs(['gamma_ref', 'mu_gamma', 'I_L_ref', 'I_o_ref', 'R_sh_ref', 'R_sh_0', 'R_sh_exp', 'R_s', 'alpha_sc', 'EgRef', 'irrad_ref', 'temp_ref', 'cells_in_series'], self.module_parameters) return calcparams_pvsyst(effective_irradiance, temp_cell, **kwargs) def sapm(self, effective_irradiance, temp_cell, **kwargs): """ Use the :py:func:`sapm` function, the input parameters, and ``self.module_parameters`` to calculate Voc, Isc, Ix, Ixx, Vmp, and Imp. Parameters ---------- effective_irradiance : numeric The irradiance (W/m2) that is converted to photocurrent. temp_cell : float or Series The average cell temperature of cells within a module in C. kwargs See pvsystem.sapm for details Returns ------- See pvsystem.sapm for details """ return sapm(effective_irradiance, temp_cell, self.module_parameters) def sapm_celltemp(self, poa_global, temp_air, wind_speed): """Uses :py:func:`temperature.sapm_cell` to calculate cell temperatures. Parameters ---------- poa_global : numeric Total incident irradiance in W/m^2. temp_air : numeric Ambient dry bulb temperature in degrees C. wind_speed : numeric Wind speed in m/s at a height of 10 meters. Returns ------- numeric, values in degrees C. """ # warn user about change in default behavior in 0.9. if (self.temperature_model_parameters == {} and self.module_type is None and self.racking_model is None): warnings.warn( 'temperature_model_parameters, racking_model, and module_type ' 'are not specified. Reverting to deprecated default: SAPM ' 'cell temperature model parameters for a glass/glass module ' 'in open racking. In v0.9, temperature_model_parameters or a ' 'valid combination of racking_model and module_type will be ' 'required.', pvlibDeprecationWarning) params = temperature._temperature_model_params( 'sapm', 'open_rack_glass_glass') self.temperature_model_parameters = params kwargs = _build_kwargs(['a', 'b', 'deltaT'], self.temperature_model_parameters) return temperature.sapm_cell(poa_global, temp_air, wind_speed, **kwargs) def _infer_temperature_model_params(self): # try to infer temperature model parameters from from racking_model # and module_type param_set = f'{self.racking_model}_{self.module_type}' if param_set in temperature.TEMPERATURE_MODEL_PARAMETERS['sapm']: return temperature._temperature_model_params('sapm', param_set) elif 'freestanding' in param_set: return temperature._temperature_model_params('pvsyst', 'freestanding') elif 'insulated' in param_set: # after SAPM to avoid confusing keys return temperature._temperature_model_params('pvsyst', 'insulated') else: return {} def sapm_spectral_loss(self, airmass_absolute): """ Use the :py:func:`sapm_spectral_loss` function, the input parameters, and ``self.module_parameters`` to calculate F1. Parameters ---------- airmass_absolute : numeric Absolute airmass. Returns ------- F1 : numeric The SAPM spectral loss coefficient. """ return sapm_spectral_loss(airmass_absolute, self.module_parameters) def sapm_effective_irradiance(self, poa_direct, poa_diffuse, airmass_absolute, aoi, reference_irradiance=1000): """ Use the :py:func:`sapm_effective_irradiance` function, the input parameters, and ``self.module_parameters`` to calculate effective irradiance. Parameters ---------- poa_direct : numeric The direct irradiance incident upon the module. [W/m2] poa_diffuse : numeric The diffuse irradiance incident on module. [W/m2] airmass_absolute : numeric Absolute airmass. [unitless] aoi : numeric Angle of incidence. [degrees] Returns ------- effective_irradiance : numeric The SAPM effective irradiance. [W/m2] """ return sapm_effective_irradiance( poa_direct, poa_diffuse, airmass_absolute, aoi, self.module_parameters) def pvsyst_celltemp(self, poa_global, temp_air, wind_speed=1.0): """Uses :py:func:`temperature.pvsyst_cell` to calculate cell temperature. Parameters ---------- poa_global : numeric Total incident irradiance in W/m^2. temp_air : numeric Ambient dry bulb temperature in degrees C. wind_speed : numeric, default 1.0 Wind speed in m/s measured at the same height for which the wind loss factor was determined. The default value is 1.0, which is the wind speed at module height used to determine NOCT. Returns ------- numeric, values in degrees C. """ kwargs = _build_kwargs(['eta_m', 'alpha_absorption'], self.module_parameters) kwargs.update(_build_kwargs(['u_c', 'u_v'], self.temperature_model_parameters)) return temperature.pvsyst_cell(poa_global, temp_air, wind_speed, **kwargs) def faiman_celltemp(self, poa_global, temp_air, wind_speed=1.0): """ Use :py:func:`temperature.faiman` to calculate cell temperature. Parameters ---------- poa_global : numeric Total incident irradiance [W/m^2]. temp_air : numeric Ambient dry bulb temperature [C]. wind_speed : numeric, default 1.0 Wind speed in m/s measured at the same height for which the wind loss factor was determined. The default value 1.0 m/s is the wind speed at module height used to determine NOCT. [m/s] Returns ------- numeric, values in degrees C. """ kwargs = _build_kwargs(['u0', 'u1'], self.temperature_model_parameters) return temperature.faiman(poa_global, temp_air, wind_speed, **kwargs) def fuentes_celltemp(self, poa_global, temp_air, wind_speed): """ Use :py:func:`temperature.fuentes` to calculate cell temperature. Parameters ---------- poa_global : pandas Series Total incident irradiance [W/m^2] temp_air : pandas Series Ambient dry bulb temperature [C] wind_speed : pandas Series Wind speed [m/s] Returns ------- temperature_cell : pandas Series The modeled cell temperature [C] Notes ----- The Fuentes thermal model uses the module surface tilt for convection modeling. The SAM implementation of PVWatts hardcodes the surface tilt value at 30 degrees, ignoring whatever value is used for irradiance transposition. This method defaults to using ``self.surface_tilt``, but if you want to match the PVWatts behavior, you can override it by including a ``surface_tilt`` value in ``temperature_model_parameters``. """ # default to using the PVSystem attribute, but allow user to # override with a custom surface_tilt value kwargs = {'surface_tilt': self.surface_tilt} temp_model_kwargs = _build_kwargs([ 'noct_installed', 'module_height', 'wind_height', 'emissivity', 'absorption', 'surface_tilt', 'module_width', 'module_length'], self.temperature_model_parameters) kwargs.update(temp_model_kwargs) return temperature.fuentes(poa_global, temp_air, wind_speed, **kwargs) def first_solar_spectral_loss(self, pw, airmass_absolute): """ Use the :py:func:`first_solar_spectral_correction` function to calculate the spectral loss modifier. The model coefficients are specific to the module's cell type, and are determined by searching for one of the following keys in self.module_parameters (in order): - 'first_solar_spectral_coefficients' (user-supplied coefficients) - 'Technology' - a string describing the cell type, can be read from the CEC module parameter database - 'Material' - a string describing the cell type, can be read from the Sandia module database. Parameters ---------- pw : array-like atmospheric precipitable water (cm). airmass_absolute : array-like absolute (pressure corrected) airmass. Returns ------- modifier: array-like spectral mismatch factor (unitless) which can be multiplied with broadband irradiance reaching a module's cells to estimate effective irradiance, i.e., the irradiance that is converted to electrical current. """ if 'first_solar_spectral_coefficients' in \ self.module_parameters.keys(): coefficients = \ self.module_parameters['first_solar_spectral_coefficients'] module_type = None else: module_type = self._infer_cell_type() coefficients = None return atmosphere.first_solar_spectral_correction(pw, airmass_absolute, module_type, coefficients) def _infer_cell_type(self): """ Examines module_parameters and maps the Technology key for the CEC database and the Material key for the Sandia database to a common list of strings for cell type. Returns ------- cell_type: str """ _cell_type_dict = {'Multi-c-Si': 'multisi', 'Mono-c-Si': 'monosi', 'Thin Film': 'cigs', 'a-Si/nc': 'asi', 'CIS': 'cigs', 'CIGS': 'cigs', '1-a-Si': 'asi', 'CdTe': 'cdte', 'a-Si': 'asi', '2-a-Si': None, '3-a-Si': None, 'HIT-Si': 'monosi', 'mc-Si': 'multisi', 'c-Si': 'multisi', 'Si-Film': 'asi', 'EFG mc-Si': 'multisi', 'GaAs': None, 'a-Si / mono-Si': 'monosi'} if 'Technology' in self.module_parameters.keys(): # CEC module parameter set cell_type = _cell_type_dict[self.module_parameters['Technology']] elif 'Material' in self.module_parameters.keys(): # Sandia module parameter set cell_type = _cell_type_dict[self.module_parameters['Material']] else: cell_type = None return cell_type def singlediode(self, photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, ivcurve_pnts=None): """Wrapper around the :py:func:`pvlib.pvsystem.singlediode` function. See :py:func:`pvsystem.singlediode` for details """ return singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, ivcurve_pnts=ivcurve_pnts) def i_from_v(self, resistance_shunt, resistance_series, nNsVth, voltage, saturation_current, photocurrent): """Wrapper around the :py:func:`pvlib.pvsystem.i_from_v` function. See :py:func:`pvsystem.i_from_v` for details """ return i_from_v(resistance_shunt, resistance_series, nNsVth, voltage, saturation_current, photocurrent) # inverter now specified by self.inverter_parameters def snlinverter(self, v_dc, p_dc): """Uses :py:func:`pvlib.inverter.sandia` to calculate AC power based on ``self.inverter_parameters`` and the input voltage and power. See :py:func:`pvlib.inverter.sandia` for details """ return inverter.sandia(v_dc, p_dc, self.inverter_parameters) def adrinverter(self, v_dc, p_dc): """Uses :py:func:`pvlib.inverter.adr` to calculate AC power based on ``self.inverter_parameters`` and the input voltage and power. See :py:func:`pvlib.inverter.adr` for details """ return inverter.adr(v_dc, p_dc, self.inverter_parameters) def scale_voltage_current_power(self, data): """ Scales the voltage, current, and power of the `data` DataFrame by `self.modules_per_string` and `self.strings_per_inverter`. Parameters ---------- data: DataFrame Must contain columns `'v_mp', 'v_oc', 'i_mp' ,'i_x', 'i_xx', 'i_sc', 'p_mp'`. Returns ------- scaled_data: DataFrame A scaled copy of the input data. """ return scale_voltage_current_power(data, voltage=self.modules_per_string, current=self.strings_per_inverter) def pvwatts_dc(self, g_poa_effective, temp_cell): """ Calcuates DC power according to the PVWatts model using :py:func:`pvlib.pvsystem.pvwatts_dc`, `self.module_parameters['pdc0']`, and `self.module_parameters['gamma_pdc']`. See :py:func:`pvlib.pvsystem.pvwatts_dc` for details. """ kwargs = _build_kwargs(['temp_ref'], self.module_parameters) return pvwatts_dc(g_poa_effective, temp_cell, self.module_parameters['pdc0'], self.module_parameters['gamma_pdc'], **kwargs) def pvwatts_losses(self): """ Calculates DC power losses according the PVwatts model using :py:func:`pvlib.pvsystem.pvwatts_losses` and ``self.losses_parameters``. See :py:func:`pvlib.pvsystem.pvwatts_losses` for details. """ kwargs = _build_kwargs(['soiling', 'shading', 'snow', 'mismatch', 'wiring', 'connections', 'lid', 'nameplate_rating', 'age', 'availability'], self.losses_parameters) return pvwatts_losses(**kwargs) def pvwatts_ac(self, pdc): """ Calculates AC power according to the PVWatts model using :py:func:`pvlib.inverter.pvwatts`, `self.module_parameters["pdc0"]`, and `eta_inv_nom=self.inverter_parameters["eta_inv_nom"]`. See :py:func:`pvlib.inverter.pvwatts` for details. """ kwargs = _build_kwargs(['eta_inv_nom', 'eta_inv_ref'], self.inverter_parameters) return inverter.pvwatts(pdc, self.inverter_parameters['pdc0'], **kwargs) @deprecated('0.8', alternative='PVSystem, Location, and ModelChain', name='PVSystem.localize', removal='0.9') def localize(self, location=None, latitude=None, longitude=None, **kwargs): """ Creates a LocalizedPVSystem object using this object and location data. Must supply either location object or latitude, longitude, and any location kwargs Parameters ---------- location : None or Location, default None latitude : None or float, default None longitude : None or float, default None **kwargs : see Location Returns ------- localized_system : LocalizedPVSystem """ if location is None: location = Location(latitude, longitude, **kwargs) return LocalizedPVSystem(pvsystem=self, location=location) @deprecated('0.8', alternative='PVSystem, Location, and ModelChain', name='LocalizedPVSystem', removal='0.9') class LocalizedPVSystem(PVSystem, Location): """ The LocalizedPVSystem class defines a standard set of installed PV system attributes and modeling functions. This class combines the attributes and methods of the PVSystem and Location classes. The LocalizedPVSystem may have bugs due to the difficulty of robustly implementing multiple inheritance. See :py:class:`~pvlib.modelchain.ModelChain` for an alternative paradigm for modeling PV systems at specific locations. """ def __init__(self, pvsystem=None, location=None, **kwargs): new_kwargs = _combine_localized_attributes( pvsystem=pvsystem, location=location, **kwargs, ) PVSystem.__init__(self, **new_kwargs) Location.__init__(self, **new_kwargs) def __repr__(self): attrs = ['name', 'latitude', 'longitude', 'altitude', 'tz', 'surface_tilt', 'surface_azimuth', 'module', 'inverter', 'albedo', 'racking_model', 'module_type', 'temperature_model_parameters'] return ('LocalizedPVSystem:\n ' + '\n '.join( f'{attr}: {getattr(self, attr)}' for attr in attrs)) def calcparams_desoto(effective_irradiance, temp_cell, alpha_sc, a_ref, I_L_ref, I_o_ref, R_sh_ref, R_s, EgRef=1.121, dEgdT=-0.0002677, irrad_ref=1000, temp_ref=25): ''' Calculates five parameter values for the single diode equation at effective irradiance and cell temperature using the De Soto et al. model described in [1]_. The five values returned by calcparams_desoto can be used by singlediode to calculate an IV curve. Parameters ---------- effective_irradiance : numeric The irradiance (W/m2) that is converted to photocurrent. temp_cell : numeric The average cell temperature of cells within a module in C. alpha_sc : float The short-circuit current temperature coefficient of the module in units of A/C. a_ref : float The product of the usual diode ideality factor (n, unitless), number of cells in series (Ns), and cell thermal voltage at reference conditions, in units of V. I_L_ref : float The light-generated current (or photocurrent) at reference conditions, in amperes. I_o_ref : float The dark or diode reverse saturation current at reference conditions, in amperes. R_sh_ref : float The shunt resistance at reference conditions, in ohms. R_s : float The series resistance at reference conditions, in ohms. EgRef : float The energy bandgap at reference temperature in units of eV. 1.121 eV for crystalline silicon. EgRef must be >0. For parameters from the SAM CEC module database, EgRef=1.121 is implicit for all cell types in the parameter estimation algorithm used by NREL. dEgdT : float The temperature dependence of the energy bandgap at reference conditions in units of 1/K. May be either a scalar value (e.g. -0.0002677 as in [1]_) or a DataFrame (this may be useful if dEgdT is a modeled as a function of temperature). For parameters from the SAM CEC module database, dEgdT=-0.0002677 is implicit for all cell types in the parameter estimation algorithm used by NREL. irrad_ref : float (optional, default=1000) Reference irradiance in W/m^2. temp_ref : float (optional, default=25) Reference cell temperature in C. Returns ------- Tuple of the following results: photocurrent : numeric Light-generated current in amperes saturation_current : numeric Diode saturation curent in amperes resistance_series : float Series resistance in ohms resistance_shunt : numeric Shunt resistance in ohms nNsVth : numeric The product of the usual diode ideality factor (n, unitless), number of cells in series (Ns), and cell thermal voltage at specified effective irradiance and cell temperature. References ---------- .. [1] W. De Soto et al., "Improvement and validation of a model for photovoltaic array performance", Solar Energy, vol 80, pp. 78-88, 2006. .. [2] System Advisor Model web page. https://sam.nrel.gov. .. [3] A. Dobos, "An Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model", Journal of Solar Energy Engineering, vol 134, 2012. .. [4] O. Madelung, "Semiconductors: Data Handbook, 3rd ed." ISBN 3-540-40488-0 See Also -------- singlediode retrieve_sam Notes ----- If the reference parameters in the ModuleParameters struct are read from a database or library of parameters (e.g. System Advisor Model), it is important to use the same EgRef and dEgdT values that were used to generate the reference parameters, regardless of the actual bandgap characteristics of the semiconductor. For example, in the case of the System Advisor Model library, created as described in [3], EgRef and dEgdT for all modules were 1.121 and -0.0002677, respectively. This table of reference bandgap energies (EgRef), bandgap energy temperature dependence (dEgdT), and "typical" airmass response (M) is provided purely as reference to those who may generate their own reference module parameters (a_ref, IL_ref, I0_ref, etc.) based upon the various PV semiconductors. Again, we stress the importance of using identical EgRef and dEgdT when generation reference parameters and modifying the reference parameters (for irradiance, temperature, and airmass) per DeSoto's equations. Crystalline Silicon (Si): * EgRef = 1.121 * dEgdT = -0.0002677 >>> M = np.polyval([-1.26E-4, 2.816E-3, -0.024459, 0.086257, 0.9181], ... AMa) # doctest: +SKIP Source: [1] Cadmium Telluride (CdTe): * EgRef = 1.475 * dEgdT = -0.0003 >>> M = np.polyval([-2.46E-5, 9.607E-4, -0.0134, 0.0716, 0.9196], ... AMa) # doctest: +SKIP Source: [4] Copper Indium diSelenide (CIS): * EgRef = 1.010 * dEgdT = -0.00011 >>> M = np.polyval([-3.74E-5, 0.00125, -0.01462, 0.0718, 0.9210], ... AMa) # doctest: +SKIP Source: [4] Copper Indium Gallium diSelenide (CIGS): * EgRef = 1.15 * dEgdT = ???? >>> M = np.polyval([-9.07E-5, 0.0022, -0.0202, 0.0652, 0.9417], ... AMa) # doctest: +SKIP Source: Wikipedia Gallium Arsenide (GaAs): * EgRef = 1.424 * dEgdT = -0.000433 * M = unknown Source: [4] ''' # Boltzmann constant in eV/K k = 8.617332478e-05 # reference temperature Tref_K = temp_ref + 273.15 Tcell_K = temp_cell + 273.15 E_g = EgRef * (1 + dEgdT*(Tcell_K - Tref_K)) nNsVth = a_ref * (Tcell_K / Tref_K) # In the equation for IL, the single factor effective_irradiance is # used, in place of the product S*M in [1]. effective_irradiance is # equivalent to the product of S (irradiance reaching a module's cells) * # M (spectral adjustment factor) as described in [1]. IL = effective_irradiance / irrad_ref * \ (I_L_ref + alpha_sc * (Tcell_K - Tref_K)) I0 = (I_o_ref * ((Tcell_K / Tref_K) ** 3) * (np.exp(EgRef / (k*(Tref_K)) - (E_g / (k*(Tcell_K)))))) # Note that the equation for Rsh differs from [1]. In [1] Rsh is given as # Rsh = Rsh_ref * (S_ref / S) where S is broadband irradiance reaching # the module's cells. If desired this model behavior can be duplicated # by applying reflection and soiling losses to broadband plane of array # irradiance and not applying a spectral loss modifier, i.e., # spectral_modifier = 1.0. # use errstate to silence divide by warning with np.errstate(divide='ignore'): Rsh = R_sh_ref * (irrad_ref / effective_irradiance) Rs = R_s return IL, I0, Rs, Rsh, nNsVth def calcparams_cec(effective_irradiance, temp_cell, alpha_sc, a_ref, I_L_ref, I_o_ref, R_sh_ref, R_s, Adjust, EgRef=1.121, dEgdT=-0.0002677, irrad_ref=1000, temp_ref=25): ''' Calculates five parameter values for the single diode equation at effective irradiance and cell temperature using the CEC model. The CEC model [1]_ differs from the De soto et al. model [3]_ by the parameter Adjust. The five values returned by calcparams_cec can be used by singlediode to calculate an IV curve. Parameters ---------- effective_irradiance : numeric The irradiance (W/m2) that is converted to photocurrent. temp_cell : numeric The average cell temperature of cells within a module in C. alpha_sc : float The short-circuit current temperature coefficient of the module in units of A/C. a_ref : float The product of the usual diode ideality factor (n, unitless), number of cells in series (Ns), and cell thermal voltage at reference conditions, in units of V. I_L_ref : float The light-generated current (or photocurrent) at reference conditions, in amperes. I_o_ref : float The dark or diode reverse saturation current at reference conditions, in amperes. R_sh_ref : float The shunt resistance at reference conditions, in ohms. R_s : float The series resistance at reference conditions, in ohms. Adjust : float The adjustment to the temperature coefficient for short circuit current, in percent EgRef : float The energy bandgap at reference temperature in units of eV. 1.121 eV for crystalline silicon. EgRef must be >0. For parameters from the SAM CEC module database, EgRef=1.121 is implicit for all cell types in the parameter estimation algorithm used by NREL. dEgdT : float The temperature dependence of the energy bandgap at reference conditions in units of 1/K. May be either a scalar value (e.g. -0.0002677 as in [3]) or a DataFrame (this may be useful if dEgdT is a modeled as a function of temperature). For parameters from the SAM CEC module database, dEgdT=-0.0002677 is implicit for all cell types in the parameter estimation algorithm used by NREL. irrad_ref : float (optional, default=1000) Reference irradiance in W/m^2. temp_ref : float (optional, default=25) Reference cell temperature in C. Returns ------- Tuple of the following results: photocurrent : numeric Light-generated current in amperes saturation_current : numeric Diode saturation curent in amperes resistance_series : float Series resistance in ohms resistance_shunt : numeric Shunt resistance in ohms nNsVth : numeric The product of the usual diode ideality factor (n, unitless), number of cells in series (Ns), and cell thermal voltage at specified effective irradiance and cell temperature. References ---------- .. [1] A. Dobos, "An Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model", Journal of Solar Energy Engineering, vol 134, 2012. .. [2] System Advisor Model web page. https://sam.nrel.gov. .. [3] W. De Soto et al., "Improvement and validation of a model for photovoltaic array performance", Solar Energy, vol 80, pp. 78-88, 2006. See Also -------- calcparams_desoto singlediode retrieve_sam ''' # pass adjusted temperature coefficient to desoto return calcparams_desoto(effective_irradiance, temp_cell, alpha_sc*(1.0 - Adjust/100), a_ref, I_L_ref, I_o_ref, R_sh_ref, R_s, EgRef=1.121, dEgdT=-0.0002677, irrad_ref=1000, temp_ref=25) def calcparams_pvsyst(effective_irradiance, temp_cell, alpha_sc, gamma_ref, mu_gamma, I_L_ref, I_o_ref, R_sh_ref, R_sh_0, R_s, cells_in_series, R_sh_exp=5.5, EgRef=1.121, irrad_ref=1000, temp_ref=25): ''' Calculates five parameter values for the single diode equation at effective irradiance and cell temperature using the PVsyst v6 model. The PVsyst v6 model is described in [1]_, [2]_, [3]_. The five values returned by calcparams_pvsyst can be used by singlediode to calculate an IV curve. Parameters ---------- effective_irradiance : numeric The irradiance (W/m2) that is converted to photocurrent. temp_cell : numeric The average cell temperature of cells within a module in C. alpha_sc : float The short-circuit current temperature coefficient of the module in units of A/C. gamma_ref : float The diode ideality factor mu_gamma : float The temperature coefficient for the diode ideality factor, 1/K I_L_ref : float The light-generated current (or photocurrent) at reference conditions, in amperes. I_o_ref : float The dark or diode reverse saturation current at reference conditions, in amperes. R_sh_ref : float The shunt resistance at reference conditions, in ohms. R_sh_0 : float The shunt resistance at zero irradiance conditions, in ohms. R_s : float The series resistance at reference conditions, in ohms. cells_in_series : integer The number of cells connected in series. R_sh_exp : float The exponent in the equation for shunt resistance, unitless. Defaults to 5.5. EgRef : float The energy bandgap at reference temperature in units of eV. 1.121 eV for crystalline silicon. EgRef must be >0. irrad_ref : float (optional, default=1000) Reference irradiance in W/m^2. temp_ref : float (optional, default=25) Reference cell temperature in C. Returns ------- Tuple of the following results: photocurrent : numeric Light-generated current in amperes saturation_current : numeric Diode saturation current in amperes resistance_series : float Series resistance in ohms resistance_shunt : numeric Shunt resistance in ohms nNsVth : numeric The product of the usual diode ideality factor (n, unitless), number of cells in series (Ns), and cell thermal voltage at specified effective irradiance and cell temperature. References ---------- .. [1] K. Sauer, T. Roessler, C. W. Hansen, Modeling the Irradiance and Temperature Dependence of Photovoltaic Modules in PVsyst, IEEE Journal of Photovoltaics v5(1), January 2015. .. [2] A. Mermoud, PV modules modelling, Presentation at the 2nd PV Performance Modeling Workshop, Santa Clara, CA, May 2013 .. [3] A. Mermoud, T. Lejeune, Performance Assessment of a Simulation Model for PV modules of any available technology, 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, Sept. 2010 See Also -------- calcparams_desoto singlediode ''' # Boltzmann constant in J/K k = 1.38064852e-23 # elementary charge in coulomb q = 1.6021766e-19 # reference temperature Tref_K = temp_ref + 273.15 Tcell_K = temp_cell + 273.15 gamma = gamma_ref + mu_gamma * (Tcell_K - Tref_K) nNsVth = gamma * k / q * cells_in_series * Tcell_K IL = effective_irradiance / irrad_ref * \ (I_L_ref + alpha_sc * (Tcell_K - Tref_K)) I0 = I_o_ref * ((Tcell_K / Tref_K) ** 3) * \ (np.exp((q * EgRef) / (k * gamma) * (1 / Tref_K - 1 / Tcell_K))) Rsh_tmp = \ (R_sh_ref - R_sh_0 * np.exp(-R_sh_exp)) / (1.0 - np.exp(-R_sh_exp)) Rsh_base = np.maximum(0.0, Rsh_tmp) Rsh = Rsh_base + (R_sh_0 - Rsh_base) * \ np.exp(-R_sh_exp * effective_irradiance / irrad_ref) Rs = R_s return IL, I0, Rs, Rsh, nNsVth def retrieve_sam(name=None, path=None): ''' Retrieve latest module and inverter info from a local file or the SAM website. This function will retrieve either: * CEC module database * Sandia Module database * CEC Inverter database * Anton Driesse Inverter database and return it as a pandas DataFrame. Parameters ---------- name : None or string, default None Name can be one of: * 'CECMod' - returns the CEC module database * 'CECInverter' - returns the CEC Inverter database * 'SandiaInverter' - returns the CEC Inverter database (CEC is only current inverter db available; tag kept for backwards compatibility) * 'SandiaMod' - returns the Sandia Module database * 'ADRInverter' - returns the ADR Inverter database path : None or string, default None Path to the SAM file. May also be a URL. Returns ------- samfile : DataFrame A DataFrame containing all the elements of the desired database. Each column represents a module or inverter, and a specific dataset can be retrieved by the command Raises ------ ValueError If no name or path is provided. Notes ----- Files available at https://github.com/NREL/SAM/tree/develop/deploy/libraries Documentation for module and inverter data sets: https://sam.nrel.gov/photovoltaic/pv-sub-page-2.html Examples -------- >>> from pvlib import pvsystem >>> invdb = pvsystem.retrieve_sam('CECInverter') >>> inverter = invdb.AE_Solar_Energy__AE6_0__277V__277V__CEC_2012_ >>> inverter Vac 277.000000 Paco 6000.000000 Pdco 6165.670000 Vdco 361.123000 Pso 36.792300 C0 -0.000002 C1 -0.000047 C2 -0.001861 C3 0.000721 Pnt 0.070000 Vdcmax 600.000000 Idcmax 32.000000 Mppt_low 200.000000 Mppt_high 500.000000 Name: AE_Solar_Energy__AE6_0__277V__277V__CEC_2012_, dtype: float64 ''' if name is not None: name = name.lower() data_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'data') if name == 'cecmod': csvdata = os.path.join( data_path, 'sam-library-cec-modules-2019-03-05.csv') elif name == 'sandiamod': csvdata = os.path.join( data_path, 'sam-library-sandia-modules-2015-6-30.csv') elif name == 'adrinverter': csvdata = os.path.join(data_path, 'adr-library-2013-10-01.csv') elif name in ['cecinverter', 'sandiainverter']: # Allowing either, to provide for old code, # while aligning with current expectations csvdata = os.path.join( data_path, 'sam-library-cec-inverters-2019-03-05.csv') else: raise ValueError(f'invalid name {name}') elif path is not None: if path.startswith('http'): response = urlopen(path) csvdata = io.StringIO(response.read().decode(errors='ignore')) else: csvdata = path elif name is None and path is None: raise ValueError("A name or path must be provided!") return _parse_raw_sam_df(csvdata) def _normalize_sam_product_names(names): ''' Replace special characters within the product names to make them more suitable for use as Dataframe column names. ''' # Contributed by Anton Driesse (@adriesse), PV Performance Labs. July, 2019 import warnings BAD_CHARS = ' -.()[]:+/",' GOOD_CHARS = '____________' mapping = str.maketrans(BAD_CHARS, GOOD_CHARS) names = pd.Series(data=names) norm_names = names.str.translate(mapping) n_duplicates = names.duplicated().sum() if n_duplicates > 0: warnings.warn('Original names contain %d duplicate(s).' % n_duplicates) n_duplicates = norm_names.duplicated().sum() if n_duplicates > 0: warnings.warn( 'Normalized names contain %d duplicate(s).' % n_duplicates) return norm_names.values def _parse_raw_sam_df(csvdata): df = pd.read_csv(csvdata, index_col=0, skiprows=[1, 2]) df.columns = df.columns.str.replace(' ', '_') df.index = _normalize_sam_product_names(df.index) df = df.transpose() if 'ADRCoefficients' in df.index: ad_ce = 'ADRCoefficients' # for each inverter, parses a string of coefficients like # ' 1.33, 2.11, 3.12' into a list containing floats: # [1.33, 2.11, 3.12] df.loc[ad_ce] = df.loc[ad_ce].map(lambda x: list( map(float, x.strip(' []').split()))) return df def sapm(effective_irradiance, temp_cell, module): ''' The Sandia PV Array Performance Model (SAPM) generates 5 points on a PV module's I-V curve (Voc, Isc, Ix, Ixx, Vmp/Imp) according to SAND2004-3535. Assumes a reference cell temperature of 25 C. Parameters ---------- effective_irradiance : numeric Irradiance reaching the module's cells, after reflections and adjustment for spectrum. [W/m2] temp_cell : numeric Cell temperature [C]. module : dict-like A dict or Series defining the SAPM parameters. See the notes section for more details. Returns ------- A DataFrame with the columns: * i_sc : Short-circuit current (A) * i_mp : Current at the maximum-power point (A) * v_oc : Open-circuit voltage (V) * v_mp : Voltage at maximum-power point (V) * p_mp : Power at maximum-power point (W) * i_x : Current at module V = 0.5Voc, defines 4th point on I-V curve for modeling curve shape * i_xx : Current at module V = 0.5(Voc+Vmp), defines 5th point on I-V curve for modeling curve shape Notes ----- The SAPM parameters which are required in ``module`` are listed in the following table. The Sandia module database contains parameter values for a limited set of modules. The CEC module database does not contain these parameters. Both databases can be accessed using :py:func:`retrieve_sam`. ================ ======================================================== Key Description ================ ======================================================== A0-A4 The airmass coefficients used in calculating effective irradiance B0-B5 The angle of incidence coefficients used in calculating effective irradiance C0-C7 The empirically determined coefficients relating Imp, Vmp, Ix, and Ixx to effective irradiance Isco Short circuit current at reference condition (amps) Impo Maximum power current at reference condition (amps) Voco Open circuit voltage at reference condition (amps) Vmpo Maximum power voltage at reference condition (amps) Aisc Short circuit current temperature coefficient at reference condition (1/C) Aimp Maximum power current temperature coefficient at reference condition (1/C) Bvoco Open circuit voltage temperature coefficient at reference condition (V/C) Mbvoc Coefficient providing the irradiance dependence for the BetaVoc temperature coefficient at reference irradiance (V/C) Bvmpo Maximum power voltage temperature coefficient at reference condition Mbvmp Coefficient providing the irradiance dependence for the BetaVmp temperature coefficient at reference irradiance (V/C) N Empirically determined "diode factor" (dimensionless) Cells_in_Series Number of cells in series in a module's cell string(s) IXO Ix at reference conditions IXXO Ixx at reference conditions FD Fraction of diffuse irradiance used by module ================ ======================================================== References ---------- .. [1] King, D. et al, 2004, "Sandia Photovoltaic Array Performance Model", SAND Report 3535, Sandia National Laboratories, Albuquerque, NM. See Also -------- retrieve_sam pvlib.temperature.sapm_cell pvlib.temperature.sapm_module ''' # TODO: someday, change temp_ref and irrad_ref to reference_temperature and # reference_irradiance and expose temp_ref = 25 irrad_ref = 1000 q = 1.60218e-19 # Elementary charge in units of coulombs kb = 1.38066e-23 # Boltzmann's constant in units of J/K # avoid problem with integer input Ee = np.array(effective_irradiance, dtype='float64') / irrad_ref # set up masking for 0, positive, and nan inputs Ee_gt_0 = np.full_like(Ee, False, dtype='bool') Ee_eq_0 = np.full_like(Ee, False, dtype='bool') notnan = ~np.isnan(Ee) np.greater(Ee, 0, where=notnan, out=Ee_gt_0) np.equal(Ee, 0, where=notnan, out=Ee_eq_0) Bvmpo = module['Bvmpo'] + module['Mbvmp']*(1 - Ee) Bvoco = module['Bvoco'] + module['Mbvoc']*(1 - Ee) delta = module['N'] * kb * (temp_cell + 273.15) / q # avoid repeated computation logEe = np.full_like(Ee, np.nan) np.log(Ee, where=Ee_gt_0, out=logEe) logEe = np.where(Ee_eq_0, -np.inf, logEe) # avoid repeated __getitem__ cells_in_series = module['Cells_in_Series'] out = OrderedDict() out['i_sc'] = ( module['Isco'] * Ee * (1 + module['Aisc']*(temp_cell - temp_ref))) out['i_mp'] = ( module['Impo'] * (module['C0']*Ee + module['C1']*(Ee**2)) * (1 + module['Aimp']*(temp_cell - temp_ref))) out['v_oc'] = np.maximum(0, ( module['Voco'] + cells_in_series * delta * logEe + Bvoco*(temp_cell - temp_ref))) out['v_mp'] = np.maximum(0, ( module['Vmpo'] + module['C2'] * cells_in_series * delta * logEe + module['C3'] * cells_in_series * ((delta * logEe) ** 2) + Bvmpo*(temp_cell - temp_ref))) out['p_mp'] = out['i_mp'] * out['v_mp'] out['i_x'] = ( module['IXO'] * (module['C4']*Ee + module['C5']*(Ee**2)) * (1 + module['Aisc']*(temp_cell - temp_ref))) # the Ixx calculation in King 2004 has a typo (mixes up Aisc and Aimp) out['i_xx'] = ( module['IXXO'] * (module['C6']*Ee + module['C7']*(Ee**2)) * (1 + module['Aisc']*(temp_cell - temp_ref))) if isinstance(out['i_sc'], pd.Series): out = pd.DataFrame(out) return out def sapm_spectral_loss(airmass_absolute, module): """ Calculates the SAPM spectral loss coefficient, F1. Parameters ---------- airmass_absolute : numeric Absolute airmass module : dict-like A dict, Series, or DataFrame defining the SAPM performance parameters. See the :py:func:`sapm` notes section for more details. Returns ------- F1 : numeric The SAPM spectral loss coefficient. Notes ----- nan airmass values will result in 0 output. """ am_coeff = [module['A4'], module['A3'], module['A2'], module['A1'], module['A0']] spectral_loss = np.polyval(am_coeff, airmass_absolute) spectral_loss = np.where(np.isnan(spectral_loss), 0, spectral_loss) spectral_loss = np.maximum(0, spectral_loss) if isinstance(airmass_absolute, pd.Series): spectral_loss = pd.Series(spectral_loss, airmass_absolute.index) return spectral_loss def sapm_effective_irradiance(poa_direct, poa_diffuse, airmass_absolute, aoi, module): r""" Calculates the SAPM effective irradiance using the SAPM spectral loss and SAPM angle of incidence loss functions. Parameters ---------- poa_direct : numeric The direct irradiance incident upon the module. [W/m2] poa_diffuse : numeric The diffuse irradiance incident on module. [W/m2] airmass_absolute : numeric Absolute airmass. [unitless] aoi : numeric Angle of incidence. [degrees] module : dict-like A dict, Series, or DataFrame defining the SAPM performance parameters. See the :py:func:`sapm` notes section for more details. Returns ------- effective_irradiance : numeric Effective irradiance accounting for reflections and spectral content. [W/m2] Notes ----- The SAPM model for effective irradiance [1]_ translates broadband direct and diffuse irradiance on the plane of array to the irradiance absorbed by a module's cells. The model is .. math:: `Ee = f_1(AM_a) (E_b f_2(AOI) + f_d E_d)` where :math:`Ee` is effective irradiance (W/m2), :math:`f_1` is a fourth degree polynomial in air mass :math:`AM_a`, :math:`E_b` is beam (direct) irradiance on the plane of array, :math:`E_d` is diffuse irradiance on the plane of array, :math:`f_2` is a fifth degree polynomial in the angle of incidence :math:`AOI`, and :math:`f_d` is the fraction of diffuse irradiance on the plane of array that is not reflected away. References ---------- .. [1] D. King et al, "Sandia Photovoltaic Array Performance Model", SAND2004-3535, Sandia National Laboratories, Albuquerque, NM See also -------- pvlib.iam.sapm pvlib.pvsystem.sapm_spectral_loss pvlib.pvsystem.sapm """ F1 = sapm_spectral_loss(airmass_absolute, module) F2 = iam.sapm(aoi, module) Ee = F1 * (poa_direct * F2 + module['FD'] * poa_diffuse) return Ee def singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, ivcurve_pnts=None, method='lambertw'): r""" Solve the single-diode equation to obtain a photovoltaic IV curve. Solves the single diode equation [1]_ .. math:: I = I_L - I_0 \left[ \exp \left(\frac{V+I R_s}{n N_s V_{th}} \right)-1 \right] - \frac{V + I R_s}{R_{sh}} for :math:`I` and :math:`V` when given :math:`I_L, I_0, R_s, R_{sh},` and :math:`n N_s V_{th}` which are described later. Returns a DataFrame which contains the 5 points on the I-V curve specified in [3]_. If all :math:`I_L, I_0, R_s, R_{sh},` and :math:`n N_s V_{th}` are scalar, a single curve is returned, if any are Series (of the same length), multiple IV curves are calculated. The input parameters can be calculated from meteorological data using a function for a single diode model, e.g., :py:func:`~pvlib.pvsystem.calcparams_desoto`. Parameters ---------- photocurrent : numeric Light-generated current :math:`I_L` (photocurrent) ``0 <= photocurrent``. [A] saturation_current : numeric Diode saturation :math:`I_0` current under desired IV curve conditions. ``0 < saturation_current``. [A] resistance_series : numeric Series resistance :math:`R_s` under desired IV curve conditions. ``0 <= resistance_series < numpy.inf``. [ohm] resistance_shunt : numeric Shunt resistance :math:`R_{sh}` under desired IV curve conditions. ``0 < resistance_shunt <= numpy.inf``. [ohm] nNsVth : numeric The product of three components: 1) the usual diode ideality factor :math:`n`, 2) the number of cells in series :math:`N_s`, and 3) the cell thermal voltage :math:`V_{th}`. The thermal voltage of the cell (in volts) may be calculated as :math:`k_B T_c / q`, where :math:`k_B` is Boltzmann's constant (J/K), :math:`T_c` is the temperature of the p-n junction in Kelvin, and :math:`q` is the charge of an electron (coulombs). ``0 < nNsVth``. [V] ivcurve_pnts : None or int, default None Number of points in the desired IV curve. If None or 0, no points on the IV curves will be produced. method : str, default 'lambertw' Determines the method used to calculate points on the IV curve. The options are ``'lambertw'``, ``'newton'``, or ``'brentq'``. Returns ------- OrderedDict or DataFrame The returned dict-like object always contains the keys/columns: * i_sc - short circuit current in amperes. * v_oc - open circuit voltage in volts. * i_mp - current at maximum power point in amperes. * v_mp - voltage at maximum power point in volts. * p_mp - power at maximum power point in watts. * i_x - current, in amperes, at ``v = 0.5*v_oc``. * i_xx - current, in amperes, at ``V = 0.5*(v_oc+v_mp)``. If ivcurve_pnts is greater than 0, the output dictionary will also include the keys: * i - IV curve current in amperes. * v - IV curve voltage in volts. The output will be an OrderedDict if photocurrent is a scalar, array, or ivcurve_pnts is not None. The output will be a DataFrame if photocurrent is a Series and ivcurve_pnts is None. See also -------- calcparams_desoto calcparams_cec calcparams_pvsyst sapm pvlib.singlediode.bishop88 Notes ----- If the method is ``'lambertw'`` then the solution employed to solve the implicit diode equation utilizes the Lambert W function to obtain an explicit function of :math:`V=f(I)` and :math:`I=f(V)` as shown in [2]_. If the method is ``'newton'`` then the root-finding Newton-Raphson method is used. It should be safe for well behaved IV-curves, but the ``'brentq'`` method is recommended for reliability. If the method is ``'brentq'`` then Brent's bisection search method is used that guarantees convergence by bounding the voltage between zero and open-circuit. If the method is either ``'newton'`` or ``'brentq'`` and ``ivcurve_pnts`` are indicated, then :func:`pvlib.singlediode.bishop88` [4]_ is used to calculate the points on the IV curve points at diode voltages from zero to open-circuit voltage with a log spacing that gets closer as voltage increases. If the method is ``'lambertw'`` then the calculated points on the IV curve are linearly spaced. References ---------- .. [1] S.R. Wenham, M.A. Green, M.E. Watt, "Applied Photovoltaics" ISBN 0 86758 909 4 .. [2] A. Jain, A. Kapoor, "Exact analytical solutions of the parameters of real solar cells using Lambert W-function", Solar Energy Materials and Solar Cells, 81 (2004) 269-277. .. [3] D. King et al, "Sandia Photovoltaic Array Performance Model", SAND2004-3535, Sandia National Laboratories, Albuquerque, NM .. [4] "Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits" JW Bishop, Solar Cell (1988) https://doi.org/10.1016/0379-6787(88)90059-2 """ # Calculate points on the IV curve using the LambertW solution to the # single diode equation if method.lower() == 'lambertw': out = _singlediode._lambertw( photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, ivcurve_pnts ) i_sc, v_oc, i_mp, v_mp, p_mp, i_x, i_xx = out[:7] if ivcurve_pnts: ivcurve_i, ivcurve_v = out[7:] else: # Calculate points on the IV curve using either 'newton' or 'brentq' # methods. Voltages are determined by first solving the single diode # equation for the diode voltage V_d then backing out voltage args = (photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth) # collect args v_oc = _singlediode.bishop88_v_from_i( 0.0, *args, method=method.lower() ) i_mp, v_mp, p_mp = _singlediode.bishop88_mpp( *args, method=method.lower() ) i_sc = _singlediode.bishop88_i_from_v( 0.0, *args, method=method.lower() ) i_x = _singlediode.bishop88_i_from_v( v_oc / 2.0, *args, method=method.lower() ) i_xx = _singlediode.bishop88_i_from_v( (v_oc + v_mp) / 2.0, *args, method=method.lower() ) # calculate the IV curve if requested using bishop88 if ivcurve_pnts: vd = v_oc * ( (11.0 - np.logspace(np.log10(11.0), 0.0, ivcurve_pnts)) / 10.0 ) ivcurve_i, ivcurve_v, _ = _singlediode.bishop88(vd, *args) out = OrderedDict() out['i_sc'] = i_sc out['v_oc'] = v_oc out['i_mp'] = i_mp out['v_mp'] = v_mp out['p_mp'] = p_mp out['i_x'] = i_x out['i_xx'] = i_xx if ivcurve_pnts: out['v'] = ivcurve_v out['i'] = ivcurve_i if isinstance(photocurrent, pd.Series) and not ivcurve_pnts: out = pd.DataFrame(out, index=photocurrent.index) return out def max_power_point(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, d2mutau=0, NsVbi=np.Inf, method='brentq'): """ Given the single diode equation coefficients, calculates the maximum power point (MPP). Parameters ---------- photocurrent : numeric photo-generated current [A] saturation_current : numeric diode reverse saturation current [A] resistance_series : numeric series resitance [ohms] resistance_shunt : numeric shunt resitance [ohms] nNsVth : numeric product of thermal voltage ``Vth`` [V], diode ideality factor ``n``, and number of serices cells ``Ns`` d2mutau : numeric, default 0 PVsyst parameter for cadmium-telluride (CdTe) and amorphous-silicon (a-Si) modules that accounts for recombination current in the intrinsic layer. The value is the ratio of intrinsic layer thickness squared :math:`d^2` to the diffusion length of charge carriers :math:`\\mu \\tau`. [V] NsVbi : numeric, default np.inf PVsyst parameter for cadmium-telluride (CdTe) and amorphous-silicon (a-Si) modules that is the product of the PV module number of series cells ``Ns`` and the builtin voltage ``Vbi`` of the intrinsic layer. [V]. method : str either ``'newton'`` or ``'brentq'`` Returns ------- OrderedDict or pandas.Datafrane ``(i_mp, v_mp, p_mp)`` Notes ----- Use this function when you only want to find the maximum power point. Use :func:`singlediode` when you need to find additional points on the IV curve. This function uses Brent's method by default because it is guaranteed to converge. """ i_mp, v_mp, p_mp = _singlediode.bishop88_mpp( photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, d2mutau=0, NsVbi=np.Inf, method=method.lower() ) if isinstance(photocurrent, pd.Series): ivp = {'i_mp': i_mp, 'v_mp': v_mp, 'p_mp': p_mp} out = pd.DataFrame(ivp, index=photocurrent.index) else: out = OrderedDict() out['i_mp'] = i_mp out['v_mp'] = v_mp out['p_mp'] = p_mp return out def v_from_i(resistance_shunt, resistance_series, nNsVth, current, saturation_current, photocurrent, method='lambertw'): ''' Device voltage at the given device current for the single diode model. Uses the single diode model (SDM) as described in, e.g., Jain and Kapoor 2004 [1]_. The solution is per Eq 3 of [1]_ except when resistance_shunt=numpy.inf, in which case the explict solution for voltage is used. Ideal device parameters are specified by resistance_shunt=np.inf and resistance_series=0. Inputs to this function can include scalars and pandas.Series, but it is the caller's responsibility to ensure that the arguments are all float64 and within the proper ranges. Parameters ---------- resistance_shunt : numeric Shunt resistance in ohms under desired IV curve conditions. Often abbreviated ``Rsh``. 0 < resistance_shunt <= numpy.inf resistance_series : numeric Series resistance in ohms under desired IV curve conditions. Often abbreviated ``Rs``. 0 <= resistance_series < numpy.inf nNsVth : numeric The product of three components. 1) The usual diode ideal factor (n), 2) the number of cells in series (Ns), and 3) the cell thermal voltage under the desired IV curve conditions (Vth). The thermal voltage of the cell (in volts) may be calculated as ``k*temp_cell/q``, where k is Boltzmann's constant (J/K), temp_cell is the temperature of the p-n junction in Kelvin, and q is the charge of an electron (coulombs). 0 < nNsVth current : numeric The current in amperes under desired IV curve conditions. saturation_current : numeric Diode saturation current in amperes under desired IV curve conditions. Often abbreviated ``I_0``. 0 < saturation_current photocurrent : numeric Light-generated current (photocurrent) in amperes under desired IV curve conditions. Often abbreviated ``I_L``. 0 <= photocurrent method : str Method to use: ``'lambertw'``, ``'newton'``, or ``'brentq'``. *Note*: ``'brentq'`` is limited to 1st quadrant only. Returns ------- current : np.ndarray or scalar References ---------- .. [1] A. Jain, A. Kapoor, "Exact analytical solutions of the parameters of real solar cells using Lambert W-function", Solar Energy Materials and Solar Cells, 81 (2004) 269-277. ''' if method.lower() == 'lambertw': return _singlediode._lambertw_v_from_i( resistance_shunt, resistance_series, nNsVth, current, saturation_current, photocurrent ) else: # Calculate points on the IV curve using either 'newton' or 'brentq' # methods. Voltages are determined by first solving the single diode # equation for the diode voltage V_d then backing out voltage args = (current, photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth) V = _singlediode.bishop88_v_from_i(*args, method=method.lower()) # find the right size and shape for returns size, shape = _singlediode._get_size_and_shape(args) if size <= 1: if shape is not None: V = np.tile(V, shape) if np.isnan(V).any() and size <= 1: V = np.repeat(V, size) if shape is not None: V = V.reshape(shape) return V def i_from_v(resistance_shunt, resistance_series, nNsVth, voltage, saturation_current, photocurrent, method='lambertw'): ''' Device current at the given device voltage for the single diode model. Uses the single diode model (SDM) as described in, e.g., Jain and Kapoor 2004 [1]_. The solution is per Eq 2 of [1] except when resistance_series=0, in which case the explict solution for current is used. Ideal device parameters are specified by resistance_shunt=np.inf and resistance_series=0. Inputs to this function can include scalars and pandas.Series, but it is the caller's responsibility to ensure that the arguments are all float64 and within the proper ranges. Parameters ---------- resistance_shunt : numeric Shunt resistance in ohms under desired IV curve conditions. Often abbreviated ``Rsh``. 0 < resistance_shunt <= numpy.inf resistance_series : numeric Series resistance in ohms under desired IV curve conditions. Often abbreviated ``Rs``. 0 <= resistance_series < numpy.inf nNsVth : numeric The product of three components. 1) The usual diode ideal factor (n), 2) the number of cells in series (Ns), and 3) the cell thermal voltage under the desired IV curve conditions (Vth). The thermal voltage of the cell (in volts) may be calculated as ``k*temp_cell/q``, where k is Boltzmann's constant (J/K), temp_cell is the temperature of the p-n junction in Kelvin, and q is the charge of an electron (coulombs). 0 < nNsVth voltage : numeric The voltage in Volts under desired IV curve conditions. saturation_current : numeric Diode saturation current in amperes under desired IV curve conditions. Often abbreviated ``I_0``. 0 < saturation_current photocurrent : numeric Light-generated current (photocurrent) in amperes under desired IV curve conditions. Often abbreviated ``I_L``. 0 <= photocurrent method : str Method to use: ``'lambertw'``, ``'newton'``, or ``'brentq'``. *Note*: ``'brentq'`` is limited to 1st quadrant only. Returns ------- current : np.ndarray or scalar References ---------- .. [1] A. Jain, A. Kapoor, "Exact analytical solutions of the parameters of real solar cells using Lambert W-function", Solar Energy Materials and Solar Cells, 81 (2004) 269-277. ''' if method.lower() == 'lambertw': return _singlediode._lambertw_i_from_v( resistance_shunt, resistance_series, nNsVth, voltage, saturation_current, photocurrent ) else: # Calculate points on the IV curve using either 'newton' or 'brentq' # methods. Voltages are determined by first solving the single diode # equation for the diode voltage V_d then backing out voltage args = (voltage, photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth) current = _singlediode.bishop88_i_from_v(*args, method=method.lower()) # find the right size and shape for returns size, shape = _singlediode._get_size_and_shape(args) if size <= 1: if shape is not None: current = np.tile(current, shape) if np.isnan(current).any() and size <= 1: current = np.repeat(current, size) if shape is not None: current = current.reshape(shape) return current def scale_voltage_current_power(data, voltage=1, current=1): """ Scales the voltage, current, and power of the DataFrames returned by :py:func:`singlediode` and :py:func:`sapm`. Parameters ---------- data: DataFrame Must contain columns `'v_mp', 'v_oc', 'i_mp' ,'i_x', 'i_xx', 'i_sc', 'p_mp'`. voltage: numeric, default 1 The amount by which to multiply the voltages. current: numeric, default 1 The amount by which to multiply the currents. Returns ------- scaled_data: DataFrame A scaled copy of the input data. `'p_mp'` is scaled by `voltage * current`. """ # as written, only works with a DataFrame # could make it work with a dict, but it would be more verbose data = data.copy() voltages = ['v_mp', 'v_oc'] currents = ['i_mp', 'i_x', 'i_xx', 'i_sc'] data[voltages] *= voltage data[currents] *= current data['p_mp'] *= voltage * current return data def pvwatts_dc(g_poa_effective, temp_cell, pdc0, gamma_pdc, temp_ref=25.): r""" Implements NREL's PVWatts DC power model. The PVWatts DC model [1]_ is: .. math:: P_{dc} = \frac{G_{poa eff}}{1000} P_{dc0} ( 1 + \gamma_{pdc} (T_{cell} - T_{ref})) Note that the pdc0 is also used as a symbol in :py:func:`pvlib.inverter.pvwatts`. pdc0 in this function refers to the DC power of the modules at reference conditions. pdc0 in :py:func:`pvlib.inverter.pvwatts` refers to the DC power input limit of the inverter. Parameters ---------- g_poa_effective: numeric Irradiance transmitted to the PV cells in units of W/m**2. To be fully consistent with PVWatts, the user must have already applied angle of incidence losses, but not soiling, spectral, etc. temp_cell: numeric Cell temperature in degrees C. pdc0: numeric Power of the modules at 1000 W/m2 and cell reference temperature. gamma_pdc: numeric The temperature coefficient in units of 1/C. Typically -0.002 to -0.005 per degree C. temp_ref: numeric, default 25.0 Cell reference temperature. PVWatts defines it to be 25 C and is included here for flexibility. Returns ------- pdc: numeric DC power. References ---------- .. [1] A. P. Dobos, "PVWatts Version 5 Manual" http://pvwatts.nrel.gov/downloads/pvwattsv5.pdf (2014). """ # noqa: E501 pdc = (g_poa_effective * 0.001 * pdc0 * (1 + gamma_pdc * (temp_cell - temp_ref))) return pdc def pvwatts_losses(soiling=2, shading=3, snow=0, mismatch=2, wiring=2, connections=0.5, lid=1.5, nameplate_rating=1, age=0, availability=3): r""" Implements NREL's PVWatts system loss model. The PVWatts loss model [1]_ is: .. math:: L_{total}(\%) = 100 [ 1 - \Pi_i ( 1 - \frac{L_i}{100} ) ] All parameters must be in units of %. Parameters may be array-like, though all array sizes must match. Parameters ---------- soiling: numeric, default 2 shading: numeric, default 3 snow: numeric, default 0 mismatch: numeric, default 2 wiring: numeric, default 2 connections: numeric, default 0.5 lid: numeric, default 1.5 Light induced degradation nameplate_rating: numeric, default 1 age: numeric, default 0 availability: numeric, default 3 Returns ------- losses: numeric System losses in units of %. References ---------- .. [1] A. P. Dobos, "PVWatts Version 5 Manual" http://pvwatts.nrel.gov/downloads/pvwattsv5.pdf (2014). """ params = [soiling, shading, snow, mismatch, wiring, connections, lid, nameplate_rating, age, availability] # manually looping over params allows for numpy/pandas to handle any # array-like broadcasting that might be necessary. perf = 1 for param in params: perf *= 1 - param/100 losses = (1 - perf) * 100. return losses def combine_loss_factors(index, *losses, fill_method='ffill'): r""" Combines Series loss fractions while setting a common index. The separate losses are compounded using the following equation: .. math:: L_{total} = 1 - [ 1 - \Pi_i ( 1 - L_i ) ] :math:`L_{total}` is the total loss returned :math:`L_i` is each individual loss factor input Note the losses must each be a series with a DatetimeIndex. All losses will be resampled to match the index parameter using the fill method specified (defaults to "fill forward"). Parameters ---------- index : DatetimeIndex The index of the returned loss factors *losses : Series One or more Series of fractions to be compounded fill_method : {'ffill', 'bfill', 'nearest'}, default 'ffill' Method to use for filling holes in reindexed DataFrame Returns ------- Series Fractions resulting from the combination of each loss factor """ combined_factor = 1 for loss in losses: loss = loss.reindex(index, method=fill_method) combined_factor *= (1 - loss) return 1 - combined_factor snlinverter = deprecated('0.8', alternative='inverter.sandia', name='snlinverter', removal='0.9')(inverter.sandia) adrinverter = deprecated('0.8', alternative='inverter.adr', name='adrinverter', removal='0.9')(inverter.adr) pvwatts_ac = deprecated('0.8', alternative='inverter.pvwatts', name='pvwatts_ac', removal='0.9')(inverter.pvwatts)
[ "michal.makson@gmail.com" ]
michal.makson@gmail.com
a3b8b46b4b69ec5c3b46327d35360b5edb9e3ffd
62097bc035fed6ea64d9fb8ff6e6d58795c57ec7
/src/auth/VKAuth.py
b6cb4b93f7e117a1556d9bb3afdbf90dfd0abd56
[]
no_license
BeTripTeam/People-Analytics
4791135f21bb85771915488cc960e9f8392ac9aa
2c8d45aa33b213e2c8b03563ba28adf801287812
refs/heads/master
2020-03-19T03:15:21.046661
2018-06-01T13:28:14
2018-06-01T13:28:14
135,710,198
0
1
null
null
null
null
UTF-8
Python
false
false
717
py
import vk from src.exceptions.VKException import VKException from src.models.API.API import API from .Auth import Auth class VKAuth(Auth): #access_token = '87cc1a32e7af1bb84adefc1e0f01570f6d08930c538a486b9d888cd0ff1910302c827e20284647e18cc61' _api = None def __init__(self, access_token): self.access_token = access_token self.get_api() def get_api(self) -> API: if self._api is None: try: session = vk.Session(access_token=self.access_token) vk_api = vk.API(session, v='5.73') self._api = API(vk_api) except Exception as e: raise VKException(e) return self._api
[ "marikoreneva@gmail.com" ]
marikoreneva@gmail.com
8f6336395a7599af5c616dc9ee4a969eb7482bc5
cabe3a25370bb72873b5809f1bb80ede77364599
/python-playground/datastructures/queues/list_queue.py
25206bca14d231485d515fb98fa7b3342b815564
[]
no_license
therachelbentley/algorithms
2ae69ab1ca8465b9a04194e23f6ebdbf529866d0
977fd4cb2a54bfda54fb9d47a3dcde42c41610f5
refs/heads/master
2023-05-26T10:07:09.036451
2020-05-10T17:29:50
2020-05-10T17:29:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
249
py
class ListQueue(object): def __init__(self): self.queue = [] def enqueue(self, data): self.queue.insert(0, data) def dequeue(self): return self.queue.pop() def size(self): return len(self.queue)
[ "racheljohnson457@gmail.com" ]
racheljohnson457@gmail.com
0a6f6613ff3d2c925ed735b41fffa3feb7223515
8c7fed8a53524014d703070fbd2aa2ba44e02d1b
/lesson1.6_step8.py
8e9cfeb9d937a39a52068feb9d990dd345232408
[]
no_license
Pahab91/stepik-auto-tests-course
f1aff22c48c38326b02f909719be8bf23d2d1ce2
17440048266a4b357baa1eeb4fafcf040300ee71
refs/heads/main
2023-03-07T01:57:28.909166
2021-02-20T01:33:49
2021-02-20T01:33:49
340,496,690
0
0
null
null
null
null
UTF-8
Python
false
false
1,635
py
from selenium import webdriver import time try: link = "http://suninjuly.github.io/registration1.html" browser = webdriver.Chrome() browser.get(link) input1 = browser.find_element_by_css_selector(".first_block .form-group.first_class input") input1.send_keys("Frodo") input2 = browser.find_element_by_css_selector(".first_block .form-group.second_class input") input2.send_keys("Baggins") input3 = browser.find_element_by_css_selector(".first_block .form-group.third_class input") input3.send_keys("Shire@gmail.com") # Отправляем заполненную форму button = browser.find_element_by_css_selector("button.btn") button.click() # Проверяем, что смогли зарегистрироваться # ждем загрузки страницы time.sleep(1) # находим элемент, содержащий текст welcome_text_elt = browser.find_element_by_tag_name("h1") # записываем в переменную welcome_text текст из элемента welcome_text_elt welcome_text = welcome_text_elt.text # с помощью assert проверяем, что ожидаемый текст совпадает с текстом на странице сайта assert "Congratulations! You have successfully registered!" == welcome_text finally: # ожидание чтобы визуально оценить результаты прохождения скрипта time.sleep(10) # закрываем браузер после всех манипуляций browser.quit()
[ "Pahab91@gmail.com" ]
Pahab91@gmail.com
d6682fdff9794853d254ffcae829dc761088a489
8eaab995c998e904e9748e60d667fff2c540641a
/addition/makevocab.py
f7b50fc5f14f5adda981b9a820b7034caa8c0a67
[]
no_license
araki214/Script_for_master
9b14088eb739fd2cc270fffcd7ea0ac54d667196
faa910b0ffa98559bbaac3de7b925597036aca43
refs/heads/master
2023-03-01T15:27:13.101330
2021-02-09T19:36:51
2021-02-09T19:36:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
444
py
import sys vocab={} databefore=sys.argv[1] dataafter=sys.argv[2] maximum=64000 with open(databefore,'r') as f: for line in f: line=line.split() for i in line: vocab[i]=vocab.get(i,0)+1 count=0 with open(dataafter,'w') as g: g.write("[PAD]\n") g.write("[UNK]\n") g.write("[CLS]\n") g.write("[SEP]\n") g.write("[MASK]\n") for voc,v in sorted(vocab.items(),key=lambda x:-x[1]): if count <maximum: g.write(voc+'\n') count+=1
[ "xakari2000@yahoo.co.jp" ]
xakari2000@yahoo.co.jp
577797b5cdeb4682623d63ae93e5352f0efc77d5
64ca4584e459bc1890853f824d48b2a5fbb09632
/IMDB/IMDB.py
493dcdc7b7f4d4fcaf555e97fac2c7d62b1f4ac2
[]
no_license
Gozzah/Python
24a4d8e20c68362cd220c8bdaf4fc835d9fc3c02
fecab54a116c956409fd47f3faac7d1483fb8dda
refs/heads/master
2021-04-27T20:40:09.241636
2018-04-25T13:35:23
2018-04-25T13:35:23
122,384,268
0
1
null
null
null
null
UTF-8
Python
false
false
895
py
import pandas as pd content = pd.read_csv('https://datasets.imdbws.com/title.basics.tsv.gz', sep='\t', header=0) df = content[content['titleType'] == 'movie'] most_movies = df['startYear'].value_counts() print(most_movies) #2. Which year was most series ended? dfSeries = content[content['titleType'] == 'tvseries'] most_series = dfSeries['endYear'].value_counts() print('the year where most series ended was: ', most_series) #3. Which genres has the longest runtime per movies? #4. Which genre covers the most movies? titles = content[content['titleType'] == 'movie'] genre = titles['genres'].max() print('genre with most movies is: ', genre) #5. What is the average runtime on adult films? genres = content[content['genres'] == 'adult'] average = genres['runtimeMinutes'].mean() print('average runtime on adultfilms', average)
[ "noreply@github.com" ]
Gozzah.noreply@github.com
a691834806912611ff6db8d6b038048e8daf5cdb
d1b80aa1bb58313bf851ac51873ff5ddef85368e
/oop3.py
f2ff8c8a5cc417ebbf8d73057629a5ec3ea34f27
[]
no_license
KojoAning/PYHTON_PRACTICE
1680ac06e09a8c34c36a89fdcec9507adbe97c6e
397ce7feb61a857b90989243a7f78591a58f8ca0
refs/heads/master
2023-02-27T04:44:47.459776
2021-01-31T18:23:44
2021-01-31T18:23:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
651
py
class Employee(): no_of_leave= 8 def __init__(self,aname , asaalary, arole): # init func. don't requires no calling self.name = aname self.salary = asaalary self.role = arole def printditails(self): return f"name is {self.rohan} and salary is {self.salary} and role is {self.role}" pass harry = Employee('harry', 40384 ,'instructur') rohan = Employee('rohan',10338,'student')# construtor # rohan = Employee() # # harry.name = 'harry' # harry.salary = 40384 # harry.role='instrucure' # # rohan.name ="Rohan" # rohan.salary = 45555 # rohan.role = "Student" print ( harry.salary) print(rohan.role)
[ "srinathshrestha9890@gmail.com" ]
srinathshrestha9890@gmail.com
2cdbc070027cc4df0fe09f2577e29effb7d73d7c
a5bfd76ec633a49bc20669aa77ce773f97430151
/BLE_preprocessing_3.py
4db5a7e5ae8e38e848d4375fe865cf4b60369e46
[ "MIT" ]
permissive
alhomayani/Oversampling_BLE_fingerprints
8d6f3c2c774c9139ef84a7f4c1559be626e71ea8
080ec37072dfa44f73ced3f202e16fa0007bacba
refs/heads/main
2023-07-05T02:44:20.222386
2021-08-30T01:28:26
2021-08-30T01:28:26
375,171,546
3
0
null
null
null
null
UTF-8
Python
false
false
531
py
import pandas as pd import os result = pd.DataFrame() os.chdir('C:/Users/uf11/Desktop/BLE_dataset/preprocessing/preprocessing_2') for phone in range(1): for slot in range(6): df_temp = pd.read_csv('phone_'+str(phone+3)+'_slot_'+str(slot+1)+'_scaled.csv', index_col=[0]) print(len(df_temp)) result = result.append(df_temp, ignore_index=True) os.chdir('C:/Users/uf11/Desktop/BLE_dataset/preprocessing/preprocessing_3') result.to_csv('data_3.csv', index=False) print(len(result))
[ "noreply@github.com" ]
alhomayani.noreply@github.com
08b479d74c044be6254dfbac91e991e192c4ed1b
75a2ad10d18aea735eaf3e859eb3988d94e9c36a
/CodeUp/기초 100제/6090_종합.py
3c59df0144218df4100f715ba24348f87e32ab8c
[]
no_license
sbtiffanykim/problem-solving
d2679b0405f9c2397d7af780721066bfbd812e32
10a6ec90d29c9126f56c9be2ee696ce30ca30bd5
refs/heads/master
2023-04-25T18:26:56.511663
2021-06-10T12:30:13
2021-06-10T12:30:13
360,552,625
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
""" #6090: 수 나열하기 3 """ a, m, d, n = map(int, input().split()) for i in range(1, n): a = a * (m) + d print(a)
[ "sbtiffanykim@gmail.com" ]
sbtiffanykim@gmail.com
5cdf1cb88588211b536518f30fdbc77cc70d5712
07123806119496981cccf1ca577de7ddc7b59146
/COP4531/coinchangemin.py
f3e997a09c3bd30c81ee96f542c5205ff6e5fc7e
[]
no_license
wcwagner/Algorithms
02482be2d5eab79cbc12ae3f78acb16883139ab0
10fcae69231f873d68e92b54035ca7fa6a20a359
refs/heads/master
2020-05-22T01:21:57.168199
2016-12-10T21:24:50
2016-12-10T21:24:50
60,459,776
2
0
null
null
null
null
UTF-8
Python
false
false
615
py
def coin_change_min(N, S): """ Minimum amount of coins needed to make N """ # dp[i] is minimum coins needed to make amount i dp = [0] * (N + 1) for curr_amt in range(1, N+1): min_val = float("inf") for coin_val in S: if curr_amt >= coin_val: num_ways = 1 + dp[curr_amt - coin_val] min_val = min(min_val, num_ways) dp[curr_amt] = min_val return dp[N] if __name__ == "__main__": S = [1,7, 10] N = 14 print(coin_change_min(N, S)) S = [1, 5, 10, 25] N = 98 print(coin_change_min(N, S))
[ "wcw13@my.fsu.edu" ]
wcw13@my.fsu.edu
837e94badfe7f215ca75ba23dc83e7f45993c8ef
8803bbced7e91c80d29753a3d1cb3bb478a13961
/app/session/urls.py
8d7877d2b5cb0f3353eb2f8a8f10854e058becf6
[]
no_license
jiggum/CS496_Project3
e8981ef59f7bf7be20431f175df7fc8c2f44833e
afef8670cfca1d87a960cddd57a127b263d4bab0
refs/heads/master
2021-01-21T02:01:53.898184
2016-07-14T01:58:15
2016-07-14T01:58:15
63,216,265
0
1
null
null
null
null
UTF-8
Python
false
false
944
py
"""null URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include,url import app.session.views urlpatterns = [ url(r'^login/$', app.session.views.login_view), url(r'^logout/$', app.session.views.user_logout), url(r'^register/$', app.session.views.register_view), url(r'^home/$', app.session.views.home, name='home'), ]
[ "0s.dongmin@gmail.com" ]
0s.dongmin@gmail.com
2b8227feb761065cb5bbc4d63f58e5982e62e35b
0e586424141e41891dc58b95ddb25fff472f2002
/acros/apps/generator/magic.py
e863fbad2eed021378d27b67c786b940987b4bc2
[]
no_license
nicorellius/acrosite
facb682e95dc4847f1af3ba6f742abc64d038dd5
c64832a78738f57cdad1b7a07b81279342cdff75
refs/heads/master
2022-12-04T16:50:23.564543
2020-02-26T00:16:39
2020-02-26T00:16:39
25,777,397
2
0
null
2022-11-22T00:34:05
2014-10-26T15:07:33
Python
UTF-8
Python
false
false
3,083
py
import unittest import operator import nltk def first_letter(word): return word[0] def get_formats(word): """ Uses word length to determine useful pos structure. For example, given the word 'Fun', returns a list of three parts of speech because 'Fun' has three letters or several lists should they be available. :param word: Use word length :return: A set of parts of speech structures """ print(word) #old_question = Word(word) #print(old_question.word) # todo # check one-many mapping of word length to formats and return set of formats # we could also return formats of size -+2 to account for word contractions return [] def rank_formats(formats): """ Given a set of formats, this ranks them returning a new mapping of the formats keyed by rank. :param formats: A set of pos formats :return: A mapping of those formats keyed and grouped by rank """ # todo return {} def get_word(format_element, knowledge): return None def update(acrostic, knowledge): # knowledge + more info + current state of acrostic return knowledge def money_maker(word, theme): """ Given a word, 1. determine it's formats 2. for each format map each pos element and theme to retrieve a word update 3. rank each format 3. give the word with the best format score Use Markov chains -- http://en.wikipedia.org/wiki/Parody_generator :param word: A word :return: An awesome phrase """ candidates = {} knowledge = {} for key, value in rank_formats(get_formats(word)): # knowledge.self(key, theme) acrostic = [] for format_element in value: word = get_word(format_element, knowledge) update(acrostic, knowledge) acrostic.append(word) candidates[acrostic] = knowledge return max(candidates.iteritems(), key=operator.itemgetter(1))[0] def get_format(acrostic): """ Given an acrostic or phrase string, this function will return a list of the nltk tags which consist of the basic parts of speech and other nltk specific tags that are useful in the nltk universe. :param acrostic: An acrostic or phrase string :return: A list of nltk tags for each word """ tokens = nltk.word_tokenize(acrostic) return [element[1] for element in nltk.pos_tag(tokens)] class WordMagicTest(unittest.TestCase): def test(self): self.assertEqual(first_letter("Abracadabra"), "A") self.assertEqual(get_format("So happy it's Thursday"), ['IN', 'JJ', 'PRP', 'VBZ', 'NNP']) self.assertEqual(get_format("Thank God it's Friday"), ['NNP', 'NNP', 'PRP', 'VBZ', 'NNP']) self.assertEqual( get_format("We're always cuddling koala's yearly"), ['PRP', 'VBP', 'RB', 'VBG', 'NN', 'POS', 'JJ']) # self.assertEqual(get_formats('sample'),'sample')
[ "nicorellius@gmail.com" ]
nicorellius@gmail.com
31233364461835df2c43081144994282f4ec6fb9
1af44bdcbc3c15d3f6e436a7924dfd45f504ab3a
/01.jump to python/02.Data Science/4. Visualization/282_matplotlib_basic_histogram.py
1a6596ad54616f6c7081fcc544fd649f78d2ef6a
[]
no_license
wql7654/bigdata_exam
f57c8b475690cbc5978009dbf8008bedff602e2a
c07ee711bb84407428ba31165185b9607b6825e8
refs/heads/master
2023-04-07T00:50:59.563714
2021-05-25T02:46:43
2021-05-25T02:46:43
180,915,985
0
0
null
2023-03-25T01:08:09
2019-04-12T02:36:08
Jupyter Notebook
UTF-8
Python
false
false
723
py
import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') mu1, mu2, sigma = 100, 130, 15 x1 = mu1 + sigma*np.random.randn(10000) x2 = mu2 + sigma*np.random.randn(10000) fig = plt.figure() ax1 = fig.add_subplot(1,1,1) n, bins, patches = ax1.hist(x1, bins=50, normed=False, color='darkgreen') n, bins, patches = ax1.hist(x2, bins=50, normed=False, color='orange', alpha=0.5) ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') plt.xlabel('Bins') plt.ylabel('Number of Values in Bin') fig.suptitle('Histograms', fontsize=14, fontweight='bold') ax1.set_title('Two Frequency Distributions') plt.savefig('histogram.png', dpi=400, bbox_inches='tight') plt.show()
[ "studerande5@gmail.com" ]
studerande5@gmail.com
5259e96e8c7daf9bb2b22b369534042c3cb434cf
31b51aeb96000318df21351b2ef6cb55f7c269c2
/HiNT/corelib.py
99d11739955e91cefcf71310c01c8bcf9d3bd653
[ "Artistic-1.0-Perl", "MIT" ]
permissive
suwangbio/HiNT
a26062f6c39929803a4aded5465743768a81b8c5
99f0aa91d10c5fccabcbd56035f6e3125650a720
refs/heads/master
2022-04-08T23:13:25.344196
2020-02-17T22:22:13
2020-02-17T22:22:13
240,967,519
0
0
NOASSERTION
2020-02-16T21:19:00
2020-02-16T21:18:59
null
UTF-8
Python
false
false
355
py
# print current time and information on screen import subprocess from subprocess import call as subpcall import sys, os, time import logging error = logging.critical # function alias warn = logging.warning def Info(infoStr): print("[%s] %s" %(time.strftime('%H:%M:%S'), infoStr)) def run_cmd(command): subpcall (command, shell = True)
[ "1210070_suwang@tongji.edu.cn" ]
1210070_suwang@tongji.edu.cn
c56605a1ff97ce5490fd9b73b12308ef4cae495d
50608ac21fb2124a8b73ba5299e947d8a3be142b
/simulation/python/inversion_v2.1_selvhenfall_xisquared-plotting.py
341f45fbec143208b4c69d91f144315092346064
[]
no_license
jorgenem/master
88e71bc935af9cf23585d3b2ec191bc4e01f6c00
7e898f747d21ad13c205c16b1e89d41fa9ac1a7e
refs/heads/master
2020-05-20T12:34:14.786285
2015-06-04T23:26:22
2015-06-04T23:26:22
25,069,231
0
0
null
null
null
null
UTF-8
Python
false
false
18,093
py
#import stuff import numpy as np import matplotlib.pyplot as plt from math import pi import scipy.optimize as sciopt np.random.seed(2) # set seed for reproducibility # ====== define useful functions ======== def proj(v,u): # projects v onto u if np.linalg.norm(u) > 0: return np.dot(u,np.transpose(v))/float(np.dot(u,u.T)) * u else: return u def minkowskidot(a,b): # Inner product in Minkowski space return float(a[0,0]*b[0,0]-a[0,1]*b[0,1]-a[0,2]*b[0,2]-a[0,3]*b[0,3]) def minkowskinorm(a): # Inner product of a with a in Minkowski space return minkowskidot(a,a) def decayfun(m1,P1,m2,m3): # Calculating four-momenta of particle 2&3 going back-to-back from # decay of particle 1 in the frame where particle 1 has 4-mom P1 # # # particle 1 = decaying particle # particle 2 & particle 3 = decay products # primed system is rest frame of particle 1, unprimed is lab frame # rotated system is at rest in lab system, # but rotated so particle one goes in +x direction p1 = P1[0,1:4] p1abs = np.sqrt( float( np.dot( p1 , np.transpose(p1) ) ) ) # 3-momentum # of particle 1 in # lab frame # == Kinematical decay in RF of particle 1 == p2absprime = 1.0/(2*m1) * np.sqrt( (m1**2-m2**2-m3**2)**2- 4*m2**2*m3**2 ) # abs-val # of 3-momentum of particle 2/3 in RF of particle 1 U, V = np.random.uniform(0,1,2) # random phi = 2*pi*U # point picking theta = np.arccos(2*V-1) # on a sphere # Calculate cartesian 3- and 4-momentum of particle 2&3 p2prime = np.matrix([ p2absprime*np.sin(theta)*np.cos(phi) , p2absprime*np.sin(theta)*np.sin(phi) , p2absprime*np.cos(theta) ]) p3prime = -p2prime E2prime = np.sqrt( p2absprime**2 + m2**2 ) E3prime = np.sqrt( p2absprime**2 + m3**2 ) P2prime = np.matrix([ E2prime , p2prime[0,0] , p2prime[0,1] , p2prime[0,2] ]) P3prime = np.matrix([ E3prime , p3prime[0,0] , p3prime[0,1] , p3prime[0,2] ]) # == Back-transform to lab frame == # First check whether it is necessary to boost if p1abs > 1e-10: # Lorentz boost along x-direction to get to rotated lab frame # (lab frame moves in negative x direction) vlab = -p1abs/np.sqrt(p1abs**2 + m1**2) # velocity of particle 1 in lab frame gamma = 1/np.sqrt(1-vlab**2) P2rot = np.matrix([ gamma*(P2prime[0,0] - vlab*P2prime[0,1]) , gamma*(P2prime[0,1] - vlab*P2prime[0,0]) , P2prime[0,2] , P2prime[0,3] ]) P3rot = np.matrix([ gamma*(P3prime[0,0] - vlab*P3prime[0,1]) , gamma*(P3prime[0,1] - vlab*P3prime[0,0]) , P3prime[0,2] , P3prime[0,3] ]) # == Rotate back to lab frame == # Calculate the unit vectors of the rotated system axes in terms of lab axes # The definition is that x axis is along p1. # For the other axes we must make a choice - y&z directions are undetermined, # only the yz plane is determined from x choice. But since we have drawn # random angles and the yz plane is not boosted, the choice does not matter # as long as we are consistent from event to event. # So we pick two vectors orthogonal to p1 and do Gram-Schmidt orthogonalization: v1 = p1 v2 = np.matrix([ p1[0,1] , -p1[0,0] , 0 ]) v3 = np.matrix([ p1[0,2] , 0 , -p1[0,0] ]) u1 = v1 u2 = v2 - proj(v2,u1) u3 = v3 - proj(v3,u1) - proj(v3,u2) xrot = u1/np.linalg.norm(u1) if np.linalg.norm(u1) > 0 else np.matrix([0,0,1]) yrot = u2/np.linalg.norm(u2) if np.linalg.norm(u2) > 0 else np.matrix([0,1,0]) zrot = u3/np.linalg.norm(u3) if np.linalg.norm(u3) > 0 else np.matrix([1,0,0]) # Form a matrix T which takes a vector in the lab basis to a vector # in the rotated basis by T = np.concatenate( (xrot , yrot , zrot) , axis=0 ) # What we need is to rotate from rotated basis to lab basis, so we need the inverse # - which is the transpose, since rotation matrices are orthogonal. # Also, to ease calculation, we let T be the 3x3 submatrix of T4, setting the [0,0] #component of T4 to 1 to leave time component invariant under this spatial rotation T4 = np.matrix([[1, 0, 0, 0], [0,T[0,0],T[0,1],T[0,2]], [0,T[1,0],T[1,1],T[1,2]], [0,T[2,0],T[2,1],T[2,2]] ]) P2 = T4.T*P2rot.T P3 = T4.T*P3rot.T P2 = P2.T P3 = P3.T # If it was unneccessary, i.e. decay happened in lab frame, then else: P2 = P2prime P3 = P3prime # Finished! return P2, P3 def smear(p,resolution): # Smears 4-momentum according to AcerDET manual r = np.random.randn() p_smeared = p * ( 1 + r * resolution / np.sqrt(p[0,0]) ) return p_smeared # ==== MAIN PART ==== # Set known parameters # SM particle masses # u-quark and electron mass set to zero mquark = m1 = m5 = 0; mlepton1 = m2 = m3 = 0; mlepton2 = m6 = m7 = 0; # Now to make a mass hypothesis (guess the correct one) MSuL = 565.312 # Mass of ~uL, ~cL MSdL = 570.734 # Mass of ~dl, ~sL Msquark = MZ =(MSuL+MSdL)/2.0 # mean squark mass, fit this MN2 = Mchi2 = MY = 180.337 # Mass of ~chi02 Mslepton = MseR = MX = 144.06 # Mass of ~eR, ~muR # include left-handed sleptons? Must be done in the branchings before Herwig simulation in case MN1 = Mchi1 = MN = 9.70071979E+01 # Mass of ~chi01 (dark matter!) MZprim = MZ MYprim = MY MXprim = MX MNprim = MN true_values = np.array([MZ,MY,MX,MN]) N = 100 Dlist = [] Elist = [] Adetlist = np.zeros(0) A_nosmeardetlist = np.zeros(0) # Define normalizing mass (characteristic mass scale of the problem) Mnorm = 100 # print "Mnorm = ", Mnorm # Save invariant masses for making triangle invariant_mass_between_c1_leptons = [] # N - How much loop? for i in range(N): # Loop over events to get 4-vectors for each particle for each event. # Particles are numbered according to Webber (arXiv:0907.5307v2) fig. 1 # (the lepton/antilepton ordering is arbitrary in each chain, the lepton has been # chosen as 2/6 and the antilepton as 3/7) # string = root[i+2].text # lines = string.splitlines() #1st chain, p1-4 # Read squark 1 from file # psquark1 = str(lines[4]).split() # print "PDG number of particle 1: ",psquark1[0] # just to check #p1 = [float(p1[9]), float(p1[6]), float(p1[7]), float(p1[8])] # psquark1 = np.matrix([ float(psquark1[9]), float(psquark1[6]), float(psquark1[7]), float(psquark1[8])]) psquark1 = np.matrix([0,0,0,Msquark]) # #DEBUG # psquark1 = np.matrix([ Msquark, 0, 0, 0]) # overwrite CompHEP data to start squarks at rest # #/DEBUG # Decay squark to quark and neutralino2 p1, pN21 = decayfun(Msquark,psquark1,mquark,MN2) # Decay neutralino2 to lepton1 and slepton p2, pseR1 = decayfun(MN2,pN21,mlepton1,MseR) # Decay slepton to (anti)lepton1 and neutralino1 p3, p4 = decayfun(MseR,pseR1,mlepton1,MN1) #2nd chain, p5-8 # psquark2 = str(lines[5]).split() # # print "PDG number of particle 5: ",psquark2[0] # just to check # psquark2 = np.matrix([ float(psquark2[9]), float(psquark2[6]), float(psquark2[7]), float(psquark2[8])]) psquark2 = np.matrix([0,0,0,Msquark]) # #DEBUG # psquark2 = np.matrix([ Msquark, 0, 0, 0]) # overwrite CompHEP data to start squarks at rest # #/DEBUG # See whether CompHEP produces squarks off-shell # print minkowskinorm(psquark1) - Msquark**2 # print minkowskinorm(psquark2) - Msquark**2 # Decay (anti)squark to (anti)quark and neutralino2 p5, pN22 = decayfun(Msquark,psquark2,mquark,MN2) # Decay neutralino2 to lepton2 and slepton p6, pseR2 = decayfun(MN2,pN22,mlepton2,MseR) # Decay slepton to (anti)lepton2 and neutralino1 p7, p8 = decayfun(MseR,pseR2,mlepton2,MN1) # DETERMINANT TEST # pxmiss_nosmear = - p1[0,1] - p2[0,1] - p3[0,1] - p5[0,1] - p6[0,1] - p7[0,1] # pymiss_nosmear = - p1[0,2] - p2[0,2] - p3[0,2] - p5[0,2] - p6[0,2] - p7[0,2] # A_nosmear = 1/Mnorm*2*np.matrix([[ p1[0,1] , p1[0,2] , p1[0,3] , -p1[0,0] , 0 , 0 , 0 , 0 ], # [ p2[0,1] , p2[0,2] , p2[0,3] , -p2[0,0] , 0 , 0 , 0 , 0 ], # [ p3[0,1] , p3[0,2] , p3[0,3] , -p3[0,0] , 0 , 0 , 0 , 0 ], # [ 0.5*pxmiss_nosmear , 0 , 0 , 0 , 0.5*pxmiss_nosmear,0 , 0 , 0 ], # [ 0 , 0 , 0 , 0 , p5[0,1] , p5[0,2] , p5[0,3] , -p5[0,0] ], # [ 0 , 0 , 0 , 0 , p6[0,1] , p6[0,2] , p6[0,3] , -p6[0,0] ], # [ 0 , 0 , 0 , 0 , p7[0,1] , p7[0,2] , p7[0,3] , -p7[0,0] ], # [ 0 ,0.5*pymiss_nosmear, 0 , 0 , 0 , 0.5*pymiss_nosmear , 0 , 0 ]]) # / DETERMINANT TEST # Smear, r percent resolution # r = resolution # percent/100 momentum smearing # p1 = smear(p1,r) # p2 = smear(p2,r) # p3 = smear(p3,r) # p5 = smear(p5,r) # p6 = smear(p6,r) # p7 = smear(p7,r) # Check invariant mass of initial colliding partons? #print minkowskinorm(p1+p2+p3+p4+p5+p6+p7+p8) # Check that the invariant mass of particles is close to shell mass # print minkowskinorm(p1) - m1**2 # print minkowskinorm(p2) - m2**2 # print minkowskinorm(p3) - m3**2 # print minkowskinorm(p4) - MN**2 # print minkowskinorm(p5) - m5**2 # print minkowskinorm(p6) - m6**2 # print minkowskinorm(p7) - m7**2 # print minkowskinorm(p8) - MNprim**2 # Check if invariant mass of decays match mass of decaying # print "p3+p4 ", np.sqrt(abs(minkowskinorm(p3+p4) - MX**2)) # print "p2+p3+p4 ", np.sqrt(abs(minkowskinorm(p2+p3+p4) - MY**2)) # print "p1+p2+p3+p4 ", np.sqrt(abs(minkowskinorm(p1+p2+p3+p4) - MZ**2)) # print "p7+p8 ", np.sqrt(abs(minkowskinorm(p7+p8) - MXprim**2)) # print "p6+p7+p8 ", np.sqrt(abs(minkowskinorm(p2+p3+p4) - MYprim**2)) # print "p5+p6+p7+p8 ", np.sqrt(abs(minkowskinorm(p1+p2+p3+p4) - MZprim**2)) # Calculate invariant mass between leptons for triangle plotting # invmass_c1leptons = np.sqrt(minkowskinorm(p2+p3)) # calculate invariant # invariant_mass_between_c1_leptons.append(invmass_c1leptons) # mass between leptons in chain 1 # ==== Define Webber's stuff ==== # need the pxmiss and pymiss, taken from the actual neutralino transverse momenta # (this is cheating, of course) # pxmiss = p4[0,1]+p8[0,1] # pymiss = p4[0,2]+p8[0,2] # Calculate missing transverse from (smeared) visible particles pxmiss = - p1[0,1] - p2[0,1] - p3[0,1] - p5[0,1] - p6[0,1] - p7[0,1] pymiss = - p1[0,2] - p2[0,2] - p3[0,2] - p5[0,2] - p6[0,2] - p7[0,2] m1square = minkowskinorm(p1) m2square = minkowskinorm(p2) m3square = minkowskinorm(p3) m5square = minkowskinorm(p5) m6square = minkowskinorm(p6) m7square = minkowskinorm(p7) # print "pxmiss", pxmisstrue - pxmiss # print "pymiss", pymisstrue - pymiss #A matrix A = 2*np.matrix([[ p1[0,1] , p1[0,2] , p1[0,3] , -p1[0,0] , 0 , 0 , 0 , 0 ], [ p2[0,1] , p2[0,2] , p2[0,3] , -p2[0,0] , 0 , 0 , 0 , 0 ], [ p3[0,1] , p3[0,2] , p3[0,3] , -p3[0,0] , 0 , 0 , 0 , 0 ], [ 0.5*pxmiss, 0 , 0 , 0 , 0.5*pxmiss,0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , p5[0,1] , p5[0,2] , p5[0,3] , -p5[0,0] ], [ 0 , 0 , 0 , 0 , p6[0,1] , p6[0,2] , p6[0,3] , -p6[0,0] ], [ 0 , 0 , 0 , 0 , p7[0,1] , p7[0,2] , p7[0,3] , -p7[0,0] ], [ 0 ,0.5*pymiss, 0 , 0 , 0 , 0.5*pymiss , 0 , 0 ]]) A = A/Mnorm # normalize A # print np.linalg.det(A) #A inverse # print A Ainv = A.I #B matrix B = np.matrix([[-1,1,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0], [0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0], [0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0]]) #C vector C = np.matrix([ 2*minkowskidot(p1,p2) + 2*minkowskidot(p1,p3) + m1square, 2*minkowskidot(p2,p3) + m2square, m3square, pxmiss**2, 2*minkowskidot(p5,p6) + 2*minkowskidot(p5,p7) + m5square, 2*minkowskidot(p6,p7) + m6square, m7square, pymiss**2]) C = C/Mnorm**2 # normalize C # print C # Composite matrix & vector D and E D = np.dot(Ainv,B) E = np.dot(Ainv,C.T) # store D and E Dlist.append(D) Elist.append(E) # Store determinants of A w&w/o smearing # Adetlist = np.append(Adetlist, np.linalg.det(A)) # A_nosmeardetlist = np.append(A_nosmeardetlist, np.linalg.det(A_nosmear)) # =========== # From here on we can forget about the event momenta, everything # is stored in Dn and En for each event. Time to guess the masses. # =========== # # Now to make a mass hypothesis (guess the correct one) # MZ = 5.45421001e+02 # Mass of ~uL # MY = 1.80337030e+02 # Mass of ~chi02 # MX = 1.44059825e+02 # Mass of ~eR # MN = 9.70071979e+01 # Mass of ~chi01 (dark matter!) # MZprim = MZ # MYprim = MY # MXprim = MX # MNprim = MN # M = np.matrix([ MZ**2 , MY**2 , MX**2 , MN**2 , MZprim**2 , MYprim**2 , MXprim**2 , MNprim**2 ]) # M = M/Mnorm # print M # # # Calculate the "chi-squared" error of the correct hypothesis # P = [] # store Pn # xisquared = 0 # offshell = [] # list to store p4nsquared - MN**2 # for n in range(N): # Pn = np.dot(Dlist[n],M.T) + Elist[n] # P.append(Pn) #store in case needed # #print "hei", Pn.shape # p4nsquared = Pn[3,0]**2 - Pn[0,0]**2 - Pn[1,0]**2 - Pn[2,0]**2 # p8nsquared = Pn[7,0]**2 - Pn[4,0]**2 - Pn[5,0]**2 - Pn[6,0]**2 # xisquared += (p4nsquared - MN**2)**2 + (p8nsquared - MNprim**2)**2 # offshell.append(abs(p4nsquared-MN**2)) # offshell.append(abs(p8nsquared-MNprim**2)) # print "xisquared", xisquared/Mnorm**2 # print np.mean(offshell) # === Plot some results === # plt.hist(invariant_mass_between_c1_leptons, bins=100) # plt.title('Distribution of lepton pair invariant mass in %d events.' % N) # plt.xlabel(r'$m_{l^+l^-}$') # plt.ylabel('Occurences') # plt.show() # Plot det(A) scatter smear vs nosmear # plt.loglog(abs(A_nosmeardetlist), abs(Adetlist), 'bx') # plt.hold('on') # plt.plot([min(abs(Adetlist)),max(abs(Adetlist))], [min(abs(Adetlist)),max(abs(Adetlist))], 'r') # plt.title('Per-event det(A) unsmeared vs smeared, smearing resolution %.1f' % resolution) # plt.xlabel(r'$\mathrm{det}(A_\mathrm{non-smear})$') # plt.ylabel(r'$\mathrm{det}(A_\mathrm{smear})$') # plt.show() # ============ Minimization to best fit ================= # import minuit # xi-squared function to minimize with identical chains def xisquared_identical_chains(MZ, MY, MX, MN, Nevents, i): #, MZp, MYp, MXp, MNp): Nevents = int(Nevents) i = int(i) # Duplicate masses for primed chain MZp, MYp, MXp, MNp = MZ, MY, MX, MN# = Masses # Set up Webber's M vector M = np.matrix([ MZ**2 , MY**2 , MX**2 , MN**2 , MZp**2 , MYp**2 , MXp**2 , MNp**2 ]) M = M/Mnorm**2 #normalise M # Calculate the "chi-squared" error of the hypothesis # P = [] # store Pn xisquared = 0 # offshell = [] # list to store p4nsquared - MN**2 for n in range(i*Nevents, (i+1)*Nevents): Pn = np.dot(Dlist[n],M.T) + Elist[n] # P.append(Pn) #store in case needed p4nsquared = Pn[3,0]**2 - Pn[0,0]**2 - Pn[1,0]**2 - Pn[2,0]**2 p8nsquared = Pn[7,0]**2 - Pn[4,0]**2 - Pn[5,0]**2 - Pn[6,0]**2 xisquared += (p4nsquared - M[0,3])**2 + (p8nsquared - M[0,7])**2 # p4/p8 is normalized by MN. # offshell.append(abs(p4nsquared-MN**2)) # offshell.append(abs(p8nsquared-MNprim**2)) xisquared = xisquared/float(Nevents)#/100**4 # print xisquared # xisquaredlist.append(xisquared) return xisquared # Plot xi^2 as function of some masses to see how bumpy from mpl_toolkits.mplot3d import Axes3D minm = 0.0 maxm = 3 Nlinspace = 300 Nevents=25 bin_number=1 msquark_linspace = np.linspace(Msquark*minm, Msquark*maxm, Nlinspace) mchi2_linspace = np.linspace(Mchi2*minm, Mchi2*maxm, Nlinspace) mslepton_linspace = np.linspace(Mslepton*minm, Mslepton*maxm, Nlinspace) mchi1_linspace = np.linspace(Mchi1*minm, Mchi1*maxm, Nlinspace) msquark_mesh1, mchi2_mesh = np.meshgrid(msquark_linspace, mchi2_linspace) msquark_mesh2, mslepton_mesh = np.meshgrid(msquark_linspace, mslepton_linspace) msquark_mesh3, mchi1_mesh = np.meshgrid(msquark_linspace, mchi1_linspace) # mslepton_mesh2, mchi1_mesh2 = np.meshgrid(mslepton_linspace, mchi1_linspace) xi2_plot_squarkchi2 = np.log10(xisquared_identical_chains(msquark_mesh1, mchi2_mesh, Mslepton, Mchi1, Nevents,bin_number-1)) xi2_plot_squarkslepton = np.log10(xisquared_identical_chains(msquark_mesh2, Mchi2, mslepton_mesh, Mchi1, Nevents, bin_number-1)) xi2_plot_squarkchi1 = np.log10(xisquared_identical_chains(msquark_mesh3, Mchi2, Mslepton, mchi1_mesh, Nevents, bin_number-1)) # xi2_plot_sleptonchi1 = np.log10(xisquared_identical_chains(480, 150, mslepton_mesh2, mchi1_mesh2, Nevents, bin_number-1)) # Plot 1: squark-chi2 fig = plt.figure() ax = fig.add_subplot(111, projection='3d', ) ax.set_zscale(u'linear') ax.plot_wireframe(msquark_mesh1, mchi2_mesh, xi2_plot_squarkchi2, rstride=10, cstride=10, color='k') # plt.title('test') ax.set_xlabel(r'$m_{\tilde q}$', {'fontsize':20}) ax.set_ylabel(r'$m_{\tilde \chi_2^0}$', {'fontsize':20}) ax.set_zlabel(r'$\log (\xi^2)$', {'fontsize':18}) plt.show() # Plot 2: squark-slepton fig = plt.figure() ax = fig.add_subplot(111, projection='3d', ) ax.set_zscale(u'linear') ax.plot_wireframe(msquark_mesh2, mslepton_mesh, xi2_plot_squarkslepton, rstride=10, cstride=10, color='k') # plt.title('test') ax.set_xlabel(r'$m_{\tilde q}$', {'fontsize':20}) ax.set_ylabel(r'$m_{\tilde l}$', {'fontsize':20}) ax.set_zlabel(r'$\log (\xi^2)$', {'fontsize':18}) plt.show() # Plot 3: squark-chi1 fig = plt.figure() ax = fig.add_subplot(111, projection='3d', ) ax.set_zscale(u'linear') ax.plot_wireframe(msquark_mesh3, mchi1_mesh, xi2_plot_squarkchi1, rstride=10, cstride=10, color='k') # plt.title('test') ax.set_xlabel(r'$m_{\tilde q}$', {'fontsize':20}) ax.set_ylabel(r'$m_{\tilde \chi_1^0}$', {'fontsize':20}) ax.set_zlabel(r'$\log (\xi^2)$', {'fontsize':18}) plt.show() # print 'smearing', "%2.2f ," % smearing_resolution # print 'True masses', true_values # print 'Best-fit values', best_fit # print 'relative_fit_error', relative_fit_error, ', abs mean fit error', "%.2e" %np.mean(np.abs(relative_fit_error)) # print "number of runs =", len(xisquaredlist), ", mean xi^2 =", np.mean(xisquaredlist), "final xi^2 =", xisquaredlist[-1] # Minitial = [5.5e2, 1.8e2, 1.5e2, 1e2, 5.5e2, 1.8e2, 1.5e2, 1e2] # Starting point for parameter scan # Nlist = range(100,1000, 50) # relative_fit_error_list = [] # for N in Nlist: # true_values, best_fit, relative_fit_error = minimize(N, 0, Minitial) # relative_fit_error_list.append(relative_fit_error[0]) # plt.plot(relative_fit_error_list) # plt.show()
[ "j.e.midtbo@fys.uio.no" ]
j.e.midtbo@fys.uio.no
de88552d5cb42be220489857bedbf80a50e4b048
d442aa2dd41cc8f046d1c44fd80c069689c8ac01
/django_cloud_tasks/views.py
5a91d722bce60a45bcc3b6101ecd14ce060c1913
[ "Apache-2.0" ]
permissive
guilhermearaujo/django-cloud-tasks
27593d616937184bf708318da074f2017e85e25f
946712258a23a00062d071031c40553946ebfe6a
refs/heads/main
2023-02-03T16:43:32.990856
2020-12-18T19:04:07
2020-12-18T19:04:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,667
py
import base64 import json from typing import Dict from django.apps import apps from django.http import HttpResponse from django.views.generic import View class GoogleCloudTaskView(View): def __init__(self, **kwargs): super().__init__(**kwargs) self.tasks = self._get_available_tasks() def _get_available_tasks(self): return apps.get_app_config('django_cloud_tasks').tasks def post(self, request, task_name, *args, **kwargs): try: task_class = self.tasks[task_name] data = json.loads(request.body) output, status = task_class().execute(data=data) if status == 200: result = {'result': output} else: result = {'error': output} except KeyError: status = 404 result = {'error': f"Task {task_name} not found"} response = HttpResponse(status=status, content=json.dumps(result), content_type='application/json') return response def _parse_task_args(self, body: str) -> Dict: return json.loads(body) # More info: https://cloud.google.com/pubsub/docs/push#receiving_messages class GoogleCloudSubscribeView(GoogleCloudTaskView): def _get_available_tasks(self): return apps.get_app_config('django_cloud_tasks').subscribers def _parse_task_args(self, body: str) -> Dict: event = super()._parse_task_args(body=body) task_args = {} if 'data' in event: task_args['message'] = json.loads(base64.b64decode(event['data']).decode('utf-8')) task_args['attributes'] = event.get('attributes', {}) return task_args
[ "joao@daher.dev" ]
joao@daher.dev
18c4535268b877c0562c99cbc76515ee37ca383d
9c9d08fd1821a3183bf5640a969cf96464ca748f
/migrations/versions/b165aaa7dbae_.py
64fb4b757f0b956cf7f9ad1887fb1b4b27de4da6
[]
no_license
pengjinfu/blog-1
f102a0d5cf20dfd8a6d0293ebadbaf44da0c42ef
01025a3d311505331d20a8caf2c66143c781af15
refs/heads/master
2020-06-26T13:08:10.891939
2017-06-22T09:18:31
2017-06-22T09:18:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
668
py
"""empty message Revision ID: b165aaa7dbae Revises: 24cd77a2728d Create Date: 2017-03-18 16:17:25.670714 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'b165aaa7dbae' down_revision = '24cd77a2728d' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('avatar_hash', sa.String(length=32), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('users', 'avatar_hash') # ### end Alembic commands ###
[ "1782964880@qq.com" ]
1782964880@qq.com
7f3bff7b12d76bdaf22d047eafd52e5a2dcf4f36
3c898b1aec7009110c63504d5a56e31914625d1b
/acrylamid/filters/rstx_code.py
a777d9886f403dcd1875f77ad78ddad7f3ac51cf
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
MagicSword/acrylamid
e294b151ed6305f37fc5a5fdd4f1f0fb999a22f7
6f34bc5fb2175af1103aec7a910ef48a6842de03
refs/heads/master
2021-01-16T21:30:58.564719
2012-06-22T16:00:50
2012-06-22T16:45:38
4,817,948
1
0
null
null
null
null
UTF-8
Python
false
false
1,457
py
# -*- encoding: utf-8 -*- # # Copyright: (c) 2010-2012 by Rafael Goncalves Martins # License: GPL-2, see https://hg.rafaelmartins.eng.br/blohg/file/tip/LICENSE for more details. from docutils import nodes from docutils.parsers.rst import Directive match = 'code' class Code(Directive): """reStructuredText directive that creates a pre tag suitable for decoration with http://alexgorbatchev.com/SyntaxHighlighter/ Usage example:: .. source:: python print "Hello, World!" .. raw:: html <script type="text/javascript" src="http://alexgorbatchev.com/pub/sh/current/scripts/shCore.js"></script> <script type="text/javascript" src="http://alexgorbatchev.com/pub/sh/current/scripts/shBrushPython.js"></script> <link type="text/css" rel="stylesheet" href="http://alexgorbatchev.com/pub/sh/current/styles/shCoreDefault.css"/> <script type="text/javascript">SyntaxHighlighter.defaults.toolbar=false; SyntaxHighlighter.all();</script> """ required_arguments = 1 optional_arguments = 0 has_content = True def run(self): self.assert_has_content() self.options['brush'] = self.arguments[0] html = '''\ <pre class="brush: %s"> %s </pre> ''' return [nodes.raw('', html % (self.options['brush'], "\n".join(self.content).replace('<', '&lt;')), format='html')] def makeExtension(): return Code
[ "info@posativ.org" ]
info@posativ.org
052e51ffcec636fa0d7bb9772bc936bb1e455464
686054d9b42c0c679dbbfb495e3daf7eafa6ca90
/import/method_V1/asc_to_csv.py
eabed0b9c55e0d0dbe6de3eff11799b157580fee
[]
no_license
danielzhou/Rainflux
8d66d63d65f0481647383c2c7704aca1b249e3bb
d3ceb68ba3967a37fc877bd4acd1ebae6e333076
refs/heads/master
2020-09-29T15:13:22.744967
2020-03-07T08:14:53
2020-03-07T08:14:53
227,060,838
0
0
null
null
null
null
UTF-8
Python
false
false
3,535
py
# -*- coding:utf-8 -*- # Tools: PyCharm 2018.2 # Author: DING YI ___date__ = '2018/12/4 2:57' import numpy as np import pandas as pd import time import os # 获取文件的创建时间 def get_FileCreateTime(filePath): t = os.path.getctime(filePath) return t # 计时开始 # start = time.clock() # 获取文件创建时间的时间戳 file_path = r'C:\Users\user\Desktop\ZYJ_InfluxDB\data\origin_data\point_19--22_part.asc' time_creative = get_FileCreateTime(file_path) # 导入文件 df = pd.DataFrame(pd.read_csv(file_path, header=None, names = ['Point'])) # 读取END所在行的行数 line_end = df[df['Point'].isin(['END'])].index.values # print(line_end) # 删除前面几行 df_data = df.drop(np.arange(line_end+1), inplace=False) columns_family = ['Point1','Point2','Point3','Point4','Point5','Point6','Point7','Point8','Point9','Point10', 'Point11','Point12','Point13','Point14','Point15','Point16','Point17','Point18','Point19','Point20', 'Point21','Point22','Point23','Point24','Point25','Point26','Point27','Point28','Point29','Point30', 'Point31','Point32','Point33','Point34','Point35','Point36','Point37','Point38','Point39','Point40', 'Point41','Point42','Point43','Point44','Point45','Point46','Point47','Point48','Point49','Point50', 'Point51','Point52','Point53','Point54','Point55','Point56','Point57','Point58','Point59','Point60', 'Point61','Point62','Point63','Point64','Point65','Point66','Point67','Point68','Point69','Point70', 'Point71','Point72','Point73','Point74','Point75','Point76','Point77','Point78','Point79','Point80', 'gps:Latitude','gps:Longitude','gps:Altitude','gps:EastVelocity','gps:NorthVelocity','gps:UpVelocity','gps:NumberOfSatellites','gps:Speed'] # 分列,索引作为时间戳 # df_split = pd.DataFrame((x.split(" ") for x in df_data['Point']), index=((df_data.index-76)/1024+time_creative), columns=['Point1','Point2','Point3','Point4','Point5','Point6','Point7','Point8','Point9','Point10','Point11','Point12','Point13','Point14','Point15','Point16','Point17','Point18','Point19','Point20','Point21','Point22','Point23','Point24','Point25','Point26','Point27','Point28','Point29','Point30','Point31','Point32','Point33','Point34','Point35','Point36','Point37','Point38','Point39','Point40','Point41','Point42','Point43','Point44','Point45','Point46','Point47','Point48','Point49','Point50','Point51','Point52','Point53','Point54','Point55','Point56','Point57','Point58','Point59','Point60','Point61','Point62','Point63','Point64','Point65','Point66','Point67','Point68','Point69','Point70','Point71','Point72','Point73','Point74','Point75','Point76','Point77','Point78','Point79','Point80','gps:Latitude','gps:Longitude','gps:Altitude','gps:EastVelocity','gps:NorthVelocity','gps:UpVelocity','gps:NumberOfSatellites','gps:Speed']) df_split = pd.DataFrame((x.split(" +") for x in df_data['Point']), index=((df_data.index-int(line_end)+1)/1024+time_creative)) # 结果仍有空格/制表符,使用\\s匹配任意空白。不行,结果后面无法分列,整个为一列了。 # df_split = pd.DataFrame((x.split("\\s+") for x in df_data['Point']), index=((df_data.index-int(line_end)+1)/1024+time_creative)) # 修改列名 df_split.columns = columns_family[:df_split.columns.size] df_split.index.name = "Time" # 导出csv df_split.to_csv("./csv_test.csv", index=True, sep=',') # 计时 # end = time.clock() # elapsed = end - start # print("Time used:", elapsed)
[ "1358304569@qq.com" ]
1358304569@qq.com
691b52ef9217d81a10cc5e6df8a8e390660b4769
7bd150f13b92010ae3d2b852ed291d8e71f57199
/analytics/util.py
32a75c382bc4db8e2fefe276509f41aa4a0f17a0
[ "MIT" ]
permissive
SidSachdev/CurrentLocationAPI
5438374ffc9d555a56294bfec427ea8e95ec9247
cc2c8b9e7381c289a29ebd2a59a135847eb9a957
refs/heads/master
2022-09-06T18:46:31.357310
2020-06-02T04:54:44
2020-06-02T04:54:44
268,671,288
0
0
null
null
null
null
UTF-8
Python
false
false
1,608
py
import logging from fuzzywuzzy import fuzz from models.merchant import Merchant from constants import Threshold logging.basicConfig(level=logging.DEBUG) log = logging.getLogger("analytics.util.py") def get_matching_merchants(sess, request_id, user_id, visits, search_string): """ A util function that uses the threshold to return the list of merchants that match the fuzzy ratio set by the environment or default :param sess: Session object for the DB :param request_id: Request ID tracking for debugging :param user_id: User id to get the User Object :param visits: list of visits by the user without the matching :param search_string: given search string to narrow down search :return: list of objects with narrowed down list based on search string """ result = [] log.debug( "[{}] Fuzzy matching for search string {} user_id: {}".format( request_id, search_string, user_id ) ) for visit in visits: merchant = Merchant.get_by_pk(sess, request_id, visit.merchant_pk) if ( fuzz.ratio(merchant.merchant_name, search_string) > Threshold.FUZZY_MATCH_THRESHOLD ): result.append( { "visitId": visit.visit_id, "timestamp": visit.timestamp, "merchant": { "merchantId": merchant.merchant_id, "merchantName": merchant.merchant_name, }, "user": {"userId": user_id}, } ) return result
[ "noreply@github.com" ]
SidSachdev.noreply@github.com
b590e1016cb64dc5b3b45457027b0c553b39280f
55e28e35db5bf6a844df3fb47080500b115a893e
/day11/s5.py
dc0aa1f8cdc6fd1556254c9900278c56cc2c6fc2
[]
no_license
pylarva/Python
5743ffa4a69db42b642d51b62f9e9b69ddbc1a72
71b484950e6dbdcf708726a68a3386d0d6ddc07f
refs/heads/master
2020-04-19T09:11:11.195393
2017-11-16T07:32:59
2017-11-16T07:32:59
67,507,687
1
0
null
null
null
null
UTF-8
Python
false
false
357
py
# !/usr/bin/env python # -*- coding:utf-8 -*- # Author:pylarva # bolg:www.lichengbing.com import threading def func(i, e): print(i) e.wait() print(i + 100) event = threading.Event() for i in range(10): t = threading.Thread(target=func, args=(i, event,)) t.start() event.clear() inp = input('>>>') if inp == '1': event.set()
[ "1326126359@qq.com" ]
1326126359@qq.com
105aa9c86cfe3ecb2b1fe883e6274b5107f93133
2ecc0fb80a7ab46612800803db06e3538a50a396
/DP/jump-game-ii.py
16cc57c67f6a4b925df22d4334adcb0b9dbb49ac
[]
no_license
vishaalgc/codes
f3da924694120c9da199e4dfdd73481774bb149b
4c8a8b6197adfaaafd744ded3a50580d517fc9f1
refs/heads/main
2023-06-24T20:02:48.843869
2021-07-20T14:27:34
2021-07-20T14:27:34
378,338,753
0
0
null
null
null
null
UTF-8
Python
false
false
616
py
class Solution: def jump(self, nums): n = len(nums) dp = [2**31]*n dp[0] = 0 for i in range(n): end = nums[i]+i for j in range(end,i,-1): if j < n: if dp[j] > dp[i]+1: dp[j] = dp[i]+1 else: break print(i,j,dp) # print(dp) return dp[n-1] s = Solution() nums = [2,3,1,1,4] # nums = [2,3,0,1,4] # nums = [1] # nums = [2,1] nums = [1,2,3] print(s.jump(nums))
[ "vishaalgc@gmail.com" ]
vishaalgc@gmail.com
e5d6607fa91db255527d43aac41b23164fa6348e
b3f60d85f75a538282dfabb2b4afa6fe9ecfb19a
/Xitami/xitamiexploit.py
0069df7a4507cb9c549d70176549935f82aef2be
[]
no_license
ironspideytrip/OSCE-Prep-Zero-day-practice
34ecf47e22cb1fb92d13cf04444e93c962cfb03f
4ff52ede0a74728f34f40950727870ecefb155af
refs/heads/master
2022-12-04T06:06:36.668936
2020-08-30T08:10:13
2020-08-30T08:10:13
280,714,382
3
1
null
null
null
null
UTF-8
Python
false
false
754
py
#Need to update import socket import sys host = "10.0.2.15" port = 80 #B2 96 45 00(seh) crash ="A" *72 + "\x7B\x46\x86\x7C"+ "\xcc\xcc\xcc\xcc" +"C" * (188-80) +"\xcc\xcc\xcc\xcc" +"\xB2\x96\x45" req = "GET / HTTP/1.1\r\n" req += "Host: 192.168.1.201\r\n" req += "User-Agent: Mozilla/5.0 (X11; Linux i686; rv:60.0) Gecko/20100101 Firefox/60.0\r\n" req += "Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n" req += "Accept-Language: en-US,en;q=0.5\r\n" req += "Accept-Encoding: gzip, deflate\r\n" req += "Connection: close\r\n" req += "Upgrade-Insecure-Requests: 1\r\n" req += "If-Modified-Since: Wed, " + crash + "\r\n\r\n" s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((host, port)) s.send(req) s.close()
[ "noreply@github.com" ]
ironspideytrip.noreply@github.com
d619b9bfa01b6d2f8ba0985ab9d544101708f35d
54d508cb6f02bd21190aac5af1899f3f589e961a
/experiments/IMRT/aeft.py
5b464dc6dcd981d9023d6027cd553410657a171e
[]
no_license
tqbwqing/DrThesis
27bef38853a089aab2712512cde26ea3d8edb05e
233b727d4332301b29d7cbd7012e2bdbc7a15fdd
refs/heads/master
2020-09-15T02:47:34.741544
2019-05-28T08:23:22
2019-05-28T08:23:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,303
py
# Neue AEFT-Version (26.05.17) # Letztes Update 31.05.2017 #!/usr/bin/env python2 # -*- coding: utf-8 -*- from __future__ import absolute_import, division from psychopy import locale_setup, gui, visual, core, data, event, logging, sound import numpy as np import os import threading import sys # declaration of global variables (used by response pad) global green, left, right right = False left = False green = False def StartResponsePad(): import pyxid global right, left, green dev = pyxid.get_xid_devices()[0] dev.reset_base_timer() while True: dev.poll_for_response() if dev.response_queue_size() > 0: response = dev.get_next_response() if response['pressed'] == True: if response['key'] == 3: right = True if response['key'] == 7: green = True if response['key'] == 2: left = True def StartRPThread(): rp = threading.Thread(target=StartResponsePad) rp.daemon = True rp.start() class Trial: def __init__(self, condition, minID, maxID): trial_handler = data.TrialHandler(nReps=1, method='sequential', trialList=data.importConditions(condition, selection='0:145'), seed=None, name='Block_1') self.TrialData = trial_handler.trialList self.LastTrial = 0 self.ActiveTrial = 0 self.minID = minID self.maxID = maxID self.correct = 0 self.meanTime = 0 def NextTrial(self): self.LastTrial = self.ActiveTrial try: ID = np.random.randint(self.minID, self.maxID) # print("ID: " + str(ID)) (only for debugging purposes) except: print("ERROR: Trial List empty.") raise self.ActiveTrial = self.TrialData[ID] try: self.TrialData.pop(ID) except: print("ERROR: Trial List empty.") raise self.maxID += -1 def TrialBlock(self, number): global left, right self.Clock = core.Clock() Achtung = visual.TextStim(win=myWin, name='Achtung', text='Achtung!', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=0.0); continueRoutine = True continueTrial = True self.N = 0 self.N2 = self.maxID - self.minID while continueTrial: if self.N + 1 >= self.N2: continueTrial = False self.NextTrial() target = sound.Sound(self.ActiveTrial['file_target'], secs=-1) interleaved = sound.Sound(self.ActiveTrial['file_interleaved'], secs=-1) targetStatus = 0 interleavedStatus = 0 continueRoutine_Buffer = False continueRoutine = True firstPress = True self.Clock.reset() while continueRoutine: t = self.Clock.getTime() if t <= 5.4: right = False left = False if t >= 1 and targetStatus == 0: Achtung.draw() myWin.flip() if t >= 2 and targetStatus == 0: myWin.flip() target.play() targetStatus = 1 if t >= 5.4 and interleavedStatus == 0: interleaved.play() interleavedStatus = 1 if right and firstPress and interleavedStatus == 1: continueRoutine_Buffer = True right = False firstPress = False answer = "n" tKey = t - 5.4 if left and firstPress and interleavedStatus == 1: continueRoutine_Buffer = True left = False firstPress = False answer = "c" tKey = t - 5.4 if continueRoutine_Buffer and interleavedStatus == 1 and t >= 7.4: continueRoutine = False if interleavedStatus == 1 and t >= 9: answer = "none" tKey = -1 continueRoutine = False if event.getKeys(keyList=["escape"]): core.quit() thisExp.addData('file_target',self.ActiveTrial['file_target']) thisExp.addData('file_interleaved',self.ActiveTrial['file_interleaved']) thisExp.addData('cond',self.ActiveTrial['cond']) thisExp.addData('target',self.ActiveTrial['target']) thisExp.addData('Ans_corr',self.ActiveTrial['Ans_corr']) thisExp.addData('cond_inside',self.ActiveTrial['cond_inside']) thisExp.addData('block_number', number) thisExp.addData('trial_number', self.N) thisExp.addData('time', tKey) thisExp.addData('answer', answer) if answer == str(self.ActiveTrial['Ans_corr']): thisExp.addData('correct answer?', 1) self.correct += 1 else: thisExp.addData('correct answer?', 0) thisExp.nextEntry() self.meanTime += tKey / 16 self.N += 1 if __name__ == "__main__": ### Init of Psychopy stuff expName = 'AEFT' # expInfo = {u'session': u'001', u'participant': u'' , u'condition type': ['A', 'B']} dlg = gui.DlgFromDict(dictionary=expInfo, title=expName) if dlg.OK == False: core.quit() # user pressed cancel expInfo['date'] = data.getDateStr() # add a simple timestamp expInfo['expName'] = expName if expInfo['condition type'] == "A": conditions = "conditions_FormA.csv" if expInfo['condition type'] == "B": conditions = "conditions_FormB.csv" filename = u'data/%s_%s_%s' % (expInfo['participant'], expName, expInfo['date']) thisExp = data.ExperimentHandler(name=expName, version='', extraInfo=expInfo, runtimeInfo=None, originPath=None, savePickle=True, saveWideText=True, dataFileName=filename) global myWin myWin = visual.Window(size=(1920, 1200), fullscr=True, allowGUI=False,winType='pyglet', monitor='testMonitor', screen=0, color=[-1.000,-1.000,-1.000], colorSpace='rgb', blendMode='avg') # Init of response pad StartRPThread() # Instructions continueInstruction = True while continueInstruction: head_geninstr = visual.TextStim(win=myWin, name='head_geninstr', text='Welcome!', font='Comic Sans', pos=(0, 0.7), height=0.1, wrapWidth=1.5, ori=0, color='white', colorSpace='rgb', opacity=1, depth=0.0); main_geninstr = visual.TextStim(win=myWin, name='main_geninstr', text=u'In this task you will hear a melody, consisting 6 tones, played on an electronic piano. After that, you will hear a sequence of two mixed melodies. Sometimes the melody which you heard first will be included but entangled with another melody. In the other cases the melody will not be inlcuded in the mixed sequence. \n\n\n\n', font='Arial', pos=(0, 0), height=0.065, wrapWidth=1.5, ori=0, color='white', colorSpace='rgb', opacity=1, depth=-1.0); foot_geninstr = visual.TextStim(win=myWin, name='foot_geninstr', text=u'Continue with the green button!', font='Arial', pos=(0, -0.9), height=0.04, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=-2.0); head_geninstr.draw() main_geninstr.draw() foot_geninstr.draw() myWin.flip() if event.getKeys(keyList=["escape"]): core.quit() if green: continueInstruction = False green = False continueInstruction = True while continueInstruction: main_geninstr_2 = visual.TextStim(win=myWin, name='main_geninstr_2', text=u'After you have heard the melody and the mixed sequence, you should decide if the melody was included in the mixed sequence. Press the button on the right-hand side if the melody was included, on the left-hand side if not. Please try to be as fast as possible. Press the green button to continue with a short trial.', font='Arial', pos=(0, 0), height=0.075, wrapWidth=1.5, ori=0, color='white', colorSpace='rgb', opacity=1, depth=0.0); foot_geninstr_2 = visual.TextStim(win=myWin, name='foot_geninstr_2', text=u'Continue with the green button!', font='Arial', pos=(0, -0.9), height=0.04, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=-1.0); main_geninstr_2.draw() foot_geninstr_2.draw() myWin.flip() if event.getKeys(keyList=["escape"]): core.quit() if green: continueInstruction = False green = False # Practice Block trial = Trial(conditions, 0, 16) trial.TrialBlock("practice") msg = "You have answered %i stimuli correctly. \n (reaction time=%.2f s)" %(trial.correct , trial.meanTime) continueInstruction = True while continueInstruction: head_feedback = visual.TextStim(win=myWin, name='head_feedback', text=u'Trial finished!', font='Arial', pos=(0, 0.85), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=-1.0); main_feedback = visual.TextStim(win=myWin, name='main_feedback', text=msg, font='Arial', pos=(0, 0), height=0.075, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=-2.0); foot_feedback = visual.TextStim(win=myWin, name='foot_feedback', text=u'Continue with the green button!', font='Arial', pos=(0, -0.9), height=0.04, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=-3.0); head_feedback.draw() main_feedback.draw() foot_feedback.draw() myWin.flip() if event.getKeys(keyList=["escape"]): core.quit() if green: continueInstruction = False green = False continueInstruction = True while continueInstruction: head_begin = visual.TextStim(win=myWin, name='head_begin', text='Start of the experiment', font='Arial', pos=(0, 0.75), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=0.0); main_begin = visual.TextStim(win=myWin, name='main_begin', text='First part. You are now well prepared for the experiment. If you have any questions, please ask the supervisor.', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=-1.0); foot_begin = visual.TextStim(win=myWin, name='foot_begin', text=u'Continue with the green button!', font='Arial', pos=(0, -0.9), height=0.04, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=-3.0); head_begin.draw() main_begin.draw() foot_begin.draw() myWin.flip() if event.getKeys(keyList=["escape"]): core.quit() if green: continueInstruction = False green = False # First 8 trials trial = Trial(conditions, 16, 80) trial.TrialBlock(1) continueInstruction = True while continueInstruction: main_begin_2 = visual.TextStim(win=myWin, name='main_begin_2', text='Break!', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=0.0); foot_begin_2 = visual.TextStim(win=myWin, name='foot_begin_2', text=u'Continue with the green button!', font='Arial', pos=(0, -0.9), height=0.04, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=-2.0); main_begin_2.draw() foot_begin_2.draw() myWin.flip() if event.getKeys(keyList=["escape"]): core.quit() if green: continueInstruction = False green = False # Second 8 trials trial = Trial(conditions, 80, 144) trial.TrialBlock(2) continueInstruction = True while continueInstruction: main_thanks = visual.TextStim(win=myWin, name='main_thanks', text=u'Thank you for your participation. The supervisor will now continue to guide you through the session.', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, depth=0.0); main_thanks.draw() myWin.flip() if event.getKeys(keyList=["escape"]): core.quit() if green: continueInstruction = False green = False
[ "teresa.wenhart@gmx.de" ]
teresa.wenhart@gmx.de
d528cdacfede880f9f14ff74d6e95b3e9fe79d18
074f3ae0feba35fdf7e5e1b671780c4bb5d39d90
/students/models.py
85b8f6959f016110dae948326bfd703fef9840d7
[]
no_license
aakhvostov/django_hw_8_testing
4a41589687db8ab64ffafe74085d72cdcd32722c
a8dec38a5f50b597943aed73c48c34df324b8b59
refs/heads/master
2023-04-03T02:21:47.539951
2021-03-23T09:27:15
2021-03-23T09:27:15
350,651,417
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
from django.db import models class Student(models.Model): name = models.TextField() birth_date = models.DateField( null=True, ) class Course(models.Model): name = models.TextField() students = models.ManyToManyField( Student, blank=True, related_name="course" )
[ "skitol@yandex.ru" ]
skitol@yandex.ru
6a4c42fa1139ad611c0cb192a9f35f255cbaeada
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/response/AlipayMarketingToolFengdieEditorGetResponse.py
400d69ff0b9e34578ec8dd0953f905e881f4d2fb
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
936
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.FengdieEditorGetRespModel import FengdieEditorGetRespModel class AlipayMarketingToolFengdieEditorGetResponse(AlipayResponse): def __init__(self): super(AlipayMarketingToolFengdieEditorGetResponse, self).__init__() self._data = None @property def data(self): return self._data @data.setter def data(self, value): if isinstance(value, FengdieEditorGetRespModel): self._data = value else: self._data = FengdieEditorGetRespModel.from_alipay_dict(value) def parse_response_content(self, response_content): response = super(AlipayMarketingToolFengdieEditorGetResponse, self).parse_response_content(response_content) if 'data' in response: self.data = response['data']
[ "liuqun.lq@alibaba-inc.com" ]
liuqun.lq@alibaba-inc.com
d393d84a2956744022939b557c3179418b5c3398
e02180b0000c9c0ed14e950c30429f405965371f
/NewAgeLiberty/wsgi.py
2a1b115e515e93c38d41bba2edbbef7443f24d46
[ "MIT" ]
permissive
NAL0/Dja
cecb164fbf06babcde4bbe1ede11a89c760ad260
ed763d787a751fc6e63df6c6fd35f6ad28de0e08
refs/heads/master
2020-03-29T01:33:12.598304
2019-01-28T21:42:01
2019-01-28T21:42:01
149,394,476
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
""" WSGI config for NewAgeLiberty project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "NewAgeLiberty.settings") application = get_wsgi_application()
[ "nosocks94@gmail.com" ]
nosocks94@gmail.com
c86e0865e0c26603c4194fb711017a9166f58fe9
cf5ceed90310006a4543d976882c85bc701efab3
/crawley/http/request.py
2ee8051481215e854868f1e700e2e775c4a43f2f
[]
no_license
hammadk373/crawley
698b1aff51267a78f5e9f18d78f43e1dd69d75bd
f7522cfa0446b523b93e8056991f9d10e9754ff0
refs/heads/master
2021-01-18T06:52:07.753729
2011-10-28T02:37:00
2011-10-28T02:37:00
2,663,083
1
0
null
null
null
null
UTF-8
Python
false
false
2,077
py
import time import random from eventlet.green import urllib2 from cookies import CookieHandler from crawley.config import REQUEST_TIMEOUT, MOZILLA_USER_AGENT class Request(object): """ Custom request object """ def __init__(self, url, cookie_handler=None): if cookie_handler is None: cookie_handler = CookieHandler() self.url = url self.headers = {} self.headers["User-Agent"] = MOZILLA_USER_AGENT self.headers["Accept-Charset"] = "ISO-8859-1,utf-8;q=0.7,*;q=0.3" self.headers["Accept-Language"] = "es-419,es;q=0.8" self.cookie_handler = cookie_handler def get_response(self, data=None): """ Returns the response object from a request. Cookies are supported via a CookieHandler object """ self._normalize_url() request = urllib2.Request(self.url, data, self.headers) opener = urllib2.build_opener(self.cookie_handler) if REQUEST_TIMEOUT is not None: response = opener.open(request, timeout=REQUEST_TIMEOUT) else: response = opener.open(request) self.cookie_handler.save_cookies() return response def _normalize_url(self): """ Normalize the request url """ self.url = urllib2.quote(self.url.encode('utf-8'), safe="%/:=&?~#+!$,;'@()*[]") class DelayedRequest(Request): """ A delayed custom Request """ def __init__(self, url, cookie_handler=None, delay=0, deviation=0): self.delay = delay + random.randint(-deviation, deviation) Request.__init__(self, url, cookie_handler) def get_response(self, data=None): """ Waits [delay] miliseconds and then make the request """ mili_seconds = self.delay / 1000 time.sleep(mili_seconds) return Request.get_response(self, data)
[ "jmg.utn@gmail.com" ]
jmg.utn@gmail.com
ca4ff9f942bf417f6de624872efe568d0c0f4458
f469071d593df865e3c3b676655250d48b9b6b9e
/Search_engine/urls.py
03c696a505a37d0da73482b3af55e4a17f9c11bd
[]
no_license
jayednahain/eComarce_django
af1ba704458a07290bbe4c291d71ce7c8c84edcf
8941349a5bdd9fdc55e3787b6adbdc31a4c57aab
refs/heads/main
2023-08-19T02:47:09.578771
2021-09-26T12:37:39
2021-09-26T12:37:39
391,820,014
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
from django.urls import path from Search_engine import views urlpatterns = [ #class based veiw path('',views.CB_Search_ProductListview.as_view(),name='search_link'), ]
[ "jayednahian@yahoo.com" ]
jayednahian@yahoo.com
769b940e5bcb345108cf45b4661ec78f939a45e2
467fdc6993ba8b1393faac58a804367465c016c9
/tests/common/test_model_utils.py
674fd32975dcb541ef7d60dbaed32b8050962619
[ "Apache-2.0" ]
permissive
codeaudit/DeCLUTR
b8d8043a49cfecd20da93f66c07ff26652ff61f8
94d63e1b1978896c3446a7a4f85f6adfc454a088
refs/heads/master
2023-03-25T06:04:20.269495
2021-03-26T16:48:57
2021-03-26T16:48:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,583
py
from copy import deepcopy import torch from allennlp.data import TextFieldTensors from hypothesis import given, settings from hypothesis.strategies import integers from declutr.common.model_utils import unpack_batch class TestModelUtils: @settings(deadline=None) @given( batch_size=integers(min_value=1, max_value=4), num_anchors=integers(min_value=1, max_value=4), max_length=integers(min_value=1, max_value=16), ) def test_unpack_batch(self, batch_size: int, num_anchors: int, max_length: int) -> None: # Create some dummy data. two_dim_tensor = torch.randn(batch_size, max_length) two_dim_input: TextFieldTensors = { "tokens": { "token_ids": two_dim_tensor, "mask": torch.ones_like(two_dim_tensor), "type_ids": torch.ones_like(two_dim_tensor), } } three_dim_tensor = torch.randn(batch_size, num_anchors, max_length) three_dim_input: TextFieldTensors = { "tokens": { "token_ids": three_dim_tensor, "mask": torch.ones_like(three_dim_tensor), "type_ids": torch.ones_like(three_dim_tensor), } } four_dim_tensor = torch.randn(batch_size, num_anchors, num_anchors, max_length) four_dim_input: TextFieldTensors = { "tokens": { "token_ids": four_dim_tensor, "mask": torch.ones_like(four_dim_tensor), "type_ids": torch.ones_like(four_dim_tensor), } } # Only TextFieldTensors with tensors of three dimensions should be reshaped... # Tensors are updated in-place, so deepcopy before passing to unpack_batch actual_three_input_dim = unpack_batch(deepcopy(three_dim_input)) for name, tensor in actual_three_input_dim["tokens"].items(): assert torch.equal( tensor, three_dim_input["tokens"][name].reshape(batch_size * num_anchors, max_length), ) # ...unpack_batch is a no-op for TextFieldTensors with tensors less than or greater than 3D. actual_two_dim_input = unpack_batch(deepcopy(two_dim_input)) for name, tensor in actual_two_dim_input["tokens"].items(): assert torch.equal(tensor, two_dim_input["tokens"][name]) actual_four_dim_input = unpack_batch(deepcopy(four_dim_input)) for name, tensor in actual_four_dim_input["tokens"].items(): assert torch.equal(tensor, four_dim_input["tokens"][name])
[ "johnmgiorgi@gmail.com" ]
johnmgiorgi@gmail.com
e957298594705e73339598471ace2f9e583a6de7
703deed0b0076c405e9f71dd6a9e8d38748d5233
/ex28format.py
0ae6b0b3c89ba352af0a00b11063987472f849fc
[]
no_license
GuilhermeBeco/Python1
043d2075a6e3d76ae8e8215ce99ab79d8ce41a61
1a30bb75f4d8e4cbd22137b77296065cd4ea2f1d
refs/heads/master
2020-04-08T19:11:35.714415
2019-04-11T09:50:16
2019-04-11T09:50:16
159,644,312
0
0
null
null
null
null
UTF-8
Python
false
false
207
py
def main(): vezes=int(input("Qual o numero que pretende fazer a tabuada: ")) for counter in range(1,10): res=counter*vezes print("{0:^4} * {0^:2} = {1:^4}".format(vezes,counter,res))
[ "guilhermebeco1999@gmail.com" ]
guilhermebeco1999@gmail.com
729c18ab3486454879df76cfbfa6752853d1f752
da424570955152f345b0e6b2ba53ab237168a88c
/dl_animals.py
6d76b28929290092439b1342a35f4d9885a3a93f
[]
no_license
Holographic-Sol/crawl_wallpapers_craft
5baf532e8f87306e50e50b2088eb02303552c116
da0abfd142bc9205106f3ec234e64e02b2eb5bc8
refs/heads/master
2022-01-16T09:13:31.153235
2019-07-24T13:57:50
2019-07-24T13:57:50
198,302,067
0
0
null
null
null
null
UTF-8
Python
false
false
4,912
py
import os import requests from bs4 import BeautifulSoup import distutils.dir_util import urllib.request chosen_res = '1920x1080.jpg' download_location = '../crawler_bot_wallparscraft_download/animals/' if os.path.exists(download_location): print('download location:', download_location) elif not os.path.exists(download_location): distutils.dir_util.mkpath(download_location) print('download location:', download_location) catalog_url = [] catalog_href = [] catalog_page_num = [] compiled_page_link = [] def func_1(): # 1. obtain a list of catalog's. url = 'https://wallpaperscraft.com/' rHead = requests.get(url) data = rHead.text soup = BeautifulSoup(data, "html.parser") for row in soup.find_all('a'): href = row.get('href') if href is None: pass elif '/catalog/' in href: catalog_href.append(href) catalog = 'https://wallpaperscraft.com' + href catalog_url.append(catalog) def func_2(): # 2. crawl each catalog for number of pages. i = 0 page_num = '' for catalog_urls in catalog_url: rHead = requests.get(catalog_url[i]) data = rHead.text soup = BeautifulSoup(data, "html.parser") for row in soup.find_all('a'): href = row.get('href') if href is None: pass elif href.startswith('/catalog/') and 'page' in href: page_num = href.replace(catalog_href[i], '') page_num = page_num.replace('/page', '') catalog_page_num.append(page_num) i += 1 def func_3(): # 3. compile list of links available to crawl (predicated upon category and page numbers). i = 0 page_num = 1 for catalog_urls in catalog_url: catalog_page_num_int = int(catalog_page_num[i]) # print(catalog_url[i]) while page_num <= catalog_page_num_int: page_num_str = str(page_num) page_link = catalog_url[i] + '/page' + page_num_str if page_link.startswith('https://wallpaperscraft.com/catalog/animals/'): print(page_link) compiled_page_link.append(page_link) page_num += 1 i += 1 page_num = 1 def func_4(): i = 0 for compiled_page_links in compiled_page_link: rHead = requests.get(compiled_page_link[i]) data = rHead.text soup = BeautifulSoup(data, "html.parser") for row in soup.find_all('a'): href = row.get('href') if href is None: pass elif href.startswith('/wallpaper/'): image_link = 'https://wallpaperscraft.com' + href rHead = requests.get(image_link) data = rHead.text soup = BeautifulSoup(data, "html.parser") for row in soup.find_all('a'): href = row.get('href') if href is None: pass elif href.startswith('/download/'): img_page = 'https://wallpaperscraft.com' + href rHead = requests.get(img_page) data = rHead.text soup = BeautifulSoup(data, "html.parser") images = soup.findAll('img') for image in images: img_url = image['src'] if chosen_res != '': if img_url.endswith(chosen_res): fname = img_url.replace('https://images.wallpaperscraft.com/image/', '') path_fname = download_location + fname if not os.path.exists(path_fname): print('page', i, 'downloading:', img_url) urllib.request.urlretrieve(img_url, path_fname) elif os.path.exists(path_fname): print('page', i, 'skipping:', img_url) elif img_url.endswith('.jpg') and chosen_res is '': fname = img_url.replace('https://images.wallpaperscraft.com/image/', '') path_fname = download_location + fname if not os.path.exists(path_fname): print('page', i, 'downloading:', img_url) urllib.request.urlretrieve(img_url, path_fname) elif os.path.exists(path_fname): print('page', i, 'skipping:', img_url) i += 1 func_1() func_2() func_3() func_4()
[ "noreply@github.com" ]
Holographic-Sol.noreply@github.com
3ddefa654204ee814e07e0388f148ed0822a75c6
cef0d939d347ba997a8582c98d2e0ae5d869a41f
/bootleg/urls.py
330b1ba87c0cc30b6632a6b52ad10c1384d0e618
[]
no_license
caodac/ncats_bootleg_access
5e2c629b4891d9f3ed81ee412ac6bfed064c4ac6
29391f2ac6886e5b9721693f6e95b6c116cd8e6e
refs/heads/master
2022-10-03T23:35:35.747774
2020-06-08T03:41:09
2020-06-08T03:41:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,500
py
from django.urls import path, reverse from . import views urlpatterns = [ path(r'', views.home, name='bootleg-home'), # authentication views path(r'signin', views.sign_in, name='bootleg-signin'), path(r'signout', views.sign_out, name='bootleg-signout'), path(r'callback', views.callback, name='bootleg-callback'), path(r'auth', views.auth, name='bootleg-auth'), path(r'verify', views.verify, name='bootleg-verify'), path(r'login', views.bootleg_login, name='bootleg-login'), # app content views path(r'calendar', views.calendar, name='bootleg-calendar'), path(r'messages/new', views.message_new, name='bootleg-message-new'), path(r'messages/<id>', views.message, name='bootleg-message'), path(r'messages/<id>/body', views.message_body, name='bootleg-message-body'), path(r'messages/<id>/<type>', views.message_send, name='bootleg-message-send'), path(r'messages', views.messages, name='bootleg-messages'), # app content api path(r'api/avatar', views.api_profile_photo, name='bootleg-api-avatar'), path(r'api/messages/new', views.api_message_new, name='bootleg-api-message-new'), path(r'api/messages/<id>', views.api_message, name='bootleg-api-message'), path(r'api/messages/<id>/attachment/<attachment_id>', views.api_message_attachment_content, name='bootleg-api-message-attachment'), path(r'api/people', views.api_people, name='bootleg-api-people'), ]
[ "caodac@gmail.com" ]
caodac@gmail.com
7252cc8f913a94a2033b958de05b74e2e420e3c6
83ee2f4b88746ffd86479f54061cac56521cf7cc
/examples/plugin_example/plugin.py
38a784d6fbc8bb9e4a0c32121ec134d6317cf844
[ "MIT" ]
permissive
r2en/pysen
0ae0231e3cf902585151ab0488845634bf2de7a4
be7666856cf99f07fc77c9d5fc0a9385498505e6
refs/heads/main
2023-03-29T10:22:36.408476
2021-04-03T00:53:59
2021-04-03T00:53:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,664
py
import dataclasses import pathlib import subprocess from typing import DefaultDict, List, Sequence import dacite from pysen.command import CommandBase from pysen.component import ComponentBase, RunOptions from pysen.path import change_dir from pysen.plugin import PluginBase from pysen.pyproject_model import Config, PluginConfig from pysen.reporter import Reporter from pysen.runner_options import PathContext from pysen.setting import SettingFile class ShellCommand(CommandBase): def __init__(self, name: str, base_dir: pathlib.Path, cmd: Sequence[str]) -> None: self._name = name self._base_dir = base_dir self._cmd = cmd @property def name(self) -> str: return self._name def __call__(self, reporter: Reporter) -> int: with change_dir(self._base_dir): try: ret = subprocess.run(self._cmd) reporter.logger.info(f"{self._cmd} returns {ret.returncode}") return ret.returncode except BaseException as e: reporter.logger.info( f"an error occured while executing: {self._cmd}\n{e}" ) return 255 class ShellComponent(ComponentBase): def __init__(self, name: str, cmd: Sequence[str], targets: Sequence[str]) -> None: self._name = name self._cmd = cmd self._targets = targets @property def name(self) -> str: return self._name def export_settings( self, paths: PathContext, files: DefaultDict[str, SettingFile], ) -> None: print(f"Called export_settings at {self._name}: do nothing") @property def targets(self) -> Sequence[str]: return self._targets def create_command( self, target: str, paths: PathContext, options: RunOptions ) -> CommandBase: assert target in self._targets return ShellCommand(self._name, paths.base_dir, self._cmd) @dataclasses.dataclass class ShellPluginConfig: name: str command: List[str] targets: List[str] class ShellPlugin(PluginBase): def load( self, file_path: pathlib.Path, config_data: PluginConfig, root: Config ) -> Sequence[ComponentBase]: assert ( config_data.config is not None ), f"{config_data.location}.config must be not None" config = dacite.from_dict( ShellPluginConfig, config_data.config, dacite.Config(strict=True) ) return [ShellComponent(config.name, config.command, config.targets)] # NOTE(igarashi): This is the entry point of a plugin method def plugin() -> PluginBase: return ShellPlugin()
[ "igarashi@preferred.jp" ]
igarashi@preferred.jp
908c0b939a94bf22827f916a648c080ee523b568
8eea6dc3e55a28dd956c794a98a06d989966a5f2
/socialmedia/views.py
4e8406b5c4326358206320bf412e4e95d2cc3c40
[]
no_license
m-sounak/Sociefy
c4440e5811345ba2164ba0bd67f4d9fef8d9e26c
ebb08a9add286145ee050aac339fb137914ad97e
refs/heads/master
2023-02-18T00:40:50.648913
2021-01-19T10:30:08
2021-01-19T10:30:08
330,941,758
1
0
null
null
null
null
UTF-8
Python
false
false
230
py
from django.views.generic import TemplateView class TestPage(TemplateView): template_name = 'test.html' class ThanksPage(TemplateView): template_name = 'thanks.html' class HomePage(TemplateView): template_name = 'index.html'
[ "sounakmajumder472@gmail.com" ]
sounakmajumder472@gmail.com
e57f5fe36e1e98cfe8da5db57b7a967875c6d373
90b0b959da8adee5825efa12b212e5e76ba4837f
/GAN/GAN.py
8565d8b1655ff4e6eaf2926468df5ba3d6e1482c
[]
no_license
madhureelatha/GAN-vs-VAE-Performance-Analysis
6ec1e95ee29cf1b5d5786cadb01ae17986087fbc
47909dff0688838ed7f9e24b11997e62f09c3ca2
refs/heads/master
2023-01-23T21:39:00.717079
2020-12-13T04:51:46
2020-12-13T04:51:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,591
py
# -*- coding: utf-8 -*- """Allam.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1DYWUkFxQyrRpphg8a-zlnVlPV43nAn1U """ import pydot from keras.datasets import mnist from keras.layers import Input, Dense, Reshape, Flatten, Dropout from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D, Conv2DTranspose from keras.models import Sequential, Model from keras.optimizers import Adam from keras.utils.vis_utils import plot_model import matplotlib.pyplot as plt import sys import os import numpy as np img_rows = 28 img_cols = 28 channels = 1 img_shape = (img_rows, img_cols, channels) latent_dim = 100 optimizer = Adam(learning_rate=0.0002, beta_1=0.5) def build_generator(): model = Sequential(name='generator') model.add(Dense(256, input_dim=latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) #model.add(Reshape((7, 7, 128))) model.add(Dense(512)) #model.add(Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) #.add(Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same')) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) #model.add(Conv2D(1, (7, 7), activation='sigmoid', padding='same')) model.add(Dense(np.prod(img_shape), activation='tanh')) model.add(Reshape(img_shape)) model.summary() noise = Input(shape=(latent_dim,)) img = model(noise) return Model(noise, img) def build_discriminator(): model = Sequential(name='discriminator') model.add(Flatten(input_shape=img_shape)) #model.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1))) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) #model.add(Dropout(0.4)) model.add(Dense(256)) #model.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same')) model.add(LeakyReLU(alpha=0.2)) #model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=img_shape) validity = model(img) return Model(img, validity) def train(epochs, t_data, batch_size=64, sample_interval=50): res_g_loss = [] t_data = t_data / 127.5 - 1. t_data = np.expand_dims(t_data, axis=3) valid = np.ones((batch_size, 1)) fake = np.zeros((batch_size, 1)) for epoch in range(epochs): idx = np.random.randint(0, t_data.shape[0], batch_size) imgs = t_data[idx] noise = np.random.normal(0, 1, (batch_size, latent_dim)) gen_imgs = generator.predict(noise) d_loss_real = discriminator.train_on_batch(imgs, valid) d_loss_fake = discriminator.train_on_batch(gen_imgs, fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) noise = np.random.normal(0, 1, (batch_size, latent_dim)) g_loss = combined.train_on_batch(noise, valid) res_g_loss.append(g_loss) print("%d [d_loss_real: %.4f, d_loss_fake: %.4f] [g_loss: %.4f]" % (epoch, d_loss[0], d_loss[1], g_loss)) if epoch % sample_interval == 0: sample_images(epoch) return res_g_loss def sample_images(epoch): r, c = 5, 5 noise = np.random.normal(0, 1, (r * c, latent_dim)) gen_imgs = generator.predict(noise) gen_imgs = 0.5 * gen_imgs + 0.5 fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): axs[i, j].imshow(gen_imgs[cnt, :, :, 0], cmap='gray') axs[i, j].axis('off') cnt += 1 fig.savefig("images/%d.png" % epoch) plt.close() discriminator = build_discriminator() discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) generator = build_generator() gan_input = Input(shape=(latent_dim,)) img = generator(gan_input) discriminator.trainable = False validity = discriminator(img) combined = Model(gan_input, validity) combined.compile(loss='binary_crossentropy', optimizer=optimizer) if not os.path.exists("./images"): os.makedirs("./images") (X_train, Y_train), (X_test, Y_test) = mnist.load_data() X_total = np.concatenate((X_train, X_test), axis=0) gan = GAN() g_loss = train(epochs=10000, batch_size=200, sample_interval=100, t_data=X_total) print(np.mean(g_loss)) plt.figure() plt.plot(g_loss) plt.xlabel("epochs") plt.ylabel("g_loss") plt.savefig("images/g_loss.jpg")
[ "kurchetinagaganeshsing@gmail.com" ]
kurchetinagaganeshsing@gmail.com
54fc4b571d0a019cf447302ece1dbbcbd640f3f2
c075d28fe2f947b62cdc6b824a9619b3da249a9b
/Message.py
e6570ebddb157dcd34c40f70651f5fd8608fe182
[]
no_license
ahiaplee/REST_API
274554df54ebb8f40e089ddbd6e3e4a35715e217
d873893a434652b889d1db3a7d0b4b10d82b2488
refs/heads/master
2023-07-11T14:50:27.429509
2021-08-23T09:33:17
2021-08-23T09:33:17
398,561,701
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
""" Helper function to construct message of object """ def Message(success, msg, data = None): return { "success" : success, "message" : str(msg), "data" : None if data is None else (data) }
[ "anghiaplee@gmail.com" ]
anghiaplee@gmail.com
d2551746212128238ed588764eaf2295cdb5161e
e4831f5a12c5b96473dd1717d1c4f194d7eef211
/jax/experimental/jax_to_tf/tests/savedmodel_test.py
b52ddf209cf57e43650933bf1893c17ba9f9c151
[ "Apache-2.0" ]
permissive
qiuminxu/jax
9fe52053d49f83638a1a85325e8bb99f3143f1f5
563b65e8c505cfdbf0184dd55f40319e286137fd
refs/heads/master
2023-01-31T06:23:52.743231
2020-06-08T22:11:49
2020-06-08T22:11:49
270,889,360
0
0
NOASSERTION
2020-06-09T03:00:17
2020-06-09T03:00:16
null
UTF-8
Python
false
false
1,559
py
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from absl.testing import absltest import jax import jax.numpy as jnp import numpy as np import tensorflow as tf # type: ignore[import] from jax.experimental import jax_to_tf from jax.experimental.jax_to_tf.tests import tf_test_util from jax.config import config config.parse_flags_with_absl() class SavedModelTest(tf_test_util.JaxToTfTestCase): def testSavedModel(self): f_jax = jax.jit(lambda x: jnp.sin(jnp.cos(x))) model = tf.Module() model.f = tf.function(jax_to_tf.convert(f_jax), input_signature=[tf.TensorSpec([], tf.float32)]) x = np.array(0.7) self.assertAllClose(model.f(x), f_jax(x)) # Roundtrip through saved model on disk. model_dir = os.path.join(absltest.get_default_test_tmpdir(), str(id(model))) tf.saved_model.save(model, model_dir) restored_model = tf.saved_model.load(model_dir) self.assertAllClose(restored_model.f(x), f_jax(x)) if __name__ == "__main__": absltest.main()
[ "noreply@github.com" ]
qiuminxu.noreply@github.com
6af69148a5b1b6b792f560886f4ce0b71ad1b082
d557289b9836dd1a426f15f0a463439b98dadaa3
/mergeArraySort.py
cd3e3acd8d3274061443b2958c29f2ba70769fd0
[]
no_license
SmartChandru/GUVI-code-kata
dced9cd3fa37ee0e89eb2a0c79899744e353eb0a
01c136d72236c968f98f608eb10606cd5fdf5d26
refs/heads/master
2020-07-11T05:54:43.508259
2019-12-08T11:24:17
2019-12-08T11:24:17
204,460,960
1
0
null
2019-09-05T11:41:05
2019-08-26T11:27:06
Python
UTF-8
Python
false
false
249
py
n= int(input()) a=[] m=0 for i in range(n): b = list(map(int,input().split())) a.extend(b) m += len(b) #print(a,m) for i in range(0,m-1): for j in range(i+1,m): if a[i]>a[j]: a[i], a[j] = a[j], a[i] for i in a: print(i,end=" ")
[ "noreply@github.com" ]
SmartChandru.noreply@github.com
a1f12ca70ae451570ddc939d19e4b36b84558e06
6c2ddf52efccdfa15ce073da0e74d3352d5108c4
/idact/detail/config/validation/validate_scratch.py
b7e377e1a140ad61d79142b999a2e7a703c9e2ef
[ "MIT" ]
permissive
intdata-bsc/idact
4bff248e644629b7ec634b282d790c305fc6703d
54cb65a711c145351e205970c27c83e6393cccf5
refs/heads/develop
2020-05-17T20:33:52.890970
2019-12-26T00:03:58
2019-12-26T00:03:58
183,949,088
0
0
MIT
2019-12-26T00:03:59
2019-04-28T19:18:58
Python
UTF-8
Python
false
false
1,284
py
"""This module contains a function for validating a scratch config entry.""" import re from idact.detail.config.validation.validation_error_message import \ validation_error_message VALID_SCRATCH_DESCRIPTION = 'Non-empty absolute path, or environment' \ ' variable name.' VALID_SCRATCH_REGEX = r"^(/.*)|(\$[A-Za-z][A-Za-z0-9]*)$" # noqa, pylint: disable=line-too-long __COMPILED = re.compile(pattern=VALID_SCRATCH_REGEX) def validate_scratch(scratch) -> str: """Returns the parameter if it's a valid scratch config entry, otherwise raises an exception. Key path is optional, non-empty string. :param scratch: Object to validate. :raises TypeError: On wrong type. :raises ValueError: On regex mismatch. """ if not isinstance(scratch, str): raise TypeError(validation_error_message( label='scratch', value=scratch, expected=VALID_SCRATCH_DESCRIPTION, regex=VALID_SCRATCH_REGEX)) if not __COMPILED.match(scratch): raise ValueError(validation_error_message( label='scratch', value=scratch, expected=VALID_SCRATCH_DESCRIPTION, regex=VALID_SCRATCH_REGEX)) return scratch
[ "matt.garstka@gmail.com" ]
matt.garstka@gmail.com
4a5ece018daaf2a028be2d2641cdeba80fe55294
483003faa1de6b564b601addbe4c27642b6abb9b
/app/core/migrations/0004_ingredient.py
f5e6218c5327eb8b9972e60caeff229f553c78fd
[ "MIT" ]
permissive
AncientDemagogue/recipe-app-api
b177ecb273ee1cd026244711dc0cf5d0f09c9c41
908a7d16b9ff3ae031760d7752ea3392a4030c94
refs/heads/master
2020-09-07T02:39:23.967655
2019-11-19T09:05:48
2019-11-19T09:05:48
220,632,446
0
0
null
null
null
null
UTF-8
Python
false
false
686
py
# Generated by Django 2.1.14 on 2019-11-13 13:05 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0003_tag'), ] operations = [ migrations.CreateModel( name='Ingredient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "domagojbakota@gmail.com" ]
domagojbakota@gmail.com
b025b0483c8f7cb1cb518a99a5f5b1114bcfa738
64647c6dffa78246cb0ef80091c2a1461d100e1f
/pomdp_problems/util.py
27a06e4cff5114d31f240a92985c802a33b4597a
[ "MIT" ]
permissive
Semanti1/pomdp_findit
28543519dbc30f864d15b9c682470e14483732c6
b96c1c06aab4b485fa005654cf6438ff63718083
refs/heads/main
2023-07-20T20:18:34.632833
2021-09-02T15:58:49
2021-09-02T15:58:49
397,013,529
0
0
null
null
null
null
UTF-8
Python
false
false
3,786
py
import matplotlib.pyplot as plt from matplotlib.collections import PolyCollection import numpy as np import matplotlib.lines as lines import math # Convenient color utilities def rgb_to_hex(rgb): return "#%02x%02x%02x" % (rgb[0], rgb[1], rgb[2]) def hex_to_rgb(hx): """hx is a string, begins with #. ASSUME len(hx)=7.""" if len(hx) != 7: raise ValueError("Hex must be #------") hx = hx[1:] # omit the '#' r = int('0x'+hx[:2], 16) g = int('0x'+hx[2:4], 16) b = int('0x'+hx[4:6], 16) return (r,g,b) def inverse_color_rgb(rgb): r,g,b = rgb return (255-r, 255-g, 255-b) def inverse_color_hex(hx): """hx is a string, begins with #. ASSUME len(hx)=7.""" return inverse_color_rgb(hex_to_rgb(hx)) def linear_color_gradient(rgb_start, rgb_end, n, normalize=False): colors = [rgb_start] for t in range(1, n): color = tuple( rgb_start[i] + float(t)/(n-1)*(rgb_end[i] - rgb_start[i]) for i in range(3) ) if normalize: color = tuple(color[i] / 255.0 for i in range(3)) colors.append(color) return colors def rgb_to_grayscale(rgb): r,g,b = rgb return (0.2989*r, 0.5870*g, 0.1140*b) # colors def lighter(color, percent): '''assumes color is rgb between (0, 0, 0) and (255, 255, 255)''' color = np.array(color) white = np.array([255, 255, 255]) vector = white-color return color + vector * percent # Plot polygons with colors def plot_polygons(verts, colors, ax=None, edgecolor=None): """ `verts` is a sequence of ( verts0, verts1, ...) where verts_i is a sequence of xy tuples of vertices, or an equivalent numpy array of shape (nv, 2). `c` is a sequence of (color0, color1, ...) where color_i is a color, represented by a hex string (7 characters #xxxxxx). Creates a PolygonCollection object in the axis `ax`.""" if ax is None: fig = plt.gcf() ax = fig.add_subplot(1,1,1) pc = PolyCollection(verts) pc.set_edgecolor(edgecolor) pc.set_facecolor(colors) ax.add_collection(pc) ax.set_xlabel('X axis') ax.set_ylabel('Y axis') def plot_line(ax, p1, p2, linewidth=1, color='black', zorder=0, alpha=1.0, linestyle="-"): p1x, p1y = p1 p2x, p2y = p2 line = lines.Line2D([p1x, p2x], [p1y, p2y], linewidth=linewidth, color=color, zorder=zorder, alpha=alpha, linestyle=linestyle) ax.add_line(line) def plot_circle(ax, center, radius, color="blue", fill=False, zorder=0, linewidth=0, edgecolor=None, label_text=None, alpha=1.0, text_color="white"): px, py = center circ = plt.Circle((px, py), radius, facecolor=color, fill=fill, zorder=zorder, linewidth=linewidth, edgecolor=edgecolor, alpha=alpha) ax.add_artist(circ) if label_text: text = ax.text(px, py, label_text, color=text_color, ha='center', va='center', size=7, weight='bold') text.set_path_effects([path_effects.Stroke(linewidth=1, foreground='black'), path_effects.Normal()]) # functional utilitiesx def remap(oldval, oldmin, oldmax, newmin, newmax): return (((oldval - oldmin) * (newmax - newmin)) / (oldmax - oldmin)) + newmin # Utility functions def euclidean_dist(p1, p2): return math.sqrt(sum([(a - b)** 2 for a, b in zip(p1, p2)])) def to_rad(deg): return deg * math.pi / 180.0 def in_range(val, rang): # Returns True if val is in range (a,b); Inclusive. return val >= rang[0] and val <= rang[1]
[ "renia.basu1@gmail.com" ]
renia.basu1@gmail.com
1b8c780b7f5c7f81ba7923dd10aed1db62b4fc37
3385e4c8bd568d72e891ebcb3914f42bdd844e7d
/learndjango/myapp/urls.py
fd2fd618e8de8ab00092cfe1693f4c722cef5554
[]
no_license
elay-maharramli/Learn-Django
832518952167e4d0f28888cb31170e45973cb7b9
d1b9f28c848e49d306408c70f294f26b7394d26a
refs/heads/master
2022-05-29T00:37:19.666525
2020-04-26T05:59:41
2020-04-26T05:59:41
258,520,859
1
0
null
null
null
null
UTF-8
Python
false
false
97
py
from django.urls import path from . import views urlpatterns = [ path('', views.contact), ]
[ "36122259+Maharramli@users.noreply.github.com" ]
36122259+Maharramli@users.noreply.github.com
bd148516b05561d6e3d1ad496de909ab866d8ba6
29ec35b43d4eb15c603df3efa90f14cc0467b403
/utility/utils.py
a43237c9d50352074ee1fdc198251276cb57f6a4
[]
no_license
zhongyr/CPSC852-arp-defender
92f906637928b4c05da178e3c4f4269f850e2916
1e529fc90401ea70fc341a2d20ec51544949d763
refs/heads/master
2020-09-14T03:46:42.785333
2019-12-04T08:44:07
2019-12-04T08:44:07
223,007,537
2
1
null
null
null
null
UTF-8
Python
false
false
2,431
py
# -*- encoding: utf-8 -*- import netifaces import binascii import socket from os import system def get_iface_info(iface_): """ get interface information :param iface_: name of interface :return: dict object including mac address and ip address """ info = netifaces.ifaddresses(iface_) mac_addr = info[netifaces.AF_LINK][0]["addr"] ip_addr = info[netifaces.AF_INET][0]["addr"] return {"HW address": mac_addr, "IP address": ip_addr, "iface": iface_} def mac_str2bin(mac_str_): """ convert string format mac address to binary format :param mac_str_: 1a:2b:3c:4d:5e:6f :return: b'1a2b3c4d5e6f' (binary data represented by hex str) """ return binascii.unhexlify(mac_str_.replace(':', '')) def mac_bytes2str(mac_bytes_): """ convert bytes obj to mac address format string :param mac_bytes_: bytes obj :return: mack address format string """ hex_str = mac_bytes_.hex() # get hex like string from bytes: 'ffffffffffff' return ':'.join(hex_str[i:i + 2] for i in range(0, 12, 2)) # prettify 'ff:ff:ff:ff:ff:ff' def create_raw_socket(iface_): """ :param iface_: interface :return: socket file descriptor """ _ETH_P_ARP = 0x0806 raw_socket = socket.socket(socket.PF_PACKET, # use PF_PACKET for low-level networking interface socket.SOCK_RAW, # set type to raw socket socket.htons(_ETH_P_ARP)) # we are only interested in ARP packets raw_socket.bind((iface_, 0)) # bind interface, use reserved port number 0 return raw_socket def compare_mac_addr(entry, rx_mac): """ compare the mac address from an entry with the mac address from response :param entry: :param rx_mac: :return: """ if entry["HW address"] == rx_mac: return True return False blacklist = [] def add_to_blacklist(entry): """ if an entry failed in validation, add it to blacklist. We use arptables as our blacklist :param entry: src_mac_address :return: None """ blacklist.append(entry) system("arptables -A INPUT --src-mac {} -j DROP".format(entry["HW address"])) def CNTC_Handler(signum, frame): """ Clear all entries from arptables(blacklist) before exit :return: None """ print("\nclear blacklist before exit") system("arptables -F") print("exit arp defender") exit(0)
[ "yang_hanjie@163.com" ]
yang_hanjie@163.com
cdb7f1b397956cb5a6c3293cce165a43df74e120
3e4b8fe54f11bf36f3615c21fdc1dca0ed00fe72
/month04/spider/day01/job/01_job.py
78867664d1c5536f2df7e72e0fcae9e195b7f49b
[]
no_license
leinian85/year2019
30d66b1b209915301273f3c367bea224b1f449a4
2f573fa1c410e9db692bce65d445d0543fe39503
refs/heads/master
2020-06-21T20:06:34.220046
2019-11-04T06:37:02
2019-11-04T06:37:02
197,541,549
0
0
null
null
null
null
UTF-8
Python
false
false
701
py
import re import hashlib html = ''' <div class="animal"> <p class="name"> <a title="Tiger"></a> </p> <p class="content"> Two tigers two tigers run fast </p> </div> <div class="animal"> <p class="name"> <a title="Rabbit"></a> </p> <p class="content"> Small white rabbit white and white </p> </div> ''' a = '123' a.rstrip() pattern = re.compile('<div class="animal">.*?title="(.*?)".*?<p class="content">(.*?)</p>',re.S) r_list = pattern.findall(html) r_list_new = [(name,content.strip()) for name,content in r_list] print(r_list_new) for name,content in r_list_new: print("动物名称 :",name) print("动物名称 :",content) print("*"*40)
[ "42737521@qq.com" ]
42737521@qq.com
bba070b319caee484ed5feee463a97aa3994144a
60f6d5804522e7b3ba75a989afe683456d9fa6cf
/manage.py
016e52226f066271d834ee762b0d7b0d3f2d613c
[]
no_license
minzey/jogging-tracker
b773aa4ddbee3912592fd86534b310d19cd67874
fe2d8da65ed5812e3752f5c03873016e4fbd49e9
refs/heads/master
2023-07-08T16:12:51.847514
2021-08-09T14:11:07
2021-08-09T14:11:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'fitness_project.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "swati.13103444@gmail.com" ]
swati.13103444@gmail.com
f931dd724fcf84d43040507097344a26d4c52a9c
08edc5ed6c15f5c379aeb4c8505dfa28f008c337
/app/whwn/migrations/0025_auto__del_field_team_point__add_field_team_latitude__add_field_team_lo.py
38ecdb4a44e1da15902f5a9b76e925d223c3f80e
[]
no_license
wehaveweneed/whwn-dep
0795ccd55e837493bf345306a7ae4c7a919ebe8a
2535c1fe1ae76a36f24a1c3b32b76f72fc59b49d
refs/heads/master
2021-01-01T18:55:26.662249
2013-08-27T05:58:49
2013-08-27T05:58:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,657
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting field 'Team.point' # db.delete_column('whwn_team', 'point') # Adding field 'Team.latitude' db.add_column('whwn_team', 'latitude', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=8, decimal_places=3, blank=True), keep_default=False) # Adding field 'Team.longitude' db.add_column('whwn_team', 'longitude', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=8, decimal_places=3, blank=True), keep_default=False) # Deleting field 'Item.point' # db.delete_column('whwn_item', 'point') # Adding field 'Item.latitude' db.add_column('whwn_item', 'latitude', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=8, decimal_places=3, blank=True), keep_default=False) # Adding field 'Item.longitude' db.add_column('whwn_item', 'longitude', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=8, decimal_places=3, blank=True), keep_default=False) # Deleting field 'UserProfile.point' # db.delete_column('whwn_userprofile', 'point') # Adding field 'UserProfile.latitude' db.add_column('whwn_userprofile', 'latitude', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=8, decimal_places=3, blank=True), keep_default=False) # Adding field 'UserProfile.longitude' db.add_column('whwn_userprofile', 'longitude', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=8, decimal_places=3, blank=True), keep_default=False) def backwards(self, orm): # Adding field 'Team.point' # db.add_column('whwn_team', 'point', # self.gf('django.contrib.gis.db.models.fields.PointField')(null=True, blank=True), # keep_default=False) # Deleting field 'Team.latitude' db.delete_column('whwn_team', 'latitude') # Deleting field 'Team.longitude' db.delete_column('whwn_team', 'longitude') # Adding field 'Item.point' # db.add_column('whwn_item', 'point', # self.gf('django.contrib.gis.db.models.fields.PointField')(null=True, blank=True), # keep_default=False) # Deleting field 'Item.latitude' db.delete_column('whwn_item', 'latitude') # Deleting field 'Item.longitude' db.delete_column('whwn_item', 'longitude') # Adding field 'UserProfile.point' # db.add_column('whwn_userprofile', 'point', # self.gf('django.contrib.gis.db.models.fields.PointField')(null=True, blank=True), # keep_default=False) # Deleting field 'UserProfile.latitude' db.delete_column('whwn_userprofile', 'latitude') # Deleting field 'UserProfile.longitude' db.delete_column('whwn_userprofile', 'longitude') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'whwn.item': { 'Meta': {'object_name': 'Item'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '3', 'blank': 'True'}), 'longitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '3', 'blank': 'True'}), 'possessor': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'quantity': ('django.db.models.fields.PositiveIntegerField', [], {}), 'requested': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'sku': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['whwn.ItemSKU']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}) }, 'whwn.itemcategory': { 'Meta': {'object_name': 'ItemCategory'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}) }, 'whwn.itemsku': { 'Meta': {'unique_together': "(('upc', 'team'),)", 'object_name': 'ItemSKU'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['whwn.ItemCategory']"}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'team': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['whwn.Team']"}), 'upc': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}) }, 'whwn.message': { 'Meta': {'object_name': 'Message'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'contents': ('django.db.models.fields.TextField', [], {'default': "''"}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}), 'deleted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'flagged': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'team': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['whwn.Team']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}) }, 'whwn.team': { 'Meta': {'object_name': 'Team'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '3', 'blank': 'True'}), 'longitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '3', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'primary_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'primary_user'", 'null': 'True', 'to': "orm['auth.User']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}) }, 'whwn.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}), 'email_verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '3', 'blank': 'True'}), 'longitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '3', 'blank': 'True'}), 'phone_number': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'blank': 'True'}), 'phone_verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'team': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['whwn.Team']", 'null': 'True'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}) } } complete_apps = ['whwn']
[ "wes.vetter@gmail.com" ]
wes.vetter@gmail.com
653a3160557c7d216ad359311443175691103686
56ba98873ad995551d00a87a7eea6f705dc52e34
/prom7.py
df50f206cca6c70e91532f0ad33f805533b45f95
[]
no_license
xaviermaxd/python_semana8
b4fae081b784fc656d3292b73c6b50b50f6abfba
1b81e4fec9884619d1d987d131af4e314ce3bd0c
refs/heads/main
2023-08-24T08:15:48.986623
2021-10-21T01:53:10
2021-10-21T01:53:10
419,546,381
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
div = 0 n = int(input("ingrese un numero : ")) while div <= n: div += 1 if n % div == 0 : print(div)
[ "xavier.mamani@tecsup.edu.pe" ]
xavier.mamani@tecsup.edu.pe
3f070fc5fe457fc3dc932efd097817205702346b
b2a0db27a57236a9f2f19a0004decf83fd3cdb10
/headertextscreen.py
bfcefe8d4a582055a2c7f0bd216c861cb4c35027
[]
no_license
ajveitch/mqd
0180bbe824d0e5eb1a2cb287194dc5ee9dc8f8db
dc1f9ff627eadb2fbd18e439119f6cc1a1e2328d
refs/heads/main
2023-07-29T15:34:55.464996
2021-09-11T15:47:16
2021-09-11T15:47:16
403,755,390
0
0
null
null
null
null
UTF-8
Python
false
false
1,408
py
from ui import * from playercontroller import * from gamerunner import NullState class HeaderTextScreen(NullState): def __init__(self, audio, nextState, player, waitTime = 0): self.nextState = nextState self.startButton = -1 self.player = player self.big = Text(96, (255, 192, 0)) self.small = Text(36, (255, 255, 255)) self.waitTime = waitTime self.currentTime = 0 self.header = "" self.subHeader = "" self.audio = audio def setHeader(self, header): self.header = header def setSub(self, subHeader): self.subHeader = subHeader def setNextState(self, nextState): self.nextState = nextState def update(self, deltaTime): if self.waitTime > 0: self.currentTime = self.currentTime + deltaTime if self.currentTime >= self.waitTime: return self.nextState elif self.startButton == 0: start = self.player.startButton() if start: return self.nextState self.startButton = self.player.startButton() return self def draw(self, surface): self.big.draw(surface, self.header, (400, 200), True) self.small.draw(surface, self.subHeader, (400, 300), True) def onEnter(self): self.audio.MusicPre() self.startButton = self.player.startButton()
[ "ajv-github@erkle.org" ]
ajv-github@erkle.org