blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
150bd0efd216bec9d3f05d67433ec1b07b6a88dc
edebce2da16b500683cb9777c37924bf3dcd2895
/myself/blog/blog/urls.py
77bd8a1bcc2b85d70290d5fed2334d1b66011e47
[]
no_license
yxd2018/Test
d26778b0b826f663b665f765b0851b8f2d04a7f7
9fba56a9d7540ce35e29bf886248e05fc090c21d
refs/heads/master
2020-03-08T07:47:42.445969
2018-04-04T02:58:12
2018-04-04T02:58:12
128,003,604
0
0
null
null
null
null
UTF-8
Python
false
false
940
py
"""blog URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include, url from django.contrib import admin from app01 import views urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'ckeditor', include('ckeditor_uploader.urls')), url(r'^index$', views.index, name='index'), url(r'^index2/(\d+)', views.index2, name='index2'), ]
[ "yxd0822@163.com" ]
yxd0822@163.com
24826e7db681b08ab83bbbc5d2e7edf0c4dc493b
0604fb807a330892b82de2f13e43d1e288f33043
/tests/.venv/bin/jsonpatch
2e23b784b185a3e40e966bb637c392a564d0b346
[]
no_license
wtsi-hgi/openstack_report
fe679c33d776ba5c181d5a0a806122d8fe89cc27
1e9fddaddf82bca6290a5d52792b7df608600804
refs/heads/master
2023-01-23T07:46:39.275387
2021-02-19T13:43:35
2021-02-19T13:43:35
203,331,160
0
0
null
2023-01-04T09:03:16
2019-08-20T08:15:37
Python
UTF-8
Python
false
false
3,696
#!/Users/pa11/Code/openstack_report/.venv/bin/python3 # -*- coding: utf-8 -*- import sys import os.path import json import jsonpatch import tempfile import argparse parser = argparse.ArgumentParser( description='Apply a JSON patch on a JSON file') parser.add_argument('ORIGINAL', type=argparse.FileType('r'), help='Original file') parser.add_argument('PATCH', type=argparse.FileType('r'), nargs='?', default=sys.stdin, help='Patch file (read from stdin if omitted)') parser.add_argument('--indent', type=int, default=None, help='Indent output by n spaces') parser.add_argument('-b', '--backup', action='store_true', help='Back up ORIGINAL if modifying in-place') parser.add_argument('-i', '--in-place', action='store_true', help='Modify ORIGINAL in-place instead of to stdout') parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + jsonpatch.__version__) def main(): try: patch_files() except KeyboardInterrupt: sys.exit(1) def patch_files(): """ Diffs two JSON files and prints a patch """ args = parser.parse_args() doc = json.load(args.ORIGINAL) patch = json.load(args.PATCH) result = jsonpatch.apply_patch(doc, patch) if args.in_place: dirname = os.path.abspath(os.path.dirname(args.ORIGINAL.name)) try: # Attempt to replace the file atomically. We do this by # creating a temporary file in the same directory as the # original file so we can atomically move the new file over # the original later. (This is done in the same directory # because atomic renames do not work across mount points.) fd, pathname = tempfile.mkstemp(dir=dirname) fp = os.fdopen(fd, 'w') atomic = True except OSError: # We failed to create the temporary file for an atomic # replace, so fall back to non-atomic mode by backing up # the original (if desired) and writing a new file. if args.backup: os.rename(args.ORIGINAL.name, args.ORIGINAL.name + '.orig') fp = open(args.ORIGINAL.name, 'w') atomic = False else: # Since we're not replacing the original file in-place, write # the modified JSON to stdout instead. fp = sys.stdout # By this point we have some sort of file object we can write the # modified JSON to. json.dump(result, fp, indent=args.indent) fp.write('\n') if args.in_place: # Close the new file. If we aren't replacing atomically, this # is our last step, since everything else is already in place. fp.close() if atomic: try: # Complete the atomic replace by linking the original # to a backup (if desired), fixing up the permissions # on the temporary file, and moving it into place. if args.backup: os.link(args.ORIGINAL.name, args.ORIGINAL.name + '.orig') os.chmod(pathname, os.stat(args.ORIGINAL.name).st_mode) os.rename(pathname, args.ORIGINAL.name) except OSError: # In the event we could not actually do the atomic # replace, unlink the original to move it out of the # way and finally move the temporary file into place. os.unlink(args.ORIGINAL.name) os.rename(pathname, args.ORIGINAL.name) if __name__ == "__main__": main()
[ "pa11@mib113623i.internal.sanger.ac.uk" ]
pa11@mib113623i.internal.sanger.ac.uk
6299e9b31dc2732eb897d86e22688c2d2019c47e
216f59e44324d19b4978e221e548f4dc88a96de2
/Day41/01 手写socket server.py
b5c6751fb445f149158f3a3a4ff89e676c7c8de0
[]
no_license
klandhu/Python-S14
b69f85d749e26adaf1edfadf8f690cce25776bab
6171be56cc01ebdb11dffc0049e43727771f10fd
refs/heads/master
2020-04-06T09:53:01.596595
2018-11-16T10:06:40
2018-11-16T10:06:40
157,357,879
0
0
null
null
null
null
UTF-8
Python
false
false
307
py
import socket sk =socket.socket() sk.bind(('127.0.0.1',8080)) sk.listen(5) while 1: conn, addr = sk.accept() data = conn.recv(9000) print(data) conn.send(b'HTTP/1.1 200 OK\r\n\r\n') #conn.send(b'o98k') with open("test.html","rb") as f: conn.send(f.read()) conn.close()
[ "nan.hu@gometech.com.cn" ]
nan.hu@gometech.com.cn
556a0be4744a9543cc7d75387a5797c1e97cdc25
d46558f344c9f20205ee3c9c3f4fc4c3450500c8
/project2/task2/Reducer2.py
a061d28250bea81f2dc4126f1fc9250f8c082b09
[]
no_license
xiezhw3/bigDataProject
8d6545d0853dfbec4dbd47337337711d14fffc9a
57a1905f924fb86ed541161334ecf6696e755e57
refs/heads/master
2016-08-05T06:58:13.962850
2015-06-11T13:19:39
2015-06-11T13:19:39
37,263,916
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
#! /usr/bin/python import sys, heapq from operator import * oldKey = None tags = {} for line in sys.stdin: data_mapped = line.strip().split('\t') if len(data_mapped) != 3: continue zero, tag, num = data_mapped if not tag in tags.keys(): tags[tag] = 0 tags[tag] += int(num) top100 = heapq.nlargest(100, tags, key = lambda x: (tags[x], x)) for item in top100: print item
[ "xiezhw3@gmail.com" ]
xiezhw3@gmail.com
c274dbbe37b4a409b549b682a826a50e9a4c7009
e74d43d46819068bb51724e3c3485796065af1f7
/strings_and_array/P1_2.py
c60d7c8c530f1fe0e33ebb9eb724e414e7484646
[]
no_license
sunnyyants/crackingPython
30a06de78525773fdf6d18e55f20e9970d4031b5
6197e916dfd47be61319103c7d482d4bae0f8f93
refs/heads/master
2021-01-15T23:02:16.865043
2014-01-12T20:06:07
2014-01-12T20:06:07
13,941,490
3
0
null
null
null
null
UTF-8
Python
false
false
498
py
__author__ = 'SunnyYan' # Reverse a null terminal string # I decide to use 3 different methods def method1(strings): if len(strings) == 1: return strings return method1(strings[1::1]) + strings[0] def method2(strings): return strings[::-1] def method3(strings): i = len(strings)-1 result = [] while(i >= 0): result.append(strings[i]) i -= 1 return ''.join(result) print method1("abcdefg") print method2("1234567") print method3("leveleivia")
[ "sunnyyants@gmail.com" ]
sunnyyants@gmail.com
84db0d6012e0ac0180354fa1f6e290665ac7f820
9407dc0d46e266bc76eb9572731e0e9924364f61
/vikalp/local_settings.py
74a2ab2a4fbf0a5bd37afe0d3f76aaa66e52d7e2
[]
no_license
mihirk/vikalp
232aac510f98f05572d910645a070772a55a9051
bb29624f438ce2e9e0e8482f3fe645f7b5ae32e1
refs/heads/master
2021-01-18T03:37:39.050602
2014-01-03T13:46:46
2014-01-03T13:46:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
664
py
# DEBUG = True from .settings import * # noqa TEST_RUNNER = 'django.test.simple.DjangoTestSuiteRunner' COMPRESS_ENABLED = True DATABASES = { "default": { # Ends with "postgresql_psycopg2", "mysql", "sqlite3" or "oracle". "ENGINE": "django.db.backends.sqlite3", # DB name or path to database file if using sqlite3. "NAME": "dev.db", # Not used with sqlite3. "USER": "", # Not used with sqlite3. "PASSWORD": "", # Set to empty string for localhost. Not used with sqlite3. "HOST": "", # Set to empty string for default. Not used with sqlite3. "PORT": "", } }
[ "mihir.khatwani@gmail.com" ]
mihir.khatwani@gmail.com
49ad2bf24f87bb8e881b32002df4a56eb1cde4e1
719febb378f20e9c63aefd521ab6ceb1a05e836f
/runserver.py
64149946f28bb657ca2cdd6e3a13899d4a7af172
[]
no_license
shuyangli/paradigms-game
303336daa3b6e4a4d99165158b45ccbfa14ce95f
22fa2d047facdcd65ec71f5f9c668c87afbaa419
refs/heads/master
2016-09-05T19:54:34.899171
2015-05-07T04:27:56
2015-05-07T04:27:56
34,142,667
0
0
null
null
null
null
UTF-8
Python
false
false
511
py
import argparse from castle_server import CastleServer if __name__ == '__main__': # Parse command line arguments parser = argparse.ArgumentParser(description="Server for Castles game.") parser.add_argument("-p", "--port", type=int, default=9001, dest="port", help="port number") parser.add_argument("-d", "--debug", action="store_true", dest="debug", help="enable debug mode") args = parser.parse_args() # Run server server = CastleServer(args.port, args.debug) server.start()
[ "shuyang.li.95@gmail.com" ]
shuyang.li.95@gmail.com
d4fddba0fc023aa2bf4ded9cd8bd5b50cf21c4d4
b8b6bd8f14db95d74df1f27e2c7e5e61d0e831e2
/src/DQN.py
470ebda84eea9e1b2e6f2c5636f8658203cdabfa
[]
no_license
JustCallMeDavid/USRL4RS
fa6f2c83cb8e0e11381eba15deaeb5b21820b56d
ddaeb75f7a17ca484196a2e985b94e64cbed1c08
refs/heads/main
2023-08-27T15:08:29.317092
2021-10-11T13:55:58
2021-10-11T13:55:58
415,513,534
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
import torch class DQNet(torch.nn.Module): def __init__(self, emb_size, hidden_size, out_size): super(DQNet, self).__init__() self.fc1 = torch.nn.Linear(emb_size, hidden_size) self.fc2 = torch.nn.Linear(hidden_size, out_size) self.relu = torch.nn.ReLU() def forward(self, x): return self.relu(self.fc2(self.relu(self.fc1(x.squeeze()))))
[ "d.gradinariu@hotmail.com" ]
d.gradinariu@hotmail.com
aaaad40aad30f39b1b13f1908e2db82289f5c51d
ee1b2303bc3d7d476f61bd5268baa707279fc454
/LAS_Processor_v4.py
ce96857739842a3c9c047b2a395204b6393cea41
[]
no_license
GeospatialDaryl/objLAS
b90853fd6ff494eba39de72ed2284d9e0d3f34e3
a1f85266fdaf9031dcc4cf442fdd9512e51e7b82
refs/heads/master
2021-01-06T20:46:41.279218
2015-09-23T17:07:06
2015-09-23T17:07:06
31,977,875
0
0
null
null
null
null
UTF-8
Python
false
false
3,101
py
import ClassLASObj_v13 from ClassLASObj_v13 import * #Class LTKPaths contains Machine Specific Paths import ModuleLiDARtools_v1 from ModuleLiDARtools_v1 import * #Paths import os #import arcpy #import arcgisscripting #gp = arcgisscripting.create(9.3) #gp.AddToolbox("C:\Program Files (x86)\ArcGIS\ArcToolBox\Toolboxes\Conversion Tools.tbx") #gp.overwriteoutput = 1 utmn83 = "PROJCS['NAD_1983_UTM_Zone_10N',GEOGCS['GCS_North_American_1983',DATUM['D_North_American_1983',SPHEROID['GRS_1980',6378137.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]],PROJECTION['Transverse_Mercator'],PARAMETER['False_Easting',500000.0],PARAMETER['False_Northing',0.0],PARAMETER['Central_Meridian',-123.0],PARAMETER['Scale_Factor',0.9996],PARAMETER['Latitude_Of_Origin',0.0],UNIT['Meter',1.0]]" #instantiate Paths object workPaths = Paths() #create empty directory list of las files listLASObj = [] # ##############ADJUST THE Target HERE ########################## #thisOperationPath = workPaths.pathSctt thisOperationPath = workPaths.pathShastaRepair multiProcessor_Count = 8 # ############################################################### workPaths.lasworkspace = thisOperationPath+"LAS\\pt2\\" #this needed toggling back from LAS_b 12/22/2011 workPaths.dtmworkspace = thisOperationPath+"DTM\\" workPaths.chmworkspace = thisOperationPath+"CHM\\" workPaths.lasExtent = thisOperationPath+"LAS\\" workPaths.csvworkspace = thisOperationPath+"CSV\\" workPaths.lasnorm = thisOperationPath+"LAS_norm\\" workPaths.dem = thisOperationPath+"dem\\" # ############################################################### # Make a list of LAS in the directory of interest dirList=os.listdir(workPaths.lasExtent) # USE the LAS not LAS_b to make this list # ## Instantiate the list of LASObjs for fname in dirList: if "las" in fname: nameLASObj = LASObj(workPaths.lasworkspace+fname,workPaths.lasExtent+fname) print nameLASObj.las_name listLASObj.append(nameLASObj) del nameLASObj countLASObj = 0 for LASObjs in listLASObj: countLASObj = countLASObj + 1 print str(countLASObj)+" Total Tiles" #Declare test LASObj object test = listLASObj[0] counter = 0 for LASObjs in listLASObj: counter = counter + 1 print "Tile "+LASObjs.las_name+", "+str(counter)+" of "+str(countLASObj) #LASObjs.makeCHM_StatePlaneFt(workPaths) print "processing the tile . . ." #LASObjs.makeCloudMetrics(workPaths) #LASObjs.makeNormalizedLAS(workPaths,'C:\\Scratch\\ShastaRepair_LAS\\DEM\\Shasta_dem.img') #LASObjs.makeNormalizedLAS_arcpy(workPaths,'C:\\Scratch\\ShastaRepair_LAS\\DEM\\Shasta_dem.img') LASObjs.makeNormalizedLAS_arcpy(workPaths,"C:\\Scratch\\ShastaRepair_LAS\\tempRasWork\\repDEM.img") #LASObjs.makeNormalizedLAS_pass(workPaths,'C:\\Scratch\\ShastaRepair_LAS\\tempRasWork\\repDEM.img') #makeNormalizedLAS_MP(workPaths,8,"C:\\Scratch\\dem_be_1m.img") #LASObjs.makeMetrics(workPaths) #LASObjs.makeMetrics(workPaths,6.,["cover"]) #LASObjs.makeMetrics(workPaths,9.,["cover"])
[ "daryl_van_dyke@fws.gov" ]
daryl_van_dyke@fws.gov
afb08de55adda6d146170c5964c70216e97605d2
14b44146a4d6b9780390a0dccbaed60156abb0f8
/blog/models.py
4d83b10414cb41f53fb11bd47c962f4b08b1b9a5
[]
no_license
lillian7/wopaproject
8e15869cc8c42b2a89c8a809d0f805fab0814efa
68cde33a1539d7051a3c377e0404938a2c77fd5f
refs/heads/master
2020-05-17T21:38:03.503813
2014-08-08T08:18:22
2014-08-08T08:18:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,128
py
from django.db import models from django.db.models import permalink # Create your models here. #first a database table called blog class Blog(models.Model): #the fields to be created in the table blogs title = models.CharField(max_length=100, db_index=True) slug = models.SlugField(max_length=100, db_index=True) body = models.TextField() posted = models.DateTimeField(db_index =True, auto_now_add =True) category = models.ForeignKey('blog.Category') #unicode will set the text reference 'title' for each record def __unicode__(self): return '%s' % self.title @permalink #decorator to hold the right url format def get_absolute_url(self): return ('view_blog_post', None, {'slug': self.slug}) #another database table called ctegory class Category(models.Model): title = models.CharField(max_length = 100, db_index = True) slug = models.SlugField(max_length = 100, db_index = True) def __unicode__(self): return '%s' % self.title @permalink def get_absolute_url(self): return ('view_blog_category', None, {'slug': self.slug})
[ "lnassanga@gmail.com" ]
lnassanga@gmail.com
cab89a174139d9965e8c64cdb0a66f9260beeedf
4b758ca583d2a58d4d711381405e024109a0f08f
/dali_tf_plugin/dali_tf_plugin_utils.py
54baaa57acf8c189bf3870be8426eaa03913c41c
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
ConnectionMaster/DALI
76ff07b2fa3f62490b059088c88ade7570130ff4
6b90519d2c209d705e8912a5f00b71a018aeaa52
refs/heads/master
2023-04-14T13:04:57.520421
2021-01-22T16:34:31
2021-01-22T16:34:31
187,683,855
1
1
Apache-2.0
2023-04-03T23:45:28
2019-05-20T17:18:56
C++
UTF-8
Python
false
false
5,971
py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess import os import re import sys import platform import fnmatch from distutils.version import StrictVersion # Find file matching `pattern` in `path` def find(pattern, path): result = [] for root, dirs, files in os.walk(path): for name in files: if fnmatch.fnmatch(name, pattern): result.append(os.path.join(root, name)) return result # Get path to python module `module_name` def get_module_path(module_name): module_path = '' for d in sys.path: possible_path = os.path.join(d, module_name) # skip current dir as this is plugin dir if os.path.isdir(possible_path) and len(d) != 0: module_path = possible_path break return module_path # Get compiler version used to build tensorflow def get_tf_compiler_version(): tensorflow_libs = find('libtensorflow_framework*so*', get_module_path('tensorflow')) if not tensorflow_libs: tensorflow_libs = find('libtensorflow_framework*so*', get_module_path('tensorflow_core')) if not tensorflow_libs: return '' lib = tensorflow_libs[0] cmd = 'strings -a ' + lib + ' | grep "GCC: ("' s = str(subprocess.check_output(cmd, shell=True)) lines = s.split('\\n') ret_ver = '' for line in lines: res = re.search("GCC:\s*\(.*\)\s*(\d+.\d+).\d+", line) if res: ver = res.group(1) if not ret_ver or StrictVersion(ret_ver) < StrictVersion(ver): ret_ver = ver return ret_ver # Get current tensorflow version def get_tf_version(): try: import pkg_resources s = pkg_resources.get_distribution("tensorflow-gpu").version except: # pkg_resources.get_distribution doesn't work well with conda installed packages try: import tensorflow as tf s = tf.__version__ except: return "" version = re.search("(\d+.\d+).\d+", s).group(1) return version # Get C++ compiler def get_cpp_compiler(): return os.environ.get('CXX') or 'g++' # Get C++ compiler version def get_cpp_compiler_version(): cmd = get_cpp_compiler() + ' --version | head -1 | grep "[c|g]++ ("' s = str(subprocess.check_output(cmd, shell=True).strip()) version = re.search("[g|c]\+\+\s*\(.*\)\s*(\d+.\d+).\d+", s).group(1) return version # Runs `which` program def which(program): try: return subprocess.check_output('which ' + program, shell=True).strip() except: return None # Checks whether we are inside a conda env def is_conda_env(): return True if os.environ.get('CONDA_PREFIX') else False # Get compile and link flags for installed tensorflow def get_tf_build_flags(): tf_cflags = '' tf_lflags = '' try: import tensorflow as tensorflow tf_cflags=" ".join(tensorflow.sysconfig.get_compile_flags()) tf_lflags=" ".join(tensorflow.sysconfig.get_link_flags()) except: tensorflow_path = get_module_path('tensorflow') if tensorflow_path != '': tf_cflags=" ".join(["-I" + tensorflow_path + "/include", "-I" + tensorflow_path + "/include/external/nsync/public", "-D_GLIBCXX_USE_CXX11_ABI=0"]) tf_lflags=" ".join(["-L" + tensorflow_path, "-ltensorflow_framework"]) if tf_cflags == '' and tf_lflags == '': raise ImportError('Could not find Tensorflow. Tensorflow must be installed before installing NVIDIA DALI TF plugin') return (tf_cflags, tf_lflags) # Get compile and link flags for installed DALI def get_dali_build_flags(): dali_cflags = '' dali_lflags = '' try: import nvidia.dali.sysconfig as dali_sc dali_lib_path = dali_sc.get_lib_dir() # We are linking with DALI's C library, so we don't need the C++ compile flags # including the CXX11_ABI setting dali_cflags=" ".join(dali_sc.get_include_flags()) dali_lflags=" ".join(dali_sc.get_link_flags()) except: dali_path = get_module_path('nvidia/dali') if dali_path != '': dali_cflags=" ".join(["-I" + dali_path + "/include"]) dali_lflags=" ".join(["-L" + dali_path, "-ldali"]) if dali_cflags == '' and dali_lflags == '': raise ImportError('Could not find DALI.') return (dali_cflags, dali_lflags) # Get compile and link flags for installed CUDA def get_cuda_build_flags(): cuda_cflags = '' cuda_lflags = '' cuda_home = os.environ.get('CUDA_HOME') if not cuda_home: cuda_home = '/usr/local/cuda' cuda_cflags=" ".join(["-I" + cuda_home + "/include"]) cuda_lflags=" ".join([]) return (cuda_cflags, cuda_lflags) def find_available_prebuilt_tf(requested_version, available_libs): req_ver_first, req_ver_second = [int(v) for v in requested_version.split('.', 2)] selected_ver = None for file in available_libs: re_match = re.search(".*(\d+)_(\d+).*", file) if re_match is None: continue ver_first, ver_second = [int(v) for v in re_match.groups()] if ver_first == req_ver_first: if ver_second <= req_ver_second and (selected_ver is None or selected_ver < (ver_first, ver_second)): selected_ver = (ver_first, ver_second) return '.'.join([str(v) for v in selected_ver]) if selected_ver is not None else None
[ "noreply@github.com" ]
ConnectionMaster.noreply@github.com
6820ae5641d1fe67e470fc362c090c11417e87bb
90343974013351bd925a403739ba77c45084fd7d
/Frankot_Chellapa.py
0a9466cfce0946f53869687dc2dae5e4ea7c96d6
[]
no_license
cosecdelta/Computer-Vision-Basic-Codes
a91564855d0faa283129f5d4753d3a2434379891
bf95f1d25e4fdf9875701bb975355fd5c327e8cd
refs/heads/main
2023-03-05T00:21:14.845060
2021-02-17T22:19:29
2021-02-17T22:19:29
329,207,073
0
0
null
null
null
null
UTF-8
Python
false
false
3,172
py
## Default modules imported. Import more if you need to. import numpy as np from skimage.io import imread, imsave ## Fill out these functions yourself # Inputs: # nrm: HxWx3. Unit normal vectors at each location. All zeros at mask == 0 # mask: A 0-1 mask of size HxW, showing where observed data is 'valid'. # lmda: Scalar value of lambda to be used for regularizer weight as in slides. # # Returns depth map Z of size HxW. # # Be careful about division by 0. # # Implement in Fourier Domain / Frankot-Chellappa def kernpad(K,size): kernel_size = np.array(K.shape) image_size = np.array(size) pad_length = image_size - kernel_size center_pixel = (kernel_size-1)//2 padded_img = np.pad(K,((0,pad_length[0]),(0,pad_length[1]))) circular_rotate_kernel = np.roll(padded_img, -int(center_pixel[0]), axis=0) #Rotating along the rows circular_rotate_kernel = np.roll(padded_img, -int(center_pixel[1]), axis=1) #Rotating along the columns return circular_rotate_kernel def ntod(nrm, mask, lmda): nrm_flat = np.reshape(nrm,(-1,3)) mask_flat = np.broadcast_to(np.reshape(mask,(-1,1)),nrm_flat.shape) nrm_flat = nrm_flat*mask_flat nrm_flat = np.reshape(nrm_flat,nrm.shape) gx = -np.divide(nrm_flat[:,:,0],nrm_flat[:,:,2]) gy = -np.divide(nrm_flat[:,:,0],nrm_flat[:,:,2]) gx[np.isnan(gx)] = 0 gy[np.isnan(gy)] = 0 gu = np.fft.fft2(gx) gv = np.fft.fft2(gy) fx = np.reshape(np.array([0.5,0,-0.5]),(1,3)) fy = -np.transpose(fx) fu = np.fft.fft2(kernpad(fx, gu.shape)) fv = np.fft.fft2(kernpad(fy, gv.shape)) fr = np.array([[-1/9,-1/9,-1/9],[-1/9,8/9,-1/9],[-1/9,-1/9,-1/9]]) fr_uv = np.fft.fft2(kernpad(fr, gu.shape)) fz_final = (np.conj(fu)*gu + np.conj(fv)*gv)/(np.square(abs(fu)) + np.square(abs(fv)) + lmda*np.square(abs(fr_uv))) final_depth = np.real(np.fft.ifft2(fz_final)) return final_depth ########################## Support code below from os.path import normpath as fn # Fixes window/linux path conventions import warnings warnings.filterwarnings('ignore') import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D #### Main function #nrm = imread(fn('inputs/phstereo/true_normals.png')) # Un-comment next line to read your output instead nrm = imread(fn('outputs/prob3_nrm.png')) mask = np.float32(imread(fn('inputs/phstereo/mask.png')) > 0) nrm = np.float32(nrm/255.0) nrm = nrm*2.0-1.0 nrm = nrm * mask[:,:,np.newaxis] # Main Call Z = ntod(nrm,mask,1e-6) # Plot 3D shape fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x,y = np.meshgrid(np.float32(range(nrm.shape[1])),np.float32(range(nrm.shape[0]))) x = x - np.mean(x[:]) y = y - np.mean(y[:]) Zmsk = Z.copy() Zmsk[mask == 0] = np.nan Zmsk = Zmsk - np.nanmedian(Zmsk[:]) lim = 100 ax.plot_surface(x,-y,Zmsk, \ linewidth=0,cmap=cm.inferno,shade=True,\ vmin=-lim,vmax=lim) ax.set_xlim3d(-450,450) ax.set_ylim3d(-450,450) ax.set_zlim3d(-450,450) plt.show()
[ "noreply@github.com" ]
cosecdelta.noreply@github.com
140539ee859d3d8844b1506b84e1853570ab09c1
246729c419e99e237065635f693f44fb0a62b41f
/catalyst/contrib/utils/thresholds.py
907e853b6514c5a2d8057a66a557ccade60e34b4
[ "Apache-2.0" ]
permissive
Pandinosaurus/catalyst
d3fb311c26ec943b4ac483ba229c3dd1e7a7cff6
117b0cc9256be7af6122f6fcc4f95a0e5a2adbc5
refs/heads/master
2022-05-06T02:38:28.119220
2021-08-30T07:55:33
2021-08-30T07:55:33
207,519,426
0
0
Apache-2.0
2021-08-31T03:49:16
2019-09-10T09:35:11
Python
UTF-8
Python
false
false
16,883
py
from typing import Callable, List, Tuple from collections import defaultdict import enum from functools import partial import numpy as np from sklearn.model_selection import RepeatedStratifiedKFold METRIC_FN = Callable[[np.ndarray, np.ndarray], float] class ThresholdMode(str, enum.Enum): """Available threshold search strategies types.""" NOOP = noop = "noop" # noqa: WPS115 MULTILABEL = multilabel = "multilabel" # noqa: WPS115 MULTICLASS = multiclass = "multiclass" # noqa: WPS115 def get_baseline_thresholds( scores: np.ndarray, labels: np.ndarray, objective: METRIC_FN, ) -> Tuple[float, List[float]]: """Returns baseline thresholds for multiclass/multilabel classification. Args: scores: estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, num_classes] labels: ground truth labels, numpy array with shape [num_examples, num_classes] objective: callable function, metric which we want to maximize Returns: tuple with best found objective score and per-class thresholds """ num_classes = scores.shape[1] thresholds = [0.5] * num_classes predictions = np.greater(scores, thresholds).astype(np.int32) best_metric = objective(labels, predictions) return best_metric, thresholds def get_binary_threshold( scores: np.ndarray, labels: np.ndarray, objective: METRIC_FN, num_thresholds: int = 100, ) -> Tuple[float, float]: """Finds best threshold for binary classification task based on cross-validation estimates. Args: scores: estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, ] labels: ground truth labels, numpy array with shape [num_examples, ] objective: callable function, metric which we want to maximize num_thresholds: number of thresholds ot try for each class Returns: tuple with best found objective score and threshold """ thresholds = np.linspace(scores.min(), scores.max(), num=num_thresholds) metric_values = [] for threshold in thresholds: predictions = (scores >= threshold).astype(np.int32) if np.sum(predictions) > 0: metric_value = objective(labels, predictions) metric_values.append(metric_value) else: metric_values.append(0.0) if np.max(metric_values) == 0.0: best_metric_value = 0.0 best_threshold = 1.0 else: best_metric_value = metric_values[np.argmax(metric_values)] best_threshold = thresholds[np.argmax(metric_values)] return best_metric_value, best_threshold def get_multiclass_thresholds( scores: np.ndarray, labels: np.ndarray, objective: METRIC_FN, ) -> Tuple[List[float], List[float]]: """Finds best thresholds for multiclass classification task. Args: scores: estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, num_classes] labels: ground truth labels, numpy array with shape [num_examples, num_classes] objective: callable function, metric which we want to maximize Returns: tuple with best found objective score and per-class thresholds """ num_classes = scores.shape[1] metrics = [0.0] * num_classes thresholds = [0.0] * num_classes # score threshold -> classes with such score classes_by_threshold = defaultdict(list) for class_index in range(num_classes): for score in np.unique(scores[:, class_index]): classes_by_threshold[score].append(class_index) for threshold in sorted(classes_by_threshold): for class_index in classes_by_threshold[threshold]: metric_value = objective(labels[:, class_index], scores[:, class_index] >= threshold) if metric_value > metrics[class_index]: metrics[class_index] = metric_value thresholds[class_index] = threshold return metrics, thresholds def get_multilabel_thresholds( scores: np.ndarray, labels: np.ndarray, objective: METRIC_FN, ): """Finds best thresholds for multilabel classification task. Args: scores: estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, num_classes] labels: ground truth labels, numpy array with shape [num_examples, num_classes] objective: callable function, metric which we want to maximize Returns: tuple with best found objective score and per-class thresholds """ num_classes = labels.shape[1] metrics = [0.0] * num_classes thresholds = [0.0] * num_classes for class_index in range(num_classes): best_metric, best_threshold = get_binary_threshold( labels=labels[:, class_index], scores=scores[:, class_index], objective=objective, ) metrics[class_index] = best_metric thresholds[class_index] = best_threshold return metrics, thresholds def get_binary_threshold_cv( scores: np.ndarray, labels: np.ndarray, objective: METRIC_FN, num_splits: int = 5, num_repeats: int = 1, random_state: int = 42, ): """Finds best threshold for binary classification task based on cross-validation estimates. Args: scores: estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, ] labels: ground truth labels, numpy array with shape [num_examples, ] objective: callable function, metric which we want to maximize num_splits: number of splits to use for cross-validation num_repeats: number of repeats to use for cross-validation random_state: random state to use for cross-validation Returns: tuple with best found objective score and threshold """ rkf = RepeatedStratifiedKFold( n_splits=num_splits, n_repeats=num_repeats, random_state=random_state ) fold_metrics, fold_thresholds = [], [] for train_index, valid_index in rkf.split(labels, labels): labels_train, labels_valid = labels[train_index], labels[valid_index] scores_train, scores_valid = scores[train_index], scores[valid_index] _, best_threshold = get_binary_threshold( labels=labels_train, scores=scores_train, objective=objective, ) valid_predictions = (scores_valid >= best_threshold).astype(np.int32) best_metric_value = objective(labels_valid, valid_predictions) fold_metrics.append(best_metric_value) fold_thresholds.append(best_threshold) return np.mean(fold_metrics), np.mean(fold_thresholds) def get_multilabel_thresholds_cv( scores: np.ndarray, labels: np.ndarray, objective: METRIC_FN, num_splits: int = 5, num_repeats: int = 1, random_state: int = 42, ): """Finds best thresholds for multilabel classification task based on cross-validation estimates. Args: scores: estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, num_classes] labels: ground truth labels, numpy array with shape [num_examples, num_classes] objective: callable function, metric which we want to maximize num_splits: number of splits to use for cross-validation num_repeats: number of repeats to use for cross-validation random_state: random state to use for cross-validation Returns: tuple with best found objective score and per-class thresholds """ num_classes = labels.shape[1] metrics = [0.0] * num_classes thresholds = [0.0] * num_classes for class_index in range(num_classes): best_metric, best_threshold = get_binary_threshold_cv( labels=labels[:, class_index], scores=scores[:, class_index], objective=objective, num_splits=num_splits, num_repeats=num_repeats, random_state=random_state, ) metrics[class_index] = best_metric thresholds[class_index] = best_threshold return metrics, thresholds def get_thresholds_greedy( scores: np.ndarray, labels: np.ndarray, score_fn: Callable, num_iterations: int = 100, num_thresholds: int = 100, thresholds: np.ndarray = None, patience: int = 3, atol: float = 0.01, ) -> Tuple[float, List[float]]: """Finds best thresholds for classification task with brute-force algorithm. Args: scores: estimated per-class scores/probabilities predicted by the model labels: ground truth labels score_fn: callable function, based on (scores, labels, thresholds) num_iterations: number of iteration for brute-force algorithm num_thresholds: number of thresholds ot try for each class thresholds: baseline thresholds, which we want to optimize patience: maximum number of iteration before early stop exit atol: minimum required improvement per iteration for early stop exit Returns: tuple with best found objective score and per-class thresholds """ num_classes = scores.shape[1] if thresholds is None: thresholds = [0.5] * num_classes best_metric = score_fn(scores, labels, thresholds) iteration_metrics = [] for i in range(num_iterations): if len(iteration_metrics) >= patience: if best_metric < iteration_metrics[i - patience] + atol: break for class_index in range(num_classes): current_thresholds = thresholds.copy() class_scores = [] class_thresholds = np.linspace( scores[:, class_index].min(), scores[:, class_index].max(), num=num_thresholds, ) for threshold in class_thresholds: current_thresholds[class_index] = threshold class_score = score_fn(scores, labels, current_thresholds) class_scores.append(class_score) best_class_score = np.max(class_scores) best_score_index = np.argmax(class_scores) if best_class_score > best_metric: best_metric = best_class_score thresholds[class_index] = class_thresholds[best_score_index] iteration_metrics.append(best_metric) return best_metric, thresholds def _multilabel_score_fn(scores, labels, thresholds, objective): predictions = np.greater(scores, thresholds).astype(np.int32) return objective(labels, predictions) def get_multilabel_thresholds_greedy( scores: np.ndarray, labels: np.ndarray, objective: METRIC_FN, num_iterations: int = 100, num_thresholds: int = 100, thresholds: np.ndarray = None, patience: int = 3, atol: float = 0.01, ) -> Tuple[float, List[float]]: """Finds best thresholds for multilabel classification task with brute-force algorithm. Args: scores: estimated per-class scores/probabilities predicted by the model labels: ground truth labels objective: callable function, metric which we want to maximize num_iterations: number of iteration for brute-force algorithm num_thresholds: number of thresholds ot try for each class thresholds: baseline thresholds, which we want to optimize patience: maximum number of iteration before early stop exit atol: minimum required improvement per iteration for early stop exit Returns: tuple with best found objective score and per-class thresholds """ best_metric, thresholds = get_thresholds_greedy( scores=scores, labels=labels, score_fn=partial(_multilabel_score_fn, objective=objective), num_iterations=num_iterations, num_thresholds=num_thresholds, thresholds=thresholds, patience=patience, atol=atol, ) return best_metric, thresholds def _multiclass_score_fn(scores, labels, thresholds, objective): scores_copy = scores.copy() scores_copy[np.less(scores, thresholds)] = 0 predictions = scores_copy.argmax(axis=1) return objective(labels, predictions) def get_multiclass_thresholds_greedy( scores: np.ndarray, labels: np.ndarray, objective: METRIC_FN, num_iterations: int = 100, num_thresholds: int = 100, thresholds: np.ndarray = None, patience: int = 3, atol: float = 0.01, ) -> Tuple[float, List[float]]: """Finds best thresholds for multiclass classification task with brute-force algorithm. Args: scores: estimated per-class scores/probabilities predicted by the model labels: ground truth labels objective: callable function, metric which we want to maximize num_iterations: number of iteration for brute-force algorithm num_thresholds: number of thresholds ot try for each class thresholds: baseline thresholds, which we want to optimize patience: maximum number of iteration before early stop exit atol: minimum required improvement per iteration for early stop exit Returns: tuple with best found objective score and per-class thresholds """ best_metric, thresholds = get_thresholds_greedy( scores=scores, labels=labels, score_fn=partial(_multiclass_score_fn, objective=objective), num_iterations=num_iterations, num_thresholds=num_thresholds, thresholds=thresholds, patience=patience, atol=atol, ) return best_metric, thresholds def get_best_multilabel_thresholds( scores: np.ndarray, labels: np.ndarray, objective: METRIC_FN, ) -> Tuple[float, List[float]]: """Finds best thresholds for multilabel classification task. Args: scores: estimated per-class scores/probabilities predicted by the model labels: ground truth labels objective: callable function, metric which we want to maximize Returns: tuple with best found objective score and per-class thresholds """ num_classes = scores.shape[1] best_metric, best_thresholds = 0.0, [] for baseline_thresholds_fn in [ get_baseline_thresholds, get_multiclass_thresholds, get_binary_threshold, get_multilabel_thresholds, ]: _, baseline_thresholds = baseline_thresholds_fn( labels=labels, scores=scores, objective=objective, ) if isinstance(baseline_thresholds, (int, float)): baseline_thresholds = [baseline_thresholds] * num_classes metric_value, thresholds_value = get_multilabel_thresholds_greedy( labels=labels, scores=scores, objective=objective, thresholds=baseline_thresholds, ) if metric_value > best_metric: best_metric = metric_value best_thresholds = thresholds_value return best_metric, best_thresholds def get_best_multiclass_thresholds( scores: np.ndarray, labels: np.ndarray, objective: METRIC_FN, ) -> Tuple[float, List[float]]: """Finds best thresholds for multiclass classification task. Args: scores: estimated per-class scores/probabilities predicted by the model labels: ground truth labels objective: callable function, metric which we want to maximize Returns: tuple with best found objective score and per-class thresholds """ num_classes = scores.shape[1] best_metric, best_thresholds = 0.0, [] labels_onehot = np.zeros((labels.size, labels.max() + 1)) labels_onehot[np.arange(labels.size), labels] = 1 for baseline_thresholds_fn in [ get_baseline_thresholds, get_multiclass_thresholds, get_binary_threshold, get_multilabel_thresholds, ]: _, baseline_thresholds = baseline_thresholds_fn( labels=labels_onehot, scores=scores, objective=objective, ) if isinstance(baseline_thresholds, (int, float)): baseline_thresholds = [baseline_thresholds] * num_classes metric_value, thresholds_value = get_multiclass_thresholds_greedy( labels=labels, scores=scores, objective=objective, thresholds=baseline_thresholds, ) if metric_value > best_metric: best_metric = metric_value best_thresholds = thresholds_value return best_metric, best_thresholds __all__ = [ "get_baseline_thresholds", "get_binary_threshold", "get_multiclass_thresholds", "get_multilabel_thresholds", "get_binary_threshold_cv", "get_multilabel_thresholds_cv", "get_thresholds_greedy", "get_multilabel_thresholds_greedy", "get_multiclass_thresholds_greedy", "get_best_multilabel_thresholds", "get_best_multiclass_thresholds", ]
[ "noreply@github.com" ]
Pandinosaurus.noreply@github.com
598c1c9cd8f05d484e01315b7d163bcd17656212
0bc31d7f07a135e3909e7caf33246dd52999b50f
/common/decorator.py
0149f457a77e062c759d593242274aa58df0204c
[]
no_license
shelmesky/wisemonitor
db022d3382fe39033ae53178edd7d4b6cfa1a95b
905fec5d58a08851089e39e617e8d52363b7f36c
refs/heads/master
2021-01-10T21:04:35.992790
2014-06-30T10:56:53
2014-06-30T10:56:53
12,806,391
4
5
null
2016-07-14T07:41:52
2013-09-13T09:47:01
Go
UTF-8
Python
false
false
328
py
import functools def require_login(method): def wrapper(self, *args, **kwargs): user = self.get_secure_cookie("wisemonitor_user") uri = self.request.uri if not user: self.redirect("/login/?next=%s" % uri) else: return method(self, *args, **kwargs) return wrapper
[ "roy.lieu@gmail.com" ]
roy.lieu@gmail.com
3b2bf05909e2b6c2de791c1388a76308d4c4e735
1ad3409413ee0bd02e81199efd1f83469b25737c
/2020-09-16/2.py
6ff89e40f649c40b8595660cab7acba17613d280
[]
no_license
montrehack/challenges
4711552e968fd1a0783659f708586d347d744672
d5f419417a651c1ee456d5fed49a4bb06476f1b9
refs/heads/master
2022-05-09T09:52:51.609548
2022-04-24T00:37:45
2022-04-24T00:37:45
12,901,416
28
12
null
2022-04-24T00:37:46
2013-09-17T17:00:54
PHP
UTF-8
Python
false
false
9,036
py
from pwn import * from struct import pack, unpack from sys import exit DEBUG = False REMOTE = None REMOTE = 'ctf.segfault.me' RVA_HEAP_ALLOC = 0xEDE # readelf -s chal | grep heap_alloc (Windows) RVA_HEAP_ALLOC = 0x145E # readelf -s chal | grep heap_alloc (Linux) RVA_FLAG_TWO = 0x203020 # readelf -s chal | grep flag_two (Windows) RVA_FLAG_TWO = 0x5020 # readelf -s chal | grep flag_two (Linux) if DEBUG: P = gdb.debug('./chal') elif REMOTE: P = remote(REMOTE, 3000) else: P = process(['./chal']) P.recvuntil("> ") def run(cmd): P.sendline(cmd) out = P.recvuntil("> ") return out """ Things are a bit more complicated now, since the second flag is not on the heap. GOAL: We will need to create an arbitrary read primitive that lets us read anywhere we want. Of course, we also need to figure out where the second flag is, and this means defeating ASLR. ARBITRARY READ: In challenge 1, we overwrote a `canvas_t` to corrupt its canvas->private flag. In doing so, you may have noticed that we corrupted the width and height of the canvas. Going further, we should also be able to corrupt the `canvas->data` base address. Printing a canvas with a corrupt `canvas->data` will likely result in a segfault, but it can also be used to perform arbitrary reads if we can write a valid address in the `data` field. Recall the canvas_t layout: typedef struct canvas_ { char *title; // 8B uint16_t width, height; // 4B uint16_t private; // 2B (canvas_t + 12) uint16_t id; // 2B char *data; // 8B struct canvas_ *next; // 8B } canvas_t; // 32B (0x20) If we overwrite data with the address of the second FLAG, we can simply print this canvas with its new ID to recover the FLAG. DEFEATING ASLR: To defeat ASLR, we will need the address of any symbol in the binary, since we can compute the base address using the formula `BASE = ADDRESS - RVA`. Once we know the base address, we can compute the absolute address of any symbol in the binary using the same formula. `readelf -s chal` shows that there is a symbol called `flag_two` at RVA 0x203020. EXPLOIT: We know, from reading through `heap.h` that `alloc_t` has a chunk pointer, which has a pointer to the heap, which ultimately has a pointer to the allocator functions (`heap_free` and `heap_grow`). If we can leak this address, we can then leak the second flag. It might be tempting to try a technique similar to the first challenge, but the `canvas->title` overflow is quite limiting as it will stop reading bytes at the first NUL terminator it encounters, and would require continually re-allocating the preceding canvas. A more reliable solution is to use a combination of 3 canvas instances to build an easy to use arbitrary read primitive. Given the (simplified) heap layout: +----------+----------+----------+ | Canvas 1 | Canvas 2 | Canvas 3 | +----------+----------+----------+ The idea is as follows: 1. Canvas 1 is freed, and re-allocated, overflowing its `title` field to corrupt canvas 2's width and height. The resulting `c2->data` can now be indexed out of bounds when performing an `edit` command. 2. `edit` is used on Canvas 2 to accurately corrupt canvas 3. 3. Canvas 3 is used to perform arbitrary reads of the desired size. 4. Canvas 2 and 3 are used in conjunction to perform several complex reads without needing re-allocations. pwndbg> hexdump ((uint8_t*)c) 100 +0000 0x7ffff75e3030 70 30 5e f7 ff 7f 00 00 27 00 0f 00 00 00 01 00 │p0^.│....│'...│....│ +0010 0x7ffff75e3040 a0 30 5e f7 ff 7f 00 00 00 00 00 00 00 00 00 00 │.0^.│....│....│....│ +0020 0x7ffff75e3050 40 95 75 55 55 55 00 00 10 00 00 00 00 00 00 00 │@.uU│UU..│....│....│ +0030 0x7ffff75e3060 00 00 00 00 00 00 00 00 80 30 5e f7 ff 7f 00 00 │....│....│.0^.│....│ >> +0040 0x7ffff75e3070 41 74 61 72 69 00 00 00 00 00 00 00 00 00 00 00 │Atar│i...│....│....│ ; c1->title +0050 0x7ffff75e3080 40 95 75 55 55 55 00 00 4b 02 00 00 00 00 00 00 │@.uU│UU..│K...│....│ +0060 0x7ffff75e3090 00 00 00 00 │....│ │ │ │ ... pwndbg> hexdump 0x7ffff75e3070+635 v +0000 0x7ffff75e32eb 40 95 75 55 55 55 00 00 20 00 00 00 00 00 00 00 │@.uU│UU..│....│....│ +0010 0x7ffff75e32fb 00 00 00 00 00 00 00 00 2b 33 5e f7 ff 7f 00 00 │....│....│+3^.│....│ +0020 0x7ffff75e330b 4b 33 5e f7 ff 7f 00 00 3d 00 18 00 00 00 02 00 │K3^.│....│=...│....│ ; c2->width (0x3d == 61) +0030 0x7ffff75e331b 7b 33 5e f7 ff 7f 00 00 30 30 5e f7 ff 7f 00 00 │{3^.│....│00^.│....│ Calculate the c2->width offset: 0x7ffff75e330b + 8 == 0x7ffff75e3313 0x7ffff75e3313 - 0x7ffff75e3070 == 675 Calculate the c3->width offset from c2->data to be able to corrupt c3. pwndbg> hexdump 0x7ffff75e330b+0x50 +0000 0x7ffff75e335b 40 95 75 55 55 55 00 00 ba 05 00 00 00 00 00 00 │@.uU│UU..│....│....│ +0010 0x7ffff75e336b 00 00 00 00 00 00 00 00 35 39 5e f7 ff 7f 00 00 │....│....│59^.│....│ +0020 0x7ffff75e337b 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 │....│....│....│....│ c2->data = 0x7ffff75e337b pwndbg> hexdump 0x7ffff75e3030+0x40+675+1500 150 v +0000 0x7ffff75e38ef 20 20 20 20 20 20 20 2d 2d 27 20 20 20 20 20 20 │....│...-│-'..│....│ +0010 0x7ffff75e38ff 20 20 60 2d 60 2d 2d 60 2d 2d 2e 5f 5f 5f 2e 2d │..`-│`--`│--._│__.-│ +0020 0x7ffff75e390f 27 2d 27 2d 2d 2d 20 20 20 20 20 20 20 20 20 20 │'-'-│--..│....│....│ +0030 0x7ffff75e391f 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 │....│....│....│....│ +0040 0x7ffff75e392f 20 20 20 20 00 00 40 95 75 55 55 55 00 00 20 00 │....│..@.│uUUU│....│ +0050 0x7ffff75e393f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 75 39 │....│....│....│..u9│ +0060 0x7ffff75e394f 5e f7 ff 7f 00 00 95 39 5e f7 ff 7f 00 00 25 00 │^...│...9│^...│..%.│ ; c3->width (0x25) +0070 0x7ffff75e395f 01 00 01 00 03 00 c5 39 5e f7 ff 7f 00 00 0b 33 │....│...9│^...│...3│ ; c3->height, c3->private, c3->id, c3->data +0080 0x7ffff75e396f 5e f7 ff 7f 00 00 40 95 75 55 55 55 00 00 10 00 │^...│..@.│uUUU│....│ +0090 0x7ffff75e397f 00 00 00 00 00 00 0x7ffff75e395d - 0x7ffff75e337b = 1506 """ C1_SIZE = 675 # Offset between c1->title and c2->width C3_SIZE = 1506 # offset between c2->data and c3->width def corrupt_c2(): info("Corrupting canvas2") run("del 1") run("new") run("10") run("10") run("A" * C1_SIZE + "\xFF\xFF\x01") # Now c2->width is 0xFFFF and c2->height is 1. def read(addr, size): info(f"Reading {size} bytes @ 0x{addr:016x}") cmd = ( pack("<H", size) # c3->width + pack("<H", 1) # c3->height + b"\0\0" # c3->private + pack("<H", 3) # c3->id + pack("<Q", addr) # c3->data ) if b"\x0a" in cmd: error("Bad byte in canvas3! new line is not allowed.") exit(1) P.sendline( "edit 2" ) # We will edit the 65535x1 buffer. `fgets` stops reading at `\n`. P.recvuntil("New Data: ") P.send((b"3" * C3_SIZE) + cmd + b"\x0a") P.recvuntil(b"> ") out = run("show 3") return out[:size] corrupt_c2() # Now let's show the buffer for c2->data, which will leak 0xFFFF bytes including the actual buffer bytes. # This will let us `show 2` and leak the address of the chunk. # Remember that the canvas_t struct starts with title, width, so we can use C3_SIZE - 8 - sizeof(alloc_t) to calculate the # position of alloc->chunk. CHUNK_OFFSET = C3_SIZE - 8 - 32 (chunk_ptr,) = unpack("<Q", run("show 2")[CHUNK_OFFSET : CHUNK_OFFSET + 8]) success(f"chunk @ 0x{chunk_ptr:x}") # Now we can configure C3 to leak the chunk_t struct, which contains the heap pointer: # # typedef struct chunk_ # { # struct heap_ *heap; # struct alloc_ *allocs; # struct chunk_ *next; # } chunk_t; (heap_ptr,) = unpack("<Q", read(chunk_ptr, 8)) success(f"heap @ 0x{heap_ptr:x}") # Finally we can leak the `heap_alloc` address to defeat ASLR. Having a known function pointer # in the image will let us compute the base address, and any other known symbol in the image. # heap_alloc is located at `heap_t + 16`. (heap_alloc,) = unpack("<Q", read(heap_ptr + 16, 8)) success(f"heap_alloc @ 0x{heap_alloc:x}") BASE = heap_alloc - RVA_HEAP_ALLOC FLAG = BASE + RVA_FLAG_TWO info(f"BaseAddress=0x{BASE:x} FlagAddress=0x{FLAG:x}") flag = read(FLAG, 37).decode() success(f"FLAG: {flag}") P.close()
[ "alex@segfault.me" ]
alex@segfault.me
fe15e96de78340081044c390097e0aa7fe290d4f
45a00ac27ac8745e41ee89e89ae798ab052896d0
/interface1/venv/case/mail.py
5a07871a1b4d241c25c33d70f9ba2624aebe55c8
[]
no_license
jiangll888/interface
c7b96f5c8105e66a98f8e951b897c751d882cd6d
3f3fa6d1d9591a8331eb660aa040861edb44a610
refs/heads/master
2020-04-30T13:10:59.372448
2019-03-22T02:52:18
2019-03-22T02:52:18
176,848,635
0
0
null
null
null
null
UTF-8
Python
false
false
992
py
from util.send_mail import SendMail from util.db_config import OperaDB class RunMail: def send_mail(self,filename=None): op = OperaDB() se = SendMail() result_list = op.get_all("select result from `case`;") result_list1 = [[value for key,value in d.items()][0] for d in result_list] pass_count = 0.0 fail_count = 0.0 for i in result_list1: if i == "pass": pass_count += 1 else: fail_count += 1 print(pass_count,fail_count) count_num = pass_count +fail_count result = "%.2f%%" % (pass_count/count_num*100) print(result) content = "本次自动化测试结果:通过"+ str(pass_count) + "个,失败" + str(fail_count) +"个,通过率为" \ + str(result) se.send_mail(["jiangliulin@163.com"],"自动化结果",content,filename) if __name__ == "__main__": r = RunMail() r.send_mail("../report/test.html")
[ "jiangliulin@163.com" ]
jiangliulin@163.com
00c3a56f1c545aa36ab9dc7ecd7a9bb798961fe0
caa175a933aca08a475c6277e22cdde1654aca7b
/tests/schema/product/query/snapshots/snap_test_all_product_file_paths.py
b5339588cbf10678ad6205db41a22f2ee60c7a11
[ "MIT" ]
permissive
simonsobs/acondbs
01d68ae40866461b85a6c9fcabdfbea46ef5f920
d18c7b06474b0dacb1dcf1c6dbd1e743407645e2
refs/heads/main
2023-07-07T04:33:40.561273
2023-06-28T22:08:00
2023-06-28T22:08:00
239,022,783
0
1
MIT
2023-06-26T20:36:39
2020-02-07T21:07:46
Python
UTF-8
Python
false
false
2,557
py
# -*- coding: utf-8 -*- # snapshottest: v1 - https://goo.gl/zC4yUc from __future__ import unicode_literals from snapshottest import Snapshot snapshots = Snapshot() snapshots['test_schema[all] 1'] = { 'data': { 'allProductFilePaths': { 'edges': [ { 'node': { 'note': None, 'path': 'site2:/another/way/map1', 'pathId': '1', 'product': {'name': 'map1'}, } }, { 'node': { 'note': None, 'path': 'site1:/path/to/map2', 'pathId': '2', 'product': {'name': 'map2'}, } }, { 'node': { 'note': None, 'path': 'site1:/path/to/map3', 'pathId': '3', 'product': {'name': 'map3'}, } }, { 'node': { 'note': None, 'path': 'site2:/another/way/map3', 'pathId': '4', 'product': {'name': 'map3'}, } }, { 'node': { 'note': None, 'path': 'site1:/path/to/beam1', 'pathId': '5', 'product': {'name': 'beam1'}, } }, { 'node': { 'note': None, 'path': 'site2:/another/way/beam1', 'pathId': '6', 'product': {'name': 'beam1'}, } }, { 'node': { 'note': None, 'path': 'site1:/path/to/beam2', 'pathId': '7', 'product': {'name': 'beam2'}, } }, { 'node': { 'note': 'sample comment', 'path': 'site1:/path/to/map1', 'pathId': '8', 'product': {'name': 'map1'}, } }, ], 'totalCount': 8, } } }
[ "tai.sakuma@gmail.com" ]
tai.sakuma@gmail.com
41f5580fcdacf988e3d0088c4ff35723a7277bb3
d9563800aabef6dd47c3ad28491686ebe552bf10
/web.py
ffa925faad9315654c04e91ab80269e992f92551
[]
no_license
drovn003/heroku
b88f858b7328500b39c5a418aefcab3c1e7a330e
d7560535a65f49e6675f92a68cd9319092ca9de5
refs/heads/master
2020-04-02T18:30:07.883122
2018-10-25T16:30:07
2018-10-25T16:30:07
154,702,838
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
from flask import Flask app = Flask(__name__) @app.route(‘/‘) def index(): return ‘hello, wold’
[ "noreply@github.com" ]
drovn003.noreply@github.com
b6ebc8726aa81143cc63fd8d1964d325186e3b94
96cb22932f6f17a64d4ae54cd3e5db11da1e7092
/tests/unit/test_pathify_by_key_ends.py
b0cccdc6152b7b46c83d5ec7da17e3099a79a6ae
[ "MIT" ]
permissive
xguse/snaketools
4f076cce25f5b4dcf7f5ad542e2a5ebef5ff52a3
ba3b68088bd9bb656b9ad64656a537bc1cfccdb4
refs/heads/master
2021-01-23T12:05:00.217621
2018-06-08T16:04:08
2018-06-08T16:04:08
102,645,205
1
0
MIT
2018-06-01T17:03:32
2017-09-06T18:41:15
Python
UTF-8
Python
false
false
1,349
py
"""Unit test the pathify_by_key_ends function.""" from pathlib import Path from snaketools import snaketools from tests.test_snaketools import * # noqa: F403,F401 def test_pathify_this(): """Ensure pathify_this returns expected values.""" assert snaketools.pathify_this("TEXT_FILE") assert snaketools.pathify_this("TEXT_PATH") assert snaketools.pathify_this("TEXT_DIR") assert snaketools.pathify_this("DIR") assert not snaketools.pathify_this("TEXT") def test_pathify_by_key_ends(config_1_dict): """Ensure pathify_by_key_ends returns expected types.""" original = config_1_dict pathified = snaketools.pathify_by_key_ends(dictionary=original) assert isinstance(pathified.COMMON, dict) assert isinstance(pathified.COMMON.RUN_NAME, str) assert isinstance(pathified.COMMON.OUT_DIR, Path) assert isinstance(pathified.COMMON.INTERIM_DIR, Path) assert isinstance(pathified.COMMON.DRAW_RULE, str) assert isinstance(pathified.COMMON.DRAW_PRETTY_NAMES, bool) assert isinstance(pathified.RULE_1, dict) assert isinstance(pathified.RULE_1.PARAMS, dict) assert isinstance(pathified.RULE_1.PARAMS.PARAM_1, int) assert isinstance(pathified.RULE_1.PARAMS.PARAM_2, str) assert isinstance(pathified.RULE_1.IN, dict) assert isinstance(pathified.RULE_1.IN.IN_FILE_1_PATH, Path)
[ "w.gus.dunn@gmail.com" ]
w.gus.dunn@gmail.com
34504f3e195a7d0a38dcbf2515ee3814f9664a6d
f288b7103133eb101304308d4f4c9c827b732056
/experiences/sofaSceneLowBridge/topo.py
c98a9bb703207245cdb091af83f01ef15927053d
[]
no_license
zaneck/evolveRobots
3c9dd1b0196df28b2c33ffd3c500dd7cbaa33ba2
02616fb8dbe1fffd57cd6e078338a7a394d010de
refs/heads/master
2020-04-11T01:29:27.124160
2016-09-30T12:03:31
2016-09-30T12:03:31
60,244,000
1
0
null
2016-09-29T11:46:00
2016-06-02T07:56:10
Python
UTF-8
Python
false
false
1,793
py
# topology = [ # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # [1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0,0,1,1] # ] topology = [ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0], [0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0], [0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0], [0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0], [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] ]
[ "val.owczarek@gmail.com" ]
val.owczarek@gmail.com
c92f83856a460fbd76d55aecce1634bc80da397a
77f7d3c94a696f02249440d24f099baafa5dd499
/g1scraper/scrap.py
4ede4acdf1861d41ef8a9dc91038488418d69be1
[ "Apache-2.0" ]
permissive
schneider8357/g1scraper
eabe85fc5907204fa744559aa4ad34b93f3c6e3c
a756c652ed121a7f7109cbdaec5d11f5dd277c0c
refs/heads/main
2023-06-25T10:31:13.445238
2021-08-03T15:26:18
2021-08-03T15:26:18
392,109,494
0
0
null
null
null
null
UTF-8
Python
false
false
2,060
py
"""Funcoes de scraping.""" import collections import json from bs4 import BeautifulSoup import requests def get_closing_bracket(string, indice_inicio): """Retorna o indice da '}' correspondente a '{' no indice recebido.""" if string[indice_inicio] != '{': raise ValueError("String invalida") deque = collections.deque() for atual in range(indice_inicio, len(string)): if string[atual] == '}' and string[atual-1] != '\\': deque.popleft() elif string[atual] == '{' and string[atual-1] != '\\': deque.append(string[indice_inicio]) if not deque: return atual # O '}' correpondente foi encontrado raise ValueError("String invalida") def get_noticias(url): """Retorna as noticias com titulo e subtitulo em uma lista.""" pagina = requests.get(url) soup = BeautifulSoup(pagina.text, 'html.parser') lista_noticias = [] # Buscar noticias em html for noticia in soup.find_all(class_="feed-post-body"): titulo = noticia.find(class_="feed-post-link") if titulo is None or titulo.contents is None: continue subtitulo = noticia.find(class_="feed-post-body-resumo") noticia = dict(titulo=titulo.contents[0], subtitulo=None) if subtitulo is not None: noticia["subtitulo"] = subtitulo.contents[0] lista_noticias.append(noticia) # Buscar noticias no JSON dentro do JS da pagina feed = str(soup.find(class_="fore-posts-setted")) indice_chave = feed.find('{"') # O JSON inicia usualmente em "config" json_feed = feed[indice_chave : get_closing_bracket(feed, indice_chave)+1] dict_feed = json.loads(json_feed) for noticia in dict_feed["forePosts"] + dict_feed["items"]: if noticia["type"] in ("materia", "cobertura"): lista_noticias.append( { "titulo": noticia["content"]["title"], "subtitulo": noticia["content"].get("summary") } ) return lista_noticias
[ "schneider8357@hotmail.com" ]
schneider8357@hotmail.com
07be42846ea3adc4c1fcc1067837e0394309c7c8
968003c0336733ad45ccedbdce23b51a4df89825
/hottbox/rank/rank_estimation.py
f4f5795d89d2884c57d3fe690bc3c3773553ac41
[ "Apache-2.0" ]
permissive
hottbox/hottbox
0167ed079ba9608c6c1b3366bc522dabd824075f
26580018ec6d38a1b08266c04ce4408c9e276130
refs/heads/develop
2020-03-07T05:36:06.008704
2020-01-31T12:47:52
2020-01-31T12:47:52
127,300,555
175
25
Apache-2.0
2020-01-31T12:54:16
2018-03-29T14:07:32
Python
UTF-8
Python
false
false
2,000
py
import numpy as np from ..core.structures import Tensor from ..algorithms.decomposition.cpd import CPD def rankest(tensor, rank_range, epsilon=10e-3, verbose=False): """ Estimate the optimal Kruskal rank of a tensor Parameters ---------- tensor : Tensor Multi-dimensional data which Kruskal rank is to be estimated rank_range : list[int] List of rank values to be tested epsilon : float Threshold for the relative error of approximation. verbose : bool Enable verbose output Returns ------- optimal_rank : tuple Optimal Kruskal rank. For consistency, the type of the returned value is tuple """ if not isinstance(rank_range, list): raise TypeError("The `rank_range` should be passed as a list of integers") if not all(isinstance(value, int) for value in rank_range): raise TypeError("The `rank_range` should consist of integers only") cpd = CPD(verbose=False) rel_error = [] for rank in rank_range: cpd.decompose(tensor=tensor, rank=(rank,)) rel_error.append(cpd.cost[-1]) if verbose: print('Rank = {}, Approximation error = {}'.format((rank,), cpd.cost[-1])) if rel_error[-1] <= epsilon: break # Reset cost value for cpd. Should work even without it cpd.cost = [] optimal_value = rank_range[rel_error.index(min(rel_error))] optimal_rank = (optimal_value,) return optimal_rank def mlrank(tensor): """ Calculate the multi-linear rank of a tensor Parameters ---------- tensor : Tensor Multidimensional data which multi-linear rank is to be computed Returns ------- ml_rank : tuple Multi-linear rank """ # TODO: implement setting a threshold for singular values order = tensor.order ml_rank = [np.linalg.matrix_rank(tensor.unfold(mode=i, inplace=False).data) for i in range(order)] ml_rank = tuple(ml_rank) return ml_rank
[ "ilyakisil@gmail.com" ]
ilyakisil@gmail.com
906140f5f9e9984a384bf2df06111b3814945311
643293536a8e09d05ee7df0da7a5a19369331f7e
/kindred_api/migrations/0003_remove_user_ig_token_expiry.py
8ae9e09e54d9a7f4995482614d0ce6a2393211ea
[]
no_license
williamflaherty/kindred-api
1caa53a7f4acfdd23fd5b6d8656cc40394ad94a3
7110290a0d7b3aed272d4125f38eed366b415d01
refs/heads/master
2021-03-22T04:36:34.401632
2015-07-31T12:22:44
2015-07-31T12:22:44
39,611,739
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('kindred_api', '0002_auto_20150725_2011'), ] operations = [ migrations.RemoveField( model_name='user', name='ig_token_expiry', ), ]
[ "william.flaherty@gmail.com" ]
william.flaherty@gmail.com
80a10e59342491b0f719f60ab2dabcaa09b7a8af
c123929d263042368ecab95d0efc791b084cc5ef
/exambook/asgi.py
7a9b6dab347618e406f847de2195985a7c9c9f24
[]
no_license
mufazzalshokh/examboook
6b05232c47bd90b7191fd1c1b70a9573958e9704
7c70e5338a1cf4e8ea73622bd645c3c5a3f7fba3
refs/heads/master
2023-08-15T00:08:43.170106
2021-09-22T19:59:34
2021-09-22T19:59:34
385,854,503
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
""" ASGI config for exambook project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'exambook.settings') application = get_asgi_application()
[ "zafarberdinazarov@Zafars-MacBook-Air.local" ]
zafarberdinazarov@Zafars-MacBook-Air.local
648342a399665026c92a81498c91443f2eea80e2
9a05de245f3d87a731a44f47a1c316d3fe0d996b
/src/paloma/migrations/0011_auto__chg_field_mailbox_user.py
b7414063ade935c0e278c011b6e13bde31cc2445
[ "BSD-2-Clause" ]
permissive
harajuku-tech/paloma
4c3651711d76b0df86692cf45b1bced221b8cc77
5be6ac7724ec0cabe5390b7018112f41fdec7581
refs/heads/master
2021-01-10T22:04:11.898174
2012-09-18T02:55:21
2012-09-18T02:55:21
3,616,369
0
1
null
2012-09-17T06:02:54
2012-03-04T05:56:51
Python
UTF-8
Python
false
false
10,049
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'Mailbox.user' db.alter_column('paloma_mailbox', 'user_id', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'], null=True)) def backwards(self, orm): # User chose to not deal with backwards NULL issues for 'Mailbox.user' raise RuntimeError("Cannot reverse this migration. 'Mailbox.user' and its values cannot be restored.") models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'paloma.alias': { 'Meta': {'object_name': 'Alias'}, 'address': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'alias': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mailbox': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {}) }, 'paloma.domain': { 'Meta': {'object_name': 'Domain'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'backupmx': ('django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '200'}), 'domain': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'maxquota': ('django.db.models.fields.BigIntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'quota': ('django.db.models.fields.BigIntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'transport': ('django.db.models.fields.CharField', [], {'max_length': '765'}) }, 'paloma.group': { 'Meta': {'unique_together': "(('owner', 'name'), ('owner', 'symbol'))", 'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'db_index': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['paloma.Owner']"}), 'symbol': ('django.db.models.fields.CharField', [], {'max_length': '100', 'db_index': 'True'}) }, 'paloma.journal': { 'Meta': {'object_name': 'Journal'}, 'dt_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_jailed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'recipient': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'sender': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'text': ('django.db.models.fields.TextField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}) }, 'paloma.mailbox': { 'Meta': {'object_name': 'Mailbox'}, 'address': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'bounces': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['paloma.Group']", 'symmetrical': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}) }, 'paloma.message': { 'Meta': {'object_name': 'Message'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mailbox': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['paloma.Mailbox']"}), 'schedule': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['paloma.Schedule']"}), 'text': ('django.db.models.fields.TextField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}) }, 'paloma.operator': { 'Meta': {'object_name': 'Operator'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['paloma.Owner']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'paloma.owner': { 'Meta': {'object_name': 'Owner'}, 'domain': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100', 'db_index': 'True'}), 'forward_to': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100', 'db_index': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'paloma.schedule': { 'Meta': {'object_name': 'Schedule'}, 'dt_start': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'forward_to': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['paloma.Group']", 'symmetrical': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['paloma.Owner']"}), 'status': ('django.db.models.fields.CharField', [], {'default': "'pending'", 'max_length': '24', 'db_index': 'True'}), 'subject': ('django.db.models.fields.CharField', [], {'max_length': '101'}), 'task': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'text': ('django.db.models.fields.TextField', [], {'max_length': '100'}) } } complete_apps = ['paloma']
[ "gmail@hdknr.com" ]
gmail@hdknr.com
3f420e13c93c7aa89a8a063eca9f36043e5b52b1
4c41163cb921215f0d089f0e485103a621b6990b
/cmdr/cmdp/views.py
44546d5fec1b9eb5da145cdc5e9a938360b98c44
[]
no_license
haman1/CRUD
582a1858c5cab370b0283b33f5c3f9814db0ebe3
922cbd9cf5536ce56c83cee053f51ee0d891b73b
refs/heads/master
2022-07-16T20:47:47.092695
2020-05-13T17:05:04
2020-05-13T17:05:04
263,691,277
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
from django.views.generic import ListView # Create your views here. from .models import Cmdr class HomePageView(ListView): model = Cmdr template_name = 'home.html'
[ "ombasaherman@gmail.com" ]
ombasaherman@gmail.com
574e9a3ede31b2a2ec1ea8f1f6ed416baced133d
f26233042850800454406617fa2eb9b7669364f8
/MIsim/compute.py
2a9888472c65ef9b857a5789cc1d41ab39a4be06
[ "LicenseRef-scancode-public-domain", "BSD-2-Clause", "BSD-3-Clause" ]
permissive
iniverno/MIsim
69144f9669d00429da5c396ebf95dc9c21f886b7
c37ab10c19cd009bf4a916e88c916e4f2e5321ba
refs/heads/master
2021-01-10T09:47:12.746751
2016-02-04T22:23:04
2016-02-04T22:23:04
51,109,803
3
0
null
null
null
null
UTF-8
Python
false
false
5,536
py
##################################################################################3 # # Jorge Albericio, 2015 # jorge@ece.utoronto.ca # ################################################################################## import chunk import numpy as np import math # in: # data : numpy 3D ndarray of dimensions i * Wx * Wy, i=# input features, Wx=Wy= size of input # filters: a list with two elements, we will use the field "data" of both, # filters[0].data = numpy 4D ndarray of dimensions N * i * Fx * Fy with the filter values # filters[1].data = numpy 1D vector with the N biases # N = # filters, Fx=Fy= filter size def computeConvolutionalLayer(data, filters, stride, padding, group): weights = filters[0].data biases = filters[1].data N = weights.shape[0] i = weights.shape[1] Fx = weights.shape[2] Fy = weights.shape[3] Ix = data.shape[1] Iy = data.shape[2] if padding != 0: data = adjustDataPadding(data, padding) Ix = data.shape[1] Iy = data.shape[2] assert weights.shape[1]*group==data.shape[0], "#filters (%d) is not equal to #input features (%d)" %(weights.shape[1], data.shape[0]) assert Ix==Iy, "Input width (%d) is not equal to Input height (%d)" %(data.shape[1], data.shape[2]) assert Fx==Fy, "Filter width (%d) is not equal to Filter height (%d)" %(Fx, Fy) output = np.zeros((N, (Ix-Fx)/stride+1, (Iy-Fy)/stride+1)) outPosX = 0 for posInputX in range(0, Ix-Fx+1, stride): outPosY = 0 print posInputX for posInputY in range(0, Iy-Fy+1, stride): for cntFilter in range(N): #for each filter we are going to calculate the convolution of the filter at the particular x,y position # This implementation will work as long as group is 1 or 2, IT WON'T WORK FOR OTHER VALUES Of GROUP if cntFilter < N/group: output[cntFilter, outPosY, outPosX] = computeWindow(weights[cntFilter], data[:(data.shape[0]/group), posInputY:posInputY+Fy, posInputX:posInputX+Fx]) else: output[cntFilter, outPosY, outPosX] = computeWindow(weights[cntFilter], data[(data.shape[0]/group):, posInputY:posInputY+Fy, posInputX:posInputX+Fx]) output[cntFilter, outPosY, outPosX] += biases[cntFilter] outPosY += 1 outPosX += 1 return output def computeWindow(filter, data): return np.sum(filter*data) # this is simply an implementation of the previous function but using loops def computeWindowLoops(filter, data): aux = 0 for posFilterX in range(filter.shape[1]): for posFilterY in range(filter.shape[2]): for posFilterI in range(filter.shape[0]): aux += filter[posFilterI][posFilterX][posFilterY] * \ data[posFilterI][posFilterX][posFilterY] return aux def adjustDataPadding(data, padding): assert padding != 0, "Padding is zero" aux = np.zeros((data.shape[0], data.shape[1] + 2*padding, data.shape[2] + 2*padding)) aux[:, padding:-padding, padding:-padding] = data return aux def computeMaxPoolLayer(data, filterSize, stride, padding): if padding !=0: adjustPadding(data, padding) Ix = data.shape[1] Iy = data.shape[2] output = np.zeros((data.shape[0], (Ix-filterSize)/stride+1, (Iy-filterSize)/stride+1)) outPosX = 0 for posInputX in range(0, Ix - filterSize + 1, stride): outPosY = 0 for posInputY in range(0, Iy - filterSize + 1, stride): for cntFeature in range(0, data.shape[0]): output[cntFeature, outPosY, outPosX] = np.max(data[cntFeature, posInputY:posInputY+filterSize, posInputX:posInputX+filterSize]) outPosY += 1 outPosX +=1 return output # It computes a Local Response Normalization Layer # for each element in the data array, it uses an auxiliar function to compute the proper value # return: a matrix with the values after applying the function in the input data def computeLRNLayer(data, size, alpha, beta): aux = np.zeros(data.shape) for posX in range(data.shape[1]): for posY in range(data.shape[2]): for posI in range(data.shape[0]): aux[posI, posY, posX] = computePosLRN(data, posX, posY, posI, size, alpha, beta) return aux # it computes the LocalResponse normalization at a particular position # it is defined by the equation result = data[i,y,x] / pow(1+a/size*sum(data[i-2:i+2, y, x]), b) # data: complete input data # x,y,i: position # size: number of positions in the i dimension to take into account # a, b: paramemeters in the equation def computePosLRN(data, x, y, i, size, a, b): value = 0.0 for cnt in range(-(size/2), size/2 + 1): pos = i + cnt if pos >= 0 and pos < data.shape[0]: value += data[pos, y, x]**2 value = math.pow((1 + a/float(size) * value), b) return data[i,y,x] / value def computeSoftmaxLayer(x): e_x = np.exp(x - np.max(x)) out = e_x / e_x.sum() return out def computeDropoutLayer(data, dropoutFactor): return data * dropoutFactor def computeReLULayer(data): aux = np.copy(data) for i,e in enumerate(aux.flat): if e<0: aux.flat[i] = 0 return aux for posX in range(data.shape[1]): for posY in range(data.shape[2]): for posI in range(data.shape[0]): if data[posI, posY, posX] < 0: aux[posI, posY, posX] = 0.0 else: aux[posI, posY, posX] = data[posI, posY, posX] return aux def computeFullyConnected(data, filters): filters = filters[0].data aux = np.zeros((filters.shape[0])) for i in range(filters.shape[0]): aux[i] = np.sum(filters[i] * data.flatten()) return aux
[ "jorge.albericio@gmail.com" ]
jorge.albericio@gmail.com
fa93d85569c12cb7aa7140fff0a8c35bf8da0a13
85b958530cbf8a77c5766f88eb8a6590bdf1ad56
/application/controllers/area_atencion/delete.py
b554fddf5f50405484aa2c5594a37eac73d00faa
[]
no_license
charliecarmona44/tut2018
1e1ed8c56ebf6b2df09b59a5010d8ebbc17d433e
54c796a4bdda29a9c5be371de55804ccc4eb9af8
refs/heads/master
2022-03-13T21:00:05.623926
2019-07-19T15:53:18
2019-07-19T15:53:18
197,802,686
0
0
null
2019-10-31T08:23:54
2019-07-19T15:51:11
Python
UTF-8
Python
false
false
3,018
py
import config import hashlib import app class Delete: def __init__(self): pass ''' def GET(self, id_area_atencion, **k): if app.session.loggedin is True: # validate if the user is logged # session_username = app.session.username session_privilege = app.session.privilege # get the session_privilege if session_privilege == 0: # admin user return self.GET_DELETE(id_area_atencion) # call GET_DELETE function elif privsession_privilegeilege == 1: # guess user raise config.web.seeother('/guess') # render guess.html else: # the user dont have logged raise config.web.seeother('/login') # render login.html def POST(self, id_area_atencion, **k): if app.session.loggedin is True: # validate if the user is logged # session_username = app.session.username session_privilege = app.session.privilege if session_privilege == 0: # admin user return self.POST_DELETE(id_area_atencion) # call POST_DELETE function elif session_privilege == 1: # guess user raise config.web.seeother('/guess') # render guess.html else: # the user dont have logged raise config.web.seeother('/login') # render login.html @staticmethod def GET_DELETE(id_area_atencion, **k): @staticmethod def POST_DELETE(id_area_atencion, **k): ''' def GET(self, id_area_atencion, **k): message = None # Error message id_area_atencion = config.check_secure_val(str(id_area_atencion)) # HMAC id_area_atencion validate result = config.model.get_area_atencion(int(id_area_atencion)) # search id_area_atencion result.id_area_atencion = config.make_secure_val(str(result.id_area_atencion)) # apply HMAC for id_area_atencion return config.render.delete(result, message) # render delete.html with user data def POST(self, id_area_atencion, **k): form = config.web.input() # get form data form['id_area_atencion'] = config.check_secure_val(str(form['id_area_atencion'])) # HMAC id_area_atencion validate result = config.model.delete_area_atencion(form['id_area_atencion']) # get area_atencion data if result is None: # delete error message = "El registro no se puede borrar" # Error messate id_area_atencion = config.check_secure_val(str(id_area_atencion)) # HMAC user validate id_area_atencion = config.check_secure_val(str(id_area_atencion)) # HMAC user validate result = config.model.get_area_atencion(int(id_area_atencion)) # get id_area_atencion data result.id_area_atencion = config.make_secure_val(str(result.id_area_atencion)) # apply HMAC to id_area_atencion return config.render.delete(result, message) # render delete.html again else: raise config.web.seeother('/area_atencion') # render area_atencion delete.html
[ "53064537+charliecarmona44@users.noreply.github.com" ]
53064537+charliecarmona44@users.noreply.github.com
4765bc6a151dd2ace0a1caa820041abaa0e3233f
1bccf0b1374dcfddfc3e320fd5b6af499334df2d
/data/rsync.py
904679ac972e2e9f6646d7eed2179b1a3253946a
[ "Unlicense" ]
permissive
chebee7i/twitter
6b245f5a7b7510089b62d48567e6208e1fe8a1db
ec1d772c3ef7d2288ac8051efb8637378f3ec195
refs/heads/master
2021-01-01T16:25:13.242941
2015-06-24T19:39:24
2015-06-24T19:39:24
23,846,593
2
0
null
null
null
null
UTF-8
Python
false
false
1,182
py
""" Script to backup Twitter data using rsync. A lockfile ensures that this script does not run until the previous run has finished. """ from __future__ import print_function import errno import fcntl import glob import os import subprocess import sys import time import configparser config = configparser.ConfigParser() config.read('../project.cfg') BACKUP_PATH = config['Locations']['BACKUP_PATH'] MONGO_PREFIX = config['Prefixes']['MONGO_PREFIX'] def rsync(path=None): if path is None: path = BACKUP_PATH print() print("-----") subprocess.call('date') cmd = 'rsync --progress -zhtr *.gz *.log {0}* {1}' cmd = cmd.format(MONGO_PREFIX, path) print(cmd) subprocess.call(cmd, shell=True) def main(): with open('.lock_rsync', 'w') as f: try: fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB) except IOError, e: if e.errno == errno.EAGAIN: msg = '[{0}] rsync script already running.\n' msg = msg.format(time.strftime('%c')) sys.stderr.write(msg) sys.exit(-1) raise rsync() if __name__ == '__main__': main()
[ "chebee7i@gmail.com" ]
chebee7i@gmail.com
86b7e9291c8130f09049ae542b9f23a1ef115a28
50f239890cf2708f9e2f9fa29216aeaea360eb31
/tests/examples/inconsistent_pipeline.py
d41f71045fab62e79b38a4af27dfb509993c53f0
[ "MIT" ]
permissive
jbn/modpipe
485b18cf13290724c2b282b849ca4ac7b2d0f03e
06e182704d4582ab41ce92f5ae1a908874bf60e2
refs/heads/master
2021-06-23T09:31:08.432654
2019-06-19T17:36:55
2019-06-19T17:36:55
137,112,992
4
0
MIT
2019-06-19T17:36:57
2018-06-12T18:35:50
Python
UTF-8
Python
false
false
169
py
def f(x): return {'value': x} def g(src): return src, {} def h(src, dst): dst['computation'] = src['value'] * 2 def last_one(src, dst): return dst
[ "jbn@abreka.com" ]
jbn@abreka.com
e3d8013e33d572b49aff44454e400c499ce32db6
b4eff234e9faf8656a6012bbc36c4da3267e3a8a
/Laboratorium2/zad5_lib.py
bbd622f0b41b7544bc95cd47b0eff61ce09b14a7
[]
no_license
rzeznia/pythonWSBpwjs
1ab339bb8f9c28840e40e5d7cf0afe0188a9184a
81e5df9a58e6b11d120bfd67fbf9054e52518bdc
refs/heads/master
2020-04-09T05:36:38.276884
2019-01-27T13:22:20
2019-01-27T13:22:20
160,071,724
0
0
null
null
null
null
UTF-8
Python
false
false
710
py
from math import sqrt def srednia(lista_ocen): liczba_ocen = len(lista_ocen) return suma_ocen(lista_ocen) / liczba_ocen def suma_ocen(lista_ocen): liczba_ocen = len(lista_ocen) suma = 0 for ocena in lista_ocen: suma += ocena return suma def mediana(lista_ocen): liczba_ocen = len(lista_ocen) cen = liczba_ocen // 2 if liczba_ocen % 2 != 0: return lista_ocen[int(cen)] else: return srednia([lista_ocen[cen-1], lista_ocen[cen]]) def odchylenie(lista_ocen): avg = srednia(lista_ocen) kwadrat_suma = 0 for ocena in lista_ocen: kwadrat_suma += pow(ocena - avg, 2) wariancja = kwadrat_suma/avg return sqrt(wariancja)
[ "marcin.gd3@gmail.com" ]
marcin.gd3@gmail.com
6f02326609f002098b509e1d2671a05d4d6e528b
fed0f32e035eb26c5acb84d9ee7626bf6e3c3d39
/Finding the multiple.py
5a87711d731a36421bf8d09e8bcb7702a6c20845
[]
no_license
Suru996/SRM-e_lab-Python-Level-1
6f0ad4db94b3377d13b8bf92382294495c7fcee2
d69a93018d862e668cee76791c081df36a05f8e5
refs/heads/main
2023-07-27T12:13:10.743000
2021-08-22T10:19:50
2021-08-22T10:19:50
387,500,214
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
n = int(input())#Length of list b = [] for x in range(0,n): a = int(input())# input from user b.append(a)#Assigning each value given by user as integer type k = int(input())#Multiples of k for x in range(0,n): if(b[x] % k ==0): print(b[x])
[ "noreply@github.com" ]
Suru996.noreply@github.com
96bac37f424b77980856d7e2566c984015610ba9
b97f8bbc34d4b6d07e23eb86eb3e584f67dc90f2
/base_station/tests.py
61bdfcd87f90495f6c93cb301d1cd87446463de0
[ "Apache-2.0" ]
permissive
EpicEric/base_stations_django
5f6a8df402cdae825bd9b67663cfbe66d93525dc
7a04bc78ebe59067e7ff117862c9d2b0182d5d13
refs/heads/master
2021-03-24T13:03:09.073738
2018-12-29T13:31:25
2018-12-29T13:31:25
122,376,234
0
0
null
null
null
null
UTF-8
Python
false
false
1,314
py
from collections import Counter from django.test import TestCase from django.contrib.gis.geos import Point from model_mommy import mommy from base_station.models import IdentifiedBaseStation class IdentifiedBaseStationTestCase(TestCase): def test_one_bs_inside_bounds(self): bs = mommy.make(IdentifiedBaseStation, point=Point(-46.5, -23.5)) bs_within_box = IdentifiedBaseStation.get_base_stations_inside_bounds( -46, -23, -47, -24) self.assertEqual(bs_within_box.first(), bs) def test_some_bs_inside_and_some_outside_bounds(self): bs_inside = [ mommy.make(IdentifiedBaseStation, point=Point(-46.5, -23.5)), mommy.make(IdentifiedBaseStation, point=Point(-46.2, -24.0)), mommy.make(IdentifiedBaseStation, point=Point(-46.0, -23.9))] bs_outside = [ mommy.make(IdentifiedBaseStation, point=Point(-47.5, -23.5)), mommy.make(IdentifiedBaseStation, point=Point(46.2, -24.0)), mommy.make(IdentifiedBaseStation, point=Point(-46.3, -24.1))] bs_within_box = IdentifiedBaseStation.get_base_stations_inside_bounds( -46, -23, -47, -24) self.assertEqual(Counter(bs_within_box), Counter(bs_inside)) def test_get_covered_area(self): #TODO pass
[ "mateusnakajo@gmail.com" ]
mateusnakajo@gmail.com
3f8f37c93b7b3054adec950e900f86e9dbe50c09
360f2f8489187e243f23fa552c36a89dd48d3795
/zadaca8.3.py
b9c5aa56718d37b71f1c9d148cbab3097b24046e
[]
no_license
stanic-mia/Zadaca08
bfdd25e58f20ff69a4e41d0e6a16eb4345172f8e
7afe513cd2ec34e59e83eaf396bece78ab860131
refs/heads/main
2023-02-03T08:00:28.156554
2020-12-21T09:54:54
2020-12-21T09:54:54
323,285,677
0
0
null
null
null
null
UTF-8
Python
false
false
555
py
brojA = int(input("Unesite prvi broj: ")) brojB = int(input("Unesite drugi broj: ")) operacija = input("Unesite računsku operaciju (+, -, *, /): ") if operacija == "+": print("Rezultat zbrajanja je: " + str(brojA + brojB)) elif operacija == "-": print("Rezultat oduzimanja je: " + str(brojA - brojB)) elif operacija == "*": print("Rezultat množenja je: " + str(brojA * brojB)) elif operacija == "/": print("Rezultat dijeljenja je: " + str(brojA / brojB)) else: print("Ne prepoznajem ovu računsku operaciju.")
[ "noreply@github.com" ]
stanic-mia.noreply@github.com
767266bd140e0c8874953355ff300d128e4c125b
47dea5236f93d79a049e3de40a065ae5d0713e50
/mainEditarArrendatario.py
ce008c0622b3ce4ede4c7ceb38c9fe320cba4440
[]
no_license
WilliamsScott/sicurezzaPy
d10548b6688dbfede9a4fcb5280f03987b0a5b30
76653773358249658865307defea8aa1ca7c1bfb
refs/heads/master
2020-06-03T04:52:08.705513
2019-06-11T20:58:26
2019-06-11T20:58:26
191,446,137
0
0
null
null
null
null
UTF-8
Python
false
false
4,279
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'mainEditarArrendatario.ui' # # Created by: PyQt5 UI code generator 5.11.3 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainEditarArrendatario(object): def setupUi(self, MainEditarArrendatario): MainEditarArrendatario.setObjectName("MainEditarArrendatario") MainEditarArrendatario.resize(800, 600) self.centralwidget = QtWidgets.QWidget(MainEditarArrendatario) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(290, 20, 201, 41)) font = QtGui.QFont() font.setPointSize(14) self.label.setFont(font) self.label.setObjectName("label") self.txtRut = QtWidgets.QLineEdit(self.centralwidget) self.txtRut.setGeometry(QtCore.QRect(280, 130, 251, 22)) self.txtRut.setObjectName("txtRut") self.txtNombre = QtWidgets.QLineEdit(self.centralwidget) self.txtNombre.setGeometry(QtCore.QRect(280, 170, 251, 22)) self.txtNombre.setObjectName("txtNombre") self.txtApellido = QtWidgets.QLineEdit(self.centralwidget) self.txtApellido.setGeometry(QtCore.QRect(280, 210, 251, 22)) self.txtApellido.setObjectName("txtApellido") self.txtTelefono = QtWidgets.QLineEdit(self.centralwidget) self.txtTelefono.setGeometry(QtCore.QRect(280, 250, 251, 22)) self.txtTelefono.setObjectName("txtTelefono") self.label_5 = QtWidgets.QLabel(self.centralwidget) self.label_5.setGeometry(QtCore.QRect(190, 250, 55, 16)) self.label_5.setObjectName("label_5") self.label_4 = QtWidgets.QLabel(self.centralwidget) self.label_4.setGeometry(QtCore.QRect(200, 210, 55, 16)) self.label_4.setObjectName("label_4") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(210, 126, 55, 20)) self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(200, 170, 55, 16)) self.label_3.setObjectName("label_3") self.btnBuscar = QtWidgets.QPushButton(self.centralwidget) self.btnBuscar.setGeometry(QtCore.QRect(550, 130, 93, 28)) self.btnBuscar.setObjectName("btnBuscar") self.btnGuardar = QtWidgets.QPushButton(self.centralwidget) self.btnGuardar.setGeometry(QtCore.QRect(560, 410, 93, 28)) self.btnGuardar.setObjectName("btnGuardar") MainEditarArrendatario.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainEditarArrendatario) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 26)) self.menubar.setObjectName("menubar") MainEditarArrendatario.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainEditarArrendatario) self.statusbar.setObjectName("statusbar") MainEditarArrendatario.setStatusBar(self.statusbar) self.retranslateUi(MainEditarArrendatario) QtCore.QMetaObject.connectSlotsByName(MainEditarArrendatario) def retranslateUi(self, MainEditarArrendatario): _translate = QtCore.QCoreApplication.translate MainEditarArrendatario.setWindowTitle(_translate("MainEditarArrendatario", "MainWindow")) self.label.setText(_translate("MainEditarArrendatario", "Editar Arrendatario")) self.label_5.setText(_translate("MainEditarArrendatario", "Telefono")) self.label_4.setText(_translate("MainEditarArrendatario", "Apellido")) self.label_2.setText(_translate("MainEditarArrendatario", "Rut")) self.label_3.setText(_translate("MainEditarArrendatario", "Nombre")) self.btnBuscar.setText(_translate("MainEditarArrendatario", "Buscar")) self.btnGuardar.setText(_translate("MainEditarArrendatario", "Guardar")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainEditarArrendatario = QtWidgets.QMainWindow() ui = Ui_MainEditarArrendatario() ui.setupUi(MainEditarArrendatario) MainEditarArrendatario.show() sys.exit(app.exec_())
[ "wmejias97@gmail.com" ]
wmejias97@gmail.com
f4b603d1599486d77c94fb8d33f2757497d0a40f
a9113d2ef0ba68a5fb882a7b06954b58500589a1
/B10_T1_Sort_Lists.py
96ed2186e503e978b95a8f2d07ffc9c4d6f01493
[]
no_license
karthiklingasamy/Python_Sandbox
4194f6bdfc13a62b6a43fc104354c428adb8f7c1
c1c352a220c76804609067c9f02945c535847378
refs/heads/master
2020-12-27T06:50:30.582174
2020-02-02T16:50:26
2020-02-02T16:50:26
237,802,723
0
0
null
null
null
null
UTF-8
Python
false
false
597
py
li = [8,7,6,9,3,2,5,4,1] print(li) # To sort without impacting the ordinal list use sorted() function s_li = sorted(li) # Create new variable to see the results print('Sorted Variable:', s_li) # To sort original list without using new variable use sort() method li.sort() print('Original Variable:', li) # Difference between sorted() function and sort method # Key Take away is sorted() function gives new sorted list and the sort function perform sort inplace s_li = li.sort() print(s_li) # Sort in descending order s_li = sorted(li,reverse=True) li.sort(reverse=True)
[ "noreply@github.com" ]
karthiklingasamy.noreply@github.com
99bb55217063b4eccb9f79e6e03780c46df5d6a8
5297825412a061d7b44e4379c02f21f618c1c578
/maoyan/models.py
2b40aa65e8e6dccb74627c29311db1096ac0485d
[]
no_license
xiaolifeidao123456/spider
63c2b8664ef98b84632e6a3b7493d0d5d0b1c3cd
b02958d06b5f8b91fc6fc6de2a8f331ae764418d
refs/heads/master
2020-03-29T04:50:26.405292
2018-09-20T11:04:23
2018-09-20T11:07:30
149,551,394
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
# import scrapy # # class MovieItem(scrapy.Item): # # 电影名字 # title = scrapy.Field() # # 主演 # start = scrapy.Field() # # 上映时间 # releasetime = scrapy.Field()
[ "1062959398@qq.com" ]
1062959398@qq.com
3d4a418da0e12ece71efa3b7f76035ee453690bd
811a15aceb8f35fa738fa01e30e5003460715706
/DA_fitter.py
db47929e9a2eb5679d0d18ad6b8e96344aa8268f
[]
no_license
CManser/WD_MWS_pipeline
2e3660e3504f261f3daf74fdacb8762c215a61d8
99ef0b73d842dfda072f902745635a99b9453991
refs/heads/master
2021-03-02T14:54:29.652384
2020-03-08T19:43:49
2020-03-08T19:43:49
245,876,738
0
0
null
null
null
null
UTF-8
Python
false
false
4,998
py
import MWS_WD_scripts import numpy as np import sys import matplotlib.pyplot as plt import os import scipy.interpolate c = 299792.458 # Speed of light in km/s stdwave = np.arange(3000,11000.1, 0.1) inp = sys.argv[1] name = inp.split('/')[-1] file_path = inp[:-1*len(name)] print('\n' + name) filename = inp name_r, name_z = filename.replace('-b', '-r'), filename.replace('-b', '-z') spectra_b = np.loadtxt(filename,usecols=(0,1,2),unpack=True).transpose() spectra_b[:,2] = spectra_b[:,2]**-0.5 spectra_r = np.loadtxt(name_r,usecols=(0,1,2),unpack=True).transpose() spectra_r[:,2] = spectra_r[:,2]**-0.5 spectra_z = np.loadtxt(name_z,usecols=(0,1,2),unpack=True).transpose() spectra_z[:,2] = spectra_z[:,2]**-0.5 training_set = MWS_WD_scripts.load_training_set() WD_type = MWS_WD_scripts.WD_classify(spectra_b, spectra_r, training_set = training_set) print(WD_type[0]) best_T, best_T_err, best_g, best_g_err, best_rv, s_best_T, s_best_T_err, s_best_g, s_best_g_err, StN = MWS_WD_scripts.fit_DA(spectra_b[(np.isnan(spectra_b[:,1])==False) & (spectra_b[:,0]>3500)], plot = True, verbose_output = True) modwave = stdwave*(best_rv+c)/c model = MWS_WD_scripts.interpolating_model_DA(best_T,best_g/100, fine_models = True) model2 = MWS_WD_scripts.interpolating_model_DA(s_best_T,s_best_g/100, fine_models = True) # Plotting fig = plt.figure(figsize= (11,9)) axes1 = fig.add_axes([0,0.45,1,0.55]) axes2 = fig.add_axes([0,0,1,0.4]) axes1.text(0.45, 0.95, name[:-6], transform=axes1.transAxes, fontsize = 14) axes1.text(0.45, 0.90, 'T = {:.1f} +/- {:.1f} K | logg = {:.3f} +/- {:.3f}'.format(best_T, best_T_err, best_g/100, best_g_err/100), transform=axes1.transAxes, fontsize = 14) axes1.text(0.45, 0.85, 'T2 = {:.1f} +/- {:.1f} K | logg2 = {:.3f} +/- {:.3f}'.format(s_best_T, s_best_T_err, s_best_g/100, s_best_g_err/100), transform=axes1.transAxes, fontsize = 14) axes1.text(0.45, 0.80, 'rv = {:.2f} km/s | S/N = {:.1f}'.format(best_rv, StN), transform=axes1.transAxes, fontsize = 14) axes1.plot(spectra_b[:,0], spectra_b[:,1], color = '0.2', lw = 1.0) axes1.plot(spectra_r[:,0], spectra_r[:,1], color = '0.3', lw = 1.0) axes1.plot(spectra_z[:,0], spectra_z[:,1], color = '0.3', lw = 1.0) check_f_spec=spectra_b[:,1][(spectra_b[:,0]>4500.) & (spectra_b[:,0]<4700.)] model[np.isnan(model)] = 0.0 check_f_model = model[(modwave > 4500) & (modwave < 4700)] adjust = np.average(check_f_model)/np.average(check_f_spec) axes1.plot(modwave[(modwave > 3600.0) & (modwave < 10500.0)], model[(modwave > 3600.0) & (modwave < 10500.0)]/adjust, color = 'red', alpha = 0.9, lw = 0.8) model2[np.isnan(model2)] = 0.0 check_f_model2 = model2[(modwave > 4500) & (modwave < 4700)] adjust2 = np.average(check_f_model2)/np.average(check_f_spec) axes1.plot(modwave[(modwave > 3600.0) & (modwave < 10500.0)], model2[(modwave > 3600.0) & (modwave < 10500.0)]/adjust2, color = 'blue', alpha = 0.7, lw = 0.8) axes1.set_ylabel('Flux',fontsize=12) axes2.set_xlabel('Wavelength (Angstroms)',fontsize=12) axes1.set_xlim(3500, 10600) axes2.set_xlim(3500, 10600) axes2.set_ylim(0.2, 1.8) func = scipy.interpolate.interp1d(modwave, model) model_b = func(spectra_b[:,0]) model_r = func(spectra_r[:,0]) model_z = func(spectra_z[:,0]) func2 = scipy.interpolate.interp1d(modwave, model2) model2_b = func2(spectra_b[:,0]) model2_r = func2(spectra_r[:,0]) model2_z = func2(spectra_z[:,0]) axes2.plot(spectra_b[:,0], spectra_b[:,1]/model_b*adjust, color = 'red', alpha = 0.9, lw = 0.5) axes2.plot(spectra_r[:,0], spectra_r[:,1]/model_r*adjust, color = 'red', alpha = 0.9, lw = 0.5) axes2.plot(spectra_z[:,0], spectra_z[:,1]/model_z*adjust, color = 'red', alpha = 0.9, lw = 0.5) axes2.plot(spectra_b[:,0], spectra_b[:,1]/model2_b*adjust2, color = 'blue', alpha = 0.4, lw = 0.5) axes2.plot(spectra_r[:,0], spectra_r[:,1]/model2_r*adjust2, color = 'blue', alpha = 0.4, lw = 0.5) axes2.plot(spectra_z[:,0], spectra_z[:,1]/model2_z*adjust2, color = 'blue', alpha = 0.4, lw = 0.5) axes2.axhline(1, ls = '--', lw = 0.5, color = '0.3') save_path = file_path + '/fits/' if not os.path.isdir(save_path): try: os.mkdir(save_path) except OSError: print('Could not make path {:s}'.format(save_path)) else: print ("Successfully created the directory {:s}".format(save_path)) plt.savefig('{:s}{:s}_fitted.pdf'.format(save_path,name[:-6]), bbox_inches = 'tight') plt.close() if (StN > 10.0) & (WD_type == 'DA'): compare_b = np.vstack((spectra_b[:,0], spectra_b[:,1]/model_b*adjust, spectra_b[:,2]/model_b*adjust)).transpose() compare_r = np.vstack((spectra_r[:,0], spectra_r[:,1]/model_r*adjust, spectra_r[:,2]/model_r*adjust)).transpose() compare_z = np.vstack((spectra_z[:,0], spectra_z[:,1]/model_z*adjust, spectra_z[:,2]/model_z*adjust)).transpose() np.savetxt('{:s}{:s}-b_compare.dat'.format(save_path,name[:-6]), compare_b) np.savetxt('{:s}{:s}-r_compare.dat'.format(save_path,name[:-6]), compare_r) np.savetxt('{:s}{:s}-z_compare.dat'.format(save_path,name[:-6]), compare_z) #plt.show()
[ "noreply@github.com" ]
CManser.noreply@github.com
e098d6c21f58e58491d74aa19724a3243abf4a13
915ea8bcabf4da0833d241050ef226100f7bd233
/SDKs/Python/test/test_add_contact_log_type.py
f6cd3f13996b307b1bf6cb61f610404ecbbae465
[ "BSD-2-Clause" ]
permissive
parserrr/API-Examples
03c3855e2aea8588330ba6a42d48a71eb4599616
0af039afc104316f1722ee2ec6d2881abd3fbc07
refs/heads/master
2020-07-10T22:17:24.906233
2019-08-26T03:06:21
2019-08-26T03:06:21
204,382,917
0
0
null
2019-08-26T02:48:16
2019-08-26T02:48:15
null
UTF-8
Python
false
false
966
py
# coding: utf-8 """ MINDBODY Public API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.add_contact_log_type import AddContactLogType # noqa: E501 from swagger_client.rest import ApiException class TestAddContactLogType(unittest.TestCase): """AddContactLogType unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAddContactLogType(self): """Test AddContactLogType""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.add_contact_log_type.AddContactLogType() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "christopher.volpi@mindbodyonline.com" ]
christopher.volpi@mindbodyonline.com
8075009ac3e6a2b508e0c69650729de3d981023f
cdd43e5400d93e406bcea9b3b332e416f09cbb2a
/card.py
7ad7121cc826cac891c26dff0831d01b25eb54dd
[]
no_license
shruti420/War
3580670ed1d0690c635cb0ebbfa2ac91e4ff1d91
10072cbe32aae2ae46987eb135ca7b07ad1baacf
refs/heads/main
2023-06-30T13:29:48.431548
2021-08-01T19:17:13
2021-08-01T19:17:13
391,712,473
0
0
null
null
null
null
UTF-8
Python
false
false
967
py
class Card: suits = ["spades", "hearts","diamonds","clubs"] values=[None, None, "2","3","4","5","6","7","8","9","10","Jack","Queen","King", "Ace"] def __init__(self,v,s): """ suit + value are ints""" self.value=v self.suit=s def __lt__(self,c2): if self.value <c2.value: return True if self.value== c2.value: if self.suit < c2.suit: return True else: return False def __gt__(self, c2): if self.value >c2.value: return True if self.value== c2.value: if self.suit>c2.suit: return True else: return False return False def __repr__(self): v= self.values[self.value]+ "of" + self.suits[self.suit] return v card1= Card(10,2) card2 = Card(11,3) print(card1 < card2)
[ "noreply@github.com" ]
shruti420.noreply@github.com
2815b4c6b972718b4f6cde4c85bc7f35594f15dd
57a3a9065ff67eb57eb24fe1615aad41bbc916be
/configs/categories_config_vtag_Bacon_nomet.py
826bfd0c32ff97b4db5a3eafb9c4ae481f3fcc7d
[]
no_license
blallen/DmsMonoX
2eb1b6bc415c6f4ceff3ec803c2de662b8470156
5dd52783032f536335e492a0931764650d690571
refs/heads/master
2020-12-30T23:21:34.757629
2015-02-24T15:06:21
2015-02-24T15:06:21
37,859,155
0
0
null
null
null
null
UTF-8
Python
false
false
13,905
py
# Configuration for the Mono-X categories out_file_name = 'mono-x-vtagged.root' BINS = [250.0 , 260.0 , 270.0 , 280.0 , 290.0 , 300.0 , 310.0 , 320.0 , 330.0,340,360,380,420,510,1000] BINS = range(250,550,50) BINS.append(1000) categories = [ { 'name':"resolved" ,'in_file_name':"resolved-combo.root" ,"cutstring":"mvamet>250 && mvamet<1000" ,"varstring":["mvamet",250,1000] ,"weightname":"weight" ,"additionalvars":[['jet1pt',25,150,1000]] ,"pdfmodel":1 ,"bins":BINS[:] ,"recoilMC" :"recoilfits/recoilfit_Zgj_pfmetraw_2012_mc.root" ,"recoilData":"recoilfits/recoilfit_Zgj_pfmetraw_2012_data.root" ,"muonSF" : 0.985 ,"photonSF": 0.97 ,"samples": { # Format is TreeName : ['region','process',isMC,isSignal] !! Note isSignal means DM/Higgs etc for signal region but Z-jets/W-jets for the di/single-muon regions !! # Signal Region "Znunu_signal" :['signal','zjets',1,0] ,"Zll_signal" :['signal','zll',1,0] ,"Wjets_signal" :['signal','wjets',1,0] ,"WW_signal" :['signal','dibosons',1,0] ,"WZ_signal" :['signal','dibosons',1,0] ,"ZZ_signal" :['signal','dibosons',1,0] ,"ttbar_signal" :['signal','top',1,0] ,"SingleTop_signal" :['signal','top',1,0] ,"QCD_signal" :['signal','qcd',1,0] ,"ggH125_signal" :['signal','ggH',1,1] ,"VBFH125_signal" :['signal','vbf',1,1] ,"WH125_signal" :['signal','wh',1,1] ,"ZH125_signal" :['signal','zh',1,1] ,"data_signal" :['signal','data',0,0] # Di muon-Control ,"Zll_di_muon_control" :['dimuon','zll',1,1] ,"Znunu_di_muon_control" :['dimuon','zjets',1,0] ,"Wjets_di_muon_control" :['dimuon','wjets',1,0] ,"WW_di_muon_control" :['dimuon','dibosons',1,0] ,"WZ_di_muon_control" :['dimuon','dibosons',1,0] ,"ZZ_di_muon_control" :['dimuon','dibosons',1,0] ,"ttbar_di_muon_control" :['dimuon','top',1,0] ,"SingleTop_di_muon_control" :['dimuon','top',1,0] #,"QCD_di_muon_control" :['dimuon','qcd',1,0] ,"data_di_muon_control" :['dimuon','data',0,0] # Single muon control ,"Zll_single_muon_control" :['singlemuon','zll',1,0] ,"Znunu_single_muon_control" :['singlemuon','zjets',1,0] ,"Wjets_single_muon_control" :['singlemuon','wjets',1,1] ,"WW_single_muon_control" :['singlemuon','dibosons',1,0] ,"WZ_single_muon_control" :['singlemuon','dibosons',1,0] ,"ZZ_single_muon_control" :['singlemuon','dibosons',1,0] ,"ttbar_single_muon_control" :['singlemuon','top',1,0] ,"SingleTop_single_muon_control" :['singlemuon','top',1,0] ,"QCD_single_muon_control" :['singlemuon','qcd',1,0] ,"data_single_muon_control" :['singlemuon','data',0,0] # photon control ,"data_photon_control" :['photon','data',0,0] ,"Photon_photon_control" :['photon','gjet',1,1] ,"Zll_photon_control" :['photon','zll',1,0] ,"Wjets_photon_control" :['photon','wjets',1,0] ,"WW_photon_control" :['photon','dibosons',1,0] ,"ZZ_photon_control" :['photon','dibosons',1,0] ,"ttbar_photon_control" :['photon','top',1,0] ,"SingleTop_photon_control" :['photon','top',1,0] ,"QCD_photon_control" :['photon','qcd',1,0] } ,"metsamples": # For Recoil Corrections { #Di Muon Control Region "Zll_di_muon_control","Znunu_di_muon_control","Wjets_di_muon_control","WW_di_muon_control","WZ_di_muon_control","ZZ_di_muon_control", "ttbar_di_muon_control","SingleTop_di_muon_control", #Single Muon Control Region "Wjets_single_muon_control","Zll_single_muon_control","WW_single_muon_control","WZ_single_muon_control","ZZ_single_muon_control","ttbar_single_muon_control", "SingleTop_single_muon_control", #Photon Control Region "Photon_photon_control","Wjets_photon_control","Zll_photon_control","WW_photon_control","ZZ_photon_control","ttbar_photon_control","SingleTop_photon_control", "QCD_photon_control", #Signal Region "Wjets_signal","Zll_signal","WW_signal","WZ_signal","ZZ_signal","ttbar_signal","SingleTop_signal","QCD_signal", "ggH125_signal" ,"VBFH125_signal" ,"WH125_signal" ,"ZH125_signal","Znunu_signal" }, }, { 'name':"boosted" ,'in_file_name':"boosted-combo.root" ,"cutstring":"mvamet>250 && mvamet<1000" ,"varstring":["mvamet",250,1000] ,"weightname":"weight" ,"bins":BINS[:] ,"additionalvars":[['jet1pt',25,150,1000]] ,"pdfmodel":0 ,"recoilMC" :"recoilfits/recoilfit_Zgj_pfmetraw_2012_mc.root" ,"recoilData":"recoilfits/recoilfit_Zgj_pfmetraw_2012_data.root" ,"muonSF" : 0.985 ,"photonSF": 0.97 ,"samples": { # Format is TreeName : ['region','process',isMC,isSignal] !! Note isSignal means DM/Higgs etc for signal region but Z-jets/W-jets for the di/single-muon regions !! # Signal Region "Znunu_signal" :['signal','zjets',1,0] ,"Zll_signal" :['signal','zll',1,0] ,"Wjets_signal" :['signal','wjets',1,0] ,"WW_signal" :['signal','dibosons',1,0] ,"WZ_signal" :['signal','dibosons',1,0] ,"ZZ_signal" :['signal','dibosons',1,0] ,"ttbar_signal" :['signal','top',1,0] ,"SingleTop_signal" :['signal','top',1,0] ,"QCD_signal" :['signal','qcd',1,0] ,"ggH125_signal" :['signal','ggH',1,1] ,"VBFH125_signal" :['signal','vbf',1,1] ,"WH125_signal" :['signal','wh',1,1] ,"ZH125_signal" :['signal','zh',1,1] #,"GV_signal" :['signal','gv',1,0] ,"data_signal" :['signal','data',0,0] # Di muon-Control ,"Zll_di_muon_control" :['dimuon','zll',1,1] ,"Znunu_di_muon_control" :['dimuon','zjets',1,0] ,"Wjets_di_muon_control" :['dimuon','wjets',1,0] ,"WW_di_muon_control" :['dimuon','dibosons',1,0] ,"WZ_di_muon_control" :['dimuon','dibosons',1,0] ,"ZZ_di_muon_control" :['dimuon','dibosons',1,0] ,"ttbar_di_muon_control" :['dimuon','top',1,0] ,"SingleTop_di_muon_control" :['dimuon','top',1,0] #,"QCD_di_muon_control" :['dimuon','qcd',1,0] #,"GV_di_muon_control" :['dimuon','gv',1,0] ,"data_di_muon_control" :['dimuon','data',0,0] # Single muon control ,"Zll_single_muon_control" :['singlemuon','zll',1,0] #,"Znunu_single_muon_control" :['singlemuon','zjets',1,0] ,"Wjets_single_muon_control" :['singlemuon','wjets',1,1] ,"ZZ_single_muon_control" :['singlemuon','dibosons',1,0] ,"WW_single_muon_control" :['singlemuon','dibosons',1,0] ,"WZ_single_muon_control" :['singlemuon','dibosons',1,0] ,"SingleTop_single_muon_control" :['singlemuon','top',1,0] ,"ttbar_single_muon_control" :['singlemuon','top',1,0] ,"QCD_single_muon_control" :['singlemuon','qcd',1,0] #,"GV_single_muon_control" :['singlemuon','gv',1,0] ,"data_single_muon_control" :['singlemuon','data',0,0] ,"data_photon_control" :['photon','data',0,0] ,"Photon_photon_control" :['photon','gjet',1,1] ,"Zll_photon_control" :['photon','zll',1,0] ,"Wjets_photon_control" :['photon','wjets',1,0] ,"WW_photon_control" :['photon','dibosons',1,0] ,"ZZ_photon_control" :['photon','dibosons',1,0] ,"ttbar_photon_control" :['photon','top',1,0] ,"SingleTop_photon_control" :['photon','top',1,0] ,"QCD_photon_control" :['photon','qcd',1,0] }, "metsamples": { #Di Muon Control Region "Zll_di_muon_control","Znunu_di_muon_control","Wjets_di_muon_control","WW_di_muon_control","WZ_di_muon_control","ZZ_di_muon_control", "ttbar_di_muon_control","SingleTop_di_muon_control", #Single Muon Control Region "Wjets_single_muon_control","Zll_single_muon_control","WW_single_muon_control","WZ_single_muon_control","ZZ_single_muon_control","ttbar_single_muon_control", "SingleTop_single_muon_control", #Photon Control Region "Photon_photon_control","Wjets_photon_control","Zll_photon_control","WW_photon_control","ZZ_photon_control","ttbar_photon_control","SingleTop_photon_control", "QCD_photon_control", #Signal Region "Wjets_signal","Zll_signal","WW_signal","WZ_signal","ZZ_signal","ttbar_signal","SingleTop_signal","QCD_signal", "ggH125_signal" ,"VBFH125_signal" ,"WH125_signal" ,"ZH125_signal","Znunu_signal" }, }, { 'name':"inclusive" ,'in_file_name':"monojet-combo.root" #,'in_file_name':"inclusive-combo.root" ,"cutstring":"mvamet>200 && mvamet<1000" ,"varstring":["mvamet",200,1000] ,"weightname":"weight" ,"bins":[200.0 , 210.0 , 220.0 , 230.0 , 240.0 , 250.0 , 260.0 , 270.0 , 280.0 , 290.0 , 300.0 , 310.0 , 320.0 , 330.0,340,360,380,420,510,1000] ,"additionalvars":[['jet1pt',25,150,1000]] ,"pdfmodel":0 ,"recoilMC" :"recoilfits/recoilfit_Zgj_pfmetraw_2012_mc.root" ,"recoilData":"recoilfits/recoilfit_Zgj_pfmetraw_2012_data.root" ,"muonSF" : 0.985 ,"photonSF": 0.97 ,"samples": { # Format is TreeName : ['region','process',isMC,isSignal] !! Note isSignal means DM/Higgs etc for signal region but Z-jets/W-jets for the di/single-muon regions !! # Signal Region "Znunu_signal" :['signal','zjets',1,0] ,"Zll_signal" :['signal','zll',1,0] ,"Wjets_signal" :['signal','wjets',1,0] ,"WW_signal" :['signal','dibosons',1,0] ,"WZ_signal" :['signal','dibosons',1,0] ,"ZZ_signal" :['signal','dibosons',1,0] ,"ttbar_signal" :['signal','top',1,0] ,"SingleTop_signal" :['signal','top',1,0] ,"QCD_signal" :['signal','qcd',1,0] ,"ggH125_signal" :['signal','ggH',1,1] ,"VBFH125_signal" :['signal','vbf',1,1] ,"WH125_signal" :['signal','wh',1,1] ,"ZH125_signal" :['signal','zh',1,1] #,"GV_signal" :['signal','gv',1,0] ,"data_signal" :['signal','data',0,0] # Di muon-Control ,"Zll_di_muon_control" :['dimuon','zll',1,1] ,"Znunu_di_muon_control" :['dimuon','zjets',1,0] ,"Wjets_di_muon_control" :['dimuon','wjets',1,0] ,"WW_di_muon_control" :['dimuon','dibosons',1,0] ,"WZ_di_muon_control" :['dimuon','dibosons',1,0] ,"ZZ_di_muon_control" :['dimuon','dibosons',1,0] ,"ttbar_di_muon_control" :['dimuon','top',1,0] ,"SingleTop_di_muon_control" :['dimuon','top',1,0] #,"QCD_di_muon_control" :['dimuon','qcd',1,0] #,"GV_di_muon_control" :['dimuon','gv',1,0] ,"data_di_muon_control" :['dimuon','data',0,0] # Single muon control ,"Zll_single_muon_control" :['singlemuon','zll',1,0] #,"Znunu_single_muon_control" :['singlemuon','zjets',1,0] ,"Wjets_single_muon_control" :['singlemuon','wjets',1,1] ,"ZZ_single_muon_control" :['singlemuon','dibosons',1,0] ,"WW_single_muon_control" :['singlemuon','dibosons',1,0] ,"WZ_single_muon_control" :['singlemuon','dibosons',1,0] ,"SingleTop_single_muon_control" :['singlemuon','top',1,0] ,"ttbar_single_muon_control" :['singlemuon','top',1,0] ,"QCD_single_muon_control" :['singlemuon','qcd',1,0] #,"GV_single_muon_control" :['singlemuon','gv',1,0] ,"data_single_muon_control" :['singlemuon','data',0,0] ,"data_photon_control" :['photon','data',0,0] ,"Photon_photon_control" :['photon','gjet',1,1] ,"Zll_photon_control" :['photon','zll',1,0] ,"Wjets_photon_control" :['photon','wjets',1,0] ,"WW_photon_control" :['photon','dibosons',1,0] ,"ZZ_photon_control" :['photon','dibosons',1,0] ,"ttbar_photon_control" :['photon','top',1,0] ,"SingleTop_photon_control" :['photon','top',1,0] ,"QCD_photon_control" :['photon','qcd',1,0] }, "metsamples": { #Di Muon Control Region "Zll_di_muon_control","Znunu_di_muon_control","Wjets_di_muon_control","WW_di_muon_control","WZ_di_muon_control","ZZ_di_muon_control", "ttbar_di_muon_control","SingleTop_di_muon_control", #Single Muon Control Region "Wjets_single_muon_control","Zll_single_muon_control","WW_single_muon_control","WZ_single_muon_control","ZZ_single_muon_control","ttbar_single_muon_control", "SingleTop_single_muon_control", #Photon Control Region "Photon_photon_control","Wjets_photon_control","Zll_photon_control","WW_photon_control","ZZ_photon_control","ttbar_photon_control","SingleTop_photon_control", "QCD_photon_control", #Signal Region "Wjets_signal","Zll_signal","WW_signal","WZ_signal","ZZ_signal","ttbar_signal","SingleTop_signal","QCD_signal", "ggH125_signal" ,"VBFH125_signal" ,"WH125_signal" ,"ZH125_signal","Znunu_signal" }, } ]
[ "Phil@pb-d-128-141-150-9.cern.ch" ]
Phil@pb-d-128-141-150-9.cern.ch
844f98281de04f478b910610b2b109cddd3c8b53
e9969129cd3622c1a5be06216b88ef2cce3cb5d5
/old-kata-backup/count_no_of_digit.py
b25cc18d102f6be28f5f7a2391570a3c23cd3087
[]
no_license
Kalaiyarazan/code_kata
f8ce2afb29adf112d9b50a1371a656f2c186988b
532327b7d412565441a329f8f2c7de2362d1a68a
refs/heads/master
2020-07-26T17:40:45.181350
2019-11-03T17:34:26
2019-11-03T17:34:26
208,722,306
0
1
null
2019-11-03T17:23:40
2019-09-16T06:06:06
Python
UTF-8
Python
false
false
33
py
xyz=str(input()) print(len(xyz))
[ "kalaiyarazan.v@gmail.com" ]
kalaiyarazan.v@gmail.com
556bd1178bb1f303a3bdf90522bf60abc26e0877
11b5bd6806447a9b2ef4d8d54a9dc64c8be5d6e5
/src/optimizers/schedulers/multiplicative_lr.py
416d6d20f06bafe37335a66d375ada4e92b29f45
[]
no_license
milySW/NNResearchAPI
0789478791a91002d79dd909fe5f9654deeb4b44
00bbea4909d1272f80455edb692b45c6c6d56831
refs/heads/master
2023-04-17T19:56:19.667177
2021-05-03T23:48:26
2021-05-03T23:48:26
291,540,762
0
0
null
null
null
null
UTF-8
Python
false
false
325
py
from torch.optim.lr_scheduler import MultiplicativeLR as TorchMultiplicativeLR from src.base.scheduler import BaseScheduler class MultiplicativeLR(BaseScheduler, TorchMultiplicativeLR): __doc__ = TorchMultiplicativeLR.__doc__ def __init__(self, optimizer, **kwargs): super().__init__(optimizer, **kwargs)
[ "gajowczyk.milosz@gmail.com" ]
gajowczyk.milosz@gmail.com
eafc3e3e7bd5e21ff2097a00bdaa5451de58476b
fcdb69b396258c1e3105dbfe1fcd50cc73f7b8cf
/Digite3numeros.py
79bd3cf1b848415c3edc20bc3da0e501db723940
[]
no_license
l0rennareis/Algoritmo
6b7147be1bb21e084c0ccfcc77d61cedd93e13fe
f73a1cbc0ab773b755d756cc2bf8e5cc758a50b4
refs/heads/master
2021-03-19T07:25:50.806907
2017-06-23T22:50:13
2017-06-23T22:50:13
94,377,834
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
n1=int(input("digite numero: ")) n2=int(input("digite numero: ")) n3=int(input("digite numero: ")) print (n1) print (n2) print (n3) if n1>n2>n3: print (n3,n2,n1) elif n1>n3>n2: print (n2,n3,n1) elif n2>n1>n3: print (n3,n1,n2) elif n2>n3>n1: print (n1,n3,n2) elif n3>n2>n1: print (n1,n2,n3) elif n3>n1>n2: print (n3,n2,n1)
[ "noreply@github.com" ]
l0rennareis.noreply@github.com
31c17d7e820daed91a22a6e437066125b32441a3
a3f206af3878e2fff0437863a5c0d2d800295814
/solutions/prob11650/solution_python.py
f199e1e2d76515db507a12104bfc50658824c8ae
[]
no_license
soarhigh03/baekjoon-solutions
0cdcec30825a00074a982b380ae2f2ddee5e3f54
8161cdda184e4e354be4eafe2b4fa2bd48635fa4
refs/heads/master
2023-01-04T10:42:32.882285
2020-10-24T02:20:48
2020-10-24T02:20:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
""" Baekjoon Online Judge #11650 https://www.acmicpc.net/problem/11650 """ N = int(input()) points = [] for _ in range(N): point = tuple(map(int, input().split())) points.append(point) points.sort() for point in points: print(point[0], point[1])
[ "loop.infinitely@gmail.com" ]
loop.infinitely@gmail.com
43d8be24a71967b0f1da893e4c205887492daccf
a0ba44f11c7744f94293cc87bc794e99174374c5
/src/astro/__init__.py
e424d9348777991dfcc98d7b07d3e9bc0e0ecc3c
[]
no_license
srswinde/astro
2d1fec6c6c51935a97c3da07c7cb00359975fc6b
bbd46e741bdc543ce5862dd7f36d0952c43e5ac7
refs/heads/master
2021-01-20T14:49:52.840690
2018-05-30T05:16:24
2018-05-30T05:16:24
90,679,111
0
0
null
2018-10-31T20:30:17
2017-05-08T22:47:01
Python
UTF-8
Python
false
false
123
py
from angles import Hour_angle, RA_angle, Dec_angle, Deg10, Angle import time import math from astrolib2 import starDate
[ "scott@mogit.as.arizona.edu" ]
scott@mogit.as.arizona.edu
80f852a7e4f8ac5b6c722e26b343afb62a37c251
e18336fcffd73131e9a51c0b5b81fcaa7353489b
/jojojo.py
8c842b4c379a5cf588317300edae02b0d634bfc2
[]
no_license
Dopamine101/Prepro
0603f66be24159016f66c06dcfefe18c5afa3d7d
168475b2337a08e0a8ccbc97e66a716fb3a42e92
refs/heads/main
2023-06-12T04:12:32.359695
2021-07-05T11:06:39
2021-07-05T11:06:39
383,110,484
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
"""Broken heart boy""" def date(): """print""" toom = input() ivayne = int(input()) sees = toom+"\n" print(sees * ivayne) date()
[ "noreply@github.com" ]
Dopamine101.noreply@github.com
178eb8eb639adbbf17d5a555b08e90e92ba2b6d8
f0141f1b4bbf4555fcf96d2a297e2e3d61855e35
/model/parameters.py
35e0a1d64e0493fbead6457d977e6f4a709cc709
[ "MIT" ]
permissive
JakartaLaw/bayesianfactormodel
b286b00d05edfc780cd2c31f25aad9363d7c2e39
0a75412d965ae2ed5c093315cb27f82d4a578590
refs/heads/master
2020-04-07T07:49:51.835924
2018-11-29T17:02:19
2018-11-29T17:02:19
158,190,409
0
0
null
null
null
null
UTF-8
Python
false
false
1,986
py
import numpy as np import pandas as pd from collections import defaultdict from model.parameterframe import ParameterFrame from model.plotter import Plotter from collections import defaultdict class Parameters(Plotter): def __init__(self, trace_df): super().__init__(trace_df) @property def k(): p, k = self.get_dimensions() return k @property def p(): p, k = self.get_dimensions() return p def _calc_param_mean_dict(self, skip_obs=None): try: self._calc_helper_param_mean_dict(skip_obs=skip_obs) except AttributeError: self._calc_param_trace_dict() self._calc_helper_param_mean_dict(skip_obs=skip_obs) def _calc_helper_param_mean_dict(self, skip_obs): self.param_mean_dict = dict() for param_name in self.trace_df.columns: param_obs = self.trace_df[param_name][skip_obs:] self.param_mean_dict[param_name] = np.mean(param_obs) def params_to_df(self): params_unordered = self._convert_to_dimension_dict() params_ordered = self._order_to_df(params_unordered) return pd.DataFrame(params_ordered) def _convert_to_dimension_dict(self): #self.k, self.p param_to_df_unordered = defaultdict(list) for param_name, param_val in self.param_mean_dict.items(): (d1, d2) = self._decompose_column_index(param_name) param_to_df_unordered[d2].append((d1, param_val)) return param_to_df_unordered def _order_to_df(self, param_to_df_unordered): params_to_df = dict() for key, tup_list in param_to_df_unordered.items(): params_to_df[key] = self._return_ordered_by_index_params(tup_list) return params_to_df @staticmethod def _return_ordered_by_index_params(tup_list): def sorter(tup): return tup[0] tup_list.sort(key=sorter) return [tup[1] for tup in tup_list]
[ "Jeppe@Jeppes-MacBook-Pro.local" ]
Jeppe@Jeppes-MacBook-Pro.local
e76767b8387ac2db7f8fa709a10ce6fac53354c9
c202e9185995d9bf2d8ae4dc5ec054ae1c481901
/Project 3/code/FragmentSampler.py
f51f431d19f1fc030cce31e2420c03560e84f6fb
[]
no_license
terryli710/BEIOMEDIN214
a48ba30689f2a78a81d1b47f7a1fdce1048c2b62
aecec061d2194748da5204d56a55b6def9642f9f
refs/heads/master
2023-01-24T10:44:13.188814
2020-11-29T04:25:48
2020-11-29T04:25:48
296,722,821
0
0
null
null
null
null
UTF-8
Python
false
false
12,041
py
""" This file contains the main fragment sampling class, which performs a Monte Carlo simulated annealing procedure to fold a protein. """ from pyrosetta import * init(extra_options='-mute all -constant_seed') from Bio.SeqIO import parse import math import utils from Protein import Protein from FragmentSet import FragmentSet from typing import Union, Tuple import os import random class MCMCSampler(object): def __init__(self, fasta: str, logdir: str = None, start_pdb: Union[str, None] = None, sample_size=50, annealing_rate=0.999): """ Initializing a MCMC sampler for certain protein The score function is given to you (Rosetta centroid score function) :param fasta: name fasta file :param sample_size: size of candidate fragments in each position attributes: scorefxn: score function, callable target_pose: goal pose, rosetta pose object protein: Protein class fragment_set: FragmentSet class self.candidate_frag: store calculated candidate fragments self.mers: k-mer self.temp: current temperature self.t_end: set ending temperature """ ## 0 # set log self.logdir = logdir ## 1 # set score function self.scorefxn = create_score_function('score3') ## 2 # read pdb file (goal position) # pose_from_pdb doesn't take absolute dir self.protein_name = fasta.split('.')[0] self.target_pose = pose_from_pdb(self.protein_name + '.pdb') ## 3 # read fasta file (protein) fasta_path = os.path.join(self.protein_name + '.fasta') iter = parse(fasta_path, 'fasta') seq = next(iter) # initialize protein, either from seq or from start_pdb if start_pdb: os.chdir(os.path.dirname(start_pdb)) self.protein = Protein(pose=pose_from_pdb(os.path.basename(start_pdb))) else: self.protein = Protein(sequence=seq.seq._data) # store initial pdb self.initial_protein = Protein(sequence=seq.seq._data) ## 4 # get fragment set self.fragment_set = {"9mers": FragmentSet(os.path.join(self.protein_name + "_9mers.frag"), os.path.join(self.protein_name + "_9mers.rmsd")), "3mers": FragmentSet(os.path.join(self.protein_name + "_3mers.frag"), os.path.join(self.protein_name + "_3mers.rmsd"))} ## 5 # parametrize candidate_frag_dict self.candidate_frag = {"9mers": {}, "3mers": {}} for pos in range(1, self.fragment_set["9mers"].length + 1): self.candidate_frag["9mers"][pos] = self.fragment_set["9mers"].get_lowRMS_fragments(pos, sample_size) for pos in range(1, self.fragment_set["3mers"].length + 1): self.candidate_frag["3mers"][pos] = self.fragment_set["3mers"].get_lowRMS_fragments(pos, sample_size) ## 6 # set temperature self.temp = 100 self.t_end = 0.1 ## 7 # set anneal rate self.annealing_rate = annealing_rate return def compute_energy(self, protein: Union[Protein, None] = None) -> float: """ compute energy of protein. Hint: look at utils.py -------- Params: - protein (Protein object): protein to score Return: - energy of conformation (float) """ # NOTE: score_pose cannot take absolute directory if protein: return utils.score_pose(protein.pose, self.scorefxn) else: return utils.score_pose(self.protein.pose, self.scorefxn) def perturb_fragment(self, pos: int, mer: str = "9mers", protein: Union[Protein, None] = None) -> Tuple[ Protein, int]: # you may want to add more arguments """ Sample from possible fragments for a position, and replace torsion angles of that fragment in the protein. Store fragment candidate at certain position (call get_lowRMS just once.) :param protein: optional parameter, if none, use self.protein :param pos: position to change :param mer: mode of function, either "3mers" or "9mers" :return: new Protein with updated angles """ # set a new_pose (protein) if not protein: new_protein = Protein(pose=self.protein.pose) else: new_protein = Protein(pose=protein.pose) # sample candidate fragment random_index = random.randint(0, len(self.candidate_frag[mer][pos]) - 1) frag_chosen = self.candidate_frag[mer][pos][random_index] frag_index = self.fragment_set[mer].findFragIndex(pos, frag_chosen) # insert this fragment and return if mer == "9mers": frag_length = 9 else: frag_length = 3 for i in range(frag_length): new_protein.set_torsion(pos + i, frag_chosen[i][0], frag_chosen[i][1]) return new_protein, frag_index def metropolis_accept(self, new_protein: Protein) -> float: # you may want to add more arguments """ Calculate probability of accepting or rejecting move based on Metropolis criterion. :param new_protein: candidate protein to be calculated and compared :return: probability of accepting """ delta_e = self.compute_energy(new_protein) - self.compute_energy() # formula: if delta_E > 0: exp(-delta_E/kT) return math.exp(-delta_e / self.temp) if delta_e > 0 else 1 def anneal_temp(self) -> bool: """ Anneal temperature using exponential annealing schedule. Consider kT to be a single variable (i.e. ignore Boltzmann constant) :return whether it reached the threshold """ assert self.temp > self.t_end, "Temperature has reached threshold" self.temp *= self.annealing_rate if self.temp <= self.t_end: return True else: return False def step(self, verbose=0) -> bool: """ Take a single MCMC step. Each step should do the following: 1. sample position in chain - Note: think about positions you can sample a k-mer fragment from. For example, you cannot sample from position 1 because there is no phi angle 2. sample fragment at that position and replace torsions in a *copied version* of the protein 3. measure energy after replacing fragment 4. accept or reject based on Metropolis criterion - if accept: incorporate proposed insertion and anneal temperature - if reject: sample new fragment (go to step 3) """ accept = 0 i = 0 done = False if self.temp > 1: mer_str = "9mers" else: mer_str = "3mers" # 1. sample position in chain (e.g. len=10, 3-mers, should sample {1,...,7}) sampled_pos = random.randint(1, self.fragment_set[mer_str].length) # get number of frag in this position pool_size = len(self.candidate_frag[mer_str][sampled_pos]) sampled_set = set() # if accepted or sampled all frags and cannot decide, keep going while not accept and len(sampled_set) < pool_size: # 2. replace torsions in a *copied version* of the protein new_protein, index = self.perturb_fragment(sampled_pos, mer=mer_str) # add to set sampled_set.add(index) # 3. 4. measure energy and decide prob = self.metropolis_accept(new_protein) accept = random.uniform(0, 1) < prob if accept: # incorporate proposed insertion and anneal temperature self.protein = new_protein done = self.anneal_temp() # if reject: sample new fragment (go to step 2) i += 1 if verbose: if accept: print("sampled position = {}, take {} iter to finish, prob is {}".format(sampled_pos, i, prob)) elif len(sampled_set) == pool_size: print("sampled position = {}, didn't accept any frags".format(sampled_pos)) return done def savelog(self, log: dict, file_name: str) -> None: """ save log of sim :param log: log information :param file_name: saved path """ saved_log = "iteration" + "\t" + "\t".join(log.keys()) + "\n" iter = 1 for row in range(len(log["energy"])): saved_log += str(iter) + "\t" saved_log += "\t".join(str(log[key][iter - 1]) for key in log.keys()) saved_log += "\n" iter += 1 with open(file_name, "w") as f: f.write(saved_log) def storeSim(self, best_pdb: Protein, log: dict, sim_index: int) -> Tuple[str, str, int]: """ Store best pdb and log text file to log :param best_pdb: the structure to store as "best.pdb" :param log: log dict to store :param sim_index: int of simulation number :return path to sim folder, path to log folder, sim """ # dealing with paths if not self.logdir: cur_dir = os.getcwd() log_folder_name = self.protein_name + "_log" log_folder_path = os.path.join(cur_dir, log_folder_name) else: log_folder_path = self.logdir if not os.path.exists(log_folder_path): os.mkdir(log_folder_path) sim_folder_name = "sim_" + self.__toStr__(sim_index) sim_folder_path = os.path.join(log_folder_path, sim_folder_name) # avoid path exist error if not os.path.exists(sim_folder_path): os.mkdir(sim_folder_path) # store things # 1. initial pdb self.initial_protein.save_pdb(os.path.join(sim_folder_path, "initial.pdb")) # 2. target pdb target_protein = Protein(pose=self.target_pose) target_protein.save_pdb(os.path.join(sim_folder_path, "target.pdb")) # 3. best pdb best_pdb.save_pdb(os.path.join(sim_folder_path, "best.pdb")) # 6. log.txt self.savelog(log, os.path.join(sim_folder_path, sim_folder_name + "_log.txt")) return sim_folder_path, log_folder_path, sim_index @staticmethod def __toStr__(integer) -> str: """ convert integer to formatted string :param integer: integer to be converted :return: string """ if integer < 10: return "0" + str(integer) else: return str(integer) def simulate(self, sim_index: int, seed: int = 9001) -> Tuple[int, float, float]: """ Run full MCMC simulation from start_temp to end_temp. Be sure to save the best (lowest-energy) structure, so you can access it after. It is also a good idea to track certain variables during the simulation (temp, energy, and more). :param sim_index: simulation index :param seed: int :return: log information """ random.seed(seed) log = {"temperature": [], "energy": []} while True: if self.step(): # store best pdb sim_path, log_folder_path, sim_index = self.storeSim(self.protein, log, sim_index) # calculate relaxed, cd to the folder!! cur_dir = os.getcwd() os.chdir(sim_path) protein, rmsd, score = utils.relax("best.pdb", "target.pdb") os.chdir(cur_dir) break else: # keep track of log log['temperature'].append(self.temp) log['energy'].append(self.compute_energy()) return sim_index, score, rmsd
[ "li.terry710@gmail.com" ]
li.terry710@gmail.com
96b0c3d56f99985a786d35c32dcd60fc90857ec2
41bb733fd028a62961d516847cf9bc4fecc400d8
/Pagination/PageView.py
899012f54e7f70ce61c9600dfa191af20ce62f11
[]
no_license
TcMysunshine/PyQtExample
696ac823024d739cf85bd9a4dd7d3de09dd54f3d
cfda8a5fd0cf201c9ba0691562bd9a8eb97f791f
refs/heads/master
2020-04-01T23:04:18.781429
2018-10-25T01:44:29
2018-10-25T01:44:29
153,740,279
0
0
null
null
null
null
UTF-8
Python
false
false
18,252
py
import sys from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5 import QtCore from PyQt5.QtGui import * import math class PageView(QWidget): def __init__(self, data, titles, keys, dataRow=10, dataCol=4): super(PageView, self).__init__() self.resize(960, 790) #当前页数 self.currentPage = 1 #列数 self.dataCol = dataCol #每一页展示数据行数 self.dataRow = dataRow #height self.height = self.dataRow * 70 # 每一列的标题 self.titles = titles self.titles.append("操作") #数据中的key self.keys = keys # 总数据 self.data = data # 获取数据长度 self.length = len(data) # 获取数据可分的页数 # //向上取整, /是得到小数 self.pageNum = math.ceil((self.length / self.dataRow)) # print(str(self.length) + ":" + str(self.dataRow)+":"+str(self.pageNum)) #建立UI self.setUpUI() def setUpUI(self): # 上一页 self.preButton = QPushButton("上一页", self) self.preButton.setGeometry(QtCore.QRect(800, self.height + 10, 50, 20)) self.preButton.clicked.connect(self.backToLastPage) # 下一页 self.nextButton = QPushButton("下一页", self) self.nextButton.setGeometry(QtCore.QRect(860, self.height + 10, 50, 20)) self.nextButton.clicked.connect(self.forwardToNextPage) # 总页数 self.totalPageLabel = QLabel(self) self.totalPageLabel.setGeometry(QtCore.QRect(640, self.height + 10, 60, 20)) self.totalPageLabel.setText("总共" + str(self.pageNum) + "页") # 当前页 self.currentPageLabel = QLabel(self) self.currentPageLabel.setGeometry(QtCore.QRect(700, self.height + 10, 60, 20)) self.currentPageLabel.setText("当前第" + str(self.currentPage) + "页") # 转到第几页 self.label1 = QLabel(self) self.label1.setGeometry(QtCore.QRect(760, self.height + 40, 40, 20)) self.label1.setText("转到第") self.turnToPage = QLineEdit(self) self.turnToPage.setGeometry(QtCore.QRect(805, self.height + 40, 20, 20)) self.turnToPage.setText(str(self.currentPage)) # 转到第几页 self.label1 = QLabel(self) self.label1.setGeometry(QtCore.QRect(825, self.height + 40, 20, 20)) self.label1.setText("页") # 到达指定页 self.targetPageButton = QPushButton("Go", self) self.targetPageButton.setGeometry(QtCore.QRect(860, self.height + 40, 50, 20)) self.targetPageButton.clicked.connect(self.goToTargetPage) #布局 self.layoutWidget = QWidget(self) self.layoutWidget.setGeometry(QtCore.QRect(0, 0, 950, self.height)) self.layout = QVBoxLayout(self.layoutWidget) #返回上一页 def backToLastPage(self): # print("previous") self.currentPage -= 1 if self.currentPage <= 0: # print("到达第一页") QMessageBox.warning(self, "提示", "当前已是第一页") self.currentPage = 1 else: self.layout.removeWidget(self.tableView) # self.model.clear() # self.tableView.reset() # self.model.removeRows(0, 5) self.renderData() self.currentPageLabel.setText("当前第" + str(self.currentPage) + "页") #返回下一页 def forwardToNextPage(self): # print("next") self.currentPage += 1 #到达最后一页 if self.currentPage >= self.pageNum + 1: QMessageBox.warning(self, "提示", "当前已到达最后一页") self.currentPage = self.pageNum else: self.layout.removeWidget(self.tableView) self.renderData() self.currentPageLabel.setText("当前第" + str(self.currentPage) + "页") #到达指定页 def goToTargetPage(self): self.turnToPageValue = int(self.turnToPage.text()) if self.turnToPageValue > self.pageNum or self.turnToPageValue < 1: QMessageBox.warning(self, "提示", "指定页不存在,超出范围") else: self.layout.removeWidget(self.tableView) self.currentPage = self.turnToPageValue # self.model.clear() self.renderData() self.currentPageLabel.setText("当前第" + str(self.currentPage) + "页") def renderData(self): #获取当前需要渲染的数据 self.setCurrentData() #当前行 rowNum = len(self.currentData) self.model = QStandardItemModel(rowNum, self.dataCol + 1) # 设置头 self.model.setHorizontalHeaderLabels(self.titles) self.tableView = QTableView(self.layoutWidget) # height = self.dataRow * 35 self.tableView.resize(950, self.height + 200) self.tableView.verticalHeader().setDefaultSectionSize(62) self.tableView.setColumnWidth(1, 350) #填充数据 for row in range(rowNum): for col in range(self.dataCol): tempValue = self.currentData[row][self.keys[col]] if col > 1: value = str(tempValue)[0:10] else: value = str(tempValue) item = QStandardItem(value) # 居中显示 item.setTextAlignment(Qt.AlignCenter) # 不可编辑 item.setEditable(False) self.model.setItem(row, col, item) #填充数据 self.tableView.setModel(self.model) # 水平方向标签拓展剩下的窗口部分,填满表格 self.tableView.horizontalHeader().setStretchLastSection(True) # #水平方向,表格大小拓展到适当的尺寸 self.tableView.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) #添加按钮 for buttonRow in range(rowNum): index = self.model.index(buttonRow, self.dataCol) self.tableView.setIndexWidget(index, self.buttonForRow(self.currentData[buttonRow]['ajxh'])) self.layout.addWidget(self.tableView) #点击查看按钮传递案件序号 def viewTable(self, id): print(id) # 列表内添加按钮 def buttonForRow(self, id): widget = QWidget() # 查看 viewBtn = QPushButton('查看') viewBtn.setStyleSheet(''' text-align : center; background-color : DarkSeaGreen; height : 30px; border-style: outset; font : 13px; ''') # 传入参数时要加入lambda viewBtn.clicked.connect(lambda: self.viewTable(id)) #布局 hLayout = QHBoxLayout() hLayout.addWidget(viewBtn) hLayout.setContentsMargins(5, 2, 5, 2) widget.setLayout(hLayout) return widget #将数据渲染表格 # def renderTable(self): # self.tableView = QTableView(self) # # height = self.dataRow * 35 # self.tableView.resize(750, self.height) # self.tableView.setModel(self.model) # # 水平方向标签拓展剩下的窗口部分,填满表格 # self.tableView.horizontalHeader().setStretchLastSection(True) # # #水平方向,表格大小拓展到适当的尺寸 # self.tableView.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) # self.tableView.se # self.layout.addWidget(self.tableView) # self.vlayout = QHBoxLayout() # self.layout.addWidget(self.vlayout) #设置当前需要展示的数据 def setCurrentData(self): start = (self.currentPage - 1) * self.dataRow end = self.currentPage * self.dataRow #最后一页 if self.currentPage == self.pageNum: self.currentData = self.data[start:self.length] elif self.currentPage < self.pageNum: self.currentData = self.data[start:end] if __name__ == '__main__': app = QApplication(sys.argv) data = { "succeed": True, "message": None, "object": [ { "ajxh": 62578, "ah": "(2018)津民申646号", "ajmc": "天津市润辉建筑发展有限公司与王作录建设工程分包合同纠纷", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-02-05T16:00:00.000+0000", "jarq": "2018-04-23T08:16:04.000+0000" }, { "ajxh": 62479, "ah": "(2018)津民终83号", "ajmc": "陕西瑞中贸易有限公司,天津京铁火车头足球俱乐部有限公司不当得利纠纷", "ajxz": "2", "spcx": "2", "spcxdz": "29", "baspt": "06 ", "larq": "2018-01-29T16:00:00.000+0000", "jarq": "2018-07-26T09:28:27.000+0000" }, { "ajxh": 62376, "ah": "(2018)津民申583号", "ajmc": "张树强与南开大学人事争议", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-24T16:00:00.000+0000", "jarq": "2018-03-27T07:03:19.000+0000" }, { "ajxh": 62387, "ah": "(2018)津民申591号", "ajmc": "李艳卜与天津市保安服务总公司河西分公司劳动争议", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-24T16:00:00.000+0000", "jarq": "2018-04-04T08:28:39.000+0000" }, { "ajxh": 62243, "ah": "(2018)津民申497号", "ajmc": "天津金地康成投资有限公司与李睿雅劳动争议", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-22T16:00:00.000+0000", "jarq": "2018-04-04T08:28:19.000+0000" }, { "ajxh": 62245, "ah": "(2018)津民申499号", "ajmc": "宋金美与天津达璞瑞科技有限公司劳动争议纠纷", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-22T16:00:00.000+0000", "jarq": "2018-03-27T07:02:41.000+0000" }, { "ajxh": 62101, "ah": "(2018)津民申430号", "ajmc": "天津众起模具制造有限公司,张义宽劳动争议", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-17T16:00:00.000+0000", "jarq": "2018-03-27T07:02:18.000+0000" }, { "ajxh": 62115, "ah": "(2018)津民申441号", "ajmc": "许莹,天津市弘野建筑工程有限公司,天津市塘沽海洋高新技术开发总公司建设工程施工合同纠纷", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-17T16:00:00.000+0000", "jarq": "2018-04-16T08:19:09.000+0000" }, { "ajxh": 62090, "ah": "(2018)津民申420号", "ajmc": "陈志森,天津利顺德大饭店有限公司劳动争议", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-16T16:00:00.000+0000", "jarq": "2018-04-10T06:27:09.000+0000" }, { "ajxh": 61755, "ah": "(2018)津民申206号", "ajmc": "白雪樱与天津市外国企业专家服务有限公司开发区分公司,天津瑞金国际学校,新地平线国际教育管理(天津)有限公司等劳动争议纠纷", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-10T16:00", "jarq": "2018-04-10T06:27:09.000+0000" }, { "ajxh": 62578, "ah": "(2018)津民申646号", "ajmc": "陕西瑞中贸易有限公司,天津京铁火车头足球俱乐部有限公司不当得利纠纷", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-02-05T16:00:00.000+0000", "jarq": "2018-04-23T08:16:04.000+0000" }, { "ajxh": 62479, "ah": "(2018)津民终83号", "ajmc": "天津市润辉建筑发展有限公司与王作录建设工程分包合同纠纷", "ajxz": "2", "spcx": "2", "spcxdz": "29", "baspt": "06 ", "larq": "2018-01-29T16:00:00.000+0000", "jarq": "2018-07-26T09:28:27.000+0000" }, { "ajxh": 62376, "ah": "(2018)津民申583号", "ajmc": "张树强与南开大学人事争议", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-24T16:00:00.000+0000", "jarq": "2018-03-27T07:03:19.000+0000" }, { "ajxh": 62387, "ah": "(2018)津民申591号", "ajmc": "李艳卜与天津市保安服务总公司河西分公司劳动争议", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-24T16:00:00.000+0000", "jarq": "2018-04-04T08:28:39.000+0000" }, { "ajxh": 62243, "ah": "(2018)津民申497号", "ajmc": "天津金地康成投资有限公司与李睿雅劳动争议", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-22T16:00:00.000+0000", "jarq": "2018-04-04T08:28:19.000+0000" }, { "ajxh": 62115, "ah": "(2018)津民申441号", "ajmc": "许莹,天津市弘野建筑工程有限公司,天津市塘沽海洋高新技术开发总公司建设工程施工合同纠纷", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-17T16:00:00.000+0000", "jarq": "2018-04-16T08:19:09.000+0000" }, { "ajxh": 62245, "ah": "(2018)津民申499号", "ajmc": "宋金美与天津达璞瑞科技有限公司劳动争议纠纷", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-22T16:00:00.000+0000", "jarq": "2018-03-27T07:02:41.000+0000" }, { "ajxh": 62101, "ah": "(2018)津民申430号", "ajmc": "天津众起模具制造有限公司,张义宽劳动争议", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-17T16:00:00.000+0000", "jarq": "2018-03-27T07:02:18.000+0000" }, { "ajxh": 62115, "ah": "(2018)津民申441号", "ajmc": "许莹,天津市弘野建筑工程有限公司,天津市塘沽海洋高新技术开发总公司建设工程施工合同纠纷", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-17T16:00:00.000+0000", "jarq": "2018-04-16T08:19:09.000+0000" }, { "ajxh": 62090, "ah": "(2018)津民申420号", "ajmc": "陈志森,天津利顺德大饭店有限公司劳动争议", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-16T16:00:00.000+0000", "jarq": "2018-04-10T06:27:09.000+0000" }, { "ajxh": 61755, "ah": "(2018)津民申206号", "ajmc": "白雪樱与天津市外国企业专家服务有限公司开发区分公司,天津瑞金国际学校,新地平线国际教育管理(天津)有限公司等劳动争议纠纷", "ajxz": "2", "spcx": "3", "spcxdz": "2", "baspt": "06 ", "larq": "2018-01-10T16:00", "jarq": "2018-04-10T06:27:09.000+0000" } ] } # jsonData = json.load(data) titles = ['案号', '案件名称', '立案日期', '结案日期'] keys = ['ah', 'ajmc', 'larq', 'jarq'] # print(data['object']) pageView = PageView(data['object'], titles, keys) pageView.renderData() # # pageView.renderTable() pageView.show() sys.exit(app.exec_())
[ "2229238008@qq.com" ]
2229238008@qq.com
366f05348d78f59d0cfb7084d1df801404cd8b81
7bc54bae28eec4b735c05ac7bc40b1a8711bb381
/src/tlm/ukp/data_gen/token_as_label_payload_worker.py
81026196e20a97d70f190756bed467c07997b9b6
[]
no_license
clover3/Chair
755efd4abbd5f3f2fb59e9b1bc6e7bc070b8d05e
a2102ebf826a58efbc479181f1ebb5de21d1e49f
refs/heads/master
2023-07-20T17:29:42.414170
2023-07-18T21:12:46
2023-07-18T21:12:46
157,024,916
0
0
null
2023-02-16T05:20:37
2018-11-10T21:55:29
Python
UTF-8
Python
false
false
2,226
py
import os import data_generator from data_generator import job_runner from data_generator.argmining.ukp import DataLoader from data_generator.tokenizer_wo_tf import get_tokenizer from list_lib import lmap from tlm.data_gen.base import truncate_seq_pair from tlm.data_gen.label_as_token_encoder import encode_label_and_token_pair from tlm.data_gen.lm_datagen import UnmaskedPairedDataGen, SegmentInstance class UkpTokenAsLabelGenerator(UnmaskedPairedDataGen): def __init__(self): super(UkpTokenAsLabelGenerator, self).__init__() self.ratio_labeled = 0.1 # Probability of selecting labeled sentence def create_instances(self, topic, labeled_data): topic_tokens = self.tokenizer.tokenize(topic.replace("_", " ")) max_num_tokens = self.max_seq_length - 3 - len(topic_tokens) target_seq_length = max_num_tokens instances = [] for label, tokens_b in labeled_data: tokens_a = [] truncate_seq_pair(tokens_a, tokens_b, target_seq_length, self.rng) swap = False tokens, segment_ids = encode_label_and_token_pair(topic_tokens, label, tokens_b, tokens_a, swap) instance = SegmentInstance( tokens=tokens, segment_ids=segment_ids) instances.append(instance) return instances class UkpTokenLabelPayloadWorker(job_runner.WorkerInterface): def __init__(self, out_path, generator): self.out_dir = out_path self.generator = generator def work(self, job_id): topic = data_generator.argmining.ukp_header.all_topics[job_id] ukp_data = self.get_ukp_dev_sents(topic) insts = self.generator.create_instances(topic, ukp_data) output_file = os.path.join(self.out_dir, topic.replace(" ", "_")) self.generator.write_instances(insts, output_file) def get_ukp_dev_sents(self, topic): loader = DataLoader(topic) data = loader.get_dev_data() tokenizer = get_tokenizer() def encode(e): sent, label = e tokens = tokenizer.tokenize(sent) return label, tokens label_sent_pairs = lmap(encode, data) return label_sent_pairs
[ "lesterny@gmail.com" ]
lesterny@gmail.com
88a76d162c799f38313d04a0f33fb0b576f56b9a
940ad5e16ede0c344066c8f41f8b9788061bb0ec
/ABC133/a.py
bebb98ff398643d8b87c968f10d7e19a35911241
[]
no_license
niwanowa/AtCoder
03fe69c97d5503aabb5a3a42ee40c9824b128289
f4218cf7e13d026a2a439a82340e208c10f5cef5
refs/heads/master
2021-07-24T05:23:40.624506
2020-05-12T12:36:01
2020-05-12T12:36:01
167,095,703
0
0
null
null
null
null
UTF-8
Python
false
false
51
py
N,A,B = map(int, input().split()) print(min(B,N*A))
[ "58393481+kyuto-ja@users.noreply.github.com" ]
58393481+kyuto-ja@users.noreply.github.com
1897f88ad015c004be99c47772f7326fbf9769c2
837ab6d73fd951f47038851c8c32db5cd33ee955
/backend/common/command/user_point_update_command.py
7b04c13d82b363929e1daf97e5d1b24e2d0a26fc
[]
no_license
swsnu/swpp2019-team16
6932ddc89f5513cff1dc90febb1d3f308cf991f9
c7c9e91be036f1c78c94d57755eb45537c2b29ad
refs/heads/master
2023-01-07T18:58:38.399582
2019-12-14T13:19:13
2019-12-14T13:19:13
206,933,906
5
11
null
2023-01-04T12:22:36
2019-09-07T07:43:03
JavaScript
UTF-8
Python
false
false
507
py
from .command import Command USER_POINT_UPDATE_COMMAND = 'command.user_point_update' class UserPointUpdateCommand(Command): def __init__(self, user_id, point): super().__init__(USER_POINT_UPDATE_COMMAND) self._user_id = user_id self._point = point @property def user_id(self): return self._user_id @property def point(self): return self._point def __str__(self): return 'user_id={},point={}'.format(self._user_id, self._point)
[ "43679861+dkim94@users.noreply.github.com" ]
43679861+dkim94@users.noreply.github.com
61554408c0eb98c3e6251f605e72cf95bb1bbd1c
6692019df03c08d57a533250500c9624b9ef42f5
/testedio/local.py
53a7878b64a85b054b9c4eee6e64c8bf5dce943f
[]
no_license
alifanov/testedio
bc009d28c2b833103ebc4156f1d182034bcf60db
fdfbd4af98bb77fa859345368917ee2a7510f8b0
refs/heads/master
2020-06-20T01:22:30.863510
2016-11-27T14:44:03
2016-11-27T14:44:03
74,890,107
0
0
null
null
null
null
UTF-8
Python
false
false
786
py
# -*- coding: utf-8 -*- DEBUG = True MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'testeddb', 'USER': 'testeduser', 'PASSWORD': 'oP1eisaiael3Sohz', 'HOST': '127.0.0.1', 'CONN_MAX_AGE': 300, } }
[ "lifanov.a.v@gmail.com" ]
lifanov.a.v@gmail.com
e609e60eb27278d53ee2daa281255ee2a724f9e8
6c2818dfe861e4091ade259ce003aba576ce1d58
/dj_rapidapp/settings.py
225fc31265df557bc63df7dc775d2c02ad33a13d
[ "MIT" ]
permissive
urkh/dj_rapidapp
3a3d7a7597553183e7f1e4b779ae660365b9577a
baa367823b16bc4709103a898cddd281051959c2
refs/heads/master
2021-03-27T10:22:07.357525
2015-05-09T05:52:00
2015-05-09T05:52:00
28,834,817
1
0
null
null
null
null
UTF-8
Python
false
false
2,093
py
""" Django settings for dj_rapidapp project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '9&1cllglx)6gbweky)qzedhak(iyas$*=-delzj%kh8s()qq&w' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'core', 'modules.designer', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'dj_rapidapp.urls' WSGI_APPLICATION = 'dj_rapidapp.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_URL = '/static/'
[ "gust989@gmail.com" ]
gust989@gmail.com
e7da783c225cf27febaea8e230005621d565444d
58f1cb1761d4e7114bbe0cc54195fc3bf72ccc4d
/python_solution/171_180/DungeonGame.py
01e8e864c3b0a512d4b93f35dd5c279960ff390f
[]
no_license
CescWang1991/LeetCode-Python
4e2e9b1872ef92d128c681c1ed07db19938b1ef5
0584b86642dff667f5bf6b7acfbbce86a41a55b6
refs/heads/master
2020-03-31T02:37:12.065854
2019-04-24T02:33:15
2019-04-24T02:33:15
151,832,885
1
1
null
2019-04-15T06:34:41
2018-10-06T11:22:49
Python
UTF-8
Python
false
false
1,308
py
# 174. Dungeon Game # Dynamic Programming: # 从后往前遍历,从右下角出发,dp[i][j]表示到达[i,j]时的最小HP值,dp[i][j]始终大于等于1 # 如果dungeon[i][j]为负,则dp[i][j] = min(dp[i+1][j], dp[i][j+1]) - dungeon[i][j],为右边和下边hp的最小值 - dungeon[i][j] # 如果dungeon[i][j]为正,当dp[i][j]为负时,将其设为1。 class Solution: def calculateMinimumHP(self, dungeon): """ :type dungeon: List[List[int]] :rtype: int """ if not dungeon or not dungeon[0]: return 1 m = len(dungeon) n = len(dungeon[0]) dp = [[0] * n for i in range(m)] dp[m-1][n-1] = -dungeon[m-1][n-1]+1 if dungeon[m-1][n-1] < 0 else 1 for i in reversed(range(m - 1)): dp[i][n-1] = dp[i+1][n-1] - dungeon[i][n-1] dp[i][n-1] = 1 if dp[i][n-1] <= 0 else dp[i][n-1] for j in reversed(range(n - 1)): dp[m-1][j] = dp[m-1][j+1] - dungeon[m-1][j] dp[m-1][j] = 1 if dp[m-1][j] <= 0 else dp[m-1][j] for i in reversed(range(m - 1)): for j in reversed(range(n - 1)): dp[i][j] = min(dp[i+1][j], dp[i][j+1]) - dungeon[i][j] dp[i][j] = 1 if dp[i][j] <= 0 else dp[i][j] return dp[0][0]
[ "cescwang1991@gmail.com" ]
cescwang1991@gmail.com
0eb9f2f1d94a4eb053ed1d47b6656a5e43094f17
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Projects/Learn/PyCharm/Algorithmic Toolbox/Greedy Algorithms/Maximum Number of Prizes/maximum_number_of_prizes.py
7d5a1b2fea1e80689bd1231f2652fd7b5ea7c8b9
[ "LicenseRef-scancode-other-permissive" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
128
py
version https://git-lfs.github.com/spec/v1 oid sha256:0364270870b82331956a2b84ff0aabc4b589ce630df5b152845ae2a98acf8167 size 300
[ "nateweiler84@gmail.com" ]
nateweiler84@gmail.com
8904156b5ce473631854fb7c9c76a996702066ad
f3033e5dd3033613a17c9fe9752d7f1f15bbd78a
/funciones/documentacion.py
2426b0dcb9c17260ac1079e5327f29bf984cc2ab
[]
no_license
vidalchile/curso-profesional-de-python
785a19929424abe6400b32ab21be088da1e729a8
3db500a31bf35b3f95317ac39ab1620598917f95
refs/heads/master
2022-03-22T03:43:00.469096
2019-10-09T01:23:11
2019-10-09T01:23:11
183,976,273
0
0
null
null
null
null
UTF-8
Python
false
false
567
py
#Sacar provecho a nuestra documentación. """ Almacenamos las funciones dentro de nuestro diccionario, posteriormente iteramos los elementos del diccionario y en cada iteración imprimimos la documentación """ def suma(a, b): """Función suma (documentación)""" return a + b def resta(a, b): """Función resta (documentación)""" return a - b opciones = {'a' : suma, 'b': resta} print("Ingrese la opción deseada") for opcion, funcion in opciones.items(): mensaje = '{}) {}'.format(opcion, funcion.__doc__) print(mensaje) opcion = input("Opción : ")
[ "cris.vidal04@gmail.com" ]
cris.vidal04@gmail.com
5e442222c9d6447fd16a6d9160111d2eb813d625
c0fdd5675bf262f36a22c648cee4c9ec34d2f218
/test_video/mesh_demo.py
390203a23e044edeb235bc98fc3eda3b9b9d40f7
[]
no_license
mfkiwl/handAR
5917c6ef69693f4d8287c57b3a6b6742c7943179
b04f4aee7e39ef920d5eba1873a2b172f20f7060
refs/heads/main
2023-08-11T12:16:50.744158
2021-10-11T16:41:33
2021-10-11T16:41:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,081
py
import sys import os import os.path as osp import argparse import numpy as np import cv2 import torch import torchvision.transforms as transforms from torch.nn.parallel.data_parallel import DataParallel import torch.backends.cudnn as cudnn import PIL from PIL import Image sys.path.insert(0, osp.join('..', 'main')) sys.path.insert(0, osp.join('..', 'data')) sys.path.insert(0, osp.join('..', 'common')) from config import cfg from utils.preprocessing import process_bbox, generate_patch_image from utils.transforms import pixel2cam, cam2pixel from utils.mano import MANO # sys.path.insert(0, cfg.smpl_path) sys.path.insert(0, cfg.mano_path) # from smplpytorch.pytorch.smpl_layer import SMPL_Layer from utils.manopth.manopth.manolayer import ManoLayer from utils.vis import vis_mesh, save_obj, vis_keypoints_with_skeleton from canvas import Canvas import vispy from vispy import app, io, gloo, scene, visuals from vispy.util.transforms import perspective, translate, rotate, ortho, scale import matplotlib.pyplot as plt import math cfg.set_args('0', 'lixel') cudnn.benchmark = True origin = False joint_num = 21 # MANO mesh vertex_num = 778 mano_layer = ManoLayer(ncomps=45, mano_root=cfg.mano_path + '/mano/models') face = mano_layer.th_faces.numpy() joint_regressor = mano_layer.th_J_regressor.numpy() root_joint_idx = 0 model_path = '../weights/snapshot_%d.pth.tar' % 24 assert osp.exists(model_path), 'Cannot find model at ' + model_path print('Load checkpoint from {}'.format(model_path)) from model_no_render import get_model model = get_model(vertex_num, joint_num, 'test') model = DataParallel(model).cuda() ckpt = torch.load(model_path) model.module.pose_backbone.load_state_dict(ckpt['pose_backbone']) model.module.pose_net.load_state_dict(ckpt['posenet']) model.module.pose2feat.load_state_dict(ckpt['pose2feat']) model.module.mesh_backbone.load_state_dict(ckpt['mesh_backbone']) model.module.mesh_net.load_state_dict(ckpt['mesh_net']) model.module.gcn.load_state_dict(ckpt['gcn']) model.module.global_img_feat.load_state_dict(ckpt['global_img_feat']) model.module.segmentation_net.load_state_dict(ckpt['segmentation_net']) model.eval() # Set the cuda device if torch.cuda.is_available(): device = torch.device("cuda:0") torch.cuda.set_device(device) else: device = torch.device("cpu") transform = transforms.ToTensor() def pil2opencv(img): open_cv_image = np.array(img) open_cv_image = open_cv_image[:, :, ::-1].copy() return open_cv_image def opencv2pil(img): pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) return pil_img def depth_buffer_to_absolute_depth(depth_buffer, near=1, far=100): depth = np.divide(depth_buffer, 255.0) z_ndc = np.subtract(np.multiply(depth, 2), 1) z_eye = np.divide(2 * near * far, np.subtract(near + far, np.multiply(z_ndc, far - near))) return z_eye brightness = contrast = 1.0 start_recording = False video = [] mesh = [] c = Canvas(mesh_name='hand', has_texture=False) faces = c.mesh.get_faces() old2new_matching = np.load('matching.npy').astype(np.int) pos_window_tvec = [] pos_window_rvec = [] def tvec_smoothing(tvec): alpha = 0.7 if np.isnan(tvec).any(): return pos_window_tvec[-1] if len(pos_window_tvec) < 4: pos_window_tvec.append(np.array(tvec)) return np.array(tvec) else: curr_tvec = np.array([0, 0, 0]) para = 0 for i in range(0, 4): curr_tvec = np.add(curr_tvec, np.multiply(pos_window_tvec[3 - i], math.pow((1 - alpha), i + 1))) para += math.pow((1 - alpha), i + 1) curr_tvec = np.add(np.multiply(tvec, alpha), np.multiply(curr_tvec, alpha)) curr_tvec /= (para * alpha + alpha) pos_window_tvec.pop(0) pos_window_tvec.append(curr_tvec) return curr_tvec def rvec_smoothing(rvec): alpha = 0.7 if len(pos_window_rvec) != 0: pass if len(pos_window_rvec) < 8: pos_window_rvec.append(np.array(rvec)) return np.array(rvec) else: curr_rvec = [0, 0, 0] para = 0 for i in range(0, 8): curr_rvec = np.add(curr_rvec, np.multiply(pos_window_rvec[7 - i], math.pow((1 - alpha), i + 1))) para += math.pow((1 - alpha), i + 1) curr_rvec = np.add(np.multiply(rvec, alpha), np.multiply(curr_rvec, alpha)) curr_rvec /= (para * alpha + alpha) # curr_rvec = np.divide(curr_rvec, alpha + alpha * para) pos_window_rvec.pop(0) pos_window_rvec.append(curr_rvec) return curr_rvec front_triangle_index = 761 back_triangle_index = 755 middle_finder_major = [395, 364] hand_layer = MANO() links = ( (0,1), (0,5), (0,9), (0,13), (0,17), (1,2), (2,3), (3,4), (5,6), (6,7), (7,8), (9,10), (10,11), (11,12), (13,14), (14,15), (15,16), (17,18), (18,19), (19,20) ) import scipy.io as scio import numpy as np import cv2 V = c.mesh.V.copy() hand_mesh = np.zeros((778, 3)) for i in range(778): hand_mesh[i] = V[:]['a_position'][old2new_matching[i], :3] origin_joint = np.dot(hand_layer.joint_regressor, hand_mesh) # Palm origin_x = V[:]['a_position'][144, :3] - V[:]['a_position'][145, :3] origin_x = origin_x / np.linalg.norm(origin_x) origin_y = V[:]['a_position'][144, :3] - V[:]['a_position'][146, :3] origin_y = origin_y / np.linalg.norm(origin_y) origin_z = np.cross(origin_x, origin_y) origin_z = origin_z / np.linalg.norm(origin_z) origin_y = np.cross(origin_x, origin_z) origin_y = origin_y / np.linalg.norm(origin_y) M_o = np.array([[origin_x[0], origin_x[1], origin_x[2]], [origin_y[0], origin_y[1], origin_y[2]], [origin_z[0], origin_z[1], origin_z[2]]]) for kkk in range(0, 100): img_path = '../imgs/' + str(kkk).zfill(4) + '.png' original_img = cv2.imread('imgs/' + img_path) original_img = original_img[:320, :320] original_img = cv2.resize(original_img, (320, 320)) frame = original_img original_img_height, original_img_width = original_img.shape[:2] h, w = frame.shape[0], frame.shape[1] if h < w: frame = frame[:, int((w - h) / 2):int((w + h) / 2)] else: frame = frame[int((h - w) / 2):int((h + w) / 2), :] frame = cv2.resize(frame, (320, 320)) pil_hand_frame = opencv2pil(frame) pil_hand_frame = PIL.ImageEnhance.Brightness(pil_hand_frame).enhance(brightness) pil_hand_frame = PIL.ImageEnhance.Color(pil_hand_frame).enhance(contrast) frame = pil2opencv(pil_hand_frame) original_img = frame original_img_height, original_img_width = original_img.shape[:2] bbox = [0, 0, 320, 320] # xmin, ymin, width, height bbox = process_bbox(bbox, original_img_width, original_img_height) img, img2bb_trans, bb2img_trans = generate_patch_image(original_img, bbox, 1.0, 0.0, False, cfg.input_img_shape) bbox_img = img.copy() img = transform(img.astype(np.float32)) / 255 img = img.cuda()[None, :, :, :] # forward inputs = {'img': img} targets = {} meta_info = {'bb2img_trans': bb2img_trans} with torch.no_grad(): out = model(inputs, targets, meta_info, 'test') img = img[0].cpu().numpy().transpose(1, 2, 0) # cfg.input_img_shape[1], cfg.input_img_shape[0], 3 if origin: mesh_lixel_img = out['mesh_coord_img'][0].cpu().numpy() else: # mesh_lixel_img = out['mesh_coord_img'][0].cpu().numpy() mesh_lixel_img = out['gcn'][0].cpu().numpy() test = mesh_lixel_img.copy() # if not origin: joint = out['pose'][0].cpu().numpy() else: joint = out['joint_coord_img'][0].cpu().numpy() pred_joint = joint.copy() # print(joint) # np.save(str(kkk) + '.npy', joint[:, :2]) # restore mesh_lixel_img to original image space and continuous depth space mesh_lixel_img[:, 0] = mesh_lixel_img[:, 0] / cfg.output_hm_shape[2] * cfg.input_img_shape[1] mesh_lixel_img[:, 1] = mesh_lixel_img[:, 1] / cfg.output_hm_shape[1] * cfg.input_img_shape[0] mesh_lixel_img[:, :2] = np.dot(bb2img_trans, np.concatenate((mesh_lixel_img[:, :2], np.ones_like(mesh_lixel_img[:, :1])), 1).transpose(1, 0)).transpose(1, 0) mesh_lixel_img[:, 2] = (mesh_lixel_img[:, 2] / cfg.output_hm_shape[0] * 2. - 1) * (cfg.bbox_3d_size / 2) joint[:, 0] = joint[:, 0] / cfg.output_hm_shape[2] * cfg.input_img_shape[1] joint[:, 1] = joint[:, 1] / cfg.output_hm_shape[1] * cfg.input_img_shape[0] joint[:, :2] = np.dot(bb2img_trans, np.concatenate((joint[:, :2], np.ones_like(joint[:, :1])), 1).transpose(1, 0)).transpose(1, 0) # visualize lixel mesh in 2D space vis_img = original_img.copy().astype(np.uint8) # res[np.where((res==(255, 255, 255)).all(axis=2))] = vis_img[np.where((res==(255, 255, 255)).all(axis=2))] # vis_img = cv2.addWeighted(vis_img, 0.5, res, 0.5, 0) vis_img = vis_mesh(vis_img, mesh_lixel_img) joint_img = original_img.copy().astype(np.uint8) joint_img = vis_keypoints_with_skeleton(joint_img, joint, links) c.view = c.default_view c.program['u_view'] = c.view c.program['u_mat_rendering'] = 0.0 homo_coord = np.append(mesh_lixel_img, np.ones((mesh_lixel_img.shape[0], 1)), axis=1) old2new_coord = np.zeros((778, 4)) for i in range(778): old2new_coord[old2new_matching[i]] = homo_coord[i] # mapped_coord = np.zeros((c.mapping.shape[0], 4)) # mapped_coord = np.zeros((958, 4)) mapped_coord = np.zeros((c.mapping.shape[0], 4)) # mapped_coord = np.zeros((778, 4)) for i in range(mapped_coord.shape[0]): mapped_coord[i] = old2new_coord[int(c.mapping[i]) - 1] mapped_coord[:, :2] = mapped_coord[:, :2] / 320 * 2 - 1 mapped_coord[:, 1] *= -1 # mapped_coord[:, :2] *= 1.04 mapped_coord[:, 2] *= 2.5 # Thickness Hacking V = c.mesh.V.copy() ###################### # Old Hand Mesh ###################### scale = 0.4 # paddle V[:]['a_position'][mapped_coord.shape[0]:, :3] -= V[:]['a_position'][145, :3] # Scale V[:]['a_position'][mapped_coord.shape[0]:, :3] *= scale ###################### # New Hand Mesh ###################### view_pos = np.dot(np.linalg.inv(c.projection.T), mapped_coord.T) model_pos = np.dot(np.linalg.inv(c.view.T), view_pos) world_pos = np.dot(np.linalg.inv(c.model.T), model_pos) world_pos = world_pos / world_pos[3, :] V[:]['a_position'][:mapped_coord.shape[0], :] = world_pos.transpose(1, 0) hand_mesh = np.zeros((778, 3)) for i in range(778): hand_mesh[i] = V[:]['a_position'][old2new_matching[i], :3] joint = np.dot(hand_layer.joint_regressor, hand_mesh) ###################### # Object Transformation ###################### object_verts = V[:]['a_position'][mapped_coord.shape[0]:, :3] object_center = np.average(object_verts, axis=0) # Rotation new_x = V[:]['a_position'][144, :3] - V[:]['a_position'][145, :3] new_x = new_x / np.linalg.norm(new_x) new_y = V[:]['a_position'][144, :3] - V[:]['a_position'][146, :3] new_y = new_y / np.linalg.norm(new_y) new_z = np.cross(new_x, new_y) new_z = new_z / np.linalg.norm(new_z) new_y = np.cross(new_x, new_z) new_y = new_y / np.linalg.norm(new_y) M_n = np.array([[new_x[0], new_x[1], new_x[2]], [new_y[0], new_y[1], new_y[2]], [new_z[0], new_z[1], new_z[2]]]) M_n = rvec_smoothing(M_n) adjust = np.zeros((3, 3)) V[:]['a_position'][mapped_coord.shape[0]:, :3] = np.dot(M_n.T, np.dot(np.linalg.inv(M_o.T), V[:]['a_position'][mapped_coord.shape[0]:, :3].T)).T pos = tvec_smoothing(V[:]['a_position'][145, :3]) V[:]['a_position'][mapped_coord.shape[0]:, :3] += pos c.vertices_buff.set_data(V) light_mat = np.zeros((4, 4)).astype(np.float) light_mat[:3, :3] = np.dot(M_n.T, np.linalg.inv(M_o.T)) light_mat[-1, -1] = 1 c.program['u_light_mat'] = light_mat c.update() frame_render = c.render() frame_render = np.array(frame_render[:, :, 0:3]) frame_render = cv2.cvtColor(frame_render, cv2.COLOR_RGB2BGR) hsv = cv2.cvtColor(frame_render, cv2.COLOR_BGR2HSV) hand_mask = cv2.inRange(hsv, (60, 0, 0), (80, 256, 256)) ###################### # Hand Mesh ###################### result = frame.copy() result[np.where(hand_mask == 0)] = frame_render[np.where(hand_mask == 0)] cv2.imshow('frame', result) key = cv2.waitKey(1) if key == ord('q'): break
[ "1155116223@link.cuhk.edu.hk" ]
1155116223@link.cuhk.edu.hk
53883e8800ced687ff86dd92e63e098998975a37
1ee096359c79d095c2bb11b15b1bec7442b62f6c
/app.py
cb4845f2591355844287947d756c68fc9472c6c4
[ "MIT" ]
permissive
lordserch/flask-azure-cognitive-services
4f3961c779c8a83c6160d6585221e834c35658ea
2d66718df90e8ea02f1a7c26f68af1f8a93c29a7
refs/heads/master
2020-06-16T13:01:16.987200
2019-07-06T21:58:42
2019-07-06T21:58:42
195,583,713
1
2
null
null
null
null
UTF-8
Python
false
false
1,393
py
import translate, os, sentiment, synthesize from flask import Flask, render_template, url_for, jsonify, request, send_from_directory app = Flask(__name__) app.config['JSON_AS_ASCII'] = False @app.route('/') def index(): return render_template('index.html') @app.route('/translate-text', methods=['POST']) def translate_text(): data = request.get_json() text_input = data['text'] translation_output = data['to'] response = translate.get_translation(text_input, translation_output) return jsonify(response) @app.route('/favicon.ico') def favicon(): return send_from_directory(os.path.join(app.root_path, 'static'), 'favicon.ico', mimetype='image/vnd.microsoft.icon') @app.route('/sentiment-analysis', methods=['POST']) def sentiment_analysis(): data = request.get_json() input_text = data['inputText'] input_lang = data['inputLanguage'] output_text = data['outputText'] output_lang = data['outputLanguage'] response = sentiment.get_sentiment(input_text, input_lang, output_text, output_lang) return jsonify(response) @app.route('/text-to-speech', methods=['POST']) def text_to_speech(): data = request.get_json() text_input = data['text'] voice_font = data['voice'] tts = synthesize.TextToSpeech(text_input, voice_font) tts.get_token() audio_response = tts.save_audio() return audio_response
[ "sergiorol@hotmail.com" ]
sergiorol@hotmail.com
e5d1f6d1168b0b81451e306681670034888c9b43
db24baee3c6054fe55498dd1c66e55bee54a1305
/allposibilityofijk.py
e516682b6452a0e7bf79200036365a04c3023043
[]
no_license
aksharyash/CodeKata-GUVI
cb0ff6f2d4193d94dd8b0dcc31de0973eb315907
7d523f4530b46f0e4da375295d8de19d4faa1bf5
refs/heads/master
2020-06-21T09:40:37.731312
2019-08-14T07:51:27
2019-08-14T07:51:27
197,411,237
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
n=int(input()) inp=list(map(int,input().split())) lst=[[inp[i],inp[j],inp[k]] for i in range(len(inp)) for j in range(len(inp)) for k in range(len(inp))if inp[i]+inp[j]==inp[k] and i<j<k] for i in lst: for j in i: if j=='[' or j==']' or j==',': pass else: print(j,end=' ') print()
[ "noreply@github.com" ]
aksharyash.noreply@github.com
09e0445c83d6ca20cec8fb1da65e4af21fabe937
3506a6ecd58698af0415ca7300d9f43e2f3a27c0
/environment_creator/main_env_creator.py
61d3bf1ea4bd3a3871ea53609935aed2e7cf7487
[]
no_license
FernandoFuentesArija/marketing_de
1803887f8f200d8f8db478968be41b1781d5bd80
5c7fb11874e85ab8295158b2b71c186e39d0b065
refs/heads/master
2020-04-13T00:23:59.468129
2019-06-13T21:13:07
2019-06-13T21:13:07
162,844,410
0
0
null
null
null
null
UTF-8
Python
false
false
360
py
from bbdd_manager.Mongo_manager import Mongo_manager from bbdd_manager import ConfigVariablesBbdd from environment_creator.Object_generator import Object_generator # Creamos una conexion a la BBDD bbdd_connec = Mongo_manager(ConfigVariablesBbdd.env_database) # Creamos el objeto og1 = Object_generator(bbdd_connec) og1.create_json_with_objects("PERSON",10000)
[ "fernando_fuentes_arija@yahoo.es" ]
fernando_fuentes_arija@yahoo.es
c4b13827dd26e6eb1f2560c0927b0bfa450019ad
37d36adb9284f9ff19e9cc6ec3f323ef59b2473b
/a3/ps3.py
ac9e1a3ad4ed1abfc3f065b47582fa896a785304
[]
no_license
mfidler88/sem2-s2018
35c55d75020b2b5ecc5f1c8ea6459a0680a5c00c
9f6ba355b21011582fa82e90b504023187801add
refs/heads/master
2021-09-13T04:52:23.065894
2018-04-25T05:26:04
2018-04-25T05:26:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,340
py
U2FsdGVkX1+h1j641VJMjDoI31AVWEaUfvPJr59gaHB3lLTXXQd50YhlAEpYV6NA kf5eJ2tjbffBxten27jFaxvx517BVP8GcrW5QrFpYWSm3t0OHjsMS55T2cJg8pLG 74tCMpXmUG97oBYnhwQnGUsONmvF8FWY2zKWwbWWa3An17u9dpyM2x2uT4zJDL5z yQed8xpYkolYjIZ0N+vmNUAqpG6t8htqzWlQOiyqLg2fYwfzcRL9XSB/bmtcwGj/ UyuPXnQTAvjin2vlsR13+2NOauC+Obbhn39HrBn6WXbI+/DWwiVQ/5yM/iqruRrB yDWUC8O45IyvK8jmyAPY7U/qSWOVZI5vAu5qkgTr2te6rTOTVBCGXl46AeT374T8 GaLAFYz37su+rPk2MvPUECgmNQ3KkAnBIoquzRe15LLIG1OeWuKwZZywBLfCezaP +6ANwIETjBIjJF7vpQIVBkbUrFbbpwGd+5pyh4jcd7Ub89UPHtq0PSje5Txphi/j +OqPB7ZCt1MQS/X+vmdkaPD05PxTZNsxWxKw6L8dpn+KjF76UwBCBX6prZDdDAL5 RwWzF8PIIDbHLjfI0qVutCoT4SoPQh7G3Cmgr0OhOZUr/g2hEzOxV6KVHglvBEe+ c9CdADSq9F43VXbur14ZGhgzps/+00meB6kWZpRbyktXgBveH/c7+JcVAJIFylFe 0Bfo5mHdRrpuHHTcN96x4q6ZbMd+nrKvdhW77w5GGmAZERFxm/YOlHlkrehKm3YI eiCwYYgs7dKOwSJuoqQZMwcq8qt8VH0o6VfYY1AD0uB2kNdCZYabi6D41SxwHXEr aXJ0fRyXbaU0/is0dQPOXrwppTWx0Tgoq/jCGOPnUswXLFqbRJ5o8GrJU7JEdxsM /mI4YaHWEynSYYy8JBk7HhlsWTQP4ZEScTAnbV73i3lYapB6YFv3bNVEbj+AllI+ zHNxDd22WzjtPzncIpiv+cPqps4kZAILwnVGjl724+6uxWBIWCmgJQ+nLUzABNIw 1E6v5thLIP3uP7ibzwrZLjR7bHXMjRCekdFKlgD+80rJchU/kWJFDjMH+/lh+roo 0QDNX248uAmjwAZQUtSnY7rADueFvDMg7yx6VtnGYi4RpX975q0+diKrO4pDD4Po p+P1xUKbGNHwB/Pl+mA1WeM7lHZoNSto5A3H2MfdJNSlwFVBPIdrJL09ciN8vmy7 DpwWNH5AZNI5+TFXipQq9TZglXpBQk0LHq4CtOBoB6hbgkI50QKV0d1pn1VMUe/U 7o8Ih5ALNL1qfIK6Fk0DGLvy6cWh6pEqP/eaN+7QnetSHFWMETn78BS9G5ub4ApX Paig+dxwzbDgEZk5puYzz0/1yXqrJPh8uOuQbtLojujd3gsvhzy3RSRqabGssAte 2Y6t2zQv1doHqf5+aiw0IE8TMx6uS6LG19zMhpSToPuDYxNwSzP1vcGXdzVlOdSZ gwOdEr0F2KyjO5OAZEe3cc/eTZYA6obrJRPD6sut0Dh4myn9yGtr/pWpOhVdgNvp y9+fJvCPYcRmzB+baenDrm0CnS2bAyhWa3Rqy1XlqTQNTzzOP90B8jsCLWhzWnAF aAjDEJb4TpHVM5d1mz2sQf5xQfyQ0ZCElLZJoIbHObB1eTEuJq6cazkPh6ubE+bg igDHM02z+yhG7quhGCjhxxBh82MSY4jsklcQuKDz3efmBegmpVbFu5ib3h0SIeIN JvvNyUg16FFE2m9EE8CSeFP88+Lgd5C1mlnK0lFEHmvOn1LKMBtz4K6EEbOC211+ kqDhYrEJvUGprUGJ2idCTrX1rt8+wHlKfzfftG9l4mgWGxAdKjimgGwJs7NzbhNE PLxoYG9Lk1aqlI5m7TXyi9b97mp29Ddhw2tA4dYNbj2m0QSud6L3hTPxtH1ZamhI IAETYKmlTP2ipmchYc3A/hsUHOWeefIQoQOKNWHZdNTmwkECa486ABd6H3mJmZ9v 5sJBAmuPOgAXeh95iZmfb35GR43yFK+Lo+s6m0XMLMPN8WHH7n4SpWnW8fUG6+Zw PLrfcmDD2ytCTBmCWJBcR4fGj1z0+iH+MjVC2LCYdU84gT3U6CiTBvUh8Om3/98u o+7aB/3txHsJAPa5tYEQYMFUYi7u2Tzp3bYvYxIky09SrWNwrjU4jzLgBU5TjVcr jhkS+wX82+I0bRtPGqM4DtDrgMiM01LZGyLKiSh9q8K6bIEaPHfO/gbiwiB35+9x RU9uaYl70QEekc5oBr90t8R/7Ifazwf/mSOCMIZ1M0CNJWHT4y/ehBwwZR85LU+/ zj+rMyD26MKhKGKz6v000E6JZcapmQ23/FyE0RUvSIlA893OP90g9Hmolt5FfLrX tn8Wl5LOE4tp5+psRr5921i9lGUYHHT9+CFwYXyrK83GPLfZ3mdtKLI4mWGpomPG QS27sUD9f+Ayp4LEnRQ00ebCQQJrjzoAF3ofeYmZn2/mwkECa486ABd6H3mJmZ9v 5sJBAmuPOgAXeh95iZmfb28zUdBYrJCrbbZmTkkAovvmwkECa486ABd6H3mJmZ9v 5sJBAmuPOgAXeh95iZmfb8qgStzGkL2/iTbzHpwHbNHJopJAXyHpNFv0Xh7pTXEf QVI+wtajvGivcfkxjEo2XfkIrLkvHCYpnQVRw+aho7aGspHw/v3pRg9yFIhPrH6S acOmwZQFEUJ0Z/+FrP4NroyCJbwWJf6q7YiA8MEVM38MBYhtxPwptFDkheqmkmxp 3ZB4v3P2XLvfu/zmSht/yk+nMeyI1VuwOF54BZRo31dCYWg9HlBkQoXT8lY093yt wnuzXWPoXeJGuusDR9/VrXjX/Cv66hJgDsA6PmSEYQ3Vs2pDHyJigB7rEKPZer33 cHD8/MRz7UGQ0MfwmeI8F7YQPbeUPCE2GZG/MfzOuBEdaX1At2FiqWw2OanMaG1T 31yzeBzX5k+Wx0dE8i10301GphMiYCtnrJYmWQctlUkNSUgV2jeOkvBdlrdduvT/ fh/zwv2apsua42SItXScjubCQQJrjzoAF3ofeYmZn2/mwkECa486ABd6H3mJmZ9v BGU6UHoiCLa9KLVJHl40IoIombPwdMsFp1/utWabDfrmwkECa486ABd6H3mJmZ9v 5sJBAmuPOgAXeh95iZmfb9EsFlIlkmoqpeLVlgoUIO1eW4+BK1IhHVF0EZ699FYc fYGIq726f/cpM/yyhWQd8f8/9vo97qv/qHgmL57e5J05FRnbrOf9Hj0kO9eo+Kz2 AgXKYPJ5JYk3WcX3vP71DzZKnJ6aW2l+UgwOvJ+O/sSrySypBXEiAmroIWTDuT6D FJoAdGs3Bb9x5vvtlQe1P3u8kEEp9mqgLGusNxYezZWY7qjGRPmfmOzYt2PvLpBU W1zoh/0iXVlyptHnf9xyVlu+zp3GW/pwHFqojqyimrRnVnzz0ArG8XU2eL91EkjD PPB7GhCOG41K1qeJj7JkGdDKKA67QXmWIKWkaEbqndgHSsDvWUCN87AZlWyhZqq2 QdK1a28I7UJ3oWIziFgg3a3iBR5xGZi8/dgbk3AbXq9clufTxUXf4BBz37itG889 QRgwcxBEiGTDUpxKdsfkjIaGErg6ojusPLX1iKuIbiDSDlnNahhvkfZ4Cn5c7YRy 5sJBAmuPOgAXeh95iZmfb+bCQQJrjzoAF3ofeYmZn2+DVzYTzbtBkACczhrclOQS jWQoyNUieF2fgSvDm2kQhObCQQJrjzoAF3ofeYmZn2/mwkECa486ABd6H3mJmZ9v GXNkpaQ6dImWvK8Tb1rAXtCB20wAHSSgNdFdTPICOhy+NZvLM0UgRzyJz7XeaWCF j41KqcVzMAOqHhO6Lm1Vxqnzl2dC6UEroHGg8lIqtJjqFtztiG7hpXc5UpW2d6QP i8Yok+d7wiz/HT6fCrXZ65l7si+V29E9uqSIrZ+hcqoyytNi8GLt57+TV4q3AOAT lk9Mx7cmuNMAbY/hacUlMIxw/yPzDN9C+VUytqAZU4W59pglqZCIeeEPLPmfQx9H YIr4utpqe6yCMngKRXbhWmhjYhHILBmKlOCjBLDY378EE+5Nns9lcKNy++X12XwL 5sJBAmuPOgAXeh95iZmfb+bCQQJrjzoAF3ofeYmZn29xv4eLlBL8z4yPpjVc/Vss bzNR0FiskKtttmZOSQCi++bCQQJrjzoAF3ofeYmZn2/mwkECa486ABd6H3mJmZ9v 1JgQP6nFlgDWRcfcEQikHEoPsfMZWVSg1fv5A4jyLI8mhy5ne9sLfT0v+dI0aCNE Yeclsz/Rhqs+cRzleBApCdGgmVNFIuDrySH8+0qaUO02o3xwr1DVOb/UIdEkdcJ3 j+XujmnhnGZJE331hBO99HWSYMitG0Jo7o0c94BOgrTtqnjmd3oGc8cEiYDHlotx 81fvX4zl3os+skDQBboVa8zeLoyv7vtRwVlAnMZnm+u0cVAp6dUx6YMF1AzAM4G/ 4zLTRkQgPZvUgsrSaWaEVWmkxu16sNcIS38bUiQnd5sjgtoxANAKkkhM/vtt17Eo 8Ts8q9E0OKmqn2yaoVE7xMHZY62jvivhgbWjckCdDceNmUJ4FLtVvA2vNlUvnKPe Apk9G8huRASc+19sMAf8bG6IDM5OVWM7aTFgax6B6JgA/0CNK88nnhDXqSQK2R9x LUIkDmBvBqZYjVixV5JQR2JL4GhDvyJB0lo5TD3k65x/04jpVXnk+xV58NZXn5Z8 18qWa4CZ8FQy7rUYDaJtJefWQZppkOE+k65AMiBrdT3SMHTzW0mjcShnxhIjPOTg 5sJBAmuPOgAXeh95iZmfb+bCQQJrjzoAF3ofeYmZn29SDj5iY+HHiiwYo8pynGx5 5sJBAmuPOgAXeh95iZmfb+bCQQJrjzoAF3ofeYmZn2/mwkECa486ABd6H3mJmZ9v SpkO9qivc9qMx6IC8dgB9HTgnGrjcwUe1HEAf7PDrp8oaVaJUHM1mR7edskRn+UN z3Uiwd2SqXS1EyZ7aKxPG6YXCX51yhDMj5MIPqoVi5YYZdHcPYmQpK7hUR9XT0PY RhtGPYd8E/NNGwXFvVyDZw83dIH2DY9pb5r6T36VbQI6pIqfiVj8UJ83ExgLO9J9 zIFwwYtvEbxm8O/MTUt3QN1gJYCK/qjSqE87sJU/VnUAhFmYxj70nY8j7Y6IjM3e REtfam3p9Moe/MtQyvRswTXsGJGnX5Q2yw7ieCyCrU3oBVa4WeUikOzWYL/gnbTA T/F9keynrRy/ogvSAaO9WoGHORIzKns9tbEKc8McBkZKwGrMrwYfzJlXhY1a2nW5 FNRzqqNN9/TJe6AkblmGv+h5Eg+Z0muvrE87QT7NcRBVTLaPfLz7/iFkmA/BzgTo GRraIysGeNX9gZ0bDF53StneOP4gWItbVtEgaJTBB0H5N+ei4I7JOibXTQhjV/i9 BkSFWgAgcirVnFpYo6hn2HHUuCHoer1dPsHCORqr62yWkxXFl84t+E45os8dDG5+ tlt8SfxhVw1uay4AnKVvQiD7inpyKxVvFXq7YhEDwmK7+pJvf0GrwXCnoWToqIM5 5sJBAmuPOgAXeh95iZmfb+bCQQJrjzoAF3ofeYmZn2/t88Qf3v/FBPspFDYsPySU KUt4QkWOH9VZSRSao4SafFnfmwDqafqjANuFD0oIFB32F+/F7/6d88SZN5Ir/JeI ykHDHm/8zlJm89h94AJZ+MVAL8QrdFnaVtRZSXkIT7UWYLfS4UcbJKzTqI6mOxOT gA9vdSHLypgrhwMxnlkIXZpA8dNKnQLdOX1PKIXJ/1hEuzoXF/OCcNH1M1gAapjP bMWinCpJLhSymAPo2J/88SOAhnV6mbdCY7/mpg5608NMVponbRLlGAdWuOpKGI9I +8dN/L1/h6zRJM+NPoqQlTYfPBKDnuC3xUO6js6hVBp38doTidnw/7Q95SsCQovM uA0f8cF+eiawupTUyC0jphweUE50P8E2BvbCt0deaKAKWfmvEm/3R3oRsY/ln2EN YPc2QDXgWuJ7GA3Di6lWfLlFguZyKtz8QdDn1LCQI+VZJjQPCQ2r/1HKR2HJgGOM v+tLiPnRKOBtErJXf/zA4n2aF4ZeMyMrw9SVVOnIQ7rzmHeq7RJuVgrHf3kvz5eL o73oYeaT556iQjtVyIDi8vA59SUKqqKIlPv40dxOYmYdBuwwXMiDnF0R5/RGOmUl 61phljsysn4sUIyIYU5YH3n16PNG7MuPo3/WILhCS03Ktot6Dfb9EUwLpg4i1rMU dppHbNt76odoqlvS8NNT6hA/nr/B8N0xhZE5kJFgj9OC1Ng/RgMM4gRNEBVaI8id XWT2XGmeZQc5RPu4rciRx1/eSDY0WXdDWftobtLd+shtmqBQcIrcIAiQ18TPpsj4 udM0T2s2vNiuKefuWbKCUbX4PhLquWChNK7x5ngsfwQVAayA2gy6OzftHa+q1wJv Soge4zJA3aIEfJY3lZyzRjW+kHrPOptuAm8m1NTUpsjg+YzRexELmY3cQEMBCEJ7 zv2ZwIBupSgaxxBiYzbH3qadaf6Tjdz3gy2yduByRMkJ0lBaeIkdWOg4XBJdWP4/ AllS+tEmNaVgQKWLU+YI3t10X4exWKEn6lPDYEiuE6eShcoqOhLEXTIurRNxS+te pq3mqX+iuEgL4tmjxqYoQOX2+wu7bbpHqPFGYb8wkitChJTzaKIl6kxPuMcu2Z4m ACOTCBjRj7pUdOWA6j+7W0eqQcsSm3N9bu4Dbbv2hCvnyKrCR7Woj1QTm/rD5V7j 8zUnGD5icn4HI9dfUmeyGkJp0WI9Pqxmnf1W0ExYtUEnRvKWCjX6vUjjG0e228Yk z+Wrp6e/Ty/9TNXGgeJ8k6x3IF28AFDbvAGGeWgw02vBU/EqlitsP6xYN1nVZkMe Ui8EGwYcWyAruZfd06uD82rWa7qdP7XN8feiHrVyAFdK66nZCzBTy+umOjj+3Gqa NLJ8Co41iQM63kxSujeEXNRPr3Ble8mVxKVXP042Z6u5UlUcxEowvKDszuUOcl4I jXF75PsbRVPEoSa7yqHegOvG6entHpodr21lZpzQiKyqacyyqCtksCZRrbnyloLx SrWwCHBO6K9cXz9xvVLzVevxIG+R6IhMODL3t4V8s1HDTlGfTbPGhR50sDoVJh6O SMTv9lzzQXWGa99Zdg/0EYxPNmC+21uyV1JGDEmg6yUAy9s/DDoJ/cyixGZmWOUl jG/VX8HHKREQlVAGrgnm+Sz2d5yeMI2EHlaDCBVY9DF+p1C5T1AofZHOroXM9We1 2FTArjC1DSO3uPfCDFWE30WYJ3A+t3Xg9+4WUGK8b2uH9QqQDCyAduTSGO+wS048 /mjjPg3rQVL5+u7pUd7zBM7/UdCyLbdl0L58eYMJlzbN1B3tKSf/2uIOqaOzhBgN q0zVosJJfJ+xpFLdkDsr2LYOsZdNXu8jI2LFtryJT7kMUr+Bkm3LDjlUeB9VIp4h z+Wrp6e/Ty/9TNXGgeJ8k+YPNHBjDjXVYrXX1sn38nyLUH6pkey148+WF2qCrXIg R1jm3e40VR4v6bUL0Xcq2WN57nrDGaOJ9EMOLhGrIxHO3XLSigNogs7Q2ZVGTGLp GoZgt2yORPkxcaJeR9AR/K5x3GC/faRvsryNo4d05n75Xwc2RerVWdQa3l/HOFM7 jXF75PsbRVPEoSa7yqHegMC2zZcErgWWzCfuaV6PGG+eKBoXL5yktcok8ueyUIVz aj8o/H1Hzv+Wn0PNpkRSFPkq3+SwR2nyRZU4W5vCQbZJHdb2UzWbawx0At/rg9hA aG45vSh1lC7tFacHYYJmGD4n0jstN/WQHQgWSUpYoTpNkALYEHkZ14xdUkKBOOm0 I188IpzjI/I5cxjtxto65pKylXdqfIT5ftxXS1uuujQ4mzCj0ji9kMtebM7pj3jp shqI+a5NwSZn/uB35sYCaBEVXPqU/QuksSQumnoyJE1zuhtEjvUxUbtD15/lSWwQ u3pU/2lWPKfXo2f8O83lcnFyaKaj+mOhpcSsH/4D9PL7mLcRqmaJrYxt+stJlpUA sNIGAnGcbblMDqxW6FL55es1AhgLIlnuxY0FP94VMHxt3gmHyd347BbhBhCRGI7y OGC0L00nxVj6D8tSRUDO3ThbQqNLOdnFPap5bifv3vzGD64tzpt4Yfabck9GQQbF 4eQMyyJ7fr/AFXCvg6G1lp5t/fp/QhBPKIKeoct+AOp/irZf+1UqusX/ofKluX7W 9Ve7WiyQRR82PMpOsI1dbvMC8PlzlgHKyyoXhD/n5Rn8exmKjX1ysXPEOIkfAgSY AxB45RxbdPpe/Fp1Ptw16ksu0p3Zmv3sJWuSwr0rXoUsNa0hV0O9vuZflfwk4Cde BUmcWtm9c3Wf61mATnw87AIIcctLkNoSyXHSZ1aNSTnrg91GnegxiY0307tIZHb7 ekRP0J6WLIvWXsUG1/ecZJ2eXw3ppGrJS5bD6CBFLD6su1OExVOmieWy5PLZeLd3 GTGUG908RfmUWNdBfoy3Q3k3FWnk7Erz6DAnJgVDoyLiNtCAeP7+NeopLwDOVYe/ YXONj1XjqE4OErH5cTAuR8Ywb5ihnVR9YcMrP82MHwW6vvgMQXW7Pin4zqN/lI64 +pjH8D0rjHouhuHIawq6zDmH8cg1fifPSulqFZxun0F92g7SracvugsF8YeRODqK 7xWM7uoULg1kQCkY50U35/G096Pfj7vUW7oPJF0XgKGaLMDv9QWaV+ETSUdCF115 1E7fTl1ObfjcnPqgJ5lbgQEvOeHK/jN0/xGIcFLxHktO+47FBVgB9b1U8A1lo8Rc 5gK+oSjt/j1ryvtM6jKTObof8pWnEFH9hXyJ48imKZSs4CTt7uWCFnRx4FXfv5VB V7rvbLU6lqyD+cz1Ly1k5iaan2ctcqWpp/NxOcWXOiVip1IJqoDgI7pJerI/Marc 6/bpCrtm4BZa5ELNhHI9dA0ofVpbjYMBAVL9h+tSjEw+FLfasqqlSMMIgWBfYCyw umNpVoeSDuwCSXvoRgctiB9TVLnShnoOBppbSzsiXW+j1lOlVHY3h3neDDZLKX2+ EaugYi/e4uf+0Mh0gPNwKY/K1ApyXZV93S+wBubMNMDbojL+nA/wM175WUX6JxHn dr5TQGf/mEr9oy6gybdLTOUg92+6DWuTVoBQ6/Us5CFKrPJLz6sRwMNYZ3oWR9Su wfkyTUvS8JqaJvvKEyrQZ10wDKT4WiX1qi8tn8s2Wy44HC2jQxklbgW1PuhI86EQ ZoZZqVNGJIaDNbYb59dQnhHUxlIHn67wltYo8KEQ1+5nXshi1pl0dnMxI6y1wb4t SOSy+GiLKxEUGnbx49+nS3e1tNwgV1xa26vFCUT7XFg0jp9dinub3W6JNx0QelR/ SW7E9nBt2QpC3dKPZnGjkXReNtFjgT67e39sn7BQpIEtpXvs8VZC8mdpkd73EAz8 yteN6ofEqQmjj/mKDMSzwq/YBnN4WG85KjcuE833nTRn8+n/lYa5C9AXH10L+sKS jiTjPbatalWmojpNUn5n8dEVsHHhmNsA5t3IG5fQiVSnWdL1KlDfr0jBO9Y1tdha 7jGp+Uy2eawza0WuLNDPuDc8+BwlRAu+Stszz4AFoT9RIPJ5yvjQqDG+P9ajIbrT RPzS0QldVXO98TCzOK6OK78rfV1X9YFIPUFrFChxKFEsGjq3+ZnEsX5NhY7keNoX 3QdsULvOIrt7q3VnDj5NJH1oQcijEw+H5erz34j+KipQEfxg7errcsj72nOvBpw/ kecVZ8m7TI08yfebn/SSrdphh2/09RNtZ7jhCb1PAwDVbdOh0SHO0+K9O3iBjR/u uENGLNoIaPGxUFkI4lYrbeQZfbVXwtGCeXaL7AoNmQdcRM9IwM6ZRiGLdJC8TQmd c8PZl3fVDzOmmFvJdN4sOb3Kid72D2UExxCAvbEjPDjlCRdf3VfvZHYsOJFIkZQ9 9oT75xPQ9JAGUuJ9b1lNOXZriuJ3snQd0erGvKHwQTHzNKoPqsaaGU3+j9PyGo6B YDmbsGWj5IM5NNG+1r/uNIgidHkgMFtz4sGyy7yfSqw+fmAetp5SpzWFYst1UfTK UX6OtiSWRuH6+7hV6LA38a/r1Ezn6QyQB+bhDusymnKehTV5uWMNG7XbPSDIH93Z zzpHqu7M3H28L9hega6V0eZiCTBZJkfCARbgNcCVUtHRXHXyr7vo7XPlj5BaX1MG uRYUqZBNllTGDgdp+7yjDbpyRsFEB/S6g1fBENLHCp09JR1Ta5EP6ClLq2GZiQ+Y dZm40v8+fKTdxcWLGX0t+T6elalshYlfwnk5vtIje1hvI63XDORCKQhfbcqQ80mJ kXC2ewTUnT7MB4pMzkycEdCf3HkQ81YsW5TX484DKT6K4yOrPVsCU8GQc2CVt2QV GQX+qKH/DrC3wjxEJk+X79qCxWX7BmjWustFEfQ/GLnIYcL36/LeXC1Yc719mbBv VfpIoC2Lzv2cdNKcHMUbY0DAjMcht4sWrh+VxBn1m3jBTLwh8YrsXounHHFjj2WP egSWNEl7VHL1mgDprtCiX30ThQHTR6YpnHfJDhN0r1GHg/hYzz7fazP/ClBauU2P mWqKax/HoxThchd9vJncjJQpj4FWk+hoztoXKZ9dhw/aFmgAfV1c09w6yENBusJl /6xh/ecrINpeAdTN16yGVBMzYEdMmfEK0Ks7bJZb8D+IQRpWOmzQcmV7yNkoDXm4 2bN0ltj2bJ6nYJqGrm8ZesJQBcW2dlnZAHUqMp6N3vuuSMCuhYlvqPXQTx0HCfbw 5GmFK2rsYw3ePFpEAJMi3AcxEk5RtyCRvmIsI0pvWl2EaA5RpqSZtRQ6o4oPcqkm uQwSkxDELrgf7kwWbYN9urxFklNwETvLkY69S2udMCAFRqr+3NMaLX0ARH5gV01i rwZQx4YvKQFNCr/9GZ1wVLsBTAgdrvCsgUKRm6VNv9h/YSG4XtOSf1AEuWt0JcnM sc47AT9EOeX6LjaYYkR6/SasYvnoIp0z1fdDana6W3ugm5xOy9J6QNJ9oMhWg7h7 vibY9tDNIIhIPXz8s1mlGylIW1IovQ0pYOaJg2/PGsIEdcQsqQx1f9cRcHIGO9eC 9Xl6H3jkVL+NP+Ka6kZU2/UHYBXzkm2Dzd1cKuBvdbDaA1jUWHzSe/RfHirk5p38 bgMsY45LaLM4TLA5BkpwPBeFEKNUM7ldShZLniLknh25lzY7PRE7HcKStT7aYQ1e PVl9WrF3Vjup0+oePlOPePMpRxaSY+jUfIeJPihN+d8jKz+9yNdrp7wMwMiDU2PN hddEjO0O4Hz9+lu2/Ti5KU2Ll0MmQJ/E5H9Rjj5gOZlrM1PfMrhZOrkYP1taZrrL oDNuI3QbmdzvZv84kfDYo0uBFAi1wCEl0suggGzJAZ58J0VKVswvJpOoovppJHSZ cgu8dGxQJahaKSO2tdYMnQ+E4ztZbu1wINMfEg9VfXoL+kWuo7/vg78sXuqzD8Fd cOoBoj2RLazqUgH+lnINV9P/ZlRRLURFKg1pRe95JsD+qqr1/vyKg+0FeT4s2Ndb qzqA4vBrM31uL0cooIa64OfG3plMp22HRiQoNNieu033PSH8lEFyc1x4MsaVMp/x R+2Qw4Qir5cradz+BUh+GQtdV1XL8IEy6pfnY4THgFJd5OWiYevPh+DzB/wmgZX1 m44fCZtUHLRFsN9Than/kH2gA8ouCFirR++SGG24PUVBAGKrMN4zq24hsURpnBcS a9tkod8HDEtXbcwXH9/j4ANcZlulXBumVoz9QjaXazH+3Kges4+8WDCm+igpndW4 hb/10luS7lx3G2iNx6YQ9f8MKRsHH7MpTThFwLxCA/OZwOF14uTn9pQpBxw5yPcP r9fQg4UhEnjXl+H5Q/HkXnYzgYdmJ2Gcx4fmawRfa9q9gxfBn8m/QEuiu9fQrUdB bOCifOXE2NmDqGZPSZSZOEdF7od8WjJDwz4+h4BNkOwu566dXWfGdlerLZCoy4vP 3jus5EcesB25k2wE42DZEDPEuT45+m++Hl35XtH5pBIDzgSzFNkMemlm8FfFDrB7 +A6Bj1ToHUnAyY1kCbKK6GwrcPDu/jfkqvt+IAjuqRgT4n6FqFerJM5u8izJLRqh grP0JU9W4Kfked09+SvU0vV6WK/DlVaBrFNvuUYEAcFIubsO0fJzQZXndTtCpwA4 0Yr97SEu9thtDWvfhvOoFHm7IwUTAbX/s0eQ2yyQsjBrLVrz+sZJ6aZoxgNljg1X 9VOrWcQVqykDqkWSr1k2ifZtElwU7xQri9yja0VZvfckWeNcSjlMQqaLVvzJ2bmk s5aKq2jmAIFsbHKllFoVdNelnJnjkSd7F9TA2cuEyW/dsewRJrtTcjp/xtBL+XdR x4OTSRbSO5ZvlcXSmSVA5NnWWlq0wz2gtBuZ+pQRga+4sFsxEEgfHYRKSzK0AwYo 8jSOsfZWUifoUkrZZfoCSPAS2Gh4QbFfeV/PKbp/ziSLSamoRLVnEhpfgcvqdUc0 3esOyJa+S3tE3oRV7nnE51O1kdDy2PfifqLtIcHY1lgT/x0ba0OhF6+F0Et9a274 JGn55LfXztu7bI+ylBrVhqAAtL9zBoHYd6ICmPeTgcJYm75o3U68aoT6qaZkuokY H52a7us/ZuMPgqJARhR5oM5b2A6b8bl9T60CVG315earkkOHVRt6khzYyD+ce2wL i0VXH8ykDboxnVNAhOZJtlhzAeiFawspfasDVUsRzjC6D13zNfP/UhA/09Ucimvv WjONnTda8wQG9fJ4UUyiRjLkHDxYGH0+PgVVq/w4Ehz74sUOA6w8vTsXlILRE14G jfSZw17jrF+IcGaIQuviZXJ1WKzZqfHWIdsO2D1OFGEbPhJZWoxoGmOXPDqQgtx+ 97VuM0Slk4YYtPqJ2AEopjx5l2haM6B8eulLO2KKU4vx85ecCQ02NpUeKt19KeYG 7qGvENTk3krqSbnzXkGSByTPQKKQ0kAoVwKXFgMGq+z/IVkEka4Y0arqiw0prLAg tSa+AinXiRRiIGQkMPLsK1H4a1G3fPzXIcHjBvN18UqWZl2vtFPySYpCPR4JJ6uU D3rAlQAHcKNmTeW+9hn2QQI0Pwo8J2D1Jq0iJW5xacSgWq1c7LnQyoWft/O+a4x2 qpBX3oWEIx0XHqSyqbb82VS4FL0zFJuvb398H8s5HKNB1Zm+4enJipJ2kUZMcFI4 ckjym64xRFBtR9uuaD7XhoHOs/5IhyZdKb8ZR4RrWS5UnasXNhA5os9ln9vWDm0C oDK4qyz1lKvISK+Ep4xfLY15VAOmV4N/2zA0oEAYmiTpvpSImv5DU6iEvvHAye+W cBCh8bzYZKUTfiULEp+h3HGa6PyQRhQsE1zGy+NyOVCnIoHuIOK2BToPv1oLjm1H D7lhNUwhRjwsVa7CHfBJV16ai1lXOHidbIzRf93LPOFhasw+5p7sn2o4HSHdLcB5 WOUReaN0ZijsigEjvmZO4iYA/4bVYwwglC2t/9Kv1PEeHWOZWDzuZXpRs/UFy7F3 t2fblC1st0jW8gcVEy7OYEL/YEw7aIQUyr+IOY/YNjQxYhO7k0XLkmzvQWUN9ce3 +NdM/xayqT7Zy8r1uMXgtTN0kCrrKFZ6gnKvGuiwzG09kYGkgMV8v5YIOnYvMcuf 7AnUKlDuYPat6jbTNyY8uUeJwyzdSxK2fGhRduecAXAbezzwfWzqnUDVyJ94LSyf ZduhtOB5IKCLsf8AO8qFg4/kV+hHohWr981eqvyj3PfzLKBmAB+m4QPeaMpcnrEU h9IMlcfyAooNa0Idl2+DKnnWJIoKV1OnzBNa8/FwwnhbWpvEnnd8BGaho0Ev9dh5 0EkOvy8lrnRUZT9qCeqKZvUqvHGQ3oJuIPKxlX7hxhCnw2dc8tA6Cbj7CtAXAtHk kBsx+9feggjvqbG/uuiQrfhyfXYO35CvQV8cWaTxcu79mrfg+fhJxK9/w1SOowfM +1gfgPdkkO9QI6H6HySHQ1yYpKF2C4Xe03hnjAXqEZ3ZUs4cCoaTL8KCPj789zr1 /+AnTxF4fn56FdHPXqOF5WzjOzigaroCHwnW9cFrzd7fLr3EHMXe+zNr+qdRSXIr s+31vWjI98DEA1oJSpCleBVq/tNffyCyWwXmbu2iDZhwDUf1nZCBCVb+RRTVJ5Iz paTGMVwQS/XHAEHahj0E+C0jD928Ar6rxuvZohqHCE9KCbJM5BWx4MeGqaqzUEBB F0FXrOboAX3xQr3aH8hcXnaQ10JlhpuLoPjVLHAdcSuzBnKODJ5zgi8uLZn7g9pU qOIUZD+D86DvDY/ZvZ5zvP5iOGGh1hMp0mGMvCQZOx4ZZIJ276v8qbXmJWsv0MB5 WTZ3R8dqT5RFKpDElHwfJxNgptZCjFMp2SvNReEDGBdUr91bQxb1dIeV4FqQ1vbc y7BvO39NWCCnywQhR5sXDy/XI7BfQrTc+PbEP7+TyAwoTovF+ahXvlcrUTVzb5x0 NJvOejK8XiCPABAuZUeHNXBLZ6UpedIPDd0VkJfvIrxaqvKmlBXJaGQOOsnGQNt7 G8j8bbOuIPX1uGjFZZe9pT/p5gTKsoBqYQO1BJ7QHmgF5pbg4II50W26n6mIxO8S ZoV9jDUa18hcv5YMZzVQiUP1JjrYvjNDuMOq97aibwRmBrRrstw9Kn3bAB5mKTNg olom0JFQSnVSi5S4CUxuZ4MSHZ1JDn/BNCqFQ9rrlWSIycwOxpQVyEpvGYjDkOdP PY59VdWt503V5G3Nb3M/pyFxnLucSqU8k7F4hQwgC1E72zg7yxsSca0CUi6ZT/Vh e4K+WO/m12JPEb7QHglbI1RwL+jFYQ/6D6tTH+06tRluV3eHppXek6EpV6uqTYkJ 2aildSzk4mxJnAKbXVOrPxKWMKVfGtTKgbqSVdzF5h8ZQ4CH1E5oo4uGdUmeU4hR yZMLVqw861URDPokBvklJcJsOvT38FudGtNYOw2aOx7s9V6bLWIwNgIkqr3JAwSh xNZkJaOoXdHdukeN+3TbDMtrgmYawzJa09ascNb7RhZfhX+U3RQ8NaJhXsf3zy9M
[ "kfidler6@gatech.edu" ]
kfidler6@gatech.edu
61d2fc0ef44c6b1c5dfaf62f9463947621867fc9
a22cc323b29f50da397d8363ac2521e3542a0fd7
/dpaycli/exceptions.py
bae39e29196bee7aae8c59769ed5783a861fb228
[ "MIT" ]
permissive
dpays/dpay-cli
1a58c7dae45218e3b05b7e17ff5ce03e918d27b9
dfa80898e1faea2cee92ebec6fe04873381bd40f
refs/heads/master
2020-04-01T09:26:43.200933
2018-10-15T08:03:06
2018-10-15T08:03:06
153,075,154
0
0
null
null
null
null
UTF-8
Python
false
false
2,993
py
# This Python file uses the following encoding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals class WalletExists(Exception): """ A wallet has already been created and requires a password to be unlocked by means of :func:`dpay.wallet.unlock`. """ pass class WalletLocked(Exception): """ Wallet is locked """ pass class RPCConnectionRequired(Exception): """ An RPC connection is required """ pass class InvalidMemoKeyException(Exception): """ Memo key in message is invalid """ pass class WrongMemoKey(Exception): """ The memo provided is not equal the one on the blockchain """ pass class OfflineHasNoRPCException(Exception): """ When in offline mode, we don't have RPC """ pass class AccountExistsException(Exception): """ The requested account already exists """ pass class AccountDoesNotExistsException(Exception): """ The account does not exist """ pass class AssetDoesNotExistsException(Exception): """ The asset does not exist """ pass class InvalidAssetException(Exception): """ An invalid asset has been provided """ pass class InsufficientAuthorityError(Exception): """ The transaction requires signature of a higher authority """ pass class VotingInvalidOnArchivedPost(Exception): """ The transaction requires signature of a higher authority """ pass class MissingKeyError(Exception): """ A required key couldn't be found in the wallet """ pass class InvalidWifError(Exception): """ The provided private Key has an invalid format """ pass class BlockDoesNotExistsException(Exception): """ The block does not exist """ pass class NoWalletException(Exception): """ No Wallet could be found, please use :func:`dpay.wallet.create` to create a new wallet """ pass class WitnessDoesNotExistsException(Exception): """ The witness does not exist """ pass class ContentDoesNotExistsException(Exception): """ The content does not exist """ pass class VoteDoesNotExistsException(Exception): """ The vote does not exist """ pass class WrongMasterPasswordException(Exception): """ The password provided could not properly unlock the wallet """ pass class VestingBalanceDoesNotExistsException(Exception): """ Vesting Balance does not exist """ pass class InvalidMessageSignature(Exception): """ The message signature does not fit the message """ pass class NoWriteAccess(Exception): """ Cannot store to sqlite3 database due to missing write access """ pass class BatchedCallsNotSupported(Exception): """ Batch calls do not work """ pass class BlockWaitTimeExceeded(Exception): """ Wait time for new block exceeded """ pass
[ "jaredricelegal@gmail.com" ]
jaredricelegal@gmail.com
b29f17221b216cea2a7f3cddbe1c3513bde59920
ef3568b08d0e99f57a0feb2882f2c65c1e97dd80
/magenta/models/music_vae/data.py
d176d7c4eec90f8fd229ef4b2f8ea9a7be9128ba
[ "Apache-2.0" ]
permissive
SeanHsieh/magenta
ccf6d31ad93b036fb93f16d7ab387e0670f934db
9794130b40d6e8131a7d6dd9698d935633c5d4cc
refs/heads/master
2021-04-27T13:26:23.952856
2018-02-22T00:36:30
2018-02-22T00:36:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
42,363
py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MusicVAE data library.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import copy import functools import itertools import random # internal imports import numpy as np import tensorflow as tf import magenta.music as mm from magenta.music import chord_symbols_lib from magenta.music import drums_encoder_decoder from magenta.music import sequences_lib from magenta.protobuf import music_pb2 PIANO_MIN_MIDI_PITCH = 21 PIANO_MAX_MIDI_PITCH = 108 MIN_MIDI_PITCH = 0 MAX_MIDI_PITCH = 127 MIDI_PITCHES = 128 MAX_INSTRUMENT_NUMBER = 127 MEL_PROGRAMS = range(0, 32) # piano, chromatic percussion, organ, guitar BASS_PROGRAMS = range(32, 40) ELECTRIC_BASS_PROGRAM = 33 REDUCED_DRUM_PITCH_CLASSES = drums_encoder_decoder.DEFAULT_DRUM_TYPE_PITCHES FULL_DRUM_PITCH_CLASSES = [ # 61 classes [p] for c in drums_encoder_decoder.DEFAULT_DRUM_TYPE_PITCHES for p in c] CHORD_SYMBOL = music_pb2.NoteSequence.TextAnnotation.CHORD_SYMBOL def _maybe_pad_seqs(seqs, dtype): """Pads sequences to match the longest and returns as a numpy array.""" if not len(seqs): # pylint:disable=g-explicit-length-test return np.zeros((0, 0, 0), dtype) lengths = [len(s) for s in seqs] if len(set(lengths)) == 1: return np.array(seqs, dtype) else: length = max(lengths) return (np.array([np.pad(s, [(0, length - len(s)), (0, 0)], mode='constant') for s in seqs], dtype)) def _extract_instrument(note_sequence, instrument): extracted_ns = copy.copy(note_sequence) del extracted_ns.notes[:] extracted_ns.notes.extend( n for n in note_sequence.notes if n.instrument == instrument) return extracted_ns def np_onehot(indices, depth, dtype=np.bool): """Converts 1D array of indices to a one-hot 2D array with given depth.""" onehot_seq = np.zeros((len(indices), depth), dtype=dtype) onehot_seq[np.arange(len(indices)), indices] = 1.0 return onehot_seq class NoteSequenceAugmenter(object): """Class for augmenting NoteSequences. Args: transpose_range: A tuple containing the inclusive, integer range of transpose amounts to sample from. If None, no transposition is applied. stretch_range: A tuple containing the inclusive, float range of stretch amounts to sample from. Returns: The augmented NoteSequence. """ def __init__(self, transpose_range=None, stretch_range=None): self._transpose_range = transpose_range self._stretch_range = stretch_range def augment(self, note_sequence): """Python implementation that augments the NoteSequence.""" trans_amt = (random.randint(*self._transpose_range) if self._transpose_range else 0) stretch_factor = (random.uniform(*self._stretch_range) if self._stretch_range else 1.0) augmented_ns = copy.deepcopy(note_sequence) del augmented_ns.notes[:] for note in note_sequence.notes: aug_pitch = note.pitch if not note.is_drum: aug_pitch += trans_amt if MIN_MIDI_PITCH <= aug_pitch <= MAX_MIDI_PITCH: augmented_ns.notes.add().CopyFrom(note) augmented_ns.notes[-1].pitch = aug_pitch for ta in augmented_ns.text_annotations: if ta.annotation_type == CHORD_SYMBOL and ta.text != mm.NO_CHORD: try: figure = chord_symbols_lib.transpose_chord_symbol(ta.text, trans_amt) except chord_symbols_lib.ChordSymbolException: tf.logging.warning('Unable to transpose chord symbol: %s', ta.text) figure = mm.NO_CHORD ta.text = figure augmented_ns = sequences_lib.stretch_note_sequence( augmented_ns, stretch_factor) return augmented_ns def tf_augment(self, note_sequence_scalar): """TF op that augments the NoteSequence.""" def _augment_str(note_sequence_str): note_sequence = music_pb2.NoteSequence.FromString(note_sequence_str) augmented_ns = self.augment(note_sequence) return [augmented_ns.SerializeToString()] augmented_note_sequence_scalar = tf.py_func( _augment_str, [note_sequence_scalar], tf.string, name='augment') augmented_note_sequence_scalar.set_shape(()) return augmented_note_sequence_scalar class ConverterTensors(collections.namedtuple( 'ConverterTensors', ['inputs', 'outputs', 'controls', 'lengths'])): """Tuple of tensors output by `to_tensors` method in converters. Attributes: inputs: Input tensors to feed to the encoder. outputs: Output tensors to feed to the decoder. controls: (Optional) tensors to use as controls for both encoding and decoding. lengths: Length of each input/output/control sequence. """ def __new__(cls, inputs=None, outputs=None, controls=None, lengths=None): if inputs is None: inputs = [] if outputs is None: outputs = [] if lengths is None: lengths = [len(i) for i in inputs] if not controls: controls = [np.zeros([l, 0]) for l in lengths] return super(ConverterTensors, cls).__new__( cls, inputs, outputs, controls, lengths) class BaseConverter(object): """Base class for data converters between items and tensors. Inheriting classes must implement the following abstract methods: -`_to_tensors` -`_to_items` """ __metaclass__ = abc.ABCMeta def __init__(self, input_depth, input_dtype, output_depth, output_dtype, control_depth=0, control_dtype=np.bool, end_token=None, max_tensors_per_item=None, str_to_item_fn=lambda s: s, length_shape=()): """Initializes BaseConverter. Args: input_depth: Depth of final dimension of input (encoder) tensors. input_dtype: DType of input (encoder) tensors. output_depth: Depth of final dimension of output (decoder) tensors. output_dtype: DType of output (decoder) tensors. control_depth: Depth of final dimension of control tensors, or zero if not conditioning on control tensors. control_dtype: DType of control tensors. end_token: Optional end token. max_tensors_per_item: The maximum number of outputs to return for each input. str_to_item_fn: Callable to convert raw string input into an item for conversion. length_shape: Shape of length returned by `to_tensor`. """ self._input_depth = input_depth self._input_dtype = input_dtype self._output_depth = output_depth self._output_dtype = output_dtype self._control_depth = control_depth self._control_dtype = control_dtype self._end_token = end_token self._max_tensors_per_input = max_tensors_per_item self._str_to_item_fn = str_to_item_fn self._is_training = False self._length_shape = length_shape @property def is_training(self): return self._is_training @property def str_to_item_fn(self): return self._str_to_item_fn @is_training.setter def is_training(self, value): self._is_training = value @property def max_tensors_per_item(self): return self._max_tensors_per_input @max_tensors_per_item.setter def max_tensors_per_item(self, value): self._max_tensors_per_input = value @property def end_token(self): """End token, or None.""" return self._end_token @property def input_depth(self): """Dimension of inputs (to encoder) at each timestep of the sequence.""" return self._input_depth @property def input_dtype(self): """DType of inputs (to encoder).""" return self._input_dtype @property def output_depth(self): """Dimension of outputs (from decoder) at each timestep of the sequence.""" return self._output_depth @property def output_dtype(self): """DType of outputs (from decoder).""" return self._output_dtype @property def control_depth(self): """Dimension of control inputs at each timestep of the sequence.""" return self._control_depth @property def control_dtype(self): """DType of control inputs.""" return self._control_dtype @property def length_shape(self): """Shape of length returned by `to_tensor`.""" return self._length_shape @abc.abstractmethod def _to_tensors(self, item): """Implementation that converts item into encoder/decoder tensors. Args: item: Item to convert. Returns: A ConverterTensors struct containing encoder inputs, decoder outputs, (optional) control tensors used for both encoding and decoding, and sequence lengths. """ pass @abc.abstractmethod def _to_items(self, samples, controls=None): """Implementation that decodes model samples into list of items.""" pass def _maybe_sample_outputs(self, outputs): """If should limit outputs, returns up to limit (randomly if training).""" if (not self.max_tensors_per_item or len(outputs) <= self.max_tensors_per_item): return outputs if self.is_training: indices = set(np.random.choice( len(outputs), size=self.max_tensors_per_item, replace=False)) return [outputs[i] for i in indices] else: return outputs[:self.max_tensors_per_item] def to_tensors(self, item): """Python method that converts `item` into list of tensors.""" tensors = self._to_tensors(item) sampled_results = self._maybe_sample_outputs(list(zip(*tensors))) return (ConverterTensors(*zip(*sampled_results)) if sampled_results else ConverterTensors()) def _combine_to_tensor_results(self, to_tensor_results): """Combines the results of multiple to_tensors calls into one result.""" results = [] for result in to_tensor_results: results.extend(zip(*result)) sampled_results = self._maybe_sample_outputs(results) return (ConverterTensors(*zip(*sampled_results)) if sampled_results else ConverterTensors()) def to_items(self, samples, controls=None): """Python method that decodes samples into list of items.""" if controls is None: return self._to_items(samples) else: return self._to_items(samples, controls) def tf_to_tensors(self, item_scalar): """TensorFlow op that converts item into output tensors. Sequences will be padded to match the length of the longest. Args: item_scalar: A scalar of type tf.String containing the raw item to be converted to tensors. Returns: inputs: A Tensor, shaped [num encoded seqs, max(lengths), input_depth], containing the padded input encodings. outputs: A Tensor, shaped [num encoded seqs, max(lengths), output_depth], containing the padded output encodings resulting from the input. controls: A Tensor, shaped [num encoded seqs, max(lengths), control_depth], containing the padded control encodings. lengths: A tf.int32 Tensor, shaped [num encoded seqs], containing the unpadded lengths of the tensor sequences resulting from the input. """ def _convert_and_pad(item_str): item = self.str_to_item_fn(item_str) tensors = self.to_tensors(item) inputs = _maybe_pad_seqs(tensors.inputs, self.input_dtype) outputs = _maybe_pad_seqs(tensors.outputs, self.output_dtype) controls = _maybe_pad_seqs(tensors.controls, self.control_dtype) return inputs, outputs, controls, np.array(tensors.lengths, np.int32) inputs, outputs, controls, lengths = tf.py_func( _convert_and_pad, [item_scalar], [self.input_dtype, self.output_dtype, self.control_dtype, tf.int32], name='convert_and_pad') inputs.set_shape([None, None, self.input_depth]) outputs.set_shape([None, None, self.output_depth]) controls.set_shape([None, None, self.control_depth]) lengths.set_shape([None] + list(self.length_shape)) return inputs, outputs, controls, lengths def preprocess_notesequence(note_sequence, presplit_on_time_changes): """Preprocesses a single NoteSequence, resulting in multiple sequences.""" if presplit_on_time_changes: note_sequences = sequences_lib.split_note_sequence_on_time_changes( note_sequence) else: note_sequences = [note_sequence] return note_sequences class BaseNoteSequenceConverter(BaseConverter): """Base class for NoteSequence data converters. Inheriting classes must implement the following abstract methods: -`_to_tensors` -`_to_notesequences` """ __metaclass__ = abc.ABCMeta def __init__(self, input_depth, input_dtype, output_depth, output_dtype, control_depth=0, control_dtype=np.bool, end_token=None, presplit_on_time_changes=True, max_tensors_per_notesequence=None): """Initializes BaseNoteSequenceConverter. Args: input_depth: Depth of final dimension of input (encoder) tensors. input_dtype: DType of input (encoder) tensors. output_depth: Depth of final dimension of output (decoder) tensors. output_dtype: DType of output (decoder) tensors. control_depth: Depth of final dimension of control tensors, or zero if not conditioning on control tensors. control_dtype: DType of control tensors. end_token: Optional end token. presplit_on_time_changes: Whether to split NoteSequence on time changes before converting. max_tensors_per_notesequence: The maximum number of outputs to return for each NoteSequence. """ super(BaseNoteSequenceConverter, self).__init__( input_depth, input_dtype, output_depth, output_dtype, control_depth, control_dtype, end_token, max_tensors_per_item=max_tensors_per_notesequence, str_to_item_fn=music_pb2.NoteSequence.FromString) self._presplit_on_time_changes = presplit_on_time_changes @property def max_tensors_per_notesequence(self): return self.max_tensors_per_item @max_tensors_per_notesequence.setter def max_tensors_per_notesequence(self, value): self.max_tensors_per_item = value @abc.abstractmethod def _to_notesequences(self, samples, controls=None): """Implementation that decodes model samples into list of NoteSequences.""" pass def to_notesequences(self, samples, controls=None): """Python method that decodes samples into list of NoteSequences.""" return self._to_items(samples, controls) def to_tensors(self, note_sequence): """Python method that converts `note_sequence` into list of tensors.""" note_sequences = preprocess_notesequence( note_sequence, self._presplit_on_time_changes) results = [] for ns in note_sequences: results.append(super(BaseNoteSequenceConverter, self).to_tensors(ns)) return self._combine_to_tensor_results(results) def _to_items(self, samples, controls=None): """Python method that decodes samples into list of NoteSequences.""" if controls is None: return self._to_notesequences(samples) else: return self._to_notesequences(samples, controls) class LegacyEventListOneHotConverter(BaseNoteSequenceConverter): """Converts NoteSequences using legacy OneHotEncoding framework. Quantizes the sequences, extracts event lists in the requested size range, uniquifies, and converts to encoding. Uses the OneHotEncoding's output encoding for both the input and output. Args: event_list_fn: A function that returns a new EventSequence. event_extractor_fn: A function for extracing events into EventSequences. The sole input should be the quantized NoteSequence. legacy_encoder_decoder: An instantiated OneHotEncoding object to use. add_end_token: Whether or not to add an end token. Recommended to be False for fixed-length outputs. slice_bars: Optional size of window to slide over raw event lists after extraction. steps_per_quarter: The number of quantization steps per quarter note. Mututally exclusive with `steps_per_second`. steps_per_second: The number of quantization steps per second. Mututally exclusive with `steps_per_quarter`. quarters_per_bar: The number of quarter notes per bar. pad_to_total_time: Pads each input/output tensor to the total time of the NoteSequence. max_tensors_per_notesequence: The maximum number of outputs to return for each NoteSequence. presplit_on_time_changes: Whether to split NoteSequence on time changes before converting. """ def __init__(self, event_list_fn, event_extractor_fn, legacy_encoder_decoder, add_end_token=False, slice_bars=None, slice_steps=None, steps_per_quarter=None, steps_per_second=None, quarters_per_bar=4, pad_to_total_time=False, max_tensors_per_notesequence=None, presplit_on_time_changes=True): if (steps_per_quarter, steps_per_second).count(None) != 1: raise ValueError( 'Exactly one of `steps_per_quarter` and `steps_per_second` should be ' 'provided.') if (slice_bars, slice_steps).count(None) == 0: raise ValueError( 'At most one of `slice_bars` and `slice_steps` should be provided.') self._event_list_fn = event_list_fn self._event_extractor_fn = event_extractor_fn self._legacy_encoder_decoder = legacy_encoder_decoder self._steps_per_quarter = steps_per_quarter if steps_per_quarter: self._steps_per_bar = steps_per_quarter * quarters_per_bar self._steps_per_second = steps_per_second if slice_bars: self._slice_steps = self._steps_per_bar * slice_bars else: self._slice_steps = slice_steps self._pad_to_total_time = pad_to_total_time depth = legacy_encoder_decoder.num_classes + add_end_token super(LegacyEventListOneHotConverter, self).__init__( input_depth=depth, input_dtype=np.bool, output_depth=depth, output_dtype=np.bool, end_token=legacy_encoder_decoder.num_classes if add_end_token else None, presplit_on_time_changes=presplit_on_time_changes, max_tensors_per_notesequence=max_tensors_per_notesequence) def _to_tensors(self, note_sequence): """Converts NoteSequence to unique, one-hot tensor sequences.""" try: if self._steps_per_quarter: quantized_sequence = mm.quantize_note_sequence( note_sequence, self._steps_per_quarter) if (mm.steps_per_bar_in_quantized_sequence(quantized_sequence) != self._steps_per_bar): return ConverterTensors() else: quantized_sequence = mm.quantize_note_sequence_absolute( note_sequence, self._steps_per_second) except (mm.BadTimeSignatureException, mm.NonIntegerStepsPerBarException, mm.NegativeTimeException) as e: return ConverterTensors() event_lists, unused_stats = self._event_extractor_fn(quantized_sequence) if self._pad_to_total_time: for e in event_lists: e.set_length(len(e) + e.start_step, from_left=True) e.set_length(quantized_sequence.total_quantized_steps) if self._slice_steps: sliced_event_tuples = [] for l in event_lists: for i in range(self._slice_steps, len(l) + 1, self._steps_per_bar): sliced_event_tuples.append(tuple(l[i - self._slice_steps: i])) else: sliced_event_tuples = [tuple(l) for l in event_lists] # TODO(adarob): Consider handling the fact that different event lists can # be mapped to identical tensors by the encoder_decoder (e.g., Drums). unique_event_tuples = list(set(sliced_event_tuples)) unique_event_tuples = self._maybe_sample_outputs(unique_event_tuples) seqs = [] for t in unique_event_tuples: seqs.append(np_onehot( [self._legacy_encoder_decoder.encode_event(e) for e in t] + ([] if self.end_token is None else [self.end_token]), self.output_depth, self.output_dtype)) return ConverterTensors(inputs=seqs, outputs=seqs) def _to_notesequences(self, samples): output_sequences = [] for sample in samples: s = np.argmax(sample, axis=-1) if self.end_token is not None and self.end_token in s.tolist(): s = s[:s.tolist().index(self.end_token)] event_list = self._event_list_fn() for e in s: assert e != self.end_token event_list.append(self._legacy_encoder_decoder.decode_event(e)) output_sequences.append(event_list.to_sequence(velocity=80)) return output_sequences class OneHotMelodyConverter(LegacyEventListOneHotConverter): """Converter for legacy MelodyOneHotEncoding. Args: min_pitch: The minimum pitch to model. Those below this value will be ignored. max_pitch: The maximum pitch to model. Those above this value will be ignored. valid_programs: Optional set of program numbers to allow. skip_polyphony: Whether to skip polyphonic instruments. If False, the highest pitch will be taken in polyphonic sections. max_bars: Optional maximum number of bars per extracted melody, before slicing. slice_bars: Optional size of window to slide over raw Melodies after extraction. gap_bars: If this many bars or more of non-events follow a note event, the melody is ended. Disabled when set to 0 or None. steps_per_quarter: The number of quantization steps per quarter note. quarters_per_bar: The number of quarter notes per bar. pad_to_total_time: Pads each input/output tensor to the total time of the NoteSequence. add_end_token: Whether to add an end token at the end of each sequence. max_tensors_per_notesequence: The maximum number of outputs to return for each NoteSequence. """ def __init__(self, min_pitch=PIANO_MIN_MIDI_PITCH, max_pitch=PIANO_MAX_MIDI_PITCH, valid_programs=None, skip_polyphony=False, max_bars=None, slice_bars=None, gap_bars=1.0, steps_per_quarter=4, quarters_per_bar=4, add_end_token=False, pad_to_total_time=False, max_tensors_per_notesequence=5, presplit_on_time_changes=True): self._min_pitch = min_pitch self._max_pitch = max_pitch self._valid_programs = valid_programs steps_per_bar = steps_per_quarter * quarters_per_bar max_steps_truncate = steps_per_bar * max_bars if max_bars else None def melody_fn(): return mm.Melody( steps_per_bar=steps_per_bar, steps_per_quarter=steps_per_quarter) melody_extractor_fn = functools.partial( mm.extract_melodies, min_bars=1, gap_bars=gap_bars or float('inf'), max_steps_truncate=max_steps_truncate, min_unique_pitches=1, ignore_polyphonic_notes=not skip_polyphony, pad_end=True) super(OneHotMelodyConverter, self).__init__( melody_fn, melody_extractor_fn, mm.MelodyOneHotEncoding(min_pitch, max_pitch + 1), add_end_token=add_end_token, slice_bars=slice_bars, pad_to_total_time=pad_to_total_time, steps_per_quarter=steps_per_quarter, quarters_per_bar=quarters_per_bar, max_tensors_per_notesequence=max_tensors_per_notesequence, presplit_on_time_changes=presplit_on_time_changes) def _to_tensors(self, note_sequence): def is_valid(note): if (self._valid_programs is not None and note.program not in self._valid_programs): return False return self._min_pitch <= note.pitch <= self._max_pitch notes = list(note_sequence.notes) del note_sequence.notes[:] note_sequence.notes.extend([n for n in notes if is_valid(n)]) return super(OneHotMelodyConverter, self)._to_tensors(note_sequence) class DrumsConverter(BaseNoteSequenceConverter): """Converter for legacy drums with either pianoroll or one-hot tensors. Inputs/outputs are either a "pianoroll"-like encoding of all possible drum hits at a given step, or a one-hot encoding of the pianoroll. The "roll" input encoding includes a final NOR bit (after the optional end token). Args: max_bars: Optional maximum number of bars per extracted drums, before slicing. slice_bars: Optional size of window to slide over raw Melodies after extraction. gap_bars: If this many bars or more follow a non-empty drum event, the drum track is ended. Disabled when set to 0 or None. pitch_classes: A collection of collections, with each sub-collection containing the set of pitches representing a single class to group by. By default, groups valid drum pitches into 9 different classes. add_end_token: Whether or not to add an end token. Recommended to be False for fixed-length outputs. steps_per_quarter: The number of quantization steps per quarter note. quarters_per_bar: The number of quarter notes per bar. pad_to_total_time: Pads each input/output tensor to the total time of the NoteSequence. roll_input: Whether to use a pianoroll-like representation as the input instead of a one-hot encoding. roll_output: Whether to use a pianoroll-like representation as the output instead of a one-hot encoding. max_tensors_per_notesequence: The maximum number of outputs to return for each NoteSequence. presplit_on_time_changes: Whether to split NoteSequence on time changes before converting. """ def __init__(self, max_bars=None, slice_bars=None, gap_bars=1.0, pitch_classes=None, add_end_token=False, steps_per_quarter=4, quarters_per_bar=4, pad_to_total_time=False, roll_input=False, roll_output=False, max_tensors_per_notesequence=5, presplit_on_time_changes=True): self._pitch_classes = pitch_classes or REDUCED_DRUM_PITCH_CLASSES self._pitch_class_map = { p: i for i, pitches in enumerate(self._pitch_classes) for p in pitches} self._steps_per_quarter = steps_per_quarter self._steps_per_bar = steps_per_quarter * quarters_per_bar self._slice_steps = self._steps_per_bar * slice_bars if slice_bars else None self._pad_to_total_time = pad_to_total_time self._roll_input = roll_input self._roll_output = roll_output self._drums_extractor_fn = functools.partial( mm.extract_drum_tracks, min_bars=1, gap_bars=gap_bars or float('inf'), max_steps_truncate=self._steps_per_bar * max_bars if max_bars else None, pad_end=True) num_classes = len(self._pitch_classes) self._pr_encoder_decoder = mm.PianorollEncoderDecoder( input_size=num_classes + add_end_token) # Use pitch classes as `drum_type_pitches` since we have already done the # mapping. self._oh_encoder_decoder = mm.MultiDrumOneHotEncoding( drum_type_pitches=[(i,) for i in range(num_classes)]) output_depth = (num_classes if self._roll_output else self._oh_encoder_decoder.num_classes) + add_end_token super(DrumsConverter, self).__init__( input_depth=( num_classes + 1 if self._roll_input else self._oh_encoder_decoder.num_classes) + add_end_token, input_dtype=np.bool, output_depth=output_depth, output_dtype=np.bool, end_token=output_depth - 1 if add_end_token else None, presplit_on_time_changes=presplit_on_time_changes, max_tensors_per_notesequence=max_tensors_per_notesequence) def _to_tensors(self, note_sequence): """Converts NoteSequence to unique sequences.""" try: quantized_sequence = mm.quantize_note_sequence( note_sequence, self._steps_per_quarter) if (mm.steps_per_bar_in_quantized_sequence(quantized_sequence) != self._steps_per_bar): return ConverterTensors() except (mm.BadTimeSignatureException, mm.NonIntegerStepsPerBarException, mm.NegativeTimeException) as e: return ConverterTensors() new_notes = [] for n in quantized_sequence.notes: if not n.is_drum: continue if n.pitch not in self._pitch_class_map: continue n.pitch = self._pitch_class_map[n.pitch] new_notes.append(n) del quantized_sequence.notes[:] quantized_sequence.notes.extend(new_notes) event_lists, unused_stats = self._drums_extractor_fn(quantized_sequence) if self._pad_to_total_time: for e in event_lists: e.set_length(len(e) + e.start_step, from_left=True) e.set_length(quantized_sequence.total_quantized_steps) if self._slice_steps: sliced_event_tuples = [] for l in event_lists: for i in range(self._slice_steps, len(l) + 1, self._steps_per_bar): sliced_event_tuples.append(tuple(l[i - self._slice_steps: i])) else: sliced_event_tuples = [tuple(l) for l in event_lists] unique_event_tuples = list(set(sliced_event_tuples)) unique_event_tuples = self._maybe_sample_outputs(unique_event_tuples) rolls = [] oh_vecs = [] for t in unique_event_tuples: if self._roll_input or self._roll_output: if self.end_token is not None: t_roll = list(t) + [(self._pr_encoder_decoder.input_size - 1,)] else: t_roll = t rolls.append(np.vstack([ self._pr_encoder_decoder.events_to_input(t_roll, i).astype(np.bool) for i in range(len(t_roll))])) if not (self._roll_input and self._roll_output): labels = [self._oh_encoder_decoder.encode_event(e) for e in t] if self.end_token is not None: labels += [self._oh_encoder_decoder.num_classes] oh_vecs.append(np_onehot( labels, self._oh_encoder_decoder.num_classes + (self.end_token is not None), np.bool)) if self._roll_input: input_seqs = [ np.append(roll, np.expand_dims(np.all(roll == 0, axis=1), axis=1), axis=1) for roll in rolls] else: input_seqs = oh_vecs output_seqs = rolls if self._roll_output else oh_vecs return ConverterTensors(inputs=input_seqs, outputs=output_seqs) def _to_notesequences(self, samples): output_sequences = [] for s in samples: if self._roll_output: if self.end_token is not None: end_i = np.where(s[:, self.end_token]) if len(end_i): # pylint: disable=g-explicit-length-test s = s[:end_i[0]] events_list = [frozenset(np.where(e)[0]) for e in s] else: s = np.argmax(s, axis=-1) if self.end_token is not None and self.end_token in s: s = s[:s.tolist().index(self.end_token)] events_list = [self._oh_encoder_decoder.decode_event(e) for e in s] # Map classes to exemplars. events_list = [ frozenset(self._pitch_classes[c][0] for c in e) for e in events_list] track = mm.DrumTrack( events=events_list, steps_per_bar=self._steps_per_bar, steps_per_quarter=self._steps_per_quarter) output_sequences.append(track.to_sequence(velocity=80)) return output_sequences class TrioConverter(BaseNoteSequenceConverter): """Converts to/from 3-part (mel, drums, bass) multi-one-hot events. Extracts overlapping segments with melody, drums, and bass (determined by program number) and concatenates one-hot tensors from OneHotMelodyConverter and OneHotDrumsConverter. Takes the cross products from the sets of instruments of each type. Args: slice_bars: Optional size of window to slide over full converted tensor. gap_bars: The number of consecutive empty bars to allow for any given instrument. Note that this number is effectively doubled for internal gaps. max_bars: Optional maximum number of bars per extracted sequence, before slicing. steps_per_quarter: The number of quantization steps per quarter note. quarters_per_bar: The number of quarter notes per bar. max_tensors_per_notesequence: The maximum number of outputs to return for each NoteSequence. """ class InstrumentType(object): UNK = 0 MEL = 1 BASS = 2 DRUMS = 3 INVALID = 4 def __init__( self, slice_bars=None, gap_bars=2, max_bars=1024, steps_per_quarter=4, quarters_per_bar=4, max_tensors_per_notesequence=5): self._melody_converter = OneHotMelodyConverter( gap_bars=None, steps_per_quarter=steps_per_quarter, pad_to_total_time=True, presplit_on_time_changes=False, max_tensors_per_notesequence=None) self._drums_converter = DrumsConverter( gap_bars=None, steps_per_quarter=steps_per_quarter, pad_to_total_time=True, presplit_on_time_changes=False, max_tensors_per_notesequence=None) self._slice_bars = slice_bars self._gap_bars = gap_bars self._max_bars = max_bars self._steps_per_quarter = steps_per_quarter self._steps_per_bar = steps_per_quarter * quarters_per_bar self._split_output_depths = ( self._melody_converter.output_depth, self._melody_converter.output_depth, self._drums_converter.output_depth) output_depth = sum(self._split_output_depths) self._program_map = dict( [(i, TrioConverter.InstrumentType.MEL) for i in MEL_PROGRAMS] + [(i, TrioConverter.InstrumentType.BASS) for i in BASS_PROGRAMS]) super(TrioConverter, self).__init__( input_depth=output_depth, input_dtype=np.bool, output_depth=output_depth, output_dtype=np.bool, end_token=False, presplit_on_time_changes=True, max_tensors_per_notesequence=max_tensors_per_notesequence) def _to_tensors(self, note_sequence): try: quantized_sequence = mm.quantize_note_sequence( note_sequence, self._steps_per_quarter) if (mm.steps_per_bar_in_quantized_sequence(quantized_sequence) != self._steps_per_bar): return ConverterTensors() except (mm.BadTimeSignatureException, mm.NonIntegerStepsPerBarException, mm.NegativeTimeException): return ConverterTensors() total_bars = int( np.ceil(quantized_sequence.total_quantized_steps / self._steps_per_bar)) total_bars = min(total_bars, self._max_bars) # Assign an instrument class for each instrument, and compute its coverage. # If an instrument has multiple classes, it is considered INVALID. instrument_type = np.zeros(MAX_INSTRUMENT_NUMBER + 1, np.uint8) coverage = np.zeros((total_bars, MAX_INSTRUMENT_NUMBER + 1), np.bool) for note in quantized_sequence.notes: i = note.instrument if i > MAX_INSTRUMENT_NUMBER: tf.logging.warning('Skipping invalid instrument number: %d', i) continue inferred_type = ( self.InstrumentType.DRUMS if note.is_drum else self._program_map.get(note.program, self.InstrumentType.INVALID)) if not instrument_type[i]: instrument_type[i] = inferred_type elif instrument_type[i] != inferred_type: instrument_type[i] = self.InstrumentType.INVALID start_bar = note.quantized_start_step // self._steps_per_bar end_bar = int(np.ceil(note.quantized_end_step / self._steps_per_bar)) if start_bar >= total_bars: continue coverage[start_bar:min(end_bar, total_bars), i] = True # Group instruments by type. instruments_by_type = collections.defaultdict(list) for i, type_ in enumerate(instrument_type): if type_ not in (self.InstrumentType.UNK, self.InstrumentType.INVALID): instruments_by_type[type_].append(i) if len(instruments_by_type) < 3: # This NoteSequence doesn't have all 3 types. return ConverterTensors() # Encode individual instruments. # Set total time so that instruments will be padded correctly. note_sequence.total_time = ( total_bars * self._steps_per_bar * 60 / note_sequence.tempos[0].qpm / self._steps_per_quarter) encoded_instruments = {} for i in (instruments_by_type[self.InstrumentType.MEL] + instruments_by_type[self.InstrumentType.BASS]): tensors = self._melody_converter.to_tensors( _extract_instrument(note_sequence, i)) if tensors.outputs: encoded_instruments[i] = tensors.outputs[0] else: coverage[:, i] = False for i in instruments_by_type[self.InstrumentType.DRUMS]: tensors = self._drums_converter.to_tensors( _extract_instrument(note_sequence, i)) if tensors.outputs: encoded_instruments[i] = tensors.outputs[0] else: coverage[:, i] = False # Fill in coverage gaps up to self._gap_bars. og_coverage = coverage.copy() for j in range(total_bars): coverage[j] = np.any( og_coverage[ max(0, j-self._gap_bars):min(total_bars, j+self._gap_bars) + 1], axis=0) # Take cross product of instruments from each class and compute combined # encodings where they overlap. seqs = [] for grp in itertools.product( instruments_by_type[self.InstrumentType.MEL], instruments_by_type[self.InstrumentType.BASS], instruments_by_type[self.InstrumentType.DRUMS]): # Consider an instrument covered within gap_bars from the end if any of # the other instruments are. This allows more leniency when re-encoding # slices. grp_coverage = np.all(coverage[:, grp], axis=1) grp_coverage[:self._gap_bars] = np.any(coverage[:self._gap_bars, grp]) grp_coverage[-self._gap_bars:] = np.any(coverage[-self._gap_bars:, grp]) for j in range(total_bars - self._slice_bars + 1): if np.all(grp_coverage[j:j + self._slice_bars]): start_step = j * self._steps_per_bar end_step = (j + self._slice_bars) * self._steps_per_bar seqs.append(np.concatenate( [encoded_instruments[i][start_step:end_step] for i in grp], axis=-1)) return ConverterTensors(inputs=seqs, outputs=seqs) def _to_notesequences(self, samples): output_sequences = [] dim_ranges = np.cumsum(self._split_output_depths) for s in samples: mel_ns = self._melody_converter.to_notesequences( [s[:, :dim_ranges[0]]])[0] bass_ns = self._melody_converter.to_notesequences( [s[:, dim_ranges[0]:dim_ranges[1]]])[0] drums_ns = self._drums_converter.to_notesequences( [s[:, dim_ranges[1]:]])[0] for n in bass_ns.notes: n.instrument = 1 n.program = ELECTRIC_BASS_PROGRAM for n in drums_ns.notes: n.instrument = 9 ns = mel_ns ns.notes.extend(bass_ns.notes) ns.notes.extend(drums_ns.notes) ns.total_time = max( mel_ns.total_time, bass_ns.total_time, drums_ns.total_time) output_sequences.append(ns) return output_sequences def count_examples(examples_path, data_converter, file_reader=tf.python_io.tf_record_iterator): """Counts the number of examples produced by the converter from files.""" filenames = tf.gfile.Glob(examples_path) num_examples = 0 for f in filenames: tf.logging.info('Counting examples in %s.', f) reader = file_reader(f) for item_str in reader: item = data_converter.str_to_item_fn(item_str) tensors = data_converter.to_tensors(item) num_examples += len(tensors.inputs) tf.logging.info('Total examples: %d', num_examples) return num_examples def get_dataset( config, num_threads=1, tf_file_reader=tf.data.TFRecordDataset, prefetch_size=4, is_training=False): """Get input tensors from dataset for training or evaluation. Args: config: A Config object containing dataset information. num_threads: The number of threads to use for pre-processing. tf_file_reader: The tf.data.Dataset class to use for reading files. prefetch_size: The number of batches to prefetch. Disabled when 0. is_training: Whether or not the dataset is used in training. Determines whether dataset is shuffled and repeated, etc. Returns: A tf.data.Dataset containing input, output, control, and length tensors. """ batch_size = config.hparams.batch_size examples_path = ( config.train_examples_path if is_training else config.eval_examples_path) note_sequence_augmenter = ( config.note_sequence_augmenter if is_training else None) data_converter = config.data_converter data_converter.is_training = is_training tf.logging.info('Reading examples from: %s', examples_path) num_files = len(tf.gfile.Glob(examples_path)) files = tf.data.Dataset.list_files(examples_path) if is_training: files = files.apply( tf.contrib.data.shuffle_and_repeat(buffer_size=num_files)) reader = files.apply( tf.contrib.data.parallel_interleave( tf_file_reader, cycle_length=num_threads, sloppy=True)) def _remove_pad_fn(padded_seq_1, padded_seq_2, padded_seq_3, length): if length.shape.ndims == 0: return (padded_seq_1[0:length], padded_seq_2[0:length], padded_seq_3[0:length], length) else: # Don't remove padding for hierarchical examples. return padded_seq_1, padded_seq_2, padded_seq_3, length dataset = reader if note_sequence_augmenter is not None: dataset = dataset.map(note_sequence_augmenter.tf_augment) dataset = (dataset .map(data_converter.tf_to_tensors, num_parallel_calls=num_threads) .flat_map(lambda *t: tf.data.Dataset.from_tensor_slices(t)) .map(_remove_pad_fn)) if is_training: dataset = dataset.shuffle(buffer_size=batch_size * 4) dataset = dataset.padded_batch(batch_size, dataset.output_shapes) if prefetch_size: dataset = dataset.prefetch(prefetch_size) return dataset
[ "noreply@github.com" ]
SeanHsieh.noreply@github.com
87eb5b823f9ba9b24000e7cc2baa16e31afd600b
3f34ecc7d4e9fef6d3ab3b2114fe5f1431744ae8
/mypy/3/3.5.str_fromat.py
be0240d0760a2338f4bffbce59da625d8c19605c
[]
no_license
wcybxzj/learing_dive_into_python
386101f4674b2e6d4b176cc4109b95b98c3024b7
40c456eb2afe4de421bb7e9fedd4f9401b4213a6
refs/heads/master
2021-01-10T01:01:42.361133
2015-02-07T14:48:23
2015-02-07T14:48:23
29,670,309
0
1
null
null
null
null
UTF-8
Python
false
false
471
py
#!/usr/bin/env python # -*- coding: utf-8 -*- uid ="sa" pwd = "secret" # 两种方式结构完全相同 print pwd +' is password '+ uid print '%s is password %s' % (pwd, uid) userCount = 6 print "User connected:%d" % (userCount) try: print "User connected" + userCount except TypeError: print 'int cant connect with str' #数值的格式化 print "Today's stock price:%f" % 50.4625 print "Today's stock price:%.2f" % 50.4625 print "Today's stock price:%+.2f" % 1.5
[ "virgo86ybx@gmail.com" ]
virgo86ybx@gmail.com
6ca28a1331aa11b8585b3149fa132846aa5c8bcc
da2d6c22dd1b389175ad303a729ff1f2a82ba9a8
/Seaborn/Seaborn.py
680c9d2ba8d68112331870bf2b384eaa30a2dcbe
[]
no_license
hmtalha786/Data-Science
05019dc2e3745899ecfad40deec0e039b779a914
b322fc42a7babd29947f7bea049bb0dcf4c2bc19
refs/heads/master
2023-03-22T04:12:15.364694
2021-03-13T17:28:59
2021-03-13T17:28:59
335,062,509
2
0
null
null
null
null
UTF-8
Python
false
false
11,866
py
#!/usr/bin/env python # coding: utf-8 # # Seaborn Tutorial # ### Imports # In[ ]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # In[ ]: get_ipython().run_line_magic('matplotlib', 'inline') # In[ ]: # Auto reloads notebook when changes are made get_ipython().run_line_magic('reload_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # ### Import Data # In[ ]: # You can import custom data cs_df = pd.read_csv('ComputerSales.csv') # In[ ]: # Seaborn provides built in datasets print(sns.get_dataset_names()) # In[ ]: # Load a built in dataset based on US State car crash percentages crash_df = sns.load_dataset('car_crashes') # # Distribution Plots # ### Distribution Plot # In[ ]: # Provides a way to look at a univariate distribution. # A univeriate distribution provides a distribution for one variable # Kernal Density Estimation with a Histogram is provided # kde=False removes the KDE # Bins define how many buckets to divide the data up into between intervals # For example put all profits between $10 and $20 in this bucket sns.distplot(crash_df['not_distracted'], kde=False, bins=25) # ### Joint Plot # In[ ]: # Jointplot compares 2 distributions and plots a scatter plot by default # As we can see as people tend to speed they also tend to drink & drive # With kind you can create a regression line with kind='reg' # You can create a 2D KDE with kind='kde' # Kernal Density Estimation estimates the distribution of data # You can create a hexagon distribution with kind='hex' sns.jointplot(x='speeding', y='alcohol', data=crash_df, kind='reg') # ### KDE Plot # In[ ]: # Get just the KDE plot sns.kdeplot(crash_df['alcohol']) # ### Pair Plots # In[ ]: # Pair Plot plots relationships across the entire data frames numerical values sns.pairplot(crash_df) # Load data on tips tips_df = sns.load_dataset('tips') # With hue you can pass in a categorical column and the charts will be colorized # You can use color maps from Matplotlib to define what colors to use # sns.pairplot(tips_df, hue='sex', palette='Blues') # ### Rug Plots # In[ ]: # Plots a single column of datapoints in an array as sticks on an axis # With a rug plot you'll see a more dense number of lines where the amount is # most common. This is like how a histogram is taller where values are more common sns.rugplot(tips_df['tip']) # ### Styling # In[ ]: # You can set styling for your axes and grids # white, darkgrid, whitegrid, dark, ticks sns.set_style('white') # In[ ]: # You can use figure sizing from Matplotlib plt.figure(figsize=(8,4)) # In[ ]: # Change size of lables, lines and other elements to best fit # how you will present your data (paper, talk, poster) sns.set_context('paper', font_scale=1.4) # In[ ]: sns.jointplot(x='speeding', y='alcohol', data=crash_df, kind='reg') # In[ ]: # Get rid of spines # You can turn of specific spines with right=True, left=True # bottom=True, top=True sns.despine(left=False, bottom=False) # # Categorical Plots # ### Bar Plots # In[ ]: # Focus on distributions using categorical data in reference to one of the numerical # columns # Aggregate categorical data based on a function (mean is the default) # Estimate total bill amount based on sex # With estimator you can define functions to use other than the mean like those # provided by NumPy : median, std, var, cov or make your own functions sns.barplot(x='sex',y='total_bill',data=tips_df, estimator=np.median) # ### Count Plot # In[ ]: # A count plot is like a bar plot, but the estimator is counting # the number of occurances sns.countplot(x='sex',data=tips_df) # ### Box Plot # In[ ]: plt.figure(figsize=(14,9)) sns.set_style('darkgrid') # A box plot allows you to compare different variables # The box shows the quartiles of the data. The bar in the middle is the median and # the box extends 1 standard deviation from the median # The whiskers extend to all the other data aside from the points that are considered # to be outliers # Hue can add another category being sex # We see men spend way more on Friday versus less than women on Saturday sns.boxplot(x='day',y='total_bill',data=tips_df, hue='sex') # Moves legend to the best position plt.legend(loc=0) # ### Violin Plot # In[ ]: # Violin Plot is a combination of the boxplot and KDE # While a box plot corresponds to data points, the violin plot uses the KDE estimation # of the data points # Split allows you to compare how the categories compare to each other sns.violinplot(x='day',y='total_bill',data=tips_df, hue='sex',split=True) # ### Strip Plot # In[ ]: plt.figure(figsize=(8,5)) # The strip plot draws a scatter plot representing all data points where one # variable is categorical. It is often used to show all observations with # a box plot that represents the average distribution # Jitter spreads data points out so that they aren't stacked on top of each other # Hue breaks data into men and women # Dodge separates the men and women data sns.stripplot(x='day',y='total_bill',data=tips_df, jitter=True, hue='sex', dodge=True) # ### Swarm Plot # In[ ]: # A swarm plot is like a strip plot, but points are adjusted so they don't overlap # It looks like a combination of the violin and strip plots # sns.swarmplot(x='day',y='total_bill',data=tips_df) # In[ ]: # You can stack a violin plot with a swarm sns.violinplot(x='day',y='total_bill',data=tips_df) sns.swarmplot(x='day',y='total_bill',data=tips_df, color='white') # ### Palettes # In[ ]: plt.figure(figsize=(8,6)) sns.set_style('dark') sns.set_context('talk') # In[ ]: # You can use Matplotlibs color maps for color styling # https://matplotlib.org/3.3.1/tutorials/colors/colormaps.html sns.stripplot(x='day',y='total_bill',data=tips_df, hue='sex', palette='seismic') # In[ ]: # Add the optional legend with a location number (best: 0, # upper right: 1, upper left: 2, lower left: 3, lower right: 4, # https://matplotlib.org/3.3.1/api/_as_gen/matplotlib.pyplot.legend.html) # or supply a tuple of x & y from lower left plt.legend(loc=0) # # Matrix Plots # ### Heatmaps # In[ ]: plt.figure(figsize=(8,6)) sns.set_context('paper', font_scale=1.4) # To create a heatmap with data you must have data set up as a matrix where variables are on the columns and rows # In[ ]: # Correlation tells you how influential a variable is on the result # So we see that n previous accident is heavily correlated with accidents, while the insurance premium is not crash_mx = crash_df.corr() # In[ ]: # Create the heatmap, add annotations and a color map sns.heatmap(crash_mx, annot=True, cmap='Blues') # In[ ]: plt.figure(figsize=(8,6)) sns.set_context('paper', font_scale=1.4) # In[ ]: # We can create a matrix with an index of month, columns representing years # and the number of passengers for each # We see that flights have increased over time and that most people travel in # July and August flights = sns.load_dataset("flights") flights = flights.pivot_table(index='month', columns='year', values='passengers') # In[ ]: # You can separate data with lines sns.heatmap(flights, cmap='Blues', linecolor='white', linewidth=1) # ### Cluster Map # In[ ]: plt.figure(figsize=(8,6)) sns.set_context('paper', font_scale=1.4) # In[ ]: # A Cluster map is a hierarchically clustered heatmap # The distance between points is calculated, the closest are joined, and this # continues for the next closest (It compares columns / rows of the heatmap) # This is data on iris flowers with data on petal lengths iris = sns.load_dataset("iris") # Return values for species # species = iris.pop("species") # sns.clustermap(iris) # In[ ]: # With our flights data we can see that years have been reoriented to place # like data closer together # You can see clusters of data for July & August for the years 59 & 60 # standard_scale normalizes the data to focus on the clustering sns.clustermap(flights,cmap="Blues", standard_scale=1) # ### PairGrid # In[ ]: plt.figure(figsize=(8,6)) sns.set_context('paper', font_scale=1.4) # In[ ]: # You can create a grid of different plots with complete control over what is displayed # Create the empty grid system using the provided data # Colorize based on species # iris_g = sns.PairGrid(iris, hue="species") # In[ ]: # Put a scatter plot across the upper, lower and diagonal # iris_g.map(plt.scatter) # In[ ]: # Put a histogram on the diagonal # iris_g.map_diag(plt.hist) # And a scatter plot every place else # iris_g.map_offdiag(plt.scatter) # In[ ]: # Have different plots in upper, lower and diagonal # iris_g.map_upper(plt.scatter) # iris_g.map_lower(sns.kdeplot) # In[ ]: # You can define define variables for x & y for a custom grid iris_g = sns.PairGrid(iris, hue="species", x_vars=["sepal_length", "sepal_width"], y_vars=["petal_length", "petal_width"]) iris_g.map(plt.scatter) # In[ ]: # Add a legend last iris_g.add_legend() # ### Facet Grid # In[ ]: # Can also print multiple plots in a grid in which you define columns & rows # Get histogram for smokers and non with total bill for lunch & dinner tips_fg = sns.FacetGrid(tips_df, col='time', row='smoker') # In[ ]: # You can pass in attributes for the histogram tips_fg.map(plt.hist, "total_bill", bins=8) # In[ ]: # Create a scatter plot with data on total bill & tip (You need to parameters) tips_fg.map(plt.scatter, "total_bill", "tip") # In[ ]: # We can assign variables to different colors and increase size of grid # Aspect is 1.3 x the size of height # You can change the order of the columns # Define the palette used tips_fg = sns.FacetGrid(tips_df, col='time', hue='smoker', height=4, aspect=1.3, col_order=['Dinner', 'Lunch'], palette='Set1') tips_fg.map(plt.scatter, "total_bill", "tip", edgecolor='w') # In[ ]: # Define size, linewidth and assign a color of white to markers kws = dict(s=50, linewidth=.5, edgecolor="w") # Define that we want to assign different markers to smokers and non tips_fg = sns.FacetGrid(tips_df, col='sex', hue='smoker', height=4, aspect=1.3, hue_order=['Yes','No'], hue_kws=dict(marker=['^', 'v'])) tips_fg.map(plt.scatter, "total_bill", "tip", **kws) tips_fg.add_legend() # In[ ]: # This dataframe provides scores for different students based on the level # of attention they could provide during testing att_df = sns.load_dataset("attention") # In[ ]: # Put each person in their own plot with 5 per line and plot their scores att_fg = sns.FacetGrid(att_df, col='subject', col_wrap=5, height=1.5) att_fg.map(plt.plot, 'solutions', 'score', marker='.') # ### Regression Plots # In[ ]: # lmplot combines regression plots with facet grid tips_df = sns.load_dataset('tips') tips_df.head() # In[ ]: plt.figure(figsize=(8,6)) sns.set_context('paper', font_scale=1.4) plt.figure(figsize=(8,6)) # We can plot a regression plot studying whether total bill effects the tip # hue is used to show separation based off of categorical data # We see that males tend to tip slightly more # Define different markers for men and women # You can effect the scatter plot by passing in a dictionary for styling of markers sns.lmplot(x='total_bill', y='tip', hue='sex', data=tips_df, markers=['o', '^'], scatter_kws={'s': 100, 'linewidth': 0.5, 'edgecolor': 'w'}) # In[ ]: # You can separate the data into separate columns for day data # sns.lmplot(x='total_bill', y='tip', col='sex', row='time', data=tips_df) tips_df.head() # Makes the fonts more readable sns.set_context('poster', font_scale=1.4) sns.lmplot(x='total_bill', y='tip', data=tips_df, col='day', hue='sex', height=8, aspect=0.6)
[ "talhaofficialwork@gmail.com" ]
talhaofficialwork@gmail.com
094285e188cc74e8c610f2daa584348e0873f7ca
6237a4d717a7055c9b0f1de3204554cbf5069b62
/UserLog/urls.py
4457c41a32857ba13cffcc92a2bd40f237eea06e
[]
no_license
sylvia198591/BookProject
180b9072c13cad5a5f996d60946caab78ae503b1
eabfb6cfe63e45f7f73c1500bad6aa8d3a1c62fb
refs/heads/master
2023-03-27T00:25:10.827236
2021-03-22T08:43:49
2021-03-22T08:43:49
350,118,352
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
from django.urls import path from UserLog import views from django.conf.urls import url from UserLog import views from UserLog.views import ExampleView, CustomAuthToken urlpatterns = [ path('api/users/',ExampleView.as_view()), path('api/token/auth/', CustomAuthToken.as_view()), ]
[ "sylvia.anitha@gmail.com" ]
sylvia.anitha@gmail.com
1e189f1ce03846ffe4d1f30d329b5694e3540608
ecdb99b66c3f40a66c7123b8f8ac8e1f2772c8da
/random_request.py
112757d9569c0e17f92bd403ddb01e0e7927486a
[]
no_license
kannanenator/haikus-from-wikipedia
ef8168e310bb8190a6b457c5d2f4be09db21bc6f
a404033fcd8f4850e150b0a820d8be4974cd6eb4
refs/heads/master
2020-04-05T23:09:27.083860
2019-11-04T00:05:19
2019-11-04T00:05:19
57,425,787
1
0
null
null
null
null
UTF-8
Python
false
false
774
py
import requests from bs4 import BeautifulSoup import sys # runs on python 3.5 def request_random(): '''Request random wikipedia article, return html_doc''' r = requests.get('https://en.wikipedia.org/wiki/Special:Random') return r.content, r.url def parse_article(article): '''parse html and get relevant (main paragraph) text out the article''' soup = BeautifulSoup(article, 'html.parser') paragraphs = soup.find_all("p") ps = (" ").join([elem.text for elem in paragraphs]) title = soup.find("h1", id="firstHeading").text return ps, title def get_random_text(): '''puts the full request together''' html_doc, url = request_random() parsed, title = parse_article(html_doc) return parsed, title, url if __name__ == "__main__": print(get_random_text())
[ "kannanenator.gmail.com" ]
kannanenator.gmail.com
1140e573f0619909625e7218b1ff94f7d6402bec
dc849231858f6a1378c8fb52e81035d20e48e321
/Lab3/实验代码/2/bookmanager/forms.py
2d4e7e98b82012568e11fb05f6f64edd4ae53506
[]
no_license
Fooo0/Software-Engineering
05413854f9ee54b14034bcb0f182643b2fb985de
47c65bc7b291352ea590ea168bf30a32b1e25363
refs/heads/master
2021-01-10T17:20:59.748108
2016-02-20T14:35:52
2016-02-20T14:35:52
52,155,632
0
0
null
null
null
null
UTF-8
Python
false
false
1,662
py
# -*- coding: utf-8 -*- from django import forms from bookmanager.models import Book, Author class Form_Book_new(forms.ModelForm): class Meta: model = Book fields = ('Title','AuthorID','Publisher', 'PublishDate', 'Price') error_messages = { 'Title': {'required' : '请填写书名'}, 'AuthorID' : {'required' : '请填写作者ID'}, 'Publisher' : {'required' : '请填写出版社'}, 'Price' : {'required' : '请填写价格'}, } def __init__(self, *args, **kwargs): super(Form_Book_new, self).__init__(*args, **kwargs) self.fields['PublishDate'].widget = forms.TextInput(attrs={ 'placeholder': "格式举例:1995-05-28"}) class Form_Book_update(forms.ModelForm): class Meta: model = Book fields = ('AuthorID','Publisher', 'PublishDate', 'Price') error_messages = { 'AuthorID' : {'required' : '请填写作者ID'}, 'Publisher' : {'required' : '请填写出版社'}, 'Price' : {'required' : '请填写价格'}, } def __init__(self, *args, **kwargs): super(Form_Book_update, self).__init__(*args, **kwargs) self.fields['PublishDate'].widget = forms.TextInput(attrs={ 'placeholder': "格式举例:1995-05-28"}) class Form_Author(forms.ModelForm): class Meta: model = Author fields = ('Name','Age','Country',) error_messages = { 'Name': {'required' : '请填写作者姓名',}, 'Country' : {'required' : '请填写作者国别',}, }
[ "xiao-fei-fei@qq.com" ]
xiao-fei-fei@qq.com
706672dfd171b2790a1fdce2493d5e185f065859
35831bbf46ee61be24a27983deaafe0247b0d141
/2-body-sim.py
8a0e9f7a8a8c937a1352b14fe2bce9da5acfeb30
[]
no_license
austinpower1258/3-Body-Problem
15ae4b8c93b30b433e574f4fcf0f17fa8d7081c3
efe344e299fb9dd7b6ab960a177b4becbfdfa96e
refs/heads/main
2023-06-27T08:34:37.893727
2021-08-03T04:48:20
2021-08-03T04:48:20
392,190,318
0
0
null
2021-08-03T04:47:37
2021-08-03T04:37:43
null
UTF-8
Python
false
false
2,799
py
#Utilizing Newton's Law of Gravitation to model the 3 Body Problem. import scipy as sci import scipy.integrate import matplotlib.pyplot as plt from mpt_toolkits.mplot3d import Axes3D from matplotlib import animation G = 6.6741e-11 m_nd = 1.989e+30 #mass of sun r_nd = 5.326e+12 #distance between stars in Alpha Centauri v_nd = 30000 #relative velocity of earth around sun t_nd=79.91*365*24*3600*0.51 #orbital period of Alpha Centauri K1=G*t_nd*m_nd/(r_nd**2*v_nd) K2=v_nd*t_nd/r_nd #Define masses m1=1.1 #Alpha Centauri A m2=0.907 #Alpha Centauri B #Define initial position vectors r1=[-0.5,0,0] #m r2=[0.5,0,0] #m #Convert pos vectors to arrays r1=sci.array(r1,dtype="float64") r2=sci.array(r2,dtype="float64") #Find Centre of Mass r_com=(m1*r1+m2*r2)/(m1+m2) #Define initial velocities v1=[0.01,0.01,0] #m/s v2=[-0.05,0,-0.1] #m/s #Convert velocity vectors to arrays v1=sci.array(v1,dtype="float64") v2=sci.array(v2,dtype="float64") #Find velocity of COM v_com=(m1*v1+m2*v2)/(m1+m2) #A function defining the equations of motion def TwoBodyEquations(w,t,G,m1,m2): r1=w[:3] r2=w[3:6] v1=w[6:9] v2=w[9:12] r=sci.linalg.norm(r2-r1) #Calculate magnitude or norm of vector dv1bydt=K1*m2*(r2-r1)/r**3 dv2bydt=K1*m1*(r1-r2)/r**3 dr1bydt=K2*v1 dr2bydt=K2*v2 r_derivs=sci.concatenate((dr1bydt,dr2bydt)) derivs=sci.concatenate((r_derivs,dv1bydt,dv2bydt)) return derivs #Package initial parameters init_params=sci.array([r1,r2,v1,v2]) #create array of initial params init_params=init_params.flatten() #flatten array to make it 1D time_span=sci.linspace(0,8,500) #8 orbital periods and 500 points #Run the ODE solver two_body_sol=sci.integrate.odeint(TwoBodyEquations,init_params,time_span,args=(G,m1,m2)) r1_sol=two_body_sol[:,:3] r2_sol=two_body_sol[:,3:6] #Create figure fig=plt.figure(figsize=(15,15)) #Create 3D axes ax=fig.add_subplot(111,projection="3d") #Plot the orbits ax.plot(r1_sol[:,0],r1_sol[:,1],r1_sol[:,2],color="darkblue") ax.plot(r2_sol[:,0],r2_sol[:,1],r2_sol[:,2],color="tab:red") #Plot the final positions of the stars ax.scatter(r1_sol[-1,0],r1_sol[-1,1],r1_sol[-1,2],color="darkblue",marker="o",s=100,label="Alpha Centauri A") ax.scatter(r2_sol[-1,0],r2_sol[-1,1],r2_sol[-1,2],color="tab:red",marker="o",s=100,label="Alpha Centauri B") #Add a few more bells and whistles ax.set_xlabel("x-coordinate",fontsize=14) ax.set_ylabel("y-coordinate",fontsize=14) ax.set_zlabel("z-coordinate",fontsize=14) ax.set_title("Visualization of orbits of stars in a two-body system\n",fontsize=14) ax.legend(loc="upper left",fontsize=14) #Find location of COM rcom_sol=(m1*r1_sol+m2*r2_sol)/(m1+m2) #Find location of Alpha Centauri A w.r.t COM r1com_sol=r1_sol-rcom_sol #Find location of Alpha Centauri B w.r.t COM r2com_sol=r2_sol-rcom_sol
[ "austinpower1258@gmail.com" ]
austinpower1258@gmail.com
0af3b29891b6fbebdeee1c25209ba88f7d067e45
362591481e20b0cfb65d92829698d7defe22c4c4
/themarket/products/migrations/0001_initial.py
37b01d4360f441392b8fe107fafc8561743f5801
[]
no_license
wahello/themarket
595025d62e1f7b00a78798475b2d8e9a2e2fe443
23fb34d7e850f50d9c7defd0de2649611086ea0f
refs/heads/master
2020-08-01T19:43:17.681826
2018-09-03T11:27:05
2018-09-03T11:27:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
909
py
# Generated by Django 2.0.6 on 2018-08-02 11:57 from django.db import migrations, models import products.models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('slug', models.SlugField(blank=True, unique=True)), ('description', models.TextField()), ('price', models.DecimalField(decimal_places=2, default=19.99, max_digits=25)), ('image', models.ImageField(blank=True, null=True, upload_to=products.models.upload_image_path)), ('featured', models.BooleanField(default=False)), ], ), ]
[ "peadarh10@gmail.com" ]
peadarh10@gmail.com
5cfdb1953496c336c527e9960195efc031c7c309
c09b12ec1e56ff679c9795c48d828d832630e49f
/hw6/webapps/urls.py
f42d5dabb59476e001a7d847daa9524edeb0bd7d
[]
no_license
justinguo/Web-Application-Development
9bceda6bb3359eea2f5f03b88b638218d7a51f4f
23eb79359b0ad3b202b32d55ba33ccd1e40d4d6a
refs/heads/master
2021-01-21T05:16:55.119537
2017-02-25T22:15:51
2017-02-25T22:15:51
83,166,202
0
0
null
null
null
null
UTF-8
Python
false
false
207
py
from django.conf.urls import patterns, include, url from django.contrib import admin urlpatterns = patterns('', url(r'^admin/', include(admin.site.urls)), url(r'', include('socialnetwork.urls')), )
[ "justinguo317@gmail.com" ]
justinguo317@gmail.com
a64a605f728f7e372b162f11ff7618200ec903bc
beebc5ff44407f3f3a4c1463cd09f0917dbe5391
/pytype/tools/merge_pyi/test_data/simple.comment.py
1b8f2e1604e2a1c309c4cf80b2abc6b62ca7c58b
[ "Apache-2.0", "MIT" ]
permissive
mraarif/pytype
4f190cb2591896133761295f3d84d80602dffb58
546e8b8114c9af54a409985a036398c4f6955677
refs/heads/master
2023-01-23T09:48:06.239353
2020-12-02T06:08:27
2020-12-02T06:08:27
303,069,915
1
0
NOASSERTION
2020-12-02T06:08:28
2020-10-11T07:53:55
null
UTF-8
Python
false
false
169
py
from typing import Any def f1(a, b): # type: (Any, Any) -> r1 """Doc""" return a+b def f2(a): # type: (Any) -> r2 return 1 def f3(a): return 1
[ "rechen@google.com" ]
rechen@google.com
f4cf95f415d6cafda447424f9f68a0875e3b4189
9cba18b1811fb6d4447627b6f6b64c18167cd590
/sclp028.py
ed5373544f969af84b6b6ec87aedd7649596f469
[]
no_license
kh4r00n/SoulCodeLP
45e10778c3b894dbaadad46b213d25daf557f2a0
a104852d26edf0b11b23ec2545c9422e9ba42c6e
refs/heads/main
2023-08-10T22:46:01.123331
2021-10-05T03:02:36
2021-10-05T03:02:36
411,645,788
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
''' Crie u programa que leia um número de 3 dígitos ''' num = int(input('Digite um número: ')) while num < 100 or num > 999: num = int(input('O numero nao tem 3 digitos. Digite novamente:'))
[ "noreply@github.com" ]
kh4r00n.noreply@github.com
8a42837ead36a6a7bd40e72a709707c10b2da8a9
6f23d4d5cfd3b464457c6622e662af87bf957125
/crudapp/migrations/0010_auto_20200819_1604.py
80dc406f0446374f0e353312f24fc4bcc9316965
[]
no_license
RohiniPunde/crud
31c411662350d1f85f334e3cad3adcf63c2098a9
a2ff0b051234f3c1584b8dadbc58ff01d9222730
refs/heads/master
2022-12-15T18:45:37.175833
2020-08-29T16:33:37
2020-08-29T16:33:37
287,257,366
0
0
null
2020-08-29T16:33:38
2020-08-13T11:09:54
Python
UTF-8
Python
false
false
389
py
# Generated by Django 3.0.3 on 2020-08-19 23:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('crudapp', '0009_auto_20200819_1556'), ] operations = [ migrations.AlterField( model_name='customer', name='phone', field=models.BigIntegerField(null=True), ), ]
[ "punderohini@gmail.com" ]
punderohini@gmail.com
4c3c2cc9d54d334c6c07cfddc33d6c9c853a2442
4be56098894a95da5964622fc4102b69e4530ab6
/题库/1032.等式方程的可满足性.py
7023bb9ec8392f37b654506730bd4b9421433cc1
[]
no_license
ACENDER/LeetCode
7c7c7ecc8d0cc52215272f47ec34638637fae7ac
3383b09ab1246651b1d7b56ab426a456f56a4ece
refs/heads/master
2023-03-13T19:19:07.084141
2021-03-15T09:29:21
2021-03-15T09:29:21
299,332,864
0
0
null
null
null
null
UTF-8
Python
false
false
95
py
# !/usr/bin/env python3 # -*- coding: utf-8 -*- # @File : 1032.等式方程的可满足性.py
[ "1641429327@qq.com" ]
1641429327@qq.com
eb357b4506f5f70ef0b18f378e976d94d6b2f4e8
3943103da2b3bef6b8b60b5f20ae901be7e4d61b
/602/day02.py
553fd27c2021b09c7e781bfcd47b81a9e91d4215
[]
no_license
shangtengjun/spider
03006934f200e0efb5a4636a82fba7a1a576dd04
dc503ad949cbde7447b52425d66a94df7b43c19b
refs/heads/master
2022-12-09T21:46:40.386697
2020-09-09T08:33:17
2020-09-09T08:33:17
281,431,432
0
0
null
null
null
null
UTF-8
Python
false
false
1,429
py
# coding:utf-8 import requests headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36"} s = 0 for i in range(20): http_url = "http://tieba.baidu.com/f?kw=%E5%B9%BF%E4%B8%9C%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%8D%8E%E7%AB%8B%E5%AD%A6%E9%99%A2&ie=utf-8&pn="+str(s) response = requests.get(http_url, headers=headers) html_content = response.content.decode('utf-8') s += 50 r = open('.\class602\贴吧{}'.format(i+1),'w',encoding='utf-8') r.write(html_content) r.close() ''' tu = ['https://game.gtimg.cn/images/yxzj/img201606/skin/hero-info/112/112-bigskin-1.jpg','https://game.gtimg.cn/images/yxzj/img201606/skin/hero-info/513/513-bigskin-2.jpg','https://game.gtimg.cn/images/yxzj/img201606/skin/hero-info/199/199-bigskin-2.jpg','https://game.gtimg.cn/images/yxzj/img201606/skin/hero-info/167/167-bigskin-5.jpg','https://game.gtimg.cn/images/yxzj/img201606/skin/hero-info/123/123-bigskin-2.jpg','https://game.gtimg.cn/images/yxzj/img201606/skin/hero-info/184/184-bigskin-1.jpg'] headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36"} for i in range(6): response = requests.get(tu[i], headers=headers) r = open('.\class602\图片{}'.format(i+1),'wb') r.write(response.content) r.close() '''
[ "358695374@qq.com" ]
358695374@qq.com
19767bc330f5767b57969673ea3e52cc7fd126c3
f7023b1c89a0dda7555b1eb84208a2d30cc9e8f8
/experimentFiles/experiment/ui_MainWindow.py
67b04bfb2b762476dcf8dc5ab367076846ada9b0
[]
no_license
mercedes92/VisualIKExperiment
fc7424c0f827aa695bf1d34d8e4c7f5cf21e46d0
a9cfa1e541c1822cf7e6bc116c482f5fc289722e
refs/heads/master
2021-01-10T19:53:36.790976
2015-08-21T11:56:54
2015-08-21T11:56:54
39,624,961
0
0
null
null
null
null
UTF-8
Python
false
false
5,165
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'mainUI.ui' # # Created: Thu Jul 2 18:53:45 2015 # by: PyQt4 UI code generator 4.11.2 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_guiDlg(object): def setupUi(self, guiDlg): guiDlg.setObjectName(_fromUtf8("guiDlg")) guiDlg.resize(915, 569) self.verticalLayout = QtGui.QVBoxLayout(guiDlg) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.testButton = QtGui.QPushButton(guiDlg) self.testButton.setObjectName(_fromUtf8("testButton")) self.horizontalLayout.addWidget(self.testButton) self.stopButton = QtGui.QPushButton(guiDlg) self.stopButton.setObjectName(_fromUtf8("stopButton")) self.horizontalLayout.addWidget(self.stopButton) self.verticalLayout.addLayout(self.horizontalLayout) self.line = QtGui.QFrame(guiDlg) self.line.setFrameShape(QtGui.QFrame.HLine) self.line.setFrameShadow(QtGui.QFrame.Sunken) self.line.setObjectName(_fromUtf8("line")) self.verticalLayout.addWidget(self.line) self.errorLabel = QtGui.QLabel(guiDlg) self.errorLabel.setObjectName(_fromUtf8("errorLabel")) self.verticalLayout.addWidget(self.errorLabel) self.scrollArea_2 = QtGui.QScrollArea(guiDlg) self.scrollArea_2.setWidgetResizable(True) self.scrollArea_2.setObjectName(_fromUtf8("scrollArea_2")) self.scrollAreaWidgetContents_2 = QtGui.QWidget() self.scrollAreaWidgetContents_2.setGeometry(QtCore.QRect(0, 0, 893, 205)) self.scrollAreaWidgetContents_2.setObjectName(_fromUtf8("scrollAreaWidgetContents_2")) self.gridLayout_2 = QtGui.QGridLayout(self.scrollAreaWidgetContents_2) self.gridLayout_2.setObjectName(_fromUtf8("gridLayout_2")) self.textEdit_2 = QtGui.QTextEdit(self.scrollAreaWidgetContents_2) self.textEdit_2.setMinimumSize(QtCore.QSize(800, 100)) self.textEdit_2.setMaximumSize(QtCore.QSize(800, 200)) self.textEdit_2.setObjectName(_fromUtf8("textEdit_2")) self.gridLayout_2.addWidget(self.textEdit_2, 0, 0, 1, 1) self.scrollArea_2.setWidget(self.scrollAreaWidgetContents_2) self.verticalLayout.addWidget(self.scrollArea_2) self.line_2 = QtGui.QFrame(guiDlg) self.line_2.setFrameShape(QtGui.QFrame.HLine) self.line_2.setFrameShadow(QtGui.QFrame.Sunken) self.line_2.setObjectName(_fromUtf8("line_2")) self.verticalLayout.addWidget(self.line_2) self.poseLabel = QtGui.QLabel(guiDlg) self.poseLabel.setObjectName(_fromUtf8("poseLabel")) self.verticalLayout.addWidget(self.poseLabel) self.scrollArea = QtGui.QScrollArea(guiDlg) self.scrollArea.setWidgetResizable(True) self.scrollArea.setObjectName(_fromUtf8("scrollArea")) self.scrollAreaWidgetContents = QtGui.QWidget() self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 874, 341)) self.scrollAreaWidgetContents.setObjectName(_fromUtf8("scrollAreaWidgetContents")) self.gridLayout = QtGui.QGridLayout(self.scrollAreaWidgetContents) self.gridLayout.setObjectName(_fromUtf8("gridLayout")) self.textEdit = QtGui.QTextEdit(self.scrollAreaWidgetContents) self.textEdit.setMinimumSize(QtCore.QSize(800, 300)) self.textEdit.setMaximumSize(QtCore.QSize(16777215, 300)) self.textEdit.setUndoRedoEnabled(False) self.textEdit.setReadOnly(True) self.textEdit.setObjectName(_fromUtf8("textEdit")) self.gridLayout.addWidget(self.textEdit, 1, 0, 1, 1) self.ficheroLabel = QtGui.QLabel(self.scrollAreaWidgetContents) self.ficheroLabel.setObjectName(_fromUtf8("ficheroLabel")) self.gridLayout.addWidget(self.ficheroLabel, 0, 0, 1, 1) self.scrollArea.setWidget(self.scrollAreaWidgetContents) self.verticalLayout.addWidget(self.scrollArea) self.retranslateUi(guiDlg) QtCore.QMetaObject.connectSlotsByName(guiDlg) def retranslateUi(self, guiDlg): guiDlg.setWindowTitle(_translate("guiDlg", "visualiktester", None)) self.testButton.setText(_translate("guiDlg", "Run test", None)) self.stopButton.setText(_translate("guiDlg", "Stop", None)) self.errorLabel.setText(_translate("guiDlg", "Error Detectado:", None)) self.poseLabel.setText(_translate("guiDlg", "Pose Actual:", None)) self.ficheroLabel.setText(_translate("guiDlg", "Datos del fichero: ", None))
[ "mpaolett@alumnos.unex.es" ]
mpaolett@alumnos.unex.es
58e2a64da4f5f9392df906fa7ed03792da1a3d60
dfbe8dacccf9527c6448e5edaf0568342b918a19
/src/dataset/dtd_dataset.py
80d2a42084e9ef7ad4d068118a0d2c2eec1b66a1
[ "MIT" ]
permissive
FabianGroeger96/semantic-segmentation-dtd
e0add90e97f8d052690f3244426d19108bf5fb2c
084a0ab5807e912bee80ae2dcf5f22b7ef8579a1
refs/heads/main
2023-05-09T04:33:15.104499
2021-06-02T16:35:06
2021-06-02T16:35:06
325,009,577
3
0
MIT
2020-12-31T08:11:29
2020-12-28T12:41:09
Python
UTF-8
Python
false
false
6,532
py
import os import math import numpy as np import tensorflow as tf from tensorflow.keras.layers.experimental.preprocessing import RandomFlip, RandomRotation, RandomContrast, RandomTranslation from pathlib import Path from src.settings.settings import Settings class DTDDataset: """ Dataset representation for the Describable Textures Dataset (DTD). Link to dataset: https://www.robots.ox.ac.uk/~vgg/data/dtd/ Implemented as Singleton. """ # instance of the class __instance = None @staticmethod def get_instance(settings: Settings, log: bool = False): """ Static access method. """ if DTDDataset.__instance is None: DTDDataset(settings=settings, log=log) return DTDDataset.__instance def __init__(self, settings: Settings, log: bool = False, name: str = 'DTD'): """ Virtually private constructor. """ # throw exception if at initialization an instance already exists if DTDDataset.__instance is not None: raise Exception('Dataset should be a singleton \ and instance is not None at initialization.') else: DTDDataset.__instance = self # parameters self.log = log self.name = name self.settings = settings self.AUTOTUNE = tf.data.experimental.AUTOTUNE # True: one hot encoding for categorical # False: no one hot encoding for sparse catecorical self.one_hot = True # define datasets self.train_ds = None self.val_ds = None self.test_ds = None # define data augmentation self.data_augmentation = tf.keras.Sequential([ RandomFlip("horizontal_and_vertical"), RandomRotation(0.4), RandomContrast(0.4), RandomTranslation(0.2, 0.2, fill_mode='reflect'), ]) # define the folders of the dataset train_folder = 'dtd_train' val_folder = 'dtd_val' test_folder = 'dtd_test' # if tiled should be used if settings.use_tiled: if log: print('Using tiled dataset') train_folder += '_tiled' val_folder += '_tiled' test_folder += '_tiled' # load datasets self.train_ds, train_size = self.create_dataset( os.path.join(self.settings.dataset_path, train_folder)) self.train_steps = math.floor(train_size / self.settings.batch_size) self.val_ds, val_size = self.create_dataset( os.path.join(self.settings.dataset_path, val_folder)) self.val_steps = math.floor(val_size / self.settings.batch_size) self.test_ds, test_size = self.create_dataset( os.path.join(self.settings.dataset_path, test_folder), repeat=False) self.test_steps = math.floor(test_size / self.settings.batch_size) def _parse_function(self, image_filename, label_filename, channels: int): """ Parse image and label and return them. The image is divided by 255.0 and returned as float, the label is returned as is in uint8 format. Args: image_filename: name of the image file label_filename: name of the label file channels: channels of the input image, (the label is always one channel) Returns: tensors for the image and label read operations """ image_string = tf.io.read_file(image_filename) image_decoded = tf.image.decode_png(image_string, channels=channels) image_decoded = tf.image.convert_image_dtype( image_decoded, dtype=tf.float32) # normalize image to zero mean image = tf.multiply(image_decoded, 2.0) image = tf.subtract(image, 1.0) label_string = tf.io.read_file(label_filename) label = tf.image.decode_png(label_string, dtype=tf.uint8, channels=1) return image, label @staticmethod def load_files(data_dir: str): path = Path(data_dir) image_files = list(path.glob('image*.png')) label_files = list(path.glob('label*.png')) # make sure they are in the same order image_files.sort() label_files.sort() image_files_array = np.asarray([str(p) for p in image_files]) label_files_array = np.asarray([str(p) for p in label_files]) return image_files_array, label_files_array def create_dataset(self, data_dir: str, repeat: bool=True): image_files_array, label_files_array = self.load_files(data_dir) dataset = tf.data.Dataset.from_tensor_slices((image_files_array, label_files_array)) # shuffle the filename, unfortunately, then we cannot cache them dataset = dataset.shuffle(buffer_size=10000) # read the images dataset = dataset.map( lambda image, file: self._parse_function( image, file, self.settings.patch_channels)) # Set the sizes of the input image, as keras needs to know them dataset = dataset.map( lambda x, y: ( tf.reshape(x, shape=( self.settings.patch_size, self.settings.patch_size, self.settings.patch_channels)), tf.reshape(y, shape=( self.settings.patch_size, self.settings.patch_size)))) # cut center of the label image in order to use valid filtering in the # network b = self.settings.patch_border if b != 0: dataset = dataset.map(lambda x, y: (x, y[b:-b, b:-b])) if self.one_hot: # reshape the labels to 1d array and do one-hot encoding dataset = dataset.map(lambda x, y: (x, tf.reshape(y, shape=[-1]))) dataset = dataset.map( lambda x, y: ( x, tf.one_hot( y, depth=self.settings.n_classes, dtype=tf.float32))) if self.settings.augment: dataset = dataset.map( lambda x, y: (tf.squeeze(self.data_augmentation(tf.expand_dims(x, 0), training=True), 0), y), num_parallel_calls=self.AUTOTUNE) # batch dataset dataset = dataset.batch(self.settings.batch_size).prefetch(1000) # repeat dataset if repeat: dataset = dataset.repeat() return dataset, image_files_array.size
[ "fabian.groeger@bluewin.ch" ]
fabian.groeger@bluewin.ch
453b76f5dada5d070199968e11ec8472ff2c4592
8ae061d040e16305d4025128b9bf0dfa2d77e6e1
/wordbook/pymodule/machine_learning/module/preprocessing/__init__.py
86473b6829de9d55cba7c2eba4aa35d20b70a6a6
[]
no_license
shiinokinoki/flashcard
313a6b14d1016b2f9b3cd14b1792d3bc0f7fc2cd
144f867d364a1c53a457a0a8bebcc0e42da6c39f
refs/heads/master
2022-12-17T11:26:00.241838
2020-09-19T11:42:46
2020-09-19T11:42:46
294,350,980
0
0
null
2020-09-18T01:20:02
2020-09-10T08:33:20
CSS
UTF-8
Python
false
false
61
py
from ._data import Image_for_ocr __all__ = ['Image_for_ocr']
[ "shue@shiikishuueinoMacBook-Air.local" ]
shue@shiikishuueinoMacBook-Air.local
74c64ce4ae04ef8be29d1ae4925caa57cc9de28c
10cb919d03d1e50dda253c6e771d470c035f92d1
/proyecto/MotoGP/motogp_app.py
ba8fd9b0fd1f6c5b52d59405aa1df08e6db0097d
[]
no_license
JoseVP/Python-Avanzado
0c1dc0f75dfd259cadfd30d7ce4d2ae3cd3bbce9
ca7c8e346cb170b170af2f5931c02f0d684ec109
refs/heads/master
2021-01-10T21:28:07.926457
2012-05-30T10:33:25
2012-05-30T10:33:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,358
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import MySQLdb from gi.repository import Gtk import subprocess class Moto_GP: #-------------------FUNCIONES INTERNAS---------------------# #Carga los circuitos iniciales en los botones de la Ventana de inicio def cargar_circuitos_iniciales(self): self.carreras = ['Qatar', 'España', 'Portugal', 'Francia', 'Cataluña', 'Gran Bretaña', 'Holanda', 'Alemania', 'Italia', 'Estados Unidos' , 'Indianapolis', 'Republica Checa', 'San Marino' , 'Aragon', 'Japon' , 'Malasia', 'Australia', 'Valencia'] i=1 #Cargamos los nombres de las carreras en los botones de inicio for carrera in self.carreras: boton = self.builder.get_object('button%s'%i) boton.set_label(carrera) i+=1 #Carga los detalles del circuito deseado def cargar_informacion_circuito(self,circuito): Conexion = MySQLdb.connect(host='localhost', user='admin',passwd='motogpadmin', db='MotogpDB') micursor = Conexion.cursor(MySQLdb.cursors.DictCursor) query = "SELECT * FROM circuitos WHERE gran_premio = '%s'" % self.grandes_premios[circuito] micursor.execute(query) datos = micursor.fetchone() #Rellenamos las etiquetas con la informacion obtenida texto_datos = self.builder.get_object("texto_longitud") texto_datos.set_label(datos['longitud']) texto_datos = self.builder.get_object("texto_ancho") texto_datos.set_label(datos['anchura']) texto_datos = self.builder.get_object("texto_curvas_der") texto_datos.set_label(str(datos['curvas_der'])) texto_datos = self.builder.get_object("texto_curvas_izq") texto_datos.set_label(str(datos['curvas_izq'])) texto_datos = self.builder.get_object("texto_recta") texto_datos.set_label(datos['recta_larga']) texto_datos = self.builder.get_object("texto_fecha_const") texto_datos.set_label(datos['fecha_construccion']) texto_datos = self.builder.get_object("texto_fecha_mod") texto_datos.set_label(datos['fecha_modificacion']) texto_datos = self.builder.get_object("label_nombre") texto_datos.set_label('Gran Premio de %s - %s' % (circuito,datos['nombre'])) #Cerramos la conexion con la base de datos micursor.close () Conexion.close() #Carga los records del circuito deseado def cargar_records_circuito(self,circuito): Conexion = MySQLdb.connect(host='localhost', user='admin',passwd='motogpadmin', db='MotogpDB') micursor = Conexion.cursor(MySQLdb.cursors.DictCursor) #Obtenemos el id asociado al circuito para obtener los records exactos del circuito query = "SELECT id FROM circuitos WHERE gran_premio = '%s'" % self.grandes_premios[circuito] micursor.execute(query) id_circuito= micursor.fetchone() query = "SELECT * FROM records_circuitos WHERE id_circuito = '%s' ORDER BY categoria DESC" % id_circuito['id'] micursor.execute(query) records = micursor.fetchall() grid = self.builder.get_object("grid_records") #Guardamos la categoria inicial para compararla y ver cuando cambia la categoria en los datos cat_act = records[0]['categoria'] i = 2 for record in records: if (record['categoria'] != cat_act): #si la categoria ha cambiado comprobamos que categoria es #para asignar la fila en la que debemos empezar a rellenar los datos if(record['categoria'] == 'MotoGP'): i=2 elif (record['categoria'] == 'Moto2'): i=7 elif (record['categoria'] == '125cc'): i=12 cat_act = record['categoria'] label = self.builder.get_object("label_%s_%s" %(i,1)) #si temporada = 0 significa que no hay resultado #asi que en vez de mostrar un 0 en ese campo lo mostramos vacio if (record['temporada'] != 0): label.set_label(str(record['temporada'])) else: label.set_label('') label = self.builder.get_object("label_%s_%s" %(i,2)) label.set_label(record['piloto']) label = self.builder.get_object("label_%s_%s" %(i,3)) label.set_label(record['motocicleta']) label = self.builder.get_object("label_%s_%s" %(i,4)) label.set_label(record['tiempo']) label = self.builder.get_object("label_%s_%s" %(i,5)) label.set_label(record['velocidad']) i+=1 grid.show_all() #Devuelve una tupla con la imagen del circuito y de la bandera correspondiente def cargar_imagenes(self,circuito): imagenes= { 'Qatar' : 'resources/circuitos/qatar', 'España' : 'resources/circuitos/espana', 'Portugal' : 'resources/circuitos/portugal', 'Francia' : 'resources/circuitos/francia', 'Cataluña' : 'resources/circuitos/catalunya', 'Gran Bretaña' : 'resources/circuitos/gran_bretanya', 'Holanda' : 'resources/circuitos/holanda', 'Alemania' : 'resources/circuitos/alemania', 'Italia' : 'resources/circuitos/italia', 'Estados Unidos' : 'resources/circuitos/estados_unidos', 'Indianapolis' : 'resources/circuitos/indianapolis', 'Republica Checa' : 'resources/circuitos/republica_checa', 'San Marino' : 'resources/circuitos/san_marino', 'Aragon' : 'resources/circuitos/aragon', 'Japon' : 'resources/circuitos/japon', 'Malasia' : 'resources/circuitos/malasia', 'Australia' : 'resources/circuitos/australia', 'Valencia' : 'resources/circuitos/valencia', } return imagenes[circuito]+'-cir.jpg',imagenes[circuito]+'-band.png' #Lanza desde el sistema operativo el scrapper para obtener la informacion desde www.motogp.com/es def ejecutar_scrapper(self): Conexion = MySQLdb.connect(host='localhost', user='admin',passwd='motogpadmin', db='MotogpDB') micursor = Conexion.cursor(MySQLdb.cursors.DictCursor) #Para evitar la acumulación innecesaria de datos eliminamos primero las tablas #Solo necesitamos eliminar la tabla circuitos ya que por cascada #se vacia automaticamente la de records query = "DELETE FROM circuitos WHERE 1" micursor.execute(query) Conexion.commit() micursor.close() Conexion.close() #se lanza el scrapper sin log para no mostrar nada por el terminal subproceso = subprocess.Popen(['scrapy','crawl', 'circuitos','--nolog']) subprocess.Popen.wait(subproceso) #Comprueba que las tablas existan y si no es asi,las crea #De existir las tabas se comprueba que haya exactamente 18 circuitos def comprobar_tablas(self): Conexion = MySQLdb.connect(host='localhost', user='admin',passwd='motogpadmin', db='MotogpDB') micursor = Conexion.cursor(MySQLdb.cursors.DictCursor) query = "show tables" micursor.execute(query) tablas = micursor.fetchall() tabla_circuitos = False tabla_records = False tabla_correcta = True if tablas: for tabla in tablas: if 'circuitos' == tabla['Tables_in_MotogpDB']: tabla_circuitos = True if 'records_circuitos' == tabla['Tables_in_MotogpDB']: tabla_records = True if not tabla_circuitos: query =" CREATE TABLE circuitos (id int(10) auto_increment primary key,gran_premio varchar(100) not null,nombre varchar(100) not null,longitud varchar(100),anchura varchar(100),curvas_der int(2),curvas_izq int(2),recta_larga varchar(100),fecha_construccion varchar(100),fecha_modificacion varchar(100))ENGINE=INNODB" micursor.execute(query) Conexion.commit() else: query = " Select id from circuitos " num = micursor.execute(query) if num != 18 : tabla_correcta=False if not tabla_records: query =" CREATE TABLE records_circuitos (id int(10) auto_increment primary key,id_circuito int(10) not null,categoria varchar(100) not null,record varchar(100) not null,temporada int(4) not null,piloto varchar(100) not null,motocicleta varchar(100),tiempo varchar(100),velocidad varchar(100),foreign key (id_circuito) references circuitos(id) on delete cascade)ENGINE=INNODB;" micursor.execute(query) Conexion.commit() if not tabla_circuitos or not tabla_records or not tabla_correcta: return False else: return True def onInitialCircuit(self,boton): self.onVerCircuito(boton) self.window_inicial.hide() self.window.show_all() def onVerCircuito(self,menuitem): #cargamos las imagenes del circuito y la bandera del pais imagen = self.builder.get_object('imagen_circuito') circuito = menuitem.get_label() imagenes = self.cargar_imagenes(circuito) imagen.set_from_file(imagenes[0]) #cargamos la informacion y los records self.cargar_informacion_circuito(circuito) self.cargar_records_circuito(circuito) #ponemos como icono de la ventana la bandera del pais self.window.set_icon_from_file(imagenes[1]) bandera = self.builder.get_object('imagen_bandera') bandera.set_from_file(imagenes[1]) self.window.set_title("Circuito de %s" % circuito) def onShowAbout(self,menuitem): about = self.builder.get_object("about_dialog") about.run() about.destroy() def onActualizarCircuitos(self,item): #si el label del item es Aceptar significa que viene # del dialogo de error de comprobacion de tablas #por lo que no mostramos el dialogo para actualizacion if(item.get_label() != "Aceptar"): dialogo = self.builder.get_object("dialogo_actualizar") respuesta = dialogo.run() else: respuesta = 1 self.cargar_circuitos_iniciales() self.window_inicial.show_all() self.dialogo.hide() if respuesta == 1 : self.ejecutar_scrapper() #Una vez actualizados los datos se lo indicamos al usuario #suprimimos los botones para obligar a cerrar la ventana #y evitar que manipule la ventana principal texto = self.builder.get_object("label_actualizando") texto.set_label("Informacion de los circuitos Actualizada") boton = self.builder.get_object("button_aceptar") boton.hide() boton = self.builder.get_object("button_cancelar") boton.hide() else: dialogo.destroy() def __init__(self): self.builder = Gtk.Builder() self.builder.add_from_file("interfaz.glade") self.handlers = { "onDeleteWindow": Gtk.main_quit, "onVerCircuito": self.onVerCircuito, "onActualizarCircuitos":self.onActualizarCircuitos, "onInitialCircuit":self.onInitialCircuit, "onShowAbout":self.onShowAbout } self.builder.connect_signals(self.handlers) self.window = self.builder.get_object("window1") self.window_inicial = self.builder.get_object("window2") self.grandes_premios = { 'Qatar':'QAT' , 'España':'SPA', 'Portugal':'POR', 'Francia':'FRA', 'Cataluña':'CAT', 'Gran Bretaña':'GBR', 'Holanda':'NED', 'Alemania':'GER', 'Italia':'ITA', 'Estados Unidos':'USA' , 'Indianapolis':'INP', 'Republica Checa':'CZE', 'San Marino':'RSM' , 'Aragon':'ARA', 'Japon':'JPN' , 'Malasia':'MAL', 'Australia':'AUS', 'Valencia':'VAL'} #Antes de mostrar ninguna ventana se comprueba la base de datos if (self.comprobar_tablas()): self.cargar_circuitos_iniciales() self.window_inicial.show_all() else: self.dialogo = self.builder.get_object('dialogo_error_tablas') self.dialogo.show_all() def main(): window = Moto_GP() Gtk.main() return 0 if __name__ == '__main__': main()
[ "josevalenzuelaperez@gmail.com" ]
josevalenzuelaperez@gmail.com
29d967e22202502a0489bcd8d31f34e6cac31bb2
5be9fc95e24d4ee571f0edc4039caf7465563c06
/Problems/The army of units/main.py
4e708eb8148ea805daaa5c7bcaecb6adabfd7925
[]
no_license
helenlavr/Coffee-Machine
8a7e4ad83e36925d991346c8e87b6ccdb9c59681
938cfec67390185b929ccfca0d00dbdbb4ba489f
refs/heads/master
2023-01-01T21:27:22.449491
2020-10-15T10:40:41
2020-10-15T10:40:41
304,292,890
0
0
null
null
null
null
UTF-8
Python
false
false
232
py
units = int(input()) if units >= 1000: print('legion') elif units >= 500: print('swarm') elif units >= 50: print('horde') elif units >= 10: print('pack') elif units >= 1: print('few') else: print('no army')
[ "helenlav@stud.ntnu.no" ]
helenlav@stud.ntnu.no
9afe8e0f69ee47f22bd74b8e222360bc796ad45f
308dbc263ab71b1f424d9130e11e9d7d65de7945
/model/Armadura.py
b0bfbfb7f8a310b5b26c4f0a22391d0d5c685a2e
[]
no_license
rfgonzalez13/MHRiseApp
37cdb415568a6fc302899ea17da3746858809ae9
5166ef4c2027bfc6e7e9510eb1cfbbc50562e5a0
refs/heads/master
2023-07-25T08:49:31.516496
2021-09-09T15:40:26
2021-09-09T15:40:26
373,656,668
0
0
null
null
null
null
UTF-8
Python
false
false
440
py
# coding = utf-8 from google.appengine.ext import ndb class Armadura(ndb.Model): nombre = ndb.StringProperty(required=True, indexed=True) pk_nombre = ndb.StringProperty(required=True, indexed=True) casco = ndb.IntegerProperty(indexed=True) cota = ndb.IntegerProperty(indexed=True) brazales = ndb.IntegerProperty(indexed=True) faja = ndb.IntegerProperty(indexed=True) grebas = ndb.IntegerProperty(indexed=True)
[ "rfgonzalez@esei.uvigo.es" ]
rfgonzalez@esei.uvigo.es
49abdf437aff0bb64af3510ebc54df23c69483f5
7e3a860c5204ad3ba4320f7a5d5bb0d796c3d4fa
/scripts/helper/get_brightness.py
71fe14c7820506038407f1584509000df49518af
[]
no_license
dot361/Weak-radio-signal-data-processing
9a019b5bdd1258b9acf9852122f03588df67f12d
2f305263948016470c27da222e72d41a9e802a26
refs/heads/master
2022-11-14T21:53:28.041898
2020-07-06T13:48:28
2020-07-06T13:48:28
268,297,606
0
0
null
null
null
null
UTF-8
Python
false
false
1,715
py
import urllib from datetime import datetime,timedelta import sys import numpy as numpy def get_ra_dec(start_time, stop_time, obj): lat = 21.847222; lon = 57.5593055; alt = 10; step_size = '1 h' if(obj == "panstarrs"): obj_name = 'C/2017 T2' if(obj == "atlas"): #obj_name = 'C/2019 Y4' obj_name = '90004451' if(obj == "swan"): #obj_name = 'C/2019 Y4' obj_name = 'C/2020 F8' coord_str = str(lat)+','+str(lon)+','+str(alt) url = "https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND='"+ obj_name +"'&CENTER='coord'&SITE_COORD='"+ coord_str +"'&MAKE_EPHEM='YES'&TABLE_TYPE='OBSERVER'&START_TIME='"+ start_time +"'&STOP_TIME='" + stop_time+ "'&STEP_SIZE='"+ step_size +"'&QUANTITIES='1,9'&CSV_FORMAT='YES'" print(url) s = urllib.urlopen(url).read() result = ((s.split("$$SOE"))[1].split("$$EOE")[0]).split('\n') #print("result", len(result)) #print("result", result[2]) date = list() mag = list() for i in result: if(len(i) != 0): #print(i) data = i.replace(" ", "") #print("data", data) split_rez = data.split(',') split_rez[4] = split_rez[4].replace("+","") date.append(split_rez[0]) mag.append(split_rez[5]) #print(date) print(mag) print(len(mag), len(date)) index_min = min(range(len(mag)), key=mag.__getitem__) print(index_min) maxBrightness = mag[index_min] dateIndex = date[index_min] print(maxBrightness, dateIndex) #print(split_rez[0], split_rez[5], split_rez[4], split_rez[6]) return date, mag get_ra_dec(sys.argv[1], sys.argv[2], sys.argv[3])
[ "s7_jasmon_g@venta.lv" ]
s7_jasmon_g@venta.lv
7f027308fcfb3c04e668a3e684a1c89c3d18adba
9b64f0f04707a3a18968fd8f8a3ace718cd597bc
/huaweicloud-sdk-lts/huaweicloudsdklts/v2/model/delete_log_stream_request.py
03161ca879c09c3628e30d67bc31b138c95aef90
[ "Apache-2.0" ]
permissive
jaminGH/huaweicloud-sdk-python-v3
eeecb3fb0f3396a475995df36d17095038615fba
83ee0e4543c6b74eb0898079c3d8dd1c52c3e16b
refs/heads/master
2023-06-18T11:49:13.958677
2021-07-16T07:57:47
2021-07-16T07:57:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,000
py
# coding: utf-8 import re import six class DeleteLogStreamRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'log_group_id': 'str', 'log_stream_id': 'str' } attribute_map = { 'log_group_id': 'log_group_id', 'log_stream_id': 'log_stream_id' } def __init__(self, log_group_id=None, log_stream_id=None): """DeleteLogStreamRequest - a model defined in huaweicloud sdk""" self._log_group_id = None self._log_stream_id = None self.discriminator = None self.log_group_id = log_group_id self.log_stream_id = log_stream_id @property def log_group_id(self): """Gets the log_group_id of this DeleteLogStreamRequest. 租户想删除的日志流所在的日志组的groupid,一般为36位字符串。 :return: The log_group_id of this DeleteLogStreamRequest. :rtype: str """ return self._log_group_id @log_group_id.setter def log_group_id(self, log_group_id): """Sets the log_group_id of this DeleteLogStreamRequest. 租户想删除的日志流所在的日志组的groupid,一般为36位字符串。 :param log_group_id: The log_group_id of this DeleteLogStreamRequest. :type: str """ self._log_group_id = log_group_id @property def log_stream_id(self): """Gets the log_stream_id of this DeleteLogStreamRequest. 需要删除的日志流ID,获取方式请参见:获取账号ID、项目ID、日志组ID、日志流ID(https://support.huaweicloud.com/api-lts/lts_api_0006.html)。 :return: The log_stream_id of this DeleteLogStreamRequest. :rtype: str """ return self._log_stream_id @log_stream_id.setter def log_stream_id(self, log_stream_id): """Sets the log_stream_id of this DeleteLogStreamRequest. 需要删除的日志流ID,获取方式请参见:获取账号ID、项目ID、日志组ID、日志流ID(https://support.huaweicloud.com/api-lts/lts_api_0006.html)。 :param log_stream_id: The log_stream_id of this DeleteLogStreamRequest. :type: str """ self._log_stream_id = log_stream_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): import simplejson as json return json.dumps(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeleteLogStreamRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
0dacff2c236fe90e948a6c0b3fecb7e82d6c3d1a
d05a59feee839a4af352b7ed2fd6cf10a288a3cb
/xlsxwriter/test/comparison/test_chart_font04.py
bf7ebe1e1cb139da22fb9e4d7fff60c429f6eb5e
[ "BSD-2-Clause-Views" ]
permissive
elessarelfstone/XlsxWriter
0d958afd593643f990373bd4d8a32bafc0966534
bb7b7881c7a93c89d6eaac25f12dda08d58d3046
refs/heads/master
2020-09-24T06:17:20.840848
2019-11-24T23:43:01
2019-11-24T23:43:01
225,685,272
1
0
NOASSERTION
2019-12-03T18:09:06
2019-12-03T18:09:05
null
UTF-8
Python
false
false
1,669
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2019, John McNamara, jmcnamara@cpan.org # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('chart_font04.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'bar'}) chart.axis_ids = [43944960, 45705472] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.add_series({'values': '=Sheet1!$A$1:$A$5'}) chart.add_series({'values': '=Sheet1!$B$1:$B$5'}) chart.add_series({'values': '=Sheet1!$C$1:$C$5'}) chart.set_title({ 'name': '=Sheet1!$A$1', 'name_font': {'bold': 0, 'italic': 1}, }) chart.set_x_axis({ 'name': 'Sheet1!$A$2', 'name_font': {'bold': 0, 'italic': 1}, }) chart.set_y_axis({ 'name': '=Sheet1!$A$3', 'name_font': {'bold': 1, 'italic': 1}, }) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
[ "jmcnamara@cpan.org" ]
jmcnamara@cpan.org
4a11b48179794959d216c089d888dbd02e6e7ace
cbf3482a35083844a34d9fdfb6d9754164b8c8f7
/blog/migrations/0030_postlike.py
c1fd1ad7536e7b8009c153d81e8af6146d316cf6
[]
no_license
sopilnyak/technotrack-web1-spring-2017
f27abb15f2f563b44a544c430e743d961a0d11a9
5f4573b417d71347f746660754faae3166be854f
refs/heads/master
2021-01-21T08:15:21.078499
2017-04-17T17:02:55
2017-04-17T17:02:55
83,340,481
0
0
null
2017-02-27T17:59:56
2017-02-27T17:59:56
null
UTF-8
Python
false
false
878
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-04-17 01:24 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('blog', '0029_auto_20170417_0124'), ] operations = [ migrations.CreateModel( name='PostLike', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.Post')), ], ), ]
[ "o.sopilniak@gmail.com" ]
o.sopilniak@gmail.com
f08c3e33a0eea3128e92594b3a26b4ec9ff3d9d2
ce2474b35aaa600947ee4bfcd521f90382f2eb15
/test_lcm_simulation.py
10209a6f4a6c74d14d0e09d6505c0a0b0009f4bb
[]
no_license
SEMCOG/semcog_urbansim
9ebb5ea8fa195570ff659d8dc40b3c8e86d23a89
07809c2f03ea43a43c8d801b08d500f2aaf139f3
refs/heads/forecast_2050
2023-08-17T23:31:31.845339
2023-08-17T20:52:22
2023-08-17T20:52:22
37,195,829
7
12
null
2023-09-07T15:54:18
2015-06-10T12:29:19
Jupyter Notebook
UTF-8
Python
false
false
1,039
py
import orca import os import yaml from urbansim_templates.models import LargeMultinomialLogitStep from urbansim_templates import modelmanager as mm mm.initialize('configs/elcm_2050') def generate_yaml_configs(): hlcm_yaml = os.listdir('configs/hlcm_2050') hlcm_yaml = ["hlcm_2050/"+path for path in hlcm_yaml if '.yaml' in path] elcm_yaml = os.listdir('configs/elcm_2050') elcm_yaml = ["elcm_2050/"+path for path in elcm_yaml if '.yaml' in path] obj = { 'hlcm': hlcm_yaml, 'elcm': elcm_yaml } with open("./configs/yaml_configs_2050.yaml", 'w') as f: yaml.dump(obj, f, default_flow_style=False) if __name__ == "__main__": generate_yaml_configs() import models orca.add_injectable('year', 2020) orca.run(["build_networks_2050"]) orca.run(["neighborhood_vars"]) # set year to 2050 orca.add_injectable('year', 2030) orca.run(["mcd_hu_sampling"]) # orca.run(['elcm_800003']) orca.run(['hlcm_125']) orca.run(['nonres_repm11']) print('done')
[ "xie@semcog.org" ]
xie@semcog.org
f052c9274c97d671c506f9299e5eac7729340135
edb0a9a6649296968076024ce9dbd64f91a79d4e
/Codes/tmp.py
3869b97a7dff099b932375203c076defc389772e
[]
no_license
Pierre-FrancoisW/Master-Thesis
94f1253345ee5a0f88c9c95c913d1ac5dfb67666
f1e4bb02194c43753855b17589a32ff281396d98
refs/heads/main
2023-07-13T21:58:24.058295
2021-08-25T09:58:08
2021-08-25T09:58:08
399,195,160
0
0
null
null
null
null
UTF-8
Python
false
false
6,447
py
import numpy as np # # Official Code for Classification_local_mda # counter = 0 counter1 = 0 counter2 = 0 def prob_node_left(tree, node, uniform): # [tree.children_left[node]] = node + 1 as long as node is not a leaf if uniform: return 0.50 else: return tree.n_node_samples[tree.children_left[node]] / tree.n_node_samples[node] def exploreC(tree, node, children_right_view, sample, feature_view, x, uniform): global counter, counter1, counter2 # Stop exploration as we meet a leaf if tree.feature[node] == -2: value = tree.value[node].ravel() / tree.value[node].max() return value # else check current split and define next direction # Propagate the sample in both directions if the feature of interest is tested at #node = 'node' elif feature_view[node] == x: counter += 1 l_prob = prob_node_left(tree, node, uniform) r_prob = 1 - l_prob value1 = exploreC(tree, node + 1, children_right_view, sample, feature_view, x, uniform) value2 = exploreC(tree, children_right_view[node], children_right_view, sample, feature_view, x, uniform) return l_prob * value1 + r_prob * value2 else: if sample[tree.feature[node]] <= tree.threshold[node]: counter1 += 1 # left child is next node return exploreC(tree, node+1, children_right_view, sample, feature_view, x, uniform) else: counter2 += 1 return exploreC(tree, children_right_view[node], children_right_view, sample, feature_view, x, uniform) def weighted_prediction_C(tree, prediction, nodes_id, leaf, children_right_view, sample, feature_view, x, uniform): dir = 'left' node = nodes_id[0] # direction of sample at split if leaf >= children_right_view[node]: dir = 'right' l_prob = prob_node_left(tree, nodes_id[0], uniform) r_prob = 1 - l_prob if l_prob > 1: print("Error lprob") if r_prob > 1: print("Error rightprob") # print(l_prob, " ", r_prob) # print(dir) if nodes_id.size == 1: if dir == 'left': # propagate the sample to the right as the decision path goes left at #node = 'node' value = (prediction * l_prob) + (r_prob * exploreC(tree, children_right_view[node], children_right_view, sample, feature_view, x, uniform)) return (prediction * l_prob) + (r_prob * exploreC(tree, children_right_view[node], children_right_view, sample, feature_view, x, uniform)) else: # propagate the sample to the left as the decision path goes right value = (prediction * r_prob) + (l_prob * exploreC(tree, node + 1, children_right_view, sample, feature_view, x, uniform)) return (prediction * r_prob) + (l_prob * exploreC(tree, node + 1, children_right_view, sample, feature_view, x, uniform)) nodes_id = nodes_id[1:] if dir == 'left': value1 = r_prob * exploreC(tree, children_right_view[node], children_right_view, sample, feature_view, x, uniform) value2 = l_prob * weighted_prediction_C(tree, prediction, nodes_id, leaf, children_right_view, sample, feature_view, x, uniform) return (r_prob * exploreC(tree, children_right_view[node], children_right_view, sample, feature_view, x, uniform)) + (l_prob * weighted_prediction_C(tree, prediction, nodes_id, leaf, children_right_view, sample, feature_view, x, uniform)) else: value = (l_prob * exploreC(tree, node + 1, children_right_view, sample, feature_view, x, uniform)) + (r_prob * weighted_prediction_C(tree, prediction, nodes_id, leaf, children_right_view, sample, feature_view, x, uniform)) return (l_prob * exploreC(tree, node + 1, children_right_view, sample, feature_view, x, uniform)) + (r_prob * weighted_prediction_C(tree, prediction, nodes_id, leaf, children_right_view, sample, feature_view, x, uniform)) def compute_mda_local_treeC(Ctree, X, nsamples, nfeatures,nclass, vimp, uniform): # use Ctree.value[node] children_left_view = Ctree.children_left children_right_view = Ctree.children_right feature_view = Ctree.feature feature_range = list(range(nfeatures)) node_indicator = Ctree.decision_path(X) node = 0 ifeat = 0 for i in range(nsamples): # features of decision path (from 0 to n_features-1) # Discard leaf from node path features = feature_view[node_indicator[i, :].indices][:-1] unique_f = np.unique(features) # node id of decision path nodes = node_indicator[i, :].indices[:-1] prediction = Ctree.predict(X)[i].ravel() prediction = prediction/ np.max(prediction) leaf = node_indicator[i, :].indices[-1] for x in unique_f: # nodes id of the decision path of sample i that test feature 'x' nodes_id = nodes[features == x] val = weighted_prediction_C(Ctree, prediction, nodes_id, leaf, children_right_view, X[i], feature_view, x, uniform) vimp[i, x, :] = vimp[i, x, :] + val return vimp def compute_mda_local_ens_C(ens, X, uniform): nsamples = X.shape[0] nfeatures = X.shape[1] nclass = ens.classes_.size vimp = [[[0.0 for x in range(nclass)] for y in range(nfeatures)] for x in range(nsamples)] vimp = np.array(vimp) # Dim1 : samples, Dim2: feature, Dim3: class nestimators = ens.n_estimators for i in range(nestimators): # print("o", end='', flush=True) vimp = compute_mda_local_treeC(ens.estimators_[i].tree_, X, nsamples, nfeatures,nclass, vimp, uniform) print("") vimp /= (ens.n_estimators) for i in range(0,nsamples): for j in range(0,nfeatures): vimp[i, j, :] = vimp[i, j, :] * (1/sum(vimp[i, j, :])) print("counter equals {}".format(counter)) print("counter 1 equals {}".format(counter1)) print("counter 2 equals {}".format(counter2)) return vimp def Classification_vimp(vimp, predictions, y,): nsamples, nfeatures, c = vimp.shape vimp2 = np.zeros((nsamples, nfeatures)) for i in range(0,nsamples): for j in range(0,nfeatures): #vimp2[i,j] = sum(vimp[i,j,:]) - vimp[i,j,y[i]] vimp2[i, j] = (1 - predictions[i][y[i]]) - (1 - vimp[i, j, y[i]]) return vimp2
[ "noreply@github.com" ]
Pierre-FrancoisW.noreply@github.com
e80667808902da02160f366d3c3fbe610cd032e0
831451f5d88c630ce5d3c6f495a016118a0c36ad
/rest-service/manager_rest/test/endpoints/test_depup_utils.py
73784be30c89ee0bd8b6a472e95d6ca2fd8ede88
[ "Apache-2.0" ]
permissive
TS-at-WS/cloudify-manager
8c3eb713a2f86da6e6cde1d976969733db53f2dd
3e062e8dec16c89d2ab180d0b761cbf76d3f7ddc
refs/heads/master
2021-03-04T22:18:25.591541
2020-03-02T16:03:41
2020-03-09T09:19:26
246,069,993
0
0
Apache-2.0
2020-07-29T16:35:22
2020-03-09T15:18:04
null
UTF-8
Python
false
false
2,658
py
import unittest from manager_rest.deployment_update import utils class DeploymentUpdateTestCase(unittest.TestCase): def test_traverse_object(self): object_to_traverse = { 'nodes': { 'n1': 1, 'n2': ['l2', {'inner': [3]}] } } # assert the value returned from a dictionary traverse self.assertEqual( utils.traverse_object(object_to_traverse, ['nodes', 'n1']), 1) # assert access to inner list self.assertEqual(utils.traverse_object(object_to_traverse, ['nodes', 'n2', '[0]']), 'l2') # assert access to a dict within a list within a dict self.assertEqual(utils.traverse_object(object_to_traverse, ['nodes', 'n2', '[1]', 'inner', '[0]']), 3) self.assertDictEqual(object_to_traverse, utils.traverse_object(object_to_traverse, [])) def test_create_dict_with_value(self): dict_breadcrumb = ['super_level', 'mid_level', 'sub_level'] self.assertDictEqual({'super_level': { 'mid_level': { 'sub_level': 'value' } }}, utils.create_dict(dict_breadcrumb, 'value')) def test_create_dict_with_no_value(self): dict_breadcrumb = ['super_level', 'mid_level', 'sub_level', 'value'] self.assertDictEqual({'super_level': { 'mid_level': { 'sub_level': 'value' } }}, utils.create_dict(dict_breadcrumb)) def test_get_raw_node(self): blueprint_to_test = { 'nodes': [{'id': 1, 'name': 'n1'}, {'id': 2, 'name': 'n2'}] } # assert the right id is returned on existing node self.assertDictEqual(utils.get_raw_node(blueprint_to_test, 1), {'id': 1, 'name': 'n1'}) # assert no value is returned on non existing id self.assertEqual(len(utils.get_raw_node(blueprint_to_test, 3)), 0) # assert nothing is return on invalid blueprint self.assertEqual(len(utils.get_raw_node({'no_nodes': 1}, 1)), 0) def test_parse_index(self): self.assertEqual(utils.parse_index('[15]'), 15) self.assertFalse(utils.parse_index('[abc]')) self.assertFalse(utils.parse_index('[1a]')) self.assertFalse(utils.parse_index('~~[]')) def test_check_is_int(self): self.assertTrue(utils.check_is_int('123')) self.assertFalse(utils.check_is_int('abc')) self.assertFalse(utils.check_is_int('ab12'))
[ "mxmrlv@gmail.com" ]
mxmrlv@gmail.com
7279f4e7aeaa3ac8756f44479f75a752a49c2500
aa0ff41682eb3b66d3577eb806821126a2d3ace2
/18. 四数之和/four_sum.py
16af2dc43c31588b055445608fc94fa557c1fe79
[]
no_license
qybing/LeetCode
11c3b88b7536ae4790d1b481f37741b2c5e9bcce
bafa85fde597a17b6dee8cfdd0153a7176ff8fcf
refs/heads/master
2023-02-06T09:14:29.516336
2020-12-30T07:33:37
2020-12-30T07:33:37
103,499,568
1
0
null
null
null
null
UTF-8
Python
false
false
1,141
py
#! python3 # _*_ coding: utf-8 _*_ # @Time : 2020/5/19 9:58 # @Author : Jovan # @File : four_sum.py # @desc : def fourSum(nums, target): nums.sort() length = len(nums) result = [] for i in range(length): if i >= 1 and nums[i] == nums[i - 1]: continue for j in range(i + 1, length): if j > i+1 and nums[j] == nums[j-1]: continue start = j + 1 end = length - 1 while start < end: sum_ = nums[i] + nums[j] + nums[start] + nums[end] if sum_ < target: start += 1 elif sum_ > target: end -= 1 else: result.append([nums[i], nums[j], nums[start], nums[end]]) while start < end and nums[start+1] == nums[start]: start += 1 while start < end and nums[end-1] == nums[end]: end -= 1 end -= 1 start += 1 return result nums = [1, 0, -1, 0, -2, 2] target = 0 print(fourSum(nums, target))
[ "qiaoyanbing1@163.com" ]
qiaoyanbing1@163.com
bf806c4adf32732ebf9c1fe7bd0d8226e8786132
c6f95907558349991ed5d350359b51ad4af4b634
/projectName/subpackage_1/__init__.py
a39f8fe5b38d180873bc20e04f625c8771462801
[]
no_license
mitchell-dawson/untitledProject
e773802e007c1c1759985f68cfd665e080f2b763
f54687d45c2ce787394d7f34244926c9993638ac
refs/heads/main
2023-01-23T22:34:00.442837
2020-11-27T16:40:51
2020-11-27T16:40:51
316,551,487
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
# General store format (access everything, no order) from .moduleA import * # online store format # import .moduleB # import .moduleB
[ "mitchell.dawson7@hotmail.com" ]
mitchell.dawson7@hotmail.com
0e252a730c01e23c0749c29858d12daba11eeda6
d89aa6be7a7661c9955d143eed11cb8a526091c4
/src/main/com/dong/database/demo/mysql/create_database.py
04036f11a7250d5ae3368e7f379eefb496bbb472
[]
no_license
weidongcao/finance_spider
366e209371319b961c587dfdcd37eed5dcb06a6d
4e210548d93c9d01101b26556f4342099df67c37
refs/heads/master
2021-01-24T04:34:34.367440
2019-08-25T07:03:14
2019-08-25T07:03:14
122,943,048
5
3
null
null
null
null
UTF-8
Python
false
false
386
py
""" 通过Python,连接Mysql并创建数据库配置实例 """ import pymysql db = pymysql.connect(host='cm02.spark.com', user='root', password='123123', port=3306) cursor = db.cursor() cursor.execute('select version()') data = cursor.fetchone() print('Database version: ', data) cursor.execute('create database spiders default character set utf8 collate utf8_general_ci') db.close()
[ "1774104802@qq.com" ]
1774104802@qq.com
e440d2c140932d115fb47dd81b71b07e16609724
6189f34eff2831e3e727cd7c5e43bc5b591adffc
/WebMirror/management/rss_parser_funcs/feed_parse_extractLuxiufer.py
4e0f1d83bb26fb14a4a67239ee9051bb1a167144
[ "BSD-3-Clause" ]
permissive
fake-name/ReadableWebProxy
24603660b204a9e7965cfdd4a942ff62d7711e27
ca2e086818433abc08c014dd06bfd22d4985ea2a
refs/heads/master
2023-09-04T03:54:50.043051
2023-08-26T16:08:46
2023-08-26T16:08:46
39,611,770
207
20
BSD-3-Clause
2023-09-11T15:48:15
2015-07-24T04:30:43
Python
UTF-8
Python
false
false
342
py
def extractLuxiufer(item): """ Parser for 'Luxiufer' """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or 'preview' in item['title'].lower(): return None if 'WATTT' in item['tags']: return buildReleaseMessageWithType(item, 'WATTT', vol, chp, frag=frag, postfix=postfix) return False
[ "something@fake-url.com" ]
something@fake-url.com
180e788b1edfb6a7fbd2064e95711bc278e96ab5
b737ed73e7b64c004c56b57e80aaa884a25ec98a
/likeapp/models.py
63ab1110009de6bfd4179e04b5724ac59fe0bb83
[]
no_license
sungwoni/cyber_public_sphere
1ec5425c3afb16d0f0b2a1fd6ad97599f5dd2885
da18b1cd8ce6588d1f197fa3df30ae68df8fe6f5
refs/heads/main
2023-07-23T09:33:49.648546
2021-08-19T01:54:48
2021-08-19T01:54:48
397,192,163
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
from django.contrib.auth.models import User from django.db import models # Create your models here. from articleapp.models import Article class LikeRecord(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='like_record') article = models.ForeignKey(Article, on_delete=models.CASCADE, related_name='like_record') class Meta: unique_together = ('user', 'article')
[ "tjddnjs2013@gmail.com" ]
tjddnjs2013@gmail.com
0ab9edfe9c90a6220e8a5bc16a7c65fa0ab9536e
6e6b4aff225fc068f2d87ee19b7bfb1d9a0e7607
/greedy/DNA(1969).py
1dfab44544626789f6a1215df99669d41856d154
[]
no_license
pjok1122/baekjoon-online-judge-practice
cc4489c9dc2cd9dd4841fed7e0f6fa9827f7154a
2a9b7dd6342a255bb1e6b644082f40d6ef940290
refs/heads/master
2020-07-07T23:01:09.736034
2020-05-11T11:08:46
2020-05-11T11:08:46
203,498,880
2
0
null
null
null
null
UTF-8
Python
false
false
1,052
py
''' 주어진 DNA 문자열에서 Hamming Distance의 합이 최소가 되도록 하는 문제. 1. 가장 많이 등장하는 뉴클레오티드('문자')를 세고 그 값을 Max로 설정. 가장 많이 등장하는 문자가 H.D가 최소가 되도록 하므로 DNA 결과(result)에 포함시킨다. 2. 하나의 뉴클레오티드가 결정될 때마다 H.D의 값은 N - Max 만큼 증가한다. 3. 시간복잡도 : O(N*M) ~ O(N) ''' N,M = map(int,input().split()) dna = [] result ='' hd = 0 for i in range(N): dna.append(input()) for i in range(M): cnt = [0,0,0,0] for j in range(N): if dna[j][i] == 'A': cnt[0] +=1 elif dna[j][i] =='C': cnt[1] +=1 elif dna[j][i] == 'G': cnt[2] +=1 elif dna[j][i] == 'T': cnt[3] +=1 Max = max(cnt) idx = cnt.index(Max) if idx ==0: result+='A' elif idx==1: result+='C' elif idx==2: result+='G' elif idx==3: result+='T' hd += N - Max print(result) print(hd)
[ "pjok1122@naver.com" ]
pjok1122@naver.com
2ddc82f3173503e7a5e90c47ea1549b0f769cc44
496ba1638338c2c548c612cfb4264f28bbab85e0
/utilities/ClientOperation.py
2fc6b1dfa1f4bedbf9b4cee2af964e3f5f67b3a0
[]
no_license
CreativeeBlackWolf/chat
e1673e8990af1d3c3ba0f5d2c4c789b8f318fdf2
f3f1891fe976460093c829d54938dfeda85a5f52
refs/heads/main
2023-02-27T11:23:51.327445
2021-02-01T18:18:23
2021-02-01T18:18:23
335,032,459
0
0
null
null
null
null
UTF-8
Python
false
false
1,125
py
import json class ClientOperation: def __init__(self, type, **kwargs): self.type = type if self.type == "messageArrived": # both str instances, content and author of the message self.content = kwargs["messageContent"] self.author = kwargs["messageAuthor"] elif self.type == "channelLeave": pass elif self.type == "requireUsername": pass elif self.type == "usersList": self.users = kwargs["users"] elif self.type == "channelCreateInfo": # str instance, answer of the server (can be anything) self.answer = kwargs["answer"] elif self.type == "channelJoinInfo": # str instance, channel port, can be 404 (not found) or 500 (server error) self.port = kwargs["port"] # str instance, channel name, can be None self.channelName = None if self.port in ["404", "500"] else kwargs["channelName"] elif self.type == "channelInfo": # str instance, but can be None self.port = kwargs["port"] elif self.type == "channelList": # dict instance (str actually, but dumped from dict) # {"channelName": "port"} self.channels = json.loads(kwargs["channels"])
[ "creativeeblackwolf@gmail.com" ]
creativeeblackwolf@gmail.com
901b04d91b82ae5953029503be57765f7213c0e2
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/73faa376ad87004014356477048e7298d06de792-<remove_custom_def>-fix.py
399fefca0541ee754193ead44addaf401950bbcb
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
531
py
def remove_custom_def(self, field): changed = False f = dict() for x in self.custom_field_mgr: if ((x.name == field) and (x.managedObjectType == vim.VirtualMachine)): changed = True if (not self.module.check_mode): self.content.customFieldsManager.RemoveCustomFieldDef(key=x.key) break f[x.name] = (x.key, x.managedObjectType) return { 'changed': changed, 'failed': False, 'custom_attribute_defs': list(f.keys()), }
[ "dg1732004@smail.nju.edu.cn" ]
dg1732004@smail.nju.edu.cn
25c2d35b1ad3349af246ac423d420173e50b00d2
9d3b8d5f45e5407f3275542cf5792fd2510abfe4
/Chapter8-Practice/test_8.4.1.py
d34f4b2acda4c2f610a12866949f272167402672
[]
no_license
Beautyi/PythonPractice
375767583870d894801013b775c493bbd3c36ebc
9104006998a109dcab0848d5540fb963b20f5b02
refs/heads/master
2020-04-23T09:58:50.065403
2019-04-08T02:55:52
2019-04-08T02:55:52
171,088,504
2
0
null
null
null
null
UTF-8
Python
false
false
1,544
py
#在函数中修改列表 #首先创建一个列表,其中包含一些要打印的设计 unprinted_designs = ['iphone case', 'robot pendant', 'dodecahedron'] completed_models = [] #模拟打印每个设计,直到没有未打印的设计为止。打印后转移到completed_models中 while unprinted_designs: current_design = unprinted_designs.pop() #模拟根据设计制作的3D打印模型的过程 print("Printing model: " + current_design) completed_models.append(current_design) #显示打印好的模型 print("\nThe following models have been printed:") for completed_model in completed_models: print(completed_model) #可以分两个函数,第一个函数负责处理打印设计的工作,第二个函数将概述打印了哪些设计 def print_models(unprinted_designs, completed_models):#包含两个形参 """模拟打印每个设计,直到没有未打印的设计为止。打印后转移到completed_models中""" while unprinted_designs: current_design = unprinted_designs.pop() #模拟根据设计制作的3D打印模型的过程 print("Printing model: " + current_design) completed_models.append(current_design) def show_completed_models(completed_models): """显示打印好的所有模型""" for completed_model in completed_models: print(completed_model) unprinted_designs = ['iphone case', 'robot pendant', 'dodecahedron'] completed_models = [] print_models(unprinted_designs, completed_models) show_completed_models(completed_models)
[ "1210112866@qq.com" ]
1210112866@qq.com