blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
af5f6907b97177df49aeb41017c7b910c91a8543
0cc472d10382adfe58e72704ab3f6e2f9d8a4f48
/src/common/Typehelper.py
9458b023b5513ef714429b609b1c2ac306563a41
[]
no_license
yueguangxuanyuan/ProgramProcessAnalysis
c7c90262dd1dd3590597b8ff018a3326590daec4
5bb93d8f9a7db2e82e034c7c912913a67942face
refs/heads/master
2020-06-07T05:17:58.490888
2019-06-20T14:20:18
2019-06-20T14:20:18
192,934,081
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
def strToType(typeName,value): if typeName == 'int': return int(value); if (typeName == 'float'): return float(value) if(typeName == 'double'): return float(value) if typeName == 'String': return str(value);
[ "yueguangxuanyuan@gmail.com" ]
yueguangxuanyuan@gmail.com
5545e02446baf063cc70fffc4e1cf9e600cc43b4
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/226/users/4144/codes/1618_2923.py
d7608f21637243d5ea3e7ca02b6e9ce1976bd5c6
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
104
py
taxa = float(input("digite a taxa de juros: ")) final = 1500 * ((1 + taxa) ** 36) print(round(final, 2))
[ "jvlo@icomp.ufam.edu.br" ]
jvlo@icomp.ufam.edu.br
34a28069f8eaa6458a54aac14b25b064ad76de6d
ee81efa621f8a18569d8ac00e5176aff1a736d86
/krizaljka.py
4e7f8251a722a4f1e9ed16eee5ff051608abbb78
[]
no_license
renaldyresa/Kattis
c8b29f40a84f4161f49c6247abf10ec2ecc14810
e504f54602b054eeffaac48b43e70beb976ca94c
refs/heads/master
2021-12-01T14:57:57.614911
2021-11-29T07:44:43
2021-11-29T07:44:43
182,920,692
1
0
null
null
null
null
UTF-8
Python
false
false
565
py
kt1,kt2 = map(str,input().split()) h = 0 for i in range(len(kt1)): for j in range (len(kt2)): if kt1[i] == kt2[j] : h = 1 break if h == 1 : break q = 0 w = 0 for l in range(len(kt2)): for k in range(len(kt1)): if l== j and k==i : print(kt1[q],end='') q += 1 w += 1 elif l == j : print(kt1[q],end='') q += 1 elif k == i : print(kt2[w],end='') w +=1 else : print('.',end='') print()
[ "noreply@github.com" ]
renaldyresa.noreply@github.com
e470b4d143e4ac234e1e9bfdacb68ec8adf5fa78
89b2db0af633ae5b5be515a04d87a5db9c9b5778
/01-02.py
d5f279f01e5acee311af81472b21b47a306a5c5e
[]
no_license
slahmar/advent-of-code-2018
d4f6cc33997332c74758bf1a194a2db5001b5544
67348b501b7119558855d6034c9178285da30203
refs/heads/master
2020-04-09T12:40:55.213364
2019-02-09T18:16:46
2019-02-09T18:16:46
160,359,882
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
from collections import Counter with open('01.txt', 'r') as file: freqs = Counter() freq = 0 while not freqs or freqs.most_common(1)[0][1] < 2: for line in file.readlines(): freq += int(line) freqs[freq] += 1 if freqs[freq] == 2: break print("First frequency which appeared twice {}".format(freqs.most_common(1)))
[ "noreply@github.com" ]
slahmar.noreply@github.com
e8f2f7e54b0957e4ae0a616395fcfea9fb79e0b5
a6ede1d64dc81cea56459199fbd2a1ade0603a50
/src/test1/canvascheckbox.py
be9d3d009845d19745db2f803492d139b88b75fd
[]
no_license
anantha1987/python_stories
a9cb8192350ef9bddb028eaa7615a488b3a3c43b
44f05462a3fc1a9765b84b3f771a27d95aa300cf
refs/heads/master
2020-12-31T23:22:25.285404
2020-02-08T06:00:49
2020-02-08T06:00:49
239,074,213
0
0
null
2020-02-08T06:36:44
2020-02-08T05:21:32
Python
UTF-8
Python
false
false
3,990
py
from ttkwidgets import CheckboxTreeview import tkinter as tk import tkinter.ttk as ttk root=tk.Tk() root.geometry('600x600') root.title("Checkbox example") f1=tk.Frame(root,width=595,height=595,background='blue',bd=1) f1.grid(row=0,column=0) checkingFrame=tk.Frame(f1,width=590,height=590,background='yellow',bd=1) checkingFrame.grid(row=0,column=0,padx=5,pady=5) canvas_tree=tk.Canvas(checkingFrame,bg='white') canvas_tree.grid(row=0,column=0) main_tree=CheckboxTreeview(canvas_tree,show='tree') main_tree.column("#0",width=500,minwidth=600,stretch=True) main_tree.configure(height=10) main_tree.insert("", "end", "1", text="1"+'2') main_tree.insert("1", "end", "11", text="11") main_tree.insert("1", "end", "12", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("11", "end", "111",text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra' ) main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra'+"Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra'+"Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') main_tree.insert("", "end", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') vsbar=tk.Scrollbar(checkingFrame,orient=tk.VERTICAL,command=main_tree.yview) vsbar.grid(row=0,column=1,sticky=tk.NS) hsbar=tk.Scrollbar(checkingFrame,orient=tk.HORIZONTAL,command=main_tree.xview) hsbar.grid(row=1,column=0,sticky=tk.EW) main_tree.config(xscroll=hsbar.set,yscroll=vsbar.set) main_tree.grid(row=0,column=0) canvas_tree.create_window((0,0),window=main_tree,anchor=tk.NW) canvas_tree.configure(yscrollcommand=vsbar.set,xscrollcommand=hsbar.set) main_tree.update_idletasks() bbox=canvas_tree.bbox(tk.ALL) canvas_tree.configure(scrollregion=bbox,width=400,height=400) # can=tk.Canvas(f1,width=500) # tree=CheckboxTreeview(can,show='tree') # tree.column('#0',minwidth=350,stretch=True,width=300) # tree.insert("", "end", "1", text="1"+'2') # tree.insert("1", "end", "11", text="11") # tree.insert("1", "end", "12", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') # tree.insert("11", "end", "111",text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra' ) # tree.insert("", "end", "2", text="Anantha"+"kumar"+'Kondra'+'Anantha Kumar Kondra') # tree.grid() # # xscrol=ttk.Scrollbar(can,orient=tk.HORIZONTAL,command=tree.xview) # xscrol.grid_anchor(anchor=tk.S) # # xscrol.grid( sticky='ew') # tree.config(xscroll=xscrol.set) # # can.grid(row=0,column=0,sticky=tk.N+tk.S+tk.E+tk.W) root.mainloop()
[ "39458121+anantha1987@users.noreply.github.com" ]
39458121+anantha1987@users.noreply.github.com
64ecc79136da0e7bf0ed0b47f75922078b4dad18
a21f8049ecd5f531f4a5ff530b3f182e75636b65
/delinkermap.py
9ccebdf8e047fc591bcf363beda2a768ca54c0ce
[ "MIT" ]
permissive
jamesmunns/delinkermap
44e9fbdecff46793527bcc21efe551eee905ced3
150d28dfa03b7007359dffb6f11c1d9333274b70
refs/heads/master
2021-01-23T08:33:42.941299
2017-09-05T21:55:03
2017-09-05T21:55:03
102,533,293
1
0
null
null
null
null
UTF-8
Python
false
false
2,452
py
#!/usr/bin/env python3 import re import sys from subprocess import check_output as cmd from multiprocessing import Pool COMPONENT = r"[\.a-zA-Z0-9-_\$]*" SPACE_OR_NEWLINE = r"[ \n]*" HEX_NUM = r"0x[a-zA-Z0-9]*" OBJECT = r"[/a-zA-Z0-9-_\.]*" LINE_ITEM = re.compile("({cmp}){sp}({hn}){sp}({hn}){sp}({obj})".format( cmp=COMPONENT, sp=SPACE_OR_NEWLINE, hn=HEX_NUM, obj=OBJECT)) DEMANGLEABLE = re.compile("(_ZN{cmp}E)".format( cmp=COMPONENT)) NODE_ITEM = re.compile("(<.*>|{cmp})".format( cmp=COMPONENT)) with open(sys.argv[1], 'r') as ifile: lines = ifile.read() print("matching...") matches = [m for m in LINE_ITEM.findall(lines)] print("filtering removed components...") active_items = [m for m in matches if (int(m[1], 16) != 0 and int(m[2], 16) != 0)] print("demangling symbols...") # p = Pool() def demangle(i): component, position, size, symbol = i srch = DEMANGLEABLE.search(component) if srch != None: c = cmd(["c++filt", srch.group(1)]).strip().decode('ascii') return (c, position, size, symbol) else: return None demangled_or_none = [demangle(d) for d in active_items] processed_names = [d for d in demangled_or_none if d != None] class SizeNode(object): def __init__(self): self.children = {} self.matches = [] def add(self, component, addr, size): if len(component) == 1: self.matches.append((addr, size, component[0])) return if component[0] not in self.children: self.children[component[0]] = SizeNode() self.children[component[0]].add(component[1:], addr, size) total_map = SizeNode() for p in processed_names: components = [y for y in NODE_ITEM.findall(p[0]) if len(y) != 0] total_map.add(components, p[1], p[2]) def recursive_print(node, space=0): size = 0 strs = [] if len(node.children) == 0: for m in node.matches: strs.append("{}item:{} size:{} loc:{}".format(' ' * space, m[2], m[1], m[0])) size += int(m[1], 16) else: for key in sorted(node.children.keys()): n_size, n_strs = recursive_print(node.children[key], space+4) strs.append("{}{} - {}".format(' ' * space, key, n_size)) strs.extend(n_strs) size += n_size return (size, strs) size, strs = recursive_print(total_map) print("Total size: {}".format(size)) for s in strs: print(s)
[ "james.munns@gmail.com" ]
james.munns@gmail.com
61b6f11111c63ea415de9b8226415f583006298a
f5d507413ba15ee6a3aadda933d711a2104386c2
/djangocms_forms/models.py
0b1a805f56dd5999e3b35d62b9772edac7336da3
[]
no_license
samuelblattner/djangocms-forms
150db04de8de0022fecf9039627191d989ddcedd
0a0d1c3c7a399c524c3901551c134bf0da19fd59
refs/heads/master
2021-01-16T21:31:33.467067
2015-07-31T19:05:16
2015-07-31T19:05:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,435
py
import re from cms.models import CMSPlugin from cms.models.fields import PageField from django.db import models from django.template.defaultfilters import slugify from django.utils.encoding import python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ from jsonfield import JSONField from unidecode import unidecode from .conf import settings from .fields import PluginReferenceField from .managers import ActiveFormManager @python_2_unicode_compatible class Form(models.Model): name = models.CharField(_('Name'), max_length=255, db_index=True, editable=False) objects = models.Manager() active_objects = ActiveFormManager() class Meta: verbose_name = _('form') verbose_name_plural = _('forms') def __str__(self): return self.name @python_2_unicode_compatible class FormDefinition(CMSPlugin): name = models.CharField(_('Form Name'), max_length=255) title = models.CharField(_('Title'), max_length=150, blank=True) description = models.TextField(_('Description'), blank=True) submit_btn_txt = models.CharField( _('Submit Button Text'), max_length=100, default=_('Submit'), help_text=_('Text for the Submit Button. The default is \'Submit\'')) post_submit_msg = models.TextField( _('Post Submit Message'), blank=True, default=_('Thank You'), help_text=_('Display this message to users after they submit your form.')) # 'HTTP redirect after successful submission' success_redirect = models.BooleanField( _('Redirect?'), default=False, help_text=_('HTTP redirect after successful submission')) page_redirect = PageField( verbose_name=_('Page URL'), blank=True, null=True, on_delete=models.SET_NULL, help_text=_('A page has priority over an external URL')) external_redirect = models.URLField( _('External URL'), blank=True, help_text=_('e.g. http://example.com/thank-you')) # Email email_to = models.CharField( _('Send form data to e-mail address'), max_length=255, blank=True, help_text=_('Separate several addresses with a comma.')) email_from = models.EmailField(_('Sender Email Address'), max_length=255, blank=True) email_subject = models.CharField(_('Email Subject'), max_length=255, blank=True) email_uploaded_files = models.BooleanField( _('Send uploaded files as email attachments'), default=True) # Save to database save_data = models.BooleanField( _('Save to database'), default=True, help_text=_('Logs all form submissions to the database.')) spam_protection = models.SmallIntegerField( _('Spam Protection'), choices=settings.DJANGOCMS_FORMS_SPAM_PROTECTIONS, default=settings.DJANGOCMS_FORMS_DEFAULT_SPAM_PROTECTION) form_template = models.CharField( _('Form Template'), max_length=150, blank=True, choices=settings.DJANGOCMS_FORMS_TEMPLATES, default=settings.DJANGOCMS_FORMS_DEFAULT_TEMPLATE, ) plugin_reference = PluginReferenceField(Form, related_name='plugin') class Meta: verbose_name_plural = _('forms') verbose_name = _('form') def __str__(self): return self.name @property def redirect_url(self): if self.page_redirect: return self.page_redirect.get_absolute_url() elif self.external_redirect: return self.external_redirect @property def upload_to(self): return '%s-%s' % ( slugify(unidecode(self.name)).replace('_', '-'), self.plugin_reference_id) def copy_relations(self, oldinstance): for field in oldinstance.fields.all(): field.pk = None field.form = self field.save() @python_2_unicode_compatible class FormField(models.Model): form = models.ForeignKey(FormDefinition, related_name='fields') field_type = models.CharField( _('Field Type'), max_length=100, choices=settings.DJANGOCMS_FORMS_FIELD_TYPES, default=settings.DJANGOCMS_FORMS_DEFAULT_FIELD_TYPE) label = models.CharField(_('name'), max_length=255) placeholder_text = models.CharField(_('Placeholder Text'), blank=True, max_length=100) required = models.BooleanField(_('Required'), default=True) help_text = models.TextField( _('Description'), blank=True, help_text=_('A description / instructions for this field.')) initial = models.CharField(_('Default Value'), max_length=255, blank=True) choice_values = models.TextField( _('Choices'), blank=True, help_text=_('Enter options one per line. For "File Upload" ' 'field type, enter allowed filetype (e.g .pdf) one per line.')) position = models.PositiveIntegerField(_('Position'), blank=True, null=True) class Meta: verbose_name_plural = _('fields') verbose_name = _('field') ordering = ('position', ) def __str__(self): return self.label def field_attrs(self): args = { 'required': self.required, 'label': self.label if self.label else '', 'initial': self.initial if self.initial else None, 'help_text': self.help_text, } return args def get_choices(self): if self.choice_values: regex = re.compile('[\s]*\n[\s]*') choices = regex.split(self.choice_values) return [(str(choice), str(choice)) for choice in choices] @python_2_unicode_compatible class FormSubmission(models.Model): plugin = models.ForeignKey( Form, verbose_name=_('Form'), editable=False, related_name='submissions') creation_date = models.DateTimeField(_('Date'), auto_now=True) created_by = models.ForeignKey( settings.AUTH_USER_MODEL, verbose_name=_('User'), editable=False, null=True) ip = models.GenericIPAddressField(verbose_name='IP', blank=True, null=True) referrer = models.CharField(_('Referrer URL'), max_length=150, blank=True) form_data = JSONField(_('Form Data')) class Meta: verbose_name_plural = _('form submissions') verbose_name = _('form submission') ordering = ('-creation_date', ) permissions = ( ('export_formsubmission', 'Can export Form Submission'), ) def __str__(self): return u'%s' % self.plugin
[ "mishbah@jp74.com" ]
mishbah@jp74.com
45ba51c83865a7fcc65e8995f904f3104af957f8
9671c38ba355b2a30c285e61d5d5af4d49c69787
/2019/2/1202 Program Alarm.py
807377ee5cdaaddf69bafe25e7d3f850a0b99202
[]
no_license
JeeZeh/advent-of-code
c49b2bfb12e39162c0f57f0896654672e39c0f70
bf8613e765ae69d189c20d5869eed42257ae5e21
refs/heads/master
2023-01-16T07:30:04.507687
2022-12-25T18:12:42
2022-12-25T18:12:42
226,599,377
3
2
null
2022-12-04T00:49:36
2019-12-08T01:38:19
Python
UTF-8
Python
false
false
524
py
data = list(map(int, open("input.txt").read().split(","))) data[1] = 12 data[2] = 2 for x in range(100): for y in range(100): mem = data.copy() i = 0 mem[1] = x mem[2] = y while mem[i] != 99: if mem[i] == 1: mem[mem[i + 3]] = mem[mem[i + 1]] + mem[mem[i + 2]] if mem[i] == 2: mem[mem[i + 3]] = mem[mem[i + 1]] * mem[mem[i + 2]] i += 4 if mem[0] == 19690720: print(100 * mem[1] + mem[2])
[ "29103230+JeeZeh@users.noreply.github.com" ]
29103230+JeeZeh@users.noreply.github.com
2f37b5475cf5dd147b55ebb87ae26148385efdb8
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_179/ch31_2020_04_12_19_48_03_976036.py
810efec55299cf985e0cedf6150169f8866144ed
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
246
py
def eh_primo (n): i = 3 if n == 2: return True elif n = 0 or n = 1 or n%2 = 0: return False else: while i < n: if n%i == 0: return False i = i + 2 return True
[ "you@example.com" ]
you@example.com
84d55e4177e6804301d24c4dfe19a3e69a81a43c
47c4d1d1017c06138a672905742a3d3609500288
/EvalBox/Attack/AdvAttack/__init__.py
b19aa1ef5d50e28be460e65b52e403a806821ba4
[]
no_license
liuaishan/AISafety
a32de018a1b9e8ae1821ab757a22edbfe7f818af
241e1258f5658f399f905f1db1f9ef7b68bccb1d
refs/heads/main
2022-12-28T15:21:34.384449
2020-10-18T11:59:35
2020-10-18T11:59:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
605
py
#!/usr/bin/env python # coding=UTF-8 ''' @Author: linna @LastEditors: linna @Description: @Date: 2019-09-0313:38:17 @LastEditTime: 2020-09-23 13:38:22 ''' from .attack import Attack from .fgsm import FGSM from .rfgsm import RFGSM from .bim import BIM from .pgd import PGD from .umifgsm import UMIFGSM from .deepfool import DEEPFOOL from .om import OM from .cw2 import CW2 from .llc import LLC from .jsm import JSM from .blb import BLB from .ead import EAD from .uap import UAP from .ba import BA from .zoo import ZOO from .ILLC import ILLC from .RLLC import RLLC from .spsa import SPSA from .PA import PA
[ "zaozhe@buaa.edu.cn" ]
zaozhe@buaa.edu.cn
695e7281f1f68146b70bcc02883d40d300b79020
a22cc323b29f50da397d8363ac2521e3542a0fd7
/dpaycli/conveyor.py
360bb98f88958ebb9bee6105b62a737774382746
[ "MIT" ]
permissive
dpays/dpay-cli
1a58c7dae45218e3b05b7e17ff5ce03e918d27b9
dfa80898e1faea2cee92ebec6fe04873381bd40f
refs/heads/master
2020-04-01T09:26:43.200933
2018-10-15T08:03:06
2018-10-15T08:03:06
153,075,154
0
0
null
null
null
null
UTF-8
Python
false
false
12,076
py
# This Python file uses the following encoding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import hashlib import base64 import json import random import requests import struct from datetime import datetime from binascii import hexlify from .instance import shared_dpay_instance from .account import Account from dpaycligraphenebase.py23 import py23_bytes from dpaycligraphenebase.ecdsasig import sign_message try: from urllib.parse import urljoin except ImportError: from urlparse import urljoin class Conveyor(object): """ Class to access DSite API instances: https://github.com/dsites/dsite-api Description from the official documentation: * Feature flags: "Feature flags allows our apps (condenser mainly) to hide certain features behind flags." * User data: "Conveyor is the central point for storing sensitive user data (email, phone, etc). No other services should store this data and should instead query for it here every time." * User tags: "Tagging mechanism for other services, allows defining and assigning tags to accounts (or other identifiers) and querying for them." Not contained in the documentation, but implemented and working: * Draft handling: saving, listing and removing post drafts consisting of a post title and a body. The underlying RPC authentication and request signing procedure is described here: https://github.com/dpays/rpc-auth """ def __init__(self, url="https://api.dsite.io", dpay_instance=None): """ Initialize a Conveyor instance :param str url: (optional) URL to the Conveyor API, defaults to https://api.dsite.io :param dpaycli.dpay.DPay dpay_instance: DPay instance """ self.url = url self.dpay = dpay_instance or shared_dpay_instance() self.id = 0 self.ENCODING = 'utf-8' self.TIMEFORMAT = '%Y-%m-%dT%H:%M:%S.%f' self.K = hashlib.sha256(py23_bytes('dpay_jsonrpc_auth', self.ENCODING)).digest() def prehash_message(self, timestamp, account, method, params, nonce): """ Prepare a hash for the Conveyor API request with SHA256 according to https://github.com/dpays/rpc-auth Hashing of `second` is then done inside `ecdsasig.sign_message()`. :param str timestamp: valid iso8601 datetime ending in "Z" :param str account: valid dPay blockchain account name :param str method: Conveyor method name to be called :param bytes param: base64 encoded request parameters :param bytes nonce: random 8 bytes """ first = hashlib.sha256(py23_bytes(timestamp + account + method + params, self.ENCODING)) return self.K + first.digest() + nonce def _request(self, account, method, params, key): """Assemble the request, hash it, sign it and send it to the Conveyor instance. Returns the server response as JSON. :param str account: account name :param str method: Conveyor method name to be called :param dict params: request parameters as `dict` :param str key: DPay posting key for signing """ params_bytes = py23_bytes(json.dumps(params), self.ENCODING) params_enc = base64.b64encode(params_bytes).decode(self.ENCODING) timestamp = datetime.utcnow().strftime(self.TIMEFORMAT)[:-3] + "Z" nonce_int = random.getrandbits(64) nonce_bytes = struct.pack('>Q', nonce_int) # 64bit ULL, big endian nonce_str = "%016x" % (nonce_int) message = self.prehash_message(timestamp, account, method, params_enc, nonce_bytes) signature = sign_message(message, key) signature_hex = hexlify(signature).decode(self.ENCODING) request = { "jsonrpc": "2.0", "id": self.id, "method": method, "params": { "__signed": { "account": account, "nonce": nonce_str, "params": params_enc, "signatures": [signature_hex], "timestamp": timestamp } } } r = requests.post(self.url, data=json.dumps(request)) self.id += 1 return r.json() def _conveyor_method(self, account, signing_account, method, params): """ Wrapper function to handle account and key lookups :param str account: name of the addressed account :param str signing_account: name of the account to sign the request :param method: Conveyor method name to be called :params dict params: request parameters as `dict` """ account = Account(account, dpay_instance=self.dpay) if signing_account is None: signer = account else: signer = Account(signing_account, dpay_instance=self.dpay) if "posting" not in signer: signer.refresh() if "posting" not in signer: raise AssertionError("Could not access posting permission") for authority in signer["posting"]["key_auths"]: posting_wif = self.dpay.wallet.getPrivateKeyForPublicKey( authority[0]) return self._request(account['name'], method, params, posting_wif) def get_user_data(self, account, signing_account=None): """ Get the account's email address and phone number. The request has to be signed by the requested account or an admin account. :param str account: requested account :param str signing_account: (optional) account to sign the request. If unset, `account` is used. Example: .. code-block:: python from dpaycli import DPay from dpaycli.conveyor import Conveyor s = DPay(keys=["5JPOSTINGKEY"]) c = Conveyor(dpay_instance=s) print(c.get_user_data('accountname')) """ account = Account(account, dpay_instance=self.dpay) user_data = self._conveyor_method(account, signing_account, "conveyor.get_user_data", [account['name']]) if "result" in user_data: return user_data["result"] else: return user_data def set_user_data(self, account, params, signing_account=None): """ Set the account's email address and phone number. The request has to be signed by an admin account. :param str account: requested account :param dict param: user data to be set :param str signing_account: (optional) account to sign the request. If unset, `account` is used. Example: .. code-block:: python from dpaycli import DPay from dpaycli.conveyor import Conveyor s = DPay(keys=["5JADMINPOSTINGKEY"]) c = Conveyor(dpay_instance=s) userdata = {'email': 'foo@bar.com', 'phone':'+123456789'} c.set_user_data('accountname', userdata, 'adminaccountname') """ return self._conveyor_method(account, signing_account, "conveyor.set_user_data", [params]) def get_feature_flags(self, account, signing_account=None): """ Get the account's feature flags. The request has to be signed by the requested account or an admin account. :param str account: requested account :param str signing_account: (optional) account to sign the request. If unset, `account` is used. Example: .. code-block:: python from dpaycli import DPay from dpaycli.conveyor import Conveyor s = DPay(keys=["5JPOSTINGKEY"]) c = Conveyor(dpay_instance=s) print(c.get_feature_flags('accountname')) """ account = Account(account, dpay_instance=self.dpay) feature_flags = self._conveyor_method(account, signing_account, "conveyor.get_feature_flags", [account['name']]) if "result" in feature_flags: return feature_flags["result"] else: return feature_flags def get_feature_flag(self, account, flag, signing_account=None): """ Test if a specific feature flag is set for an account. The request has to be signed by the requested account or an admin account. :param str account: requested account :param str flag: flag to be tested :param str signing_account: (optional) account to sign the request. If unset, `account` is used. Example: .. code-block:: python from dpaycli import DPay from dpaycli.conveyor import Conveyor s = DPay(keys=["5JPOSTINGKEY"]) c = Conveyor(dpay_instance=s) print(c.get_feature_flag('accountname', 'accepted_tos')) """ account = Account(account, dpay_instance=self.dpay) return self._conveyor_method(account, signing_account, "conveyor.get_feature_flag", [account['name'], flag]) def save_draft(self, account, title, body): """ Save a draft in the Conveyor database :param str account: requested account :param str title: draft post title :param str body: draft post body """ account = Account(account, dpay_instance=self.dpay) draft = {'title': title, 'body': body} return self._conveyor_method(account, None, "conveyor.save_draft", [account['name'], draft]) def list_drafts(self, account): """ List all saved drafts from `account` :param str account: requested account Sample output: .. code-block:: js { 'jsonrpc': '2.0', 'id': 2, 'result': [ {'title': 'draft-title', 'body': 'draft-body', 'uuid': '06497e1e-ac30-48cb-a069-27e1672924c9'} ] } """ account = Account(account, dpay_instance=self.dpay) return self._conveyor_method(account, None, "conveyor.list_drafts", [account['name']]) def remove_draft(self, account, uuid): """ Remove a draft from the Conveyor database :param str account: requested account :param str uuid: draft identifier as returned from `list_drafts` """ account = Account(account, dpay_instance=self.dpay) return self._conveyor_method(account, None, "conveyor.remove_draft", [account['name'], uuid]) def healthcheck(self): """ Get the Conveyor status Sample output: .. code-block:: js { 'ok': True, 'version': '1.1.1-4d28e36-1528725174', 'date': '2018-07-21T12:12:25.502Z' } """ url = urljoin(self.url, "/.well-known/healthcheck.json") r = requests.get(url) return r.json()
[ "jaredricelegal@gmail.com" ]
jaredricelegal@gmail.com
1cfa332536abeb77d7f6d40576cbfb2992f172b3
9ec58308459dc95405d1a32fcf8fae7f687a207b
/test/test_k_lipschitzconstant.py
56181ba4b0528a3f5bcdea366dc5618fd4cf5849
[ "MIT" ]
permissive
ivanlyon/exercises
067aed812486dbd7a3d7de6e47a692c8b9383163
0792976ae2acb85187b26a52812f9ebdd119b5e8
refs/heads/master
2021-05-24T04:17:29.012329
2021-05-11T17:26:50
2021-05-11T17:26:50
65,584,450
0
0
null
null
null
null
UTF-8
Python
false
false
2,210
py
import io import unittest from unittest.mock import patch from kattis import k_lipschitzconstant ############################################################################### class SampleInput(unittest.TestCase): '''Problem statement sample inputs and outputs''' def test_sample_input_1(self): '''Run and assert problem statement sample 1 input and output.''' inputs = [] inputs.append('3') inputs.append('1 1') inputs.append('2 2') inputs.append('3 4') inputs = '\n'.join(inputs) + '\n' outputs = '2.000000000\n' with patch('sys.stdin', io.StringIO(inputs)) as stdin,\ patch('sys.stdout', new_callable=io.StringIO) as stdout: k_lipschitzconstant.main() self.assertEqual(stdout.getvalue(), outputs) self.assertEqual(stdin.read(), '') def test_sample_input_2(self): '''Run and assert problem statement sample 2 input and output.''' inputs = [] inputs.append('2') inputs.append('1 4') inputs.append('2 2') inputs = '\n'.join(inputs) + '\n' outputs = '2.000000000\n' with patch('sys.stdin', io.StringIO(inputs)) as stdin,\ patch('sys.stdout', new_callable=io.StringIO) as stdout: k_lipschitzconstant.main() self.assertEqual(stdout.getvalue(), outputs) self.assertEqual(stdin.read(), '') def test_sample_input_3(self): '''Run and assert problem statement sample 3 input and output.''' inputs = [] inputs.append('4') inputs.append('-10 6.342') inputs.append('-7 3') inputs.append('46 18.1') inputs.append('2 -34') inputs = '\n'.join(inputs) + '\n' outputs = '4.111111111\n' with patch('sys.stdin', io.StringIO(inputs)) as stdin,\ patch('sys.stdout', new_callable=io.StringIO) as stdout: k_lipschitzconstant.main() self.assertEqual(stdout.getvalue(), outputs) self.assertEqual(stdin.read(), '') ############################################################################### if __name__ == '__main__': unittest.main()
[ "roblyon00@gmail.com" ]
roblyon00@gmail.com
a15780d4134153340092b276e7299f3fb54d2570
ac91ee2f10f428315f80134447794de370726c22
/python/main_test_packet_speed.py
52e219009838a0c62cefbe7e06f495cc0eb78f65
[]
no_license
gviejo/LMNphysio
c34a49719e7094fb79b07b55980e186ac95b4fc2
24c9466d6a8a1deaf6b30f38388e90212af07c1e
refs/heads/master
2023-09-01T08:05:02.240143
2023-08-18T19:29:01
2023-08-18T19:29:01
170,920,340
0
0
null
null
null
null
UTF-8
Python
false
false
1,298
py
import numpy as np import pandas as pd import neuroseries as nts from pylab import * from wrappers import * from functions import * import sys data_directory = '/home/guillaume/LMNphysio/data/A5000/A5001-200226A' episodes = ['sleep', 'wake'] events = ['1'] spikes, shank = loadSpikeData(data_directory) n_channels, fs, shank_to_channel = loadXML(data_directory) position = loadPosition(data_directory, events, episodes) wake_ep = loadEpoch(data_directory, 'wake', episodes) sleep_ep = loadEpoch(data_directory, 'sleep') acceleration = loadAuxiliary(data_directory, n_probe = 2) if 'A5002' in data_directory: acceleration = acceleration[[0,1,2]] else: acceleration = acceleration[[3,4,5]] acceleration.columns = pd.Index(np.arange(3)) sleep_ep = refineSleepFromAccel(acceleration, sleep_ep) bins = np.arange(wake_ep.loc[0,'start'], wake_ep.loc[0,'end'], 5000) spike_count = {} for n in np.where(shank.flatten()==0)[0]: spike_count[n] = pd.Series(index = bins[0:-1]+np.diff(bins)/2, data = np.histogram(spikes[n].restrict(wake_ep).index.values, bins)[0]) spike_count = pd.DataFrame.from_dict(spike_count) tmp = spike_count.mean(1) tmp2 = tmp.rolling(window=10, win_type='gaussian', center= True, min_periods=1).mean(std = 1.0)
[ "guillaue.viejo@gmail.com" ]
guillaue.viejo@gmail.com
975d55c83d9b4f29cb206179a448076985191c60
bd6ae68d882cc40876b4f2906fa522ef807d1d89
/2/2_1/源码/75函数默认参数.py
87ce4767c09b40196f6d34813c82d106b6624d2b
[]
no_license
bopopescu/Projects-1
7ecc1f472f418b701bc40c8a58bab447e678c68f
1b7fd99bf1ed96adb7a9486daf098947a9208f77
refs/heads/master
2022-11-19T18:31:32.863170
2018-02-26T02:09:09
2018-02-26T02:09:09
281,792,443
0
0
null
2020-07-22T22:06:26
2020-07-22T22:06:25
null
UTF-8
Python
false
false
490
py
#!/usr/bin/python #_*_ coding:utf-8 _*_ KEVIM = 'Kevim Liu' # lau.liu@9street.org def stu_register(name,age,soures,country="CN"): print('----注册学生信息-----') print('姓名:',name) print('age:',age) print('课程',soures) print('国籍:',country) # print(name,age,soures,country) # stu_register('王山炮',22,'ptyhone_devopt') # stu_register('张三',21,'linux') # stu_register('李四',21,'linux') stu_register('王山炮',soures='ptyhone_devopt',age=22)
[ "liujicun01@163.com" ]
liujicun01@163.com
ce92ba7d2727c429dea4e58d50bb4094beebbaf1
8f9b0f099a4cee619e8d0053a58e94d019e7b559
/bin/tounaer/Crawl_tounaer_guonianbao.py
b6ca5aa54393587e2245f18fedad2c5d54f21e26
[]
no_license
dongshaohui/yintuwang_offline
fb7cab23824b2d6e9084be4fdd8d8b11e80f4c41
fda6488f93b82a8692a5f85abf85f505c692bec8
refs/heads/master
2020-04-26T22:55:59.388932
2015-06-21T16:16:39
2015-06-21T16:16:39
30,067,127
0
0
null
null
null
null
UTF-8
Python
false
false
2,104
py
# !/usr/bin/python # -*- coding=utf8 -*- # author : Shaohui Dong # description : 爬取宜人贷理财服务数据 from BeautifulSoup import BeautifulSoup import sys,os,urllib2,threading import datetime import json import re import DB g_root_link = "http://www.touna.cn/borrow.do?method=list&borrowType=102&page=0&size=100&subtime=1419907176551&_=1419907176552" g_pro_link = "http://www.touna.cn/invest-page.html?id=" # 连接数据库 def Connent_Online_Mysql_By_DB(hostname,port,username,pwd,dbname,socket): db = DB.DB(False,host=hostname, port=port, user=username ,passwd=pwd, db=dbname,charset='gbk', unix_socket=socket) return db # 写入数据库 def write_record_db(db,list_obj,table_name): try: db.insert(table_name,list_obj) db.commit() except Exception,e: print e def fetch_json_data(db): context = urllib2.urlopen(g_root_link,'r').read() json_obj = json.loads(context) for product in json_obj['result']['list']: if product['status'] != 1: continue record = {} record['proName'] = product['name'] record['interest'] = (str)(product['apr']) + "%" record['amount'] = product['account'] record['invested'] = product['account_yes'] record['surplus'] = record['amount'] - record['invested'] record['duetime'] = product['time_limit_name'] record['status'] = product['status_name'] record['credit'] = product['credit_rating'] record['minamount'] = '50' record['urllink'] = g_pro_link + (str)(product['id']) record['datestr'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") write_record_db(db,record,'p2p_product_tounaer_guonianbao') if __name__ == '__main__': db = Connent_Online_Mysql_By_DB('rdsjjuvbqjjuvbqout.mysql.rds.aliyuncs.com',3306,'dongsh','5561225','financal_product','/tmp/mysql.sock') # 清空原有数据库 script_path = os.getcwd() script_path = script_path[:script_path.find('p2p3000')]+"p2p3000/tool/empty_db_table.sh" os.system(script_path + ' p2p_product_tounaer_guonianbao') #os.system('/home/dong/p2p3000/tool/empty_db_table.sh p2p_product_tounaer_guonianbao') fetch_json_data(db)
[ "405989455@qq.com" ]
405989455@qq.com
bb3219cbc8ec31dd765120e96672aa2b74086516
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startCirq3280.py
1543140b02ea74ccca969f2f47081af9354cf0ee
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
3,324
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=44 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=9 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.Y.on(input_qubit[3])) # number=18 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.Y.on(input_qubit[3])) # number=12 c.append(cirq.H.on(input_qubit[0])) # number=5 c.append(cirq.H.on(input_qubit[1])) # number=6 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[1])) # number=34 c.append(cirq.CZ.on(input_qubit[0],input_qubit[1])) # number=35 c.append(cirq.H.on(input_qubit[1])) # number=36 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=31 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=38 c.append(cirq.X.on(input_qubit[1])) # number=39 c.append(cirq.H.on(input_qubit[1])) # number=41 c.append(cirq.CZ.on(input_qubit[0],input_qubit[1])) # number=42 c.append(cirq.H.on(input_qubit[1])) # number=43 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=33 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=30 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.H.on(input_qubit[3])) # number=37 c.append(cirq.H.on(input_qubit[3])) # number=19 c.append(cirq.CZ.on(input_qubit[0],input_qubit[3])) # number=20 c.append(cirq.H.on(input_qubit[3])) # number=21 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=23 c.append(cirq.X.on(input_qubit[3])) # number=24 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=25 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=17 c.append(cirq.rx(-0.48380526865282825).on(input_qubit[3])) # number=26 c.append(cirq.Y.on(input_qubit[2])) # number=10 c.append(cirq.X.on(input_qubit[2])) # number=22 c.append(cirq.Y.on(input_qubit[2])) # number=11 c.append(cirq.X.on(input_qubit[0])) # number=13 c.append(cirq.X.on(input_qubit[0])) # number=14 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq3280.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
[ "wangjiyuan123@yeah.net" ]
wangjiyuan123@yeah.net
f35c0f9b8c76e299a20fd3ee09d8b54cd391f351
d3b99bd7db430a1e46f4a1a59a9eac6cc82c1787
/apps/organization/forms.py
b2c89d1e04c00566cc71d261a3709a7c02f7d99e
[]
no_license
David20111030/Eduonline
460dcd2c530f2a309825666ec6cb394a14336c81
798711f39862256ae5030d29409e90b627684e1c
refs/heads/master
2021-04-15T13:03:39.202881
2017-07-15T14:04:14
2017-07-15T14:04:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
# _*_ encoding: utf-8 _*_ import re from django import forms from operation.models import UserAsk,UserFavorite class UserAskForm(forms.ModelForm): class Meta: model = UserAsk fields =['name','mobile','course_name'] def clean_mobile(self): #验证手机号码是否合法 mobile = self.cleaned_data['mobile'] REGEX_MOBILE = "^1[358]\d{9}$|^147\d{8}$|^176\d{8}$" p = re.compile(REGEX_MOBILE) if p.match(mobile): return mobile else: raise forms.ValidationError(u"手机号码非法",code="mobile_invalid")
[ "salt_stack@126.com" ]
salt_stack@126.com
4207e5baa7d013e44e18c5137edd94cf511ae5dc
f8d957a01539658fcdcb66e11e82f68dcd648921
/pennylane/transforms/batch_transform.py
d5261a1ff71f330a24e84ad459ea6839c1ab1998
[ "Apache-2.0" ]
permissive
hosseinsadeghi/pennylane
0ccdbdd6536f5245910d959828a4d6029e41ae97
d3363227f29f4c58c63203da378de2e1c20a21b0
refs/heads/master
2023-07-17T07:42:42.567989
2021-09-02T19:54:11
2021-09-02T19:54:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,968
py
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains tools and decorators for registering batch transforms.""" # pylint: disable=too-few-public-methods import functools import pennylane as qml from pennylane.interfaces.batch import execute class batch_transform: r"""Class for registering a tape transform that takes a tape, and outputs a batch of tapes to be independently executed on a quantum device. Examples of such transforms include quantum gradient shift rules (such as finite-differences and the parameter-shift rule) and metrics such as the quantum Fisher information matrix. Args: transform_fn (function): The function to register as the batch tape transform. It can have an arbitrary number of arguments, but the first argument **must** be the input tape. expand_fn (function): An expansion function (if required) to be applied to the input tape before the transformation takes place. differentiable (bool): Specifies whether the transform is differentiable or not. A transform may be non-differentiable for several reasons: - It does not use an autodiff framework for its tensor manipulations; - It returns a non-differentiable or non-numeric quantity, such as a boolean, string, or integer. In such a case, setting ``differentiable=False`` instructs the decorator to mark the output as 'constant', reducing potential overhead. **Example** A valid batch tape transform is a function that satisfies the following: - The first argument must be a tape. - Depending on the structure of this input tape, various quantum operations, functions, and templates may be called. - Any internal classical processing should use the ``qml.math`` module to ensure the transform is differentiable. - The transform should return a tuple containing: * Multiple transformed tapes to be executed on a device. * A classical processing function for post-processing the executed tape results. This processing function should have the signature ``f(list[tensor_like]) → Any``. If ``None``, no classical processing is applied to the results. For example: .. code-block:: python @qml.batch_transform def my_transform(tape, a, b): "Generates two tapes, one with all RX replaced with RY, and the other with all RX replaced with RZ." tape1 = qml.tape.JacobianTape() tape2 = qml.tape.JacobianTape() # loop through all operations on the input tape for op in tape.operations + tape.measurements: if op.name == "RX": wires = op.wires param = op.parameters[0] with tape1: qml.RY(a * qml.math.abs(param), wires=wires) with tape2: qml.RZ(b * qml.math.abs(param), wires=wires) else: for t in [tape1, tape2]: with t: qml.apply(op) def processing_fn(results): return qml.math.sum(qml.math.stack(results)) return [tape1, tape2], processing_fn We can apply this transform to a quantum tape: >>> with qml.tape.JacobianTape() as tape: ... qml.Hadamard(wires=0) ... qml.RX(-0.5, wires=0) ... qml.expval(qml.PauliX(0)) >>> tapes, fn = my_transform(tape, 0.65, 2.5) >>> print(tapes[0].draw()) 0: ──H──RY(0.325)──┤ ⟨X⟩ >>> print(tapes[1].draw()) 0: ──H──RZ(1.25)──┤ ⟨X⟩ We can execute these tapes manually: >>> from pennylane.interfaces.batch import execute >>> dev = qml.device("default.qubit", wires=1) >>> res = execute(tapes, dev, interface="autograd", gradient_fn=qml.gradients.param_shift) >>> print(res) [tensor([0.94765073], requires_grad=True), tensor([0.31532236], requires_grad=True)] Applying the processing function, we retrieve the end result of the transform: >>> print(fn(res)) 1.2629730888100839 Alternatively, we may also transform a QNode directly, using either decorator syntax: >>> @my_transform(0.65, 2.5) ... @qml.qnode(dev) ... def circuit(x): ... qml.Hadamard(wires=0) ... qml.RX(x, wires=0) ... return qml.expval(qml.PauliX(0)) >>> print(circuit(-0.5)) 1.2629730888100839 or by transforming an existing QNode: >>> @qml.qnode(dev) ... def circuit(x): ... qml.Hadamard(wires=0) ... qml.RX(x, wires=0) ... return qml.expval(qml.PauliX(0)) >>> circuit = my_transform(circuit, 0.65, 2.5) >>> print(circuit(-0.5)) 1.2629730888100839 Batch tape transforms are fully differentiable: >>> gradient = qml.grad(circuit)(-0.5) >>> print(gradient) 2.5800122591960153 """ def __init__(self, transform_fn, expand_fn=None, differentiable=True): if not callable(transform_fn): raise ValueError( f"The batch transform function to register, {transform_fn}, " "does not appear to be a valid Python function or callable." ) self.transform_fn = transform_fn self.expand_fn = expand_fn self.differentiable = differentiable functools.update_wrapper(self, transform_fn) def qnode_execution_wrapper(self, qnode, targs, tkwargs): """A wrapper method that takes a QNode and transform arguments, and returns a function that 'wraps' the QNode execution. The returned function should accept the same keyword arguments as the QNode, and return the output of the applying the tape transform to the QNode's constructed tape. """ def _wrapper(*args, **kwargs): qnode.construct(args, kwargs) tapes, processing_fn = self.construct(qnode.qtape, *targs, **tkwargs) # TODO: work out what to do for backprop interface = qnode.interface # TODO: extract gradient_fn from QNode gradient_fn = qnode.diff_method if interface is None or not self.differentiable: gradient_fn = None elif gradient_fn in ("best", "parameter-shift"): gradient_fn = qml.gradients.param_shift elif gradient_fn == "finite-diff": gradient_fn = qml.gradients.finite_diff res = execute( tapes, device=qnode.device, gradient_fn=gradient_fn, interface=interface, ) return processing_fn(res) return _wrapper def __call__(self, qnode, *targs, **tkwargs): if isinstance(qnode, qml.tape.QuantumTape): # Input is a quantum tape. # tapes, fn = some_transform(tape, *transform_args) return self.construct(qnode, *targs, **tkwargs) if isinstance(qnode, qml.QNode): # Input is a QNode: # result = some_transform(qnode, *transform_args)(*qnode_args) wrapper = self.qnode_execution_wrapper(qnode, targs, tkwargs) wrapper = functools.wraps(qnode)(wrapper) else: # Input is not a QNode nor a quantum tape. # Assume Python decorator syntax: # # result = some_transform(*transform_args)(qnode)(*qnode_args) # # or # # @some_transform(*transform_args) # @qml.qnode(dev) # def circuit(...): # ... # result = circuit(*qnode_args) # Prepend the input to the transform args, # and create a wrapper function. targs = (qnode,) + targs def wrapper(qnode): _wrapper = self.qnode_execution_wrapper(qnode, targs, tkwargs) _wrapper = functools.wraps(qnode)(_wrapper) return _wrapper wrapper.tape_fn = functools.partial(self.transform_fn, *targs, **tkwargs) wrapper.expand_fn = self.expand_fn wrapper.differentiable = self.differentiable return wrapper def construct(self, tape, *args, **kwargs): """Applies the batch tape transform to an input tape. Args: tape (.QuantumTape): the tape to be transformed *args: positional arguments to pass to the tape transform **kwargs: keyword arguments to pass to the tape transform Returns: tuple[list[tapes], callable]: list of transformed tapes to execute and a post-processing function. """ expand = kwargs.pop("_expand", True) if expand and self.expand_fn is not None: tape = self.expand_fn(tape) tapes, processing_fn = self.transform_fn(tape, *args, **kwargs) if processing_fn is None: processing_fn = lambda x: x return tapes, processing_fn
[ "noreply@github.com" ]
hosseinsadeghi.noreply@github.com
abdff1a74b900f6955b0c6e6f11bbe3febdb8558
f463ea1fd226201c88abc13b567718f1ba4a9396
/2016/Assignment1/cs231n/classifiers/linear_classifier.py
26caa4a36e825434243769b610cc857f036f126a
[]
no_license
RahulBaboota/CS231n-Homeworks
29bc25baeff5ea272a8ab66c13de73cfeaa5be17
820615203eb03d4e479bcf3e2efe831f3da2c534
refs/heads/master
2021-03-27T08:50:23.860952
2019-10-18T18:46:21
2019-10-18T18:46:21
101,315,598
1
0
null
null
null
null
UTF-8
Python
false
false
5,968
py
import numpy as np from cs231n.classifiers.softmax import * from cs231n.classifiers.linear_svm import * class LinearClassifier(object): def __init__(self): self.W = None def train(self, X, y, learningRate = 1e-3, reg = 1e-5, numIters = 100, batchSize = 200, verbose = False): """ Train this linear classifier using stochastic gradient descent. Inputs: - X: A numpy array of shape (N, D) containing training data; there are N training samples each of dimension D. - y: A numpy array of shape (N,) containing training labels; y[i] = c means that X[i] has label 0 <= c < C for C classes. - learningRate: (float) learning rate for optimization. - reg: (float) regularization strength. - numIters: (integer) number of steps to take when optimizing - batchSize: (integer) number of training examples to use at each step. - verbose: (boolean) If true, print progress during optimization. Outputs: A list containing the value of the loss function at each training iteration. """ ## Number of training samples and the dimensions of each training sample. numTrain, dim = X.shape ## Total number of classes (assume y takes values 0...K-1 where K is number of classes) numClasses = np.max(y) + 1 if self.W is None: ## Initialise W randomly. self.W = 0.001 * np.random.randn(dim, numClasses) # Run stochastic gradient descent to optimize W lossHistory = [] for it in xrange(numIters): XBatch = None yBatch = None ######################################################################### # TODO: # # Sample batchSize elements from the training data and their # # corresponding labels to use in this round of gradient descent. # # Store the data in XBatch and their corresponding labels in # # yBatch; after sampling XBatch should have shape (dim, batchSize) # # and yBatch should have shape (batchSize,) # # # # Hint: Use np.random.choice to generate indices. Sampling with # # replacement is faster than sampling without replacement. # ######################################################################### ## Creating an array which randomly selects images. randomIndices = np.random.choice(np.arange(numTrain), size = batchSize) XBatch = X[randomIndices] yBatch = y[randomIndices] ######################################################################### # END OF YOUR CODE # ######################################################################### ## Evaluate loss and gradient loss, grad = self.loss(XBatch, yBatch, reg) lossHistory.append(loss) ## Perform parameter update ######################################################################### # TODO: # # Update the weights using the gradient and the learning rate. # ######################################################################### ## Updating the weights using stochastic gradient descent. self.W -= learningRate * grad ######################################################################### # END OF YOUR CODE # ######################################################################### if verbose and it % 100 == 0: print 'iteration %d / %d: loss %f' % (it, numIters, loss) return lossHistory def predict(self, X): """ Use the trained weights of this linear classifier to predict labels for data points. Inputs: - X: D x N array of training data. Each column is a D-dimensional point. Returns: - yPred: Predicted labels for the data in X. yPred is a 1-dimensional array of length N, and each element is an integer giving the predicted class. """ yPred = np.zeros(X.shape[1]) ########################################################################### # TODO: # # Implement this method. Store the predicted labels in yPred. # ########################################################################### ## Performing the forward pass to compute the raw scores. rawScores = X.dot(self.W) ## Finding the prediction made by the classifier. yPred = rawScores.argmax(axis = 1) ########################################################################### # END OF YOUR CODE # ########################################################################### return yPred def loss(self, XBatch, yBatch, reg): """ Compute the loss function and its derivative. Subclasses will override this. Inputs: - XBatch: A numpy array of shape (N, D) containing a minibatch of N data points; each point has dimension D. - yBatch: A numpy array of shape (N,) containing labels for the minibatch. - reg: (float) regularization strength. Returns: A tuple containing: - loss as a single float - gradient with respect to self.W; an array of the same shape as W """ pass class LinearSVM(LinearClassifier): """ A subclass that uses the Multiclass SVM loss function """ def loss(self, XBatch, yBatch, reg): return svmLossVectorized(self.W, XBatch, yBatch, reg) class Softmax(LinearClassifier): """ A subclass that uses the Softmax + Cross-entropy loss function """ def loss(self, XBatch, yBatch, reg): return softmaxLossVectorized(self.W, XBatch, yBatch, reg)
[ "rahulbaboota08@gmail.com" ]
rahulbaboota08@gmail.com
570f8cfad52606c0201d19107b7cbeea9163c0b6
53f7dbee9628a42f1205ba18670b4ca19f650eef
/src/remerge/core.py
e5342857052dc300d825cee0c4939d9df76d7709
[ "MIT" ]
permissive
pmbaumgartner/remerge-mwe
b89f772adfa2a52b7c191afb6c373ecdd72441f5
7355bf1e7123f2373ebf48111f1fae00f145bb2b
refs/heads/main
2023-05-23T14:31:01.003815
2022-10-12T14:16:56
2022-10-12T14:16:56
543,675,980
15
2
MIT
2022-10-12T14:14:39
2022-09-30T15:52:03
Python
UTF-8
Python
false
false
17,163
py
import json from collections import Counter, defaultdict from copy import deepcopy from dataclasses import dataclass, field from enum import Enum from functools import cached_property from itertools import groupby, islice from pathlib import Path from typing import Callable from typing import Counter as CounterType from typing import ( DefaultDict, Dict, Final, Iterable, List, Literal, NamedTuple, NewType, Optional, Set, Sized, Tuple, ) import numpy as np import numpy.typing as npt from tqdm import tqdm, trange _SMALL: Final[float] = 1e-10 SelectionMethod = Literal["frequency", "log_likelihood", "npmi"] class Lexeme(NamedTuple): word: Tuple[str, ...] ix: int def __repr__(self) -> str: return f"({self.word}|{self.ix})" LineIndex = NewType("LineIndex", int) TokenIndex = NewType("TokenIndex", int) @dataclass class LexemeData: lexemes_to_locations: DefaultDict[ Lexeme, Set[Tuple[LineIndex, TokenIndex]] ] = field(default_factory=lambda: defaultdict(set)) locations_to_lexemes: List[List[Lexeme]] = field(default_factory=list) lexemes_to_freqs: Dict[Lexeme, int] = field(default_factory=dict) @classmethod def from_corpus( cls, corpus: Iterable[Iterable[str]], progress_bar: bool = False ) -> "LexemeData": lexeme_data = cls() total: Optional[int] = len(corpus) if isinstance(corpus, Sized) else None corpus_iter = enumerate(corpus) if progress_bar: corpus_iter = tqdm( corpus_iter, desc="Creating LexemeData from Corpus", unit="line", total=total, ) for (line_ix, tokens) in corpus_iter: line_lexemes = [] for (word_ix, word) in enumerate(tokens): line_ix = LineIndex(line_ix) word_ix = TokenIndex(word_ix) lexeme = Lexeme(word=(word,), ix=0) loc = (line_ix, word_ix) lexeme_data.lexemes_to_locations[lexeme].add(loc) line_lexemes.append(lexeme) lexeme_data.locations_to_lexemes.append(line_lexemes) # Using this conditional prevents double counting merged lexemes. lexeme_data.lexemes_to_freqs = { k: len(v) for k, v in lexeme_data.lexemes_to_locations.items() if k.ix == 0 } return lexeme_data @property def corpus_length(self) -> int: """Returns number of lines in corpus: max(line_ix) + 1.""" return len(self.locations_to_lexemes) def render_corpus(self) -> List[List[Lexeme]]: return self.locations_to_lexemes def locations_to_root_lexemes(self, line: LineIndex) -> Dict[TokenIndex, Lexeme]: lexeme_dicts = self.locations_to_lexemes[line] return {TokenIndex(k): v for k, v in enumerate(lexeme_dicts) if v.ix == 0} Bigram = Tuple[Lexeme, Lexeme] def _count_bigram_line(*args): el1c = [b[0] for b in args] el2c = [b[1] for b in args] bc = [b for b in args] return (el1c, el2c, bc) @dataclass class BigramData: bigrams_to_freqs: CounterType[Bigram] = field(default_factory=Counter) bigrams_to_locations: Dict[Bigram, List[Tuple[LineIndex, TokenIndex]]] = field( default_factory=lambda: defaultdict(list) ) left_lex_freqs: CounterType[Lexeme] = field(default_factory=Counter) right_lex_freqs: CounterType[Lexeme] = field(default_factory=Counter) @classmethod def from_lexemes( cls, lexeme_data: LexemeData, progress_bar: bool = False ) -> "BigramData": bigram_data = cls() corpus_iter = range(lexeme_data.corpus_length) if progress_bar: corpus_iter = tqdm( corpus_iter, desc="Creating BigramData from LexemeData", unit="line", total=lexeme_data.corpus_length - 1, ) for line_ix in corpus_iter: line_lexeme_data = lexeme_data.locations_to_root_lexemes(LineIndex(line_ix)) line_items = line_lexeme_data.items() line_bigrams = [] for (left_ix, left), (_, right) in zip( line_items, islice(line_items, 1, None) ): bigram = (left, right) location = (LineIndex(line_ix), TokenIndex(left_ix)) bigram_data.bigrams_to_locations[bigram].append(location) line_bigrams.append(bigram) bigram_data.batch_add_bigrams(line_bigrams) return bigram_data def batch_add_bigrams(self, bigram_locations: List[Bigram]): el1s, el2s, bigrams = _count_bigram_line(*bigram_locations) self.left_lex_freqs.update(el1s) self.right_lex_freqs.update(el2s) self.bigrams_to_freqs.update(bigrams) @dataclass class WinnerInfo: bigram: Bigram merged_lexeme: Lexeme bigram_locations: List[Tuple[LineIndex, TokenIndex]] @classmethod def from_bigram_with_data( cls, bigram: Bigram, bigram_data: BigramData ) -> "WinnerInfo": el1_words = list(bigram[0].word) el2_words = list(bigram[1].word) all_words = el1_words + el2_words new_lexeme = Lexeme(word=tuple(all_words), ix=0) locations = sorted(bigram_data.bigrams_to_locations[bigram]) return cls(bigram=bigram, merged_lexeme=new_lexeme, bigram_locations=locations) def clean_bigram_locations(self) -> List[Tuple[LineIndex, TokenIndex]]: """This is greedily selecting correct bigrams from the candidate locations of bigrams. Why? Well, in the case of a sentence like (a, a, a), with winner = (a, a), we can only convert the first occurrence of this bigram and not the second, since the first occurence would be transformed into the bigram, the new bigram in the second position no longer exists - but could be a candidate for the next round if it is indeed that common of a pattern. A more complex example is with winner (a, b, a, b) in ((a, b), (a, b), (a, b)). Here is the same idea: once we merge the first occurence it is no longer available, even though it occurs later. """ clean_locations: List[Tuple[LineIndex, TokenIndex]] = [] for line, location in groupby(self.bigram_locations, key=lambda x: x[0]): exclude_token: Set[TokenIndex] = set() token_ix = [i[1] for i in location] for token in token_ix: if token in exclude_token: continue excludes = [i for i in token_ix if i < token + self.n_lexemes] exclude_token.update(excludes) clean_locations.append((line, token)) return clean_locations @property def n_lexemes(self) -> int: return len(self.merged_lexeme.word) @property def merge_token_count(self) -> int: # TODO: Optimize by putting in loop so we don't have to iterate here return len(self.clean_bigram_locations()) def merge_winner( winner: WinnerInfo, lexeme_data: LexemeData, bigram_data: BigramData ) -> Tuple[LexemeData, BigramData]: bigram_lines = set(i[0] for i in winner.clean_bigram_locations()) old_bigrams_lookup = { line_ix: list(lexeme_data.locations_to_root_lexemes(LineIndex(line_ix)).items()) for line_ix in bigram_lines } for (line_ix, word_ix) in winner.clean_bigram_locations(): for lexeme_index in range(winner.n_lexemes): pos = TokenIndex(word_ix + lexeme_index) old_lexeme = lexeme_data.locations_to_lexemes[line_ix][pos] lexeme = Lexeme(word=winner.merged_lexeme.word, ix=lexeme_index) lexeme_data.locations_to_lexemes[line_ix][pos] = lexeme lexeme_data.lexemes_to_locations[old_lexeme].remove((line_ix, pos)) lexeme_data.lexemes_to_locations[lexeme].add((line_ix, pos)) for line_ix, lexemes in old_bigrams_lookup.items(): old_bigrams = list( zip([l[1] for l in lexemes], islice([l[1] for l in lexemes], 1, None)) ) new_root_lexemes_items = list( lexeme_data.locations_to_root_lexemes(LineIndex(line_ix)).items() ) new_root_lexemes = list(lex for _, lex in new_root_lexemes_items) new_bigrams = list(zip(new_root_lexemes, islice(new_root_lexemes, 1, None))) bigram_data.bigrams_to_freqs.update(new_bigrams) bigram_data.left_lex_freqs.update([b[0] for b in new_bigrams]) bigram_data.right_lex_freqs.update([b[1] for b in new_bigrams]) bigram_data.bigrams_to_freqs.subtract(old_bigrams) bigram_data.left_lex_freqs.subtract([b[0] for b in old_bigrams]) bigram_data.right_lex_freqs.subtract([b[1] for b in old_bigrams]) for (left_ix, left), (_, right) in zip(lexemes, islice(lexemes, 1, None)): bigram = (left, right) location = (LineIndex(line_ix), TokenIndex(left_ix)) bigram_data.bigrams_to_locations[bigram].remove(location) for (left_ix, left), (_, right) in zip( new_root_lexemes_items, islice(new_root_lexemes_items, 1, None) ): bigram = (left, right) location = (LineIndex(line_ix), TokenIndex(left_ix)) bigram_data.bigrams_to_locations[bigram].append(location) lexeme_data.lexemes_to_freqs[winner.merged_lexeme] = winner.merge_token_count el1_freq = lexeme_data.lexemes_to_freqs[winner.bigram[0]] new_el1_freq = el1_freq - winner.merge_token_count lexeme_data.lexemes_to_freqs[winner.bigram[0]] = new_el1_freq el2_freq = lexeme_data.lexemes_to_freqs[winner.bigram[1]] new_el2_freq = el2_freq - winner.merge_token_count lexeme_data.lexemes_to_freqs[winner.bigram[1]] = new_el2_freq lexeme_data.lexemes_to_freqs = { k: v for k, v in lexeme_data.lexemes_to_freqs.items() if v != 0 } lexeme_data.lexemes_to_locations = defaultdict( set, {k: v for k, v in lexeme_data.lexemes_to_locations.items() if v != set()} ) bigram_data.bigrams_to_freqs = Counter( {k: v for k, v in bigram_data.bigrams_to_freqs.items() if v > 0} ) bigram_data.left_lex_freqs = Counter( {k: v for k, v in bigram_data.left_lex_freqs.items() if v > 0} ) bigram_data.right_lex_freqs = Counter( {k: v for k, v in bigram_data.right_lex_freqs.items() if v > 0} ) assert winner.bigram not in bigram_data.bigrams_to_freqs return lexeme_data, bigram_data # NamedTuple doesn't support cached_property @dataclass(frozen=True) class BigramFreqArrays: bigram_index: List[Bigram] bigram_freq_array: npt.NDArray[np.int_] el1_freq_array: npt.NDArray[np.int_] el2_freq_array: npt.NDArray[np.int_] @cached_property def bigram_count(self) -> np.int_: return self.bigram_freq_array.sum() @classmethod def from_bigram_data( cls, bigram_data: BigramData, min_count: int = 0 ) -> "BigramFreqArrays": length = len( [i for i in bigram_data.bigrams_to_freqs.values() if i >= min_count] ) bigram_freq_array = np.empty(length, dtype=np.int_) el1_freq_array = np.empty(length, dtype=np.int_) el2_freq_array = np.empty(length, dtype=np.int_) bigram_index = [] i = 0 for (bigram, freq) in bigram_data.bigrams_to_freqs.items(): if freq < min_count: continue bigram_freq_array[i] = freq l1 = bigram_data.left_lex_freqs[bigram[0]] el1_freq_array[i] = l1 l2 = bigram_data.right_lex_freqs[bigram[1]] el2_freq_array[i] = l2 bigram_index.append(bigram) i += 1 # manually count instead of enumerate return cls(bigram_index, bigram_freq_array, el1_freq_array, el2_freq_array) def calculate_winner_log_likelihood( bigram_data: BigramData, min_count: int = 0 ) -> Bigram: data = BigramFreqArrays.from_bigram_data(bigram_data, min_count=min_count) log_likelihoods = _calculate_log_likelihood(data) winner_ix = np.argmax(log_likelihoods) winner: Bigram = data.bigram_index[winner_ix] return winner def calculate_winner_npmi(bigram_data: BigramData, min_count: int = 0) -> Bigram: data = BigramFreqArrays.from_bigram_data(bigram_data, min_count=min_count) npmis = _calculate_npmi(data) winner_ix = np.argmax(npmis) winner: Bigram = data.bigram_index[winner_ix] return winner def calculate_winner_frequency(bigrams: BigramData, min_count: int = 0) -> Bigram: return bigrams.bigrams_to_freqs.most_common(1)[0][0] def _calculate_npmi(data: BigramFreqArrays) -> npt.NDArray[np.float_]: prob_ab = data.bigram_freq_array / data.bigram_count prob_a = data.el1_freq_array / data.bigram_count prob_b = data.el2_freq_array / data.bigram_count npmi = np.log(prob_ab / (prob_a * prob_b)) / -(np.log(prob_ab)) return npmi def _calculate_log_likelihood(data: BigramFreqArrays) -> npt.NDArray[np.float_]: # For reference, see also: nltk.collocations.BigramAssocMeasures, specifically _contingency # http://ecologyandevolution.org/statsdocs/online-stats-manual-chapter4.html obsA = data.bigram_freq_array obsB = data.el1_freq_array - obsA obsC = data.el2_freq_array - obsA obsD = data.bigram_count - obsA - obsB - obsC expA = ((obsA + obsB) * (obsA + obsC)) / data.bigram_count expB = ((obsA + obsB) * (obsB + obsD)) / data.bigram_count expC = ((obsC + obsD) * (obsA + obsC)) / data.bigram_count expD = ((obsC + obsD) * (obsB + obsD)) / data.bigram_count llA = obsA * np.log((obsA / (expA + _SMALL)) + _SMALL) llB = obsB * np.log((obsB / (expB + _SMALL)) + _SMALL) llC = obsC * np.log((obsC / (expC + _SMALL)) + _SMALL) llD = obsD * np.log((obsD / (expD + _SMALL)) + _SMALL) log_likelihood = 2.0 * (llA + llB + llC + llD) log_likelihood = np.where(llA > 0, log_likelihood, log_likelihood * -1.0) return log_likelihood SELECTION_METHODS: Dict[SelectionMethod, Callable[[BigramData, int], Bigram]] = { "log_likelihood": calculate_winner_log_likelihood, "frequency": calculate_winner_frequency, "npmi": calculate_winner_npmi, } ProgressBarOptions = Literal["all", "iterations", "none"] def run( corpus: List[List[str]], iterations: int, *, method: SelectionMethod = "log_likelihood", min_count: int = 0, output: Optional[Path] = None, progress_bar: ProgressBarOptions = "iterations", ) -> List[WinnerInfo]: """Run the remerge algorithm. Args: corpus (List[List[str]]): A corpus of already tokenized texts. iterations (int): The number of iterations to run the algorithm. Papers typically use >500. method (SelectionMethod, optional): One of "frequency", "log_likelihood", or "npmi". Defaults to "log_likelihood". min_count (int, optional): The minimum count required for a bigram to be included in the winner calculations. If choosing NPMI ("npmi") as the selection method, prefer using min_count because this measure is biased towards infrequent word pairs. Defaults to 0. output (Optional[Path], optional): A file path to output the winning merged lexemes as JSON. Defaults to None. progress_bar (ProgressBarOptions, optional): Verbosity of progress bar. "all" will display the lexeme and bigram construction progress each iteration plus total iteration progress. "iterations" will display progress on the total number of iterations. "none" has no output. Defaults to "iterations". Returns: List[WinnerInfo]: The winning bigram from each iteration. """ winners: List[WinnerInfo] = [] all_progress = progress_bar == "all" lexemes = LexemeData.from_corpus(corpus, progress_bar=all_progress) bigrams = BigramData.from_lexemes(lexemes, progress_bar=all_progress) winner_selection_function = SELECTION_METHODS[method] if output is not None: print(f"Outputting winning merged lexemes to '{output}'") iterations_iter = ( trange(iterations) if progress_bar in {"all", "iterations"} else range(iterations) ) for _ in iterations_iter: winning_bigram = winner_selection_function(bigrams, min_count) winner = WinnerInfo.from_bigram_with_data( bigram=winning_bigram, bigram_data=bigrams ) winners.append(winner) if output: winner_lexemes = {i: w.merged_lexeme.word for i, w in enumerate(winners)} output.write_text(json.dumps(winner_lexemes)) lexemes, bigrams = merge_winner(winner, lexemes, bigrams) if isinstance(iterations_iter, tqdm): lines = set(w[0] for w in winner.bigram_locations) pct_bgr = len(lines) / lexemes.corpus_length iterations_iter.set_postfix( { "last_winner": winner.merged_lexeme.word, "pct_bgr": f"{pct_bgr*100:.1f}%", } ) return winners
[ "5107405+pmbaumgartner@users.noreply.github.com" ]
5107405+pmbaumgartner@users.noreply.github.com
7516d8abf2b927b3b25da547626b6cd3d7f9db87
b019c47889d911b4008f62a05053abc31b4c8ef9
/trax/tf_numpy/numpy/array_methods.py
f52240f5691dcde83037bbe637f9ec6e5270dec7
[ "Apache-2.0" ]
permissive
pkol/trax
c70e014ff777e959f3ef1226ad0272970bc69afb
4dda0a5079b48ca8c325164884e677a87a0e3b37
refs/heads/master
2020-09-12T13:45:31.767971
2020-03-30T12:02:46
2020-03-30T12:02:46
222,443,710
0
0
Apache-2.0
2019-11-18T12:26:32
2019-11-18T12:26:31
null
UTF-8
Python
false
false
25,429
py
# coding=utf-8 # Copyright 2020 The Trax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common array methods.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import six import tensorflow.compat.v2 as tf from trax.tf_numpy.numpy import array_creation from trax.tf_numpy.numpy import array_manipulation from trax.tf_numpy.numpy import arrays from trax.tf_numpy.numpy import dtypes from trax.tf_numpy.numpy import utils def all(a, axis=None, keepdims=None): # pylint: disable=redefined-builtin """Whether all array elements or those along an axis evaluate to true. Casts the array to bool type if it is not already and uses `tf.reduce_all` to compute the result. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. axis: Optional. Could be an int or a tuple of integers. If not specified, the reduction is performed over all array indices. keepdims: If true, retains reduced dimensions with length 1. Returns: An ndarray. Note that unlike NumPy this does not return a scalar bool if `axis` is None. """ a = array_creation.asarray(a, dtype=bool) return utils.tensor_to_ndarray( tf.reduce_all(input_tensor=a.data, axis=axis, keepdims=keepdims)) def any(a, axis=None, keepdims=None): # pylint: disable=redefined-builtin """Whether any element in the entire array or in an axis evaluates to true. Casts the array to bool type if it is not already and uses `tf.reduce_any` to compute the result. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. axis: Optional. Could be an int or a tuple of integers. If not specified, the reduction is performed over all array indices. keepdims: If true, retains reduced dimensions with length 1. Returns: An ndarray. Note that unlike NumPy this does not return a scalar bool if `axis` is None. """ a = array_creation.asarray(a, dtype=bool) return utils.tensor_to_ndarray( tf.reduce_any(input_tensor=a.data, axis=axis, keepdims=keepdims)) def argmax(a, axis=None): """Returns the indices of the maximum values along an array axis. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. axis: Optional. The axis along which to compute argmax. If None, index of the max element in the flattened array is returned. Returns: An ndarray with the same shape as `a` with `axis` removed if not None. If `axis` is None, a scalar array is returned. """ a = array_creation.asarray(a) if axis is None or utils.isscalar(a): # When axis is None or the array is a scalar, numpy flattens the array. a_t = tf.reshape(a.data, [-1]) else: a_t = a.data return utils.tensor_to_ndarray(tf.argmax(input=a_t, axis=axis)) def argmin(a, axis=None): """Returns the indices of the minimum values along an array axis. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. axis: Optional. The axis along which to compute argmin. If None, index of the min element in the flattened array is returned. Returns: An ndarray with the same shape as `a` with `axis` removed if not None. If `axis` is None, a scalar array is returned. """ a = array_creation.asarray(a) if axis is None or utils.isscalar(a): # When axis is None or the array is a scalar, numpy flattens the array. a_t = tf.reshape(a.data, [-1]) else: a_t = a.data return utils.tensor_to_ndarray(tf.argmin(input=a_t, axis=axis)) def clip(a, a_min=None, a_max=None): """Clips array values to lie within a given range. Uses `tf.clip_by_value`. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. a_min: array_like. Must be a scalar or a shape that can be broadcast to `a.shape`. At least one of `a_min` or `a_max` should be non-None. a_max: array_like. Must be a scalar or a shape that can be broadcast to `a.shape`. At least one of `a_min` or `a_max` should be non-None. Returns: An ndarray with trimmed values with the same shape and dtype as `a`. Raises: ValueError: if both a_min and a_max are None. """ if a_min is None and a_max is None: raise ValueError('Both a_min and a_max cannot be None.') a = array_creation.asarray(a) # Unlike np.clip, tf.clip_by_value requires both min and max values to be # specified so we set them to the smallest/largest values of the array dtype. if a_min is None: a_min = np.iinfo(a.dtype).min if a_max is None: a_max = np.iinfo(a.dtype).max a_min = array_creation.asarray(a_min, dtype=a.dtype) a_max = array_creation.asarray(a_max, dtype=a.dtype) return utils.tensor_to_ndarray( tf.clip_by_value(a.data, a_min.data, a_max.data)) def compress(condition, a, axis=None): """Compresses `a` by selecting values along `axis` with `condition` true. Uses `tf.boolean_mask`. Args: condition: 1-d array of bools. If `condition` is shorter than the array axis (or the flattened array if axis is None), it is padded with False. a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. axis: Optional. Axis along which to select elements. If None, `condition` is applied on flattened array. Returns: An ndarray. Raises: ValueError: if `condition` is not of rank 1. """ condition = array_creation.asarray(condition, dtype=bool) a = array_creation.asarray(a) if condition.ndim != 1: raise ValueError('condition must be a 1-d array.') # `np.compress` treats scalars as 1-d arrays. if a.ndim == 0: a = ravel(a) if axis is None: a = ravel(a) axis = 0 if axis < 0: axis += a.ndim assert axis >= 0 and axis < a.ndim # `tf.boolean_mask` requires the first dimensions of array and condition to # match. `np.compress` pads condition with False when it is shorter. condition_t = condition.data a_t = a.data if condition.shape[0] < a.shape[axis]: padding = tf.fill([a.shape[axis] - condition.shape[0]], False) condition_t = tf.concat([condition_t, padding], axis=0) return utils.tensor_to_ndarray(tf.boolean_mask(tensor=a_t, mask=condition_t, axis=axis)) def copy(a): """Returns a copy of the array.""" return array_creation.array(a, copy=True) def cumprod(a, axis=None, dtype=None): """Returns cumulative product of `a` along an axis or the flattened array. Uses `tf.cumprod`. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. axis: Optional. Axis along which to compute products. If None, operation is performed on the flattened array. dtype: Optional. The type of the output array. If None, defaults to the dtype of `a` unless `a` is an integer type with precision less than `int` in which case the output type is `int.` Returns: An ndarray with the same number of elements as `a`. If `axis` is None, the output is a 1-d array, else it has the same shape as `a`. """ a = array_creation.asarray(a, dtype=dtype) if dtype is None and tf.as_dtype(a.dtype).is_integer: # If a is an integer type and its precision is less than that of `int`, # the output type will be `int`. output_type = np.promote_types(a.dtype, int) if output_type != a.dtype: a = array_creation.asarray(a, dtype=output_type) # If axis is None, the input is flattened. if axis is None: a = ravel(a) axis = 0 if axis < 0: axis += a.ndim assert axis >= 0 and axis < a.ndim return utils.tensor_to_ndarray(tf.math.cumprod(a.data, axis)) def cumsum(a, axis=None, dtype=None): """Returns cumulative sum of `a` along an axis or the flattened array. Uses `tf.cumsum`. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. axis: Optional. Axis along which to compute sums. If None, operation is performed on the flattened array. dtype: Optional. The type of the output array. If None, defaults to the dtype of `a` unless `a` is an integer type with precision less than `int` in which case the output type is `int.` Returns: An ndarray with the same number of elements as `a`. If `axis` is None, the output is a 1-d array, else it has the same shape as `a`. """ a = array_creation.asarray(a, dtype=dtype) if dtype is None and tf.as_dtype(a.dtype).is_integer: # If a is an integer type and its precision is less than that of `int`, # the output type will be `int`. output_type = np.promote_types(a.dtype, int) if output_type != a.dtype: a = array_creation.asarray(a, dtype=output_type) # If axis is None, the input is flattened. if axis is None: a = ravel(a) axis = 0 if axis < 0: axis += a.ndim assert axis >= 0 and axis < a.ndim return utils.tensor_to_ndarray(tf.cumsum(a.data, axis)) def imag(a): """Returns imaginary parts of all elements in `a`. Uses `tf.imag`. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. Returns: An ndarray with the same shape as `a`. """ a = array_creation.asarray(a) # TODO(srbs): np.imag returns a scalar if a is a scalar, whereas we always # return an ndarray. return utils.tensor_to_ndarray(tf.math.imag(a.data)) _TO_INT64 = 0 _TO_FLOAT = 1 def _reduce(tf_fn, a, axis=None, dtype=None, keepdims=None, promote_int=_TO_INT64, tf_bool_fn=None, preserve_bool=False): """A general reduction function. Args: tf_fn: the TF reduction function. a: the array to be reduced. axis: (optional) the axis along which to do the reduction. If None, all dimensions are reduced. dtype: (optional) the dtype of the result. keepdims: (optional) whether to keep the reduced dimension(s). promote_int: how to promote integer and bool inputs. There are three choices: (1) _TO_INT64: always promote them to int64 or uint64; (2) _TO_FLOAT: always promote them to a float type (determined by dtypes.default_float_type); (3) None: don't promote. tf_bool_fn: (optional) the TF reduction function for bool inputs. It will only be used if `dtype` is explicitly set to `np.bool_` or if `a`'s dtype is `np.bool_` and `preserve_bool` is True. preserve_bool: a flag to control whether to use `tf_bool_fn` if `a`'s dtype is `np.bool_` (some reductions such as np.sum convert bools to integers, while others such as np.max preserve bools. Returns: An ndarray. """ if dtype: dtype = utils.result_type(dtype) if keepdims is None: keepdims = False a = array_creation.asarray(a, dtype=dtype) if ((dtype == np.bool_ or preserve_bool and a.dtype == np.bool_) and tf_bool_fn is not None): return utils.tensor_to_ndarray( tf_bool_fn(input_tensor=a.data, axis=axis, keepdims=keepdims)) if dtype is None: dtype = a.dtype if np.issubdtype(dtype, np.integer) or dtype == np.bool_: if promote_int == _TO_INT64: # If a is an integer/bool type and whose bit width is less than 64, # numpy up-casts it to 64-bit. if dtype == np.bool_: is_signed = True width = 8 # We can use any number here that is less than 64 else: is_signed = np.issubdtype(dtype, np.signedinteger) width = np.iinfo(dtype).bits if width < 64: if is_signed: dtype = np.int64 else: dtype = np.uint64 a = a.astype(dtype) elif promote_int == _TO_FLOAT: a = a.astype(dtypes.default_float_type()) return utils.tensor_to_ndarray( tf_fn(input_tensor=a.data, axis=axis, keepdims=keepdims)) @utils.np_doc(np.sum) def sum(a, axis=None, dtype=None, keepdims=None): # pylint: disable=redefined-builtin return _reduce(tf.reduce_sum, a, axis=axis, dtype=dtype, keepdims=keepdims, tf_bool_fn=tf.reduce_any) @utils.np_doc(np.prod) def prod(a, axis=None, dtype=None, keepdims=None): return _reduce(tf.reduce_prod, a, axis=axis, dtype=dtype, keepdims=keepdims, tf_bool_fn=tf.reduce_all) @utils.np_doc(np.mean) def mean(a, axis=None, dtype=None, keepdims=None): return _reduce(tf.math.reduce_mean, a, axis=axis, dtype=dtype, keepdims=keepdims, promote_int=_TO_FLOAT) @utils.np_doc(np.amax) def amax(a, axis=None, keepdims=None): return _reduce(tf.reduce_max, a, axis=axis, dtype=None, keepdims=keepdims, promote_int=None, tf_bool_fn=tf.reduce_any, preserve_bool=True) @utils.np_doc(np.amin) def amin(a, axis=None, keepdims=None): return _reduce(tf.reduce_min, a, axis=axis, dtype=None, keepdims=keepdims, promote_int=None, tf_bool_fn=tf.reduce_all, preserve_bool=True) @utils.np_doc(np.var) def var(a, axis=None, keepdims=None): return _reduce(tf.math.reduce_variance, a, axis=axis, dtype=None, keepdims=keepdims, promote_int=_TO_FLOAT) @utils.np_doc(np.std) def std(a, axis=None, keepdims=None): return _reduce(tf.math.reduce_std, a, axis=axis, dtype=None, keepdims=keepdims, promote_int=_TO_FLOAT) def ravel(a): """Flattens `a` into a 1-d array. If `a` is already a 1-d ndarray it is returned as is. Uses `tf.reshape`. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. Returns: A 1-d ndarray. """ a = array_creation.asarray(a) if a.ndim == 1: return a return utils.tensor_to_ndarray(tf.reshape(a.data, [-1])) def real(val): """Returns real parts of all elements in `a`. Uses `tf.real`. Args: val: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. Returns: An ndarray with the same shape as `a`. """ val = array_creation.asarray(val) # TODO(srbs): np.real returns a scalar if val is a scalar, whereas we always # return an ndarray. return utils.tensor_to_ndarray(tf.math.real(val.data)) @utils.np_doc(np.repeat) def repeat(a, repeats, axis=None): a = array_creation.asarray(a).data repeats = array_creation.asarray(repeats).data return utils.tensor_to_ndarray(tf.repeat(a, repeats, axis)) def around(a, decimals=0): """Rounds each array element to the specified number of decimals. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. decimals: Optional, defaults to 0. The number of decimal places to round to. Could be negative. Returns: An ndarray. """ a = array_creation.asarray(a) factor = math.pow(10, decimals) a_t = tf.multiply(a.data, factor) a_t = tf.round(a_t) a_t = tf.math.divide(a_t, factor) return utils.tensor_to_ndarray(a_t) def reshape(a, newshape): """Reshapes an array. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. newshape: 0-d or 1-d array_like. Returns: An ndarray with the contents and dtype of `a` and shape `newshape`. """ a = array_creation.asarray(a) if isinstance(newshape, arrays.ndarray): newshape = newshape.data return utils.tensor_to_ndarray(tf.reshape(a.data, newshape)) def expand_dims(a, axis): """Expand the shape of an array. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. axis: int. axis on which to expand the shape. Returns: An ndarray with the contents and dtype of `a` and shape expanded on axis. """ a = array_creation.asarray(a) return utils.tensor_to_ndarray(tf.expand_dims(a.data, axis=axis)) def squeeze(a, axis=None): """Removes single-element axes from the array. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. axis: scalar or list/tuple of ints. TODO(srbs): tf.squeeze throws error when axis is a Tensor eager execution is enabled. So we cannot allow axis to be array_like here. Fix. Returns: An ndarray. """ a = array_creation.asarray(a) return utils.tensor_to_ndarray(tf.squeeze(a, axis)) def transpose(a, axes=None): """Permutes dimensions of the array. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. axes: array_like. A list of ints with length rank(a) or None specifying the order of permutation. The i'th dimension of the output array corresponds to axes[i]'th dimension of the `a`. If None, the axes are reversed. Returns: An ndarray. """ a = array_creation.asarray(a) if axes is not None: axes = array_creation.asarray(axes) return utils.tensor_to_ndarray(tf.transpose(a=a.data, perm=axes)) def swapaxes(a, axis1, axis2): """Interchange two axes of an array. Args: a: array_like. Input array. axis1: int. First axis. axis2: int. Second axis. Returns: An ndarray. """ a = array_creation.asarray(a) # TODO(wangpeng): handling partial shapes with unknown ranks n = len(a.shape) if not (-n <= axis1 and axis1 < n): raise ValueError('axis1 must be in range [-%s, %s); got %s' % (n, n, axis1)) if not (-n <= axis2 and axis2 < n): raise ValueError('axis2 must be in range [-%s, %s); got %s' % (n, n, axis2)) if axis1 < 0: axis1 += n if axis2 < 0: axis2 += n perm = list(range(n)) perm[axis1] = axis2 perm[axis2] = axis1 return transpose(a, perm) def _setitem(arr, index, value): """Sets the `value` at `index` in the array `arr`. This works by replacing the slice at `index` in the tensor with `value`. Since tensors are immutable, this builds a new tensor using the `tf.concat` op. Currently, only 0-d and 1-d indices are supported. Note that this may break gradients e.g. a = tf_np.array([1, 2, 3]) old_a_t = a.data with tf.GradientTape(persistent=True) as g: g.watch(a.data) b = a * 2 a[0] = 5 g.gradient(b.data, [a.data]) # [None] g.gradient(b.data, [old_a_t]) # [[2., 2., 2.]] Here `d_b / d_a` is `[None]` since a.data no longer points to the same tensor. Args: arr: array_like. index: scalar or 1-d integer array. value: value to set at index. Returns: ndarray Raises: ValueError: if `index` is not a scalar or 1-d array. """ # TODO(srbs): Figure out a solution to the gradient problem. arr = array_creation.asarray(arr) index = array_creation.asarray(index) if index.ndim == 0: index = ravel(index) elif index.ndim > 1: raise ValueError('index must be a scalar or a 1-d array.') value = array_creation.asarray(value, dtype=arr.dtype) if arr.shape[len(index):] != value.shape: value = array_manipulation.broadcast_to(value, arr.shape[len(index):]) prefix_t = arr.data[:index.data[0]] postfix_t = arr.data[index.data[0] + 1:] if len(index) == 1: arr._data = tf.concat( # pylint: disable=protected-access [prefix_t, tf.expand_dims(value.data, 0), postfix_t], 0) else: subarray = arr[index.data[0]] _setitem(subarray, index[1:], value) arr._data = tf.concat( # pylint: disable=protected-access [prefix_t, tf.expand_dims(subarray.data, 0), postfix_t], 0) setattr(arrays.ndarray, 'transpose', transpose) setattr(arrays.ndarray, 'reshape', reshape) setattr(arrays.ndarray, '__setitem__', _setitem) def pad(array, pad_width, mode, constant_values=0): """Pads an array. Args: array: array_like of rank N. Input array. pad_width: {sequence, array_like, int}. Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes. mode: string. One of the following string values: 'constant' Pads with a constant value. 'reflect' Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. 'symmetric' Pads with the reflection of the vector mirrored along the edge of the array. **NOTE**: The supported list of `mode` does not match that of numpy's. constant_values: scalar with same dtype as `array`. Used in 'constant' mode as the pad value. Default is 0. Returns: An ndarray padded array of rank equal to `array` with shape increased according to `pad_width`. Raises: ValueError if `mode` is not supported. """ if not (mode == 'constant' or mode == 'reflect' or mode == 'symmetric'): raise ValueError('Unsupported padding mode: ' + mode) mode = mode.upper() array = array_creation.asarray(array) pad_width = array_creation.asarray(pad_width, dtype=tf.int32) return utils.tensor_to_ndarray(tf.pad( tensor=array.data, paddings=pad_width.data, mode=mode, constant_values=constant_values)) def take(a, indices, axis=None): """Take elements from an array along an axis. See https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html for description. Args: a: array_like. The source array. indices: array_like. The indices of the values to extract. axis: int, optional. The axis over which to select values. By default, the flattened input array is used. Returns: A ndarray. The returned array has the same type as `a`. """ a = array_creation.asarray(a) indices = array_creation.asarray(indices) a = a.data if axis is None: a = tf.reshape(a, [-1]) axis = 0 return utils.tensor_to_ndarray(tf.gather(a, indices.data, axis=axis)) def where(condition, x, y): """Return an array with elements from `x` or `y`, depending on condition. Args: condition: array_like, bool. Where True, yield `x`, otherwise yield `y`. x: see below. y: array_like, optional. Values from which to choose. `x`, `y` and `condition` need to be broadcastable to some shape. Returns: An array. """ condition = array_creation.asarray(condition, dtype=np.bool_) x, y = array_creation._promote_dtype(x, y) return utils.tensor_to_ndarray(tf.where(condition.data, x.data, y.data)) def shape(a): """Return the shape of an array. Args: a: array_like. Input array. Returns: Tuple of ints. """ a = array_creation.asarray(a) return a.shape def ndim(a): a = array_creation.asarray(a) return a.ndim def isscalar(a): return ndim(a) == 0 def _boundaries_to_sizes(a, boundaries, axis): """Converting boundaries of splits to sizes of splits. Args: a: the array to be split. boundaries: the boundaries, as in np.split. axis: the axis along which to split. Returns: A list of sizes of the splits, as in tf.split. """ if axis >= len(a.shape): raise ValueError('axis %s is out of bound for shape %s' % (axis, a.shape)) total_size = a.shape[axis] sizes = [] sizes_sum = 0 prev = 0 for i, b in enumerate(boundaries): size = b - prev if size < 0: raise ValueError('The %s-th boundary %s is smaller than the previous ' 'boundary %s' % (i, b, prev)) size = min(size, max(0, total_size - sizes_sum)) sizes.append(size) sizes_sum += size prev = b sizes.append(max(0, total_size - sizes_sum)) return sizes def split(a, indices_or_sections, axis=0): """Split an array into multiple sub-arrays. See https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html for reference. Args: a: the array to be splitted. indices_or_sections: int or 1-D array, representing the number of even splits or the boundaries between splits. axis: the axis along which to split. Returns: A list of sub-arrays. """ a = array_creation.asarray(a) if not isinstance(indices_or_sections, six.integer_types): indices_or_sections = _boundaries_to_sizes(a, indices_or_sections, axis) result = tf.split(a.data, indices_or_sections, axis=axis) return [utils.tensor_to_ndarray(a) for a in result]
[ "copybara-worker@google.com" ]
copybara-worker@google.com
8b745fc24590730af1bfcea38487baaebdeea983
9ea977520ab7dd032a12a8bc83609cce4c33f29b
/ass3/2015csz8044/posRun.py
792a385e56440ff797b74eaf139b0c04de4d8329
[]
no_license
neelamadhav/graphical
7021a1c866b996945b5a4593b95b0581ccb7d170
4af576907c43cca80a33761fa01f5552fe29ca8d
refs/heads/master
2021-01-10T07:05:58.789877
2015-11-14T04:02:25
2015-11-14T04:02:25
44,488,796
0
0
null
null
null
null
UTF-8
Python
false
false
9,363
py
import string stopwords = ["after", "afterwards", "again", "against", "ago", "ah", "ahead", "ain't", "all", "allow", "allows", "almost", "alone", "along", "alongside", "already", "also", "although", "always", "am", "amid", "amidst", "among", "amongst", "amoungst", "amount", "an", "and", "announce", "another", "any", "anybody", "anyhow", "anymore", "anyone", "anything", "anyway", "anyways", "anywhere", "apart", "apparently", "appear", "appreciate", "appropriate", "approximately", "are", "aren", "arent", "aren't", "arise", "around", "as", "a's", "aside", "ask", "asking", "associated", "at", "auth", "available", "away", "awfully", "b", "back", "backward", "backwards", "be", "became", "because", "become", "becomes", "becoming", "been", "before", "beforehand", "begin", "beginning", "beginnings", "begins", "behind", "being", "believe", "below", "beside", "besides", "best", "better", "between", "beyond", "bill", "biol", "both", "bottom", "brief", "briefly", "but", "by", "c", "ca", "call", "came", "can", "cannot", "cant", "can't", "caption", "cause", "causes", "certain", "certainly", "changes", "clearly", "c'mon", "co", "co.", "com", "come", "comes", "computer", "con", "concerning", "consequently", "consider", "considering", "contain", "containing", "contains", "corresponding", "could", "couldnt", "couldn't", "course", "cry", "c's", "currently", "d", "dare", "daren't", "date", "de", "definitely", "describe", "described", "despite", "detail", "did", "didn't", "different", "directly", "do", "does", "doesn't", "doing", "done", "don't", "down", "downwards", "due", "during", "e", "each", "ed", "edu", "effect", "eg", "eight", "eighty", "either", "eleven", "else", "elsewhere", "empty", "end", "ending", "enough", "entirely", "especially", "et", "et-al", "etc", "even", "ever", "evermore", "every", "everybody", "everyone", "everything", "everywhere", "ex", "exactly", "example", "except", "f", "fairly", "far", "farther", "few", "fewer", "ff", "fifteen", "fifth", "fify", "fill", "find", "fire", "first", "five", "fix", "followed", "following", "follows", "for", "forever", "former", "formerly", "forth", "forty", "forward", "four", "from", "front", "full", "further", "furthermore", "g", "gave", "get", "gets", "getting", "give", "given", "gives", "giving", "go", "goes", "going", "gone", "got", "gotten", "greetings", "h", "had", "hadn't", "half", "happens", "hardly", "has", "hasnt", "hasn't", "have", "not have", "haven't", "having", "he", "hed", "he'd", "he'll", "hello", "help", "hence", "her", "here", "hereafter", "hereby", "herein", "heres", "here's", "hereupon", "hers", "herse", "herself", "hes", "he's", "hi", "hid", "him", "himse", "himself", "his", "hither", "home", "hopefully", "how", "howbeit", "however", "how's", "hundred", "i", "I", "id", "i'd", "ie", "if", "ignored", "i'll", "im", "i'm", "immediate", "immediately", "importance", "important", "in", "inasmuch", "inc", "inc.", "indeed", "index", "indicate", "indicated", "indicates", "information", "inner", "inside", "insofar", "instead", "interest", "into", "invention", "inward", "is", "isn't", "it", "itd", "it'd", "it'll", "its", "it's", "itse", "itself", "i've", "j", "just", "k", "keep", "keeps", "kept", "keys", "kg", "km", "know", "known", "knows", "l", "largely", "last", "lately", "later", "latter", "latterly", "least", "less", "lest", "let", "lets", "let's", "like", "liked", "likely", "likewise", "line", "little", "'ll", "look", "looking", "looks", "low", "lower", "ltd", "m", "made", "mainly", "make", "makes", "many", "may", "maybe", "mayn't", "me", "mean", "means", "meantime", "meanwhile", "merely", "mg", "might", "mightn't", "mill", "million", "mine", "minus", "miss", "ml", "more", "moreover", "most", "mostly", "move", "mr", "mrs", "much", "mug", "must", "mustn't", "my", "myse", "myself", "n", "na", "name", "namely", "nay", "nd", "near", "nearly", "necessarily", "necessary", "need", "needn't", "needs", "neither", "never", "neverf", "neverless", "nevertheless", "new", "next", "nine", "ninety", "no", "nobody", "non", "none", "nonetheless", "noone", "no-one", "nor", "normally", "nos", "not", "noted", "nothing", "not in", "notwithstanding", "novel", "now", "nowhere", "o", "obtain", "obtained", "obviously", "of", "off", "often", "oh", "ok", "okay", "old", "omitted", "on", "once", "one", "ones", "one's", "only", "onto", "opposite", "or", "ord", "other", "others", "otherwise", "ought", "oughtn't", "our", "ours ", "ours", "ourselves", "out", "outside", "over", "overall", "owing", "own", "p", "page", "pages", "part", "particular", "particularly", "past", "per", "perhaps", "placed", "please", "plus", "poorly", "possible", "possibly", "potentially", "pp", "predominantly", "present", "presumably", "previously", "primarily", "probably", "promptly", "proud", "provided", "provides", "put", "q", "que", "quickly", "quite", "qv", "r", "ran", "rather", "rd", "re", "readily", "really", "reasonably", "recent", "recently", "ref", "refs", "regarding", "regardless", "regards", "related", "relatively", "research", "respectively", "resulted", "resulting", "results", "right", "round", "run", "s", "said", "same", "saw", "say", "saying", "says", "sec", "second", "secondly", "section", "see", "seeing", "seem", "seemed", "seeming", "seems", "seen", "self", "selves", "sensible", "sent", "serious", "seriously", "seven", "several", "shall", "shan't", "she", "shed", "she'd", "she'll", "shes", "she's", "should", "shouldn't", "show", "showed", "shown", "showns", "shows", "side", "significant", "significantly", "similar", "similarly", "since", "sincere", "six", "sixty", "slightly", "so", "some", "somebody", "someday", "somehow", "someone", "somethan", "something", "sometime", "sometimes", "somewhat", "somewhere", "soon", "sorry", "specifically", "specified", "specify", "specifying", "state", "states", "still", "stop", "strongly", "sub", "substantially", "successfully", "such", "sufficiently", "suggest", "sup", "sure", "system", "t", "take", "taken", "taking", "tell", "ten", "tends", "th", "than", "thank", "thanks", "thanx", "that", "that'll", "thats", "that's", "that've", "the", "their", "theirs", "them", "themselves", "then", "thence", "there", "thereafter", "thereby", "thered", "there'd", "therefore", "therein", "there'll", "thereof", "therere", "there're", "theres","there's", "thereto", "thereupon", "there've", "these", "they", "theyd", "they'd", "they'll", "theyre", "they're", "they've", "thick", "thickv", "thin", "thing", "things", "think", "third", "thirty", "this", "thorough", "thoroughly", "those", "thou", "though", "thoughh", "thousand", "three", "throug", "through", "throughout", "thru", "thus", "til", "till", "tip", "to", "together", "too", "took", "top", "toward", "towards", "tried", "tries", "truly", "try", "trying", "ts", "t's", "twelve", "twenty", "twice", "two", "u", "un", "under", "underneath", "undoing", "unfortunately", "unless", "unlike", "unlikely", "until", "unto", "up", "upon", "ups", "upwards", "us", "use", "used", "useful", "usefully", "usefulness", "uses", "using", "usually", "uucp", "v", "value", "various", "'ve", "versus", "very", "via", "viz", "vol", "vols", "vs", "w", "want", "wants", "was", "wasn't", "way", "we", "wed", "we'd", "welcome", "well", "we'll", "went", "were", "we're", "weren't", "we've", "what", "whatever", "what'll", "whats", "what's", "what've", "when", "whence", "whenever", "when's", "where", "whereafter", "whereas", "whereby", "wherein", "wheres", "where's", "whereupon", "wherever", "whether", "which", "whichever", "while", "whilst", "whim", "whither", "who", "whod", "who'd", "whoever", "whole", "who'll", "whom", "whomever", "whos", "who's", "whose", "why", "why's", "widely", "will", "willing", "wish", "with", "within", "without", "wonder", "won't", "words", "world", "would", "wouldn't", "www", "x", "y", "yes", "yet", "you", "youd", "you'd", "you'll", "your", "youre", "you're", "yours", "yourself", "yourselves", "you've", "z", "zero"] invalidChars = set(string.punctuation) def is_number(s): try: float(s) return True except ValueError: return False out = open('temp.pos.input.feature', 'w') for line in open('temp.pos.input').readlines(): line = line.strip() if line == '': out.write('\n'); continue line = line.split(' ') word = line[0] outline = word capital = not word.islower() and not word.isupper() allCapital = word.isupper() numerical = is_number(word) mention = word.startswith('@') hashtag = word.startswith('#') url = word.startswith('http') apostrophe = False if word.find("'") > -1 or word.find('"') > -1: apostrophe = True specialChar = word in invalidChars stopword = word.strip().lower() in stopwords if specialChar: outline = outline + ' SPECIALCHAR' if not numerical and not specialChar and capital: outline = outline + ' CAPITALIZED' if allCapital: outline = outline + ' ALLCAPITALIZED' if numerical: outline = outline + ' NUMERICAL' if mention: outline = outline + ' MENTION' if hashtag: outline = outline + ' HASHTAG' if url: outline = outline + ' URL' if apostrophe: outline = outline + ' APOSTROPHE' if stopword: outline = outline + ' STOPWORD' outline = outline +'\n' out.write(outline) out.close()
[ "neelamadhavg@gmail.com" ]
neelamadhavg@gmail.com
0f94d084520c7500d5f40912ad474da7ef444f69
e54fb4602d884952935c33ea93e345bb8b9424eb
/easy_tries/setup.py
ad2a8587f9ac6600eabfff57c57056e2069fe25a
[]
no_license
akaashhazarika/easy_tries
3094694d7e0cb1047658692889b3cb846360664a
747fba6ff6d9d88fdd559aec42a88fc506d8a99c
refs/heads/master
2020-06-20T07:47:39.578744
2019-07-15T18:15:16
2019-07-15T18:15:16
197,048,469
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
from setuptools import setup setup(name='easy_tries', version='0.1', description='Python Implementation of Tries for search and Auto Complete', url='http://github.com/akaashhazarika/easy_tries', author='Akaash Hazarika', author_email='akaashhazarika@gmail.com', license='MIT', packages=['easy_tries'], zip_safe=False)
[ "akaashhazarika@gmail.com" ]
akaashhazarika@gmail.com
f3bd2204373b7afe9536e2ef7ad99941600b2053
b6be68fd512b7cec64577ef515321f7caf311cb6
/game.py
7a8b8a541d9e2f015f585e70def52df0f8c3aa04
[]
no_license
lukabombala/birdgame
c9e11a993bf8bf5a32d419228a22cfa43b9dd7c9
249208f71a7b953c9377d8883c2096b49483fa71
refs/heads/master
2021-06-23T19:58:31.238053
2019-10-23T18:40:20
2019-10-23T18:40:20
216,393,314
0
0
null
2021-04-20T18:47:58
2019-10-20T16:38:11
Python
UTF-8
Python
false
false
2,392
py
import sys from collections import defaultdict import pygame import colors import config as c class Game: def __init__(self, caption, width, height, background_image_filename, frame_rate,): self.background_image = pygame.image.load(background_image_filename) self.frame_rate = frame_rate self.game_over = False self.objects = [] pygame.init() pygame.font.init() self.surface = pygame.display.set_mode((width, height)) pygame.display.set_caption(caption) self.clock = pygame.time.Clock() self.keydown_handlers = defaultdict(list) self.keyup_handlers = defaultdict(list) self.mouse_handlers = [] def update(self): for obj in self.objects: obj.update() def draw(self): for obj in self.objects: obj.draw(self.surface) def handle_events(self): for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: for handler in self.keydown_handlers[event.key]: handler(event.key) elif event.type == pygame.KEYUP: for handler in self.keyup_handlers[event.key]: handler(event.key) elif event.type in (pygame.MOUSEBUTTONDOWN, pygame.MOUSEBUTTONUP, pygame.MOUSEMOTION): for handler in self.mouse_handlers: handler(event.type, event.pos) def run(self): while not self.game_over: self.surface.blit(self.background_image, (0, 0)) pygame.draw.rect(self.surface, colors.SKY, [0, 0, c.SCREEN_WIDTH, c.ground_level]) pygame.draw.rect(self.surface, colors.GROUND_COLOR, [0, c.ground_level, c.SCREEN_WIDTH, c.SCREEN_HEIGHT - c.ground_level]) self.handle_events() self.update() self.draw() pygame.display.update() self.clock.tick(self.frame_rate)
[ "lukabombala@gmail.com" ]
lukabombala@gmail.com
7daa4f77d597e2b23f4f0a8015010ae7691443b4
3dcfe383c36d2c2af057b7128ad86f3a01554faa
/label_studio/data_manager/prepare_params.py
c0e902f7013616059e5c7e8d9afe30f1e3b580a4
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
ieso/label-studio
7306faa87894d1a72a6a33b9a316ccdfc4e80684
b3b451351e1751455f60cdf718c8e25914938a8a
refs/heads/master
2023-08-21T20:08:06.199925
2021-10-28T14:37:07
2021-10-28T14:37:07
359,428,836
0
0
Apache-2.0
2021-04-19T11:07:15
2021-04-19T11:07:13
null
UTF-8
Python
false
false
1,044
py
"""This file and its contents are licensed under the Apache License 2.0. Please see the included NOTICE for copyright information and LICENSE for a copy of the license. """ from enum import Enum from typing import List, Optional, Union from pydantic import BaseModel, StrictInt, StrictFloat, StrictStr, StrictBool class FilterIn(BaseModel): min: Union[StrictInt, StrictFloat, StrictStr] max: Union[StrictInt, StrictFloat, StrictStr] class Filter(BaseModel): filter: str operator: str type: str value: Union[StrictInt, StrictFloat, StrictBool, StrictStr, FilterIn] class ConjunctionEnum(Enum): OR = 'or' AND = 'and' class Filters(BaseModel): conjunction: ConjunctionEnum items: List[Filter] class SelectedItems(BaseModel): all: bool included: List[int] = [] excluded: List[int] = [] class PrepareParams(BaseModel): project: int ordering: List[str] = [] selectedItems: Optional[SelectedItems] = None filters: Optional[Filters] = None data: Optional[dict] = None
[ "noreply@github.com" ]
ieso.noreply@github.com
266a781fba696f660205890b24d0f48ff854d213
2a957611907cad466da49f09aa16c61baa6a009b
/python/attacks/RSA/lsb_client.py
9f0def542438d810c311ac85258f9dd5c6f2fca8
[]
no_license
alessandroguggino/Cryptography
6dea1552b988c7dd4507936dd53de9678e170bf0
ef5fa1c0fbfc0bcd16293b56b182fe1a92b80edc
refs/heads/master
2023-07-13T17:42:35.123088
2021-08-19T13:08:20
2021-08-19T13:08:20
276,401,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,570
py
from Crypto.PublicKey import RSA from pwn import * import os os.environ['PWNLIB_NOTERM'] = 'True' # Configuration patch to allow pwntools to be run inside of an IDE os.environ['PWNLIB_SILENT'] = 'True' from mysecrets import HOST,PORT from mysecrets import lsb_n as n, lsb_e as e from mysecrets import lsb_ciphertext as ciphertext from mysecrets import lsb_plaintext def to_bytes(m,l=n.bit_length()): return int.to_bytes(m, l, byteorder='big') def to_int(b): return int.from_bytes(b,byteorder='big') def print_bounds(low, up): print("[" + str(low) + "," + str(up) + "]") # test the connection # server = remote(HOST, PORT) # server.send(to_bytes(ciphertext)) # bit = server.recv(1024) # print(bit) # server.close() # loop lower_bound = 0 upper_bound = n print_bounds(lower_bound, upper_bound) k = pow(2, e, n) # 2^e mod n c = ciphertext for i in range(n.bit_length()): c = (k * c) % n # c' = 2^e * m^e = (2m)^e # interact with the LSB Oracle server = remote(HOST, PORT) server.send(to_bytes(c)) bit = server.recv(1024) server.close() #print(bit) if bit[0] == 1: # 2m > n --> m is in [n/2,n] lower_bound = (upper_bound+lower_bound) // 2 else: # 2m < n --> m is in [0, n/2] upper_bound = (upper_bound+lower_bound) // 2 print_bounds(lower_bound, upper_bound) print(to_bytes(lower_bound, n.bit_length()).decode()) print(to_bytes(upper_bound, n.bit_length()).decode()) # correction print(lsb_plaintext - lower_bound) final = lower_bound ^ 32 print(to_bytes(final, n.bit_length()).decode())
[ "noreply@github.com" ]
alessandroguggino.noreply@github.com
0dcbadd58691ccd70835c98e2c3e1ec20f19ad96
44a220c7e3c022d7a403415fce80bcbd39c6b734
/testJCW/action/system/role/__init__.py
3b700e6d9372e2870f17a47e62c854ba63493195
[]
no_license
zhuypy/AutoTest_UI
c078695fa7401503bdef9f83c373a2842442949e
7eee221d141b6907627bc208088407c2925bb17b
refs/heads/master
2022-04-19T23:34:59.898972
2020-04-16T03:19:40
2020-04-16T03:19:40
256,086,543
0
0
null
null
null
null
UTF-8
Python
false
false
103
py
# -*- coding:utf-8 -*- ''' @File : __init__.py.py @Author : @Date : 2019/6/5 14:48 @Desc : '''
[ "1007531447@qq.com" ]
1007531447@qq.com
112a1b440ce085e0d4c6c05c5a44285efa8ab6d2
18a79067223932c2f7aa6ff6b81d0b3f36169db2
/codeforces/1512/E.py
e637a3e6e94ab8d1578276e88b1467c08879b483
[]
no_license
aadiupadhyay/CodeForces
894b0e5faef73bfd55a28c2058fb0ca6f43c69f9
76dac4aa29a2ea50a89b3492387febf6515cf43e
refs/heads/master
2023-04-12T17:58:52.733861
2021-05-07T20:08:00
2021-05-11T20:07:11
330,149,645
1
0
null
null
null
null
UTF-8
Python
false
false
1,308
py
# aadiupadhyay import os.path from math import gcd, floor, ceil from collections import * import sys mod = 1000000007 INF = float('inf') def st(): return list(sys.stdin.readline().strip()) def li(): return list(map(int, sys.stdin.readline().split())) def mp(): return map(int, sys.stdin.readline().split()) def inp(): return int(sys.stdin.readline()) def pr(n): return sys.stdout.write(str(n)+"\n") def prl(n): return sys.stdout.write(str(n)+" ") if os.path.exists('input.txt'): sys.stdin = open('input.txt', 'r') sys.stdout = open('output.txt', 'w') def solve(): n, a, b, total = mp() s = set(range(1, n+1)) ele = b-a+1 if total < ele*(ele+1)//2: pr(-1) return nsum = n*(n+1)//2 left = n-ele leftsum = left*(left+1)//2 have = nsum-leftsum if total > have: pr(-1) return cur = [] i = n while total: w = total - i if w >= ele*(ele-1)//2: cur.append(i) total -= i s.discard(i) ele -= 1 i -= 1 l = [] for i in range(a-1): p = max(s) s.discard(p) l.append(p) for i in range(b+1, n+1): p = max(s) s.discard(p) cur.append(p) l += cur print(*l) for _ in range(inp()): solve()
[ "upadhyay.aaditya2001@gmail.com" ]
upadhyay.aaditya2001@gmail.com
c689e220591bd622b0744eddaaea4c26b8a2cbf0
fdfffa8cacb572a157ead4a9723f90b25ecfe50c
/modules/ducktests/tests/ignitetest/services/utils/jmx_remote/jmx_remote_params.py
077f7c56c4923a67e1a9b10fef4531ecdd118dcd
[ "Apache-2.0", "LicenseRef-scancode-gutenberg-2020", "CC0-1.0", "BSD-3-Clause" ]
permissive
apache/ignite
0bc83435a8db46d9c4df000fe05b1c70165b37d4
dbf1c7825d74809cd6859c85a8ac9ed9ac071e39
refs/heads/master
2023-08-31T21:31:04.618489
2023-08-31T19:43:09
2023-08-31T19:43:09
31,006,158
4,806
2,308
Apache-2.0
2023-09-14T18:56:33
2015-02-19T08:00:05
Java
UTF-8
Python
false
false
1,940
py
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from typing import NamedTuple ENABLED = "enabled" JMX_REMOTE_KEY_NAME = "jmx_remote" JMX_REMOTE_PORT_KEY_NAME = "port" JMX_REMOTE_DEFAULT_PORT = 1098 class JmxRemoteParams(NamedTuple): """ Params for JMX Remote. If enabled the Ignite node exposes JMX endpoint to non-local hosts via the provided port. Port is optional. If omitted the JMX_REMOTE_DEFAULT_PORT is used. """ enabled: bool port: int = JMX_REMOTE_DEFAULT_PORT def get_jmx_remote_params(_globals: dict): """ Gets JMX Remote params from Globals. Format is like below (port field is optional): { "jmx_remote": { "enabled": true "port": 1098 } } :param _globals: Globals parameters :return: instance of JmxRemoteParams """ if JMX_REMOTE_KEY_NAME in _globals and _globals[JMX_REMOTE_KEY_NAME].get(ENABLED, False): return JmxRemoteParams(enabled=True, port=_globals[JMX_REMOTE_KEY_NAME].get(JMX_REMOTE_PORT_KEY_NAME, JMX_REMOTE_DEFAULT_PORT)) else: return JmxRemoteParams(enabled=False)
[ "noreply@github.com" ]
apache.noreply@github.com
a966845dc6ef285450d71ea59e2fc297c7b494fd
590935ad561449559989fce5a85fb8df691b898d
/manage.py
d6c7e0e96d0785bb7292da5f3051281363df378c
[]
no_license
yuki-katayama/Django_bordproject_udemy
22aa5b2e6b4c00d389502dd1b193071290b7c68d
56b8ca8325e48dfb580ab0b7af2872317a6608f7
refs/heads/master
2022-12-13T13:11:23.555227
2020-09-13T03:10:26
2020-09-13T03:10:26
295,062,396
0
0
null
null
null
null
UTF-8
Python
false
false
631
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'bordproject.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "katayu810@gmail.com" ]
katayu810@gmail.com
7c8e6559b705deb86447c305af13ca3973998111
0f08ac954da42af79458685fc314e14426aa3f46
/djangevent/urls.py
8f5f01b5ca894b22b9fd033229b8240f8338fd9b
[]
no_license
serkansokmen/djangevent
06fec64f8714e76e3125dc591e7ea411360f17d7
aec589d4685caf28898f813f444e9d9e6dd7fe56
refs/heads/master
2022-07-09T02:12:55.096261
2013-07-09T18:42:01
2013-07-09T18:42:01
11,156,782
0
0
null
2020-04-07T17:09:16
2013-07-03T17:19:18
JavaScript
UTF-8
Python
false
false
1,119
py
from django.contrib import admin from django.conf import settings from django.conf.urls import patterns, include, url from django.views.generic import TemplateView admin.autodiscover() # See: https://docs.djangoproject.com/en/dev/topics/http/urls/ urlpatterns = patterns( '', # Admin panel and documentation: url(r'^admin/', include(admin.site.urls)), url(r'^$', TemplateView.as_view(template_name='home.html'), name='home'), url(r'^api/', include('apps.events.urls')), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), ) if settings.DEBUG: urlpatterns += patterns( '', (r'^404/$', 'django.views.defaults.page_not_found'), (r'^500/$', 'django.views.defaults.server_error'), (r'^static/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.STATIC_ROOT}), (r'^media/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT}), ) if 'rosetta' in settings.INSTALLED_APPS: urlpatterns += patterns( '', url(r'^rosetta/', include('rosetta.urls')), )
[ "e.serkan.sokmen@gmail.com" ]
e.serkan.sokmen@gmail.com
61aef98a7fed6c913b99e2514a19938460365174
c32a225b013190f047793a083006802d9e9306eb
/apidocs/ApiXML2Trac.py
95b909506088b7f30f0bfe03ecbf27603c990c98
[]
no_license
coderbyheart/hsrm-mi-wtf
531312ef3c64801e86f63891a42e2a844fd3d103
6372aa9e5c308308198fc3cc859689fb23d5f858
refs/heads/master
2016-09-06T04:23:11.363670
2011-11-02T13:52:20
2011-11-02T13:52:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,007
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 '''Konvertiert die Schnittstellendefinition (XML) in eine Trac-Wiki-Seite @author Markus Tacker <m@tacker.org>''' from xml.dom.minidom import parse, parseString from minidomutil import domGetText def maskWikiPageNames(*strings): ret = [] for string in strings: if string == None: continue if not re.match('^[a-z]', string): string = re.sub('([A-Z][a-z]+[A-Z][a-z]+)', "!\\1", str(string)) ret.append(string) return ret[0] if len(ret) == 1 else tuple(ret) class BaseType(object): 'Basisklasse für alle Typen' todo = False class SimpleType(BaseType): 'Definiert einene einfachen Datentypen' def __repr__(self): return 'SimpleType(%s)' % self.identifier class IntegerType(SimpleType): 'Definiert einen Integer' identifier = 'Integer' class StringType(SimpleType): 'Definiert einen String' identifier = 'String' class BooleanType(SimpleType): 'Definiert einen Boolean' identifier = 'Boolean' class FloatType(SimpleType): 'Definiert einen Float' identifier = 'Float' class DateTimeType(StringType): 'Definiert ein Datum' identifier = 'DateTime' class BinaryType(SimpleType): 'Definiert Binärdaten' identifier = 'binary' class DictionaryType(SimpleType): 'Definiert Dictionaries' identifier = 'Dictionary' class ObjectType(SimpleType): 'Definiert Objekte' identifier = 'Object' class EnumTypeException(Exception): 'Exception für die Klasse EnumType' class EnumType(BaseType): 'Definiert Enums' def __init__(self, identifier): self.identifier = identifier self.values = {} def addValue(self, key, description): if key in self.values: raise EnumTypeException("Value %s already defined" % key) self.values[key] = description class ComplexType(BaseType): 'Definiert einen komplexten Typen' def __init__(self, type, identifier): if type not in ('Object', 'Dictionary'): raise ComplexTypeException('A complex type must be either Object or Dictionary') self.isobject = type == 'Object' self.identifier = identifier def __repr__(self): return 'ComplexType(%s)' % self.identifier @property def properties(self): return self._properties @properties.setter def properties(self, props): if len(props) == 0: raise ComplexTypeException('Properties must not be empty') self._properties = props class ComplexTypeException(Exception): 'Exception für die Klasse Property' class Property(object): 'Definiert eine Property' islist = False isoptional = False isproperty = False example = '-' def __init__(self, identifier): self.identifier = identifier def __repr__(self): return 'Property(%s)' % self.identifier class ActionGroup(object): 'Definiert eine Gruppe von Actions, was einem Namespace entspricht' todo = False def __init__(self, identifier): self.identifier = identifier class Action(object): 'Definiert eine Action' todo = False def __init__(self, identifier, group): self.identifier = identifier self.group = group class SchnittstellenXMLException(Exception): 'Exception für SchnittstellenXML' class SchnittstellenXML(object): 'Repräsentiert die Schnittstellendefinition, die in einer XML-Datei abgelegt ist.' def __init__(self, xmlfile): self.dom = parse(xmlfile) # Erzeugt ein Dictionary mit Typedefinitionen self.types = {} for item in self.dom.getElementsByTagName('simpletype'): self.createSimpleType(item) for item in self.dom.getElementsByTagName('enum'): self.createEnumType(item) for item in self.dom.getElementsByTagName('complextype'): self.createComplexType(item) def createSimpleType(self, item): 'Erzeugt aus einem XML Element einen einfachen Datentypen' t = item.getAttribute('name') if t == 'String': type = StringType() elif t == 'Float': type = FloatType() elif t == 'Integer': type = IntegerType() elif t == 'DateTime': type = DateTimeType() elif t == 'Boolean': type = BooleanType() elif t == 'binary': type = BinaryType() else: raise SchnittstellenXMLException('Unknown type: %s' % t) if type.identifier in self.types: raise SchnittstellenXMLException('Already defined: %s' % type.identifier) self.types[type.identifier] = type type.description = domGetText(item.getElementsByTagName('description')[0]) type.example = domGetText(item.getElementsByTagName('example')[0]) todo = item.getElementsByTagName('todo') if len(todo) > 0: type.todo = domGetText(todo[0]) def createEnumType(self, item): 'Erzeugt aus einem XML Element einen Enum' type = EnumType(item.getAttribute('name')) if type.identifier in self.types: raise SchnittstellenXMLException('Already defined: %s' % type.identifier) self.types[type.identifier] = type type.description = domGetText(item.getElementsByTagName('description')[0]) type.example = domGetText(item.getElementsByTagName('example')[0]) todo = item.getElementsByTagName('todo') if len(todo) > 0: type.todo = domGetText(todo[0]) items = item.getElementsByTagName('items')[0] for item in items.getElementsByTagName('item'): type.addValue(item.getAttribute('value'), domGetText(item.getElementsByTagName('description')[0])) def createComplexType(self, item): 'Erzeugt aus einem XML Element einen komplexten Datentypen' type = ComplexType(item.getAttribute('type'), item.getAttribute('name')) if type.identifier in self.types: raise SchnittstellenXMLException('Already defined: %s' % type.identifier) self.types[type.identifier] = type type.description = domGetText(item.getElementsByTagName('description')[0]) todo = item.getElementsByTagName('todo') if len(todo) > 0: type.todo = domGetText(todo[0]) type.properties = self.getProperties(item) def getProperties(self, item): 'Erzeugt aus einem XML Element ein Dictionary mit Properties' props = {} for p in item.getElementsByTagName('property'): prop = self.getProperty(p) if prop.identifier in props: raise SchnittstellenXMLException("Property already defined: %s\n%s" % (prop.identifier, item.toxml())) props[prop.identifier] = prop return props def getProperty(self, item): 'Erzeugt aus einem XML Element eine Property' property = Property(item.getAttribute('name')) property.type = self.types[item.getAttribute('type')] property.description = item.getAttribute('description') multiple = item.getAttribute('multiple') if multiple == "true": property.islist = True optional = item.getAttribute('optional') if optional == "true": property.isoptional = True example = item.getElementsByTagName('example') if len(example) > 0: property.example = domGetText(example[0]) else: # Standardbeispiel des Basis-Typen nehmen if not isinstance(property.type, ComplexType): property.example = property.type.example todo = item.getElementsByTagName('todo') if len(todo) > 0: property.todo = domGetText(todo[0]) return property def getGroupedActions(self): 'Erzeugt ein Dictionary mit den gruppierten Actions' self._groupedActions = {} for ag in self.dom.getElementsByTagName('group'): actionGroup = ActionGroup(ag.getAttribute('name')) actionGroup.description = domGetText(ag.getElementsByTagName('description')[0]) todo = ag.getElementsByTagName('todo') if len(todo) > 0: actionGroup.todo = domGetText(todo[0]) actionGroup.actions = self.getActions(actionGroup, ag) if actionGroup.identifier in self._groupedActions: raise SchnittstellenXMLException("Action group already defined: %s\n%s" % (actionGroup.identifier, item.toxml())) self._groupedActions[actionGroup.identifier] = actionGroup return self._groupedActions def getActions(self, group, item): 'Erzeugt ein Dictionary mit den Actions, die in item definiert sind' actions = {} for actionItem in item.getElementsByTagName('action'): action = Action(actionItem.getAttribute('name'), group) action.description = domGetText(actionItem.getElementsByTagName('description')[0]) action.inServer = actionItem.getAttribute("inServer") == "true" action.inClient = actionItem.getAttribute("inClient") == "true" action.messageType = actionItem.getAttribute("messageType") todo = actionItem.getElementsByTagName('todo') if len(todo) > 0: action.todo = domGetText(todo[0]) if action.identifier in actions: raise SchnittstellenXMLException("Action already defined: %s\n%s" % (action.identifier, item.toxml())) actions[action.identifier] = action action.request = self.getProperties(actionItem.getElementsByTagName('request')[0]) action.response = self.getProperties(actionItem.getElementsByTagName('response')[0]) notification = actionItem.getElementsByTagName('notification') if notification: action.notification = self.getProperties(notification[0]) else: action.notification = None return actions def writeProperties(properties, out): out.write("||**Name**||**Typ**||**Beschreibung**||**Beispiel**||\n") for p in sorted(properties): prop = properties[p] out.write("||%s{{{%s}}}||[#%s %s]%s||%s||{{{%s}}}||\n" % ("(optional) " if prop.isoptional else "", maskWikiPageNames(prop.identifier), prop.type.identifier, prop.type.identifier, maskWikiPageNames('[]' if prop.islist else ''), maskWikiPageNames(prop.description), maskWikiPageNames(prop.example))) if __name__ == '__main__': import io import sys import os import xmlrpc.client import configparser ini_file = os.path.realpath(os.path.dirname(sys.argv[0]) + os.sep + 'trac.ini') config = configparser.SafeConfigParser() config.add_section('trac') config.set('trac', 'url', '') if os.path.isfile(ini_file): config.read(ini_file) if config.get('trac', 'url') == '' and len(sys.argv) < 2: sys.stderr.write("Missing arguments.\n") sys.stderr.write("Usage: %s <trac url> [xml file]\n" % sys.argv[0]) sys.exit(1) if len(sys.argv) > 1: config.set('trac', 'url', sys.argv[1]) s = SchnittstellenXML(sys.argv[2] if len(sys.argv) > 2 else os.path.realpath(os.path.dirname(sys.argv[0]) + os.sep + '../Schnittstellen/schnittstellen.xml')) groups = s.getGroupedActions() out = io.StringIO() out.write("[[PageOutline()]]\n") # Erzeuge Übersicht der Typen out.write("= Datentypen =\n") out.write("Diese Datentypen werden von den Methoden der API zum Datenaustausch verwendet.\n") out.write("== Einfache Datentypen ==\n") for st in s.types: type = s.types[st] if not isinstance(type, SimpleType): continue out.write("=== %s ===\n%s\n\nBeispiel: {{{%s}}}\n" % maskWikiPageNames(type.identifier, type.description, type.example)) if type.todo: out.write("\n||[[Image(source:2011swtpro01/Project/Material/Icons/woo/warning_32.png)]]||%s||\n\n" % type.todo) out.write("----\n\n") out.write("== Enums ==\n") for et in s.types: type = s.types[et] if not isinstance(type, EnumType): continue out.write("=== %s ===\n%s\n\nBeispiel: {{{%s}}}\n" % maskWikiPageNames(type.identifier, type.description, type.example)) if type.todo: out.write("\n||[[Image(source:2011swtpro01/Project/Material/Icons/woo/warning_32.png)]]||%s||\n\n" % type.todo) out.write("\n**Werte**\n\n") out.write("||**Übertragener Wert**||**Beschreibung**||\n") for value in type.values: out.write("||{{{%s}}}||%s||\n" % (value, type.values[value])) out.write("----\n\n") for ct in sorted(s.types): type = s.types[ct] if not isinstance(type, ComplexType): continue out.write("== %s ==\n" % maskWikiPageNames(type.identifier)) if type.todo: out.write("\n||[[Image(source:2011swtpro01/Project/Material/Icons/woo/warning_32.png)]]||%s||\n\n" % type.todo) out.write("(//%s//) %s\n" % ('Object' if type.isobject else 'Dictionary', maskWikiPageNames(type.description))) out.write("\n**%s**\n\n" % ('Attribute' if type.isobject else 'Schlüssel')) writeProperties(type.properties, out) out.write("----\n\n") # Erzeuge eine Liste der Schnittstellen out.write("= API =\n") out.write("Nachfolgend findet sich die Liste der Methoden.\n\n") out.write("⚑ Eine schwarze Fahne vor einem Schnittstellennamen bedeutet, dass dieses Schnittstelle serverseitig implementiert wurde.\n\n") out.write("⚐ Eine weiße Fahne vor einem Schnittstellennamen bedeutet, dass dieses Schnittstelle clientseitig implementiert wurde. Siehe #316.\n") for ag in sorted(groups): group = groups[ag] out.write("== %s ==\n%s\n" % maskWikiPageNames(group.identifier, group.description)) if group.todo: out.write("||[[Image(source:2011swtpro01/Project/Material/Icons/woo/warning_32.png)]]||%s||\n" % group.todo) for a in sorted(group.actions): action = group.actions[a] out.write("=== %s%s%s.%s() ===\n%s\n" % maskWikiPageNames("⚑ " if action.inServer else "", "⚐ " if action.inClient else "", group.identifier, action.identifier, action.description)) if action.todo: out.write("||[[Image(source:2011swtpro01/Project/Material/Icons/woo/warning_32.png)]]||%s||\n" % action.todo) if action.messageType: out.write("\n\nMessage-Type: {{{%s}}}\n\n" % action.messageType) out.write("\n** Request **\n") writeProperties(action.request, out) # Standard-Anwtort ist vom Typ Response, überschreibe mit Porperties der Antwort out.write("\n** Response **\n") response = s.types['Response'] writeProperties(dict(response.properties, **action.response), out) if action.notification: out.write("\n** Notification **\n") writeProperties(action.notification, out) out.write("\n** Tickets **\n") out.write("[[TicketQuery(component=Schnittstellen&summary~=%s.%s())]]\n" % maskWikiPageNames(group.identifier, action.identifier)) # Upload trac_url = config.get('trac', 'url') if trac_url[-1] != "/": trac_url += "/" server = xmlrpc.client.ServerProxy("%slogin/xmlrpc" % trac_url) try: server.wiki.putPage('SchnittStellen', out.getvalue(), {'comment': 'Automatically updated by cron.'}) except xmlrpc.client.Fault as e: if e.faultString != "'Page not modified' while executing 'wiki.putPage()'": raise e
[ "m@tacker.org" ]
m@tacker.org
494865951ad7578bb7e96643d525034b2c9a82cd
c24c6ac0346b7f7d674a5624cc92a4cc30d97a49
/1015_Distancia_Entre_Dois_Pontos.py
5cb40dc62769429c2a7de3185617d0a90f294dd7
[]
no_license
wilmarv/uri.python
8b5bb311f6e4be8464d250ef6451a5f910df1c9c
6a6b4179d49488b24b5f238be26a0605360ea304
refs/heads/master
2022-11-14T10:33:11.402851
2020-07-05T05:28:31
2020-07-05T05:28:31
277,236,008
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
x1, y1 = map(float,input().split()) x2, y2 = map(float,input().split()) d = ((x2-x1)**2+(y2-y1)**2)**(1/2) print('{:.4f}'.format(d))
[ "wilmarfonseca@gec.inatel.br" ]
wilmarfonseca@gec.inatel.br
6316fa8877f8856c44caa9be35ac489e87bad10c
bbb89d13318df191b83716ad28633c6dd87147a5
/ciandt_next_gen_2022/desafio_04.py
69bee09bef6895a10eded6d1f59c28037f2a5b67
[]
no_license
matheusvictor/estudos_python
50745522d2801fd5e9c2c3307eb251c1f18dcdbd
627c01a5e89192388fb5c34f5fdccbc7a3129d9f
refs/heads/master
2022-10-28T09:00:52.972993
2022-10-06T17:45:28
2022-10-06T17:45:28
192,107,427
5
0
null
2022-10-05T18:09:22
2019-06-15T17:43:49
Python
UTF-8
Python
false
false
149
py
def retorna_tempo_arena_em_milisegundos(distancia,velocidade): d = float(distancia) * 1000 tempo = (d / velocidade) * 1000 return round(tempo)
[ "matheusvictor.salles@gmail.com" ]
matheusvictor.salles@gmail.com
84b1f5be8c044f324a8b97d54ad96e6373dfd092
ce1a37c3135fcdcf22d29c7e1951aae55fada9de
/data/Keyword Extractions/Extracted/subsetKeywordRemover.py
c8ee5a2b8ee6c9ccf7323ee5df4a0a91aed9df5f
[]
no_license
thiranja/research-git-repo
d62e1cec34375ffd6c251227917c0d6740e7216d
9b167a34533860d5616c93183fedf6c629c8fc86
refs/heads/main
2023-03-26T14:25:59.395092
2021-03-25T23:47:13
2021-03-25T23:47:13
323,130,727
0
0
null
null
null
null
UTF-8
Python
false
false
1,266
py
# keywords = ["This", "this","This is", "This is not","This is the","This is the keyword","This is the","This the"] # newKeywords = [] def isSubphrase(subphrase,phrase): subphraseArray = subphrase.split(" ") phraseArray = phrase.split(" ") for word in subphraseArray: if word in phraseArray: continue else: return False return True def removeSubstringKeywords(keywords, newKeywords): for i in range( 0 , len(keywords)): keyword = keywords[i] if (len(newKeywords) == 0): newKeywords.append(keyword) continue canAppendKeyword = True newKeywordsLength = len(newKeywords) for j in range ( 0, newKeywordsLength): #print(newKeywords) newKeyword = newKeywords[j] if isSubphrase(keyword,newKeyword): canAppendKeyword = False break if isSubphrase(newKeyword,keyword): newKeywords.remove(newKeyword) newKeywordsLength -= 1 break if ( canAppendKeyword ): newKeywords.append(keyword) # isSubphrase(keywords[7],keywords[5]) # removeSubstringKeywords(keywords,newKeywords) # print(newKeywords)
[ "lakrandikathiranja@gmail.com" ]
lakrandikathiranja@gmail.com
a89d7d3d33529ddf1bb165e3392fb2f540690c05
8140618782d8e1496b7f829aae4c8952612edea5
/31-01-2018/variables.py
b6cbb2fceff3d7d25d58505bb762211be0e78bde
[]
no_license
psenderski/projektpython
cc177dfabb2d5e2dac06e224f6e6560fcd894008
ce85204a5863f4e423d26eabde25587c834559b9
refs/heads/master
2021-05-04T05:47:40.020785
2018-02-28T19:14:55
2018-02-28T19:14:55
120,345,539
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
# int age = 26 # float temperature = 7.4 # string name = 'Przemek' # bool programmer = True # Nonetype nothing = None print(age) print(type(age)) print(temperature) print(name) # @todo: wyświetl resztę zmiennych na ekran age = 52 print(age) print(type(age)) age = 'something' print(age) print(type(age)) # @todo: wyświetl typ wszystkich zmiennych
[ "psenderski@interia.pl" ]
psenderski@interia.pl
5a8bc6fffdcb844844db90c55d84a0a4153e8429
bb3454e9011e82bc5fdc824edb73f82e40a7b7d4
/get_people.py
1dbaf570c3964eb0e2d8c6a623ddcd9910c5773d
[]
no_license
dazhaoniel/datascience-linkedin
7f5e6bbb43fc897a4d94cdb168904f964f0c7363
c6fef3cd8d545db93d4738978e7b57f9aa9d9c26
refs/heads/master
2018-12-28T10:22:08.872729
2013-03-30T02:36:24
2013-03-30T02:36:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,436
py
# Author: Daniel Zhao # File: linkedin_get_jobs.py # View database at http://localhost:5984/_utils/index.html import sys import time import couchdb import httplib, json from couchdb.design import ViewDefinition from time import gmtime, strftime from login import login # Linkedin Industry Code: https://developer.linkedin.com/documents/industry-codes # Industry: Information Technology and Services INDUSTRY_CODE = '27' INDUSTRY_NAME = 'retail' MAX_RESULTS = 5000 # Establish a connection to a CouchDB database server = couchdb.Server('http://localhost:5984') DB = 'job-people-%s' % ( INDUSTRY_NAME, ) DB2 = 'job-people-%s-meta' % ( INDUSTRY_NAME, ) try: db = server.create(DB) except couchdb.http.PreconditionFailed, e: # Already exists, so append to it, keeping in mind that duplicates could occur db = server[DB] try: db2 = server.create(DB2) except couchdb.http.PreconditionFailed, e: # Already exists, so append to it, keeping in mind that duplicates could occur db2 = server[DB2] client = login() start = 0 while start <= MAX_RESULTS: url = "http://api.linkedin.com/v1/people-search?facet=industry,"+ INDUSTRY_CODE +"&facet=current-company,null&count=20&start="+ str(start) +"&format=json" resp, content = client.request(url) # print resp # print content db2.save( resp ) # This worked db.save( json.loads(content) ) print strftime("%Y-%m-%d %H:%M:%S", gmtime()) + ' - collected 20 results' start += 20
[ "danielantoiny@gmail.com" ]
danielantoiny@gmail.com
8c5cc85f7827a115e7c88d2a50bc47445bf21922
e1f164addc9a286a9fb1bcfba81694a1158279d9
/sphinx_django/admin.py
752e88fe98c65d4a8ba93f7b2ac1eab39a5b1cd6
[]
no_license
dusual/simplecomment
0a013b3c93a811c89cdd8bc3de6f4fa23c763d32
b51a695a961a6db777b7d275358726f2cfb8f559
refs/heads/master
2016-09-06T03:49:45.532776
2012-12-08T08:43:04
2012-12-08T08:43:04
1,317,298
1
0
null
null
null
null
UTF-8
Python
false
false
971
py
from django.contrib import admin from sphinx_django.sphinxcomment.models import Comment, Element class CommentAdmin(admin.ModelAdmin): list_display = ['element', 'submitter_name', 'comment', 'reviewed', 'hidden', 'date'] search_fields = ['comment'] date_hierarchy = 'date' list_filter = ['date', 'submitter_name'] search_fields = ['title', 'submitter_name', 'submitter_url'] fieldsets = ( (None, {'fields': ('submitter_name', 'element', 'comment')}), ('Review and presentation state', {'fields': ('reviewed', 'hidden')}), ('Other info', {'fields': ('submitter_url', 'ip')}), ) # XXX: adding 'date' to the 'Other info' fieldset results in a # ImproperlyConfigured error. :S class ElementAdmin(admin.ModelAdmin): search_fields = ['id', 'chapter_name'] list_filter = ['chapter_name', 'title'] admin.site.register(Comment, CommentAdmin) admin.site.register(Element, ElementAdmin)
[ "amit.pureenergy@gmail.com" ]
amit.pureenergy@gmail.com
9a9382a25e944f00f75d61e0510937d8257b50f3
bf11fa1b21d90cab8abd4b066fdc1659937df6e1
/remote_works/graphql/delivery/resolvers.py
593862c08f86b1ec3350fd994c6a0a23e0d407ad
[ "BSD-3-Clause" ]
permissive
tetyanaloskutova/remote-works
818f2caec788e4f197f49f3a5dc5f418c37dc601
b3bb51e9c0c4c2febf4aa1e2a7d893e77c331e89
refs/heads/master
2022-02-23T00:08:40.210012
2022-02-14T20:53:36
2022-02-14T20:53:36
173,939,582
7
0
null
null
null
null
UTF-8
Python
false
false
202
py
import graphene_django_optimizer as gql_optimizer from ...delivery import models def resolve_delivery_zones(info): qs = models.DeliveryZone.objects.all() return gql_optimizer.query(qs, info)
[ "tetyana.loskutova@gmail.com" ]
tetyana.loskutova@gmail.com
e9e13bd21b0a5ebe14450be1be54f85d93b4c0ab
066da3596d7534b7eb2b37e826102152f97a5f67
/centinel/experiments/tcp_connect.py
21fc0e170ed8a80330a9d5453c73ef59ea2ffdbd
[ "MIT" ]
permissive
gsathya/blocker
7f26ac9234cc666a93caa1190c6b77da4fcdf974
80723892c309ad08f51067dba431072ea01578da
refs/heads/master
2021-01-10T21:15:12.843761
2014-05-08T22:27:50
2014-05-08T22:27:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
797
py
import socket class TCPConnectExperiment: name = "tcp_connect" def __init__(self, input_file): self.input_file = input_file self.results = [] self.host = None self.port = None def run(self): for line in self.input_file: self.host, self.port = line.strip().split(' ') self.tcp_connect() def tcp_connect(self): result = { "host" : self.host, "port" : self.port } try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((self.host, int(self.port))) sock.close() result["success"] = "true" except Exception as err: result["failure"] = str(err) self.results.append(result)
[ "gsathya.ceg@gmail.com" ]
gsathya.ceg@gmail.com
35ba0136a87d9efe1bdf81b27723c16b5585aba2
9545652800884f0e54fe6595d8634c29ea4827a2
/每日一题/2020_09_07_前K个高频元素.py
e836ac1a9de16303533f5a54052614466169f89e
[]
no_license
challeger/leetCode
662d9f600a40fd8970568679656f6911a6fdfb05
d75c35b6f8ab33c158de7fa977ab0b16dac4fc25
refs/heads/master
2023-01-13T07:34:42.464959
2020-11-13T02:40:31
2020-11-13T02:40:31
286,426,790
1
0
null
null
null
null
UTF-8
Python
false
false
701
py
""" day: 2020-09-07 url: https://leetcode-cn.com/problems/top-k-frequent-elements/ 题目名: 前k个高频元素 给定一个非空的整数数组, 返回其中出现频率前 k 高的元素 思路: 记录出现次数,排序,输出. """ from typing import List class Solution: def topKFrequent(self, nums: List[int], k: int) -> List[int]: from collections import Counter counter = Counter(nums) foo = sorted(counter.items(), key=lambda x: x[1], reverse=True) res = [] for i in range(k): res.append(foo[i][0]) return res if __name__ == "__main__": test = [1, 1, 1, 2, 2, 3] s = Solution() print(s.topKFrequent(test, 2))
[ "799613500@qq.com" ]
799613500@qq.com
0575ea7082474b0773a69f03f5ee29c2dee9f02b
6fa6060026a6165f47aad2e83d0c0621f39b3900
/Turbot_data/Moments_models/2pops/fold_SC_ae_b.py
ce751ceeb0fdeb5ed9d45f56a04d1b848b27a73d
[]
no_license
heroalone/Demographic-Modelling
f07b645a0ee9e211d2c8230f024eff664f794b89
809458dc011bf5515b7502eacbf3aeb6befcfa50
refs/heads/master
2023-03-17T02:12:32.935120
2021-03-11T09:14:31
2021-03-11T09:14:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,046
py
#!/usr/bin/env python # Secondary contact model: Ancestral expansion, Split,Bottleneck and growth in the Baltic Sea, asymmetric migration following secondary contact # n(para): 8 import matplotlib matplotlib.use('PDF') import moments import random import pylab import matplotlib.pyplot as plt import numpy as np from numpy import array from moments import Misc,Spectrum,Numerics,Manips,Integration,Demographics1D,Demographics2D import sys infile=sys.argv[1] pop_ids=[sys.argv[2],sys.argv[3]] projections=[int(sys.argv[4]),int(sys.argv[5])] params=[1,1,1,0.1,1,1,1,1,1] dd = Misc.make_data_dict(infile) data = Spectrum.from_data_dict(dd, pop_ids,projections,polarized=False) ns=data.sample_sizes np.set_printoptions(precision=3) #------------------- # split with growth and asymmetrical migration; with genomic islands def SC_ae_b(params, ns): """ nu1= pop size after ancestral expansion (this remains constant for teh North sea population after the split) s=proportion of the North Sea pop which invaded the Baltic (i.e. original bottleneck) nu2= final size of Baltic Sea pop Tae= timing of ancestral population expansion T1= time of population split T2= time of secondary contact and start of population growth in the Baltic Sea m12= migration rate from North Sea to Baltic m21= migration rate from Baltic Sea to North Sea """ nu_ae,nu1,nu2,s,Tae,T1,T2,m12,m21 = params nu2_0 = nu1*s nu2_func = lambda t: nu2_0 * (nu2/nu2_0)**(t/T2) nu_func= lambda t: [nu1,nu2_func(t)] # calculate the spectrum sts = moments.LinearSystem_1D.steady_state_1D(ns[0] + ns[1]) fs = moments.Spectrum(sts) fs.integrate([nu_ae], Tae) fs = moments.Manips.split_1D_to_2D(fs, ns[0], ns[1]) fs.integrate([nu1, nu1*s], T1, m = np.array([[0, 0], [0, 0]])) fs.integrate(nu_func, T2, dt_fac=0.01, m=np.array([[0, m12], [m21, 0]])) return fs func=SC_ae_b upper_bound = [100,100,100,0.999,10,10,10,200,200] lower_bound = [1e-3,1e-3,1e-3,1e-3,1e-3,1e-3,1e-3,1e-5,1e-5] params = moments.Misc.perturb_params(params, fold=int(sys.argv[6]), upper_bound=upper_bound, lower_bound=lower_bound) # fitting (poptg = optimal parameters): poptg = moments.Inference.optimize_log(params, data, func, lower_bound=lower_bound, upper_bound=upper_bound, verbose=False, maxiter=int(sys.argv[7])) # extracting model predictions, likelihood and theta model = func(poptg, ns) ll_model = moments.Inference.ll_multinom(model, data) theta = moments.Inference.optimal_sfs_scaling(model, data) # random index for this replicate ind=str(random.randint(0,999999)) # optimization number opti=int(sys.argv[8]) # round number round=(sys.argv[9]) # printing parameters print "RESULT","SC_ae_b",ind,len(params),opti,round,ll_model,sys.argv[1],sys.argv[2],sys.argv[3],poptg,theta
[ "noreply@github.com" ]
heroalone.noreply@github.com
57be481bdc9870c859d5619880cbf7226668a36b
c8422cb23cc0b112f279476ad25d7fc5c66863d7
/14_Longest_Common_Prefix.py
c7d61ec96874ee0789910c1c1306e9e81692f4ec
[]
no_license
skyroam/leet-code
d278b8b7132517a1a405dfef9a352964d85d16fd
7a30c8e44f0e9bf63d25fe964646506936ade999
refs/heads/master
2022-01-11T11:50:56.363587
2019-09-18T12:21:48
2019-09-18T12:21:48
109,248,924
0
0
null
null
null
null
UTF-8
Python
false
false
614
py
class Solution: def longestCommonPrefix(self, strs: List[str]) -> str: num = len(strs) if num == 0: return "" elif num == 1: return strs[0] else: min_ = len(strs[0]) index = 0 for ind, item in enumerate(strs): if len(item) < min_: min_ = len(item) index = ind for i in range(min_): for j in range(num-1): if strs[j][i] != strs[j+1][i]: return strs[index][:i] return strs[index]
[ "skyroam.wyx@gmail.com" ]
skyroam.wyx@gmail.com
b71e342de074106d3dcaa30452b90417df3938bf
780b01976dad99c7c2ed948b8473aa4e2d0404ba
/exobuilder/smartexo/smartexo_base.py
37623334d272a11f85fd51d71e6f28bd97bee53f
[]
no_license
trendmanagement/tmqrexo_alexveden
a8ad699c2c3df4ce283346d287aff4364059a351
4d92e2ee2bc97ea2fcf075382d4a5f80ce3d72e4
refs/heads/master
2021-03-16T08:38:00.518593
2019-01-23T08:30:18
2019-01-23T08:30:18
56,336,692
1
1
null
2019-01-22T14:21:03
2016-04-15T17:05:53
Python
UTF-8
Python
false
false
6,094
py
from exobuilder.exo.exoenginebase import ExoEngineBase from exobuilder.algorithms.rollover_helper import RolloverHelper import logging class SmartEXOBase(ExoEngineBase): EXO_NAME = "SmartEXOBase" def __init__(self, symbol, direction, date, datasource, **kwargs): self._symbol = symbol self.custom_values = {} # Use ContFut EXO to process SmartEXO data self._base_exo_name = "{0}_ContFut".format(self._symbol) super().__init__(symbol, direction, date, datasource, **kwargs) @staticmethod def direction_type(): # Fixed at 2017-03-14 (return value was 0) # SmartEXOs has unified direction, direction = 0 lead to double SmartEXO calculation in smart exo script # Returning 1 we are sure that SmartEXO calculates only once return 1 @classmethod def names_list(cls, symbol): return ['{0}_{1}'.format(symbol, cls.EXO_NAME)] @property def exo_name(self): return '{0}_{1}'.format(self._symbol, self.EXO_NAME) def is_rollover(self): if len(self.position) != 0: for p in self.position.legs.values(): rh = RolloverHelper(p.instrument) if rh.is_rollover(p): return True return False def process_rollover(self): trans_list = self.position.close_all_translist() self.log('Rollover occured, new series used') return trans_list def get_custom_values(self): """ Method that return custom EXO data frame values, to store inside EXO Dataframe in the DB :return: dictionary {'string_key': (int or float) value} """ return self.custom_values def calculate_regime(self, date, exo_df): """ Calculates Bull/Bear/Neutral areas based on some logic :param date: Current date time :param exo_df: Price dataframe for underlying quotes :return: -1 - for bearish zone 0 - for neutral zone +1 - for bullish zone None - for unknown (just lead to existing position close) """ raise NotImplementedError("You should override this method to process SmartEXO logic") @staticmethod def new_position_bullish_zone(date, fut, opt_chain): """ Returns transaction to open new Smart EXO position for bullish zone params date: current date params fut: current actual future contract params opt_chain: current actual options chain returns: List of Transactions to open """ return [] @staticmethod def new_position_bearish_zone(date, fut, opt_chain): """ Returns transaction to open new Smart EXO position for bearish zone params date: current date params fut: current actual future contract params opt_chain: current actual options chain returns: List of Transactions to open """ return [] @staticmethod def new_position_neutral_zone(date, fut, opt_chain): """ Returns transaction to open new Smart EXO position for neutral zone params date: current date params fut: current actual future contract params opt_chain: current actual options chain returns: List of Transactions to open """ return [] def manage_opened_position(self, date, fut, opt_chain, regime, opened_position): """ Return transactions list to manage opened positions, it could be used for delta rebalancing or dynamic delta hedging :param fut: :param opt_chain: :param regime: :param opened_position: :return: """ return [] def process_day(self): """ Main EXO's position management method :return: list of Transactions to process """ # Get cont futures price for EXO exo_df, exo_info = self.datasource.exostorage.load_series(self._base_exo_name) regime = self.calculate_regime(self.date, exo_df) logging.debug("Regime {0}".format(regime)) trans_list = [] # # Writing custom values to store inside DB # self.custom_values = { 'regime': regime if regime is not None else float('nan') } if regime is None and len(self.position) > 0: return self.position.close_all_translist() instr = self.datasource.get(self._symbol, self.date) rh = RolloverHelper(instr) fut, opt_chain = rh.get_active_chains() if fut is None or opt_chain is None: raise ValueError("Active option chain is not found for {0}".format(self._symbol)) if regime == 1 and 'bullish' not in self.position.legs: # Close all trans_list += self.position.close_all_translist() tl = self.new_position_bullish_zone(self.date, fut, opt_chain) if len(tl) > 0: tl[0]._leg_name = 'bullish' trans_list += tl self._log_transactions(trans_list) return trans_list if regime == -1 and 'bearish' not in self.position.legs: # Close all trans_list += self.position.close_all_translist() tl = self.new_position_bearish_zone(self.date, fut, opt_chain) if len(tl) > 0: tl[0]._leg_name = 'bearish' trans_list += tl self._log_transactions(trans_list) return trans_list if regime == 0 and 'neutral' not in self.position.legs: # Close all trans_list += self.position.close_all_translist() tl = self.new_position_neutral_zone(self.date, fut, opt_chain) if len(tl) > 0: tl[0]._leg_name = 'neutral' trans_list += tl self._log_transactions(trans_list) return trans_list # # Manage opened position # return self.manage_opened_position(self.date, fut, opt_chain, regime, self.position)
[ "i@alexveden.com" ]
i@alexveden.com
e756e0dccc7b86c84fd2275c1dea8a6dd9bcb273
1c48378b207e4d5b41afd2f29a5db7c8276180fc
/Python/Day 1/A1Q4.py
828463092445bffc10f46eb77486013eaaf9af06
[]
no_license
Newcomer03/Basic-Programs
b3e365516ae516c6d53fb9b317def00b77dc741e
1fdf6190b35403ea754ca8ccec3813c926b1e289
refs/heads/main
2023-06-18T12:30:08.470642
2021-07-11T14:06:14
2021-07-11T14:06:14
384,951,875
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
st = input("Enter a String\n") if len(st) >= 2 and st[:2] == "Is": print(st) else: print("Is" + st)
[ "noreply@github.com" ]
Newcomer03.noreply@github.com
d3241a4402b846dbe54bef75303020bb10e1aba1
f8d2beeb8cad25c6f6c4182fdd7b818d9787032c
/test/onnx/test_fx_dynamic_with_onnxruntime.py
7a38e34cfaebb8cb22f5bccb7cb8247d2a93434c
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
ddkalamk/pytorch
231a99de36313a2c24c6c0366da73cf7d6c3816d
f09347a9f11ac751023d3598ab8a04a10ce22a59
refs/heads/master
2023-04-08T10:16:33.079457
2023-03-26T03:35:03
2023-03-26T03:35:03
195,946,338
0
1
NOASSERTION
2020-03-18T07:56:13
2019-07-09T06:27:24
C++
UTF-8
Python
false
false
13,499
py
# Owner(s): ["module: onnx"] from __future__ import annotations import copy import inspect import io import unittest import warnings from typing import Any, Callable, Optional, Sequence, Tuple, Union import numpy as np import onnx.reference import onnx_test_common import onnxruntime # type: ignore[import] import torch import torchvision from torch.onnx._internal import _beartype, diagnostics, fx as fx_onnx from torch.testing._internal import common_utils from torch.types import Number from torch.utils import _pytree as pytree _NumericType = Union[Number, torch.Tensor, np.ndarray] _ModelType = Union[torch.nn.Module, Callable] _ONNXModelType = Union["onnx.ModelProto", bytes, str, io.BytesIO] _InputArgsType = Union[torch.Tensor, Tuple[Any, ...]] _OutputsType = Sequence[_NumericType] @_beartype.beartype def _run_ort( onnx_model: _ONNXModelType, pytorch_inputs: _InputArgsType ) -> _OutputsType: session = onnxruntime.InferenceSession( onnx_model, providers=["CPUExecutionProvider"] ) input_names = [ort_input.name for ort_input in session.get_inputs()] return session.run( None, {k: v.cpu().numpy() for k, v in zip(input_names, pytorch_inputs)} ) @_beartype.beartype def _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( model: _ModelType, input_args: _InputArgsType, rtol: float = 1e-3, atol: float = 1e-7, opset_version: int = 18, additional_test_inputs: Optional[Sequence[_InputArgsType]] = None, **input_kwargs, ): """Compare the results of PyTorch model with exported ONNX model Args: model (_ModelType): PyTorch model input_args (_InputArgsType): torch input arguments rtol (float, optional): relative tolerance. Defaults to 1e-3. atol (float, optional): absolute tolerance. Defaults to 1e-7. opset_version (int, optional): ONNX opset version. Defaults to 18. additional_test_inputs (Optional[Sequence[_InputArgsType]], optional): Test the models with another dataset, which is designed for dynamic axes testing. Defaults to None. """ @_beartype.beartype def _try_clone_model(model: _ModelType) -> _ModelType: """Used for preserving original model in case forward mutates model states.""" try: return copy.deepcopy(model) except Exception: warnings.warn( "Failed to clone model. Model state might be mutated during verification." ) return model @_beartype.beartype def compare_pytorch_onnx_with_ort( onnx_model: Union["onnx.ModelProto", bytes], model_input_args: _InputArgsType, ): # Inspect the model's signature. It will be used # to flatten kwargs. if isinstance(model, torch.nn.Module): signature = inspect.signature(model.forward) else: signature = inspect.signature(model) # Bind args and kwargs to the model's signature to # flatten kwargs into positional args since ONNX # model cannot be called with kwargs. bound = signature.bind(*model_input_args) # Fill optional inputs. bound.apply_defaults() assert not bound.kwargs pt_cloned_model = _try_clone_model(model) ref_outputs, _ = pytree.tree_flatten(pt_cloned_model(*model_input_args)) ort_outputs = _run_ort(onnx_model, bound.args) for ref_output, ort_output in zip(ref_outputs, ort_outputs): torch.testing.assert_close( ref_output, torch.tensor(ort_output), rtol=rtol, atol=atol ) # Feed args and kwargs into exporter. # Note that exporter should flatten kwargs into positional args the exported model; # since ONNX doesn't represent kwargs. onnx_model = fx_onnx.export_after_normalizing_args_and_kwargs( model, *input_args, opset_version=opset_version, use_binary_format=True, enable_dynamic_axes=True, # export models with dynamic shapes **input_kwargs, ) compare_pytorch_onnx_with_ort(onnx_model, input_args) # This confirms the exported mode accepts different input shapes # when dynamic shape is enabled. if additional_test_inputs: for additional_input_args in additional_test_inputs: compare_pytorch_onnx_with_ort(onnx_model, additional_input_args) class TestFxDynamicWithOnnxRuntime(onnx_test_common._TestONNXRuntime): def setUp(self): super().setUp() self.diag_ctx = diagnostics.engine.create_diagnostic_context( "test_fx_export", version=torch.__version__ ) self.opset_version = 18 def tearDown(self): diagnostics.engine.dump( f"test_report_{self._testMethodName}.sarif", compress=False ) super().tearDown() @unittest.skip( "_aten_convolution_onnx: _add_attribute_to_torchscript_node()" " parameter value=[None, None] violates type hint" "typing.Union[float, int, str, bytes, typing.Sequence[float]," " typing.Sequence[int], torch.Tensor], as [None, None]:" ) def test_shufflenet_v2_dynamic_axes(self): model = torchvision.models.shufflenet_v2_x0_5(pretrained=False) dummy_input = torch.randn(1, 3, 224, 224, requires_grad=True) test_inputs = torch.randn(3, 3, 224, 224, requires_grad=True) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( model, (dummy_input,), additional_test_inputs=[(dummy_input,), (test_inputs,)], rtol=1e-3, atol=1e-5, ) def test_add(self): class DynamicAdd(torch.nn.Module): def forward(self, x, y): return torch.ops.aten.add(x, y) x = torch.randn(2, 3) y = torch.randn(2, 3) another_x = torch.randn(3, 4) another_y = torch.randn(3, 4) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( DynamicAdd(), (x, y), additional_test_inputs=[(another_x, another_y)] ) def test_sigmoid_add(self): class DynamicAdd(torch.nn.Module): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.sigmoid = torch.nn.Sigmoid() def forward(self, x, y): z = torch.ops.aten.add(x, y) return self.sigmoid(z) x = torch.randn(2, 3) y = torch.randn(2, 3) x = x[1:, :] y = y[1:, :] input_x = torch.randn(1, 4) input_y = torch.randn(1, 4) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( DynamicAdd(), (x, y), additional_test_inputs=[(input_x, input_y)] ) @unittest.skip("flaky test: https://github.com/microsoft/onnx-script/issues/523") def test_matmul(self): class DynamicMatMul(torch.nn.Module): def forward(self, x, y): return torch.ops.aten.matmul(x, y) x = torch.randn(2, 3, 6) y = torch.randn(2, 6, 4) input_x = torch.randn(2, 3, 4) input_y = torch.randn(2, 4, 4) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( DynamicMatMul(), (x, y), additional_test_inputs=[(input_x, input_y)] ) @unittest.skip( "fx.graph: doesn't handle scalar like normal tensor, so this is not yet " "supported! TypeError: forward() takes 1 positional argument but 2 were given" ) def test_scalar_tensor(self): class test(torch.nn.Module): def forward(self, x): return torch.scalar_tensor(x.size(0)), torch.scalar_tensor( x.size(1), dtype=torch.int64 ) x = torch.randn(2, 3, 4) y = torch.randn(7, 8, 9) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( test(), (x,), additional_test_inputs=[(y,)], ) @unittest.skip( "_aten_convolution_onnx: _add_attribute_to_torchscript_node()" " parameter value=[None, None] violates type hint" "typing.Union[float, int, str, bytes, typing.Sequence[float]," " typing.Sequence[int], torch.Tensor], as [None, None]:" ) def test_transpose_infer_shape(self): class TransposeModule(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 1, 3, stride=2) def forward(self, x): x = self.conv(x) return x.transpose(0, 1) x = torch.randn(32, 3, 64, 64) y = torch.randn(16, 3, 8, 64) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( TransposeModule(), (x,), additional_test_inputs=[(y,)], ) @unittest.skip("torch._dynamo.exc.TorchRuntimeError") def test_squeeze_runtime_dim(self): class Squeeze(torch.nn.Module): def forward(self, d1, d2): t = torch.zeros(d1[0], d2[0]) return t.squeeze(0) d1 = torch.tensor([1]) d3 = torch.tensor([3]) d4 = torch.tensor([4]) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( Squeeze(), (d1, d4), additional_test_inputs=[(d3, d4)] ) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( Squeeze(), (d3, d4), additional_test_inputs=[(d1, d3)] ) @unittest.skip( "AssertionError: The values for attribute 'shape' do not match:" " torch.Size([5, 6, 2]) != torch.Size([4, 4, 2]). Even symbolic " "fx.graph can't get dynamic arguments from this Module." ) def test_slice(self): class DynamicSliceExportMod(torch.nn.Module): def forward(self, x): results = [] for i in range(4): results.append(x[: x.size(0) - i, i : x.size(2), i:3]) return tuple(results) x = torch.rand(5, 5, 5) y = torch.randn(6, 7, 8) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( DynamicSliceExportMod(), (x,), additional_test_inputs=[(y,)], ) @unittest.skip( "fx.graph: doesn't handle scalar like normal tensor, so this is not yet" "supported! TypeError: forward() takes 1 positional argument but 2 were given" ) def test_arange(self): class ArangeModel(torch.nn.Module): def forward(self, input): return ( torch.arange(input.shape[0]), torch.arange(12), torch.arange(start=input.shape[0], end=input.shape[0] + 5), ) x = torch.randn(5, 3, 2) y = torch.randn(8, 3, 2) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( ArangeModel(), (x,), additional_test_inputs=[(y,)], ) @unittest.skip( "fx.graph: torch._subclasses.fake_tensor.DataDependentOutputException: " "aten._local_scalar_dense.default" ) def test_expand_as_fill_zero(self): class Model(torch.nn.Module): def forward(self, x): x[:, x.size(0) :] = 0 return x x = torch.ones(2, 5) x2 = torch.randn(3, 4) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( Model(), (x,), additional_test_inputs=[(x2,)], ) @unittest.skip( "ATenLib: INVALID_ARGUMENT : Failed to load model with error: " "ONNX Schema aten_copy: failed validating the check: !(it.GetName().empty())" ) def test_expand_as_fill_tensor(self): class Model(torch.nn.Module): def forward(self, x): x[:, x.size(0) :] = torch.tensor([1, 2, 3]) return x x = torch.ones(2, 5, 3) x2 = torch.randn(3, 4, 3) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( Model(), (x,), additional_test_inputs=[(x2,)], ) def test_expand_as_fill_seperate_tensor(self): class Model(torch.nn.Module): def forward(self, x): aa = torch.tensor([[0], [1], [2]]) return aa.expand_as(x) x = torch.ones(3, 2) x2 = torch.randn(3, 5) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( Model(), (x,), additional_test_inputs=[(x2,)], ) def test_view_dynamic_zero_dim(self): class ViewModel(torch.nn.Module): def forward(self, input): input = input.view(-1, 2) return input.view(1, -1) x = torch.ones(2) another_x = torch.empty((0,)) _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( ViewModel(), (x,), additional_test_inputs=[(another_x,)], ) def test_flatten_dynamic_axes(self): class MyModule(torch.nn.Module): def forward(self, x): return torch.flatten(x, start_dim=2, end_dim=3) batch_size = 3 x = torch.randn(batch_size, 5, 4, 5) y = torch.randn(5, 5, 4, 5) model = MyModule() _run_test_with_fx_to_onnx_exporter_and_onnx_runtime( model, (x,), additional_test_inputs=[(y,)] ) if __name__ == "__main__": common_utils.run_tests()
[ "pytorchmergebot@users.noreply.github.com" ]
pytorchmergebot@users.noreply.github.com
09c0351bdcf24e3830e9a7301cefd1d1226c89be
4d4947181174d777196a59baa988c938613ef064
/DIS/signals.py
3b2779cbc85a70528dfd4fd2d4390d46c425a4bd
[]
no_license
VictorImmanuvel1/Department-Information-System
37bea88efab5a7c7c05e3439cadd74e63a043007
1fd185dd0b332617b5bc5a8e6ace02be3fdae407
refs/heads/main
2023-06-11T14:50:50.931114
2021-04-28T07:53:40
2021-04-28T07:53:40
361,377,426
0
0
null
2021-04-28T07:53:41
2021-04-25T08:52:14
HTML
UTF-8
Python
false
false
1,354
py
from django.db.models.signals import post_save from django.contrib.auth.models import User from django.dispatch import receiver from .models import Profile,Education,oe,ap,article,seminar,student,sem1,sem2,sem3,sem4,sem5 @receiver(post_save,sender=User) def create_profile(sender,instance,created,**kwargs): if created: Profile.objects.create(user=instance) Education.objects.create(user=instance) oe.objects.create(user=instance) ap.objects.create(user=instance) article.objects.create(user=instance) seminar.objects.create(user=instance) @receiver(post_save,sender=User) def save_profile(sender,instance,created,**kwargs): instance.profile.save() instance.education.save() instance.oe.save() instance.ap.save() instance.article.save() instance.seminar.save() @receiver(post_save,sender=student) def create(sender,instance,created,**kwargs): if created: sem1.objects.create(sid=instance) sem2.objects.create(sid=instance) sem3.objects.create(sid=instance) sem4.objects.create(sid=instance) sem5.objects.create(sid=instance) @receiver(post_save,sender=student) def save(sender,instance,created,**kwargs): instance.sem1.save() instance.sem2.save() instance.sem3.save() instance.sem4.save() instance.sem5.save()
[ "victorimmanuvel@protonmail.com" ]
victorimmanuvel@protonmail.com
fc0c191c4df7d151acb3246642ee5516c3f00ae1
ba168a8a6e93346a93238e204d44244c6abd4dab
/app/core/migrations/0004_auto_20200613_1300.py
78f6d337bea3b6878f001bbedb809dab89358b49
[ "MIT" ]
permissive
Amirh-zahmatkesh/acc-back
6e8935aeac1e7f4d21b2b96fb1fe67355b4d1290
77e693c743977eacf6b9ed5c3bcf5b1ae918a9d5
refs/heads/master
2022-11-16T20:26:39.754198
2020-06-17T08:02:52
2020-06-17T08:02:52
280,595,454
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
# Generated by Django 3.0.6 on 2020-06-13 13:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0003_auto_20200613_1259'), ] operations = [ migrations.AlterField( model_name='certificate', name='slug', field=models.SlugField(), ), ]
[ "amirh.zahmatkesh98@gmail.com" ]
amirh.zahmatkesh98@gmail.com
9623807c3351f38f27e901faf5983a24023c0ed1
85149cccb5dfbd804163dd67f20cdd114ad56a71
/examples/bahl/uq_bahl.py
5f08e5e684fb0608d396c8cec6355808ad1f5974
[]
no_license
Mazzol/uncertainpy
9bf9f3a60b177278fdf428d0dc5f805e14c82f07
7e81a46200c272cfa2d5d929a597307a322b9530
refs/heads/master
2020-03-14T21:52:07.441718
2018-04-25T15:00:21
2018-04-25T15:00:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,508
py
import uncertainpy as un import chaospy as cp # Subclassing NeuronModel class NeuronModelBahl(un.NeuronModel): def __init__(self, stimulus_start=None, stimulus_end=None): # Hardcode the path of the Bahl neuron model super(NeuronModelBahl, self).__init__(interpolate=True, path="bahl_neuron_model", stimulus_start=stimulus_start, stimulus_end=stimulus_end) # Reimplement the set_parameters method used by run def set_parameters(self, parameters): for parameter in parameters: self.h(parameter + " = " + str(parameters[parameter])) # These commands must be added for this specific # model to recalculate the parameters after they have been set self.h("recalculate_passive_properties()") self.h("recalculate_channel_densities()") # Initialize the model with the start and end time of the stimulus model = NeuronModelBahl(stimulus_start=100, stimulus_end=600) # Define a parameter list and use it directly parameters = {"e_pas": -80, cp.Uniform(-60, -85), "apical Ra": 261, cp.Uniform(150, 300)} # Initialize the features features = un.SpikingFeatures() # Perform the uncertainty quantification UQ = un.UncertaintyQuantification(model=model, parameters=parameters, features=features) data = UQ.quantify()
[ "simetenn@gmail.com" ]
simetenn@gmail.com
6697c4a6ca304290cdf7ee90384c8bfc5c911d0b
697772c770d5b0c04402b819c80d420fa6d41c3e
/tests/beos_plugin_tests/scenarios/scenarios_basic_operations/014_[1.1]_Basic_operations_test_.py
e390d7a7c69d2524fd015f0eb14ed8ff596ac618
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
permissive
terradacs/beos-core
bf8f436d1754c4ad7741d976a12fd7a9e514bf85
31e19170bcad573b1d498811284e62babd478f92
refs/heads/beos-initial-release
2021-06-16T07:42:30.089362
2019-07-31T11:47:24
2019-07-31T11:47:24
172,755,498
10
3
NOASSERTION
2021-03-22T22:50:25
2019-02-26T17:13:37
C++
UTF-8
Python
false
false
5,122
py
#!/usr/bin/python3 # Scenario based on test : [1.1]-Basic-operations-test import os import sys import time import datetime currentdir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.dirname(os.path.dirname(currentdir))) from beos_test_utils.beos_utils_pack import init, ActionResult, ResourceResult, VotersResult if __name__ == "__main__": try: node, summary, args, log = init(__file__) accounts = node.create_accounts(2, "5.0000 BTS") node.run_node() #Changeparams #node.changeparams(["0.0000 BTS"], 40, [20,0,40,20,8000000], [20,0,40,10,5000000], 3000000) newparams = { "beos" : { "starting_block" : 20, "next_block" : 0, "ending_block" : 40, "block_interval" : 20, "trustee_reward" : 8000000 }, "ram" : { "starting_block" : 20, "next_block" : 0, "ending_block" : 40, "block_interval" : 10, "trustee_reward" : 5000000 }, "proxy_assets" : [ "0.0000 BTS"], "ram_leftover" : 3000000, "starting_block_for_initial_witness_election":40 } node.changeparams(newparams) #Actions summary.user_block_status(node, accounts[0].name, ResourceResult(_balance="5.0000 BTS",_net_weight="0.0000 BEOS",_cpu_weight="0.0000 BEOS",_ram_bytes=5448)) summary.user_block_status(node, accounts[1].name, ResourceResult(_balance="5.0000 BTS",_net_weight="0.0000 BEOS",_cpu_weight="0.0000 BEOS",_ram_bytes=5448)) summary.action_status(node.transfer(_from=accounts[0].name,_to=accounts[1].name,_quantity="1.0000 BTS",_memo=""), ActionResult(False, "transaction net usage is too high: 128 > 0") ) node.wait_till_block(20) summary.action_status(node.transfer(_from=accounts[0].name,_to=accounts[1].name,_quantity="5.0000 BTS",_memo="") ) summary.user_block_status(node, accounts[0].name, ResourceResult(_balance="",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=5332055448)) summary.user_block_status(node, accounts[1].name, ResourceResult(_balance="10.0000 BTS",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=5332055448)) node.wait_till_block(24) summary.user_block_status(node, accounts[1].name, ResourceResult(_balance="10.0000 BTS",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=5332055448)) node.wait_till_block(26) summary.user_block_status(node, accounts[0].name, ResourceResult(_balance="",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=5332055448)) node.wait_till_block(28) summary.action_status(node.transfer(_from=accounts[0].name,_to=accounts[1].name,_quantity="1.0000 BTS",_memo=""), ActionResult(False, "no balance object found") ) summary.user_block_status(node, accounts[1].name, ResourceResult(_balance="10.0000 BTS",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=5332055448)) node.wait_till_block(30) summary.user_block_status(node, accounts[0].name, ResourceResult(_balance="",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=5332055448)) node.wait_till_block(40) summary.user_block_status(node, accounts[0].name, ResourceResult(_balance="",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=5332055448)) summary.user_block_status(node, accounts[1].name, ResourceResult(_balance="10.0000 BTS",_net_weight="1376706011.7673 BEOS",_cpu_weight="1376706011.7674 BEOS",_ram_bytes=26660255448)) node.wait_till_block(50) summary.action_status(node.transfer(_from=accounts[1].name,_to=accounts[0].name,_quantity="10.0000 BTS",_memo="") ) summary.user_block_status(node, accounts[0].name, ResourceResult(_balance="10.0000 BTS",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=5332055448)) summary.user_block_status(node, accounts[1].name, ResourceResult(_balance="",_net_weight="1376706011.7673 BEOS",_cpu_weight="1376706011.7674 BEOS",_ram_bytes=26660255448)) summary.action_status(node.transfer(_from=accounts[0].name,_to=accounts[1].name,_quantity="10.0000 BTS",_memo="") ) summary.user_block_status(node, accounts[0].name, ResourceResult(_balance="",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=5332055448)) summary.user_block_status(node, accounts[1].name, ResourceResult(_balance="10.0000 BTS",_net_weight="1376706011.7673 BEOS",_cpu_weight="1376706011.7674 BEOS",_ram_bytes=26660255448)) summary.action_status(node.withdraw(_from=accounts[1].name,_bts_to="any_account",_quantity="10.0000 BTS",_memo="_memo") ) #At end summary.user_block_status(node, accounts[0].name, ResourceResult(_balance="",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=5332055448)) summary.user_block_status(node, accounts[1].name, ResourceResult(_balance="",_net_weight="1376706011.7673 BEOS",_cpu_weight="1376706011.7674 BEOS",_ram_bytes=26660255448)) except Exception as _ex: log.exception("Exception `{0}` occures while executing `{1}` tests.".format(str(_ex), __file__)) finally: summary_status = summary.summarize() node.stop_node() exit(summary_status)
[ "wrona@syncad.com" ]
wrona@syncad.com
0fe74dba4a6c30fea18d505b94370729aabd9a40
e920ca65077c792109f3f44d125b7dce5a012576
/model.py
ceb9b1c0865e61b440f038b9aaadc41bc6fbf4ac
[]
no_license
dsp6414/person_search
3d6433d3b64a2a686e36935febc9c0582d3e0a24
cf13c8839248b471eeb57836c0e5e52b0f6f9fa0
refs/heads/master
2020-03-14T08:40:08.092777
2018-04-29T14:41:36
2018-04-29T14:41:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,788
py
# ----------------------------------------------------- # Spatial Invariant Person Search Network # # Author: Liangqi Li and Xinlei Chen # Creating Date: Apr 1, 2018 # Latest rectified: Apr 10, 2018 # ----------------------------------------------------- import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import yaml from resnet import resnet from densenet import densenet from strpn import STRPN from losses import oim_loss, smooth_l1_loss class SIPN(nn.Module): def __init__(self, net_name, pre_model=None, is_train=True): super().__init__() self.net_name = net_name self.is_train = is_train # TODO: set depending on dataset self.num_pid = 483 self.queue_size = 500 self.lut_momentum = 0.5 self.reid_feat_dim = 256 self.register_buffer('lut', torch.zeros( self.num_pid, self.reid_feat_dim).cuda()) self.register_buffer('queue', torch.zeros( self.queue_size, self.reid_feat_dim).cuda()) if self.net_name == 'res50': self.net = resnet(50, pre_model, self.is_train) elif self.net_name == 'dense121': self.net = densenet(121, pre_model, self.is_train) elif self.net_name == 'dense161': self.net = densenet(161, pre_model, self.is_train) else: raise KeyError(self.net_name) self.fc7_channels = self.net.fc7_channels # SPIN consists of three main parts self.head = self.net.head self.strpn = STRPN(self.net.net_conv_channels, self.num_pid, self.is_train) self.tail = self.net.tail self.cls_score_net = nn.Linear(self.fc7_channels, 2) self.bbox_pred_net = nn.Linear(self.fc7_channels, 8) self.reid_feat_net = nn.Linear(self.fc7_channels, self.reid_feat_dim) self.init_linear_weight(False) def forward(self, im_data, gt_boxes, im_info, mode='gallery'): if self.is_train: net_conv = self.head(im_data) # returned parameters contain 3 tuples here pooled_feat, rpn_loss, label, bbox_info = self.strpn( net_conv, gt_boxes, im_info) fc7 = self.tail(pooled_feat).mean(3).mean(2) cls_score = self.cls_score_net(fc7) bbox_pred = self.bbox_pred_net(fc7) reid_feat = F.normalize(self.reid_feat_net(fc7)) cls_pred = torch.max(cls_score, 1)[1] cls_prob = F.softmax(cls_score) det_label, pid_label = label det_label = det_label.view(-1) cls_loss = F.cross_entropy(cls_score.view(-1, 2), det_label) bbox_loss = smooth_l1_loss(bbox_pred, bbox_info) reid_loss = oim_loss(reid_feat, pid_label, self.num_pid, self.queue_size, self.lut, self.queue, self.lut_momentum) rpn_cls_loss, rpn_box_loss = rpn_loss return rpn_cls_loss, rpn_box_loss, cls_loss, bbox_loss, reid_loss else: if mode == 'gallery': net_conv = self.head(im_data) rois, pooled_feat = self.strpn(net_conv, gt_boxes, im_info) fc7 = self.tail(pooled_feat).mean(3).mean(2) cls_score = self.cls_score_net(fc7) bbox_pred = self.bbox_pred_net(fc7) reid_feat = F.normalize(self.reid_feat_net(fc7)) cls_pred = torch.max(cls_score, 1)[1] cls_prob = F.softmax(cls_score) with open('config.yml', 'r') as f: config = yaml.load(f) mean = config['train_bbox_normalize_means'] std = config['train_bbox_normalize_stds'] means = bbox_pred.data.new(mean).repeat(2).unsqueeze( 0).expand_as(bbox_pred) stds = bbox_pred.data.new(std).repeat(2).unsqueeze( 0).expand_as(bbox_pred) bbox_pred = bbox_pred.mul(Variable(stds)).add(Variable(means)) cls_prob = cls_prob.data.cpu().numpy() bbox_pred = bbox_pred.data.cpu().numpy() rois = rois.data.cpu().numpy() reid_feat = reid_feat.data.cpu().numpy() return cls_prob, bbox_pred, rois, reid_feat elif mode == 'query': net_conv = self.head(im_data) # TODO: move pooling layer from strpn to SIPN pooled_feat = self.strpn(net_conv, gt_boxes, im_info, mode) fc7 = self.tail(pooled_feat).mean(3).mean(2) reid_feat = F.normalize(self.reid_feat_net(fc7)) return reid_feat.data.cpu().numpy() else: raise KeyError(mode) def train(self, mode=True): nn.Module.train(self, mode) self.net.train(mode) def init_linear_weight(self, trun): def normal_init(m, mean, stddev, truncated=False): """ weight initalizer: truncated normal and random normal. """ # x is a parameter if truncated: m.weight.data.normal_().fmod_(2).mul_(stddev).add_( mean) # not a perfect approximation else: m.weight.data.normal_(mean, stddev) m.bias.data.zero_() normal_init(self.cls_score_net, 0, 0.01, trun) normal_init(self.bbox_pred_net, 0, 0.001, trun) # TODO: change 0.01 for reid_feat_net normal_init(self.reid_feat_net, 0, 0.01, trun) def load_trained_model(self, state_dict): nn.Module.load_state_dict( self, {k: state_dict[k] for k in list(self.state_dict())})
[ "noreply@github.com" ]
dsp6414.noreply@github.com
d7794907c843dd270061bb2fbcc662e9a50aded5
b91588cda1a129f06aa9493ee6d6a70e4f996b7f
/Production/python/Spring15v2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_cff.py
e7a99cd64aead259403e31460f446688c6ae74b7
[]
no_license
muzamilahmad/LeptoQuarkTreeMaker
2371e93589dbe41b02a93a2533cbf5e955aaa0db
8e7eed0d03c6770a029eafb9b638e82c600a7425
refs/heads/master
2021-01-19T01:02:35.749590
2018-02-06T17:27:52
2018-02-06T17:27:52
65,389,201
0
0
null
null
null
null
UTF-8
Python
false
false
16,887
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, secondaryFileNames = secFiles) readFiles.extend( [ '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/006A698D-EF6D-E511-8500-001E67E69879.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/02671D8F-EF6D-E511-9846-90B11C06EA7B.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/048C9B94-EF6D-E511-9B59-00266CF2454C.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/04ABE396-EF6D-E511-B30C-90B11C08CA45.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/069E22BC-F06D-E511-B63A-002590A83160.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/0A0E82ED-F06D-E511-9158-001E67398CA0.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/0ABC1755-F06D-E511-981A-001E67E6A166.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/10398F8D-EF6D-E511-A67B-00266CF25708.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/1404A066-F06D-E511-BF5F-001E673971C5.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/14A85892-EF6D-E511-B848-002590A371AA.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/16B32595-EF6D-E511-926C-001E67E34034.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/1A517561-F06D-E511-BD85-001E67397C33.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/1E730895-EF6D-E511-91D7-001517FB228C.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/203527A3-EF6D-E511-996F-D4856459BE56.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/24059093-EF6D-E511-B921-001E673975F8.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/2437B158-F06D-E511-B84E-001E67E71368.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/264C0193-EF6D-E511-A3FE-002590207C28.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/3AE7E9C3-EF6D-E511-A5A5-02163E00F364.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/3AF2F593-EF6D-E511-BD5B-001E67398BE7.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/3C30F95E-F06D-E511-AA0A-002590200B70.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/3E7F3096-EF6D-E511-A50C-002590200A1C.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/421A1157-F06D-E511-A0D5-001E67E6F7BA.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/46CF898A-EF6D-E511-93C1-0025905C2D98.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/46F97A8D-EF6D-E511-9938-002590A3C984.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/480D708C-EF6D-E511-B9BD-001E67E6F891.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/485429A0-EF6D-E511-8853-002590A88800.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/485B3597-EF6D-E511-BFB3-002590A81DAC.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/4CCBCB59-F06D-E511-9C2D-002590200AD8.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/4E711A91-EF6D-E511-B430-B083FED07198.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/503AA99B-EF6D-E511-8099-001E67E71E20.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/525E71C1-EF6D-E511-8941-00259073E520.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/52B99528-F06D-E511-9E92-02163E016637.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/54D0C599-EF6D-E511-8029-02163E00C79F.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/5686C856-F06D-E511-AE50-001E67E6F805.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/58AB3D60-F06D-E511-93E3-001E67E33C6A.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/5E92C365-F06D-E511-95B7-0025902009B8.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/62286FAD-EF6D-E511-9764-001E67A3FE66.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/62D93798-EF6D-E511-9F13-001E4F1C5820.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/64CAA096-EF6D-E511-95AF-002590A3A3D2.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/663ECF97-EF6D-E511-86B9-002590200AE4.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/68502191-EF6D-E511-AFCC-001E67E68677.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/6A5237A9-EF6D-E511-A67A-7845C4FC3AE5.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/6AFB448E-EF6D-E511-AC39-001E67396D10.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/6C8780C4-EF6D-E511-B03B-02163E015F46.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/6CFF9C8A-EF6D-E511-B7D2-00266CF9C0F0.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/70A3D48C-EF6D-E511-9F5E-001E67A3EF70.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/72C0EFF1-F06D-E511-AAB5-001E67E34034.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/74616698-EF6D-E511-B704-001E675A6725.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/7A04BD89-EF6D-E511-9FBE-001E67D5D8EF.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/80BB2F8C-EF6D-E511-862E-001E67A40514.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/8238588A-EF6D-E511-A6C3-00266CF9BE0C.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/86BBE7DC-EF6D-E511-B371-02163E00B778.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/8C55718B-EF6D-E511-93A3-0025905C95F8.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/9008EA8D-EF6D-E511-8C37-9C8E991A143E.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/9896F491-F06D-E511-8FA9-002590200878.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/9899136B-F06D-E511-B796-001E67E6F92C.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/9A6C916D-F06D-E511-ABB5-001E67396D51.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/A048E9CA-EF6D-E511-B0CD-02163E00C4C9.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/A0F4C672-F06D-E511-8C47-002590A831B4.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/A61810A6-EF6D-E511-A3DB-001E67397D05.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/AA9E1B50-F16D-E511-8D69-001E67E6F49F.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/AC847A64-F06D-E511-B1AF-001E67E71D03.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/ACB4B35F-F06D-E511-98A2-001E67E6F8EB.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/ACD32EA3-EF6D-E511-9A60-001E67E713C2.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/AE2BD593-EF6D-E511-933B-002590200A7C.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/AE76FF91-EF6D-E511-BC84-20CF3027A62B.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/B0AC868C-EF6D-E511-9B91-0025907FD4A0.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/BCD85297-EF6D-E511-BE00-90B11C08CA45.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/C0094AAC-EF6D-E511-B5E3-001E67397AE4.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/C0B63761-F06D-E511-9147-001E67E33ECC.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/C415A0E5-F06D-E511-AC40-001E67398BE7.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/C6118BA3-EF6D-E511-B718-02163E00C035.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/C62AD25B-F06D-E511-B8E2-001E673972F6.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/CC05FF8A-EF6D-E511-8FC0-0025905C43EA.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/CCC2A28E-EF6D-E511-93C9-20CF3027A613.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/CEB6568A-EF6D-E511-80C3-00266CF9BE0C.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/D01D11DE-F06D-E511-87FF-001E67E69879.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/D4F8F61E-F06D-E511-83EB-02163E00EA7A.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/DA889F90-EF6D-E511-BDF5-001E67E6F82D.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/E0DF2354-F06D-E511-9B72-001E67E6F490.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/E6A0B691-EF6D-E511-9398-001E67396892.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/E839C790-EF6D-E511-B2EB-001E67E6F404.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/E885458F-EF6D-E511-835D-20CF3027A5CA.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/EE3777AA-EF6D-E511-9BC3-002590A3C96E.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/F23BA45B-F06D-E511-9045-002590200840.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/F8699A5E-F06D-E511-B442-001E67E6F8B4.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/FC49C45F-F06D-E511-AD4C-002590A4FFA2.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/FC5D736F-F06D-E511-926B-001E67E6F89B.root', '/store/mc/RunIISpring15MiniAODv2/QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/74X_mcRun2_asymptotic_v2-v1/10000/FC8812F0-F06D-E511-A30C-001E67E6F82D.root' ] ); secFiles.extend( [ ] )
[ "kpedro88@gmail.com" ]
kpedro88@gmail.com
3272af571f27ef764ca94877f5ce2aa433f2fd3f
42bef710f7050918cd9bc8049248a988317dce3b
/main/migrations/0003_additionalimage_st.py
b47f488d6aa8cc119286915d724a4cc9cc3be2e9
[]
no_license
wyacheslav-20/Strel_CNC
a5f7c3dee848a0e565519ce49ab87287a6a598c2
43e1bddd1af5d7bf1b9ece65ec9e7dbb9437c59b
refs/heads/master
2020-12-19T01:05:03.651417
2020-02-17T20:48:20
2020-02-17T20:48:20
235,573,206
0
0
null
2020-01-30T12:27:52
2020-01-22T12:54:16
Python
UTF-8
Python
false
false
2,527
py
# Generated by Django 3.0.2 on 2020-02-02 14:10 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import main.utilities class Migration(migrations.Migration): dependencies = [ ('main', '0002_auto_20200131_1120'), ] operations = [ migrations.CreateModel( name='St', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=40, verbose_name='Tема')), ('content', models.TextField(verbose_name='Oпиcaниe')), ('price', models.FloatField(default=0, verbose_name='Цeнa')), ('contacts', models.TextField(verbose_name='Koнтaкты')), ('image', models.ImageField(blank=True, upload_to=main.utilities.get_timestamp_path, verbose_name='Изображение')), ('is_active', models.BooleanField(db_index=True, default=True, verbose_name='Выводить в списке?')), ('created_at', models.DateTimeField(auto_now_add=True, db_index=True, verbose_name='Опубликовано')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='Aвтop объявления')), ('rubric', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='main.SubRubric', verbose_name='Pyбpикa')), ], options={ 'verbose_name': 'Объявления', 'verbose_name_plural': 'Объявления', 'ordering': ['-created_at'], }, ), migrations.CreateModel( name='Additionalimage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(upload_to=main.utilities.get_timestamp_path, verbose_name='Изображение')), ('st', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.St', verbose_name='Объявление')), ], options={ 'verbose_name': 'Дополнительная иллюстрация', 'verbose_name_plural': 'Дополнительные иллюстрации', }, ), ]
[ "noreply@github.com" ]
wyacheslav-20.noreply@github.com
014b4f11a277086ca1dbd5b4f930d298b111bcaf
1d02157bbe8ec6856f51f2a6c3cb7b916ad0fa99
/my_exceptions.py
6cc67cbb4e6d54c8217ab09df84eda54c3374fd7
[]
no_license
dishults/dslr
23c212c7427cc413627df6174004f0cd4a8ebfc2
656f66a1e19b9ba59c8c756a52df6bd6b563bf5e
refs/heads/master
2023-02-22T16:18:34.504537
2021-01-29T15:07:33
2021-01-29T15:07:33
249,403,707
0
0
null
null
null
null
UTF-8
Python
false
false
1,017
py
import sys class Usage(Exception): def __init__(self, stage="train", extra=""): if "./" in sys.argv[0]: sys.exit(f"Example usage: {sys.argv[0]} datasets/dataset_{stage}.csv{extra}") else: sys.exit(f"Example usage: ./{sys.argv[0]} datasets/dataset_{stage}.csv{extra}") class Header(Exception): def __init__(self): sys.exit(f"Header is incorrect for your dataset file '{sys.argv[1]}'") class File(Exception): def __init__(self): sys.exit(f"Dataset file '{sys.argv[1]}' doesn't exist, is empty or incorrect") class Dataset(Exception): def __init__(self): sys.exit("Check that your downloaded dataset is correct and hasn't been altered") class Houses(Exception): def __init__(self): print("No data for Hogwarts Houses") raise Dataset class Weights(Exception): def __init__(self): sys.exit(f"Something went wrong with your '{sys.argv[2]}' file. Double check it's correct.")
[ "me@manhattan.lan" ]
me@manhattan.lan
7e53153542cdb14806115ac36c29ba4abf21775a
b9c323a994a293601d5d7332dcea97dbb3e7ef42
/practicer_flask/topics/postgres.py
c70dbb277d94d880ecae04de6942034bcd2d0e80
[ "MIT" ]
permissive
DominikPott/practicer-flask
60195e38daebfa7a07fd0a3203b93a5ee0bfa6db
c8e523095bdd5912dadb7357d16a4e76229a04da
refs/heads/master
2023-05-06T23:37:02.797637
2021-05-30T18:59:39
2021-05-30T18:59:39
363,600,069
0
0
null
null
null
null
UTF-8
Python
false
false
3,086
py
import os import psycopg2 def get_db(): url = os.environ.get('DATABASE_URL', None) if url: con = psycopg2.connect(url, sslmode='require') else: con = psycopg2.connect(host="localhost", database="statistics", user="postgres", password="test") return con def _create_table(): db = None try: db = get_db() cursor = db.cursor() create_table_query = '''CREATE TABLE IF NOT EXISTS topics ( DATE TEXT PRIMARY KEY NOT NULL, TOPIC TEXT NOT NULL ); ''' cursor.execute(create_table_query) db.commit() except (Exception, psycopg2.Error) as error: print("Error while creating table.", error) finally: if db: cursor.close() db.close() def _drop_table(name): db = None try: db = get_db() cursor = db.cursor() create_table_query = f'DROP TABLE {name}' cursor.execute(create_table_query) db.commit() except (Exception, psycopg2.Error) as error: print("Error while dropping table", error) finally: if db: cursor.close() db.close() def topics(): query = 'SELECT * from topics' db = get_db() cursor = db.cursor() cursor.execute(query) topics_raw = cursor.fetchall() cursor.close() db.close() return list(map(map_to_dict, topics_raw)) def map_to_dict(topic): return {'date': topic[0], 'topic': topic[1]} def add_topic(topic): date = topic['date'] topic = topic['topic'] query = f"INSERT INTO topics (DATE, TOPIC) VALUES ('{date}', '{topic}')" db = get_db() cursor = db.cursor() cursor.execute(query) db.commit() cursor.close() db.close() if __name__ == '__main__': _drop_table(name='topics') _create_table() ts = [{'date': '2021.05.15', 'topic': 'Ananas'}, {'date': '2021.05.16', 'topic': 'Bagger'}, {'date': '2021.05.17', 'topic': 'Tomate'}, {'date': '2021.05.18', 'topic': 'Zebra'}, {'date': '2021.05.19', 'topic': 'Schwert'}, {'date': '2021.05.20', 'topic': 'Maulwurf'}, {'date': '2021.05.21', 'topic': 'Lampe'}, {'date': '2021.05.22', 'topic': 'Geburtstagskuchen'}, {'date': '2021.05.23', 'topic': 'Stift'}, {'date': '2021.05.24', 'topic': 'Handy'}, {'date': '2021.05.25', 'topic': 'Socke'}, {'date': '2021.05.26', 'topic': 'Zecke'}, {'date': '2021.05.27', 'topic': 'Bier'}, {'date': '2021.05.28', 'topic': 'Feilchen'}, {'date': '2021.05.29', 'topic': 'Breaking Bad'}, {'date': '2021.05.30', 'topic': 'Walnuss'}, {'date': '2021.05.31', 'topic': 'Waschmaschine'}, {'date': '2021.06.01', 'topic': 'Pfeffer'}, {'date': '2021.06.02', 'topic': 'Bett'}, {'date': '2021.06.03', 'topic': 'Neonlicht'}, {'date': '2021.06.04', 'topic': 'Brief'}, ] for t in ts: add_topic(t) t = topics() print(t)
[ "d_tronic_p@gmx.de" ]
d_tronic_p@gmx.de
c1353e4d5fd5aeedd6b659f753a2dfdaed518a60
e89509b453632747077bc57dbec265a7703d5c7c
/function/first class/firstyhu.py
a0d27f9e5ca1c9efafbad2efa91d9502353a9825
[]
no_license
Madhav2108/udemy-python-as
a9dcfdbfdc1bb85471aa66de77957e962a7c5486
0bc6a501516618fb3c7ab10be6bc16c047aeec3f
refs/heads/master
2023-03-30T11:25:16.064592
2021-03-30T18:10:46
2021-03-30T18:10:46
286,001,815
0
0
null
null
null
null
UTF-8
Python
false
false
109
py
def shout1(text): return text.upper() print (shout1('Hello') ) yell = shout1 print (yell('Hello'))
[ "noreply@github.com" ]
Madhav2108.noreply@github.com
64931a97973e990a801007d7f2681ac77b22a909
32ad1d2e9e9505a9415cc4e165bff0bd4cd992e6
/Sorting/quick_sort_with_random_pivot.py
e760aed0c8552d5acb0b2e86d81d107f8c4064ed
[]
no_license
shan18/Algo-Wiki
c26c3a56dc55256b25e71121ca7ab03f439827ad
7d5d1f8b2894726ff95a1a60dd676f236ab9ee93
refs/heads/master
2018-10-28T04:46:32.090787
2018-09-24T18:22:24
2018-09-24T18:22:24
105,189,657
0
0
null
null
null
null
UTF-8
Python
false
false
979
py
"""Quick Sort Time complexity is O(n log(n)). It uses a Divide and Conquer Approach. """ from random import randint # Setting the pivot element to its correct location def partition(a, start, end): pivot_index = randint(start, end) a[start], a[pivot_index] = a[pivot_index], a[start] i = start + 1 for j in range(start + 1, end + 1): if a[j] <= a[start]: a[j], a[i] = a[i], a[j] i += 1 a[start], a[i - 1] = a[i - 1], a[start] return i - 1 # Dividing the problem into smaller subproblems def quick_sort(a, start, end): if start < end: q = partition(a, start, end) quick_sort(a, start, q - 1) quick_sort(a, q + 1, end) if __name__ == '__main__': filename = input("Enter the file name containing the array: ") a = [] with open(filename) as f: for n in f.read().split(): a.append(int(n)) quick_sort(a, 0, len(a) - 1) print("The sorted array: ", a)
[ "thegeek.004@gmail.com" ]
thegeek.004@gmail.com
c96827707326cba9a7f78a456f0afade56a03985
cd871fe2429f8c5b938f07937307c2597d9d8649
/tabulator/loaders/native.py
20531ceb64470c00c7a6ba4bb167e06189667041
[ "MIT" ]
permissive
AleksiKnuutila/tabulator-py
9997ed9557bf932bc5d7aa99d9e49048c0797490
27ab97fbb2f6ee5f11adb3472da4454363041842
refs/heads/master
2021-01-13T08:51:32.974845
2016-09-23T18:57:44
2016-09-23T18:57:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
559
py
# -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from .. import exceptions from . import api # Module API class NativeLoader(api.Loader): """Null loader to pass python native lists. """ # Public def __init__(self, **options): self.__options = options def load(self, source, encoding, mode): message = 'NativeLoader doesn\'t support load method' raise exceptions.LoadingError(message)
[ "noreply@github.com" ]
AleksiKnuutila.noreply@github.com
1755a22937114ff1bed1509bc3e143df4eb9d669
7923e7378d41e970bbd9394e20f33485a1d58886
/scripts/data_cleaning.py
3d6eaa6e88d66d28837f5ca037b3a0ae5d4ec836
[]
no_license
pbeckdorf/capstonesproject
6d0fd59a61c23b1133727e3920a64e2cc1c0d081
59799f97cae6cc1281b80ed47208108be01fa53e
refs/heads/master
2022-12-10T09:49:51.273422
2020-09-03T16:50:59
2020-09-03T16:50:59
292,609,705
0
0
null
null
null
null
UTF-8
Python
false
false
54
py
total_cases = [100,200,300] deaths = [10, 5, 20, 200]
[ "pbeckdorf@economia.cl" ]
pbeckdorf@economia.cl
d4f85c103ccd79f4dbda2d277093963e5f6af2aa
6fe5fae54af9cee2e9de356dd149b7cfe1ca112a
/examples/zpt/_handler.py
6dff1e09ea9f4ce89dca4366776335a808f6c395
[]
no_license
GrahamDumpleton-abandoned/vampire
181b03a53b62f3f53bdf83fb3d4305ef146d3526
bdcb2d25105ca95fcbda1afa16c4d9d681c664f6
refs/heads/master
2021-01-05T11:26:25.908716
2010-07-11T21:24:07
2010-07-11T21:24:07
241,008,577
0
0
null
null
null
null
UTF-8
Python
false
false
1,091
py
from mod_python import apache import os import vampire from ZopePageTemplates import PageTemplate # Default handler for HTML. def handler_html(req,**kwargs): # Check for existance of ZPT source file. path = os.path.splitext(req.filename)[0] + ".zpt" if os.path.exists(path): layout_file = os.path.join(os.path.dirname(__file__),"_layout.zpt") layout = PageTemplate() layout.write(open(layout_file,"r").read()) config = vampire.loadConfig(req,".vampire") settings = {} for key,value in config.items("Settings"): settings[key] = value settings["request"] = req settings["form"] = kwargs page = PageTemplate() page.write(open(path,"r").read()) settings["here"] = { "layout": layout } content = page.pt_render(extra_context=settings) req.content_type = page.content_type req.send_http_header() req.write(content) return apache.OK return apache.DECLINED # Default handler for ZPT. def handler_zpt(req): if os.path.exists(req.filename): return apache.HTTP_NOT_FOUND return apache.DECLINED
[ "devnull@localhost" ]
devnull@localhost
446f123c795ecd70e833d9410489701f5c5a8e30
76b9f33c396d7233bc40794919f5872e93dbbf9c
/django/debuggingtest-master/boards/views.py
d927d0552129a426c701c1beb5a28030ad314bea
[]
no_license
Lustellz/TIL-c9
14b6796e37cd2ea33e7e108e1f2d686eacb47ae9
86bb493d2e9b42a06545501cacfa1ceed6f9bc25
refs/heads/master
2021-06-16T18:06:28.325082
2019-05-09T06:26:47
2019-05-09T06:26:47
166,776,996
0
0
null
2021-06-10T21:22:41
2019-01-21T08:33:15
Python
UTF-8
Python
false
false
2,456
py
from django.shortcuts import render, get_object_or_404, redirect from django.views.decorators.http import require_POST from django.contrib.auth.decorators import login_required from .models import Board, Comment from .forms import BoardForm, CommentForm # Create your views here. def list(request): boards = Board.objects.order_by('-pk') ctx = { 'boards': boards, } return render(request, 'boards/list.html', ctx) def detail(request, board_pk): board = get_object_or_404(Board, pk=board_pk) ctx = { 'board': board, 'form': CommentForm(), } return render(request, 'boards/detail.html', ctx) @login_required def create(request): if not request.user.is_authenticated: return redirect('boards:list') if request.method == 'POST': board_form = BoardForm(request.POST) if board_form.is_valid(): board = board_form.save(commit=False) board.user = request.user board.save() return redirect('boards:detail', board.id) else: board_form = BoardForm() ctx = { 'board_form': board_form, } return render(request, 'boards/form.html', ctx) @login_required def edit(request, board_pk): board = get_object_or_404(Board, pk=board_pk) if request.user != board.user: return redirect('board:detail', board_pk) if request.method == 'POST': board_update_form = BoardForm(request.POST, instance=board) if board_update_form.is_valid(): board_update_form.save() return redirect('boards:detail', board_pk) else: board_update_form = BoardForm(instance=board) ctx = { 'form': board_update_form, } return render(request, 'boards/form.html', ctx) @require_POST def delete(request, board_pk): board = get_object_or_404(Board, pk=board_pk) board.delete() return redirect('boards:list') @login_required @require_POST def comment_create(request, board_pk): board = get_object_or_404(Board, pk=board_pk) comment_form = CommentForm(request.POST) if comment_form.is_valid(): comment_form.save() return redirect('boards:detail', board_pk) @login_required @require_POST def comment_delete(request, board_pk, comment_pk): comment = get_object_or_404(Comment, pk=comment_pk) if request.user == comment.user: comment.delete() return redirect('boards:detail', board_pk)
[ "lustellz@gmail.com" ]
lustellz@gmail.com
037c7a5f807faf5d8eeaa10c152f743b10d111ef
7c105a76577ffa87403c441962dbb12e26182398
/src/datasets/ds_cifar10.py
b9f47a205f627b5f579b4bfb157aad1a3f31b7c7
[]
no_license
lyubonko/classification
f8850f5b00c3317ba4625fb2094f9ff228530ea5
774ee3f7398c74edc97f5983f524298f7a07ec2b
refs/heads/master
2020-07-03T18:44:39.808812
2019-08-12T21:22:46
2019-08-12T21:22:46
202,008,765
2
2
null
null
null
null
UTF-8
Python
false
false
2,037
py
import torch import torch.utils.data as data import torchvision.datasets as dsets import numpy as np from datasets.transforms_cifar10 import * class DataSetCifar10(object): """ Class manage CIFAR10 data-set """ def __init__(self, path_data, num_dunkeys=4, batch_size_train=100, batch_size_val=100, download=False, tiny=False, transform_keys=None): if transform_keys is None: transform_keys = {'train': "init", 'val': "init"} self.batch_sizes = {'train': batch_size_train, 'val': batch_size_val} self.transforms = {'train': transforms_c10[transform_keys['train']], 'val': transforms_c10[transform_keys['val']]} self.dataset = {} self.loader = {} for t in ['train', 'val']: self.dataset[t] = dsets.CIFAR10(root=path_data, train=(t == 'train'), download=download, transform=self.transforms[t]) self.loader[t] = torch.utils.data.DataLoader(dataset=self.dataset[t], batch_size=self.batch_sizes[t], shuffle=(t == 'train'), num_workers=num_dunkeys) if tiny: tiny_trainset = torch.utils.data.dataset.Subset(self.dataset['train'], np.arange(self.batch_sizes['train'])) tiny_loader = torch.utils.data.DataLoader(tiny_trainset, batch_size=self.batch_sizes['train']) for t in ['train', 'val']: self.dataset[t] = tiny_trainset self.loader[t] = tiny_loader self.classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
[ "lyubonko@gmail.com" ]
lyubonko@gmail.com
c16258c80b008084c4e7b2a8e5c9968444bc523f
cb39c9d1ca3b63a0412eac6077b96b66b289fd4c
/Quiz-24.py
0c2e8db65d8277152295f3bb60c7c274495b5891
[]
no_license
Reikenzan/Some-Python
bd64f562fc17b27bbb2a1fecd75f5d6ceff17c1c
84bea86486952f77b19dadb1d8dc99b133b95656
refs/heads/master
2021-05-08T06:31:16.690290
2018-10-16T15:33:52
2018-10-16T15:33:52
106,629,417
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
#quiz resolved def getFirstLetters(myList): newList = [] for string in myList: firstLetter = string[0] newList.append(firstLetter) return newList def main(): strList = input("Enter a list of strings:") userList = strList.split(",") returnedList = getFirstLetters(userList) print("Your new list is",returnedList) if __name__ == "__main__": main()
[ "noreply@github.com" ]
Reikenzan.noreply@github.com
e7874140cb21afaa66b0a2a651badfc70a1c7750
6b78bd7f62f7f407bf11d877cc4d91e7db3b62fe
/csc/python/wk-3-project-1/src/iterative_sorting/test_iterative.py
468d92d7181c18eb42b1f55d9133cb5ff1305388
[]
no_license
PascalUlor/code-challenges
b85efacd4bc5999a0748d1fa1e84f503be09dc94
6488d0a6d2729bd50b106573f16488479fd6e264
refs/heads/master
2023-03-03T17:50:18.413127
2023-02-21T13:10:02
2023-02-21T13:10:02
212,979,719
1
0
null
2023-02-15T22:59:13
2019-10-05T10:14:29
Python
UTF-8
Python
false
false
1,499
py
import unittest import random from iterative_sorting import * class IterativeSortingTest(unittest.TestCase): def test_selection_sort(self): arr1 = [1, 5, 8, 4, 2, 9, 6, 0, 3, 7] arr2 = [] arr3 = [0, 1, 2, 3, 4, 5] arr4 = random.sample(range(200), 50) self.assertEqual(selection_sort(arr1), [0,1,2,3,4,5,6,7,8,9]) self.assertEqual(selection_sort(arr2), []) self.assertEqual(selection_sort(arr3), [0,1,2,3,4,5]) self.assertEqual(selection_sort(arr4), sorted(arr4)) def test_bubble_sort(self): arr1 = [1, 5, 8, 4, 2, 9, 6, 0, 3, 7] arr2 = [] arr3 = [0, 1, 2, 3, 4, 5] arr4 = random.sample(range(200), 50) self.assertEqual(bubble_sort(arr1), [0,1,2,3,4,5,6,7,8,9]) self.assertEqual(bubble_sort(arr2), []) self.assertEqual(bubble_sort(arr3), [0,1,2,3,4,5]) self.assertEqual(bubble_sort(arr4), sorted(arr4)) # Uncomment this test to test your count_sort implementation def test_counting_sort(self): arr1 = [1, 5, 8, 4, 2, 9, 6, 0, 3, 7] arr2 = [] arr3 = [1, 5, -2, 4, 3] arr4 = random.sample(range(200), 50) self.assertEqual(count_sort(arr1), [0,1,2,3,4,5,6,7,8,9]) self.assertEqual(count_sort(arr2), []) self.assertEqual(count_sort(arr3), "Error, negative numbers not allowed in Count Sort") self.assertEqual(count_sort(arr4), sorted(arr4)) if __name__ == '__main__': unittest.main()
[ "pascalulor@yahoo.com" ]
pascalulor@yahoo.com
0a49052505850de641ea0bb1dcc70e1cff5a7ca0
4997eb61787baea04cb00527dc79b58e481a452f
/09_day/flask-and-MongoDB/app/routes.py
6ddde1efa444e79e031bae8c46ef1821854824b2
[]
no_license
aaronli39/fintech
41b4987116b0ab57f33e8dff3d4eb7e9e22d086a
ddca1417319cb45c4992cc8846ba511cd3717c74
refs/heads/master
2020-06-20T23:14:05.510263
2019-10-25T12:31:07
2019-10-25T12:31:07
197,283,675
0
0
null
null
null
null
UTF-8
Python
false
false
1,526
py
import os from app import app from flask import render_template, request, redirect events = [ {"event":"First Day of Classes", "date":"2019-08-21"}, {"event":"Winter Break", "date":"2019-12-20"}, {"event":"Finals Begin", "date":"2019-12-01"}, {"event":"Fintech Graduation", "date":"2019-08-03"}, {"event":"Date", "date":"2019-07-26"}, {"event":"Fintech Trip", "date":"2019-07-25"} ] password = "duMJ42KGtQfTFEKh" # from flask_pymongo import PyMongo from flask_pymongo import PyMongo # name of database app.config["test"] = 'test' # URI of database app.config['MONGO_URI'] = "mongodb+srv://aaronli39:duMJ42KGtQfTFEKh@fintech-v2rh1.mongodb.net/test?retryWrites=true&w=majority" mongo = PyMongo(app) # INDEX @app.route('/') @app.route('/index') def index(): eventsDB = mongo.db.events # make a query # empty curly braces will return all dictionaries events = eventsDB.find({"date": "2019-10-31"}) return render_template('index.html', events = events) # CONNECT TO DB, ADD DATA @app.route('/add') def add(): # connect to the database users = mongo.db.users # insert new data users.insert({ "name": "sophia" }) print("user created") # return a message to the user return render_template("index.html", events=events) @app.route("/addEvent") def addEvent(): events = mongo.db.events events.insert({"event": "Halloween", "date": "2019-10-31"}) print("Event added") return redirect("/")
[ "aaronli39@gmail.com" ]
aaronli39@gmail.com
676ada33993ed1a1add8d641635810ca9929e7c5
3e2e745575d0961eb561d84921777b3572053eb0
/level_07/wopr/cleanup-copy.py
b8d24a3b69ed0e63798a8c7db7ed27b63cd25a48
[]
no_license
thelumberjhack/flareon6
7375040ad172dc19dc1558915d4f1ce9075c80b7
95d6e48ea8a8b33032a7567c1974074cde31325b
refs/heads/master
2022-02-17T18:40:23.184927
2019-09-09T05:44:39
2019-09-09T05:44:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
38,559
py
""" Once upon a midnight dreary, while I pondered, weak and weary, Over many a quaint and curious volume of forgotten lore- While I nodded, nearly napping, suddenly there came a tapping, As of some one gently rapping, rapping at my chamber door- "'Tis some visitor," I muttered, "tapping at my chamber door- Only this and nothing more." Ah, distinctly I remember it was in the bleak December; And each separate dying ember wrought its ghost upon the floor. Eagerly I wished the morrow;-vainly I had sought to borrow From my books surcease of sorrow-sorrow for the lost Lenore- For the rare and radiant maiden whom the angels name Lenore- Nameless here for evermore. And the silken, sad, uncertain rustling of each purple curtain Thrilled me-filled me with fantastic terrors never felt before; So that now, to still the beating of my heart, I stood repeating, "'Tis some visitor entreating entrance at my chamber door- Some late visitor entreating entrance at my chamber door;- This it is and nothing more." Presently my soul grew stronger; hesitating then no longer, "Sir," said I, "or Madam, truly your forgiveness I implore; But the fact is I was napping, and so gently you came rapping, And so faintly you came tapping, tapping at my chamber door, That I scarce was sure I heard you"-here I opened wide the door;- Darkness there and nothing more. Deep into that darkness peering, long I stood there wondering, fearing, Doubting, dreaming dreams no mortal ever dared to dream before; But the silence was unbroken, and the stillness gave no token, And the only word there spoken was the whispered word, "Lenore?" This I whispered, and an echo murmured back the word, "Lenore!"- Merely this and nothing more. Back into the chamber turning, all my soul within me burning, Soon again I heard a tapping somewhat louder than before. "Surely," said I, "surely that is something at my window lattice; Let me see, then, what thereat is, and this mystery explore- Let my heart be still a moment and this mystery explore;- 'Tis the wind and nothing more!" Open here I flung the shutter, when, with many a flirt and flutter, In there stepped a stately Raven of the saintly days of yore; Not the least obeisance made he; not a minute stopped or stayed he; But, with mien of lord or lady, perched above my chamber door- Perched upon a bust of Pallas just above my chamber door- Perched, and sat, and nothing more. Then this ebony bird beguiling my sad fancy into smiling, By the grave and stern decorum of the countenance it wore, "Though thy crest be shorn and shaven, thou," I said, "art sure no craven, Ghastly grim and ancient Raven wandering from the Nightly shore- Tell me what thy lordly name is on the Night's Plutonian shore!" Quoth the Raven "Nevermore." Much I marvelled this ungainly fowl to hear discourse so plainly, Though its answer little meaning-little relevancy bore; For we cannot help agreeing that no living human being Ever yet was blest with seeing bird above his chamber door- Bird or beast upon the sculptured bust above his chamber door, With such name as "Nevermore." But the Raven, sitting lonely on the placid bust, spoke only That one word, as if his soul in that one word he did outpour. Nothing further then he uttered-not a feather then he fluttered- Till I scarcely more than muttered "Other friends have flown before- On the morrow he will leave me, as my hopes have flown before." Then the bird said "Nevermore." Startled at the stillness broken by reply so aptly spoken, "Doubtless," said I, "what it utters is its only stock and store Caught from some unhappy master whom unmerciful Disaster Followed fast and followed faster till his songs one burden bore- Till the dirges of his Hope that melancholy burden bore Of 'Never-nevermore.'" But the Raven still beguiling my sad fancy into smiling, Straight I wheeled a cushioned seat in front of bird, and bust and door; Then, upon the velvet sinking, I betook myself to linking Fancy unto fancy, thinking what this ominous bird of yore- What this grim, ungainly, ghastly, gaunt and ominous bird of yore Meant in croaking "Nevermore." This I sat engaged in guessing, but no syllable expressing To the fowl whose fiery eyes now burned into my bosom's core; This and more I sat divining, with my head at ease reclining On the cushion's velvet lining that the lamp-light gloated o'er, But whose velvet violet lining with the lamp-light gloating o'er, She shall press, ah, nevermore! Then, methought, the air grew denser, perfumed from an unseen censer Swung by Seraphim whose foot-falls tinkled on the tufted floor. "Wretch," I cried, "thy God hath lent thee-by these angels he hath sent thee Respite-respite and nepenthe, from thy memories of Lenore; Quaff, oh quaff this kind nepenthe and forget this lost Lenore!" Quoth the Raven "Nevermore." "Prophet!" said I, "thing of evil!-prophet still, if bird or devil!- Whether Tempter sent, or whether tempest tossed thee here ashore, Desolate yet all undaunted, on this desert land enchanted- On this home by Horror haunted-tell me truly, I implore- Is there-is there balm in Gilead?-tell me-tell me, I implore!" Quoth the Raven "Nevermore." "Prophet!" said I, "thing of evil-prophet still, if bird or devil! By that Heaven that bends above us-by that God we both adore- Tell this soul with sorrow laden if, within the distant Aidenn, It shall clasp a sainted maiden whom the angels name Lenore- Clasp a rare and radiant maiden whom the angels name Lenore." Quoth the Raven "Nevermore." "Be that word our sign in parting, bird or fiend!" I shrieked, upstarting- "Get thee back into the tempest and the Night's Plutonian shore! Leave no black plume as a token of that lie thy soul hath spoken! Leave my loneliness unbroken!-quit the bust above my door! Take thy beak from out my heart, and take thy form from off my door!" Quoth the Raven "Nevermore." And the Raven, never flitting, still is sitting, still is sitting On the pallid bust of Pallas just above my chamber door; And his eyes have all the seeming of a demon's that is dreaming, And the lamp-light o'er him streaming throws his shadow on the floor; And my soul from out that shadow that lies floating on the floor Shall be lifted-nevermore! """import hashlib, io, lzma, pkgutil, random, struct, sys, time from ctypes import * print('LOADING...') BOUNCE = pkgutil.get_data('this', 'key') def ho(h, g={}): k = bytes.fromhex(format(h, 'x')).decode() return g.get(k, k) a = 1702389091 b = 482955849332 g = ho(29516388843672123817340395359, globals()) # builtins module aa = getattr(g, ho(a)) # exec bb = getattr(g, ho(b)) # print a ^= b # a = 481423330071 b ^= a # b = 1702389091 a ^= b # a = 482955849332 (= original b) setattr(g, ho(a), aa) # g, print, exec function setattr(g, ho(b), bb) # g, exec, print function # Now print and exec functions are switched in the builtins module. def eye(face): leg = io.BytesIO() for arm in face.splitlines(): arm = arm[len(arm.rstrip(b' \t')):] leg.write(arm) face = leg.getvalue() bell = io.BytesIO() x, y = (0, 0) for chuck in face: taxi = {9:0, 32:1}.get(chuck) if taxi is None: continue x, y = x | taxi << y, y + 1 if y > 7: bell.write(bytes([x])) x, y = (0, 0) return bell.getvalue() def fire(wood, bounce): meaning = bytearray(wood) bounce = bytearray(bounce) regard = len(bounce) manage = list(range(256)) def prospect(*financial): return sum(financial) % 256 def blade(feel, cassette): cassette = prospect(cassette, manage[feel]) manage[feel], manage[cassette] = manage[cassette], manage[feel] return cassette cassette = 0 for feel in range(256): cassette = prospect(cassette, bounce[(feel % regard)]) cassette = blade(feel, cassette) cassette = 0 for pigeon, _ in enumerate(meaning): feel = prospect(pigeon, 1) cassette = blade(feel, cassette) meaning[pigeon] ^= manage[prospect(manage[feel], manage[cassette])] return bytes(meaning) for i in range(256): try: print(lzma.decompress(fire(eye(__doc__.encode()), bytes([i]) + BOUNCE))) except Exception: pass # okay decompiling cleanup.pyc
[ "yannick.formaggio@sophos.com" ]
yannick.formaggio@sophos.com
f52f32bb65abd65061d45f38d9a91b13948b88aa
e580628ab341494342066974b53aab159815b9a5
/Project4/etl.py
b133bc757ca41d4afbcf525929a998646190ea25
[]
no_license
vserraa/Data-Engineering-Nanodegree
c0363d11ebdf81d3e510711bbb8608ae415d7cee
8c4b74d473c1fb8a601e2f4f4b739590b0b5f7a4
refs/heads/master
2022-12-03T03:43:55.778053
2020-08-17T11:34:39
2020-08-17T11:34:39
280,669,927
0
0
null
null
null
null
UTF-8
Python
false
false
8,833
py
import configparser from datetime import datetime import os import sys from pyspark.sql import SparkSession from pyspark.sql.functions import udf, col from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, date_format from pyspark.sql.types import StructType, StructField, IntegerType, StringType, TimestampType, DecimalType, DateType, LongType, DoubleType config = configparser.ConfigParser() config.read('dl.cfg') os.environ['AWS_ACCESS_KEY_ID']=config['AWS']['AWS_ACCESS_KEY_ID'] os.environ['AWS_SECRET_ACCESS_KEY']=config['AWS']['AWS_SECRET_ACCESS_KEY'] song_schema = StructType([ StructField("num_songs", IntegerType(), True), StructField("artist_id", StringType(), True), StructField("artist_latitude", DecimalType(), True), StructField("artist_longitude", DecimalType(), True), StructField("artist_location", StringType(), True), StructField("artist_name", StringType(), True), StructField("song_id", StringType(), True), StructField("title", StringType(), True), StructField("duration", DecimalType(), True), StructField("year", IntegerType(), True) ]) log_schema = StructType([ StructField("artist", StringType(), True), StructField("auth", StringType(), True), StructField("firstName", StringType(), True), StructField("gender", StringType(), True), StructField("itemInSession", IntegerType(), True), StructField("lastName", StringType(), True), StructField("length", DecimalType(), True), StructField("level", StringType(), True), StructField("location", StringType(), True), StructField("method", StringType(), True), StructField("page", StringType(), True), StructField("registration", StringType(), True), StructField("sessionId", StringType(), True), StructField("song", StringType(), True), StructField("status", IntegerType(), True), StructField("ts", LongType(), True), StructField("userAgent", StringType(), True), StructField("userId", StringType(), True) ]) def create_spark_session(): ''' Description: Creates a spark session return: The spark session that was created ''' spark = SparkSession \ .builder \ .config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \ .getOrCreate() return spark def read_song_data(spark, input_data, my_schema, debug = False): ''' Parameters: .spark -> A spark session .input_data -> Path to the input bucket in S3 .my_schema -> The schema used to read the data from S3 .debug -> A optional parameter to read only a subset of data for debugging porpouses Description: Loas the data from S3 into a spark dataframe return: The spark dataframe ''' if debug: path = os.path.join(input_data, "song_data/A/A/A/*.json") else: path = os.path.join(input_data, "song_data/*/*/*/*.json") return spark.read.json(path, schema=my_schema) def read_log_data(spark, input_data, my_schema, debug = False): ''' Parameters: .spark -> A spark session .input_data -> Path to the input bucket in S3 .my_schema -> The schema used to read the data from S3 .debug -> A optional parameter to read only a subset of data for debugging porpouses Description: Loas the data from S3 into a spark dataframe return: The spark dataframe ''' if debug: path = os.path.join(input_data, 'log_data/2018/11/*.json') else: path = os.path.join(input_data, 'log_data/*/*/*.json') return spark.read.json(path, schema=my_schema) def process_song_data(spark, song_data, output_data): ''' Parameters: .spark -> A spark session .song_data -> A spark dataframe with data from S3 to be processed .output_data -> Path to a output bucket in S3 where the results will be stored Description: Processes the song_data dataframe and loads results into S3 as parquet files ''' # extract columns to create songs table songs_columns = ["song_id", "title", "artist_id", "year", "duration"] songs_df = song_data.select(*songs_columns) #partitioning songs dataframe by year and then artist as requested songs_df = songs_df.repartition("year", "artist_id") songs_output_path = os.path.join(output_data, "songs/") songs_df = songs_df.dropDuplicates() songs_df.write.parquet(songs_output_path, mode='overwrite') # extract columns to create artists table artists_columns = ["artist_id", "artist_name", "artist_location", "artist_latitude", "artist_longitude"] artists_df = song_data.select(*artists_columns) # write artists table to parquet files artists_output_path = os.path.join(output_data, "artists/") artists_df = artists_df.dropDuplicates() artists_df.write.parquet(artists_output_path, mode='overwrite') def process_log_data(spark, song_df, log_df, output_data): ''' Parameters: .spark -> A spark session .song_df -> A spark dataframe with data from S3 to be processed .log_df -> A spark dataframe with data from S3 to be processed .output_data -> Path to a output bucket in S3 where the results will be stored Description: Processes the song_df and log_df dataframes and loads results into S3 as parquet files ''' # filter by actions for song plays log_df = log_df.filter(log_df.page == 'NextSong') user_exprs = ["userId AS user_id", "firstName AS first_name", "lastName AS last_name", "gender AS gender", "level AS level"] # extract columns for users table users_df = log_df.selectExpr(*user_exprs) # write users table to parquet files users_out_path = os.path.join(output_data, 'users/') users_df = users_df.dropDuplicates() users_df.write.parquet(users_out_path, mode='overwrite') # create timestamp column from original timestamp column ts_df = log_df.withColumn('timestamp', (log_df['ts']/1000).cast(TimestampType())) # create datetime column from original timestamp column date_df = ts_df.withColumn('datetime', ts_df['timestamp'].cast(DateType())) from pyspark.sql.functions import year, month, dayofmonth, dayofweek, weekofyear, dayofyear, hour # extract columns to create time table time_df = date_df.select("timestamp", hour("timestamp").alias("hour"), dayofmonth("timestamp").alias("day"), weekofyear("timestamp").alias("week"), month("timestamp").alias("month"), year("timestamp").alias("year"), dayofweek("timestamp").alias("day_of_week") ) time_df = time_df.repartition("year", "month") time_df = time_df.dropDuplicates() time_df_output_path = os.path.join(output_data, 'time/') time_df.write.parquet(time_df_output_path, mode='overwrite') cond = [date_df.artist == song_df.artist_name, date_df.song == song_df.title] joined_df = date_df.join(song_df, cond, how='left').drop(song_df.year) songplays_df = joined_df.selectExpr("timestamp", "userId AS user_id", "level", "song_id", "artist_id", "sessionId AS session_id", "location", "userAgent AS user_agent") songplays_df = songplays_df.withColumn("year", year("timestamp")).withColumn("month", month("timestamp")) songplays_df = songplays_df.repartition("year", "month") songplays_df = songplays_df.dropDuplicates() songplays_output_path = os.path.join(output_data, 'songplays/') songplays_df.write.parquet(songplays_output_path, mode='overwrite') def main(argv): input_data = "s3a://udacity-dend/" output_data = "s3a://vssm-udacity-bucket/" if len(argv) == 1 and argv[0] == '-debug': debug = True else: debug = False spark = create_spark_session() song_df = read_song_data(spark, input_data, song_schema, debug) log_df = read_log_data(spark, input_data, log_schema, debug) process_song_data(spark, song_df, output_data) process_log_data(spark, song_df, log_df, output_data) if __name__ == "__main__": main(sys.argv[1:])
[ "vssm@cin.ufpe.br" ]
vssm@cin.ufpe.br
58d3c784b632f40bba208fc73fe677df7407a2e4
b1ddcf4bac9ca603a7a2333912eb29da8bf2cb7b
/CRUDUsingFunction/CRUDUsingFunction/wsgi.py
69b52b08d810e37cfa8ae28676e25a4e2e7f8667
[]
no_license
sankethalake/django_practice
e9477ae0beee4923cd6758cc6d37517ea5979610
9877304f0c6415ae8979e5cc13a49559155fdd9d
refs/heads/main
2023-07-07T07:07:35.598657
2021-08-14T06:26:23
2021-08-14T06:26:23
389,917,128
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
""" WSGI config for CRUDUsingFunction project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'CRUDUsingFunction.settings') application = get_wsgi_application()
[ "sankethalake@gmail.com" ]
sankethalake@gmail.com
6c269e0d5dead2bd02fb033ebef3ae1399c5885d
977bdc0268e1428f1b8c734aa3d8bf6193294048
/DJAGEN/branches/mustafa_branch/djagen/collector/models.py
f3f561ef91188e05ebcea83c5692848f5d17df48
[]
no_license
lkdtr/gezegen
b3c7ba20cbd9894aa6726444f626c79aa8670e15
d4972b77fbd756d9fc99cd1b96f08a8a8944978d
refs/heads/master
2020-12-25T16:47:47.407144
2016-03-24T11:05:01
2016-03-24T11:05:01
66,266,213
0
1
null
null
null
null
UTF-8
Python
false
false
4,593
py
from django.db import models import datetime, unicodedata, random, time import re # Create your models here. ACTION_CHOICES = ( (1, u'Removed'), (2, u'Approved'), (3, u'Paused'), (4, u'Readded'), (5, u'Applied'), (6, u'Editted') ) class Authors (models.Model): author_id = models.AutoField(primary_key=True, help_text="Author ID") author_name = models.CharField(max_length=50, help_text="Author Name") author_surname = models.CharField(max_length=50, help_text="Author Name") #we dont keep emails at the config.ini files, this part should be entered at the admin page author_email = models.EmailField(null=True, blank=True, help_text="Author Email Address") #the png file name of the author author_face = models.CharField(max_length=30, null=True, blank=True, help_text="Author Face Name") channel_subtitle = models.TextField(null=True, blank=True, help_text="Channel Subtitle") channel_title = models.TextField(null=True, blank=True, help_text="Channel Title") #URL of the feed. channel_url = models.URLField(help_text="Channel URL") #Link to the original format feed channel_link = models.URLField(null=True, blank=True, help_text="Channel Link") channel_urlstatus = models.IntegerField(null=True, blank=True, help_text="Channel URL Status") #use this field to check whether the author is shown on the planet or not, like banned situations current_status = models.SmallIntegerField(default=2, choices=ACTION_CHOICES, help_text="Current Status of the Author") #whether the application to the planet is approved, the approved ones will be shown at the planet is_approved = models.BooleanField(default=1, help_text="Approve Status of the Author") #planets that the channel belongs to #at the config.ini the entries should be obe of the belows: #label = Personal #label = LKD #label = Eng #label = Community label_personal = models.BooleanField(default=1, help_text="Channnels at the Personal Blog Page") label_lkd = models.BooleanField(default=0, help_text="Channels that are belong to LKD Blogs") label_community = models.BooleanField(default=0, help_text="Channels that are belong to some community blogs") label_eng = models.BooleanField(default=0, help_text="Channels that have English entries") #at the main page, lets just show personal and lkd for now, for communities lets ask them a special rss def __unicode__(self): return u'%s %s' % (self.author_name, self.author_surname) class Meta: #order according to the author_name, ascending ordering = ['author_name'] # keep the history for the action that are done on the member urls class History (models.Model): action_type = models.SmallIntegerField(choices=ACTION_CHOICES) action_date = models.DateTimeField() action_explanation = models.TextField(help_text="Reason of Action", blank=True, null=True) action_author = models.ForeignKey('Authors') action_owner = models.CharField(max_length=20, help_text="The user who did the action") def __unicode__(self): return str(self.action_type) class Meta: #order descending, show the last actions at top ordering = ['-action_date'] class Entries (models.Model): id_hash = models.CharField(max_length=50, help_text="Hash of the ID", primary_key=True) title = models.CharField(max_length=150, help_text="Entry Title") content_html = models.TextField(help_text="Entry Orginal Content") content_text = models.TextField(help_text="Entry Pure Text Content") summary = models.TextField(help_text="Entry Summary", null=True, blank=True) link = models.URLField(help_text="Link to Entry") date = models.DateTimeField(help_text="Date of the entry") entry_id = models.ForeignKey('Authors') def __unicode__(self): return self.title class Meta: ordering = ['-date'] def sanitize(self, data): p = re.compile(r'<[^<]*?/?>') return p.sub('', data) class RunTime (models.Model): run_time = models.DateTimeField(help_text="Run time of the planet script", auto_now=True) def __unicode__(self): return self.run_time class Meta: ordering = ['-run_time'] def get_run_time(self): dt = ".".join(map(lambda x: str(x), [self.run_time.day, self.run_time.month, self.run_time.year])) hm = ":".join(map(lambda x: str(x), [self.run_time.hour, self.run_time.minute])) rslt = " ".join([dt, hm]) return rslt
[ "mustafa.arici90@gmail.com" ]
mustafa.arici90@gmail.com
a09a70560597d75a4cb0c3351fc714dbd2e544b6
3e86f5de2c6aad6c16ac25d30af7e99fa9f2a7c8
/support/lockdb.py
44dd2a43224e91b3c7a323134bf44dffa7f0e02e
[]
no_license
greasysock/bnbLockClient
02d2261147dbe39d9fa66a8aad5d49a214b66aaa
adafc3ed9c0978f6913b50044b9f3043d07def69
refs/heads/master
2021-09-16T00:21:24.725473
2018-06-13T19:21:24
2018-06-13T19:21:24
94,815,883
0
0
null
null
null
null
UTF-8
Python
false
false
5,880
py
import sqlite3, bson, base64 from support import passwordgen tables = [("nodeinfo", "'nodeid' name, 'nodepassword' name, 'username' name, 'nodename' name"), ("deviceinfo", "'name' name, 'location' name, 'type' name, 'deviceid' name"), ("devicedata", "'deviceid' name, 'type' int, 'date' date,'dataid' name ,'data' text")] def get_tables(): out_list = list() for table, values in tables: out_list.append(table) return out_list class database(): def __init__(self, file_name): self.__conn = sqlite3.connect(file_name) self.__c = self.__conn.cursor() def integrity_check(self): valid_db = get_tables() test_db = list() for table_name in self.__c.execute("SELECT name FROM sqlite_master WHERE type='table'"): for table in table_name: test_db.append(table) if sorted(valid_db) == sorted(test_db): return True else: return False def save(self): self.__conn.commit() def close(self): self.__conn.close() def check_deviceid(self, deviceid): found = False for device in self.devices: if device[3] == deviceid: found = True break return found def check_dataid(self, dataid): found = False devicedata = self.get_devicedata_all() for data in devicedata: if data[3] == dataid: found = True break return found def get_device(self, deviceid): for device in self.__c.execute("SELECT * FROM deviceinfo WHERE deviceid = '{}'".format(deviceid)): return device def append_device(self, **kwargs): command = "INSERT INTO deviceinfo values ('{}', '{}', '{}', '{}')".format( kwargs['name'], kwargs['location'], kwargs['type'], kwargs['deviceid']) self.__c.execute(command) self.save() @property def new_deviceid(self): first_id = passwordgen.random_len(3, set=2) while self.check_deviceid(first_id): first_id = passwordgen.random_len(3, set=2) return first_id @property def devices(self): out_list = list() for device in self.__c.execute("SELECT * FROM deviceinfo"): out_list.append(device) return out_list def get_devices(self): out_list = list() for device in self.__c.execute("SELECT * FROM deviceinfo"): out_list.append(device) return out_list @property def new_dataid(self): first_id = passwordgen.random_len(3, set=2) while self.check_dataid(first_id): first_id = passwordgen.random_len(3, set=2) return first_id def add_devicedata(self, **kwargs): id = self.new_dataid command = "INSERT INTO devicedata VALUES ('{}', '{}', '{}', '{}', '{}')".format( kwargs['deviceid'], kwargs['type'], kwargs['date'], id, kwargs['data'] ) self.__c.execute(command) self.save() return id def update_devicedata(self, deviceid, dataid, data): update_command = ''' UPDATE devicedata SET \"data\" = \'{}\' WHERE deviceid = \'{}\' AND dataid = \'{}\''''.format(data, deviceid, dataid) self.__c.execute(update_command) self.save() return -1 def get_devicedata_all(self): out_list = list() for data in self.__c.execute("SELECT * FROM devicedata"): out_list.append(data) return out_list def get_devicedata(self, deviceid): out_list = list() for data in self.__c.execute("SELECT * FROM devicedata WHERE deviceid = '{}'".format(deviceid)): out_list.append(data) return out_list def get_devicedata_idx(self, deviceid, value, idx = 1): devicedata = self.get_devicedata(deviceid) out_list = list() for data in devicedata: if data[idx] == value: out_list.append(data) return out_list def remove_devicedata(self, deviceid, dataid): self.__c.execute("DELETE FROM devicedata WHERE dataid = '{}' AND deviceid = '{}'".format(dataid, deviceid)) self.save() def get_deivceids(self, idx = 3): out_list = list() for device in self.devices: out_list.append(device[idx]) return out_list def set_nodeinfo(self, **kwargs): command = "INSERT INTO nodeinfo VALUES ('{}', '{}', '{}', '{}')" self.__c.execute(command.format(kwargs['nodeid'], kwargs['nodepassword'], '', '')) self.save() return -1 def set_noderegistration(self, **kwargs): command = "UPDATE nodeinfo SET username = '{}', nodename = '{}'".format(kwargs['username'], kwargs['nodename']) self.__c.execute(command) self.save() def get_nodeinfo(self): nodeinfo = self.__c.execute("SELECT * FROM nodeinfo") for nodeinf in nodeinfo: return nodeinf @property def node_username(self): return self.get_nodeinfo()[0] @property def node_password(self): return self.get_nodeinfo()[1] @property def node_parent(self): return self.get_nodeinfo()[2] @property def node_name(self): return self.get_nodeinfo()[3] def testdb(filename): testdb = database(filename) return testdb.integrity_check() def createdb(file_name): conn = sqlite3.connect(file_name) c = conn.cursor() for table, values in tables: c.execute("CREATE TABLE '{}' ({})".format(table, values)) conn.commit() conn.close()
[ "chris.gresock@gmail.com" ]
chris.gresock@gmail.com
985e528282041e39605f7a0e1bec4cf5c6961410
d58db5812cc7230ae54c396f19f220f40ad30c63
/locallibrary/catalog/forms.py
7f8d51d17f089caafa57b3da26deeceb75106cc9
[]
no_license
caseytin/django_projects
3e75592d67d5f5e4acd53731f385313a8d3237e0
dfa6a13298a087cde20c94f78b32bbf4f9196c06
refs/heads/master
2020-04-16T16:58:26.140898
2019-04-19T17:08:44
2019-04-19T17:08:44
165,757,607
1
0
null
null
null
null
UTF-8
Python
false
false
1,621
py
import datetime from django import forms from django.core.exceptions import ValidationError from django.utils.translation import ugettext_lazy as _ from catalog.models import BookInstance class RenewBookForm(forms.Form): def clean_due_back(self): data = self.cleaned_data['due_back'] # Check if a date is not in the past. if data < datetime.date.today(): raise ValidationError(_('Invalid date - renewal in past')) # Check if a date is in the allowed range (+4 weeks from today). if data > datetime.date.today() + datetime.timedelta(weeks=4): raise ValidationError(_('Invalid date - renewal more than 4 weeks ahead')) # Remember to always return the cleaned data. return data class Meta: model = BookInstance fields = ['due_back'] labels = {'due_back': _('New renewal date')} help_texts = {'due_back': _('Enter a date between now and 4 weeks (default 3).')} renewal_date = forms.DateField(help_text="Enter a date between now and 4 weeks (default 3).") def clean_renewal_date(self): data = self.cleaned_data['renewal_date'] # Check if a date is not in the past. if data < datetime.date.today(): raise ValidationError(_('Invalid date - renewal in past')) # Check if a date is in the allowed range (+4 weeks from today). if data > datetime.date.today() + datetime.timedelta(weeks=4): raise ValidationError(_('Invalid date - renewal more than 4 weeks ahead')) # Remember to always return the cleaned data. return data
[ "ctin@umich.edu" ]
ctin@umich.edu
b7477fa826edf431ec22f6e6a8967a9e84ca3fcf
66d8effab50d23aa809fca2ee47ebd6ff14501f7
/Provisioning/Jenkins/06 Python/modules/global_variables.py
eb106950452f395aa2545ce72887e662d71ed7d7
[]
no_license
pneumakevin/DevOps
670499b728958b8b2d1f54f3f8ad6e7d1f9a1c75
db941e2031d1c24378e06757278058a13176ecc2
refs/heads/master
2021-03-22T03:42:29.132311
2017-11-27T06:21:37
2017-11-27T06:21:37
112,156,112
0
0
null
null
null
null
UTF-8
Python
false
false
1,379
py
import time '''================================== Build Plan Variables ================================== ''' '''==================================== Folder Vairables ==================================== ''' build_src_repository = 'D:\Projects\Sandbox\SequoiaWebSite' build_folders_excluded = ('.', '.git', '.vs', '.svn','obj','bin','font', 'images', 'temp') #folders_included = ('') build_file_ext_included = ('.sln', '.cs', '.csproj', '.xml', '.snk', '.dll', '.user', '.ashx', '.aspx', '.html', '.htm', '.css', '.config', '.zip') #build_file_ext_includes = ['*.sln', '*.cs', '*.csproj', '*.xml', '*.snk', '*.dll', '*.user', '*.ashx', '*.aspx', '*.html', '*.htm', '*.css', '*.config', '*.zip','*.doc', '*.odt'] # for files only #excludes = ['/home/paulo-freitas/Documents'] # for dirs and files primary_prj = ['Sequoia.CliqStudios', 'Sequoia.SixSquare', 'Sequoia.Admin'] shared_prj = ['Sequoia.Shared'] sql_folder_prefix = 'Sequoia.6square.Database.' '''================================== Dynamic Variables ================================== ''' # Will be updated after build job successful at runtime. build_src_last_update_date = time.strptime( '2017-10-10 00:00:00', "%Y-%m-%d %H:%M:%S") # Value will be added from .csprojc at runtime. primary_references = {'Sequoia.CliqStudios':'', 'Sequoia.SixSquare':'', 'Sequoia.Admin': ''}
[ "noreply@github.com" ]
pneumakevin.noreply@github.com
218bd9a1cbc642338ac31db59fa2d81935b7663a
55965f592cb7e915cd68bd371ee1a6ad2a6e0247
/fol2/d.py
a2ae7e959ae2693156856e9795369cb6edb3ccf0
[]
no_license
Upasna4/Training
2b5b57fc3e5229304860f153db93d912a44472bf
33c6eeb565c422e40ea88d50af787f58b9f0da6d
refs/heads/master
2020-08-05T03:50:36.280910
2019-10-02T16:36:09
2019-10-02T16:36:09
212,383,151
0
0
null
null
null
null
UTF-8
Python
false
false
38
py
from fol2.c import sum,mul sum() mul()
[ "upasnabhat17@gmail.com" ]
upasnabhat17@gmail.com
73181bd9da39ef6747ebd8bde0b15ee54e4c5c63
c9666a99dc24c4931906680ddf47d8c916f35a6d
/axf/urls.py
1046af7585f1c8e8e6927d34d7f7300bc2c16981
[]
no_license
jinhai1989/axf
47cadf5323b814421fc2b577f4f48935ea483729
961f9e13ed14b2c90e478975361461a77756eed2
refs/heads/master
2021-07-11T04:34:42.942929
2017-10-11T12:31:51
2017-10-11T12:31:51
106,543,208
0
0
null
null
null
null
UTF-8
Python
false
false
1,373
py
"""project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from . import views urlpatterns = [ url(r'^home/$',views.home,name="home" ),#主页 url(r'^market/(\d+)/(\d+)/(\d+)/$',views.market,name="market" ),#超市 url(r'^cart/$',views.cart,name="cart" ),#购物车 url(r'^changecart/(\d+)/$',views.changecart,name="changecart" ),#修改购物车 url(r'^saveorder/$',views.saveorder,name="saveorder" ),#递交订单 url(r'^mine/$',views.mine,name="mine" ),#我的 url(r'^login/$',views.login,name="login" ),#登录 url(r'^register/$',views.register,name="register" ),#注册 #验证用户账号是否存在 url(r'^checkuserid/$',views.checkuserid,name="checkuserid" ), url(r'^quit/$',views.quit,name="quit" ), ]
[ "jin@jin.com" ]
jin@jin.com
ab30326e12c8e49c0db5b50227751503d35b9980
afcc6fa6c6a1736b89a018c24b4a6384f8e9c970
/b2g_util/__init__.py
180d33ee7de7d50e8f5ffa758b51a0aebe662c53
[]
no_license
askeing/b2g-util-python
953d78c57243277a02b7edadf9d5bb65dab7d840
55e8e9b819871729da8ddd21c0b44804c4da0010
refs/heads/master
2023-06-18T07:04:59.630427
2016-03-04T07:16:57
2016-03-04T07:16:57
39,761,161
3
5
null
2016-01-29T06:39:53
2015-07-27T07:30:25
Python
UTF-8
Python
false
false
224
py
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import util import test
[ "askeing@gmail.com" ]
askeing@gmail.com
892d774caa9c5b905ab531bbbf72cf2827316c64
d3913120a781d33fb130016403fac8b7075cfc1d
/backend/equipment/apps.py
c205ae5d66f754c31ee8fcbac16322ebddb31ca4
[ "MIT" ]
permissive
Vini1979/Engenharia_Software_IF977
bdb227f087c9ada34aa58681393898b8d6123a29
dee99b7a05736bd35935d30a88b61a1f273d7633
refs/heads/main
2023-04-13T10:45:40.333964
2021-04-28T20:39:37
2021-04-28T20:39:37
355,015,827
0
1
MIT
2021-04-27T03:57:52
2021-04-06T01:02:43
Python
UTF-8
Python
false
false
150
py
from django.apps import AppConfig class EquipmentConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'equipment'
[ "vicpantojadoamaral@gmail.com" ]
vicpantojadoamaral@gmail.com
1fffbb0e94917e1591b20d062f1082d5fae467b5
b42302ae883f5187d03ed5deba8cfc7d03cca9e7
/eshop/migrations/0003_auto_20210523_1802.py
e8a2d1587a0b69265b5fe1036c99239121316a42
[]
no_license
Chauhan-Mukesh/e-shop
86a94a440ff89a64bb97eb4db88fe8fb533ef076
3565aef16e727f91753888f70f3cdc4d3cdeef2a
refs/heads/master
2023-05-01T15:58:49.498165
2021-05-24T02:34:44
2021-05-24T02:34:44
369,959,862
0
0
null
null
null
null
UTF-8
Python
false
false
552
py
# Generated by Django 2.2 on 2021-05-23 12:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('eshop', '0002_contactus'), ] operations = [ migrations.AlterModelOptions( name='user', options={'ordering': ['username'], 'verbose_name': 'User'}, ), migrations.AlterField( model_name='product', name='prod_name', field=models.CharField(max_length=50, verbose_name='Product Name'), ), ]
[ "mrchauhan490@gmail.com" ]
mrchauhan490@gmail.com
629ae714aabaae51da5e87d368cd6d272aafd834
f301de68f64e52fc0770518248eafee6a3c25b1f
/threaded_comments/urls.py
c55fba19b3337f032d64177a3529d291e3ff8899
[]
no_license
bedna-KU/Shakal-NG
1f0cf0ec8f8b2b0ab65e6ed4b954c095554df8a0
c504424545afbe9238d6813962d2a96f7c4889a1
refs/heads/master
2020-12-26T03:55:57.579418
2015-04-25T15:42:47
2015-04-25T15:42:47
34,467,383
0
0
null
2015-04-23T16:17:17
2015-04-23T16:17:17
null
UTF-8
Python
false
false
906
py
# -*- coding: utf-8 -*- from django.conf.urls import patterns, url #from django.contrib.comments.urls import urlpatterns as original_urls from threaded_comments import feeds as threaded_comments_feeds urlpatterns = patterns('threaded_comments.views', url(r'^reply/(\d+)/$', 'reply_comment', name = 'comments-reply-comment'), url(r'^post/$', 'post_comment', name = 'comments-post-comment'), url(r'^posted/$', 'done_comment', name = 'comments-comment-done'), url(r'^lock/(\d+)/$', 'admin', name = 'comments-admin'), url(r'^watch/(\d+)/$', 'watch', name = 'comments-watch'), url(r'^view/(\d+)/$', 'comment', {'single': True}, name = 'comment-single'), url(r'^id/(\d+)/$', 'comment', {'single': False}, name = 'comment'), url(r'^(\d+)/$', 'comments', name = 'comments'), url(r'^feeds/latest/$', threaded_comments_feeds.CommentFeed(), name = 'comments-feed-latest'), ) #urlpatterns += original_urls
[ "miroslav.bendik@gmail.com" ]
miroslav.bendik@gmail.com
30671f804ed90f82e0af64193a524c8c58b5dd6c
e76e3aaf9670f1372f919a20667bab038d523fdf
/app/app/settings.py
acf4043705f9ae091a753b8d35e439615e913f57
[]
no_license
Claiborne/django-recipe-api
fa0b4f296a86914d08fa6b32e8fbc7f0baa4d61a
849d8b724b8ad89cfa5dc130ec5507d50dad1ad7
refs/heads/master
2022-06-26T10:56:59.747834
2019-09-25T04:23:14
2019-09-25T04:23:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,281
py
""" Django settings for app project. Generated by 'django-admin startproject' using Django 2.1.12. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '&ep3#e&g)rl4j5@rv8g)8+!pbs1^9=5zx0%+i)nwnhd02p($y1' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'core', 'user', 'recipe', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'HOST': os.environ.get('DB_HOST'), 'NAME': os.environ.get('DB_NAME'), 'USER': os.environ.get('DB_USER'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'core.User'
[ "willclaiborne@gmail.com" ]
willclaiborne@gmail.com
89efa2dc00a6220dc2d02663f179718f35cd67f8
6e2e5ce3a385120d431be77a5186eca63b2f74aa
/pipetree/executor/__init__.py
dfca041a6acea8dbdc10e572f413164bd5da0014
[ "MIT" ]
permissive
pipetree/pipetree
a716bca7f4d9fc78c89d97de4672a61d8998504b
e7f1cc3247ac4290fed823a2a3a3166d736fe656
refs/heads/master
2021-01-13T14:45:15.172827
2017-02-13T01:08:21
2017-02-13T01:08:21
76,606,256
2
3
null
2017-01-18T06:53:19
2016-12-16T00:09:27
Python
UTF-8
Python
false
false
68
py
from .executor import Executor from .local import LocalCPUExecutor
[ "noreply@github.com" ]
pipetree.noreply@github.com
53d6254220f3ddd0561ebfbd4b317d2d3e80855f
4f0cd2618cd7856e5ef51d1ad177fa572ccaea6b
/CircuitPython_Templates/status_led_one_neopixel_rgb/code.py
9b4478135686bc8e33f0883aed9b180121f9a931
[ "MIT" ]
permissive
profharris/Adafruit_Learning_System_Guides
ecd213d34ffb7fa227e085ef3c763c802406d30e
1e64c043be80451443fcae3f8952c6fd0cb1a52e
refs/heads/main
2023-07-06T22:17:02.568765
2021-08-06T18:44:30
2021-08-06T18:44:30
394,449,146
1
0
MIT
2021-08-09T21:54:29
2021-08-09T21:54:28
null
UTF-8
Python
false
false
330
py
"""CircuitPython status NeoPixel red, green, blue example.""" import time import board import neopixel pixel = neopixel.NeoPixel(board.NEOPIXEL, 1) pixel.brightness = 0.3 while True: pixel.fill((255, 0, 0)) time.sleep(0.5) pixel.fill((0, 255, 0)) time.sleep(0.5) pixel.fill((0, 0, 255)) time.sleep(0.5)
[ "kattni@adafruit.com" ]
kattni@adafruit.com
45ac036e9d79b025bb7a0dcaddc6c7c483ac5676
2b0a557a168f779b11da7f898acc8a1576eb54c3
/server.py
d183581b3506c43a9297db5cd34ad8534a5b7864
[]
no_license
ngzhian/whatsunblockshouldiuse
5e623481213bd2914002fa85d68ae392767ae5ba
1c96e7090f3c1ded19bf258b739c099e5e8d5a47
refs/heads/master
2020-03-30T19:01:31.177601
2015-03-09T03:14:33
2015-03-09T03:14:33
31,860,158
0
0
null
null
null
null
UTF-8
Python
false
false
3,076
py
import re import os import json from io import StringIO from bottle import static_file, request, run, route from bs4 import BeautifulSoup import requests # Read port selected by the cloud for our application PORT = int(os.getenv('VCAP_APP_PORT', 8080)) if os.getenv("VCAP_SERVICES"): services = json.loads(os.getenv("VCAP_SERVICES")) service_name = 'question_and_answer'; if services and services[service_name]: svc = services[service_name][0]['credentials']; svc_url = svc['url'] svc_username = svc['username']; svc_password = svc['password']; print(svc_url, svc_username, svc_password) EPA_URL = 'http://iaspub.epa.gov/enviro/m_uv?' EPA_URL_FORMAT = EPA_URL + 'lat={lat}&lon={lon}' CACHE = {} @route('/') def index(): return static_file('index.html', root='static') @route('/uv') def uv(): print(CACHE) url = EPA_URL_FORMAT.format(lat=request.query.lat, lon=request.query.lon) if url in CACHE: print('Cache hit') return CACHE.get(url) response = requests.get(url).text index, level, desc = extract_index_level_desc(response) results = {'index': index, 'level': level, 'desc': desc} CACHE[url] = results return results @route('/ask') def ask(): question = request.forms.get('ask') or request.query.get('ask') if not question: return {} answer = ask_watson(question) return {'answer': answer} def extract_index_level_desc(contents): soup = BeautifulSoup(contents) content = soup.find(id="content") uv_index_line = content.b img_tag = content.findAll('img')[-1] image_url = img_tag.attrs['src'] desc = list(list(img_tag.children)[-1].children)[0] index, level = uv_index_level(image_url) return index, level, desc def uv_index_level(url): """Example url: http://www.epa.gov/enviro/facebook/img/iphone/UV_Index_4_Moderate.png """ pattern = re.compile(r'[/._]') components = re.split(pattern, url) index = components[-3] level = components[-2].lower() return index, level def get_location_text(uv_index_line): pattern = re.compile(r'<[Ii]>[^<]+</[Ii]>') location = pattern.search(uv_index_line).group(0)[3:-4] return location @route('/static/<filepath:path>') def server_static(filepath): return static_file(filepath, root='static') @route('/favicon.ico') def favicon(): return static_file('favicon.ico', root='') def ask_watson(question): question = question.strip() USERNAME = 'd83e357f-9b61-4bcb-b44b-46f934606d12' PASSWORD = 'aIpNYMrmSIup' URL = 'https://gateway.watsonplatform.net/question-and-answer-beta/api/v1/question/healthcare' print('Asking watson', question) response = requests.post( URL, json={'question': {'questionText': question}}, headers={ 'Accept': 'application/json', 'X-SyncTimeout': 30, }, auth=(USERNAME, PASSWORD)) return response.json() if __name__ == '__main__': run(host='0.0.0.0', port=PORT, debug=True, reloader=True)
[ "ngzhian@gmail.com" ]
ngzhian@gmail.com
35fc385076ea01e14b7f5fe05361a8e7614d1d96
ba480d6c617d1f06b90226b7456bdb4bf8207121
/теория_30.py
8a1c8a54e555d13a3efcf1a739ebccc34514786b
[]
no_license
khomyakovskaya/diploma
cf3d50baf8a966c10d48bf3c24a3c4a493821117
fd2ab58803332bb3a131ffbca41564d800ef2105
refs/heads/main
2023-08-14T05:59:10.290603
2021-09-29T13:19:50
2021-09-29T13:19:50
411,665,578
0
0
null
null
null
null
UTF-8
Python
false
false
10,815
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'теория_30.ui' # # Created by: PyQt5 UI code generator 5.15.2 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Teoria30Window(object): def setupUi(self, Teoria30Window): Teoria30Window.setObjectName("Teoria30Window") Teoria30Window.resize(1041, 682) Teoria30Window.setStyleSheet("background-color: rgb(255, 255, 255);") self.centralwidget = QtWidgets.QWidget(Teoria30Window) self.centralwidget.setObjectName("centralwidget") self.gridLayout = QtWidgets.QGridLayout(self.centralwidget) self.gridLayout.setObjectName("gridLayout") self.textBrowser = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser.setObjectName("textBrowser") self.gridLayout.addWidget(self.textBrowser, 1, 0, 1, 1) self.label_3 = QtWidgets.QLabel(self.centralwidget) font = QtGui.QFont() font.setFamily("Times New Roman") font.setPointSize(20) self.label_3.setFont(font) self.label_3.setStyleSheet("background-color: rgb(211, 239, 255);") self.label_3.setAlignment(QtCore.Qt.AlignCenter) self.label_3.setObjectName("label_3") self.gridLayout.addWidget(self.label_3, 0, 0, 1, 1) self.textBrowser_2 = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser_2.setObjectName("textBrowser_2") self.gridLayout.addWidget(self.textBrowser_2, 4, 0, 1, 1) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem) self.btn_return30 = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn_return30.sizePolicy().hasHeightForWidth()) self.btn_return30.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setFamily("Times New Roman") font.setPointSize(14) font.setBold(False) font.setWeight(50) self.btn_return30.setFont(font) self.btn_return30.setStyleSheet("background-color: rgb(211, 239, 255);\n" "color: rgb(0, 0, 0);") self.btn_return30.setObjectName("btn_return30") self.horizontalLayout.addWidget(self.btn_return30) spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem1) self.btn_oglavlenie30 = QtWidgets.QPushButton(self.centralwidget) font = QtGui.QFont() font.setFamily("Times New Roman") font.setPointSize(14) self.btn_oglavlenie30.setFont(font) self.btn_oglavlenie30.setStyleSheet("background-color: rgb(211, 239, 255);\n" "color: rgb(0, 0, 0);") self.btn_oglavlenie30.setObjectName("btn_oglavlenie30") self.horizontalLayout.addWidget(self.btn_oglavlenie30) spacerItem2 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem2) self.btn_glavnaya30 = QtWidgets.QPushButton(self.centralwidget) font = QtGui.QFont() font.setFamily("Times New Roman") font.setPointSize(14) font.setBold(False) font.setWeight(50) self.btn_glavnaya30.setFont(font) self.btn_glavnaya30.setStyleSheet("background-color: rgb(211, 239, 255);\n" "color: rgb(0, 0, 0);") self.btn_glavnaya30.setObjectName("btn_glavnaya30") self.horizontalLayout.addWidget(self.btn_glavnaya30) spacerItem3 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem3) self.btn_dalee30 = QtWidgets.QPushButton(self.centralwidget) font = QtGui.QFont() font.setFamily("Times New Roman") font.setPointSize(14) font.setBold(False) font.setWeight(50) self.btn_dalee30.setFont(font) self.btn_dalee30.setStyleSheet("background-color: rgb(211, 239, 255);\n" "color: rgb(0, 0, 0);") self.btn_dalee30.setObjectName("btn_dalee30") self.horizontalLayout.addWidget(self.btn_dalee30) spacerItem4 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem4) self.gridLayout.addLayout(self.horizontalLayout, 6, 0, 1, 1) self.line = QtWidgets.QFrame(self.centralwidget) self.line.setStyleSheet("background-color: rgb(191, 216, 230);") self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.gridLayout.addWidget(self.line, 5, 0, 1, 1) self.line_2 = QtWidgets.QFrame(self.centralwidget) self.line_2.setStyleSheet("background-color: rgb(191, 216, 230);") self.line_2.setFrameShape(QtWidgets.QFrame.HLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.gridLayout.addWidget(self.line_2, 7, 0, 1, 1) self.label_4 = QtWidgets.QLabel(self.centralwidget) font = QtGui.QFont() font.setFamily("Times New Roman") font.setPointSize(20) self.label_4.setFont(font) self.label_4.setStyleSheet("background-color: rgb(211, 239, 255);") self.label_4.setAlignment(QtCore.Qt.AlignCenter) self.label_4.setObjectName("label_4") self.gridLayout.addWidget(self.label_4, 2, 0, 1, 1) Teoria30Window.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(Teoria30Window) self.statusbar.setObjectName("statusbar") Teoria30Window.setStatusBar(self.statusbar) self.retranslateUi(Teoria30Window) QtCore.QMetaObject.connectSlotsByName(Teoria30Window) def retranslateUi(self, Teoria30Window): _translate = QtCore.QCoreApplication.translate Teoria30Window.setWindowTitle(_translate("Teoria30Window", "АУК")) self.textBrowser.setHtml(_translate("Teoria30Window", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'MS Shell Dlg 2\'; font-size:8.25pt; font-weight:400; font-style:normal;\">\n" "<p align=\"justify\" style=\" margin-top:12px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; line-height:150%;\"><span style=\" font-family:\'Times New Roman,serif\'; font-size:14pt;\">На останов котла защита по понижению давления природного газа воздействует только в положении переключателя топлива (ПТ) &quot;Газ&quot;, а по понижению давления мазута - в положение &quot;Мазут&quot;. Если защиты по понижению давления природного газа и мазута действуют одновременно, то производится останов котла независимо от положений переключателя топлива.</span><span style=\" font-size:8pt;\"> </span></p></body></html>")) self.label_3.setText(_translate("Teoria30Window", "Защиты, действующие на останов котла")) self.textBrowser_2.setHtml(_translate("Teoria30Window", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'MS Shell Dlg 2\'; font-size:8.25pt; font-weight:400; font-style:normal;\">\n" "<p align=\"justify\" style=\" margin-top:12px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; line-height:150%;\"><span style=\" font-family:\'Times New Roman,serif\'; font-size:14pt;\">Частичное снижение нагрузки блока (рис. 20) производится в следующих случаях:</span><span style=\" font-size:8pt;\"> </span></p>\n" "<p align=\"justify\" style=\" margin-top:12px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; line-height:150%;\"><span style=\" font-family:\'Times New Roman,serif\'; font-size:14pt;\">3.2.1. При отключении электродвигателя одного из дутьевых вентиляторов при другом работающем.</span><span style=\" font-size:8pt;\"> </span></p>\n" "<p align=\"justify\" style=\" margin-top:12px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; line-height:150%;\"><span style=\" font-family:\'Times New Roman,serif\'; font-size:14pt;\">3.2.2. При отключении электродвигателя одного из дымососов при другом работающем.</span><span style=\" font-size:8pt;\"> </span></p>\n" "<p align=\"justify\" style=\" margin-top:12px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; line-height:150%;\"><span style=\" font-family:\'Times New Roman,serif\'; font-size:14pt;\">3.2.3. При останове одного из РВП при другом вращающемся.</span><span style=\" font-size:8pt;\"> </span></p></body></html>")) self.btn_return30.setText(_translate("Teoria30Window", "Назад")) self.btn_oglavlenie30.setText(_translate("Teoria30Window", "Оглавление")) self.btn_glavnaya30.setText(_translate("Teoria30Window", "На главную")) self.btn_dalee30.setText(_translate("Teoria30Window", "Далее")) self.label_4.setText(_translate("Teoria30Window", "Защиты, действующие на снижение нагрузки блока до 50 - 60 %"))
[ "noreply@github.com" ]
khomyakovskaya.noreply@github.com
49857cbe3ebd6c04822a55a04404bb3bf824d180
40a3a643326632db9fee144425e386981cec6f23
/api/app/model/setting.py
c7e369af128184872363c6f4fa4fc57ca224f910
[]
no_license
grdaneault/spoil-it-for-me
edc3cea606aa52cf3dbb03352db9a7cab1fda706
2de4ed38558bda11cc25fc6a61104c3f0a0f9b9a
refs/heads/master
2020-05-21T21:11:00.707459
2019-05-12T15:30:40
2019-05-12T15:30:40
186,147,040
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
class Setting: def __init__(self, name: str, image: str): self.name = name self.image = image
[ "gregdaneault@gmail.com" ]
gregdaneault@gmail.com
f44b5f35ca90998324a02d598ec4db99381052bc
ca75f7099b93d8083d5b2e9c6db2e8821e63f83b
/z2/part2/batch/jm/parser_errors_2/828741753.py
2c4deb3f2940f12c36a84e0cf59bcac0b189fd80
[ "MIT" ]
permissive
kozakusek/ipp-2020-testy
210ed201eaea3c86933266bd57ee284c9fbc1b96
09aa008fa53d159672cc7cbf969a6b237e15a7b8
refs/heads/master
2022-10-04T18:55:37.875713
2020-06-09T21:15:37
2020-06-09T21:15:37
262,290,632
0
0
MIT
2020-06-09T21:15:38
2020-05-08T10:10:47
C
UTF-8
Python
false
false
1,325
py
from part1 import ( gamma_board, gamma_busy_fields, gamma_delete, gamma_free_fields, gamma_golden_move, gamma_golden_possible, gamma_move, gamma_new, ) """ scenario: test_random_actions uuid: 828741753 """ """ random actions, total chaos """ board = gamma_new(3, 2, 2, 2) assert board is not None assert gamma_move(board, 1, 0, 0) == 1 assert gamma_busy_fields(board, 1) == 1 assert gamma_golden_possible(board, 1) == 0 assert gamma_move(board, 1, 1, 2) == 0 assert gamma_move(board, 2, 0, 1) == 1 assert gamma_move(board, 2, 1, 1) == 1 assert gamma_busy_fields(board, 2) == 2 assert gamma_free_fields(board, 2) == 3 assert gamma_move(board, 1, 0, 1) == 0 assert gamma_move(board, 1, 1, 1) == 0 assert gamma_move(board, 2, 0, 1) == 0 assert gamma_move(board, 1, 0, 2) == 0 assert gamma_move(board, 1, 1, 0) == 1 assert gamma_busy_fields(board, 1) == 2 assert gamma_move(board, 2, 1, 2) == 0 assert gamma_move(board, 2, 0, 1) == 0 assert gamma_move(board, 1, 0, 2) == 0 assert gamma_move(board, 1, 2, 0) == 1 assert gamma_move(board, 2, 1, 2) == 0 assert gamma_move(board, 1, 1, 2) == 0 assert gamma_move(board, 1, 0, 1) == 0 assert gamma_busy_fields(board, 1) == 3 assert gamma_free_fields(board, 1) == 1 assert gamma_move(board, 2, 1, 1) == 0 gamma_delete(board)
[ "jakub@molinski.dev" ]
jakub@molinski.dev
f330ec77cbf93b6997398ae141465cd8e9e7d312
5a7af650d21c2dbda536ad4d8b4ec8e49d7a146a
/project/binary_search/binary_search.py
5f942e0b095af78571e86ef9732cfe0dc56b6a8c
[]
no_license
IvanPostu/simple-python-tasks
23348052a28419ccc3ba17cadb96603051a988b2
4e21799cea6bc75508109a55cc59d0d4e7b35d62
refs/heads/master
2022-08-30T06:25:49.620711
2020-05-29T09:28:28
2020-05-29T09:28:28
267,150,832
0
0
null
null
null
null
UTF-8
Python
false
false
1,904
py
import random def generate_random_list(): start = random.randint(0, 100) return list(range(start, 200, 2)) def split_list_in_two_sublist(a_list): """Split list in two sublists Args: - Returns: Tuple ( first_chunk, second_chunk ) Raises: - """ half = int(len(a_list) / 2) + len(a_list) % 2 return (a_list[:half], a_list[half:]) def list_patentially_contain_a_value(list_, value): """Check if list patentially contain a value Args: list of numbers, value - number Returns: Boolean value Raises: - """ first_elm = list_[0] last_elm = list_[len(list_) - 1] conditions = [ first_elm < value and last_elm < value, first_elm > value and last_elm > value, ] return not any(conditions) def binary_search(_list, search_val): """Do binary search Args: _list - list of numbers between rand and 200, step Returns: - Raises: - """ temp_list = _list iteration_counter = 0 while True: iteration_counter += 1 print(f'\nIteration {iteration_counter}\nList: {temp_list}\n') if(len(temp_list) == 1): break (list_a, list_b) = split_list_in_two_sublist(temp_list) temp_list = list_a if list_patentially_contain_a_value( list_a, search_val) else list_b return True if temp_list[0] == search_val else False def show_binary_search(): while True: print('Enter a number between 100 and 200 : ') search_val = int(input()) _list = generate_random_list() if binary_search(_list, search_val): print(f'Your value {search_val} has been founded.') else: print(f'Your value {search_val} not found.') print('Try again? [y,n]: ') if(input() != 'y'): break
[ "ipostu20000127@gmail.com" ]
ipostu20000127@gmail.com
24221a6241ecc5b49aa86753b96ffa796b34c50f
09b44c65e84db735a893873a16351394d1a670b7
/fiblary/client/v4/models.py
00bc4a32b4bc2d2b1f74cfb2c5ebda73b78accb2
[ "Apache-2.0" ]
permissive
ikari-pl/fiblary
f4a1b2622216e8fff5f871034e483cdd22f07de2
b910e740075f7948ce375f267dbc3d9de18d54a4
refs/heads/master
2020-12-28T10:24:36.724955
2016-07-04T09:44:35
2016-07-04T09:44:35
238,288,470
0
0
Apache-2.0
2020-02-04T19:30:42
2020-02-04T19:30:42
null
UTF-8
Python
false
false
5,497
py
# Copyright 2014 Klaudiusz Staniek # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ fiblary.models ~~~~~~~~~~~~~~~~~ Home Center Model Class Implementations """ import functools import jsonpatch import logging import six _logger = logging.getLogger(__name__) _type_ignore = ["HC_user", "VOIP_user", "weather", 'iOS_device', ''] def factory(controller, item): # try as item could be anything try: if item['type'] in _type_ignore: return None except Exception: pass model = None if isinstance(item, dict): if controller.RESOURCE == 'devices': model = DeviceModel(controller, item) elif controller.RESOURCE == 'scenes': model = SceneModel(controller, item) else: model = GenericModel(controller, item) elif isinstance(item, list): model = RecursiveList(item) else: assert 0, "Unknown model" return model class RecursiveList(list): def __init__(self, value): if value is None: pass elif isinstance(value, list): for index, data in enumerate(value): self.append(data) self.__setitem__(index, data) else: raise TypeError, 'Expected list' self.__dict__['__original__'] = value def __getitem__(self, key): return list.__getitem__(self, key) def __setitem__(self, key, value): if isinstance(value, str): value = unicode(value) if isinstance(value, list) and not isinstance(value, RecursiveList): value = RecursiveList(value) if isinstance(value, dict) and not isinstance(value, RecursiveDict): value = RecursiveDict(value) list.__setitem__(self, key, value) __setattr__ = __setitem__ __getattr__ = __getitem__ class RecursiveDict(dict): def __init__(self, value=None): if value is None: pass elif isinstance(value, dict): for key in value: self.__setitem__(key, value[key]) else: raise TypeError, 'Expected dict' self.__dict__['__original__'] = value def changes(self): original = self.__dict__['__original__'] return jsonpatch.make_patch(original, dict(self)).to_string() def __setitem__(self, key, value): if isinstance(value, str): value = unicode(value) if isinstance(value, dict) and not isinstance(value, RecursiveDict): value = RecursiveDict(value) if isinstance(value, list) and not isinstance(value, RecursiveList): value = RecursiveList(value) if not callable(value): dict.__setitem__(self, key, value) else: # actions are callable so added only to the local dict self.__dict__[key] = value def __getitem__(self, key): return dict.__getitem__(self, key) def setdefault(self, key, default=None): if key not in self: self[key] = default return self[key] __setattr__ = __setitem__ __getattr__ = __getitem__ class GenericModel(RecursiveDict): def __init__(self, controller, item): self.__dict__['controller'] = controller super(GenericModel, self).__init__(item) class DeviceModel(GenericModel): def __init__(self, controller, item): super(DeviceModel, self).__init__(controller, item) if 'actions' in self: def action(action_name, argn, *args, **kwargs): _logger.info("{0}({1})->{2}{3}".format( self.name, self.id, action_name, args) ) if len(args) != argn: # hack due to http://bugzilla.fibaro.com/view.php?id=1125 if action_name != 'setTargetLevel': raise TypeError( "%s() takes exactly %d argument(s) (%d given)" % ( action_name, argn, len(args)) ) return self.controller.action(self.id, action_name, *args) for action_name, argn in six.iteritems(self['actions']): _logger.debug("{0}({1})<-{2}({3})".format( self.name, self.id, action_name, argn)) self.__dict__[str(action_name)] = functools.partial( action, action_name, argn) class SceneModel(GenericModel): def __init__(self, controller, item): super(SceneModel, self).__init__(controller, item) """Home Center specific subclass for the Scene with actions""" def start(self): return self.controller.start(self.id) def stop(self): return self.controller.stop(self.id) def enable(self): return self.controller.enable(self.id) def disable(self): return self.controller.disable(self.id)
[ "mariusz@lbh.pl" ]
mariusz@lbh.pl
793461b3bca84e69e604fb6c24d1c59def45593f
b30ef73e34c12095c382c95bcc2cd3552cae4f1e
/count.py
7fe15fe547176d99b970c376ecf43bed16469be0
[]
no_license
Cyber-Netic/Python-Counting-Program
0fcc0f574c34e8ea51a2260f57d2ea66c92340cb
47fb51c6e88bf1f3d755cde941ed97d5737dcc7a
refs/heads/master
2020-09-17T09:06:06.046027
2019-11-25T23:52:14
2019-11-25T23:52:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
706
py
while True: print('First, enter your name:') x = input() try: if(not x.isalpha()): print("Error: Contains numbers! Please use only letters.") x = input("Enter your name again:") else: print('Hello, ' +x+'! Welcome to Python Counting Program') except ValueError: continue print('Now, enter any number:') y = input() i = 0 if(not y.isnumeric()): print("Error: Contains letters! Please use only numbers.") x = input() else: print('You entered ' + y + '. Here is your score:') while i <= int(y): print(i) i += 1 # checking for alphabets/number #print(x.isalpha()) #print(y.isnumeric()) print('by Yuliia Poperechna')
[ "noreply@github.com" ]
Cyber-Netic.noreply@github.com
eecf0ef61fbc4fc48698da33a49fe452fb25fd0a
f0b60e7df4db6512189530b185df6af8a5516080
/test_Datapro.py
610719f846958b96f2138c903fb99454246788db
[]
no_license
williamSYSU/Corner
27d6afb244c6266578d3483a868a7f3b1751cb1f
c0e6ca80fdae6f796f87c08527e9b19fce371f7c
refs/heads/master
2020-03-31T20:18:00.807861
2018-11-05T10:45:53
2018-11-05T10:45:53
152,534,000
1
0
null
2018-10-11T05:06:03
2018-10-11T05:06:03
null
UTF-8
Python
false
false
36,421
py
# -*- coding: utf-8 -*- # @Author : William # @Project : Corner-william # @FileName : test_Datapro.py # @Time : Created at 2018/10/12 # @Blog : http://zhiweil.ml/ # @Description : # Copyrights (C) 2018. All Rights Reserved. from __future__ import unicode_literals, print_function, division import time import unicodedata import numpy as np import re import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.functional as f import torch.optim as optim from io import open from torch.utils.data import DataLoader from torch.utils.data import Dataset import config class NormalAttention(nn.Module): def __init__(self, d_input, d_target, d_hidden, dropout=0.1): super(NormalAttention, self).__init__() self.d_input = d_input self.d_target = d_target self.d_hid = d_hidden self.attn = nn.Linear(d_input, d_hidden) self.attn_target = nn.Linear(d_target, d_hidden) # self.combine = nn.Linear(d_input + d_target, 1) self.attn_target_1 = nn.Linear(d_hidden + d_hidden, d_hidden) self.combine = nn.Linear(d_hidden, 1) self.softmax = nn.Softmax(dim=-1) self.dropout = nn.Dropout(config.dropout) self.layer_norm = nn.LayerNorm(d_input) self.tanh = nn.Tanh() def forward(self, input_seq, target_seq): combine_input = self.attn(input_seq) tar = self.attn_target(target_seq) tar = tar.unsqueeze(1) combine_tar = tar.view(len(input_seq), 1, -1) _combine_input = torch.unsqueeze(combine_input, dim=1).expand(-1, 1, -1, -1) _combine_tar = torch.unsqueeze(combine_tar, dim=2).expand(-1, -1, len(input_seq[0]), -1) # _combine_input = torch.unsqueeze(input_seq, dim=1).expand(-1, 1, -1, -1) # _combine_tar = torch.unsqueeze(tar, dim=2).expand(-1, -1, len(input_seq[0]), -1) # _combine_tar = combine_tar.view(1, 1, 1, 50).expand(-1, -1, len(input_seq[1]), -1) # attn_out = self.tanh(_combine_tar + _combine_input) attn_out = self.tanh(self.attn_target_1(torch.cat((_combine_input, _combine_tar), dim=-1))) attn_out = self.dropout(self.combine(attn_out)) attn_score = self.softmax(attn_out.squeeze(3)) # attn_out = input_seq * attn # attn_out = attn_out.sum(dim=1) out = torch.bmm(attn_score, input_seq) # out = self.layer_norm(out) return out class Gate(nn.Module): def __init__(self, d_part1, d_part2, d_target, d_hidden): super().__init__() self.d_part1 = d_part1 self.d_part2 = d_part2 self.d_hid = d_target self.p1_tar_w = nn.Linear(d_part1, d_hidden) self.p1_tar_u = nn.Linear(d_target, d_hidden) self.p2_tar_w = nn.Linear(d_part2, d_hidden) self.p2_tar_u = nn.Linear(d_target, d_hidden) self.layer_norm = nn.LayerNorm(d_hidden) self.softmax = nn.Softmax(dim=1) self.tanh = nn.Tanh() def forward(self, input1_seq, input2_seq, target): p1_1 = self.p1_tar_w(input1_seq) p1_2 = self.p1_tar_u(target) p2_1 = self.p2_tar_w(input2_seq) p2_2 = self.p2_tar_u(target) z_l = self.tanh(p1_1 + p1_2) z_r = self.tanh(p2_1 + p2_2) z_w = torch.cat([z_l, z_r], dim=1) z_w = self.softmax(z_w) z_l_w = z_w[:, 0, :].unsqueeze(1) z_r_w = z_w[:, 1, :].unsqueeze(1) out = z_l_w * input1_seq + z_r_w * p2_1 # out = self.layer_norm(out) return out class DotProductAttention(nn.Module): # Scaled-dot-product Attention layer def __init__(self, d_query, d_key, d_value, mapping_on="query"): # mapping_on: whether linear transformation is required, mapping query or key into a new space # mapping_on: "query" || "key" || "both" || "none" super(DotProductAttention, self).__init__() self.d_query = d_query self.d_key = d_key self.d_value = d_value self.mapping_on = mapping_on if mapping_on == "query": # mapping query to key's space self.q_h = nn.Linear(d_query, d_key) elif mapping_on == "key": # mapping key to query's space self.k_h = nn.Linear(d_key, d_query) elif mapping_on == "both": # mapping query and key into the same space self.q_h = nn.Linear(d_query, d_value) self.k_h = nn.Linear(d_key, d_value) self.temper = np.power(d_value, 0.5) # self.weight = nn.Parameter(torch.Tensor(d_query, d_query)) # uniform = 1. / math.sqrt(self.d_query) # self.weight.data.uniform_(-uniform, uniform) def forward(self, q, k, v): # query: [s_batch, 1, d_query] # key: [*, l_key, d_key] # usually d_key = d_query # value: [*, l_value, d_value] # usually l_value = l_key # if len(key.shape) == 3, then "*" must equal to s_batch if self.mapping_on == "query": q = self.q_h(q) elif self.mapping_on == "key": k = self.k_h(k) elif self.mapping_on == "both": q = self.q_h(q) k = self.k_h(k) # print("11", k[0]) # [s_b, 1, d_q] * [*, d_k, l_k] = [s_b, 1, l_k] if len(k.shape) == 3: # similarity = torch.matmul(q, k.permute(0, 2, 1)) / self.temper # similarity = torch.matmul(q, k.permute(0, 2, 1)) similarity = torch.matmul(q, k.permute(0, 2, 1)) else: # len(k.shape) == 2 similarity = torch.matmul(q, k.transpose(0, 1)) / self.temper # print("22", similarity[0]) attn = f.softmax(similarity, dim=-1) # print("attn : ", attn[1]) # [s_b, 1, l_k] * [*, l_v, d_v] = [s_b, 1, d_v] output = torch.matmul(attn, v) # print("44", output[0]) return output, attn class WdeRnnEncoderFix(nn.Module): def __init__(self, hidden_size, output_size, context_dim, embed, trained_aspect, dropout=0.1): super(WdeRnnEncoderFix, self).__init__() self.hidden_size = hidden_size self.blstm = nn.LSTM(hidden_size, 300, bidirectional=True, batch_first=True) self.embedded = nn.Embedding.from_pretrained(embed) self.aspect_embed = nn.Embedding.from_pretrained(trained_aspect) self.tanh = nn.Tanh() self.hidden_layer = nn.Linear(hidden_size * 2, hidden_size) self.context_input_ = nn.Linear(600, 50) self.embedding_layers = nn.Linear(0 + hidden_size, output_size) # self.slf_attention = attention.MultiHeadAttention(600, 3) # self.slf_attention = attention.MultiHeadAttentionDotProduct(3, 600, 300, 300, 0.01) # self.Position_wise = attention.PositionwiseFeedForward(600, 600, 0.01) self.attention = NormalAttention(600, 50, 50) self.gate = Gate(300, 50, 50, 300) self.min_context = nn.Linear(300, 50) def forward(self, input, hidden): BATCH_SIZE = len(input) batch_len = input[:, 0] batch_context = input[:, 1] input_index = input[:, 2:] input_index = input_index.long() # seq_len = batch_len.item() # input_index = input_index[0][0:seq_len] # print('input_index',input_index) # print(hidden.size()) sorted_seq_lengths, indices = torch.sort(batch_len, descending=True) # TODO: change NO.1 -> switch order of following two lines _, desorted_indices = torch.sort(indices, descending=False) input_index = input_index[:, 0: sorted_seq_lengths[0]] input_index = input_index[indices] input_value = self.embedded(input_index) input_value = input_value.float() packed_inputs = nn.utils.rnn.pack_padded_sequence(input_value, sorted_seq_lengths.cpu().data.numpy() , batch_first=True) # print(sorted_seq_lengths, indices) output, hidden = self.blstm(packed_inputs, hidden) padded_res, _ = nn.utils.rnn.pad_packed_sequence(output, batch_first=True) desorted_output = padded_res[desorted_indices] ''' self attention module add or not? point wise product add or not? ''' # desorted_output = self.slf_attention(desorted_output, context_input) # desorted_output, _ = self.slf_attention(desorted_output, desorted_output, desorted_output) # desorted_output = self.Position_wise(desorted_output) ''' Normal attention module add or not? ''' context_input = self.aspect_embed(batch_context).float() context_input = self.min_context(context_input) attn_target = self.attention(desorted_output, context_input) desorted_output = F.max_pool2d(desorted_output, (desorted_output.size(1), 1)) # output.view(self.hidden_size * 2, -1) # output = torch.max(output) desorted_output = self.tanh(self.hidden_layer(desorted_output)) context_input = context_input.view(BATCH_SIZE, 1, 50) _context_input = self.tanh(self.context_input_(attn_target)) gate_out = self.gate(desorted_output, _context_input, context_input) embedding_input = torch.cat((desorted_output, _context_input), dim=2) desorted_output = self.tanh(self.embedding_layers(gate_out)) return desorted_output def initHidden(self, BATCH_SIZE): return (torch.zeros(2, BATCH_SIZE, self.hidden_size, device=config.device), torch.zeros(2, BATCH_SIZE, self.hidden_size, device=config.device)) class PreTrainABAE_fix(nn.Module): def __init__(self, embed_dim, n_aspect, aspect_embedding, embed): super(PreTrainABAE_fix, self).__init__() self.embed_dim = embed_dim self.n_aspect = n_aspect self.embedded = nn.Embedding.from_pretrained(embed) # query: global_content_embeding: [batch_size, embed_dim] # key: inputs: [batch_size, doc_size, embed_dim] # value: inputs # mapping the input word embedding to global_content_embedding space self.sentence_embedding_attn = DotProductAttention( d_query=embed_dim, d_key=embed_dim, d_value=embed_dim, mapping_on="key" ) # embed_dim => n_aspect self.aspect_linear = nn.Linear(embed_dim, n_aspect) # initialized with the centroids of clusters resulting from running k-means on word embeddings in corpus self.aspect_lookup_mat = nn.Parameter(data=aspect_embedding, requires_grad=True) # self.aspect_lookup_mat = nn.Parameter(torch.Tensor(n_aspect, embed_dim).double()) # self.aspect_lookup_mat.data.uniform_(-1, 1) def forward(self, inputs, eps=config.epsilon): input_lengths = inputs[:, 0] inputs = inputs[:, 2:] input_index = inputs.long() sorted_seq_lengths, indices = torch.sort(input_lengths, descending=True) _, desorted_indices = torch.sort(indices, descending=False) input_index = input_index[:, 0: sorted_seq_lengths[0]] # input_index = input_index[indices] inputs = self.embedded(input_index).double() # inputs: [batch_size, doc_size, embed_dim] # input_lengths: [batch_size] # averaging embeddings in a document: [batch_size, 1, embed_dim] avg_denominator = input_lengths.repeat(self.embed_dim).view(self.embed_dim, -1).transpose(0, 1).float() global_content_embed = torch.sum(inputs.double(), dim=1).div(avg_denominator.double()) global_content_embed = global_content_embed.unsqueeze(dim=1) # construct sentence embedding, with attention(query: global_content_embed, keys: inputs, value: inputs) # [batch_size, embed_dim] sentence_embedding, _ = self.sentence_embedding_attn( global_content_embed.float(), inputs.float(), inputs.float() ) # print("attn : ", sentence_embedding) sentence_embedding = sentence_embedding.squeeze(dim=1) # [batch_size, n_aspect] aspect_weight = F.softmax(self.aspect_linear(sentence_embedding), dim=1) _, predicted = torch.max(aspect_weight.data, 1) return predicted def regular(self, eps=config.epsilon): div = eps + torch.norm(self.aspect_lookup_mat, 2, -1) div = div.view(-1, 1) self.aspect_lookup_mat.data = self.aspect_lookup_mat / div class MyDataset(Dataset): def __init__(self, data): self.data = data def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) class DataPrepare: def __init__(self): """load data from files""" print("=" * 100) print("Prepare training data...") lines_pos1 = open('data/Weakly_labeled_data_1.1M/camera_positive.csv', encoding='utf-8').read().strip().split('\n') lines_pos2 = open('data/Weakly_labeled_data_1.1M/cellphone_positive.csv', encoding='utf-8').read().strip().split('\n') lines_pos3 = open('data/Weakly_labeled_data_1.1M/laptop_positive.csv', encoding='utf-8').read().strip().split('\n') lines_neg1 = open('data/Weakly_labeled_data_1.1M/camera_negative.csv', encoding='utf-8').read().strip().split('\n') lines_neg2 = open('data/Weakly_labeled_data_1.1M/cellphone_negative.csv', encoding='utf-8').read().strip().split('\n') lines_neg3 = open('data/Weakly_labeled_data_1.1M/laptop_negative.csv', encoding='utf-8').read().strip().split('\n') lines = open('data/Labeled_data_11754/new_11754.csv', encoding='gbk').read().strip().split('\n') '''merge data''' lines_pos = lines_pos1 + lines_pos2 + lines_pos3 lines_neg = lines_neg1 + lines_neg2 + lines_neg3 lines_all = lines_pos + lines_neg '''normalize sentences''' self.pairs_all = [self.normalizeString(s) for s in lines_all] self.pairs_pos = [self.normalizeString(s) for s in lines_pos] self.pairs_neg = [self.normalizeString(s) for s in lines_neg] self.pairs_classifier = [self.normalizeString(s) for s in lines] self.vocab = {} self.maxlen = 0 self.max_items = [] def word2idx(sentence, maxlen, max_items): items = sentence.strip().split() if len(items) > maxlen: maxlen = len(items) max_items = items for word in items: if word not in self.vocab: self.vocab[word] = len(self.vocab) return maxlen, max_items '''count maxlen and obtain bb''' for line in self.pairs_classifier: self.maxlen, self.max_items = word2idx(line, self.maxlen, self.max_items) for line in self.pairs_pos: self.maxlen, self.max_items = word2idx(line, self.maxlen, self.max_items) for line in self.pairs_neg: self.maxlen, self.max_items = word2idx(line, self.maxlen, self.max_items) @property def weakly_data(self): """get weakly train data""" '''if pre-save vectors from Google News''' if config.pp_data_weak: save_name = 'embed\embedding\word_embedding_classifier.txt' self.saveVocab(save_name) return self.vocab, self.pairs_pos, self.pairs_neg @property def weakly_data_process(self): """process weakly train data""" print("=" * 100) print("Weakly data Process...") vocab, pairs_pos, pairs_neg = self.weakly_data final_embedding = np.array(np.load("embed/Vector_word_embedding_all.npy")) # maxlen = 0 # bb = [] # # def word2idx(sentence, vocab, maxlen, bb): # items = sentence.strip().split() # if len(items) > maxlen: # maxlen = len(items) # bb = items # for word in items: # if word not in vocab: # vocab[word] = len(vocab) # return maxlen, bb # # for line in pairs_pos: # maxlen, bb = word2idx(line, vocab, maxlen, bb) # # for line in pairs_neg: # maxlen, bb = word2idx(line, vocab, maxlen, bb) '''initialize sentence''' input_sen_1 = config.pad_idx + np.zeros((len(pairs_pos), config.maxlen)) input_sen_1 = input_sen_1.astype(np.int) input_sen_2 = config.pad_idx + np.zeros((len(pairs_neg), config.maxlen)) input_sen_2 = input_sen_2.astype(np.int) # def sentence2vec(sentence, vocab, wordindex): # items = sentence.strip().split() # length = len(items) # for word in items: # wordindex.append(vocab[word]) # return length, wordindex # # def cal_sentence_index(): # for line in range(len(pairs_pos)): # wordindex = [] # length, wordindex = sentence2vec(pairs_pos[line], vocab, wordindex) # input_sen_1[line][0] = length # input_sen_1[line][1] = 10 # input_sen_1[line][2:length + 2] = np.array(wordindex) # # for line in range(len(pairs_neg)): # wordindex = [] # length, wordindex = sentence2vec(pairs_neg[line], vocab, wordindex) # input_sen_2[line][0] = length # input_sen_2[line][1] = 10 # input_sen_2[line][2:length + 2] = np.array(wordindex) # return input_sen_1, input_sen_2 '''serialize sentence and add extra info''' input_sen_1, input_sen_2 = self.week_cal_sentence_index( input_sen_1, input_sen_2, pairs_pos, pairs_neg) # cal_sentence_index() '''initialize unknown word embedding''' add = np.zeros(config.embed_dim) final_embedding = np.row_stack((final_embedding, add)) '''randomly choose train and test data''' np.random.shuffle(input_sen_1) np.random.shuffle(input_sen_2) input_pos_train = input_sen_1[:int(len(input_sen_1) * config.weak_sr), :] input_neg_train = input_sen_2[:int(len(input_sen_2) * config.weak_sr), :] input_pos_test = input_sen_1[int(len(input_sen_1) * config.weak_sr):, :] input_neg_test = input_sen_2[int(len(input_sen_2) * config.weak_sr):, :] def random_sample(matrix, sample_size): matrix_after = [] sample_index = np.random.randint(0, len(matrix), sample_size) for i in sample_index: # np.row_stack((matrix_after, matrix[i])) matrix_after.append(matrix[i]) return np.array(matrix_after) train_pos_1 = random_sample(input_pos_train, config.sample_size) train_pos_2 = random_sample(input_pos_train, config.sample_size) train_pos_neg = random_sample(input_neg_train, config.sample_size) train_neg_1 = random_sample(input_neg_train, config.sample_size) train_neg_2 = random_sample(input_neg_train, config.sample_size) train_neg_pos = random_sample(input_pos_train, config.sample_size) train_dim1 = np.vstack((train_pos_1, train_neg_1)) train_dim2 = np.vstack((train_pos_2, train_neg_2)) train_dim3 = np.vstack((train_pos_neg, train_neg_pos)) all_data = MyDataset(self.read_weak_data(train_dim1, train_dim2, train_dim3)) return all_data, final_embedding, \ np.array(input_pos_test[0:config.weak_test_samples, :]), \ np.array(input_neg_test[0:config.weak_test_samples, :]) def week_cal_sentence_index(self, input_sen_1, input_sen_2, pairs_pos, pairs_neg): """serialize sentence and add extra info""" for line in range(len(pairs_pos)): length, wordindex = self.sentence2vec(pairs_pos[line]) input_sen_1[line][0] = length # real length of sentence input_sen_1[line][1] = 10 # aspect index input_sen_1[line][2:length + 2] = np.array(wordindex) # if config.need_pos is True: input_sen_1[line][config.maxlen:length + config.maxlen] = [x for x in range(length)] for line in range(len(pairs_neg)): length, wordindex = self.sentence2vec(pairs_pos[line]) input_sen_2[line][0] = length input_sen_2[line][1] = 10 input_sen_2[line][2:length + 2] = np.array(wordindex) if config.need_pos is True: input_sen_2[line][config.maxlen:length + config.maxlen] = [x for x in range(length)] return input_sen_1, input_sen_2 def unicodeToAscii(self, s): """encode sentence from Unicode to Ascii""" return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn') def normalizeString(self, s): """clean symbols and lower letters""" s = self.unicodeToAscii(s.lower().strip()) s = re.sub(r"([.!?\(\)\"])", r"", s) s = re.sub(r"[^0-9a-zA-Z]+", r" ", s) return s def normalize(self, s): """clean other symbols""" # s = unicodeToAscii(s.strip()) s = re.sub(r"([\[\]\"\n])", r"", s) return s def saveVocab(self, filename, mode='w'): """save embedding vocab into local files""" if config.pp_data_clas: import gensim model = gensim.models.KeyedVectors.load_word2vec_format('D:/GoogleNews-vectors-negative300.bin', binary=True) # spell = SpellChecker() spell = None i = 0 with open(filename, mode=mode, encoding='utf-8') as file: for key in self.vocab.keys(): if key in model: a = key + ',' + self.normalize(str(model[key])) + "\n" file.write(a) i += 1 else: spell_key = spell.correction(key) if spell_key in model: a = key + "," + self.normalize(str(model[spell_key])) + "\n" file.write(a) i += 1 else: a = key + "," + spell_key + "\n" file.write(a) def random_sample(self, matrix, sample_size): """random sample data""" matrix_after = [] sample_index = np.random.randint(0, len(matrix), sample_size) for i in sample_index: # np.row_stack((matrix_after, matrix[i])) matrix_after.append(matrix[i]) return np.array(matrix_after) def read_weak_data(self, dim_1, dim_2, dim_3): """read weakly data""" all_data = [] for idx in range(len(dim_1)): items = torch.from_numpy(dim_1[idx]) items1 = torch.from_numpy(dim_2[idx]) items2 = torch.from_numpy(dim_3[idx]) data = { 'input1': items, 'input2': items1, 'input3': items2 } all_data.append(data) return all_data def sentence2vec(self, sentence): """serialize sentence""" wordindex = [] items = sentence.strip().split() length = len(items) for word in items: wordindex.append(self.vocab[word]) return length, wordindex def word2idx(self, sentence, maxlen, max_items): """build vocab and count maxlen of sentence""" items = sentence.strip().split() if len(items) > maxlen: maxlen = len(items) max_items = items for word in items: if word not in self.vocab: self.vocab[word] = len(self.vocab) return maxlen, max_items class CornerData: def __init__(self): pass def pp_dataloader_weak(self, all_data, final_embedding): all_data_train = all_data embed = final_embedding final_embedding = torch.from_numpy(embed) train_dataloader = DataLoader( dataset=all_data_train, batch_size=config.batch_size, shuffle=True, drop_last=True, num_workers=4 ) return final_embedding, train_dataloader def weakly_train(train_data, test_pos, test_neg, embed): init_aspect = np.array(np.load("initAspect.npy")) # init_aspect = init_aspect / np.linalg.norm(init_aspect, axis=-1, keepdims=True) init_aspect = torch.from_numpy(init_aspect) PreTrainABAE = PreTrainABAE_fix(300, 24, init_aspect, embed).to(config.device) pre_trained_aspect = torch.load("AspectExtract/Aspect_Model.pkl") aspect_dict = PreTrainABAE.state_dict() pre_trained_dict = {k: v for k, v in pre_trained_aspect.items() if k in aspect_dict} aspect_dict.update(pre_trained_dict) PreTrainABAE.load_state_dict(aspect_dict) PreTrainABAE = PreTrainABAE.eval() trained_aspect = pre_trained_aspect["aspect_lookup_mat"].data run = WdeRnnEncoderFix(300, 300, 50, embed, trained_aspect).to(config.device) # params = [] # for param in run.parameters(): # if param.requires_grad: # params.append(param) # optimizer = optim.SGD(filter(lambda p: p.requires_grad, run.parameters()), lr=0.0001) optimizer = optim.SGD(filter(lambda p: p.requires_grad, run.parameters()), lr=0.0001) loss_func = torch.nn.TripletMarginLoss(margin=4.0, p=2) for epoch in range(200): run_hidden = run.initHidden(config.batch_size) loss_last = torch.tensor([0], dtype=torch.float) # TODO: remove zero_grad() optimizer.zero_grad() # run.zero_grad() for idx, sample_batch in enumerate(train_data): # now = time.time() run = run.train() input1 = sample_batch['input1'].to(config.device) input2 = sample_batch['input2'].to(config.device) input3 = sample_batch['input3'].to(config.device) aspect_info = PreTrainABAE(input1) input1[:, 1] = aspect_info aspect_info = PreTrainABAE(input2) input2[:, 1] = aspect_info aspect_info = PreTrainABAE(input3) input3[:, 1] = aspect_info out1 = run(input1, run_hidden).view(config.batch_size, 300) out2 = run(input2, run_hidden).view(config.batch_size, 300) out3 = run(input3, run_hidden).view(config.batch_size, 300) loss_last = loss_func(out1, out2, out3) loss_last.backward() optimizer.step() print('epoch {} of {}: loss : {}'.format(epoch, 500, loss_last.item())) def push(): def normalizeString(s): s = unicodeToAscii(s.lower().strip()) s = re.sub(r"([.!?\(\)\"])", r"", s) s = re.sub(r"[^0-9a-zA-Z]+", r" ", s) return s def normalize(s): # s = unicodeToAscii(s.strip()) s = re.sub(r"([\[\]\"\n])", r"", s) return s def unicodeToAscii(s): return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) lines_pos1 = open( 'data/Weakly_labeled_data_1.1M/camera_positive.csv' , encoding='utf-8').read().strip().split('\n') lines_neg1 = open( 'data/Weakly_labeled_data_1.1M/camera_negative.csv' , encoding='utf-8').read().strip().split('\n') lines_pos2 = open( 'data/Weakly_labeled_data_1.1M/cellphone_positive.csv' , encoding='utf-8').read().strip().split('\n') lines_neg2 = open( 'data/Weakly_labeled_data_1.1M/cellphone_negative.csv' , encoding='utf-8').read().strip().split('\n') lines_pos3 = open( 'data/Weakly_labeled_data_1.1M/laptop_positive.csv' , encoding='utf-8').read().strip().split('\n') lines_neg3 = open( 'data/Weakly_labeled_data_1.1M/laptop_negative.csv' , encoding='utf-8').read().strip().split('\n') lines_pos = lines_pos1 + lines_pos2 + lines_pos3 lines_neg = lines_neg1 + lines_neg2 + lines_neg3 lines = open( 'data/Labeled_data_11754/new_11754.csv' , encoding='gbk').read().strip().split('\n') pairs_classify = [normalizeString(s) for s in lines] pairs_pos = [normalizeString(s) for s in lines_pos] pairs_neg = [normalizeString(s) for s in lines_neg] vocab = {} print("=" * 100) print("Take Word To Vec") final_embedding = np.array(np.load("embed/Vector_word_embedding_all.npy")) # final_embedding = np.delete(final_embedding, 60905, 0) # print(final_embedding[60905]) maxlen = 0 bb = [] def word2idx(sentence, vocab, maxlen, bb): items = sentence.strip().split() if len(items) > maxlen: maxlen = len(items) bb = items for word in items: if word not in vocab: vocab[word] = len(vocab) return maxlen, bb for line in pairs_classify: maxlen, bb = word2idx(line, vocab, maxlen, bb) for line in pairs_pos: maxlen, bb = word2idx(line, vocab, maxlen, bb) for line in pairs_neg: maxlen, bb = word2idx(line, vocab, maxlen, bb) input_sen_1 = config.pad_idx + np.zeros((len(pairs_pos), config.maxlen)) input_sen_1 = input_sen_1.astype(np.int) input_sen_2 = config.pad_idx + np.zeros((len(pairs_neg), config.maxlen)) input_sen_2 = input_sen_2.astype(np.int) def sentence2vec(sentence, vocab, wordindex): items = sentence.strip().split() length = len(items) for word in items: wordindex.append(vocab[word]) return length, wordindex def cal_sentence_index(): for line in range(len(pairs_pos)): wordindex = [] length, wordindex = sentence2vec(pairs_pos[line], vocab, wordindex) input_sen_1[line][0] = length input_sen_1[line][1] = 10 input_sen_1[line][2:length + 2] = np.array(wordindex) for line in range(len(pairs_neg)): wordindex = [] length, wordindex = sentence2vec(pairs_neg[line], vocab, wordindex) input_sen_2[line][0] = length input_sen_2[line][1] = 10 input_sen_2[line][2:length + 2] = np.array(wordindex) return input_sen_1, input_sen_2 cal_sentence_index() # add = -1 + 2*np.random.random(300) add = np.zeros(config.embed_dim) final_embedding = np.row_stack((final_embedding, add)) np.random.shuffle(input_sen_1) np.random.shuffle(input_sen_2) input_pos_train = input_sen_1[:int(len(input_sen_1) * config.weak_sr), :] input_neg_train = input_sen_2[:int(len(input_sen_2) * config.weak_sr), :] input_pos_test = input_sen_1[int(len(input_sen_1) * config.weak_sr):, :] input_neg_test = input_sen_2[int(len(input_sen_2) * config.weak_sr):, :] def random_sample(matrix, sample_size): matrix_after = [] sample_index = np.random.randint(0, len(matrix), sample_size) for i in sample_index: # np.row_stack((matrix_after, matrix[i])) matrix_after.append(matrix[i]) return np.array(matrix_after) train_pos_1 = random_sample(input_pos_train, config.sample_size) train_pos_2 = random_sample(input_pos_train, config.sample_size) train_pos_neg = random_sample(input_neg_train, config.sample_size) train_neg_1 = random_sample(input_neg_train, config.sample_size) train_neg_2 = random_sample(input_neg_train, config.sample_size) train_neg_pos = random_sample(input_pos_train, config.sample_size) train_dim1 = np.vstack((train_pos_1, train_neg_1)) train_dim2 = np.vstack((train_pos_2, train_neg_2)) train_dim3 = np.vstack((train_pos_neg, train_neg_pos)) def read_data(dim_1, dim_2, dim_3): all_data = [] for idx in range(len(dim_1)): items = torch.from_numpy(dim_1[idx]) items1 = torch.from_numpy(dim_2[idx]) items2 = torch.from_numpy(dim_3[idx]) data = { 'input1': items, 'input2': items1, 'input3': items2 } all_data.append(data) return all_data all_data = MyDataset(read_data(train_dim1, train_dim2, train_dim3)) return all_data, final_embedding, np.array(input_pos_test[0:8000, :]), np.array(input_neg_test[0:8000, :]) def beginTrain_lstm(embedding, train_dataloader): init_aspect = np.array(np.load("initAspect.npy")) # init_aspect = init_aspect / np.linalg.norm(init_aspect, axis=-1, keepdims=True) init_aspect = torch.from_numpy(init_aspect) PreTrainABAE = PreTrainABAE_fix(300, 24, init_aspect, embedding).cuda(config.device) pre_trained_aspect = torch.load("AspectExtract/Aspect_Model.pkl") aspect_dict = PreTrainABAE.state_dict() pre_trained_dict = {k: v for k, v in pre_trained_aspect.items() if k in aspect_dict} aspect_dict.update(pre_trained_dict) PreTrainABAE.load_state_dict(aspect_dict) PreTrainABAE = PreTrainABAE.eval() trained_aspect = pre_trained_aspect["aspect_lookup_mat"].data run = WdeRnnEncoderFix(300, 300, 50, embedding, trained_aspect).cuda(config.device) # TODO: change NO.2 -> chagne optimizer initialize # params = [] # for param in run.parameters(): # if param.requires_grad: # params.append(param) # optimizer = optim.SGD(params, lr=0.0001) optimizer = optim.SGD(filter(lambda p: p.requires_grad, run.parameters()), lr=0.0001) loss_func = nn.TripletMarginLoss(margin=4.0, p=2) for epoch in range(200): run_hidden = run.initHidden(config.batch_size) loss_last = torch.tensor([0], dtype=torch.float) # TODO: add zero_grad() optimizer.zero_grad() for idx, sample_batch in enumerate(train_dataloader): # now = time.time() run = run.train() input1 = sample_batch['input1'].cuda(config.device) input2 = sample_batch['input2'].cuda(config.device) input3 = sample_batch['input3'].cuda(config.device) # if input1[:,0].item() < 3 or input2[:,0].item() < 3 or input3[:,0].item() < 3: # continue aspect_info = PreTrainABAE(input1) input1[:, 1] = aspect_info aspect_info = PreTrainABAE(input2) input2[:, 1] = aspect_info aspect_info = PreTrainABAE(input3) input3[:, 1] = aspect_info out1 = run(input1.cuda(config.device), run_hidden).view(config.batch_size, 300) out2 = run(input2.cuda(config.device), run_hidden).view(config.batch_size, 300) out3 = run(input3.cuda(config.device), run_hidden).view(config.batch_size, 300) loss_last = loss_func(out1, out2, out3) loss_last.backward() optimizer.step() # TODO: remove valid # if epoch % 2 == 0: # run.zero_grad() # run = run.eval() # valid_now = self.valid(PreTrainABAE, run) # a = round((loss_last).item(), 5) # b = round(valid_now, 5) # if valid_now > 1.13: # file_name = "pretrainmodel/" + "every2_loss_" + str(a) + "valid_" + str( # b) + ".pkl" # torch.save(run.state_dict(), file_name) # valid_compare = valid_now # # print('epoch {} of {}: TEST : {}'.format(epoch, 200, valid_now)) print('epoch {} of {}: loss : {}'.format(epoch, 200, (loss_last).item())) if __name__ == '__main__': print('current time:', time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())) '''prepare data''' # data_prepare = DataPrepare() my_loader = CornerData() # all_data, final_embedding, test_pos, test_neg = data_prepare.weakly_data_process all_data, final_embedding, test_pos, test_neg = push() embedding, train_dataloader = my_loader.pp_dataloader_weak(all_data, final_embedding) '''calculate accuracy''' weakly_train(train_dataloader, test_pos, test_neg, embedding) # beginTrain_lstm(embedding, train_dataloader)
[ "278976237@qq.com" ]
278976237@qq.com
cd1d47d99acf174779ae17c371c1608da97b648d
a0db69ddb08f229519ec89e699ffb6c575ed7bf5
/addpoint/catimg/views.py
59604eefae69f52c4c6908730313133f5b4eb650
[]
no_license
ninsgosai/photo-project
db814fe8850a87d49c98f1fa3347b5e60577a3f7
abeb5b1f00701d4716e70e1b8b0ea2815586167a
refs/heads/main
2023-01-07T01:09:52.911010
2020-11-18T09:41:04
2020-11-18T09:41:04
313,877,849
0
0
null
null
null
null
UTF-8
Python
false
false
3,939
py
from django.shortcuts import render, HttpResponseRedirect from django.contrib import messages from .models import Catimg from category.models import Category from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required # Create your views here. @login_required(login_url='login') def addci(request): cat = Category.objects.all() if request.method == 'POST': cid = request.POST['cid'] cimg = request.FILES['cimg'] cbimg = request.FILES['cbimg'] xlg = request.POST['xlg'] ylg = request.POST['ylg'] xtxt = request.POST['xtxt'] ytxt = request.POST['ytxt'] sta = request.POST['sta'] add = Catimg(cat_id_id=cid, ci_img=cimg, ci_blankimg=cbimg, x_logo=xlg, y_logo=ylg, x_txt=xtxt, y_txt=ytxt, status=sta) add.save() messages.success(request, 'Category Image Added Successfully', extra_tags='success') return HttpResponseRedirect('/ci/managecategoryimage/') # msg = {'serr':'Category Image Added Successfully'} # return render(request, 'catimg/add_catimg.html', {'err':msg, 'cat':cat, 'name': request.user}) else: # msg = {'ferr':'Please Fill All Field Either Category Image Do Not Add.'} return render(request, 'catimg/add_catimg.html', {'cat':cat, 'name': request.user}) return render(request, 'catimg/add_catimg.html', {'cat':cat, 'name': request.user}) @login_required(login_url='login') def edtci(request, eid): ecati = Catimg.objects.get(pk=eid) cat = Category.objects.all() return render(request, 'catimg/edit_catimg.html', {'eci':ecati, 'cat':cat, 'name': request.user}) @login_required(login_url='login') def updci(request, uciid): if request.method == 'POST': try: if request.FILES['cimg'] != 0 and request.FILES['cbimg'] != 0: cid = request.POST['cid'] cimg = request.FILES['cimg'] cbimg = request.FILES['cbimg'] xlg = request.POST['xlg'] ylg = request.POST['ylg'] xtxt = request.POST['xtxt'] ytxt = request.POST['ytxt'] sta = request.POST['sta'] edt = Catimg.objects.get(ci_id = uciid) edt.cat_id_id = cid edt.ci_img = cimg edt.ci_blankimg = cbimg edt.x_logo = xlg edt.y_logo = ylg edt.x_txt = xtxt edt.y_txt = ytxt edt.status = sta edt.save() except: cid = request.POST['cid'] xlg = request.POST['xlg'] ylg = request.POST['ylg'] xtxt = request.POST['xtxt'] ytxt = request.POST['ytxt'] sta = request.POST['sta'] edt = Catimg.objects.get(ci_id = uciid) edt.cat_id_id = cid edt.ci_img = edt.ci_img edt.ci_blankimg = edt.ci_blankimg edt.x_logo = xlg edt.y_logo = ylg edt.x_txt = xtxt edt.y_txt = ytxt edt.status = sta edt.save() messages.success(request, 'Category Image Updated Successfully', extra_tags='success') return HttpResponseRedirect('/ci/managecategoryimage/') messages.success(request, 'Category Image Updated Successfully', extra_tags='success') return HttpResponseRedirect('/ci/managecategoryimage/') @login_required(login_url='login') def delci(request, did): de = Catimg.objects.get(pk=did) de.delete() messages.success(request, 'Category Image Deleted Successfully', extra_tags='danger') return HttpResponseRedirect('/ci/managecategoryimage/') @login_required(login_url='login') def manci(request): cati = Catimg.objects.all() return render(request, 'catimg/man_catimg.html', {'ci': cati, 'name': request.user})
[ "69950933+ninad-goswamy@users.noreply.github.com" ]
69950933+ninad-goswamy@users.noreply.github.com
88b2d208ec0c421caa0260b3170e6bddcc6015df
c81fa8d1d83d92fc431be589243a51085beb5592
/pu/_version.py
e0861be54fda54ac92118a7d025d3297a6d8f964
[]
no_license
huyx/pu
4accdf17a9b186be68e347cbb79e3234139ed50b
f91060bb83f878f0bf17a04007cd00ad38adefb1
refs/heads/master
2021-01-10T20:11:12.292747
2019-02-19T07:25:31
2019-02-19T07:25:31
26,038,837
0
0
null
null
null
null
UTF-8
Python
false
false
43
py
# -*- coding: utf-8 -*- version = '0.20.0'
[ "ycyuxin@gmail.com" ]
ycyuxin@gmail.com
b5088b61fa95236e1bbb03e7917ba62faf25de1b
f836b1b2b8914871c27cf1123e67d1956c127a3f
/setup.py
c3f0f992200fd23e7c3a0f36bf1e8ec2be432fdf
[]
no_license
chengxinGuo/OODA-FLOW-Bioimage-Pipeline
62b98ada347c071b05c5443417775e85c981ca9d
b93fb5ffaa2c11221a09ab23e75c54b9f8710e43
refs/heads/master
2022-11-19T05:17:21.969867
2020-07-14T06:48:13
2020-07-14T06:48:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,735
py
# # Copyright (C) 2016-2017 by Yuan Lufeng # See license.txt for full license and copyright notice. # # Authors: Yuan Lufeng # # setup.py # # Created on: Dec 11th, 2016 # Author: Yuan Lufeng # ##\brief this version can complie the code include cuda, C++, python and cython. # NAME="FCDLR-original" DESCRIPTION = "Fast Cell Division and Lineage Reconstruction pipeline" LONG_DESCRIPTION = '' MAINTAINER = 'Yuan Lufeng' MAINTAINER_EMAIL = 'yuanlufeng@ncic.ac.cn' URL = 'https://github.com/septicmk/lambdaimage' LICENSE = 'BSD' DOWNLOAR_URL = 'https://github.com/septicmk/lambdaimage' #with open('lambdaimage/__init__.py') as f: # for line in f: # if line.startswith('__version__'): # VERSION = line.strip().split()[-1][1:-1] # break #with open('requirements.txt') as f: # REQUIRE = [l.strip() for l in f.readlines() if l] if __name__ == '__main__': import os from os.path import join as pjoin import subprocess from setuptools import find_packages, setup from setuptools.extension import Extension from setuptools.command.build_ext import build_ext import numpy def find_in_path(name, path): "Find a file in a search path" #adapted fom http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/ for dir in path.split(os.pathsep): binpath = pjoin(dir, name) if os.path.exists(binpath): return os.path.abspath(binpath) return None def locate_cuda(): """Locate the CUDA environment on the system Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64' and values giving the absolute path to each directory. Starts by looking for the CUDAHOME env variable. If not found, everything is based on finding 'nvcc' in the PATH. """ # first check if the CUDAHOME env variable is in use if 'CUDAHOME' in os.environ: home = os.environ['CUDAHOME'] nvcc = pjoin(home, 'bin', 'nvcc') else: # otherwise, search the PATH for NVCC nvcc = find_in_path('nvcc', os.environ['PATH']) if nvcc is None: raise EnvironmentError('The nvcc binary could not be ' 'located in your $PATH. Either add it to your path, or set $CUDAHOME') home = os.path.dirname(os.path.dirname(nvcc)) cudaconfig = {'home':home, 'nvcc':nvcc, 'include': pjoin(home, 'include'), 'lib64': pjoin(home, 'lib64')} for k, v in cudaconfig.iteritems(): if not os.path.exists(v): raise EnvironmentError('The CUDA %s path could not be located in %s' % (k, v)) return cudaconfig CUDA = locate_cuda() def customize_compiler_for_nvcc(self): """inject deep into distutils to customize how the dispatch to gcc/nvcc works. If you subclass UnixCCompiler, it's not trivial to get your subclass injected in, and still have the right customizations (i.e. distutils.sysconfig.customize_compiler) run on it. So instead of going the OO route, I have this. Note, it's kindof like a wierd functional subclassing going on.""" # tell the compiler it can processes .cu self.src_extensions.append('.cu') # save references to the default compiler_so and _comple methods default_compiler_so = self.compiler_so super = self._compile # now redefine the _compile method. This gets executed for each # object but distutils doesn't have the ability to change compilers # based on source extension: we add it. def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts): if os.path.splitext(src)[1] == '.cu': # use the cuda for .cu files self.set_executable('compiler_so', CUDA['nvcc']) # use only a subset of the extra_postargs, which are 1-1 translated # from the extra_compile_args in the Extension class postargs = extra_postargs['nvcc'] else: postargs = extra_postargs['gcc'] super(obj, src, ext, cc_args, postargs, pp_opts) # reset the default compiler_so, which we might have changed for cuda self.compiler_so = default_compiler_so # inject our redefined _compile method into the class self._compile = _compile # run the customize_compiler class custom_build_ext(build_ext): def build_extensions(self): customize_compiler_for_nvcc(self.compiler) build_ext.build_extensions(self) extensions =[ Extension("_tracking_GMM", sources=["_tracking_GMM.pyx","TrackingGaussianMixtureModel.cpp","GaussianMixtureModel.cpp","../Utils/parseConfigFile.cpp","responsibilities.cpp","variationalInference.cpp","../external/xmlParser2/xmlParser.cpp","../external/Nathan/tictoc.c","../UtilsCUDA/knnCuda.cu","../UtilsCUDA/GMEMupdateCUDA.cu","../constants.cpp","../temporalLogicalRules/temporalLogicalRules.cpp","../UtilsCUDA/3DEllipticalHaarFeatures/gentleBoost/gentleBoost.cpp","../temporalLogicalRules/trackletCalculation.cpp","cellDivision.cpp","supportFunctionsMain.cpp","../nucleiChSvWshedPBC/hierarchicalSegmentation.cpp","backgroundDetectionInterface.cpp","kdtree.cpp","../backgroundDetection/backgroundClassifier.cpp","../temporalLogicalRules/supervoxel.cpp","../temporalLogicalRules/localGeometricDescriptor.cpp","../Utils/WishartCDF.cpp","../Utils/MultinormalCDF.cpp","../temporalLogicalRules/nuclei.cpp","../temporalLogicalRules/lineageHyperTree.cpp","../temporalLogicalRules/lineage.cpp","../temporalLogicalRules/GaussianMixtureModel_Redux.cpp","../../build/mylib/array.c","../../build/mylib/mylib.c","../../build/mylib/image.c","../../build/mylib/histogram.c","../../build/mylib/region.c","../../build/mylib/MY_TIFF/tiff.io.c","../../build/mylib/MY_TIFF/tiff.image.c","../../build/mylib/water.shed.c","../../build/mylib/connectivity.c","../../build/mylib/cdf.c","../Utils/CSparse.c","../../build/mylib/draw.c","../../build/mylib/level.set.c","../../build/mylib/linear.algebra.c","../../build/mylib/svg.c","../../build/mylib/filters.c","../../build/mylib/paths.c","../../build/mylib/swc.c","../../build/mylib/fct.min.c","../../build/mylib/utilities.c","../../build/mylib/fct.root.c","../../build/mylib/hash.c","../../build/mylib/snake.c","../temporalLogicalRules/knnCUDA/knnCuda.cu","../external/gsl/gamma.c","../external/gsl/psi.c","../external/gsl/trig.c","../external/gsl/math.c","../external/gsl/exp.c","../external/gsl/zeta.c","../external/gsl/elementary.c","../external/gsl/log.c","../external/gsl/infnan.c","../external/gsl/error.c","../external/gsl/stream.c","../temporalLogicalRules/sparseHungarianAlgorithm/sparseHungarianAlgorithm.cpp","../temporalLogicalRules/sparseHungarianAlgorithm/external/munkres-cpp-master/src/munkres.cpp","../temporalLogicalRules/lineageWindowFeatures.cpp","../external/gsl/fdiv.c"], #sources=["_tracking_GMM.pyx","TrackingGaussianMixtureModel.cpp","GaussianMixtureModel.cpp","../Utils/parseConfigFile.cpp","responsibilities.cpp","variationalInference.cpp","../external/xmlParser2/xmlParser.cpp","../external/Nathan/tictoc.c","../UtilsCUDA/knnCuda.cu","../UtilsCUDA/GMEMupdateCUDA.cu","../constants.cpp","../temporalLogicalRules/temporalLogicalRules.cpp","../UtilsCUDA/3DEllipticalHaarFeatures/gentleBoost/gentleBoost.cpp","../temporalLogicalRules/trackletCalculation.cpp","cellDivision.cpp","supportFunctionsMain.cpp","../nucleiChSvWshedPBC/hierarchicalSegmentation.cpp","backgroundDetectionInterface.cpp","kdtree.cpp","../backgroundDetection/backgroundClassifier.cpp","../temporalLogicalRules/supervoxel.cpp","../temporalLogicalRules/localGeometricDescriptor.cpp","../Utils/WishartCDF.cpp","../Utils/MultinormalCDF.cpp","../temporalLogicalRules/nuclei.cpp","../temporalLogicalRules/lineageHyperTree.cpp","../temporalLogicalRules/lineage.cpp","../temporalLogicalRules/GaussianMixtureModel_Redux.cpp","../../build2/mylib/array.c","../../build2/mylib/mylib.c","../../build2/mylib/image.c","../../build2/mylib/histogram.c","../../build2/mylib/region.c","../../build2/mylib/MY_TIFF/tiff.io.c","../../build2/mylib/MY_TIFF/tiff.image.c","../../build2/mylib/water.shed.c","../../build2/mylib/connectivity.c","../../build2/mylib/cdf.c","../Utils/CSparse.c","../../build2/mylib/draw.c","../../build2/mylib/level.set.c","../../build2/mylib/linear.algebra.c","../../build2/mylib/svg.c","../../build2/mylib/filters.c","../../build2/mylib/paths.c","../../build2/mylib/swc.c","../../build2/mylib/fct.min.c","../../build2/mylib/utilities.c","../../build2/mylib/fct.root.c","../../build2/mylib/hash.c","../../build2/mylib/snake.c","../temporalLogicalRules/knnCUDA/knnCuda.cu","../external/gsl/gamma.c","../external/gsl/psi.c","../external/gsl/trig.c","../external/gsl/math.c","../external/gsl/exp.c","../external/gsl/zeta.c","../external/gsl/elementary.c","../external/gsl/log.c","../external/gsl/infnan.c","../external/gsl/error.c","../external/gsl/stream.c","../temporalLogicalRules/sparseHungarianAlgorithm/sparseHungarianAlgorithm.cpp","../temporalLogicalRules/sparseHungarianAlgorithm/external/munkres-cpp-master/src/munkres.cpp","../UtilsCUDA/3DEllipticalHaarFeatures/AnnotationEllipsoid.cpp"], #sources=["_tracking_GMM.pyx","TrackingGaussianMixtureModel.cpp","GaussianMixtureModel.cpp","../Utils/parseConfigFile.cpp","responsibilities.cpp","variationalInference.cpp","../external/xmlParser2/xmlParser.cpp","../external/Nathan/tictoc.c","../UtilsCUDA/knnCuda.cu","../UtilsCUDA/GMEMupdateCUDA.cu","../constants.cpp","../temporalLogicalRules/temporalLogicalRules.cpp","../UtilsCUDA/3DEllipticalHaarFeatures/EllipticalHaarFeatures.cpp","../UtilsCUDA/3DEllipticalHaarFeatures/EllipticalHaarFeatures.cu","../UtilsCUDA/3DEllipticalHaarFeatures/gentleBoost/gentleBoost.cpp","../temporalLogicalRules/trackletCalculation.cpp","cellDivision.cpp","supportFunctionsMain.cpp","../nucleiChSvWshedPBC/hierarchicalSegmentation.cpp","backgroundDetectionInterface.cpp","kdtree.cpp","../backgroundDetection/backgroundClassifier.cpp","../temporalLogicalRules/supervoxel.cpp","../temporalLogicalRules/localGeometricDescriptor.cpp","../Utils/WishartCDF.cpp","../Utils/MultinormalCDF.cpp","../temporalLogicalRules/nuclei.cpp","../temporalLogicalRules/lineageHyperTree.cpp","../temporalLogicalRules/lineage.cpp","../temporalLogicalRules/GaussianMixtureModel_Redux.cpp","../../build2/mylib/array.c","../../build2/mylib/mylib.c","../../build2/mylib/image.c","../../build2/mylib/histogram.c","../../build2/mylib/region.c","../../build2/mylib/MY_TIFF/tiff.io.c","../../build2/mylib/MY_TIFF/tiff.image.c","../../build2/mylib/water.shed.c","../../build2/mylib/connectivity.c","../../build2/mylib/cdf.c","../Utils/CSparse.c","../../build2/mylib/draw.c","../../build2/mylib/level.set.c","../../build2/mylib/linear.algebra.c","../../build2/mylib/svg.c","../../build2/mylib/filters.c","../../build2/mylib/paths.c","../../build2/mylib/swc.c","../../build2/mylib/fct.min.c","../../build2/mylib/utilities.c","../../build2/mylib/fct.root.c","../../build2/mylib/hash.c","../../build2/mylib/snake.c","../temporalLogicalRules/knnCUDA/knnCuda.cu","../external/gsl/gamma.c","../external/gsl/psi.c","../external/gsl/trig.c","../external/gsl/math.c","../external/gsl/exp.c","../external/gsl/zeta.c","../external/gsl/elementary.c","../external/gsl/log.c","../external/gsl/infnan.c","../external/gsl/error.c","../external/gsl/stream.c","../temporalLogicalRules/sparseHungarianAlgorithm/sparseHungarianAlgorithm.cpp","../temporalLogicalRules/sparseHungarianAlgorithm/external/munkres-cpp-master/src/munkres.cpp","../UtilsCUDA/3DEllipticalHaarFeatures/AnnotationEllipsoid.cpp"], #sources=["_tracking_GMM.pyx","TrackingGaussianMixtureModel.cpp","GaussianMixtureModel.cpp","../Utils/parseConfigFile.cpp","responsibilities.cpp","variationalInference.cpp","../external/xmlParser2/xmlParser.cpp","../external/Nathan/tictoc.c","../UtilsCUDA/knnCuda.cu","../UtilsCUDA/GMEMupdateCUDA.cu","../constants.cpp","../temporalLogicalRules/temporalLogicalRules.cpp","../UtilsCUDA/3DEllipticalHaarFeatures/EllipticalHaarFeatures.cu","../UtilsCUDA/3DEllipticalHaarFeatures/gentleBoost/gentleBoost.cpp","../temporalLogicalRules/trackletCalculation.cpp","cellDivision.cpp","supportFunctionsMain.cpp","../nucleiChSvWshedPBC/hierarchicalSegmentation.cpp","backgroundDetectionInterface.cpp","kdtree.cpp","../backgroundDetection/backgroundClassifier.cpp","../temporalLogicalRules/supervoxel.cpp","../temporalLogicalRules/localGeometricDescriptor.cpp","../Utils/WishartCDF.cpp","../Utils/MultinormalCDF.cpp","../temporalLogicalRules/nuclei.cpp","../temporalLogicalRules/lineageHyperTree.cpp","../temporalLogicalRules/GaussianMixtureModel_Redux.cpp","../../build2/mylib/array.c","../../build2/mylib/mylib.c","../../build2/mylib/image.c","../../build2/mylib/histogram.c","../../build2/mylib/region.c","../../build2/mylib/MY_TIFF/tiff.io.c","../../build2/mylib/MY_TIFF/tiff.image.c","../../build2/mylib/water.shed.c","../../build2/mylib/connectivity.c","../../build2/mylib/cdf.c","../Utils/CSparse.c","../../build2/mylib/draw.c","../../build2/mylib/level.set.c","../../build2/mylib/fft.c","../../build2/mylib/linear.algebra.c","../../build2/mylib/svg.c","../../build2/mylib/filters.c","../../build2/mylib/paths.c","../../build2/mylib/swc.c","../../build2/mylib/fct.min.c","../../build2/mylib/utilities.c","../../build2/mylib/fct.root.c","../../build2/mylib/hash.c","../../build2/mylib/snake.c"], #sources=["_tracking_GMM.pyx","TrackingGaussianMixtureModel.cpp","GaussianMixtureModel.cpp","../Utils/parseConfigFile.cpp","responsibilities.cpp","variationalInference.cpp","../external/xmlParser2/xmlParser.cpp","../external/Nathan/tictoc.c","../UtilsCUDA/knnCuda.cu","../UtilsCUDA/GMEMupdateCUDA.cu","../constants.cpp","../temporalLogicalRules/temporalLogicalRules.cpp","../UtilsCUDA/3DEllipticalHaarFeatures/EllipticalHaarFeatures.cu","../UtilsCUDA/3DEllipticalHaarFeatures/gentleBoost/gentleBoost.cpp","../temporalLogicalRules/trackletCalculation.cpp","cellDivision.cpp","supportFunctionsMain.cpp","../nucleiChSvWshedPBC/hierarchicalSegmentation.cpp","backgroundDetectionInterface.cpp","kdtree.cpp","../backgroundDetection/backgroundClassifier.cpp","../temporalLogicalRules/supervoxel.cpp","../temporalLogicalRules/localGeometricDescriptor.cpp","../Utils/WishartCDF.cpp","../Utils/MultinormalCDF.cpp","../temporalLogicalRules/nuclei.cpp","../temporalLogicalRules/lineageHyperTree.cpp","../temporalLogicalRules/GaussianMixtureModel_Redux.cpp","../../build2/mylib/array.c","../../build2/mylib/mylib.c","../../build2/mylib/image.c","../../build2/mylib/histogram.c","../../build2/mylib/region.c","../../build2/mylib/MY_TIFF/tiff.io.c","../../build2/mylib/MY_TIFF/tiff.image.c","../../build2/mylib/water.shed.c","../../build2/mylib/connectivity.c","../../build2/mylib/cdf.c","../Utils/CSparse.c","../../build2/mylib/draw.c","../../build2/mylib/level.set.c","../../build2/mylib/fft.c","../../build2/mylib/linear.algebra.c","../../build2/mylib/svg.c","../../build2/mylib/filters.c","../../build2/mylib/paths.c","../../build2/mylib/swc.c","../../build2/mylib/fct.min.c","../../build2/mylib/utilities.c","../../build2/mylib/fct.root.c","../../build2/mylib/hash.c","../../build2/mylib/snake.c","../temporalLogicalRules/mylib/MY_FFT/fft.D.c"], #sources=["_tracking_GMM.pyx","TrackingGaussianMixtureModel.cpp","GaussianMixtureModel.cpp","../Utils/parseConfigFile.cpp","responsibilities.cpp","variationalInference.cpp","../external/xmlParser2/xmlParser.cpp","../external/Nathan/tictoc.c","../UtilsCUDA/knnCuda.cu","../UtilsCUDA/GMEMupdateCUDA.cu","../constants.cpp","../temporalLogicalRules/temporalLogicalRules.cpp","../UtilsCUDA/3DEllipticalHaarFeatures/EllipticalHaarFeatures.cu","../UtilsCUDA/3DEllipticalHaarFeatures/gentleBoost/gentleBoost.cpp","../temporalLogicalRules/trackletCalculation.cpp","cellDivision.cpp","supportFunctionsMain.cpp","../nucleiChSvWshedPBC/hierarchicalSegmentation.cpp","backgroundDetectionInterface.cpp","kdtree.cpp","../backgroundDetection/backgroundClassifier.cpp","../temporalLogicalRules/supervoxel.cpp","../temporalLogicalRules/localGeometricDescriptor.cpp","../Utils/WishartCDF.cpp","../Utils/MultinormalCDF.cpp","../temporalLogicalRules/nuclei.cpp","../temporalLogicalRules/lineageHyperTree.cpp","../temporalLogicalRules/GaussianMixtureModel_Redux.cpp","../../build2/mylib/array.c","../../build2/mylib/mylib.c","../../build2/mylib/image.c","../../build2/mylib/histogram.c","../../build2/mylib/region.c","../../build2/mylib/MY_TIFF/tiff.io.c","../../build2/mylib/MY_TIFF/tiff.image.c","../../build2/mylib/water.shed.c","../../build2/mylib/connectivity.c","../../build2/mylib/cdf.c","../Utils/CSparse.c","../../build2/mylib/draw.c","../../build2/mylib/level.set.c","../../build2/mylib/fft.c","../../build2/mylib/linear.algebra.c","../../build2/mylib/svg.c","../../build2/mylib/filters.c","../../build2/mylib/paths.c","../../build2/mylib/swc.c","../../build2/mylib/fct.min.c","../../build2/mylib/utilities.c","../../build2/mylib/fct.root.c","../../build2/mylib/hash.c","../../build2/mylib/snake.c","../temporalLogicalRules/mylib/MY_FFT/fft.D.c","../temporalLogicalRules/mylib/MY_FFT/fft.F.c"], #sources=["_tracking_GMM.pyx","TrackingGaussianMixtureModel.cpp","GaussianMixtureModel.cpp","../Utils/parseConfigFile.cpp","responsibilities.cpp","variationalInference.cpp","../../build2/mylib/array.c","../../build2/mylib/mylib.c","../../build2/mylib/utilities.c","../../build2/mylib/image.c","../../build2/mylib/MY_TIFF/tiff.image.c","../../build2/mylib/MY_TIFF/tiff.io.c","../../build2/mylib/linear.algebra.c","selectForeground.cpp","watershedSegmentation.cpp","../temporalLogicalRules/supervoxel.cpp","../constants.cpp","set_union.c","hierarchicalSegmentation.cpp","../temporalLogicalRules/localGeometricDescriptor.cpp","agglomerateClustering.cpp","MedianFilter2D/medianFilter2D.cpp","CUDAmedianFilter2D/medianFilter2D.cu"], #sources=["_process_stack.pyx","ProcessStack.cpp","IO.cpp","../Utils/parseConfigFile.cpp","../temporalLogicalRules/mylib/array.p"], #sources=["_process_stack.pyx","ProcessStack.cpp","IO.cpp","../Utils/parseConfigFile.cpp","../temporalLogicalRules/supervoxel.cpp"], #sources=["_process_stack.pyx","ProcessStack.cpp","IO.cpp","hierarchicalSegmentation.cpp","../Utils/parseConfigFile.cpp","watershedPersistanceAgglomeration.cpp","watershedSegmentation.cpp","agglomerateClustering.cpp"], include_dirs=[numpy.get_include(),".","..","../temporalLogicalRules/","../nucleiChSvWshedPBC","../mylib/","../backgroundDetection","../UtilsCUDA/3DEllipticalHaarFeatures","../temporalLogicalRules/mylib/MY_TIFF","../temporalLogicalRules/knnCUDA","../external/gsl/","../temporalLogicalRules/sparseHungarianAlgorithm","../temporalLogicalRules/sparseHungarianAlgorithm/external/munkres-cpp-master/src",CUDA['include']], #include_dirs=[numpy.get_include(),".","..","../temporalLogicalRules/","../temporalLogicalRules/mylib/","../temporalLogicalRules/mylib/MY_TIFF","MedianFilter2D",CUDA['include']], language="c++", #library_dirs = [CUDA['lib64']], library_dirs = ["../../build/UtilsCUDA/3DEllipticalHaarFeatures",CUDA['lib64']], #libraries = ['cudart'], libraries = ['cudart','cusparse','cuda','ellipticalHaarFeatures'], #libraries = ['cudart','cusparse','cuda'], #libraries = ['cudart','cusparse'], #libraries = ['cudart','cusparse','myfft'], #libraries = ['cudart','cusparse','libmyfft.a'], runtime_library_dirs = [CUDA['lib64']], #extra_compile_args=["-std=c++0x","-pthread"], #extra_link_args=["-std=c++0x","-pthread"]), extra_compile_args={'gcc':["-std=c++0x"], 'nvcc':['-arch=sm_35', '--ptxas-options=-v', '-c', '--compiler-options', "'-fPIC'"]}, extra_link_args=["-std=c++0x"]), #Extension("lambdatgmm.nucleiSegmentation._io", # sources=["lambdatgmm/nucleiSegmentation/_io.pyx","lambdatgmm/nucleiSegmentation/IO.cpp"], # #sources=["lambdatgmm/nucleiSegmentation/_io.pyx","lambdatgmm/nucleiSegmentation/IO.h"], # include_dirs=[numpy.get_include()], # language="c++"), #Extension("lambdaimage.udf._trans", # sources=["lambdaimage/udf/_trans.pyx","lambdaimage/udf/_trans_c.c"], # include_dirs=[numpy.get_include()]), #Extension("lambdaimage.udf._update", # sources=["lambdaimage/udf/_update.pyx", "lambdaimage/udf/_update_c.c"], # include_dirs=[numpy.get_include()]), #Extension("lambdaimage.udf._moment", # sources=["lambdaimage/udf/_moment.pyx"], # inlcude_dirs=[numpy.get_include()]), #Extension("lambdaimage.udf._intensity", # sources=["lambdaimage/udf/_intensity.pyx"], # include_dirs=[numpy.get_include()]), #Extension("lambdaimage.udf._phansalkar", # sources=["lambdaimage/udf/_phansalkar.pyx", "lambdaimage/udf/_phansalkar_c.c"], # include_dirs=[numpy.get_include()]), ] from Cython.Build import cythonize extensions = cythonize(extensions) setup( name = NAME, description = DESCRIPTION, long_description = LONG_DESCRIPTION, maintainer = MAINTAINER, maintainer_email = MAINTAINER_EMAIL, url=URL, license = LICENSE, download_url = DOWNLOAR_URL, #version = VERSION, classifiers = [ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: C', 'Programming Language :: C++', 'Programming Language :: Python', 'Topic :: Software Development :: Libraries', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', ], #install_requires = REQUIRE, packages = find_packages(), #cmdclass = {'build_ext': build_ext}, cmdclass={'build_ext': custom_build_ext}, ext_modules = extensions # since the package has c code, the egg cannot be zipped #zip_safe=False )
[ "noreply@github.com" ]
chengxinGuo.noreply@github.com
ea41937cfdb5d0ddde38badacad944b72cfbfb7b
5a54c1e95578a3a073fe592c86621b69114e3a06
/env/lib/python3.7/types.py
13b39e3e356da4dafe288d71839337c8e5e2a300
[ "MIT" ]
permissive
fepas/django-react
a0c66e51d92652f8e22cdbf19b5699f4d9aa00da
6da3fc9d33af23c96ae018df90eaff9a7b6b5f37
refs/heads/master
2020-04-29T18:20:13.954071
2019-03-18T17:09:12
2019-03-18T17:09:12
176,320,793
0
0
null
null
null
null
UTF-8
Python
false
false
44
py
/home/fepas/anaconda3/lib/python3.7/types.py
[ "fepas.unb@gmail.com" ]
fepas.unb@gmail.com
5b45e5fcdbafb967bebb0e2376695c8056505900
87b9119646ff00e180584818869bbd49ba0bad8c
/dashboards/urls.py
cc16ec193597f943435b2649df1641b8e925fd77
[]
no_license
d40a/project1
f47944dcd7700a1e9df8ae42e46ce929d18d5624
b4c3ea1a21a6988a9ec7e10a3801e2be53d74d5f
refs/heads/master
2021-06-10T22:23:46.997810
2017-02-03T18:22:42
2017-02-03T18:22:42
80,071,548
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index), url(r'^get_data/', views.get_data), url(r'^details_of_test/', views.details_of_test), ]
[ "dimaa@google.com" ]
dimaa@google.com
6b3d429131abadcf9ca92e14ad498d833ecf9d6e
7df64cc23fba406829ebb04b54974dbf4dd26318
/simulated_pick/models/simulated_pick_product.py
2137b75490722ee9c85a30667aa96665bbdaca8a
[]
no_license
sendalpegat/azi-odoo-modules
feb5c379b49afb07df9f6642416e2557a71040db
9d6eaa43465492291c5bd6b98876fe893d2fd250
refs/heads/master
2023-05-07T02:57:45.738424
2019-12-20T20:44:40
2019-12-20T20:44:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,213
py
# -*- coding: utf-8 -*- # (c) 2014 scosist # License AGPL-3 - See http://www.gnu.org/licenses/agpl-3.0.html from odoo import models, fields, api import odoo.addons.decimal_precision as dp class SimulatedPickProduct(models.TransientModel): _name = 'simulated.pick.product' sim_prod_id = fields.Many2one( comodel_name='product.product', string='Simulated Product', required=True, ondelete="no action", index=True) product_id = fields.Many2one( comodel_name='product.product', string='Product', required=True, ondelete="no action", index=True) product_qty = fields.Float( string="Req'd Qty", digits=dp.get_precision('Product Unit of Measure'), required=True) on_hand_before = fields.Float( string='On-Hand Before', digits=dp.get_precision('Product Unit of Measure'), required=True) on_hand_after = fields.Float( string='On-Hand After', digits=dp.get_precision('Product Unit of Measure'), required=True) short = fields.Float( string='Short', digits=dp.get_precision('Product Unit of Measure'), required=True) proc_action = fields.Char(string='Action') routing_detail = fields.Char(string="Routing Detail") categ_id = fields.Many2one( comodel_name='product.category', related='product_id.categ_id', string='Internal Category', store=True) product_uom = fields.Many2one( comodel_name='product.uom', related='product_id.uom_id', string='UoM', store=True) default_supplier_id = fields.Many2one( comodel_name='res.partner', string='Supplier', compute='_compute_default_supplier', readonly=True, index=True, store=True) @api.depends('product_id') def _compute_default_supplier(self): for line in self: line.default_supplier_id = line.product_id.seller_ids and line.product_id.seller_ids[0].name or False @api.multi def action_material_analysis(self): self.ensure_one() return self.product_id.action_material_analysis()
[ "matt454357@gmail.com" ]
matt454357@gmail.com
e765d4fa18aeaa069f1c020736556de7f79b88a7
255f0c22b05deda164f9f5e5e08722ac41844d3e
/src/plot_logs.py
a759ab631b10ef5301933f05a7af30ef0826dc95
[]
no_license
culring/nDES
86ff0619c876117e87c103f1b28db407c414e9a5
c2f371a46356fa1f494fe42e6be67a4938e4765e
refs/heads/master
2023-08-10T15:35:26.692884
2020-12-09T17:07:45
2020-12-09T17:07:45
400,531,824
0
0
null
null
null
null
UTF-8
Python
false
false
1,977
py
import numpy as np import matplotlib.pyplot as plt def get_plot_style(fig_size_multiplier: float = 1.5): """ Get style parameters for :mod:`matplotlib`. Args: fig_size_multiplier: Figure size multiplier. Returns: Dictionary of style parameters which can be used to alter :data:`matplotlib.rcParams` dictionary. """ # golden ratio fig_width = 6.750 * fig_size_multiplier fig_height = fig_width / 1.618 params = { 'axes.labelsize': 10, 'legend.fontsize': 10, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'text.usetex': False, 'figure.figsize': [fig_width, fig_height], 'savefig.bbox': 'tight', 'savefig.transparent': False } return params def set_grid(axis): """Set a grid on the axis. Args: axis: Axis on which the grid will be set. Returns: Axis with set grid. """ axis.spines['top'].set_visible(False) axis.spines['right'].set_visible(False) axis.spines['left'].set_visible(False) axis.spines['bottom'].set_visible(False) axis.get_xaxis().tick_bottom() axis.get_yaxis().tick_left() axis.tick_params(axis='x', direction='out') axis.tick_params(axis='y', direction='out') # offset the spines for spine in axis.spines.values(): spine.set_position(('outward', 5)) # put the grid behind axis.set_axisbelow(True) axis.grid(color="0.9", linestyle='-', linewidth=1) return axis plt.rcParams.update(get_plot_style(2.5)) if __name__ == "__main__": fig, ax = plt.subplots() for i in ['4', '8', '16']: log = np.load(f'log_{i}k_fixed.npy') log = np.clip(log, 0., 3.) x = np.linspace(0, 500000, num=len(log)) ax.plot(x, log, label=(r'$\lambda$ = ' + f'{i}k')) ax.legend() ax.set_xlabel('Epoch') ax.set_ylabel('Log loss') ax = set_grid(ax) # plt.show() fig.savefig('logloss_lambda_des.png')
[ "fuine@riseup.net" ]
fuine@riseup.net
d04a8bf3cfa899b41ec2c4abea2d088d9706e9cf
fd16ccc7c5576a2f1921bcd9a10d7a157566190e
/Source/server/SocketServer/TestSocket/CardsPattern/Mode_AnyOutRange.py
c5d7c210a9ce1bc7f5b347f6913d21ec02edc4e3
[]
no_license
willy2358/lxqenjoy
5469b2b8cf615a43ae777a841156523a8bf0564b
8d72d76497b21996e72cf97aa4bb7a5fdf6a03be
refs/heads/dev
2021-01-02T22:40:16.346181
2018-10-17T14:34:28
2018-10-17T14:34:28
99,359,908
0
1
null
2018-10-03T13:47:34
2017-08-04T16:12:19
Python
UTF-8
Python
false
false
410
py
from CardsPattern.Mode import Mode class Mode_AnyOutRange(Mode): """description of class""" def __init__(self, start, end, **kwargs): self.__start = start self.__end = end return super().__init__(**kwargs) def is_match(self, faces): for f in faces: if f < self.__start or f > self.__end: return True return True
[ "willy2358@139.com" ]
willy2358@139.com
53b326c9ddfedcdcf23fa90a9cb66454161f8125
5f65582119800ab9860d401a2ad7d494a0f1bbde
/Learning/Warmups/PQ_Countdown/Level1.py
8531a15d3cd19d94adae6f12fc025342235df7c6
[]
no_license
CVHS-TYM/Marpaung_Story
dad965a80b8c563fe8a4f7cda04935cc353bd56f
85bf1b58ca5247303474888e7fefefba55f185f9
refs/heads/master
2020-03-28T11:03:36.416489
2018-09-27T14:28:47
2018-09-27T14:28:47
148,173,106
0
0
null
null
null
null
UTF-8
Python
false
false
36
py
for i in range (11): print(10-i)
[ "timothymar.21461@redlandsschools.net" ]
timothymar.21461@redlandsschools.net
271b53908f50313b75ff7927ab6fb2b4705c1c7f
043048ecdfd1ddb91c2364b56986aceb2f38eb2e
/vilmedic/networks/models/summarization/SumHugMulti.py
fefc60e55237dd2e6015b67ec50daaf4325d3061
[ "MIT" ]
permissive
Ascensiony/vilmedic
09fa566b6ee11f57e3798945b56d2948ae0fabec
c1d4c1b893e65d0adab828570752f343742ad5af
refs/heads/main
2023-08-11T17:17:30.975359
2021-09-15T22:57:59
2021-09-15T22:57:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,942
py
import torch.nn as nn import torch from vilmedic.networks.blocks.huggingface.encoder_decoder.evaluation import evaluation from vilmedic.networks.models.utils import get_n_params # v4.3.2 from transformers.modeling_outputs import Seq2SeqLMOutput from vilmedic.networks.blocks.huggingface.encoder_decoder.encoder_decoder_model import EncoderDecoderModel class MultimodalEnc(nn.Module): def __init__(self, encoder, cnn): super().__init__() self.encoder = encoder cnn_func = cnn.pop('proto') self.visual_projection = nn.Linear(cnn.pop("visual_embedding_dim"), self.encoder.config.hidden_size) self.cnn = eval(cnn_func)(**cnn) def forward(self, input_ids, images, **kwargs): # Encoder encoder_outputs = self.encoder(input_ids, **kwargs) # CNN with torch.no_grad(): visual_features = self.cnn(images.cuda()) # Add visual attribute to encoder_outputs visual_features = self.visual_projection(visual_features) encoder_outputs.visual_features = visual_features return encoder_outputs def train(self, mode: bool = True): self.training = mode for module in self.children(): module.train(mode) self.cnn.train(False) return self class MultimodalEncDec(EncoderDecoderModel): def __init__(self, encoder, decoder, cnn, **kwargs): enc_dec = EncoderDecoderModel.from_encoder_decoder_pretrained(encoder.pop('proto'), decoder.pop('proto')) super().__init__(encoder=enc_dec.encoder, decoder=enc_dec.decoder, config=enc_dec.config) self.encoder = MultimodalEnc(self.encoder, cnn) # beam param self.to_tile = ["last_hidden_state", "visual_features"] def forward( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} # Encoder encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_encoder, ) visual_features = encoder_outputs.visual_features # Concat modalities encoder_hidden_states = torch.cat((encoder_outputs.last_hidden_state, visual_features), dim=1) # update mask accordingly image_mask = torch.ones( visual_features.size(-2), device=visual_features.device ).expand(visual_features.size()[:-1]).long() attention_mask = torch.cat((attention_mask, image_mask), dim=-1) # Decode kwargs_decoder = { argument[len("decoder_"):]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, inputs_embeds=decoder_inputs_embeds, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, **kwargs_decoder, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=decoder_outputs.loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class SumHugMulti(nn.Module): def __init__(self, encoder, decoder, cnn, **kwargs): super().__init__() self.cnn = eval(cnn.pop('proto'))(**cnn) self.visual_projection = nn.Linear(cnn.pop("visual_embedding_dim"), self.encoder.config.hidden_size) self.enc_dec = EncoderDecoderModel(encoder, decoder) self.enc = self.enc_dec.enc # Evaluation self.eval_func = evaluation self.enc_dec.to_tile = ["last_hidden_state", "visual_features"] self.bos_token_id = self.enc_dec.dec.config.bos_token_id self.eos_token_id = self.enc_dec.dec.config.eos_token_id self.pad_token_id = self.enc_dec.dec.config.pad_token_id def forward( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} # Encoder encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_encoder, ) visual_features = encoder_outputs.visual_features # Concat modalities encoder_hidden_states = torch.cat((encoder_outputs.last_hidden_state, visual_features), dim=1) # update mask accordingly image_mask = torch.ones( visual_features.size(-2), device=visual_features.device ).expand(visual_features.size()[:-1]).long() attention_mask = torch.cat((attention_mask, image_mask), dim=-1) # Decode kwargs_decoder = { argument[len("decoder_"):]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, inputs_embeds=decoder_inputs_embeds, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, **kwargs_decoder, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=decoder_outputs.loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def __repr__(self): # s = super().__repr__() + '\n' s = str(type(self.enc_dec.encoder).__name__) + '(' + str(self.enc_dec.encoder.encoder.config) + ')\n' s += str(type(self.enc_dec.decoder).__name__) + '(' + str(self.enc_dec.decoder.config) + ')\n' s += "{}\n".format(get_n_params(self)) return s
[ "jeanbenoit.delbrouck@gmail.com" ]
jeanbenoit.delbrouck@gmail.com
15f29bffa2032c5460e92f35750be8872586fffd
5504b97bd576906b08da76e95be0348ca676bacf
/ps5/testing.py
0eb640edd7a292e21432c69a3a588a87e562eac0
[]
no_license
ducpq91/mit-ocw-6.0001-ps
283e486acbb9a48b8d9f7afcdae05399e61cdee2
500a0df8c97885fdb391f4dff10463eff2abbf9c
refs/heads/master
2020-03-17T16:36:36.084548
2018-10-24T05:46:22
2018-10-24T05:46:22
133,755,240
1
0
null
null
null
null
UTF-8
Python
false
false
12,205
py
import feedparser import string import time import threading from project_util import translate_html from mtTkinter import * from datetime import datetime import pytz def process(url): """ Fetches news items from the rss url and parses them. Returns a list of NewsStory-s. """ feed = feedparser.parse(url) entries = feed.entries ret = [] for entry in entries: guid = entry.guid title = translate_html(entry.title) link = entry.link description = translate_html(entry.description) pubdate = translate_html(entry.published) try: pubdate = datetime.strptime(pubdate, "%a, %d %b %Y %H:%M:%S %Z") pubdate.replace(tzinfo=pytz.timezone("GMT")) # pubdate = pubdate.astimezone(pytz.timezone('EST')) # pubdate.replace(tzinfo=None) except ValueError: pubdate = datetime.strptime(pubdate, "%a, %d %b %Y %H:%M:%S %z") newsStory = NewsStory(guid, title, description, link, pubdate) ret.append(newsStory) return ret class NewsStory(object): def __init__(self, guid, title, description, link, pubdate): self.guid = guid self.title = title self.description = description self.link = link self.pubdate = pubdate def get_guid(self): return self.guid def get_title(self): return self.title def get_description(self): return self.description def get_link(self): return self.link def get_pubdate(self): return self.pubdate class Trigger(object): def evaluate(self, story): """ Returns True if an alert should be generated for the given news item, or False otherwise. """ # DO NOT CHANGE THIS! raise NotImplementedError # PHRASE TRIGGERS # Problem 2 # TODO: PhraseTrigger class PhraseTrigger(Trigger): def __init__(self, phrase): assert len([punc for punc in string.punctuation if punc in phrase]) == 0, "Punctuation mark(s) present in " \ "phrase." assert len([char for char in phrase.strip().split(" ") if char == ""]) == 0, "Phrase contains multiple " \ "spaces between words." self.phrase = phrase.strip().lower() # def is_phrase_in(self, text): # newtext = text.lower().split(" ") # output = [] # for word in newtext: # if word == '': # continue # elif sum([punc in word for punc in string.punctuation]) > 0: # newword = str() # for char in word: # if char in string.punctuation: # continue # else: # newword += char # output.append(newword) # else: # output.append(word) # text1 = ' '.join(output) # # if self.phrase in text1: # return True # else: # return False def is_phrase_in(self, text): newtext = str() for char in text: if char in string.punctuation: newtext += " " else: newtext += char newtext1 = newtext.lower().split(" ") output = [] for word in newtext1: if word == '': continue else: output.append(word) text1 = ' '.join(output) if self.phrase in text1: if self.phrase.split(" ") == [word for word in self.phrase.split(" ") if word in text1.split(" ")]: return True else: return False else: return False # Problem 3 # TODO: TitleTrigger class TitleTrigger(PhraseTrigger): def __init__(self, phrase): PhraseTrigger.__init__(self, phrase) def evaluate(self, story): title = story.get_title() if self.is_phrase_in(title): return True else: return False # Problem 4 # TODO: DescriptionTrigger class DescriptionTrigger(PhraseTrigger): def __init__(self, phrase): PhraseTrigger.__init__(self, phrase) def evaluate(self, story): desc = story.get_description() if self.is_phrase_in(desc): return True else: return False # TIME TRIGGERS # Problem 5 # TODO: TimeTrigger # Constructor: # Input: Time has to be in EST and in the format of "%d %b %Y %H:%M:%S". # Convert time from string to a datetime before saving it as an attribute. class TimeTrigger(Trigger): def __init__(self, timestring): assert isinstance(timestring, str), "Value entered was not a string." format = "%d %b %Y %H:%M:%S" try: dtobj = datetime.strptime(timestring, format) dtobj_est = dtobj.replace(tzinfo = pytz.timezone("EST")) self.datetime = dtobj_est except ValueError as e: print("ValueError:", e) # Problem 6 # TODO: BeforeTrigger and AfterTrigger class BeforeTrigger(TimeTrigger): def __init__(self, timestring): TimeTrigger.__init__(self, timestring) def evaluate(self, story): if self.datetime > story.get_pubdate(): return True else: return False class AfterTrigger(TimeTrigger): def __init__(self, timestring): TimeTrigger.__init__(self, timestring) def evaluate(self, story): if self.datetime < story.get_pubdate(): return True else: return False # COMPOSITE TRIGGERS # Problem 7 # TODO: NotTrigger class NotTrigger(Trigger): def __init__(self, trig): self.trig = trig def evaluate(self, story): trig_eva = self.trig.evaluate(story) return not trig_eva # Problem 8 # TODO: AndTrigger class AndTrigger(Trigger): def __init__(self, trig1, trig2): self.trig1 = trig1 self.trig2 = trig2 def evaluate(self, story): trig_eva = self.trig1.evaluate(story) & self.trig2.evaluate(story) return trig_eva # Problem 9 # TODO: OrTrigger class OrTrigger(Trigger): def __init__(self, trig1, trig2): self.trig1 = trig1 self.trig2 = trig2 def evaluate(self, story): trig_eva = self.trig1.evaluate(story) | self.trig2.evaluate(story) return trig_eva def filter_stories(stories, triggerlist): """ Takes in a list of NewsStory instances. Returns: a list of only the stories for which a trigger in triggerlist fires. """ # TODO: Problem 10 sel_stories = [] for story in stories: for trig in triggerlist: if trig.evaluate(story): sel_stories.append(story) break else: continue return sel_stories def read_trigger_config(filename): """ filename: the name of a trigger configuration file Returns: a list of trigger objects specified by the trigger configuration file. """ # We give you the code to read in the file and eliminate blank lines and # comments. You don't need to know how it works for now! trigger_file = open(filename, 'r') lines = [] for line in trigger_file: line = line.rstrip() if not (len(line) == 0 or line.startswith('//')): lines.append(line) # TODO: Problem 11 # line is the list of lines that you need to parse and for which you need # to build triggers print(lines) # for now, print it so you see what it contains! # Running through lines to single out the "ADD" commands, put them into adds = []. # Construct a trig_lib with the following structure: trig_lib = {'t1':TitleTrigger("something"), 't2':...} by # running through lines. # Running through the adds list to add triggers to sel_trigs = []. Return sel_trigs. trigger_type1 = ["DESCRIPTION", "TITLE", "AFTER", "BEFORE"] trigger_type2 = ["NOT"] adds = [] trig_lib = {} for block in lines: block_unit = block.split(",") if block_unit[0] == "ADD": adds.append(block_unit) else: if block_unit[1] in trigger_type1: trig_lib[block_unit[0]] = eval(block_unit[1].title() + "Trigger" + "('" + block_unit[2] + "')") elif block_unit[1] in trigger_type2: trig_lib[block_unit[0]] = eval(block_unit[1].title() + "Trigger" + "(trig_lib['" + block_unit[2] + + "'])") else: trig_lib[block_unit[0]] = eval(block_unit[1].title() + "Trigger" + "(trig_lib['" + block_unit[2] + "']" + "," + "trig_lib['" + block_unit[3] + "'])") print(trig_lib) print(adds) sel_trigs = [] for add in adds: for i in range(1, len(add)): sel_trigs.append(trig_lib[add[i]]) return sel_trigs triggerlist = read_trigger_config('triggers.txt') print(triggerlist) SLEEPTIME = 120 # seconds -- how often we poll def main_thread(master): # A sample trigger list - you might need to change the phrases to correspond # to what is currently in the news try: t1 = TitleTrigger("medal") t2 = DescriptionTrigger("Trump") t3 = DescriptionTrigger("Saudi") t4 = AndTrigger(t2, t3) triggerlist = [t1, t4] # Problem 11 # TODO: After implementing read_trigger_config, uncomment this line triggerlist = read_trigger_config('triggers.txt') # HELPER CODE - you don't need to understand this! # Draws the popup window that displays the filtered stories # Retrieves and filters the stories from the RSS feeds frame = Frame(master) frame.pack(side=BOTTOM) scrollbar = Scrollbar(master) scrollbar.pack(side=RIGHT, fill=Y) t = "Google & Yahoo Top News" title = StringVar() title.set(t) ttl = Label(master, textvariable=title, font=("Helvetica", 18)) ttl.pack(side=TOP) cont = Text(master, font=("Helvetica", 14), yscrollcommand=scrollbar.set) cont.pack(side=BOTTOM) cont.tag_config("title", justify='center') button = Button(frame, text="Exit", command=root.destroy) button.pack(side=BOTTOM) guidShown = [] def get_cont(newstory): if newstory.get_guid() not in guidShown: cont.insert(END, newstory.get_title() + "\n", "title") cont.insert(END, "\n---------------------------------------------------------------\n", "title") cont.insert(END, newstory.get_description()) cont.insert(END, "\n*********************************************************************\n", "title") guidShown.append(newstory.get_guid()) while True: print("Polling . . .", end=' ') # Get stories from Google's Top Stories RSS news feed stories = process("http://news.google.com/news?output=rss") # Get stories from Yahoo's Top Stories RSS news feed stories.extend(process("http://news.yahoo.com/rss/topstories")) stories = filter_stories(stories, triggerlist) list(map(get_cont, stories)) scrollbar.config(command=cont.yview) print("Sleeping...") time.sleep(SLEEPTIME) except Exception as e: print(e, "something broke") if __name__ == '__main__': root = Tk() root.title("Some RSS parser") t = threading.Thread(target=main_thread, args=(root,)) t.start() root.mainloop()
[ "noreply@github.com" ]
ducpq91.noreply@github.com