blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
9b78524c9d93e922f28b4de5fbca7329542eac25
1a788bf6e897b7c0df1ba62e3fdf7232c144cf5e
/aliyun-python-sdk-cs/aliyunsdkcs/request/v20151215/DescribeClusterNodeInfoWithInstanceRequest.py
f2115a60523894d2c171e6c7bd440f8a4c283188
[ "Apache-2.0" ]
permissive
GuozhaoWu/aliyun-openapi-python-sdk
e4448aa34c544a2bc594ddd22f0e7f0345d2ff04
0efff20e540a375f62bdd4ecd5533eff81c154c8
refs/heads/master
2021-01-21T09:02:51.595319
2017-08-30T07:56:19
2017-08-30T07:56:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,417
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RoaRequest class DescribeClusterNodeInfoWithInstanceRequest(RoaRequest): def __init__(self): RoaRequest.__init__(self, 'CS', '2015-12-15', 'DescribeClusterNodeInfoWithInstance') self.set_uri_pattern('/token/[Token]/instance/[InstanceId]/node_info') self.set_method('GET') def get_Token(self): return self.get_path_params().get('Token') def set_Token(self,Token): self.add_path_param('Token',Token) def get_InstanceId(self): return self.get_path_params().get('InstanceId') def set_InstanceId(self,InstanceId): self.add_path_param('InstanceId',InstanceId)
[ "haowei.yao@alibaba-inc.com" ]
haowei.yao@alibaba-inc.com
215f2ab820715a286898a34ec88398914b4b833d
6fac20b656a950cadae1e64b7b67d607e7940cad
/lb_weight.py
803fc3753c8eaf77ff6d2eb3253dad1937d99b19
[]
no_license
Best1s/tencent_script
a499e54fbe1b00206f10b8fbb6a2373eb9814e04
b35236098577869b3d46f25cce13f025a3aceb87
refs/heads/master
2023-03-11T00:52:14.154415
2021-02-19T08:35:30
2021-02-19T08:35:30
331,915,872
0
0
null
null
null
null
UTF-8
Python
false
false
2,706
py
#!/usr/bin/python # -*- coding: utf-8 -*- #argv[1]:LoadBalancerId #argv[2]:ListenerId #argv[3]:Targets.0.InstanceId #argv[4]:Targets.0.Port #argv[5]:Weight import sys import base64 import hashlib import hmac import random import time import os import requests import socket # get tencentcloud InstanceId from tencentcloud.common import credential from tencentcloud.common.profile.client_profile import ClientProfile from tencentcloud.common.profile.http_profile import HttpProfile from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException from tencentcloud.cvm.v20170312 import cvm_client, models def get_InstanceId(ip, secretId, secret_key): try: cred = credential.Credential(secretId, secret_key) httpProfile = HttpProfile() httpProfile.endpoint = "cvm.tencentcloudapi.com" clientProfile = ClientProfile() clientProfile.httpProfile = httpProfile client = cvm_client.CvmClient(cred, "ap-guangzhou", clientProfile) req = models.DescribeInstancesRequest() params = '{"Filters":[{"Name":"private-ip-address","Values":["' + ip + '"]}]}' req.from_json_string(params) resp = client.DescribeInstances(req) data = resp.to_json_string() return data.replace('"',"").split("InstanceId: ")[1].split(",")[0] # InstanceId except TencentCloudSDKException as err: print(err) def get_string_to_sign(method, endpoint): s = method + endpoint + "/?" query_str = "&".join("%s=%s" % (k, data[k]) for k in sorted(data)) return s + query_str def sign_str(key, s, method): hmac_str = hmac.new(key.encode("utf8"), s.encode("utf8"), method).digest() return base64.b64encode(hmac_str) if __name__ == '__main__': endpoint = "clb.tencentcloudapi.com" secretId = 'xxxxx' secret_key = 'xxxxx' ip = socket.gethostbyname(socket.gethostname()) LoadBalancerId = "xxx" ListenerId = "" InstanceId = get_InstanceId(ip, secretId, secret_key) Port = "80" Weight = 20 data = { 'Action': 'ModifyTargetWeight', 'SecretId': secretId, 'Region': 'ap-guangzhou', 'Timestamp': int(time.time()), 'Nonce': random.randint(0, 1000000), 'Version': '2018-03-17', 'LoadBalancerId': LoadBalancerId, 'ListenerId': ListenerId, 'Targets.0.InstanceId': InstanceId, 'Targets.0.Port': Port, 'Weight': Weight } s = get_string_to_sign("GET", endpoint) data["Signature"] = sign_str(secret_key, s, hashlib.sha1) print(data["Signature"]) resp = requests.get("https://" + endpoint, params=data) print(resp.text) os.system("sleep 2")
[ "zhangbin@ppwang.com" ]
zhangbin@ppwang.com
a485dc30e7230d31630cb45f6e656a840d5a9a93
1558786ded08e236187a937357959294da7cb6ba
/18.EM/18.6.GMM_pdf.py
34ffb6685038ed047ca3494c5426667b5f3afa16
[]
no_license
highclow/MachineLearning
e522ff4fb6b855b6a8152c8afa8beb78da5105c8
60482434de05e78332d82e4289abea0dd68e8c17
refs/heads/master
2023-04-09T06:08:23.032303
2020-06-08T03:23:50
2020-06-08T03:23:50
270,513,016
0
1
null
2021-04-26T20:21:47
2020-06-08T03:22:47
Jupyter Notebook
UTF-8
Python
false
false
2,709
py
# !/usr/bin/python # -*- coding:utf-8 -*- import numpy as np from sklearn.mixture import GaussianMixture import scipy as sp import matplotlib as mpl import matplotlib.colors import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import warnings def expand(a, b, rate=0.05): d = (b - a) * rate return a-d, b+d if __name__ == '__main__': warnings.filterwarnings(action='ignore', category=RuntimeWarning) np.random.seed(0) cov1 = np.diag((1, 2)) N1 = 500 N2 = 300 N = N1 + N2 x1 = np.random.multivariate_normal(mean=(3, 2), cov=cov1, size=N1) m = np.array(((1, 1), (1, 3))) x1 = x1.dot(m) x2 = np.random.multivariate_normal(mean=(-1, 10), cov=cov1, size=N2) x = np.vstack((x1, x2)) y = np.array([0]*N1 + [1]*N2) gmm = GaussianMixture(n_components=2, covariance_type='full', random_state=0) gmm.fit(x) centers = gmm.means_ covs = gmm.covariances_ print 'GMM均值 = \n', centers print 'GMM方差 = \n', covs y_hat = gmm.predict(x) colors = '#A0FFA0', '#E080A0', levels = 10 cm = mpl.colors.ListedColormap(colors) x1_min, x1_max = x[:, 0].min(), x[:, 0].max() x2_min, x2_max = x[:, 1].min(), x[:, 1].max() x1_min, x1_max = expand(x1_min, x1_max) x2_min, x2_max = expand(x2_min, x2_max) x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] grid_test = np.stack((x1.flat, x2.flat), axis=1) print gmm.score_samples(grid_test) grid_hat = -gmm.score_samples(grid_test) grid_hat = grid_hat.reshape(x1.shape) plt.figure(figsize=(9, 7), facecolor='w') ax = plt.subplot(111) cmesh = plt.pcolormesh(x1, x2, grid_hat, cmap=plt.cm.Spectral) plt.colorbar(cmesh, shrink=0.9) CS = plt.contour(x1, x2, grid_hat, levels=np.logspace(0, 2, num=levels, base=10), colors='w', linewidths=1) plt.clabel(CS, fontsize=9, inline=True, fmt='%.1f') plt.scatter(x[:, 0], x[:, 1], s=30, c=y, cmap=cm, marker='o') for i, cc in enumerate(zip(centers, covs)): center, cov = cc value, vector = sp.linalg.eigh(cov) width, height = value[0], value[1] v = vector[0] / sp.linalg.norm(vector[0]) angle = 180* np.arctan(v[1] / v[0]) / np.pi e = Ellipse(xy=center, width=width, height=height, angle=angle, color='m', alpha=0.5, clip_box = ax.bbox) ax.add_artist(e) plt.xlim((x1_min, x1_max)) plt.ylim((x2_min, x2_max)) mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False plt.title(u'GMM似然函数值', fontsize=20) plt.grid(True) plt.show()
[ "lu.he@jd.com" ]
lu.he@jd.com
74b5822b17147284bdd1dcaf4544898227ae0830
9ba5fc81b5553cf568adc597180cc695c75eadbc
/app/views.py
3167e364070d945596f273c2057739b7bf9d65fc
[]
no_license
mahmudgithub/html-css-pactics
85ab411fc7df877f82a8c27441f1469b7bcc0cf4
035723db2e8377004d5e223ee2c6a6f49449920a
refs/heads/master
2023-02-23T14:46:14.171347
2021-01-29T05:42:44
2021-01-29T05:42:44
332,635,153
1
0
null
null
null
null
UTF-8
Python
false
false
91
py
from django.shortcuts import render def one(request): return render(request,'home.html')
[ "mahmudhossain838@gmail.com" ]
mahmudhossain838@gmail.com
c118cbaee6f21d1833c8a1cacf802f5e8f5e8db6
dbbb144cc93f44e0f82b762af3fefe6fe3beb605
/Chatbotforwip/models.py
9ed77c7479879a596becd6d32e3a370b0baa7337
[]
no_license
srijibrockz95/chatbotfor_zlsur
5f4d9a0807818d85b6ba70a27392fd6b1aab7413
e97b1522f2124290544450cd3813f592c4ba86c0
refs/heads/main
2023-04-19T08:54:43.311293
2021-05-12T13:06:47
2021-05-12T13:06:47
366,716,299
0
0
null
null
null
null
UTF-8
Python
false
false
2,860
py
from . import db from sqlalchemy.sql import func class Login(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) userfname = db.Column(db.String(120), nullable=False) useremail = db.Column(db.String(120), nullable=False, unique=True) userid = db.Column(db.String(20), nullable=False, unique=True) userrole = db.Column(db.String(50), nullable=False) passwordhash = db.Column(db.String(255), nullable=False) creationdatetime = db.Column(db.DateTime, nullable=False, server_default=func.now()) updationdatetime = db.Column(db.DateTime, nullable=False, server_default=func.now(), onupdate=func.now()) createdby = db.Column(db.String(20)) modifiedby = db.Column(db.String(20)) def __init__(self, userfname, useremail, userid, userrole, passwordhash, createdby): self.userfname = userfname self.useremail = useremail self.userid = userid self.userrole = userrole self.passwordhash = passwordhash self.createdby = createdby def __repr__(self): return '<Login %r>' % self.userfname class QuestionAnswer(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) question_type = db.Column(db.String(80), nullable=False) question = db.Column(db.String(240), nullable=False) answer = db.Column(db.String(240)) relatedquesid = db.Column(db.Integer) orderofdisp = db.Column(db.Integer) creationdatetime = db.Column(db.DateTime, nullable=False, server_default=func.now()) updationdatetime = db.Column(db.DateTime, nullable=False, server_default=func.now(), onupdate=func.now()) createdby = db.Column(db.String(20)) modifiedby = db.Column(db.String(20)) def __init__(self, question_type, question, answer, relatedquesid, orderofdisp, createdby): self.question_type = question_type self.question = question self.answer = answer self.relatedquesid = relatedquesid self.orderofdisp = orderofdisp self.createdby = createdby def __repr__(self): return '<QuestionAnswer %r>' % self.question class Booking(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) userid = db.Column(db.String(20), nullable=False) bookingmessage = db.Column(db.String(300), nullable=False) creationdatetime = db.Column(db.DateTime, nullable=False, server_default=func.now()) updationdatetime = db.Column(db.DateTime, nullable=False, server_default=func.now(), onupdate=func.now()) createdby = db.Column(db.String(20)) modifiedby = db.Column(db.String(20)) def __init__(self, userid, bookingmessage, createdby): self.userid = userid self.bookingmessage = bookingmessage self.createdby = createdby def __repr__(self): return '<Booking %r>' % self.userid
[ "srijibb5991@gmail.com" ]
srijibb5991@gmail.com
08c28acaad47d0e0a42968f0f313be2783764ae7
b793ceedf60fb87902bc005cc18bda0478ead7c7
/sunrise.py
957688fe6cf090485430e10317ae58235701988e
[]
no_license
thermalbarker/octocam-timelapse
35f407bf2afa846ba897d9df663518aefe6b36d6
448097de97477914954e9f41d2769469e46da35e
refs/heads/master
2021-01-01T21:58:45.302985
2020-03-29T09:53:07
2020-03-29T09:53:07
239,359,736
0
0
null
null
null
null
UTF-8
Python
false
false
5,698
py
#!/usr/bin/python # Credits here: https://michelanders.blogspot.com/2010/12/calulating-sunrise-and-sunset-in-python.html from math import cos,sin,acos,asin,tan from math import degrees as deg, radians as rad from datetime import date,datetime,time,tzinfo,timedelta # Nicked from https://docs.python.org/2/library/datetime.html#tzinfo-objects import time as _time ZERO = timedelta(0) HOUR = timedelta(hours=1) SECONDS_PER_DAY = 24 * 60 * 60 STDOFFSET = timedelta(seconds = -_time.timezone) if _time.daylight: DSTOFFSET = timedelta(seconds = -_time.altzone) else: DSTOFFSET = STDOFFSET DSTDIFF = DSTOFFSET - STDOFFSET class LocalTimezone(tzinfo): def utcoffset(self, dt): if self._isdst(dt): return DSTOFFSET else: return STDOFFSET def dst(self, dt): if self._isdst(dt): return DSTDIFF else: return ZERO def tzname(self, dt): return _time.tzname[self._isdst(dt)] def _isdst(self, dt): tt = (dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.weekday(), 0, 0) stamp = _time.mktime(tt) tt = _time.localtime(stamp) return tt.tm_isdst > 0 class sun: """ Calculate sunrise and sunset based on equations from NOAA http://www.srrb.noaa.gov/highlights/sunrise/calcdetails.html typical use, calculating the sunrise at the present day: import datetime import sunrise s = sun(lat=49,long=3) print('sunrise at ',s.sunrise(when=datetime.datetime.now()) """ def __init__(self,lat=49.0,long=8.4): # default Amsterdam self.lat=lat self.long=long def sunrise(self,when=None): """ return the time of sunrise as a datetime.time object when is a datetime.datetime object. If none is given a local time zone is assumed (including daylight saving if present) """ if when is None : when = datetime.now(tz=LocalTimezone()) self.__preptime(when) self.__calc() return sun.__timefromdecimalday(self.sunrise_t) def sunset(self,when=None): if when is None : when = datetime.now(tz=LocalTimezone()) self.__preptime(when) self.__calc() return sun.__timefromdecimalday(self.sunset_t) def solarnoon(self,when=None): if when is None : when = datetime.now(tz=LocalTimezone()) self.__preptime(when) self.__calc() return sun.__timefromdecimalday(self.solarnoon_t) @staticmethod def __timefromdecimalday(day): """ returns a datetime.time object. day is a decimal day between 0.0 and 1.0, e.g. noon = 0.5 """ hours = 24.0*day h = int(hours) minutes= (hours-h)*60 m = int(minutes) seconds= (minutes-m)*60 s = int(seconds) return time(hour=h,minute=m,second=s) def __preptime(self,when): """ Extract information in a suitable format from when, a datetime.datetime object. """ # datetime days are numbered in the Gregorian calendar # while the calculations from NOAA are distibuted as # OpenOffice spreadsheets with days numbered from # 1/1/1900. The difference are those numbers taken for # 18/12/2010 self.day = when.toordinal()-(734124-40529) t=when.time() self.time= (t.hour + t.minute/60.0 + t.second/3600.0)/24.0 self.timezone=0 offset=when.utcoffset() if not offset is None: self.timezone=offset.seconds/3600.0 def __calc(self): """ Perform the actual calculations for sunrise, sunset and a number of related quantities. The results are stored in the instance variables sunrise_t, sunset_t and solarnoon_t """ timezone = self.timezone # in hours, east is positive longitude= self.long # in decimal degrees, east is positive latitude = self.lat # in decimal degrees, north is positive time = self.time # percentage past midnight, i.e. noon is 0.5 day = self.day # daynumber 1=1/1/1900 Jday =day+2415018.5+time-timezone/24 # Julian day Jcent =(Jday-2451545)/36525 # Julian century Manom = 357.52911+Jcent*(35999.05029-0.0001537*Jcent) Mlong = 280.46646+Jcent*(36000.76983+Jcent*0.0003032)%360 Eccent = 0.016708634-Jcent*(0.000042037+0.0001537*Jcent) Mobliq = 23+(26+((21.448-Jcent*(46.815+Jcent*(0.00059-Jcent*0.001813))))/60)/60 obliq = Mobliq+0.00256*cos(rad(125.04-1934.136*Jcent)) vary = tan(rad(obliq/2))*tan(rad(obliq/2)) Seqcent = sin(rad(Manom))*(1.914602-Jcent*(0.004817+0.000014*Jcent))+sin(rad(2*Manom))*(0.019993-0.000101*Jcent)+sin(rad(3*Manom))*0.000289 Struelong= Mlong+Seqcent Sapplong = Struelong-0.00569-0.00478*sin(rad(125.04-1934.136*Jcent)) declination = deg(asin(sin(rad(obliq))*sin(rad(Sapplong)))) eqtime = 4*deg(vary*sin(2*rad(Mlong))-2*Eccent*sin(rad(Manom))+4*Eccent*vary*sin(rad(Manom))*cos(2*rad(Mlong))-0.5*vary*vary*sin(4*rad(Mlong))-1.25*Eccent*Eccent*sin(2*rad(Manom))) hourangle= deg(acos(cos(rad(90.833))/(cos(rad(latitude))*cos(rad(declination)))-tan(rad(latitude))*tan(rad(declination)))) self.solarnoon_t=(720-4*longitude-eqtime+timezone*60)/1440 self.sunrise_t =self.solarnoon_t-hourangle*4/1440 self.sunset_t =self.solarnoon_t+hourangle*4/1440 def delta_minutes(difference): return (difference.days * SECONDS_PER_DAY + difference.seconds) / 60 def delta_minutes_now(t): return delta_minutes(now - t) if __name__ == "__main__": s=sun() print(datetime.today()) now = datetime.now() beforesunrise = datetime.combine(date.today(), s.sunrise()) - HOUR aftersunset = datetime.combine(date.today(), s.sunset()) + HOUR midday = datetime.combine(date.today(), s.solarnoon()) print(max(0, delta_minutes_now(beforesunrise))) print(max(0, delta_minutes_now(aftersunset))) print(max(0, delta_minutes_now(midday)))
[ "thermalbarker@gmail.com" ]
thermalbarker@gmail.com
459b3b92cf722eddf20d6aac667403bdbfa38dff
89c878102fa84dfb9d02ed6b7f79199b97035257
/net/tcp_socket_server.py
173d6a33347075d139e7c57413e0aae704d7ddb0
[ "Apache-2.0" ]
permissive
chainren/python-learn
5d9b4b77c12dfbfc7e9ae805a783576196494309
5e48e96c4bb212806b9ae0954fdb368abdcf9ba3
refs/heads/master
2022-11-30T13:41:25.993871
2020-06-10T13:46:50
2020-06-10T13:46:50
147,663,348
1
0
Apache-2.0
2022-11-22T02:58:25
2018-09-06T11:26:26
Python
UTF-8
Python
false
false
826
py
# -- coding: utf-8 -- import socket import threading import time s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 监听端口: s.bind(('127.0.0.1', 8899)) # 开始监听端口 s.listen(5) print('Waiting for connection...') def handler(sock, addr): print('Accept new connection from %s:%s...' % addr) sock.send(b'Welcome!') while True: data = sock.recv(1024) time.sleep(1) if not data or data.decode('utf-8') == 'exit': break msg = b'Hello, %s' % data.decode('utf-8').encode('utf-8') sock.send(msg) sock.close() print('Connection from %s:%s closed.' % addr) while True: # 接受一个新连接: sock, addr = s.accept() # w创建新线程处理连接 t = threading.Thread(target=handler, args=(sock, addr)) t.start()
[ "chenrengui@xiangshang360.com" ]
chenrengui@xiangshang360.com
c8ada1d71f2f47e3580cec80fd31c1e946ed0204
6ddf8e93ee13fa92e4bca3d924382d6bd8b55336
/코테 with Python/그리디/Q.04_만들 수 없는 금액.py
406718c37eb1628b42388192c390098d19a69559
[]
no_license
gkcksrbs/Coding_Test_With_Python
8b5df49240458bdda3e1c4de6eb302052e0a1546
234e85a2b55a6c611618fb63a5c18873dd65c90d
refs/heads/master
2023-02-26T15:29:25.789368
2021-02-03T06:08:18
2021-02-03T06:08:18
291,658,801
0
0
null
null
null
null
UTF-8
Python
false
false
752
py
# 비효율 # from itertools import combinations # # N = int(input()) # coin = list(map(int, input().split())) # lst = [] # # for i in range(1, N+1): # for j in combinations(coin, i): # lst.append(sum(j)) # # lst = list(set(lst)) # last = lst[len(lst)-1] # Min = 0 # # for i in range(1, last+1): # if i not in lst: # Min = i # # if min == 0: # print(last+1) # else: # print(Min) import sys # 입력 빠르게 하기 위한 변수 input = sys.stdin.readline # 동전의 개수 입력 n = int(input()) # 각 동전의 화폐 단위 입력 data = list(map(int, input().split())) # 결과값 target = 1 # 모든 동전 탐색 for x in data: if target < x: break target += x # 결과값 출력 print(target)
[ "70510732+gkcksrbs@users.noreply.github.com" ]
70510732+gkcksrbs@users.noreply.github.com
ecf2c8f7150e201c0a2133d4dc6498ba28c0b1d9
dff43b744e22d8d5c6e0e597f4a313f4648e77bd
/lcu_connectorpy/__init__.py
367210b786063f1edbc5b0f7fc72c4c40ad614b3
[ "MIT" ]
permissive
intendednull/lcu_connectorpy
57b2bb87e42871f44206a3d607714c7b2212d9e0
deb1050fe3a3fdc513d63d2ab08ab92bc86ac2f9
refs/heads/master
2021-10-28T13:03:38.215911
2019-04-23T20:57:07
2019-04-23T20:57:07
181,576,028
1
1
null
null
null
null
UTF-8
Python
false
false
56
py
from .connect import Connector __all__ = ['Connector']
[ "noah@coronasoftware.net" ]
noah@coronasoftware.net
042003a699472ca85e5f334a84fcf5165eb2ec28
beebc5ff44407f3f3a4c1463cd09f0917dbe5391
/pytype/tools/arg_parser.py
cbfe85e340114e4d98881575cac90b2db29b3cb0
[ "Apache-2.0", "MIT" ]
permissive
mraarif/pytype
4f190cb2591896133761295f3d84d80602dffb58
546e8b8114c9af54a409985a036398c4f6955677
refs/heads/master
2023-01-23T09:48:06.239353
2020-12-02T06:08:27
2020-12-02T06:08:27
303,069,915
1
0
NOASSERTION
2020-12-02T06:08:28
2020-10-11T07:53:55
null
UTF-8
Python
false
false
3,677
py
"""Argument parsing for tools that pass args on to pytype_single.""" import argparse from pytype import config as pytype_config from pytype import datatypes from pytype import utils as pytype_utils def string_to_bool(s): return s == "True" if s in ("True", "False") else s def convert_string(s): s = s.replace("\n", "") try: return int(s) except ValueError: return string_to_bool(s) class Parser: """Parser that integrates tool and pytype-single args.""" def __init__(self, parser, pytype_single_args): """Initialize a parser. Args: parser: An argparse.ArgumentParser or compatible object pytype_single_args: Iterable of args that will be passed to pytype_single """ self.parser = parser self.pytype_single_args = pytype_single_args def create_initial_args(self, keys): """Creates the initial set of args. Args: keys: A list of keys to create args from Returns: An argparse.Namespace. """ return argparse.Namespace(**{k: None for k in keys}) def parse_args(self, argv): """Parses argv. Args: argv: sys.argv[1:] Returns: An argparse.Namespace. """ args = self.create_initial_args(self.pytype_single_args) self.parser.parse_args(argv, args) self.postprocess(args) return args def postprocess(self, args, from_strings=False): """Postprocesses the subset of pytype_single_args that appear in args. Args: args: an argparse.Namespace. from_strings: Whether the args are all strings. If so, we'll do our best to convert them to the right types. """ names = set() for k in self.pytype_single_args: if hasattr(args, k): names.add(k) if from_strings: setattr(args, k, convert_string(getattr(args, k))) pytype_config.Postprocessor(names, args).process() def get_pytype_kwargs(self, args): """Return a set of kwargs to pass to pytype.config.Options. Args: args: an argparse.Namespace. Returns: A dict of kwargs with pytype_single args as keys. """ return {k: getattr(args, k) for k in self.pytype_single_args} def add_pytype_and_parse(parser, argv): """Add basic pytype options and parse args. Useful to generate a quick CLI for a library. Args: parser: An argparse.ArgumentParser argv: Raw command line args, typically sys.argv[1:] Returns: A tuple of ( parsed_args: argparse.Namespace, pytype_options: pytype.config.Options) """ # Add default --debug and input arguments. parser.add_argument("--debug", action="store_true", dest="debug", default=None, help="Display debug output.") parser.add_argument("inputs", metavar="input", nargs=1, help="A .py file to index") # Add options from pytype-single. wrapper = datatypes.ParserWrapper(parser) pytype_config.add_basic_options(wrapper) parser = Parser(parser, wrapper.actions) # Parse argv args = parser.parse_args(argv) cli_args = args.inputs.copy() # Make sure we have a valid set of CLI options to pytype ## If we are passed an imports map we should look for pickled files as well. if getattr(args, "imports_info", None): cli_args += ["--imports_info", args.imports_info, "--use-pickled-files"] ## We need to set this when creating Options (b/128032570) if args.python_version: cli_args += ["-V", pytype_utils.format_version(args.python_version)] pytype_options = pytype_config.Options(cli_args, command_line=True) pytype_options.tweak(**parser.get_pytype_kwargs(args)) return (args, pytype_options)
[ "rechen@google.com" ]
rechen@google.com
dbed13deeec7d3532a35f6642b2175ad1adafab0
414517f9cda31b307f6221c101c90481cdf6f294
/testApp/accounts/forms.py
dd3c474402bac357e19086062888c0cd3f68e584
[]
no_license
jutkarsh079/Django-TestApp
c63443b2d56f6eb7a8654cb8768b73a89c63e224
3c46943015baf9f8fca142bfd5c4f6642ddaee5c
refs/heads/master
2022-10-10T04:33:19.770057
2020-06-10T05:49:30
2020-06-10T05:49:30
271,190,063
0
0
null
null
null
null
UTF-8
Python
false
false
457
py
from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import get_user_model class UserCreateform(UserCreationForm): class Meta: fields = ("username", "email", "password1", "password2") model = get_user_model() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["username"].label = "Display Name" self.fields["email"].label = "Email address"
[ "jainutkarsh@jains-MacBook-Pro.local" ]
jainutkarsh@jains-MacBook-Pro.local
8d4d1a9e13927dcd6cc75f4d01265bdd8540bb3f
ee5474632d5a010fb2308c7c21af8aeb91bdb11b
/sdk/textanalytics/azure-ai-textanalytics/azure/ai/textanalytics/aio/_text_analytics_client_async.py
179a022764a7ef306027821175add5d53ee14c24
[ "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
qiang-zai/azure-sdk-for-python
b7ef8b90cee36c2aa92e5acae8152fecda1bab7b
e8ccd8bcbbab43c9b0f2f6323775c80a96cefeb0
refs/heads/master
2021-05-21T01:00:13.377148
2020-04-02T00:46:38
2020-04-02T00:46:38
252,476,851
1
0
null
2020-04-02T14:21:42
2020-04-02T14:21:42
null
UTF-8
Python
false
false
21,565
py
# coding=utf-8 # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ from typing import ( # pylint: disable=unused-import Union, Optional, Any, List, Dict, TYPE_CHECKING ) from azure.core.tracing.decorator_async import distributed_trace_async from .._generated.models import TextAnalyticsErrorException from .._generated.aio._text_analytics_client_async import TextAnalyticsClient as TextAnalytics from ._base_client_async import AsyncTextAnalyticsClientBase from .._request_handlers import _validate_batch_input from .._response_handlers import ( process_batch_error, entities_result, linked_entities_result, key_phrases_result, sentiment_result, language_result ) from .._models import ( DetectLanguageInput, TextDocumentInput, DetectLanguageResult, RecognizeEntitiesResult, RecognizeLinkedEntitiesResult, ExtractKeyPhrasesResult, AnalyzeSentimentResult, DocumentError, ) if TYPE_CHECKING: from azure.core.credentials_async import AsyncTokenCredential from azure.core.credentials import AzureKeyCredential class TextAnalyticsClient(AsyncTextAnalyticsClientBase): """The Text Analytics API is a suite of text analytics web services built with best-in-class Microsoft machine learning algorithms. The API can be used to analyze unstructured text for tasks such as sentiment analysis, key phrase extraction, and language detection. No training data is needed to use this API - just bring your text data. This API uses advanced natural language processing techniques to deliver best in class predictions. Further documentation can be found in https://docs.microsoft.com/azure/cognitive-services/text-analytics/overview :param str endpoint: Supported Cognitive Services or Text Analytics resource endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com). :param credential: Credentials needed for the client to connect to Azure. This can be the an instance of AzureKeyCredential if using a cognitive services/text analytics API key or a token credential from :mod:`azure.identity`. :type credential: :class:`~azure.core.credentials.AzureKeyCredential` or :class:`~azure.core.credentials_async.AsyncTokenCredential` :keyword str default_country_hint: Sets the default country_hint to use for all operations. Defaults to "US". If you don't want to use a country hint, pass the string "none". :keyword str default_language: Sets the default language to use for all operations. Defaults to "en". .. admonition:: Example: .. literalinclude:: ../samples/async_samples/sample_authentication_async.py :start-after: [START create_ta_client_with_key_async] :end-before: [END create_ta_client_with_key_async] :language: python :dedent: 8 :caption: Creating the TextAnalyticsClient with endpoint and API key. .. literalinclude:: ../samples/async_samples/sample_authentication_async.py :start-after: [START create_ta_client_with_aad_async] :end-before: [END create_ta_client_with_aad_async] :language: python :dedent: 8 :caption: Creating the TextAnalyticsClient with endpoint and token credential from Azure Active Directory. """ def __init__( # type: ignore self, endpoint: str, credential: Union["AzureKeyCredential", "AsyncTokenCredential"], **kwargs: Any ) -> None: super(TextAnalyticsClient, self).__init__(credential=credential, **kwargs) self._client = TextAnalytics( endpoint=endpoint, credentials=credential, pipeline=self._pipeline ) self._default_language = kwargs.pop("default_language", "en") self._default_country_hint = kwargs.pop("default_country_hint", "US") @distributed_trace_async async def detect_language( # type: ignore self, documents: Union[List[str], List[DetectLanguageInput], List[Dict[str, str]]], **kwargs: Any ) -> List[Union[DetectLanguageResult, DocumentError]]: """Detects Language for a batch of documents. Returns the detected language and a numeric score between zero and one. Scores close to one indicate 100% certainty that the identified language is true. See https://aka.ms/talangs for the list of enabled languages. See https://docs.microsoft.com/azure/cognitive-services/text-analytics/overview#data-limits for document length limits, maximum batch size, and supported text encoding. :param documents: The set of documents to process as part of this batch. If you wish to specify the ID and country_hint on a per-item basis you must use as input a list[:class:`~azure.ai.textanalytics.DetectLanguageInput`] or a list of dict representations of :class:`~azure.ai.textanalytics.DetectLanguageInput`, like `{"id": "1", "country_hint": "us", "text": "hello world"}`. :type documents: list[str] or list[~azure.ai.textanalytics.DetectLanguageInput] :keyword str country_hint: A country hint for the entire batch. Accepts two letter country codes specified by ISO 3166-1 alpha-2. Per-document country hints will take precedence over whole batch hints. Defaults to "US". If you don't want to use a country hint, pass the string "none". :keyword str model_version: This value indicates which model will be used for scoring, e.g. "latest", "2019-10-01". If a model-version is not specified, the API will default to the latest, non-preview version. :keyword bool show_stats: If set to true, response will contain document level statistics. :return: The combined list of :class:`~azure.ai.textanalytics.DetectLanguageResult` and :class:`~azure.ai.textanalytics.DocumentError` in the order the original documents were passed in. :rtype: list[~azure.ai.textanalytics.DetectLanguageResult, ~azure.ai.textanalytics.DocumentError] :raises ~azure.core.exceptions.HttpResponseError: .. admonition:: Example: .. literalinclude:: ../samples/async_samples/sample_detect_language_async.py :start-after: [START batch_detect_language_async] :end-before: [END batch_detect_language_async] :language: python :dedent: 8 :caption: Detecting language in a batch of documents. """ country_hint_arg = kwargs.pop("country_hint", None) country_hint = country_hint_arg if country_hint_arg is not None else self._default_country_hint docs = _validate_batch_input(documents, "country_hint", country_hint) model_version = kwargs.pop("model_version", None) show_stats = kwargs.pop("show_stats", False) try: return await self._client.languages( documents=docs, model_version=model_version, show_stats=show_stats, cls=language_result, **kwargs ) except TextAnalyticsErrorException as error: process_batch_error(error) @distributed_trace_async async def recognize_entities( # type: ignore self, documents: Union[List[str], List[TextDocumentInput], List[Dict[str, str]]], **kwargs: Any ) -> List[Union[RecognizeEntitiesResult, DocumentError]]: """Entity Recognition for a batch of documents. Identifies and categorizes entities in your text as people, places, organizations, date/time, quantities, percentages, currencies, and more. For the list of supported entity types, check: https://aka.ms/taner See https://docs.microsoft.com/azure/cognitive-services/text-analytics/overview#data-limits for document length limits, maximum batch size, and supported text encoding. :param documents: The set of documents to process as part of this batch. If you wish to specify the ID and language on a per-item basis you must use as input a list[:class:`~azure.ai.textanalytics.TextDocumentInput`] or a list of dict representations of :class:`~azure.ai.textanalytics.TextDocumentInput`, like `{"id": "1", "language": "en", "text": "hello world"}`. :type documents: list[str] or list[~azure.ai.textanalytics.TextDocumentInput] :keyword str language: The 2 letter ISO 639-1 representation of language for the entire batch. For example, use "en" for English; "es" for Spanish etc. If not set, uses "en" for English as default. Per-document language will take precedence over whole batch language. See https://aka.ms/talangs for supported languages in Text Analytics API. :keyword str model_version: This value indicates which model will be used for scoring, e.g. "latest", "2019-10-01". If a model-version is not specified, the API will default to the latest, non-preview version. :keyword bool show_stats: If set to true, response will contain document level statistics. :return: The combined list of :class:`~azure.ai.textanalytics.RecognizeEntitiesResult` and :class:`~azure.ai.textanalytics.DocumentError` in the order the original documents were passed in. :rtype: list[~azure.ai.textanalytics.RecognizeEntitiesResult, ~azure.ai.textanalytics.DocumentError] :raises ~azure.core.exceptions.HttpResponseError: .. admonition:: Example: .. literalinclude:: ../samples/async_samples/sample_recognize_entities_async.py :start-after: [START batch_recognize_entities_async] :end-before: [END batch_recognize_entities_async] :language: python :dedent: 8 :caption: Recognize entities in a batch of documents. """ language_arg = kwargs.pop("language", None) language = language_arg if language_arg is not None else self._default_language docs = _validate_batch_input(documents, "language", language) model_version = kwargs.pop("model_version", None) show_stats = kwargs.pop("show_stats", False) try: return await self._client.entities_recognition_general( documents=docs, model_version=model_version, show_stats=show_stats, cls=entities_result, **kwargs ) except TextAnalyticsErrorException as error: process_batch_error(error) @distributed_trace_async async def recognize_linked_entities( # type: ignore self, documents: Union[List[str], List[TextDocumentInput], List[Dict[str, str]]], **kwargs: Any ) -> List[Union[RecognizeLinkedEntitiesResult, DocumentError]]: """Recognize linked entities from a well-known knowledge base for a batch of documents. Identifies and disambiguates the identity of each entity found in text (for example, determining whether an occurrence of the word Mars refers to the planet, or to the Roman god of war). Recognized entities are associated with URLs to a well-known knowledge base, like Wikipedia. See https://docs.microsoft.com/azure/cognitive-services/text-analytics/overview#data-limits for document length limits, maximum batch size, and supported text encoding. :param documents: The set of documents to process as part of this batch. If you wish to specify the ID and language on a per-item basis you must use as input a list[:class:`~azure.ai.textanalytics.TextDocumentInput`] or a list of dict representations of :class:`~azure.ai.textanalytics.TextDocumentInput`, like `{"id": "1", "language": "en", "text": "hello world"}`. :type documents: list[str] or list[~azure.ai.textanalytics.TextDocumentInput] :keyword str language: The 2 letter ISO 639-1 representation of language for the entire batch. For example, use "en" for English; "es" for Spanish etc. If not set, uses "en" for English as default. Per-document language will take precedence over whole batch language. See https://aka.ms/talangs for supported languages in Text Analytics API. :keyword str model_version: This value indicates which model will be used for scoring, e.g. "latest", "2019-10-01". If a model-version is not specified, the API will default to the latest, non-preview version. :keyword bool show_stats: If set to true, response will contain document level statistics. :return: The combined list of :class:`~azure.ai.textanalytics.RecognizeLinkedEntitiesResult` and :class:`~azure.ai.textanalytics.DocumentError` in the order the original documents were passed in. :rtype: list[~azure.ai.textanalytics.RecognizeLinkedEntitiesResult, ~azure.ai.textanalytics.DocumentError] :raises ~azure.core.exceptions.HttpResponseError: .. admonition:: Example: .. literalinclude:: ../samples/async_samples/sample_recognize_linked_entities_async.py :start-after: [START batch_recognize_linked_entities_async] :end-before: [END batch_recognize_linked_entities_async] :language: python :dedent: 8 :caption: Recognize linked entities in a batch of documents. """ language_arg = kwargs.pop("language", None) language = language_arg if language_arg is not None else self._default_language docs = _validate_batch_input(documents, "language", language) model_version = kwargs.pop("model_version", None) show_stats = kwargs.pop("show_stats", False) try: return await self._client.entities_linking( documents=docs, model_version=model_version, show_stats=show_stats, cls=linked_entities_result, **kwargs ) except TextAnalyticsErrorException as error: process_batch_error(error) @distributed_trace_async async def extract_key_phrases( # type: ignore self, documents: Union[List[str], List[TextDocumentInput], List[Dict[str, str]]], **kwargs: Any ) -> List[Union[ExtractKeyPhrasesResult, DocumentError]]: """Extract Key Phrases from a batch of documents. Returns a list of strings denoting the key phrases in the input text. For example, for the input text "The food was delicious and there were wonderful staff", the API returns the main talking points: "food" and "wonderful staff" See https://docs.microsoft.com/azure/cognitive-services/text-analytics/overview#data-limits for document length limits, maximum batch size, and supported text encoding. :param documents: The set of documents to process as part of this batch. If you wish to specify the ID and language on a per-item basis you must use as input a list[:class:`~azure.ai.textanalytics.TextDocumentInput`] or a list of dict representations of :class:`~azure.ai.textanalytics.TextDocumentInput`, like `{"id": "1", "language": "en", "text": "hello world"}`. :type documents: list[str] or list[~azure.ai.textanalytics.TextDocumentInput] :keyword str language: The 2 letter ISO 639-1 representation of language for the entire batch. For example, use "en" for English; "es" for Spanish etc. If not set, uses "en" for English as default. Per-document language will take precedence over whole batch language. See https://aka.ms/talangs for supported languages in Text Analytics API. :keyword str model_version: This value indicates which model will be used for scoring, e.g. "latest", "2019-10-01". If a model-version is not specified, the API will default to the latest, non-preview version. :keyword bool show_stats: If set to true, response will contain document level statistics. :return: The combined list of :class:`~azure.ai.textanalytics.ExtractKeyPhrasesResult` and :class:`~azure.ai.textanalytics.DocumentError` in the order the original documents were passed in. :rtype: list[~azure.ai.textanalytics.ExtractKeyPhrasesResult, ~azure.ai.textanalytics.DocumentError] :raises ~azure.core.exceptions.HttpResponseError: .. admonition:: Example: .. literalinclude:: ../samples/async_samples/sample_extract_key_phrases_async.py :start-after: [START batch_extract_key_phrases_async] :end-before: [END batch_extract_key_phrases_async] :language: python :dedent: 8 :caption: Extract the key phrases in a batch of documents. """ language_arg = kwargs.pop("language", None) language = language_arg if language_arg is not None else self._default_language docs = _validate_batch_input(documents, "language", language) model_version = kwargs.pop("model_version", None) show_stats = kwargs.pop("show_stats", False) try: return await self._client.key_phrases( documents=docs, model_version=model_version, show_stats=show_stats, cls=key_phrases_result, **kwargs ) except TextAnalyticsErrorException as error: process_batch_error(error) @distributed_trace_async async def analyze_sentiment( # type: ignore self, documents: Union[List[str], List[TextDocumentInput], List[Dict[str, str]]], **kwargs: Any ) -> List[Union[AnalyzeSentimentResult, DocumentError]]: """Analyze sentiment for a batch of documents. Returns a sentiment prediction, as well as sentiment scores for each sentiment class (Positive, Negative, and Neutral) for the document and each sentence within it. See https://docs.microsoft.com/azure/cognitive-services/text-analytics/overview#data-limits for document length limits, maximum batch size, and supported text encoding. :param documents: The set of documents to process as part of this batch. If you wish to specify the ID and language on a per-item basis you must use as input a list[:class:`~azure.ai.textanalytics.TextDocumentInput`] or a list of dict representations of :class:`~azure.ai.textanalytics.TextDocumentInput`, like `{"id": "1", "language": "en", "text": "hello world"}`. :type documents: list[str] or list[~azure.ai.textanalytics.TextDocumentInput] :keyword str language: The 2 letter ISO 639-1 representation of language for the entire batch. For example, use "en" for English; "es" for Spanish etc. If not set, uses "en" for English as default. Per-document language will take precedence over whole batch language. See https://aka.ms/talangs for supported languages in Text Analytics API. :keyword str model_version: This value indicates which model will be used for scoring, e.g. "latest", "2019-10-01". If a model-version is not specified, the API will default to the latest, non-preview version. :keyword bool show_stats: If set to true, response will contain document level statistics. :return: The combined list of :class:`~azure.ai.textanalytics.AnalyzeSentimentResult` and :class:`~azure.ai.textanalytics.DocumentError` in the order the original documents were passed in. :rtype: list[~azure.ai.textanalytics.AnalyzeSentimentResult, ~azure.ai.textanalytics.DocumentError] :raises ~azure.core.exceptions.HttpResponseError: .. admonition:: Example: .. literalinclude:: ../samples/async_samples/sample_analyze_sentiment_async.py :start-after: [START batch_analyze_sentiment_async] :end-before: [END batch_analyze_sentiment_async] :language: python :dedent: 8 :caption: Analyze sentiment in a batch of documents. """ language_arg = kwargs.pop("language", None) language = language_arg if language_arg is not None else self._default_language docs = _validate_batch_input(documents, "language", language) model_version = kwargs.pop("model_version", None) show_stats = kwargs.pop("show_stats", False) try: return await self._client.sentiment( documents=docs, model_version=model_version, show_stats=show_stats, cls=sentiment_result, **kwargs ) except TextAnalyticsErrorException as error: process_batch_error(error)
[ "noreply@github.com" ]
qiang-zai.noreply@github.com
e236794a2ce83281e678cada00bcf18e030c4fb6
300e3e1ceec5940adf54a79f678c2a1a9e66aeb4
/cognitive radio/radio.py
b84a99259a2077c7d38e76ad599a7e3ee69caace
[]
no_license
icopavan/cognitive-radio-3
ff136c5361146c4c113b68d5cc73a6030786a24f
d3cbb8b60eacab88bdfa05be483d0aee279ec5f4
refs/heads/master
2021-01-18T14:58:15.809314
2014-05-05T20:13:54
2014-05-05T20:13:54
33,601,393
1
0
null
2015-04-08T10:57:56
2015-04-08T10:57:56
null
UTF-8
Python
false
false
5,263
py
from __future__ import division import numpy as np from rtl import * from paudio import * from FSK import * from QAM import * from OFDM import * from syncronization import * from receiver import * from fm_demodulator import Demodulator from helpers import * # This file tests various parts of my project over an actual RF channel. # # 1) I will be using UHF experimental channels. Every broadcast will be # preceded by morse code with my call sign and a short explanation of # the transmission. def genPTT(plen,zlen,fs): Nz = np.floor(zlen*fs) Nt = np.floor(plen*fs) pttsig = np.zeros(Nz) t=np.r_[0.0:Nt]/fs pttsig[:Nt] = 0.5*np.sin(2*np.pi*t*2000) return pttsig def text2Morse(text,fc,fs,dt): CODE = {'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '0': '-----', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', ' ': ' ', "'": '.----.', '(': '-.--.-', ')': '-.--.-', ',': '--..--', '-': '-....-', '.': '.-.-.-', '/': '-..-.', ':': '---...', ';': '-.-.-.', '?': '..--..', '_': '..--.-' } Ndot= 1.0*fs*dt Ndah = 3*Ndot sdot = np.sin(2*np.pi*fc*np.r_[0.0:Ndot]/fs) sdah = np.sin(2*np.pi*fc*np.r_[0.0:Ndah]/fs) # convert to dit dah mrs = "" for char in text: mrs = mrs + CODE[char.upper()] + "*" sig = np.zeros(1) for char in mrs: if char == " ": sig = np.concatenate((sig,np.zeros(Ndot*7))) if char == "*": sig = np.concatenate((sig,np.zeros(Ndot*3))) if char == ".": sig = np.concatenate((sig,sdot,np.zeros(Ndot))) if char == "-": sig = np.concatenate((sig,sdah,np.zeros(Ndot))) return sig def tx_intro(fs): msg = 'KK6KLA: Experiemental use.' tx = genPTT(.5, 1, fs) tx = np.append(tx, text2Morse(msg, 880, fs, .025)) tx = np.append(tx, np.zeros(fs*2)) # add silence for 5 seconds before starting return tx def tx_fsk(data, fs, f0, f1, n, symbol_length, sync_width, sync_pulse, start_stop_pulse): data_size = data.size symbol_size = fs*symbol_length sync_size = sync_pulse.size num_syncs = 1 + data_size // sync_width f_list = np.linspace(f0, f1, n) signal = np.zeros(data_size*symbol_size + sync_size*num_syncs) j = 0 i = 0 while (i < data_size): signal[i*symbol_size + j*sync_size : i*symbol_size + (j+1)*sync_size] = sync_pulse j+=1 signal[i*symbol_size + j*sync_size : (i+sync_width)*symbol_size + j*sync_size] = modulateFSK(data[i:i+sync_width], f_list, fs, symbol_length) i+=sync_width # the terminating sync pulse signal[i*symbol_size + j*sync_size : i*symbol_size + (j+1)*sync_size] = sync_pulse # start-stop pulses ss_pulse = start_stop_pulse signal[:ss_pulse.size] = ss_pulse signal[signal.size-ss_pulse.size:] = ss_pulse signal = np.append(np.zeros(fs), signal) signal = np.append(signal, np.zeros(fs)) return signal def main(): fs_out = 44100.0 fs_in = fs_out #48000.0 channel = 432.079e6 sync_pulse = genSyncPulse2(4000, 1200,t=.02) # make sure t*fs < chunk size (1024) start_stop_pulse = genSyncPulse2(2400, 1200, t=.02) radioQ = Queue.Queue() Qin = Queue.Queue() Qout = Queue.Queue() sdr = rtlsdr.RtlSdr() initRtlSdr(sdr, channel, 2.4e5, 32) getSamplesAsync(sdr, radioQ) tx_data = np.random.randint(0, 2, 1000) transmission = np.append(tx_intro(fs_out), tx_fsk(tx_data, fs_out, 1200, 2400, 2, .01, 200, sync_pulse, start_stop_pulse)) #transmission = tx_fsk(data, fs_out, 1200, 2400, 2, .005, 200, sync_pulse, start_stop_pulse) p = pyaudio.PyAudio() din, dout, dusbin, dusbout = audioDevNumbers(p) tx_t = threading.Thread(target=play_audio, args = (Qout, p, fs_out, dusbout)) tx_t.start() Qout.put(transmission) play_t = threading.Thread(target = play_audio, args = (Qin, p, fs_in, dout)) play_t.start() dem = Demodulator(2.4e5,16000.0, fs_in, 4000.0) dec = Decoder(1200, 2400, 2, .01, sync_pulse, start_stop_pulse, 200, fs_in) data = radioQ.get() audio = dem.fm_demodulate(data) Qin.put(audio) # play the incomming signal while(True): rx_signal = radioQ.get() audio = dem.fm_demodulate(rx_signal) #audio *= 2 Qin.put(audio) # play the incomming signal if(dec.process(audio)): break rx_data = dec.rec_data print tx_data[:20] print rx_data[:20] print np.sum(np.equal(tx_data, rx_data))/1000 for i in range(400): if (tx_data[i] != rx_data[i]): print(i), p.terminate() sdr.close() if __name__ == '__main__': main()
[ "peragwin@gmail.com" ]
peragwin@gmail.com
7094a051df48048e91ca612f6c79782f53113d25
903c2f1cb06091f8199bf63d74111fe79dac6f8d
/packages&modules/Package2/module_script2.py
0686bb4eced75b4c7f63e691fa6ee6557e230770
[]
no_license
praneethpeddi/Python-Assignments
c8b4d8fa58244b033bb4cdf36f55e42b7e7cf6fc
0a224aeae40a4cc55a5a7259ff2360fc61841abd
refs/heads/master
2023-01-19T07:58:59.144309
2020-11-19T01:46:45
2020-11-19T01:46:45
299,494,119
1
0
null
null
null
null
UTF-8
Python
false
false
189
py
try: import module2 print("In module 2: import success") module2.c() print("function c is executed") module2.d() print("function d is executed") except Exception as var: print(var)
[ "praneethpeddi1995@gmail.com" ]
praneethpeddi1995@gmail.com
22998f536894be455f9fc54583b6c4a9508ff0a0
b74aeebd25b39532b51457a1a1e7bf369a9f7ef2
/fcdjango/fcdjango_venv/bin/django-admin
99e65d705c4233d436acc8ab83178ea13b90bc4e
[ "MIT" ]
permissive
djangojeng-e/djangoproejcts
c16bffe98cd9b05805ecaa6cf8c2076155235fc9
1efc3bc04a4a1bef039c906584cfecf0231c177f
refs/heads/master
2022-12-22T03:27:58.695116
2020-10-16T00:10:57
2020-10-16T00:10:57
221,873,289
0
1
MIT
2022-12-19T03:11:29
2019-11-15T07:57:41
Python
UTF-8
Python
false
false
324
#!/home/dkang/documents/dev/djangoproejcts/fcdjango/fcdjango_venv/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
[ "headfat1218@gmail.com" ]
headfat1218@gmail.com
b3cf6c55dcab70f99e1cfda480f07f4b9321806d
ec7243cb3d117bf86321707e8bbf55e4389fc66d
/source/scrape.py
5e818c4c544a3909641173b0a469b71710946b89
[]
no_license
datastoreking/number_scraping_lotterysite
4a40f82773719d858840ac22f9c2b5144bc75169
bc764013bf31c9ee6a57bdcb76b5c3008a2034de
refs/heads/main
2023-09-02T06:25:44.820165
2021-11-01T06:39:20
2021-11-01T06:39:20
423,362,417
0
0
null
null
null
null
UTF-8
Python
false
false
2,667
py
from selenium import webdriver from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException from selenium.common.exceptions import NoSuchElementException import csv options = webdriver.ChromeOptions() options.add_argument('--ignore-certificate-errors') options.add_argument('--ignore-ssl-errors') options.add_argument("--ignore-certificate-errors-spki-list") driver = webdriver.Chrome("./chromedriver",chrome_options=options)# get chromeDriver driver.set_window_size(960, 640) total_numbers_group = [] left_numbers_group = [] driver.get("https://www.fdj.fr/jeux-de-tirage/amigo/resultats/")# set url try: WebDriverWait(driver, 10).until(EC.visibility_of_element_located((By.CLASS_NAME, "swiper-wrapper"))) print('waiting done') blocks = driver.find_elements(By.CLASS_NAME, 'result-amigo_page') for block_index in range(len(blocks)): row_contents = blocks[block_index].find_elements(By.CLASS_NAME,'result-amigo_content'); for row_index in range(len(row_contents)): data_content = row_contents[row_index].find_elements(By.CLASS_NAME, 'result-amigo_item') left_content = data_content[1].find_elements(By.CLASS_NAME, 'numbers-item') line_left_number_list = [] total_numbers_list = [] for left_content_index in range(len(left_content)): left_numbers = left_content[left_content_index].find_element(By.CLASS_NAME, 'numbers-item_num').get_attribute('innerHTML'); line_left_number_list.append(int(left_numbers)) total_numbers_list.append(int(left_numbers)) right_content = data_content[2].find_elements(By.CLASS_NAME, 'numbers-item') for right_content_index in range(len(right_content)): right_numbers = right_content[right_content_index].find_element(By.CLASS_NAME, 'numbers-item_num').get_attribute('innerHTML'); total_numbers_list.append(int(right_numbers)) total_numbers_list.sort() line_left_number_list.sort() print(total_numbers_list) left_numbers_group.insert(0, line_left_number_list) total_numbers_group.insert(0, total_numbers_list) with open('amigo.csv', 'w') as total: write = csv.writer(total) write.writerows(total_numbers_group) with open('amigo_BLUE.csv', 'w') as blue: write = csv.writer(blue) write.writerows(left_numbers_group) except TimeoutException: print('network error') driver.close()
[ "vladislavcukanov@gmail.com" ]
vladislavcukanov@gmail.com
4a28229ccac1e54b1f8cb5515fe964ea7f8983da
f24f9284998e0487de34218e510961d5bbd5547b
/setting.py
8cdb43afb467d02d767d68a88033db3247c9ec28
[]
no_license
HZCKen/plane_game
21780d8ae43bcfd6d70b1e43182c6f604ae1e155
ee0a0e5cc49602f8ea62a84c7760d6ad6528efd7
refs/heads/master
2020-03-17T17:26:22.809258
2018-07-09T07:53:26
2018-07-09T07:53:26
133,788,363
0
0
null
null
null
null
UTF-8
Python
false
false
542
py
class Setting(object): def __init__(self): self.screen_width = 900 self.screen_height = 600 self.backgrounColor = (230, 230, 230) self.ship_speed_factor = 1.5 self.ship_limit = 3 self.bullet_speed_factor = 3 self.bullet_width = 3 self.bullet_height = 15 self.bullet_color = 60, 60, 60 self.bullets_allowed = 3 self.alien_speed_factor = 1 self.flect_drop_speed = 50 # 方向 1为右移 -1 为左移 self.fleet_direction = 1
[ "13826457912@163.com" ]
13826457912@163.com
744b012e97e4bc5c6f153076f46b9fef6a0756a6
b59b44c83c86aac8ebd971c996e2f95486a39cc3
/util/arp.py
b93c86d36a2df02fc347a8559d863126932e8acd
[]
no_license
angelhack-conectus/conectus-user-backend
c99d48b94331f250086689518001cd73a3311b51
fa56fe826c1283313e6670788db7dfce38d75835
refs/heads/master
2020-05-30T14:44:27.509078
2019-06-04T06:50:16
2019-06-04T06:50:16
189,798,654
0
1
null
null
null
null
UTF-8
Python
false
false
1,137
py
import subprocess import re import asyncio mac_address = re.compile( rb'[1234567890abcdf]{2}-[1234567890abcdf]{2}-[1234567890abcdf]{2}-[1234567890abcdf]{2}-[1234567890abcdf]{2}-[1234567890abcdf]{2}') async def get_mac_address(ip): p = await asyncio.create_subprocess_exec( 'arp', '-a', ip, stdin=asyncio.subprocess.PIPE, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await p.communicate() return mac_address.search(stdout).group(0).decode('charmap') async def get_mac_address_in_thread(ip): def _arp_request(): p = subprocess.run(['arp', '-a', ip], stdout=subprocess.PIPE) return p.stdout loop = asyncio.get_event_loop() out = await loop.run_in_executor(None, _arp_request) try: return mac_address.search(out).group(0).decode('charmap') except: return '00-00-00-00-00-00' if __name__ == '__main__': _loop = asyncio.ProactorEventLoop() asyncio.set_event_loop(_loop) # _loop = asyncio.get_event_loop() print(_loop.run_until_complete(get_mac_address_in_thread('192.168.0.92')))
[ "2_minchul@naver.com" ]
2_minchul@naver.com
56003e100cddd599f5959ab7d12a3d33fd7950b4
70d081ab363373aafd60f649d4b216110a5659c9
/gpustat/util_test.py
cd18d39db2779c7cd2b0f00a77c0b9df74dc51ca
[ "MIT" ]
permissive
wookayin/gpustat
37f9589f657920402fe37d5baaea93e7241ccd0d
e32e3f2cd7d1b08a08fa235efe1f69bc3d769171
refs/heads/master
2023-08-30T18:55:34.490915
2023-08-22T21:51:56
2023-08-22T21:52:11
56,966,563
3,623
290
MIT
2023-09-06T04:23:58
2016-04-24T10:46:43
Python
UTF-8
Python
false
false
771
py
import sys import pytest from gpustat import util def test_safecall(): def _success(): return 42 def _error(): raise FileNotFoundError("oops") assert util.safecall(_success, error_value=None) == 42 assert util.safecall(_error, error_value=-1) == -1 with pytest.raises(FileNotFoundError): # not catched because exc_types does not match assert util.safecall(_error, exc_types=ValueError, error_value=-1) assert util.safecall(_error, error_value=-1, exc_types=FileNotFoundError) == -1 assert util.safecall(_error, error_value=-1, exc_types=(FileNotFoundError, OSError)) == -1 if __name__ == '__main__': sys.exit(pytest.main(["-s", "-v"] + sys.argv))
[ "wookayin@gmail.com" ]
wookayin@gmail.com
2e2ad4e2b61111feb6acf532edbbb405d8fe638b
a088e9614ac6041fcf30d06e33b53529d3be395f
/05函数加强/07-匿名函数-lambda参数之默认参数.py
61860ef30af5292af33ef87a551ccc22b5ddcc98
[]
no_license
yeshengwei/PythonLearning
69dd3f6168b66232de186bd459a7fb6f6d119893
97f4bffbe0c58fed708a63d21f73a5967359a78f
refs/heads/master
2020-08-13T14:38:34.802900
2019-11-22T07:24:03
2019-11-22T07:24:03
214,985,372
0
0
null
null
null
null
UTF-8
Python
false
false
64
py
func1 = lambda x, y, z=100: x + y + z print(func1(1, 10, 1000))
[ "yeshengwei@live.com" ]
yeshengwei@live.com
85a43c44139b7e923b000451d7e3a74f01635743
2c580e0b03d5d87bf09a4a46c160f13233163772
/tests/test_backends.py
6c546612bed32db104e21da8366634e8fc701dbc
[ "MIT" ]
permissive
greglever/django_microsoft_auth
cefea785dbc7c53bf57cae164bdc913c49476086
25ac0195ac7a052034359211b70c770c905b549f
refs/heads/master
2020-04-03T20:40:50.217761
2018-10-30T10:07:56
2018-10-30T10:07:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,350
py
from unittest.mock import Mock, patch from django.contrib.auth import authenticate, get_user_model from django.test import RequestFactory, override_settings from microsoft_auth.models import MicrosoftAccount, XboxLiveAccount from microsoft_auth.conf import LOGIN_TYPE_XBL from . import TestCase CODE = 'test_code' TOKEN = {'access_token': 'test_token', 'scope': ['test']} XBOX_TOKEN = {'Token': 'test_token'} EMAIL = 'some.email@example.com' FIRST = 'Test' LAST = 'User' MISSING_ID = 'some_missing_id' GAMERTAG = 'Some Gamertag' @override_settings( AUTHENTICATION_BACKENDS=[ 'microsoft_auth.backends.MicrosoftAuthenticationBackend', 'django.contrib.auth.backends.ModelBackend' ], ) class MicrosoftBackendsTests(TestCase): def setUp(self): User = get_user_model() self.factory = RequestFactory() self.request = self.factory.get('/') self.linked_account = MicrosoftAccount.objects.create( microsoft_id='test_id' ) self.linked_account.user = User.objects.create(username='user1') self.linked_account.save() self.unlinked_account = MicrosoftAccount.objects.create( microsoft_id='missing_id' ) self.unlinked_user = User.objects.create( username='user2', email='test@example.com', ) def test_authenticate_no_code(self): user = authenticate(self.request) self.assertIs(user, None) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_invalid_token(self, mock_client): mock_auth = Mock() mock_auth.fetch_token.return_value = {} mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertTrue(mock_auth.fetch_token.called) self.assertIs(user, None) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_invalid_scopes(self, mock_client): mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.valid_scopes.return_value = False mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertTrue(mock_auth.fetch_token.called) self.assertTrue(mock_auth.valid_scopes.called) self.assertIs(user, None) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_invalid_profile(self, mock_client): mock_response = Mock() mock_response.status_code = 400 mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get.return_value = mock_response mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertTrue(mock_auth.fetch_token.called) self.assertTrue(mock_auth.valid_scopes.called) self.assertIs(user, None) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_errored_profile(self, mock_client): mock_response = Mock() mock_response.status_code = 200 mock_response.json.return_value = {'error': None} mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get.return_value = mock_response mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertTrue(mock_auth.fetch_token.called) self.assertTrue(mock_auth.valid_scopes.called) self.assertIs(user, None) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_existing_user(self, mock_client): mock_response = Mock() mock_response.status_code = 200 mock_response.json.return_value = { 'id': self.linked_account.microsoft_id, } mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get.return_value = mock_response mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertIsNot(user, None) self.assertEqual(user.id, self.linked_account.user.id) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_existing_user_missing_user(self, mock_client): mock_response = Mock() mock_response.status_code = 200 mock_response.json.return_value = { 'id': self.unlinked_account.microsoft_id, 'userPrincipalName': EMAIL, } mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get.return_value = mock_response mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.unlinked_account.refresh_from_db() self.assertIsNot(user, None) self.assertEqual(user.id, self.unlinked_account.user.id) self.assertEqual(EMAIL, self.unlinked_account.user.email) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_existing_user_no_user_with_name(self, mock_client): mock_response = Mock() mock_response.status_code = 200 mock_response.json.return_value = { 'id': self.unlinked_account.microsoft_id, 'userPrincipalName': EMAIL, 'givenName': FIRST, 'surname': LAST, } mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get.return_value = mock_response mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.unlinked_account.refresh_from_db() self.assertIsNot(user, None) self.assertEqual(user.id, self.unlinked_account.user.id) self.assertEqual(EMAIL, self.unlinked_account.user.email) self.assertEqual(FIRST, self.unlinked_account.user.first_name) self.assertEqual(LAST, self.unlinked_account.user.last_name) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_existing_user_unlinked_user(self, mock_client): mock_response = Mock() mock_response.status_code = 200 mock_response.json.return_value = { 'id': self.unlinked_account.microsoft_id, 'userPrincipalName': self.unlinked_user.email, } mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get.return_value = mock_response mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.unlinked_account.refresh_from_db() self.assertIsNot(user, None) self.assertEqual(user.id, self.unlinked_account.user.id) self.assertEqual( self.unlinked_user.id, self.unlinked_account.user.id) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_existing_user_missing_name(self, mock_client): mock_response = Mock() mock_response.status_code = 200 mock_response.json.return_value = { 'id': self.unlinked_account.microsoft_id, 'userPrincipalName': self.unlinked_user.email, 'givenName': FIRST, 'surname': LAST, } mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get.return_value = mock_response mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.unlinked_user.refresh_from_db() self.assertIsNot(user, None) self.assertEqual(user.id, self.unlinked_user.id) self.assertEqual(FIRST, self.unlinked_user.first_name) self.assertEqual(LAST, self.unlinked_user.last_name) @override_settings(MICROSOFT_AUTH_AUTO_CREATE=False) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_no_autocreate(self, mock_client): mock_response = Mock() mock_response.status_code = 200 mock_response.json.return_value = { 'id': MISSING_ID, } mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get.return_value = mock_response mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertIs(user, None) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_autocreate(self, mock_client): mock_response = Mock() mock_response.status_code = 200 mock_response.json.return_value = { 'id': MISSING_ID, 'userPrincipalName': EMAIL, } mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get.return_value = mock_response mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertIsNot(user, None) self.assertEqual(EMAIL, user.email) self.assertEqual(MISSING_ID, user.microsoft_account.microsoft_id) @override_settings( AUTHENTICATION_BACKENDS=[ 'microsoft_auth.backends.MicrosoftAuthenticationBackend', 'django.contrib.auth.backends.ModelBackend' ], MICROSOFT_AUTH_LOGIN_TYPE=LOGIN_TYPE_XBL ) class XboxLiveBackendsTests(TestCase): def setUp(self): User = get_user_model() self.factory = RequestFactory() self.request = self.factory.get('/') self.linked_account = XboxLiveAccount.objects.create( xbox_id='test_id', gamertag='test_gamertag', ) self.linked_account.user = User.objects.create(username='user1') self.linked_account.save() @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_bad_xbox_token(self, mock_client): mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.fetch_xbox_token.return_value = {} mock_auth.valid_scopes.return_value = True mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertFalse(mock_auth.get_xbox_profile.called) self.assertIs(user, None) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_existing_user(self, mock_client): mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.fetch_xbox_token.return_value = XBOX_TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get_xbox_profile.return_value = { 'xid': self.linked_account.xbox_id, 'gtg': self.linked_account.gamertag, } mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertIsNot(user, None) self.assertEqual(user.id, self.linked_account.user.id) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_existing_user_new_gamertag(self, mock_client): mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.fetch_xbox_token.return_value = XBOX_TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get_xbox_profile.return_value = { 'xid': self.linked_account.xbox_id, 'gtg': GAMERTAG, } mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.linked_account.refresh_from_db() self.assertIsNot(user, None) self.assertEqual(user.id, self.linked_account.user.id) self.assertEqual(GAMERTAG, self.linked_account.gamertag) @override_settings(MICROSOFT_AUTH_AUTO_CREATE=False) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_no_autocreate(self, mock_client): mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.fetch_xbox_token.return_value = XBOX_TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get_xbox_profile.return_value = { 'xid': MISSING_ID, 'gtg': GAMERTAG, } mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertIs(user, None) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_autocreate(self, mock_client): mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.fetch_xbox_token.return_value = XBOX_TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get_xbox_profile.return_value = { 'xid': MISSING_ID, 'gtg': GAMERTAG, } mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.assertIsNot(user, None) self.assertEqual(GAMERTAG, user.username) self.assertEqual(MISSING_ID, user.xbox_live_account.xbox_id) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_no_sync_username(self, mock_client): mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.fetch_xbox_token.return_value = XBOX_TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get_xbox_profile.return_value = { 'xid': self.linked_account.xbox_id, 'gtg': GAMERTAG, } mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.linked_account.refresh_from_db() self.assertIsNot(user, None) self.assertEqual(user.id, self.linked_account.user.id) self.assertNotEqual(GAMERTAG, self.linked_account.user.username) @override_settings(MICROSOFT_AUTH_XBL_SYNC_USERNAME=True) @patch('microsoft_auth.backends.MicrosoftClient') def test_authenticate_sync_username(self, mock_client): mock_auth = Mock() mock_auth.fetch_token.return_value = TOKEN mock_auth.fetch_xbox_token.return_value = XBOX_TOKEN mock_auth.valid_scopes.return_value = True mock_auth.get_xbox_profile.return_value = { 'xid': self.linked_account.xbox_id, 'gtg': GAMERTAG, } mock_client.return_value = mock_auth user = authenticate(self.request, code=CODE) self.linked_account.refresh_from_db() self.linked_account.user.refresh_from_db() self.assertIsNot(user, None) self.assertEqual(user.id, self.linked_account.user.id) self.assertEqual(GAMERTAG, self.linked_account.user.username)
[ "cbailey@mort.is" ]
cbailey@mort.is
09da145aa374994d8a34de3e6af14b7df5557cb3
a6f96f766ec5d71bf38b281e47dc9c8846017266
/twistedbot/plugins/core/chat_follow.py
2c59b084e6e7d905719a8cb30cf5382be7e6db57
[ "MIT" ]
permissive
jonasrk/TwistedBot
7b7a2de0c71256692aef0186cbec07e0bedb4b59
71448f81f8075774ab14677510e41e9af1d6e846
refs/heads/master
2021-01-18T15:03:52.335435
2013-07-06T21:36:59
2013-07-06T21:36:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
from twistedbot.plugins.base import PluginChatBase from twistedbot.behavior_tree import FollowPlayer class Follow(PluginChatBase): @property def command_verb(self): return "follow" @property def help(self): return "bot starts following you" def command(self, sender, command, args): self.world.bot.behavior_tree.new_command(FollowPlayer) plugin = Follow
[ "lehner.lukas@gmail.com" ]
lehner.lukas@gmail.com
0892b9b290e2a4186ff79137b2bf96b7e02217d4
ed471e0bdda3a8c2b1c31ea4e87942b30cdf19dd
/expenses/wsgi.py
6126c0706ac9ecb5155a5046fc4abb125161054f
[]
no_license
blinduck/expenses-server
430dbfc3ed3466d172d3c35db9168014ea984fc8
16704a57d9cc5e96f2bb9c218cb399b285240ccb
refs/heads/master
2023-02-11T17:41:16.887161
2020-09-20T13:20:11
2020-09-20T13:20:11
141,822,324
0
0
null
2023-02-02T02:18:05
2018-07-21T14:56:08
Python
UTF-8
Python
false
false
394
py
""" WSGI config for expenses project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "expenses.settings") application = get_wsgi_application()
[ "blinduck@gmail.com" ]
blinduck@gmail.com
3ca963f46a088f2c62e5b44b7f948bfda20e7288
7b437e095068fb3f615203e24b3af5c212162c0d
/enaml/qt/qt_image_view.py
333b3323dd96a76a7210114a6b6a475bdecd2f1d
[ "BSD-3-Clause" ]
permissive
ContinuumIO/enaml
d8200f97946e5139323d22fba32c05231c2b342a
15c20b035a73187e8e66fa20a43c3a4372d008bd
refs/heads/master
2023-06-26T16:16:56.291781
2013-03-26T21:13:52
2013-03-26T21:13:52
9,047,832
2
3
null
null
null
null
UTF-8
Python
false
false
9,105
py
#------------------------------------------------------------------------------ # Copyright (c) 2013, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #------------------------------------------------------------------------------ from PyQt4.QtGui import QFrame, QPainter, QPixmap from atom.api import Typed from enaml.widgets.image_view import ProxyImageView from .q_resource_helpers import get_cached_qimage from .qt_constraints_widget import size_hint_guard from .qt_control import QtControl class QImageView(QFrame): """ A custom QFrame that will paint a QPixmap as an image. The api is similar to QLabel, but with a few more options to control how the image scales. """ def __init__(self, parent=None): """ Initialize a QImageView. Parameters ---------- parent : QWidget or None, optional The parent widget of this image viewer. """ super(QImageView, self).__init__(parent) self._pixmap = None self._scaled_contents = False self._allow_upscaling = False self._preserve_aspect_ratio = False #-------------------------------------------------------------------------- # Private API #-------------------------------------------------------------------------- def paintEvent(self, event): """ A custom paint event handler which draws the image according to the current size constraints. """ pixmap = self._pixmap if pixmap is None: return pm_size = pixmap.size() pm_width = pm_size.width() pm_height = pm_size.height() if pm_width == 0 or pm_height == 0: return # Use the widget rect instead of the event rect so the image # paints properly in a scroll area where it may be clipped. evt_rect = self.rect() evt_x = evt_rect.x() evt_y = evt_rect.y() evt_width = evt_rect.width() evt_height = evt_rect.height() if not self._scaled_contents: # If the image isn't scaled, it is centered if possible. # Otherwise, it's painted at the origin and clipped. paint_x = max(0, int((evt_width / 2. - pm_width / 2.) + evt_x)) paint_y = max(0, int((evt_height / 2. - pm_height / 2.) + evt_y)) paint_width = pm_width paint_height = pm_height else: # If the image *is* scaled, it's scaled size depends on the # size of the paint area as well as the other scaling flags. if self._preserve_aspect_ratio: pm_ratio = float(pm_width) / pm_height evt_ratio = float(evt_width) / evt_height if evt_ratio >= pm_ratio: if self._allow_upscaling: paint_height = evt_height else: paint_height = min(pm_height, evt_height) paint_width = int(paint_height * pm_ratio) else: if self._allow_upscaling: paint_width = evt_width else: paint_width = min(pm_width, evt_width) paint_height = int(paint_width / pm_ratio) else: if self._allow_upscaling: paint_height = evt_height paint_width = evt_width else: paint_height = min(pm_height, evt_height) paint_width = min(pm_width, evt_width) # In all cases of scaling, we know that the scaled image is # no larger than the paint area, and can thus be centered. paint_x = int((evt_width / 2. - paint_width / 2.) + evt_x) paint_y = int((evt_height / 2. - paint_height / 2.) + evt_y) # Finally, draw the pixmap into the calculated rect. painter = QPainter(self) painter.setRenderHint(QPainter.SmoothPixmapTransform) painter.drawPixmap(paint_x, paint_y, paint_width, paint_height, pixmap) #-------------------------------------------------------------------------- # Public API #-------------------------------------------------------------------------- def sizeHint(self): """ Returns a appropriate size hint for the image based on the underlying QPixmap. """ pixmap = self._pixmap if pixmap is not None: return pixmap.size() return super(QImageView, self).sizeHint() def pixmap(self): """ Returns the underlying pixmap for the image view. """ return self._pixmap def setPixmap(self, pixmap): """ Set the pixmap to use as the image in the widget. Parameters ---------- pixamp : QPixmap The QPixmap to use as the image in the widget. """ self._pixmap = pixmap self.update() def scaledContents(self): """ Returns whether or not the contents scale with the widget size. """ return self._scaled_contents def setScaledContents(self, scaled): """ Set whether the contents scale with the widget size. Parameters ---------- scaled : bool If True, the image will be scaled to fit the widget size, subject to the other sizing constraints in place. If False, the image will not scale and will be clipped as required. """ self._scaled_contents = scaled self.update() def allowUpscaling(self): """ Returns whether or not the image can be scaled greater than its natural size. """ return self._allow_upscaling def setAllowUpscaling(self, allow): """ Set whether or not to allow the image to be scaled beyond its natural size. Parameters ---------- allow : bool If True, then the image may be scaled larger than its natural if it is scaled to fit. If False, the image will never be scaled larger than its natural size. In either case, the image may be scaled smaller. """ self._allow_upscaling = allow self.update() def preserveAspectRatio(self): """ Returns whether or not the aspect ratio of the image is maintained during a resize. """ return self._preserve_aspect_ratio def setPreserveAspectRatio(self, preserve): """ Set whether or not to preserve the image aspect ratio. Parameters ---------- preserve : bool If True then the aspect ratio of the image will be preserved if it is scaled to fit. Otherwise, the aspect ratio will be ignored. """ self._preserve_aspect_ratio = preserve self.update() class QtImageView(QtControl, ProxyImageView): """ A Qt implementation of an Enaml ProxyImageView. """ #: A reference to the widget created by the proxy. widget = Typed(QImageView) #-------------------------------------------------------------------------- # Initialization API #-------------------------------------------------------------------------- def create_widget(self): """ Create the underlying QImageView widget. """ self.widget = QImageView(self.parent_widget()) def init_widget(self): """ Initialize the underlying control. """ super(QtImageView, self).init_widget() d = self.declaration self.set_image(d.image) self.set_scale_to_fit(d.scale_to_fit) self.set_allow_upscaling(d.allow_upscaling) self.set_preserve_aspect_ratio(d.preserve_aspect_ratio) #-------------------------------------------------------------------------- # Widget Update Methods #-------------------------------------------------------------------------- def set_image(self, image, sh_guard=True): """ Set the image on the underlying widget. """ qpixmap = None if image: qimage = get_cached_qimage(image) qpixmap = QPixmap.fromImage(qimage) if sh_guard: with size_hint_guard(self): self.widget.setPixmap(qpixmap) else: self.widget.setPixmap(qpixmap) def set_scale_to_fit(self, scale): """ Sets whether or not the image scales with the underlying control. """ self.widget.setScaledContents(scale) def set_allow_upscaling(self, allow): """ Sets whether or not the image will scale beyond its natural size. """ self.widget.setAllowUpscaling(allow) def set_preserve_aspect_ratio(self, preserve): """ Sets whether or not to preserve the aspect ratio of the image when scaling. """ self.widget.setPreserveAspectRatio(preserve)
[ "sccolbert@gmail.com" ]
sccolbert@gmail.com
b9048c10a2f1cc5c89401780f2865d98ca74a65c
40bf222b4515b16e1c3c069d84679c588667aea1
/yoyi_dataset_encode.py
fbe82e1283850cd71ed7eb1c9bd57d93324f9009
[]
no_license
wty9391/GMM
1e6795a2a115632a208ae0172ce1b929beafc64e
776ddf57aedefa1483dd2653b863a810e83d099f
refs/heads/master
2022-05-16T16:38:21.104871
2022-03-11T04:39:52
2022-03-11T04:39:52
237,732,893
1
0
null
null
null
null
UTF-8
Python
false
false
3,101
py
import sys import pickle import numpy as np from scipy.sparse import csr_matrix, vstack import myutil.encoder as encoder import myutil.truthful_bidder as truthful_bidder # ../make-yoyi-data/original-data/sample/train.yzx.txt ../make-yoyi-data/original-data/sample/test.yzx.txt ./result/yoyi_sample if len(sys.argv) < 4: print('Usage: .py trian_log_path test_log_path result_root_path') exit(-1) read_batch_size = 1e6 f_train_log = open(sys.argv[1], 'r', encoding="utf-8") f_test_log = open(sys.argv[2], 'r', encoding="utf-8") num_features = 1785106 pay_scale = 1 if sys.argv[3].find("yoyi_sample") > 0: num_features = 3036119 pay_scale = 1e-3 yoyi = encoder.Encoder_yoyi(num_features, pay_scale) X_train_raw = [] X_train = csr_matrix((0, num_features), dtype=np.int8) Y_train = np.zeros((0, 1), dtype=np.int8) Z_train = np.zeros((0, 1), dtype=np.int16) X_test_raw = [] X_test = csr_matrix((0, num_features), dtype=np.int8) Y_test = np.zeros((0, 1), dtype=np.int8) Z_test = np.zeros((0, 1), dtype=np.int16) count = 0 f_train_log.seek(0) for line in f_train_log: X_train_raw.append(line) count += 1 if count % read_batch_size == 0: X_train = vstack((X_train, yoyi.encode(X_train_raw))) Y_train = np.vstack((Y_train, yoyi.get_col(X_train_raw, "click"))) Z_train = np.vstack((Z_train, yoyi.get_col(X_train_raw, "payprice"))) X_train_raw = [] if X_train_raw: X_train = vstack((X_train, yoyi.encode(X_train_raw))) Y_train = np.vstack((Y_train, yoyi.get_col(X_train_raw, "click"))) Z_train = np.vstack((Z_train, yoyi.get_col(X_train_raw, "payprice"))) X_train_raw = [] count = 0 f_test_log.seek(0) for line in f_test_log: X_test_raw.append(line) count += 1 if count % read_batch_size == 0: X_test = vstack((X_test, yoyi.encode(X_test_raw))) Y_test = np.vstack((Y_test, yoyi.get_col(X_test_raw, "click"))) Z_test = np.vstack((Z_test, yoyi.get_col(X_test_raw, "payprice"))) X_test_raw = [] if X_test_raw: X_test = vstack((X_test, yoyi.encode(X_test_raw))) Y_test = np.vstack((Y_test, yoyi.get_col(X_test_raw, "click"))) Z_test = np.vstack((Z_test, yoyi.get_col(X_test_raw, "payprice"))) X_test_raw = [] # yoyi datasets has much useless features (zero columns) which should be removed to accelerate the learning feature_count = X_test.sum(axis=0) nonzero = np.array((feature_count != 0).tolist()[0]) X_train = (X_train.tocsc()[:, nonzero]).tocsr() X_test = (X_test.tocsc()[:, nonzero]).tocsr() bidder = truthful_bidder.Truthful_bidder() bidder.fit(X_train, Y_train, Z_train) bidder.evaluate(X_test, Y_test) pickle.dump(X_train, open(sys.argv[3]+'/x_train', 'wb')) pickle.dump(Y_train, open(sys.argv[3]+'/y_train', 'wb')) pickle.dump(Z_train, open(sys.argv[3]+'/z_train', 'wb')) pickle.dump(X_test, open(sys.argv[3]+'/x_test', 'wb')) pickle.dump(Y_test, open(sys.argv[3]+'/y_test', 'wb')) pickle.dump(Z_test, open(sys.argv[3]+'/z_test', 'wb')) pickle.dump(bidder, open(sys.argv[3]+'/truthful_bidder', 'wb')) f_train_log.close() f_test_log.close()
[ "272076302@qq.com" ]
272076302@qq.com
0093da243e6cad910e110757cd26a6bd4aba396b
20f2ce3642ff52dce0c8eba162ce8b017dd5683a
/이것이 코딩테스트다_python/구현/2. 시각.py
82a705e07f7d0ac1ac21662ce58992e5d316e942
[]
no_license
HyoungSunChoi/Coding-Test
90a3b80c878dac8916827ffd2d8936fbb98cc92e
5f92966d49201e12046d1b0c23f941e5ebb3d59c
refs/heads/master
2023-04-22T06:26:02.402969
2021-05-07T05:44:21
2021-05-07T05:44:21
320,179,730
1
0
null
null
null
null
UTF-8
Python
false
false
401
py
''' 정수 N 이 입력되면 00시 00분 00초 부터 N시 59분 59초까지의 모든 시각 중에서 3이 하나라도 포함되는 모든 경우의 수를 구하는 프로그램을 작성 ''' n=int(input()) cnt=0 for i in range(n+1): for j in range(60): for k in range(60): res= str(i)+str(j)+str(k) if '3' in res: cnt+=1 print(cnt)
[ "noreply@github.com" ]
HyoungSunChoi.noreply@github.com
34bdcf45336ac9fad8e79e864eb308065846a1c8
1e331aa934cf8a4d08402c6374f4c8dcfef9fd9d
/Cliff/main.py
6049f4139254bf6d208aceb2319e6eeca17d5aec
[]
no_license
19LukaModric/Python-Test
da7383e1dfcb49e6a034c4e72d3cac2af1f31e13
4ace577cb9246d54a5c7c343c8173ae36ae8d145
refs/heads/master
2020-12-30T17:10:45.513854
2017-05-19T06:31:47
2017-05-19T06:31:47
91,060,086
0
0
null
null
null
null
UTF-8
Python
false
false
946
py
#!/usr/bin/python # -*- coding:utf-8 -*- import logging import sys from cliff.app import App from cliff.commandmanager import CommandManager class DemoApp(App): log = logging.getLogger(__name__) def __init__(self): super(DemoApp, self).__init__( description = 'cliff demo app', version = '0.1', command_manager = CommandManager('cliff.demo'), ) def initialize_app(self, argv): self.log.debug('initialize_app') def prepare_to_run_command(self, cmd): self.log.debug('prepare_to_run_command %s', cmd.__class__.__name__) def clean_up(self, cmd, result, err): self.log.debug('clean_up %s', cmd.__class__.__name__) if err: self.log.debug('got an error: %s', err) def main(argv = sys.argv[1:]): myapp = DemoApp() return myapp.run(argv) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
[ "cheben2014@outlook.com" ]
cheben2014@outlook.com
a20d4050a3ca2eb9cf7b0fc5957e562aa85b3bfc
814ed222a37ff1bd19e6cc2eaecc6985916bf9e4
/getliquor.py
8a2ede91caee13c3a2e8fc5fba272cc27ef876a8
[]
no_license
parduhne/RecipeRetriever
50bd2d5f7f4b40ad364534f36a132c68dfd1c9a3
fd54e128d236df40074131f96dea064aa7972c60
refs/heads/master
2022-12-20T15:49:35.338764
2020-05-10T21:53:22
2020-05-10T21:53:22
231,953,781
0
0
null
2022-12-11T19:24:06
2020-01-05T17:42:44
TypeScript
UTF-8
Python
false
false
2,777
py
# Import libraries import requests import urllib.request import time from bs4 import BeautifulSoup base_url = 'https://www.liquor.com' buffer = [] def recursiveFoo(url): # Connect to the URL response = requests.get(url) # Parse HTML and save to BeautifulSoup object¶ soup = BeautifulSoup(response.text, "html.parser") div_tags = soup.findAll('div') if(soup.findAll('div',attrs={"class":"measure"})): # print(url) getIngrediants(url) return 1 a_tags = soup.findAll('a') temp = ' ' for i in a_tags: href_string = i['href'] if(href_string.find('recipes') != -1 and href_string.find('mosaic') == -1 and href_string.find('page') == -1 and href_string.find('liquor') != -1): if(temp != href_string): temp = href_string recursiveFoo(href_string) elif(href_string.find('page') != -1): if(int(url.rsplit('/')[-2]) == 47): print('\nPage '+url.rsplit('/')[-2]+" Done!\n") # writeBuffer() return -1 elif(int(url.rsplit('/')[-2]) == (int(href_string.rsplit('/')[-2]) - 1)): print('Page '+url.rsplit('/')[-2]+" Done!") if(recursiveFoo(href_string)==-1): return -1 def getIngrediants(url): response = requests.get(url) # Parse HTML and save to BeautifulSoup object¶ file = open("recipes.txt",'a+') file.write("\n" + url.rsplit('/')[-2] + "{\n") # recipeString = "\n" + url.rsplit('/')[-2] + "{\n" measures = [] ingred = [] soup = BeautifulSoup(response.text, "html.parser") for i in soup.findAll('div',attrs={"class":"measure"}): numb = i.text numb = numb.replace('\n','') numb = numb.replace('\t','') numb = numb.replace('\xa0',' ') measures.append(numb) for i in soup.findAll('div',attrs={"class":"x-recipe-ingredient"}): numb = i.text numb = numb.replace('\n','') numb = numb.replace('\t','') ingred.append(numb) for i in range(len(ingred)): file.write(" " + measures[i]+" "+ingred[i]+"\n") # recipeString = recipeString + " " + measures[i]+" "+ingred[i]+"\n" # recipeString = recipeString + "}\n" # buffer.append(recipeString) file.write("}\n") file.close() time.sleep(1) def writeBuffer(): file = open("recipes.txt",'a+') for recipe in buffer: file.write(recipe) file.close() # Set the URL you want to webscrape from start_url = 'https://www.liquor.com/recipes/page/1/?' recursiveFoo(start_url) print("All done: check for recipes.txt in the folder you ran this in")
[ "noreply@github.com" ]
parduhne.noreply@github.com
55c65f3586112411d03526d841b82394469f0b13
bb6a14c452b826a7fc3385273a82fa7f3db49139
/Financial Engineering/FE_HW2.py
12717d521bc9feec03018856a2253db3392921eb
[]
no_license
howbonoh/Some-works-back-in-school
a6ef60c04737b8da1f8b5c35c37cb4a5b40f0b94
37304b7ad4cba7091edc2f5b5693cabe9a82c027
refs/heads/master
2020-08-01T17:36:37.016167
2019-10-01T06:40:23
2019-10-01T06:40:23
211,062,601
0
0
null
null
null
null
UTF-8
Python
false
false
1,712
py
# coding: utf-8 # In[1]: import pandas as pd import datetime from dateutil.relativedelta import relativedelta # In[2]: def actual_actual(yieldOfMaturity,couponRate,settlement,maturity): maturity = pd.to_datetime(maturity, format='%Y-%m-%d') settlement = pd.to_datetime(settlement, format='%Y-%m-%d') coupon = 100*couponRate/2 temp = [] temp.append(maturity) flag = 0 while temp[flag] > settlement: temp.append(temp[flag] - relativedelta(months=6)) flag += 1 omega = (temp[flag-1] - settlement) / (temp[flag-1] - temp[flag]) accruedInterest = coupon*(1 - omega) dirty = 100*(1+yieldOfMaturity/2)**((1-flag-omega)) for i in range(flag): dirty += coupon*(1+yieldOfMaturity/2)**((-omega-i)) print('Dirty Price:' + str(dirty)) print('Clean Price:' + str(dirty - accruedInterest)) # In[3]: def thirty_360(yieldOfMaturity,couponRate,settlement,maturity): maturity = pd.to_datetime(maturity, format='%Y-%m-%d') settlement = pd.to_datetime(settlement, format='%Y-%m-%d') coupon = 100*couponRate/2 temp = [] temp.append(maturity) flag = 0 while temp[flag] > settlement: temp.append(temp[flag] - relativedelta(months=6)) flag += 1 omega = 30*(temp[flag-1].month - settlement.month)/180 accruedInterest = coupon*(1-omega) dirty = 100*(1+yieldOfMaturity/2)**((1-flag-omega)) for i in range(flag): dirty += coupon*(1+yieldOfMaturity/2)**((-omega-i)) print('Dirty Price:' + str(dirty)) print('Clean Price:' + str(dirty - accruedInterest)) # In[4]: actual_actual(0.03,0.1,'1993-7-1','1995-3-1') # In[5]: thirty_360(0.03,0.1,'1993-7-1','1995-3-1') # In[ ]:
[ "noreply@github.com" ]
howbonoh.noreply@github.com
b20e7ab119cda61531f2177a8822de09c6c8933f
198c1b47dc66e6775ecbd9533a109a4896c830b4
/flaskr/myapp/Connection/MysqlConn.py
7c189f6706c83d51ff2463f1f7bfefdf71f58f10
[]
no_license
qianjiangchao1992/webFlask
24eefffbd612119731e71c25d3cf719d067ef285
ebb7ff6bc33ff9c302bbeb07bc531fc7d37c794e
refs/heads/master
2020-09-27T09:35:36.062184
2019-12-14T10:49:36
2019-12-14T10:49:36
226,486,552
0
0
null
null
null
null
UTF-8
Python
false
false
3,523
py
import time import pymysql from configparser import ConfigParser from queue import Queue import threading # 装饰器来计算时间时间 def time_calculate(f): def wrapper(*args, **kwargs): start_time = time.time() res = f(*args, **kwargs) end_time = time.time() print("**********{}程序计算完成,所花时间为{}秒***********".format(f.__name__, round(end_time - start_time, 2))) return res return wrapper class MysqlConn: __v = None _instance_lock = threading.Lock() def __init__(self, name='BDY', max_conn=10): self.cf = ConfigParser() self.cf.read(r"C:\Users\Administrator\PycharmProjects\webFlask\flaskr\myapp\Connection\MYSQL.ini") self.host = self.cf.get(name, 'HOST') self.port = self.cf.getint(name, 'PORT') self.user = self.cf.get(name, 'USERNAME') self.password = self.cf.get(name, 'PASSWORD') self.database = self.cf.get(name, 'DATABASE') self.charset = self.cf.get(name, 'CHARSET') self.max_conn = max_conn self.pool = Queue(max_conn) for i in range(self.max_conn): try: conn = pymysql.connect(host=self.host, port=self.port, user=self.user, password=self.password, database=self.database, charset=self.charset) conn.autocommit(True) self.pool.put(conn) except Exception as e: raise IOError(e) @classmethod def get_instance(cls, *args, **kwargs): """ 获取实例 type: object """ if cls.__v: return cls.__v else: with cls._instance_lock: cls.__v = cls(*args, **kwargs) return cls.__v @time_calculate def exec_sql(self, sql, operation=None) -> None or int: """ 执行 Delete,Update,Insert type: object """ response = None conn = self.pool.get() cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) try: response = cursor.execute(sql, operation) if operation else cursor.execute(sql) except Exception as e: print(e) finally: cursor.close() self.pool.put(conn) return response @time_calculate def exec_sql_fetch(self, sql: str, operation=None) -> None or list: """ 执行Select,返回结果集 type: object """ data = None response = None conn = self.pool.get() cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) try: response = cursor.execute(sql, operation) if operation else cursor.execute(sql) data = cursor.fetchall() except Exception as e: print(e) finally: cursor.close() self.pool.put(conn) return response, data @time_calculate def exec_sql_many(self, sql: str, operation=None) -> None or list: """ 执行批量查询Select type: object """ response = None conn = self.pool.get() cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) try: response = cursor.executemany(sql, operation) if operation else cursor.executemany(sql) except Exception as e: print(e) finally: cursor.close() self.pool.put(conn) return response
[ "qjchao1992@163.com" ]
qjchao1992@163.com
8f2efd28c60aa3c632a782cbd5dbf69191d7df80
4f3a99c6576c7191588ef08f71bc29d72b8ec080
/data_handler.py
4f569c1340c02a8199aab23bc4312107efd5e372
[]
no_license
zlinzju/ManifoldAlignmentUCL
33907212fabb4b736692897f8c5fa68ef5142e1c
0eac9695e7e2a68e86fa6e9b3e73d311f681db49
refs/heads/master
2020-08-22T01:14:17.599045
2019-09-08T12:31:35
2019-09-08T12:31:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,514
py
import pickle import numpy as np from scipy.spatial.distance import cdist,pdist, squareform import scipy as scip from scipy.linalg import eig,eigh from scipy.stats import spearmanr from math import factorial import itertools from sklearn.metrics import mean_squared_error as mse import tensorflow as tf from sklearn.manifold import Isomap, SpectralEmbedding from numpy import genfromtxt from sklearn.metrics.pairwise import cosine_similarity from sklearn.neighbors import NearestNeighbors def get_complex_data(n, ssl=False): n_batches=2 n_pts_per_cluster=100 m = (n_pts_per_cluster*n) l = int(m*0.2) make = lambda x,y,s: np.concatenate([np.random.normal(x,s, (n_pts_per_cluster, 1)), np.random.normal(y,s, (n_pts_per_cluster, 1))], axis=1) # batch 1 xb1_list = [make(-1.3, 2.2, .1), make(.1, 1.8, .1), make(.8, 2, .1),make(-3.2, -1, .1), make(.5, 2.3, .1), make(.1, -0.9, .1)] xb2_list = [make(-.9, -2, .1), make(0, -2.3, .1), make(1.5, -1.5, .1),make(4.1, 3.2, .1), make(0.1, -3.1, .1), make(-1.1, -0.8, .1)] xb1 = np.concatenate(xb1_list[:n], axis=0) labels1 = np.concatenate([x* np.ones(n_pts_per_cluster) for x in range(n)], axis=0) xb1_full = np.hstack((xb1, labels1.reshape(m,1))) # batch 2 xb2 = np.concatenate(xb2_list[:n], axis=0) labels2 = labels1 xb2_full = np.hstack((xb2, labels2.reshape(m,1))) xb1_full = np.take(xb1_full,np.random.permutation(xb1_full.shape[0]),axis=0,out=xb1_full) xb2_full = np.take(xb2_full,np.random.permutation(xb2_full.shape[0]),axis=0,out=xb2_full) if ssl: return xb1_full[:l,:-1], xb2_full[:l,:-1], xb1_full[:l,-1], xb2_full[:l,-1], xb1_full[l:,:-1], xb2_full[l:,:-1], xb1_full[l:,-1], xb2_full[l:,-1] else: return xb1_full[:,:-1], xb2_full[:,:-1], xb1_full[:,-1], xb2_full[:,-1] def get_data(dataset, dim=5, mnili=[3 ,7], ssl=False, noise=True): if dataset == "glove": fp_intersect_word_image = "assets/intersect_glove.840b-openimage.box.p" intersect_data = pickle.load(open(fp_intersect_word_image, 'rb')) z_word = intersect_data['z_0'] # The word embedding. z_image = intersect_data['z_1'] # The image embedding. vocab_intersect = intersect_data['vocab_intersect'] # The concept labels. n_item = len(vocab_intersect) l = int(n_item*0.2) embedding = SpectralEmbedding(n_components=dim) z_word_tr = embedding.fit_transform(z_word) z_image_tr = embedding.fit_transform(z_image) lword = np.arange(len(z_word_tr)).reshape((len(z_word_tr),1)) limage = np.arange(len(z_image)).reshape((len(z_image),1)) zword = np.hstack((z_word_tr, lword)) zimage = np.hstack((z_image_tr, lword)) zword = np.take(zword,np.random.permutation(zword.shape[0]),axis=0,out=zword) zimage = np.take(zimage,np.random.permutation(zimage.shape[0]),axis=0,out=zimage) if ssl: return zword[:l,:-1], zimage[:l,:-1], zword[:l,-1], zimage[:l,-1], zword[l:,:-1], zimage[l:,:-1], zword[l:,-1], zimage[l:,-1] else: return zword[:,:-1], zimage[:,:-1], zword[:,-1], zimage[:,-1] elif dataset == "gauss": n_batches=2 n_pts_per_cluster=100 l = int((n_pts_per_cluster*3)*0.2) make = lambda x,y,s: np.concatenate([np.random.normal(x,s, (n_pts_per_cluster, 1)), np.random.normal(y,s, (n_pts_per_cluster, 1))], axis=1) # batch 1 xb1 = np.concatenate([make(-1.3, 2.2, .1), make(.1, 1.8, .1), make(.8, 2, .1)], axis=0) labels1 = np.concatenate([0 * np.ones(n_pts_per_cluster), 1 * np.ones(n_pts_per_cluster), 2 * np.ones(n_pts_per_cluster)], axis=0) xb1_full = np.hstack((xb1, labels1.reshape(300,1))) # batch 2 xb2 = np.concatenate([make(-.9, -2, .1), make(0, -2.3, .1), make(1.5, -1.5, .1)], axis=0) labels2 = np.concatenate([0 * np.ones(n_pts_per_cluster), 1 * np.ones(n_pts_per_cluster), 2 * np.ones(n_pts_per_cluster)], axis=0) xb2_full = np.hstack((xb2, labels2.reshape(300,1))) xb1_full = np.take(xb1_full,np.random.permutation(xb1_full.shape[0]),axis=0,out=xb1_full) xb2_full = np.take(xb2_full,np.random.permutation(xb2_full.shape[0]),axis=0,out=xb2_full) if ssl: return xb1_full[:l,:-1], xb2_full[:l,:-1], xb1_full[:l,-1], xb2_full[:l,-1], xb1_full[l:,:-1], xb2_full[l:,:-1], xb1_full[l:,-1], xb2_full[l:,-1] else: return xb1_full[:,:-1], xb2_full[:,:-1], xb1_full[:,-1], xb2_full[:,-1] elif dataset == "mnist": mnist = tf.contrib.learn.datasets.load_dataset("mnist") images,labels = mnist.train.images, mnist.train.labels labels = np.asarray([[labels[i],i] for i in range(len(mnili)*200) if (labels[i] in mnili)]) images = images[labels[:,1]] images = images.reshape((-1, 28, 28)) xb1, labels1 = images, labels labels2 = labels1 xb2 = np.zeros(xb1.shape) for x in range(len(xb1)): xb2[x] = np.rot90(xb1[x]) if noise: xb1 = xb1+np.random.normal(0,0.1,xb1.shape) l = len(labels)//2 if ssl: return xb1[:l], xb2[:l], labels1[:l], labels2[:l], xb1[l:], xb2[l:], labels1[l:], labels2[l:] else: return xb1, xb2, labels1, labels2 else: raise ValueError("Please enter {gauss, glove or mnist}")
[ "noreply@github.com" ]
zlinzju.noreply@github.com
a9d7ff557ba46ec9e284b40f094a2d5158929c36
eaec3fece2e9106cf402d6e9d03b51dbe10af3d7
/cart/contexts.py
4c6db6d15897119cd854d5877198fcb976302bc6
[]
no_license
kmaaallen/Django-E-Commerce
a6948cf51dd8cc51db9570949994a5adce717a62
4bdfb40ce2cd4c5a0d0c0c47b439b54ff6b7d36d
refs/heads/master
2021-11-24T17:21:02.053361
2021-11-06T11:38:28
2021-11-06T11:38:28
219,560,805
0
0
null
2021-11-06T11:38:28
2019-11-04T17:43:05
Python
UTF-8
Python
false
false
647
py
from django.shortcuts import get_object_or_404 from products.models import Product def cart_contents(request): """ Ensures that the cart contents are available when rendering every page """ cart = request.session.get('cart', {}) cart_items = [] total = 0 product_count = 0 for id, quantity in cart.items(): product = get_object_or_404(Product, pk=id) total += quantity*product.price product_count += quantity cart_items.append({'id': id, 'quantity': quantity, 'product': product}) return {'cart_items': cart_items, 'total': total, 'product_count': product_count}
[ "kmaaallen@gmail.com" ]
kmaaallen@gmail.com
9b5c59f64aeca2a5ae4552827bf5df5b6fb8951e
529850c2785de1f8b4585a0638596ba86c59b5ac
/mmdet/datasets/lvis.py
d7a2e919f5fcc30f94e731f47dc4a1554cb07967
[ "Apache-2.0" ]
permissive
hhaAndroid/mmdetection
b68609d7f78ed1ff795d48ffe68a389d86980cfe
5d34b77931c5f6516a694e1d46390166d404169e
refs/heads/master
2023-08-16T04:26:36.263068
2023-06-02T09:07:43
2023-06-02T09:07:43
319,885,247
18
19
Apache-2.0
2023-09-13T12:09:42
2020-12-09T08:04:56
Jupyter Notebook
UTF-8
Python
false
false
46,184
py
# Copyright (c) OpenMMLab. All rights reserved. import itertools import logging import os.path as osp import tempfile import warnings from collections import OrderedDict import numpy as np from mmcv.utils import print_log from terminaltables import AsciiTable from .builder import DATASETS from .coco import CocoDataset @DATASETS.register_module() class LVISV05Dataset(CocoDataset): CLASSES = ( 'acorn', 'aerosol_can', 'air_conditioner', 'airplane', 'alarm_clock', 'alcohol', 'alligator', 'almond', 'ambulance', 'amplifier', 'anklet', 'antenna', 'apple', 'apple_juice', 'applesauce', 'apricot', 'apron', 'aquarium', 'armband', 'armchair', 'armoire', 'armor', 'artichoke', 'trash_can', 'ashtray', 'asparagus', 'atomizer', 'avocado', 'award', 'awning', 'ax', 'baby_buggy', 'basketball_backboard', 'backpack', 'handbag', 'suitcase', 'bagel', 'bagpipe', 'baguet', 'bait', 'ball', 'ballet_skirt', 'balloon', 'bamboo', 'banana', 'Band_Aid', 'bandage', 'bandanna', 'banjo', 'banner', 'barbell', 'barge', 'barrel', 'barrette', 'barrow', 'baseball_base', 'baseball', 'baseball_bat', 'baseball_cap', 'baseball_glove', 'basket', 'basketball_hoop', 'basketball', 'bass_horn', 'bat_(animal)', 'bath_mat', 'bath_towel', 'bathrobe', 'bathtub', 'batter_(food)', 'battery', 'beachball', 'bead', 'beaker', 'bean_curd', 'beanbag', 'beanie', 'bear', 'bed', 'bedspread', 'cow', 'beef_(food)', 'beeper', 'beer_bottle', 'beer_can', 'beetle', 'bell', 'bell_pepper', 'belt', 'belt_buckle', 'bench', 'beret', 'bib', 'Bible', 'bicycle', 'visor', 'binder', 'binoculars', 'bird', 'birdfeeder', 'birdbath', 'birdcage', 'birdhouse', 'birthday_cake', 'birthday_card', 'biscuit_(bread)', 'pirate_flag', 'black_sheep', 'blackboard', 'blanket', 'blazer', 'blender', 'blimp', 'blinker', 'blueberry', 'boar', 'gameboard', 'boat', 'bobbin', 'bobby_pin', 'boiled_egg', 'bolo_tie', 'deadbolt', 'bolt', 'bonnet', 'book', 'book_bag', 'bookcase', 'booklet', 'bookmark', 'boom_microphone', 'boot', 'bottle', 'bottle_opener', 'bouquet', 'bow_(weapon)', 'bow_(decorative_ribbons)', 'bow-tie', 'bowl', 'pipe_bowl', 'bowler_hat', 'bowling_ball', 'bowling_pin', 'boxing_glove', 'suspenders', 'bracelet', 'brass_plaque', 'brassiere', 'bread-bin', 'breechcloth', 'bridal_gown', 'briefcase', 'bristle_brush', 'broccoli', 'broach', 'broom', 'brownie', 'brussels_sprouts', 'bubble_gum', 'bucket', 'horse_buggy', 'bull', 'bulldog', 'bulldozer', 'bullet_train', 'bulletin_board', 'bulletproof_vest', 'bullhorn', 'corned_beef', 'bun', 'bunk_bed', 'buoy', 'burrito', 'bus_(vehicle)', 'business_card', 'butcher_knife', 'butter', 'butterfly', 'button', 'cab_(taxi)', 'cabana', 'cabin_car', 'cabinet', 'locker', 'cake', 'calculator', 'calendar', 'calf', 'camcorder', 'camel', 'camera', 'camera_lens', 'camper_(vehicle)', 'can', 'can_opener', 'candelabrum', 'candle', 'candle_holder', 'candy_bar', 'candy_cane', 'walking_cane', 'canister', 'cannon', 'canoe', 'cantaloup', 'canteen', 'cap_(headwear)', 'bottle_cap', 'cape', 'cappuccino', 'car_(automobile)', 'railcar_(part_of_a_train)', 'elevator_car', 'car_battery', 'identity_card', 'card', 'cardigan', 'cargo_ship', 'carnation', 'horse_carriage', 'carrot', 'tote_bag', 'cart', 'carton', 'cash_register', 'casserole', 'cassette', 'cast', 'cat', 'cauliflower', 'caviar', 'cayenne_(spice)', 'CD_player', 'celery', 'cellular_telephone', 'chain_mail', 'chair', 'chaise_longue', 'champagne', 'chandelier', 'chap', 'checkbook', 'checkerboard', 'cherry', 'chessboard', 'chest_of_drawers_(furniture)', 'chicken_(animal)', 'chicken_wire', 'chickpea', 'Chihuahua', 'chili_(vegetable)', 'chime', 'chinaware', 'crisp_(potato_chip)', 'poker_chip', 'chocolate_bar', 'chocolate_cake', 'chocolate_milk', 'chocolate_mousse', 'choker', 'chopping_board', 'chopstick', 'Christmas_tree', 'slide', 'cider', 'cigar_box', 'cigarette', 'cigarette_case', 'cistern', 'clarinet', 'clasp', 'cleansing_agent', 'clementine', 'clip', 'clipboard', 'clock', 'clock_tower', 'clothes_hamper', 'clothespin', 'clutch_bag', 'coaster', 'coat', 'coat_hanger', 'coatrack', 'cock', 'coconut', 'coffee_filter', 'coffee_maker', 'coffee_table', 'coffeepot', 'coil', 'coin', 'colander', 'coleslaw', 'coloring_material', 'combination_lock', 'pacifier', 'comic_book', 'computer_keyboard', 'concrete_mixer', 'cone', 'control', 'convertible_(automobile)', 'sofa_bed', 'cookie', 'cookie_jar', 'cooking_utensil', 'cooler_(for_food)', 'cork_(bottle_plug)', 'corkboard', 'corkscrew', 'edible_corn', 'cornbread', 'cornet', 'cornice', 'cornmeal', 'corset', 'romaine_lettuce', 'costume', 'cougar', 'coverall', 'cowbell', 'cowboy_hat', 'crab_(animal)', 'cracker', 'crape', 'crate', 'crayon', 'cream_pitcher', 'credit_card', 'crescent_roll', 'crib', 'crock_pot', 'crossbar', 'crouton', 'crow', 'crown', 'crucifix', 'cruise_ship', 'police_cruiser', 'crumb', 'crutch', 'cub_(animal)', 'cube', 'cucumber', 'cufflink', 'cup', 'trophy_cup', 'cupcake', 'hair_curler', 'curling_iron', 'curtain', 'cushion', 'custard', 'cutting_tool', 'cylinder', 'cymbal', 'dachshund', 'dagger', 'dartboard', 'date_(fruit)', 'deck_chair', 'deer', 'dental_floss', 'desk', 'detergent', 'diaper', 'diary', 'die', 'dinghy', 'dining_table', 'tux', 'dish', 'dish_antenna', 'dishrag', 'dishtowel', 'dishwasher', 'dishwasher_detergent', 'diskette', 'dispenser', 'Dixie_cup', 'dog', 'dog_collar', 'doll', 'dollar', 'dolphin', 'domestic_ass', 'eye_mask', 'doorbell', 'doorknob', 'doormat', 'doughnut', 'dove', 'dragonfly', 'drawer', 'underdrawers', 'dress', 'dress_hat', 'dress_suit', 'dresser', 'drill', 'drinking_fountain', 'drone', 'dropper', 'drum_(musical_instrument)', 'drumstick', 'duck', 'duckling', 'duct_tape', 'duffel_bag', 'dumbbell', 'dumpster', 'dustpan', 'Dutch_oven', 'eagle', 'earphone', 'earplug', 'earring', 'easel', 'eclair', 'eel', 'egg', 'egg_roll', 'egg_yolk', 'eggbeater', 'eggplant', 'electric_chair', 'refrigerator', 'elephant', 'elk', 'envelope', 'eraser', 'escargot', 'eyepatch', 'falcon', 'fan', 'faucet', 'fedora', 'ferret', 'Ferris_wheel', 'ferry', 'fig_(fruit)', 'fighter_jet', 'figurine', 'file_cabinet', 'file_(tool)', 'fire_alarm', 'fire_engine', 'fire_extinguisher', 'fire_hose', 'fireplace', 'fireplug', 'fish', 'fish_(food)', 'fishbowl', 'fishing_boat', 'fishing_rod', 'flag', 'flagpole', 'flamingo', 'flannel', 'flash', 'flashlight', 'fleece', 'flip-flop_(sandal)', 'flipper_(footwear)', 'flower_arrangement', 'flute_glass', 'foal', 'folding_chair', 'food_processor', 'football_(American)', 'football_helmet', 'footstool', 'fork', 'forklift', 'freight_car', 'French_toast', 'freshener', 'frisbee', 'frog', 'fruit_juice', 'fruit_salad', 'frying_pan', 'fudge', 'funnel', 'futon', 'gag', 'garbage', 'garbage_truck', 'garden_hose', 'gargle', 'gargoyle', 'garlic', 'gasmask', 'gazelle', 'gelatin', 'gemstone', 'giant_panda', 'gift_wrap', 'ginger', 'giraffe', 'cincture', 'glass_(drink_container)', 'globe', 'glove', 'goat', 'goggles', 'goldfish', 'golf_club', 'golfcart', 'gondola_(boat)', 'goose', 'gorilla', 'gourd', 'surgical_gown', 'grape', 'grasshopper', 'grater', 'gravestone', 'gravy_boat', 'green_bean', 'green_onion', 'griddle', 'grillroom', 'grinder_(tool)', 'grits', 'grizzly', 'grocery_bag', 'guacamole', 'guitar', 'gull', 'gun', 'hair_spray', 'hairbrush', 'hairnet', 'hairpin', 'ham', 'hamburger', 'hammer', 'hammock', 'hamper', 'hamster', 'hair_dryer', 'hand_glass', 'hand_towel', 'handcart', 'handcuff', 'handkerchief', 'handle', 'handsaw', 'hardback_book', 'harmonium', 'hat', 'hatbox', 'hatch', 'veil', 'headband', 'headboard', 'headlight', 'headscarf', 'headset', 'headstall_(for_horses)', 'hearing_aid', 'heart', 'heater', 'helicopter', 'helmet', 'heron', 'highchair', 'hinge', 'hippopotamus', 'hockey_stick', 'hog', 'home_plate_(baseball)', 'honey', 'fume_hood', 'hook', 'horse', 'hose', 'hot-air_balloon', 'hotplate', 'hot_sauce', 'hourglass', 'houseboat', 'hummingbird', 'hummus', 'polar_bear', 'icecream', 'popsicle', 'ice_maker', 'ice_pack', 'ice_skate', 'ice_tea', 'igniter', 'incense', 'inhaler', 'iPod', 'iron_(for_clothing)', 'ironing_board', 'jacket', 'jam', 'jean', 'jeep', 'jelly_bean', 'jersey', 'jet_plane', 'jewelry', 'joystick', 'jumpsuit', 'kayak', 'keg', 'kennel', 'kettle', 'key', 'keycard', 'kilt', 'kimono', 'kitchen_sink', 'kitchen_table', 'kite', 'kitten', 'kiwi_fruit', 'knee_pad', 'knife', 'knight_(chess_piece)', 'knitting_needle', 'knob', 'knocker_(on_a_door)', 'koala', 'lab_coat', 'ladder', 'ladle', 'ladybug', 'lamb_(animal)', 'lamb-chop', 'lamp', 'lamppost', 'lampshade', 'lantern', 'lanyard', 'laptop_computer', 'lasagna', 'latch', 'lawn_mower', 'leather', 'legging_(clothing)', 'Lego', 'lemon', 'lemonade', 'lettuce', 'license_plate', 'life_buoy', 'life_jacket', 'lightbulb', 'lightning_rod', 'lime', 'limousine', 'linen_paper', 'lion', 'lip_balm', 'lipstick', 'liquor', 'lizard', 'Loafer_(type_of_shoe)', 'log', 'lollipop', 'lotion', 'speaker_(stereo_equipment)', 'loveseat', 'machine_gun', 'magazine', 'magnet', 'mail_slot', 'mailbox_(at_home)', 'mallet', 'mammoth', 'mandarin_orange', 'manger', 'manhole', 'map', 'marker', 'martini', 'mascot', 'mashed_potato', 'masher', 'mask', 'mast', 'mat_(gym_equipment)', 'matchbox', 'mattress', 'measuring_cup', 'measuring_stick', 'meatball', 'medicine', 'melon', 'microphone', 'microscope', 'microwave_oven', 'milestone', 'milk', 'minivan', 'mint_candy', 'mirror', 'mitten', 'mixer_(kitchen_tool)', 'money', 'monitor_(computer_equipment) computer_monitor', 'monkey', 'motor', 'motor_scooter', 'motor_vehicle', 'motorboat', 'motorcycle', 'mound_(baseball)', 'mouse_(animal_rodent)', 'mouse_(computer_equipment)', 'mousepad', 'muffin', 'mug', 'mushroom', 'music_stool', 'musical_instrument', 'nailfile', 'nameplate', 'napkin', 'neckerchief', 'necklace', 'necktie', 'needle', 'nest', 'newsstand', 'nightshirt', 'nosebag_(for_animals)', 'noseband_(for_animals)', 'notebook', 'notepad', 'nut', 'nutcracker', 'oar', 'octopus_(food)', 'octopus_(animal)', 'oil_lamp', 'olive_oil', 'omelet', 'onion', 'orange_(fruit)', 'orange_juice', 'oregano', 'ostrich', 'ottoman', 'overalls_(clothing)', 'owl', 'packet', 'inkpad', 'pad', 'paddle', 'padlock', 'paintbox', 'paintbrush', 'painting', 'pajamas', 'palette', 'pan_(for_cooking)', 'pan_(metal_container)', 'pancake', 'pantyhose', 'papaya', 'paperclip', 'paper_plate', 'paper_towel', 'paperback_book', 'paperweight', 'parachute', 'parakeet', 'parasail_(sports)', 'parchment', 'parka', 'parking_meter', 'parrot', 'passenger_car_(part_of_a_train)', 'passenger_ship', 'passport', 'pastry', 'patty_(food)', 'pea_(food)', 'peach', 'peanut_butter', 'pear', 'peeler_(tool_for_fruit_and_vegetables)', 'pegboard', 'pelican', 'pen', 'pencil', 'pencil_box', 'pencil_sharpener', 'pendulum', 'penguin', 'pennant', 'penny_(coin)', 'pepper', 'pepper_mill', 'perfume', 'persimmon', 'baby', 'pet', 'petfood', 'pew_(church_bench)', 'phonebook', 'phonograph_record', 'piano', 'pickle', 'pickup_truck', 'pie', 'pigeon', 'piggy_bank', 'pillow', 'pin_(non_jewelry)', 'pineapple', 'pinecone', 'ping-pong_ball', 'pinwheel', 'tobacco_pipe', 'pipe', 'pistol', 'pita_(bread)', 'pitcher_(vessel_for_liquid)', 'pitchfork', 'pizza', 'place_mat', 'plate', 'platter', 'playing_card', 'playpen', 'pliers', 'plow_(farm_equipment)', 'pocket_watch', 'pocketknife', 'poker_(fire_stirring_tool)', 'pole', 'police_van', 'polo_shirt', 'poncho', 'pony', 'pool_table', 'pop_(soda)', 'portrait', 'postbox_(public)', 'postcard', 'poster', 'pot', 'flowerpot', 'potato', 'potholder', 'pottery', 'pouch', 'power_shovel', 'prawn', 'printer', 'projectile_(weapon)', 'projector', 'propeller', 'prune', 'pudding', 'puffer_(fish)', 'puffin', 'pug-dog', 'pumpkin', 'puncher', 'puppet', 'puppy', 'quesadilla', 'quiche', 'quilt', 'rabbit', 'race_car', 'racket', 'radar', 'radiator', 'radio_receiver', 'radish', 'raft', 'rag_doll', 'raincoat', 'ram_(animal)', 'raspberry', 'rat', 'razorblade', 'reamer_(juicer)', 'rearview_mirror', 'receipt', 'recliner', 'record_player', 'red_cabbage', 'reflector', 'remote_control', 'rhinoceros', 'rib_(food)', 'rifle', 'ring', 'river_boat', 'road_map', 'robe', 'rocking_chair', 'roller_skate', 'Rollerblade', 'rolling_pin', 'root_beer', 'router_(computer_equipment)', 'rubber_band', 'runner_(carpet)', 'plastic_bag', 'saddle_(on_an_animal)', 'saddle_blanket', 'saddlebag', 'safety_pin', 'sail', 'salad', 'salad_plate', 'salami', 'salmon_(fish)', 'salmon_(food)', 'salsa', 'saltshaker', 'sandal_(type_of_shoe)', 'sandwich', 'satchel', 'saucepan', 'saucer', 'sausage', 'sawhorse', 'saxophone', 'scale_(measuring_instrument)', 'scarecrow', 'scarf', 'school_bus', 'scissors', 'scoreboard', 'scrambled_eggs', 'scraper', 'scratcher', 'screwdriver', 'scrubbing_brush', 'sculpture', 'seabird', 'seahorse', 'seaplane', 'seashell', 'seedling', 'serving_dish', 'sewing_machine', 'shaker', 'shampoo', 'shark', 'sharpener', 'Sharpie', 'shaver_(electric)', 'shaving_cream', 'shawl', 'shears', 'sheep', 'shepherd_dog', 'sherbert', 'shield', 'shirt', 'shoe', 'shopping_bag', 'shopping_cart', 'short_pants', 'shot_glass', 'shoulder_bag', 'shovel', 'shower_head', 'shower_curtain', 'shredder_(for_paper)', 'sieve', 'signboard', 'silo', 'sink', 'skateboard', 'skewer', 'ski', 'ski_boot', 'ski_parka', 'ski_pole', 'skirt', 'sled', 'sleeping_bag', 'sling_(bandage)', 'slipper_(footwear)', 'smoothie', 'snake', 'snowboard', 'snowman', 'snowmobile', 'soap', 'soccer_ball', 'sock', 'soda_fountain', 'carbonated_water', 'sofa', 'softball', 'solar_array', 'sombrero', 'soup', 'soup_bowl', 'soupspoon', 'sour_cream', 'soya_milk', 'space_shuttle', 'sparkler_(fireworks)', 'spatula', 'spear', 'spectacles', 'spice_rack', 'spider', 'sponge', 'spoon', 'sportswear', 'spotlight', 'squirrel', 'stapler_(stapling_machine)', 'starfish', 'statue_(sculpture)', 'steak_(food)', 'steak_knife', 'steamer_(kitchen_appliance)', 'steering_wheel', 'stencil', 'stepladder', 'step_stool', 'stereo_(sound_system)', 'stew', 'stirrer', 'stirrup', 'stockings_(leg_wear)', 'stool', 'stop_sign', 'brake_light', 'stove', 'strainer', 'strap', 'straw_(for_drinking)', 'strawberry', 'street_sign', 'streetlight', 'string_cheese', 'stylus', 'subwoofer', 'sugar_bowl', 'sugarcane_(plant)', 'suit_(clothing)', 'sunflower', 'sunglasses', 'sunhat', 'sunscreen', 'surfboard', 'sushi', 'mop', 'sweat_pants', 'sweatband', 'sweater', 'sweatshirt', 'sweet_potato', 'swimsuit', 'sword', 'syringe', 'Tabasco_sauce', 'table-tennis_table', 'table', 'table_lamp', 'tablecloth', 'tachometer', 'taco', 'tag', 'taillight', 'tambourine', 'army_tank', 'tank_(storage_vessel)', 'tank_top_(clothing)', 'tape_(sticky_cloth_or_paper)', 'tape_measure', 'tapestry', 'tarp', 'tartan', 'tassel', 'tea_bag', 'teacup', 'teakettle', 'teapot', 'teddy_bear', 'telephone', 'telephone_booth', 'telephone_pole', 'telephoto_lens', 'television_camera', 'television_set', 'tennis_ball', 'tennis_racket', 'tequila', 'thermometer', 'thermos_bottle', 'thermostat', 'thimble', 'thread', 'thumbtack', 'tiara', 'tiger', 'tights_(clothing)', 'timer', 'tinfoil', 'tinsel', 'tissue_paper', 'toast_(food)', 'toaster', 'toaster_oven', 'toilet', 'toilet_tissue', 'tomato', 'tongs', 'toolbox', 'toothbrush', 'toothpaste', 'toothpick', 'cover', 'tortilla', 'tow_truck', 'towel', 'towel_rack', 'toy', 'tractor_(farm_equipment)', 'traffic_light', 'dirt_bike', 'trailer_truck', 'train_(railroad_vehicle)', 'trampoline', 'tray', 'tree_house', 'trench_coat', 'triangle_(musical_instrument)', 'tricycle', 'tripod', 'trousers', 'truck', 'truffle_(chocolate)', 'trunk', 'vat', 'turban', 'turkey_(bird)', 'turkey_(food)', 'turnip', 'turtle', 'turtleneck_(clothing)', 'typewriter', 'umbrella', 'underwear', 'unicycle', 'urinal', 'urn', 'vacuum_cleaner', 'valve', 'vase', 'vending_machine', 'vent', 'videotape', 'vinegar', 'violin', 'vodka', 'volleyball', 'vulture', 'waffle', 'waffle_iron', 'wagon', 'wagon_wheel', 'walking_stick', 'wall_clock', 'wall_socket', 'wallet', 'walrus', 'wardrobe', 'wasabi', 'automatic_washer', 'watch', 'water_bottle', 'water_cooler', 'water_faucet', 'water_filter', 'water_heater', 'water_jug', 'water_gun', 'water_scooter', 'water_ski', 'water_tower', 'watering_can', 'watermelon', 'weathervane', 'webcam', 'wedding_cake', 'wedding_ring', 'wet_suit', 'wheel', 'wheelchair', 'whipped_cream', 'whiskey', 'whistle', 'wick', 'wig', 'wind_chime', 'windmill', 'window_box_(for_plants)', 'windshield_wiper', 'windsock', 'wine_bottle', 'wine_bucket', 'wineglass', 'wing_chair', 'blinder_(for_horses)', 'wok', 'wolf', 'wooden_spoon', 'wreath', 'wrench', 'wristband', 'wristlet', 'yacht', 'yak', 'yogurt', 'yoke_(animal_equipment)', 'zebra', 'zucchini') def load_annotations(self, ann_file): """Load annotation from lvis style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from LVIS api. """ try: import lvis if getattr(lvis, '__version__', '0') >= '10.5.3': warnings.warn( 'mmlvis is deprecated, please install official lvis-api by "pip install git+https://github.com/lvis-dataset/lvis-api.git"', # noqa: E501 UserWarning) from lvis import LVIS except ImportError: raise ImportError( 'Package lvis is not installed. Please run "pip install git+https://github.com/lvis-dataset/lvis-api.git".' # noqa: E501 ) self.coco = LVIS(ann_file) self.cat_ids = self.coco.get_cat_ids() self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] if info['file_name'].startswith('COCO'): # Convert form the COCO 2014 file naming convention of # COCO_[train/val/test]2014_000000000000.jpg to the 2017 # naming convention of 000000000000.jpg # (LVIS v1 will fix this naming issue) info['filename'] = info['file_name'][-16:] else: info['filename'] = info['file_name'] data_infos.append(info) return data_infos def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=np.arange(0.5, 0.96, 0.05)): """Evaluation in LVIS protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float]): IoU threshold used for evaluating recalls. If set to a list, the average recall of all IoUs will also be computed. Default: 0.5. Returns: dict[str, float]: LVIS style metrics. """ try: import lvis if getattr(lvis, '__version__', '0') >= '10.5.3': warnings.warn( 'mmlvis is deprecated, please install official lvis-api by "pip install git+https://github.com/lvis-dataset/lvis-api.git"', # noqa: E501 UserWarning) from lvis import LVISResults, LVISEval except ImportError: raise ImportError( 'Package lvis is not installed. Please run "pip install git+https://github.com/lvis-dataset/lvis-api.git".' # noqa: E501 ) assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError('metric {} is not supported'.format(metric)) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) eval_results = OrderedDict() # get original api lvis_gt = self.coco for metric in metrics: msg = 'Evaluating {}...'.format(metric) if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results['AR@{}'.format(num)] = ar[i] log_msg.append('\nAR@{}\t{:.4f}'.format(num, ar[i])) log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError('{} is not in results'.format(metric)) try: lvis_dt = LVISResults(lvis_gt, result_files[metric]) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break iou_type = 'bbox' if metric == 'proposal' else metric lvis_eval = LVISEval(lvis_gt, lvis_dt, iou_type) lvis_eval.params.imgIds = self.img_ids if metric == 'proposal': lvis_eval.params.useCats = 0 lvis_eval.params.maxDets = list(proposal_nums) lvis_eval.evaluate() lvis_eval.accumulate() lvis_eval.summarize() for k, v in lvis_eval.get_results().items(): if k.startswith('AR'): val = float('{:.3f}'.format(float(v))) eval_results[k] = val else: lvis_eval.evaluate() lvis_eval.accumulate() lvis_eval.summarize() lvis_results = lvis_eval.get_results() if classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = lvis_eval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(self.cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self.coco.load_cats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (f'{nm["name"]}', f'{float(ap):0.3f}')) num_columns = min(6, len(results_per_category) * 2) results_flatten = list( itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) print_log('\n' + table.table, logger=logger) for k, v in lvis_results.items(): if k.startswith('AP'): key = '{}_{}'.format(metric, k) val = float('{:.3f}'.format(float(v))) eval_results[key] = val ap_summary = ' '.join([ '{}:{:.3f}'.format(k, float(v)) for k, v in lvis_results.items() if k.startswith('AP') ]) eval_results['{}_mAP_copypaste'.format(metric)] = ap_summary lvis_eval.print_results() if tmp_dir is not None: tmp_dir.cleanup() return eval_results LVISDataset = LVISV05Dataset DATASETS.register_module(name='LVISDataset', module=LVISDataset) @DATASETS.register_module() class LVISV1Dataset(LVISDataset): CLASSES = ( 'aerosol_can', 'air_conditioner', 'airplane', 'alarm_clock', 'alcohol', 'alligator', 'almond', 'ambulance', 'amplifier', 'anklet', 'antenna', 'apple', 'applesauce', 'apricot', 'apron', 'aquarium', 'arctic_(type_of_shoe)', 'armband', 'armchair', 'armoire', 'armor', 'artichoke', 'trash_can', 'ashtray', 'asparagus', 'atomizer', 'avocado', 'award', 'awning', 'ax', 'baboon', 'baby_buggy', 'basketball_backboard', 'backpack', 'handbag', 'suitcase', 'bagel', 'bagpipe', 'baguet', 'bait', 'ball', 'ballet_skirt', 'balloon', 'bamboo', 'banana', 'Band_Aid', 'bandage', 'bandanna', 'banjo', 'banner', 'barbell', 'barge', 'barrel', 'barrette', 'barrow', 'baseball_base', 'baseball', 'baseball_bat', 'baseball_cap', 'baseball_glove', 'basket', 'basketball', 'bass_horn', 'bat_(animal)', 'bath_mat', 'bath_towel', 'bathrobe', 'bathtub', 'batter_(food)', 'battery', 'beachball', 'bead', 'bean_curd', 'beanbag', 'beanie', 'bear', 'bed', 'bedpan', 'bedspread', 'cow', 'beef_(food)', 'beeper', 'beer_bottle', 'beer_can', 'beetle', 'bell', 'bell_pepper', 'belt', 'belt_buckle', 'bench', 'beret', 'bib', 'Bible', 'bicycle', 'visor', 'billboard', 'binder', 'binoculars', 'bird', 'birdfeeder', 'birdbath', 'birdcage', 'birdhouse', 'birthday_cake', 'birthday_card', 'pirate_flag', 'black_sheep', 'blackberry', 'blackboard', 'blanket', 'blazer', 'blender', 'blimp', 'blinker', 'blouse', 'blueberry', 'gameboard', 'boat', 'bob', 'bobbin', 'bobby_pin', 'boiled_egg', 'bolo_tie', 'deadbolt', 'bolt', 'bonnet', 'book', 'bookcase', 'booklet', 'bookmark', 'boom_microphone', 'boot', 'bottle', 'bottle_opener', 'bouquet', 'bow_(weapon)', 'bow_(decorative_ribbons)', 'bow-tie', 'bowl', 'pipe_bowl', 'bowler_hat', 'bowling_ball', 'box', 'boxing_glove', 'suspenders', 'bracelet', 'brass_plaque', 'brassiere', 'bread-bin', 'bread', 'breechcloth', 'bridal_gown', 'briefcase', 'broccoli', 'broach', 'broom', 'brownie', 'brussels_sprouts', 'bubble_gum', 'bucket', 'horse_buggy', 'bull', 'bulldog', 'bulldozer', 'bullet_train', 'bulletin_board', 'bulletproof_vest', 'bullhorn', 'bun', 'bunk_bed', 'buoy', 'burrito', 'bus_(vehicle)', 'business_card', 'butter', 'butterfly', 'button', 'cab_(taxi)', 'cabana', 'cabin_car', 'cabinet', 'locker', 'cake', 'calculator', 'calendar', 'calf', 'camcorder', 'camel', 'camera', 'camera_lens', 'camper_(vehicle)', 'can', 'can_opener', 'candle', 'candle_holder', 'candy_bar', 'candy_cane', 'walking_cane', 'canister', 'canoe', 'cantaloup', 'canteen', 'cap_(headwear)', 'bottle_cap', 'cape', 'cappuccino', 'car_(automobile)', 'railcar_(part_of_a_train)', 'elevator_car', 'car_battery', 'identity_card', 'card', 'cardigan', 'cargo_ship', 'carnation', 'horse_carriage', 'carrot', 'tote_bag', 'cart', 'carton', 'cash_register', 'casserole', 'cassette', 'cast', 'cat', 'cauliflower', 'cayenne_(spice)', 'CD_player', 'celery', 'cellular_telephone', 'chain_mail', 'chair', 'chaise_longue', 'chalice', 'chandelier', 'chap', 'checkbook', 'checkerboard', 'cherry', 'chessboard', 'chicken_(animal)', 'chickpea', 'chili_(vegetable)', 'chime', 'chinaware', 'crisp_(potato_chip)', 'poker_chip', 'chocolate_bar', 'chocolate_cake', 'chocolate_milk', 'chocolate_mousse', 'choker', 'chopping_board', 'chopstick', 'Christmas_tree', 'slide', 'cider', 'cigar_box', 'cigarette', 'cigarette_case', 'cistern', 'clarinet', 'clasp', 'cleansing_agent', 'cleat_(for_securing_rope)', 'clementine', 'clip', 'clipboard', 'clippers_(for_plants)', 'cloak', 'clock', 'clock_tower', 'clothes_hamper', 'clothespin', 'clutch_bag', 'coaster', 'coat', 'coat_hanger', 'coatrack', 'cock', 'cockroach', 'cocoa_(beverage)', 'coconut', 'coffee_maker', 'coffee_table', 'coffeepot', 'coil', 'coin', 'colander', 'coleslaw', 'coloring_material', 'combination_lock', 'pacifier', 'comic_book', 'compass', 'computer_keyboard', 'condiment', 'cone', 'control', 'convertible_(automobile)', 'sofa_bed', 'cooker', 'cookie', 'cooking_utensil', 'cooler_(for_food)', 'cork_(bottle_plug)', 'corkboard', 'corkscrew', 'edible_corn', 'cornbread', 'cornet', 'cornice', 'cornmeal', 'corset', 'costume', 'cougar', 'coverall', 'cowbell', 'cowboy_hat', 'crab_(animal)', 'crabmeat', 'cracker', 'crape', 'crate', 'crayon', 'cream_pitcher', 'crescent_roll', 'crib', 'crock_pot', 'crossbar', 'crouton', 'crow', 'crowbar', 'crown', 'crucifix', 'cruise_ship', 'police_cruiser', 'crumb', 'crutch', 'cub_(animal)', 'cube', 'cucumber', 'cufflink', 'cup', 'trophy_cup', 'cupboard', 'cupcake', 'hair_curler', 'curling_iron', 'curtain', 'cushion', 'cylinder', 'cymbal', 'dagger', 'dalmatian', 'dartboard', 'date_(fruit)', 'deck_chair', 'deer', 'dental_floss', 'desk', 'detergent', 'diaper', 'diary', 'die', 'dinghy', 'dining_table', 'tux', 'dish', 'dish_antenna', 'dishrag', 'dishtowel', 'dishwasher', 'dishwasher_detergent', 'dispenser', 'diving_board', 'Dixie_cup', 'dog', 'dog_collar', 'doll', 'dollar', 'dollhouse', 'dolphin', 'domestic_ass', 'doorknob', 'doormat', 'doughnut', 'dove', 'dragonfly', 'drawer', 'underdrawers', 'dress', 'dress_hat', 'dress_suit', 'dresser', 'drill', 'drone', 'dropper', 'drum_(musical_instrument)', 'drumstick', 'duck', 'duckling', 'duct_tape', 'duffel_bag', 'dumbbell', 'dumpster', 'dustpan', 'eagle', 'earphone', 'earplug', 'earring', 'easel', 'eclair', 'eel', 'egg', 'egg_roll', 'egg_yolk', 'eggbeater', 'eggplant', 'electric_chair', 'refrigerator', 'elephant', 'elk', 'envelope', 'eraser', 'escargot', 'eyepatch', 'falcon', 'fan', 'faucet', 'fedora', 'ferret', 'Ferris_wheel', 'ferry', 'fig_(fruit)', 'fighter_jet', 'figurine', 'file_cabinet', 'file_(tool)', 'fire_alarm', 'fire_engine', 'fire_extinguisher', 'fire_hose', 'fireplace', 'fireplug', 'first-aid_kit', 'fish', 'fish_(food)', 'fishbowl', 'fishing_rod', 'flag', 'flagpole', 'flamingo', 'flannel', 'flap', 'flash', 'flashlight', 'fleece', 'flip-flop_(sandal)', 'flipper_(footwear)', 'flower_arrangement', 'flute_glass', 'foal', 'folding_chair', 'food_processor', 'football_(American)', 'football_helmet', 'footstool', 'fork', 'forklift', 'freight_car', 'French_toast', 'freshener', 'frisbee', 'frog', 'fruit_juice', 'frying_pan', 'fudge', 'funnel', 'futon', 'gag', 'garbage', 'garbage_truck', 'garden_hose', 'gargle', 'gargoyle', 'garlic', 'gasmask', 'gazelle', 'gelatin', 'gemstone', 'generator', 'giant_panda', 'gift_wrap', 'ginger', 'giraffe', 'cincture', 'glass_(drink_container)', 'globe', 'glove', 'goat', 'goggles', 'goldfish', 'golf_club', 'golfcart', 'gondola_(boat)', 'goose', 'gorilla', 'gourd', 'grape', 'grater', 'gravestone', 'gravy_boat', 'green_bean', 'green_onion', 'griddle', 'grill', 'grits', 'grizzly', 'grocery_bag', 'guitar', 'gull', 'gun', 'hairbrush', 'hairnet', 'hairpin', 'halter_top', 'ham', 'hamburger', 'hammer', 'hammock', 'hamper', 'hamster', 'hair_dryer', 'hand_glass', 'hand_towel', 'handcart', 'handcuff', 'handkerchief', 'handle', 'handsaw', 'hardback_book', 'harmonium', 'hat', 'hatbox', 'veil', 'headband', 'headboard', 'headlight', 'headscarf', 'headset', 'headstall_(for_horses)', 'heart', 'heater', 'helicopter', 'helmet', 'heron', 'highchair', 'hinge', 'hippopotamus', 'hockey_stick', 'hog', 'home_plate_(baseball)', 'honey', 'fume_hood', 'hook', 'hookah', 'hornet', 'horse', 'hose', 'hot-air_balloon', 'hotplate', 'hot_sauce', 'hourglass', 'houseboat', 'hummingbird', 'hummus', 'polar_bear', 'icecream', 'popsicle', 'ice_maker', 'ice_pack', 'ice_skate', 'igniter', 'inhaler', 'iPod', 'iron_(for_clothing)', 'ironing_board', 'jacket', 'jam', 'jar', 'jean', 'jeep', 'jelly_bean', 'jersey', 'jet_plane', 'jewel', 'jewelry', 'joystick', 'jumpsuit', 'kayak', 'keg', 'kennel', 'kettle', 'key', 'keycard', 'kilt', 'kimono', 'kitchen_sink', 'kitchen_table', 'kite', 'kitten', 'kiwi_fruit', 'knee_pad', 'knife', 'knitting_needle', 'knob', 'knocker_(on_a_door)', 'koala', 'lab_coat', 'ladder', 'ladle', 'ladybug', 'lamb_(animal)', 'lamb-chop', 'lamp', 'lamppost', 'lampshade', 'lantern', 'lanyard', 'laptop_computer', 'lasagna', 'latch', 'lawn_mower', 'leather', 'legging_(clothing)', 'Lego', 'legume', 'lemon', 'lemonade', 'lettuce', 'license_plate', 'life_buoy', 'life_jacket', 'lightbulb', 'lightning_rod', 'lime', 'limousine', 'lion', 'lip_balm', 'liquor', 'lizard', 'log', 'lollipop', 'speaker_(stereo_equipment)', 'loveseat', 'machine_gun', 'magazine', 'magnet', 'mail_slot', 'mailbox_(at_home)', 'mallard', 'mallet', 'mammoth', 'manatee', 'mandarin_orange', 'manger', 'manhole', 'map', 'marker', 'martini', 'mascot', 'mashed_potato', 'masher', 'mask', 'mast', 'mat_(gym_equipment)', 'matchbox', 'mattress', 'measuring_cup', 'measuring_stick', 'meatball', 'medicine', 'melon', 'microphone', 'microscope', 'microwave_oven', 'milestone', 'milk', 'milk_can', 'milkshake', 'minivan', 'mint_candy', 'mirror', 'mitten', 'mixer_(kitchen_tool)', 'money', 'monitor_(computer_equipment) computer_monitor', 'monkey', 'motor', 'motor_scooter', 'motor_vehicle', 'motorcycle', 'mound_(baseball)', 'mouse_(computer_equipment)', 'mousepad', 'muffin', 'mug', 'mushroom', 'music_stool', 'musical_instrument', 'nailfile', 'napkin', 'neckerchief', 'necklace', 'necktie', 'needle', 'nest', 'newspaper', 'newsstand', 'nightshirt', 'nosebag_(for_animals)', 'noseband_(for_animals)', 'notebook', 'notepad', 'nut', 'nutcracker', 'oar', 'octopus_(food)', 'octopus_(animal)', 'oil_lamp', 'olive_oil', 'omelet', 'onion', 'orange_(fruit)', 'orange_juice', 'ostrich', 'ottoman', 'oven', 'overalls_(clothing)', 'owl', 'packet', 'inkpad', 'pad', 'paddle', 'padlock', 'paintbrush', 'painting', 'pajamas', 'palette', 'pan_(for_cooking)', 'pan_(metal_container)', 'pancake', 'pantyhose', 'papaya', 'paper_plate', 'paper_towel', 'paperback_book', 'paperweight', 'parachute', 'parakeet', 'parasail_(sports)', 'parasol', 'parchment', 'parka', 'parking_meter', 'parrot', 'passenger_car_(part_of_a_train)', 'passenger_ship', 'passport', 'pastry', 'patty_(food)', 'pea_(food)', 'peach', 'peanut_butter', 'pear', 'peeler_(tool_for_fruit_and_vegetables)', 'wooden_leg', 'pegboard', 'pelican', 'pen', 'pencil', 'pencil_box', 'pencil_sharpener', 'pendulum', 'penguin', 'pennant', 'penny_(coin)', 'pepper', 'pepper_mill', 'perfume', 'persimmon', 'person', 'pet', 'pew_(church_bench)', 'phonebook', 'phonograph_record', 'piano', 'pickle', 'pickup_truck', 'pie', 'pigeon', 'piggy_bank', 'pillow', 'pin_(non_jewelry)', 'pineapple', 'pinecone', 'ping-pong_ball', 'pinwheel', 'tobacco_pipe', 'pipe', 'pistol', 'pita_(bread)', 'pitcher_(vessel_for_liquid)', 'pitchfork', 'pizza', 'place_mat', 'plate', 'platter', 'playpen', 'pliers', 'plow_(farm_equipment)', 'plume', 'pocket_watch', 'pocketknife', 'poker_(fire_stirring_tool)', 'pole', 'polo_shirt', 'poncho', 'pony', 'pool_table', 'pop_(soda)', 'postbox_(public)', 'postcard', 'poster', 'pot', 'flowerpot', 'potato', 'potholder', 'pottery', 'pouch', 'power_shovel', 'prawn', 'pretzel', 'printer', 'projectile_(weapon)', 'projector', 'propeller', 'prune', 'pudding', 'puffer_(fish)', 'puffin', 'pug-dog', 'pumpkin', 'puncher', 'puppet', 'puppy', 'quesadilla', 'quiche', 'quilt', 'rabbit', 'race_car', 'racket', 'radar', 'radiator', 'radio_receiver', 'radish', 'raft', 'rag_doll', 'raincoat', 'ram_(animal)', 'raspberry', 'rat', 'razorblade', 'reamer_(juicer)', 'rearview_mirror', 'receipt', 'recliner', 'record_player', 'reflector', 'remote_control', 'rhinoceros', 'rib_(food)', 'rifle', 'ring', 'river_boat', 'road_map', 'robe', 'rocking_chair', 'rodent', 'roller_skate', 'Rollerblade', 'rolling_pin', 'root_beer', 'router_(computer_equipment)', 'rubber_band', 'runner_(carpet)', 'plastic_bag', 'saddle_(on_an_animal)', 'saddle_blanket', 'saddlebag', 'safety_pin', 'sail', 'salad', 'salad_plate', 'salami', 'salmon_(fish)', 'salmon_(food)', 'salsa', 'saltshaker', 'sandal_(type_of_shoe)', 'sandwich', 'satchel', 'saucepan', 'saucer', 'sausage', 'sawhorse', 'saxophone', 'scale_(measuring_instrument)', 'scarecrow', 'scarf', 'school_bus', 'scissors', 'scoreboard', 'scraper', 'screwdriver', 'scrubbing_brush', 'sculpture', 'seabird', 'seahorse', 'seaplane', 'seashell', 'sewing_machine', 'shaker', 'shampoo', 'shark', 'sharpener', 'Sharpie', 'shaver_(electric)', 'shaving_cream', 'shawl', 'shears', 'sheep', 'shepherd_dog', 'sherbert', 'shield', 'shirt', 'shoe', 'shopping_bag', 'shopping_cart', 'short_pants', 'shot_glass', 'shoulder_bag', 'shovel', 'shower_head', 'shower_cap', 'shower_curtain', 'shredder_(for_paper)', 'signboard', 'silo', 'sink', 'skateboard', 'skewer', 'ski', 'ski_boot', 'ski_parka', 'ski_pole', 'skirt', 'skullcap', 'sled', 'sleeping_bag', 'sling_(bandage)', 'slipper_(footwear)', 'smoothie', 'snake', 'snowboard', 'snowman', 'snowmobile', 'soap', 'soccer_ball', 'sock', 'sofa', 'softball', 'solar_array', 'sombrero', 'soup', 'soup_bowl', 'soupspoon', 'sour_cream', 'soya_milk', 'space_shuttle', 'sparkler_(fireworks)', 'spatula', 'spear', 'spectacles', 'spice_rack', 'spider', 'crawfish', 'sponge', 'spoon', 'sportswear', 'spotlight', 'squid_(food)', 'squirrel', 'stagecoach', 'stapler_(stapling_machine)', 'starfish', 'statue_(sculpture)', 'steak_(food)', 'steak_knife', 'steering_wheel', 'stepladder', 'step_stool', 'stereo_(sound_system)', 'stew', 'stirrer', 'stirrup', 'stool', 'stop_sign', 'brake_light', 'stove', 'strainer', 'strap', 'straw_(for_drinking)', 'strawberry', 'street_sign', 'streetlight', 'string_cheese', 'stylus', 'subwoofer', 'sugar_bowl', 'sugarcane_(plant)', 'suit_(clothing)', 'sunflower', 'sunglasses', 'sunhat', 'surfboard', 'sushi', 'mop', 'sweat_pants', 'sweatband', 'sweater', 'sweatshirt', 'sweet_potato', 'swimsuit', 'sword', 'syringe', 'Tabasco_sauce', 'table-tennis_table', 'table', 'table_lamp', 'tablecloth', 'tachometer', 'taco', 'tag', 'taillight', 'tambourine', 'army_tank', 'tank_(storage_vessel)', 'tank_top_(clothing)', 'tape_(sticky_cloth_or_paper)', 'tape_measure', 'tapestry', 'tarp', 'tartan', 'tassel', 'tea_bag', 'teacup', 'teakettle', 'teapot', 'teddy_bear', 'telephone', 'telephone_booth', 'telephone_pole', 'telephoto_lens', 'television_camera', 'television_set', 'tennis_ball', 'tennis_racket', 'tequila', 'thermometer', 'thermos_bottle', 'thermostat', 'thimble', 'thread', 'thumbtack', 'tiara', 'tiger', 'tights_(clothing)', 'timer', 'tinfoil', 'tinsel', 'tissue_paper', 'toast_(food)', 'toaster', 'toaster_oven', 'toilet', 'toilet_tissue', 'tomato', 'tongs', 'toolbox', 'toothbrush', 'toothpaste', 'toothpick', 'cover', 'tortilla', 'tow_truck', 'towel', 'towel_rack', 'toy', 'tractor_(farm_equipment)', 'traffic_light', 'dirt_bike', 'trailer_truck', 'train_(railroad_vehicle)', 'trampoline', 'tray', 'trench_coat', 'triangle_(musical_instrument)', 'tricycle', 'tripod', 'trousers', 'truck', 'truffle_(chocolate)', 'trunk', 'vat', 'turban', 'turkey_(food)', 'turnip', 'turtle', 'turtleneck_(clothing)', 'typewriter', 'umbrella', 'underwear', 'unicycle', 'urinal', 'urn', 'vacuum_cleaner', 'vase', 'vending_machine', 'vent', 'vest', 'videotape', 'vinegar', 'violin', 'vodka', 'volleyball', 'vulture', 'waffle', 'waffle_iron', 'wagon', 'wagon_wheel', 'walking_stick', 'wall_clock', 'wall_socket', 'wallet', 'walrus', 'wardrobe', 'washbasin', 'automatic_washer', 'watch', 'water_bottle', 'water_cooler', 'water_faucet', 'water_heater', 'water_jug', 'water_gun', 'water_scooter', 'water_ski', 'water_tower', 'watering_can', 'watermelon', 'weathervane', 'webcam', 'wedding_cake', 'wedding_ring', 'wet_suit', 'wheel', 'wheelchair', 'whipped_cream', 'whistle', 'wig', 'wind_chime', 'windmill', 'window_box_(for_plants)', 'windshield_wiper', 'windsock', 'wine_bottle', 'wine_bucket', 'wineglass', 'blinder_(for_horses)', 'wok', 'wolf', 'wooden_spoon', 'wreath', 'wrench', 'wristband', 'wristlet', 'yacht', 'yogurt', 'yoke_(animal_equipment)', 'zebra', 'zucchini') def load_annotations(self, ann_file): try: import lvis if getattr(lvis, '__version__', '0') >= '10.5.3': warnings.warn( 'mmlvis is deprecated, please install official lvis-api by "pip install git+https://github.com/lvis-dataset/lvis-api.git"', # noqa: E501 UserWarning) from lvis import LVIS except ImportError: raise ImportError( 'Package lvis is not installed. Please run "pip install git+https://github.com/lvis-dataset/lvis-api.git".' # noqa: E501 ) self.coco = LVIS(ann_file) self.cat_ids = self.coco.get_cat_ids() self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] # coco_url is used in LVISv1 instead of file_name # e.g. http://images.cocodataset.org/train2017/000000391895.jpg # train/val split in specified in url info['filename'] = info['coco_url'].replace( 'http://images.cocodataset.org/', '') data_infos.append(info) return data_infos
[ "noreply@github.com" ]
hhaAndroid.noreply@github.com
bcc1a31edbc8ec9e5e30ccfdce7356bbc0088ba1
2d5a5717015da6f659d85911da5a69a145b4c861
/reccomender.py
a4798df1aa989a8f6ad237f57b7c4633ec07fe99
[]
no_license
williewlchew/url-tagging
14e2a026ba16d27c4a0b3b700c89139dbf8b7e63
bf1dc4e3e9faf59216599675ab3940beab6c43f1
refs/heads/master
2023-01-28T04:55:43.443270
2020-12-11T03:13:45
2020-12-11T03:13:45
319,844,171
0
0
null
null
null
null
UTF-8
Python
false
false
4,125
py
''' UrlTagging Reccomending Willie Chew 2020 ''' import io, os, sys, pika, redis, hashlib, mysql.connector import protos.links_pb2 as linksPb redisHost = os.getenv("REDIS_HOST") or "localhost" rabbitMQHost = os.getenv("RABBITMQ_HOST") or "localhost" mysqlHost = os.getenv("MYSQL_HOST") or "localhost" class RabbitHandler(object): def __init__(self, consumingExchange, publishingExchange): # init variable self.rabbitMQHost = os.getenv("RABBITMQ_HOST") or "localhost" self.rabbitMQ = pika.BlockingConnection( pika.ConnectionParameters(host=self.rabbitMQHost)) self.rabbitMQChannel = self.rabbitMQ.channel() self.publishingExchange = publishingExchange self.reccRequestHandler = ReccRequestHandler() # bind and consume self.rabbitMQChannel.queue_declare('', exclusive=True) self.rabbitMQChannel.queue_bind(exchange=consumingExchange, queue='', routing_key='a') self.rabbitMQChannel.basic_consume( queue='', on_message_callback=self.on_response, auto_ack=True) self.rabbitMQChannel.start_consuming() def on_response(self, ch, method, props, body): # Recieve message recc = self.reccRequestHandler.ProcessMessage(body) print(recc) self.log("[reccomender] reccomend success: " + ",".join(recc.inputTags[:])) # Send results back message = recc.SerializeToString() self.rabbitMQChannel.basic_publish(exchange=self.publishingExchange, body=message, routing_key='b', properties=pika.BasicProperties(correlation_id = 'c')) def log(self, message): self.rabbitMQChannel.basic_publish(exchange='logging', body=message, routing_key='a') class ReccRequestHandler(object): def __init__(self): self.redisCache = RedisCache() self.sqlDatabase = SqlDatabase() def ProcessMessage(self, message): recc = linksPb.Reccomendation() recc.ParseFromString(message) # check cache hashCheck = self.redisCache.Get(''.join(recc.inputTags)) if (hashCheck != None): recc.ParseFromString(hashCheck) return recc # find relevant articles results = self.ProcessTags(recc.inputTags) articles = [] for result in results: newLink = linksPb.Link(); newLink.url = result articles.append(newLink) recc.outputLinks.extend(articles) # cache in redis self.redisCache.Set(''.join(recc.inputTags), recc.SerializeToString()) return recc def ProcessTags(self, tags): tagSet = "\",\"".join(tags) query = "SELECT tag_id FROM tags WHERE tag IN (\"" + tagSet + "\")" relevantTagIds = self.sqlDatabase.Query(query) relevantTagIds = list(map(lambda x: x[0], relevantTagIds)) relevantTagIds = "\",\"".join(relevantTagIds) query = "SELECT url_id FROM link_tag WHERE tag_id IN (\"" + relevantTagIds + "\")" relevantUrlIds = self.sqlDatabase.Query(query) relevantUrlIds = list(map(lambda x: x[0], relevantUrlIds)) relevantUrlIds = "\",\"".join(relevantUrlIds) query = "SELECT DISTINCT url FROM links WHERE url_id IN (\"" + relevantUrlIds + "\")" results = self.sqlDatabase.Query(query) results = list(map(lambda x: x[0], results)) return results ### Redis Caching ################################# class RedisCache(object): def __init__(self): self.redisStore = redis.Redis(host=redisHost, db=1) self.redisStore.flushdb() def Set(self, key, value): key = hashlib.sha224(bytes(key, 'utf-8')).hexdigest() self.redisStore.set(key, value) def Get(self, key): key = hashlib.sha224(bytes(key, 'utf-8')).hexdigest() return self.redisStore.get(key) ### MySql Database ################################# class SqlDatabase(object): def __init__(self): self.mydb = mysql.connector.connect( host=mysqlHost, port="3306", user="root", password="password", database="mydatabase" ) def Query(self, query): mycursor = self.mydb.cursor() mycursor.execute(query) return(mycursor.fetchall()) class ReccProcessor(object): def Process(self, tags): #wip link1 = linksPb.Link(); link1.url = 'l1' link2 = linksPb.Link(); link2.url = 'l2' link3 = linksPb.Link(); link3.url = 'l3' return [link1, link2, link3] reccProcessor = ReccProcessor() rabbitmq = RabbitHandler('reccReq', 'response')
[ "williewlchew@gmail.com" ]
williewlchew@gmail.com
5bee624cf6a1512c53de9744c62b2e661ed4ff4e
9f242385186a9a9eafc61322e4f92515b42e3325
/DQN/DQN_p2_universe.py
f7aac3acb6a5e4bd2d53ff5ed0ee56513b853a66
[ "MIT" ]
permissive
UofARLGames/reinforcement-learning
5c826b378934d99b9198fe5931e811d5207c2156
a1dfcf64087a3181b51b469d59fc34e6a494dcbd
refs/heads/master
2020-05-21T06:05:58.973153
2017-03-31T23:20:47
2017-03-31T23:20:47
84,584,607
0
0
null
2017-03-10T17:29:46
2017-03-10T17:29:46
null
UTF-8
Python
false
false
19,852
py
# coding: utf-8 # In[ ]: #get_ipython().magic('matplotlib inline') import gym import itertools import numpy as np import os import random import sys import universe import pdb if "../" not in sys.path: sys.path.append("../") from lib import plotting from collections import deque, namedtuple # In[ ]: #env = gym.envs.make("Breakout-v0") #env = gym.make('flashgames.DuskDrive-v0') env = gym.make('Breakout-v0') import tensorflow as tf #env.configure(remotes=1) # automatically creates a local docker container #observation_n = env.reset() # In[ ]: # Atari Actions: 0 (noop), 1 (fire), 2 (left) and 3 (right) are valid actions #VALID_ACTIONS = [0, 1, 2, 3] VALID_ACTIONS= [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowDown', True), ('KeyEvent', 'ArrowRight', True), ('KeyEvent', 'ArrowLeft', True)] #VALID_ACTIONS= [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowUp', True)] #VALID_ACTIONS= [('KeyEvent', 'ArrowUp', True)] # In[ ]: class StateProcessor(): """StateProcessor""" """ Processes a raw Atari iamges. Resizes it and converts it to grayscale. """ S_W= 768 S_H= 1024 C_W= 400 C_H= 400 N_W= 200 N_H= 200 def __init__(self): # Build the Tensorflow graph with tf.variable_scope("state_processor"): self.input_state = tf.placeholder(shape=[StateProcessor.S_W, StateProcessor.S_H, 3], dtype=tf.uint8) self.output = tf.image.rgb_to_grayscale(self.input_state) self.output = tf.image.crop_to_bounding_box(self.output, 34, 0, StateProcessor.C_W, StateProcessor.C_H) self.output = tf.image.resize_images( self.output, tf.constant(np.array([84, 84],dtype='int32')), tf.image.ResizeMethod.NEAREST_NEIGHBOR) self.output = tf.squeeze(self.output) def process(self, sess, state): """ Args: sess: A Tensorflow session object state: A [210, 160, 3] Atari RGB State Returns: A processed [84, 84, 1] state representing grayscale values. """ if state is not None: return sess.run(self.output, { self.input_state: state['vision'] }) else: return np.zeros((84,84)) # In[ ]: class Estimator(): """Q-Value Estimator neural network. This network is used for both the Q-Network and the Target Network. """ def __init__(self, scope="estimator", summaries_dir=None): self.scope = scope # Writes Tensorboard summaries to disk self.summary_writer = None with tf.variable_scope(scope): # Build the graph self._build_model() if summaries_dir: summary_dir = os.path.join(summaries_dir, "summaries_{}".format(scope)) if not os.path.exists(summary_dir): os.makedirs(summary_dir) self.summary_writer = tf.train.SummaryWriter(summary_dir) def _build_model(self): """ Builds the Tensorflow graph. """ # Placeholders for our input # Our input are 4 RGB frames of shape 160, 160 each self.X_pl = tf.placeholder(shape=[None, 84, 84, 4], dtype=tf.uint8, name="X") # The TD target value self.y_pl = tf.placeholder(shape=[None], dtype=tf.float32, name="y") # Integer id of which action was selected self.actions_pl = tf.placeholder(shape=[None], dtype=tf.int32, name="actions") X = tf.to_float(self.X_pl) / 255.0 batch_size = tf.shape(self.X_pl)[0] # Three convolutional layers conv1 = tf.contrib.layers.conv2d( X, 32, 8, 4, activation_fn=tf.nn.relu) conv2 = tf.contrib.layers.conv2d( conv1, 64, 4, 2, activation_fn=tf.nn.relu) conv3 = tf.contrib.layers.conv2d( conv2, 64, 3, 1, activation_fn=tf.nn.relu) # Fully connected layers flattened = tf.contrib.layers.flatten(conv3) fc1 = tf.contrib.layers.fully_connected(flattened, 512) self.predictions = tf.contrib.layers.fully_connected(fc1, len(VALID_ACTIONS)) # Get the predictions for the chosen actions only gather_indices = tf.range(batch_size) * tf.shape(self.predictions)[1] + self.actions_pl self.action_predictions = tf.gather(tf.reshape(self.predictions, [-1]), gather_indices) # Calcualte the loss self.losses = tf.squared_difference(self.y_pl, self.action_predictions) self.loss = tf.reduce_mean(self.losses) # Optimizer Parameters from original paper self.optimizer = tf.train.RMSPropOptimizer(0.00025, 0.99, 0.0, 1e-6) self.train_op = self.optimizer.minimize(self.loss, global_step=tf.contrib.framework.get_global_step()) # Summaries for Tensorboard self.summaries = tf.merge_summary([ tf.scalar_summary("loss", self.loss), tf.histogram_summary("loss_hist", self.losses), tf.histogram_summary("q_values_hist", self.predictions), tf.scalar_summary("max_q_value", tf.reduce_max(self.predictions)) ]) def predict(self, sess, s): """ Predicts action values. Args: sess: Tensorflow session s: State input of shape [batch_size, 4, 160, 160, 3] Returns: Tensor of shape [batch_size, NUM_VALID_ACTIONS] containing the estimated action values. """ return sess.run(self.predictions, { self.X_pl: s }) def update(self, sess, s, a, y): """ Updates the estimator towards the given targets. Args: sess: Tensorflow session object s: State input of shape [batch_size, 4, 160, 160, 3] a: Chosen actions of shape [batch_size] y: Targets of shape [batch_size] Returns: The calculated loss on the batch. """ feed_dict = { self.X_pl: s, self.y_pl: y, self.actions_pl: a } summaries, global_step, _, loss = sess.run( [self.summaries, tf.contrib.framework.get_global_step(), self.train_op, self.loss], feed_dict) if self.summary_writer: self.summary_writer.add_summary(summaries, global_step) return loss def strip_arrays(state, done, reward): return state[0], done[0], reward[0] # In[ ]: # For Testing.... tf.reset_default_graph() global_step = tf.Variable(0, name="global_step", trainable=False) e = Estimator(scope="test") sp = StateProcessor() with tf.Session() as sess: sess.run(tf.initialize_all_variables()) # Example observation batch env.configure() # automatically creates a local docker container observation = env.reset() observation,_,_= strip_arrays(observation, [0], [0]) observation_p = sp.process(sess, observation) observation = np.stack([observation_p] * 4, axis=2) observations = np.array([observation] * 2) # Test Prediction print(e.predict(sess, observations)) # Test training step y = np.array([10.0, 10.0]) a = np.array([1, 3]) print(e.update(sess, observations, a, y)) # In[ ]: def copy_model_parameters(sess, estimator1, estimator2): """ Copies the model parameters of one estimator to another. Args: sess: Tensorflow session instance estimator1: Estimator to copy the paramters from estimator2: Estimator to copy the parameters to """ e1_params = [t for t in tf.trainable_variables() if t.name.startswith(estimator1.scope)] e1_params = sorted(e1_params, key=lambda v: v.name) e2_params = [t for t in tf.trainable_variables() if t.name.startswith(estimator2.scope)] e2_params = sorted(e2_params, key=lambda v: v.name) update_ops = [] for e1_v, e2_v in zip(e1_params, e2_params): op = e2_v.assign(e1_v) update_ops.append(op) sess.run(update_ops) # In[ ]: def make_epsilon_greedy_policy(estimator, nA): """ Creates an epsilon-greedy policy based on a given Q-function approximator and epsilon. Args: estimator: An estimator that returns q values for a given state nA: Number of actions in the environment. Returns: A function that takes the (sess, observation, epsilon) as an argument and returns the probabilities for each action in the form of a numpy array of length nA. """ def policy_fn(sess, observation, epsilon): A = np.ones(nA, dtype=float) * epsilon / nA print('Obersvation Dimension', observation.shape ) q_values = estimator.predict(sess, np.expand_dims(observation, 0))[0] best_action = np.argmax(q_values) A[best_action] += (1.0 - epsilon) return A return policy_fn # In[ ]: def sample_action(): c= np.random.choice(range(len(VALID_ACTIONS))) return [VALID_ACTIONS[c]] def wait(state, env): while True: action_n= [] for ob in state: action_n.append(sample_action()) if state != [None]: break state, reward_n, done_n, info = env.step(action_n) env.render() return state def deep_q_learning(sess, env, q_estimator, target_estimator, state_processor, num_episodes, experiment_dir, replay_memory_size=500000, replay_memory_init_size=50, update_target_estimator_every=10000, discount_factor=0.99, epsilon_start=1.0, epsilon_end=0.1, epsilon_decay_steps=500000, batch_size=32, record_video_every=50): """ Q-Learning algorithm for fff-policy TD control using Function Approximation. Finds the optimal greedy policy while following an epsilon-greedy policy. Args: sess: Tensorflow Session object env: OpenAI environment q_estimator: Estimator object used for the q values target_estimator: Estimator object used for the targets state_processor: A StateProcessor object num_episodes: Number of episodes to run for experiment_dir: Directory to save Tensorflow summaries in replay_memory_size: Size of the replay memory replay_memory_init_size: Number of random experiences to sampel when initializing the reply memory. update_target_estimator_every: Copy parameters from the Q estimator to the target estimator every N steps discount_factor: Lambda time discount factor epsilon_start: Chance to sample a random action when taking an action. Epsilon is decayed over time and this is the start value epsilon_end: The final minimum value of epsilon after decaying is done epsilon_decay_steps: Number of steps to decay epsilon over batch_size: Size of batches to sample from the replay memory record_video_every: Record a video every N episodes Returns: An EpisodeStats object with two numpy arrays for episode_lengths and episode_rewards. """ Transition = namedtuple("Transition", ["state", "action", "reward", "next_state", "done"]) # The replay memory replay_memory = [] # Keeps track of useful statistics stats = plotting.EpisodeStats( episode_lengths=np.zeros(num_episodes), episode_rewards=np.zeros(num_episodes)) # Create directories for checkpoints and summaries checkpoint_dir = os.path.join(experiment_dir, "checkpoints") checkpoint_path = os.path.join(checkpoint_dir, "model") monitor_path = os.path.join(experiment_dir, "monitor") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) if not os.path.exists(monitor_path): os.makedirs(monitor_path) saver = tf.train.Saver() # Load a previous checkpoint if we find one latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir) if latest_checkpoint: print("Loading model checkpoint {}...\n".format(latest_checkpoint)) saver.restore(sess, latest_checkpoint) # Get the current time step total_t = sess.run(tf.contrib.framework.get_global_step()) # The epsilon decay schedule epsilons = np.linspace(epsilon_start, epsilon_end, epsilon_decay_steps) # The policy we're following policy = make_epsilon_greedy_policy( q_estimator, len(VALID_ACTIONS)) # Populate the replay memory with initial experience print("Populating replay memory...") state = env.reset() state= wait(state, env) print('Really Starting the popoulation of memory', state[0]['vision'].shape) state, _, _= strip_arrays(state, [0], [0]) state = state_processor.process(sess, state) state = np.stack([state] * 4, axis=2) for i in range(replay_memory_init_size): action_probs = policy(sess, state, epsilons[total_t]) action = np.random.choice(np.arange(len(action_probs)), p=action_probs) next_state, reward, done, _ = env.step([[VALID_ACTIONS[action]]]) next_state, done, reward= strip_arrays(next_state, done, reward) env.render() next_state = state_processor.process(sess, next_state) next_state = np.append(state[:,:,1:], np.expand_dims(next_state, 2), axis=2) replay_memory.append(Transition(state, action, reward, next_state, done)) if done: print('Some Unknown reason it is done') state = env.reset() state = state_processor.process(sess, state) state = np.stack([state] * 4, axis=2) else: state = next_state print("Finished Populating replay memory...") # Record videos env.monitor.start(monitor_path, resume=True, video_callable=lambda count: count % record_video_every == 0) state= env.reset() for i_episode in range(num_episodes): # Save the current checkpoint saver.save(tf.get_default_session(), checkpoint_path) # Reset the environment state = env.reset() state= wait(state, env) state, _, _= strip_arrays(state, [0], [0]) state = state_processor.process(sess, state) state = np.stack([state] * 4, axis=2) loss = None # One step in the environment for t in itertools.count(): # Epsilon for this time step epsilon = epsilons[min(total_t, epsilon_decay_steps-1)] # Add epsilon to Tensorboard episode_summary = tf.Summary() episode_summary.value.add(simple_value=epsilon, tag="epsilon") q_estimator.summary_writer.add_summary(episode_summary, total_t) # Maybe update the target estimator if total_t % update_target_estimator_every == 0: copy_model_parameters(sess, q_estimator, target_estimator) print("\nCopied model parameters to target network.") # Print out which step we're on, useful for debugging. print("\rStep {} ({}) @ Episode {}/{}, loss: {}".format( t, total_t, i_episode + 1, num_episodes, loss)) sys.stdout.flush() # Take a step action_probs = policy(sess, state, epsilon) action = np.random.choice(np.arange(len(action_probs)), p=action_probs) next_state, reward, done, _ = env.step([[VALID_ACTIONS[action]]]) next_state, done, reward= strip_arrays(next_state, done, reward) env.render() next_state = state_processor.process(sess, next_state) next_state = np.append(state[:,:,1:], np.expand_dims(next_state, 2), axis=2) # If our replay memory is full, pop the first element if len(replay_memory) == replay_memory_size: replay_memory.pop(0) # Save transition to replay memory replay_memory.append(Transition(state, action, reward, next_state, done)) # Update statistics stats.episode_rewards[i_episode] += reward stats.episode_lengths[i_episode] = t # Sample a minibatch from the replay memory samples = random.sample(replay_memory, batch_size) states_batch, action_batch, reward_batch, next_states_batch, done_batch = map(np.array, zip(*samples)) # Calculate q values and targets q_values_next = target_estimator.predict(sess, next_states_batch) targets_batch = reward_batch + np.invert(done_batch).astype(np.float32) * discount_factor * np.amax(q_values_next, axis=1) # Perform gradient descent update states_batch = np.array(states_batch) print('Size: ', states_batch.shape, action_batch.shape, targets_batch.shape) loss = q_estimator.update(sess, states_batch, action_batch, targets_batch) if done: break state = next_state total_t += 1 # Add summaries to tensorboard episode_summary = tf.Summary() episode_summary.value.add(simple_value=stats.episode_rewards[i_episode], node_name="episode_reward", tag="episode_reward") episode_summary.value.add(simple_value=stats.episode_lengths[i_episode], node_name="episode_length", tag="episode_length") q_estimator.summary_writer.add_summary(episode_summary, total_t) q_estimator.summary_writer.flush() yield total_t, plotting.EpisodeStats( episode_lengths=stats.episode_lengths[:i_episode+1], episode_rewards=stats.episode_rewards[:i_episode+1]) env.monitor.close() yield stats return # In[ ]: print('Running DQN\n') tf.reset_default_graph() # Where we save our checkpoints and graphs experiment_dir = os.path.abspath("./experiments/{}".format(env.spec.id)) # Create a glboal step variable global_step = tf.Variable(0, name='global_step', trainable=False) # Create estimators q_estimator = Estimator(scope="q", summaries_dir=experiment_dir) target_estimator = Estimator(scope="target_q") # State processor state_processor = StateProcessor() # Run it! with tf.Session() as sess: sess.run(tf.initialize_all_variables()) for t, stats in deep_q_learning(sess, env, q_estimator=q_estimator, target_estimator=target_estimator, state_processor=state_processor, experiment_dir=experiment_dir, num_episodes=10000, replay_memory_size=500000, replay_memory_init_size=50, update_target_estimator_every=10000, epsilon_start=1.0, epsilon_end=0.1, epsilon_decay_steps=500000, discount_factor=0.99, batch_size=32): print("\nEpisode Reward: {}".format(stats.episode_rewards[-1]))
[ "mennatul@ualberta.ca" ]
mennatul@ualberta.ca
1ebd169554ef609726d43aedd887225ea4fb9263
887b37befa1eac8f3d6de87fee4ba881fba169ce
/mysite/survey/migrations/0005_auto_20200414_2251.py
0afcbe7ccdb32ef2708c807c9529fc089b4e1778
[]
no_license
judetomas/django_polls
16ae2f0206459c8ac8f71f8273f7766ef11a6663
d444a469bf4ab33934fdf59f06ed99a1d93964bf
refs/heads/master
2020-09-11T18:58:41.906228
2020-05-16T19:45:17
2020-05-16T19:45:17
222,159,695
0
1
null
null
null
null
UTF-8
Python
false
false
1,097
py
# Generated by Django 2.2.5 on 2020-04-15 02:51 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('survey', '0004_remove_answer_answer_id'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_type', models.CharField(max_length=200)), ], ), migrations.AddField( model_name='answer', name='answer_type', field=models.CharField(default='E', max_length=200), preserve_default=False, ), migrations.CreateModel( name='Submission', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('answer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='survey.Answer')), ], ), ]
[ "eduj1samot@gmail.com" ]
eduj1samot@gmail.com
d7fb0e5f89514b585e6801d0934118e1ee780914
2a67dc681af4c4b9ef7a8e18c2ff75377dc5b44f
/aws.getCanonicalUserId-python/__main__.py
40fa0380f91a55b39b839daa26ac25a498186bc7
[]
no_license
ehubbard/templates-aws
e323b693a18234defe6bd56ffcc64095dc58e3a1
2ae2e7a5d05490078017fed6d132dcdde1f21c63
refs/heads/master
2022-11-17T13:53:14.531872
2020-07-10T21:56:27
2020-07-10T21:56:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
import pulumi import pulumi_aws as aws current = aws.get_canonical_user_id() pulumi.export("canonicalUserId", current.id)
[ "jvp@justinvp.com" ]
jvp@justinvp.com
cac7f6322f286045bff90d19c7c4da732cb5bb58
18111665be78761003021f5231e5bb1cdeba842c
/_app/forms.py
a48284ecb9ac93996d56e9b0772693bd9b7683d0
[ "MIT" ]
permissive
Wilfongjt/lb-data
0782896420d2bebc8aab7726f393952a112419c7
eca16bcec6cae5822146dfce8ea56e5f533c7f87
refs/heads/master
2022-11-13T04:33:54.272265
2020-07-10T16:08:25
2020-07-10T16:08:25
255,879,629
0
0
MIT
2020-07-10T16:08:26
2020-04-15T10:14:25
Python
UTF-8
Python
false
false
2,566
py
from list_forms import FormList import json class FormKeyList(list): def __init__(self, dictionary): if 'interfaces' in dictionary: for formkey in dictionary['interfaces']: self.append(formkey) elif 'api-form' in dictionary: self.append(dictionary['api-name']) class Form(dict): def default(self, f): num_list =['INTEGER'] if f['type'] in [any(ele in f['json'] for ele in ['INTEGER']) ]: rc = 0 elif f['type'] in [any(ele in f['json'] for ele in ['JSONB','JSON']) ]: rc = {'na':'na'} else: rc = 'NA' return rc class InsertForm(Form): def __init__(self, dictionary, form_key, constraints=['C','c']): # dictionary is table dictionary # form_key as found in forms self.dictionary = dictionary #contextDict = ContextDict().read() for f in FormList(self.dictionary, form_key, constraints): self[f['name']] = self.default(f) self['type']=form_key class UpdateForm(Form): def __init__(self, dictionary, form_key, constraints=['I','U','u']): self.dictionary = dictionary #contextDict = ContextDict().read() for f in FormList(self.dictionary, form_key, constraints): self[f['name']] = self.default(f)##ContextDict(ContextKey('data-context',f)) self['type'] = form_key def main(): import os from test_func import test_table from context_dict import ContextDict os.environ['LB-TESTING'] = '1' # FormKey assert FormKeyList(test_table()) == ['app', 'user'] # InsertForm form = InsertForm(test_table(), 'app') assert type(form) == InsertForm assert form == {'type': 'app', 'app-name': 'NA', 'version': 'NA', 'username': 'NA', 'password': 'NA'} print('insert form', form) context = ContextDict().read() #print('context', context) form = context.goodify(form) print('context good', form) form = context.badify(form) print('context bad', form) # UpdateForm form = UpdateForm(test_table(), 'app') print('update form', form) assert type(form) == UpdateForm assert form == {'id': 'NA', 'type': 'app', 'app-name': 'NA', 'username': 'NA', 'password': 'NA'} form = context.goodify(form) print('context good', form) form = context.badify(form) print('context bad', form) form = InsertForm(test_table(), 'user') print('insert form', form) os.environ['LB-TESTING'] = '0' if __name__ == "__main__": main()
[ "wilfongjt@gmail.com" ]
wilfongjt@gmail.com
d0e4abc5b35dc5ffc4c54602f2924a7977a22926
a5836366b1ddbbf2bb00f8424b4acef51ba0ca36
/src/action/exit.py
5bd59e7429d5284f377f267f515904d643889e98
[]
no_license
d4rckh/bhs
ccbfad6c116af43a48fed750ef68a24d4ea90dc1
52f3f39970f83e82d61e3d0c4ee482cd0761daac
refs/heads/master
2022-12-05T23:53:24.177305
2020-09-02T15:11:11
2020-09-02T15:11:11
292,082,066
2
0
null
null
null
null
UTF-8
Python
false
false
311
py
from src.util.run_cmd import open as run_cmd from src.util.cRes import cRes as res from src.util.checkPort import checkPort class Command: def __init__(self, args, session): self.args = args self.ses = session self.requiredPorts = [] pass def run(self): exit(0)
[ "m4dd0x.xxx@gmail.com" ]
m4dd0x.xxx@gmail.com
84ed31ee8fbc6386e0418195aeda611fd7acf26b
8ded1e1c993051f3d71c55905ea812cd014aab3e
/model/model_QSMnet+.py
37d299f7391ef0ce9f0535483bcb310d5c9045d2
[]
no_license
clydejung/QSMnet
49dcb8ceb77994ff9d9454197f7c1343e1857522
078016a69afbf7ba44f9c3c4d32285fc18c3d8f3
refs/heads/master
2020-07-01T00:39:46.488768
2019-08-07T07:28:58
2019-08-07T07:28:58
200,997,611
0
0
null
2019-08-07T07:33:12
2019-08-07T07:33:12
null
UTF-8
Python
false
false
8,814
py
import tensorflow as tf def batch_norm(x, channel, isTrain, decay=0.99, name="bn"): with tf.variable_scope(name): beta = tf.get_variable(initializer=tf.constant(0.0, shape=[channel]), name='beta') gamma = tf.get_variable(initializer=tf.constant(1.0, shape=[channel]), name='gamma') batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2, 3], name='moments') mean_sh = tf.get_variable(initializer=tf.zeros([channel]), name="mean_sh", trainable=False) var_sh = tf.get_variable(initializer=tf.ones([channel]), name="var_sh", trainable=False) def mean_var_with_update(): mean_assign_op = tf.assign(mean_sh, mean_sh * decay + (1 - decay) * batch_mean) var_assign_op = tf.assign(var_sh, var_sh * decay + (1 - decay) * batch_var) with tf.control_dependencies([mean_assign_op, var_assign_op]): return tf.identity(batch_mean), tf.identity(batch_var) mean, var = tf.cond(tf.cast(isTrain, tf.bool), mean_var_with_update, lambda: (mean_sh, var_sh)) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3, name="normed") return normed def conv3d(x, w_shape, b_shape, keep_prob_, train, isTrain): weights = tf.get_variable("conv_weights", w_shape, initializer=tf.contrib.layers.xavier_initializer(), trainable=train) conv_3d = tf.nn.conv3d(x, weights, strides=[1, 1, 1, 1, 1], padding='SAME') biases = tf.get_variable("biases", b_shape, initializer=tf.random_normal_initializer(), trainable=train) conv_3d = tf.nn.bias_add(conv_3d, biases) channel = conv_3d.get_shape().as_list()[-1] #print(channel) bn_x = batch_norm(conv_3d, channel, isTrain) #return tf.nn.relu(bn_x) return tf.nn.leaky_relu(bn_x, alpha = 0.1) def conv(x, w_shape, b_shape, train): weights = tf.get_variable("weights", w_shape, initializer=tf.contrib.layers.xavier_initializer(), trainable=train) biases = tf.get_variable("biases", b_shape, initializer=tf.random_normal_initializer(), trainable=train) return tf.nn.conv3d(x, weights, strides=[1, 1, 1, 1, 1], padding='SAME') + biases def deconv3d(x, w_shape, b_shape, stride, train): x_shape = tf.shape(x) weights = tf.get_variable("deconv_weights", w_shape, initializer=tf.contrib.layers.xavier_initializer(), trainable=train) biases = tf.get_variable("biases", b_shape, initializer=tf.random_normal_initializer(), trainable=train) output_shape = tf.stack([x_shape[0], x_shape[1] * 2, x_shape[2] * 2, x_shape[3] * 2, x_shape[4] // 2]) return tf.nn.conv3d_transpose(x, weights, output_shape, strides=[1, stride, stride, stride, 1], padding='SAME') + biases def max_pool(x, n): return tf.nn.max_pool3d(x, ksize=[1, n, n, n, 1], strides=[1, n, n, n, 1], padding='SAME') def avg_pool(x, n): return tf.nn.avg_pool3d(x, ksize=[1, n, n, n, 1], strides=[1, n, n, n, 1], padding='SAME') def crop_and_concat(x2,x1): x1_shape = tf.shape(x1) x2_shape = tf.shape(x2) # offsets for the top left corner of the crop offsets = [0, abs((x1_shape[1] - x2_shape[1])) // 2, abs(x1_shape[2] - x2_shape[2]) // 2, abs(x1_shape[3] - x2_shape[3]) // 2, 0] size = [-1, x2_shape[1], x2_shape[2], x2_shape[3], -1] x1_crop = tf.slice(x1, offsets, size) return tf.concat([x1_crop, x2], 4) def qsmnet_deep(x, keep_prob, reuse, isTrain): with tf.variable_scope("qsmnet", reuse=reuse) as scope: with tf.variable_scope("conv11", reuse=reuse) as scope: conv11 = conv3d(x, [5, 5, 5, 1, 32], [32], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("conv12", reuse=reuse) as scope: conv12 = conv3d(conv11, [5, 5, 5, 32, 32], [32], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("maxpool1", reuse=reuse) as scope: pool1 = max_pool(conv12, 2) scope.reuse_variables() with tf.variable_scope("conv21", reuse=reuse) as scope: conv21 = conv3d(pool1, [5, 5, 5, 32, 64], [64], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("conv22", reuse=reuse) as scope: conv22 = conv3d(conv21, [5, 5, 5, 64, 64], [64], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("maxpool2", reuse=reuse) as scope: pool2 = max_pool(conv22, 2) scope.reuse_variables() with tf.variable_scope("conv31", reuse=reuse) as scope: conv31 = conv3d(pool2, [5, 5, 5, 64, 128], [128], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("conv32", reuse=reuse) as scope: conv32 = conv3d(conv31, [5, 5, 5, 128, 128], [128], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("maxpool3", reuse=reuse) as scope: pool3 = max_pool(conv32, 2) scope.reuse_variables() with tf.variable_scope("conv41", reuse=reuse) as scope: conv41 = conv3d(pool3, [5, 5, 5, 128, 256], [256], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("conv42", reuse=reuse) as scope: conv42 = conv3d(conv41, [5, 5, 5, 256, 256], [256], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("maxpool4", reuse=reuse) as scope: pool4 = max_pool(conv42, 2) scope.reuse_variables() with tf.variable_scope("l_conv1", reuse=reuse) as scope: l_conv1 = conv3d(pool4, [5, 5, 5, 256, 512], [512], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("l_conv2", reuse=reuse) as scope: l_conv2 = conv3d(l_conv1, [5, 5, 5, 512, 512], [512], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("deconv4", reuse=reuse) as scope: deconv4 = deconv3d(l_conv2, [2, 2, 2, 256, 512], [256], 2, True) deconv_concat4 = tf.concat([conv42, deconv4], axis=4) scope.reuse_variables() with tf.variable_scope("conv51", reuse=reuse) as scope: conv51 = conv3d(deconv_concat4, [5, 5, 5, 512, 256], [256], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("conv52", reuse-reuse) as scope: conv52 = conv3d(conv51, [5, 5, 5, 256, 256], [256], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("deconv3", reuse=reuse) as scope: deconv3 = deconv3d(conv52, [2, 2, 2, 128, 256], [128], 2, True) deconv_concat3 = tf.concat([conv32, deconv3], axis=4) scope.reuse_variables() with tf.variable_scope("conv61", reuse=reuse) as scope: conv61 = conv3d(deconv_concat3, [5, 5, 5, 256, 128], [128], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("conv62", reuse=reuse) as scope: conv62 = conv3d(conv61, [5, 5, 5, 128, 128], [128], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("deconv2", reuse=reuse) as scope: deconv2 = deconv3d(conv62, [2, 2, 2, 64, 128], [64], 2, True) deconv_concat2 = tf.concat([conv22, deconv2], axis=4) scope.reuse_variables() with tf.variable_scope("conv71", reuse=reuse) as scope: conv71 = conv3d(deconv_concat2, [5, 5, 5, 128, 64], [64], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("conv72", reuse=reuse) as scope: conv72 = conv3d(conv71, [5, 5, 5, 64, 64], [64], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("deconv1", reuse=reuse) as scope: deconv1 = deconv3d(conv72, [2, 2, 2, 32, 64], [32], 2, True) deconv_concat1 = tf.concat([conv12, deconv1], axis=4) scope.reuse_variables() with tf.variable_scope("conv81", reuse=reuse) as scope: conv81 = conv3d(deconv_concat1, [5, 5, 5, 64, 32], [32], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("conv82", reuse=reuse) as scope: conv82 = conv3d(conv81, [5, 5, 5, 32, 32], [32], keep_prob, True, isTrain) scope.reuse_variables() with tf.variable_scope("out", reuse=reuse) as scope: out_image = conv(conv82, [1, 1, 1, 32, 1], [1], True) # output = [10,512,512,9] #segment_data = [10,512,512] scope.reuse_variables() return out_image
[ "wjjung93@snu.ac.kr" ]
wjjung93@snu.ac.kr
5b8924f9597b4cc28c2c83320007c9c3565e364d
681a708b81cc11a9fa15bf23ffeda9f07dc4846f
/LP2/Rafa/Sub_FinaL_AC.LP2/business/models.py
e656b714c2c3c809cf23af2a76b799ec826ad9d9
[ "Apache-2.0" ]
permissive
RafaelaMiwaTokas/ACS-OPE
57ffb0587f02a93bbc1e63311ac33937fc80efad
7c37857982b6f621135a5ac0b9945bde02baafa1
refs/heads/master
2020-03-30T16:49:57.468191
2018-10-17T22:30:45
2018-10-17T22:30:45
151,429,274
0
0
null
null
null
null
UTF-8
Python
false
false
796
py
from business.exceptions import ParametroNegativoException, ResultadoNegativoException, OperacaoMuitoFacilException, ParametroZeroException class Calculadora(): def soma(self, a, b): if a < 0 or b < 0: raise ParametroNegativoException() return a + b def subtrai(self, a, b): if a < 0 or b < 0: raise ParametroNegativoException() resultado = a - b if resultado < 0: raise ResultadoNegativoException(resultado) return a - b def multiplica(self, a, b): if a == 1 or b == 1: raise OperacaoMuitoFacilException(a*b) return a * b def divide(self, a, b): try: return a / b except ZeroDivisionError: raise ParametroZeroException()
[ "1800706@SALAS.AULAS" ]
1800706@SALAS.AULAS
fa1e88b93bfadafa9a610505a1f1994c32e313f6
facb8b9155a569b09ba66aefc22564a5bf9cd319
/wp2/era5_scripts/02_preprocessing/lag82/600-tideGauge.py
8f9c90a0dc2de8f6b058903a57b951b859a2c87d
[]
no_license
moinabyssinia/modeling-global-storm-surges
13e69faa8f45a1244a964c5de4e2a5a6c95b2128
6e385b2a5f0867df8ceabd155e17ba876779c1bd
refs/heads/master
2023-06-09T00:40:39.319465
2021-06-25T21:00:44
2021-06-25T21:00:44
229,080,191
0
0
null
null
null
null
UTF-8
Python
false
false
3,984
py
# -*- coding: utf-8 -*- """ Created on Tue Mar 31 17:12:23 2020 **************************************************** Load predictors & predictands + predictor importance **************************************************** @author: Michael Tadesse """ #import packages import os import pandas as pd import datetime as dt #used for timedelta from datetime import datetime #define directories dir_in = '/lustre/fs0/home/mtadesse/ereaFiveCombine' dir_out = '/lustre/fs0/home/mtadesse/eraFiveLag' def lag(): os.chdir(dir_in) #get names tg_list_name = os.listdir() x = 600 y = 601 for t in range(x, y): tg_name = tg_list_name[t] print(tg_name, '\n') # #check if the file exists # os.chdir(dir_out) # if (os.path.isfile(tg_name)): # print('file already exists') # continue #cd to where the actual file is os.chdir(dir_in) pred = pd.read_csv(tg_name) pred.sort_values(by = 'date', inplace=True) pred.reset_index(inplace = True) pred.drop('index', axis = 1, inplace = True) #create a daily time series - date_range #get only the ymd of the start and end times start_time = pred['date'][0].split(' ')[0] end_time = pred['date'].iloc[-1].split(' ')[0] print(start_time, ' - ', end_time, '\n') date_range = pd.date_range(start_time, end_time, freq = 'D') #defining time changing lambda functions time_str = lambda x: str(x) time_converted_str = pd.DataFrame(map(time_str, date_range), columns = ['date']) time_converted_stamp = pd.DataFrame(date_range, columns = ['timestamp']) """ first prepare the six time lagging dataframes then use the merge function to merge the original predictor with the lagging dataframes """ #prepare lagged time series for time only #note here that since ERA20C has 3hrly data #the lag_hrs is increased from 6(eraint) to 11 (era20C) time_lagged = pd.DataFrame() lag_hrs = [0, 6, 12, 18, 24, 30] for lag in lag_hrs: lag_name = 'lag'+str(lag) lam_delta = lambda x: str(x - dt.timedelta(hours = lag)) lag_new = pd.DataFrame(map(lam_delta, time_converted_stamp['timestamp']), \ columns = [lag_name]) time_lagged = pd.concat([time_lagged, lag_new], axis = 1) #datafrmae that contains all lagged time series (just time) time_all = pd.concat([time_converted_str, time_lagged], axis = 1) pred_lagged = pd.DataFrame() for ii in range(1,time_all.shape[1]): #to loop through the lagged time series print(time_all.columns[ii]) #extracting corresponding tag time series lag_ts = pd.DataFrame(time_all.iloc[:,ii]) lag_ts.columns = ['date'] #merge the selected tlagged time with the predictor on = "date" pred_new = pd.merge(pred, lag_ts, on = ['date'], how = 'right') pred_new.drop('Unnamed: 0', axis = 1, inplace = True) #sometimes nan values go to the bottom of the dataframe #sort df by date -> reset the index -> remove old index pred_new.sort_values(by = 'date', inplace=True) pred_new.reset_index(inplace=True) pred_new.drop('index', axis = 1, inplace= True) #concatenate lagged dataframe if ii == 1: pred_lagged = pred_new else: pred_lagged = pd.concat([pred_lagged, pred_new.iloc[:,1:]], axis = 1) #cd to saving directory os.chdir(dir_out) pred_lagged.to_csv(tg_name) os.chdir(dir_in) #run script lag()
[ "michaelg.tadesse@gmail.com" ]
michaelg.tadesse@gmail.com
580529e04722c5f5a425b10e0393ded1433d5421
4f75a30a64a682468aa399367a652b97c151c4ef
/sdk/geetest_lib.py
b6ef2321d487e2bc26b65a7e3af78097b750b160
[]
no_license
wdjlover/gt3-server-python-flask-bypass
eec010263e5675aaee32660de091469357a79cca
11062beeb1ee23aab8e72cb4313419ce85e68217
refs/heads/master
2023-01-21T02:56:06.414627
2020-11-26T09:55:31
2020-11-26T09:55:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,940
py
import string import random import json import requests import hmac import hashlib from .geetest_lib_result import GeetestLibResult # sdk lib包,核心逻辑。 class GeetestLib: IS_DEBUG = True # 调试开关,是否输出调试日志 API_URL = "http://api.geetest.com" REGISTER_URL = "/register.php" VALIDATE_URL = "/validate.php" JSON_FORMAT = "1" NEW_CAPTCHA = True HTTP_TIMEOUT_DEFAULT = 5 # 单位:秒 VERSION = "python-flask:3.1.1" GEETEST_CHALLENGE = "geetest_challenge" # 极验二次验证表单传参字段 chllenge GEETEST_VALIDATE = "geetest_validate" # 极验二次验证表单传参字段 validate GEETEST_SECCODE = "geetest_seccode" # 极验二次验证表单传参字段 seccode def __init__(self, geetest_id, geetest_key): self.geetest_id = geetest_id self.geetest_key = geetest_key self.libResult = GeetestLibResult() def gtlog(self, message): if self.IS_DEBUG: print("gtlog: " + message) # 验证初始化 def register(self, digestmod, param_dict): self.gtlog("register(): 开始验证初始化, digestmod={0}.".format(digestmod)); origin_challenge = self.request_register(param_dict) self.build_register_result(origin_challenge, digestmod) self.gtlog("register(): 验证初始化, lib包返回信息={0}.".format(self.libResult)); return self.libResult def request_register(self, param_dict): param_dict.update({"gt": self.geetest_id, "sdk": self.VERSION, "json_format": self.JSON_FORMAT}) register_url = self.API_URL + self.REGISTER_URL self.gtlog("requestRegister(): 验证初始化, 向极验发送请求, url={0}, params={1}.".format(register_url, param_dict)) try: res = requests.get(register_url, params=param_dict, timeout=self.HTTP_TIMEOUT_DEFAULT) res_body = res.text if res.status_code == requests.codes.ok else "" self.gtlog("requestRegister(): 验证初始化, 与极验网络交互正常, 返回码={0}, 返回body={1}.".format(res.status_code, res_body)) res_dict = json.loads(res_body) origin_challenge = res_dict["challenge"] except Exception as e: self.gtlog("requestRegister(): 验证初始化, 请求异常,后续流程走宕机模式, " + repr(e)) origin_challenge = "" return origin_challenge def local_init(self): self.build_register_result("", "") self.gtlog("local_init(): bypass当前状态为fail,后续流程将进入宕机模式, " + self.libResult.data) return self.libResult # 构建验证初始化返回数据 def build_register_result(self, origin_challenge, digestmod): # origin_challenge为空或者值为0代表失败 if not origin_challenge or origin_challenge == "0": # 本地随机生成32位字符串 challenge = "".join(random.sample('abcdefghijklmnopqrstuvwxyz0123456789', 32)) data = json.dumps( {"success": 0, "gt": self.geetest_id, "challenge": challenge, "new_captcha": self.NEW_CAPTCHA}) self.libResult.set_all(0, data, "bypass当前状态为fail,后续流程走宕机模式") else: if digestmod == "md5": challenge = self.md5_encode(origin_challenge + self.geetest_key) elif digestmod == "sha256": challenge = self.sha256_endode(origin_challenge + self.geetest_key) elif digestmod == "hmac-sha256": challenge = self.hmac_sha256_endode(origin_challenge, self.geetest_key) else: challenge = self.md5_encode(origin_challenge + self.geetest_key) data = json.dumps( {"success": 1, "gt": self.geetest_id, "challenge": challenge, "new_captcha": self.NEW_CAPTCHA}) self.libResult.set_all(1, data, "") # 正常流程下(即验证初始化成功),二次验证 def successValidate(self, challenge, validate, seccode, param_dict={}): self.gtlog( "successValidate(): 开始二次验证 正常模式, challenge={0}, validate={1}, seccode={2}.".format(challenge, validate, seccode)) if not self.check_param(challenge, validate, seccode): self.libResult.set_all(0, "", "正常模式,本地校验,参数challenge、validate、seccode不可为空") else: response_seccode = self.requestValidate(challenge, validate, seccode, param_dict) if not response_seccode: self.libResult.set_all(0, "", "请求极验validate接口失败") elif response_seccode == "false": self.libResult.set_all(0, "", "极验二次验证不通过") else: self.libResult.set_all(1, "", "") self.gtlog("successValidate(): 二次验证 正常模式, lib包返回信息={0}.".format(self.libResult)) return self.libResult # 异常流程下(即验证初始化失败,宕机模式),二次验证 # 注意:由于是宕机模式,初衷是保证验证业务不会中断正常业务,所以此处只作简单的参数校验,可自行设计逻辑。 def failValidate(self, challenge, validate, seccode): self.gtlog( "failValidate(): 开始二次验证 宕机模式, challenge={0}, validate={1}, seccode={2}.".format(challenge, validate, seccode)) if not self.check_param(challenge, validate, seccode): self.libResult.set_all(0, "", "宕机模式,本地校验,参数challenge、validate、seccode不可为空.") else: self.libResult.set_all(1, "", "") self.gtlog("failValidate(): 二次验证 宕机模式, lib包返回信息={0}.".format(self.libResult)) return self.libResult # 向极验发送二次验证的请求,POST方式 def requestValidate(self, challenge, validate, seccode, param_dict): param_dict.update( {"seccode": seccode, "json_format": self.JSON_FORMAT, "challenge": challenge, "sdk": self.VERSION, "captchaid": self.geetest_id}) validate_url = self.API_URL + self.VALIDATE_URL self.gtlog("requestValidate(): 二次验证 正常模式, 向极验发送请求, url={0}, params={1}.".format(validate_url, param_dict)) try: res = requests.post(validate_url, data=param_dict, timeout=self.HTTP_TIMEOUT_DEFAULT) res_body = res.text if res.status_code == requests.codes.ok else "" self.gtlog( "requestValidate(): 二次验证 正常模式, 与极验网络交互正常, 返回码={0}, 返回body={1}.".format(res.status_code, res_body)) res_dict = json.loads(res_body) seccode = res_dict["seccode"] except Exception as e: self.gtlog("requestValidate(): 二次验证 正常模式, 请求异常, " + repr(e)) seccode = "" return seccode # 校验二次验证的三个参数,校验通过返回true,校验失败返回false def check_param(self, challenge, validate, seccode): return not ( challenge is None or challenge.isspace() or validate is None or validate.isspace() or seccode is None or seccode.isspace()) def md5_encode(self, value): md5 = hashlib.md5() md5.update(value.encode("utf-8")) return md5.hexdigest() def sha256_endode(self, value): sha256 = hashlib.sha256() sha256.update(value.encode("utf-8")) return sha256.hexdigest() def hmac_sha256_endode(self, value, key): return hmac.new(key.encode("utf-8"), value.encode("utf-8"), digestmod=hashlib.sha256).hexdigest()
[ "wangbo@geetest.com" ]
wangbo@geetest.com
bba2b711e7ce6925f1e86ef8dbe91b5ebc967e6e
1561c3bab9abcfd0b943ef33695dcd1919e19fb2
/backend/editors/regex_dict.py
6094715e0334c2675b915c716bb89cc72b5b0cfc
[]
no_license
Cyki89/RealTimeTrackingApplication
6dd7d8aefa9699cb75d3f8af3df0776f16e1d8ae
c5bbbf2ec80223f09b3e139fe02731d236dff29b
refs/heads/master
2022-12-14T08:16:55.097769
2020-09-10T17:53:32
2020-09-10T17:53:32
291,335,316
1
0
null
null
null
null
UTF-8
Python
false
false
281
py
import re from backend.utils.utils import singleton class RegexDict(dict): def __init__(self): super().__init__() def __getitem__(self, item): for k, v in self.items(): if re.search(k, item): return v raise KeyError
[ "jakub.cykowski@gmail.com" ]
jakub.cykowski@gmail.com
8657979c109138a54ea8897da438a5eb4cc0b1f3
f1a29aea3a79d5696368e5dcf8ebdd615cb831c4
/start.py
a4b0c301fc8e25185fee910048f84f6a52546ca6
[ "MIT" ]
permissive
ChristopherSung/Stage1stHelper
7817e641ac661afd8e1c8e901d94cfdba7db7287
d86dbf1058150b59c3cb71f306a9812fab715c91
refs/heads/master
2023-08-16T05:48:28.081930
2021-10-15T06:53:40
2021-10-15T06:53:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
861
py
import json import logging import time import os from member import Member logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s: %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) logger = logging.getLogger(__name__) config = json.load(open('./config.json', 'r', encoding='utf-8')) refresh_time = config['refresh_time'] member_list = [] # 保存登录成功的对象 for i in config['members']: member = Member(i['username'], i['password']) member.login(on_success=lambda: member_list.append(member), on_failure=lambda: logger.warning(i['username'] + ' 登录失败')) # 没有登录成功的账号 if not member_list: logger.error('没有登录成功的账号,即将退出') os.system('pause') exit(1) while True: for i in member_list: i.action() time.sleep(refresh_time)
[ "unknown" ]
unknown
e78fbe197918f6638345b7ed338a008dbc44175a
a8c5397b5f32312095ef075c791502af055c6efb
/Processor/script/getkey.py
ccc057df0fb077629b4838489067c723d27c869e
[ "MIT" ]
permissive
LinkleYping/BlockImage_System
77c126bfc55e8e5907178206d7d355cd58bb9dc3
66112a911c599eeb87ce0fbb3a10180739f45771
refs/heads/master
2022-10-25T00:17:16.156961
2020-06-15T02:45:37
2020-06-15T02:45:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
308
py
from random import Random def random_str(randomlength): str = '' chars = 'abcdef0123456789' length = len(chars) - 1 random = Random() for i in range(randomlength): str += chars[random.randint(0, length)] return str # # if __name__ == '__main__': # print(random_str(6))
[ "heyilinge0@gmail.com" ]
heyilinge0@gmail.com
cf63b953d2e55044236cb7a0d49e53c7e3e267a9
c6759b857e55991fea3ef0b465dbcee53fa38714
/tools/nntool/nntool/quantization/float/quantizers/quantize_float.py
7c64d8773104ce0a2e7df691e9c41a6cb1372580
[ "AGPL-3.0-or-later", "AGPL-3.0-only", "GPL-1.0-or-later", "LicenseRef-scancode-other-copyleft", "Apache-2.0" ]
permissive
GreenWaves-Technologies/gap_sdk
1b343bba97b7a5ce62a24162bd72eef5cc67e269
3fea306d52ee33f923f2423c5a75d9eb1c07e904
refs/heads/master
2023-09-01T14:38:34.270427
2023-08-10T09:04:44
2023-08-10T09:04:44
133,324,605
145
96
Apache-2.0
2023-08-27T19:03:52
2018-05-14T07:50:29
C
UTF-8
Python
false
false
1,835
py
# Copyright (C) 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. from copy import deepcopy from typing import cast import numpy as np from bfloat16 import bfloat16 from nntool.graph.types import QuantizeNode from nntool.quantization.float.float_quantization_handler import \ FloatQuantizionHandler from nntool.quantization.new_qrec import QRec from nntool.quantization.qtype import QType from nntool.quantization.unified_quantization_handler import (out_qs_constraint, params_type) @params_type(QuantizeNode) @out_qs_constraint({'dtype': set([np.float32, np.float16, bfloat16])}) class HandleQuantize(FloatQuantizionHandler): @classmethod def _quantize(cls, params, in_qs, stats, **kwargs): params = cast(QuantizeNode, params) force_out_qs, dtype = cls.get_float_opts(**kwargs) if force_out_qs: o_q = deepcopy(force_out_qs[0]) else: o_q = QType( dtype=dtype, min_val=in_qs[0].min_val, max_val=in_qs[0].max_val) params.from_qtype = in_qs[0] params.to_qtype = o_q return QRec.float(in_qs=in_qs, out_qs=[o_q], float_dtype=dtype)
[ "yao.zhang@greenwaves-technologies.com" ]
yao.zhang@greenwaves-technologies.com
62fd032eecda11368b44164612bad0d2d25fcd0d
f7d7d8e7ddd5ec47ad801bfe07c4fa80389afcbe
/lib/assertions.py
f3973661b7ca0a9ffd8feb6a7a936c535c92b665
[]
no_license
MarySukhorukova/LearnQA_Python_API
d151423639412fd000eb99bd52cc9a1bd6b5c4be
263eaf489490862c5f241369577307e50e96d8ea
refs/heads/master
2023-06-27T06:22:41.926552
2021-07-19T20:25:20
2021-07-19T20:25:20
377,433,991
0
0
null
null
null
null
UTF-8
Python
false
false
2,547
py
from requests import Response import json class Assertions: @staticmethod def assert_json_value_by_name(response: Response, name, expected_value, error_message): try: response_as_dict = response.json() except json.JSONDecodeError: assert False, f"response is not in JSON format. Response text is '{response.text}'" assert name in response_as_dict, f"Response JSON doesn't have key '{name}'" assert response_as_dict[name] == expected_value, error_message @staticmethod def assert_code_status(response: Response, expected_status_code): assert response.status_code == expected_status_code, \ f'Unecspected status code! Expected: {expected_status_code}, Actual{response.status_code}' @staticmethod def assert_json_has_key(response: Response, name): try: response_as_dict = response.json() except json.JSONDecodeError: assert False, f"response is not in JSON format. Response text is '{response.text}'" assert name in response_as_dict, f"Response JSON doesn't have key '{name}'" @staticmethod def assert_json_has_no_key(response: Response, name): try: response_as_dict = response.json() except json.JSONDecodeError: assert False, f"response is not in JSON format. Response text is '{response.text}'" assert name not in response_as_dict, f"Response JSON should't have key '{name}'. But it is present" @staticmethod def assert_json_has_keys(response: Response, names: list): try: response_as_dict = response.json() except json.JSONDecodeError: assert False, f"response is not in JSON format. Response text is '{response.text}'" for name in names: assert name in response_as_dict, f"Response JSON doesn't have key '{name}'" @staticmethod def assert_json_has_no_keys(response: Response, names: list): try: response_as_dict = response.json() except json.JSONDecodeError: assert False, f"response is not in JSON format. Response text is '{response.text}'" for name in names: assert name not in response_as_dict, f"Response JSON should't have key '{name}'. But it is present" @staticmethod def assert_check_str(response: Response, name): assert response.content.decode("utf-8") == f"The following required params are missed: {name}", \ f'wrong error message {response.content}'
[ "57411226+MarySukhorukova@users.noreply.github.com" ]
57411226+MarySukhorukova@users.noreply.github.com
a5577ef843db47762ad28013db1fc9d919b1243d
63b79c404d83e4980891c488f4d9592558ecda35
/assets/src/ba_data/python/bastd/ui/coop/level.py
8a8d60d6e175af38081aa58b8a129c77b0e3c9b7
[ "MIT" ]
permissive
kakekakeka/ballistica
56e8879cd5b4b990e5e05da3dfd300d7cbb45446
3ffeff8ce401a00128363ff08b406471092adaa9
refs/heads/master
2022-11-14T08:11:57.160782
2020-07-01T05:43:13
2020-07-01T05:49:44
276,755,445
2
0
MIT
2020-07-02T22:18:37
2020-07-02T22:18:36
null
UTF-8
Python
false
false
3,467
py
# Copyright (c) 2011-2020 Eric Froemling # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ----------------------------------------------------------------------------- """Bits of utility functionality related to co-op levels.""" from __future__ import annotations import ba class CoopLevelLockedWindow(ba.Window): """Window showing that a level is locked.""" def __init__(self, name: ba.Lstr, dep_name: ba.Lstr): width = 550.0 height = 250.0 lock_tex = ba.gettexture('lock') super().__init__(root_widget=ba.containerwidget( size=(width, height), transition='in_right', scale=1.7 if ba.app.small_ui else 1.3 if ba.app.med_ui else 1.0)) ba.textwidget(parent=self._root_widget, position=(150 - 20, height * 0.63), size=(0, 0), h_align='left', v_align='center', text=ba.Lstr(resource='levelIsLockedText', subs=[('${LEVEL}', name)]), maxwidth=400, color=(1, 0.8, 0.3, 1), scale=1.1) ba.textwidget(parent=self._root_widget, position=(150 - 20, height * 0.48), size=(0, 0), h_align='left', v_align='center', text=ba.Lstr(resource='levelMustBeCompletedFirstText', subs=[('${LEVEL}', dep_name)]), maxwidth=400, color=ba.app.infotextcolor, scale=0.8) ba.imagewidget(parent=self._root_widget, position=(56 - 20, height * 0.39), size=(80, 80), texture=lock_tex, opacity=1.0) btn = ba.buttonwidget(parent=self._root_widget, position=((width - 140) / 2, 30), size=(140, 50), label=ba.Lstr(resource='okText'), on_activate_call=self._ok) ba.containerwidget(edit=self._root_widget, selected_child=btn, start_button=btn) ba.playsound(ba.getsound('error')) def _ok(self) -> None: ba.containerwidget(edit=self._root_widget, transition='out_left')
[ "ericfroemling@gmail.com" ]
ericfroemling@gmail.com
f6019218c0ab19ab8d1de61088e9c3a88f0d22c1
1cb5d0275cd81cd49e4cf1bd158e2101a3fe5d79
/Prac04/intermediate exercise 1.py
45eae55e1263e7645d75d0cba89912ff1ed160d2
[]
no_license
kkemei/Programming1-Practicals
1479be8bd4931bcdfca15313c78c316ebf4ed71d
2a064a27c6d43fc934e22b1505daf61726ffaeb5
refs/heads/master
2021-01-15T15:31:57.659734
2016-10-13T01:28:29
2016-10-13T01:28:29
68,797,239
0
0
null
2016-10-05T12:29:26
2016-09-21T08:38:19
Python
UTF-8
Python
false
false
449
py
def main(): numbers = [] for i in range(0, 5): num_value = int(input("Enter a number? ")) numbers.append(num_value) print("the first number is {}".format(numbers[0])) print("the last number is {}".format(numbers[4])) print("the smallest number is {}".format(min(numbers))) print("the largest number is {}".format(max(numbers))) print("the average number is {}".format(sum(numbers)/len(numbers))) main()
[ "kipngetich.kemei@my.jcu.edu.au" ]
kipngetich.kemei@my.jcu.edu.au
541a93cf695cfbde477fe29275eea22e11479520
efcf128f6fbd5419fba137dd2db7775b41567b7f
/doll_control.py
63979b91cb88a248e78f19e3466e9119d6b0777a
[]
no_license
dawnho/doll_control
e6b4975a158b81551375a6aa97a30c9665e35bb3
ee14b05ea447be46c6e5390758cd7a583a6cb61f
refs/heads/master
2021-05-15T20:15:30.090899
2017-10-22T06:20:52
2017-10-22T06:20:52
107,842,211
0
0
null
null
null
null
UTF-8
Python
false
false
334
py
from threading import Thread import socket import time import RPi.GPIO as GPIO VERBOSE= = TRUE IP_PORT = 22000 P_BUTTON = 24 def setup(): GPIO.setmode(GPIO.BOARD) GPIO.setup(P_BUTTON, GPIO.IN, GPIO.PUD_UP) def debug(text): if VERBOSE: print "Debug:---", text # ------ class SocketHandler ----- class SocketHandler(Thread):
[ "dawn.ho@gmail.com" ]
dawn.ho@gmail.com
f807a94a2d8348d9dc63eb80f02da06acbb76740
f7957eff1c606997661e21314dfe99550bc2e3cd
/code/server.py
f6d4290609e422bb90ff11cda45e03dd20cea7de
[]
no_license
halfopen/GraduationThesis
3a738a346b8a1bbf1271fe65483a99c19dd048b1
a7e763ca9d4995a5afaded61926df7c29ce5a84b
refs/heads/master
2021-06-14T03:29:15.177322
2021-03-18T03:50:14
2021-03-18T03:50:14
204,376,520
0
0
null
null
null
null
UTF-8
Python
false
false
406
py
# coding: utf-8 from flask import Flask, request from handler import Handler from flask_json import FlaskJSON, JsonError, json_response, as_json app = Flask(__name__) json = FlaskJSON(app) @app.route('/', methods = ['POST', 'GET']) @as_json def serve(): if request.method == "GET": return "OK" hdl = Handler(request.form) return hdl.handle() if __name__ == "__main__": app.run()
[ "halfopen@yeah.net" ]
halfopen@yeah.net
56ac1babdae96b39f0d63482131bf16c3706e4f6
7513cd51d989bf0dc43287a70b238a02aee51486
/ch-13/ball/settings.py
40abf3b897f2543ac6ff69fb019338ce5b0a9f51
[]
no_license
aklap/python-crash-course
826809649ba4f90fd3e12fcce26808e21e0adfec
7854c5242eaa9b5c4e15de03e9fdf859c9124372
refs/heads/master
2020-04-17T07:25:54.124403
2019-01-30T20:38:59
2019-01-30T20:38:59
166,368,994
1
3
null
null
null
null
UTF-8
Python
false
false
110
py
class Settings(): """Class for settings of a game.""" def __init__(self): self.ball_limit = 3
[ "aklaporte@gmail.com" ]
aklaporte@gmail.com
2218410e4e8156d005707c870ee0c2c1e2ca3200
711cdfa4ee0619fd5223e7f38356b112a7551f6a
/bible-chronicle/wsgi.py
e59b9374b07f82d825d54a31635b3fe4b31e40e9
[]
no_license
ygmpkk/Bible-Chronicle
5dc5894b16a62c9b10e9d0771026c4fa65745d6f
b922039061ef338ef2ef4e587004df718626d871
refs/heads/master
2020-12-24T17:18:17.562466
2012-06-03T12:22:55
2012-06-03T12:22:55
4,112,539
0
0
null
null
null
null
UTF-8
Python
false
false
1,146
py
""" WSGI config for djproject project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "bible-chronicle.settings") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
[ "Timothy@.(none)" ]
Timothy@.(none)
6f5906bfbdeacf315d3770da2d384597f68228fe
9a09e0fdd7de7bed272bd2ae88a28834220cd3f3
/virtual/bin/pycodestyle
6e7659838eb27eb6e35add6595080878e2491c14
[ "MIT" ]
permissive
DancanOduor/Minute-Pitches
5da9e46b2b4b21847c52ed76e851d872fb1fd22f
50d56a609dfd7a5719f19ad3297959c3585dcd1c
refs/heads/master
2022-10-07T13:33:38.047493
2019-11-27T12:29:06
2019-11-27T12:29:06
224,148,901
0
0
MIT
2022-09-16T18:14:07
2019-11-26T09:11:00
Python
UTF-8
Python
false
false
246
#!/home/moringa/python/Pitches/virtual/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from pycodestyle import _main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(_main())
[ "dancanoduor1990@gmail" ]
dancanoduor1990@gmail
a57a71644572968524842a8915273d496e97af7b
1930fec37ace24d01946845e9566071e4e96fe63
/tripletreid/embed.py
598574590e2a22c411c302f7163e7ccff5876089
[ "MIT" ]
permissive
Qidian213/DeepCC-T
9e0599934c09495a3dfba051943892ca911fe730
697e792d38f46ecbe643ba756e517c2a893efb65
refs/heads/master
2021-10-26T08:04:26.753433
2019-04-11T09:16:31
2019-04-11T09:16:31
178,881,452
0
0
null
null
null
null
UTF-8
Python
false
false
10,183
py
#!/usr/bin/env python from argparse import ArgumentParser from importlib import import_module from itertools import count import os import h5py import json import numpy as np import tensorflow as tf from aggregators import AGGREGATORS import common parser = ArgumentParser(description='Embed a dataset using a trained network.') # Required parser.add_argument( '--experiment_root', required=True, help='Location used to store checkpoints and dumped data.') parser.add_argument( '--dataset', required=True, help='Path to the dataset csv file to be embedded.') # Optional parser.add_argument( '--image_root', type=common.readable_directory, help='Path that will be pre-pended to the filenames in the train_set csv.') parser.add_argument( '--checkpoint', default=None, help='Name of checkpoint file of the trained network within the experiment ' 'root. Uses the last checkpoint if not provided.') parser.add_argument( '--loading_threads', default=8, type=common.positive_int, help='Number of threads used for parallel data loading.') parser.add_argument( '--batch_size', default=256, type=common.positive_int, help='Batch size used during evaluation, adapt based on available memory.') parser.add_argument( '--filename', default=None, help='Name of the HDF5 file in which to store the embeddings, relative to' ' the `experiment_root` location. If omitted, appends `_embeddings.h5`' ' to the dataset name.') parser.add_argument( '--flip_augment', action='store_true', default=False, help='When this flag is provided, flip augmentation is performed.') parser.add_argument( '--crop_augment', choices=['center', 'avgpool', 'five'], default=None, help='When this flag is provided, crop augmentation is performed.' '`avgpool` means the full image at the precrop size is used and ' 'the augmentation is performed by the average pooling. `center` means' 'only the center crop is used and `five` means the four corner and ' 'center crops are used. When not provided, by default the image is ' 'resized to network input size.') parser.add_argument( '--aggregator', choices=AGGREGATORS.keys(), default=None, help='The type of aggregation used to combine the different embeddings ' 'after augmentation.') parser.add_argument( '--quiet', action='store_true', default=False, help='Don\'t be so verbose.') def flip_augment(image, fid, pid): """ Returns both the original and the horizontal flip of an image. """ images = tf.stack([image, tf.reverse(image, [1])]) return images, tf.stack([fid]*2), tf.stack([pid]*2) def five_crops(image, crop_size): """ Returns the central and four corner crops of `crop_size` from `image`. """ image_size = tf.shape(image)[:2] crop_margin = tf.subtract(image_size, crop_size) assert_size = tf.assert_non_negative( crop_margin, message='Crop size must be smaller or equal to the image size.') with tf.control_dependencies([assert_size]): top_left = tf.floor_div(crop_margin, 2) bottom_right = tf.add(top_left, crop_size) center = image[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]] top_left = image[:-crop_margin[0], :-crop_margin[1]] top_right = image[:-crop_margin[0], crop_margin[1]:] bottom_left = image[crop_margin[0]:, :-crop_margin[1]] bottom_right = image[crop_margin[0]:, crop_margin[1]:] return center, top_left, top_right, bottom_left, bottom_right def main(): # Verify that parameters are set correctly. args = parser.parse_args() print(args) # Possibly auto-generate the output filename. if args.filename is None: basename = os.path.basename(args.dataset) args.filename = os.path.splitext(basename)[0] + '_embeddings.h5' args.filename = os.path.join(args.experiment_root, args.filename) # Load the args from the original experiment. args_file = os.path.join(args.experiment_root, 'args.json') if os.path.isfile(args_file): if not args.quiet: print('Loading args from {}.'.format(args_file)) with open(args_file, 'r') as f: args_resumed = json.load(f) # Add arguments from training. for key, value in args_resumed.items(): args.__dict__.setdefault(key, value) # A couple special-cases and sanity checks if (args_resumed['crop_augment']) == (args.crop_augment is None): print('WARNING: crop augmentation differs between training and ' 'evaluation.') args.image_root = args.image_root or args_resumed['image_root'] else: raise IOError('`args.json` could not be found in: {}'.format(args_file)) # Check a proper aggregator is provided if augmentation is used. if args.flip_augment or args.crop_augment == 'five': if args.aggregator is None: print('ERROR: Test time augmentation is performed but no aggregator' 'was specified.') exit(1) else: if args.aggregator is not None: print('ERROR: No test time augmentation that needs aggregating is ' 'performed but an aggregator was specified.') exit(1) if not args.quiet: print('Evaluating using the following parameters:') for key, value in sorted(vars(args).items()): print('{}: {}'.format(key, value)) # Load the data from the CSV file. print(args.dataset) print(args.image_root) _, data_fids = common.load_dataset(args.dataset, args.image_root) net_input_size = (args.net_input_height, args.net_input_width) pre_crop_size = (args.pre_crop_height, args.pre_crop_width) # Setup a tf Dataset containing all images. dataset = tf.data.Dataset.from_tensor_slices(data_fids) # Convert filenames to actual image tensors. dataset = dataset.map( lambda fid: common.fid_to_image( fid, tf.constant('dummy'), image_root=args.image_root, image_size=pre_crop_size if args.crop_augment else net_input_size), num_parallel_calls=args.loading_threads) # Augment the data if specified by the arguments. # `modifiers` is a list of strings that keeps track of which augmentations # have been applied, so that a human can understand it later on. modifiers = ['original'] if args.flip_augment: dataset = dataset.map(flip_augment) dataset = dataset.apply(tf.contrib.data.unbatch()) modifiers = [o + m for m in ['', '_flip'] for o in modifiers] if args.crop_augment == 'center': dataset = dataset.map(lambda im, fid, pid: (five_crops(im, net_input_size)[0], fid, pid)) modifiers = [o + '_center' for o in modifiers] elif args.crop_augment == 'five': dataset = dataset.map(lambda im, fid, pid: ( tf.stack(five_crops(im, net_input_size)), tf.stack([fid]*5), tf.stack([pid]*5))) dataset = dataset.apply(tf.contrib.data.unbatch()) modifiers = [o + m for o in modifiers for m in [ '_center', '_top_left', '_top_right', '_bottom_left', '_bottom_right']] elif args.crop_augment == 'avgpool': modifiers = [o + '_avgpool' for o in modifiers] else: modifiers = [o + '_resize' for o in modifiers] # Group it back into PK batches. dataset = dataset.batch(args.batch_size) # Overlap producing and consuming. dataset = dataset.prefetch(1) images, _, _ = dataset.make_one_shot_iterator().get_next() # Create the model and an embedding head. model = import_module('nets.' + args.model_name) head = import_module('heads.' + args.head_name) endpoints, body_prefix = model.endpoints(images, is_training=False) with tf.name_scope('head'): endpoints = head.head(endpoints, args.embedding_dim, is_training=False) with h5py.File(args.filename, 'w') as f_out, tf.Session() as sess: # Initialize the network/load the checkpoint. if args.checkpoint is None: checkpoint = tf.train.latest_checkpoint(args.experiment_root) else: checkpoint = os.path.join(args.experiment_root, args.checkpoint) if not args.quiet: print('Restoring from checkpoint: {}'.format(checkpoint)) tf.train.Saver().restore(sess, checkpoint) # Go ahead and embed the whole dataset, with all augmented versions too. emb_storage = np.zeros( (len(data_fids) * len(modifiers), args.embedding_dim), np.float32) for start_idx in count(step=args.batch_size): try: emb = sess.run(endpoints['emb']) print('\rEmbedded batch {}-{}/{}'.format( start_idx, start_idx + len(emb), len(emb_storage)), flush=True, end='') emb_storage[start_idx:start_idx + len(emb)] = emb except tf.errors.OutOfRangeError: break # This just indicates the end of the dataset. print() if not args.quiet: print("Done with embedding, aggregating augmentations...", flush=True) if len(modifiers) > 1: # Pull out the augmentations into a separate first dimension. emb_storage = emb_storage.reshape(len(data_fids), len(modifiers), -1) emb_storage = emb_storage.transpose((1,0,2)) # (Aug,FID,128D) # Store the embedding of all individual variants too. emb_dataset = f_out.create_dataset('emb_aug', data=emb_storage) # Aggregate according to the specified parameter. emb_storage = AGGREGATORS[args.aggregator](emb_storage) # Store the final embeddings. emb_dataset = f_out.create_dataset('emb', data=emb_storage) # Store information about the produced augmentation and in case no crop # augmentation was used, if the images are resized or avg pooled. f_out.create_dataset('augmentation_types', data=np.asarray(modifiers, dtype='|S')) if __name__ == '__main__': main()
[ "xhx1247786632@gmail.com" ]
xhx1247786632@gmail.com
490925720e8b660543d0809f52bca3389d2bca62
d605b8aaba13de6be8760949548375c8f8714ccc
/undistort_img.py
ab7b996b6afb9c15c69bb4ad3aab6bc1af3488de
[ "MIT" ]
permissive
fwa785/CarND-Advanced_Lane_Lines
733ac514679f39e5ef475ea01e4551e7610b59cc
b36852e2519128c40bc22a2efed92d8014496b7e
refs/heads/master
2020-03-17T13:02:35.140426
2018-05-26T05:46:20
2018-05-26T05:46:20
133,614,575
0
0
null
null
null
null
UTF-8
Python
false
false
694
py
import cv2 import pickle import matplotlib.image as mpimg import matplotlib.pyplot as plt def load_cal_dist(): # load the pickle file file = open("wide_dist_pickle.p", "rb") dist_pickle = pickle.load(file) objpoints = dist_pickle["objpoints"] imgpoints = dist_pickle["imgpoints"] return objpoints, imgpoints # Function to undistorted the image def cal_undistort(img, objpoints, imgpoints): # Use cv2.calibrateCamera() and cv2.undistort() gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None) undist = cv2.undistort(img, mtx, dist,None,mtx) return undist
[ "fwang@cs.stanford.edu" ]
fwang@cs.stanford.edu
4a5682dd8ba47d528ee3f7d9b2205251941f53e1
428b2789f055f35a3d7221dfdd35ef2a74262f76
/프로그래머스/가장 큰 수.py
1833f4ecc4730ecf5ed22d045b2c48397f56b6d9
[]
no_license
sinsomi/Coding-Test
eb9fcf9c9ef2b427287a8f9ea27320bf6616e49a
881974b533dc8d1ba44e8734346e38a3e668fda8
refs/heads/master
2022-12-10T04:56:50.280532
2020-09-14T02:37:55
2020-09-14T02:37:55
287,198,959
0
1
null
null
null
null
UTF-8
Python
false
false
242
py
def solution(numbers): ans='' numbers=list(map(str,numbers)) #문자열을 3번씩 나열한것을 기준으로 정렬 numbers.sort(key=lambda x:x*3,reverse=True) return ''.join(numbers) print(solution([3, 30, 34, 5, 9]))
[ "cindy960602@naver.com" ]
cindy960602@naver.com
adc19dda16fb09b71ebe749693e137350ac13ad8
641b870d2fb27ed52371b92b91c37abdf2e4d44d
/8_17_20.py
f67eea0d0b9f634b12fb774578592be916f927b8
[]
no_license
zoezirlin/COVID-19-Worldwide-Cases-and-Deaths-Analysis
c2831414979d113f265e33e07f73b442a68529b4
909179e8f24a341b397f81e00a43621578b58c2c
refs/heads/master
2022-11-30T04:48:37.164514
2020-08-17T14:48:36
2020-08-17T14:48:36
285,699,649
0
0
null
null
null
null
UTF-8
Python
false
false
11,118
py
# COVID-19 Worldwide Analytics: Data from Our World in Data ## https://github.com/owid/covid-19-data/tree/master/public/data # RQ1: is there a correlation between pop. 65+ and pop. 70+ in terms of total deaths? # RQ2: is there a correlation between gdp per capia and total deaths? (chi-square) # RQ3: diabetes prevelance # RQ4: stringency index correlation with covid figures #======================================================================================== ### Importing packages import pandas as pd # pandas for most everything import numpy as np import seaborn as sns # data visualization from matplotlib import pyplot as plt # data visualization import statsmodels.api as sm # stats procedures from statsmodels.formula.api import ols # regression procedures import scipy.stats as stats # stats procedures from scipy.stats import chi2_contingency # chi2/contingency tables from statsmodels.stats.outliers_influence import OLSInfluence # regression procedures #======================================================================================== ### Reading in the data data = pd.read_excel('/Users/zoezirlin/Desktop/COVID DATA/owid-covid-data.xlsx') # excel file #======================================================================================== # Finding out how many countries are represented in this dataset freq = pd.value_counts(data['location']) #creating frequency table through pandas value count function freq #printing the frequency table #======================================================================================== # Analyzing total new cases by country pt1 = pd.pivot_table(data, index = ['location'], values = ['new_cases'], aggfunc = np.sum) pt1 # Here we see that we have too many countries (categories) to visualize all at once # We will need to segment the data! #======================================================================================== # Segmenting dataset into six separate dataframes by continent designation of country pd.value_counts(data['continent']) # checking the counts of each continent to ensure normal distribution # oceania has significantly less instances that europe, which has the most # europe and asia have the most instances europe = data[data['continent']=='Europe'] # creating dataframe that has only european countries europe = europe.sort_values(['total_deaths'], ascending = False) # sorting the df by total deaths from most to least asia = data[data['continent']=='Asia'] asia = asia.sort_values(['total_deaths'], ascending = False) africa = data[data['continent']=='Africa'] africa = africa.sort_values(['total_deaths'], ascending = False) north_america = data[data['continent']=='North America'] north_america = north_america.sort_values(['total_deaths'], ascending = False) south_america = data[data['continent']=='South America'] south_america = south_america.sort_values(['total_deaths'], ascending = False) oceania = data[data['continent']=='Oceania'] oceania = oceania.sort_values(['total_deaths'], ascending = False) #======================================================================================== ### Analyzing European Countries # Europe - Average of total cases per million, shows the rate of death positioned against population of country pte1 = pd.pivot_table(europe, index = ['location'], values = ['total_cases_per_million'], aggfunc = np.mean) pte1 = pte1.sort_values(['total_cases_per_million'], ascending=[False]) pte1[:5] # vatican has the most average cases per million, perhaphs because they have such miniscule population # small countries seem to have the most cases per million # Europe- Sum of new deaths, shows the total of deaths over the weeks reported pte2 = pd.pivot_table(europe, index = ['location'], values = ['total_deaths'], aggfunc = np.sum) pte2 = pte2.sort_values(['total_deaths'], ascending=[False]) pte2[:5] # U.K. leads in total deaths, followed by italy, france, spain and belgium (IN EUROPE) # Europe- Sum of new cases per million, shows the rate of total of cases by country pte3 = pd.pivot_table(europe, index = ['location'], values = ['new_cases_per_million'], aggfunc = np.sum) pte2 = pte3.sort_values(['new_cases_per_million'], ascending=[False]) pte3[:5] # Visualizing Death Counts for European Countries by Total Deaths plt.figure(figsize=(25,7)) sns.set() sns.set_context("talk") chart = sns.barplot(x='location', y='new_deaths', estimator=sum, data=europe, palette='Paired' ) plt.xticks( rotation=45, horizontalalignment='right', fontweight='light', ) chart.set_title('Death Count by Location in European Countries') chart.set_xlabel('Location') chart.set_ylabel('Death Count') # Visualizing COVID-19 Cases for European Countries by Total Cases plt.figure(figsize=(25,7)) sns.set() sns.set_context("talk") chart = sns.barplot(x='location', y='new_cases', estimator=sum, data=europe, palette='Paired' ) plt.xticks( rotation=45, horizontalalignment='right', fontweight='light', ) chart.set_title('Case Count by Location in European Countries| Note: Ordered by Most Deaths to Least') chart.set_xlabel('Location') chart.set_ylabel('Case Count') #======================================================================================== ### Analyzing Asian Countries # Asia - Average of total cases per million, shows the rate of death positioned against population of country pta1 = pd.pivot_table(asia, index = ['location'], values = ['total_cases_per_million'], aggfunc = np.mean) pta1 = pta1.sort_values(['total_cases_per_million'], ascending=[False]) pta1[:5] # Qatar has the most average cases per million # Asia- Sum of new deaths, shows the total of deaths over the weeks reported pta2 = pd.pivot_table(asia, index = ['location'], values = ['total_deaths'], aggfunc = np.sum) pta2 = pta2.sort_values(['total_deaths'], ascending=[False]) pta2[:5] # India has the most cumulative total deaths # Asia- Sum of new cases per million, shows the rate of total of cases by country pta3 = pd.pivot_table(asia, index = ['location'], values = ['new_cases_per_million'], aggfunc = np.sum) pta3 = pta3.sort_values(['new_cases_per_million'], ascending=[False]) pta3[:5] # Qatar has the most new cases per million, as well as having the most total cases per million # Visualizing Death Counts for Asian Countries by Total Deaths plt.figure(figsize=(25,7)) sns.set() sns.set_context("talk") chart = sns.barplot(x='location', y='new_deaths', estimator=sum, data=asia, palette='Paired' ) plt.xticks( rotation=45, horizontalalignment='right', fontweight='light', ) chart.set_title('Death Count by Location in Asian Countries') chart.set_xlabel('Location') chart.set_ylabel('Death Count') # Visualizing COVID-19 Cases for Asian Countries by Total Cases plt.figure(figsize=(25,7)) sns.set() sns.set_context("talk") chart = sns.barplot(x='location', y='new_cases', estimator=sum, data=asia, palette='Paired' ) plt.xticks( rotation=45, horizontalalignment='right', fontweight='light', ) chart.set_title('Case Count by Location in Asian Countries| Note: Ordered by Most Deaths to Least') chart.set_xlabel('Location') chart.set_ylabel('Case Count') #======================================================================================== # Taking care of the NA variables print(data.isnull()) # printing true/false is na for variables print(data.isnull().sum()) # every variable has null counts except for location and date! # create new dataset for regression procedures without NAs #======================================================================================== # Statistical procedures ## Correlative relationships corr = data.corr() # handwashing facilities x extreme poverty: -.7703 # hospital beds per thousand x median age: .6606 # life expectancy x hand washing facilities: .825 # extreme poverty x life expectancy: -.748 # female smokers x aged 70+: .781 # stringency index x positive rate: .329 (low, kind like it doesnt much work) # Variables of interest # continent: categorical (need to recode) # date: continuous # total cases: continuous # new cases: continuous # total deaths: continuous # new deaths: continuous # total cases/mil: continuous # new cases/mil: continuous # total deaths/mil: continuous # total cases/mil: continuous # stringency index: continuous # population density: continuous # gdp per capita: continuous # life expectancy: continuous # Regression procedure: predicting total cases # Scatterplot for total cases by stringency index plt.figure(figsize=(7,7)) sns.set() sns.set_context("talk") chart = sns.scatterplot(data=data, y='total_cases', x= 'stringency_index', palette='Paired') chart.set_title('Scatterplot for Total Cases by Stringency Index') chart.set_xlabel('Stringency Index') chart.set_ylabel('Total Cases') # Scatterplot for total cases by gdp per capita plt.figure(figsize=(7,7)) sns.set() sns.set_context("talk") chart = sns.scatterplot(data=data, y='total_cases', x= 'gdp_per_capita', palette='Paired') chart.set_title('Scatterplot for Total Cases by GPA Per Capita') chart.set_xlabel('Stringency Index') chart.set_ylabel('Total Cases') # Scatterplot for total cases by life expectancy plt.figure(figsize=(7,7)) sns.set() sns.set_context("talk") chart = sns.scatterplot(data=data, y='total_cases', x= 'life_expectancy', palette='Paired') chart.set_title('Scatterplot for Total Cases by Life Expectancy') chart.set_xlabel('Stringency Index') chart.set_ylabel('Total Cases') # Creating new dataset without NAs data1 = data.copy() data1 = data1.dropna() pd.value_counts(data['location']) # this widdled down dataframe has 164 countries # there are 195 countries in the world # this represents 84% of countries # Regression procedure no.1 X = data1[['life_expectancy']] y = data1['total_cases'] X = sm.add_constant(X) model_1 = sm.OLS(y,X).fit() predictions_1 = model_1.predict(X) model_1.summary() # Regression procedure no.2 X = data1[['life_expectancy']] y = data1['total_deaths'] X = sm.add_constant(X) model_1 = sm.OLS(y,X).fit() predictions_1 = model_1.predict(X) model_1.summary() # Regression procedure no.3 X = data1[['cardiovasc_death_rate']] y = data1['total_deaths'] X = sm.add_constant(X) model_1 = sm.OLS(y,X).fit() predictions_1 = model_1.predict(X) model_1.summary() # Regression procedure no.4 ## significant model, 78% of the variability explained X = data1[['handwashing_facilities']] y = data1['extreme_poverty'] X = sm.add_constant(X) model_1 = sm.OLS(y,X).fit() predictions_1 = model_1.predict(X) model_1.summary() # Regression procedure no.5 ## significant model, 50% of the variability explained X = data1[['handwashing_facilities']] y = data1['life_expectancy'] X = sm.add_constant(X) model_1 = sm.OLS(y,X).fit() predictions_1 = model_1.predict(X) model_1.summary()
[ "noreply@github.com" ]
zoezirlin.noreply@github.com
5a81a4197fa3eba25a940755bdd2addd0a67a411
27ff7fec0ae3f29f58089a2acab0aa3bc4e6e1f7
/RIDE-python3/utest/namespace/test_retrievercontextfactory.py
ffcf5e68b915b40215bd7108b20d30b733dc6100
[ "Apache-2.0" ]
permissive
zhangsong1417/xx
01435d6057364991b649c1acc00b36ab13debe5a
c40cfdede194daf3bdf91b36c1936150577128b9
refs/heads/master
2020-04-06T14:06:23.011363
2019-07-09T02:38:02
2019-07-09T02:38:02
157,528,207
1
0
null
null
null
null
UTF-8
Python
false
false
830
py
import unittest from nose.tools import assert_equal from robotide.namespace.namespace import _RetrieverContextFactory from robotide.robotapi import ResourceFile def datafileWithVariables(vars): data = ResourceFile() for var in vars: data.variable_table.add(var, vars[var]) return data class RetrieverContextFactoryTest(unittest.TestCase): def test_created_context_has_variable_table_variables(self): factory = _RetrieverContextFactory() ctx = factory.ctx_for_datafile( datafileWithVariables({'${foo}': 'moi', '${bar}': 'hoi', '@{zoo}': 'koi'})) result = ctx.vars.replace_variables('!${foo}!${bar}!@{zoo}!') print(ctx.vars) assert_equal(result, "!moi!hoi!['koi']!") if __name__ == '__main__': unittest.main()
[ "44634576+shuiling21@users.noreply.github.com" ]
44634576+shuiling21@users.noreply.github.com
36fe4d0372f7bd4c02c181de99948209bddf152f
3876aa07bd0d9d2a264174537ff382663c995619
/backend/server/server/settings.py
c47394a1d6f7eade47a3c037251e79b282f5d5c9
[]
no_license
ImokAAA/image_enhancer
9858970675bb351c84bcd6afe7c46742239f402f
65f047e94d45f8d1113fa5df375aa1737a7158d2
refs/heads/main
2023-03-05T22:55:17.788420
2021-01-14T16:47:01
2021-01-14T16:47:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,088
py
""" Django settings for server project. Generated by 'django-admin startproject' using Django 3.0.8. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'us56&cza8v)=1crl(72n1+lliboivd2nnt^51i$$ki#qbq8ml8' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'server.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'server.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
[ "Imangali@gmail.com" ]
Imangali@gmail.com
78170bad3a84f196ad48194a53eb050217a1ffb5
6be1990abf99c85ef886b49dcea1824aabb648d3
/weixinofneolocal/weixinofneolocal/zinnia/templates/zinnia/skeletonback.py
87d92f772446a25a103c06be241af22031b913f8
[]
no_license
neoguojing/cloudServer
b53ae205efe52cf0aea28dbb9e6c16c20caf991f
7c19101789b0c46474269e4c8fe00e92203e9cd7
refs/heads/master
2020-12-04T23:02:23.551479
2017-09-22T03:08:35
2017-09-22T03:08:35
67,382,984
0
0
null
null
null
null
UTF-8
Python
false
false
4,349
py
{% load i18n staticfiles %} <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"> <html xml:lang="{{ LANGUAGE_CODE }}" lang="{{ LANGUAGE_CODE }}" version="-//W3C//DTD XHTML 1.1//EN" xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Zinnia's Weblog - {% block title %}{% endblock title %}{% block title-page %}{% endblock title-page %}</title> <meta http-equiv="content-type" content="text/html; charset=utf-8" /> <meta http-equiv="cache-control" content="public" /> <meta name="robots" content="follow, all" /> <meta name="language" content="{{ LANGUAGE_CODE }}" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="description" content="{% block meta-description %}{% trans "Just another Zinnia weblog." %}{% endblock meta-description %}{% block meta-description-page %}{% endblock meta-description-page %}" /> <meta name="keywords" content="{% block meta-keywords %}django, blog, weblog, zinnia{% endblock meta-keywords %}" /> <meta name="author" content="Fantomas42" /> {% block meta %}{% endblock meta %} <link rel="pingback" href="/xmlrpc/" /> <link rel="shortcut icon" href="{% static "/static/zinnia/img/favicon.ico" %}" /> <link rel="home" href="{% url 'zinnia_entry_archive_index' %}" /> <link rel="stylesheet" type="text/css" media="screen, projection" href="{% static "/static/zinnia/css/screen.css" %}" /> <link rel="stylesheet" type="text/css" media="print" href="{% static "/static/zinnia/css/print.css" %}" /> <!--[if lt IE 8]> <link rel="stylesheet" type="text/css" media="screen, projection" href="{% static "/static/zinnia/css/ie.css" %}" /> <![endif]--> {% block link %}{% endblock link %} {% block script %}{% endblock script %} </head> <body class="zinnia {% block theme-class %}default{% endblock theme-class %} {% block color-class %}blue{% endblock color-class %} {% block sidebar-class %}right-sidebar{% endblock sidebar-class %} {% block body-class %}{% endblock body-class %}"> <div class="container"> <div id="header"> <ul class="top-navigation"> <li> <a href="{% url 'zinnia_sitemap' %}" title="{% trans "Sitemap" %}" class="sitemap"> {% trans "Sitemap" %} </a> </li> <li> <a href="{% url 'zinnia_entry_latest_feed' %}" title="{% trans "RSS Feed of latest entries" %}" class="feeds"> {% trans "RSS Feed" %} </a> </li> </ul> <form method="get" action="{% url 'zinnia_entry_search' %}"> <p> <input type="text" value="{% trans "Keywords..." %}" name="pattern" onfocus="this.value=''" /> <input type="submit" class="submitbutton" value="OK" /> </p> </form> <h1> <a href="{% url 'zinnia_entry_archive_index' %}" title="Zinnia's Weblog" rel="home"> 阳城微装修 </a> </h1> <blockquote> <p>{% trans "Just another Zinnia weblog." %}</p> </blockquote> {% block breadcrumbs %}{% endblock breadcrumbs %} </div> {% block slider %}{% endblock slider %} <div id="content" class="hfeed"> {% block content %} <div class="links"> <h3>{% trans "Useful links" %}</h3> <ul> <li> <a href="{% url 'zinnia_entry_archive_index' %}" title="{% trans "Weblog index" %}"> {% trans "Weblog index" %} </a> </li> <li> <a href="{% url 'zinnia_sitemap' %}" title="{% trans "Sitemap" %}"> {% trans "Sitemap" %} </a> </li> </ul> </div> <div class="search"> <h3>{% trans "Search" %}</h3> {% include "zinnia/tags/search_form.html" %} </div> {% endblock content %} </div> <div id="sidebar"> {% block sidebar %} {% endblock sidebar %} </div> <div id="footer"> <p>{% blocktrans %}Powered by <a href="http://www.djangoproject.com">Django</a> and <a href="https://github.com/Fantomas42/django-blog-zinnia">Zinnia {{ ZINNIA_VERSION }}</a>.{% endblocktrans %}</p> </div> </div> </body> </html>
[ "guojing_neo@163.com" ]
guojing_neo@163.com
228b7eb72785825bdb3372172019c0d93f9fa8cf
9124307911fe2c868d0b52cce274e3e06d050dfc
/spider/doubanSpider/doubanSpider/run.py
8f019a82e517f5bb666de728e7097c307a7035f8
[]
no_license
shenzihu/wechat-library-system
2458f953886136e2ddfe742f0a1879056b556f06
5a7c9a2bf2e3844c3b0c8ccb9db0ee2439869ed2
refs/heads/main
2023-03-06T13:18:54.430461
2021-02-17T03:43:19
2021-02-17T03:43:19
339,595,651
0
0
null
null
null
null
UTF-8
Python
false
false
827
py
#!/usr/bin/env python # -*- coding:utf-8 -*- from scrapy import cmdline import time import subprocess import sched, os if __name__ == "__main__": cmdline.execute('scrapy crawl doubanSpider'.split()) # 初始化sched模块的scheduler类 # 第一个参数是一个可以返回时间戳的函数,第二个参数可以在定时未到达之前阻塞。 schedule = sched.scheduler(time.time, time.sleep) # 被周期性调度触发的函数 def func(): print("爬虫开始") subprocess.Popen("scrapy crawl doubanSpider") def perform1(inc): schedule.enter(inc, 0, perform1, (inc,)) func() # 需要周期执行的函数 def mymain(): schedule.enter(0, 0, perform1, (6*3600,)) # if __name__ == "__main__": # mymain() # schedule.run() # 开始运行,直到计划时间队列变成空为止
[ "shenzihu123.123" ]
shenzihu123.123
7b67496f9c670cfea18d79b91e9e31e13296b6be
ed6efcd5ffb150b1cbc4fceb9976685e1edde354
/JazzMock/Python/train.py
b7d09e77d8edaad8b56f84aa8bedf69c72533e17
[]
no_license
zielo-hue/JazzMock
71cdc9e07815eec48cc6b3ce4f380e6f6375fb62
a27b8f419f63b3e2ae6885eb22f11144097ff0fe
refs/heads/master
2023-08-25T20:29:59.778534
2021-11-07T19:34:35
2021-11-07T19:34:35
345,299,138
2
2
null
null
null
null
UTF-8
Python
false
false
1,069
py
import os import gpt_2_simple as gpt2 import sys from datetime import datetime model_name = "355M" if not os.path.isdir(os.path.join("models", model_name)): print(f"Downloading {model_name} model...") gpt2.download_gpt2(model_name=model_name) file_name = "dataset.csv" # File name of dataset sess = gpt2.start_tf_sess() gpt2.finetune( sess, dataset=file_name, model_name=model_name, # Model you have already downloaded steps=10000, # -1 will do unlimited. Enter number of iterations otherwise restore_from='latest', # Also allows 'fresh' which will overwrite old training run_name='test', # The name to pull or create a checkpoint under print_every=50, # Print iterations every X numebr sample_every=15000, # Generate a text sample ever X number of iter. save_every=300, # Save a snapshot every X number of iter. learning_rate=0.0001, # Lower to 0.00001 if you are not getting massive changes in results batch_size=2, # Keep at 1 or 2, will use up more memory if you raise this overwrite=True )
[ "51804240+zielo-hue@users.noreply.github.com" ]
51804240+zielo-hue@users.noreply.github.com
32b1a41ac3b18a60699e71127b3e67b52f1e3621
249a31fd330dc179b89101f71f92f5474ce2a2dd
/back/fastapi/app/database/models.py
3a15a7c84f98644ae58e296613755954bb392cb6
[]
no_license
WilliamBamba/thermo_ia
f9838d968ee6a24ab8573fcf6b52bed92f7f6a12
941aef7e210363c73fcd86176cf89c655e4e406d
refs/heads/master
2023-03-16T19:36:50.222152
2020-11-25T09:38:42
2020-11-25T09:38:42
343,266,854
0
0
null
null
null
null
UTF-8
Python
false
false
1,168
py
from sqlalchemy import Boolean, Column, ForeignKey, Integer, String, DateTime from sqlalchemy.orm import relationship from sqlalchemy.sql import func from app.database.config import Base class Profile(Base): __tablename__ = "profile" id = Column(Integer, primary_key=True, index=True) name = Column(String) city = Column(String) wtemp = Column(Integer, default=23) time_table = Column(String, nullable=True) # "[8-11:45],[12:45-17]" url_agenda = Column(String, nullable=True) # valide url pointing to a .ics celander option_id = Column(Integer, ForeignKey('option.id'), nullable=True) # input: (8-9:45) (10-11:45) (12:45-17) # output: (8-11:45) (12:45-17) def parse_agenda(self): pass def refresh_agenda(self): pass class Option(Base): __tablename__ = "option" id = Column(Integer, primary_key=True, index=True) name = Column(String, nullable=True) class SensorData(Base): __tablename__ = "sensor_data" id = Column(Integer, primary_key=True, index=True) temperature = Column(Integer, nullable=True) created_at = Column(DateTime, server_default=func.now())
[ "shajjad.hossain@etu.univ-lyon1.fr" ]
shajjad.hossain@etu.univ-lyon1.fr
0ab4574b857eec1bbf73e814ebe45687b8341100
f957e7a7dac20e987b6bd467f6342d2ecd358879
/pset9/problem1_3.py
7ab5cbfa1b2e4bb72f25e76c8fb64d65dfc26e1e
[]
no_license
Wambonaut/Computational-Physics-Homework
375407b2ccce9f3b8ffb2a3a0126b8306f28ae2f
8389e4c446b6f8e3cbdc6e51b6c228f18bc57935
refs/heads/master
2020-05-18T03:35:52.342590
2019-06-28T09:51:37
2019-06-28T09:51:37
184,148,341
0
1
null
null
null
null
UTF-8
Python
false
false
611
py
import matplotlib.pyplot as plt import numpy as np import os import random from rng import rng figFolderPath = os.path.join( os.path.dirname(os.path.realpath(__file__)), 'figures' ) if not os.path.exists(figFolderPath): os.makedirs(figFolderPath) a, c, m = 106, 1283, 6075 I0 = 329 r = rng(I0, a, c, m) N = 10000 n = np.zeros(N) for i in range(N): n[i] = np.sum([(r.next_int() % 6) + 1 for i in range(10)]) plt.hist(n, bins=50) plt.savefig(os.path.join(figFolderPath, 'fig15.pdf'), bbox_inches='tight', pad_inches=0.6) plt.savefig(os.path.join(figFolderPath, 'fig15.pgf'), bbox_inches='tight')
[ "jona.a99@gmail.com" ]
jona.a99@gmail.com
5b6f3a167a3e1434a0bf2ef489f91a1678c97a32
39d10f7090c881c29c4dab8bfbfbb3937c2fa0d7
/game/views.py
34478b7c5d631ab7512098bc72730441c23f80ed
[]
no_license
garncarz/vietcong1.eu
0afe7e2f3c0017cfb543d6945f30d78dc2c83198
259e9869d30e31b41ce1e0afca3956fafd31fd40
refs/heads/master
2021-01-10T11:12:15.166627
2020-01-02T00:54:35
2020-01-02T00:54:35
43,337,611
2
0
null
2020-01-02T00:55:01
2015-09-29T01:33:50
Python
UTF-8
Python
false
false
1,782
py
from django.contrib import messages from django.shortcuts import redirect from django.views import generic from rest_framework import viewsets from . import forms from . import models from . import serializers class ServerListView(generic.ListView): model = models.Server def get_queryset(self): return (super().get_queryset() .select_related('map', 'mode') .filter(online=True) .all()) class ServerViewSet(viewsets.ModelViewSet): queryset = models.Server.objects.all().order_by('name') serializer_class = serializers.ServerSerializer class ServerDetailView(generic.DetailView): model = models.Server def get_object(self, queryset=None): queryset = queryset or self.get_queryset() return queryset.get(ip=self.kwargs['ip'], port=self.kwargs['port']) class PlayerListView(generic.ListView): model = models.Player def get_queryset(self): return (super().get_queryset() .select_related('server') .filter(online=True, server__online=True) .all()) class MapDetailView(generic.DetailView): model = models.Map class MapImageUploadView(generic.FormView): template_name = 'game/mapimage_upload.html' form_class = forms.MapImageForm def get_map(self): return models.Map.objects.get(pk=self.kwargs['pk']) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['map'] = self.get_map() return context def form_valid(self, form): map_image = form.save(commit=False) map_image.map = self.get_map() map_image.save() messages.success(self.request, 'The picture has been uploaded.') return redirect(map_image.map)
[ "ondrej@garncarz.cz" ]
ondrej@garncarz.cz
062cd6337e303e827f0ceaf260029aef2efbade4
1e2624cb526210d1fefe5dfd979555bac55d4d26
/third/urls.py
0606c8bc28ee5e9a97e937d726b79dcae0bf6873
[]
no_license
taemtaem0707/inflearn_python_board
1a149792d297580ffc13ef60a79394208c4eb751
a4508ba139a8882c3515b37e98fcb13c823a21a8
refs/heads/master
2022-12-01T19:14:55.532778
2020-08-15T12:17:03
2020-08-15T12:17:03
287,739,916
0
0
null
null
null
null
UTF-8
Python
false
false
694
py
from django.urls import path from . import views urlpatterns = [ path('list/', views.list, name='list'), path('create/', views.create, name='restaurant-create'), path('restaurant/<int:id>/update/', views.update, name='restaurant-update'), path('restaurant/<int:id>/delete/', views.delete, name='restaurant-delete'), path('restaurant/<int:id>/', views.detail, name='restaurant-detail'), path('restaurant/<int:restaurant_id>/review/create/', views.review_create, name='review-create'), path('restaurant/<int:restaurant_id>/review/delete/<int:review_id>', views.review_delete, name='review-delete'), path('review/list/', views.review_list, name='review-list'), ]
[ "taemtaem0707@google.com" ]
taemtaem0707@google.com
3d257eebb84ad0064a3d1098a6ab95ca1d2478ce
733ab64585aace7ff3f679ed7a1d61562c0d83af
/naive_SVP_by_hand.py
15234d44e7f3ddc06f9399ea0a056990cec17060
[]
no_license
sunchaopku/Naive_SVP_by_hand
877ef7d3e4ca121528376a43658535ce083ff1cc
df9961b61083df52fce676007231fce69b8850c2
refs/heads/main
2023-09-04T10:31:42.554849
2021-11-13T15:01:54
2021-11-13T15:01:54
427,695,423
0
0
null
null
null
null
UTF-8
Python
false
false
1,518
py
m = 5 n = 5 B = matrix(ZZ, m, n) for i in range(m): for j in range(n): B[i, j] = ZZ.random_element(1, 10) n_rows = B.nrows() n_cols = B.ncols() x = matrix(ZZ, 1, n_cols, 0) coef = matrix(ZZ, 1, n_rows, 0 ) [Gram, U]= B.gram_schmidt() Gram U G = [] for i in range(n_rows): G.append(norm(Gram[i])) BBT = B*B.transpose() volume = RR(sqrt(abs(BBT.determinant()))) bound = sqrt(n_rows) * volume.nth_root(n_rows) shortest_vector = copy(B[0]) shortest_coef = matrix(ZZ, 1, n_rows, 0 ) def SVP(n): global bound, B, G, shortest_vector, coef, n_rows,U, shortest_coef if n == -1: temp_vec = matrix(ZZ, 1, n_cols, 0) # print("temp_vec is") # print(temp_vec) temp_vec = temp_vec + coef * B # print("coef is") # print(coef) if norm(temp_vec) > 0 and norm(temp_vec) < norm(shortest_vector): #bound = norm(temp_vec) shortest_vector = temp_vec shortest_coef = copy(coef) return temp_bound = bound temp_coef = 0 #print("coef is") # print(coef) #print("n is ", n) for i in range(n_rows - 1, n , - 1): # print("i is ", i) temp_coef = temp_coef + U[i,n] * coef[0,i] #print("temp_coef is ", temp_coef ) temp_val = (bound / G[n]) for i in range(floor(-temp_val - temp_coef) , floor(temp_val - temp_coef) +1, 1): coef[0, n] = i SVP(n - 1) SVP(n_rows - 1) print(shortest_vector) print("norm of shortest_vector", RR(norm(shortest_vector))) short_bkz = B.BKZ() print("shortest_coef ", shortest_coef) print(short_bkz[0]) print("BKZ norm",RR(norm(short_bkz[0]))) print(short_bkz * B.inverse())
[ "noreply@github.com" ]
sunchaopku.noreply@github.com
3217885c91b5ce893f45b536fad802172adeef77
98a05e66a7f8b1c778345ca6e36fd83b84f693f6
/colibri.py
764f54f0a98f4f6b952dd4ebc82989610065cddd
[]
no_license
0206627/Colibri
7ff1c951cfb6f1a2be50faaaf893d6c372f0f90a
34a1d0f5a83c16bc533ed70773d594dfb5950486
refs/heads/master
2022-09-05T05:02:56.637791
2020-05-20T03:49:18
2020-05-20T03:49:18
261,040,869
0
0
null
null
null
null
UTF-8
Python
false
false
1,485
py
from components.avionics_component import CPU, SD from components.comms_component import Antenna from components.power_component import Batteries, EPS from components.thermal_component import TempSensor from flight_control.con_op_manager import ConOpManager from flight_control.flight_system import FlightSystem flight_system = FlightSystem() antenna = Antenna() battery = Batteries() cpu = CPU() sd = SD() temp_sensor = TempSensor() flight_system.add_component(antenna) flight_system.add_component(battery) flight_system.add_component(cpu) flight_system.add_component(sd) flight_system.add_component(temp_sensor) conOp = ConOpManager() while True: battery.battery_charge = (float)(input("Battery charge % [0.0, 1.0]: ")) antenna.comms_check = eval(input("Antenna communication [True, False]: ")) cpu.performance_percentage = (float)(input("CPU performance % [0.0, 1.0]: ")) sd.storage_free_percentage = (float)(input("SD storage free % [0.0, 1.0]: ")) temp_sensor.temp = (float)(input("Temperature sensor temp ºC [-10, 150]: ")) current_conop = conOp.get_current_conop() flight_conditions = flight_system.retrieve_flight_conditions() new_conop = flight_system.decide_con_op_mode(flight_conditions, current_conop) print("") print("Before: ", current_conop) print("Flight Conditions:") flight_system.print_flight_conditions() print("After: ", new_conop) print("") print("------------------------------") print("")
[ "0206627@up.edu.mx" ]
0206627@up.edu.mx
bdfa59941b83aa98b2faca5d7e8397a676989276
a7425779e8932aa9f499c1fe5c20c18b5b0dcebb
/main/migrations/0004_remove_company_logo.py
298ca7f71bed6d57164b9be4bf3d783ba018495d
[]
no_license
nandesh553/django-test
ad94e0664a28b6baa0c0f7642a7da26ee5b2b6c6
612f6a11068a67ba7d5abcf7967fdea25002c564
refs/heads/master
2020-08-06T13:57:00.323319
2019-10-05T18:21:01
2019-10-05T18:21:01
212,999,740
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
# Generated by Django 2.2.5 on 2019-10-05 12:36 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('main', '0003_auto_20191005_1623'), ] operations = [ migrations.RemoveField( model_name='company', name='logo', ), ]
[ "guptanandeshwar553@gmail.com" ]
guptanandeshwar553@gmail.com
406afe1c16cb054bada93da9cd18e427ec91dec9
be3c759bd915887a384d1ef437ebf7277c75bd06
/DynamicProgramming/HouseRobber.py
3f955e0a2cf78dc730de9f68598e24f0ce96fb45
[]
no_license
yistar-traitor/LeetCode
c24411763d541b6eaf9ccc344c3fd24f9a00e633
0dd48b990f8bd0874630b1860361c6b3b2c801f6
refs/heads/master
2020-09-28T20:46:45.016872
2019-12-18T02:25:34
2019-12-18T02:25:34
226,861,515
0
0
null
2019-12-18T02:25:36
2019-12-09T12:04:01
null
UTF-8
Python
false
false
1,600
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/8/24 18:01 # @Author : tc # @File : HouseRobber.py """ 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。 Input1:[1,2,3,1] Output1:4 解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。 Input2:[2,7,9,3,1] Output2:12 解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。   偷窃到的最高金额 = 2 + 9 + 1 = 12 。 动态规划的状态转移方程先从特殊情况开始考虑,比如当len(nums) == 1、2、3时 依次递推写出来。然后通过测试案例不断修正,得到最后完整的代码 官方解答:https://leetcode-cn.com/problems/house-robber/solution/da-jia-jie-she-by-leetcode/ "一个自然而然的想法是首先从最简单的情况开始" 与我刚刚阐述的解决步骤一致 """ def rob(nums): m = len(nums) if not m: return 0 dp = [0] * (m + 1) dp[1] = nums[0] for i in range(1,m): dp[i+1] = max(dp[i], dp[i-1]+nums[i]) print(dp) return dp[-1] if __name__ == '__main__': nums = [2,7,9,3,1] print(rob(nums))
[ "2448424636@qq.com" ]
2448424636@qq.com
4063445b6de2618ea6da9d05ed34ca6f414dc48a
8b22730050501c72421abda7f55db583773aa37c
/ecvheo1/Queue & Deque/2164.py
6c48e5596959bfc79582f84e7f209a74ffa2ef43
[]
no_license
naekang/uos-algorithm
5f98b1eae7c3ee1bde4942976ce18d12cf0d5f19
a0c03cfc5571c6c6dda5a710bd6e40e7c699e5e0
refs/heads/main
2023-08-06T18:28:39.447373
2021-10-04T05:43:19
2021-10-04T05:43:19
396,826,675
0
0
null
2021-08-16T14:18:20
2021-08-16T14:18:20
null
UTF-8
Python
false
false
233
py
from collections import deque n = int(input()) li = [] for i in range(n, 0, -1): li.append(i); cardDeque = deque(li) while len(cardDeque) != 1: cardDeque.pop() cardDeque.appendleft(cardDeque.pop()) print(cardDeque[0])
[ "ecvheo@naver.com" ]
ecvheo@naver.com
5854bb09c8e7f904a02592d7ae0b2ae00c3ff580
a60e1ac0359986566cc79bc17bbc3f2d99d28486
/src/Blog_Project/wsgi.py
264ad976d9ff130104479c5d5c9019fd152cc565
[]
no_license
zahidul-islam-144/Django-Mini-Blog-Site
fa278015ee8753e8e8e9c4322cfc850ed69e1a21
f0630ad46d1ffb905361da2752b32c0a8dbfb847
refs/heads/main
2023-06-09T17:08:51.885515
2021-07-03T15:24:30
2021-07-03T15:24:30
382,640,482
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
""" WSGI config for myProject1 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myProject1.settings') application = get_wsgi_application()
[ "zahidul.islam1@northsouth.edu" ]
zahidul.islam1@northsouth.edu
794d8c6e6c666f6dd5bf58524acc120035e325b6
3a395b378f818ed37fde4f47ba1ab06dc2e4f8bb
/venv/bin/ipython
e68785c72c9c2799dd7a3a32e119d9c054032438
[]
no_license
PoliNa1993/MyLab
391e400a248aec3dd69019847c81582688e21534
a334830a19669da022ff88762e4825abb1dfd597
refs/heads/master
2021-03-27T15:56:32.173159
2017-10-12T17:22:51
2017-10-12T17:22:51
105,839,051
0
0
null
null
null
null
UTF-8
Python
false
false
265
#!/Users/polinaaniskina/Code/EasyLab/venv/bin/python3.5 # -*- coding: utf-8 -*- import re import sys from IPython import start_ipython if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(start_ipython())
[ "ppoolliinnaa@hotmail.com" ]
ppoolliinnaa@hotmail.com
3a32305e83ae2659bc69b1f0bd9521a5a6cc84ac
241ba34c76bd55ffd5891a37c637d52cb4fe3ad0
/stylize_example.py
60d8ac335a2c3afee4d091c4724821bb7a68d85a
[]
no_license
tingleshao/neural_style_tf
7c2408e4a5e72849003790bdec23aade9fad8a49
fb32e58c20b9986457a3ba6629c9443fa5cba192
refs/heads/master
2020-12-03T09:29:55.863070
2017-07-11T17:50:54
2017-07-11T17:50:54
95,625,544
0
0
null
2017-06-28T03:37:19
2017-06-28T03:37:19
null
UTF-8
Python
false
false
6,783
py
""" This file contains code to run neural_style.py It shows a few usages of the function and output the results. """ from general_util import * if __name__=='__main__': # First download the required files. download_if_not_exist('http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat', 'imagenet-vgg-verydeep-19.mat', 'Pretrained vgg 19') download_if_not_exist('https://raw.githubusercontent.com/anishathalye/neural-style/master/examples/1-content.jpg', 'stylize_examples/1-content.jpg', 'Example content image') download_if_not_exist('https://raw.githubusercontent.com/anishathalye/neural-style/master/examples/1-style.jpg', 'stylize_examples/1-style.jpg', 'Example style image') download_if_not_exist('https://raw.githubusercontent.com/anishathalye/neural-style/master/examples/2-style1.jpg', 'stylize_examples/2-style.jpg', 'Example style image No.2') download_if_not_exist('https://raw.githubusercontent.com/alexjc/neural-doodle/master/samples/Mia.jpg', 'stylize_examples/5-style.jpg', 'Style image for mrf loss with semantic masks') download_if_not_exist('https://raw.githubusercontent.com/alexjc/neural-doodle/master/samples/Freddie.jpg', 'stylize_examples/5-content.jpg', 'Content image for mrf loss with semantic masks') # The first example: Generate an image styled with Van Gogh's Starry Sky and with content as 1-content.jpg content = 'stylize_examples/1-content.jpg' styles = ['stylize_examples/1-style.jpg'] learning_rate = 10.0 iterations = 1000 width = 400 height = 533 checkpoint_output_str = 'stylize_examples/output_checkpoint/1_iter_%s.jpg' output_str = 'stylize_examples/output/1_result.jpg' os.system('python neural_style.py --content=%s --styles %s --learning-rate=%f ' '--iterations=%d --checkpoint-output=%s --output=%s --width=%d --height=%d' %(content, ' '.join(styles), learning_rate, iterations, checkpoint_output_str, output_str, width, height)) # The second example: Generate an image textured with Van Gogh's Starry Sky without any content. styles = ['stylize_examples/1-style.jpg'] learning_rate = 10.0 iterations = 500 width = 256 height = 256 checkpoint_output_str = 'stylize_examples/output_checkpoint/2_iter_%s.jpg' output_str = 'stylize_examples/output/2_result.jpg' os.system('python neural_style.py --styles %s --learning-rate=%f ' '--iterations=%d --checkpoint-output=%s --output=%s --width=%d --height=%d' %(' '.join(styles), learning_rate, iterations, checkpoint_output_str, output_str, width, height)) # The third example is to use multiple styles with the first weighted more than the second one. content = 'stylize_examples/1-content.jpg' styles = ['stylize_examples/1-style.jpg', 'stylize_examples/2-style.jpg'] style_blend_weights = [0.7, 0.3] learning_rate = 10.0 iterations = 1000 width = 400 height = 533 checkpoint_output_str = 'stylize_examples/output_checkpoint/3_iter_%s.jpg' output_str = 'stylize_examples/output/3_result.jpg' os.system('python neural_style.py --content=%s --styles %s --learning-rate=%f ' '--iterations=%d --checkpoint-output=%s --output=%s --width=%d --height=%d --style-blend-weights %s' % (content, ' '.join(styles), learning_rate, iterations, checkpoint_output_str, output_str, width, height, ' '.join(map(str, style_blend_weights)))) # The fourth example: use mrf loss instead of gramian loss. Note that the image can't be too large or it will run # out of memory. content = 'stylize_examples/4-content.jpg' styles = ['stylize_examples/4-style.jpg'] learning_rate = 10.0 iterations = 1000 width = 512 height = 384 style_weight = 2.0 checkpoint_output_str = 'stylize_examples/output_checkpoint/4_iter_%s.jpg' output_str = 'stylize_examples/output/4_result.jpg' os.system('python neural_style.py --content=%s --styles %s --learning-rate=%f ' '--iterations=%d --checkpoint-output=%s --output=%s --width=%d --height=%d --style-weight=%f --use_mrf' %(content, ' '.join(styles), learning_rate, iterations, checkpoint_output_str, output_str, width, height, style_weight)) # The fifth example: use mrf loss with semantic masks. # The content weight, style weight, and semantic masks weight became a little bit different from the paper due to # different ways of implementation (they had only three channels while I support any number of channels), # but it worked... content = 'stylize_examples/5-content.jpg' styles = ['stylize_examples/5-style.jpg'] learning_rate = 10.0 iterations = 1000 width = 512 height = 512 content_weight = 10.0 style_weight = 30.0 output_semantic_mask = 'stylize_examples/semantic_masks/Freddie_sem_masks/' style_semantic_masks = ['stylize_examples/semantic_masks/Mia_sem_masks/'] semantic_masks_num_layers = 10 semantic_masks_weight = 3000.0 checkpoint_output_str = 'stylize_examples/output_checkpoint/5_iter_%s.jpg' output_str = 'stylize_examples/output/5_result.jpg' os.system('python neural_style.py --content=%s --styles %s --learning-rate=%f ' '--iterations=%d --checkpoint-output=%s --output=%s --width=%d --height=%d --content-weight=%f --style-weight=%f --use_mrf --use_semantic_masks --output_semantic_mask=%s --style_semantic_masks %s --semantic_masks_num_layers=%d --semantic_masks_weight=%f' %(content, ' '.join(styles), learning_rate, iterations, checkpoint_output_str, output_str, width, height, content_weight, style_weight, output_semantic_mask, ' '.join(style_semantic_masks), semantic_masks_num_layers, semantic_masks_weight)) # The sixth example: use the 'content_img_style_weight_mask" to control the degree of stylization for each pixel. content = 'stylize_examples/6-content.jpg' styles = ['stylize_examples/1-style.jpg'] learning_rate = 10.0 iterations = 1000 width = 712 height = 474 content_img_style_weight_mask = 'stylize_examples/6-mask.jpg' checkpoint_output_str = 'stylize_examples/output_checkpoint/6_iter_%s.jpg' output_str = 'stylize_examples/output/6_result.jpg' os.system('python neural_style.py --content=%s --styles %s --learning-rate=%f ' '--iterations=%d --checkpoint-output=%s --output=%s --width=%d --height=%d --content_img_style_weight_mask=%s' %(content, ' '.join(styles), learning_rate, iterations, checkpoint_output_str, output_str, width, height, content_img_style_weight_mask))
[ "jerrylijiaming@gmail.com" ]
jerrylijiaming@gmail.com
09aa66f1a4fca3aee8b591e74eef0c4a89bf44e4
65ea7da5b6673ce453066b2e2d8c3bcb3d3c9b27
/config.py
2d81b4733df2385399efa73bdb8d68b1413c3a17
[]
no_license
pramuditorh/i-man
980dc5076862fb3ba99eb28824de5571573539a1
1ab40e98f5ed125705257fb7b63a74ad31e4da77
refs/heads/master
2021-02-09T12:16:55.984807
2020-03-04T11:39:40
2020-03-04T11:39:40
244,281,267
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
import os class Config(object): SECRET_KEY = os.environ.get('SECRET_KEY') SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') SQLALCHEMY_TRACK_MODIFICATIONS = False
[ "pramuditorh@gmail.com" ]
pramuditorh@gmail.com
8f6281ac85780bc3cec088d17f9a584e9ed80bcf
33b424627a5b4d7f7cc045043682b6e1955bbfc7
/snp2sim_analysis/trajectoryAnalysis/regenerate_structs.py
5f354bfaf1b3de4372ea5a8150a6afc74db84582
[]
no_license
mccoymd/snp2sim
e24b198fa192d1eec5e4ed539d6fc88a66e1e236
f5a48b46a829cfc7c8de0d7528d9875cee9c7dd5
refs/heads/master
2021-08-09T01:02:20.340214
2021-06-16T20:43:57
2021-06-16T20:43:57
137,887,506
2
4
null
2019-09-11T13:57:22
2018-06-19T12:19:08
Python
UTF-8
Python
false
false
703
py
import os import sys variants = [] vmd = "\"/Applications/VMD 1.9.3.app/Contents/Resources/VMD.app/Contents/MacOS/VMD\"" for file in os.listdir(sys.argv[1]): if file != "analysis" and not file.startswith("."): variants.append(file) for v in variants: os.system("python /Users/vikram/Documents/georgetown/summer_2019/snp2sim/snp2sim.py \ --runDIR /Users/vikram/Documents/georgetown/summer_2019/run_workflow/snp2simresults \ --protein PDL1 --varAA %s --varResID %s --genStructures --VMDpath /Applications/VMD_1.9.3.app/Contents/Resources/VMD.app/Contents/MacOS/VMD \ --mode varMDsim \ --newStruct /Users/vikram/Documents/georgetown/summer_2019/snp2sim/example/PDL1.Vtype.pdb" %(v[-1], v[:-1]))
[ "vshiv@berkeley.edu" ]
vshiv@berkeley.edu
c0ff6baf8808cc36e46893b22eb24a2f76b8e3b5
b24302829278afbc8d95fa6e70aa11fd9ff983b6
/32/test_inventory.py
5c047e5f9ce3141ee6d140a5398639781bdb42fe
[]
no_license
boraxpr/bitesofpy
1e01351021153dfe8a69b958593e90c6438f84b0
ff0176e029ddbc6469ecf79ea9fc1c3ff284c2e5
refs/heads/master
2023-05-10T22:27:01.093996
2023-05-07T11:59:52
2023-05-07T11:59:52
215,345,303
0
0
null
null
null
null
UTF-8
Python
false
false
470
py
from inventory import items, duplicate_items def test_change_copy_only(): items_copy = duplicate_items(items) assert items == items_copy # modify the copy items_copy[0]['name'] = 'macbook' items_copy[1]['id'] = 4 items_copy[2]['value'] = 30 # only copy should have been updated, check original items values assert items[0]['name'] == 'laptop' assert items[1]['id'] == 2 assert items[2]['value'] == 20 test_change_copy_only()
[ "naipawat.poo@student.mahidol.ac.th" ]
naipawat.poo@student.mahidol.ac.th
654705c73e1b9d0cf21c5d9f68039be32a512999
6b915ee382f9b7e0b301315703f12e07fc1428a7
/src/geneviz/tracks/data.py
bf3e5d53298c44942926dcc35990cd02213b2413
[ "MIT" ]
permissive
asalt/geneviz
44d0b714e6a616678905f777180c0f8c8bea9246
fe217080721c8a597d4b1fe2d82920105e95ee24
refs/heads/master
2020-03-29T07:30:49.061053
2017-05-10T18:01:41
2017-05-10T18:01:41
149,667,991
0
0
MIT
2018-09-20T20:39:56
2018-09-20T20:39:55
null
UTF-8
Python
false
false
3,093
py
# # pylint: disable=W0622,W0614,W0401 # from __future__ import absolute_import, division, print_function # from builtins import * # # pylint: enable=W0622,W0614,W0401 # import itertools # import seaborn as sns # import toolz # from geneviz.tracks import Track # class DataTrack(Track): # _default_kws = dict(marker='o') # def __init__(self, # data, # y=None, # hue=None, # palette=None, # height=1, # legend_kws=None, # plot_kws=None): # super().__init__(height=height) # y = y or 'y' # palette = palette or sns.color_palette() # self._data = self._preprocess_data(data, y, hue, palette) # self._legend_kws = legend_kws or {} # self._plot_kws = toolz.merge(self._default_kws, plot_kws or {}) # @staticmethod # def _preprocess_data(data, y, hue, palette): # plot_data = data[['seqname', 'position']].copy() # plot_data['y'] = data[y] # if hue is not None: # if not isinstance(palette, dict): # palette = dict( # zip(data[hue].unique(), itertools.cycle(palette))) # plot_data['hue'] = data[hue] # plot_data['color'] = data[hue].map(palette) # return plot_data # def draw(self, ax, seqname, start, end): # # Subset data for range. # data = self._data.query(('seqname == {!r} and ' # '{} <= position <= {}') # .format(seqname, start, end)) # # Gather plotting kwargs. # if 'hue' in data and 'color' in data: # for (hue, color), grp in data.groupby(['hue', 'color']): # grp = grp.sort_values(by='position') # ax.plot( # grp['position'], # grp['y'], # '.', # label=hue, # color=color, # **self._plot_kws) # ax.legend(**self._legend_kws) # else: # data = data.sort_values(by='position') # ax.plot(data['position'], data['y'], **self._plot_kws) # class BoxplotTrack(Track): # # TODO: Seaborn styling? # def __init__(self, data, seqname='seqname', x='x', y='y', # height=1, **kwargs): # super().__init__(height=height) # self._data = data # self._seqname = seqname # self._x = x # self._y = y # self._kwargs = kwargs # def draw(self, ax, seqname, start, end): # # Subset data for range. # mask = ((self._data[self._seqname] == seqname) & # (self._data[self._x] >= start) & # (self._data[self._x] <= end)) # data = self._data[mask] # grouped = ((pos, grp[self._y].values) # for pos, grp in data.groupby(self._x)) # positions, values = zip(*grouped) # ax.boxplot(values, positions=positions, **self._kwargs)
[ "julianderuiter@gmail.com" ]
julianderuiter@gmail.com
a6b1c9a03945b18be055d66eae19ce38b7c8e2f4
592e4c0c68b699db6d27a5c279efbb86b0c670e8
/edittodo_project/urls.py
2e96344340838ac9568bc7fa31cd87648c268f8e
[]
no_license
LawrenceGao0224/Django_todolist
49317e034f3646b9a4aef7cd96613606a2184690
3707dce632a0bfa250e633f74c41fa3f125b1549
refs/heads/main
2023-04-10T04:58:06.050149
2021-04-21T04:01:29
2021-04-21T04:01:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
983
py
"""edittodo_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from hello.views import myView from todo.views import todoview, addTodo, deleteTodo urlpatterns = [ path('admin/', admin.site.urls), path('hello/', myView), path('todo/', todoview), path('addTodo/', addTodo), path('deleteTodo/<int:todo_id>/', deleteTodo), ]
[ "bightt53523@gmail.com" ]
bightt53523@gmail.com
0b96170da6867728c3cc90e8b465f05174ef45d9
d9892e27470b303254c71c526717480c40c4baf0
/meiduo_mall/meiduo_mall/utils/models.py
ff469b7e0d1972f01d4a45a1623b15c8a9792b67
[]
no_license
zhenMoses/meiduo_dj
d6f14d1aafaa5ee476f8f5763c2e7338d784a165
32b1a721f5ed433b1446054b4a0025849b5b65af
refs/heads/master
2020-04-17T07:07:48.523432
2019-02-18T11:10:23
2019-02-18T11:10:23
166,355,278
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
from django.db import models class BaseModel(models.Model): """模型基类""" create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) update_time = models.DateTimeField(verbose_name='更新时间', auto_now=True) class Meta: abstract = True # 表示此模型是一个抽象模型,将来迁移建表时,不会对它做迁移建表动作,它只用当其它模型的基类
[ "root@DESKTOP-6I0PKOQ.localdomain" ]
root@DESKTOP-6I0PKOQ.localdomain
a8d3a0bbf3a7644dcfbf3797cb61e2b1791a10c3
56f8b95b75d3ea9e8a316ef43eaa61e5376feaec
/vocab.py
d91c147f200c8ca2e1ff4acf47a6231703baa808
[]
no_license
p3i0t/TreeLSTM
447ee8e8bf037275cd51982a7598aa97bc4c1dce
1e0962fe46c0f50f2c42e8aba0e139bf826b622d
refs/heads/master
2022-03-08T01:44:30.238286
2017-11-28T08:05:29
2017-11-28T08:05:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,498
py
# vocab object from harvardnlp/opennmt-py class Vocab(object): def __init__(self, filename=None, data=None, lower=False): self.idxToLabel = {} self.labelToIdx = {} self.lower = lower # Special entries will not be pruned. self.special = [] if data is not None: self.addSpecials(data) if filename is not None: self.loadFile(filename) def size(self): return len(self.idxToLabel) # Load entries from a file. def loadFile(self, filename): idx = 0 for line in open(filename): token = line.rstrip('\n') self.add(token) idx += 1 def getIndex(self, key, default=None): key = key.lower() if self.lower else key try: return self.labelToIdx[key] except KeyError: return default def getLabel(self, idx, default=None): try: return self.idxToLabel[idx] except KeyError: return default # Mark this `label` and `idx` as special def addSpecial(self, label, idx=None): idx = self.add(label) self.special += [idx] # Mark all labels in `labels` as specials def addSpecials(self, labels): for label in labels: self.addSpecial(label) # Add `label` in the dictionary. Use `idx` as its index if given. def add(self, label): label = label.lower() if self.lower else label if label in self.labelToIdx: idx = self.labelToIdx[label] else: idx = len(self.idxToLabel) self.idxToLabel[idx] = label self.labelToIdx[label] = idx return idx # Convert `labels` to indices. Use `unkWord` if not found. # Optionally insert `bosWord` at the beginning and `eosWord` at the . def convertToIdx(self, labels, unkWord, bosWord=None, eosWord=None): vec = [] if bosWord is not None: vec += [self.getIndex(bosWord)] unk = self.getIndex(unkWord) vec += [self.getIndex(label, default=unk) for label in labels] if eosWord is not None: vec += [self.getIndex(eosWord)] return vec # Convert `idx` to labels. If index `stop` is reached, convert it and return. def convertToLabels(self, idx, stop): labels = [] for i in idx: labels += [self.getLabel(i)] if i == stop: break return labels
[ "1075837750@qq.com" ]
1075837750@qq.com
f95d00e357e663887c6fdebd6528e2754a4d7a64
43b59d7a8cea896a84eb0a658cda3601e30e24e5
/9021/quiz_finish/quiz_3.py
606990d4dfac803ab14516abd5ddd0cbc311f3bc
[]
no_license
VigoWong/UNSW_summary
71bc5754dd19b965eeffabb4f320b5de9c88d118
bafe369f984e6518c8270371c1cc8cd9103c7432
refs/heads/master
2022-07-07T12:49:56.156607
2020-05-10T08:27:18
2020-05-10T08:27:18
255,821,689
1
0
null
null
null
null
UTF-8
Python
false
false
3,288
py
# COMP9021 19T3 - Rachid Hamadi # Quiz 3 *** Due Thursday Week 4 # Reading the number written in base 8 from right to left, # keeping the leading 0's, if any: # 0: move N 1: move NE 2: move E 3: move SE # 4: move S 5: move SW 6: move W 7: move NW # # We start from a position that is the unique position # where the switch is on. # # Moving to a position switches on to off, off to on there. from copy import deepcopy import sys on = '\u26aa' off = '\u26ab' code = input('Enter a non-strictly negative integer: ').strip() try: if code[0] == '-': raise ValueError int(code) except ValueError: print('Incorrect input, giving up.') sys.exit() nb_of_leading_zeroes = 0 for i in range(len(code) - 1): if code[i] == '0': nb_of_leading_zeroes += 1 else: break print("Keeping leading 0's, if any, in base 8,", code, 'reads as', '0' * nb_of_leading_zeroes + f'{int(code):o}.' ) print() # INSERT YOUR CODE HERE # 1. convert the code to octonary number and stored it with a list oct_code = list('0' * nb_of_leading_zeroes + f'{int(code):o}') # 2. build a map by model the move of command pos = [0, 0] pos_ls = [[0, 0]] for i in range(1, len(oct_code) + 1): if oct_code[-i] == '0': pos[1] += 1 elif oct_code[-i] == '1': pos[0] += 1 pos[1] += 1 elif oct_code[-i] == '2': pos[0] += 1 elif oct_code[-i] == '3': pos[0] += 1 pos[1] -= 1 elif oct_code[-i] == '4': pos[1] -= 1 elif oct_code[-i] == '5': pos[0] -= 1 pos[1] -= 1 elif oct_code[-i] == '6': pos[0] -= 1 elif oct_code[-i] == '7': pos[0] -= 1 pos[1] += 1 pos_ls.append(deepcopy(pos)) # 2.1 calculate the width and height of the map x_ls, y_ls = zip(*pos_ls) width = max(x_ls) - min(x_ls) + 1 height = max(y_ls) - min(y_ls) + 1 map = [[off for i in range(width)] for k in range(height)] # 3.confirm the poses that are white or black # 3.1 move the coordinate to match the natural two-dimension array if min(x_ls) < 0: minus = min(x_ls) x_ls = [x - minus for x in x_ls] if max(y_ls) > 0: plus = max(y_ls) y_ls = [y - plus for y in y_ls] pos_ls = list(zip(x_ls, y_ls)) # for pos in pos_ls: if pos_ls.count(pos) % 2 != 0: map[-pos[1]][pos[0]] = on else: map[-pos[1]][pos[0]] = off # remove rows that contain only "off" start = 0 while start <= len(map)-1 and on not in map[start]: map[start].clear() start += 1 last = len(map) - 1 while last >= 0 and on not in map[last]: map[last].clear() last -= 1 # remove first several columns that contain only "off" while True: column = [] for i in range(height): if map[i]: column.append(map[i][0]) for i in range(height): if on not in column and map[i]: map[i].pop(0) else: break # remove latter several columns that contain only "off" while True: column = [] for i in range(height): if map[i]: column.append(map[i][-1]) for i in range(height): if on not in column and map[i]: map[i].pop(-1) else: break for i in map: if i: for l in i: print(l, end='') print()
[ "z5247672@ad.unsw.edu.au" ]
z5247672@ad.unsw.edu.au
e9dc572135ea4ef8d42a863b163b9987a11db5d3
123d2df6d9d1e655ff72e1cd17ffb50a72dc7e3a
/Tic Tac Toe.py
d71f353f17347b7780de8f9bcc748ae0a0cfc58c
[]
no_license
PrabhjitDutta/Tic_Tac_Toe
6ba6015283efac9dff138e247d277a8b4a2d50dd
43a6f484e54635dbd5cff8689a856d60f508d54e
refs/heads/master
2020-03-15T12:04:48.202760
2018-05-04T12:20:33
2018-05-04T12:20:33
132,135,997
0
0
null
null
null
null
UTF-8
Python
false
false
3,989
py
def displayTable(l): print(" {x} | {y} | {z}".format(x=l[0][0], y=l[0][1], z=l[0][2])) print(" {x} | {y} | {z}".format(x=l[1][0], y=l[1][1], z=l[1][2])) print(" {x} | {y} | {z}".format(x=l[2][0], y=l[2][1], z=l[2][2])) def askinp(): while True: try: c = int(input()) except: print("You made a mistake!\nTRY AGAIN") continue else: return c def inp(): print("Enter the Name of the first player:") x = input() print("Enter the Name of the Second player:") y = input() print("Hello {a} and {b},\nThis is your Tic-Tac-Toe Table.\n".format(a=x, b=y)) return x, y def TableModX(c, l): i = 0 j = 0 count = 0 while i < 3: while j < 3: if l[i][j] == c: l[i][j] = 'X' count += 1 break else: pass j += 1 i += 1 j = 0 i += 1 if count == 1: return l else: print("This Position is already taken\nTRY AGAIN") return -1 def TableModO(c, l): i = 0 j = 0 count = 0 while i < 3: while j < 3: if l[i][j] == c: l[i][j] = 'O' count += 1 break else: pass j += 1 i += 1 j = 0 i += 1 if count == 1: return l else: print("This Position is already taken\nTRY AGAIN") return -1 def TableCheck(l): i = 0 j = 0 while i < 3: if l[i][j] == l[i][j+1] and l[i][j] == l[i][j+2]: return 1 else: pass i += 1 i = 0 while i < 3: if l[j][i] == l[j+1][i] and l[j][i] == l[j+2][i]: return 1 else: pass i += 1 i = 0 if l[i][j] == l[i+1][j+1] and l[i][j] == l[i+2][j+2]: return 1 elif l[i][j+2] == l[i+1][j+1] and l[i][j+2] == l[i+2][j]: return 1 else: return -1 while True: l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] tempL = l x, y = inp() displayTable(l) i = 0 while i < 9: print("\n{a}, please enter the first position of your choice with the help of its corresponding number:".format(a=x)) while True: c = askinp() if c not in range(0,10): print("It's not a Valid Number\nTRY AGAIN") continue else: break l = TableModX(c, l) if l == -1: l = tempL c = askinp() l = TableModX(c, l) else: pass l = tempL displayTable(l) z = TableCheck(l) if z == 1: print("\n\n{a} is the winner congrats".format(a=x)) break i += 1 if i == 9: print("Its a Draw") break print("\n{a}, please enter the first position of your choice with the help of its corresponding number:".format(a=y)) while True: c = askinp() if c not in range(0,10): print("It's not a Valid Number\nTRY AGAIN") continue else: break l = TableModO(c, l) if l == -1: l = tempL c = askinp() l = TableModO(c, l) else: pass l = tempL displayTable(l) z = TableCheck(l) if z == 1: print("\n\n{a} is the winner congrats".format(a=y)) break i += 1 print("\n\nWould You like to play Again\nPress y for Yes and n for No") h = input() if h == 'y': continue else: quit()
[ "duttaprabhjit6@gmail.com" ]
duttaprabhjit6@gmail.com
1c4504c44308a745d32f5b358d7c5f292421063f
e871c676bdea8fa70c5024090ff90dc07068c549
/app.py
37e0336abca166a506c83b6bdfe724c32cc6fd2d
[ "MIT" ]
permissive
vishcomestrue/Restaurant-Review-Classifier-Using-NLP-
72907ad8b8d977c9a4020e404109592768c27292
92b8df361f23209cfd93b70e4c118bf20364dccb
refs/heads/main
2023-08-25T20:45:16.185900
2021-10-17T05:48:17
2021-10-17T05:48:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
595
py
from flask import Flask,render_template,url_for,request import pandas as pd import pickle clf = pickle.load(open('restaurant_nlp.pkl', 'rb')) app = Flask(__name__) @app.route('/') def home(): return render_template('home.html') @app.route('/predict',methods=['POST']) def predict(): if request.method == 'POST': message = request.form['message'] data = [message] #vect = cv.transform(data).toarray() my_prediction = clf.predict(data) return render_template('result.html',prediction = my_prediction) if __name__ == '__main__': app.run(debug=True)
[ "noreply@github.com" ]
vishcomestrue.noreply@github.com
26322a2feb6508fe67e3f7a9fea395c1a1a4979d
48f68936bacabf35193d6765f91bab49471ffaf5
/myapp/migrations/0011_auto_20210211_2222.py
e795b10f743ca8b7dcb26145a36b6fb559b26959
[]
no_license
Ekkasit1998/django-ecom
21a51b3c30e9f8e79fbbf2f5293a0f99aa4681f2
6af8ccc4172f260f0e658ba40acac3a474e5bf55
refs/heads/main
2023-05-15T09:32:08.100240
2021-05-31T20:24:53
2021-05-31T20:24:53
372,594,676
0
0
null
null
null
null
UTF-8
Python
false
false
596
py
# Generated by Django 3.0 on 2021-02-11 22:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('myapp', '0010_auto_20210205_1502'), ] operations = [ migrations.AddField( model_name='orderpending', name='silptime', field=models.CharField(blank=True, max_length=100, null=True), ), migrations.AlterField( model_name='orderpending', name='silp', field=models.ImageField(blank=True, null=True, upload_to='silp'), ), ]
[ "ekkasitpon1998@gmail.com" ]
ekkasitpon1998@gmail.com
71409e1515a5187e496afd7370184a782b494726
ed0f8b22c2b37d8066178d79a74623077a4afdce
/crslab/data/dataloader/redial.py
6cd128902bcdd8e82628d7d49e0d1bf15731ce0f
[ "MIT" ]
permissive
VanChengkai/CRSLab
5f1c4a0a7f14be34013d4c8296350f0662066f1d
8b69dcbb8f8568244bb25f29f89bcd227e80d69c
refs/heads/main
2023-04-15T04:36:05.120971
2021-04-25T16:16:17
2021-04-25T16:16:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,299
py
# @Time : 2020/11/22 # @Author : Chenzhan Shang # @Email : czshang@outlook.com # UPDATE: # @Time : 2020/12/16 # @Author : Xiaolei Wang # @Email : wxl1999@foxmail.com import re from copy import copy import torch from tqdm import tqdm from crslab.data.dataloader.base import BaseDataLoader from crslab.data.dataloader.utils import padded_tensor, get_onehot, truncate movie_pattern = re.compile(r'^@\d{5,6}$') class ReDialDataLoader(BaseDataLoader): """Dataloader for model ReDial. Notes: You can set the following parameters in config: - ``'utterance_truncate'``: the maximum length of a single utterance. - ``'conversation_truncate'``: the maximum length of the whole conversation. The following values must be specified in ``vocab``: - ``'pad'`` - ``'start'`` - ``'end'`` - ``'unk'`` the above values specify the id of needed special token. - ``'ind2tok'``: map from index to token. - ``'n_entity'``: number of entities in the entity KG of dataset. - ``'vocab_size'``: size of vocab. """ def __init__(self, opt, dataset, vocab): """ Args: opt (Config or dict): config for dataloader or the whole system. dataset: data for model. vocab (dict): all kinds of useful size, idx and map between token and idx. """ super().__init__(opt, dataset) self.ind2tok = vocab['ind2tok'] self.n_entity = vocab['n_entity'] self.pad_token_idx = vocab['pad'] self.start_token_idx = vocab['start'] self.end_token_idx = vocab['end'] self.unk_token_idx = vocab['unk'] self.item_token_idx = vocab['vocab_size'] self.conversation_truncate = self.opt.get('conversation_truncate', None) self.utterance_truncate = self.opt.get('utterance_truncate', None) def rec_process_fn(self, *args, **kwargs): dataset = [] for conversation in self.dataset: if conversation['role'] == 'Recommender': for item in conversation['items']: context_entities = conversation['context_entities'] dataset.append({'context_entities': context_entities, 'item': item}) return dataset def rec_batchify(self, batch): batch_context_entities = [] batch_item = [] for conversation in batch: batch_context_entities.append(conversation['context_entities']) batch_item.append(conversation['item']) context_entities = get_onehot(batch_context_entities, self.n_entity) return {'context_entities': context_entities, 'item': torch.tensor(batch_item, dtype=torch.long)} def conv_process_fn(self): dataset = [] for conversation in tqdm(self.dataset): if conversation['role'] != 'Recommender': continue context_tokens = [truncate(utterance, self.utterance_truncate, truncate_tail=True) for utterance in conversation['context_tokens']] context_tokens = truncate(context_tokens, self.conversation_truncate, truncate_tail=True) context_length = len(context_tokens) utterance_lengths = [len(utterance) for utterance in context_tokens] request = context_tokens[-1] response = truncate(conversation['response'], self.utterance_truncate, truncate_tail=True) dataset.append({'context_tokens': context_tokens, 'context_length': context_length, 'utterance_lengths': utterance_lengths, 'request': request, 'response': response}) return dataset def conv_batchify(self, batch): max_utterance_length = max([max(conversation['utterance_lengths']) for conversation in batch]) max_response_length = max([len(conversation['response']) for conversation in batch]) max_utterance_length = max(max_utterance_length, max_response_length) max_context_length = max([conversation['context_length'] for conversation in batch]) batch_context = [] batch_context_length = [] batch_utterance_lengths = [] batch_request = [] # tensor batch_request_length = [] batch_response = [] for conversation in batch: padded_context = padded_tensor(conversation['context_tokens'], pad_idx=self.pad_token_idx, pad_tail=True, max_len=max_utterance_length) if len(conversation['context_tokens']) < max_context_length: pad_tensor = padded_context.new_full( (max_context_length - len(conversation['context_tokens']), max_utterance_length), self.pad_token_idx ) padded_context = torch.cat((padded_context, pad_tensor), 0) batch_context.append(padded_context) batch_context_length.append(conversation['context_length']) batch_utterance_lengths.append(conversation['utterance_lengths'] + [0] * (max_context_length - len(conversation['context_tokens']))) request = conversation['request'] batch_request_length.append(len(request)) batch_request.append(request) response = copy(conversation['response']) # replace '^\d{5,6}$' by '__item__' for i in range(len(response)): if movie_pattern.match(self.ind2tok[response[i]]): response[i] = self.item_token_idx batch_response.append(response) context = torch.stack(batch_context, dim=0) request = padded_tensor(batch_request, self.pad_token_idx, pad_tail=True, max_len=max_utterance_length) response = padded_tensor(batch_response, self.pad_token_idx, pad_tail=True, max_len=max_utterance_length) # (bs, utt_len) return {'context': context, 'context_lengths': torch.tensor(batch_context_length), 'utterance_lengths': torch.tensor(batch_utterance_lengths), 'request': request, 'request_lengths': torch.tensor(batch_request_length), 'response': response} def policy_batchify(self, batch): pass
[ "wxl1999@foxmail.com" ]
wxl1999@foxmail.com
64d7089ac1740663367e9a615c9d00c9e0f7f813
db0b01788ed76e5b3c387361916891c81c36689f
/Instruction.py
4ec6dff3caecedd9c273512ecc942e2737ee22cd
[]
no_license
kushalmehta13/MIPS-CPU-Simulator
83ef071252a69aa8577719605348577ad91b0b94
31da72febb776d78dda75cb71e294b5ec60095d8
refs/heads/master
2020-08-15T18:46:47.618575
2019-11-16T18:53:50
2019-11-16T18:53:50
215,390,391
0
0
null
null
null
null
UTF-8
Python
false
false
756
py
class Instruction: def __init__(self, inst): self.inst = inst self.instType = '' self.op1 = '' self.op2 self.op3 = '' self.offset = 0 def setOp1(self, op1): self.op1 = op1 def setOp2(self, op2): self.op2 = op2 def setOp3(self, op3): self.op3 = op3 def setOffset(self, offset): self.offset = offset def setInstType(self, instType): self.instType = instType def getOp1(self, op1): return self.op1 def getOp2(self, op2): return self.op2 def getOp3(self, op3): return self.op3 def getOffset(self, offset): return self.offset def getInstType(self, instType): return self.instType
[ "kushalmehta13@gmail.com" ]
kushalmehta13@gmail.com
71c7390bbd5f6de3c2210e3b57a6826df6b81282
ff5f3e43acb6dd26b63d386d1e90b4b3795b940e
/data/scam_pagerank2.py
106a0d2e2b867ced0d27a652e9bd453af52ceea4
[]
no_license
manugoyal/wikipedia-pagerank
de7eb41042194bbc59fd7e6e335644fa556d0fd5
ca82aab92cd3dc9d497d16a6fb7e2b16f416b420
refs/heads/master
2021-01-10T07:53:55.095560
2015-10-22T15:09:01
2015-10-22T15:09:01
44,555,631
2
0
null
null
null
null
UTF-8
Python
false
false
3,612
py
# Tool that suggests ways to artificially inflate your pagerank, without the # restriction that you can only edit public pages. import data_utils import pagerank_utils import copy import numpy as np def get_clean_data(): """Returns the true pageranks, backlinks, outlinks_count, etc for wikipedia as a map. This dict should be passed around unmodified to the tool""" pageranks = data_utils.get_pageranks() backlinks = data_utils.get_backlinks() editable_pages = backlinks.keys() # This is all the pages return { # Mapping from id to raw pagerank 'pageranks': pageranks, # Mapping from id to normalized pagerank 'normalized_pageranks': data_utils.normalized_pageranks(pageranks), # Mapping from id to list of backlinks 'backlinks': backlinks, # Mapping from id to number of outlinks 'outlinks_count': data_utils.get_outlinks_count(), # List of pages we can edit 'editable_pages': editable_pages } def get_current_page_rank(data, page_id): return data['normalized_pageranks'][page_id] def inflate_page_rank(data, page_id, amount): """Try to increase the normalized page rank roughly to the given amount. Returns the amount we predict the increase to be, and the list of pages to edit to make it happen.""" inflation_factor = float(amount) / data['normalized_pageranks'][page_id] raw_target_pagerank = data['pageranks'][page_id] * inflation_factor # By adding a link from a page with rank r and number of outbound links k, # we'll get roughly a page rank boost of d*(r/(k+1)), where d is the damping # factor. pagerank_boost = lambda id: (pagerank_utils.DAMPING * data['pageranks'][id] / (data['outlinks_count'][id] + 1)) raw_pagerank_delta = raw_target_pagerank - data['pageranks'][page_id] # Sort the entire set of pages by approximately how much page rank they # could lend to us editable_pages = sorted(data['editable_pages'], key=pagerank_boost, reverse=True) # Go down the list of editable pages, and keep adding pages to the list # until we hit our target. Note that we can't add pages that already have a # link to our page, because in general, wikipedia doesn't duplicate links # between pages total_boost = 0 pages_to_edit = [] for id in editable_pages: if total_boost > raw_pagerank_delta: break if id in data['backlinks'][page_id]: continue total_boost += pagerank_boost(id) pages_to_edit.append(id) normalized_boost = (total_boost / data['pageranks'][page_id] * data['normalized_pageranks'][page_id]) return normalized_boost, pages_to_edit def evaluate_scam(data, page_id, pages_to_edit): """Given a clean data set, a page to inflate the rank of, and a list of pages to add links to the target page, return the new normalized pagerank of the page""" new_backlinks = copy.copy(data['backlinks']) new_outlinks_count = copy.copy(data['outlinks_count']) # Link the pages_to_edit to the page_id for id in pages_to_edit: new_backlinks[page_id] = np.append(new_backlinks[page_id], id) new_outlinks_count[id] += 1 # Run pagerank on the new dataset new_pageranks = pagerank_utils.converge_pageranks( data['pageranks'], new_backlinks, new_outlinks_count) # Return the new normalized pagerank return new_pageranks[page_id] / min(new_pageranks.itervalues())
[ "manu.goyal2013@gmail.com" ]
manu.goyal2013@gmail.com
87e241ebd07b7b4b41c2e8bc0b2e3e0de0383382
340fd9a6345a1fd6ea5c494fd1e25ef1a15cd83d
/my_blog/celery_tasks/email/tasks.py
e1f12962f31abad01edce72576156599fb1c4f27
[]
no_license
ltfred/blog
48024992922d570db7042d56855f6c28b7c581f8
9e7c9253a4576cbc443edea8fdebed92733d6f9f
refs/heads/master
2020-07-26T15:24:24.215702
2019-09-23T02:18:55
2019-09-23T02:18:55
208,689,787
1
0
null
null
null
null
UTF-8
Python
false
false
631
py
from django.core.mail import send_mail from django.conf import settings from celery_tasks.main import celery_app @celery_app.task(bind=True, name='send_reset_email', retry_backoff=3) def send_reset_mail(self, to_email, password): # 标题 subject = '重置密码邮件' # 内容 html_message = '感谢您使用Fred的个人网站,您的密码重置为:{},请登录后修改密码'.format(password) try: send_mail(subject, '', settings.EMAIL_FROM, [to_email], html_message=html_message) except Exception as e: # 有异常自动重试三次 raise self.retry(exc=e, max_retries=3)
[ "ltfred@163.com" ]
ltfred@163.com
5477872da5a91004aec0826004a9730fb5d9934b
d0c82d7665c3b676b56097cfa944abe18f709c7e
/Python相关/捷联惯导相关/work2/read.py
61e46bb888a933564ad4b7225730fc10adcd00e0
[]
no_license
LRoel/collection
78e7d83e942cfa305105b9584712a9977d0334e9
2890ac462c68e3b0f7bf8f30b208bbdc458521ba
refs/heads/master
2021-05-16T12:29:21.102179
2017-05-11T12:56:26
2017-05-11T12:56:26
105,291,256
1
1
null
null
null
null
UTF-8
Python
false
false
10,272
py
#!/usr/bin/env python # import rospy import serial import sys import string import operator import numpy as np import math import matplotlib.pyplot as plt # from sensor_msgs.msg import NavSatFix # #print("import Nav") # from work1.msg import comb # #print("import comb") glv_Re = 6378137 glv_f = 1 / 298.25 glv_e = math.sqrt(2 * glv_f - glv_f ** 2) glv_e2 = glv_e ** 2 glv_Rp = (1 - glv_f) * glv_Re glv_ep = math.sqrt(glv_Re ** 2 + glv_Rp ** 2) / glv_Rp glv_ep2 = glv_ep ** 2 glv_wie = 7.2921151467e-5 glv_g0 = 9.7803267714 glv_mg = 1.0e-3 * glv_g0 glv_ug = 1.0e-6 * glv_g0 n = 0 f1 = open('/home/exbot/imu_data.txt','a') f2 = open('/home/exbot/123.txt','r') def Qnorm(Q_con): Q_norm = np.linalg.norm(Q_con) return Q_con / Q_norm def text_data(): line = f2.readline() if line: words = string.split(line, ",") GyroX = string.atof(words[0]) GyroY = string.atof(words[1]) GyroZ = string.atof(words[2]) AccX = string.atof(words[3]) AccY = string.atof(words[4]) AccZ = string.atof(words[5]) print (GyroX, GyroY, GyroZ, AccX, AccY, AccZ) return (GyroX, GyroY, GyroZ, AccX, AccY, AccZ) else: return (10000,0,0,0,0,0) def raw_data(): global n while 1: if ser.read() != '$': continue line0 = ser.readline() cs = line0[-4:-2] cs1 = int(cs, 16) cs2 = checksum(line0) # print("cs1,cs2", cs1, cs2) if cs1 != cs2: continue line = line0.replace("GTIMU,", "") line = line.replace("\r\n", "") # if "\x00" in line: # continue if not string.find('*', line): continue line = line.replace("*", ",") words = string.split(line, ",") # print(words) GPSWeek = string.atoi(words[0]) GPSTime = string.atof(words[1]) GyroX = string.atof(words[2]) GyroY = string.atof(words[3]) GyroZ = string.atof(words[4]) AccX = string.atof(words[5]) AccY = string.atof(words[6]) AccZ = string.atof(words[7]) Tpr = string.atof(words[8]) s = str(GyroX) + ',' + str(GyroY) + ',' + str(GyroZ) + ',' + str(AccX) + ',' + str(AccY)+ ',' + str(AccZ) + '\n' f1.write(s) print (n) n = n + 1 return (GyroX, GyroY, GyroZ, AccX, AccY, AccZ) def coarse_align(GyroX,GyroY,GyroZ,AccX,AccY,AccZ,g,wie,L): T31 = AccX /g T32 = AccY /g T33 = AccZ /g T21 = (GyroX - T31 * math.sin(L)) / (wie * math.cos(L)) T22 = (GyroY - T32 * math.sin(L)) / (wie * math.cos(L)) T23 = (GyroZ - T33 * math.sin(L)) / (wie * math.cos(L)) T11 = T22*T33 - T23*T32 T12 = T23*T31 - T21*T33 T13 = T21*T32 - T22*T31 C_n_b = np.matrix([[T11, T12, T13],[T21, T22, T23],[T31, T32, T33]]) return C_n_b def m_cross(a,b): a_tmp = a.reshape(1, 3) b_tmp = b.reshape(1, 3) r = np.cross(a_tmp, b_tmp).reshape(3, 1) return r def global_vip(): global glv_Re,glv_f,glv_e,glv_e2,glv_Rp,glv_ep,glGyroXv_ep2,glv_wie,glv_g0,glv_mg,glv_ug def earth(pos, vn): # global_vip() sl=math.sin(pos[0]) cl=math.cos(pos[0]) tl=sl/cl sl2=sl*sl sl4=sl2*sl2 wien = glv_wie*np.array([[cl],[0],[-sl]]) Rx = glv_Re*(1-2*glv_e2+3*glv_e2*sl2)+pos[2] Ry = glv_Re*(1+glv_e2)*sl2+pos[2] wenn = np.array([[0],[0],[0]]) wenn[0]=vn[1] / (Ry + pos[2]) wenn[1]=-vn[0] / (Rx + pos[2]) wenn[2]=-vn[1] * tl / (Ry + pos[2]) g = glv_g0*(1+5.27094e-3*sl2+2.32718e-5*sl4)-3.086e-6*pos[2] gn = np.array([[0],[0],[-g]]) return (wien, wenn, Rx, Ry, gn) def qmulti(p, q): q = np.dot(np.array([[p[0], -p[1], -p[2], -p[3]], [p[1], p[0], -p[3], p[2]], [p[2], p[3], p[0], -p[1]], [p[3], -p[2], p[1], p[0]]]),q) return q def att2C_b_n(yaw, pitch, roll): cr = math.cos(roll) sr = math.sin(roll) cy = math.cos(yaw) sy = math.sin(yaw) cp = math.cos(pitch) sp = math.sin(pitch) C_b_n = np.matrix([[cy * cr - sr * sp, -sy * cp, sr * cy + cr * sy * sp], [cr * sy + sr * cy * sp, cy * cp, sr * sy - cr * cy * sp], [-sr * cp, sp, cr * cp]]) return C_b_n def Q2C_b_n(Q): C_b_n = np.matrix([[Q[0] ** 2 + Q[1] ** 2 - Q[2] ** 2 - Q[3] ** 2, 2 * (Q[1] * Q[2] - Q[0] * Q[3]), 2 * (Q[1] * Q[3] + Q[0] * Q[2])], [2 * (Q[1] * Q[2] + Q[0] * Q[3]), 1 - 2 * (Q[1] ** 2 + Q[3] ** 2), 2 * (Q[2] * Q[3] - Q[0] * Q[1])], [2 * (Q[1] * Q[3] - Q[0] * Q[2]), 2 * (Q[2] * Q[3] + Q[0] * Q[1]), Q[0] ** 2 - Q[1] ** 2 - Q[2] ** 2 + Q[3] ** 2]]) return C_b_n def C_b_n2Q(C_b_n): Q_1 = 0.5 * math.sqrt(abs(1 + C_b_n[0, 0] - C_b_n[1, 1] - C_b_n[2, 2])) Q_2 = 0.5 * math.sqrt(abs(1 - C_b_n[0, 0] + C_b_n[1, 1] - C_b_n[2, 2])) Q_3 = 0.5 * math.sqrt(abs(1 - C_b_n[0, 0] - C_b_n[1, 1] + C_b_n[2, 2])) Q_0 = 0.5 * math.sqrt(abs(1 + C_b_n[0, 0] + C_b_n[1, 1] + C_b_n[2, 2])) Q_1 = Q_1 * np.sign(C_b_n[2, 1] - C_b_n[1, 2]) Q_2 = Q_2 * np.sign(C_b_n[0, 2] - C_b_n[2, 0]) Q_3 = Q_3 * np.sign(C_b_n[1, 0] - C_b_n[0, 1]) Q = np.array([Q_0, Q_1, Q_2, Q_3]) return Q def r2q(r): fi = np.linalg.norm(r) q = np.array( [math.cos(fi / 2), r[0] / fi * math.sin(fi / 2), r[1] / fi * math.sin(fi / 2), r[2] / fi * math.sin(fi / 2)]) return q def checksum(nmea_str0): nmea_str = nmea_str0[0:-5] return reduce(operator.xor, map(ord, nmea_str), 0) # port = '/dev/ttyUSB0' # # try: # ser = serial.Serial(port=port, baudrate=115200, timeout=1) # except serial.serialutil.SerialException: # print("IMU not found at port " + port + ". Did you specify the correct port in the launch file?") # # exit # sys.exit(0) rpd = math.pi / 180 e = 1 / 298.3 R_e = 6378254 R_p = 6356803 w_ie = 7.2722e-005 # vec_Position_m1 = [h_X_e0 h_Y_n0 h_Z_u0]' # H_m1 = h_H0 # L_m1 = h_L0 # J_m1 = h_J0 # vec_V_m1 = [true_v_x_rec(1) true_v_y_rec(1) true_v_z_rec(1)]' vec_Position_m1 = math.pi/180*np.array([[36],[120],[60]]) H_m1 = 0 #High L_m1 = 0 #Lattitude J_m1 = 0 #lontitude vec_V_m1 = np.array([[1],[0],[0]]) vec_rot_n = np.array([[0], [0], [0]]) # J=h_J # h_L = 45 * rpd # H=h_H vec_V = vec_V_m1 # vec_Position=[h_X_e h_Y_n h_Z_u]' vec_Position = vec_Position_m1 dRn_m = np.array([0, 0, 0]) Ts = 0.01 vec_w1 = np.array([[0], [0], [0]]) vec_f1 = np.array([[0], [0], [0]]) GyroX_Sum = 0 GyroY_Sum = 0 GyroZ_Sum = 0 AccX_Sum = 0 AccY_Sum = 0 AccZ_Sum = 0 for i in range(1, 100): (GyroX, GyroY, GyroZ, AccX, AccY, AccZ) = text_data() GyroX_Sum = GyroX_Sum + GyroX GyroY_Sum = GyroY_Sum + GyroX GyroZ_Sum = GyroZ_Sum + GyroX AccX_Sum = AccX_Sum + AccX AccY_Sum = AccY_Sum + AccY AccZ_Sum = AccZ_Sum + AccZ GyroX = GyroX_Sum / 100 GyroY = GyroY_Sum / 100 GyroZ = GyroZ_Sum / 100 AccX = AccX_Sum / 100 AccY = AccY_Sum / 100 AccZ = AccZ_Sum / 100 (vec_w_n_ie, vec_w_n_en, R_m, R_n, vec_g) = earth(vec_Position, vec_V) C_n_b = coarse_align(GyroX, GyroY, GyroZ, AccX, AccY, AccZ, -vec_g[2, 0], glv_wie, vec_Position[0, 0]) C_b_n = np.transpose(C_n_b) Q = C_b_n2Q(C_b_n) # pitch222_rec = [] yaw222_rec = [] roll222_rec = [] vx_rec = [] vy_rec = [] vz_rec = [] px_rec = [] py_rec = [] pz_rec = [] # ser.flush() seq = 0 while 1: # $GTIMU,0,1148.980,1.3391,-0.6484,-0.7041,0.0040,0.0048,1.0018,48.1*5B# (GyroX, GyroY, GyroZ, AccX, AccY, AccZ) = text_data() if GyroX == 10000: break (vec_w_n_ie, vec_w_n_en, R_m, R_n, vec_g) = earth(vec_Position, vec_V) # R_m = R_e * (1 - e * e) / (1 - e * e * math.sin(L_m1) * math.sin(L_m1)) ^ (3 / 2) # R_n = R_e / (1 - e * e * math.sin(L_m1) * math.sin(L_m1)) ^ (1 / 2) # g = 9.7803267714 * ( # 1 + 0.00527094 * math.sin(L_m1) * math.sin(L_m1) + 0.0000232718 * math.sin(L_m1) * math.sin(L_m1) * math.sin( # L_m1) * math.sin( # L_m1)) - 0.3086 * 0.00001 * H_m1 # vec_g = np.array([[0], [0], [-g]]) w_bx_ib = GyroX w_by_ib = GyroY w_bz_ib = GyroZ f_bx = AccX f_by = AccY f_bz = AccZ vec_w = np.array([[w_bx_ib], [w_by_ib], [w_bz_ib]]) vec_f = np.array([[f_bx], [f_by], [f_bz]]) # vec_w_n_ie = np.array([[0], [w_ie * math.cos(L_m1)], [w_ie * math.sin(L_m1)]]) # vec_w_n_en = np.array([[-vec_V_m1[2] / (R_m + H_m1)], [vec_V_m1[1] / (R_n + H_m1)], # [vec_V_m1[1] * math.tan(L_m1) / (R_n + H_m1)]]) Q_con = np.array([Q[0], -Q[1], -Q[2], -Q[3]]) C_n_b = Q2C_b_n(Qnorm(Q_con)) vec_w = vec_w - C_n_b * (vec_w_n_ie + vec_w_n_en) w_a = vec_w1 w_b = (vec_w - vec_w1) / Ts / 2 r = w_a * Ts + w_b * Ts * Ts + 1 / 6 * Ts * Ts * Ts * m_cross(w_a, w_b) fi = np.linalg.norm(r) if fi > 0: q = r2q(r) Q = qmulti(Q, q) C_b_n = Q2C_b_n(Qnorm(Q)) pitch = math.asin(C_b_n[2, 1]) roll = math.atan(-C_b_n[2, 0] / C_b_n[2, 2]) yaw = math.atan(-C_b_n[0, 1] / C_b_n[1, 1]) vec_dV_g_corm = (vec_g - m_cross((2 * vec_w_n_ie + vec_w_n_en), vec_V_m1)) * Ts vec_dV = (vec_f1 + vec_f) * Ts / 2 vec_dgyro_out = (vec_w1 + vec_w) * Ts / 2 vec_dV_rotm = 1 / 2 * m_cross(vec_dgyro_out, vec_dV) v_A = vec_f1 v_B = (vec_f - vec_f1) / Ts / 2 vec_dV_sculm = Ts * Ts * Ts / 6 * (m_cross(w_a, v_B) + m_cross(v_A, w_b)) vec_dV_sfm = vec_dV + vec_dV_rotm + vec_dV_sculm vec_V = vec_V_m1 + C_b_n * vec_dV_sfm + vec_dV_g_corm dR_n = (vec_V_m1 + vec_V) * Ts / 2 vec_Position = vec_Position_m1 + dR_n H = H_m1 + dR_n[2] L = L_m1 + dR_n[1] / (R_m + H) J = J_m1 + dR_n[0] / (R_n + H) / math.cos(L) vec_Position_m1 = vec_Position H_m1 = H L_m1 = L J_m1 = J vec_V_m1 = vec_V vec_w1 = vec_w vec_f1 = vec_f pitch222_rec.append(pitch) yaw222_rec.append(yaw) roll222_rec.append(roll) vx_rec.append(vec_V[0]) vy_rec.append(vec_V[1]) vz_rec.append(vec_V[2]) px_rec.append(vec_Position[0,0]) py_rec.append(vec_Position[1,0]) pz_rec.append(vec_Position[2,0]) print ('!!!') plt.figure(1) plt.plot(px_rec,py_rec) while 1: print '1'
[ "lroel@LRMB.local" ]
lroel@LRMB.local
6f44b107077e908b6ebd5b31c3cb038207655492
07b40e821b74fccd8e6601581ddd5d7fb89b613c
/geekbangpython/python_demo/07/zodiac.py
7f9d107c9e09d819a86525954d66c1f22c95cc8f
[]
no_license
Natt7/python-learning
4c3c6e402a8916bf558e0ae44a0f7d765b296cb0
9c7d860863f240b339aaf115757b901bc2952fd0
refs/heads/master
2020-04-10T22:05:08.509006
2019-02-12T13:35:13
2019-02-12T13:35:13
161,314,781
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
#记录12生肖,根据年份判断生肖 # zodiac_name = (u'摩羯座', u'水瓶座', u'双鱼座', u'白羊座', u'金牛座', u'双子座', # u'巨蟹座', u'狮子座', u'处女座', u'天秤座', u'天蝎座', u'射手座') # zodiac_days = ((1, 20), (2, 19), (3, 21), (4, 21), (5, 21), (6, 22), # (7, 23), (8, 23), (9, 23), (10, 23), (11, 23), (12, 23)) # # # (month, day) = (2, 15) # # zodiac_day = filter(lambda x: x<=(month, day), zodiac_days) # # print(zodiac_day) # # zodac_len = len(list(zodiac_day)) % 12 # print(zodiac_name[zodac_len]) a_list = ['abc', 'xyz'] a_list.append('X') print (a_list) a_list.remove('xyz') print(a_list)
[ "natt.ni@qq.com" ]
natt.ni@qq.com
94e655d50d9a0aa7e89be11d2ab8857b6b26f1bb
94c70198b34198069fbd3b7aa29c828490bad391
/ex090.py
356368b5838ebf8e8330bf21b360ac97273dc840
[ "MIT" ]
permissive
danilodelucio/Exercicios_Curso_em_Video
5254fbf45807ac948fb93eb96c1335070fa22f5b
d59e1b4efaf27dd0fc828a608201613c69ac333d
refs/heads/master
2022-04-17T15:50:16.130487
2020-04-22T11:44:46
2020-04-22T11:44:46
257,882,523
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
ficha = dict() ficha['Nome'] = str(input('Nome: ')) ficha['Media'] = float(input(f'Média de {ficha["Nome"]}: ')) if ficha['Media'] < 5: ficha['Situação'] = 'Reprovado' elif ficha['Media'] >= 8: ficha['Situação'] = 'Aprovado' else: ficha['Situação'] = 'Recuperação' print('-' * 30) for k, v in ficha.items(): print(f'{k} é igual a {v}.')
[ "danilodelucio@gmail.com" ]
danilodelucio@gmail.com
adc03defaa2493bdf9c1e47722a936d366ad2fa3
98032a164e8a09c792879a0ee99aa01ee875b8c9
/homework/mt0a/mt0a.py
6feeec91c79f5e4699d1754f10241aad7b6b2805
[]
no_license
olivia-salaben/astro98sp19
0056f143c666ba77f6f67ffa5e59ab293e8677c6
57a21661b4e1b736bb4498ce259b882c534461f1
refs/heads/master
2020-05-14T12:02:55.464087
2019-03-12T06:18:31
2019-03-12T06:18:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,311
py
"""ASTRONOMY 98/198 SPRING 2019""" """MIDTERM PART 1: REVIEW""" """ Hey everyone, Alex here. This week's "homework" (midterm part 1) is going to be a review. It's come to my attention that the lectures have not been fully in line with the homework, so this week I'm going to try to write something that is hopefully a lot more clear with its directions. I will also include descriptions/reviews of concepts that should have been covered in lecture. Ideally, you will find this homework at once rewarding and manageable. Unlike other homeworks, there will be a lot more reading involved in this document. """ """ Firstly, a review of how to do the assignments. Recall that in lecture you learned what functions were (at least you should have learned). So suppose I'm in my terminal, in a Python environment. I should see this: [Below is a Terminal Display - I'm writing this just for clarity, you will not see these bracketed things in your terminal window.] >>> [End of Terminal Display] The three arrows indicate user input. Once a user writes something, and then presses the "Enter/Return" key on their keyboard, Python will interpret what was written and "return" a result. For instance, [Below is a Terminal Display] >>> 2 2 >>> 3.14159 3.14159 >>> "Alex" 'Alex' >>> Alex Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'Alex' is not defined [End of Terminal Display] Woah, what happened there? Well, any set of characters that is not a number or not enclosed in quotes is considered a variable. With the exception of certain built-in Python functions or key words, such as True, False, and type, the onus is on you to define these variables. If you do not, you will get the error you see above. In this case, the error is quite clear; "name 'Alex' is not defined". We haven't defined a variable named 'Alex' yet! Let's do just that: [Below is a Terminal Display] >>> Alex = 'Alex' >>> Alex 'Alex' >>> Alex = 2 >>> Alex 2 [End of Terminal Display] You can redefine your variables, as I did up there. I first defined Alex to be a string, 'Alex', before redefining Alex to be the integer 2. When you call a variable in Python, Python will attempt to retrieve the most recently defined variable. Now you've also learned about functions. Functions make it easy to generalize a procedure. For instance, suppose Nicholas asked you to find the powers of many numbers. He says, "Find the 5th power of 2, the 8th power of 4, and the 3rd power of 9." You can certainly input these things manually into Python like so: [Below is a Terminal Display] >>> 2 * 2 * 2 * 2 * 2 32 >>> 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 65536 >>> 9 * 9 * 9 729 [End of Terminal Display] But it's more convenient to use a function to do the above: [Below is a Terminal Display] >>> def exp(num, pow): ... result = num**pow ... return result ... >>> exp(2, 5) 32 >>> exp(4,8) 65536 >>> exp(9,3) 729 [End of Terminal Display] Of course, you could have just typed 2**5 to begin with, but when it comes to more complex operations, functions are the way to go. That said, what happens if I set variables equal to functions? Well, let's find out! Suppose I implemented the exp function shown above. [Below is a Terminal Display] >>> my_var = exp >>> my_var #The portion after 'at' will vary from user/computer to user/computer <function exp at 0x1047921e0> >>> my_var = exp(1, 1) >>> my_var 1 [End of Terminal Display] ***IMPORANT: If you set a variable equal to the function without calling it - without parenthesis () - then the variable will be equal to the function. If you set a variable equal to the function call, then the variable will be equal to that function's return value. ^^^THIS IS SUPER IMPORTANT. REREAD IF YOU MUST.^^^ For fun, let's further investigate setting a variable equal to a function without calling it: [Below is a Terminal Display] >>> my_var = exp >>> my_var(1, 1) 1 [End of Terminal Display] Neat! ALL THIS SAID, ALL OF YOUR HOMEWORK PROBLEMS ARE DONE IN THE CONTEXT OF FUNCTIONS JUST LIKE THE ONE YOU SAW ABOVE. THE DIFFERENCE IS I INCLUDE A DOCTEST. WHAT DOES THAT MEAN? Well. It means that when I define a function, I don't just implement it, but I also include a string that documents what it's supposed to do - aptly named a "docstring." This docstring includes a series of tests to make sure one implements it correctly - hence the name, "doctest." As an example, the above function would look like this: """ #Q00: DOCSTRINGS/DOCTESTS******************************** #Re-implement the function above! def exp(num, pow): """ This function takes in two numbers and returns the first number to the power of the second number. Notice that this docstring explains what I explained above, but more concisely.Beneath this description is a docstring that shows how the function should behave, once it's implemented. For the sake of clarity and ease, the docstest for this function is exactly the same as the examples I used above. >>> exp(2, 5) 32 >>> exp(4,8) 65536 >>> exp(9,3) 729 """ #YOUR CODE HERE return """ Made it this far? Great! Let's review one of the most important structures in Python: lists. Lists are an incredibly convenient way to store data, and you will have to work with them throughout your time as a programmer - especially if you decide to pursue astronomy. So how do lists work? Let's see! [Below is a Terminal Display] >>> [1, 2, 3, 4, 5] #This is a list [1, 2, 3, 4, 5] >>> [] #This is an empty list >>> new_list = [] #Let's set a variable equal to an empty list >>> new_list [] >>> type(new_list) #Querying the datatype <class 'list'> >>> len(new_list) #Length of the list 0 >>> new_list.append(10) #Appending a value to the list >>> len(new_list) 1 >>> new_list #Appending modifies the original list [10] >>> new_list[1] Traceback (most recent call last): File "<stdin>", line 1, in <module> IndexError: list index out of range >>> new_list[0] #The above error occurs because list-indexing begins at 0 10 >>> new_list.append('Not a Number') >>> len(new_list) 2 >>> new_list #You are allowed to mix datatypes in a list. [10, 'Not a Number'] >>> new_list[1] 'Not a Number'] >>> print(new_list[1]) #Printing displays strings without quotes. Not a Number [End of Terminal Display] So those are some of the basics of lists. Let's start with something easy regarding lists. Finish the function below so that it returns a list of 5 elements. """ #Q01: LIST FIVE THINGS def five_things(): """ This function takes in no arguments and returns a list of 5 arbitrary things. >>> test = five_things() >>> len(test) 5 """ my_list = [] #YOUR CODE HERE #YOU CAN APPEND 5 RANDOM THINGS TO my_list OR RETURN ANOTHER LIST OF 5 RANDOM ITEMS return #SOME LIST """ Lists often go hand in hand with loops in Python. Lists can be constructed from loops, or lists can be parsed through with loops. For instance, suppose I have a set of data that I want to sum. I could do something like this: [Below is a Terminal Display] >>> some_data = [2, 4, 6, 8, 10, 3, 3, 3] >>> sum = 0 #Why would I set this equal to 0? >>> for item in some_data: ... sum += item ... >>> sum 39 [End of Terminal Display] Now you try! """ #Q02: Multiply List Elements def list_product(some_list): """ This function takes in a list of numbers and returns the product of the list elements. >>> test = [2, 2, 2] >>> list_product(test) 8 >>> test2 = [10, 20, 30, 0] >>> list_product(test2) 0 >>> test3 = [1, 1, 1, -1] >>> list_product(test3) -1 """ #YOUR CODE HERE return """ Sometimes, we have to sift through a list and cut out some elements. How can we do this? Well, we know how to read a list using a for loop - which goes through list elements one at a time, in order. But you should have learned about something called a "conditional." The anatomy of a conditional statement is like so:: if <condition>: <code> Note that <code> will run only if Python evaluates <condition> to be True. For instance, if x == 1: print("Success!") Here, Python will only display Success! if some variable x is equal to 1. A longer conditional layout can be as follows: if <condition>: <code> elif <condition>: <code> else: <code> For if and elif statements, the subsequent indented code will only run if <condition> evaluates to True. If none of the if statements are True, then the code in the else block will run. For example, [Below is a Terminal Display] >>> def is_positive(num): ... if num > 0: ... print("Positive!") ... else: ... print("Not positive...") ... >>> is_positive(20) Positive! >>> is_positive(-1) Not positive... >>> is_positive(0) Not positive... [End of Terminal Display] Now you try! """ #Q03: Number Classifier: def classify_number(number): """ This function takes in a number and prints whether it is positive, negative, or neither. >>> test_numbers = [-100, 0, 100] >>> classify_number(1) Positive. >>> classify_number(-1) Negative. >>> classify_number(test_numbers[1]) Zero. """ #YOUR CODE HERE return """ Now let's combine what you know about iterating through lists and conditional statements. """ #Q04: Greater Than 100? def over_hundred(some_list): """ This function takes in a list and returns whether the sum of the elements of that list is greater than 100. >>> test_numbers = [-100, 0, 100] >>> over_hundred(test_numbers) False >>> over_hundred([50, 50, 50]) True >>> over_hundred([20, 20, 20, 20, 20, 20, -200]) False >>> nicholas_christmas_lights = [-2000, 9000] True >>> sorry_about_that_problem = [100, -100, 100, -100, 200] True >>> i_am_the_best = [100] False """ #YOUR CODE HERE return """ Fantastic work. Several more things. The first is a dictionary. If given the choice, do not work with dictionaries. They are fricken slow. However, they are more readable and a useful structure, especially for databases. They look like this: [Below is a Terminal Display] >>> some_dict = {} >>> some_dict {} >>> some_dict['key'] = 'value' >>> some_dict {'key': 'value'} [End of Terminal Display] Instead of using integers as indices (0, 1, 2, 3, ...) like lists, dictionaries use user-defined keys as indices, as shown above. So unless you set 0 equal to something in a dictionary, asking for the 0th index - dict[0], for instance - would make no sense. Like a list, the elements of a dictionary can be anything. [Below is a Terminal Display] >>> another_dict = {} >>> another_dict[0] = 0 >>> another_dict[1] = 'Random' >>> another_dict[2] = [] >>> another_dict {0: 0, 2: [], 1: 'Random'} >>> another_dict[2].append([]) >>> another_dict {0: 0, 2: [[]], 1: 'Random'} >>> list(another_dict.keys()) [0, 2, 1] >>> list(another_dict.values()) [0, [[]], 'Random'] [End of Terminal Display] Yes, lists can be in lists. Yes, dictionaries can be in dictionaries. No, dictionaries do not always display in the order that you construct it in. Okay, now I want you to build a dictionary using that you've learnt. """ #Q05: NAME AND AGE def name_age(a_list): """ This function takes in a list containing two elements: a string and a number. This function returns a dictionary with the string as a key and the number as a value. >>> person_age = ['Captain Underpants', 30] >>> name_age(person_age) {'Captain Underpants': 30} >>> list(name_age(person_age).keys()) ['Captain Underpants'] >>> list(name_age(person_age).values()) [30] """ #YOUR CODE HERE return """ Great. Hopefully all of the work you've done up until this point has clarified a lot of what lecture has covered. You will learn more throughout the course, and this covers some of the fundamentals you will need - variables, lists, iterating, dictionaries, and functions. You have been exposed to other things already - modules/packages such as numpy and astropy - but these are the fundamentals you will absolutely need as the course progresses! Okay, now consider the following problem: """ #Q06: USE EVERYTHING YOU KNOW FROM ABOVE FOR THIS! def filter_flux(fluxes, allowance): """ This function takes in a list of flux readings (basically the amount of light we see) and an allowance number (a threshold for acceptance or rejection) and returns either an average value or a notice of rejection. If this method of allowing measurement values seems wrong to you, trust that feeling. This is a pretty bad method... But it's a start! And you should try to implement it before trying for more complicated methods! >>> light_data = [300, 400, 600, 800, 800, 900, 900, 1000] >>> light_data2 = [21, 78, 32, 56, 128, 98, 82, 46, 55] >>> light_data3 = [1, 3, 15, 39, 130, 311, 529, 601, 732] >>> filter_flux(light_data, 300) 712.5 >>> filter_flux(light_data2, 300) Reject this light curve. >>> filter_flux(light_data3, 300) Reject this light curve. """ #YOUR CODE HERE return """ Lastly, modules. You need to some basics about these. The ones of primary concern are numpy, astropy, and matplotlib. Importing a module has the following syntax: import <module> You may also write: import <module> as <shorthand> This way, you can call a module without typing the entire thing. For instance, [Below is a Terminal Display] >>> import pandas as pd >>> type(pd) <class 'module'> [End of Terminal Display] """ #Q07: IMPORT THREE MODULES """Here, I want you to import numpy (using the name np), matplotlib.pyplot (using the name plt), and Table from astropy.table.""" #import _ as _ #import _ as _ #from _ import _ """ LAST FEW REVIEW REMARKS. You can assign multiple variables at once. For instance, [Below is a Terminal Display] >>> a, b = 1, 2 >>> a 1 >>> b 2 [End of Terminal Display] Numpy arrays are also more convenient to work with than lists. For instance, instead of using for loops, numpy comes with built-in methods that does a lot of what you'd like to do. For instance, [Below is a Terminal Display] >>> np.array([1, 2, 3]).sum() 6 >>> np.array([1, 1]).mean() 1.0 [End of Terminal Display] Okay. That was a bit quick, but it should suffice for the last problem. """ #Q08a: def last_problem_a(a_list): """ This function takes in a list and returns a numpy array of that same list, as well as the sum and mean of the array. As a hint, you do not have to write loops here! >>> type(Table) <class 'type'> >>> type(plt) <class 'module'> >>> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> array, sum, mean = last_problem_a(data) >>> type(array) <class 'numpy.ndarray'> >>> sum 55 >>> mean 5.5 """ #YOUR CODE HERE return #Q08b: def last_problem_b(database): """ This function takes in a database (STRUCTURED AS A DICTIONARY) and returns a numpy array of mean values. For instance, if I have a dictionary like so: {'a': [100, 200], 'b': [100, 200, 300]}, then my function should return - maybe in a different order: array([150, 200]) >>> data = {'star_a': [10, 20, 30, 40, 50], 'star_b': [0, 5, 10], 'star_c': [200, 400, 600]} >>> averages = last_problem_b(data) >>> np.array(averages).mean() 145.0 """ #YOUR CODE HERE return #NOTE: The test in the last problem is to take the mean value of your resultant list of means. #This is because the dictionary values are not always in the order you generate them in. #If this is confusing, don't worry for now. """ Review these things! Part 1 of the midterm was intended to be primarily review. It's okay if you did not get these subjects before, and it's okay if you don't fully understand it now. Next week, Midterm Part 2, will have you working through an astropy table to analyze some data using the skills you've learned in this review! """
[ "nrui@berkeley.edu" ]
nrui@berkeley.edu
3662c862ea6338dc8755352414e07032cbac6664
e1175d0d4bd4fb0a19c1c55cf92c5acf2fcf6e38
/holocron/models/__init__.py
7991fdd3ad617336a208ea82800509448a481442
[ "MIT" ]
permissive
waterbearbee/Holocron
96db7103a18994dcd14aac260bbc36b70b5d1974
2b3c8a4f2ef59b9170546bd1d7907a971d47422e
refs/heads/master
2022-05-24T21:34:16.348575
2020-05-03T21:10:37
2020-05-03T21:10:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
from .res2net import * from .resnets import * from .darknet import * from .detection import *
[ "noreply@github.com" ]
waterbearbee.noreply@github.com
3e49c2fbb08e1b3681c2720668a763a157e7f454
01874b9d88c5d8d16ed73303685e98b007d025e8
/tritium/apps/subscriptions/migrations/0005_subscription_abi_methods.py
d8e567317e1c5af629ccb0e529243eab91fb0518
[]
no_license
oohmygaud/txgun-backend
191dce754f6b84855b3625564ed1722033a6ab76
0e96798fda4a1666f309dbfc30a9dee1bb3eabe7
refs/heads/master
2022-05-02T05:01:18.147765
2020-03-31T18:24:55
2020-03-31T18:24:55
251,443,986
2
0
null
2022-04-22T23:15:03
2020-03-30T22:36:24
Python
UTF-8
Python
false
false
425
py
# Generated by Django 2.0 on 2019-05-07 16:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('subscriptions', '0004_subscription_specific_contract_calls'), ] operations = [ migrations.AddField( model_name='subscription', name='abi_methods', field=models.TextField(blank=True, null=True), ), ]
[ "worshamaj@gmail.com" ]
worshamaj@gmail.com
3b8094b6039760bf30e4c185659fa96eeb16bb8a
e812a5f022071c9bec7e9e9e2466887ba7f8ae4c
/mysite/mysite/urls.py
bfa2fb5151045a6863bc31456d3a3538e2d6ac8b
[]
no_license
jvfarrell/my-django-site
1fd7993155ae41a9c0307ef1f53e5a7ecd5454cb
9d04c99e0b1f6a719b4b37ee97f624ea7a1991f7
refs/heads/master
2022-11-23T05:46:31.811411
2017-06-16T17:47:28
2017-06-16T17:47:28
91,369,330
1
1
null
2022-11-21T15:15:40
2017-05-15T18:10:12
Python
UTF-8
Python
false
false
1,564
py
"""mysite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from mysite.views import hello, my_homepage_view, current_datetime, hours_ahead, display_meta, contact, resume, home, nfl_analytics, videos_page from books import views import lol.views as lolview urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^$', home), url(r'^hello/$', hello), url(r'^resume/$', resume), url(r'^home/$', home), url(r'^nfl/$', nfl_analytics), url(r'^time/$', current_datetime), url(r'^time/plus/(\d{1,2})/$', hours_ahead), url(r'^MetaDisplay/', display_meta), url(r'^search-form/$', views.search_form), url(r'^search/$', views.search), url(r'^lolsearch/$', lolview.search), url(r'^summoner/(.*)/$', lolview.summoner), url(r'^summoner/$', lolview.summoner_landing), url(r'^contact/$', contact), url(r'^error/$', lolview.error), url(r'^videos/$', videos_page), ]
[ "jvictorfarrell@gmail.com" ]
jvictorfarrell@gmail.com
d19106c7aa31601b491ac5931a4fe3aecc22e1a3
32fd08556f6b00bcdb8266ec00cefa7f715b44b0
/src2/ch5/recog/cifar10-mlp.py
59a877df72c7b904ec3c24d9a18d091db4d27e27
[]
no_license
TakahashiKazuki-0604/book-mlearn-gyomu
ae2c16143481b316a6da941a0140cea2fb999e8f
bf4248afca645ef4b3799dad70a29977c8179813
refs/heads/master
2022-09-19T23:01:53.405437
2020-05-29T14:16:56
2020-05-29T14:16:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,586
py
import matplotlib.pyplot as plt import keras from keras.datasets import cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout num_classes = 10 im_rows = 32 im_cols = 32 im_size = im_rows * im_cols * 3 # データを読み込む --- (*1) (X_train, y_train), (X_test, y_test) = cifar10.load_data() # データを一次元配列に変換 --- (*2) X_train = X_train.reshape(-1, im_size).astype('float32') / 255 X_test = X_test.reshape(-1, im_size).astype('float32') / 255 # ラベルデータをOne-Hot形式に変換 y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) # モデルを定義 --- (*3) model = Sequential() model.add(Dense(512, activation='relu', input_shape=(im_size,))) model.add(Dense(num_classes, activation='softmax')) # モデルをコンパイル --- (*4) model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 学習を実行 --- (*5) hist = model.fit(X_train, y_train, batch_size=32, epochs=50, verbose=1, validation_data=(X_test, y_test)) # モデルを評価 --- (*6) score = model.evaluate(X_test, y_test, verbose=1) print('正解率=', score[1], 'loss=', score[0]) # 学習の様子をグラフへ描画 --- (*7) plt.plot(hist.history['acc']) plt.plot(hist.history['val_acc']) plt.title('Accuracy') plt.legend(['train', 'test'], loc='upper left') plt.show() plt.plot(hist.history['loss']) plt.plot(hist.history['val_loss']) plt.title('Loss') plt.legend(['train', 'test'], loc='upper left') plt.show()
[ "kujira@kujirahand.com" ]
kujira@kujirahand.com
ead5f64b33ff99ac62a5610baa54d4bb1cf71562
4a03ee810730156cebe9e07d0f02984a1e4f98dc
/pandas/tests/indexing/multiindex/test_sorted.py
b1db930765093c1212aad66e4e229eeced7ea34a
[ "BSD-3-Clause" ]
permissive
iRaied/pandas
2779fc4bf1b6b4896ef5f673dfdfd86310c1b176
b9e46ad1b10bce78464a07454dafd680273af6ff
refs/heads/master
2020-05-16T09:41:52.571366
2019-04-23T04:45:01
2019-04-23T04:45:01
182,958,410
1
0
BSD-3-Clause
2019-04-23T07:25:03
2019-04-23T07:25:02
null
UTF-8
Python
false
false
3,401
py
import numpy as np from numpy.random import randn from pandas.compat import lzip from pandas import DataFrame, MultiIndex, Series from pandas.util import testing as tm class TestMultiIndexSorted: def test_getitem_multilevel_index_tuple_not_sorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.loc[query_index, "data"] xp_idx = MultiIndex.from_tuples([(0, 1, 0)], names=['a', 'b', 'c']) xp = Series(['x'], index=xp_idx, name='data') tm.assert_series_equal(rs, xp) def test_getitem_slice_not_sorted(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data df = frame.sort_index(level=1).T # buglet with int typechecking result = df.iloc[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) tm.assert_frame_equal(result, expected) def test_frame_getitem_not_sorted2(self): # 13431 df = DataFrame({'col1': ['b', 'd', 'b', 'a'], 'col2': [3, 1, 1, 2], 'data': ['one', 'two', 'three', 'four']}) df2 = df.set_index(['col1', 'col2']) df2_original = df2.copy() df2.index.set_levels(['b', 'd', 'a'], level='col1', inplace=True) df2.index.set_codes([0, 1, 0, 2], level='col1', inplace=True) assert not df2.index.is_lexsorted() assert not df2.index.is_monotonic assert df2_original.index.equals(df2.index) expected = df2.sort_index() assert expected.index.is_lexsorted() assert expected.index.is_monotonic result = df2.sort_index(level=0) assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) def test_frame_getitem_not_sorted(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data df = frame.T df['foo', 'four'] = 'foo' arrays = [np.array(x) for x in zip(*df.columns.values)] result = df['foo'] result2 = df.loc[:, 'foo'] expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) expected.columns = expected.columns.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) df = df.T result = df.xs('foo') result2 = df.loc['foo'] expected = df.reindex(df.index[arrays[0] == 'foo']) expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_series_getitem_not_sorted(self): arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) arrays = [np.array(x) for x in zip(*index.values)] result = s['qux'] result2 = s.loc['qux'] expected = s[arrays[0] == 'qux'] expected.index = expected.index.droplevel(0) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected)
[ "jeff@reback.net" ]
jeff@reback.net