blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
88765ffc6d2e5ee1831ec76273004b16ccb63d99
4890476a3327f961088f84fc55070a9fdfe9bf28
/Globals/InterpolatorConfig.py
8fe764b73b9a908bd8f58fb3c04980043e9acf3e
[]
no_license
HeylonNHP/RIFE-Colab
57e96dca1bbf595df617537bdf1dd6c26b2e1459
4cc5e2a7f6592b638e7bf1285b5b31297b008c8f
refs/heads/main
2023-04-28T08:56:15.895203
2022-12-01T12:11:47
2022-12-01T12:11:47
324,138,048
41
8
null
null
null
null
UTF-8
Python
false
false
3,370
py
class InterpolatorConfig: _interpolators = ["RIFE"] _interpolator = "RIFE" _interpolationFactor = 2 _loopable = False _mode = 1 _clearPngs = True _nonLocalPngs = True _scenechangeSensitivity = 0.20 _mpdecimateSensitivity = "64*12,64*8,0.33" _enableMpdecimate = True _useAccurateFPS = True _accountForDuplicateFrames = False _UhdScaleFactor: float = 0.5 _mode3TargetFPSEnabled: bool = False _mode3TargetFPSValue: float = 60 _backupThreadStartLimit = -1 _exitOnBackupThreadLimit = False def setInterpolationFactor(self, interpolationFactor: int): self._interpolationFactor = interpolationFactor def getInterpolationFactor(self): return self._interpolationFactor def setLoopable(self, loopable: bool): self._loopable = loopable def getLoopable(self): return self._loopable def setMode(self, mode: int): modes = [1, 3, 4] assert mode in modes self._mode = mode def getMode(self): return self._mode def setClearPngs(self, clearPngs: bool): self._clearPngs = clearPngs def getClearPngs(self): return self._clearPngs def setNonlocalPngs(self, nonlocalpngs: bool): self._nonLocalPngs = nonlocalpngs def getNonlocalPngs(self): return self._nonLocalPngs def setScenechangeSensitivity(self, sensitivity: float): assert 1 >= sensitivity >= 0 self._scenechangeSensitivity = sensitivity def getScenechangeSensitivity(self): return self._scenechangeSensitivity def enableMpdecimate(self, enable): self._enableMpdecimate = enable def getMpdecimatedEnabled(self): return self._enableMpdecimate def setMpdecimateSensitivity(self, sensitivity: str): self._mpdecimateSensitivity = sensitivity def getMpdecimateSensitivity(self): return self._mpdecimateSensitivity def setUseAccurateFPS(self, enable: bool): self._useAccurateFPS = enable def getUseAccurateFPS(self): return self._useAccurateFPS def setAccountForDuplicateFrames(self, enable: bool): self._accountForDuplicateFrames = enable def getAccountForDuplicateFrames(self): return self._accountForDuplicateFrames def setUhdScale(self, scaleFactor: float): self._UhdScaleFactor = scaleFactor def getUhdScale(self): return self._UhdScaleFactor def setMode3TargetFPS(self, enable: bool, value: float): self._mode3TargetFPSEnabled = enable self._mode3TargetFPSValue = value def getMode3TargetFPSEnabled(self): return self._mode3TargetFPSEnabled def getMode3TargetFPSValue(self): return self._mode3TargetFPSValue def setInterpolator(self, interpolator: str): self._interpolator = interpolator def getInterpolator(self): return self._interpolator def setBackupThreadStartLimit(self, limit: int): self._backupThreadStartLimit = limit def getBackupThreadStartLimit(self): return self._backupThreadStartLimit def setExitOnBackupThreadLimit(self, exit: bool): self._exitOnBackupThreadLimit = exit if not exit: self.setBackupThreadStartLimit(-1) def getExitOnBackupThreadLimit(self): return self._exitOnBackupThreadLimit
[ "heylon96@hotmail.com" ]
heylon96@hotmail.com
bd37cf16ee9e512ade1ab66de0a4fc96f3ee351e
0ba3a5afc0530ed33a40ccd91c16c61759ae6eaa
/src/manage.py
9fa5e680576cc736659086628a4c8ef6090e66d6
[]
no_license
dusano/skram-si
c7e15e65548b2a65701eb25693be997c5cded112
8efc8723c16219913137de8ac59ff673880b4a64
refs/heads/master
2016-09-05T17:02:01.690806
2009-10-20T14:02:20
2009-10-20T14:02:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
643
py
#!/usr/bin/env python from appengine_django import InstallAppengineHelperForDjango from django.core.management import execute_manager InstallAppengineHelperForDjango() try: import settings # Assumed to be in the same directory. except ImportError: import sys sys.stderr.write("Error: Can't find the file 'settings.py' in the directory containing %r. It appears you've customized things.\nYou'll have to run django-admin.py, passing it your settings module.\n(If the file settings.py does indeed exist, it's causing an ImportError somehow.)\n" % __file__) sys.exit(1) if __name__ == "__main__": execute_manager(settings)
[ "dusano@10.2.10.129" ]
dusano@10.2.10.129
fc66ce7eef4204e29af5b1ed9877349c975bd6e5
714ed39eacf82ea38f88049004d5f4a33b36b2e6
/app01/admin.py
a633ec7062e47583ae9e0bc605857feed3c99012
[]
no_license
000ze/blogplus
084321edcdafef6699ecc2b5b66022133400e94c
4fafedcdf0d4051a31672bfaf57a7975ca58290b
refs/heads/master
2020-07-06T12:54:49.103609
2019-08-18T15:45:11
2019-08-18T15:45:11
203,024,287
0
0
null
null
null
null
UTF-8
Python
false
false
237
py
from django.contrib import admin # Register your models here. from app01 import models admin.site.register(models.UserInfo) admin.site.register(models.Article) admin.site.register(models.Blog) admin.site.register(models.ArticleDetail)
[ "1413511414@qq.com" ]
1413511414@qq.com
06fa170ccd418451d8d7b406afe2929d0fbb78fc
cb16a721c2c1323fbaa76e97c9e29c5b45cf6cd9
/SCRIPTS/spherical_grating_calculator1.py
aa485989b1f54baf6ae62f004c3f03563ddcb1be
[ "MIT" ]
permissive
JoelBNU/ShadowOui-Tutorial
c11a1907dfded9233910aaf0c7993daf492e70dd
4629d896c1f02f811d5a1b491f6fca1a7c67a70e
refs/heads/master
2022-04-19T07:39:16.338099
2020-04-16T19:50:57
2020-04-16T19:50:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,028
py
import numpy as np # # # r = 30.0 theta_deg = 88.2 d0 = 1.0/800 E0 = 1000.0 m = -1 # # inputs # theta = theta_deg * np.pi / 180 print("------------- INPUTS ----------------------") print("theta = %f deg = %f rad"%(theta_deg,theta)) print("1/d0 = %f lines/mm"%(1/d0)) print("r = %f m"%(r)) print("order = %d m"%(m)) print("photon energy = %f eV"%(E0)) # # calculations # lambda_A = 12398.0/E0 lambda_mm = lambda_A * 1e-7 beta = np.arcsin(m*lambda_mm/2/d0/np.cos(theta)) - theta alpha = 2*theta + beta R = r / np.cos(alpha) rp = R * np.cos(beta) # # results # print("------------- OUTPUTS ----------------------") print("Lambda = %f A = %g mm "%(lambda_A,lambda_mm)) print("alpha=%f deg, beta=%f deg"%(alpha*180/np.pi,beta*180/np.pi)) print("R=%f, r=%f, r'=%f"%(R,r,rp)) deltaLambda = d0/m*35e-3/(rp*1e3)*np.cos(beta) print("estimated Delta Lambda = %f A"%(deltaLambda*1e7)) print("Resolving power = %f "%(lambda_mm/deltaLambda)) print("estimated focal size FWHM = %f um"%(2.35*15*np.cos(alpha)/np.cos(beta)*rp/r))
[ "srio@esrf.eu" ]
srio@esrf.eu
3672d80c0bc812c42ce0a7dbdfdb3012e013ef46
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/nndrift.py
cad8168819fddaa2056bd7c0c319f562f787d4d2
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
1,213
py
ii = [('EmerRN.py', 1), ('CookGHP3.py', 1), ('LyelCPG2.py', 23), ('CoolWHM2.py', 2), ('GodwWSL2.py', 1), ('RennJIT.py', 1), ('AubePRP2.py', 2), ('MarrFDI3.py', 1), ('BailJD2.py', 1), ('ChalTPW2.py', 3), ('FitzRNS3.py', 6), ('ClarGE2.py', 4), ('CarlTFR.py', 6), ('LyttELD.py', 1), ('AinsWRR3.py', 1), ('KiddJAE.py', 1), ('BailJD1.py', 3), ('CoolWHM.py', 1), ('CrokTPS.py', 2), ('ClarGE.py', 1), ('BuckWGM.py', 32), ('LyelCPG.py', 61), ('GilmCRS.py', 1), ('CrocDNL.py', 3), ('MedwTAI.py', 4), ('FerrSDO2.py', 1), ('NewmJLP.py', 5), ('GodwWLN.py', 1), ('KirbWPW2.py', 1), ('SoutRD2.py', 1), ('BackGNE.py', 132), ('LeakWTI.py', 1), ('MedwTAI2.py', 1), ('BuckWGM2.py', 3), ('MereHHB3.py', 1), ('HowiWRL2.py', 5), ('BailJD3.py', 1), ('WilkJMC.py', 6), ('MartHRW.py', 1), ('FitzRNS4.py', 25), ('CoolWHM3.py', 17), ('FitzRNS.py', 16), ('LyttELD3.py', 1), ('FerrSDO.py', 1), ('RoscTTI.py', 1), ('StorJCC.py', 1), ('LewiMJW.py', 2), ('BellCHM.py', 1), ('AinsWRR2.py', 1), ('ClarGE3.py', 1), ('RogeSIP.py', 2), ('MartHRW2.py', 1), ('FitzRNS2.py', 40), ('DwigTHH.py', 1), ('NortSTC.py', 3), ('BowrJMM2.py', 1), ('LyelCPG3.py', 33), ('BeckWRE.py', 1), ('TaylIF.py', 3), ('ChalTPW.py', 1), ('KirbWPW.py', 1), ('HowiWRL.py', 1)]
[ "varunwachaspati@gmail.com" ]
varunwachaspati@gmail.com
f8d1df13a32b152ef6e5c1e221284e1850dc7044
5deac722170f2935eded633e817e82c7560df23e
/env/bin/pip3.5
49101450dc50d9646e32e7f41846c9487837d95f
[]
no_license
ajalascuna/midtermlascuna
dd3f260d98ba0d2d10ab6aa6e1f986438f660d4f
73aee29b62222b7caa66d9595148b162d0203715
refs/heads/master
2020-04-19T04:13:43.215282
2019-01-09T19:18:31
2019-01-09T19:18:31
167,956,952
0
0
null
null
null
null
UTF-8
Python
false
false
244
5
#!/home/ajalascuna/midtermquiz/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "ajalascuna@addu.edu.ph" ]
ajalascuna@addu.edu.ph
c30abdde76f9a5210d02716031d5b3093b7290f9
87cfca0f1062fb14633d00c5683a45e9d6e6b4ff
/05.Function.py
29cc1bf35380872fdc062aded5262bb82b721556
[ "Apache-2.0" ]
permissive
r569594043/PythonBeginner
2d00604b7165c5d4cad9f5ce27831acfaf09c3f1
69b38e3bc99de50530353809c3d501db000314ae
refs/heads/master
2020-09-12T14:34:48.322057
2014-01-15T05:58:29
2014-01-15T05:58:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,343
py
#-*- coding: utf-8 -*- ''' Functions See Also: http://docs.python.org/3/tutorial/controlflow.html#defining-functions http://docs.python.org/3/tutorial/controlflow.html#more-on-defining-functions ''' # Error #def func(): def func(): pass def func(num, num1=1, num2=2): print(num, num1, num2) func(1, 3, 4) # 1 3 4 func(5) # 5 1 2 # Error #func() def func(**args): for k, v in args.items(): print('key: ' + k, 'value: ' + v) for k in args.keys(): print('key: ' + k, 'value: ' + args[k]) func(name = "rxb", age = "24") func(**{"name": "rxb", "age": "24"}) def func(name, age): print('name: ' + name, 'age: ' + age) people = {"name": "rxb", "age": "24"} func(**people) # name: rxb age: 24 def func(num, *args): print(num) for a in args: print(a) func(1, 2, 3, 4, 5, 6) def func(num, num1): print(num, num1) func(num1 = 2, num = 1) # 1 2 d = { "num": 3, "num1": 4 } func(**d) # 3 4 t = (4, 5) func(*t) # 4 5 def func(): ''' The documentation of the func ''' print("func") print(func.__doc__) l = lambda num1, num2: num1 + num2 print(l(2, 3)) # 5 def func2(func, num1, num2): return func(num1, num2) def func(num1, num2): return num1 + num2 print(func2(func, 3, 4)) # 7 print(func2(lambda a, b: a - b, 7, 4)) # 3
[ "rxb123b@qq.com" ]
rxb123b@qq.com
8036381aacef7ace854f8b2a4789c058d384c77f
788dd0c4d3a72bf259b09130edb9cd8a3c5b5dfd
/animation.py
e2592f7539f19843cb7957a64c85cadc43f12751
[]
no_license
pacmancode/oldcode-python27
8c6eb9676420f17655ea20db39872c60a7416c38
0ce4ca0c1664663f388c60055108014a6199d471
refs/heads/master
2020-07-31T01:08:04.663785
2019-09-23T19:12:46
2019-09-23T19:12:46
210,428,272
0
0
null
null
null
null
UTF-8
Python
false
false
2,243
py
class Animation(object): def __init__(self, name): self.name = name self.frames = [] self.col = 0 self.forward = True self.speed = 0 self.dt = 0 self.finished = False def addFrame(self, frame): self.frames.append(frame) def getFrame(self): return self.frames[self.col] def nextFrame(self, dt): self.dt += dt if self.dt >= 1.0 / self.speed: if self.forward: self.col += 1 else: self.col -= 1 self.dt = 0 def loop(self, dt): self.nextFrame(dt) if self.forward: if self.col == len(self.frames): self.col = 0 else: if self.col == -1: self.col = len(self.frames) - 1 def onePass(self, dt): self.nextFrame(dt) if self.forward: if self.col == len(self.frames): self.col = len(self.frames) - 1 self.finished = True else: if self.col == -1: self.col = 0 self.finished = True def ping(self, dt): self.nextFrame(dt) if self.col == len(self.frames): self.forward = False self.col -= 2 elif self.col == -1: self.forward = True self.col = 1 class AnimationGroup(object): def __init__(self): self.animations = [] self.animation = None self.col = 0 def add(self, animation): self.animations.append(animation) def setAnimation(self, name, col): self.animation = self.getAnimation(name) self.animation.col = col def getAnimation(self, name): for anim in self.animations: if anim.name == name: return anim return None def getImage(self, frame): return self.animation.frames[frame] def loop(self, dt): self.animation.loop(dt) return self.animation.getFrame() def onePass(self, dt): self.animation.onePass(dt) return self.animation.getFrame() def ping(self, dt): self.animation.ping(dt) return self.animation.getFrame()
[ "jrichards@secureopensolutions.com" ]
jrichards@secureopensolutions.com
1281775fb7304ddf8b2eb0ea08b2564a95409475
63935c746e3c34162842f9320a90b58bf7ba0d23
/pyFileFinder/__init__.py
a0134e944835b1d680fb3126ea082d55d1213369
[ "MIT" ]
permissive
20centcroak/pyFileFinder
b62b73c4c58a4ddb3bbad1ec5591f68a963135e9
bb9499f8ba9f2803e862373ebc97d3bb6c0f4b97
refs/heads/main
2023-08-10T19:51:17.742819
2021-09-28T15:37:31
2021-09-28T15:37:31
301,203,570
0
0
null
null
null
null
UTF-8
Python
false
false
38
py
from pyFileFinder.finder import Finder
[ "vpaveau@outook.com" ]
vpaveau@outook.com
7aeb425aab67befbdb125816c194891556d4f865
7a86b717b9783ed11813375297b02bd8ccdca1ba
/bin/fdh.py
9c2f5aa9fd9e7582aded32cd9a6dca34e3c735b7
[]
no_license
zaurky/flickr-download-helper
c5a16a42e833fce0fc3a37a88e2b6f231193fd35
543a00a7a40ba21755e8e17cdc5450d7e9e038b6
refs/heads/master
2021-01-10T20:24:56.214285
2014-05-30T16:04:14
2014-05-30T16:04:14
1,831,446
1
0
null
null
null
null
UTF-8
Python
false
false
1,001
py
#!/usr/bin/python """ flickr_download_helper.py This small program was developed to help retrieve full bunch of photos from flickr. To have the description of the parameters, please read flickr_download_helper.config or start the program with the --help flag """ import sys import traceback import flickr_download_helper from flickr_download_helper.logger import Logger from flickr_download_helper.config import OPT if __name__ == "__main__": try: ret, num = flickr_download_helper.main() sys.exit(ret) except: info = sys.exc_info() if OPT.debug: try: Logger().error(info[1]) Logger().print_tb(info[2]) except: print info print info[1] traceback.print_tb(info[2]) else: try: Logger().error(info[1]) except: print info[1] traceback.print_tb(info[2]) sys.exit(-1)
[ "zaurky@zeb.re" ]
zaurky@zeb.re
e4e3961fcf038e77f898d134bfcfaa27cd7b62ed
52e4f0785bccebe1f862c59e2c49027c4cfaed4d
/049_group_anagrams.py
f5ebf57f5d5f64752b5a8e6c8fbc34d01e2efec7
[]
no_license
toddbryant/leetcode
fab5ee07351dbf6fbdb8c8d68b87489ad94e78ea
fb96ab3162f8ee2063b48f4c74d1c1c3b44ed0c3
refs/heads/master
2022-09-12T01:07:59.553735
2022-07-22T20:48:23
2022-07-22T20:48:23
218,164,688
0
0
null
null
null
null
UTF-8
Python
false
false
987
py
""" Given an array of strings strs, group the anagrams together. You can return the answer in any order. An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once. """ from typing import List class Solution: def groupAnagrams(self, strs: List[str]) -> List[List[str]]: # Strategy: # sort each word for its key # map sorted word --> list of original words words_by_key = {} def make_key(word): counts = [0] * 26 for c in word: counts[ord(c) - ord('a')] += 1 return tuple(counts) for word in strs: key = make_key(word) # key = ''.join(sorted(word)) if key not in words_by_key: words_by_key[key] = [] words_by_key[key].append(word) return [word_list for _, word_list in words_by_key.items()]
[ "toddbryant@live.com" ]
toddbryant@live.com
fa070f1b9885fd3f07e93a37204795baecfb1784
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_18178.py
c0fa06963601f1748528156c7d1517b0475862d4
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
# convert dictionary key and value to unicode d = {'firstname' : 'Foo', 'lastname' : 'Bar'} d = {unicode(k):unicode(v) for k,v in d.items() }
[ "ubuntu@ip-172-31-7-228.us-west-2.compute.internal" ]
ubuntu@ip-172-31-7-228.us-west-2.compute.internal
66980e80f0d2389c12e9fe0a0102aa543f9e2e3c
4f5ecb8e2f57453b0b47dbf97689ed14860df88a
/mysite/settings.py
4c9acbf551bcc9fd4fefd481593b35dfc64817e4
[]
no_license
jonmid/mysite
dd438d6adccbaf72f703184dd4f72cb08d7979f6
46cabbfb1cfed1a620386db0e63eb9a0c8854e85
refs/heads/master
2020-03-28T13:20:22.652974
2018-09-17T16:38:54
2018-09-17T16:38:54
148,385,631
0
0
null
null
null
null
UTF-8
Python
false
false
3,117
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.1. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'j$#u6a^%*_!e7inla_k(ei%w@d)km$d*e*uz9(huncqmt!eveq' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'polls.apps.PollsConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
[ "jamideros@hotmail.com" ]
jamideros@hotmail.com
2027c4c2eed0772be86f773eff59f08150b097fd
6a92ef61c9d7f43d9fbc1e78ced7ee9f91d73040
/tests/helpers/boring_model.py
6ef2518bbef11b52b539fb70c0f389dbdf4ec53a
[ "Apache-2.0", "LicenseRef-scancode-proprietary-license" ]
permissive
kkoutini/pytorch-lightning
98af7b144835943f39fa998e0cf072b9bce72e82
e98b2d072966536f568df65d2e2c1b8d8f36a327
refs/heads/master
2021-12-15T01:40:10.085980
2021-03-25T13:53:56
2021-03-25T13:53:56
230,491,888
0
1
Apache-2.0
2019-12-27T18:05:24
2019-12-27T18:05:24
null
UTF-8
Python
false
false
4,924
py
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from torch.utils.data import DataLoader, Dataset, Subset from pytorch_lightning import LightningDataModule, LightningModule class RandomDictDataset(Dataset): def __init__(self, size, length): self.len = length self.data = torch.randn(length, size) def __getitem__(self, index): a = self.data[index] b = a + 2 return {'a': a, 'b': b} def __len__(self): return self.len class RandomDictStringDataset(Dataset): def __init__(self, size, length): self.len = length self.data = torch.randn(length, size) def __getitem__(self, index): return {"id": str(index), "x": self.data[index]} def __len__(self): return self.len class RandomDataset(Dataset): def __init__(self, size, length): self.len = length self.data = torch.randn(length, size) def __getitem__(self, index): return self.data[index] def __len__(self): return self.len class BoringModel(LightningModule): def __init__(self): """ Testing PL Module Use as follows: - subclass - modify the behavior for what you want class TestModel(BaseTestModel): def training_step(...): # do your own thing or: model = BaseTestModel() model.training_epoch_end = None """ super().__init__() self.layer = torch.nn.Linear(32, 2) def forward(self, x): return self.layer(x) def loss(self, batch, prediction): # An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction)) def step(self, x): x = self(x) out = torch.nn.functional.mse_loss(x, torch.ones_like(x)) return out def training_step(self, batch, batch_idx): output = self(batch) loss = self.loss(batch, output) return {"loss": loss} def training_step_end(self, training_step_outputs): return training_step_outputs def training_epoch_end(self, outputs) -> None: torch.stack([x["loss"] for x in outputs]).mean() def validation_step(self, batch, batch_idx): output = self(batch) loss = self.loss(batch, output) return {"x": loss} def validation_epoch_end(self, outputs) -> None: torch.stack([x['x'] for x in outputs]).mean() def test_step(self, batch, batch_idx): output = self(batch) loss = self.loss(batch, output) return {"y": loss} def test_epoch_end(self, outputs) -> None: torch.stack([x["y"] for x in outputs]).mean() def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] def train_dataloader(self): return DataLoader(RandomDataset(32, 64)) def val_dataloader(self): return DataLoader(RandomDataset(32, 64)) def test_dataloader(self): return DataLoader(RandomDataset(32, 64)) class BoringDataModule(LightningDataModule): def __init__(self, data_dir: str = './'): super().__init__() self.data_dir = data_dir self.non_picklable = None self.checkpoint_state: Optional[str] = None def prepare_data(self): self.random_full = RandomDataset(32, 192) def setup(self, stage: Optional[str] = None): if stage == "fit" or stage is None: self.random_train = Subset(self.random_full, indices=range(64)) self.dims = self.random_train[0].shape if stage in ("fit", "validate") or stage is None: self.random_val = Subset(self.random_full, indices=range(64, 128)) if stage == "test" or stage is None: self.random_test = Subset(self.random_full, indices=range(128, 192)) self.dims = getattr(self, "dims", self.random_test[0].shape) def train_dataloader(self): return DataLoader(self.random_train) def val_dataloader(self): return DataLoader(self.random_val) def test_dataloader(self): return DataLoader(self.random_test)
[ "noreply@github.com" ]
kkoutini.noreply@github.com
30500571d05223db576fdd6001f47f192e21d484
11b9c2c8320dc2116f714835764c3c8d8586da93
/tools/tundra2-txml-converter.py
708fba2e05f97561308b0a419f69994eafc50cab
[ "Apache-2.0" ]
permissive
Ilikia/naali
42e57a3ac01469ea66ace11e9020cfc9b824b8ea
9a2d06fb6b00cc5b5645794e9a5d4beab61bf56f
refs/heads/master
2021-01-15T16:11:08.557582
2011-08-22T07:37:01
2011-08-22T07:37:01
2,153,258
0
0
null
null
null
null
UTF-8
Python
false
false
6,026
py
import sys import os """ For this script to work you need the jack.mesh from /media/models in /data/assets You will have to manually put your txml file name down in the __main__ func to: --> fileName = "putFileNameHere.txml" <-- 1. Run this script on your tundra 1.x txml 2. This will create a new file with "_" appended before the .txml extension. 3. Open this file in your tundra 2.x server 4. Find the "Jack" entity, he will be lurking at pos 0,0,0. 5. Shift+E for entity editor, select jack, if you dont see the manip visual aids, hit "tilde" (next to "1" key) 6. Open Placeable component and rotate how you like, the whole scene will rotate with jack. Seems that -90 to x will do the trick. 7. Shitf+S for scene editor, right click -> save scene as... Problems with this technique * You cannot remove or edit the grandparent jacks placeable component scale needs to be 1,1,1 or it will scale the whole scene (but might be handy if you want to do this) * Jack grandparent needs to be there always or the scene will flip back. There is also some experimental placeable Transform manipulations that you can do to the txml, but it wont work propably on any scene as everything needs a common pivot point for the rotation. So this is a temp hack. Proper way is to export your modelfs from eg. blender with the correct axis flip built in and import again. """ def getFileContent(filePath): try: f = open(filePath, 'r') c = f.read() f.close() return c except IOError as e: print "IOError on input file:", filePath print e return None def saveNewContent(filePath, newContent): try: f = open(filePath, "w+") f.write(newContent) f.close() except IOError as e: print "IOError on writing to file:", filePath print e class Transform: def __init__(self, value): splitValue = value.split(",") self.pos = {} self.pos["x"] = splitValue[0] self.pos["y"] = splitValue[1] self.pos["z"] = splitValue[2] self.rot = {} self.rot["x"] = splitValue[3] self.rot["y"] = splitValue[4] self.rot["z"] = splitValue[5] self.scale = {} self.scale["x"] = splitValue[6] self.scale["y"] = splitValue[7] self.scale["z"] = splitValue[8] def flip(self, vec, first, second): temp = vec[first] vec[first] = vec[second] vec[second] = temp def rotate(self, vec, axis, deg): curDeg = float(vec[axis]) curDeg += deg vec[axis] = str(curDeg) def getNewValue(self): line = self.pos["x"] + "," + self.pos["y"] + "," + self.pos["z"] line += "," + self.rot["x"] + "," + self.rot["y"] + "," + self.rot["z"] line += "," + self.scale["x"] + "," + self.scale["y"] + "," + self.scale["z"] return line if __name__ == "__main__": fileName = "putFileNameHere.txml" newFileName = fileName[:fileName.index(".txml")] + "_.txml" c = getFileContent(fileName) lines = c.splitlines(True) parentName = "GeneratedGrandParentEntity" parentEntXml = """ <entity id="1"> <component type="EC_Mesh" sync="1"> <attribute value="0,0,0,0,0,0,1,1,1" name="Transform"/> <attribute value="local://Jack.mesh" name="Mesh ref"/> <attribute value="" name="Skeleton ref"/> <attribute value="" name="Mesh materials"/> <attribute value="0" name="Draw distance"/> <attribute value="false" name="Cast shadows"/> </component> <component type="EC_Placeable" sync="1"> <attribute value="0,0,-20,0,0,0,1,1,1" name="Transform"/> <attribute value="false" name="Show bounding box"/> <attribute value="true" name="Visible"/> <attribute value="1" name="Selection layer"/> <attribute value="" name="Parent entity ref"/> <attribute value="" name="Parent bone name"/> </component> <component type="EC_Name" sync="1"> <attribute value="GeneratedGrandParentEntity" name="name"/> <attribute value="" name="description"/> </component> </entity> """ out = "" totalIndex = 0 expectParentAttr = False for line in lines: totalIndex += len(line) if line.count("<scene>") > 0: out += line out += parentEntXml continue if line.count("component type=\"EC_Placeable\"") > 0: out += line compEnd = c.find("</component>", totalIndex) iPlaceableEnd = c.find("name=\"Parent entity ref\"", totalIndex, compEnd) # Found existing, update if iPlaceableEnd > 0: expectParentAttr = True # did not find, generate else: out += " <attribute value=\"" + parentName + "\" name=\"Parent entity ref\"/>\n" elif expectParentAttr: if line.count("name=\"Parent entity ref\"") > 0: expectParentAttr = False start = line.find("\"") end = line.find("\"", start+1) value = line[start+1:end] if value == "": out += " <attribute value=\"" + parentName + "\" name=\"Parent entity ref\"/>\n" else: newLine = line[:start+1] + parentName + line[end:] out += newLine else: out += line else: out += line """ if line.count("name=\"Transform\"") <= 0: out += line continue start = line.find("\"") if start == -1: out += line continue end = line.find("\"", start+1) value = line[start+1:end] t = Transform(value) t.flip(t.rot, "y", "z") newValue = t.getNewValue() out += line.replace(value, newValue) """ saveNewContent(newFileName, out)
[ "jonne.nauha@evocativi.com" ]
jonne.nauha@evocativi.com
c340f4cdf3f2b24c8b031f33a536adccafda34b9
d0666366463ec75f12b8516f2aa3cb97adec2f8d
/python_codes/leetcode/weakest_row.py
b5be6af522f54ed019cf4e6f3702e974c45242ea
[]
no_license
RamSinha/MyCode_Practices
f45fcd447dc5efd456da5cedee3f3d8a843d2a57
403a6130ee791927dfdc2f2a46c1a112271bccb0
refs/heads/master
2022-12-12T11:13:03.073748
2022-05-06T09:35:01
2022-05-06T09:35:01
20,994,924
0
1
null
2022-12-06T00:03:46
2014-06-19T09:27:53
Python
UTF-8
Python
false
false
1,097
py
#!/usr/bin/python def kWeakestRows(mat, k): # Note that there is a more conscise solution just below. This code # avoids the use of advanced language features. m = len(mat) n = len(mat[0]) # Calculate the strength of each row. strengths = [] for i, row in enumerate(mat): strength = 0 for j in range(n): if row[j] == 0: break strength += 1 strengths.append((strength, i)) # Sort all the strengths. This will sort firstly by strength # and secondly by index. strengths.sort() # Pull out and return the indexes of the smallest k entries. indexes = [] for i in range(k): indexes.append(strengths[i][1]) return indexes if __name__ == '__main__': row = int(raw_input("enter number of rows ")) col = int(raw_input("enter number of columns ")) rows = []*row for i in range(0, row): rowvalues = map(lambda x : int(x), raw_input("enter values for rows {i}".format(i = i)).split(",")) rows.append(rowvalues) print kWeakestRows(rows, 2)
[ "ram.sinha@careem.com" ]
ram.sinha@careem.com
11a2b132db710a54b271d93c567961b45820f1d5
fd3193cd703656ea7f553209f69b366499f432fb
/NeuralNet/tf_SGD.py
eb09da3d0fc76a818fe4c88e9e1ef02156a466d7
[]
no_license
mlomnitz/TensorFlow
812bf19549edad6e6b98ae00dff7830dd36e48fa
fb8fcb7c7523a07351c9ff9942ef146f9a576e09
refs/heads/master
2020-04-05T12:32:30.548507
2017-06-30T17:53:29
2017-06-30T17:53:29
95,128,615
0
0
null
null
null
null
UTF-8
Python
false
false
1,174
py
# ******************************************************************************* # ** # ** Author: Michael Lomnitz (mrlomnitz@lbl.gov) # ** Python module defining stochastic gradient descent model for use in # ** tensorflow classifier # ** # ******************************************************************************* # Import relevant modules import numpy as np import tensorflow as tf class SGD(object): def __init__(self,image_size,num_labels): self.weights = tf.Variable( tf.truncated_normal([image_size * image_size, num_labels])) self.biases = tf.Variable(tf.zeros([num_labels])) # def train(self,x, y): logits = tf.matmul(x, self.weights) + self.biases loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits)) # Optimizer. # We are going to find the minimum of this loss using gradient descent. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) return logits, loss, optimizer def predict(self,x): return tf.nn.softmax( tf.matmul(x,self.weights) + self.biases)
[ "michaellomnitz@Michaels-MacBook-Pro.local" ]
michaellomnitz@Michaels-MacBook-Pro.local
494754f3bba4e0f79b281e6380671c97500bbc39
ffab2010f61aa362a9adb98c3fe47a3d7bd6dd09
/cartridge/shop/management/commands/product_db.py
aaf2ae0a9f03fbf95c89b4485844a664abfa7394
[]
no_license
aleksey-zhigulin/fireplace_shop_mezzanine_and_cartridge
d8a9e2b986857cc45da1a583b34009a6d0bfed7e
2d33e2cf31169f6e095418a31835f63b2b439025
refs/heads/master
2020-05-25T09:52:28.841786
2014-10-20T13:23:47
2014-10-20T13:23:47
19,139,936
0
1
null
null
null
null
UTF-8
Python
false
false
10,908
py
# -*- coding: utf-8 -*- from __future__ import print_function, unicode_literals import unicodecsv as csv import xlrd, xlwt import os import shutil import sys import datetime import random from optparse import make_option from django.core.management.base import BaseCommand from django.core.management.base import CommandError from django.db.models.fields import FieldDoesNotExist from django.utils.translation import ugettext as _ from django.db.utils import IntegrityError from mezzanine.conf import settings from cartridge.shop.models import Product from cartridge.shop.models import ProductOption from cartridge.shop.models import ProductImage from cartridge.shop.models import ProductVariation from cartridge.shop.models import ProductTopka from cartridge.shop.models import Category from mezzanine.core.models import CONTENT_STATUS_PUBLISHED # images get copied from this directory LOCAL_IMAGE_DIR = settings.PROJECT_ROOT + "/img" # images get copied to this directory under STATIC_ROOT IMAGE_SUFFIXES = [".jpg", ".JPG", ".jpeg", ".JPEG", ".tif", ".gif", ".GIF", ".png", ".PNG"] EMPTY_IMAGE_ENTRIES = ["Please add", "N/A", ""] DATE_FORMAT = "%Y-%m-%d" TIME_FORMAT = "%H:%M" PRODUCT_TYPE = "ProductTopka" IMAGE = "Изображения" SITE_MEDIA_IMAGE_DIR = _("product") PRODUCT_IMAGE_DIR = os.path.join(settings.MEDIA_ROOT, SITE_MEDIA_IMAGE_DIR) TYPE_CHOICES = {choice:id for id, choice in settings.SHOP_OPTION_TYPE_CHOICES} # TODO: Make sure no options conflict with other fieldnames. fieldnames = TYPE_CHOICES.keys() class Command(BaseCommand): args = '--import/--export <csv_file>' help = _('Import/Export products from a csv file.') option_list = BaseCommand.option_list + ( make_option('--import-xls', action='store_true', dest='import-xls', default=False, help=_('Import products from xls file.')), make_option('--export-xls', action='store_true', dest='export-xls', default=False, help=_('Export products to xls file.')), make_option('--export-csv', action='store_true', dest='export-csv', default=False, help=_('Export products to csv file.')), make_option('--import-csv', action='store_true', dest='import-csv', default=False, help=_('Import products from csv file.')), ) def handle(self, *args, **options): if sys.version_info[0] == 3: raise CommandError("Python 3 not supported") try: file = args[0] except IndexError: raise CommandError(_("Please provide csv or xls file to import")) if options['import-csv']: import_csv(file) elif options['export-csv']: export_products(file) elif options['import-xls']: import_xls(file) elif options['export-xls']: export_xls(file) def _product_from_row(row, value): # TODO: title product, created = eval("%s.objects.get_or_create(title='%s')" % (PRODUCT_TYPE, value('title'))) product.content = value('content') # product.description = value('description') # TODO: set the 2 below from spreadsheet. product.status = CONTENT_STATUS_PUBLISHED product.available = True extra_fields = [(f.name, eval("%s._meta.get_field('%s').verbose_name.title()" % (PRODUCT_TYPE, f.name))) for f in product._meta.fields if f not in Product._meta.fields] for name, verbose in extra_fields: if name != 'product_ptr': exec "product.%s = value('%s')" % (name, name) for category in row['Категория'].split(","): parent_category, created = Category.objects.get_or_create(title=category.split(" / ")[0]) for sub_category in category.split(" / ")[1:]: cat, created = Category.objects.get_or_create(title=sub_category, parent=parent_category) parent_category = cat product.categories.add(parent_category) return product def _make_image(image_str, product): # if image_str in EMPTY_IMAGE_ENTRIES: # return None # root, suffix = os.path.splitext(image_str) # if suffix not in IMAGE_SUFFIXES: # raise CommandError("INCORRECT SUFFIX: %s" % image_str) # image_path = os.path.join(LOCAL_IMAGE_DIR, image_str) # if not os.path.exists(image_path): # raise CommandError("NO FILE %s" % image_path) # shutil.copy(image_path, PRODUCT_IMAGE_DIR) image, created = ProductImage.objects.get_or_create( file="%s" % (os.path.join(SITE_MEDIA_IMAGE_DIR, image_str)), description=image_str, # TODO: handle column for this. product=product) return image def import_xls(xls_file): if settings.DEBUG: while Category.objects.count(): ids = Category.objects.values_list('pk', flat=True)[:100] Category.objects.filter(pk__in = ids).delete() while Product.objects.count(): ids = Product.objects.values_list('pk', flat=True)[:100] Product.objects.filter(pk__in = ids).delete() while ProductVariation.objects.count(): ids = ProductVariation.objects.values_list('pk', flat=True)[:100] ProductVariation.objects.filter(pk__in = ids).delete() while ProductImage.objects.count(): ids = ProductImage.objects.values_list('pk', flat=True)[:100] ProductImage.objects.filter(pk__in = ids).delete() while ProductOption.objects.count(): ids = ProductOption.objects.values_list('pk', flat=True)[:100] ProductOption.objects.filter(pk__in = ids).delete() eval("%s.objects.all().delete()" % PRODUCT_TYPE) print(_("Importing ..")) for sheet in xlrd.open_workbook(xls_file).sheets(): for row_index in range(1, sheet.nrows): row = {k: v for k, v in zip( (sheet.cell(0, col_index).value for col_index in xrange(sheet.ncols)), (sheet.cell(row_index, col_index).value for col_index in xrange(sheet.ncols)) )} value = lambda s: row[eval("%s._meta.get_field('%s').verbose_name.title()" % (PRODUCT_TYPE, s))] product = _product_from_row(row, value) variation = ProductVariation.objects.create( product=product, ) variation.num_in_stock = 1000 if value('currency'): variation.currency = value('currency') if value('unit_price'): variation.unit_price = value('unit_price') for option in TYPE_CHOICES: if row[option]: name = "option%s" % TYPE_CHOICES[option] setattr(variation, name, row[option]) new_option, created = ProductOption.objects.get_or_create( type=TYPE_CHOICES[option], name=row[option] ) variation.save() image = '' for img in row[IMAGE].split(','): try: image = _make_image(img.strip()+'.jpg', product) except CommandError: print("CommandError: %s" % row[IMAGE]) if image: variation.image = image try: product.variations.manage_empty() product.variations.set_default_images([]) product.copy_default_variation() product.save() except IndexError: print(value('title')) print("Variations: %s" % ProductVariation.objects.all().count()) print("Products: %s" % eval("%s.objects.all().count()" % PRODUCT_TYPE)) # def export_xls(xls_file): # print(_("Exporting ..")) # xls = xlwt.Workbook(encoding='utf-8') # xls_sheet = xls.add_sheet('1') # # for field in fieldnames: # xls_sheet.write(0, COLUMN[field], field) # for row_index, pv in enumerate(ProductVariation.objects.all(), start=1): # xls_sheet.write(row_index, COLUMN[TITLE], pv.product.title) # xls_sheet.write(row_index, COLUMN[CONTENT], pv.product.content.strip('<p>').strip('</p>')) # xls_sheet.write(row_index, COLUMN[DESCRIPTION], pv.product.description) # xls_sheet.write(row_index, COLUMN[SKU], pv.sku) # xls_sheet.write(row_index, COLUMN[IMAGE], unicode(pv.image)) # xls_sheet.write(row_index, COLUMN[CATEGORY] , max([unicode(i) for i in pv.product.categories.all()])) # # for option in TYPE_CHOICES: # xls_sheet.write(row_index, COLUMN[option], getattr(pv, "option%s" % TYPE_CHOICES[option])) # # xls_sheet.write(row_index, COLUMN[NUM_IN_STOCK], pv.num_in_stock) # xls_sheet.write(row_index, COLUMN[UNIT_PRICE], pv.unit_price) # xls_sheet.write(row_index, COLUMN[SALE_PRICE], pv.sale_price) # try: # xls_sheet.write(row_index, COLUMN[SALE_START_DATE], pv.sale_from.strftime(DATE_FORMAT)) # xls_sheet.write(row_index, COLUMN[SALE_START_TIME], pv.sale_from.strftime(TIME_FORMAT)) # except AttributeError: # pass # try: # xls_sheet.write(row_index, COLUMN[SALE_END_DATE], pv.sale_to.strftime(DATE_FORMAT)) # xls_sheet.write(row_index, COLUMN[SALE_END_TIME], pv.sale_to.strftime(TIME_FORMAT)) # except AttributeError: # pass # xls.save(xls_file) # # def export_csv(csv_file): # print(_("Exporting ..")) # filehandle = open(csv_file, 'w') # writer = csv.DictWriter(filehandle, delimiter=';', encoding='cp1251', fieldnames=fieldnames) # headers = dict() # for field in fieldnames: # headers[field] = field # writer.writerow(headers) # for pv in ProductVariation.objects.all(): # row = dict() # row[TITLE] = pv.product.title # row[CONTENT] = pv.product.content.strip('<p>').strip('</p>') # row[DESCRIPTION] = pv.product.description # row[SKU] = pv.sku # row[IMAGE] = pv.image # row[CATEGORY] = ','.join([unicode(i) for i in pv.product.categories.all()]) # # for option in TYPE_CHOICES: # row[option] = getattr(pv, "option%s" % TYPE_CHOICES[option]) # # row[NUM_IN_STOCK] = pv.num_in_stock # row[UNIT_PRICE] = pv.unit_price # row[SALE_PRICE] = pv.sale_price # try: # row[SALE_START_DATE] = pv.sale_from.strftime(DATE_FORMAT) # row[SALE_START_TIME] = pv.sale_from.strftime(TIME_FORMAT) # except AttributeError: # pass # try: # row[SALE_END_DATE] = pv.sale_to.strftime(DATE_FORMAT) # row[SALE_END_TIME] = pv.sale_to.strftime(TIME_FORMAT) # except AttributeError: # pass # writer.writerow(row) # filehandle.close() #
[ "a.a.zhigulin@yandex.ru" ]
a.a.zhigulin@yandex.ru
6a25d4d6d328e9c9e20a919af3c29624807e564e
31fb7c74b94e46a325e6b05501c6972a401cf423
/PYTHON/BASIC_PYTHON/수업내용/06/06-022.py
1acb02ba0306bc46a2fb34757a430458c72b4e81
[]
no_license
superf2t/TIL
f2dacc30d6b89f3717c0190ac449730ef341f6a4
cadaaf952c44474bed9b8af71e70754f3dbf86fa
refs/heads/master
2022-04-10T13:55:24.019310
2019-12-12T11:15:31
2019-12-12T11:15:31
268,215,746
1
0
null
2020-05-31T05:32:46
2020-05-31T05:32:46
null
UTF-8
Python
false
false
211
py
#06-022.py import re pattern = re.compile(r'[a-z]{2}') ret = pattern.search('123abc123') #ret = pattern.search('abcXde') if ret: print('Matched : ' + ret.group()) else: print('NOT matched')
[ "noreply@github.com" ]
superf2t.noreply@github.com
a488e2a0e9def915d59b71868f6f2957a4f6ebf6
5a9159cba858b007ec8946948e6badd0234fe429
/aocday23/aoc23a.py
dde2266c37bc3c01eb9e3a82418d9c5ec5a28cf4
[]
no_license
chakradhar123/aoc2020
b9c7a7b6497a508603d132046a729d167ab8dc1e
c6dcd2db9b51e92e5453728a069817346d05d9df
refs/heads/main
2023-02-04T19:18:48.273202
2020-12-25T06:04:11
2020-12-25T06:04:11
317,446,950
0
1
null
null
null
null
UTF-8
Python
false
false
791
py
s=[int(x) for x in list(input())] moves=0 i=0 n=len(s) m=max(s) while moves!=100: curr=s[i] temparr=[s[(i+1)%n],s[(i+2)%n],s[(i+3)%n]] p=i s.pop((p+1)%len(s)) p=s.index(curr) s.pop((p+1)%len(s)) p=s.index(curr) s.pop((p+1)%len(s)) tempcurr=curr while(True): curr-=1 if(curr==0): curr=m if curr in s and curr not in temparr: pos=s.index(curr) s.insert((pos+1),temparr[2]) pos=s.index(curr) s.insert((pos+1),temparr[1]) pos=s.index(curr) s.insert((pos+1),temparr[0]) break i=(s.index(tempcurr)+1)%len(s) moves+=1 pos1=s.index(1) print(''.join([str(x) for x in s[pos1+1:]])+''.join([str(x) for x in s[:pos1]]))
[ "chakradharvasurama@gmail.com" ]
chakradharvasurama@gmail.com
11de8e05cca61b6ffd595bf66f7fe24c18151278
ea3f25d71d2bc15674f1222a7948764775b5d2e6
/lambada/tests/common.py
1fdeb4695102c0c0c956d3820cf748fdf73d704f
[ "Apache-2.0" ]
permissive
Superpedestrian/lambada
bb671ffd8ed5e111e6a0a39b41df3ee658046eb9
adc4fad618f8e5383ca5cd9122e42f89079550f9
refs/heads/master
2021-07-12T02:45:43.257226
2016-10-24T14:55:22
2016-10-24T14:55:22
69,257,822
6
2
Apache-2.0
2021-03-25T21:39:47
2016-09-26T14:20:11
Python
UTF-8
Python
false
false
505
py
""" Common test functions used across test files. """ import os def make_fixture_path(folder, filename='lambda.py'): """ Make path to fixture using given args. folder (str): Folder name that contains fixture(s) filename (str): Filename to pass, if ``None`` will return folder """ path = os.path.abspath( os.path.join( os.path.dirname(__file__), 'fixtures', folder ) ) if filename: path = os.path.join(path, filename) return path
[ "x@carsongee.com" ]
x@carsongee.com
b29bd9952d1e42eb245ca6d98e7ca2b04729ec47
86e8fa4b5b3ef494c32efc8d9f92c27247317860
/Backspace String Compare-optimal.py
c81facf43f754a3b5dc5f149dc81a4adaa0febe7
[]
no_license
hemeshwarkonduru/leetcode
21135b7585c6bbaf25351d4e8edaacdd5a8c1699
a8afa93ffb6f8e788ef5f9711e5dd2648c363043
refs/heads/master
2022-11-04T21:38:27.685658
2020-08-03T16:41:11
2020-08-03T16:41:11
284,752,691
0
0
null
null
null
null
UTF-8
Python
false
false
1,000
py
class Solution: def backspaceCompare(self, S: str, T: str) -> bool: i=len(S)-1 j=len(T)-1 skip1=skip2=0 while(i>-1 or j>-1): c=S[i] if i>=0 else "" c1=T[j] if j>=0 else "" if(c=='#'): skip1+=1 i-=1 continue if(c1=='#'): skip2+=1 j-=1 continue if(skip1>0): skip1-=1 i-=1 continue if(skip2>0): skip2-=1 j-=1 continue if(c!=c1): return False i-=1 j-=1 return (i<0 and j<0) ''' debug the code properly this is called two pointer approach skip variable is used to keep track of # '''
[ "noreply@github.com" ]
hemeshwarkonduru.noreply@github.com
1002d041306ded41191f4bc17fe4371066c97883
21a98cb39b51607fa150459d6e2afc79c2818cf0
/python_practice/class_python/python_oo.py
d4867c7807572c3ee6046c300f39354b022a6472
[]
no_license
z1069867141/hogwarts_lg
bc038b39d688ce99357d24ed41fe05a63db06bfa
faf530b4a81e5c6aae0cf97628b085be708b913f
refs/heads/master
2023-05-28T20:17:23.864529
2021-06-16T02:33:05
2021-06-16T02:33:05
285,639,680
0
0
null
null
null
null
UTF-8
Python
false
false
977
py
# 面向对象 class House: # 静态属性 -> 变量, 类变量, 在类之中, 方法之外 door = "red" floor = "white" # 构造函数,是在类实例化的时候直接执行 def __init__(self): # 实例变量,是在类实例化的时候直接执行,以“self.变量名的方式去定义”,实例变量的作用域为这个类中的所有方法 self.door self.yangtai = "大" # 动态属性 -> 方法(函数) def sleep(self): # 普通变量,再类之中、方法之中,并且不会以self.开头 print('房子是用来睡觉的') def cook(self): print("房子可以做饭吃") # 实例化 -> 变量 = 类() north_house = House() china_house = House() # 调用类变量 print(House.door) House.door = "white" north_house.door = "black" print(north_house.door) #图纸的door 是什么颜色 print(House.door) # china_house.door 是什么颜色 print(china_house.door)
[ "919824370@qq.com" ]
919824370@qq.com
21f724acdad82167ac50071d25b664cab8ce963a
adb4f695d8c392c62e005dda67a41dd5ab1fcb6f
/subida/tree/preprocessing.py
865e4d21d2f0e571e379fe9ad64fe6173d3fcbe3
[]
no_license
luisbalru/PumpItUp-PC
93e3549856c48a7afc89c324ff6dbc30f5ee9d03
381d6d1802407e2db9f3d9c67ce6809443ac99d4
refs/heads/master
2022-04-05T13:55:53.660532
2020-02-18T17:33:11
2020-02-18T17:33:11
234,961,917
1
0
null
null
null
null
UTF-8
Python
false
false
3,804
py
import numpy as np import pandas as pd ## Data loading train_dataset = pd.read_csv("../../data/training.csv") train_labels = pd.read_csv("../../data/training-labels.csv") test_dataset = pd.read_csv("../../data/test.csv") ## Conversion of date recorded to date data type train_dataset['date_recorded'] = pd.to_datetime(train_dataset['date_recorded']) test_dataset['date_recorded'] = pd.to_datetime(test_dataset['date_recorded']) ## Extraction of year and month of recording train_dataset['year_recorded'] = train_dataset['date_recorded'].map( lambda x: x.year ) test_dataset['year_recorded'] = test_dataset['date_recorded'].map( lambda x: x.year ) train_dataset['month_recorded'] = train_dataset['date_recorded'].map( lambda x: x.month ) test_dataset['month_recorded'] = test_dataset['date_recorded'].map( lambda x: x.month ) ## Selection of categorical vars (non numeric) categorical_vars = train_dataset.select_dtypes(exclude=np.number) ## FEATURE ELIMINATION ## Variables selected a priori to be deleted variables_to_drop = [ "scheme_name", "recorded_by", "region_code", 'amount_tsh', 'num_private' ] ## If a column has more than 100 different categories, it is discarded for col in categorical_vars.columns: if len(train_dataset[col].unique()) > 100: variables_to_drop.append(col) ## Variable dropping train_dataset.drop(columns=variables_to_drop, inplace=True) test_dataset.drop(columns=variables_to_drop, inplace=True) ## MISSING VALUES IMPUTATION ## If the column is numeric, imputation with mean ## If the column is nominal, imputation with mode fill_values = {} for col in train_dataset.columns: if np.issubdtype(train_dataset[col].dtype, np.number): fill_val = np.mean(train_dataset[col]) else: fill_val = train_dataset[col].mode()[0] fill_values[col] = fill_val train_dataset = train_dataset.fillna(value=fill_values) test_dataset = test_dataset.fillna(value=fill_values) ## Imputation by class for construction year train_dataset = pd.merge(train_dataset, train_labels) ## Mean of values greater than 0 fill_1 = np.mean(train_dataset.loc[ (train_dataset['construction_year'] > 0) & (train_dataset['status_group'] == "functional"), "construction_year" ]) fill_2 = np.mean(train_dataset.loc[ (train_dataset['construction_year'] > 0) & (train_dataset['status_group'] == "non functional"), "construction_year" ]) fill_3 = np.mean(train_dataset.loc[ (train_dataset['construction_year'] > 0) & (train_dataset['status_group'] == "functional needs repair"), "construction_year" ]) ## Substitution of zeroes with the mean value train_dataset.loc[ (train_dataset['construction_year'] == 0) & (train_dataset['status_group'] == "functional"), "construction_year" ] = fill_1 train_dataset.loc[ (train_dataset['construction_year'] == 0) & (train_dataset['status_group'] == "non functional"), "construction_year" ] = fill_2 train_dataset.loc[ (train_dataset['construction_year'] == 0) & (train_dataset['status_group'] == "functional needs repair"), "construction_year" ] = fill_3 ## Precomputed values for test construction year with a trained model test_construction_year = pd.read_csv("construction_year_test.csv") test_dataset.loc[ test_dataset['construction_year'] == 0, 'construction_year' ] = test_construction_year['construction_year'] ## Calculation of fountain age from year recorded and construction year train_dataset['age'] = train_dataset['year_recorded'] - train_dataset[ 'construction_year' ] test_dataset['age'] = test_dataset['year_recorded'] - test_dataset[ 'construction_year' ] ## Storing of data for training train_dataset.to_csv("train-preprocessed.csv") test_dataset.to_csv("test-preprocessed.csv")
[ "fluque1995@gmail.com" ]
fluque1995@gmail.com
48a38fed26e0f936067d8ea8bc0bea6ac00ca437
e8e7438518680fd0db80cb1c467c745c8db740f2
/portCheck.py
7f793845bd60f5c531b15d9d8df06c42e36a341e
[]
no_license
joerod/python
ef5c5184c4acd673e409fded329a4647875d1162
d8218338d43abdb6f6f552e234030aaeb93cdcac
refs/heads/master
2022-06-21T08:05:43.074238
2022-05-23T02:24:49
2022-05-23T02:24:49
23,096,216
1
1
null
2020-12-23T23:53:41
2014-08-19T03:58:53
Python
UTF-8
Python
false
false
663
py
import socket import argparse parser = argparse.ArgumentParser( description='Python command line tool to check for open ports on a host', epilog="python portCheck.py --host 192.168.1.221 --port 3389" ) parser.add_argument("--host", required=True, help="IP of machine running to check") parser.add_argument("--port", required=True, type=int, help="Port of machine to check") args = parser.parse_args() a_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) result_of_check = a_socket.connect_ex((args.host,args.port)) if result_of_check == 0: print(f"Port {args.port} is open") else: print(f"Port {args.port} is not open") a_socket.close()
[ "noreply@github.com" ]
joerod.noreply@github.com
d6842d9077daa9def21f14f9375efd1e66cb673a
69ad085dc6bab4d48c4db336ccc2dee8589143b1
/predicting_stock_price/predicted_vs_reality.py
40610589059decb5736c29386bba16a1ee205e71
[]
no_license
razisamuely/predict
9e1e88885aedcc1393fa49ac8b258f4f5ca66b9d
65e1a22bf62d1c5360d62849486e0b6d67b38ffc
refs/heads/main
2023-03-22T10:44:27.983779
2021-02-23T15:50:56
2021-02-23T15:50:56
305,181,446
0
0
null
null
null
null
UTF-8
Python
false
false
13,264
py
# %% from datetime import date, timedelta, datetime from feature_engineering import featureEng from data_generation import get_data from train import Train, ClfTrain import pandas as pd import numpy as np pd.set_option('display.max_rows', 500) import pickle from predict import Predict from general_functions import next_week_full_train_behavior, weekly_correlations_to_csv import matplotlib.pyplot as plt import copy import time from general_functions import weekly_correlations_to_csv import json import seaborn as sns sns.set_style("darkgrid") # Read configs configs = json.loads(open('configs.json', 'r').read()) for k, v in configs.items(): exec(f"{k} = '{v}'") if type(v) == str else exec(f"{k} = {v}") NAME = configs["NAME"] random_state_plot = configs["random_state_plot"] test_size = configs["test_size"] years_back = configs["years_back"] threshold_days_in_week = configs["threshold_days_in_week"] min_percentage_data = configs["min_percentage_data"] min_days_in_week = configs["min_days_in_week"] corr_threshold = configs["corr_threshold"] corr_inter_threshold = configs["corr_inter_threshold"] days_interval = configs["days_interval"] models_path = configs["models_path"] corr_inter_threshold_main = configs["corr_inter_threshold_main"] date_reference = configs["date_reference"] date_reference_end = configs["date_reference_end"] correlation_path = "./weekly_diff_test" # Read ticker list df_tickers = pd.read_csv('./symbols/israeli_symbols_names.csv') tickers = list(df_tickers['Symbol']) with open("./symbols/clean_ticker_list.txt", "rb") as fp: clean_ticker_list = pickle.load(fp) print(f'number of ticker in the beegining {len(tickers)}') print(f'number of ticker after validation {len(clean_ticker_list)}') print(f'diff is = {len(tickers) - len(clean_ticker_list)}') measurements_l = ['date_reference', 'next_week_price_full_train', 'predicted_stock_class', 'r2_test', 'r2_train', 'r2_train_full_train', 'rmse_train_full_train', 'False_p', 'True_p', 'predicted_diff_full_train', 'percentage_change_full_train' ] measurements = {i: [] for i in measurements_l} measurements dfr = get_data(ticker_name=NAME, data_from_csv=1, path_from='raw_data') dfc = get_data(ticker_name=NAME, data_from_csv=1, path_from='data') df_weekly = get_data(NAME, data_from_csv=True, path_from='weekly_diff', set_as_index=['first_day_in_week', 'last_day_in_week'], index_type='object') # %% while date_reference < date_reference_end: print(date_reference) d = featureEng(NAME, date_reference=date_reference, years_back=years_back, data_from_csv=True, path_from='data') # df = d.daily_diff() # df = d.weekly_mean(ticker_name=NAME, # df=df, # start_date=date_reference, # days_interval=days_interval, # threshold_days_in_week=threshold_days_in_week # ) print(f'df_weekly.shpe{df_weekly.shape}\ndf_weekly.index[-1]{df_weekly.index[-1]}\n' f'df_weekly.index[0]{df_weekly.index[0]}') # Retrieve rows from given time period - (Cutting upper and lower tails) same_date_last_year = str(datetime.strptime(date_reference, "%Y-%m-%d") - timedelta(days=round(years_back * 365))) dates_first = df_weekly.reset_index()['first_day_in_week'] dates_last = df_weekly.reset_index()['last_day_in_week'] lower = dates_first[dates_first >= same_date_last_year].index[0] upper = dates_last[dates_last <= date_reference].index[-1] + 1 # since its started from 0 df_weekly = df_weekly.iloc[lower:upper, :] with open("./symbols/clean_ticker_list.txt", "rb") as fp: # Unpickling clean_ticker_list = pickle.load(fp) new_list = weekly_correlations_to_csv(tickers_list=clean_ticker_list, years_back_data_generation=years_back, start_date=date_reference, days_interval=days_interval, threshold_days_in_week=threshold_days_in_week, path='./weekly_diff') with open("new_list_rolled_tickes.txt", "w") as file: file.write(str(new_list)) with open("new_list_rolled_tickes.txt", "r") as file: clean_ticker_list = eval(file.readline()) df_corr, low_week_sampels_dict = d.weekly_correlation(df_weekly_mean=df_weekly, tickers_list=clean_ticker_list, date_reference=date_reference, min_prcnt_data=min_percentage_data, threshold=min_days_in_week, path_from='weekly_diff', set_as_index=['first_day_in_week', 'last_day_in_week'] ) start_time = time.time() df_reg_full = d.reg_df( ticker_name=NAME, df_weekly=df_weekly, df_corr=df_corr, start_date=date_reference, threshold=corr_threshold, # activate_automated_rolling=True ) print("\n--- %s seconds ---" % (time.time() - start_time), 'df_reg_full.shape = ', df_reg_full.shape) start_time = time.time() try: df_reg_full = d.df_reg_int(df_reg=df_reg_full, corr_inter_threshold=corr_inter_threshold, corr_inter_threshold_main=corr_inter_threshold_main) df_reg = copy.copy(df_reg_full[:-1]) inter_columns = [inter for inter in df_reg.columns if 'INT' in inter] number_of_inter = len(inter_columns) start = time.time() train = Train(NAME, df_reg=df_reg, test_size=test_size, path=models_path) train_dict = train.df_filtered_dict dict_reg_results = {'r2_test': train_dict['r2_test'], 'r2_train': train_dict['r2_train'], 'alpha': train_dict['alpha'], 'rmse_train': train_dict['rmse_train'], 'corra_mean': train_dict['corra_mean'], 'predictor_num': train_dict['predictor_num'] } # class clftrain = ClfTrain(tick_name=NAME) clf = clftrain.fit_lr_gridsearch_cv() summary_dict = clftrain.generate_clf_summary(clf, classifire_type='lr') df_pred_actual = clftrain.predict_actual_diffs(clf) reg = train.reg colsl = train_dict['current_corrs_str'] df_reg_full = df_reg_full[colsl] target_column_name = f'{NAME}_main_symb_weekly_mean_diff' predict = Predict(reg, target_column_name, df_reg=df_reg_full, date_reference=date_reference, cols=colsl, days_interval=days_interval) next_week_behavior = predict.next_week_behavior(df=d._df, date_reference=date_reference) next_week_class = predict.next_week_class(clf) r = next_week_full_train_behavior(main_ticker=NAME, df_reg_full=df_reg_full, df_raw=d._df, cols=colsl, train_object=train, clftrain_object=clftrain, days_interval=days_interval, date_reference=date_reference ) df_reg = df_reg[colsl] # Results from 'train_dict' = partial train object r2_test = train_dict['r2_test'] r2_train = train_dict['r2_train'] # Results from 'r' = full train object r2_train_full_train = r['r2_train_full_train'] predicted_diff_full_train = r['predicted_diff_full_train'] percentage_change_full_train = r['percentage_change_full_train'] rmse_train_full_train = r['rmse_train_full_train'] next_week_price_full_train = r['next_week_price_full_train'] predicted_stock_class = r['class'] False_p = r['False_p'] True_p = r['True_p'] for k in measurements.keys(): measurements[k].append(eval(k)) except: if df_reg_full.shape[1] == 2: for k in measurements.keys(): measurements[k].append(None) if k != 'date_reference' else measurements[k].append(date_reference) else: print('df_reg_full columns number is bigger the 1 something else happened') break date_reference = str(datetime.strptime(date_reference, "%Y-%m-%d").date() + timedelta(days=days_interval + 1)) print(measurements) df_measurements = pd.DataFrame(measurements) df_measurements.to_csv('df_measurements_nons.csv') # %% df_measurements = pd.read_csv('df_measurements.csv').drop('Unnamed: 0', axis=1) # %% # Adding: actual prices prioed after, actual date period after, and std by adding and deleting n periods back n = 10 df_measurements = df_measurements.set_index('date_reference') dict = {'actual_date': [], 'actual_close_price': [], 'measurments_df_index': []} # %% dates = [str(datetime.strptime(df_measurements.index[0], "%Y-%m-%d").date() - timedelta(days=(days_interval + 1) * i)) for i in range(1, n)][::-1] + list(df_measurements.index) # %% list(df_measurements.index) # %% for i, j in zip(dates[:-1], dates[1:]): j = str(datetime.strptime(j, "%Y-%m-%d").date() - timedelta(days=1)) max_exist_date = max(dfc.index[dfc.index <= datetime.strptime(j, "%Y-%m-%d")]) dict['actual_date'].append(max_exist_date) dict['actual_close_price'].append(round(dfc.loc[max_exist_date, 'close'], 2)) dict['measurments_df_index'].append(i) df_stat = pd.DataFrame(dict).set_index('measurments_df_index') df_stat['std'] = df_stat.actual_close_price.rolling(n).std() df_stat = df_stat.iloc[n - 1:, :] df_measurements = pd.concat([df_measurements, df_stat], axis=1) # multiply number of days in week in predicted average diff df_measurements_index = df_measurements.actual_date.astype(str) for i in df_measurements_index[:-1]: f = df_weekly.index.get_level_values('first_day_in_week') >= i l = df_weekly.index.get_level_values('last_day_in_week') <= i if any(f == l): if i in df_measurements_index.to_list(): df_measurements.loc[df_measurements_index == i, 'days_in_week'] = df_weekly[f == l].days_in_week[0] # metrices of predicted week : std, number of days in week df_measurements.loc[df_measurements.index[-1], 'days_in_week'] = 5 df_measurements.loc[df_measurements.index[-1], 'std'] = df_stat['std'][-1] df_measurements[ 'next_week_price_full_train_mult'] = df_measurements.next_week_price_full_train + df_measurements.predicted_diff_full_train * ( df_measurements.days_in_week - 1) df_measurements['predicted_diff_full_train_mult'] = df_measurements.predicted_diff_full_train * ( df_measurements.days_in_week - 1) # Adding actual diff df_measurements['actual_diff'] = df_measurements['actual_close_price'].diff(1) # Adding upper & lower CI bounds df_measurements['upper'] = df_measurements.next_week_price_full_train_mult + 1.645 * ( df_measurements['std'] / np.sqrt(n)) df_measurements['lower'] = df_measurements.next_week_price_full_train_mult - 1.645 * ( df_measurements['std'] / np.sqrt(n)) # %% Plot # df_pred_vs_actual = df_pred_vs_actual.set_index(['actual_date'], drop=True) columns_to_plot1 = ['actual_close_price', 'predicted_diff_full_train_mult', 'actual_diff'] d = df_measurements[columns_to_plot1] ax = d.plot(style='-o', color=['C1', 'C3', 'C4']) columns_to_plot2 = 'next_week_price_full_train_mult' df_predicted = df_measurements[columns_to_plot2] predicted_color, predicted_alpha = 'C0', .25 ax = df_predicted.plot(ax=ax, style='-o', color=[predicted_color], alpha=predicted_alpha) plt.fill_between(x=df_measurements.index, y1=df_measurements['upper'], y2=df_measurements['lower'], color='C0', alpha=predicted_alpha) ax.legend() plt.show() # %% TODO adding try except in case that there is no df_reg for model and think which prediction we want to use in this date and if we want to nark this predections fig = ax.get_figure() fig.savefig('matplotlmatib_figure.png') # save the figure to file plt.close(fig)
[ "raz.shmuely@ironsrc.com" ]
raz.shmuely@ironsrc.com
08ffcd1b33e03a0e636914a804faf0bca35a9280
95fe1c74e48b38886aa6a0f30aca5f531ac3e4ab
/graph_main.py
89642c32d64e5d5fd5d25ff54b83ba5a5feb7a64
[ "MIT" ]
permissive
svenhsia/Entropic-Wasserstein-Embedding
24f7ee16b261b9a56d0de98ba0a14c52f27ca4a0
db837b92759cb5c921e7c06b2357861ec687e9de
refs/heads/master
2021-07-13T09:08:44.369781
2020-07-21T12:28:18
2020-07-21T12:28:18
181,919,633
10
0
null
null
null
null
UTF-8
Python
false
false
4,524
py
import os import sys from time import time import logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO) import numpy as np import tensorflow as tf import networkx as nx from graph_generator import GraphGenerator from utils import * # graph_id = sys.argv[1] embed_dims = [2, 5, 10, 20, 30, 40] n_epochs = 5 num_nodes = 64 for graph_id in range(1, 11): g = nx.read_gpickle("./graphs/scale_free_{}_{}.pickle".format(num_nodes, graph_id)) graph_name = 'scale_free_{}_{}'.format(num_nodes, graph_id) logging.info("Load graph {} from local file".format(graph_id)) node_pairs = g.get_node_pairs() obj_distances = g.get_obj_distances() logging.info("node pairs shape: {}, obj_distances shape: {}".format( node_pairs.shape, obj_distances.shape)) batch_size = node_pairs.shape[0] # full batch for embed_dim in embed_dims: # Euclidean logging.info("Running Euclidean embedding, embed dim={}".format(embed_dim)) embeddings, loss_history, time_history, embed_distances, jac = train( node_pairs, obj_distances, embedding_type='Euc', embed_dim=embed_dim, learning_rate=0.1, n_epochs=n_epochs, nodes=num_nodes, batch_size=batch_size) np.savez('./results/{}_{}_{}'.format(graph_name, 'Euclidean', embed_dim), embeddings=embeddings, loss=loss_history, time=time_history, embed_distances=embed_distances) # Hyperbolic logging.info("Running Hyperbolic embedding, embed dim={}".format(embed_dim)) while True: try: embeddings, loss_history, time_history, embed_distances, jac = train( node_pairs, obj_distances, embedding_type='Hyper', embed_dim=embed_dim, learning_rate=0.01, n_epochs=n_epochs, nodes=num_nodes, batch_size=batch_size) break except RuntimeError: logging.warning("Got Loss NaN") continue np.savez('./results/{}_{}_{}'.format(graph_name, 'Hyperbolic', embed_dim), embeddings=embeddings, loss=loss_history, time=time_history, embed_distances=embed_distances) # Wass R2 logging.info("Running Wasserstein R2 embedding, embed dim={}".format(embed_dim)) embeddings, loss_history, time_history, embed_distances, jac = train( node_pairs, obj_distances, embedding_type='Wass', embed_dim=embed_dim, learning_rate=0.1, n_epochs=n_epochs, ground_dim=2, nodes=num_nodes, batch_size=batch_size) np.savez('./results/{}_{}_{}'.format(graph_name, 'WassR2', embed_dim), embeddings=embeddings, loss=loss_history, time=time_history, embed_distances=embed_distances) # Wass R3 logging.info("Running Wasserstein R3 embedding, embed dim={}".format(embed_dim)) embeddings, loss_history, time_history, embed_distances, jac = train( node_pairs, obj_distances, embedding_type='Wass', embed_dim=embed_dim, learning_rate=0.1, n_epochs=n_epochs, ground_dim=3, nodes=num_nodes, batch_size=batch_size) np.savez('./results/{}_{}_{}'.format(graph_name, 'WassR3', embed_dim), embeddings=embeddings, loss=loss_history, time=time_history, embed_distances=embed_distances) # # Wass R4 # logging.info("Running Wasserstein R4 embedding, embed dim={}".format(embed_dim)) # embeddings, loss_history, time_history, embed_distances, jac = train( # node_pairs, obj_distances, embedding_type='Wass', embed_dim=embed_dim, # learning_rate=0.1, n_epochs=n_epochs, ground_dim=4, nodes=num_nodes, batch_size=batch_size) # np.savez('./results/{}_{}_{}'.format(graph_name, 'WassR4', embed_dim), # embeddings=embeddings, loss=loss_history, time=time_history, # embed_distances=embed_distances) # KL logging.info("Running KL embedding, embed dim={}".format(embed_dim)) embeddings, loss_history, time_history, embed_distances, jac = train( node_pairs, obj_distances, embedding_type='KL', embed_dim=embed_dim, learning_rate=0.01, n_epochs=n_epochs, nodes=num_nodes, batch_size=batch_size) np.savez('./results/{}_{}_{}'.format(graph_name, 'KL', embed_dim), embeddings=embeddings, loss=loss_history, time=time_history, embed_distances=embed_distances)
[ "cheng.zhang@polytechnique.edu" ]
cheng.zhang@polytechnique.edu
576d4f1cf0e88629805b3c8cf300bbcc50a634db
7b6563dffdd349426395935acafa7bc970d19bad
/finchcollector/main_app/migrations/0006_finch_user.py
0dd89eb302edcb7c889251e23d3b55f76e83266b
[]
no_license
rashmika13/Finch-Collector-App--Django
706c01d52ea263533a5339411a941a2d5a4545ae
067d980f1ac2e2eb40a1036de801069333219425
refs/heads/master
2022-11-12T23:23:18.426818
2020-07-03T17:54:07
2020-07-03T17:54:07
275,243,877
0
0
null
null
null
null
UTF-8
Python
false
false
609
py
# Generated by Django 3.0.7 on 2020-07-03 16:39 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('main_app', '0005_photo'), ] operations = [ migrations.AddField( model_name='finch', name='user', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), preserve_default=False, ), ]
[ "50966008+rashmika13@users.noreply.github.com" ]
50966008+rashmika13@users.noreply.github.com
70b345612778f35358858da39926f532da20da86
db8b789b6f985ae49021c41f421ecef60c2f9265
/models/shopify_discount_program.py
23aba8f3a9a0ca386d7af77034e9e68fe57dad97
[]
no_license
Kanta-sill/shopify_app
da04f850c46f474accb581865f975778f5f59321
432a887727b739dbb193421e95616348ebe902c6
refs/heads/main
2023-06-08T06:12:35.079435
2021-06-10T08:12:20
2021-06-10T08:12:20
375,590,917
0
1
null
null
null
null
UTF-8
Python
false
false
5,168
py
import werkzeug from odoo import api, fields, models, _, tools import shopify class ShopifyDiscountProgram(models.Model): _name = "shopify.discount.program" _description = "Discount Program" def get_discount_shop(self): user_current = self.env['res.users'].search([('id', '=', self._uid)]) shop_current = self.env['shopify.shop'].search([('base_url', '=', user_current.login)]) if shop_current: return shop_current.id else: return None name = fields.Char(string='Name') shop_id = fields.Many2one('shopify.shop', string='Shop ID', default=get_discount_shop) cus_ids = fields.One2many('shopify.discount.program.customer', 'discount_id', string='Discount Customer ID') pro_ids = fields.One2many('shopify.discount.program.product', 'discount_id', string='Discount Product ID') @api.depends('shop_id') def update_shopify_product(self): if self.shop_id: shop_app_id = self.env['shopify.shop.app'].sudo().search([('shop', '=', self.shop_id.id)]) app_id = self.env['shopify.app'].sudo().search([('id', '=', shop_app_id.app.id)]) API_KEY = app_id.api_key API_SECRET = app_id.secret_key api_version = app_id.api_version shop_url = self.shop_id.base_url TOKEN = shop_app_id.token shopify.Session.setup(api_key=API_KEY, secret=API_SECRET) shopify_session = shopify.Session(shop_url, api_version, token=TOKEN) shopify.ShopifyResource.activate_session(shopify_session) pr = shopify.Product.find(limit=50) for product in pr: pro_vals = { 'name': product.title, 'price': product.variants[0].price, 'product_id': product.id, 'variant_id': product.variants, # 'image_1920': product.images[0].src, 'shop_id': self.shop_id.id } check_product = self.env['shopify.product.load'].sudo().search( [('product_id', '=', product.id)]) if check_product: check_product.sudo().write(pro_vals) else: self.env['shopify.product.load'].sudo().create(pro_vals) def open_discount_check_product(self): self.update_shopify_product() discount_vals = { 'discount_id': self.id, } new_discount = self.env['shopify.discount.choose.product'].sudo().create(discount_vals) if self.shop_id: pro_list = self.env['shopify.product.load'].sudo().search([('shop_id', '=', self.shop_id.id)], limit=50) create_pro_ids = [] for pro in pro_list: create_pro_ids.append((0, 0, { 'discount_id': new_discount.id, 'product_id': pro.id, })) pro_vals = { 'pro_ids': create_pro_ids } new_discount.write(pro_vals) view_id = self.env.ref('shopify_app.discount_choose_product_view_form').id return { 'type': 'ir.actions.act_window', 'name': 'Choose Product for Discount', 'res_model': 'shopify.discount.choose.product', 'views': [[view_id, 'form']], 'res_id': new_discount.id, 'target': 'new' } def open_customer(self): cus_list = self.env['res.partner'].search( [('shop_id', '=', self.shop_id.id), ('is_company', '=', False)], limit=50) for cus in cus_list: check_customer = self.env['shopify.discount.program.customer'].search( [('discount_id', '=', self.id), ('customer_id', '=', cus.id)]) if not check_customer: cus_vals = { 'discount_id': self.id, 'customer_id': cus.id, } self.env['shopify.discount.program.customer'].create(cus_vals) class ShopifyDiscountProgramProduct(models.Model): _name = "shopify.discount.program.product" discount_id = fields.Many2one('shopify.discount.program', string='Discount ID', ondelete='cascade') product_id = fields.Many2one('shopify.product.load', string='Product ID', ondelete='cascade') shop_product_id = fields.Char(related='product_id.product_id', string='Variant ID') name = fields.Char(related='product_id.name', string='Name') price = fields.Float(related='product_id.price') discount_amount = fields.Float(string='Discount Amount') check_product = fields.Boolean(string='Check') quantity = fields.Integer(string='Quantity', default=1) class ShopifyDiscountProgramCustomer(models.Model): _name = "shopify.discount.program.customer" discount_id = fields.Many2one('shopify.discount.program', string='Discount ID', ondelete='cascade') customer_id = fields.Many2one('res.partner', string='Customer ID', ondelete='cascade') email = fields.Char(related='customer_id.email') check_person = fields.Boolean(string='Choose Person', default=True)
[ "duc200032@gmail.com" ]
duc200032@gmail.com
bc0060f516bc7d3faaa17cf838512f5acc8c5414
73c9761bb59609f96625595cc05271fd664b6ba9
/self
6b46c41182d56095e82844414c5ecd57c5910be2
[]
no_license
tahinpekmez/MyPython
82bd32afdca246e258a438396e0904b7fcb50f6e
c26b7fbd36859e5d5b7d34b0f177f9428900827b
refs/heads/master
2023-01-07T14:21:40.104874
2020-11-05T22:03:21
2020-11-05T22:03:21
277,694,236
0
0
null
null
null
null
UTF-8
Python
false
false
141
#!/usr/bin/python class Myclass(): i = 123 def __init__(self): self.i = 345 a = Myclass() print(a.i) print(b.i)
[ "noreply@github.com" ]
tahinpekmez.noreply@github.com
bc431979c5f0465fa37fddcd96b6854a989da6ea
c82e62c44ae6716532c06b12ad2f28d225e69ddb
/loader/cifar10C_loader.py
56ef1b1a344ff1d53f39fe12aa12eed3cbca2928
[ "MIT" ]
permissive
ag027592/Geometric-Sensitivity-Decomposition
d38f2d84d05453555b9cfd60eaa29d8be70131b9
3770449735a2fd976edb22b644cc0846a860c1f7
refs/heads/main
2023-08-24T13:47:15.996656
2021-10-29T00:37:28
2021-10-29T00:37:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,600
py
from PIL import Image import os import os.path import numpy as np import pickle from typing import Any, Callable, Optional, Tuple from torchvision.datasets.vision import VisionDataset from torchvision.datasets.utils import check_integrity, download_and_extract_archive import torch class CIFAR10C(VisionDataset): """`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset. Args: root (string): Root directory of dataset where directory ``cifar-10-batches-py`` exists or will be saved to if download is set to True. train (bool, optional): If True, creates dataset from training set, otherwise creates from test set. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "https://zenodo.org/record/2535967/files/CIFAR-10-C.tar?download=1" #"https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" filename = "cifar-10-c-python.tar" tgz_md5 = '56bf5dcef84df0e2308c6dcbcbbd8499' def __init__( self, root: str, train: bool = True, dgrd = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super(CIFAR10C, self).__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') self.targets = np.load(self.root+'/CIFAR-10-C/labels.npy') data = np.load(self.root +'/CIFAR-10-C/' +dgrd['type'] +'.npy') self.data = data[(dgrd['value']-1)*10000:dgrd['value']*10000] def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] img = Image.fromarray(img) # import ipdb;ipdb.set_trace() # doing this so that it is consistent with all other datasets # to return a PIL Image if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img.type(torch.float), target.astype(np.int) def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: fpath = os.path.join(self.root, self.filename) if not check_integrity(fpath, self.tgz_md5): return False return True def download(self) -> None: if self._check_integrity(): print('Files already downloaded and verified') return download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5) def extra_repr(self) -> str: return "Split: {}".format("Train" if self.train is True else "Test")
[ "jtian73@gatech.edu" ]
jtian73@gatech.edu
bf5604ca5b513c7fa3cb1c95f48ebed455079e86
026f77d3b55be99116eef25278ec13d01a97f469
/contact/views.py
d5405b4fbbb945b1c0c966eb95f0de68c61d7572
[]
no_license
Aleksandr-yask/Django-online-store
195dc22f6b878743a6be77c1162fbfb15bdefb5b
fd8aa1ca4c8d907859e8280b61333593632112f2
refs/heads/master
2021-04-13T01:03:09.077950
2020-03-22T06:33:16
2020-03-22T06:33:16
249,122,408
1
0
null
null
null
null
UTF-8
Python
false
false
120
py
from django.shortcuts import render def contact(request): return render(request, 'contact/contact.html', locals())
[ "yasakov.org@gmail.com" ]
yasakov.org@gmail.com
f63b099e702b81e6e40d28709f906a8297067d54
dc7de1db263cb661d7c473c9bfcb444cfe730d9f
/rel/RE_run2.py
47dcc3d39cea5af5e3d18825dc31bc489a1515aa
[]
no_license
BBBigBang/PM
8e0bb0a4b1c6468f2b2ccd4a51fefd6cca43609e
6d5288a10b7929327cac5b3ef731a30d7cb7a344
refs/heads/master
2020-03-24T04:00:02.071355
2018-12-06T03:26:23
2018-12-06T03:26:23
142,439,877
1
0
null
null
null
null
UTF-8
Python
false
false
4,940
py
import Corpus_PM #import LSTM_RE_Predict import LSTM_RE_Predict_v2 import FileUtil import subprocess import os, sys import Keyword_Extraction from Constants import home_dir, threshold import logging; import time; model_file = home_dir + 'data/liver.in.train.h5' def run2(abstract, entity_list, eval, rep): #{{{ """ an function to extraction relation. @param: abstract: entity_list: eval: rep: @return: """ logger=logging.getLogger("relation_run:"); #print 'Generate instances from previous NER results' startTime=time.time(); insts_embed_list, insts_offset_list = Corpus_PM.gen_insts_from_one_abstract(abstract, entity_list) logger.debug('Generate instance done, espliced:{}s'.format(time.time()-startTime)); if len(insts_embed_list) == 0: return [],[] insts_embed_list, insts_offset_list = Corpus_PM.filter_possible_negatives(insts_embed_list, insts_offset_list) logger.debug('Filter possible negative instances done, espliced:{}s'.format(time.time()-startTime)); if len(insts_embed_list) == 0: return [],[] #print 'Predict relations between the various biomedical entities' startTime=time.time(); #answer_array_test, filtered_index = LSTM_RE_Predict.binary_relation_extraction(insts_embed_list, eval, rep) answer_array_test, filtered_index = LSTM_RE_Predict_v2.binary_relation_extraction(insts_embed_list, eval, rep) logger.debug('Predict relation done, espliced:{}s'.format(time.time()-startTime)); #print answer_array_test if len(answer_array_test)==0: return [],[] #print 'Extract the relation entity pairs' startTime=time.time(); #true_insts_offset = LSTM_RE_Predict.get_true_insts(insts_offset_list, answer_array_test, filtered_index, threshold) true_insts_offset = LSTM_RE_Predict_v2.get_true_insts(insts_offset_list, answer_array_test, filtered_index, threshold) logger.debug('Extract relation done, espliced:{}s'.format(time.time()-startTime)); if len(true_insts_offset)==0: return [],[] #print 'Parsing corresonding sentences for interaction word extraction' startTime=time.time(); inst_index_list, sent_list = Corpus_PM.process_insts_4_parser(true_insts_offset) print('###########################################################################') print(' length of sent_list ') print(len(sent_list)) print(' max length of element in sent_list ') e_length = [len(k) for k in sent_list] print(max(e_length)) e_all = [len(k.split(' ')) for k in sent_list] print(' max word quantity of element in sent_list ') print(max(e_all)) print('###########################################################################') FileUtil.writeStrLines(home_dir + 'tempt2.sent', sent_list) logger.debug('Parsing interaction done, espliced:{}s'.format(time.time()-startTime)); startTime=time.time(); retval = subprocess.call('java -mx3g -cp "' + home_dir + 'stanford-parser/*"' + ' edu.stanford.nlp.parser.lexparser.LexicalizedParser ' ' -nthreads 15 ' \ '-outputFormat "wordsAndTags,typedDependencies" -sentences newline' + \ ' edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz ' + \ home_dir + 'tempt2.sent > ' + home_dir + 'tempt2.sent.par',stdout=subprocess.PIPE,stderr=subprocess.PIPE, shell=True) logger.debug('Stanford parse done, espliced:{}s'.format(time.time()-startTime)); assert retval == 0 #print 'Keyword Extraction' startTime=time.time(); nodes_list, edges_list, triple_list = Keyword_Extraction.extraction_mid_version(inst_index_list, home_dir + 'tempt2.sent.par', home_dir + 'outHtml/out.html') logger.debug('Keyword extraction done, espliced:{}s'.format(time.time()-startTime)); #print '#############################################' #print 'Keyword Extraction' #print '#############################################' print 'Find', len(triple_list), 'triples successfully.' print 'triple_list..................' print triple_list return nodes_list, edges_list, triple_list #}}} def toJson(nodes,edges): """ convert relation to Json for cytoscape.js @param: nodes: list, NOTE: should be changed! edges: list, NOTE: should be changed! @return: result: string, json format """ import output_json; #NOTE: here the method generate_JSONfile return python dict, # NOT string, this not meet our request. # we should change dumps it to string # so we use json dumps method import json; return json.dumps(output_json.generate_JSONfile(nodes,edges));
[ "136481981@qq.com" ]
136481981@qq.com
7f18cf4075648d529d0b0c1e30b44536723806cd
991dacb980ffbd1485bb824258148f39c0aea192
/Python2.7/ichowdhury_2.3.py
851bca620892c7a1c11974604cb944d2ec75ff24
[]
no_license
iac-nyc/Python
cc8accca9aa16a710de6004343728540deb3e501
d39d05ffc45d51e8ca1d260ad9fb7dd659fb0c08
refs/heads/master
2020-03-30T16:31:30.253188
2018-11-28T13:41:49
2018-11-28T13:41:49
151,413,265
1
0
null
null
null
null
UTF-8
Python
false
false
542
py
# Name : Iftekhar Chowdhury # Date : Oct 31, 2015 # Homework 2.3 sample_text = """ And since you know how you cannot see yourself, so well as by reflection, I, your glass, will modestly discover to yourself, that of yourself which you yet know not of. """ search_string = raw_input ('Please enter a text to replace:') new_string = raw_input ('Please enter the replacement text: ') count = sample_text.count(search_string) print "{} replacements made".format(count) new_text = sample_text.replace(search_string, new_string) print new_text
[ "007ifte@gmail.com" ]
007ifte@gmail.com
73278f19d0a296b6c7ef34fbfc7a1b5ef6391db3
183d2d3f74997d98b6c8e38ddf146a0975464445
/gewaraSpider/Config.py
2609236b32e77bceb7275c02e916d324b3f571d5
[]
no_license
TopcoderWuxie/gewaraSpider
a8545b8e1ba196e95416d7205247ff31efcac78c
d28b49e2f90b662d0d75c77f0a5f5025a8046c71
refs/heads/master
2020-03-06T16:03:53.274427
2018-03-27T10:01:45
2018-03-27T10:01:45
101,733,083
0
1
null
null
null
null
UTF-8
Python
false
false
2,231
py
#coding: utf-8 PATH = r"moviesUrls.txt" import pymysql conn = pymysql.connect( host= "59.110.17.233", port= 6306, user= "aliPa", password= "6y3*p*o$Uj>1s$H", database= "ysali", charset= 'utf8', ) # 网页链接的时候使用 BaseUrl = "http://www.gewara.com" # 服务器响应的时候提交的URL BasePostUrl = "http://www.gewara.com/activity/ajax/sns/qryComment.xhtml?" # 保留字段,将来使用 base_url1 = "http://www.gewara.com/movie/searchMovieStore.xhtml?pageNo=0&movietime=all&movietype=" base_url2 = "&order=releasedate" base_url3 = "" base_url4 = "" maxThread = 10 # 所有分类 classification = ['动作', '喜剧', '爱情', '科幻', '奇幻', '灾难', '恐怖', '纪录', '犯罪', '战争', '冒险', '动画', '剧情', '其他'] # post data DATA = { 'pageNumber' : 0, 'relatedid' : None, 'topic' : '', 'issue' : 'false', 'hasMarks' : 'true', 'isCount' : 'true', 'tag' : 'movie', 'isPic' : 'true', 'isVideo' : 'false', 'userLogo' : '', 'newWalaPage' : 'true', 'isShare' : 'false', 'isNew' : 'true', 'maxCount' : 1500, 'isWide' : 'true', 'isTicket' : 'false', 'effect' : '', 'flag' : '' } # headers HEADERS = { 'Accept' : 'text/html, application/xml, text/xml, */*', 'Accept-Encoding' : 'gzip, deflate', 'Accept-Language' : 'zh-CN,zh;q=0.8', 'Cache-Control' : 'no-cache,no-store', 'Cookie' : 'citycode=110000; _gwtc_=1499049758746_3zAF_0b5d; Hm_lvt_8bfee023e1e68ac3a080fa535c651f00=1499049759,1499130597', 'Host' : 'www.gewara.com', 'If-Modified-Since' : '0', 'Proxy-Connection' : 'keep-alive', 'Referer' : 'http://www.gewara.com/movie/', 'User-Agent' : 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36', 'X-Requested-With' : 'XMLHttpRequest', } # free PROXIES # http://dev.kuaidaili.com/api/getproxy?orderid=949187989849476&num=100&kps=1 from Proxies import getProxies PROXIES = {'http': 'http://120.24.216.121:16816'} PROXIES1 = {'http': 'http://61.147.103.207:16816'} PROXIES2 = {'http': 'http://211.149.189.148:16816'}
[ "top.wuxie@gmail.com" ]
top.wuxie@gmail.com
8e2a04db0d7e5ceb1c9cf1d397ba155439e61a9c
e6a875704e32276bd9a7da63520ae5ba18ed27d5
/app.py
b424a3c98aa0349713b21c5e163b121cfe744693
[]
no_license
xLightless/IOWrapper
83685c8a44977d263349faebfd0a877c9f75764d
c7b1d8453ef7f193f7438ad6112770ec798b4dff
refs/heads/master
2023-08-31T06:05:00.274036
2021-10-25T03:14:21
2021-10-25T03:14:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,827
py
import os import time import pandas as pd import json file = "credentials.txt" class Client(object): def __init__(self,auth=False): """ Wraps the authentication process of the HTTP requests into a managable system """ self.auth = auth self.credentials = {} def set_additional_creds(self): """ Appends new credentials to a memory/file location """ pass def set_values_to_new_creds(self): """ Sets new values for the appended credentials in '#set_additional_creds()' """ pass def get_keys_and_values(self): """ Lets the user get authentication information to be used. If k/v else None """ pass def _update_cred_keys(self): """ Updates the credentials of the client if the value exists, else return None """ pass def _update_cred_values(self): """ Updates the credentials of the client if the key exists, else return None """ d = self.credentials msg = input(f">> Enter a Key to update it's value (i.e. 'discord_username'): ") if msg in d: for k in d.items(): uv = input(">> Enter the new value of this item: ") if msg==k: print("Old Value: ",k,d.get(k)) d[k] = [uv] print("New Value: ",k,d.get(k)) break with open(file,"w") as f: f.write(str(dict(d.items()))) f.close() else: print("The key you entered could not be found, please try again.") def _run_builder(self): building = True count = 0 print("Please carefully enter the correct values below...") while building: try: key = input(">> Enter a key for the dictionary: ") value = input(f">> Enter a value for {key}: ") if key != '': self.credentials[key] = [value] if key == '': raise KeyError except KeyError: count=(count+1) print(f"Invalid ['k({key}):value'].\n") if count==2: print(">> Too many false attempts to set a key|value, terminating...\n") print(f"Writing valid keys and values to memory/file. Please check '{file}'") building = False if building == False: with open(file,"w") as f: f.write(str(dict(self.credentials.items()))) f.close() def build(self): if self.auth == False: print("Building Application...", "If you need to use explicit features you will be asked to enter credentials.") elif self.auth == True: floc = os.path.exists(file) try: if (~(floc)): create_file = open(file,"x") return create_file except Exception: pass if floc==True: with open(file,"r") as f: data = json.dumps(f.read()) fdata = data.replace("'",'"') d = dict(fdata) if os.stat(file).st_size != 0: print(d) ans = input("Do you want to update your credentials?: ").lower() if ans=="y": pass else: print("Everything is good, Authentication Over! :D") exit() else: self._run_builder() client = Client(auth=True) client.build()
[ "lightlessgaming@gmail.com" ]
lightlessgaming@gmail.com
026d15229905e121cbef24b485b49a5ea8634d13
4f55d730827f07c1f54262d35ac916957fa4c409
/dynamicsynapse/DynamicSynapsePhasePotraitSimple.py
8aab57c2f510840f69727bb036ed84b53d1d5eb7
[]
no_license
InsectRobotics/DynamicSynapsePublic
be84eae967e76496dc92c8a3e01ba55d9c272d1a
18b000b7344bb82ecbc31045ec3b5bb72234b8c9
refs/heads/master
2020-03-22T20:43:18.044297
2018-07-11T22:24:24
2018-07-11T22:24:24
140,625,783
0
1
null
null
null
null
UTF-8
Python
false
false
42,969
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Nov 1 18:05:14 2017 @author: chitianqilin """ import numpy as np import copy import matplotlib as mpl import matplotlib.pyplot as plt import time import dill from mpl_toolkits.mplot3d import Axes3D from matplotlib.backends.backend_pdf import PdfPages from multiprocessing import Pool, TimeoutError import logging, sys, traceback from cycler import cycler from matplotlib.collections import LineCollection from matplotlib.colors import ListedColormap, BoundaryNorm def rk4(h, y, inputs, Parameters, f): k1 = f(y, inputs, Parameters) # print(y) # print(h) # print(k1) # print(y + 0.5*h*k1) k2 = f(y + 0.5*h*k1, inputs, Parameters) k3 = f(y + 0.5*h*k2, inputs, Parameters) k4 = f(y + k3*h, inputs, Parameters) return y + (k1 + 2*(k2 + k3) + k4)*h/6.0 class DynamicSynapseArray: def __init__(self, NumberOfSynapses = 5, CW = 100, tauWV = 40, aWV = 100, rWV = 5000, scale=10, \ WeightersCentral = None , WeighterVarDamping = None, WeighteAmountPerSynapse = 1, \ Weighters = None, WeighterVarRates = None, WeightersCentralUpdateRate = 0.000012,\ DampingUpdateRate = 0.0000003/100 , WeightersCentralUpdateCompensate =0, MaxDamping = 10): #self.NumberOfNeuron=NumberOfSynapses[0] self.NumberOfSynapses = NumberOfSynapses#[1] self.CW = CW self.tauWV = tauWV self.aWV = aWV self.rWV = rWV self.scale =scale self.WeightersCentral = WeightersCentral if WeightersCentral is not None else np.ones(NumberOfSynapses)/2+[[0.1, 0.1,0.1, 0.1, 0.1]]*NumberOfSynapses[0] #[0.2, 0.1, 0] self.WeighterVarDamping = WeighterVarDamping if WeighterVarDamping is not None else np.ones(NumberOfSynapses) * [[2,2,2,2,2]]*NumberOfSynapses[0] #[2,2,2] self.DampingUpdateRate = DampingUpdateRate self.GetParameters = lambda: [self.CW, self.tauWV, self.aWV , self.rWV, self.scale, self.WeightersCentral,self.WeighterVarDamping] self.Parameters = [self.CW, self.tauWV, self.aWV , self.rWV, self.scale, self.WeightersCentral,self.WeighterVarDamping] self.WeighteAmountPerSynapse = WeighteAmountPerSynapse self.WeightersLast = Weighters if Weighters is not None else 0.5*np.ones(NumberOfSynapses) +0.001*np.random.rand(NumberOfSynapses) self.Weighters = self.WeightersLast self.WeighterInAxon = self.WeighteAmountPerSynapse* self.NumberOfSynapses[1] - self.WeightersLast self.WeighterInAxonConcentration = self.WeighterInAxon/self.NumberOfSynapses[1] self.WeighterVarRatesLast = WeighterVarRates if WeighterVarRates is not None else np.zeros(NumberOfSynapses) self.WeighterVarRates = self.WeighterVarRatesLast self.EquivalentVolume = (1+(2*self.WeightersCentral-(self.WeighterInAxonConcentration+self.WeightersLast))/((self.WeighterInAxonConcentration+self.WeightersLast)-self.WeightersCentral)) self.WeightersCentralUpdateRate = WeightersCentralUpdateRate self.WeightersCentralUpdateCompensate = WeightersCentralUpdateCompensate self.MaxDamping = MaxDamping def Derivative (self, state=None , inputs=None, Parameters=None): if state is not None: WeightersLast, WeighterVarRatesLast = state else: WeightersLast, WeighterVarRatesLast = self.WeightersLast, self.WeighterVarRatesLast if inputs is not None: WeighterInAxonConcentration=inputs else: WeighterInAxonConcentration=self.WeighterInAxonConcentration if Parameters is not None: CW, tauWV, aWV, rWV, scale, WeightersCentral,WeighterVarDamping = Parameters else: CW, tauWV, aWV, rWV, scale, WeightersCentral,WeighterVarDamping = self.Parameters() #print(WeighterVarRatesLast , WeighterInAxonConcentration , WeightersLast , self.scale) EquivalentVolume = (1+(2*WeightersCentral-(WeighterInAxonConcentration+WeightersLast))/((WeighterInAxonConcentration+WeightersLast)-WeightersCentral)) self.EquivalentVolume = EquivalentVolume # DWeighters = WeighterVarRatesLast * WeighterInAxonConcentration * WeightersLast /self.scale*2 # DWeighters = WeighterVarRatesLast /self.scale/2 # CW = 100 # tauWV = 17.8#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 100 # rWV = 5000 # scale=1 # tauWV =500#40#19#17.8#40#35#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 170#130 100 # rWV = 7000 #7000 # scale=1 # damping =2 # CW = 100 # SimulationTimeInterval = 10 # DWeighters = WeighterVarRatesLast * ( WeighterInAxonConcentration + WeightersLast/EquivalentVolume +np.sign(WeighterVarRatesLast)*(WeighterInAxonConcentration - WeightersLast/self.EquivalentVolume)) /2 /self.scale # DWeighterVarRates = ( (WeighterInAxonConcentration - WeightersLast/EquivalentVolume \ # +aWV * np.sign(WeighterVarRatesLast)*np.power(np.abs(WeighterVarRatesLast), 0.5))/ rWV - WeighterVarDamping*WeighterVarRatesLast ) / tauWV /scale DWeighters = WeighterVarRatesLast * ( WeighterInAxonConcentration + WeightersLast/EquivalentVolume +np.sign(WeighterVarRatesLast)*(WeighterInAxonConcentration - WeightersLast/EquivalentVolume)) /2 /self.scale DWeighterVarRates = ( (tauWV*(WeighterInAxonConcentration - (WeightersLast/EquivalentVolume)**2 ) \ +aWV * np.sign(WeighterVarRatesLast)*np.power(np.abs(WeighterVarRatesLast), 0.5)) - WeighterVarDamping*WeighterVarRatesLast ) /scale / rWV # print('DWeighters, DWeighterVarRates') # print(DWeighters, DWeighterVarRates) ## DWeighters = WeighterVarRatesLast * WeighterInAxonConcentration * WeightersLast /self.scale*2 ## DWeighters = WeighterVarRatesLast /self.scale/2 ## CW = 100 ## tauWV = 17.8#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 ## aWV = 100 ## rWV = 5000 ## scale=1 # DWeighters = WeighterVarRatesLast * ( WeighterInAxonConcentration + WeightersLast/self.EquivalentVolume +np.sign(WeighterVarRatesLast)*(WeighterInAxonConcentration - WeightersLast/self.EquivalentVolume)) /2 /self.scale # DWeighterVarRates = ( (WeighterInAxonConcentration - WeightersLast/self.EquivalentVolume \ # +aWV * np.sign(WeighterVarRatesLast)*np.power(np.abs(WeighterVarRatesLast), 0.5))/ rWV - WeighterVarDamping*WeighterVarRatesLast ) / tauWV /self.scale #very chaos, no distinguish between pump rate and transport speed # CW = 100 # tauWV = 17.8--50#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 100 # rWV = 5000 # scale=1 # DWeighters = WeighterVarRatesLast /self.scale # DWeighterVarRates = ( (WeighterInAxonConcentration - WeightersLast/self.EquivalentVolume \ # +aWV * np.sign(WeighterVarRatesLast)*np.power(np.abs(WeighterVarRatesLast), 0.5))/ rWV - WeighterVarDamping*WeighterVarRatesLast ) / tauWV * ( WeighterInAxonConcentration + WeightersLast +np.sign(WeighterVarRatesLast)*(WeighterInAxonConcentration - WeightersLast)) /2 /self.scale #instantious catch-up lateral mobility resistance, no pump resistance ## CW = 100 ## tauWV = 40#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 ## aWV = 0.0005#0.02 #100 ## rWV = 200000 ## scale=1 # DWeighters = WeighterVarRatesLast + (WeighterInAxonConcentration - WeightersLast/self.EquivalentVolume)/ rWV /self.scale # DWeighterVarRates = ( \ # (aWV * np.sign(WeighterVarRatesLast)*np.power(np.abs(WeighterVarRatesLast), 0.5) - WeighterVarDamping*WeighterVarRatesLast ) * ( WeighterInAxonConcentration + WeightersLast +np.sign(WeighterVarRatesLast)*(WeighterInAxonConcentration - WeightersLast)) /2 )/self.scale #original # DWeighters = WeighterVarRatesLast * WeighterInAxonConcentration * WeightersLast /self.scale # DWeighterVarRates = ( (WeighterInAxonConcentration - WeightersLast/(1+(2*WeightersCentral-(WeighterInAxonConcentration+WeightersLast))/((WeighterInAxonConcentration+WeightersLast)-WeightersCentral) ) \ # +aWV * np.sign(WeighterVarRatesLast)*np.power(np.abs(WeighterVarRatesLast), 0.5))/ rWV - WeighterVarDamping*WeighterVarRatesLast ) / tauWV /self.scale return np.array([DWeighters, DWeighterVarRates]) #def SynapseDerivative(WeightersLast, WeighterVarRatesLast, WeighterInAxon, Parameters): # tauW, tauWV, aWV = Parameters # DWeightersLast = WeighterVarRatesLast # DWeighterVarRatesLast = aWV * ( WeighterInAxon - WeightersLast + np.sign(WeighterVarRatesLast)*np.power(WeighterVarRatesLast, 0.5)) # return DWeightersLast, DWeighterVarRatesLast def Jacobian(self, state=None , inputs=None, Parameters=None): if state is not None: WeightersLast, WeighterVarRatesLast = state else: WeightersLast, WeighterVarRatesLast = self.WeightersLast, self.WeighterVarRatesLast if inputs is not None: WeighterInAxonConcentration=inputs else: WeighterInAxonConcentration=self.WeighterInAxonConcentration if Parameters is not None: CW, tauWV, aWV, rWV, scale, WeightersCentral,WeighterVarDamping = Parameters else: CW, tauWV, aWV, rWV, scale, WeightersCentral,WeighterVarDamping = self.Parameters() DDWDW = WeighterVarRatesLast * ( 1 -np.sign(WeighterVarRatesLast) ) /2 /self.scale DDWDWV = ( WeighterInAxonConcentration + WeightersLast +np.sign(WeighterVarRatesLast)*(WeighterInAxonConcentration - WeightersLast)) /2 /self.scale DDWVDW = ( (WeighterInAxonConcentration - WeightersLast/(1+(2*WeightersCentral-(WeighterInAxonConcentration+WeightersLast))/((WeighterInAxonConcentration+WeightersLast)-WeightersCentral) ) \ +aWV * np.sign(WeighterVarRatesLast)*np.power(np.abs(WeighterVarRatesLast), 0.5))/ rWV - WeighterVarDamping*WeighterVarRatesLast ) / tauWV /self.scale DDWVDDWV = ( (WeighterInAxonConcentration - WeightersLast/(1+(2*WeightersCentral-(WeighterInAxonConcentration+WeightersLast))/((WeighterInAxonConcentration+WeightersLast)-WeightersCentral) ) \ +aWV * np.sign(WeighterVarRatesLast)*np.power(np.abs(WeighterVarRatesLast), 0.5))/ rWV - WeighterVarDamping*WeighterVarRatesLast ) / tauWV /self.scale return np.array([DWeighters, DWeighterVarRates]) def StepSynapseDynamics(self, dt, ModulatorAmount): # ModulatorAmount=np.array(ModulatorAmount) # ModulatorAmount=ModulatorAmount.reshape(np.append(ModulatorAmount.shape,1).astype(int)) self.Parameters = [self.CW, self.tauWV, self.aWV , self.rWV, self.scale, self.WeightersCentral,self.WeighterVarDamping] self.Weighters, self.WeighterVarRates = rk4(dt, np.array([self.WeightersLast, self.WeighterVarRatesLast]), self.WeighterInAxonConcentration, self.Parameters, self.Derivative) # print('self.Weighters') # print(self.Weighters) # if np.isnan(self.Weighters): # pass self.WeighterInAxon = self.WeighteAmountPerSynapse* self.NumberOfSynapses[1] - self.WeightersLast #print(self.WeighterInAxon, self.WeighteAmountPerSynapse, self.NumberOfSynapses[1] , self.WeightersLast.sum(axis=1,keepdims=True)) self.WeighterInAxonConcentration = self.WeighterInAxon/self.NumberOfSynapses[1] self.WeightersCentral += (self.Weighters-self.WeightersCentral)*ModulatorAmount *self.WeightersCentralUpdateRate*dt*(1+self.WeightersCentralUpdateCompensate*(self.Weighters>self.WeightersCentral)) #0.000015##0.00002 # self.WeightersCentral += (self.Weighters-self.WeightersCentral)*ModulatorAmount *self.WeightersCentralUpdateRate*dt #0.000015##0.00002 #print(self.WeightersCentral) self.WeighterVarDamping += (self.MaxDamping-self.WeighterVarDamping)*self.WeighterVarDamping*ModulatorAmount*self.DampingUpdateRate *dt # #print(self.WeighterVarDamping) return self.Weighters, self.WeighterVarRates, self.WeighterInAxon, self.WeighterInAxonConcentration def StateUpdate(self): self.WeightersLast, self.WeighterVarRatesLast = self.Weighters, self.WeighterVarRates def InitRecording(self, lenth, SampleStep = 1): self.RecordingState = True self.RecordingLenth = lenth self.RecordingInPointer = 0 self.Trace = {'Weighters':np.zeros(np.append(lenth,self.NumberOfSynapses).ravel()), \ 'WeightersCentral' : np.zeros(np.append(lenth,self.NumberOfSynapses).ravel()), \ 'WeighterVarRates' : np.zeros(np.append(lenth,self.NumberOfSynapses).ravel()), \ 'WeighterVarDamping' : np.zeros(np.append(lenth,self.NumberOfSynapses).ravel()),\ 'WeighterInAxonConcentration' : np.zeros(np.append(np.append(lenth,self.NumberOfSynapses[0]),1).ravel()), \ 'EquivalentVolume':np.zeros(np.append(lenth,self.NumberOfSynapses).ravel()) \ } def Recording(self): Temp = None for key in self.Trace: exec("Temp = self.%s" % (key)) # print ("Temp = self.%s" % (key)) # print(Temp) self.Trace[key][self.RecordingInPointer, :] = Temp self.RecordingInPointer += 1 if self.RecordingInPointer>= self.RecordingLenth: self.RecordingInPointer = 0 #%% def PlotPhasePortrait(self, xlim, ylim, fig=None, ax=None, inputs=None, Parameters=None): # fig2 = plt.figure(figsize=(10, 20)) # ax4 = fig2.add_subplot(1,1,1) if fig == None or ax == None: fig, ax = plt.subplots(1,sharex=False , figsize=(20, 12))# if Parameters is not None: CW, tauWV, aWV, rWV, scale, WeightersCentral,WeighterVarDamping = Parameters else: CW, tauWV, aWV, rWV, scale, WeightersCentral,WeighterVarDamping = self.GetParameters() if inputs is not None: d, h = WeighterInAxonConcentration, WeightersCentral=inputs else: d = WeighterInAxonConcentration=self.WeighterInAxonConcentration a= aWV / tauWV b= WeighterVarDamping / tauWV h = WeightersCentral s=1 Wis=np.linspace(xlim[0],xlim[1],num=10000) w= Wis vis = np.linspace(ylim[0],ylim[1],num=10000) d=self.WeighteAmountPerSynapse-Wis colors=['r','c'] # temp1 = 2 * (b*h*s)**2 # temp2 = a * (h*s)**(3/2) # temp3 = a**2 * h * s # temp4 = 4 * (b*d*h*s - b*d*s*w + b*h*w - b*w**2) # temp5 = (a*h*s)**2 # temp6 = 2*b*d*(h*s)**2 - 2*b*d*h*s**2*w +2*b*h**2*s*w - 2*b*h*s*w**2 # ax.plot( Wis, (-temp2 * np.sqrt(temp3+temp4) + temp5 + temp6)/ temp1, lw=2, label='v-nullcline 0' ) # ax.plot( Wis, (temp2 * np.sqrt(temp3+temp4) + temp5 + temp6)/ temp1, lw=2, label='v-nullcline 1' ) # ax.plot( Wis, (-temp2 * np.sqrt(temp3-temp4) - temp5 + temp6)/ temp1, lw=2, label='v-nullcline 2' ) # ax.plot( Wis, (temp2 * np.sqrt(temp3-temp4) - temp5 + temp6)/ temp1, lw=2, label='v-nullcline 3' ) # temp1 = 2 * b**2 # temp2 = a # temp3 = a**2 # temp4 = 4 * (b*d - b*w) # temp5 = a**2 # temp6 = 2*b*d - 2*b*w # ax.plot( Wis, (-temp2 * np.sqrt(temp3+temp4) + temp5 + temp6)/ temp1, lw=2, label='v-nullcline 0' ) # ax.plot( Wis, (temp2 * np.sqrt(temp3+temp4) + temp5 + temp6)/ temp1, lw=2, label='v-nullcline 1' ) # ax.plot( Wis, (-temp2 * np.sqrt(temp3-temp4) - temp5 + temp6)/ temp1, lw=2, label='v-nullcline 2' ) # ax.plot( Wis, (temp2 * np.sqrt(temp3-temp4) - temp5 + temp6)/ temp1, lw=2, label='v-nullcline 3' ) # ax.plot( Wis,np.zeros(Wis.shape) , lw=2, label='w-nullcline' ) # ax.plot(a*np.sign(vis)*np.sqrt(np.abs(vis))-b*vis+d, vis, lw=2, label='v-nullcline 4' ) temp1 = 2 * b**2 temp2 = a temp3 = a**2 temp4 = 4 * (b*d - b*w**2) temp5 = a**2 temp6 = 2*b*d - 2*b*w**2 ax.plot( Wis, (-temp2 * np.sqrt(temp3+temp4) + temp5 + temp6)/ temp1, lw=2, label='v-nullcline 0' ) ax.plot( Wis, (temp2 * np.sqrt(temp3+temp4) + temp5 + temp6)/ temp1, lw=2, label='v-nullcline 1' ) ax.plot( Wis, (-temp2 * np.sqrt(temp3-temp4) - temp5 + temp6)/ temp1, lw=2, label='v-nullcline 2' ) ax.plot( Wis, (temp2 * np.sqrt(temp3-temp4) - temp5 + temp6)/ temp1, lw=2, label='v-nullcline 3' ) ax.plot( Wis,np.zeros(Wis.shape) , lw=2, label='w-nullcline' ) ax.plot(np.sqrt(a*np.sign(vis)*np.sqrt(np.abs(vis))-b*vis+d), vis, lw=2, label='v-nullcline 4' ) ax.set_ylim (ylim) # ax.axvline( 0 , lw=2, label='w-nullcline' ) # Wispace=np.linspace(xlim[0],xlim[1], num=30) Vspace=np.linspace(ylim[0],ylim[1], num=20) Wistep=Wispace[1]-Wispace[0] Vstep=Vspace[1]-Vspace[0] W1 , V1 = np.meshgrid(Wispace, Vspace) print(W1) print(V1) DW1, DV1=self.Derivative(state=[W1, V1] , inputs=self.WeighteAmountPerSynapse-W1, Parameters=[CW, tauWV, aWV, rWV, scale, WeightersCentral,WeighterVarDamping] ) # VectorZ=DW1+ DV1*1j # M = np.log(np.hypot(DW1, DV1)) M = np.greater(DV1, 0) ax.quiver(W1 , V1, DW1, DV1, (M), width=0.002, angles='xy')#pivot='mid') #ax.legend(bbox_to_anchor=(0.6, 0.2), loc=2, borderaxespad=0.,prop={'size':12}) ax.legend(prop={'size':12}) ax.grid() return [fig, ax] def plot(TimOfRecording, Traces = None, path='', savePlots = False, StartTimeRate=0.3, DownSampleRate=10,linewidth =1, FullScale=False): # plt.rc('axes', prop_cycle=(cycler('color',['C0','C1','C2','C3','C4','C5','C6','C7','C8','C9','b','k']))) mpl.rcParams['axes.prop_cycle']=cycler('color',['#1f77b4','#ff7f0e','#2ca02c','#d62728','#9467bd','#8c564b','#e377c2','#7f7f7f','#bcbd22','#17becf','b','k']) # mpl.rcParams['axes.prop_cycle']=cycler(color='category20') if Traces is not None: Tracet, TraceWeighters, TraceWeighterVarRates, TraceWeighterInAxonConcentration, TraceWeightersCentral,TraceWeighterVarDamping,TraceEquivalentVolume = Traces # else: # for key in self.Trace: # exec("Trace%s = self.Trace[%s]" % (key,key)) TracetInS=Tracet.astype(float)/1000 NumberOfSteps = len(TracetInS) if StartTimeRate == 0: StartStep = 0 else: StartStep = NumberOfSteps - int(NumberOfSteps*StartTimeRate) figure1 = plt.figure() labels = [str(i) for i in range(TraceWeighters.shape[1])] figure1lines = plt.plot(TracetInS, TraceWeighters, label=labels, linewidth= linewidth) plt.legend(figure1lines, labels) plt.xlabel('Time (s)') plt.title('Instantaneous Synaptic Strength') figure2 = plt.figure(); plt.plot(TracetInS, TraceWeighterVarRates,linewidth= linewidth) plt.xlabel('Time (s)') plt.title("'Pump' rate") figure3 = plt.figure() ConcentrationLines =plt.plot(TracetInS[::DownSampleRate], TraceWeighters[::DownSampleRate]/TraceEquivalentVolume[::DownSampleRate],linewidth= linewidth) AxonConcentrationLines=plt.plot(TracetInS, TraceWeighterInAxonConcentration,linewidth= linewidth) plt.legend([ConcentrationLines,AxonConcentrationLines], [labels,'Axon']) plt.xlabel('Time (s)') plt.title('Receptor Concentration') X=TraceWeighters[StartStep:NumberOfSteps,0][::DownSampleRate] Y=TraceWeighters[StartStep:NumberOfSteps,1][::DownSampleRate] Z=TraceWeighters[StartStep:NumberOfSteps,2][::DownSampleRate] figure4 = plt.figure() plt.plot(X,Y) plt.xlabel('Time (s)') plt.title('2 Instantaneous Synaptic Strength') plt.xlabel('Instantaneous Synaptic Strength 0') plt.ylabel('Instantaneous Synaptic Strength 1') figure5 = plt.figure() ax = figure5.add_subplot(111, projection='3d') ax.plot(X,Y,Z) ax.set_xlabel('Instantaneous Synaptic Strength 0') ax.set_ylabel('Instantaneous Synaptic Strength 1') ax.set_zlabel('Instantaneous Synaptic Strength 2') # Create cubic bounding box to simulate equal aspect ratio max_range = np.array([X.max()-X.min(), Y.max()-Y.min(), Z.max()-Z.min()]).max() Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(X.max()+X.min()) Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() + 0.5*(Y.max()+Y.min()) Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() + 0.5*(Z.max()+Z.min()) # Comment or uncomment following both lines to test the fake bounding box: for xb, yb, zb in zip(Xb, Yb, Zb): ax.plot([xb], [yb], [zb], 'w',linewidth= linewidth) if FullScale: ax.set_xlim(0,1) ax.set_ylim(0,1) ax.set_zlim(0,1) figure6 = plt.figure() figure6lines = plt.plot(TracetInS[::DownSampleRate], TraceWeightersCentral[::DownSampleRate], label=labels, linewidth= linewidth) plt.legend(figure6lines, labels) plt.title('Center of Synaptic Strength Oscillation') plt.xlabel('Time (s)') figure7 = plt.figure() figure7lines = plt.plot(TracetInS[::DownSampleRate], TraceWeighterVarDamping[::DownSampleRate], label=labels, linewidth= linewidth) plt.legend(figure7lines, labels) plt.title('Damping factor') plt.xlabel('Time (s)') figure8 = plt.figure() figure8lines = plt.plot(TracetInS[::DownSampleRate], TraceEquivalentVolume[::DownSampleRate], label=labels, linewidth= linewidth) plt.legend(figure7lines, labels) plt.xlabel('Time (s)') plt.title('Receptor Storage Capacity') #% figure9 = plt.figure() figure9ax1 = figure9 .add_subplot(111) points0,points1 = CrossAnalysis(TraceWeighters[:,0],TraceWeightersCentral[:,0],TraceWeighters,TracetInS) if FullScale: figure9ax1.set_xlim(0,1) figure9ax1.set_ylim(0,1) # points0={'t':[],'points':[]} # points1={'t':[],'points':[]} # GreaterThanCentre=(TraceWeighters[0,0]>TraceWeightersCentral[0,0]) # print(TraceWeighters[0,0]) # print(TraceWeightersCentral[0,0]) # for i1 in range(len(TraceWeighters)): ## print(TraceWeighters[i1,0]) ## print(TraceWeightersCentral[i1,0]) # if GreaterThanCentre == True: # if TraceWeighters[i1,0]<TraceWeightersCentral[i1,0]: # #print(TraceWeighters[i1,0]) # points0['points'].append(TraceWeighters[i1]) # points0['t'].append(TracetInS[i1]) # GreaterThanCentre = False # elif GreaterThanCentre == False: # if TraceWeighters[i1,0]>TraceWeightersCentral[i1,0]: # #print(TraceWeighters[i1,0]) # points1['points'].append(TraceWeighters[i1]) # points1['t'].append(TracetInS[i1]) # GreaterThanCentre = True # #c = np.empty(len(m[:,0])); c.fill(megno) # points0['points']=np.array(points0['points']) # points1['points']=np.array(points1['points']) print('points0') print(points0['points']) print('points1') print(points1['points']) pointsploted0 = figure9ax1.scatter(points0['points'][:,1],points0['points'][:,2],c=points0['t'], cmap=plt.cm.get_cmap('Greens'), marker=".", edgecolor='none') #c=c, , cmap=cm pointsploted1 = figure9ax1.scatter(points1['points'][:,1],points1['points'][:,2],c=points1['t'], cmap=plt.cm.get_cmap('Blues'), marker=".", edgecolor='none') #plt.legend(figure7lines, labels) plt.colorbar(pointsploted0) plt.colorbar(pointsploted1) plt.title('Poincare map') plt.xlabel('Instantaneous Synaptic Strength 1') plt.ylabel('Instantaneous Synaptic Strength 2') #% figure1.tight_layout() figure2.tight_layout() figure3.tight_layout() figure4.tight_layout() figure5.tight_layout() figure6.tight_layout() figure7.tight_layout() figure8.tight_layout() figure9.tight_layout() if savePlots == True: pp = PdfPages(path+"DynamicSynapse"+TimOfRecording+'.pdf') figure1.savefig(pp, format='pdf') figure2.savefig(pp, format='pdf') figure3.savefig(pp, format='pdf') figure4.savefig(pp, format='pdf') figure5.savefig(pp, format='pdf') figure6.savefig(pp, format='pdf') figure7.savefig(pp, format='pdf') figure8.savefig(pp, format='pdf') figure9.savefig(pp, format='pdf') pp.close() # Figures = {'TraceWeighters':figure1, 'TraceWeighterVarRates':figure2, 'TraceWeighterInAxon':figure3, '2TraceWeighters':figure4, '3DTraceWeighters':figure5, 'WeightersCentral':figure6, 'Damping':figure7,'EquivalentVolume':figure8,'Poincare map':figure9} # with open(path+"DynamicSynapse"+TimOfRecording+'.pkl', 'wb') as pkl: # dill.dump(Figures, pkl) return [figure1,figure2,figure3,figure4,figure5, figure6, figure7, figure8,figure9, ax] #%% def CrossAnalysis(Oscillate,Reference,OscillateArray,Tracet): points0={'t':[],'points':[]} points1={'t':[],'points':[]} GreaterThanCentre=(Oscillate[0]>Reference[0]) print(Oscillate[0]) print(Reference[0]) for i1 in range(len(Oscillate)): # print(Oscillates[i1,0]) # print(References[i1,0]) if GreaterThanCentre == True: if Oscillate[i1]<Reference[i1]: #print(GreaterThanCentre) #print(Oscillates[i1,0]) points0['points'].append(OscillateArray[i1]) points0['t'].append(Tracet[i1]) GreaterThanCentre = False elif GreaterThanCentre == False: if Oscillate[i1]>Reference[i1]: #print (GreaterThanCentre) #print(Oscillates[i1,0]) points1['points'].append(OscillateArray[i1]) points1['t'].append(Tracet[i1]) GreaterThanCentre = True #c = np.empty(len(m[:,0])); c.fill(megno) points0['points']=np.array(points0['points']) points1['points']=np.array(points1['points']) points0['t']=np.array(points0['t']) points1['t']=np.array(points1['t']) return points0, points1 def NearestFinder(array,value): idx = np.argmin(np.abs(array-value)) return idx def DistanceFinder(Data): try: ADSA, dt, NumberOfSteps, Arg0 , Arg1 ,Index0,Index1,phase=Data ADSA, Traces=SimulationLoop( ADSA, dt, NumberOfSteps, Arg0 , Arg1 ,phase,Index0,Index1) points0,points1 = CrossAnalysis(Traces[1][:,0],Traces[4][:,0],Traces[1],Traces[0]) Distance = np.zeros([1]) DistanceAv = np.zeros([1]) DistanceAcc = np.zeros([1]) DistanceAccAv = np.zeros([1]) print(points0) if len(points0['t'] )>Traces[-1]/30000/3: Distance0=np.array(points0['points'][1:,:])-np.array(points0['points'][0:-1,:]) Distance0=np.vstack((np.zeros(Distance0[0].shape), Distance0) ) # Distance1=np.array(points1['points'][1:,:])-np.array(points1['points'][0:-1,:]) # Distance1=np.append(np.zeros(Distance1[0].shape), Distance1 ) print('Distance0'+str(Distance0)) Distance=np.linalg.norm(Distance0,axis=1) DistanceAv = np.average(Distance) DistanceAcc=Distance[1:]-Distance[0:-1] DistanceAcc=np.append(np.zeros(DistanceAcc[0].shape), DistanceAcc) DistanceAccAv=np.average(DistanceAcc) except: traceback.print_exc(file=sys.stderr) return Index0, Index1, ADSA, Arg0 , Arg1, Distance, DistanceAv, DistanceAcc, DistanceAccAv #def ParameterOptimizer(AMBONs,gm , TDm): def DataGenerator(ADSA,dt, NumberOfSteps, Arg0 , Arg1 , phase): Index0=0 Index1=0 while Index0<len(Arg0)and Index1<len(Arg1[0]): data=[ADSA,dt, NumberOfSteps,Arg0[Index0,Index1], Arg1[Index0,Index1],Index0,Index1,phase] yield data if Index1<len(Arg0[0])-1: Index1 +=1 else: #if Index0<len(gm)-1: Index1=0 Index0 +=1 def SimulationLoop(ADSA,dt, NumberOfSteps, Arg0 , Arg1 , phase=0,Index0=0,Index1=0): ADSA.tauWV = Arg0 ADSA.aWV = Arg1 ADSA.InitRecording(NumberOfSteps) Tracet = np.zeros(NumberOfSteps) for step in range(NumberOfSteps): # WeightersLast = copy.deepcopy(Weighters) # WeighterVarRatesLast = copy.deepcopy(WeighterVarRates) ADSA.StateUpdate() ADSA.StepSynapseDynamics( SimulationTimeInterval,0) if ADSA.RecordingState: ADSA.Recording() Tracet[step] = step*SimulationTimeInterval #%% if step%(100000./dt)<1: print ('phase=%s,Index0=%d, Index1=%d, tauWV=%s, aWV=%s, step=%s'%(phase,Index0,Index1,ADSA.tauWV, ADSA.aWV,step)) # Tracet, TraceWeighters, TraceWeighterVarRates, TraceWeighterInAxon, traceWeightersCentral,traceWeighterVarDamping NeuonNumber=1 newSlice= [slice(None)]*3 newSlice[1]=NeuonNumber Traces = Tracet, ADSA.Trace['Weighters'][newSlice], ADSA.Trace['WeighterVarRates'][newSlice], ADSA.Trace['WeighterInAxon'][newSlice], ADSA.Trace['WeightersCentral'][newSlice], ADSA.Trace['WeighterVarDamping'][newSlice], ADSA.Trace['EquivalentVolume'][newSlice] return ADSA, Traces if __name__=="__main__": InintialDS =1 SearchParameters =0 InintialSearch =1 SingleSimulation = 1 PlotPhasePotrait = 1 TimOfRecording=time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime()) if InintialDS: NumberOfNeuron=1 NumberOfSynapses = 1# N =3 tauWV =50; #N = 6 tauWV = 25 Weighters= 0.25#np.random.rand(NumberOfNeuron,NumberOfSynapses) #0.5*np.ones(NumberOfSynapses) +0.001*np.random.rand(NumberOfSynapses) # WeighteAmountPerSynapse = 1 WeighterInAxon = WeighteAmountPerSynapse* NumberOfSynapses - Weighters WeighterVarRates = 0#np.zeros((NumberOfNeuron,NumberOfSynapses)) # TraceWeighters = np.zeros((NumberOfSteps,NumberOfNeuron,NumberOfSynapses)) # TraceWeighterVarRates = np.zeros((NumberOfSteps,NumberOfNeuron,NumberOfSynapses)) # TraceWeighterInAxon = np.zeros((NumberOfSteps,NumberOfNeuron)) # CW = 100 # tauWV =60#40#19#17.8#40#35#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 170#130 100 # rWV = 7000 #7000 # scale=1 # damping =2 # CW = 100 # SimulationTimeInterval = 30 # CW = 100 ### ratio of intergration of postive value oscillation and nagative value oscillation is low # tauWV =500#40#19#17.8#40#35#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 170#130 100 # rWV = 7000 #7000 # scale=1 # damping =2 # CW = 100 # SimulationTimeInterval = 10 ## oscillation with periods of 300 to 500 seconds # # tauWV =0.1#40#19#17.8#40#35#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 34#170#130 100 # rWV = 7000*500*100#7000 # scale=1 # damping =2*7000 # CW = 100 # SimulationTimeInterval = 100 # ## oscillation with periods of 20seconds *** when receptor amount 10 # tauWV =0.1#40#19#17.8#40#35#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 100#170#130 100 # rWV = 7000*500*300#7000 # scale=1 # damping =2*3000 # CW = 100 ## oscillation with periods of 50seconds *** when receptor amount 1 # tauWV =0.5#40#19#17.8#40#35#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 aWV = 100#170#130 100 rWV = 7000*500#7000 scale=1 damping =2*7000 CW = 100 SimulationTimeInterval = 100 # tauWV =500#40#19#17.8#40#35#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 85#130 100 # rWV = 3500 #7000 # scale=1 # damping =2 # CW = 100 # SimulationTimeInterval = 10 # tauWV = 20#40#19#17.8#40#35#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 130#100 # rWV = 5000 # scale=1 # damping =2 # SimulationTimeInterval = 30 # CW = 100 # tauWV = 40#19#17.8#40#35#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 100 # rWV = 10000 # scale=1 # damping =2 # SimulationTimeInterval = 30 # CW = 100 # tauWV = 40#50#40#17.8#40 if flow rate times w*v choose 40, if flow rate times w or v choose 20 # aWV = 0.0005#0.02 #100 # rWV = 200000 # scale=1 #0.4 0.05 WeightersCentral = 0.5#(NumberOfSynapses) #* np.random.rand(NumberOfNeuron,NumberOfSynapses) # 0.6 * np.random.rand(NumberOfNeuron,NumberOfSynapses) #np.array([4, 1, 1, 1, 1])#np.ones(NumberOfSynapses)*0.4 + 0.3 * np.random.rand(NumberOfSynapses) #np.ones(NumberOfSynapses)/2 + [0.8, 0.1,0.1, 0.1, 0] #[0.2, 0.1, 0] WeighterVarDamping = damping #np.array([10, 2, 2, 2, 2]) #[10,2,2,2,2] #[2,2,2] # WeighterVarDamping[0,1] = 4 Parameters = [CW, tauWV, aWV , rWV, WeightersCentral,WeighterVarDamping] ADSA=DynamicSynapseArray( NumberOfSynapses = [NumberOfNeuron, NumberOfSynapses], CW = CW, tauWV = tauWV, aWV = aWV, rWV = rWV,scale=scale, \ WeightersCentral = WeightersCentral , WeighterVarDamping = WeighterVarDamping, WeighteAmountPerSynapse = WeighteAmountPerSynapse, \ Weighters = Weighters, WeighterVarRates = WeighterVarRates,WeightersCentralUpdateCompensate = 0) # ADSA.DampingUpdateRate=0 SimulationTimeLenth = 60*60*1000 dt = SimulationTimeInterval NumberOfSteps = int(SimulationTimeLenth/SimulationTimeInterval) Tracet = np.zeros(NumberOfSteps) ADSA.InitRecording(NumberOfSteps) if SearchParameters : if InintialSearch: searchSamples=[10,10] centralSearchSamples=np.floor(np.array(searchSamples)/2).astype(int) DistanceAvLastTime=0 traceDistanceAccAv=np.zeros(searchSamples) traceDistanceAv=np.zeros(searchSamples) Arg0Indexs=[] Arg0Maxs=[] Arg1Maxs=[] Scales=[] phase=1 ax1=[None for i in range(phase)] fig=[None for i in range(phase)] img=[None for i in range(phase)] DistanceAccAvThisTime=0 numberOfProcess=15 DistanceAccAv=np.zeros(searchSamples) DistanceMax=np.zeros(searchSamples) pool = Pool(processes=numberOfProcess) #_unordered Arg0spaceLim=[10,40] #gspaceLim=[0.7,0.72] Arg0Max=np.average(Arg0spaceLim) Arg1spaceLim=[100,200] #Arg1spaceLim=[38, 38.6] Arg1Max=np.average(Arg1spaceLim) Arg0space=np.linspace(Arg0spaceLim[0],Arg0spaceLim[1], num=searchSamples[0]) Arg1space=np.linspace(Arg1spaceLim[0],Arg1spaceLim[1], num=searchSamples[1]) Scale=np.array([Arg0spaceLim[1]-Arg0spaceLim[0],Arg1spaceLim[1]-Arg1spaceLim[0]]) for i1 in range(phase): Arg0space=np.linspace(Arg0Max-Scale[0]/2,Arg0Max+Scale[0]/2, num=searchSamples[0]) Arg1space=np.linspace(Arg1Max-Scale[1]/2,Arg1Max+Scale[1]/2, num=searchSamples[1]) randSearchRate0=(np.random.random_sample(Arg0space.shape)-0.5)*0#.1 randSearchRate0[centralSearchSamples[0]]=0 randSearchRate1=(np.random.random_sample(Arg1space.shape)-0.5)*0#.1 randSearchRate0[centralSearchSamples[1]]=0 Arg0m , Arg1m = np.meshgrid(Arg0space*(1+randSearchRate0), Arg1space*(1+randSearchRate1)) print (Arg0m, Arg1m) # traceV,traceU,traceI,Iss=SimulationLoop(AMBONs,gm , Arg1m ) iTestResultsOfTests= pool.imap_unordered(DistanceFinder, DataGenerator(ADSA, dt, NumberOfSteps, Arg0m , Arg1m, i1)) # for AResult in iTestResultsOfTests: Index0, Index1, ADSA, Arg0 , Arg1, Distance, DistanceAv, DistanceAcc, DistanceAccAv =AResult traceDistanceAv[Index0, Index1]=DistanceAv traceDistanceAccAv[Index0, Index1]=DistanceAccAv # traceDistanceAccAv.append(DistanceAccAv) # traceDistanceAv.append(DistanceAv) print('Distance:'+str(Distance)) # MaxIndex=np.unravel_index(np.argmax(traceDistanceAv),traceDistanceAv.shape) MaxIndex=np.unravel_index(np.argmax(traceDistanceAv),traceDistanceAccAv.shape) # Arg0Index=int(MaxIndex % searchSamples[0]) Arg0Max=Arg0space[MaxIndex[0]] # Arg0Indexs.append(Arg0Index) # Arg0Maxs.append(Arg0Max) # Arg1Index=np.floor(MaxIndex/searchSamples[0]).astype(int) Arg1Max=Arg1space[MaxIndex[1]] # Arg1Maxs.append(Arg1Max) DistanceAvThisTime=traceDistanceAv[MaxIndex] Improve=DistanceAvThisTime-DistanceAvLastTime if Improve <-0.1: break print("negative imporve") else: DistanceAvLastTime=DistanceAvThisTime Scale=Scale*0.5#/np.average(searchSamples)*2 Scales.append(Scale) # for i1 in range(10): # print ("Arg0Max=%64f, Arg1Max=%64f, i=%s,DistanceAccAvThisTime=%64f, Improve=%64f"%(Arg0Max,Arg1Max, i1,DistanceAvThisTime,Improve)) #plt.imshow(traceDistanceAccAv) print ("Arg0Max=%f, Arg1Max=%f, i=%s,DistanceAccAvThisTime=%f, Improve=%f"%(Arg0Max,Arg1Max, i1,DistanceAvThisTime,Improve)) #%% fig[i1]=plt.figure() x,y=np.mgrid[slice(Arg0space[0],Arg0space[-1],searchSamples[0]*1j),slice(Arg1space[-1],Arg1space[0],searchSamples[1]*1j)] ax1[i1] = fig[i1].add_subplot(111) img[i1]=ax1[i1].pcolormesh(x,y,traceDistanceAv) fig[i1].colorbar(img[i1],ax=ax1[i]) fig[i1].show() #%% print (traceDistanceAccAv,traceDistanceAv) ADSA.tauWV = Arg0Max ADSA.aWV = Arg1Max #%% if SingleSimulation: #%% # DampingUpdateRateCache = ADSA.DampingUpdateRate for step in range(NumberOfSteps): # WeightersLast = copy.deepcopy(Weighters) # WeighterVarRatesLast = copy.deepcopy(WeighterVarRates) # if step * SimulationTimeInterval<60*60*1000: # ADSA.DampingUpdateRate=0 # else: # ADSA.DampingUpdateRate= DampingUpdateRateCache ADSA.StateUpdate() # ADSA.StepSynapseDynamics( SimulationTimeInterval,0) ADSA.StepSynapseDynamics( SimulationTimeInterval,0) if ADSA.RecordingState: ADSA.Recording() Tracet[step] = step*SimulationTimeInterval #% if step % 1000 == 0: print('%d of %d steps'%(step,NumberOfSteps)) # Tracet, TraceWeighters, TraceWeighterVarRates, TraceWeighterInAxon, traceWeightersCentral,traceWeighterVarDamping NeuonNumber=0 newSlice= [slice(None)]*3 newSlice[1]=NeuonNumber Traces = Tracet, ADSA.Trace['Weighters'][newSlice], ADSA.Trace['WeighterVarRates'][newSlice], ADSA.Trace['WeighterInAxonConcentration'][newSlice], ADSA.Trace['WeightersCentral'][newSlice], ADSA.Trace['WeighterVarDamping'][newSlice], ADSA.Trace['EquivalentVolume'][newSlice] #%% UpHalfWeightSum= (ADSA.Trace['Weighters'][newSlice]-WeightersCentral)[ADSA.Trace['Weighters'][newSlice]>WeightersCentral].sum() UpHalfTime=ADSA.Trace['Weighters'][newSlice][ADSA.Trace['Weighters'][newSlice]>WeightersCentral].shape[0]*dt DownHalfWeightSum= (WeightersCentral-ADSA.Trace['Weighters'][newSlice])[ADSA.Trace['Weighters'][newSlice]<WeightersCentral].sum() DownHalfTime=ADSA.Trace['Weighters'][newSlice][ADSA.Trace['Weighters'][newSlice]<WeightersCentral].shape[0]*dt print("UpHalfWeightSum: %f, UpHalfTime: %f"%(UpHalfWeightSum, UpHalfTime)) print("DownHalfWeightSum:%f, DownHalfTime:%f"%(DownHalfWeightSum, DownHalfTime)) print("UDWeightRate:%f, UDTimeRate:%f"%(UpHalfWeightSum/DownHalfWeightSum, float(UpHalfTime)/DownHalfTime)) #%% # figure1,figure2,figure3,figure4,figure5, figure6, figure7,figure8,figure9,ax = plot(TimOfRecording, Traces, path='/media/archive2T/chitianqilin/SimulationResult/DynamicSynapse/Plots/', savePlots=True, linewidth= 0.2) #path= #%% # f = open("I:/OneDrive - University of Edinburgh/Documents/MushroomBody Model/DynamicSynapse/DynamicSynapse"+TimOfRecording+'.pkl', 'wb') # # dill.dump(figure5,f ) #%% # for angle in range(0, 360): # ax.view_init(30, angle) # #plt.draw() # plt.pause(.0001) if PlotPhasePotrait : ViewScale=40 PhasePotraitfig, PhasePotraitax = ADSA.PlotPhasePortrait( xlim=[0,1], ylim=[-0.00010, 0.00010], fig=None, ax=None, inputs=[WeighteAmountPerSynapse- WeightersCentral, WeightersCentral], Parameters=None) # PhasePotraitfig, PhasePotraitax = ADSA.PlotPhasePortrait( xlim=[0.0,1.5], ylim=[-0.000005*ViewScale, 0.000005*ViewScale], fig=None, ax=None, inputs=[1, WeightersCentral], Parameters=None) #PhasePotraitax.plot(ADSA.Trace['Weighters'][:,0,0],ADSA.Trace['WeighterVarRates'][:,0,0]) points = np.array([ADSA.Trace['Weighters'][:,0,0], ADSA.Trace['WeighterVarRates'][:,0,0]]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) DistancePerStep=np.linalg.norm(points[1:]- points[:-1], axis=2).ravel() norm = mpl.colors.Normalize(vmin=DistancePerStep.min(), vmax=DistancePerStep.max(), clip=True) mapper = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.hot) color=mapper.to_rgba(DistancePerStep) lc = LineCollection(segments, cmap=plt.get_cmap('copper'),colors=color) PhasePotraitax.add_collection(lc)
[ "chitianqilin@163.com" ]
chitianqilin@163.com
67dd5b06d0a10a8ed2e4e11b0a3227b995768ab7
557544d64ea0e3017769e2c8e0efbb89df59dbcc
/ae.py
0f8a59531a1bd95759dd7f1bd3bff8bf9a15863f
[]
no_license
SameepYadav/Processing-of-missing-data-by-neural-networks
b3a2131e52c52bb86e6cb630b5e06df4863fa2b6
47060bb45efefd48086926a3bc381ae9aa5ba46b
refs/heads/master
2020-06-10T17:07:27.273515
2019-04-16T19:08:46
2019-04-16T19:08:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,476
py
import os from datetime import datetime from time import time import numpy as np import tensorflow as tf from sklearn.impute import SimpleImputer from sklearn.mixture import GaussianMixture from tqdm import tqdm os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' RANDOM_SEED = 42 tf.set_random_seed(RANDOM_SEED) # Training Parameters learning_rate = 0.01 n_epochs = 250 batch_size = 64 # Network Parameters num_hidden_1 = 256 # 1st layer num features num_hidden_2 = 128 # 2nd layer num features (the latent dim) num_hidden_3 = 64 # 3nd layer num features (the latent dim) num_input = 784 # MNIST data_rbfn input (img shape: 28*28) n_distribution = 5 # number of n_distribution width_mask = 13 # size of window mask # tf Graph input (only pictures) X = tf.placeholder("float", [None, num_input]) initializer = tf.contrib.layers.variance_scaling_initializer() weights = { 'encoder_h1': tf.Variable(initializer([num_input, num_hidden_1])), 'encoder_h2': tf.Variable(initializer([num_hidden_1, num_hidden_2])), 'encoder_h3': tf.Variable(initializer([num_hidden_2, num_hidden_3])), 'decoder_h1': tf.Variable(initializer([num_hidden_3, num_hidden_2])), 'decoder_h2': tf.Variable(initializer([num_hidden_2, num_hidden_1])), 'decoder_h3': tf.Variable(initializer([num_hidden_1, num_input])), } biases = { 'encoder_b1': tf.Variable(tf.random_normal([num_hidden_1])), 'encoder_b2': tf.Variable(tf.random_normal([num_hidden_2])), 'encoder_b3': tf.Variable(tf.random_normal([num_hidden_3])), 'decoder_b1': tf.Variable(tf.random_normal([num_hidden_2])), 'decoder_b2': tf.Variable(tf.random_normal([num_hidden_1])), 'decoder_b3': tf.Variable(tf.random_normal([num_input])), } def random_mask(width_window, margin=0): margin_left = margin margin_righ = margin margin_top = margin margin_bottom = margin start_width = margin_top + np.random.randint(28 - width_window - margin_top - margin_bottom) start_height = margin_left + np.random.randint(28 - width_window - margin_left - margin_righ) return np.concatenate([28 * i + np.arange(start_height, start_height + width_window) for i in np.arange(start_width, start_width + width_window)], axis=0).astype(np.int32) def data_with_mask(x, width_window=10): h = width_window for i in range(x.shape[0]): if width_window <= 0: h = np.random.randint(8, 20) maska = random_mask(h) x[i, maska] = np.nan return x def nr(mu, sigma): non_zero = tf.not_equal(sigma, 0.) new_sigma = tf.where(non_zero, sigma, tf.fill(tf.shape(sigma), 1e-20)) sqrt_sigma = tf.sqrt(new_sigma) w = tf.div(mu, sqrt_sigma) nr_values = sqrt_sigma * (tf.div(tf.exp(tf.div(-tf.square(w), 2.)), np.sqrt(2 * np.pi)) + tf.multiply(tf.div(w, 2.), 1 + tf.erf(tf.div(w, np.sqrt(2))))) nr_values = tf.where(non_zero, nr_values, (mu - tf.abs(mu)) / 2.) return nr_values def conv_first(x, means, covs, p, gamma): gamma_ = tf.abs(gamma) # gamma_ = tf.cond(tf.less(gamma_[0], 1.), lambda: gamma_, lambda: tf.square(gamma_)) covs_ = tf.abs(covs) p_ = tf.nn.softmax(p, axis=0) check_isnan = tf.is_nan(x) check_isnan = tf.reduce_sum(tf.cast(check_isnan, tf.int32), 1) x_miss = tf.gather(x, tf.reshape(tf.where(check_isnan > 0), [-1])) # data_rbfn with missing values x = tf.gather(x, tf.reshape(tf.where(tf.equal(check_isnan, 0)), [-1])) # data_rbfn without missing values # data_rbfn without missing layer_1 = tf.nn.relu(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1'])) # data_rbfn with missing where_isnan = tf.is_nan(x_miss) where_isfinite = tf.is_finite(x_miss) size = tf.shape(x_miss) weights2 = tf.square(weights['encoder_h1']) # Collect distributions distributions = tf.TensorArray(dtype=x.dtype, size=n_distribution) q_collector = tf.TensorArray(dtype=x.dtype, size=n_distribution) # Each loop iteration calculates all per component def calculate_component(i, collect1, collect2): data_miss = tf.where(where_isnan, tf.reshape(tf.tile(means[i, :], [size[0]]), [-1, size[1]]), x_miss) miss_cov = tf.where(where_isnan, tf.reshape(tf.tile(covs_[i, :], [size[0]]), [-1, size[1]]), tf.zeros([size[0], size[1]])) layer_1_m = tf.add(tf.matmul(data_miss, weights['encoder_h1']), biases['encoder_b1']) layer_1_m = nr(layer_1_m, tf.matmul(miss_cov, weights2)) norm = tf.subtract(data_miss, means[i, :]) norm = tf.square(norm) q = tf.where(where_isfinite, tf.reshape(tf.tile(tf.add(gamma_, covs_[i, :]), [size[0]]), [-1, size[1]]), tf.ones_like(x_miss)) norm = tf.div(norm, q) norm = tf.reduce_sum(norm, axis=1) q = tf.log(q) q = tf.reduce_sum(q, axis=1) q = tf.add(q, norm) norm = tf.cast(tf.reduce_sum(tf.cast(where_isfinite, tf.int32), axis=1), tf.float32) norm = tf.multiply(norm, tf.log(2 * np.pi)) q = tf.add(q, norm) q = -0.5 * q return i + 1, collect1.write(i, layer_1_m), collect2.write(i, q) i = tf.constant(0) _, final_distributions, final_q = tf.while_loop(lambda i, c1, c2: i < n_distribution, calculate_component, loop_vars=(i, distributions, q_collector), swap_memory=True, parallel_iterations=1) distrib = final_distributions.stack() log_q = final_q.stack() log_q = tf.add(log_q, tf.log(p_)) r = tf.nn.softmax(log_q, axis=0) layer_1_miss = tf.multiply(distrib, r[:, :, tf.newaxis]) layer_1_miss = tf.reduce_sum(layer_1_miss, axis=0) # join layer for data_rbfn with missing values with layer for data_rbfn without missing values layer_1 = tf.concat((layer_1, layer_1_miss), axis=0) return layer_1 # Building the encoder def encoder(x, means, covs, p, gamma): layer_1 = conv_first(x, means, covs, p, gamma) # Encoder Hidden layer with sigmoid activation layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2'])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']), biases['encoder_b3'])) return layer_3 # Building the decoder def decoder(x): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2'])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']), biases['decoder_b3'])) return layer_3 def prep_x(x): check_isnan = tf.is_nan(x) check_isnan = tf.reduce_sum(tf.cast(check_isnan, tf.int32), 1) x_miss = tf.gather(x, tf.reshape(tf.where(check_isnan > 0), [-1])) x = tf.gather(x, tf.reshape(tf.where(tf.equal(check_isnan, 0)), [-1])) return tf.concat((x, x_miss), axis=0) t0 = time() mnist = tf.keras.datasets.mnist try: with np.load('./data/mnist.npz') as f: x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] except FileNotFoundError: (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 print("Read data done in %0.3fs." % (time() - t0)) data_train = x_train # choose test images nn * 10 nn = 100 data_test = x_test[np.where(y_test == 0)[0][:nn], :] for i in range(1, 10): data_test = np.concatenate([data_test, x_test[np.where(y_test == i)[0][:nn], :]], axis=0) data_test = np.random.permutation(data_test) del mnist # change background to white data_train = 1. - data_train.reshape(-1, num_input) data_test = 1. - data_test.reshape(-1, num_input) # create missing data_rbfn train data_train = data_with_mask(data_train, width_mask) # create missing data_rbfn test data_test = data_with_mask(data_test, width_mask) imp = SimpleImputer(missing_values=np.nan, strategy='mean') data = imp.fit_transform(data_train) t0 = time() gmm = GaussianMixture(n_components=n_distribution, covariance_type='diag').fit(data) print("GMM done in %0.3fs." % (time() - t0)) p = tf.Variable(initial_value=np.log(gmm.weights_.reshape((-1, 1))), dtype=tf.float32) means = tf.Variable(initial_value=gmm.means_, dtype=tf.float32) covs = tf.Variable(initial_value=gmm.covariances_, dtype=tf.float32) gamma = tf.Variable(initial_value=tf.random_normal(shape=(1,), mean=1., stddev=1.), dtype=tf.float32) del data, gmm # Construct model encoder_op = encoder(X, means, covs, p, gamma) decoder_op = decoder(encoder_op) y_pred = decoder_op # prediction y_true = prep_x(X) # Targets (Labels) are the input data_rbfn. where_isnan = tf.is_nan(y_true) y_pred = tf.where(where_isnan, tf.zeros_like(y_pred), y_pred) y_true = tf.where(where_isnan, tf.zeros_like(y_true), y_true) # Define loss and optimizer, minimize the squared error loss = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer() trn_summary = [[] for _ in range(5)] trn_imgs = [[] for _ in range(2)] with tf.name_scope('train'): trn_summary[0] = tf.summary.scalar('loss', loss) trn_summary[1] = tf.summary.histogram("p", tf.nn.softmax(p, axis=0)) for i in range(n_distribution): trn_summary[2].append(tf.summary.histogram("mean/{:d}".format(i), means[i])) trn_summary[3].append(tf.summary.histogram("cov/{:d}".format(i), tf.abs(covs[i]))) trn_summary[4] = tf.summary.scalar('gamma', tf.abs(gamma)[0]) image_grid = tf.contrib.gan.eval.image_grid(tf.gather(prep_x(X), np.arange(25)), (5, 5), (28, 28), 1) trn_imgs[0] = tf.summary.image('input', image_grid, 1) image_grid = tf.contrib.gan.eval.image_grid(tf.gather(decoder_op, np.arange(25)), (5, 5), (28, 28), 1) trn_imgs[1] = tf.summary.image('output', image_grid, 1) tst_summary = [[] for _ in range(3)] with tf.name_scope('test'): tst_summary[0] = tf.summary.scalar('loss', loss) image_grid = tf.contrib.gan.eval.image_grid(tf.gather(prep_x(X), np.arange(25)), (5, 5), (28, 28), 1) tst_summary[1] = tf.summary.image('input', image_grid, 1) image_grid = tf.contrib.gan.eval.image_grid(tf.gather(decoder_op, np.arange(25)), (5, 5), (28, 28), 1) tst_summary[2] = tf.summary.image('output', image_grid, 1) current_date = datetime.now() current_date = current_date.strftime('%d%b_%H%M%S') with tf.Session() as sess: train_writer = tf.summary.FileWriter('./log/{}'.format(current_date), sess.graph) sess.run(init) # run the initializer res = sess.run([*trn_summary], feed_dict={X: data_test[:25]}) train_writer.add_summary(res[1], -1) for i in range(n_distribution): train_writer.add_summary(res[2][i], -1) train_writer.add_summary(res[3][i], -1) train_writer.add_summary(res[4], -1) epoch_tqdm = tqdm(range(1, n_epochs + 1), desc="Loss", leave=False) for epoch in epoch_tqdm: n_batch = data_train.shape[0] // batch_size for iteration in tqdm(range(n_batch), desc="Batches", leave=False): batch_x = data_train[(iteration * batch_size):((iteration + 1) * batch_size), :] # Run optimization op (backprop) and cost op (to get loss value) res = sess.run([optimizer, loss, *trn_summary, *trn_imgs], feed_dict={X: batch_x}) train_writer.add_summary(res[-2], n_batch * (epoch - 1) + iteration) train_writer.add_summary(res[-1], n_batch * (epoch - 1) + iteration) train_writer.add_summary(res[2], n_batch * (epoch - 1) + iteration) train_writer.add_summary(res[3], n_batch * (epoch - 1) + iteration) for i in range(n_distribution): train_writer.add_summary(res[4][i], n_batch * (epoch - 1) + iteration) train_writer.add_summary(res[5][i], n_batch * (epoch - 1) + iteration) train_writer.add_summary(res[6], n_batch * (epoch - 1) + iteration) epoch_tqdm.set_description("Loss: {:.5f}".format(res[1])) tst_loss, tst_input, tst_output = sess.run([*tst_summary], feed_dict={X: data_test[:25]}) train_writer.add_summary(tst_loss, epoch) train_writer.add_summary(tst_input, epoch) train_writer.add_summary(tst_output, epoch)
[ "struski@ii.uj.edu.pl" ]
struski@ii.uj.edu.pl
b4adbee7dc1a76265d5a9b2eba55bc3f1aced083
d96dc8f7dc72de011b7d73745994a1c3cb8f748a
/services/__init__.py
ebf1484b2a72250748154a4142d6c98348ddc1ec
[]
no_license
xChuCx/RetailHero-Recommender
5fe12cf9d271b97c1ab9cd2d382fdfc5a0903200
abaa16b4522cc4725bd2c142e3af93fd84bba67d
refs/heads/master
2022-04-05T06:55:28.333399
2020-02-24T08:35:22
2020-02-24T08:35:22
236,315,375
0
0
null
null
null
null
UTF-8
Python
false
false
339
py
# services/__init__.py import os from flask import Flask from services.api.RecSystem import RecSystem_blueprint def create_app(script_info=None): app = Flask(__name__) # config app_settings = os.getenv('APP_SETTINGS') app.config.from_object(app_settings) app.register_blueprint(RecSystem_blueprint) return app
[ "xChuCx@gmail.com" ]
xChuCx@gmail.com
677d0ea08eaa32b52af16f400ea56ea987e0451f
5a965b99a698bae7b2ade1bc3541380bfbe0c59e
/21.Functions_As_Objects.py
006be0a3b8f8c6539f4679e0af015a316b735527
[]
no_license
sanjay-3129/Python-Tutorial
29b03368db10140af39883e3ceef32ffe3710d64
ba505f0ef1e79a6190fddb7159249e28acaf8ae6
refs/heads/master
2021-10-23T22:50:11.773143
2021-10-23T08:00:12
2021-10-23T08:00:12
230,701,854
1
0
null
null
null
null
UTF-8
Python
false
false
467
py
""" Functions can be assigned and reassigned to variables and later referenced by those names. """ #(i) def multiply(a,b): return a*b opr = multiply print(opr(5,6)) #(ii) def multiply(a,b): return a*b opr = multiply(5,6) print(opr) #(iii) - functions can also be used as arguments of other functions def add(x, y): return x + y def do_twice(func, x, y): return func(func(x, y), func(x, y)) a = 5 b = 10 print(do_twice(add, a, b))
[ "noreply@github.com" ]
sanjay-3129.noreply@github.com
10d59197b17d10daa02d8b52a2e5f4754e2b561f
833147941be211a1743dded2fd5ae294e5cd6edf
/ctapipe/io/tests/conftest.py
27705d2c05a44188f63b846b24ee63cb7da950fb
[ "BSD-3-Clause" ]
permissive
mireianievas/ctapipe
a1b852713c1829a17de51449265deaf7cf237a93
70f29b1c6b9be1366721609454b03d788419ce01
refs/heads/master
2022-05-02T16:42:40.520869
2022-03-16T15:28:43
2022-03-16T15:28:43
338,308,440
0
0
BSD-3-Clause
2021-02-12T12:09:08
2021-02-12T12:09:07
null
UTF-8
Python
false
false
840
py
import pytest from ctapipe.io import EventSource, DataWriter from ctapipe.utils import get_dataset_path @pytest.fixture(scope="session") def r1_path(tmp_path_factory): return tmp_path_factory.mktemp("r1") @pytest.fixture(scope="session") def r1_hdf5_file(r1_path): source = EventSource( get_dataset_path("gamma_LaPalma_baseline_20Zd_180Az_prod3b_test.simtel.gz"), max_events=5, allowed_tels=[1, 2, 3, 4], ) path = r1_path / "test_r1.h5" writer = DataWriter( event_source=source, output_path=path, write_parameters=False, write_images=False, write_stereo_shower=False, write_mono_shower=False, write_raw_waveforms=False, write_waveforms=True, ) for e in source: writer(e) writer.finish() return path
[ "maximilian.noethe@tu-dortmund.de" ]
maximilian.noethe@tu-dortmund.de
3e82565d895cbfaf27bde201ca3c75de23def36f
9f73bf74e1f090c69f0401aecba84d8ce1c2c11c
/linear_series/src/linear_series/class_base_points.py
6d301d5aa6a7a6801340c5dce006e109857068fc
[ "MIT" ]
permissive
niels-lubbes/linear_series
3ae6d7465919aa212b46e0a278c496f47117660c
51cb24d34fcb822ee120930c6d7da006a349e08c
refs/heads/master
2020-12-02T17:46:30.263662
2019-12-13T17:58:15
2019-12-13T17:58:15
96,425,185
0
0
null
null
null
null
UTF-8
Python
false
false
8,210
py
''' Use of this source code is governed by a MIT-style license that can be found in the LICENSE file. Created on Aug 4, 2016 @author: Niels Lubbes This file declares 2 classes: "BasePointTree" and "BasePoint". ''' class BasePointTree(): ''' This class represents a tree of base points of a linear series of curves. ''' # If True than the string representation of this object is short. short = True def __init__( self, chart_lst = ['z', 'x', 'y'] ): ''' Constructor. ''' # Linear series whose base points # are represented by this object. # self.ls = None # A list of charts where a chart is denoted by a String. # See documentation of "get_base_point_tree.in_previous_chart()" # for specification of chart strings. # self.chart_lst = chart_lst # Dictionary where a key is a chart # and a value is a list of BasePoint objects. # "self.chart_lst" is an ordered list of keys of this # dictionary. # self.chart_tree_dct = {} def add( self, chart, sol, mult ): ''' INPUT: - "self" -- BasePointTree object. - "chart" -- A String denoting a chart. - "sol" -- A 2-tuple of elements in "PolyRing.num_field" representing a base point in a chart. - "mult" -- An integer representing the multiplicity of the base point. OUTPUT: - Adds a base point to "self[chart]" - Return the added base point. ''' bp = BasePoint( 0, chart, None ) bp.sol = sol bp.mult = mult self[chart] += [bp] return bp # operator overloading for [] def __getitem__( self, chart ): if chart not in self.chart_lst: raise ValueError( 'The chart key should be an element in:', self.chart_lst ) if chart not in self.chart_tree_dct: self.chart_tree_dct[chart] = [] return self.chart_tree_dct[chart] # operator overloading for [] def __setitem__( self, chart, item ): if chart not in self.chart_lst: raise ValueError( 'The chart key should be an element in:', self.chart_lst ) self.chart_tree_dct[chart] = item # overloads str(): human readable string representation of object def __str__( self ): ''' OUTPUT: - Human readable string representation of object. The String consists of lines with the following format chart=[C], depth=[Integer], mult=[Integer], sol=[P], [LinearSeries] where * C = An element of "self.chart_lst". * P = A 2-tuple: ( [PolyRing.num_field], [PolyRing.num_field] ) and where * sol : A point P in the zeroset of the linear series. * chart: The current chart of the the point P. * mult : The multiplicity of P as a root. * depth: The depth when considering P as an infinitely near point in a tree structure. * For each blowup chart we also depict the corresponding [LinearSeries]. Note that the lines represent a tree structure. Below we see an example. EXAMPLE: - sage: ls = LinearSeries( ['x^2+y^2', 'x*z+y^2'], PolyRing( 'x,y,z', True ) ) sage: print( ls.get_bp_tree() ) out : { 2, <<x^2 + y^2, y^2 + x*z>>, QQ( <a0|t^2 + 1> )[x, y, z] } chart=z, depth=0, mult=1, sol=(0, 0), { 2, <<x^2 + y^2, y^2 + x>>, QQ( <a0|t^2 + 1> )[x, y] } chart=t, depth=1, mult=1, sol=(0, 0), { 2, <<x^2*y + y, x + y>>, QQ( <a0|t^2 + 1> )[x, y] } chart=z, depth=0, mult=1, sol=(1, (-a0)), { 2, <<x^2 + y^2, y^2 + x>>, QQ( <a0|t^2 + 1> )[x, y] } chart=z, depth=0, mult=1, sol=(1, (a0)), { 2, <<x^2 + y^2, y^2 + x>>, QQ( <a0|t^2 + 1> )[x, y] } ''' tree_str = '' if self.ls != None: tree_str += '\n' + str( self.ls ) for chart in self.chart_lst: for bp in self[chart]: tree_str += str( bp ) return tree_str.replace( '\n', '\n\t' ) def alt_str( self ): ''' This method can be useful for testing. OUTPUT: - A string representation without the linear series. ''' tree_str = '' for chart in self.chart_lst: for bp in self[chart]: tree_str += bp.alt_str() return tree_str.replace( '\n', '\n\t' ) class BasePoint(): ''' This class represents a binary tree of base points. If a base point has an infinitely near base point then its 2 leaves represent two charts 's' and 't' of the blowup at these base points. ''' def __init__( self , depth, chart, ls ): ''' Constructor. ''' # Depth of base point tree. # self.depth = int( depth ) # Chart denoted by a string. # See docs of "get_base_point_tree.in_previous_chart()" # self.chart = chart # LinearSeries # self.ls = ls # Base point represented as a 2-tuple of # elements in a number field. # self.sol = None # Multiplicity of a solution # (0=no solution, -1=overlapping chart) # self.mult = 0 # lists of base points # self.bp_lst_t = [] self.bp_lst_s = [] def add( self, chart_st, sol, mult ): ''' INPUT: - "self" -- - "chart_st" -- 's' or 't' - "sol" -- A 2-tuple of elements in "PolyRing.num_field" representing an infinitely near base point in a blowup chart. - "mult" -- An integer representing the multiplicity of the base point. OUTPUT: - Adds a base point to either "self.bp_lst_s" or "self.bp_lst_t". - Return the added infinitely near base point. ''' if chart_st not in ['s', 't']: raise ValueError( 'Expecting "chart_st" to be either "s" or "t":', chart_st ) bp = BasePoint( self.depth + 1, chart_st, None ) bp.sol = sol bp.mult = mult dct = {'s':self.bp_lst_s, 't':self.bp_lst_t} dct[chart_st] += [bp] return bp def __str__( self ): ''' OUTPUT: - Human readable string representation of object. See "BasePointTree.__str__()". ''' if BasePointTree.short == True and self.mult in [0, -1]: return '' bp_str = '' bp_str += '\n' + 4 * self.depth * ' ' + 'chart=' + self.chart + ', ' if self.mult == -1: bp_str += '(overlapping chart)' + ', ' if self.mult == 0: bp_str += '(no solution)' + ', ' bp_str += 'depth=' + str( self.depth ) + ', ' bp_str += 'mult=' + str( self.mult ) + ', ' bp_str += 'sol=' + str( self.sol ) + ', ' bp_str += str( self.ls ) for bp in self.bp_lst_t: bp_str += str( bp ) for bp in self.bp_lst_s: bp_str += str( bp ) return bp_str def alt_str( self ): ''' This method can be useful for testing. OUTPUT: - A string representation without the linear series. ''' if self.mult in [0, -1]: return '' bp_str = '' bp_str += '\n' + 4 * self.depth * ' ' bp_str += 'chart=' + self.chart + ', ' bp_str += 'depth=' + str( self.depth ) + ', ' bp_str += 'mult=' + str( self.mult ) + ', ' bp_str += 'sol=' + str( self.sol ) + ', ' for bp in self.bp_lst_t: bp_str += bp.alt_str() for bp in self.bp_lst_s: bp_str += bp.alt_str() return bp_str
[ "niels.lubbes@noadds" ]
niels.lubbes@noadds
47255733e840182e4df902b7997de36140721620
62c8d299cffa3211d3a04378005c5f3523cd58bd
/studentMain.py
8640b45883d55b0272299fdf809b9775b5af79c9
[]
no_license
Shanjiv/Linear-Regression
a5ae794be19c56679364d5417882248f54141752
d1b12b1becbae344ff932037935b97b71756363e
refs/heads/master
2021-01-10T15:37:11.181517
2016-01-27T16:14:34
2016-01-27T16:14:34
50,519,477
0
0
null
null
null
null
UTF-8
Python
false
false
737
py
#!/usr/bin/python import numpy import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from studentRegression import studentReg from class_vis import prettyPicture, output_image from ages_net_worths import ageNetWorthData ages_train, ages_test, net_worths_train, net_worths_test = ageNetWorthData() reg = studentReg(ages_train, net_worths_train) plt.clf() plt.scatter(ages_train, net_worths_train, color="b", label="train data") plt.scatter(ages_test, net_worths_test, color="r", label="test data") plt.plot(ages_test, reg.predict(ages_test), color="black") plt.legend(loc=2) plt.xlabel("ages") plt.ylabel("net worths") plt.savefig("test.png") output_image("test.png", "png", open("test.png", "rb").read())
[ "shan_ratnam@yahoo.de" ]
shan_ratnam@yahoo.de
1098889d8bb98070a11efb5e7df7e42a2f322918
bd8967aaea29ebfe9ec5264d927816de53472a86
/config/test_settings.py
a5fa23ed10f25fdc648c429f2ced40b2e4b7defa
[]
no_license
MaksimLion/django-graphql-react-simpleapp
1067c0ef4d67824370301562dc8edfca5c4a7ac3
cca1153934fcf58690c44c86d80365051bee547b
refs/heads/master
2020-05-17T02:05:23.359156
2019-04-25T14:01:52
2019-04-25T14:01:52
183,445,529
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
from .settings import * DATABASES = { 'default' : { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:' } } PASSWORD_HASHERS = ( 'django.contrib.auth.hashers.MD5PasswordHasher', ) DEFAULT_FILE_STORAGE = 'inmemorystorage.InMemoryStorage'
[ "maxim226356@mail.ru" ]
maxim226356@mail.ru
e96d13937dcfa94ceeaed7298fcf4cb23198c36f
d33516802a7c4674dacd7f1335097abc16d7a211
/SharedParking_Group_4_code/王文浩-接口自动化代码/start/start_api.py
31df0a39f0dc95847149d2aa89708053a2422b79
[]
no_license
wangwenhaohao/shareparking_G4
f16be52da03d20dbaf066a51a40ba9355e6f193d
60fefa75435c31e3dbfc4446e5fd93dedeaee22b
refs/heads/main
2023-01-14T17:16:13.976424
2020-11-26T03:23:37
2020-11-26T03:23:37
313,612,426
0
0
null
null
null
null
UTF-8
Python
false
false
708
py
from HTMLTestRunner_cn import HTMLTestRunner from sharedParkingPlace1111.tools.parse import FileParse import unittest from sharedParkingPlace1111.testcase.owner_parking_api import TestParkingAPI class AllStart: def start(self, path): suite = unittest.TestSuite() loader = unittest.TestLoader() test_case_info = FileParse.get_txt(path) print(test_case_info) tests = loader.loadTestsFromTestCase(test_case_info) suite.addTests(tests) with open('report.html', 'w') as file: runner = HTMLTestRunner(stream=file, verbosity=2) runner.run(suite) if __name__ == '__main__': AllStart().start("..\\conf\\case_class_path.conf")
[ "1500115788@qq.com" ]
1500115788@qq.com
d2ef7781954aa600215bead6ed1537f201d90757
2ef014463a30fca56ae045884465fd8672c47b3d
/django_pro/Users/models.py
221731f0416cdce15eaa45f9bd47cc471e5467d7
[]
no_license
Jiangkai2018/django_pro
e226aa5eaa2b712093fb5eb81490790ab891ee73
a5c4408a4317b9be384b4f5216b00d4d4ed4b7c7
refs/heads/master
2020-04-12T02:52:52.752835
2018-12-18T08:29:35
2018-12-18T08:29:38
162,256,468
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
from django.db import models # Create your models here. class Users(models.Model): username = models.CharField("用户名",max_length=20) password = models.CharField("密码",max_length=20) realname = models.CharField("真实姓名", max_length=255) sex = models.CharField("性别", max_length=10) email = models.EmailField("电子 邮箱", blank=True) def __str__(self): return self.username
[ "1637213781@qq.com" ]
1637213781@qq.com
3afe179639c2001840cd2dbc07063d1cad265419
d3a5b967b16aa4e0a0e296e62cbd43a8fd780363
/DataFrame/itertuples().py
f25e4f6ed945b7cc4a6f925edd4c3e7843deb008
[]
no_license
andrew5205/My_Pandas
690dc054d69968c390128c5fea7dd9f5d971a1aa
35a7cda2f9fbd4150114888f12d8f3e29c07cbf1
refs/heads/master
2023-02-12T15:45:42.694933
2021-01-16T04:29:45
2021-01-16T04:29:45
326,882,206
0
0
null
null
null
null
UTF-8
Python
false
false
817
py
# df.itertuples(index=True, name=Pandas) - Iterate over DataFrame rows as namedtuples. import pandas as pd df = pd.DataFrame({ 'num_legs': [4, 2], 'num_wings': [0, 2],}, index=['dog', 'hawk'] ) # print(df) # # num_legs num_wings # # dog 4 0 # # hawk 2 2 print(df.itertuples()) # <map object at 0x7fcf7b2d89a0> for row in df.itertuples(): print(row) # Pandas(Index='dog', num_legs=4, num_wings=0) # Pandas(Index='hawk', num_legs=2, num_wings=2) for row in df.itertuples(index=False): print(row) # Pandas(num_legs=4, num_wings=0) # Pandas(num_legs=2, num_wings=2) for row in df.itertuples(name='Animals'): print(row) # Animals(Index='dog', num_legs=4, num_wings=0) # Animals(Index='hawk', num_legs=2, num_wings=2)
[ "andrewchung11@gmail.com" ]
andrewchung11@gmail.com
a5fd28c7ffef396eaa2b4349febc201f7c44d61b
50621c0cbfc7e9c23957c557b4e21971ec11fcf6
/vehicle counting/main.py
9d7a43eff073ebcf1c9c7851592ddc8b353f84f2
[]
no_license
Hashmeet229/Vehicle_count_mdel
2701a2078ea3012108faaa6a33a8f3975a298956
e067b1a7e5830711a8008c42c639edcc6effad22
refs/heads/master
2023-04-01T00:54:12.144324
2021-03-29T10:46:54
2021-03-29T10:46:54
352,604,670
0
0
null
null
null
null
UTF-8
Python
false
false
2,093
py
import cv2 import numpy as np from time import sleep largura_min=80 #Largura minima do retangulo altura_min=80 #Altura minima do retangulo offset=6 #Erro permitido entre pixel pos_linha=550 #Posição da linha de contagem delay= 60 #FPS do vídeo detec = [] carros= 0 def pega_centro(x, y, w, h): x1 = int(w / 2) y1 = int(h / 2) cx = x + x1 cy = y + y1 return cx,cy cap = cv2.VideoCapture('night.mp4') subtracao = cv2.bgsegm.createBackgroundSubtractorMOG() while True: ret , frame1 = cap.read() tempo = float(1/delay) sleep(tempo) grey = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(grey,(3,3),5) img_sub = subtracao.apply(blur) dilat = cv2.dilate(img_sub,np.ones((5,5))) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) dilatada = cv2.morphologyEx (dilat, cv2. MORPH_CLOSE , kernel) dilatada = cv2.morphologyEx (dilatada, cv2. MORPH_CLOSE , kernel) contorno,h=cv2.findContours(dilatada,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) cv2.line(frame1, (25, pos_linha), (1200, pos_linha), (255,127,0), 3) for(i,c) in enumerate(contorno): (x,y,w,h) = cv2.boundingRect(c) validar_contorno = (w >= largura_min) and (h >= altura_min) if not validar_contorno: continue cv2.rectangle(frame1,(x,y),(x+w,y+h),(0,255,0),2) centro = pega_centro(x, y, w, h) detec.append(centro) cv2.circle(frame1, centro, 4, (0, 0,255), -1) for (x,y) in detec: if y<(pos_linha+offset) and y>(pos_linha-offset): carros+=1 cv2.line(frame1, (25, pos_linha), (1200, pos_linha), (0,127,255), 3) detec.remove((x,y)) print("car is detected : "+str(carros)) cv2.putText(frame1, "VEHICLE COUNT : "+str(carros), (450, 70), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255),5) cv2.imshow("Video Original" , frame1) cv2.imshow("Detectar",dilatada) if cv2.waitKey(1) == 27: break cv2.destroyAllWindows() cap.release()
[ "hashmeetsingh409@yahoo.com" ]
hashmeetsingh409@yahoo.com
766f3f730b71b9f62fb1644f7c289f4b0e1fda4b
fbbae3b182f601670b6568f295a23cd7b7f7f620
/scripts/pick_ref_from_paf.py
51125bc62dbb6d670e5041f35d2edeaa4253b325
[ "MIT" ]
permissive
jmeppley/np_read_clustering
4a74896973892bd917516736335ebdd6376838d2
88a23c729f42f2249926d2e3420f3c30e01bfddd
refs/heads/main
2023-04-19T20:23:13.104017
2021-05-14T00:50:31
2021-05-14T00:50:31
351,255,777
0
0
null
null
null
null
UTF-8
Python
false
false
921
py
import pandas from hit_tables import parse_blast_m8, PAF from Bio import SeqIO # pick a best read hits = parse_blast_m8(str(snakemake.input.paf),format=PAF) hit_matches = hits.groupby(['hit','query']).agg({'matches':sum}) mean_matches = {r:hit_matches.query(f'hit != query and (hit == "{r}" or query == "{r}")').matches.mean() for r in set(i[0] for i in hit_matches.index).union(i[1] for i in hit_matches.index)} best_matches = sorted(mean_matches.keys(), key=lambda r: mean_matches[r], reverse=True) ref_read = best_matches[0] # write out to 2 files with open(str(snakemake.output.ref), 'wt') as ref_out: with open(str(snakemake.output.others), 'wt') as others_out: for read in SeqIO.parse(str(snakemake.input.fasta), 'fasta'): if read.id == ref_read: ref_out.write(read.format('fasta')) else: others_out.write(read.format('fasta'))
[ "jmeppley@gmail.com" ]
jmeppley@gmail.com
4f2f99004a0e686eef2bc53c51e5ed5b221a0cb3
288a00d2ab34cba6c389b8c2444455aee55a8a95
/tests/data23/recipe-578221.py
be4002651ea48b719e8744eeded95287e6f3f139
[ "BSD-2-Clause" ]
permissive
JohannesBuchner/pystrict3
ffd77b7bbc378bd4d8f21b5c6bd69a0d64a52ddb
18b0dd369082422f9bf0f89c72e7acb53a49849c
refs/heads/master
2023-08-14T06:37:37.954880
2023-07-13T11:16:38
2023-07-13T11:16:38
268,571,175
1
1
null
null
null
null
UTF-8
Python
false
false
2,507
py
#!/usr/bin/python # -*- coding: utf-8 -*- # Recipe # ---------------------------------------------------------------------------- class recipe: @staticmethod def enter_event(notified_f): def wrapper(f): def caller(obj, *args, **kargs): notified_f(obj, *args, **kargs) ret = f(obj, *args, **kargs) return ret return caller return wrapper @staticmethod def exit_event(notified_f): def wrapper(f): def caller(obj, *args, **kargs): # Start of diff between enter_event ret = f(obj, *args, **kargs) notified_f(obj, *args, **kargs) # End of diff between enter_event return ret return caller return wrapper # Tests # ---------------------------------------------------------------------------- class c: def notify_entering(self, *args, **kargs): print(' - function notify_entering() is triggered :') print(' - self : [%s]' % self) print(' - args : %s' % repr(args)) print(' - kargs : %s' % repr(kargs)) print() def notify_exiting(self, *args, **kargs): print(' - function notify_exiting() is triggered :') print(' - self : [%s]' % self) print(' - args : %s' % repr(args)) print(' - kargs : %s' % repr(kargs)) print() # Method @recipe.enter_event(notify_entering) @recipe.exit_event(notify_exiting) def f(self, x): print(' - inside o.f() ...') print(' - self = [%s]' % self) print(' - x = [%s]' % x) print() # Class method @classmethod @recipe.enter_event(notify_entering) @recipe.exit_event(notify_exiting) def fclass(cls, x): print(' - inside o.fclass() ...') print(' - cls = [%s]' % cls) print(' - x = [%s]' % x) print() # Static method @staticmethod @recipe.enter_event(notify_entering) @recipe.exit_event(notify_exiting) def fstatic(x): print(' - inside o.fstatic() ...') print(' - x = [%s]' % x) print() if __name__ == '__main__': o = c() print('-' * 78) print('- calling o.f(123) ...') o.f(123) print('-' * 78) print('- calling o.fclass(234) ...') o.fclass(234) print('-' * 78) print('- calling o.fstatic(345) ...') o.fstatic(345)
[ "johannes.buchner.acad@gmx.com" ]
johannes.buchner.acad@gmx.com
6f506575a29cec64e93559190ea52f8a7ae7108d
2d209ce06ce527d29997ed9af9938e5bfd049903
/tests/test_app.py
8e9f53fe3be83d8f5269c45c2a10342ba409fe5d
[ "MIT" ]
permissive
martinmaina/flaskWeb
d925ccc237fb62511c062e2e42feb260a303e369
c3bf6fe63ae76d6168a4e6c7c2ae17c33b41f31a
refs/heads/master
2022-12-11T12:24:56.402365
2019-03-15T00:44:03
2019-03-15T00:44:03
175,322,492
0
0
MIT
2022-12-08T01:41:54
2019-03-13T01:19:28
HTML
UTF-8
Python
false
false
1,752
py
import unittest from app import app class TestingApp(unittest.TestCase): #Does the app loads up correctly def test_index(self): tester = app.test_client(self) resp = tester.get('/', content_type='html/text') self.assertEqual(resp.status_code, 200) #Does the app requires login when one wants to add a post def test_requiresLoginBeforePost(self): tester = app.test_client(self) resp = tester.get('/addPost', data=dict(username="username1", password="password1"), follow_redirects=True) self.assertIn(b'You are trying', resp.data) ''' #If the user visits unknown Page. Does the error page loads def test_unkownPageVisited(self): tester = app.test_client(self) resp = tester.post('/posts/maina', data=dict(username="user", password="pass"), follow_redirects=True) self.assertIn(b'Sorry', resp.data) #Corerct logins def test_correctLogin(self): tester = app.test_client(self) resp = tester.post('/login', data=dict(username='user', password='pass'), follow_redirects=True) self.assertIn(b'You are logged in', resp.data) #Incorrect Logins def test_incorrectLogint(self): tester = app.test_client(self) resp = tester.post('/login', data=dict(username='username', password='passwoird'), follow_redirects=True) self.assertIn(b'Please try again', resp.data) #Does the user able to add a post def test_addPost(self): tester = app.test_client(self) resp = tester.post('/addpost', data=dict(username='username', password='passwoird'), follow_redirects=True) self.assertEqual(resp.status_code, 200) ''' if __name__ == '__main__': unittest.main()
[ "m0Lzixs3m0qy@gmail.com" ]
m0Lzixs3m0qy@gmail.com
bf77d76c896cc754fd8b930a615cc17a6d6ceb5d
6d13de0d1ca89badfb76c677ffa8d7e2829677cb
/beaconWeb/apps/beacon/models/deal_place.py
d89319726a19ca74e04f52af68c266a76337c0c7
[]
no_license
jasjitsingh85/beaconweb
08a2b97346aea6db87dd19567c39a0d99f383ae8
269c6683f759fd7e75d13ea9eec8ad63ee24df53
refs/heads/master
2021-01-13T03:43:09.308401
2016-12-24T16:12:15
2016-12-24T16:12:15
77,268,841
0
0
null
null
null
null
UTF-8
Python
false
false
2,527
py
from django.db import models from beaconWeb.common_utils import smart_format from beaconWeb.apps.beacon.common.constants.place_sales_status import PLACE_SALES_STATUS from point_of_sale import PointOfSale class DealPlace(models.Model): longitude = models.FloatField(db_index=True) latitude = models.FloatField(db_index=True) name = models.CharField(max_length=128) street_address = models.CharField(max_length=128) phone = models.CharField(max_length=20, blank=True, null=True) source_image_url = models.CharField(max_length=400, blank=True, null=True) # image_url = models.CharField(max_length=400, blank=True, null=True) yelp_id = models.CharField(max_length=128, blank=True, null=True) yelp_rating_image_url = models.CharField(max_length=256, blank=True, null=True) yelp_review_count = models.IntegerField(blank=True, null=True) foursquare_id = models.CharField(max_length=128, blank=True, null=True) facebook_id = models.CharField(max_length=128, blank=True, null=True) instagram_id = models.CharField(max_length=128, blank=True, null=True) twitter_id = models.CharField(max_length=128, blank=True, null=True) place_description = models.TextField(blank=True, null=True) place_type = models.CharField(max_length=150, blank=True, null=True) neighborhood = models.CharField(max_length=150, blank=True, null=True) email = models.CharField(max_length=40, blank=True, null=True) website = models.CharField(max_length=500, blank=True, null=True) events_url = models.CharField(max_length=250, blank=True, null=True) closed = models.BooleanField(default=False) date_updated = models.DateTimeField("Date Updated", auto_now=True) in_review = models.BooleanField(default=False) pipeline_status = models.CharField(max_length=10, choices=PLACE_SALES_STATUS.ENUM, blank=True, null=True) point_of_sale = models.OneToOneField(PointOfSale, blank=True, null=True) class Meta: app_label = 'beacon' def __unicode__(self): return smart_format("{0}, {1}", self.name, self.street_address) @property def image_url(self): if self.source_image_url: return self.source_image_url else: index = (self.id % 9) + 1 url = "https://s3-us-west-2.amazonaws.com/hotspot-venue-images/placeholder{0}.png".format(index) return url @property def has_pos(self): if self.point_of_sale: return True else: return False
[ "jazjit.singh@gmail.com" ]
jazjit.singh@gmail.com
59124cc9eaca6ffaa9d4578175f23e410831ad22
d36ed6850556e159594156f069280c6bb4aa9e13
/manage.py
29f5145a6288c75313bf20bc66b772edd16fc6a3
[ "MIT" ]
permissive
underflow101/intraviewAI
ab85e2211e839ece1af1de57c72f277c53a3bdf5
0775fe532d650c53d3248a3ccf5b6d67b948ebbe
refs/heads/master
2022-09-10T17:44:39.594494
2020-05-29T02:38:51
2020-05-29T02:38:51
265,801,191
0
0
null
null
null
null
UTF-8
Python
false
false
631
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'intraviewAI.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "ikarus125@gmail.com" ]
ikarus125@gmail.com
470e383186c84807b83b797a5d3fe2a8f83a3797
9ed9ee7b72c2aecefac44b24ddf0172607ebe86b
/venv3/bin/django-admin
e7be1a88a44490e7be83d227fd10b593a2319af8
[ "MIT" ]
permissive
vict0rl/lovealldogs
e414497be388ed1df7bdc4af73e10e2a7f08bc9b
8ed5f4376cd2b692004fe445f4b4fe2919885d11
refs/heads/master
2021-09-23T10:09:21.036242
2020-02-07T00:05:48
2020-02-07T00:05:48
238,802,365
0
0
MIT
2021-09-22T18:31:47
2020-02-06T23:01:29
Python
UTF-8
Python
false
false
307
#!/home/pypi/Desktop/cleanup/loveofalldogs/venv3/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
[ "leungvb@gmail.com" ]
leungvb@gmail.com
903717c0239cdbaab433ca713f2762dd4090b147
1e90b086510e82ece55c75036c89cc8961b6c1c4
/client.py
40708145c3215f117ca0471c414907e1d48801e4
[]
no_license
saurabh1120/python-chat-application
363072684a910505ed906e4c9b1e60c79d5031ee
b8f387a4125ef11bae38d9e8ec042925165d7623
refs/heads/main
2023-01-05T18:49:15.649127
2020-10-25T18:30:41
2020-10-25T18:30:41
307,165,189
0
0
null
null
null
null
UTF-8
Python
false
false
504
py
import socket UDP_IP = "127.0.0.1" UDP_PORT = 5018 print("IP address",UDP_IP) print("Port number ",UDP_PORT) sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) try: while True: message=input("enter message to be sent ").encode() if message in [b"Q",b"q"]: break; sock.sendto(message,(UDP_IP, UDP_PORT)) data, addr = sock.recvfrom(1024) if data in [b"Q",b"q"]: break; print(data.decode()) except Exception as e: print(e)
[ "noreply@github.com" ]
saurabh1120.noreply@github.com
c9916da70d4b249b2cffcb7bc6636e200540d8ba
a73cb19f3e20f8205552052397b5aee1040bc119
/edx_ws/build/catkin_generated/order_packages.py
a58c31d83cf7496f24b54419fba20d73e5053b46
[]
no_license
aabs7/ROS
bfa5d01c125afb3811f9af42475be7cb8922901b
ed037520c940715b909350b9793e944d2207775e
refs/heads/master
2022-12-08T10:24:57.466726
2020-08-23T04:10:29
2020-08-23T04:10:29
288,091,329
0
0
null
null
null
null
UTF-8
Python
false
false
402
py
# generated from catkin/cmake/template/order_packages.context.py.in source_root_dir = '/home/abhish/tutorial_ws/edx_ws/src' whitelisted_packages = ''.split(';') if '' != '' else [] blacklisted_packages = ''.split(';') if '' != '' else [] underlay_workspaces = '/home/abhish/tutorial_ws/edx_ws/devel;/opt/ros/melodic'.split(';') if '/home/abhish/tutorial_ws/edx_ws/devel;/opt/ros/melodic' != '' else []
[ "abheeshkhanal@gmail.com" ]
abheeshkhanal@gmail.com
bdb95ee4505887d95877ca3f592d4b8b5565ae5f
7db4fe5ccdc894536870a913cc49c5740845257b
/exercicios_curso_em_video/ex078.py
d62ad7de3b38046e13324b5c6885bce6c73b167c
[]
no_license
ErickJonesA7X/py_lessons2
b62ea2f6d9e238d3a1cd67c6c933512e707dfac2
6472a21c7c2cb3e772eec3dd3d1e75be05f8608b
refs/heads/master
2022-12-08T09:25:14.669312
2020-07-17T14:57:37
2020-07-17T14:57:37
252,834,258
0
0
null
2021-06-02T02:31:46
2020-04-03T20:30:36
Python
UTF-8
Python
false
false
700
py
valores = list() maior = menor = 0 for c in range(0, 5): valores.append(int(input(f'Digite um valor para a posição {c}: '))) if c == 0: maior = menor = valores[c] else: if valores[c] > maior: maior = valores[c] if valores[c] < menor: menor = valores[c] print('=-'*30) print(f'Você digitou os valores {valores}') print(f'O maior valor digitado foi {maior} nas posições ', end='') for i, v in enumerate(valores): if v == maior: print(f'{i}... ', end='') print() print(f'O menor valor difitado foi {menor} nas posições ', end='') for i, v in enumerate(valores): if v == menor: print(f'{i}...', end='') print()
[ "jonescomercial@gmail.com" ]
jonescomercial@gmail.com
7c9ddf86c654c30a83b0d6faa6ebd8e0e03e5c96
3d7afb98400180c74b3b642e95f107e9f2639e6e
/02_api_server/app_name/models.py
a6eba645ff72878c406bdfbc6b9c9f581b39cbe1
[]
no_license
parkeunsang/django_blog
6cd96e9be5a62c3ed519ceb95157f29bc39a642b
3bba2137de05a35b64af605753815b91ee5eaa53
refs/heads/master
2023-06-24T10:22:37.352454
2021-07-18T08:04:27
2021-07-18T08:04:27
374,155,988
0
0
null
null
null
null
UTF-8
Python
false
false
133
py
from django.db import models class Question(models.Model): name = models.CharField(max_length=5) age = models.IntegerField()
[ "dislive@naver.com" ]
dislive@naver.com
c73d9c7f05e17c3588c3b21d88860513158f2b14
4d0d8d045d3a104a87a50c3dfc4569faac095254
/cementerio/forms.py
f3b8c755535bf6c2e3a9a65f46535bc0a662f1d1
[]
no_license
tapiaw38/obraspublicas
07dedadda38e5e33f4bac3760974cd251b4e253c
fc1721ecf421402ca3d6b746cf733a6da47a8694
refs/heads/master
2020-12-29T12:08:52.301814
2020-04-29T04:31:44
2020-04-29T04:31:44
238,602,291
0
0
null
null
null
null
UTF-8
Python
false
false
5,177
py
from django import forms from cementerio.models import Cementerio # Create you forms class cementerioForm(forms.ModelForm): class Meta: model = Cementerio fields = [ 'fecha_compra', 'usuario', 'construccion', 'lote', 'lote_num', 'lote_cuadro', 'dimension', 'precio_lote', 'vigencia', 'dias_concesion', 'prorroga_iniciar', 'prorroga_trabajo', 'abono_anual', 'contrato', ] labels = { 'fecha_compra':'Fecha solicitud', 'usuario':'Usuario', 'construccion':'Tipo de construcción', 'lote':'Lote', 'lote_num':'Número', 'lote_cuadro':'Cuadro', 'dimension':'Dimensión', 'precio_lote':'Precio', 'vigencia':'Años del Contrato', 'dias_concesion':'Plazo en dias para renovación de contratos', 'prorroga_iniciar':'Plazo en días para iniciar construcción', 'prorroga_trabajo':'Plazo en días para terminar construcción', 'abono_anual':'Precio del pago Anual', 'contrato':'Imagen del contrato', } TIEMPO_CONTRATO = ( (1, '1'), (2, '2'), (3, '3'), (4, '4'), ) TIPO = ( ('fosa', 'Fosa'), ('nicho', 'Nicho'), ('mansuleo', 'Mansuleo'), ) widgets = { 'fecha_compra': forms.DateTimeInput(attrs={'class':'form-control'}), 'usuario': forms.Select(attrs={'class':'form-control'}), 'construccion':forms.Select(choices=TIPO,attrs={'class':'form-control'}), 'lote': forms.TextInput(attrs={'class':'form-control'}), 'lote_num': forms.NumberInput(attrs={'class':'form-control'}), 'lote_cuadro':forms.TextInput(attrs={'class':'form-control'}), 'dimension':forms.TextInput(attrs={'class':'form-control'}), 'precio_lote':forms.NumberInput(attrs={'class':'form-control'}), 'vigencia':forms.Select(choices=TIEMPO_CONTRATO,attrs={'class':'form-control'}), 'dias_concesion':forms.NumberInput(attrs={'class':'form-control'}), 'prorroga_iniciar':forms.NumberInput(attrs={'class':'form-control'}), 'prorroga_trabajo':forms.NumberInput(attrs={'class':'form-control'}), 'abono_anual':forms.NumberInput(attrs={'class':'form-control'}), 'contrato': forms.ClearableFileInput(attrs={'class':'form-control'}), } class anualForm_1(forms.ModelForm): class Meta: model = Cementerio fields = [ 'monto_anual1', ] labels = { 'monto_anual1':'Monto a pagar cuota N°1', } widgets = { 'monto_anual1': forms.NumberInput(attrs={'class':'form-control'}), } class anualForm_2(forms.ModelForm): class Meta: model = Cementerio fields = [ 'monto_anual2', ] labels = { 'monto_anual2': 'Monto a pagar cuota N°2', } widgets = { 'monto_anual2': forms.NumberInput(attrs={'class': 'form-control'}), } class anualForm_3(forms.ModelForm): class Meta: model = Cementerio fields = [ 'monto_anual3', ] labels = { 'monto_anual3': 'Monto a pagar cuota N°3', } widgets = { 'monto_anual3': forms.NumberInput(attrs={'class': 'form-control'}), } class anualForm_4(forms.ModelForm): class Meta: model = Cementerio fields = [ 'monto_anual4', ] labels = { 'monto_anual4': 'Monto a pagar cuota N°4', } widgets = { 'monto_anual4': forms.NumberInput(attrs={'class': 'form-control'}), } class permisoForm(forms.ModelForm): class Meta: model = Cementerio fields = [ 'fecha_inicio', 'metro', 'precio_metro', 'prorroga_trabajo', # Cambiar estado a True en la vista ] labels = { 'fecha_inicio':'Inicio de Construcción', 'metro':'Metros cuadrados', 'precio_metro':'Precio por metro cuadrado', 'prorroga_trabajo':'Dias de prorroga para finalizar construcción', } widgets = { 'fecha_inicio':forms.TextInput(attrs={'class': 'form-control'}), 'metro':forms.NumberInput(attrs={'class': 'form-control'}), 'precio_metro':forms.NumberInput(attrs={'class': 'form-control'}), 'prorroga_trabajo': forms.TextInput(attrs={'class': 'form-control'}), } class fintrabajoForm(forms.ModelForm): class Meta: model = Cementerio fields = [ 'trabajo_final', ] labels = { 'trabajo_final':'Finalizacíon de obra', } widgets = { 'trabajo_final':forms.NullBooleanSelect(), }
[ "tapiaw38@gmail.com" ]
tapiaw38@gmail.com
24425531c7148d11ec8d15bbc859b75ade65dd3b
c95acbeffa00fee3efbc1b290ad7b1fa15769025
/server.py
fb3a1a9fa2bb00fdd3fabd438fe79801a6c3e8b4
[]
no_license
saugatsthapit/FTP-server
07f6c87400bf679b9bdfd098e93598e5c407e19a
6f7d580ecae213d21bb447fe7d6014dac076e5d6
refs/heads/master
2020-04-05T19:05:52.875834
2018-11-25T21:39:57
2018-11-25T21:39:57
157,118,415
0
0
null
null
null
null
UTF-8
Python
false
false
35,032
py
#!/usr/bin/env python3 # --*-- coding: utf-8 --*-- import socket import threading import os import stat import sys import time import grp import pwd import ssl import codecs try: import ConfigParser except ImportError: import configparser as ConfigParser try: HOST = '127.0.0.1' # socket.gethostbyname(socket.gethostname()) except socket.error: HOST = '127.0.0.1' PORT = 8443 # command port CWD = os.path.abspath('.') # os.getenv('HOME') allow_delete = True # used to indicate if it's allowed to delete files or not logfile = os.getcwd() + r'/socket-server.log' # name of the log file config_file_path = "ftpserverd.conf" ''' Reads the settings from the digital_ocean.ini file ''' config = ConfigParser.SafeConfigParser() config.read(os.path.dirname(os.path.realpath(__file__)) + '/' + config_file_path) def log(func, cmd, client_address=None): if client_address is not None: client = "%s, %s" % client_address logmsg = time.strftime("%Y-%m-%d %H-%M-%S [-] [" + client + "] " + func) else: logmsg = time.strftime("%Y-%m-%d %H-%M-%S [-] " + func) print(logmsg, cmd) # Write log to file f = open(logfile, 'a+') # 'a' will append to an existing file if it exists f.write(logmsg + " {}\n".format(cmd)) # write the text to the logfile and move to next line # Load config properties try: # if config.has_option('server_options', 'port_mode'): # self.api_token = config.get('server_options', 'port_mode') port_mode = config.get('server_options', 'port_mode').encode('utf-8') pasv_mode = config.get('server_options', 'pasv_mode').encode('utf-8') except Exception as err: log('Config ERR', err) # List of available commands COMMANDS = ["CDUP", "CWD", "EPRT", "EPSV", "HELP", "LIST", "PASS", "PASV", "PORT", "PWD", "QUIT", "RETR", "STOR", "SYST", "TYPE", "USER", "NLIST", "DELE", "MKD", "RMD", "RNFR", "RNTO", "REST", "APPE"] class FtpServerProtocol(threading.Thread): def __init__(self, conn, address): threading.Thread.__init__(self) self.authenticated = False self.banned_username = False self.pasv_mode = False self.rest = False self.cwd = CWD self.commSock = conn # communication socket as command channel self.address = address self.dataSockAddr = HOST self.dataSockPort = PORT self._epsvall = False # used for EPSV self._af = socket.AF_INET # address_family def run(self): """ receive commands from client and execute commands """ self.sendWelcome() while True: try: # Receive the data in small chunks and retransmit it data = self.commSock.recv(1024).rstrip() try: cmd = data.decode('utf-8') log('Received data from client: ', cmd, self.address) except AttributeError: cmd = data # if received data is empty or not exists break this loop if not cmd or cmd is None: break except socket.error as err: log('Receive', err) try: cmd, arg = cmd[:4].strip().upper(), cmd[4:].strip() or None if cmd not in COMMANDS: self.sendCommand('Not valid command\r\n') continue if not self.authenticated and cmd not in ["USER", "PASS", "HELP"]: self.sendCommand('530 User not logged in.\r\n') continue func = getattr(self, cmd) func(arg) except Exception as err: self.sendCommand('500 Syntax error, command unrecognized. ' 'This may include errors such as command line too long.\r\n') log('Error while trying to call command based on received data', err) #-------------------------------------# # # Create Ftp data transport channel ## #-------------------------------------# def startDataSock(self): log('startDataSock', 'Opening a data channel') try: self.dataSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if self.pasv_mode: self.dataSock, self.address = self.serverSock.accept() else: self.dataSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.dataSock.connect((self.dataSockAddr, self.dataSockPort)) except socket.error as err: log('startDataSock', err) def stopDataSock(self): log('stopDataSock', 'Closing a data channel') try: if hasattr(self, 'dataSock') and self.dataSock is not None: self.dataSock.close() if self.pasv_mode: self.serverSock.close() except socket.error as err: log('stopDataSock', err) def sendCommand(self, cmd): self.commSock.send(cmd.encode('utf-8')) def sendData(self, data): self.dataSock.send(data.encode('utf-8')) def sendWelcome(self): """ when connection created with client will send a welcome message to the client """ self.sendCommand('220 Welcome.\r\n') def _make_epasv(self, extmode=False): """Initialize a passive data channel with remote client which issued a PASV or EPSV command. If extmode argument is True we assume that client issued EPSV in which case extended passive mode will be used (see RFC-2428). """ # close established data connections, if any if hasattr(self, 'dataSock') and self.dataSock is not None: self.stopDataSock() # open data channel try: self.pasv_mode = True # extmode self._af = self.getIpVersion(HOST, PORT) self.serverSock = socket.socket(self._af, socket.SOCK_STREAM) self.serverSock.bind((HOST, 0)) self.serverSock.listen(5) # Enable a server to accept connections. addr, port = self.serverSock.getsockname() ipnum = socket.inet_aton(addr) log("EPSV", 'Address: ' + ipnum) if extmode: self.sendCommand("229 Entering Extended Passive Mode (|||" + str(port) + "|)") log("EPSV", 'Open socket Address: ' + addr + " and Port: " + str(port)) else: self.sendCommand('227 Entering Passive Mode (%s,%u,%u).\r\n' % (','.join(addr.split('.')), port >> 8 & 0xFF, port & 0xFF)) log("PASV", 'Open socket Address: ' + addr + " and Port: " + str(port)) except: self.sendCommand("500 (EPSV) Failed to create data socket.") #-------------------------------------# # # Create FTP utilities functions ## #-------------------------------------# def validateCredentials(self): if not self.authenticated: for line in open("accounts.txt", "r").readlines(): # checks whether username/password is in the file info = line.split() # splits a string into a list. Default separator is any whitespace. if self.username == info[0] and self.passwd == info[1]: self.authenticated = True self.sendCommand('230 User logged in, proceed.\r\n') self.saveAuthentication(True) break if not self.authenticated: self.sendCommand('Provided credentials are not found.\r\n') # Function used to save all authentication data together with number of tries to authenticate def saveAuthentication(self, resset): if self.username is not None and self.passwd is not None: user_founded = False # Read authentication saved data file = open('ftpserver.secure', 'r+') # open the file: lines = file.readlines() # get all your lines from the file file.close() # close the file file = open('ftpserver.secure', 'w') # reopen it in write mode for line in lines: if line.startswith(self.username): # username found user_founded = True cnt_auth = int(line.split(":")[2]) if cnt_auth > 3: self.banned_username = True if resset: file.write(self.username + ":" + self.passwd + ":%d" % (1)) else: file.write(self.username + ":" + self.passwd + ":%d" % (cnt_auth + 1)) else: file.write(line) # write your lines back file.close() # close the file again # means credentials will be inserted into file if not user_founded: # open a file for writing and create it if does not exist with open('ftpserver.secure', 'a+') as f: f.write(self.username + ":" + self.passwd + ":%d" % (1)) def checkBlockedUsername(self): if hasattr(self, 'username') and self.username is not None: file = open('ftpserver.secure', 'r+') # open the file: lines = file.readlines() # get all your lines from the file for line in lines: if line.startswith(self.username): # username found cnt_auth = int(line.split(":")[2]) if cnt_auth > 3: self.banned_username = True return True return False def _support_hybrid_ipv6(self): """Return True if it is possible to use hybrid IPv6/IPv4 sockets on this platform. """ # Note: IPPROTO_IPV6 constant is broken on Windows, see: # http://bugs.python.org/issue6926 try: if not socket.has_ipv6: return False return not self.serverSock.getsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY) except: return False def fileProperty(self, filepath): """ return information from given file, like this "-rw-r--r-- 1 User Group 312 Aug 1 2014 filename" """ st = os.stat(filepath) file_message = [ ] def _getFileMode(): modes = [ stat.S_IRUSR, stat.S_IWUSR, stat.S_IXUSR, stat.S_IRGRP, stat.S_IWGRP, stat.S_IXGRP, stat.S_IROTH, stat.S_IWOTH, stat.S_IXOTH, ] mode = st.st_mode fullmode = '' fullmode += os.path.isdir(filepath) and 'd' or '-' for i in range(9): fullmode += bool(mode & modes[i]) and 'rwxrwxrwx'[i] or '-' return fullmode def _getFilesNumber(): return str(st.st_nlink) def _getUser(): return pwd.getpwuid(st.st_uid).pw_name def _getGroup(): return grp.getgrgid(st.st_gid).gr_name def _getSize(): return str(st.st_size) def _getLastTime(): return time.strftime('%b %d %H:%M', time.gmtime(st.st_mtime)) for func in ('_getFileMode()', '_getFilesNumber()', '_getUser()', '_getGroup()', '_getSize()', '_getLastTime()'): file_message.append(eval(func)) file_message.append(os.path.basename(filepath)) return ' '.join(file_message) #------------------------------# # # Ftp services and functions ## #------------------------------# # Change the working directory to the parent directory. def CDUP(self, cmd): log('CDUP', self.cwd) try: self.cwd = os.path.abspath(os.path.join(self.cwd, '..')) self.sendCommand('200 CDUP Command successful.\r\n' + self.cwd + '\r\n') except Exception as err: log('CDUP', err) # Change the working directory def CWD(self, dirpath): try: pathname = dirpath.endswith(os.path.sep) and dirpath or os.path.join(self.cwd, dirpath) log('CWD', pathname) if not os.path.exists(pathname) or not os.path.isdir(pathname): self.sendCommand('550 CWD failed Directory not exists.\r\n') return self.cwd = pathname self.sendCommand('250 CWD Command successful.' + self.cwd + '\r\n') except Exception as err: log('CWD', err) # Specifies an extended port to which the server should connect. def EPRT(self, line): '''Send a EPRT command with the current host and the given port number.''' log('EPRT', line) try: """Start an active data channel by choosing the network protocol to use (IPv4/IPv6) as defined in RFC-2428. """ if self._epsvall: self.sendCommand("501 EPRT not allowed after EPSV ALL.\r\n") return # Parse EPRT request for getting protocol, IP and PORT. # Request comes in as: # <d>proto<d>ip<d>port<d> # ...where <d> is an arbitrary delimiter character (usually "|") and # <proto> is the network protocol to use (1 for IPv4, 2 for IPv6). try: af, ip, port = line.split(line[0])[1:-1] port = int(port) if not 0 <= port <= 65535: raise ValueError except (ValueError, IndexError, OverflowError): self.sendCommand("501 Invalid EPRT format.\r\n") return if af == "1": # test if AF_INET6 and IPV6_V6ONLY if (self._af == socket.AF_INET6 and not self._support_hybrid_ipv6()): self.sendCommand('522 Network protocol not supported (use 2).\r\n') else: try: octs = list(map(int, ip.split('.'))) if len(octs) != 4: raise ValueError for x in octs: if not 0 <= x <= 255: raise ValueError except (ValueError, OverflowError): self.sendCommand("501 Invalid EPRT format.\r\n") else: self.dataSockAddr = ip self.dataSockPort = port # self.startDataSock() elif af == "2": if self._af == socket.AF_INET: self.sendCommand('522 Network protocol not supported (use 1).\r\n') else: self.dataSockAddr = ip self.dataSockPort = port # self.startDataSock() else: if self._af == socket.AF_INET: self.sendCommand('501 Unknown network protocol (use 1).\r\n') else: self.sendCommand('501 Unknown network protocol (use 2).\r\n') # The format of EPRT is: EPRT<space><d><net-prt><d><net-addr><d><tcp-port><d> # <net-prt>: # AF Number Protocol # --------- -------- # 1 Internet Protocol, Version 4 [Pos81a] # 2 Internet Protocol, Version 6 [DH96] self.sendCommand('200 Success: ' +"EPRT |" + af + "|" + self.dataSockAddr + "|" + str(self.dataSockPort) + "|\r\n") except Exception as err: log('EPRT', err) # Set passive data connection over IPv4 or IPv6 (RFC-2428 - FTP Extensions for IPv6 and NATs) def EPSV(self, cmd): log('EPSV', cmd) try: log('EPSV', cmd) """Start a passive data channel by using IPv4 or IPv6 as defined in RFC-2428. """ # RFC-2428 specifies that if an optional parameter is given, # we have to determine the address family from that otherwise # use the same address family used on the control connection. # In such a scenario a client may use IPv4 on the control channel # and choose to use IPv6 for the data channel. # But how could we use IPv6 on the data channel without knowing # which IPv6 address to use for binding the socket? # Unfortunately RFC-2428 does not provide satisfing information # on how to do that. The assumption is that we don't have any way # to know wich address to use, hence we just use the same address # family used on the control connection. if not cmd: self._make_epasv(extmode=True) # IPv4 elif cmd == "1": if self._af != socket.AF_INET: self.sendCommand('522 Network protocol not supported (use 2).\r\n') else: self._make_epasv(extmode=True) # IPv6 elif cmd == "2": if self._af == socket.AF_INET: self.sendCommand('522 Network protocol not supported (use 1).\r\n') else: self._make_epasv(extmode=True) elif cmd.lower() == 'all': self._epsvall = True self.sendCommand('220 Other commands other than EPSV are now disabled.\r\n') else: if self._af == socket.AF_INET: self.sendCommand('501 Unknown network protocol (use 1).\r\n') else: self.sendCommand('501 Unknown network protocol (use 2).\r\n') except Exception as err: log('EPSV', err) # A HELP request asks for human-readable information from the server. # The server may accept this request with code 211 or 214, or reject it with code 502. def HELP(self, arg): help = """ 214 CDUP Changes the working directory on the remote host to the parent of the current directory. 'Syntax: CDUP (go to parent directory).' CWD Type a directory path to change working directory. 'Syntax: CWD [<SP> dir-name] (change working directory).' EPRT Initiate a data connection required to transfer data (such as directory listings or files) between the client and server. Is required during IPv6 active mode transfers. 'Syntax: EPRT <SP> |protocol|ip|port| (extended active mode).' EPSV Tells the server to enter a passive FTP session rather than Active. (Its use is required for IPv6.) This allows users behind routers/firewalls to connect over FTP when they might not be able to connect over an Active (PORT/EPRT) FTP session. EPSV mode has the server tell the client where to connect for the data port on the server. 'Syntax: EPSV [<SP> proto/"ALL"] (extended passive mode).' HELP Displays help information. 'Syntax: HELP [<SP> cmd] (show help).' LIST [dirpath or filename] This command allows the server to send the list to the passive DTP. If the pathname specifies a path or The other set of files, the server sends a list of files in the specified directory. Current information if you specify a file path name, the server will send the file. 'Syntax: LIST [<SP> path] (list files).' PASS [password], Its argument is used to specify the user password string. 'Syntax: PASS [<SP> password] (set user password).' PASV The directive requires server-DTP in a data port. 'Syntax: PASV (open passive data connection).' PORT [h1, h2, h3, h4, p1, p2] The command parameter is used for the data connection data port 'Syntax: PORT <sp> h,h,h,h,p,p (open active data connection).' PWD Get current working directory. 'Syntax: PWD (get current working directory).' QUIT This command terminates a user, if not being executed file transfer, the server will shut down Control connection 'Syntax: QUIT (quit current session).' RETR This command allows server-FTP send a copy of a file with the specified path name to the data connection The other end. 'Syntax: RETR <SP> file-name (retrieve a file).' STOR This command allows server-DTP to receive data transmitted via a data connection, and data is stored as A file server site. 'Syntax: STOR <SP> file-name (store a file).' SYST This command is used to find the server's operating system type. 'Syntax: SYST (get operating system type).' USER [name], Its argument is used to specify the user's string. It is used for user authentication. 'Syntax: USER <SP> user-name (set username).' \r\n. """ self.sendCommand(help) # Asks the server to send the contents of a directory over the data connection already established def LIST(self, dirpath): if not self.authenticated: self.sendCommand('530 User not logged in.\r\n') return if not dirpath: pathname = os.path.abspath(os.path.join(self.cwd, '.')) elif dirpath.startswith(os.path.sep): pathname = os.path.abspath(dirpath) else: pathname = os.path.abspath(os.path.join(self.cwd, dirpath)) log('LIST', pathname) if not self.authenticated: self.sendCommand('530 User not logged in.\r\n') elif not os.path.exists(pathname): self.sendCommand('550 LIST failed Path name not exists.\r\n') else: self.sendCommand('150 Listing content.\r\n') self.startDataSock() if not os.path.isdir(pathname): file_message = self.fileProperty(pathname) self.dataSock.sock(file_message + '\r\n') else: for file in os.listdir(pathname): file_message = self.fileProperty(os.path.join(pathname, file)) self.sendData(file_message + '\r\n') self.stopDataSock() self.sendCommand('226 List done.\r\n') # Set password for current user used to authenticate def PASS(self, passwd): log("PASS", passwd) if passwd is None or not passwd: self.sendCommand('501 Syntax error in parameters or arguments.\r\n') elif not hasattr(self, 'username') or not self.username: self.sendCommand('503 The username is not available. ' 'Please set username first calling the function "USER".\r\n') else: self.checkBlockedUsername() if self.banned_username: log('PASS', "The username: " + self.username + " is blocked. You should unlock username first.") else: self.passwd = passwd self.saveAuthentication(False) self.validateCredentials() # Asks the server to accept a data connection on a new TCP port selected by the server. # PASV parameters are prohibited def PASV(self, cmd): if pasv_mode is not None and pasv_mode.lower().decode() == "yes": log("PASV", cmd) self.pasv_mode = True self.serverSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.serverSock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.serverSock.bind((HOST, 0)) self.serverSock.listen(5) addr, port = self.serverSock.getsockname() self.sendCommand('227 Entering Passive Mode (%s,%u,%u).\r\n' % (','.join(addr.split('.')), port >> 8 & 0xFF, port & 0xFF)) else: log("PASV", "PASV function is disabled by config file") # Use a different mechanism of creating a data connection. The PORT request has a parameter in the form: # h1,h2,h3,h4,p1,p2 : meaning that the client is listening for connections on TCP port p1*256+p2 # at IP address h1.h2.h3.h4 def PORT(self, cmd): if port_mode is not None and port_mode.lower().decode() == "yes" : """Start an active data channel by using IPv4.""" log("PORT: ", cmd) if self.pasv_mode: self.servsock.close() self.pasv_mode = False l = cmd[5:].split(',') self.dataSockAddr = '.'.join(l[:4]) self.dataSockPort = (int(l[4]) << 8) + int(l[5]) self.sendCommand('200 Get port.\r\n') else: log("PORT", "PORT function is disabled by config file") # Return current working directory def PWD(self, cmd): log('PWD', cmd) self.sendCommand('257 "%s".\r\n' % self.cwd) def QUIT(self, arg): log('QUIT', arg) self.authenticated = False self.username = None self.passwd = None self.sendCommand('221 Goodbye.\r\n') # Send the contents of a file over the data connection already established def RETR(self, filename): pathname = os.path.join(self.cwd, filename) log('RETR', pathname) if not os.path.exists(pathname): return try: if self.mode == 'I': file = open(pathname, 'rb') else: file = open(pathname, 'r') except OSError as err: log('RETR', err) self.sendCommand('150 Opening data connection.\r\n') if self.rest: file.seek(self.pos) self.rest = False self.startDataSock() while True: data = file.read(1024) if not data: break self.sendData(data) file.close() self.stopDataSock() self.sendCommand('226 Transfer complete.\r\n') # Read the contents of a file and upload to server def STOR(self, filename): if not self.authenticated: self.sendCommand('530 STOR failed User not logged in.\r\n') return pathname = os.path.join(self.cwd, filename) log('STOR', pathname) try: if self.mode == 'I': file = open(pathname, 'wb') else: file = open(pathname, 'w') except OSError as err: log('STOR', err) self.sendCommand('150 Opening data connection.\r\n') self.startDataSock() while True: data = self.dataSock.recv(1024) if not data: break file.write(data) file.close() self.stopDataSock() self.sendCommand('226 Transfer completed.\r\n') # Sets the transfer mode (ASCII/Binary). def TYPE(self, type): log('TYPE', type) self.mode = type if self.mode == 'I': self.sendCommand('200 Binary mode.\r\n') elif self.mode == 'A': self.sendCommand('200 Ascii mode.\r\n') # Information about the server's operating system def SYST(self, arg): log('SYST', arg) self.sendCommand('215 %s type.\r\n' % sys.platform) # Set the username required to authenticate def USER(self, user): log("USER", user) if not user: self.sendCommand('501 Syntax error in parameters or arguments.\r\n') else: if self.banned_username: log('USER', "This username is blocked: " + user) else: self.sendCommand('331 User name okay, need password.\r\n') self.username = user # # Optional functions ## def NLIST(self, dirpath): self.LIST(dirpath) def DELE(self, filename): pathname = filename.endswith(os.path.sep) and filename or os.path.join(self.cwd, filename) log('DELE', pathname) if not self.authenticated: self.sendCommand('530 User not logged in.\r\n') elif not os.path.exists(pathname): self.sendCommand('550 DELE failed File %s not exists.\r\n' % pathname) elif not allow_delete: self.sendCommand('450 DELE failed delete not allow.\r\n') else: os.remove(pathname) self.sendCommand('250 File deleted.\r\n') def MKD(self, dirname): pathname = dirname.endswith(os.path.sep) and dirname or os.path.join(self.cwd, dirname) log('MKD', pathname) if not self.authenticated: self.sendCommand('530 User not logged in.\r\n') else: try: os.mkdir(pathname) self.sendCommand('257 Directory created.\r\n') except OSError: self.sendCommand('550 MKD failed Directory "%s" already exists.\r\n' % pathname) def RMD(self, dirname): import shutil pathname = dirname.endswith(os.path.sep) and dirname or os.path.join(self.cwd, dirname) log('RMD', pathname) if not self.authenticated: self.sendCommand('530 User not logged in.\r\n') elif not allow_delete: self.sendCommand('450 Directory deleted.\r\n') elif not os.path.exists(pathname): self.sendCommand('550 RMDIR failed Directory "%s" not exists.\r\n' % pathname) else: shutil.rmtree(pathname) self.sendCommand('250 Directory deleted.\r\n') def RNFR(self, filename): pathname = filename.endswith(os.path.sep) and filename or os.path.join(self.cwd, filename) log('RNFR', pathname) if not os.path.exists(pathname): self.sendCommand('550 RNFR failed File or Directory %s not exists.\r\n' % pathname) else: self.rnfr = pathname def RNTO(self, filename): pathname = filename.endswith(os.path.sep) and filename or os.path.join(self.cwd, filename) log('RNTO', pathname) if not os.path.exists(os.path.sep): self.sendCommand('550 RNTO failed File or Direcotry %s not exists.\r\n' % pathname) else: try: os.rename(self.rnfr, pathname) except OSError as err: log('RNTO', err) def REST(self, pos): self.pos = int(pos) log('REST', self.pos) self.rest = True self.sendCommand('250 File position reseted.\r\n') def APPE(self, filename): if not self.authenticated: self.sendCommand('530 APPE failed User not logged in.\r\n') return pathname = filename.endswith(os.path.sep) and filename or os.path.join(self.cwd, filename) log('APPE', pathname) self.sendCommand('150 Opening data connection.\r\n') self.startDataSock() if not os.path.exists(pathname): if self.mode == 'I': file = open(pathname, 'wb') else: file = open(pathname, 'w') while True: data = self.dataSock.recv(1024) if not data: break file.write(data) else: n = 1 while not os.path.exists(pathname): filename, extname = os.path.splitext(pathname) pathname = filename + '(%s)' % n + extname n += 1 if self.mode == 'I': file = open(pathname, 'wb') else: file = open(pathname, 'w') while True: data = self.dataSock.recv(1024) if not data: break file.write(data) file.close() self.stopDataSock() self.sendCommand('226 Transfer completed.\r\n') def serverListener(): ''' AF_INET refers to the address family ipv4 ''' ''' SOCK_STREAM means connection oriented TCP protocol ''' listen_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) listen_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) listen_sock.bind((HOST, PORT)) listen_sock.listen(5) # put the socket into listening mode log('Server started', 'Listen on: %s, %s' % listen_sock.getsockname()) ''' a forever loop until we interrupt it or an error occurs ''' while True: connection, address = listen_sock.accept() # Establish connection with client. f = FtpServerProtocol(connection, address) f.start() log('Accept', 'Created a new connection %s, %s' % address) if __name__ == "__main__": # if config file is not configured properly the stop the server if port_mode.lower().decode() == "no" and pasv_mode.lower().decode() == "no": log('Server stop', "PortMode and PasvMode can't be both disabled. Please check config file") sys.exit() # the program should have 2 arguments: `1- log file; 2- port number if len(sys.argv) == 3: # Should be check for 3 because the first argument is the running filename arg_log_file = sys.argv[1] # This should be the path file to write logs arg_port = int(sys.argv[2]) # This should be the port number to run the server if os.path.exists(os.path.dirname(arg_log_file)): logfile = arg_log_file else: logfile = os.getcwd() + r'/' + arg_log_file if not 0 <= arg_port <= 65535: log('Server stop', 'The port number should be between 0 and 65535') sys.exit() else: PORT = arg_port log('Start ftp server:', 'Enter q or Q to stop ftpServer...') listener = threading.Thread(target=serverListener) listener.start() if sys.version_info[0] < 3: input = raw_input if input().lower() == "q": listen_sock.close() log('Server stop', 'Server closed') sys.exit() else: # send error log('Server stop', 'To start the socket server you should pass 2 arguments') log('Server stop', 'First is the log file and the Second is the port which the program will be running') log('Server stop', 'Syntax: python ftp_server_v0.1 socket-server.log 8888.') sys.exit()
[ "noreply@github.com" ]
saugatsthapit.noreply@github.com
50aa3d3fde4f45e299e57f5470df22dd1506ecc9
4b59ace76840cbeb28f0fac19f128cd3959a7c3a
/frontend/run.py
d381fa5212fed8cb580617aea4b4eea3d3db4729
[]
no_license
JoshuadeJong/ecommerce-microservice
2a8f4d2f091c459dc9bcb47c01904f21c478cf91
246c6d0eb014df2946874cafcddebea1e0eaa97d
refs/heads/master
2023-03-25T23:57:15.369285
2021-03-19T15:47:32
2021-03-19T15:47:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
99
py
from app.main import create_app app = create_app() app.run(host="0.0.0.0", port=5600, debug=True)
[ "joshuakdejong@gmail.com" ]
joshuakdejong@gmail.com
dcc0392f6613bccd534f30864e88e1035d08ff51
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_229/ch119_2020_04_01_13_58_16_858102.py
a55a95c429d1eaf3d9aa548c9c3726d2275bef4b
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
import math def calcula_euler(i,s,n,x): i = 0 s = 0 for i in range(n+1): s += (x**i)/math.factorial(i) print(s) return s print(calcula_euler)
[ "you@example.com" ]
you@example.com
d268b8cd4ef4affc04c41df7e087074e54334cf2
07519ddf6395a765f484464dab0e8ba0305486ae
/rango/migrations/0001_initial.py
47130fea4d3da9a31111ce705601aea8599ef9d3
[]
no_license
AdamClarkCode/tango_with_django_project
57e95d5d798a97b274c27926e98fd935253a87c5
19a2ba5deb59437448e4ba840f6b46ab694708e4
refs/heads/main
2023-03-03T08:41:58.571591
2021-02-11T22:19:08
2021-02-11T22:19:08
329,870,396
0
0
null
null
null
null
UTF-8
Python
false
false
1,033
py
# Generated by Django 2.2.17 on 2021-01-29 10:03 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128, unique=True)), ], ), migrations.CreateModel( name='Page', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=128)), ('url', models.URLField()), ('views', models.IntegerField(default=0)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='rango.Category')), ], ), ]
[ "2468460C@student.gla.ac.uk" ]
2468460C@student.gla.ac.uk
14eb245a021e3d508f9db7fff54caa3161fff836
76fb402dec3e1f9cb6c67f1fae81d3b3864fc120
/phoenix/modules/mkpasswd.py
573d0169b099764a848ec85d0b3accfebb47ca80
[ "Apache-2.0" ]
permissive
IsaPeter/PythonProjects
3021dbbd15398254f647bc8f1ddc13fd540df22a
62885fa6d4180e7b2c83fbb67541dc3fc3e29489
refs/heads/master
2023-04-21T13:53:09.114918
2021-05-14T09:09:24
2021-05-14T09:09:24
312,594,530
0
0
null
null
null
null
UTF-8
Python
false
false
2,750
py
#!/usr/bin/env python3 import crypt import os,sys # append base path to sys.path runpath = os.path.dirname(os.path.realpath(__file__)) approot = os.path.abspath(os.path.join(runpath, os.pardir)) sys.path.append(os.path.join(runpath,'..')) sys.path.append(approot) import lib.commandparser as cp # python3 -c 'import crypt; print(crypt.crypt("test", crypt.mksalt(crypt.METHOD_SHA512)))' module_name ="Make Password" module_id = "mkpasswd" module_description="Create UNIX like passwords" module_type = 'module' variables = {'password':'','type':'sha512',} args = None parser = None def parse_arguments(command): global args, parser parser = cp.commandParser(command) parser.add_argument('-t','--type',name='hashtype',help='The type of the used HASH algo.') parser.add_argument('-p','--password',name='password',help='The password string') parser.add_argument('-l','--list',name='listtypes',hasvalue=False,help='list the available hash types') parser.add_argument('-h','--help',name='help',hasvalue=False,help='Show the help menu') args = parser.parse() return args def help(): pass def run(arguments=''): makepass = True hashtype = 'sha512' password = '' if arguments == '': password = variables['password'] if password != '': enc = crypt.crypt(password, crypt.mksalt(crypt.METHOD_SHA512)) print(enc) return enc else: print("Please specify a Password string") else: args = parse_arguments(arguments) if parser.exists('password'): password = parser.get_value('password') if parser.exists('hashtype'): hashtype = parser.get_value('hashtype').lower() if parser.exists('listtypes'): makepass == False print("Blowfish; Crypt; MD5; SHA256; SHA512") return None if parser.exists('help'): parser.print_help() if makepass: if password != '': if hashtype == 'blowfish': enc = crypt.crypt(password, crypt.mksalt(crypt.METHOD_BLOWFISH)) elif hashtype == 'crypt': enc = crypt.crypt(password, crypt.mksalt(crypt.METHOD_CRYPT)) elif hashtype == 'md5': enc = crypt.crypt(password, crypt.mksalt(crypt.METHOD_MD5)) elif hashtype == 'sha256': enc = crypt.crypt(password, crypt.mksalt(crypt.METHOD_SHA256)) elif hashtype == 'sha512': enc = crypt.crypt(password, crypt.mksalt(crypt.METHOD_SHA512)) print(enc) return enc #run('programneme --help')
[ "venom@kali.local" ]
venom@kali.local
00bae78e87a3f76100a2e8f156bf108f25544378
aafa649d1faae4bc9ab703ea20d605c921f7e953
/fib_sum_last.py
d8894c6706f1d91d6487bfd0e5d31ec0a5f1304c
[]
no_license
sivakumarmanoharan/Algorithms-WarmUp
010424b57138b1c41dd0a516762510d9f245b5fd
ae2da1f35a100b74e04b70151430224a8db34851
refs/heads/master
2022-11-27T18:49:28.247010
2020-08-08T06:50:23
2020-08-08T06:50:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
a=[0,1] n=int(input()) if n==0: print(a[0]) elif n==1: print(a[1]) else: for i in range(2,n+1): fib=a[i-1]+a[i-2] a.append(fib) add=sum(a) print(add%10)
[ "noreply@github.com" ]
sivakumarmanoharan.noreply@github.com
d9f56c3577f1d257f62e56961bf26a6d25353d16
ca31add88a0cc32e2a52f7369fd90c9a37121e44
/Code.py
147fd8c585b49d2df5099adcad2014a89c61bb28
[ "MIT" ]
permissive
sumitsantape30/The-Random-Guess
852359f398c32b50e69d3cf56ba664bea92b4558
39b2ada17bd23bf45eabba7eebd0734c3f9108fa
refs/heads/main
2023-01-18T17:18:36.615272
2020-11-21T03:01:49
2020-11-21T03:01:49
314,531,936
0
0
null
null
null
null
UTF-8
Python
false
false
710
py
import random randNumber= random.randint(1,100) userGuess= None guesses= 0 while( userGuess != randNumber): userGuess= int(input("Enter your guess")) guesses += 1 if( userGuess == randNumber): print("You guressed it right!") else: if(userGuess > randNumber): print("You guessed it wrong! Enter the smaller Number") else: print("You guessed it wrong! Enter the larger Number") print(f"You guessed the number in {guesses} guesses.") with open("hiscore.txt","r") as f: hiscore = int(f.read()) if(guesses < hiscore): print("You have just broken the high Score") with open("hiscore.txt","w") as f: f.write(str(guesses))
[ "noreply@github.com" ]
sumitsantape30.noreply@github.com
aef02d6ee5b4300fff588f020b1734f514e9c784
1691d4ad8e91db36573238724034e9e82e60e484
/encoder_decoder_model/enet_decoder.py
789bf7b0f10e05e8d42ea832cac4cdbfedb8f95a
[]
no_license
lzb863/Enet
7276c6f992b403c0712c922e418295b190662c7d
69cc8c6fe31004284c80de0782f9fcf2709d7cd6
refs/heads/master
2022-01-11T13:18:05.423742
2019-07-09T02:44:36
2019-07-09T02:44:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,340
py
# -*- coding: utf-8 -*- # @Time : 2018.09.06 14:48 # @Author : Aaron Ran # @IDE: PyCharm Community Edition """ 实现一个基于Enet-encoder的特征编码类 """ from collections import OrderedDict import tensorflow as tf from encoder_decoder_model.ENet import Enet_model class Enet_decoder(Enet_model): """ 实现了一个基于ENet的特征解码类 """ def __init__(self): """ """ super(Enet_decoder, self).__init__() def decode_seg(self, input_tensor, later_drop_prob, pooling_indices_1, pooling_indices_2, scope): ret = OrderedDict() with tf.variable_scope(scope): # Encoder_3_seg print("####### Encoder_3_seg") network_seg = self.encoder_bottleneck_regular(x=input_tensor, output_depth=128, drop_prob=later_drop_prob, scope="seg_bottleneck_3_1") network_seg = self.encoder_bottleneck_dilated(x=network_seg, output_depth=128, drop_prob=later_drop_prob, scope="seg_bottleneck_3_2", dilation_rate=2) network_seg = self.encoder_bottleneck_asymmetric(x=network_seg, output_depth=128, drop_prob=later_drop_prob, scope="seg_bottleneck_3_3") network_seg = self.encoder_bottleneck_dilated(x=network_seg, output_depth=128, drop_prob=later_drop_prob, scope="seg_bottleneck_3_4", dilation_rate=4) network_seg = self.encoder_bottleneck_regular(x=network_seg, output_depth=128, drop_prob=later_drop_prob, scope="seg_bottleneck_3_5") network_seg = self.encoder_bottleneck_dilated(x=network_seg, output_depth=128, drop_prob=later_drop_prob, scope="seg_bottleneck_3_6", dilation_rate=8) network_seg = self.encoder_bottleneck_asymmetric(x=network_seg, output_depth=128, drop_prob=later_drop_prob, scope="seg_bottleneck_3_7") network_seg = self.encoder_bottleneck_dilated(x=network_seg, output_depth=128, drop_prob=later_drop_prob, scope="seg_bottleneck_3_8", dilation_rate=16) ret['stage3_seg'] = dict() ret['stage3_seg']['data'] = network_seg ret['stage3_seg']['shape'] = network_seg.get_shape().as_list() # decoder # # Decoder_1_seg print("####### # # Decoder_1_seg") network_seg = self.decoder_bottleneck(x=network_seg, output_depth=64, scope="seg_bottleneck_4_0", upsampling=True, pooling_indices=pooling_indices_2) network_seg = self.decoder_bottleneck(x=network_seg, output_depth=64, scope="seg_bottleneck_4_1") network_seg = self.decoder_bottleneck(x=network_seg, output_depth=64, scope="seg_bottleneck_4_2") ret['stage4_seg'] = dict() ret['stage4_seg']['data'] = network_seg ret['stage4_seg']['shape'] = network_seg.get_shape().as_list() # # Decoder_2_seg print("####### # # Decoder_2_seg") network_seg = self.decoder_bottleneck(x=network_seg, output_depth=16, scope="seg_bottleneck_5_0", upsampling=True, pooling_indices=pooling_indices_1) network_seg = self.decoder_bottleneck(x=network_seg, output_depth=16, scope="seg_bottleneck_5_1") ret['stage5_seg'] = dict() ret['stage5_seg']['data'] = network_seg ret['stage5_seg']['shape'] = network_seg.get_shape().as_list() # segmentation # # arg[1] = 2: in semantic segmentation branch # # arg[1] = 3: in embedding branch network_seg = tf.contrib.slim.conv2d_transpose(network_seg, 2, [2, 2], stride=2, scope="seg_fullconv", padding="SAME") print("################ total output = %s" % network_seg.get_shape().as_list()) ret['fullconv_seg'] = dict() ret['fullconv_seg']['data'] = network_seg#输出的二值分割图像 ret['fullconv_seg']['shape'] = network_seg.get_shape().as_list() return ret def decode_emb(self, input_tensor, later_drop_prob, pooling_indices_1, pooling_indices_2, scope): ret = OrderedDict() with tf.variable_scope(scope): # Encoder_3_emb network_emb = self.encoder_bottleneck_regular(x=input_tensor, output_depth=128, drop_prob=later_drop_prob, scope="emb_bottleneck_3_1") network_emb = self.encoder_bottleneck_dilated(x=network_emb, output_depth=128, drop_prob=later_drop_prob, scope="emb_bottleneck_3_2", dilation_rate=2) network_emb = self.encoder_bottleneck_asymmetric(x=network_emb, output_depth=128, drop_prob=later_drop_prob, scope="emb_bottleneck_3_3") network_emb = self.encoder_bottleneck_dilated(x=network_emb, output_depth=128, drop_prob=later_drop_prob, scope="emb_bottleneck_3_4", dilation_rate=4) network_emb = self.encoder_bottleneck_regular(x=network_emb, output_depth=128, drop_prob=later_drop_prob, scope="emb_bottleneck_3_5") network_emb = self.encoder_bottleneck_dilated(x=network_emb, output_depth=128, drop_prob=later_drop_prob, scope="emb_bottleneck_3_6", dilation_rate=8) network_emb = self.encoder_bottleneck_asymmetric(x=network_emb, output_depth=128, drop_prob=later_drop_prob, scope="emb_bottleneck_3_7") network_emb = self.encoder_bottleneck_dilated(x=network_emb, output_depth=128, drop_prob=later_drop_prob, scope="emb_bottleneck_3_8", dilation_rate=16) ret['stage3_emb'] = dict() ret['stage3_emb']['data'] = network_emb ret['stage3_emb']['shape'] = network_emb.get_shape().as_list() # decoder # # Decoder_1_emb network_emb = self.decoder_bottleneck(x=network_emb, output_depth=64, scope="emb_bottleneck_4_0", upsampling=True, pooling_indices=pooling_indices_2) network_emb = self.decoder_bottleneck(x=network_emb, output_depth=64, scope="emb_bottleneck_4_1") network_emb = self.decoder_bottleneck(x=network_emb, output_depth=64, scope="emb_bottleneck_4_2") ret['stage4_emb'] = dict() ret['stage4_emb']['data'] = network_emb ret['stage4_emb']['shape'] = network_emb.get_shape().as_list() # # Decoder_2_emb network_emb = self.decoder_bottleneck(x=network_emb, output_depth=16, scope="emb_bottleneck_5_0", upsampling=True, pooling_indices=pooling_indices_1) network_emb = self.decoder_bottleneck(x=network_emb, output_depth=16, scope="emb_bottleneck_5_1") ret['stage5_emb'] = dict() ret['stage5_emb']['data'] = network_emb ret['stage5_emb']['shape'] = network_emb.get_shape().as_list() # embedding # # arg[1] = 1: in semantic segmentation branch # # arg[1] = 3: in embedding branch network_emb = tf.contrib.slim.conv2d_transpose(network_emb, 3, [2, 2], stride=2, scope="emb_fullconv", padding="SAME") ret['fullconv_emb'] = dict() ret['fullconv_emb']['data'] = network_emb ret['fullconv_emb']['shape'] = network_emb.get_shape().as_list() return ret if __name__ == '__main__': input_tensor = tf.placeholder(tf.float32, shape=[1, 90, 160, 128], name="input_tensor") later_drop_prob_ph = tf.placeholder(tf.float32, name="later_drop_prob_ph") inputs_shape_1 = tf.placeholder(tf.float32, shape=[1, 360, 640, 16], name="inputs_shape_1") inputs_shape_2 = tf.placeholder(tf.float32, shape=[1, 180, 320, 64], name="inputs_shape_2") pooling_indices_1 = tf.placeholder(tf.float32, shape=[1, 180, 320, 16], name="pooling_indices_1") pooling_indices_2 = tf.placeholder(tf.float32, shape=[1, 90, 160, 64], name="pooling_indices_2") decoder = Enet_decoder() seg = decoder.decode_seg(input_tensor=input_tensor, later_drop_prob=later_drop_prob_ph, pooling_indices_1=pooling_indices_1, pooling_indices_2=pooling_indices_2, scope="decode_seg") for layer_name, layer_info in seg.items(): print('layer name: {:s} shape: {}'.format(layer_name, layer_info['shape'])) emb = decoder.decode_emb(input_tensor=input_tensor, later_drop_prob=later_drop_prob_ph, pooling_indices_1=pooling_indices_1, pooling_indices_2=pooling_indices_2, scope="decode_emb") for layer_name, layer_info in emb.items(): print('layer name: {:s} shape: {}'.format(layer_name, layer_info['shape']))
[ "654053334@qq.com" ]
654053334@qq.com
8d258ed0b77093840a7c7eeaeadb01c70954d23e
ddce82b1d34fb613d0fa251d4aed93ce232703df
/wrappedAlgorithms/PISWAP/networkx/algorithms/flow/tests/test_mincost.py
ae0dac623c416aa4e11de81fb2b6c685678d3d5f
[]
no_license
waynebhayes/SANA
64906c7a7761a07085e2112a0685fa9fbe7313e6
458cbc5e83d0541717184a5ff0930d7003c3e3ef
refs/heads/SANA2
2023-08-21T20:25:47.376666
2023-08-10T19:54:57
2023-08-10T19:54:57
86,848,250
20
99
null
2023-03-07T19:43:10
2017-03-31T18:21:01
Game Maker Language
UTF-8
Python
false
false
10,348
py
# -*- coding: utf-8 -*- import networkx as nx from nose.tools import assert_equal, assert_raises class TestNetworkSimplex: def test_simple_digraph(self): G = nx.DiGraph() G.add_node('a', demand = -5) G.add_node('d', demand = 5) G.add_edge('a', 'b', weight = 3, capacity = 4) G.add_edge('a', 'c', weight = 6, capacity = 10) G.add_edge('b', 'd', weight = 1, capacity = 9) G.add_edge('c', 'd', weight = 2, capacity = 5) flowCost, H = nx.network_simplex(G) soln = {'a': {'b': 4, 'c': 1}, 'b': {'d': 4}, 'c': {'d': 1}, 'd': {}} assert_equal(flowCost, 24) assert_equal(nx.min_cost_flow_cost(G), 24) assert_equal(H, soln) assert_equal(nx.min_cost_flow(G), soln) assert_equal(nx.cost_of_flow(G, H), 24) def test_negcycle_infcap(self): G = nx.DiGraph() G.add_node('s', demand = -5) G.add_node('t', demand = 5) G.add_edge('s', 'a', weight = 1, capacity = 3) G.add_edge('a', 'b', weight = 3) G.add_edge('c', 'a', weight = -6) G.add_edge('b', 'd', weight = 1) G.add_edge('d', 'c', weight = -2) G.add_edge('d', 't', weight = 1, capacity = 3) assert_raises(nx.NetworkXUnbounded, nx.network_simplex, G) def test_sum_demands_not_zero(self): G = nx.DiGraph() G.add_node('s', demand = -5) G.add_node('t', demand = 4) G.add_edge('s', 'a', weight = 1, capacity = 3) G.add_edge('a', 'b', weight = 3) G.add_edge('a', 'c', weight = -6) G.add_edge('b', 'd', weight = 1) G.add_edge('c', 'd', weight = -2) G.add_edge('d', 't', weight = 1, capacity = 3) assert_raises(nx.NetworkXUnfeasible, nx.network_simplex, G) def test_no_flow_satisfying_demands(self): G = nx.DiGraph() G.add_node('s', demand = -5) G.add_node('t', demand = 5) G.add_edge('s', 'a', weight = 1, capacity = 3) G.add_edge('a', 'b', weight = 3) G.add_edge('a', 'c', weight = -6) G.add_edge('b', 'd', weight = 1) G.add_edge('c', 'd', weight = -2) G.add_edge('d', 't', weight = 1, capacity = 3) assert_raises(nx.NetworkXUnfeasible, nx.network_simplex, G) def test_transshipment(self): G = nx.DiGraph() G.add_node('a', demand = 1) G.add_node('b', demand = -2) G.add_node('c', demand = -2) G.add_node('d', demand = 3) G.add_node('e', demand = -4) G.add_node('f', demand = -4) G.add_node('g', demand = 3) G.add_node('h', demand = 2) G.add_node('r', demand = 3) G.add_edge('a', 'c', weight = 3) G.add_edge('r', 'a', weight = 2) G.add_edge('b', 'a', weight = 9) G.add_edge('r', 'c', weight = 0) G.add_edge('b', 'r', weight = -6) G.add_edge('c', 'd', weight = 5) G.add_edge('e', 'r', weight = 4) G.add_edge('e', 'f', weight = 3) G.add_edge('h', 'b', weight = 4) G.add_edge('f', 'd', weight = 7) G.add_edge('f', 'h', weight = 12) G.add_edge('g', 'd', weight = 12) G.add_edge('f', 'g', weight = -1) G.add_edge('h', 'g', weight = -10) flowCost, H = nx.network_simplex(G) soln = {'a': {'c': 0}, 'b': {'a': 0, 'r': 2}, 'c': {'d': 3}, 'd': {}, 'e': {'r': 3, 'f': 1}, 'f': {'d': 0, 'g': 3, 'h': 2}, 'g': {'d': 0}, 'h': {'b': 0, 'g': 0}, 'r': {'a': 1, 'c': 1}} assert_equal(flowCost, 41) assert_equal(nx.min_cost_flow_cost(G), 41) assert_equal(H, soln) assert_equal(nx.min_cost_flow(G), soln) assert_equal(nx.cost_of_flow(G, H), 41) def test_max_flow_min_cost(self): G = nx.DiGraph() G.add_edge('s', 'a', bandwidth = 6) G.add_edge('s', 'c', bandwidth = 10, cost = 10) G.add_edge('a', 'b', cost = 6) G.add_edge('b', 'd', bandwidth = 8, cost = 7) G.add_edge('c', 'd', cost = 10) G.add_edge('d', 't', bandwidth = 5, cost = 5) soln = {'s': {'a': 5, 'c': 0}, 'a': {'b': 5}, 'b': {'d': 5}, 'c': {'d': 0}, 'd': {'t': 5}, 't': {}} flow = nx.max_flow_min_cost(G, 's', 't', capacity = 'bandwidth', weight = 'cost') assert_equal(flow, soln) assert_equal(nx.cost_of_flow(G, flow, weight = 'cost'), 90) def test_digraph1(self): # From Bradley, S. P., Hax, A. C. and Magnanti, T. L. Applied # Mathematical Programming. Addison-Wesley, 1977. G = nx.DiGraph() G.add_node(1, demand = -20) G.add_node(4, demand = 5) G.add_node(5, demand = 15) G.add_edges_from([(1, 2, {'capacity': 15, 'weight': 4}), (1, 3, {'capacity': 8, 'weight': 4}), (2, 3, {'weight': 2}), (2, 4, {'capacity': 4, 'weight': 2}), (2, 5, {'capacity': 10, 'weight': 6}), (3, 4, {'capacity': 15, 'weight': 1}), (3, 5, {'capacity': 5, 'weight': 3}), (4, 5, {'weight': 2}), (5, 3, {'capacity': 4, 'weight': 1})]) flowCost, H = nx.network_simplex(G) soln = {1: {2: 12, 3: 8}, 2: {3: 8, 4: 4, 5: 0}, 3: {4: 11, 5: 5}, 4: {5: 10}, 5: {3: 0}} assert_equal(flowCost, 150) assert_equal(nx.min_cost_flow_cost(G), 150) assert_equal(H, soln) assert_equal(nx.min_cost_flow(G), soln) assert_equal(nx.cost_of_flow(G, H), 150) def test_digraph2(self): # Example from ticket #430 from mfrasca. Original source: # http://www.cs.princeton.edu/courses/archive/spr03/cs226/lectures/mincost.4up.pdf, slide 11. G = nx.DiGraph() G.add_edge('s', 1, capacity=12) G.add_edge('s', 2, capacity=6) G.add_edge('s', 3, capacity=14) G.add_edge(1, 2, capacity=11, weight=4) G.add_edge(2, 3, capacity=9, weight=6) G.add_edge(1, 4, capacity=5, weight=5) G.add_edge(1, 5, capacity=2, weight=12) G.add_edge(2, 5, capacity=4, weight=4) G.add_edge(2, 6, capacity=2, weight=6) G.add_edge(3, 6, capacity=31, weight=3) G.add_edge(4, 5, capacity=18, weight=4) G.add_edge(5, 6, capacity=9, weight=5) G.add_edge(4, 't', capacity=3) G.add_edge(5, 't', capacity=7) G.add_edge(6, 't', capacity=22) flow = nx.max_flow_min_cost(G, 's', 't') soln = {1: {2: 6, 4: 5, 5: 1}, 2: {3: 6, 5: 4, 6: 2}, 3: {6: 20}, 4: {5: 2, 't': 3}, 5: {6: 0, 't': 7}, 6: {'t': 22}, 's': {1: 12, 2: 6, 3: 14}, 't': {}} assert_equal(flow, soln) def test_digraph3(self): """Combinatorial Optimization: Algorithms and Complexity, Papadimitriou Steiglitz at page 140 has an example, 7.1, but that admits multiple solutions, so I alter it a bit. From ticket #430 by mfrasca.""" G = nx.DiGraph() G.add_edge('s', 'a', {0: 2, 1: 4}) G.add_edge('s', 'b', {0: 2, 1: 1}) G.add_edge('a', 'b', {0: 5, 1: 2}) G.add_edge('a', 't', {0: 1, 1: 5}) G.add_edge('b', 'a', {0: 1, 1: 3}) G.add_edge('b', 't', {0: 3, 1: 2}) "PS.ex.7.1: testing main function" sol = nx.max_flow_min_cost(G, 's', 't', capacity=0, weight=1) flow = sum(v for v in sol['s'].values()) assert_equal(4, flow) assert_equal(23, nx.cost_of_flow(G, sol, weight=1)) assert_equal(sol['s'], {'a': 2, 'b': 2}) assert_equal(sol['a'], {'b': 1, 't': 1}) assert_equal(sol['b'], {'a': 0, 't': 3}) assert_equal(sol['t'], {}) def test_zero_capacity_edges(self): """Address issue raised in ticket #617 by arv.""" G = nx.DiGraph() G.add_edges_from([(1, 2, {'capacity': 1, 'weight': 1}), (1, 5, {'capacity': 1, 'weight': 1}), (2, 3, {'capacity': 0, 'weight': 1}), (2, 5, {'capacity': 1, 'weight': 1}), (5, 3, {'capacity': 2, 'weight': 1}), (5, 4, {'capacity': 0, 'weight': 1}), (3, 4, {'capacity': 2, 'weight': 1})]) G.node[1]['demand'] = -1 G.node[2]['demand'] = -1 G.node[4]['demand'] = 2 flowCost, H = nx.network_simplex(G) soln = {1: {2: 0, 5: 1}, 2: {3: 0, 5: 1}, 3: {4: 2}, 4: {}, 5: {3: 2, 4: 0}} assert_equal(flowCost, 6) assert_equal(nx.min_cost_flow_cost(G), 6) assert_equal(H, soln) assert_equal(nx.min_cost_flow(G), soln) assert_equal(nx.cost_of_flow(G, H), 6) def test_digon(self): """Check if digons are handled properly. Taken from ticket #618 by arv.""" nodes = [(1, {}), (2, {'demand': -4}), (3, {'demand': 4}), ] edges = [(1, 2, {'capacity': 3, 'weight': 600000}), (2, 1, {'capacity': 2, 'weight': 0}), (2, 3, {'capacity': 5, 'weight': 714285}), (3, 2, {'capacity': 2, 'weight': 0}), ] G = nx.DiGraph(edges) G.add_nodes_from(nodes) flowCost, H = nx.network_simplex(G) soln = {1: {2: 0}, 2: {1: 0, 3: 4}, 3: {2: 0}} assert_equal(flowCost, 2857140) assert_equal(nx.min_cost_flow_cost(G), 2857140) assert_equal(H, soln) assert_equal(nx.min_cost_flow(G), soln) assert_equal(nx.cost_of_flow(G, H), 2857140) def test_multidigraph(self): """Raise an exception for multidigraph.""" G = nx.MultiDiGraph() G.add_weighted_edges_from([(1, 2, 1), (2, 3, 2)], weight='capacity') assert_raises(nx.NetworkXError, nx.network_simplex, G)
[ "palmere@uci.edu" ]
palmere@uci.edu
44210d0cd422a15c1cab58501594a0d005acabfa
ac409a5f1ffc1362a937ec14604244425586cadf
/ngcccbase/p2ptrade/tests/test_comm.py
a966f9b5296d3469effa04c67be2f75622d6daaa
[ "MIT" ]
permissive
petertodd/ngcccbase
c7209bf913bab7a6bd4e340739013a3319628604
9e346eebaf4461589e5fdce098c8d0c5793c9461
refs/heads/master
2021-01-18T07:19:50.884524
2014-03-11T15:50:22
2014-03-11T15:50:22
17,777,682
2
1
null
null
null
null
UTF-8
Python
false
false
2,139
py
#!/usr/bin/env python import SocketServer import SimpleHTTPServer import threading import time import unittest from ngcccbase.p2ptrade.comm import HTTPComm, ThreadedComm, CommThread class MockAgent(object): def dispatch_message(self, m): pass class TestServer(threading.Thread): def __init__(self, address, port): super(TestServer, self).__init__() self.httpd = SocketServer.TCPServer((address, port), TestHandler) def run(self): self.httpd.serve_forever() def shutdown(self): self.httpd.shutdown() self.httpd.socket.close() class TestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): def do_response(self, response): self.send_response(200) self.send_header("Content-type", "application/json") self.send_header("Content-length", len(response)) self.end_headers() self.wfile.write(response) def do_POST(self): self.do_response("Success") def do_GET(self): self.do_response('[{"content": {"msgid":1, "a":"blah"}, "serial": 1}]') class TestComm(unittest.TestCase): def setUp(self): self.config = {"offer_expiry_interval": 30, "ep_expiry_interval": 30} self.hcomm = HTTPComm(self.config) self.msg = {"msgid": 2, "a": "b"} self.httpd = TestServer("localhost", 8080) self.httpd.start() self.tcomm = ThreadedComm(self.hcomm) self.tcomm.add_agent(MockAgent()) def tearDown(self): self.httpd.shutdown() def test_post_message(self): self.assertTrue(self.hcomm.post_message(self.msg)) def test_poll_and_dispatch(self): self.hcomm.poll_and_dispatch() self.assertEqual(self.hcomm.lastpoll, 1) self.hcomm.poll_and_dispatch() self.assertEqual(self.hcomm.lastpoll, 1) def test_threadcomm(self): self.tcomm.start() time.sleep(2) self.hcomm.post_message(self.msg) self.tcomm.post_message(self.msg) self.tcomm.poll_and_dispatch() time.sleep(2) self.tcomm.stop() if __name__ == '__main__': unittest.main()
[ "jaejoon@gmail.com" ]
jaejoon@gmail.com
b50412b4ddb40ffff3c5e8ec5fa4a2555b606caa
66223c313c447d048412ea582ad93dc2db34d64b
/rnn-lstm-model/train_pred.py
7083da5a77b5e7eb5ed4b3695120db536aae7720
[]
no_license
vishal-k9/Stance_Detection_Task
c571b3b4a3d4597449fb73a1cc610b4bb8a34979
fb8fe76544bc1f4ad6417cc781fcc3953fbac6d8
refs/heads/master
2021-08-24T01:51:59.602088
2017-12-07T14:41:32
2017-12-07T14:41:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,478
py
#!/usr/bin/python from __future__ import print_function import tensorflow as tf from tensorflow.contrib.rnn import GRUCell from tensorflow.python.ops.rnn import dynamic_rnn as rnn from tensorflow.python.ops.rnn import bidirectional_dynamic_rnn as bi_rnn from keras.datasets import imdb from attention import attention from utils import * from tabulate import tabulate import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np from gensim.models.word2vec import Word2Vec from collections import Counter, defaultdict from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.ensemble import ExtraTreesClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.pipeline import Pipeline from sklearn.svm import SVC from sklearn.metrics import accuracy_score from sklearn.cross_validation import cross_val_score from sklearn.cross_validation import StratifiedShuffleSplit from itertools import izip from nltk.tokenize import TweetTokenizer from sklearn.cluster import KMeans train_data= "../train dataset/Tweet.csv" train_topic= "../train dataset/Target.csv" train_label= "../train dataset/Stance.csv" test_data= "../test dataset/Tweet.csv" test_topic= "../test dataset/Target.csv" test_label= "../test dataset/Stance.csv" target_dict={} stance_dict={} inv_target_dict={} inv_stance_dict={} x=set() with open("../train dataset/Target.csv", "rb") as f: for row in f: x.add(row.strip()) x=list(x) i=0 for tar in x: target_dict[tar]=i inv_target_dict[i]=tar i+=1 x=set() with open("../train dataset/Stance.csv", "rb") as f: for row in f: x.add(row.strip()) x=list(x) i=0 for tar in x: stance_dict[tar]=i inv_stance_dict[i]=tar i+=1 # print target_dict,stance_dict tknzr=TweetTokenizer() x_train, y_train = [[] for i in range(5)], [[] for i in range(5)] X_train, Y_train = [[] for i in range(5)], [[] for i in range(5)] with open("../train dataset/Tweet.csv", "rb") as f1, open("../train dataset/Target.csv", "rb") as f2, open("../train dataset/Stance.csv", "rb") as f3: for l1,l2,l3 in izip(f1,f2,f3): tweet=tknzr.tokenize(l1.strip()) x_train[target_dict[l2.strip()]].append(tweet) y_train[target_dict[l2.strip()]].append(l3.strip()) x_dev, y_dev = [[] for i in range(5)], [[] for i in range(5)] X_dev, Y_dev = [[] for i in range(5)], [[] for i in range(5)] with open("../dev dataset/Tweet.csv", "rb") as f1, open("../dev dataset/Target.csv", "rb") as f2, open("../dev dataset/Stance.csv", "rb") as f3: for l1,l2,l3 in izip(f1,f2,f3): tweet=tknzr.tokenize(l1.strip()) x_dev[target_dict[l2.strip()]].append(tweet) y_dev[target_dict[l2.strip()]].append(l3.strip()) x_test, y_test = [[] for i in range(5)], [[] for i in range(5)] X_test, Y_test = [[] for i in range(5)], [[] for i in range(5)] with open("../test dataset/Tweet.csv", "rb") as f1, open("../test dataset/Target.csv", "rb") as f2, open("../test dataset/Stance.csv", "rb") as f3: for l1,l2,l3 in izip(f1,f2,f3): tweet=tknzr.tokenize(l1.strip()) x_test[target_dict[l2.strip()]].append(tweet) y_test[target_dict[l2.strip()]].append(l3.strip()) all_words=[set(w for sen in x_train[i] for w in sen) for i in range(5)] word_idx=[{} for i in range(5)] for i in xrange(5): j=0; for word in all_words[i]: word_idx[i][word]=j j+=1 NUM_WORDS = 10000 INDEX_FROM = 3 SEQUENCE_LENGTH = 250 EMBEDDING_DIM = 100 HIDDEN_SIZE = 150 ATTENTION_SIZE = 50 KEEP_PROB = 0.8 BATCH_SIZE = 20 NUM_EPOCHS = 10000 DELTA = 0.5 learning_rate=0.05 vocabulary_size=[None for _ in range(5)] f=open("Prediction.csv","wb") from random import shuffle def classifier(X): pred=np.array([[x] for x in X]) kmeans = KMeans(n_clusters=3, random_state=0).fit(pred) centres=np.sort(kmeans.cluster_centers_) res=[] for elem in X: val=0 dist=float("inf") for i in xrange(3): if(abs(elem-centres[i])<dist): dist=abs(elem-centres[i]) val=i res.append(val) return np.array(res) for i in xrange(5): x_train[i]=convert_into_idx(x_train[i], word_idx[i]) vocabulary_size[i] = get_vocabulary_size(x_train[i]) x_test[i] = fit_in_vocabulary(x_test[i],vocabulary_size[i], word_idx[i]) x_dev[i] = fit_in_vocabulary(x_dev[i],vocabulary_size[i], word_idx[i]) X_train[i] = zero_pad(x_train[i], SEQUENCE_LENGTH) X_dev[i] = zero_pad(x_dev[i], SEQUENCE_LENGTH) X_test[i] = zero_pad(x_test[i], SEQUENCE_LENGTH) Y_train[i] = encoding(y_train[i],stance_dict) Y_dev[i] = encoding(y_dev[i],stance_dict) Y_test[i] = encoding(y_test[i],stance_dict) batch_ph = tf.placeholder(tf.int32, [None, SEQUENCE_LENGTH]) target_ph = tf.placeholder(tf.float32, [None]) seq_len_ph = tf.placeholder(tf.int32, [None]) keep_prob_ph = tf.placeholder(tf.float32) # Embedding layer embeddings_var = tf.Variable(tf.random_uniform([vocabulary_size[i], EMBEDDING_DIM], -1.0, 1.0), trainable=True) batch_embedded = tf.nn.embedding_lookup(embeddings_var, batch_ph) # (Bi-)RNN layer(-s) with tf.variable_scope(str(i)): rnn_outputs, _ = bi_rnn(GRUCell(HIDDEN_SIZE), GRUCell(HIDDEN_SIZE), inputs=batch_embedded, sequence_length=seq_len_ph, dtype=tf.float32) # Attention layer attention_output, alphas = attention(rnn_outputs, ATTENTION_SIZE, return_alphas=True) drop = tf.nn.dropout(attention_output, keep_prob_ph) W = tf.Variable(tf.truncated_normal([drop.get_shape()[1].value, 1], stddev=0.1)) b = tf.Variable(tf.constant(0., shape=[1])) y_hat = tf.nn.xw_plus_b(drop, W, b) y_hat = tf.squeeze(y_hat) # Cross-entropy loss and optimizer initialization loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_hat, labels=target_ph)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) # Accuracy metric accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.round(tf.sigmoid(y_hat)), target_ph), tf.float32)) # Actual lengths of sequences seq_len_dev = np.array([list(x).index(0) + 1 for x in X_dev[i]]) seq_len_test = np.array([list(x).index(0) + 1 for x in X_test[i]]) seq_len_train = np.array([list(x).index(0) + 1 for x in X_train[i]]) # Batch generators train_batch_generator = batch_generator(X_train[i], Y_train[i], BATCH_SIZE) test_batch_generator = batch_generator(X_test[i], Y_test[i], BATCH_SIZE) dev_batch_generator = batch_generator(X_dev[i], Y_dev[i], BATCH_SIZE) saver = tf.train.Saver() if __name__ == "__main__": with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print("Start learning...") for epoch in range(NUM_EPOCHS): loss_train = 0 loss_test = 0 accuracy_train = 0 accuracy_test = 0 print("epoch: {}\t".format(epoch), end="") # Training num_batches = X_train[i].shape[0] / BATCH_SIZE for b in range(num_batches): x_batch, y_batch = train_batch_generator.next() seq_len = np.array([list(x).index(0) + 1 for x in x_batch]) # actual lengths of sequences temp=x_batch loss_tr, acc, _ = sess.run([loss, accuracy, optimizer], feed_dict={batch_ph: x_batch, target_ph: y_batch, seq_len_ph: seq_len, keep_prob_ph: KEEP_PROB}) accuracy_train += acc loss_train = loss_tr * DELTA + loss_train * (1 - DELTA) accuracy_train /= num_batches # Testing num_batches = X_dev[i].shape[0] / BATCH_SIZE for b in range(num_batches): x_batch, y_batch = dev_batch_generator.next() temp=x_batch seq_len = np.array([list(x).index(0) + 1 for x in x_batch]) # actual lengths of sequences y_hatv, loss_test_batch, acc = sess.run([y_hat, loss, accuracy], feed_dict={batch_ph: x_batch, target_ph: y_batch, seq_len_ph: seq_len, keep_prob_ph: 1.0}) accuracy_test += acc loss_test += loss_test_batch accuracy_test /= num_batches loss_test /= num_batches print("loss: {:.3f}, val_loss: {:.3f}, acc: {:.3f}, val_acc: {:.3f}".format( loss_train, loss_test, accuracy_train, accuracy_test )) c = list(zip(X_test[i],Y_test[i])) shuffle(c) X_test[i],Y_test[i]=zip(*c) for j in xrange(0, len(X_test[i]), 10): x_batch_test, y_batch_test = X_test[i][j:j+10], Y_test[i][j:j+10] seq_len_test = np.array([list(x).index(0) + 1 for x in x_batch_test]) alphas_test, y_hatv = sess.run([alphas,y_hat], feed_dict={batch_ph: x_batch_test, target_ph: y_batch_test,seq_len_ph: seq_len_test, keep_prob_ph: 1.0}) pred=classifier(y_hatv) for p,r in izip(pred,y_batch_test): f.write(inv_stance_dict[p]+"\t"+inv_stance_dict[r]+"\n") saver.save(sess, "model_"+ str(i)) f.close()
[ "vishal.ku86@gmail.com" ]
vishal.ku86@gmail.com
3ba85f8874dcec36bc766b4fc1d150cb2916954c
56210435afa0c80f8d3d7a56de2c430b49826b73
/classify_fb.py
b4efc07e11d3d305c81209671f9be62ddd46c36f
[]
no_license
iamKunal/gucci_gang
f6417b9fda989b76b41556fe2d0f7126a15e4e01
2ad8b7771c84cf93c14407aaa19a63ea482da66a
refs/heads/master
2021-03-19T17:42:10.292894
2018-03-22T20:04:11
2018-03-22T20:04:11
117,331,223
1
0
null
null
null
null
UTF-8
Python
false
false
6,649
py
from facepy import GraphAPI import time from datetime import datetime from calendar import timegm import requests import json from google.cloud import language from google.cloud.language import enums from google.cloud.language import types import time import sys posts = [] images = [] videos = [] fb = {} id_list = [] TMP_TOKEN = 'EAACEdEose0cBACAOvrU9C0hZALmVacUDgvWQW94kzw2ZBv9wvGcWqFphtulwLvxtSLaMjjtYEo0ilO9DZBvJr0cjKAImfN9FCkegxLtHyfvRygydbEQkf1f6VaVE1Ag6ZBm4TlzCvwwBZCxCdqGU8q9BfpljGh2WCuZCb9MZAVFs3WZAT3ApYGiDZCRZBCyaOqqXkP8aH7PTM6IgZDZD' PER_TOKEN = 'EAACEdEose0cBACvYlc3kFWuOMotBFZBlCKkCmFoPt2BxT2GSzKAp5pqd7ImD7pku75rBft4ZCD9qDmDjhoiA7MoTrbkYpdNhAiZBssOQUy2A3g8vLZAyaOhn4eoSZBTaF4tMPe6uc1UvFhbVMZAPKMjNnN2SEbtxEYJoUjQ0dBXGsOTPyRIx1MD0ynZC0x2gJVMzUIWdRafvx2ugraX6gzR' from google.cloud import language from google.cloud.language import enums from google.cloud.language import types from HTMLParser import HTMLParser from boilerpipe.extract import Extractor def text_extractor(URL): extractor = Extractor(extractor='ArticleExtractor', url=URL).getText() return extractor def classify(text): try: client = language.LanguageServiceClient() document = types.Document( content=text, type=enums.Document.Type.PLAIN_TEXT) response = client.classify_text( document=document ) return response.categories except: return [None] class GGFB(): url = None seconds = None no_of_posts = None time_gap = None graph = GraphAPI(oauth_token=TMP_TOKEN, version='2.10') posts = [] images = [] videos = [] fb = {} def fun_feeds(self): json = self.graph.get(self.url + '/feed?limit=' + str(self.no_of_posts) + '&since=' + str( self.time_gap) + "&fields=created_time,reactions.limit(0).summary(total_count),comments.limit(0).summary(total_count),message,link")[ "data"] for feed in json: post = {} post['reactions'] = int(feed["reactions"]["summary"]["total_count"]) post['comments'] = int(feed["comments"]["summary"]["total_count"]) post['timestamp'] = timegm(time.strptime(feed['created_time'], '%Y-%m-%dT%H:%M:%S+0000')) post['caption'] = feed.get('message') post['id'] = feed['id'] post['channel'] = "fb" post["attachment"] = feed.get("link") post['weight'] = 'None' post['type'] = "post" post['url'] = 'www.facebook.com' + str(feed['id']) post[ 'embed'] = 'https://www.facebook.com/plugins/post.php?href=https%3A%2F%2Fwww.facebook.com%2F' + self.url + '%2Fposts%2F' + str( feed['id'].split('_')[1]) self.posts.append(post.copy()) def fun_images(self): json = self.graph.get(self.url + '/photos?limit=' + str(self.no_of_posts) + '&since=' + str( self.time_gap) + "&fields=created_time,reactions.limit(0).summary(total_count),comments.limit(0).summary(total_count),message,link")[ "data"] for photo in json: image = {} image['reactions'] = int(photo['reactions']['summary']['total_count']) image['comments'] = int(photo['comments']['summary']['total_count']) image['timestamp'] = timegm(time.strptime(photo['created_time'], '%Y-%m-%dT%H:%M:%S+0000')) image['id'] = photo['id'] image['channel'] = "fb" image["attachment"] = photo.get('link') image['weight'] = 'None' image['type'] = 'photo' image['url'] = 'www.facebook.com' + str(photo['id']) self.images.append(image) def fun_videos(self): json = self.graph.get(self.url + '/videos?limit=' + str(self.no_of_posts) + '&since=' + str( self.time_gap) + "&fields=created_time,reactions.limit(0).summary(total_count),comments.limit(0).summary(total_count),description,link")[ "data"] for vid in json: video = {} video['reactions'] = int(vid['reactions']['summary']['total_count']) video['comments'] = int(vid['comments']['summary']['total_count']) video['timestamp'] = timegm(time.strptime(vid['created_time'], '%Y-%m-%dT%H:%M:%S+0000')) video['caption'] = vid.get('description') ##very less captions video['id'] = vid['id'] video["attachment"] = vid.get('link') video['channel'] = "fb" video['weight'] = 'None' video['type'] = 'video' video['url'] = 'www.facebook.com' + str(vid['id']) video[ 'embed'] = 'https://www.facebook.com/plugins/video.php?href=https%3A%2F%2Fwww.facebook.com%2F' + self.url + '%2Fvideos%2F' + str( vid['id']) + '%2F' self.videos.append(video) def __init__(self, url, seconds, no_of_posts): self.posts = [] self.images = [] self.videos = [] self.fb = {} self.url = url self.seconds = seconds self.no_of_posts = no_of_posts self.time_gap = timegm(datetime.utcnow().utctimetuple()) - self.seconds def fun_all(self): self.fun_feeds() self.fun_images() self.fun_videos() final_data = {'post': self.posts, 'photo': self.images, 'video': self.videos} return final_data def classify(self, text): try: client = language.LanguageServiceClient() document = types.Document( content=text, type=enums.Document.Type.PLAIN_TEXT) response = client.classify_text( document=document ) return response.categories[0].name except: return None def f(x): categories = classify(text_extractor(x["attachment"])) print x["attachment"], categories if __name__ == '__main__': # start = 0 # while True: # fb_class = GGFB('WittyFeed', 60 * 60 * 24 * 30, 25) # final_data = fb_class.fun_all() ##this is to be finally returned # for posts_class in final_data: # # for post in final_data[posts_class]: # # if bool(bool(post["id"] not in id_list) and bool( # # post["attachment"] and len(post["attachment"].strip()) > 0)): text = text_extractor(sys.argv[1]) # print text categories = classify(text) # print sys.argv[1], categories for category in categories: if (category): print category.name.split('/')[-1]
[ "kunal.gupta@myself.com" ]
kunal.gupta@myself.com
025f7c0a625c99f0fcba414638161fe8afd276dd
86e85c922fa1db10ec40ad816f35211335639cfe
/absolute/script/__main__.py
9e792fa28b039cbb6ebc541fda73c0d2d3656269
[]
no_license
niconico25/import
c873c7da812d277b90d582ecd59100c4408614fe
2ddd6881c346161aa72fbfbca3d0da6503b0d246
refs/heads/master
2020-04-13T06:57:22.231143
2018-12-26T09:20:38
2018-12-26T09:20:38
163,035,867
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
# ~/import/absolute/script/__main__.py import sys print('---') print(sys.path[0]) print(__file__) print(__package__) print(__name__) import module_a import sub_package
[ "shotaroh19850701@gmail.com" ]
shotaroh19850701@gmail.com
c8cc54dc0e053b341498757a0bff85b8f3776b48
570c5e469188970b1192c03636ac01cc0d2c0a6a
/1327/A.py
435e6f1233ce996748015e82beca8cae7a0bf2a8
[]
no_license
koustav-dhar/Competitive-Programming
f08d79d7eeaaa07b7fa1845e1b127e0eba53e37c
e375281861e5a7e1a0faa01296aa5183964ac014
refs/heads/master
2022-07-05T11:05:01.951609
2020-05-13T21:29:35
2020-05-13T21:29:35
263,733,180
1
0
null
2020-05-13T21:24:53
2020-05-13T20:12:50
C++
UTF-8
Python
false
false
486
py
# your code goes here import math for _ in range(int(input())): n,m=map(int,input().split()) if n%2==0: if m%2==0: if m<=((int)(math.sqrt(n))): print("YES") else: print("NO") else: print("NO") else: if m%2!=0: if m<=((int)(math.sqrt(n))): print("YES") else: print("NO") else: print("NO")
[ "noreply@github.com" ]
koustav-dhar.noreply@github.com
217db26224589a242aa1990575abacb18a884ee4
4a3fa55358b9d70ffad6f2f7d152a2a6258adf41
/kutil.py
51fb8a6aa13b9ce7c45bed42ac61ab100b27f7e2
[]
no_license
SooRyu7/git_test
6f9c8cfe55dae6f52f8a6fac194940e2d7676809
3ba055ee0139eea8e3ccd4258710522b2008a086
refs/heads/master
2023-04-12T15:38:55.284581
2021-05-21T06:52:23
2021-05-21T06:52:23
369,440,407
0
0
null
null
null
null
UTF-8
Python
false
false
884
py
import random def nrandom(start, end, n , duplicated = False): ''' start와 end 사이의 정수 난수를 n개 생성해 반환 인자 start:시작 정수 end:마지막 정수 n: 난수 개수 duplicated: 중복 허용 여부 , 기본은 중요하지 않음 true면 중복허용 ''' lst = [] #반환할 난수 리스트 if duplicated: for _ in range(n): lst.append(random.randint(start,end))#1~45까지. else: lst = list(random.sample(range(start, end+1),n))#안에 리스트나 시퀀스 중에 n개를 중복되지않게 빼낸다. range로 시퀀스를 만듬. end까지니까 range는 end-1 범위 이므로 end+1 #모두 정렬해 반환 return sorted(lst) if __name__ == '__main__': print('로또 복권: ',nrandom(1,45,6)) print('주사위 3번: ',nrandom(1,6,3,True))#주사위 중복허용
[ "80309470+SooRyu7@users.noreply.github.com" ]
80309470+SooRyu7@users.noreply.github.com
d6d90fa95dbb4368d84692d2aefe55f2d253c92d
9c5a76d423a79a9b926199099dfe2b676364ee7e
/get_features_for_sheet.py
94ef230bb7677a45bedae964394597b3f5486286
[]
no_license
Gin93/excel_data_extraction_max_entropy
a9cff992ea552c02c161f4bed0f25f854cccd83f
2dd68e7c5127d0644c2eed8353dacc4bb11a8f89
refs/heads/master
2021-09-01T18:40:57.769238
2017-12-20T03:30:11
2017-12-20T03:30:11
114,588,698
1
0
null
null
null
null
UTF-8
Python
false
false
11,298
py
# -*- coding: utf-8 -*- """ Created on Wed Dec 13 16:43:04 2017 @author: cisdi """ import xlrd import string import pandas as pd import csv import os import random class Sheet: def __init__(self, file_path): try: self.sheet = xlrd.open_workbook(file_path, formatting_info=True).sheets()[0] except: self.sheet = xlrd.open_workbook(file_path).sheets()[0] self.rows = self.sheet.nrows self.cols = self.sheet.ncols self.merged = self.sheet.merged_cells self.features = [] # self.neighbors = ['up','down','left','right','up2','down2','left2','right2','upl','upr','downl','downr'] self.neighbors = ['up','down','left','right','up2','down2','left2','right2'] def filling(self): ''' 将合并过的单元格全部填充 可以假填充: if merged: data = cell_value(x1,y1) ''' def selflens(self,data): # l = len(str(data)) # if l <=3: # return 'datashort' # elif l <= 6: # return 'datanormallen' # elif l <= 9: # return 'datalong' # elif l <= 15: # return 'dataverylong' # else: # return 'dataextremelylong' count_en = count_dg = count_sp = count_zh = count_pu = 0 for c in str(data): if c in string.ascii_letters: count_en += 1 elif c.isdigit(): count_dg += 1 elif c.isspace(): count_sp += 1 elif c.isalpha(): count_zh += 1 else: count_pu += 1 l = count_en + count_zh + count_pu if l < 1: return 'dataveryshort' elif l == 1: return 'datashort' elif l <= 6: return 'datanormallen' elif l <= 12: return 'datalong' elif l <= 20: return 'dataverylong' else: return 'dataextremelylong' def valid(self,x,y,rows,cols): # 可以优化 if x < 0 or y < 0 or x > rows-1 or y > cols-1: return False return True def ismerged(self,x,y): ''' 输出格子的大小或者是类型 以及该单元格的位置 ''' merged_cells = self.merged for a,b,c,d in merged_cells: if x >= a and x < b and y >= c and y < d: r_s = b-a c_s = d-c space = r_s * c_s # if space <= 4: # m_type = 'small' # elif c_s - r_s >= 5: # m_type = 'verylong' # else: # m_type = 'huge' if r_s == 1 and (c_s == 2 or c_s == 3): m_type = 'shortlong' elif c_s == 1 and (r_s == 2 or r_s == 3): m_type = 'thin' elif c_s - r_s >= 5: m_type = 'verylong' elif space <= 12: m_type = 'midsize' else: m_type = 'huge' ###判断位置 if c_s == 1: #宽度为一的竖条状,特征分为highup & highdown if x == a: m_pos = 'highup' elif x == b - 1: m_pos = 'highdown' else: m_pos = 'highmid' elif r_s == 1:#长度为一的长条状,特征分为longleft & longright if y == c: m_pos = 'longleft' elif y == d - 1: m_pos = 'longright' else: m_pos = 'longmid' else: if(x,y) == (a,c): m_pos = 'topleft' elif(x,y) == (b-1,c): m_pos = 'botleft' elif(x,y) == (a,d-1): m_pos = 'topright' elif(x,y) == (b-1,d-1): m_pos = 'botright' else: m_pos = 'middle' return (True,self.sheet.cell_value(a,c),m_type,m_pos) return (False,'','','') def cell_type(self,data): ''' input:str, current cell data output: [str,int] the data type of this cell : 正整数,负数,小数,纯字符,字符跟数字混合, 含有特殊符号,单位字典,空值,合并导致的空值. 以及长度(不用于训练,用于提取特征) integer/dec/neg/string/mixed/specical/null/ int 表外空值 这个特征在后面的函数中计算 merged 提前判断 ''' def mixed(a): for i in a: try: float(i) return True except : pass return False def puncuation(a): for i in a: if (str(i) in string.punctuation): return True return False if data == '' or data == '\n': return 'null' if isinstance(data,int): return 'integer' elif isinstance(data,float): return 'decimal' try: if float(data) < 0: return 'neg' #至此不可能有负数 if data.count('.') == 1: return 'decimal' else: return 'integer'#至此不再有数字 except:#string/mixed/special if puncuation(data): return 'special' elif mixed(data): return 'mixed' else: return 'string' def lens(self,x,y): ''' input:str,str output:str ''' x = str(x) y = str(y) if len(x) == len(y): return 'same' elif 0 < len(x) - len(y) < 3 : return 'more' elif -3 < len(x) - len(y) < 0 : return 'less' elif len(x) - len(y) >= 3: return 'muchmore' elif len(x) - len(y) <= -3: return 'muchless' else: print(x) print(y) print(len(x) - len(y)) print('asdasd') def neighbor(self,location,row,col,rows,cols): ####确定要检索的位置 ''' f1: if valid f2: if merged f3: cell data type ''' if location == 'up': r = row - 2 c = col - 1 elif location == 'down': r = row c = col - 1 elif location == 'left': r = row - 1 c = col - 2 elif location == 'right': r = row - 1 c = col elif location == 'up2': r = row - 3 c = col - 1 elif location == 'down2': r = row + 1 c = col - 1 elif location == 'left2': r = row - 1 c = col - 3 elif location == 'right2': r = row - 1 c = col + 1 elif location == 'upl': r = row - 2 c = col - 2 elif location == 'upr': r = row - 2 c = col elif location == 'downl': r = row c = col - 2 elif location == 'downr': r = row c = col if self.valid(r,c,rows,cols): data = self.sheet.cell_value(r,c) # 当前检索到的邻居的数据 f1 = 'valid' center_data = self.sheet.cell_value(row-1,col-1) #中心的数据 boolean, merged_data,merged_type,merged_pos = self.ismerged(r,c) if boolean: # 单元格是合并过的 f2 = 'merged' f3 = self.cell_type(merged_data) f5 = merged_type f6 = merged_pos f4 = self.lens(center_data,merged_data) # 对于合并过的单元格,是比较有数据的那个单元格的数据与中心数据 f7 = self.selflens(merged_data) else: #单元格没有合并过 f2 = 'single' f3 = self.cell_type(data) f5 = 'singletype' f6 = 'singlepos' f4 = self.lens(center_data,data) #对于非合并的,操作自己与中心 f7 = self.selflens(data) else: f1 = f2 = f3 = f4 = f5 = f6 = f7 = 'invalid' ls = location return [ls + f1, ls + f2, ls + f3 ,ls + f5, ls + f6 ,ls + f7] #删除了f4 ''' def get_lens_features(self,f1,f2,location): # input: feature1 feature2 # f1: current_cell # f2: neighbor_cell # output: the dif of lens if f1 in f2: return [location + self.lens(f1,f2)] else: return [location + 'diftype'] ''' def get_features (self, current_pos): ''' 给定想要提取特征的位置,以及他的邻居们,得到输出 current_pos: (row,col) neighbors: locations ['up','down','left','right'.....] ''' r , c = current_pos r = r+1 c = c+1 f = [] #f1 = self.cell_type(self.sheet.cell_value(r-1,c-1)) #### 可以整的好看点 boolean, merged_data,merged_type,merged_pos = self.ismerged(r-1,c-1) if boolean: f1 = self.cell_type(merged_data) f2 = 'merged' f3 = merged_type f4 = merged_pos f5 = self.selflens(merged_data) else: f1 = self.cell_type(self.sheet.cell_value(r-1,c-1)) f2 = f3 = f4 = 'single' f5 = self.selflens(self.sheet.cell_value(r-1,c-1)) f = f + [f1,f2,f3,f4,f5] neighbors = self.neighbors for i in neighbors: fff = self.neighbor(i,r,c,self.rows,self.cols) f = f + fff return f def get_features_map (self): # 可以优化一波nparray ''' 提取整个sheet的所有位置的所有特征 暂时不考虑空值的特征 ''' d = {} for i in range(self.rows): for j in range(self.cols): d[(i,j)] = self.get_features( (i,j) ) return d ''' a = Sheet(p) x = a.get_features_map() '''
[ "noreply@github.com" ]
Gin93.noreply@github.com
20e666c46149cfd35b42bf3ec8f0e913d5cc848c
e10cec4cc5d45a69c4f2eaa3d85565553458bcbe
/emptyeffi/tracker_resolution_plots_28.8196160799.py
37b5cf3a0b9dd0eee96c8d1600913a348b700cfa
[]
no_license
jnugent42/mcsframework
7f3ba2c11b96175d014e53f61bea292a5e0e3b03
2c75f6e071229ab0585cf8d594fa26d7b5794388
refs/heads/master
2022-04-28T07:34:32.076223
2022-04-07T16:14:17
2022-04-07T16:14:17
91,683,266
0
1
null
null
null
null
UTF-8
Python
false
false
76,003
py
#!/usr/bin/env python # This file is part of MAUS: http://micewww.pp.rl.ac.uk/projects/maus # # MAUS is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # MAUS is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with MAUS. If not, see <http://www.gnu.org/licenses/>. # """ This script loads tracker Recon and MC data and compares the two to produce plots of the reconstruction resolution and residuals. Script Aglorithm : - Create Virtual Plane - Tracker Plane lookup - Load Recon and MC Event - Find trackpoints in each tracker plane - Look for the nearest virtual planes in Z - Create lookup dictionary - Analyse all events - Bin Recon histograms - Bin Residual histograms - Bin residuals in bins of Pt - Bin residuals in bins of Pz - Calculate resolutions from histograms - Save all plots to a single root file (options PDF output) """ # pylint: disable = W0311, E1101, W0613, W0621, C0103, C0111, W0702, W0611 # pylint: disable = R0914, R0912, R0915, W0603, W0612, C0302 # Import MAUS Framework (Required!) import MAUS # Generic Python imports import sys import os import argparse import math from math import sqrt import array # Third Party library import statements import json import event_loader import analysis from analysis import tools from analysis import covariances from analysis import hit_types import ROOT # Useful Constants and configuration RECON_STATION = 1 RECON_PLANE = 0 SEED_STATION = 1 SEED_PLANE = 0 EXPECTED_STRAIGHT_TRACKPOINTS = 9 EXPECTED_HELIX_TRACKPOINTS = 12 REQUIRE_DATA = True P_VALUE_CUT = 0.0 MUON_PID = [13, -13] RECON_TRACKERS = [0, 1] REQUIRE_ALL_PLANES = True P_MIN = 0.0 P_MAX = 1000.0 MAX_GRADIENT = 2.0 PT_MIN = 0.0 PT_MAX = 100.0 PT_BIN = 10 PT_BIN_WIDTH = 10.0 PZ_MIN = 120.0 PZ_MAX = 260.0 PZ_BIN = 14 PZ_BIN_WIDTH = 10.0 ALIGNMENT_TOLERANCE = 0.01 RESOLUTION_BINS = 10 EFFICIENCY_BINS = 10 TRACK_ALGORITHM = 1 ENSEMBLE_SIZE = 2000 TOF_ul = 29.0196160799 TOF_ll = 28.8196160799 #TOF_ul = 28.5365596446 #TOF_ll = 28.3365596446 meanp = 90 sigmap = 0.012 #UP_COV_MC = covariances.CovarianceMatrix() #DOWN_COV_MC = covariances.CovarianceMatrix() #UP_COV_RECON = covariances.CovarianceMatrix() #DOWN_COV_RECON = covariances.CovarianceMatrix() UP_COV_MC = [] DOWN_COV_MC = [] UP_COV_RECON = [] DOWN_COV_RECON = [] UP_CORRECTION = covariances.CorrectionMatrix() DOWN_CORRECTION = covariances.CorrectionMatrix() VIRTUAL_PLANE_DICT = None INVERSE_PLANE_DICT = {} TRACKER_PLANE_RADIUS = 150.0 SELECT_EVENTS = False GOOD_EVENTS = None def get_pz_bin(pz) : offset = pz - PZ_MIN return int(offset/PZ_BIN_WIDTH) def init_plots_data() : """ Initialised all the plots in a dictionary to pass around to the other functions. """ global UP_COV_MC global DOWN_COV_MC global UP_COV_RECON global DOWN_COV_RECON global PZ_BIN global PT_BIN PZ_BIN = int(((PZ_MAX-PZ_MIN) / PZ_BIN_WIDTH) + 0.5) PT_BIN = int(((PT_MAX-PT_MIN) / PT_BIN_WIDTH) + 0.5) UP_COV_MC = [ covariances.CovarianceMatrix() for _ in range(PZ_BIN) ] DOWN_COV_MC = [ covariances.CovarianceMatrix() for _ in range(PZ_BIN) ] UP_COV_RECON = [ covariances.CovarianceMatrix() for _ in range(PZ_BIN) ] DOWN_COV_RECON = [ covariances.CovarianceMatrix() for _ in range(PZ_BIN) ] plot_dict = {'upstream' : {}, 'downstream' : {}, \ 'missing_tracks' : {}, 'pulls' : {}} for tracker in [ 'upstream', 'downstream' ] : tracker_dict = {} tracker_dict['ntp'] = ROOT.TH1F(tracker+'_ntp', \ 'No. TrackPoints', 15, 0.5, 15.5 ) tracker_dict['xy'] = ROOT.TH2F( tracker+'_xy', \ 'Position', 500, -200.0, 200.0, 500, -200.0, 200.0 ) tracker_dict['pxpy'] = ROOT.TH2F(tracker+'_pxpy', \ 'Momentum', 500, -200.0, 200.0, 500, -200.0, 200.0 ) tracker_dict['pt'] = ROOT.TH1F( tracker+'_pt', \ 'Transvere Momentum', 500, -0.0, 200.0 ) tracker_dict['pz'] = ROOT.TH1F( tracker+'_pz', \ 'Longitudinal Momentum', 500, 100.0, 300.0 ) tracker_dict['L'] = ROOT.TH1F( tracker+'_L', \ 'Angular Momentum', 1000, -25000.0, 25000.0 ) tracker_dict['L_canon'] = ROOT.TH1F( tracker+'_L_canon', \ 'Canonical Angular Momentum', 1000, -25000.0, 25000.0 ) tracker_dict['L_r'] = ROOT.TH2F( tracker+'_L_r', "L in r", \ 6000, -30000.0, 30000.0, 300, 0.0, 200.0 ) tracker_dict['L_canon_r'] = ROOT.TH2F( \ tracker+'_L_canon_r', "L_{canon} in r", \ 6000, -30000.0, 30000.0, 300, 0.0, 200.0 ) tracker_dict['mc_xy'] = ROOT.TH2F( tracker+'_mc_xy', \ 'MC Position', 500, -200.0, 200.0, 500, -200.0, 200.0 ) tracker_dict['mc_pxpy'] = ROOT.TH2F( tracker+'_mc_pxpy', \ 'MC Momentum', 500, -200.0, 200.0, 500, -200.0, 200.0 ) tracker_dict['mc_pt'] = ROOT.TH1F( tracker+'_mc_pt', \ 'MC Transvere Momentum', 500, -0.0, 200.0 ) tracker_dict['mc_pz'] = ROOT.TH1F( tracker+'_mc_pz', \ 'MC Longitudinal Momentum', 500, 100.0, 300.0 ) tracker_dict['mc_L'] = ROOT.TH1F( tracker+'_mc_L', \ 'MC Angular Momentum', 1000, -25000.0, 25000.0 ) tracker_dict['mc_L_canon'] = ROOT.TH1F( tracker+'_mc_L_canon', \ 'MC Canonical Angular Momentum', 1000, -25000.0, 25000.0 ) tracker_dict['mc_L_r'] = ROOT.TH2F( tracker+'_mc_L_r', "L_{mc} in r", \ 6000, -30000.0, 30000.0, 300, 0.0, 200.0 ) tracker_dict['mc_L_canon_r'] = ROOT.TH2F( \ tracker+'_mc_L_canon_r', "L_{canon} in r", \ 6000, -30000.0, 30000.0, 300, 0.0, 200.0 ) tracker_dict['residual_xy'] = ROOT.TH2F( tracker+'_residual_xy', \ 'Residual Position', 800, -20.0, 20.0, 800, -20.0, 20.0 ) tracker_dict['residual_mxmy'] = ROOT.TH2F( tracker+'_residual_mxmy', \ 'Residual Gradient', 500, -0.5, 0.5, 500, -0.5, 0.5 ) tracker_dict['residual_pxpy'] = ROOT.TH2F( tracker+'_residual_pxpy', \ 'Residual Momentum', 500, -50.0, 50.0, 500, -50.0, 50.0 ) tracker_dict['residual_pt'] = ROOT.TH1F( tracker+'_residual_pt', \ "p_{t} Residuals", 500, -50.0, 50.0 ) tracker_dict['residual_pz'] = ROOT.TH1F( tracker+'_residual_pz', \ "p_{z} Residuals", 500, -50.0, 50.0 ) tracker_dict['residual_L'] = ROOT.TH1F( tracker+'_residual_L', \ "L Residuals", 1000, -1000.0, 1000.0 ) tracker_dict['residual_L_canon'] = ROOT.TH1F( tracker+'_residual_L_canon', \ "L Residuals", 1000, -1000.0, 1000.0 ) tracker_dict['ntp_pt'] = ROOT.TH2F( \ tracker+'_ntp_pt', "No. Trackpoints in P_{t}", \ PT_BIN, PT_MIN, PT_MAX, 15, 0.5, 15.5 ) tracker_dict['ntp_mc_pt'] = ROOT.TH2F( \ tracker+'_ntp_mc_pt', "No. MC Trackpoints in P_{t}", \ PT_BIN, PT_MIN, PT_MAX, 15, 0.5, 15.5 ) tracker_dict['ntp_pz'] = ROOT.TH2F( \ tracker+'_ntp_pz', "No. Trackpoints in P_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 15, 0.5, 15.5 ) tracker_dict['ntp_mc_pz'] = ROOT.TH2F( \ tracker+'_ntp_mc_pz', "No. MC Trackpoints in P_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 15, 0.5, 15.5 ) tracker_dict['trackpoint_efficiency'] = ROOT.TEfficiency( \ tracker+'_trackpoint_efficiency', \ "Track Point Efficiency in P_{z} and P_{#perp}", \ PZ_BIN, PZ_MIN, PZ_MAX, PT_BIN, PT_MIN, PT_MAX ) tracker_dict['trackpoint_efficiency_pt'] = ROOT.TEfficiency( \ tracker+'_trackpoint_efficiency_pt', \ "Track Point Efficiency in P_{#perp}", \ PT_BIN, PT_MIN, PT_MAX ) tracker_dict['trackpoint_efficiency_pz'] = ROOT.TEfficiency( \ tracker+'_trackpoint_efficiency_pz', \ "Track Point Efficiency in P_z", \ PZ_BIN, PZ_MIN, PZ_MAX ) tracker_dict['ntracks_pt'] = ROOT.TH1F( \ tracker+'_ntracks_pt', "No. Tracks in P_{#perp}", \ PT_BIN, PT_MIN, PT_MAX ) tracker_dict['ntracks_mc_pt'] = ROOT.TH1F( \ tracker+'_ntracks_mc_pt', "No. MC Tracks in P_{#perp}", \ PT_BIN, PT_MIN, PT_MAX ) tracker_dict['ntracks_pz'] = ROOT.TH1F( \ tracker+'_ntracks_pz', "No. Tracks in P_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX ) tracker_dict['ntracks_mc_pz'] = ROOT.TH1F( \ tracker+'_ntracks_mc_pz', "No. MC Tracks in P_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX ) tracker_dict['track_efficiency'] = ROOT.TEfficiency( \ tracker+'_track_efficiency', "Track Efficiency in P_z and P_{#perp}", \ PZ_BIN, PZ_MIN, PZ_MAX, PT_BIN, PT_MIN, PT_MAX ) tracker_dict['track_efficiency_pt'] = ROOT.TEfficiency( \ tracker+'_track_efficiency_pt', "Track Efficiency in P_{#perp}", \ PT_BIN, PT_MIN, PT_MAX ) tracker_dict['track_efficiency_pz'] = ROOT.TEfficiency( \ tracker+'_track_efficiency_pz', "Track Efficiency in P_z", \ PZ_BIN, PZ_MIN, PZ_MAX ) tracker_dict['track_efficiency_L_canon'] = ROOT.TEfficiency( \ tracker+'_track_efficiency_L_canon', "Track Efficiency in L_{canon}", \ 200, -100.0, 100.0 ) tracker_dict['L_residual_r'] = ROOT.TH2F( \ tracker+'_L_residual_r', "L Residuals in r", \ 1000, -250.0, 250.0, 300, 0.0, 150.0 ) tracker_dict['L_canon_residual_r'] = ROOT.TH2F( \ tracker+'_L_canon_residual_r', "L_{canon} Residuals in r", \ 1000, -250.0, 250.0, 300, 0.0, 150.0 ) tracker_dict['x_residual_p'] = ROOT.TH2F( \ tracker+'_x_residual_p', "X Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -20.0, 20.0 ) tracker_dict['y_residual_p'] = ROOT.TH2F( \ tracker+'_y_residual_p', "Y Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -20.0, 20.0 ) tracker_dict['r_residual_p'] = ROOT.TH2F( \ tracker+'_r_residual_p', "Radius Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, 0.0, 50.0 ) tracker_dict['px_residual_p'] = ROOT.TH2F( \ tracker+'_px_residual_p', "p_{x} Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['py_residual_p'] = ROOT.TH2F( \ tracker+'_py_residual_p', "p_{y} Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['pt_residual_p'] = ROOT.TH2F( \ tracker+'_p_residual_p', "p_{t} Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['pz_residual_p'] = ROOT.TH2F( \ tracker+'_pz_residual_p', "p_{z} Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['p_residual_p'] = ROOT.TH2F( \ tracker+'_p_residual_p', "p Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['x_residual_pt'] = ROOT.TH2F( \ tracker+'_x_residual_pt', "X Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -20.0, 20.0 ) tracker_dict['y_residual_pt'] = ROOT.TH2F( \ tracker+'_y_residual_pt', "Y Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -20.0, 20.0 ) tracker_dict['r_residual_pt'] = ROOT.TH2F( \ tracker+'_r_residual_pt', "Radius Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, 0.0, 50.0 ) tracker_dict['px_residual_pt'] = ROOT.TH2F( \ tracker+'_px_residual_pt', "p_{x} Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -50.0, 50.0 ) tracker_dict['py_residual_pt'] = ROOT.TH2F( \ tracker+'_py_residual_pt', "p_{y} Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -50.0, 50.0 ) tracker_dict['pt_residual_pt'] = ROOT.TH2F( \ tracker+'_pt_residual_pt', "p_{t} Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -50.0, 50.0 ) tracker_dict['pz_residual_pt'] = ROOT.TH2F( \ tracker+'_pz_residual_pt', "p_{z} Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -50.0, 50.0 ) tracker_dict['p_residual_pt'] = ROOT.TH2F( \ tracker+'_p_residual_pt', "p Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -50.0, 50.0 ) tracker_dict['x_residual_pz'] = ROOT.TH2F( \ tracker+'_x_residual_pz', "X Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -20.0, 20.0 ) tracker_dict['y_residual_pz'] = ROOT.TH2F( \ tracker+'_y_residual_pz', "Y Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -20.0, 20.0 ) tracker_dict['r_residual_pz'] = ROOT.TH2F( \ tracker+'_r_residual_pz', "Radius Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, 0.0, 50.0 ) tracker_dict['mx_residual_pz'] = ROOT.TH2F( \ tracker+'_mx_residual_pz', "m_{x} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -0.5, 0.5 ) tracker_dict['my_residual_pz'] = ROOT.TH2F( \ tracker+'_my_residual_pz', "m_{y} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -0.5, 0.5 ) tracker_dict['px_residual_pz'] = ROOT.TH2F( \ tracker+'_px_residual_pz', "p_{x} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['py_residual_pz'] = ROOT.TH2F( \ tracker+'_py_residual_pz', "p_{y} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['pt_residual_pz'] = ROOT.TH2F( \ tracker+'_pt_residual_pz', "p_{t} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['pz_residual_pz'] = ROOT.TH2F( \ tracker+'_pz_residual_pz', "p_{z} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['p_residual_pz'] = ROOT.TH2F( \ tracker+'_p_residual_pz', "p Residuals in pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['mc_alpha'] = ROOT.TH2F( tracker+'_mc_alpha', \ "MC Alpha Reconstruction Pz", PZ_BIN, PZ_MIN, PZ_MAX, \ 200, -2.0, 2.0 ) tracker_dict['mc_beta'] = ROOT.TH2F( tracker+'_mc_beta', \ "MC Beta Reconstruction Pz", PZ_BIN, PZ_MIN, PZ_MAX, \ 1000, 0.0, 2500.0 ) tracker_dict['mc_emittance'] = ROOT.TH2F( tracker+'_mc_emittance', \ "MC Emittance Reconstruction Pz", PZ_BIN, PZ_MIN, PZ_MAX, \ 500, 0.0, 20.0 ) tracker_dict['mc_momentum'] = ROOT.TH2F( \ tracker+'_mc_momentum', "MC Momentum Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -10.0, 10.0 ) tracker_dict['recon_alpha'] = ROOT.TH2F( tracker+'_recon_alpha', \ "Alpha Reconstruction Pz", PZ_BIN, PZ_MIN, PZ_MAX, \ 200, -2.0, 2.0 ) tracker_dict['recon_beta'] = ROOT.TH2F( tracker+'_recon_beta', \ "Beta Reconstruction Pz", PZ_BIN, PZ_MIN, PZ_MAX, \ 1000, 0.0, 2500.0 ) tracker_dict['recon_emittance'] = ROOT.TH2F( \ tracker+'_recon_emittance', "Emittance Reconstruction Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, 0.0, 20.0 ) tracker_dict['recon_momentum'] = ROOT.TH2F( \ tracker+'_recon_momentum', "Recon Momentum Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -10.0, 10.0 ) tracker_dict['residual_alpha'] = ROOT.TH2F( \ tracker+'_residual_alpha', "Alpha Residual Pz", PZ_BIN, \ PZ_MIN, PZ_MAX, 200, -1.0, 1.0 ) tracker_dict['residual_beta'] = ROOT.TH2F( \ tracker+'_residual_beta', "Beta Residual Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -100.0, 100.0 ) tracker_dict['residual_emittance'] = ROOT.TH2F( \ tracker+'_residual_emittance', "Emittance Residual Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -10.0, 10.0 ) tracker_dict['residual_momentum'] = ROOT.TH2F( \ tracker+'_residual_momentum', "Momentum Residual Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -10.0, 10.0 ) for component in ['x', 'y', 'px', 'py', 'pt'] : tracker_dict['seed_'+component+'_residual'] = \ ROOT.TH1F( tracker+'_patrec_seed_'+component+'_residual', \ "Residual: "+component, 201, -10.05, 10.05 ) tracker_dict['seed_mx_residual'] = ROOT.TH1F( \ tracker+'_patrec_seed_mx_residual', "Residual: m_{x}", 501, -0.5, 0.5 ) tracker_dict['seed_my_residual'] = ROOT.TH1F( \ tracker+'_patrec_seed_my_residual', "Residual: m_{y}", 501, -0.5, 0.5 ) tracker_dict['seed_pz_residual'] = ROOT.TH1F( \ tracker+'_patrec_seed_pz_residual', "Residual: pz", 501, -50.1, 50.1 ) tracker_dict['seed_p_residual'] = ROOT.TH1F( \ tracker+'_patrec_seed_p_residual', "Residual: p", 501, -50.1, 50.1 ) tracker_dict['seed_pz_residual_pz'] = ROOT.TH2F( \ tracker+'_patrec_seed_pz-pz', "True p_{z} - Seed p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -50.0, 50.0 ) tracker_dict['seed_pt_residual_pt'] = ROOT.TH2F( \ tracker+'_patrec_seed_pt-pt', "True p_{#perp} - Seed p_{#perp}", \ PT_BIN, PT_MIN, PT_MAX, 200, -50.0, 50.0 ) tracker_dict['seed_pz_residual_pt'] = ROOT.TH2F( \ tracker+'_patrec_seed_pz-pt', "True p_{z} - Seed p_{#perp}", \ PT_BIN, PT_MIN, PT_MAX, 200, -50.0, 50.0 ) tracker_dict['seed_pt_residual_pz'] = ROOT.TH2F( \ tracker+'_patrec_seed_pt-pz', "True p_{#perp} - Seed p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -50.0, 50.0 ) tracker_dict['seed_p_residual_p'] = ROOT.TH2F( \ tracker+'_patrec_seed_p-p', "True p - Seed p", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -50.0, 50.0 ) tracker_dict['recon_theta_x'] = ROOT.TH1F(tracker+'_recon_theta_x', \ 'recon_theta_x', 47, -0.0705, 0.0705 ) tracker_dict['MC_theta_x'] = ROOT.TH1F(tracker+'_MC_theta_x', \ 'MC_theta_x', 47, -0.0705, 0.0705 ) tracker_dict['efficiency_scat_x'] = ROOT.TEfficiency() tracker_dict['recon_theta_y'] = ROOT.TH1F(tracker+'_recon_theta_y', \ 'recon_theta_y', 47, -0.0705, 0.0705 ) tracker_dict['MC_theta_y'] = ROOT.TH1F(tracker+'_MC_theta_Y', \ 'MC_theta_y', 47, -0.0705, 0.0705 ) tracker_dict['efficiency_scat_y'] = ROOT.TH1F(tracker+'efficiency_y', \ 'efficiency_Y', 47, -0.0705, 0.0705 ) tracker_dict['recon_theta_scatt'] = ROOT.TH1F(tracker+'_recon_theta_scatt', \ 'recon_theta_scatt', 47, 0., 0.0705 ) tracker_dict['MC_theta_scatt'] = ROOT.TH1F(tracker+'_MC_theta_scatt', \ 'MC_theta_scatt', 47, 0., 0.0705 ) tracker_dict['efficiency_scat_scatt'] = ROOT.TH1F(tracker+'efficiency_scatt', \ 'efficiency_scatt', 47, 0., 0.0705 ) tracker_dict['recon_theta_2scatt'] = ROOT.TH1F(tracker+'_recon_theta_2scatt', \ 'recon_theta_2scatt', 47, 0., 0.004 ) tracker_dict['MC_theta_2scatt'] = ROOT.TH1F(tracker+'_MC_theta_2scatt', \ 'MC_theta_2scatt', 47, 0., 0.004 ) tracker_dict['efficiency_scat_2scatt'] = ROOT.TH1F(tracker+'efficiency_2scatt', \ 'efficiency_2scatt', 47, 0., 0.004 ) plot_dict[tracker] = tracker_dict missing_tracks = {} for tracker in [ 'upstream', 'downstream' ] : missing_tracker = {} missing_tracker['x_y'] = ROOT.TH2F(tracker+'_x_y_missing', \ "Missing Tracks x:y", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['px_py'] = ROOT.TH2F(tracker+'_px_py_missing', \ "Missing Tracks p_{x}:p_{y}", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['x_px'] = ROOT.TH2F(tracker+'_x_px_missing', \ "Missing Tracks x:p_{x}", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['y_py'] = ROOT.TH2F(tracker+'_y_py_missing', \ "Missing Tracks y:p_{y}", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['x_py'] = ROOT.TH2F(tracker+'_x_py_missing', \ "Missing Tracks x:p_{y}", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['y_px'] = ROOT.TH2F(tracker+'_y_px_missing', \ "Missing Tracks y:p_{x}", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['pt'] = ROOT.TH1F(tracker+'_pt_missing', \ "Missing Tracks pt", PT_BIN, PT_MIN, PT_MAX ) missing_tracker['pz'] = ROOT.TH1F(tracker+'_pz_missing', \ "Missing Tracks pz", PZ_BIN, PZ_MIN, PZ_MAX ) missing_tracker['pz_pt'] = ROOT.TH2F(tracker+'_pz_pt_missing', \ "Missing Tracks pz", PZ_BIN, PZ_MIN, PZ_MAX, PT_BIN, PT_MIN, PT_MAX ) missing_tracks[tracker] = missing_tracker plot_dict['missing_tracks'] = missing_tracks for pl_id in range( -15, 0 ) + range( 1, 16 ) : pull_plot_name = 'kalman_pulls_{0:02d}'.format(pl_id) plot_dict['pulls'][pull_plot_name] = ROOT.TH1F( \ pull_plot_name, "Kalman Pulls", 101, -5.05, 5.05 ) data_dict = { 'counters' : {'upstream' : {}, 'downstream' : {} }, \ 'data' : {} } data_dict['counters']['number_events'] = 0 for tracker in ['upstream', 'downstream'] : data_dict['counters'][tracker]['number_virtual'] = 0 data_dict['counters'][tracker]['missing_virtuals'] = 0 data_dict['counters'][tracker]['number_tracks'] = 0 data_dict['counters'][tracker]['number_candidates'] = 0 data_dict['counters'][tracker]['found_tracks'] = 0 data_dict['counters'][tracker]['wrong_track_type'] = 0 data_dict['counters'][tracker]['p_value_cut'] = 0 data_dict['counters'][tracker]['superfluous_track_events'] = 0 data_dict['counters'][tracker]['missing_tracks'] = 0 data_dict['counters'][tracker]['missing_reference_hits'] = 0 data_dict['counters'][tracker]['momentum_cut'] = 0 data_dict['counters'][tracker]['gradient_cut'] = 0 data_dict['counters'][tracker]['found_pairs'] = 0 return plot_dict, data_dict def create_virtual_plane_dict(file_reader) : """ Matches up scifitrackpoints to virtual planes to make a lookup dictionary """ virtual_plane_dict = {} for num in range( -15, 0, 1 ) : virtual_plane_dict[ num ] = ( -1, (ALIGNMENT_TOLERANCE * 100.0) ) for num in range( 1, 16, 1 ) : virtual_plane_dict[ num ] = ( -1, (ALIGNMENT_TOLERANCE * 100.0) ) while file_reader.next_event() : scifi_event = file_reader.get_event( 'scifi' ) mc_event = file_reader.get_event( 'mc' ) tracks = scifi_event.scifitracks() for track in tracks : if track.tracker() not in RECON_TRACKERS : continue trackpoints = track.scifitrackpoints() for trkpt in trackpoints : z_pos = trkpt.pos().z() plane_id = analysis.tools.calculate_plane_id(\ trkpt.tracker(), trkpt.station(), trkpt.plane()) for vhit_num in xrange(mc_event.GetVirtualHitsSize()) : vhit = mc_event.GetAVirtualHit(vhit_num) diff = math.fabs(vhit.GetPosition().z() - z_pos) if diff < virtual_plane_dict[ plane_id ][1] : virtual_plane_dict[ plane_id ] = ( vhit.GetStationId(), diff ) done = True for tracker in RECON_TRACKERS : for station in [1, 2, 3, 4, 5] : for plane in [0, 1, 2] : plane_id = analysis.tools.calculate_plane_id( \ tracker, station, plane ) if virtual_plane_dict[plane_id][1] > ALIGNMENT_TOLERANCE : #print plane_id, virtual_plane_dict[plane_id] done = False if done : break else : if REQUIRE_ALL_PLANES : print print virtual_plane_dict raise ValueError("Could not locate all virtuals planes") file_reader.reset() return virtual_plane_dict def inverse_virtual_plane_dict(virtual_plane_dict) : """ Create the inverse lookup. """ inverse_dict = {} for num in range( -15, 0, 1 ) : inverse_dict[virtual_plane_dict[num][0]] = num for num in range( 1, 16, 1 ) : inverse_dict[virtual_plane_dict[num][0]] = num return inverse_dict def get_expected_tracks(mc_event, virtual_plane_dict, scifi_event, tofevent) : upstream_planes = [ virtual_plane_dict[i][0] for i in range(-15, 0)] downstream_planes = [ virtual_plane_dict[i][0] for i in range(1, 16)] upstream_track = None downstream_track = None upstream_hits = {} downstream_hits = {} u = [] w = [] d = [] USX = 0 USY = 0 tof0 = 0 tof1 = 0 tof2 = 0 rawTOF2HitTime = -1 rawTOF1HitTime = -1 rawTOF0HitTime = -1 if len(tofevent.GetTOFEventSpacePoint().GetTOF2SpacePointArray()) > 0 : rawTOF2HitTime = tofevent.GetTOFEventSpacePoint().GetTOF2SpacePointArray()[0].GetTime() if len(tofevent.GetTOFEventSpacePoint().GetTOF1SpacePointArray()) > 0 : rawTOF1HitTime = tofevent.GetTOFEventSpacePoint().GetTOF1SpacePointArray()[0].GetTime() if len(tofevent.GetTOFEventSpacePoint().GetTOF0SpacePointArray()) > 0 : rawTOF1HitTime = tofevent.GetTOFEventSpacePoint().GetTOF0SpacePointArray()[0].GetTime() dt = 100.0 if rawTOF0HitTime != -1 and rawTOF1HitTime != -1 : dt = rawTOF1HitTime - rawTOF0HitTime jUS=-1 jDS=-1 kUS=-1 kDS=-1 abspos = 0 phi = 0 zdiff = 0 xabs = 0 yabs = 0 thX = 0 thY = 0 tof0 = 0 tof1 = 0 for vhit_num in xrange(mc_event.GetVirtualHitsSize()) : vhit = mc_event.GetAVirtualHit(vhit_num) tofhit = mc_event.GetTOFHits() for i in xrange(len(tofhit)) : if tofhit[i].GetPosition().Z() - 5287 < 20 and tofhit[i].GetPosition().Z() - 5287 > -20 : tof0 = tofhit[i].GetTime() if tofhit[i].GetPosition().Z() - 12929 < 20 and tofhit[i].GetPosition().Z() - 12929 > -20 : tof1 = tofhit[i].GetTime() if tofhit[i].GetPosition().Z() - 21138 < 20 and tofhit[i].GetPosition().Z() - 21138 > -20 : tof2 = tofhit[i].GetTime() if (tof1-tof0) < TOF_ul and (tof1-tof0) > TOF_ll : station_id = vhit.GetStationId() if station_id in upstream_planes : plane_id = INVERSE_PLANE_DICT[station_id] upstream_hits[plane_id] = vhit if station_id in downstream_planes : plane_id = INVERSE_PLANE_DICT[station_id] downstream_hits[plane_id] = vhit # print station_id, vhit.GetPosition().Z() if station_id == 46 : kUS = 1 jUS = 1 USdXdz = vhit.GetMomentum().Px()/vhit.GetMomentum().Pz() USdYdz = vhit.GetMomentum().Py()/vhit.GetMomentum().Pz() USnorm = 1./sqrt(1 + USdXdz*USdXdz + USdYdz*USdYdz) USX = vhit.GetPosition().X() USY = vhit.GetPosition().Y() USZ = vhit.GetPosition().Z() u = [USdXdz*USnorm, USdYdz*USnorm, USnorm] w = [-u[0]*u[1], (u[0]*u[0] + u[2]*u[2]), -u[1]*u[2]] Wnorm = 1./sqrt(w[0]*w[0] + w[1]*w[1] + w[2]*w[2]) w[0] *= Wnorm w[1] *= Wnorm w[2] *= Wnorm abspos = 16952.5 zdiff = math.fabs(16952.5 - USZ) USXproj = (USdXdz) * zdiff + USX USYproj = (USdYdz) * zdiff + USY #z0 = abspos+549.95 z0 = 19948.8 phi = math.atan2(USdYdz, USdXdz) zdiff = math.fabs(z0 - 16952.5) #USXproj = (USdXdz + sigmap*math.cos(phi)) * zdiff + USXproj #USYproj = (USdYdz + sigmap*math.sin(phi)) * zdiff + USYproj USXproj = USdXdz * zdiff + USXproj USYproj = USdYdz * zdiff + USYproj zdi = 13620-USZ USXdiff = (USdXdz) * zdi + USX USYdiff = (USdYdz) * zdi + USY if (station_id == 55 and len(w)==3 and len(u)==3 and sqrt(USXproj*USXproj + USYproj*USYproj)<meanp and sqrt(USXdiff*USXdiff + USYdiff*USYdiff)<90) : projTheta = [] DSdXdz = vhit.GetMomentum().Px()/vhit.GetMomentum().Pz() DSdYdz = vhit.GetMomentum().Py()/vhit.GetMomentum().Pz() DSnorm = 1./sqrt(1 + DSdXdz*DSdXdz + DSdYdz*DSdYdz) d = [DSdXdz*DSnorm, DSdYdz*DSnorm, DSnorm] projTheta.append( math.atan( (d[0]*w[0] + d[1]*w[1] + d[2]*w[2])/(d[0]*u[0] + d[1]*u[1] + d[2]*u[2]) )) projTheta.append( math.atan( (d[0]*u[2] - u[0]*d[2])/(d[0]*u[0] + d[1]*u[1] + d[2]*d[2])*1./sqrt(u[2]*u[2] + u[0]*u[0])) ) projTheta.append( math.acos( ( (1 + USdXdz * DSdXdz + USdYdz * DSdYdz )/ sqrt(1 + USdXdz*USdXdz + USdYdz*USdYdz)/ sqrt(1 + DSdXdz*DSdXdz + DSdYdz*DSdYdz))) ) # if (sqrt(projTheta[0]*projTheta[0]+projTheta[1]*projTheta[1])<0.190): if (sqrt(projTheta[0]*projTheta[0]+projTheta[1]*projTheta[1])<0.075): plot_dict['downstream']['MC_theta_y'].Fill(projTheta[1]) plot_dict['downstream']['MC_theta_x'].Fill(projTheta[0]) plot_dict['downstream']['MC_theta_scatt'].Fill(projTheta[2]) plot_dict['downstream']['MC_theta_2scatt'].Fill(projTheta[2]*projTheta[2]) if (len(scifi_event.scifitracks()) == 2): ''' X = scifi_event.scifitracks()[0].scifitrackpoints()[0].pos().x() Y = scifi_event.scifitracks()[0].scifitrackpoints()[0].pos().y() Z = scifi_event.scifitracks()[0].scifitrackpoints()[0].pos().z() dXdz = scifi_event.scifitracks()[0].scifitrackpoints()[0].gradient().x() + math.tan(math.atan(1.)/45.0) dYdz = scifi_event.scifitracks()[0].scifitrackpoints()[0].gradient().y() + math.tan(math.atan(1.)/45.0) pz = pz px = scifi_event.scifitracks()[0].scifitrackpoints()[0].mom().x() + math.tan(math.atan(1.)/45.0) * pz py = scifi_event.scifitracks()[0].scifitrackpoints()[0].mom().y() + math.tan(math.atan(1.)/45.0) * pz abspos = 16952.5 phi = math.atan2(dYdz, dXdz) z0 = abspos+549.95 dXdz += sigmap*math.cos(phi) dYdz += sigmap*math.sin(phi) px += sigmap*math.cos(phi)*pz py += sigmap*math.sin(phi)*pz X = px/pz * (z0 - Z) + X Y = py/pz * (z0 - Z) + Y Z = z0 #if ( sqrt(X*X + Y*Y) < 140): ''' plot_dict['downstream']['recon_theta_y'].Fill(projTheta[1]) plot_dict['downstream']['recon_theta_x'].Fill(projTheta[0]) plot_dict['downstream']['recon_theta_scatt'].Fill(projTheta[2]) plot_dict['downstream']['recon_theta_2scatt'].Fill(projTheta[2]*projTheta[2]) u = [] w = [] d = [] if TRACK_ALGORITHM == 1 : if len(upstream_hits) > EXPECTED_HELIX_TRACKPOINTS : upstream_track = upstream_hits if len(downstream_hits) > EXPECTED_HELIX_TRACKPOINTS : downstream_track = downstream_hits elif TRACK_ALGORITHM == 0 : if len(upstream_hits) > EXPECTED_STRAIGHT_TRACKPOINTS : upstream_track = upstream_hits if len(downstream_hits) > EXPECTED_STRAIGHT_TRACKPOINTS : downstream_track = downstream_hits else: raise ValueError("Unknown track algorithm found!") return upstream_track, downstream_track def calculate_efficiency(plot_dict) : """ scat analysis efficiency numbers """ t1 = ROOT.TText(0.28,0.185,"MICE preliminary [simulation]") t2 = ROOT.TText(0.28,0.15,"ISIS Cycle 2015/04") t1.SetNDC(1) t1.SetTextSize(0.04) t1.SetTextFont(42) t2.SetNDC(1) t2.SetTextSize(0.03) t2.SetTextFont(42) f = ROOT.TFile("tracker_resolution_plots_"+str(TOF_ll)+".root","RECREATE") pEffx = ROOT.TEfficiency() pEffx = ROOT.TEfficiency(plot_dict['downstream']['recon_theta_x'],plot_dict['downstream']['MC_theta_x']) c5 = ROOT.TCanvas() plot_dict['downstream']['efficiency_scat_x'] = pEffx.CreateGraph() pEffx_graph = pEffx.CreateGraph() pEffx_graph.SetName("Effx_graph") #pEffx_graph.SetTitle("Acceptance plot #theta_x") pEffx_graph.GetXaxis().SetTitle("#theta_{x} (mrad)") pEffx_graph.GetYaxis().SetTitle("Efficiency") pEffx_graph.Draw("ap") f1 = ROOT.TF1("f1","pol2",-0.040,0.040) #f1.SetParameters(1,1) #pEffx_graph.Fit("f1","R") #pEffx_graph.SetRangeUser(-0.60,0.60) t1.Draw("same") t2.Draw("same") t1.Paint() t2.Paint() c5.SaveAs("pEff_x.pdf") pEffx_graph.Write() pEffy = ROOT.TEfficiency() pEffy = ROOT.TEfficiency(plot_dict['downstream']['recon_theta_y'],plot_dict['downstream']['MC_theta_y']) c7 = ROOT.TCanvas() plot_dict['downstream']['efficiency_scat_y'] = pEffy.CreateGraph() pEffy_graph = pEffy.CreateGraph() pEffy_graph.SetName("Effy_graph") #pEffy_graph.SetTitle("Acceptance plot #theta_y") pEffy_graph.GetXaxis().SetTitle("#theta_{y} (mrad)") pEffy_graph.GetYaxis().SetTitle("Efficiency") pEffy_graph.Draw("ap") #pEffy_graph.Fit("f1","R") t1.Draw("same") t2.Draw("same") t1.Paint() t2.Paint() c7.SaveAs("pEff_y.pdf") pEffy_graph.Write() pEffscatt = ROOT.TEfficiency() pEffscatt = ROOT.TEfficiency(plot_dict['downstream']['recon_theta_scatt'],plot_dict['downstream']['MC_theta_scatt']) c17 = ROOT.TCanvas() plot_dict['downstream']['efficiency_scat_scatt'] = pEffscatt.CreateGraph() pEffscatt.Draw() c17.SaveAs("pEff_scatt.pdf") pEffscatt_graph = pEffscatt.CreateGraph() pEffscatt_graph.SetName("Effscatt_graph") pEffscatt_graph.Write() pEff2scatt = ROOT.TEfficiency() pEff2scatt = ROOT.TEfficiency(plot_dict['downstream']['recon_theta_2scatt'],plot_dict['downstream']['MC_theta_2scatt']) c17 = ROOT.TCanvas() plot_dict['downstream']['efficiency_scat_2scatt'] = pEff2scatt.CreateGraph() pEff2scatt.Draw() c17.SaveAs("pEff_2scatt.pdf") pEff2scatt_graph = pEff2scatt.CreateGraph() pEff2scatt_graph.SetName("Eff2scatt_graph") pEff2scatt_graph.Write() f.Close() ''' c3 = ROOT.TCanvas() plot_dict['downstream']['efficiency_scat'].Divide(plot_dict['downstream']['recon_theta'].Draw(),ROOT.TH1(plot_dict['downstream']['MC_theta'].Draw())) plot_dict['downstream']['recon_theta'].Draw() line = ROOT.TLine(-0.0705,1,0.0705,1) line.SetLineColor(22) line.Draw() c3.SaveAs('effi.pdf') ''' c1 = ROOT.TCanvas() plot_dict['downstream']['recon_theta_x'].Draw() plot_dict['downstream']['MC_theta_x'].Draw("SAMES") plot_dict['downstream']['MC_theta_x'].SetLineColor(2) plot_dict['downstream']['MC_theta_x'].SetLineStyle(2) c1.SaveAs('recon_theta.pdf') c1.Clear() c4= ROOT.TCanvas() #recon_theta_hist = plot_dict['downstream']['recon_theta'].Draw() #recon_theta_hist.Sumw2() #c4.SaveAs('recon_theta_hist.pdf') c2 = ROOT.TCanvas() MC_theta = plot_dict['downstream']['MC_theta_x'].Draw() c2.SaveAs('MC_theta.pdf') #plot_dict['downstream']['efficiency_scat'] = recon_theta_hist #plot_dict['downstream']['efficiency_scat'].Divide(MC_theta) #plot_dict['downstream']['efficiency_scat'].Draw() def get_found_tracks(scifi_event, plot_dict, data_dict, tofevent) : """ Find all the single tracks that pass the cuts. """ upstream_tracks = [] downstream_tracks = [] tracks = scifi_event.scifitracks() for track in tracks : if track.tracker() == 0 : tracker = "upstream" else : tracker = "downstream" data_dict['counters'][tracker]['number_tracks'] += 1 if track.GetAlgorithmUsed() != TRACK_ALGORITHM : data_dict['counters'][tracker]['wrong_track_type'] += 1 continue if track.P_value() < P_VALUE_CUT : data_dict['counters'][tracker]['p_value_cut'] += 1 continue data_dict['counters'][tracker]['number_candidates'] += 1 if track.tracker() == 0 : upstream_tracks.append(track) if track.tracker() == 1 : downstream_tracks.append(track) if len(upstream_tracks) > 1 : data_dict['counters']['upstream']['superfluous_track_events'] += 1 if len(downstream_tracks) > 1 : data_dict['counters']['downstream']['superfluous_track_events'] += 1 if len(upstream_tracks) == 1 : upstream_track = upstream_tracks[0] data_dict['counters']['upstream']['found_tracks'] += 1 else : upstream_track = None if len(downstream_tracks) == 1 : downstream_track = downstream_tracks[0] data_dict['counters']['downstream']['found_tracks'] += 1 else : downstream_track = None rawTOF1HitTime = -1 rawTOF0HitTime = -1 if len(tofevent.GetTOFEventSpacePoint().GetTOF1SpacePointArray()) > 0 : rawTOF1HitTime = tofevent.GetTOFEventSpacePoint().GetTOF1SpacePointArray()[0].GetTime() if len(tofevent.GetTOFEventSpacePoint().GetTOF0SpacePointArray()) > 0 : rawTOF0HitTime = tofevent.GetTOFEventSpacePoint().GetTOF0SpacePointArray()[0].GetTime() dt = 100.0 if rawTOF1HitTime != -1 and rawTOF0HitTime != -1 : dt = rawTOF1HitTime - rawTOF0HitTime if dt < TOF_ul and dt > TOF_ll : jUS=-1 jDS=-1 kUS=-1 kDS=-1 thX = 0 thY = 0 j = 0 for track in tracks: maxUS=0.0 minDS=44000 tracker = track.tracker() trkpoints = track.scifitrackpoints() for trkpoint in trkpoints : zpos = trkpoint.pos().z() if(tracker==0 and zpos > maxUS): maxUS = zpos kUS = 1 jUS = 1 USdXdz = trkpoint.gradient().x() + math.tan(thX*math.atan(1.)/45.0) USdYdz = trkpoint.gradient().y() + math.tan(thY*math.atan(1.)/45.0) if(tracker==1 and zpos < minDS): minDS = zpos kDS = 1 jDS = 1 DSdXdz = trkpoint.gradient().x() + math.tan(thX*math.atan(1.)/45.0) DSdYdz = trkpoint.gradient().y() + math.tan(thY*math.atan(1.)/45.0) if (jUS != -1 and kUS != -1 and jDS != -1 and kDS != -1) : projTheta = [] USnorm = 1./sqrt(1 + USdXdz*USdXdz + USdYdz*USdYdz) u = [USdXdz*USnorm, USdYdz*USnorm, USnorm] w = [-u[0]*u[1], (u[0]*u[0] + u[2]*u[2]), -u[1]*u[2]] Wnorm = 1./sqrt(w[0]*w[0] + w[1]*w[1] + w[2]*w[2]) w[0] *= Wnorm w[1] *= Wnorm w[2] *= Wnorm DSnorm = 1./sqrt(1 + DSdXdz*DSdXdz + DSdYdz*DSdYdz) d = [DSdXdz*DSnorm, DSdYdz*DSnorm, DSnorm] projTheta.append( math.atan( (d[0]*w[0] + d[1]*w[1] + d[2]*w[2])/ (d[0]*u[0] + d[1]*u[1] + d[2]*u[2]) )) projTheta.append( math.atan( (d[0]*u[2] - u[0]*d[2])\ /(d[0]*u[0] + d[1]*u[1] + d[2]*d[2]) * 1./sqrt(u[2]*u[2] + u[0]*u[0])) ) projTheta.append( math.acos( ( (1 + USdXdz * DSdXdz + USdYdz * DSdYdz )/ sqrt(1 + USdXdz*USdXdz + USdYdz*USdYdz)/ sqrt(1 + DSdXdz*DSdXdz + DSdYdz*DSdYdz))) ) #print "projTheta[0]",projTheta[0] #plot_dict['downstream']['recon_theta'].Fill(projTheta[0]) return upstream_track, downstream_track def make_scifi_mc_pairs(plot_dict, data_dict, virtual_plane_dict, \ scif_event, mc_event, tofevent) : """ Make pairs of SciFiTrackpoints and MC VirtualHits """ paired_hits = [] paired_seeds = [] expected_up, expected_down = get_expected_tracks(mc_event, virtual_plane_dict, scifi_event, tofevent) found_up, found_down = get_found_tracks(scifi_event, plot_dict, data_dict, tofevent) downstream_pt = 0.0 downstream_pz = 0.0 data_dict['counters']['number_events'] += 1 for tracker_num, tracker, scifi_track, virtual_track in \ [ (0, "upstream", found_up, expected_up), \ (1, "downstream", found_down, expected_down) ] : if virtual_track is None : continue ref_plane = tools.calculate_plane_id(tracker_num, RECON_STATION, RECON_PLANE) seed_plane = tools.calculate_plane_id(tracker_num, SEED_STATION, SEED_PLANE) virtual_pt = 0.0 virtual_pz = 0.0 virtual_field = 0.0 virtual_charge = 0.0 virtual_L = 0.0 virtual_X_0 = 0.0 virtual_Y_0 = 0.0 virtual_radius = 0.0 virtual_hits = 0 scifi_hits = 0 seed_virt = None reference_virt = None reference_scifi = None for plane in virtual_track : if virtual_track[plane] is not None : hit = virtual_track[plane] px = hit.GetMomentum().x() py = hit.GetMomentum().y() pt = math.sqrt( px**2 + py**2) field = hit.GetBField().z() * 1000.0 q = hit.GetCharge() virtual_pt += pt virtual_pz += hit.GetMomentum().z() virtual_field += field virtual_charge += q virtual_L += hit.GetPosition().x()*py - \ hit.GetPosition().y()*px if field != 0: virtual_radius += pt/(q*field) virtual_X_0 += hit.GetPosition().x() - py / (q*field) virtual_Y_0 += hit.GetPosition().y() + px / (q*field) virtual_hits += 1 if plane == ref_plane : reference_virt = virtual_track[plane] if plane == seed_plane : seed_virt = virtual_track[plane] virtual_pt /= virtual_hits virtual_pz /= virtual_hits virtual_field /= virtual_hits virtual_charge /= virtual_hits virtual_L /= virtual_hits virtual_p = math.sqrt( virtual_pt**2 + virtual_pz**2 ) virtual_X_0 /= virtual_hits virtual_Y_0 /= virtual_hits virtual_radius /= virtual_hits if field != 0: rho = virtual_pt / (virtual_charge*virtual_field) else: rho = 0 C = virtual_charge*(virtual_field * rho*rho) / 2.0 virtual_L_canon = virtual_L + C # virtual_L_canon = virtual_radius**2 - (virtual_X_0**2 + virtual_Y_0**2) # print # print # print virtual_pt # print virtual_pz # print virtual_field # print virtual_charge # print virtual_L # print virtual_L_canon # print virtual_X_0 # print virtual_Y_0 # print virtual_radius # print # print if virtual_p > P_MAX or virtual_p < P_MIN : data_dict['counters'][tracker]['momentum_cut'] += 1 continue elif virtual_pt / virtual_p > MAX_GRADIENT : data_dict['counters'][tracker]['gradient_cut'] += 1 continue else : data_dict['counters'][tracker]['number_virtual'] += 1 plot_dict[tracker]['ntracks_mc_pt'].Fill( virtual_pt ) plot_dict[tracker]['ntracks_mc_pz'].Fill( virtual_pz ) plot_dict[tracker]['ntp_mc_pt'].Fill( virtual_pt, virtual_hits ) plot_dict[tracker]['ntp_mc_pz'].Fill( virtual_pz, virtual_hits ) if scifi_track is None : plot_dict[tracker]['track_efficiency'].Fill(False, virtual_pz, virtual_pt) plot_dict[tracker]['track_efficiency_pt'].Fill(False, virtual_pt) plot_dict[tracker]['track_efficiency_pz'].Fill(False, virtual_pz) data_dict['counters'][tracker]['missing_tracks'] += 1 # for i in range(virtual_hits) : # plot_dict[tracker]['trackpoint_efficiency'].Fill(False, virtual_pz,\ # virtual_pt) # plot_dict[tracker]['trackpoint_efficiency_pt'].Fill(False, virtual_pt) # plot_dict[tracker]['trackpoint_efficiency_pz'].Fill(False, virtual_pz) if reference_virt is not None : plot_dict['missing_tracks'][tracker]['x_y'].Fill( \ reference_virt.GetPosition().x(), reference_virt.GetPosition().y()) plot_dict['missing_tracks'][tracker]['px_py'].Fill( \ reference_virt.GetMomentum().x(), reference_virt.GetMomentum().y()) plot_dict['missing_tracks'][tracker]['x_px'].Fill( \ reference_virt.GetPosition().x(), reference_virt.GetMomentum().x()) plot_dict['missing_tracks'][tracker]['y_py'].Fill( \ reference_virt.GetPosition().y(), reference_virt.GetMomentum().y()) plot_dict['missing_tracks'][tracker]['x_py'].Fill( \ reference_virt.GetPosition().x(), reference_virt.GetMomentum().y()) plot_dict['missing_tracks'][tracker]['y_px'].Fill( \ reference_virt.GetPosition().y(), reference_virt.GetMomentum().x()) plot_dict['missing_tracks'][tracker]['pz'].Fill( virtual_pz ) plot_dict['missing_tracks'][tracker]['pt'].Fill( virtual_pt ) plot_dict['missing_tracks'][tracker]['pz_pt'].Fill( \ virtual_pz, virtual_pt ) continue # Can't do anything else without a scifi track for scifi_hit in scifi_track.scifitrackpoints() : if scifi_hit.has_data() : scifi_hits += 1 pl_id = analysis.tools.calculate_plane_id(scifi_hit.tracker(), \ scifi_hit.station(), scifi_hit.plane()) plot_name = 'kalman_pulls_{0:02d}'.format(pl_id) plot_dict['pulls'][plot_name].Fill( scifi_hit.pull() ) if scifi_hit.station() == RECON_STATION and \ scifi_hit.plane() == RECON_PLANE : reference_scifi = scifi_hit plot_dict[tracker]['track_efficiency'].Fill(True, virtual_pz, virtual_pt) plot_dict[tracker]['track_efficiency_pt'].Fill(True, virtual_pt) plot_dict[tracker]['track_efficiency_pz'].Fill(True, virtual_pz) plot_dict[tracker]['track_efficiency_L_canon'].Fill(True, virtual_L_canon) plot_dict[tracker]['ntracks_pt'].Fill( virtual_pt ) plot_dict[tracker]['ntracks_pz'].Fill( virtual_pz ) plot_dict[tracker]['ntp'].Fill( scifi_hits ) plot_dict[tracker]['ntp_pt'].Fill( virtual_pt, scifi_hits ) plot_dict[tracker]['ntp_pz'].Fill( virtual_pz, scifi_hits ) if scifi_hits >= virtual_hits : for i in range(virtual_hits) : plot_dict[tracker]['trackpoint_efficiency'].Fill(True, \ virtual_pz, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pt'].Fill(True, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pz'].Fill(True, virtual_pz) else : for i in range( virtual_hits - scifi_hits ) : plot_dict[tracker]['trackpoint_efficiency'].Fill(False, \ virtual_pz, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pt'].Fill(False, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pz'].Fill(False, virtual_pz) for i in range( scifi_hits ) : plot_dict[tracker]['trackpoint_efficiency'].Fill(True, \ virtual_pz, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pt'].Fill(True, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pz'].Fill(True, virtual_pz) if reference_virt is None : data_dict['counters'][tracker]['missing_virtuals'] += 1 if reference_scifi is None : data_dict['counters'][tracker]['missing_reference_hits'] += 1 if reference_virt is not None and reference_scifi is not None : paired_hits.append( (reference_scifi, reference_virt) ) data_dict['counters'][tracker]['found_pairs'] += 1 if seed_virt is not None and scifi_track is not None : paired_seeds.append( (scifi_track, seed_virt)) return paired_hits, paired_seeds def fill_plots(plot_dict, data_dict, hit_pairs) : """ Fill Plots with Track and Residual Data """ for scifi_hit, virt_hit in hit_pairs : tracker_num = scifi_hit.tracker() pz_bin = get_pz_bin( virt_hit.GetMomentum().z() ) if pz_bin >= PZ_BIN or pz_bin < 0 : continue mc_cov = None recon_cov = None correction_matrix = None if tracker_num == 0 : tracker = 'upstream' mc_cov = UP_COV_MC[pz_bin] recon_cov = UP_COV_RECON[pz_bin] correction_matrix = UP_CORRECTION else : tracker = 'downstream' mc_cov = DOWN_COV_MC[pz_bin] recon_cov = DOWN_COV_RECON[pz_bin] correction_matrix = DOWN_CORRECTION tracker_plots = plot_dict[tracker] mc_cov.add_hit(hit_types.AnalysisHit(virtual_track_point=virt_hit)) recon_cov.add_hit(hit_types.AnalysisHit(scifi_track_point=scifi_hit)) correction_matrix.add_hit(\ hit_types.AnalysisHit(scifi_track_point=scifi_hit), \ hit_types.AnalysisHit(virtual_track_point=virt_hit)) scifi_pos = [scifi_hit.pos().x(), scifi_hit.pos().y(), scifi_hit.pos().z()] scifi_mom = [scifi_hit.mom().x(), scifi_hit.mom().y(), scifi_hit.mom().z()] virt_pos = [virt_hit.GetPosition().x(), \ virt_hit.GetPosition().y(), virt_hit.GetPosition().z()] virt_mom = [virt_hit.GetMomentum().x(), \ virt_hit.GetMomentum().y(), virt_hit.GetMomentum().z()] res_pos = [ scifi_pos[0] - virt_pos[0], \ scifi_pos[1] - virt_pos[1], \ scifi_pos[2] - virt_pos[2] ] res_mom = [ scifi_mom[0] - virt_mom[0], \ scifi_mom[1] - virt_mom[1], \ scifi_mom[2] - virt_mom[2] ] res_gra = [ scifi_mom[0]/scifi_mom[2] - virt_mom[0]/virt_mom[2], \ scifi_mom[1]/scifi_mom[2] - virt_mom[1]/virt_mom[2] ] Pt_mc = math.sqrt( virt_mom[0] ** 2 + virt_mom[1] ** 2 ) Pz_mc = virt_mom[2] P_mc = math.sqrt(Pz_mc**2 +Pt_mc**2) L_mc = virt_pos[0]*virt_mom[1] - virt_pos[1]*virt_mom[0] Pt_recon = math.sqrt( scifi_mom[0] ** 2 + scifi_mom[1] ** 2 ) P_recon = math.sqrt(Pt_recon**2 + scifi_mom[2]**2) L_recon = scifi_pos[0]*scifi_mom[1] - scifi_pos[1]*scifi_mom[0] Pt_res = Pt_recon - Pt_mc P_res = P_recon - P_mc B_field = virt_hit.GetBField().z() * 1000.0 q = virt_hit.GetCharge() rho = sqrt(scifi_pos[0]**2 + scifi_pos[1]**2) rho_mc = sqrt(virt_pos[0]**2 + virt_pos[1]**2) C = q*(B_field * rho*rho) / 2.0 C_mc = q*(B_field * rho_mc*rho_mc) / 2.0 tracker_plots['xy'].Fill(scifi_pos[0], scifi_pos[1]) tracker_plots['pxpy'].Fill(scifi_mom[0], scifi_mom[1]) tracker_plots['pt'].Fill(Pt_recon) tracker_plots['pz'].Fill(scifi_mom[2]) tracker_plots['L'].Fill(L_recon) tracker_plots['L_canon'].Fill(L_recon + C) tracker_plots['mc_xy'].Fill(virt_pos[0], virt_pos[1]) tracker_plots['mc_pxpy'].Fill(virt_mom[0], virt_mom[1]) tracker_plots['mc_pt'].Fill(Pt_mc) tracker_plots['mc_pz'].Fill(Pz_mc) tracker_plots['mc_L'].Fill(L_mc) tracker_plots['mc_L_canon'].Fill(L_mc + C_mc) tracker_plots['L_r'].Fill( L_recon, sqrt(scifi_pos[0]**2 + scifi_pos[1]**2)) tracker_plots['L_canon_r'].Fill( L_recon+C, sqrt(scifi_pos[0]**2 + scifi_pos[1]**2)) tracker_plots['mc_L_r'].Fill( L_mc, sqrt(virt_pos[0]**2 + virt_pos[1]**2)) tracker_plots['mc_L_canon_r'].Fill( L_mc+C_mc, \ sqrt(virt_pos[0]**2 + virt_pos[1]**2)) tracker_plots['residual_xy'].Fill(res_pos[0], res_pos[1]) tracker_plots['residual_pxpy'].Fill(res_mom[0], res_mom[1]) tracker_plots['residual_mxmy'].Fill(res_gra[0], res_gra[1]) tracker_plots['residual_pt'].Fill(Pt_res) tracker_plots['residual_pz'].Fill(res_mom[2]) tracker_plots['residual_L'].Fill(L_recon-L_mc) tracker_plots['residual_L_canon'].Fill((L_recon+C)-(L_mc+C_mc)) tracker_plots['L_residual_r'].Fill( L_recon-L_mc, \ sqrt(virt_pos[0]**2 + virt_pos[1]**2)) tracker_plots['L_canon_residual_r'].Fill( (L_recon+C)-(L_mc+C_mc), \ sqrt(virt_pos[0]**2 + virt_pos[1]**2)) tracker_plots['x_residual_pt'].Fill( Pt_mc, res_pos[0] ) tracker_plots['y_residual_pt'].Fill( Pt_mc, res_pos[1] ) tracker_plots['r_residual_pt'].Fill( Pt_mc, \ sqrt(res_pos[0]**2 + res_pos[1]**2) ) tracker_plots['px_residual_pt'].Fill( Pt_mc, res_mom[0] ) tracker_plots['py_residual_pt'].Fill( Pt_mc, res_mom[1] ) tracker_plots['pt_residual_pt'].Fill( Pt_mc, Pt_res ) tracker_plots['pz_residual_pt'].Fill( Pt_mc, res_mom[2] ) tracker_plots['p_residual_pt'].Fill( Pt_mc, P_res ) tracker_plots['x_residual_p'].Fill( P_mc, res_pos[0] ) tracker_plots['y_residual_p'].Fill( P_mc, res_pos[1] ) tracker_plots['r_residual_p'].Fill( P_mc, \ sqrt(res_pos[0]**2 + res_pos[1]**2) ) tracker_plots['px_residual_p'].Fill( P_mc, res_mom[0] ) tracker_plots['py_residual_p'].Fill( P_mc, res_mom[1] ) tracker_plots['pt_residual_p'].Fill( P_mc, Pt_res ) tracker_plots['pz_residual_p'].Fill( P_mc, res_mom[2] ) tracker_plots['p_residual_p'].Fill( P_mc, P_res ) tracker_plots['x_residual_pz'].Fill( Pz_mc, res_pos[0] ) tracker_plots['y_residual_pz'].Fill( Pz_mc, res_pos[1] ) tracker_plots['r_residual_pz'].Fill( Pz_mc, \ sqrt(res_pos[0]**2 + res_pos[1]**2) ) tracker_plots['mx_residual_pz'].Fill( Pz_mc, res_gra[0] ) tracker_plots['my_residual_pz'].Fill( Pz_mc, res_gra[1] ) tracker_plots['px_residual_pz'].Fill( Pz_mc, res_mom[0] ) tracker_plots['py_residual_pz'].Fill( Pz_mc, res_mom[1] ) tracker_plots['pt_residual_pz'].Fill( Pz_mc, Pt_res ) tracker_plots['pz_residual_pz'].Fill( Pz_mc, res_mom[2] ) tracker_plots['p_residual_pz'].Fill( Pz_mc, P_res ) if mc_cov.length() == ENSEMBLE_SIZE : pz = mc_cov.get_mean('pz') tracker_plots['mc_alpha'].Fill(pz, mc_cov.get_alpha(['x','y'])) tracker_plots['mc_beta'].Fill(pz, mc_cov.get_beta(['x','y'])) tracker_plots['mc_emittance'].Fill(pz, mc_cov.get_emittance(\ ['x','px','y','py'])) tracker_plots['mc_momentum'].Fill(pz, mc_cov.get_momentum()) tracker_plots['recon_alpha'].Fill(pz, recon_cov.get_alpha(\ ['x','y'])) tracker_plots['recon_beta'].Fill(pz, recon_cov.get_beta(\ ['x','y'])) tracker_plots['recon_emittance'].Fill(pz, \ recon_cov.get_emittance(['x','px','y','py'])) tracker_plots['recon_momentum'].Fill(pz, \ recon_cov.get_momentum()) tracker_plots['residual_alpha'].Fill(pz, \ recon_cov.get_alpha(['x','y']) - mc_cov.get_alpha(['x','y'])) tracker_plots['residual_beta'].Fill(pz, \ recon_cov.get_beta(['x','y']) - mc_cov.get_beta(['x','y'])) tracker_plots['residual_emittance'].Fill(pz, \ recon_cov.get_emittance(['x','px','y','py']) - \ mc_cov.get_emittance(['x','px','y','py'])) tracker_plots['residual_momentum'].Fill(pz, \ recon_cov.get_momentum() - mc_cov.get_momentum()) mc_cov.clear() recon_cov.clear() def fill_plots_seeds(plot_dict, data_dict, hit_pairs) : """ Fill Plots with Track and Residual Data """ for scifi_track, virt_hit in hit_pairs : tracker_num = scifi_track.tracker() pz_bin = get_pz_bin( virt_hit.GetMomentum().z() ) if pz_bin >= PZ_BIN or pz_bin < 0 : continue if tracker_num == 0 : tracker = 'upstream' else : tracker = 'downstream' tracker_plots = plot_dict[tracker] scifi_pos = [scifi_track.GetSeedPosition().x(), \ scifi_track.GetSeedPosition().y(), scifi_track.GetSeedPosition().z()] scifi_mom = [scifi_track.GetSeedMomentum().x(), \ scifi_track.GetSeedMomentum().y(), scifi_track.GetSeedMomentum().z()] virt_pos = [virt_hit.GetPosition().x(), \ virt_hit.GetPosition().y(), virt_hit.GetPosition().z()] virt_mom = [virt_hit.GetMomentum().x(), \ virt_hit.GetMomentum().y(), virt_hit.GetMomentum().z()] res_pos = [ scifi_pos[0] - virt_pos[0], \ scifi_pos[1] - virt_pos[1], \ scifi_pos[2] - virt_pos[2] ] res_mom = [ scifi_mom[0] - virt_mom[0], \ scifi_mom[1] - virt_mom[1], \ scifi_mom[2] - virt_mom[2] ] res_gra = [ scifi_mom[0]/scifi_mom[2] - virt_mom[0]/virt_mom[2], \ scifi_mom[1]/scifi_mom[2] - virt_mom[1]/virt_mom[2] ] Pt_mc = math.sqrt( virt_mom[0] ** 2 + virt_mom[1] ** 2 ) P_mc = math.sqrt( virt_mom[0] ** 2 + virt_mom[1] ** 2 + virt_mom[2] ** 2 ) Pz_mc = virt_mom[2] Pt_recon = math.sqrt( scifi_mom[0] ** 2 + scifi_mom[1] ** 2 ) P_recon = math.sqrt( scifi_mom[0] ** 2 + scifi_mom[1] ** 2 + \ scifi_mom[2] ** 2 ) Pt_res = Pt_recon - Pt_mc P_res = P_recon - P_mc tracker_plots['seed_x_residual'].Fill(res_pos[0]) tracker_plots['seed_y_residual'].Fill(res_pos[1]) tracker_plots['seed_px_residual'].Fill(res_mom[0]) tracker_plots['seed_py_residual'].Fill(res_mom[1]) tracker_plots['seed_pz_residual'].Fill(res_mom[2]) tracker_plots['seed_mx_residual'].Fill(res_gra[0]) tracker_plots['seed_my_residual'].Fill(res_gra[1]) tracker_plots['seed_pt_residual'].Fill(Pt_res) tracker_plots['seed_p_residual'].Fill(P_res) tracker_plots['seed_pz_residual_pz'].Fill(Pz_mc, res_mom[2]) tracker_plots['seed_pt_residual_pt'].Fill(Pt_mc, Pt_res) tracker_plots['seed_pz_residual_pt'].Fill(Pt_mc, res_mom[2]) tracker_plots['seed_pt_residual_pz'].Fill(Pz_mc, Pt_res) tracker_plots['seed_p_residual_p'].Fill(P_mc, P_res) def analyse_plots(plot_dict, data_dict) : """ Use existing plots to perform some useful analysis """ # Print out some simple stats print print "There were:" print " {0:0.0f} Events".format( data_dict['counters']['number_events'] ) print " {0:0.0f} Upstream Tracks".format( \ data_dict['counters']['upstream']['number_tracks'] ) print " {0:0.0f} Downstream Tracks".format( \ data_dict['counters']['downstream']['number_tracks'] ) print " {0:0.0f} Upstream Vitual Tracks".format( \ data_dict['counters']['upstream']['number_virtual'] ) print " {0:0.0f} Downstream Virtual Tracks".format( \ data_dict['counters']['upstream']['number_virtual'] ) print " Excluded {0:0.0f} Upstream Tracks outside momentum window".format( \ data_dict['counters']['upstream']['momentum_cut'] ) print " Excluded {0:0.0f} Downstream Tracks outside momentum window".format(\ data_dict['counters']['upstream']['momentum_cut'] ) print print "Found {0:0.0f} Upstream Tracks of the wrong type".format( \ data_dict['counters']['upstream']['wrong_track_type'] ) print "Found {0:0.0f} Downstream Tracks of the wrong type".format( \ data_dict['counters']['downstream']['wrong_track_type'] ) print "Cut {0:0.0f} Upstream Tracks (P-Value Cut)".format( \ data_dict['counters']['upstream']['p_value_cut'] ) print "Cut {0:0.0f} Downstream Tracks (P-Value Cut)".format( \ data_dict['counters']['downstream']['p_value_cut'] ) print print "{0:0.0f} Upstream Tracks for analysis".format( \ data_dict['counters']['upstream']['number_candidates'] ) print "{0:0.0f} Downstream Tracks for analysis".format( \ data_dict['counters']['downstream']['number_candidates'] ) print print "Missed {0:0.0f} Upstream Virtual Hits".format( \ data_dict['counters']['upstream']['missing_virtuals'] ) print "Missed {0:0.0f} Downstream Virtual Hits".format( \ data_dict['counters']['downstream']['missing_virtuals'] ) print "Missed {0:0.0f} Upstream Reference Plane Hits".format( \ data_dict['counters']['upstream']['missing_reference_hits'] ) print "Missed {0:0.0f} Downstream Reference Plane Hits".format( \ data_dict['counters']['downstream']['missing_reference_hits'] ) print "Missed {0:0.0f} Upstream Tracks".format( \ data_dict['counters']['upstream']['missing_tracks'] ) print "Missed {0:0.0f} Downstream Tracks".format( \ data_dict['counters']['downstream']['missing_tracks'] ) print print "Matched {0:0.0f} Upstream Tracks".format( \ data_dict['counters']['upstream']['found_tracks'] ) print "Matched {0:0.0f} Downstream Tracks".format( \ data_dict['counters']['downstream']['found_tracks'] ) print print "Found {0:0.0f} Upstream Superfluous Track Events".format( \ data_dict['counters']['upstream']['superfluous_track_events'] ) print "Found {0:0.0f} Downstream Superfluous Track Events".format( \ data_dict['counters']['downstream']['superfluous_track_events'] ) print # Make the pretty plots for tracker in [ "upstream", "downstream" ] : for component in [ "x_", "y_", "r_", "px_", "py_", "pt_", "pz_", "p_" ] : for plot_axis in [ "residual_pt", "residual_pz", "residual_p" ] : plot = plot_dict[tracker][component+plot_axis] rms_error = array.array( 'd' ) bin_size = array.array( 'd' ) bins = array.array( 'd' ) rms = array.array( 'd' ) mean = array.array( 'd' ) mean_error = array.array( 'd' ) width = plot.GetXaxis().GetBinWidth(1) for i in range( 0, plot.GetXaxis().GetNbins() ) : projection = plot.ProjectionY( \ tracker+component+plot_axis+'_pro_'+str(i), i, (i+1) ) plot_mean = plot.GetXaxis().GetBinCenter( i ) + width pro_mean, pro_mean_err, pro_std, pro_std_err = \ analysis.tools.fit_gaussian(projection) bin_size.append( width*0.5 ) bins.append( plot_mean ) rms.append( pro_std ) rms_error.append( pro_std_err ) mean.append( pro_mean ) mean_error.append( pro_mean_err ) if len(bins) != 0 : resolution_graph = ROOT.TGraphErrors( len(bins), \ bins, rms, bin_size, rms_error ) bias_graph = ROOT.TGraphErrors( len(bins), \ bins, mean, bin_size, mean_error ) else : resolution_graph = None bias_graph = None plot_dict[tracker][component+plot_axis+'_resolution'] = \ resolution_graph plot_dict[tracker][component+plot_axis+'_bias'] = bias_graph for tracker in [ "upstream", "downstream" ] : # for component in [ "pt_", "pz_", ] : # for plot_axis in [ "residual_pt", "residual_pz" ] : for plot_name in [ "pt_residual_pt", "pt_residual_pz", "pz_residual_pt", \ "pz_residual_pz", "p_residual_p" ] : plot = plot_dict[tracker]['seed_'+plot_name] rms_error = array.array( 'd' ) bin_size = array.array( 'd' ) bins = array.array( 'd' ) rms = array.array( 'd' ) mean = array.array( 'd' ) mean_error = array.array( 'd' ) width = plot.GetXaxis().GetBinWidth(1) for i in range( 0, plot.GetXaxis().GetNbins() ) : projection = plot.ProjectionY( \ tracker+plot_name+'_pro_'+str(i), i, (i+1) ) plot_mean = plot.GetXaxis().GetBinCenter( i ) + width pro_mean, pro_mean_err, pro_std, pro_std_err = \ analysis.tools.fit_gaussian(projection) bin_size.append( width*0.5 ) bins.append( plot_mean ) rms.append( pro_std ) rms_error.append( pro_std_err ) mean.append( pro_mean ) mean_error.append( pro_mean_err ) if len(bins) != 0 : resolution_graph = ROOT.TGraphErrors( len(bins), \ bins, rms, bin_size, rms_error ) bias_graph = ROOT.TGraphErrors( len(bins), \ bins, mean, bin_size, mean_error ) else : resolution_graph = None bias_graph = None plot_dict[tracker]['seed_'+plot_name+'_resolution'] = resolution_graph plot_dict[tracker]['seed_'+plot_name+'_bias'] = bias_graph return data_dict if __name__ == "__main__" : ROOT.gROOT.SetBatch( True ) ROOT.gErrorIgnoreLevel = ROOT.kError parser = argparse.ArgumentParser( description='An example script showing '+\ 'some basic data extraction and analysis routines' ) parser.add_argument( 'maus_root_files', nargs='+', help='List of MAUS '+\ 'output root files containing reconstructed straight tracks') parser.add_argument( '-N', '--max_num_events', type=int, \ help='Maximum number of events to analyse.') parser.add_argument( '-O', '--output_filename', \ default='tracker_resolution_plots', help='Set the output filename') parser.add_argument( '-D', '--output_directory', \ default='./', help='Set the output directory') parser.add_argument( '-V', '--virtual_plane_dictionary', default=None, \ help='Specify a json file containing a dictionary of the '+\ 'virtual plane lookup' ) parser.add_argument( '-P', '--print_plots', action='store_true', \ help="Flag to save the plots as individual pdf files" ) parser.add_argument( '--cut_number_trackpoints', type=int, default=0, \ help="Specify the minumum number of trackpoints required per track" ) parser.add_argument( '--cut_p_value', type=float, default=0.0, \ help="Specify the P-Value below which tracks are removed from the analysis" ) parser.add_argument( '--track_algorithm', type=int, default=1, \ help="Specify the track reconstruction algorithm. "+\ "1 for Helical Tracks and 0 for Straight Tracks" ) parser.add_argument( '--ensemble_size', type=int, default=2000, \ help="Specify the size of the ensemble of particles "+\ "to consider per emittance measurement." ) parser.add_argument( '--pz_bin', type=float, default=PZ_BIN_WIDTH, \ help="Specify the size of the Pz bins which are used to select "+\ "particles for the reconstruction of optical functions." ) parser.add_argument( '--pz_window', type=float, nargs=2, \ default=[PZ_MIN, PZ_MAX], help="Specify the range of Pz to consider "+\ "for the reconstruction of optical functions." ) parser.add_argument( '--pt_bin', type=float, default=PT_BIN_WIDTH, \ help="Specify the size of the Pt bins which are used to select "+\ "particles for the reconstruction of optical functions." ) parser.add_argument( '--pt_window', type=float, nargs=2, \ default=[PT_MIN, PT_MAX], help="Specify the range of Pt to consider "+\ "for the reconstruction of optical functions." ) parser.add_argument( '--trackers', type=int, default=RECON_TRACKERS, \ nargs='+', help="Specifies the trackers to analyse" ) parser.add_argument( '--p_window', type=float, nargs=2, \ default=[P_MIN, P_MAX], help="Specify the range of the total " + \ "momentum to consider for analysis." ) parser.add_argument( '--max_gradient', type=float, default=MAX_GRADIENT, \ help='Specify the maximum gradient to analyse.' + \ ' This eliminates non-physical muons' ) parser.add_argument( '-C', '--save_corrections', action='store_true', \ help="Flag to create the correction matrix files" ) parser.add_argument( '--selection_file', default=None, \ help='Name of a JSON file containing the events to analyses' ) parser.add_argument( '--not_require_all_planes', action="store_true", \ help="Don't require all the virtual planes to be located" ) parser.add_argument( '--not_require_cluster', action="store_true", \ help="Don't require a cluster in the reference plane" ) # parser.add_argument( '-C', '--configuration_file', help='Configuration '+\ # 'file for the reconstruction. I need the geometry information' ) try : namespace = parser.parse_args() EXPECTED_HELIX_TRACKPOINTS = namespace.cut_number_trackpoints EXPECTED_STRAIGHT_TRACKPOINTS = namespace.cut_number_trackpoints P_VALUE_CUT = namespace.cut_p_value TRACK_ALGORITHM = namespace.track_algorithm ENSEMBLE_SIZE = namespace.ensemble_size if namespace.not_require_cluster : REQUIRE_DATA = False if namespace.not_require_all_planes : REQUIRE_ALL_PLANES = False RECON_TRACKERS = namespace.trackers P_MIN = namespace.p_window[0] P_MAX = namespace.p_window[1] MAX_GRADIENT = namespace.max_gradient PZ_MIN = namespace.pz_window[0] PZ_MAX = namespace.pz_window[1] PZ_BIN_WIDTH = namespace.pz_bin PT_MIN = namespace.pt_window[0] PT_MAX = namespace.pt_window[1] PT_BIN_WIDTH = namespace.pt_bin if namespace.selection_file is not None : SELECT_EVENTS = True with open(namespace.selection_file, 'r') as infile : GOOD_EVENTS = json.load(infile) else : SELECT_EVENTS = False if namespace.virtual_plane_dictionary is not None : VIRTUAL_PLANE_DICT = analysis.tools.load_virtual_plane_dict( \ namespace.virtual_plane_dictionary ) except BaseException as ex: raise else : ##### 1. Load MAUS globals and geometry. - NOT NECESSARY AT PRESENT # geom = load_tracker_geometry(namespace.configuration_file) ##### 2. Intialise plots ###################################################### print sys.stdout.write( "\n- Initialising Plots : Running\r" ) sys.stdout.flush() plot_dict, data_dict = init_plots_data() sys.stdout.write( "- Initialising Plots : Done \n" ) file_reader = event_loader.maus_reader(namespace.maus_root_files) file_reader.set_max_num_events(1000) ##### 3. Initialise Plane Dictionary ########################################## if VIRTUAL_PLANE_DICT is None : sys.stdout.write( "\n- Finding Virtual Planes : Running\r" ) sys.stdout.flush() virtual_plane_dictionary = create_virtual_plane_dict(file_reader) VIRTUAL_PLANE_DICT = virtual_plane_dictionary sys.stdout.write( "- Finding Virtual Planes : Done \n" ) INVERSE_PLANE_DICT = inverse_virtual_plane_dict(VIRTUAL_PLANE_DICT) file_reader.select_events(GOOD_EVENTS) file_reader.set_max_num_events(namespace.max_num_events) file_reader.set_print_progress('spill') ##### 4. Load Events ########################################################## print "\n- Loading Spills...\n" try : while file_reader.next_selected_event() : try : tofevent = file_reader.get_event( 'tof' ) scifi_event = file_reader.get_event( 'scifi' ) mc_event = file_reader.get_event( 'mc' ) ##### 5. Extract tracks and Fill Plots ######################################## paired_hits, seed_pairs = make_scifi_mc_pairs(plot_dict, data_dict, \ VIRTUAL_PLANE_DICT, scifi_event, mc_event, \ tofevent) fill_plots(plot_dict, data_dict, paired_hits) fill_plots_seeds(plot_dict, data_dict, seed_pairs) except ValueError as ex : print "An Error Occured: " + str(ex) print "Skipping Event: " +\ str(file_reader.get_current_event_number()) + " In Spill: " + \ str(file_reader.get_current_spill_number()) + " In File: " + \ str(file_reader.get_current_filenumber()) + "\n" continue except KeyboardInterrupt : print print " ### Keyboard Interrupt ###" print print "- {0:0.0f} Spills Loaded ".format( \ file_reader.get_total_num_spills()) calculate_efficiency(plot_dict) ##### 6. Analysing Plots ###################################################### print"\n- Analysing Data...\n" analyse_plots(plot_dict, data_dict) ##### 7. Saving Plots and Data ################################################ sys.stdout.write( "\n- Saving Plots and Data : Running\r" ) sys.stdout.flush() # save_pretty(plot_dict, namespace.output_directory ) # save_plots(plot_dict, namespace.output_directory, \ # namespace.output_filename, namespace.print_plots) filename = os.path.join(namespace.output_directory, \ namespace.output_filename) analysis.tools.save_plots(plot_dict, filename+'.root') if namespace.save_corrections : UP_CORRECTION.save_full_correction(filename+'_up_correction.txt') DOWN_CORRECTION.save_full_correction(filename+'_down_correction.txt') UP_CORRECTION.save_R_matrix(filename+'_up_correction-R.txt') UP_CORRECTION.save_C_matrix(filename+'_up_correction-C.txt') DOWN_CORRECTION.save_R_matrix(filename+'_down_correction-R.txt') DOWN_CORRECTION.save_C_matrix(filename+'_down_correction-C.txt') sys.stdout.write( "- Saving Plots and Data : Done \n" ) print print "Complete." print
[ "john.nugent@glasgow.ac.uk" ]
john.nugent@glasgow.ac.uk
b4f2d03ca0e8a1c1d98f717ae376a1a058ea197c
0ce6774ce9ac8c05bd3a07e34244afb67cf1967b
/scripts/dict_chars_ponykapi/chars.py
c445366447715270f4056f86c835c7c7d9c22ec9
[ "WTFPL" ]
permissive
Shadybloom/amber-in-the-dark
ecb38b6883f167569239410117f6c1fc4eea80b3
35925fd31ad749d37542372986e9a140b453d8aa
refs/heads/master
2022-11-25T22:24:34.545442
2022-11-03T01:12:49
2022-11-03T01:12:49
96,470,745
0
2
WTFPL
2018-06-28T10:39:56
2017-07-06T20:48:02
Python
UTF-8
Python
false
false
15,295
py
# Карточки персонажей в стиле Fallout 2. ##---- # Герои metadict_army['Персонажи'] = { 'Джина':1, 'Квинта':1, } metadict_army['Джина'] = { # Джина-алугви 'Trait (Jinxed)':1, 'Trait (Small Frame)':1, 'Джина (параметры)':1, 'Джина (жизнь в Кладже)':1, } metadict_army['Квинта'] = { # Квинта Сидни 'Trait (Sex Appeal)':1, 'Trait (Good Natured)':1, 'Квинта (параметры)':1, 'Квинта (жизнь в Кладже)':1, } metadict_army['Кумо'] = { # Кумо-керети 'Trait (Gifted)':1, 'Кумо (параметры)':1, 'Кумо (жизнь в Кладже)':1, } metadict_army['Тето'] = { # Тето-арройо 'Trait (Kamikaze)':1, 'Trait (Fast Shot)':1, 'Тето (параметры)':1, 'Тето (жизнь в Кладже)':1, } metadict_army['Арики'] = { # Арики-арройо 'Trait (Skilled)':1, 'Арики (параметры)':1, 'Арики (жизнь в Кладже)':1, } ##---- # Характеристики, параметры: metadict_army['Джина (параметры)'] = { 'Базовые способности':1, 'Strenght (сила)':6, 'Perception (восприятие)':7, 'Endurance (выносливость)':6, 'Charisma (харизма)':3, 'Intelligence (интеллект)':7, 'Agility (ловкость)':9, 'Luck (удача)':2, } metadict_army['Квинта (параметры)'] = { 'Базовые способности':1, 'Strenght (сила)':6, 'Perception (восприятие)':4, 'Endurance (выносливость)':5, 'Charisma (харизма)':9, 'Intelligence (интеллект)':5, 'Agility (ловкость)':7, 'Luck (удача)':4, } metadict_army['Кумо (параметры)'] = { 'Базовые способности':1, 'Strenght (сила)':4, 'Perception (восприятие)':7, 'Endurance (выносливость)':4, 'Charisma (харизма)':5, 'Intelligence (интеллект)':8, 'Agility (ловкость)':7, 'Luck (удача)':5, } metadict_army['Тето (параметры)'] = { 'Базовые способности':1, 'Strenght (сила)':7, 'Perception (восприятие)':5, 'Endurance (выносливость)':7, 'Charisma (харизма)':4, 'Intelligence (интеллект)':5, 'Agility (ловкость)':7, 'Luck (удача)':5, } metadict_army['Арики (параметры)'] = { 'Базовые способности':1, 'Strenght (сила)':5, 'Perception (восприятие)':5, 'Endurance (выносливость)':5, 'Charisma (харизма)':5, 'Intelligence (интеллект)':10, 'Agility (ловкость)':5, 'Luck (удача)':5, } ##---- # Характеристики --> навыки: metadict_army['Базовые способности'] = { 'Action Points':5, 'Hit Points (base)':15, 'Melee Damage':-5, 'Skill (Small Guns)':5, 'Skill (Unarmed)':30, 'Skill (Melee Weapons)':20, 'Skill (Doctor)':5, 'Skill (Sneak)':5, 'Skill (Lockpick)':10, 'Skill (Traps)':10, 'Skill (Science)':10, } metadict_army['Strenght (сила)'] = { # hp: 15 + Strenght + (2 * Endurance) # Unarmed '-Strenght':1, 'Hit Points (base)':1, # Жеребята маленькие, 15 футов/ед.силы #'--Weight-max (lbs)':25, '--Weight-max (lbs)':15, 'Melee Damage':1, 'Skill (Unarmed)':2, 'Skill (Melee Weapons)':2, } metadict_army['Perception (восприятие)'] = { # https://fallout.fandom.com/wiki/Sequence 'Sequence':2, '-Perception':1, 'Skill (First Aid)':2, 'Skill (Doctor)':1, 'Skill (Lockpick)':1, 'Skill (Traps)':1, 'Skill (Pilot)':2, } metadict_army['Endurance (выносливость)'] = { '-Endurance':1, 'Hit Points (base)':2, 'Skill (Outdoorsman)':2, } metadict_army['Charisma (харизма)'] = { '-Charisma':1, 'Skill (Speech)':5, 'Skill (Barter)':4, } metadict_army['Intelligence (интеллект)'] = { '-Intelligence':1, 'Skill (First Aid)':2, 'Skill (Doctor)':1, 'Skill (Science)':2, 'Skill (Repair)':3, 'Skill (Outdoorsman)':2, } metadict_army['Agility (ловкость)'] = { '-Agility':1, 'Action Points':1/2, 'Skill (Small Guns)':4, 'Skill (Big Guns)':2, 'Skill (Energy Weapons)':2, 'Skill (Unarmed)':2, 'Skill (Melee Weapons)':2, 'Skill (Throwing)':4, 'Skill (Sneak)':3, 'Skill (Lockpick)':1, 'Skill (Steal)':3, 'Skill (Traps)':1, 'Skill (Pilot)':2, } metadict_army['Luck (удача)'] = { '-Luck':1, 'Critical Chance (%)':1, 'Skill (Gambling)':5, } ##---- # Traits metadict_army['Trait (Heavy Handed)'] = { # https://fallout.fandom.com/wiki/Fallout_2_traits 'Melee Damage':+4, '-Trait (Heavy Handed)':1, } metadict_army['Trait (Jinxed)'] = { # https://fallout.fandom.com/wiki/Jinxed '-Trait (Jinxed)':1, } metadict_army['Trait (Small Frame)'] = { '-Trait (Small Frame)':1, 'Agility (ловкость)':+1, } metadict_army['Trait (Fast Shot)'] = { # All throwing and firearm attacks cost 1 less AP # Cannot aim attacks '-Trait (Fast Shot)':1, } metadict_army['Trait (Kamikaze)'] = { 'Sequence':+5, '-Trait (Kamikaze)':1, } metadict_army['Trait (Sex Appeal)'] = { '-Trait (Sex Appeal)':1, } metadict_army['Trait (Gifted)'] = { # https://fallout.fandom.com/wiki/Gifted # +1 to all seven stats # -10% to all skills # 5 less skill Points per level '-Trait (Gifted)':1, 'Strenght (сила)':+1, 'Perception (восприятие)':+1, 'Endurance (выносливость)':+1, 'Charisma (харизма)':+1, 'Intelligence (интеллект)':+1, 'Agility (ловкость)':+1, 'Luck (удача)':+1, # -10% to all skills 'Skill (Unarmed)':-10, 'Skill (Melee Weapons)':-10, 'Skill (First Aid)':-10, 'Skill (Doctor)':-10, 'Skill (Lockpick)':-10, 'Skill (Traps)':-10, 'Skill (Outdoorsman)':-10, 'Skill (Speech)':-10, 'Skill (Barter)':-10, 'Skill (First Aid)':-10, 'Skill (Doctor)':-10, 'Skill (Science)':-10, 'Skill (Repair)':-10, 'Skill (Outdoorsman)':-10, 'Skill (Small Guns)':-10, 'Skill (Big Guns)':-10, 'Skill (Energy Weapons)':-10, 'Skill (Unarmed)':-10, 'Skill (Melee Weapons)':-10, 'Skill (Throwing)':-10, 'Skill (Sneak)':-10, 'Skill (Lockpick)':-10, 'Skill (Steal)':-10, 'Skill (Traps)':-10, 'Skill (Gambling)':-10, } metadict_army['Trait (Skilled)'] = { # +5 skill Points per level # +1 Perk rate '-Trait (Skilled)':1, } metadict_army['Trait (Good Natured)'] = { # +15% to First Aid, Doctor, Speech, and Barter '-Trait (Good Natured)':1, 'Skill (First Aid)':+15, 'Skill (Doctor)':+15, 'Skill (Speech)':+15, 'Skill (Barter)':+15, # -10% to Big Guns, Small Guns, Energy Weapons, Throwing, Melee Weapons, and Unarmed 'Skill (Big Guns)':-10, 'Skill (Small Guns)':-10, 'Skill (Energy Weapons)':-10, 'Skill (Throwing)':-10, 'Skill (Melee Weapons)':-10, 'Skill (Unarmed)':-10, } metadict_army['Trait (Small Frame)'] = { # +1 Agility # Carry Weight = 25 + (15 x your Strength) 'Agility (ловкость)':+1, } ##---- # Perks metadict_army['Perk (Healer)'] = { # PE 7, IN 5, AG 6, First Aid 40% # 4-10 more hit points healed when using First Aid or Doctor skills '-Perk (Healer)':1, } metadict_army['Perk (Kama Sutra Master)'] = { '-Perk (Kama Sutra Master)':1, } metadict_army['Perk (Thief)'] = { # +10% to skills: Sneak, Lockpick, Steal and Traps 'Skill (Sneak)':+10, 'Skill (Lockpick)':+10, 'Skill (Steal)':+10, 'Skill (Traps)':+10, '-Perk (Thief)':1, } ##---- # Упрощения: metadict_army['Hit Points (base)'] = { '--HP':1, } metadict_army['Hit Points (level)'] = { '--HP':1, } ##---- # Бонусы предметов: metadict_army['Book (First Aid Book)'] = { # https://fallout.fandom.com/wiki/Fallout_2_skill_books # In Fallout 2, the amount of skill Points gained is equal to 100, # subtract the current skill level, divide by 10, and then rounded down. # Thus, the maximum a skill can increased by books is up to 91%. '|Book (First Aid Book)':1, 'Skill (First Aid)':10, '--Weight':2, } metadict_army['Book (Big Book of Science)'] = { '|Book (Big Book of Science)':1, 'Skill (Science)':10, '--Weight':5, } metadict_army['Book (Dean\'s Electronics)'] = { '|Book (Dean\'s Electronics)':1, 'Skill (Repair)':10, '--Weight':2, } metadict_army['Book (Scout Handbook)'] = { '|Book (Scout Handbook)':1, 'Skill (Outdoorsman)':10, '--Weight':3, } metadict_army['Book (Guns and Bullets)'] = { '|Book (Guns and Bullets)':1, 'Skill (Small Guns)':10, '--Weight':3, } ##---- # Бонусы предметов: metadict_army['Item (First Aid Kit)'] = { '|Item (First Aid Kit) (usage)':3, 'Skill (First Aid)':20, } metadict_army['Item (Doctor\'s bag)'] = { '|Item (Doctor\'s bag) (usage)':3, 'Skill (Doctor)':20, } metadict_army['Item (Tool)'] = { '|Item (Tool)':1, 'Skill (Repair)':20, } metadict_army['Item (Lock picks)'] = { '|Item (Lock picks)':1, 'Skill (Lockpick)':20, } metadict_army['Item (Motion sensor)'] = { '|Item (Motion sensor)':1, 'Skill (Outdoorsman)':20, } metadict_army['Item (Assault rifle)'] = { '|Item (Assault rifle)':1, '--Weight':7, } metadict_army['Item (10mm SMG)'] = { '|Item (10mm SMG)':1, '--Weight':5, } metadict_army['Item (Laser rifle)'] = { '|Item (Laser rifle)':1, '--Weight':7, } metadict_army['Item (Light support weapon)'] = { '|Item (Light support weapon)':1, '--Weight':20, } metadict_army['Item (Combat armor)'] = { # https://fallout.fandom.com/wiki/Combat_armor_(Fallout) # https://fallout.fandom.com/wiki/Armor_Class '|Item (Combat armor)':1, '--Weight':20, } metadict_army['Item (Spectacles)'] = { '|Item (Spectacles)':1, # Очки Квинты } metadict_army['Item (Camera)'] = { '|Item (Camera)':1, # Фотик Джин } ##---- # Развитие персонажей: # https://fallout.fandom.com/wiki/Level ##---- # Джина-алугви: metadict_army['Джина (жизнь в Кладже)'] = { 'Джина lvl 1':1, 'Book (First Aid Book)':1, 'Item (First Aid Kit)':1, 'Item (Doctor\'s bag)':1, 'Item (10mm SMG)':1, 'Item (Camera)':1, } ##---- # metadict_army['Джина lvl 1'] = { # Skill Points: 5 + INT x 2 # Hit Points: 2 + END / 2 #'Hit Points (level)':2 + 6/2, #'Skill Points':5 + 7*2, 'Skill (Doctor)':20, 'Skill (Sneak)':20, 'Skill (Small Guns)':20, } ##---- # Квинта Сидни metadict_army['Квинта (жизнь в Кладже)'] = { # https://fallout.fandom.com/wiki/Pilot 'Квинта lvl 1':1, 'Book (First Aid Book)':1, 'Item (First Aid Kit)':1, 'Item (Spectacles)':1, } ##---- # metadict_army['Квинта lvl 1'] = { #'Hit Points (level)':2 + 5/2, #'Skill Points':5 + 5*2, 'Skill (Speech)':20, 'Skill (Barter)':20, 'Skill (Pilot)':20, } ##---- # Кумо-керети metadict_army['Кумо (жизнь в Кладже)'] = { # Помогал Ниру с радиостанцией. 'Кумо lvl 1':1, 'Book (Scout Handbook)':1, 'Book (Guns and Bullets)':1, 'Item (Assault rifle)':1, 'Item (Lock picks)':1, } ##---- # metadict_army['Кумо lvl 1'] = { #'Hit Points (level)':2 + 5/2, #'Skill Points':9*2, 'Skill (Outdoorsman)':20, 'Skill (Lockpick)':20, 'Skill (Small Guns)':20, } ##---- # Тето-арройо metadict_army['Тето (жизнь в Кладже)'] = { 'Тето lvl 1':1, 'Item (Combat armor)':1, 'Item (Light support weapon)':1, } ##---- # metadict_army['Тето lvl 1'] = { # https://fallout.fandom.com/wiki/Unarmed#Fallout_2_and_Fallout_Tactics # Крутые атаки даются только на 5-6 уровне, но пофиг, Джин больно пинается: # Hammer Punch # Unarmed 75%, Agility 6, Strength 5, level 6 # +5 DMG, +5% crit # Jab # Unarmed 75%, Agility 7, Strength 5, level 5 # +3 DMG, +10% crit # Snap Kick # Unarmed 60%, Agility 6, Level 6 # +7 DMG # Hip Kick # Unarmed 60%, Agility 7, Strength 6, Level 6 # +7 DMG #'Hit Points (level)':2 + 7/2, #'Skill Points':5 + 5*2, 'Skill (Unarmed)':20, 'Skill (Throwing)':20, 'Skill (Big Guns)':20, } ##---- # Арики-арройо metadict_army['Арики (жизнь в Кладже)'] = { 'Арики lvl 1':1, 'Book (Big Book of Science)':1, 'Item (Laser rifle)':1, 'Item (Tool)':1, } ##---- # metadict_army['Арики lvl 1'] = { #'Hit Points (level)':2 + 5/2, #'Skill Points':10 + 10*2, 'Skill (Science)':20, 'Skill (Repair)':20, 'Skill (Energy Weapons)':20, }
[ "celestia@safe-mail.net" ]
celestia@safe-mail.net
5006a9e571a17c043f30217b05bb0a9f2eff2cd5
8afb5afd38548c631f6f9536846039ef6cb297b9
/MY_REPOS/INTERVIEW-PREP-COMPLETE/Leetcode/189.py
82da4095255e1cbfd69a405b3eb408b4b5321f61
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
361
py
class Solution: def rotate(self, nums, k): """ :type nums: List[int] :type k: int :rtype: void Do not return anything, modify nums in-place instead. """ if not nums: return n = len(nums) k = k % n nums[:] = nums[-k:] + nums[:-k] # nums[:] = nums[n-k:] + nums[:n-k]
[ "bryan.guner@gmail.com" ]
bryan.guner@gmail.com
610ee9aef21da8a8601ead05f788e0a1a93d62da
57d2af4d831f396959950fb1251a1d6d443abdce
/pywxgrideditmixin.py
5bacabd38e876ef41a118a9ce465d32fbf74e444
[ "Apache-2.0" ]
permissive
MA0R/Swerlein-Algorithm
b9e8227bb9075a7cc84bb628fffb356f490a8c82
7c642ef137e772ac74b94cd1f23059ea5b132c12
refs/heads/master
2021-01-19T13:41:50.024494
2017-05-10T21:36:19
2017-05-10T21:36:19
88,101,478
1
1
null
2017-09-23T10:30:55
2017-04-12T22:24:43
Python
UTF-8
Python
false
false
10,892
py
import wx import wx.grid """ Mixin for wx.grid to implement cut/copy/paste and undo/redo. Handlers are in the method Key below. Other handlers (e.g., menu, toolbar) should call the functions in OnMixinKeypress. https://github.com/wleepang/MMFitter/blob/master/pywxgrideditmixin.py """ class PyWXGridEditMixin(): """ A Copy/Paste and undo/redo mixin for wx.grid. Undo/redo is per-table, not yet global.""" def __init_mixin__(self): """caller must invoke this method to enable keystrokes, or call these handlers if they are overridden.""" wx.EVT_KEY_DOWN(self, self.OnMixinKeypress) wx.grid.EVT_GRID_CELL_CHANGE(self, self.Mixin_OnCellChange) wx.grid.EVT_GRID_EDITOR_SHOWN(self, self.Mixin_OnCellEditor) self._undoStack = [] self._redoStack = [] self._stackPtr = 0 def OnMixinKeypress(self, event): """Keystroke handler.""" key = event.GetKeyCode() if key == ord(" ") and event.ShiftDown and not event.ControlDown: self.SelectRow(self.GetGridCursorRow()) return if not event.ControlDown: return if key == 67: self.Copy() elif key == 86: self.OnPaste() elif key == ord("X"): self.OnCut() elif key == wx.WXK_DELETE: self.Delete() elif key == ord("Z"): self.Undo() elif key == ord("Y"): self.Redo() elif key == ord(" "): self.SelectCol(self.GetGridCursorCol()) elif key: event.Skip() def Mixin_OnCellEditor(self, evt=None): """this method saves the value of cell before it's edited (when that value disappears)""" top, left, rows, cols = self.GetSelectionBox()[0] v = self.GetCellValue(top, left) self._editOldValue = v+"\n" def Mixin_OnCellChange(self, evt): """Undo/redo handler Use saved value from above for undo.""" box = self.GetSelectionBox()[0] newValue = self.GetCellValue(*box[:2]) self.AddUndo(undo=(self.Paste, (box, self._editOldValue)), redo=(self.Paste, (box, newValue))) self._editOldValue = None def GetSelectionBox(self): """Produce a set of selection boxes of the form (top, left, nrows, ncols)""" #For wxGrid, blocks, cells, rows and cols all have different selection notations. #This captures them all into a single "box" tuple (top, left, rows, cols) gridRows = self.GetNumberRows() gridCols = self.GetNumberCols() tl, br = self.GetSelectionBlockTopLeft(), self.GetSelectionBlockBottomRight() # need to reorder based on what should get copy/pasted first boxes = [] # collect top, left, rows, cols in boxes for each selection for blk in range(len(tl)): boxes.append((tl[blk][0], tl[blk][1], br[blk][0] - tl[blk][0]+1, br[blk][1]-tl[blk][1]+1)) for row in self.GetSelectedRows(): boxes.append((row, 0, 1, gridCols)) for col in self.GetSelectedCols(): boxes.append((0, col, gridRows, 1)) # if not selecting rows, cols, or blocks, add the current cursor (this is not picked up in GetSelectedCells if len(boxes) ==0: boxes.append((self.GetGridCursorRow(), self.GetGridCursorCol(), 1, 1)) for (top, left) in self.GetSelectedCells(): boxes.append((top, left, 1, 1)) # single cells are 1x1 rowsxcols. return boxes def Copy(self): """Copy selected range into clipboard. If more than one range is selected at a time, only the first is copied""" top, left, rows,cols = self.GetSelectionBox()[0] data = self.Box2String(top, left, rows, cols, True, True) # Create text data object for use by TheClipboard clipboard = wx.TextDataObject() clipboard.SetText(data) # Put the data in the clipboard if wx.TheClipboard.Open(): wx.TheClipboard.SetData(clipboard) wx.TheClipboard.Close() else: print "Can't open the clipboard" def Box2String(self, top, left, rows, cols, getRowLabels=False, getColLabels=False): """Return values in a selected cell range as a string. This is used to pass text to clipboard.""" data = '' # collect strings in grid for clipboard # Tabs '\t' separate cols and '\n' separate rows # retrieve the row and column labels # WLP: added options to retrieve row and column labels if getColLabels: colLabels = [self.GetColLabelValue(c) for c in range(left, left+cols)] colLabels = str.join('\t', colLabels) + '\n' if getRowLabels: colLabels = '\t' + colLabels data += colLabels for r in range(top, top+rows): rowAsString = [str(self.GetCellValue(r, c)) for c in range(left, left+cols) if self.CellInGrid(r,c)] rowAsString = str.join('\t', rowAsString) + '\n' if getRowLabels: rowAsString = self.GetRowLabelValue(r) + '\t' + rowAsString data += rowAsString return data def OnPaste(self): """Event handler to paste from clipboard into grid. Data assumed to be separated by tab (columns) and "\n" (rows).""" clipboard = wx.TextDataObject() if wx.TheClipboard.Open(): wx.TheClipboard.GetData(clipboard) wx.TheClipboard.Close() else: print "Can't open the clipboard" data = clipboard.GetText() table = [r.split('\t') for r in data.splitlines()] # convert to array #Determine the paste area given the size of the data in the clipboard (clipBox) and the current selection (selBox) top, left, selRows,selCols = self.GetSelectionBox()[0] if len(table) ==0 or type(table[0]) is not list: table = [table] pBox = self._DeterminePasteArea(top, left, len(table), len(table[0]), selRows, selCols) self.AddUndo(undo=(self.Paste, (pBox, self.Box2String(*pBox))), redo=(self.Paste, (pBox, data))) self.Paste(pBox, data) def _DeterminePasteArea(self, top, left, clipRows, clipCols, selRows, selCols): """paste area rules: if 1-d selection (either directon separately) and 2-d clipboard, use clipboard size, otherwise use selection size""" pRows = selRows ==1 and clipRows > 1 and clipRows or selRows pCols = selCols ==1 and clipCols > 1 and clipCols or selCols return top, left, pRows, pCols if clipRows ==1 and clipCols ==1: # constrain paste range by what's in clipboard pRows, pCols = clipRows, clipCols else: # constrain paste range by current selection pRows, pCols = selRows, selCols return top, left, pRows, pCols # the actual area we'll paste into def Paste(self, box, dataString): top, left, rows, cols = box data = [r.split('\t') for r in dataString.splitlines()] if len(data) ==0 or type(data[0]) is not list: data = [data] # get sizes (rows, cols) of both clipboard and current selection dataRows, dataCols = len(data), len(data[0]) for r in range(rows): row = top + r for c in range(cols): col = left + c if self.CellInGrid(row, col): self.SetCellValue(row, col, data[r %dataRows][c % dataCols]) return def CellInGrid(self, r, c): # only paste data that actually falls on the table return r >=0 and c >=0 and r < self.GetNumberRows() and c < self.GetNumberCols() def OnCut(self): """Cut cells from grid into clipboard""" box = self.GetSelectionBox()[0] self.Copy() self.Delete() #this takes care of undo/redo def Delete(self): """Clear Cell contents""" boxes = self.GetSelectionBox() for box in boxes: #allow multiple selection areas to be deleted # first, save data in undo stack self.AddUndo(undo=(self.Paste, (box, self.Box2String(*box))), redo=(self.Paste, (box, "\n"))) self.Paste(box, "\n") def AddUndo(self, undo, redo): """Add an undo/redo combination to the respective stack""" (meth, parms) = undo #print self._stackPtr, "set undo: ",parms, "redo=",redo[1] self._undoStack.append((meth, parms)) (meth, parms) = redo self._redoStack.append((meth, parms)) self._stackPtr+= 1 # remove past undos beyond the current one. self._undoStack = self._undoStack[:self._stackPtr] self._redoStack = self._redoStack[:self._stackPtr] def Undo(self, evt = None): if self._stackPtr > 0: self._stackPtr -= 1 (funct, params) = self._undoStack[self._stackPtr] #print "UNdoing:"+`self._stackPtr`+"=",`params[0]` funct(*params) # set cursor at loc asd selection if block top, left, rows, cols = params[0] self.SelectBlock(top, left, top+rows-1, left+cols-1) self.SetGridCursor(top,left) def Redo(self, evt = None): if self._stackPtr < len(self._redoStack): (funct, params) = self._redoStack[self._stackPtr] #print "REdoing:"+`self._stackPtr`+"=",`params[0]` funct(*params) # set cursor at loc top, left, rows, cols = params[0] self.SetGridCursor(top, left) self.SelectBlock(top, left, top+rows-1, left+cols-1) self._stackPtr += 1 if __name__ == '__main__': import sys app = wx.PySimpleApp() frame = wx.Frame(None, -1, size=(700,500), title = "wx.Grid example") grid = wx.grid.Grid(frame) grid.CreateGrid(20,6) # To add capability, mix it in, then set key handler, or add call to grid.Key() in your own handler wx.grid.Grid.__bases__ += (PyWXGridEditMixin,) grid.__init_mixin__() grid.SetDefaultColSize(70, 1) grid.EnableDragGridSize(False) grid.SetCellValue(0,0,"Col is") grid.SetCellValue(1,0,"Read Only") grid.SetCellValue(1,1,"hello") grid.SetCellValue(2,1,"23") grid.SetCellValue(4,3,"greren") grid.SetCellValue(5,3,"geeges") # make column 1 multiline, autowrap cattr = wx.grid.GridCellAttr() cattr.SetEditor(wx.grid.GridCellAutoWrapStringEditor()) #cattr.SetRenderer(wx.grid.GridCellAutoWrapStringRenderer()) grid.SetColAttr(1, cattr) frame.Show(True) app.MainLoop()
[ "noreply@github.com" ]
MA0R.noreply@github.com
4d6fdaef6df0a43f5897937e3ed223e6025aadcf
f58833787321241a23c2ca7a067000af46d55363
/.local/bin/launch_instance
7c7dbe8049852865f0124f34fc50f63e22df7a30
[]
no_license
shwetaguj/assignment_emp
2216b1ed0dc0ffb3e3b6d80459be04a20ea32805
476c838f1561f5a02c6605e085227ec3b94b342c
refs/heads/master
2021-05-25T20:20:02.326178
2020-04-07T20:29:08
2020-04-07T20:29:08
253,904,314
0
1
null
2020-07-26T02:10:47
2020-04-07T20:27:24
Python
UTF-8
Python
false
false
10,602
#!/usr/bin/python # Copyright (c) 2009 Chris Moyer http://coredumped.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # # Utility to launch an EC2 Instance # VERSION="0.2" CLOUD_INIT_SCRIPT = """#!/usr/bin/env python f = open("/etc/boto.cfg", "w") f.write(\"\"\"%s\"\"\") f.close() """ import boto.pyami.config import boto.utils import re, os from boto.compat import ConfigParser class Config(boto.pyami.config.Config): """A special config class that also adds import abilities Directly in the config file. To have a config file import another config file, simply use "#import <path>" where <path> is either a relative path or a full URL to another config """ def __init__(self): ConfigParser.__init__(self, {'working_dir' : '/mnt/pyami', 'debug' : '0'}) def add_config(self, file_url): """Add a config file to this configuration :param file_url: URL for the file to add, or a local path :type file_url: str """ if not re.match("^([a-zA-Z0-9]*:\/\/)(.*)", file_url): if not file_url.startswith("/"): file_url = os.path.join(os.getcwd(), file_url) file_url = "file://%s" % file_url (base_url, file_name) = file_url.rsplit("/", 1) base_config = boto.utils.fetch_file(file_url) base_config.seek(0) for line in base_config.readlines(): match = re.match("^#import[\s\t]*([^\s^\t]*)[\s\t]*$", line) if match: self.add_config("%s/%s" % (base_url, match.group(1))) base_config.seek(0) self.readfp(base_config) def add_creds(self, ec2): """Add the credentials to this config if they don't already exist""" if not self.has_section('Credentials'): self.add_section('Credentials') self.set('Credentials', 'aws_access_key_id', ec2.aws_access_key_id) self.set('Credentials', 'aws_secret_access_key', ec2.aws_secret_access_key) def __str__(self): """Get config as string""" from StringIO import StringIO s = StringIO() self.write(s) return s.getvalue() SCRIPTS = [] def scripts_callback(option, opt, value, parser): arg = value.split(',') if len(arg) == 1: SCRIPTS.append(arg[0]) else: SCRIPTS.extend(arg) setattr(parser.values, option.dest, SCRIPTS) def add_script(scr_url): """Read a script and any scripts that are added using #import""" base_url = '/'.join(scr_url.split('/')[:-1]) + '/' script_raw = boto.utils.fetch_file(scr_url) script_content = '' for line in script_raw.readlines(): match = re.match("^#import[\s\t]*([^\s^\t]*)[\s\t]*$", line) #if there is an import if match: #Read the other script and put it in that spot script_content += add_script("%s/%s" % (base_url, match.group(1))) else: #Otherwise, add the line and move on script_content += line return script_content if __name__ == "__main__": try: import readline except ImportError: pass import sys import time import boto from boto.ec2 import regions from optparse import OptionParser from boto.mashups.iobject import IObject parser = OptionParser(version=VERSION, usage="%prog [options] config_url") parser.add_option("-c", "--max-count", help="Maximum number of this type of instance to launch", dest="max_count", default="1") parser.add_option("--min-count", help="Minimum number of this type of instance to launch", dest="min_count", default="1") parser.add_option("--cloud-init", help="Indicates that this is an instance that uses 'CloudInit', Ubuntu's cloud bootstrap process. This wraps the config in a shell script command instead of just passing it in directly", dest="cloud_init", default=False, action="store_true") parser.add_option("-g", "--groups", help="Security Groups to add this instance to", action="append", dest="groups") parser.add_option("-a", "--ami", help="AMI to launch", dest="ami_id") parser.add_option("-t", "--type", help="Type of Instance (default m1.small)", dest="type", default="m1.small") parser.add_option("-k", "--key", help="Keypair", dest="key_name") parser.add_option("-z", "--zone", help="Zone (default us-east-1a)", dest="zone", default="us-east-1a") parser.add_option("-r", "--region", help="Region (default us-east-1)", dest="region", default="us-east-1") parser.add_option("-i", "--ip", help="Elastic IP", dest="elastic_ip") parser.add_option("-n", "--no-add-cred", help="Don't add a credentials section", default=False, action="store_true", dest="nocred") parser.add_option("--save-ebs", help="Save the EBS volume on shutdown, instead of deleting it", default=False, action="store_true", dest="save_ebs") parser.add_option("-w", "--wait", help="Wait until instance is running", default=False, action="store_true", dest="wait") parser.add_option("-d", "--dns", help="Returns public and private DNS (implicates --wait)", default=False, action="store_true", dest="dns") parser.add_option("-T", "--tag", help="Set tag", default=None, action="append", dest="tags", metavar="key:value") parser.add_option("-s", "--scripts", help="Pass in a script or a folder containing scripts to be run when the instance starts up, assumes cloud-init. Specify scripts in a list specified by commas. If multiple scripts are specified, they are run lexically (A good way to ensure they run in the order is to prefix filenames with numbers)", type='string', action="callback", callback=scripts_callback) parser.add_option("--role", help="IAM Role to use, this implies --no-add-cred", dest="role") (options, args) = parser.parse_args() if len(args) < 1: parser.print_help() sys.exit(1) file_url = os.path.expanduser(args[0]) cfg = Config() cfg.add_config(file_url) for r in regions(): if r.name == options.region: region = r break else: print("Region %s not found." % options.region) sys.exit(1) ec2 = boto.connect_ec2(region=region) if not options.nocred and not options.role: cfg.add_creds(ec2) iobj = IObject() if options.ami_id: ami = ec2.get_image(options.ami_id) else: ami_id = options.ami_id l = [(a, a.id, a.location) for a in ec2.get_all_images()] ami = iobj.choose_from_list(l, prompt='Choose AMI') if options.key_name: key_name = options.key_name else: l = [(k, k.name, '') for k in ec2.get_all_key_pairs()] key_name = iobj.choose_from_list(l, prompt='Choose Keypair').name if options.groups: groups = options.groups else: groups = [] l = [(g, g.name, g.description) for g in ec2.get_all_security_groups()] g = iobj.choose_from_list(l, prompt='Choose Primary Security Group') while g != None: groups.append(g) l.remove((g, g.name, g.description)) g = iobj.choose_from_list(l, prompt='Choose Additional Security Group (0 to quit)') user_data = str(cfg) # If it's a cloud init AMI, # then we need to wrap the config in our # little wrapper shell script if options.cloud_init: user_data = CLOUD_INIT_SCRIPT % user_data scriptuples = [] if options.scripts: scripts = options.scripts scriptuples.append(('user_data', user_data)) for scr in scripts: scr_url = scr if not re.match("^([a-zA-Z0-9]*:\/\/)(.*)", scr_url): if not scr_url.startswith("/"): scr_url = os.path.join(os.getcwd(), scr_url) try: newfiles = os.listdir(scr_url) for f in newfiles: #put the scripts in the folder in the array such that they run in the correct order scripts.insert(scripts.index(scr) + 1, scr.split("/")[-1] + "/" + f) except OSError: scr_url = "file://%s" % scr_url try: scriptuples.append((scr, add_script(scr_url))) except Exception as e: pass user_data = boto.utils.write_mime_multipart(scriptuples, compress=True) shutdown_proc = "terminate" if options.save_ebs: shutdown_proc = "save" instance_profile_name = None if options.role: instance_profile_name = options.role r = ami.run(min_count=int(options.min_count), max_count=int(options.max_count), key_name=key_name, user_data=user_data, security_groups=groups, instance_type=options.type, placement=options.zone, instance_initiated_shutdown_behavior=shutdown_proc, instance_profile_name=instance_profile_name) instance = r.instances[0] if options.tags: for tag_pair in options.tags: name = tag_pair value = '' if ':' in tag_pair: name, value = tag_pair.split(':', 1) instance.add_tag(name, value) if options.dns: options.wait = True if not options.wait: sys.exit(0) while True: instance.update() if instance.state == 'running': break time.sleep(3) if options.dns: print("Public DNS name: %s" % instance.public_dns_name) print("Private DNS name: %s" % instance.private_dns_name)
[ "shwetaguj1989@gmail.com" ]
shwetaguj1989@gmail.com
1ce7dea0fd7552ceedae5741ff1131aac9e99da4
6cb05a891514514ce94d80992c8eb2e80176c3b9
/aiohue/lights.py
37c5c26fc659fc21c3e49c2c39e86e0dd1816355
[]
no_license
kampfschlaefer/aiohue
0b96310146afb5062678398355887dbbfc1cfd09
d6326466d3dc4d093c81ee3b4c66b5570c03785f
refs/heads/master
2020-03-07T15:57:08.509052
2018-03-26T20:43:06
2018-03-26T20:43:06
127,568,759
0
0
null
2018-03-31T20:29:08
2018-03-31T20:29:08
null
UTF-8
Python
false
false
1,773
py
from .api import APIItems class Lights(APIItems): """Represents Hue Lights. https://developers.meethue.com/documentation/lights-api """ def __init__(self, raw, request): super().__init__(raw, request, 'lights', Light) class Light: """Represents a Hue light.""" def __init__(self, id, raw, request): self.id = id self.raw = raw self._request = request @property def uniqueid(self): return self.raw['uniqueid'] @property def manufacturername(self): return self.raw['manufacturername'] @property def name(self): return self.raw['name'] @property def state(self): return self.raw['state'] @property def type(self): return self.raw['type'] async def set_state(self, on=None, bri=None, hue=None, sat=None, xy=None, ct=None, alert=None, effect=None, transitiontime=None, bri_inc=None, sat_inc=None, hue_inc=None, ct_inc=None, xy_inc=None): """Change state of a light.""" data = { key: value for key, value in { 'on': on, 'bri': bri, 'hue': hue, 'sat': sat, 'xy': xy, 'ct': ct, 'alert': alert, 'effect': effect, 'transitiontime': transitiontime, 'bri_inc': bri_inc, 'sat_inc': sat_inc, 'hue_inc': hue_inc, 'ct_inc': ct_inc, 'xy_inc': xy_inc, }.items() if value is not None } await self._request('put', 'lights/{}/state'.format(self.id), json=data)
[ "paulus@paulusschoutsen.nl" ]
paulus@paulusschoutsen.nl
c59b42d597c1e95f261ae28f9ba59ed424761e4e
7673794038fc0d12588c45ebb8922ab00871949b
/ichnaea/api/locate/tests/conftest.py
6ff80a2b369e413c4e12b9bc3eb0aa7c04de418a
[ "Apache-2.0" ]
permissive
BBOXX/ichnaea
a7fb816f5eca6f07391a487ead59a4d4b12585f1
15362d5b4d2a45d28cdf4864a89c9d3fa62b8c28
refs/heads/bboxx
2021-09-13T19:16:29.303460
2018-05-03T10:52:34
2018-05-03T10:52:34
103,156,005
1
1
Apache-2.0
2018-05-03T11:08:35
2017-09-11T15:50:23
JavaScript
UTF-8
Python
false
false
1,493
py
import pytest from ichnaea.api.locate.tests.base import DummyModel @pytest.fixture(scope='class') def cls_source(request, data_queues, geoip_db, http_session, raven_client, redis_client, stats_client): source = request.cls.Source( geoip_db=geoip_db, raven_client=raven_client, redis_client=redis_client, stats_client=stats_client, data_queues=data_queues, ) yield source @pytest.fixture(scope='function') def source(cls_source, raven, redis, stats): yield cls_source @pytest.fixture(scope='session') def bhutan_model(geoip_data): bhutan = geoip_data['Bhutan'] yield DummyModel( lat=bhutan['latitude'], lon=bhutan['longitude'], radius=bhutan['radius'], code=bhutan['region_code'], name=bhutan['region_name'], ip=bhutan['ip']) @pytest.fixture(scope='session') def london_model(geoip_data): london = geoip_data['London'] yield DummyModel( lat=london['latitude'], lon=london['longitude'], radius=london['radius'], code=london['region_code'], name=london['region_name'], ip=london['ip']) @pytest.fixture(scope='session') def london2_model(geoip_data): london = geoip_data['London2'] yield DummyModel( lat=london['latitude'], lon=london['longitude'], radius=london['radius'], code=london['region_code'], name=london['region_name'], ip=london['ip'])
[ "hanno@hannosch.eu" ]
hanno@hannosch.eu
3246b5ca210e7f3305d2f91f378ef2974217d3fb
65fdf5839d7b017930f223819bbafccc742fe066
/human_detection_z5221116/human_detectors.py
5d178f4f5b79d73100591cbb261765983f6b1087
[]
no_license
denzilsaldanha/comp9517
f5a366da8a41eecbb1eb2aa11451fa9695276137
bce350fb438d9f3154570155cd1c2aea61a9e784
refs/heads/master
2022-04-27T10:38:43.752791
2020-04-24T14:04:04
2020-04-24T14:04:04
254,309,655
1
0
null
null
null
null
UTF-8
Python
false
false
3,201
py
import numpy as np import cv2 class Human_Detectors(object): # Class to detect objects in a frame def __init__(self): self.sub = cv2.createBackgroundSubtractorMOG2() def Detect(self, frame): """ Detects objects in the single video frame with the following steps: 1. Convert frame in gray scale 2. Apply background subtraction 3. Apply some morphology techniques 4. Get contours 5. Get centroid of the contours using cv2.Moments 6. Draw rectangle around the contour. 7. Collect all the center points in a list and return the list """ # Convert BGR to GRAY gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #apply background substraction to the grey colored image fgmask = self.sub.apply(gray) # initialize a kernel to apply to morphological trnasformation to reduce noise kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) # Closing is reverse of Opening, Dilation followed by Erosion closing = cv2.morphologyEx(fgmask, cv2.MORPH_CLOSE, kernel) # Opening is just another name of erosion followed by dilation opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel) # increases the white region in the image or size of foreground object increases dilation = cv2.dilate(opening, kernel) # setting all pixel values above 220 to be 255 - shadow removal retvalbin, bins = cv2.threshold(dilation, 220, 255, cv2.THRESH_BINARY) _, contours, hierarchy = cv2.findContours(dilation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) minimum_area = 400 maximum_area = 50000 centers = [] # goes through all contours in a single frame for x in range(len(contours)): # checks only for the parent contour if hierarchy[0, x, 3] == -1: #calculate area for each contour to place the bounding box contour_area = cv2.contourArea(contours[x]) if minimum_area<contour_area<maximum_area: #cont_num+=1 cont = contours[x] # compute the centre of the contour M = cv2.moments(cont) cx = int(M['m10'] / M['m00']) cy = int(M['m01'] / M['m00']) centroid = (cx,cy) b = np.array([[cx], [cy]]) centers.append(np.round(b)) # find coordinats of straight bounding rectangle of a contour x_coord, y_coord, width, height = cv2.boundingRect(cont) # draw a rectangle around the contour cv2.rectangle(frame, (x_coord, y_coord), (x_coord + width, y_coord + height), (0, 255, 0), 2) cv2.putText(frame, str(cx) + "," + str(cy), (cx + 10, cy + 10), cv2.FONT_HERSHEY_SIMPLEX,.3, (0, 0, 255), 1) cv2.drawMarker(frame, (cx, cy), (0, 255, 255), cv2.MARKER_SQUARE, markerSize=6, thickness=2,line_type=cv2.LINE_8) return centers
[ "noreply@github.com" ]
denzilsaldanha.noreply@github.com
e206ea87f9a2bf71479d06b81a9cc8424ea22e8c
3c76e51f90e8875f823fda2795b9041465d3afd6
/Douglas_Peucker.py
e56cdeafe16c7a33327cf8ccee3bb58dc95c14fb
[]
no_license
hansintheair/Douglas_Peucker_Geoprocessing
087c6d37e5b88f8a1fef20c59ed16969b2805bae
40e21d7a8ca8e60d3573850d80cd631e8586165c
refs/heads/master
2020-05-01T12:15:46.288607
2019-03-28T00:11:31
2019-03-28T00:11:31
177,461,800
1
0
null
null
null
null
UTF-8
Python
false
false
6,364
py
# --Douglas-Peucker Algorithm-- # # Program by: Hannes Ziegler # Date: 12/1/2013 (updated 3/24/2019) # # --Description-- # The Douglas-Puecker algorithm takes as input a set of # x and y coordinates and reduces the number of vertices # within the given set of points. # #------------------------------------------------------- # -- Import Libraries -- # import os, math, arcpy # Set arcpy environment settings arcpy.env.overwriteOutput = True # -- Function Definitions -- # class Line: def __init__(self, point_a, point_b): self._xa = float(point_a[0]) self._ya = float(point_a[1]) self._xb = float(point_b[0]) self._yb = float(point_b[1]) def __repr__(self): return 'Line ({!r}, {!r}), ({!r}, {!r})'.format(self._xa, self._ya, self._xb, self._yb) def slope(self): # Returns m (slope) of two points (xa, ya) and (xb, yb). return (self._ya- self._yb)/(self._xa- self._xb) def distance(self): # Returns d (distance) between two points (xa, ya) and (xb, yb). return math.hypot(self._xa - self._xb, self._ya - self._yb) def y_intercept(self): # Returns b (y-intercept) of a line with slope m and point (x, y). return self._ya - (self.slope()*self._xa) def slope_reciprocal(self): # Returns the reciprocal of slope, the slope of a line perpendicular to this line. return -1/self.slope() def intersect(self, other): #Returns the point where a second line (given as other) intersects this line (given as self) self_b, other_b, self_m, other_m = self.y_intercept(), other.y_intercept(), self.slope(), other.slope() point_x = (other_b - self_b) / (self_m - other_m) point_y = (other_m * point_x) + other_b return [point_x, point_y] def line_of_perp_offset(self, offset_point): self_b, self_m, perp_m = self.y_intercept(), self.slope(), self.slope_reciprocal() perp_b = offset_point[1] - (perp_m * offset_point[0]) intersect_x = (perp_b - self_b) / (self_m - perp_m) intersect_y = (perp_m * intersect_x) + perp_b intersect_point = [intersect_x, intersect_y] return Line(offset_point, intersect_point) # perpendicular_distances(point_list): Selects the first and last point on the line as key points, # finds the perpendicular distances of all points inbetween # the key points to the line created by the key points, # and returns the largest perpendicular distance as well as the # index of the point to which that largest perpendicular distance # corresponds in the original list. point_list must contain at # least three points. def perpendicular_distances(point_list): #Create Line object from first and last point in point_list. trunk = Line(point_list[0], point_list[-1]) #Create a list of perpendicular distances to trunk line from all points between first and last points in point list return [trunk.line_of_perp_offset(offset_point).distance() for offset_point in point_list[1:-1]] def enumerate_max(values): max_val = max(values) i = values.index(max_val) return i, max_val # Douglas_Peucker_Algorithm(point_list, tolerance): Implements the Douglas-Puecker Algorithm to reduce the number of vertices # in a set of points. def douglas_peucker_algorithm(point_list, tolerance): point_list_copy = [point_list] x = 0 while x < len(point_list_copy): #Enter a while loop to iterate over the recursively expanding list of split and reduced lines. if len(point_list_copy[x]) <= 2: #When a line has been reduced to two points, skip over it and move on to the next line. pass else: #Otherwise -> perp_distances = perpendicular_distances(point_list_copy[x]) #find the perpendicular distances of all points between the first and last point. i, largest = enumerate_max(perp_distances) #find the largest vertical distance and note it's index in the list. i+=1 if largest >= float(tolerance): #If the largest distance is longer than the tolerance, split the line at the noted index of largest perpendicular distance. point_list_copy.insert(x+1, point_list_copy[x][i:]) point_list_copy.insert(x+1, point_list_copy[x][:i+1]) point_list_copy.remove(point_list_copy[x]) # remove the initial list and (previous two statements) add the two split lines in its place. x-=1 else: #If the largest distance is shorter than the tolerance, remove all the points inbetween the first and last points. point_list_copy.insert(x+1, [point_list_copy[x][0], point_list_copy[x][-1]]) point_list_copy.remove(point_list_copy[x]) #remove the initial list and place the shortened list in its places. x+=1 point_list = point_list_copy[0] #Re-format the raw list of points returned by the previous operation into the actual remaining points. for item in point_list_copy[1:]: point_list.append(item[-1]) return point_list # -- Begin Main Body -- # infc = arcpy.GetParameterAsText(0) #input featureclass (must be a polyline) infc_path = arcpy.Describe(infc).catalogPath outpath = arcpy.GetParameterAsText(1) #output featureclass outdir, outname = os.path.split(outpath) tolerance = float(arcpy.GetParameterAsText(2)) #set the tolerance which is used to determine how much noise is removed from the line. outfc = arcpy.management.CreateFeatureclass(outdir, outname) #create output featureclass arcpy.management.Copy(infc_path, outfc, "Datasets") #copy output features #arcpy.AddMessage("Tolerance: " + str(tolerance)) ##DEBUG## with arcpy.da.UpdateCursor(outfc, "SHAPE@") as cursor: for row in cursor: for part in row[0]: line = [[point.X, point.Y] for point in part] line = douglas_peucker_algorithm(line, tolerance) array = arcpy.Array() for xy in line: array.append(arcpy.Point(xy[0], xy[1])) polyline = arcpy.Polyline(array) row[0] = polyline cursor.updateRow(row)
[ "hannesz1@gmail.com" ]
hannesz1@gmail.com
8187122813a07a9a2b003bec6922431e0665d295
cc687705b763653a325347315739536ff5fc348a
/day06/day06.py
4d3d8798062d05b061adbc7957c2ecd6a4008c8a
[]
no_license
t-ah/adventofcode-2016
0220a2a5f847a756d6816c790aa13e343fc24cc8
3c860f23cc36a47b0d9b97f504524bc6d99be954
refs/heads/master
2021-04-26T23:34:59.445632
2016-12-25T08:15:02
2016-12-25T08:15:02
123,824,083
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
#!/usr/bin/env python from collections import Counter counters = [] for i in range(8): counters.append(Counter()) with open("input.txt", "r") as f: for line in f: for i in range(8): counters[i][line[i]] += 1 result, result2 = "", "" for i in range(8): result += counters[i].most_common(1)[0][0] result2 += counters[i].most_common()[:-2:-1][0][0] print "Part One:", result, "\nPart Two:", result2
[ "ta10@tu-clausthal.de" ]
ta10@tu-clausthal.de
2acf11f1e923f7d443ab75e7ae81e857adcfdd51
6c35789131e3f934538f4a65970fd8668ca64bc7
/app/seeds/users.py
00492a70ed7ede2d693f9181537951fe47e57237
[]
no_license
AmberJolieH/CollabHERative-React-Flask-Python-Web-App
368552f1387d822b9ecd79af9b9e30b54319c9bd
8ba5ab13f217dfe59ab38d2618b674c229ed1dc6
refs/heads/main
2023-04-06T13:27:58.121287
2021-04-22T01:15:28
2021-04-22T01:15:28
343,210,035
10
0
null
2021-04-19T21:03:52
2021-02-28T20:41:38
Python
UTF-8
Python
false
false
3,364
py
from werkzeug.security import generate_password_hash from app.models import db, User # Adds a demo user, you can add other users here if you want def seed_users(): demo = User(username='Demo', email='demo@aa.io', password='password', firstname="Demo", lastname="User", techcategoryid=1, imgurl='https://collabherative.s3.us-east-2.amazonaws.com/demo_user.png') Amber = User(username='Amberjolie', email='amberjolieh@gmail.com', password='password', firstname='Amber', lastname='Horn', techcategoryid=3, imgurl="https://collabherative.s3.us-east-2.amazonaws.com/ambernew_Profile.png") Courtney = User(username='CJNewcomer', email='courtney@test.com', password='password', firstname='Courtney', lastname='Newcomer', techcategoryid=3, imgurl="https://collabherative.s3.us-east-2.amazonaws.com/Courtney_Profile.png") Arianna = User(username='AriannaJ', email='arianna@test.com', password='password', firstname='Arianna', lastname='Johnson', techcategoryid=3, imgurl='https://collabherative.s3.us-east-2.amazonaws.com/Arianna_Profile-3.png') Nicole = User(username='NicoleL', email='Nicole@test.com', password='password', firstname='Nicole', lastname='Loescher', techcategoryid=3, imgurl='https://collabherative.s3.us-east-2.amazonaws.com/Nicole_Profile.png') Kristen = User(username='KristenF', email='kristen@test.com', password='password', firstname='Kristen', lastname='Florey', techcategoryid=1, imgurl='https://collabherative.s3.us-east-2.amazonaws.com/Kristen_Profile-2.png' ) Zoe = User(username='ZoeD', email='Zoe@test.com', password='password', firstname='Zoe', lastname='D', techcategoryid=4, imgurl='https://collabherative.s3.us-east-2.amazonaws.com/Zoe_Profile.png') Valarie = User(username='ValarieB', email='valarie@test.com', password='password', firstname='Valarie', lastname='B', techcategoryid=5, imgurl='https://collabherative.s3.us-east-2.amazonaws.com/Valarie_Profile.png') Tara = User(username='TaraK', email='tara@test.com', password='password', firstname='Tara', lastname='K', techcategoryid=6, imgurl='https://collabherative.s3.us-east-2.amazonaws.com/Tara_Profile.png') Sarah = User(username='SarahT', email='sarah@test.com', password='password', firstname='Sarah', lastname='T', techcategoryid='7', imgurl='https://collabherative.s3.us-east-2.amazonaws.com/Sarah_Profile.png') db.session.add(demo) db.session.add(Amber) db.session.add(Courtney) db.session.add(Arianna) db.session.add(Nicole) db.session.add(Kristen) db.session.add(Zoe) db.session.add(Valarie) db.session.add(Tara) db.session.add(Sarah) db.session.commit() # Uses a raw SQL query to TRUNCATE the users table. # SQLAlchemy doesn't have a built in function to do this # TRUNCATE Removes all the data from the table, and resets # the auto incrementing primary key def undo_users(): db.session.execute('TRUNCATE users RESTART IDENTITY CASCADE;') db.session.commit()
[ "amberjolieh@gmail.com" ]
amberjolieh@gmail.com
e7ef8060788cf4a52389f687dd1b722418b978b0
96d53a5a1264487e51a5271298115c2d810298b2
/url_open_sssss.py
0285e7d472c924fff21a300d3ef38938c81b6116
[]
no_license
wangyeon-Lee/Yeon
2bac1db96762b6e249d30e694b96aa9aa4d73956
4a83bed3d2eb6aa762a1d6b351f119b50d64b7b6
refs/heads/master
2020-09-23T00:26:17.112200
2019-12-23T09:12:41
2019-12-23T09:12:41
225,353,373
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
import requests from bs4 import BeautifulSoup url = "https://bp.eosgo.io/" result = requests.get(url =url) bs_obj = BeautifulSoup(result.content, "html.parser") lf_items = bs_obj.findAll("div", {"class":"lf-item"}) print(lf_items) hrefs = [div.find("a")['href'] for div in lf_items] print(len(hrefs[0:5])) print(hrefs[0:5])
[ "noreply@github.com" ]
wangyeon-Lee.noreply@github.com
fa50e89a704e23243f033a882d261bf04cd5a1f2
cbfc607f93a3e17762ef0bf861d83a1805d7f234
/tambahan/config/docs.py
79e611b7bd9df370a1fc8395f735039ee81040d7
[ "MIT" ]
permissive
zeta17/tambahan
ce5c0ff1b04d471209372c6addc3f136791edac0
d7b0378f78a889544830e350f3b06f93afea0b4f
refs/heads/master
2021-01-10T01:46:17.710544
2017-11-18T06:38:02
2017-11-18T06:38:02
53,401,529
0
1
null
null
null
null
UTF-8
Python
false
false
316
py
""" Configuration for docs """ # source_link = "https://github.com/[org_name]/tambahan" # docs_base_url = "https://[org_name].github.io/tambahan" # headline = "App that does everything" # sub_heading = "Yes, you got that right the first time, everything" def get_context(context): context.brand_html = "Tambahan"
[ "hendrik.zeta@gmail.com" ]
hendrik.zeta@gmail.com
9c1824153db15e45e28d51dd4e53c8e05177ac26
ebbc2ebe88e90c212e21819a966218fab48a2c5e
/simple_lr.py
7bd3a1c9e727ad70a498e353245323a5c2bdf6f8
[]
no_license
kushal-07/DS281220-ML
75bc2b78466b592058a70e474ef002438c918d97
842dd86f0363ee2bb149ca7ce80294329f2d73cb
refs/heads/main
2023-07-03T14:53:55.519038
2021-08-08T14:54:30
2021-08-08T14:54:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,069
py
# -*- coding: utf-8 -*- """ Created on Wed Jun 23 20:04:55 2021 @author: RISHBANS """ import pandas as pd dataset = pd.read_csv("Company_Profit.csv") X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 1].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, y_train) print(lr.score(X_train, y_train)) y_pred = lr.predict(X_train) #Training Set import matplotlib.pyplot as plt plt.scatter(X_train, y_train, color = 'orange') plt.plot(X_train, y_pred, color = 'red') plt.scatter(X_train, y_pred, color = 'blue') plt.title("training set") plt.xlabel("years in operation") plt.ylabel("profit") plt.show() #Test Set plt.scatter(X_test, y_test, color = 'orange') plt.plot(X_test, lr.predict(X_test), color = 'red') plt.scatter(X_test, lr.predict(X_test), color = 'blue') plt.title("Test Set") plt.xlabel("years in operation") plt.ylabel("profit") plt.show()
[ "rishibansal02@gmail.com" ]
rishibansal02@gmail.com
bfd6412dc1be79d80a09398afbb60d97a7e669a7
73ea8e2cb158cb363acad15ae5d410760c6c0970
/rc4_debug.py
826c52a3a82ea954bb2464c0d70ac8f8886615c2
[]
no_license
bytemare/wep_rc4_chop_chop
5d6edd65302e40de8bd1d89ef839cbaec44f3ae1
eaf4439305a77ad391415e30e8240f3a97504fba
refs/heads/master
2021-05-11T00:14:52.822118
2019-01-14T23:43:59
2019-01-14T23:43:59
118,300,436
1
0
null
null
null
null
UTF-8
Python
false
false
15,663
py
import sys from os import urandom from sys import version_info from bitstring import Bits, BitArray fun_name = sys._getframe().f_code.co_name if version_info[0] < 3: raise Exception("Python 3 or a more recent version is required.") class Frame: def __init__(self, iv, crc, payload): self.iv = iv self.crc = crc # clair self.payload = payload # chiffré def is_valid(self, key: Bits, verbose=True): """ (copy) Reduced function of below "rc4_decrypt" Returns True or False whether the Frame is valid, i.e. its crc32 is coherent to the message transported :param verbose: :param key: :return: True or False """ ivk = wep_make_ivk(key, self.iv) if verbose: debug(verbose, fun_name + " : ivk = " + str(ivk)) decrypted = rc4_crypt(self.payload, ivk, verbose) if verbose: debug(verbose, fun_name + " : decrypted = " + str(ivk)) decrypted_message = decrypted[:-len(self.crc)] if verbose: debug(verbose, fun_name + " : decrypted_message = " + str(decrypted_message)) decrypted_crc = decrypted[-len(self.crc):] if verbose: debug(verbose, fun_name + " : decrypted_crc = " + str(decrypted_crc)) int_computed_crc, computed_crc = crc32(decrypted_message) if verbose: debug(verbose, fun_name + " : computed_crc = " + str(computed_crc)) debug(verbose, fun_name + " : computed_crc = " + str(int_computed_crc)) debug(verbose, fun_name + " : frame_crc = " + str(self.crc)) return decrypted_crc == computed_crc def __iter__(self): yield self.iv yield self.crc yield self.payload def __str__(self): return "Initialisation Vector : " + str(self.iv) + "\nCRC32 : " + str( self.crc) + "\nEncrypted payload : " + str(self.payload) def wep_make_ivk(key: Bits, iv: Bits, order="key+iv"): """ Given a key and initialisation vector, returns the concatenation of both, depending on the order given by order (never sure what order it is) Default is to append vi to key. :param key: :param iv: :param order: :param debug: :return: """ if order == "key+iv": return key + iv elif order == "iv+key": return iv + key else: raise ValueError("Unhandled value for argument 'orrder' : " + order + ". Try 'key+iv' or 'iv+key'.") def debug(state, message): """ If state is set to True, then message is printed. If not, nothing happens. :param state: :param message: :return: """ if state: print(message) def crc32(data: Bits): """ Calculates the CRC32 value of message m :param data: :return: bytearray """ m = bytearray(data.tobytes()) remainder = int("0xFFFFFFFF", 16) # qx = int("0x04C11DB7", 16) qx = int("0xEDB88320", 16) for i in range(len(m) * 8): bit = (m[i // 8] >> (i % 8)) & 1 remainder ^= bit if remainder & 1: multiple = qx else: multiple = 0 remainder >>= 1 remainder ^= multiple result = ~remainder % (1 << 32) return result, Bits(uint=result, length=32) def rc4_extended_crc32(m: Bits): """ Given a message m, returns encoding of (as by X^32 . m(X)) and the CRC32 of m :param m: :return: """ return m + crc32(m)[1] def rc4_ksa(key_bits: Bits): """ Key-Scheduling Algorithm Given a key, returns the RC4 register after initialisation phase. :param key_bits: :return r: rc4 initialised register """ key = bytearray(key_bits.tobytes()) w = 256 r = list(range(w)) keylength = len(key) j = 0 for i in range(w): j = (j + r[i] + key[i % keylength]) % w r[i], r[j] = r[j], r[i] return r def rc4_prga(r, t: int): """ Pseudo-random generation algorithm Given a register R and an integer t, returns a RC4 cipher stream of length t :param stream: :param r: :type t: int :return: """ w = 256 i = j = 0 s = BitArray() print("CHANGE THE STREAM LENGTH HERE !!!") t = t // 8 for l in range(t): i = (i + 1) % w j = (j + r[i]) % w r[i], r[j] = r[j], r[i] k = r[(r[i] + r[j]) % w] s += Bits(bytearray(k.to_bytes(1, byteorder='big'))) debug(True, fun_name + " : stream = " + str(s)) return s def rc4_crypt(m: Bits, k: Bits, verbose=True): """ RC4 Encryption Can be used for encryption and decryption Given a message m and key k, returns the rc4 de/encryption of m with key k :param verbose: :type m: Bits :type k: Bits :return: """ length = len(m) r = rc4_ksa(k) debug(verbose, fun_name + " : length = " + str(length)) debug(verbose, fun_name + " : m (= " + str(m.len) + ") : " + str(m)) debug(verbose, fun_name + " : r = " + str(r)) stream = rc4_prga(r, length) debug(verbose, fun_name + " : cipherstream (" + str(stream.len) + ") : " + str(stream)) """ s = Bits() a = bytearray() for l in range(length): n = next(stream) t = bytearray(n.to_bytes(1, byteorder='big')) a.extend(t) s += Bits(t) debug(verbose, fun_name + " : cipherstream(generator) = " + str(s)) debug(verbose, fun_name + " : cipherstream(generator) = " + str(Bits(a))) """ retained_stream = stream result = m ^ retained_stream debug(verbose, fun_name + " : key = " + str(k)) debug(verbose, fun_name + " : stream = " + str(retained_stream)) debug(verbose, fun_name + " : message = " + str(m)) debug(verbose, fun_name + " : result = " + str(result)) return result def random_iv(length=24): """ Returns a list of random bits, with default length 24. :param length: :return: Bits """ n_bytes = -(-length // 8) # round up by upside down floor division return Bits(urandom(n_bytes)) def wep_rc4_encrypt(m: Bits, k: Bits, verbose=True): """ RC4 Encryption in WEP mode Given a message m and key k, returns the WEP implementation of the rc4 encryption of m with key k :type m :param k: :return: """ iv = random_iv() debug(verbose, fun_name + " : iv = " + str(iv)) ivk = wep_make_ivk(k, iv) debug(verbose, fun_name + " : ivk = " + str(ivk)) cipher = rc4_crypt(m, ivk) debug(verbose, fun_name + " : cipher = " + str(cipher)) return iv, cipher def wep_make_frame(m: Bits, key: Bits, verbose=True): """ FR : Trame Given a message m and a key k, returns a frame, i.e. : - an IV, associated to the frame - a CRC32 of m (noted crc) - a WEP RC4 cipher of m || crc :param m: :param key: :return: IV, CRC, Cipher """ crc = crc32(m)[1] debug(verbose, fun_name + " : crc = " + str(crc)) m_and_crc = m + crc debug(verbose, fun_name + " : m_and_crc = " + str(m_and_crc)) iv, cipher = wep_rc4_encrypt(m_and_crc, key) return Frame(iv, crc, cipher) def rc4_decrypt(k: Bits, frame: Frame, verbose=True): """ Given a key k and frame f, decrypts frame with key and returns cleartext. An error is raised if frame is not a valid frame. :type k: bytearray :type frame: Frame :return: """ # Preprare key for decryption ivk = wep_make_ivk(k, frame.iv) debug(verbose, fun_name + " : ivk = " + str(ivk)) # Decrypt decrypted_payload = rc4_crypt(frame.payload, ivk) debug(verbose, fun_name + " : decrypted_payload = " + str(decrypted_payload)) # Get the cleartext and the crc that were in the encrypted packet cleartext_msg = decrypted_payload[:-len(frame.crc)] decrypted_crc = decrypted_payload[-len(frame.crc):] debug(verbose, fun_name + " : cleartext_msg = " + str(cleartext_msg)) debug(verbose, fun_name + " : decrypted_crc = " + str(decrypted_crc)) # Compute crc32 from decrypted message computed_crc = crc32(cleartext_msg)[1] debug(verbose, fun_name + " : computed_crc = " + str(computed_crc)) # Check if Frame is valid by verifying crc32 fingerprints try: assert decrypted_crc == computed_crc except AssertionError: return "[ERROR] MAC ERROR. Invalid Frame (possibly corrupted). Cause : crc32 invalidation." debug(verbose, fun_name + " : Frame is valid.") return cleartext_msg def mix_crc(a: Bits, b: Bits, c: Bits, verbose=True): """ Given 3 bytearrays, returns the xor between the 3 crcs of the input data :param a: :param b: :param c: :return: """ i_a_crc, _ = crc32(a) i_b_crc, _ = crc32(b) i_c_crc, _ = crc32(c) xor = i_a_crc ^ i_b_crc ^ i_c_crc debug(verbose, fun_name + " : crc(a) ^ crc(b) ^ crc(c) = " + str(xor)) return xor def prepend_zeros(data: bytes, length: int): """ Given a bytes type input, returns it prepended with length '0' :param data: :param length: :return: """ print("prepend " + str(length)) return length * b"0" + data def bin_inject(m_prime: Bits, m: Bits, frame, key: Bits, verbose=True): """ Given two messages m1 and m2, and the frame associated with m2 (as by the return values of wep_frame()), returns a valid frame for m1^m2 === Trick === Base : crc(m1^m2^m3) = crc(m1) ^ crc(m2) ^ crc(m3) if you take m3 = 0, xoring the messages is like m1^m2. Hence, crc(m1^m2) = crc(m1) ^ crc(m2) ^ crc(0) Therefore : rc4(k||iv) ^ ( (m1^m2) || crc(m1^m2) ) = rc4(k||iv) ^ (m1 || crc(m1)) ^ (m2 || crc(m2) ^ ( crc(0) )) Conclusion : To inject, you simply xor the encrypted payload with inject_message || ( crc(inject_message) ^ crc(0) ) In decryption, this would give the following decrypted payload : ( inject_message ^ m ) || ( crc(inject_message) ^ crc(m) ^ crc(0) ) Since we have crc(inject_message ^ m) = crc(inject_message) ^ crc(m) ^ crc(0) The decrypted message is considered valid. ============= What we will do here is, given a frame for message m, inejcted the message 'inject_message :param m_prime: :param m: :param frame: :return: """ reference_length = len(frame.payload) - len(frame.crc) debug(verbose, fun_name + " : reference_length = " + str(reference_length)) inject = m_prime debug(verbose, fun_name + " : inject length = " + str(inject.len)) inject_crc_bits = crc32(m_prime)[1] zero_bits = Bits((reference_length // 8) * b"\0") debug(verbose, fun_name + " : zero length = " + str(zero_bits.len)) zero_crc_bits = crc32(zero_bits)[1] debug(verbose, fun_name + " : zero_bits = " + str(zero_bits)) debug(verbose, fun_name + " : zero_crc_bits = " + str(zero_crc_bits)) debug(verbose, fun_name + " : inject = " + str(inject)) debug(verbose, fun_name + " : inject^0 = " + str(inject ^ zero_bits)) m_crc_bits = crc32(m)[1] inject_crc_suffix = inject_crc_bits ^ zero_crc_bits debug(verbose, fun_name + " : inject_crc_suffix = " + str(inject_crc_suffix)) resulting_crc = inject_crc_suffix ^ m_crc_bits debug(verbose, fun_name + " : resulting_crc = " + str(resulting_crc)) xored_payload_without_zero = m ^ inject xored_payload_with_zero = m ^ inject ^ zero_bits debug(verbose, fun_name + " : xored_payload_wo_zero = " + str(xored_payload_without_zero)) debug(verbose, fun_name + " : xored_payload_w_zero = " + str(xored_payload_with_zero)) computed_crc_wo_zero = crc32(xored_payload_without_zero)[1] computed_crc_w_zero = crc32(xored_payload_with_zero)[1] debug(verbose, fun_name + " : computed_crc_wo_zero = " + str(computed_crc_wo_zero)) debug(verbose, fun_name + " : computed_crc_w_zero = " + str(computed_crc_w_zero)) debug(verbose, fun_name + " : inject_crc_suffix = " + str(inject_crc_suffix)) result_payload = frame.payload ^ (inject + inject_crc_suffix) debug(verbose, fun_name + "### Verification ...") ivk = wep_make_ivk(key, frame.iv) r = rc4_ksa(ivk) # stream = rc4_prga(r, len(m)) # cipherstream = frame.payload ^ (m + m_crc_bits) return Frame(frame.iv, resulting_crc, result_payload) if __name__ == '__main__': # Variables (You would want to play here and change the values) # plaintext = "My cleartext" # secret_key = "Key" # inject_message = "is modified!" plaintext = b"000yay" secret_key = b"c" inject_message = b"secret" print("=== Test Run ===") print("=> Plaintext : " + str(plaintext)) print("=> secret : " + str(secret_key)) print("=> injection message : " + str(inject_message)) print("") print("### Setting parameters ...") # Plaintext plain = bytearray() plain.extend(plaintext) # Secret key = bytearray() key.extend(secret_key) injection = bytearray() injection.extend(inject_message) print("") print("### 1. Executing CRC32:=proc(M) ###") print("CRC32(plaintext) = " + str(crc32(Bits(plain))[0])) print("") print("### 2. Executing RC4KSA:=proc(K) ###") r = rc4_ksa(Bits(key)) print("RC4KSA(key) = " + str(r)) print("") print("### 3. Executing RC4PRGA:=proc(R, t) ###") stream = list(rc4_prga(r, len(plaintext))) print("RC4PRGA(R, t) = " + str(stream)) print("") print("### 4. Executing RC4:=proc(M, K) ###") rc4 = rc4_crypt(Bits(plain), Bits(key)) print("RC4(M, K) = " + str(rc4)) print("") print("### 5. Executing RandomIV:=proc() ###") iv = random_iv() print("RandomIV() = " + str(iv)) print("") print("### 6. Executing Trame:=proc(M, K) ###") f_iv, f_crc, f_cipher = frame = wep_make_frame(Bits(plain), Bits(key), verbose=True) print(frame) print("Frame Validity : " + str(frame.is_valid(Bits(key)))) print("") print("### 7. Executing Decrypt:=proc(K, T) ###") clear = rc4_decrypt(Bits(key), frame) if clear == plaintext: print("Success !") else: print("Failed to correctly decrypt :(") print("Decrypted payload : " + str(clear)) print("") print("### 8. Executing Inject:=proc(K, T) ###") try: assert len(plain) == len(injection) except AssertionError: print("For now only injection messages of same length as plaintext are accepted. Injection Aborted.") exit(0) # new_frame = bin_inject(Bits(injection), Bits(plain), frame, Bits(key), True) # print("New Frame :") # print(new_frame) # print("Frame Validity : " + str(new_frame.is_valid(key, True))) bin_frame = bin_inject(Bits(injection), Bits(plain), frame, Bits(key), True) print("Injected Frame :") print(bin_frame) print("Injected Frame Validity : " + str(bin_frame.is_valid(Bits(key), True))) clear = rc4_decrypt(Bits(key), bin_frame) try: print("decrypted : " + str(clear)) except TypeError: print(clear) compare = bytearray() for i in range(max(len(plain), len(injection))): if i >= len(plain): print("correct this") # compare.extend(inject[i:i + 1]) else: if i >= len(injection): compare.extend(plain[i:i + 1]) else: compare.extend((plain[i] ^ injection[i]).to_bytes(1, byteorder='big')) if bin_frame.is_valid(Bits(key)) and clear == compare: print("Successfull injection !") else: print("Injection failed :(") exit(0)
[ "daniel@bourdrez.fr" ]
daniel@bourdrez.fr
f41057ef9b525c5494e975869cc5f9d1b52837ae
4329df9aa5306d83cd74e4923cc2dfca1f06f2f0
/src/mountaincar/train.py
3b0d1b430464c57571f81b8a342e5cc0eed3abc4
[]
no_license
erzhu419/Transfer-Learning-for-RL
01d410a94f930eec68ee445c2a6c7da782b40f0c
de6649db6f6d13ec9463a1f7780deaf24bd8bc47
refs/heads/master
2022-03-14T16:48:45.051816
2019-11-26T18:45:12
2019-11-26T18:45:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,892
py
""" DQN in PyTorch """ import os import cv2 import torch import torch.nn as nn import numpy as np import datetime import random from collections import namedtuple from collections import deque from typing import List, Tuple import matplotlib.pyplot as plt from tensorboardX import SummaryWriter import gym from gym import spaces from gym.utils import seeding from arguments import args from autoencoders.autoencoder import AutoencoderConv from mountaincar import MountainCarEnv # from autoencoders.config import args # CUDA compatability use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") # seed np_r, seed = seeding.np_random(None) if args.tensorboard: print('Init tensorboardX') writer = SummaryWriter(log_dir='runs/{}'.format(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))) def preprocessImg(img): ''' Convert to [1,c,h,w] from [h,w,c] ''' # img = img.astype(np.float64) img = cv2.resize(img,(300,200)) img = np.transpose(img, (2,0,1)) img = np.expand_dims(img,0) img = img/255 return img class DQN(nn.Module): def __init__(self, input_dim: int, output_dim: int, hidden_dim: int) -> None: """DQN Network Args: input_dim (int): `state` dimension. `state` is 2-D tensor of shape (n, input_dim) output_dim (int): Number of actions. Q_value is 2-D tensor of shape (n, output_dim) hidden_dim (int): Hidden dimension in fc layer """ super(DQN, self).__init__() self.layer1 = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.BatchNorm1d(hidden_dim), nn.PReLU() ) self.layer2 = nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.BatchNorm1d(hidden_dim), nn.PReLU() ) self.final = nn.Linear(hidden_dim, output_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: """Returns a Q_value Args: x (torch.Tensor): `State` 2-D tensor of shape (n, input_dim) Returns: torch.Tensor: Q_value, 2-D tensor of shape (n, output_dim) """ x = self.layer1(x) x = self.layer2(x) x = self.final(x) return x Transition = namedtuple("Transition", field_names=["state", "action", "reward", "next_state", "done"]) States_Buffer = namedtuple("States",field_names=["orig_state","new_state"]) class ReplayMemory(object): def __init__(self, capacity: int) -> None: """Replay memory class Args: capacity (int): Max size of this memory """ self.capacity = capacity self.cursor = 0 self.memory = [] def push(self, state: np.ndarray, action: int, reward: int, next_state: np.ndarray, done: bool) -> None: """Creates `Transition` and insert Args: state (np.ndarray): 1-D tensor of shape (input_dim,) action (int): action index (0 <= action < output_dim) reward (int): reward value next_state (np.ndarray): 1-D tensor of shape (input_dim,) done (bool): whether this state was last step """ if len(self) < self.capacity: self.memory.append(None) self.memory[self.cursor] = Transition(state, action, reward, next_state, done) self.cursor = (self.cursor + 1) % self.capacity def pop(self, batch_size: int) -> List[Transition]: """Returns a minibatch of `Transition` randomly Args: batch_size (int): Size of mini-bach Returns: List[Transition]: Minibatch of `Transition` """ return random.sample(self.memory, batch_size) def __len__(self) -> int: """Returns the length """ return len(self.memory) class stateBuffer(object): ''' Buffer for storing states for autoencoders ''' def __init__(self, capacity: int) -> None: """Replay memory class Args: capacity (int): Max size of this memory """ self.capacity = capacity self.cursor = 0 self.memory = [] def push(self, orig_state: np.ndarray, new_state : np.ndarray, ) -> None: """Creates `Transition` and insert Args: orig_state (np.ndarray): 3-D tensor of shape (input_dim,) next_state (np.ndarray): 3-D tensor of shape (input_dim,) """ if len(self) < self.capacity: self.memory.append(None) self.memory[self.cursor] = States_Buffer(orig_state, new_state) self.cursor = (self.cursor + 1) % self.capacity def pop(self, batch_size: int) -> List[States_Buffer]: """Returns a minibatch of `Transition` randomly Args: batch_size (int): Size of mini-bach Returns: List[Transition]: Minibatch of `Transition` """ return random.sample(self.memory, batch_size) def __len__(self) -> int: """Returns the length """ return len(self.memory) class Agent(object): def __init__(self, input_dim: int, output_dim: int, hidden_dim: int) -> None: """Agent class that choose action and train Args: input_dim (int): input dimension output_dim (int): output dimension hidden_dim (int): hidden dimension """ self.dqn = DQN(input_dim, output_dim, hidden_dim) self.input_dim = input_dim self.output_dim = output_dim self.loss_fn = nn.MSELoss() self.optim = torch.optim.Adam(self.dqn.parameters()) def _to_variable(self, x: np.ndarray) -> torch.Tensor: """torch.Variable syntax helper Args: x (np.ndarray): 2-D tensor of shape (n, input_dim) Returns: torch.Tensor: torch variable """ return torch.autograd.Variable(torch.Tensor(x)) def get_action(self, states: np.ndarray, eps: float) -> int: """Returns an action Args: states (np.ndarray): 2-D tensor of shape (n, input_dim) eps (float): 𝜺-greedy for exploration Returns: int: action index """ if np.random.rand() < eps: return np.random.choice(self.output_dim) else: self.dqn.train(mode=False) scores = self.get_Q(states) _, argmax = torch.max(scores.data, 1) return int(argmax.numpy()) def get_Q(self, states: np.ndarray) -> torch.FloatTensor: """Returns `Q-value` Args: states (np.ndarray): 2-D Tensor of shape (n, input_dim) Returns: torch.FloatTensor: 2-D Tensor of shape (n, output_dim) """ states = self._to_variable(states.reshape(-1, self.input_dim)) self.dqn.train(mode=False) return self.dqn(states) def train(self, Q_pred: torch.FloatTensor, Q_true: torch.FloatTensor) -> float: """Computes `loss` and backpropagation Args: Q_pred (torch.FloatTensor): Predicted value by the network, 2-D Tensor of shape(n, output_dim) Q_true (torch.FloatTensor): Target value obtained from the game, 2-D Tensor of shape(n, output_dim) Returns: float: loss value """ # print("Training RL agent") self.dqn.train(mode=True) self.optim.zero_grad() loss = self.loss_fn(Q_pred, Q_true) loss.backward() self.optim.step() return loss class Darling(object): # DisentAngled Representation LearnING # Parody of DARLA :P def __init__(self,tensorboard=0): self.autoencoder1 = AutoencoderConv() self.autoencoder2 = AutoencoderConv() self.criterion = nn.MSELoss() self.optimizer1 = torch.optim.Adam(self.autoencoder1.parameters(), lr=1e-3, weight_decay=1e-5) self.optimizer2 = torch.optim.Adam(self.autoencoder2.parameters(), lr=1e-3, weight_decay=1e-5) self.losses = [] self.tensorboard = tensorboard # self.loss = 0 self.epoch = 0 def train(self,minibatch: List[Transition]): # print('Training Autoencoder') orig_states = np.vstack([x.orig_state for x in minibatch]) new_states = np.vstack([x.new_state for x in minibatch]) orig_states = torch.FloatTensor(orig_states) new_states = torch.FloatTensor(new_states) s1,z1 = self.autoencoder1(orig_states) s2,z2 = self.autoencoder2(new_states) reconstruction_loss1 = self.criterion(orig_states,s1) reconstruction_loss2 = self.criterion(new_states,s2) latent_loss = self.criterion(z1,z2) if args.loss_type == 'total': loss = args.alpha_latent*latent_loss + args.alpha_recon1*reconstruction_loss1 + args.alpha_recon2*reconstruction_loss2 elif args.loss_type == 'seperate': loss1 = args.alpha_latent*latent_loss + args.alpha_recon1*reconstruction_loss1 loss2 = args.alpha_latent*latent_loss + args.alpha_recon2*reconstruction_loss2 if args.tensorboard: writer.add_scalar('Autoencoder_1_Loss',args.alpha_recon1*reconstruction_loss1.item(),self.epoch) writer.add_scalar('Autoencoder_2_Loss',args.alpha_recon2*reconstruction_loss2.item(),self.epoch) writer.add_scalar('Latent_Loss',args.alpha_latent*latent_loss.item(),self.epoch) if args.loss_type == 'total': writer.add_scalar('Total_Loss',loss.item(),self.epoch) elif args.loss_type == 'seperate': writer.add_scalar('Loss1',loss1.item(),self.epoch) writer.add_scalar('Loss2',loss2.item(),self.epoch) print('Recon Loss 1:{:5} \t Recon Loss 2:{:5}\t Latent Loss:{:5}'.format(\ args.alpha_recon1*reconstruction_loss1.item(),\ args.alpha_recon2*reconstruction_loss2.item(),\ args.alpha_latent*latent_loss.item())) # self.losses.append(loss.detach().numpy()) # self.loss = np.copy(loss.detach().numpy()) # print('Backward 1') if args.loss_type == 'total': self.optimizer1.zero_grad() loss.backward(retain_graph=True) self.optimizer1.step() # print('Backward 2') self.optimizer2.zero_grad() loss.backward() self.optimizer2.step() elif args.loss_type == 'seperate': self.optimizer1.zero_grad() loss1.backward(retain_graph=True) self.optimizer1.step() self.optimizer2.zero_grad() loss2.backward() self.optimizer2.step() self.epoch += 1 # print('Done Traininf') def save(self,args): print('Saving Weights') if not os.path.exists('./Weights'): os.makedirs('./Weights') torch.save({ 'model_state_dict': self.autoencoder1.state_dict(), 'optimizer_state_dict': self.optimizer1.state_dict(), }, args.weight_paths[0]) torch.save({ 'model_state_dict': self.autoencoder2.state_dict(), 'optimizer_state_dict': self.optimizer2.state_dict(), }, args.weight_paths[1]) def train_helper(agent: Agent, minibatch: List[Transition], gamma: float) -> float: """Prepare minibatch and train them Args: agent (Agent): Agent has `train(Q_pred, Q_true)` method minibatch (List[Transition]): Minibatch of `Transition` gamma (float): Discount rate of Q_target Returns: float: Loss value """ states = np.vstack([x.state for x in minibatch]) actions = np.array([x.action for x in minibatch]) rewards = np.array([x.reward for x in minibatch]) next_states = np.vstack([x.next_state for x in minibatch]) done = np.array([x.done for x in minibatch]) Q_predict = agent.get_Q(states) Q_target = Q_predict.clone().data.numpy() Q_target[np.arange(len(Q_target)), actions] = rewards + gamma * np.max(agent.get_Q(next_states).data.numpy(), axis=1) * ~done Q_target = agent._to_variable(Q_target) return agent.train(Q_predict, Q_target) def play_episode(orig_env: MountainCarEnv, new_env: MountainCarEnv, agent: Agent, autoencoder_agent: Darling, replay_memory: ReplayMemory, state_memory: stateBuffer, eps: float, batch_size: int) -> int: """Play an epsiode and train Args: env (gym.Env): gym environment (CartPole-v0) agent (Agent): agent will train and get action replay_memory (ReplayMemory): trajectory is saved here eps (float): 𝜺-greedy for exploration batch_size (int): batch size Returns: int: reward earned in this episode """ init_state = np.array([np_r.uniform(low=-0.6, high=-0.4), 0]) # initialise both envs to same state s = orig_env.reset(init_state) new_env.reset(init_state) done = False total_reward = 0 while not done: a = agent.get_action(s, eps) s2, r, done, _ = orig_env.step(a) _,_,_,_ = new_env.step(a) # get frames for both environments orig_img = orig_env.render(mode='rgb_array') new_img = new_env.render(mode='rgb_array') orig_img = preprocessImg(orig_img) new_img = preprocessImg(new_img) total_reward += r if done: r = -1 replay_memory.push(s, a, r, s2, done) # state_memory.push(s,np.flip(s)) # push frames for both envs in buffer state_memory.push(orig_img,new_img) if len(replay_memory)%batch_size == 0: minibatch = replay_memory.pop(batch_size) train_helper(agent, minibatch, args.gamma) if len(replay_memory)%1000 ==0: for i in range(int(1000/batch_size)): print('Update: ',i) minibatch_autoencoder = state_memory.pop(batch_size) autoencoder_agent.train(minibatch_autoencoder) autoencoder_agent.save(args) s = s2 return total_reward def get_env_dim(env: gym.Env) -> Tuple[int, int]: """Returns input_dim & output_dim Args: env (gym.Env): gym Environment (CartPole-v0) Returns: int: input_dim int: output_dim """ input_dim = env.observation_space.shape[0] output_dim = env.action_space.n return input_dim, output_dim def epsilon_annealing(epsiode: int, max_episode: int, min_eps: float) -> float: """Returns 𝜺-greedy 1.0---|\ | \ | \ min_e +---+-------> | max_episode Args: epsiode (int): Current episode (0<= episode) max_episode (int): After max episode, 𝜺 will be `min_eps` min_eps (float): 𝜺 will never go below this value Returns: float: 𝜺 value """ slope = (min_eps - 1.0) / max_episode return max(slope * epsiode + 1.0, min_eps) def main(): """Main """ try: # env = gym.make(FLAGS.env) orig_env = MountainCarEnv() new_env = MountainCarEnv(color=[1,0,0,0.5]) # env = gym.wrappers.Monitor(env, directory="monitors", force=True) rewards = deque(maxlen=100) input_dim, output_dim = get_env_dim(orig_env) agent = Agent(input_dim, output_dim, args.hidden_dim) replay_memory = ReplayMemory(args.capacity) state_memory = stateBuffer(args.capacity) autoencoder_agent = Darling() for i in range(args.n_episode): eps = epsilon_annealing(i, args.max_episode, args.min_eps) r = play_episode(orig_env, new_env, agent,autoencoder_agent, replay_memory,state_memory, eps, args.batch_size) autoencoder_loss = autoencoder_agent.loss print("[Episode: {:5}] Reward: {:5} 𝜺-greedy: {:5.2f} Autoencoder Loss: {:5}".format(i + 1, r, eps,autoencoder_loss)) rewards.append(r) writer.add_scalar('Agent Reward',r ,i) if len(rewards) == rewards.maxlen: if np.mean(rewards) >= 200: print("Game cleared in {} games with {}".format(i + 1, np.mean(rewards))) break autoencoder_agent.save(args) # plt.plot(autoencoder_agent.losses) # plt.grid() # plt.show() finally: orig_env.close() new_env.close() if __name__ == '__main__': main()
[ "siddharthnayak98@gmail.com" ]
siddharthnayak98@gmail.com
281b5ead6e1f177a9c3115e9da75be8f64bd2d08
fa91c2e77648a84b15b1bc741dcfc2c243cc5c21
/LostAndFound/forms.py
a7d363eacfc00011ec63e47e341e2eb011e41a97
[]
no_license
kmu-fringles/zisae-project
015867fc521f4b9e7af64634f3f13d9dac06ce36
9b3a3825683220b72c41935754f895bfc9345b8d
refs/heads/master
2020-06-17T00:29:57.748391
2019-07-20T06:54:28
2019-07-20T06:54:28
195,743,954
0
0
null
null
null
null
UTF-8
Python
false
false
242
py
from .models import LostAndFound, Comment from django import forms class CommentForm(forms.ModelForm): #text = forms.TextInput(label = '댓글') class Meta: model = Comment fields = ['comment_writer', 'comment_text']
[ "gus7Wn@gmail.com" ]
gus7Wn@gmail.com
0aef00a48547dbd3801bb30ce5a3d51f492ebac1
7c996d94d5f7cbd6a94bf103579cc50d811adc93
/migrations/versions/cdf84c62b8b6_.py
8e0322584d15e2568a7a5c1a8c009956efdef89f
[]
no_license
cfurukawa6/core
ca0a1d9b1d582bc7a642518f41c3ac071ce5cf71
8dafe2d14e0823cddb15aa11cf0a56967cc23126
refs/heads/master
2020-07-28T09:23:35.064693
2019-09-13T06:27:27
2019-09-13T06:27:27
173,833,913
0
0
null
2019-03-04T22:48:14
2019-03-04T22:48:14
null
UTF-8
Python
false
false
1,434
py
"""empty message Revision ID: cdf84c62b8b6 Revises: Create Date: 2019-04-17 02:42:36.886679 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'cdf84c62b8b6' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('sheet', sa.Column('sheet_label', sa.String(), nullable=False), sa.Column('avgmoe', sa.DECIMAL(), nullable=True), sa.Column('avgsg', sa.DECIMAL(), nullable=True), sa.Column('avgmc', sa.DECIMAL(), nullable=True), sa.Column('avgvel', sa.DECIMAL(), nullable=True), sa.Column('avgupt', sa.DECIMAL(), nullable=True), sa.Column('pkdensity', sa.DECIMAL(), nullable=True), sa.Column('effvel', sa.ARRAY(sa.DECIMAL()), nullable=True), sa.Column('lvel', sa.ARRAY(sa.DECIMAL()), nullable=True), sa.Column('rvel', sa.ARRAY(sa.DECIMAL()), nullable=True), sa.Column('lupt', sa.ARRAY(sa.DECIMAL()), nullable=True), sa.Column('rupt', sa.ARRAY(sa.DECIMAL()), nullable=True), sa.Column('sg', sa.ARRAY(sa.DECIMAL()), nullable=True), sa.Column('mc', sa.ARRAY(sa.DECIMAL()), nullable=True), sa.PrimaryKeyConstraint('sheet_label') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('sheet') # ### end Alembic commands ###
[ "langbuana.yuka@hotmail.com" ]
langbuana.yuka@hotmail.com
07e06ed4f9d0da01270e8ac320fa79d404150d1a
57008b377d6c926123b22bc7c530576e794c64f0
/htmap/_startup.py
4326d074f8d9d0454d134bedabc1162665023009
[ "Apache-2.0" ]
permissive
ChristinaLK/htmap
75ec276a9e18d08ad61f5e93b45082fce9bdc003
fdc4c0a09418b976c9e66f781a76f8f18f9aa1a0
refs/heads/master
2020-07-01T22:36:57.012816
2019-08-01T00:11:29
2019-08-01T00:11:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,495
py
import os import logging from logging import handlers from pathlib import Path from . import settings, names logger = logging.getLogger('htmap') LOGS_DIR_PATH = Path(settings['HTMAP_DIR']) / names.LOGS_DIR def setup_internal_file_logger(): LOGS_DIR_PATH.mkdir(parents = True, exist_ok = True) LOG_FILE = LOGS_DIR_PATH / 'htmap.log' _logfile_handler = handlers.RotatingFileHandler( filename = LOG_FILE, mode = 'a', maxBytes = 10 * 1024 * 1024, # 10 MB backupCount = 4, ) _fmt = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') _logfile_handler.setFormatter(_fmt) _logfile_handler.setLevel(logging.DEBUG) logger.addHandler(_logfile_handler) def ensure_htmap_dir_exists(): from . import names as _names _htmap_dir = Path(settings['HTMAP_DIR']) try: did_not_exist = not _htmap_dir.exists() dirs = ( _htmap_dir, _htmap_dir / _names.MAPS_DIR, _htmap_dir / _names.TAGS_DIR, _htmap_dir / _names.REMOVED_TAGS_DIR ) for dir in dirs: dir.mkdir(parents = True, exist_ok = True) if did_not_exist: logger.debug(f'created HTMap dir at {_htmap_dir}') except PermissionError as e: raise PermissionError(f'the HTMap directory ({_htmap_dir}) needs to be writable') from e if os.getenv('HTMAP_ON_EXECUTE') != '1': ensure_htmap_dir_exists() setup_internal_file_logger()
[ "noreply@github.com" ]
ChristinaLK.noreply@github.com
181479fad7eed6028469449cf9d77b1e5ce1468f
8e689176bba5607dabaeef57ad312661220e5f14
/Python/pyrenn/SavedNN/example_all_run.py
ffeb7f599990cb0d5df94e34757e29bcd81ff56b
[]
no_license
arnoplaetinck/Masterproef
bc53c10cf427fd917ee703226d26a2cfeda0c9eb
f0be6811d1318409c3257d10b402f331e3b3be59
refs/heads/master
2020-07-18T22:03:29.491467
2020-05-01T13:27:41
2020-05-01T13:27:41
206,317,530
0
0
null
null
null
null
UTF-8
Python
false
false
11,203
py
from __future__ import absolute_import, division, print_function, unicode_literals from numpy import genfromtxt import pyrenn as prn import csv import time from statistics import mean import psutil import functools import pandas as pd import numpy as np import tensorflow as tf import os from tensorflow import keras cores = [] cpu_percent = [] virtual_mem = [] time_start = [] time_stop = [] time_diff = [] time_total = 0 iterations = 1 labels = ["compair", "friction", "narendra4", "pt2", "P0Y0_narendra4", "P0Y0_compair", "gradient", "Text Classificatie", "Totaal"] ### # Creating a filename seconds = time.time() local_time = time.ctime(seconds) naam2 = local_time.split() naam = "MP_NN_ALL_RUN_PC" for i in range(len(naam2)): naam += "_" + naam2[i] naam = naam.replace(':', '_') def review_encode(s): encoded = [1] for word in s: if word.lower() in word_index: encoded.append(word_index[word.lower()]) else: encoded.append(2) return encoded def decode_review(text): return " ".join([reverse_word_index.get(i, "?") for i in text]) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # first time calling cpu percent to get rid of 0,0 psutil.cpu_percent(interval=None, percpu=True) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # example_compair.py for i in range(iterations): # Read Example Data df = genfromtxt('example_data_compressed_air.csv', delimiter=',') P = np.array([df[1], df[2], df[3]]) Y = np.array([df[4], df[5]]) Ptest = np.array([df[6], df[7], df[8]]) Ytest = np.array([df[9], df[10]]) # Load saved NN from file net = prn.loadNN("./SavedNN/compair.csv") psutil.cpu_percent(interval=None, percpu=True) time_start.append(time.time()) # Calculate outputs of the trained NN for train and test data y = prn.NNOut(P, net) ytest = prn.NNOut(Ptest, net) time_stop.append(time.time()) cores.append(psutil.cpu_percent(interval=None, percpu=True)) virtual_mem.append(psutil.virtual_memory()) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # example_friction.py # This is an example of a static system with one output and one input for i in range(iterations): # Read Example Data df = genfromtxt('example_data_friction.csv', delimiter=',') P = df[1] Y = df[2] Ptest = df[3] Ytest = df[4] # Load saved NN from file net = prn.loadNN("./SavedNN/friction.csv") psutil.cpu_percent(interval=None, percpu=True) time_start.append(time.time()) # Calculate outputs of the trained NN for train and test data y = prn.NNOut(P, net) ytest = prn.NNOut(Ptest, net) time_stop.append(time.time()) cores.append(psutil.cpu_percent(interval=None, percpu=True)) virtual_mem.append(psutil.virtual_memory()) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # example_narendra4.py # This is an example of a dynamic system with one output and one delayed input for i in range(iterations): # Read Example Data df = genfromtxt('example_data_narendra4.csv', delimiter=',') P = df[1] Y = df[2] Ptest = df[3] Ytest = df[4] # Load saved NN from file net = prn.loadNN("./SavedNN/narendra4.csv") psutil.cpu_percent(interval=None, percpu=True) time_start.append(time.time()) # Calculate outputs of the trained NN for train and test data y = prn.NNOut(P, net) ytest = prn.NNOut(Ptest, net) time_stop.append(time.time()) cores.append(psutil.cpu_percent(interval=None, percpu=True)) virtual_mem.append(psutil.virtual_memory()) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # example_pt2.py # This is an example of a dynamic system with one input and one output for i in range(iterations): # Read Example Data df = genfromtxt('example_data_friction.csv', delimiter=',') P = df[1] Y = df[2] Ptest = df[3] Ytest = df[4] # Load saved NN from file net = prn.loadNN("./SavedNN/pt2.csv") psutil.cpu_percent(interval=None, percpu=True) time_start.append(time.time()) # Calculate outputs of the trained NN for train and test data y = prn.NNOut(P, net) ytest = prn.NNOut(Ptest, net) time_stop.append(time.time()) cores.append(psutil.cpu_percent(interval=None, percpu=True)) virtual_mem.append(psutil.virtual_memory()) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # example_using_P0Y0_narendra4.py for i in range(iterations): # Read Example Data df = genfromtxt('example_data_narendra4.csv', delimiter=',') P = df[1] Y = df[2] Ptest_ = df[3] Ytest_ = df[4] # define the first 3 timesteps t=[0,1,2] of Test Data as previous (known) data P0test and Y0test P0test = Ptest_[0:3] Y0test = Ytest_[0:3] # Use the timesteps t = [3..99] as Test Data Ptest = Ptest_[3:100] Ytest = Ytest_[3:100] # Load saved NN from file net = prn.loadNN("./SavedNN/using_P0Y0_narendra4.csv") psutil.cpu_percent(interval=None, percpu=True) time_start.append(time.time()) # Calculate outputs of the trained NN for test data with and without previous input P0 and output Y0 ytest = prn.NNOut(Ptest, net) y0test = prn.NNOut(Ptest, net, P0=P0test, Y0=Y0test) time_stop.append(time.time()) cores.append(psutil.cpu_percent(interval=None, percpu=True)) virtual_mem.append(psutil.virtual_memory()) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # example__using_P0Y0_compair.py # This is an example of a dynamic system with 2 outputs and 3 inputs for i in range(iterations): # Read Example Data df = genfromtxt('example_data_compressed_air.csv', delimiter=',') P = np.array([df[1], df[2], df[3]]) Y = np.array([df[4], df[5]]) Ptest_ = np.array([df[6], df[7], df[8]]) Ytest_ = np.array([df[9], df[10]]) # define the first timestep t=0 of Test Data as previous (known) data P0test and Y0test P0test = Ptest_[:, 0:1] Y0test = Ytest_[:, 0:1] # Use the timesteps t = [1..99] as Test Data Ptest = Ptest_[:, 1:100] Ytest = Ytest_[:, 1:100] # Load saved NN from file net = prn.loadNN("./SavedNN/using_P0Y0_compair.csv") psutil.cpu_percent(interval=None, percpu=True) time_start.append(time.time()) # Calculate outputs of the trained NN for test data with and without previous input P0 and output Y0 ytest = prn.NNOut(Ptest, net) y0test = prn.NNOut(Ptest, net, P0=P0test, Y0=Y0test) time_stop.append(time.time()) cores.append(psutil.cpu_percent(interval=None, percpu=True)) virtual_mem.append(psutil.virtual_memory()) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # example_gradient.py for i in range(iterations): df = genfromtxt('example_data_pt2.csv', delimiter=',') P = df[1] Y = df[2] # Load saved NN from file net = prn.loadNN("./SavedNN/gradient.csv") psutil.cpu_percent(interval=None, percpu=True) time_start.append(time.time()) # Prepare input Data for gradient calculation data, net = prn.prepare_data(P, Y, net) # Real Time Recurrent Learning J, E, e = prn.RTRL(net, data) g_rtrl = 2 * np.dot(J.transpose(), e) # calculate g from Jacobian and error vector # Back Propagation Through Time g_bptt, E = prn.BPTT(net, data) # Compare # print('\n\n\nComparing Methods:') # print('Time RTRL: ', (t1_rtrl - t0_rtrl), 's') # print('Time BPTT: ', (t1_bptt - t0_bptt), 's') # if not np.any(np.abs(g_rtrl - g_bptt) > 1e-9): # print('\nBoth methods showing the same result!') # print('g_rtrl/g_bptt = ', g_rtrl / g_bptt) time_stop.append(time.time()) cores.append(psutil.cpu_percent(interval=None, percpu=True)) virtual_mem.append(psutil.virtual_memory()) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # example_gradient.py data = keras.datasets.imdb (train_data, train_labels), (test_data, test_labels) = data.load_data(num_words=10000) print(train_data[0]) word_index = data.get_word_index() word_index = {k: (v + 3) for k, v in word_index.items()} word_index["<PAD>"] = 0 word_index["<START>"] = 1 word_index["<UNK>"] = 2 word_index["<UNUSED>"] = 3 reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) # preprocessing data to make it consistent (different lengths for different reviews) train_data = keras.preprocessing.sequence.pad_sequences(train_data, value=word_index["<PAD>"], padding="post", maxlen=250) test_data = keras.preprocessing.sequence.pad_sequences(test_data, value=word_index["<PAD>"], padding="post", maxlen=250) for i in range(iterations): model = keras.models.load_model("model.h5") psutil.cpu_percent(interval=None, percpu=True) time_start.append(time.time()) with open("test.txt", encoding="utf-8") as f: for line in f.readlines(): nline = line.replace(",", "").replace(".", "").replace("(", "").replace(")", "").replace(":", "").replace( "\"", "").strip( " ") encode = review_encode(nline) encode = keras.preprocessing.sequence.pad_sequences(test_data, value=word_index["<PAD>"], padding="post", maxlen=250) predict = model.predict(encode) time_stop.append(time.time()) cores.append(psutil.cpu_percent(interval=None, percpu=True)) virtual_mem.append(psutil.virtual_memory()) cores.append(psutil.cpu_percent(interval=None, percpu=True)) virtual_mem.append(psutil.virtual_memory()) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Logging data for i in range(iterations*(len(labels)-1)): time_diff.append(round(time_stop[i] - time_start[i], 10)) time_total += time_stop[i] - time_start[i] time_diff.append(round(time_total/iterations, 10)) i = 0 for core in cores: cpu_percent.append(mean(cores[i])) i += 1 i = 0 with open('./logging/' + naam + ".csv", mode='w') as results_file: fieldnames = ['Naam', 'CPU Percentage', 'timediff', 'virtual mem'] file_writer = csv.DictWriter(results_file, fieldnames=fieldnames) file_writer.writeheader() for i in range(iterations*(len(labels)-1)+1): j = int(i/iterations) file_writer.writerow({'Naam': labels[j], 'CPU Percentage': str(cpu_percent[i]), 'timediff': str(time_diff[i]), 'virtual mem': str(virtual_mem[i])})
[ "arno.plaetinck@hotmail.com" ]
arno.plaetinck@hotmail.com
0f486160c87953554de09581004fbb09a73078c1
141346be61f39c2b7a1645cdec278f23b7137b9f
/src/stand_alone.py
2efd9e9d1dff4d985dca17a504b1293c2bf9ffd6
[]
no_license
drimyus/facs_with_eeg_python
443bbcd0922e5cc8ea92bf6ec17e404bf484a71a
c9b4bc7ebcca363a8ee73a3117b3469bb7252f6a
refs/heads/master
2021-08-30T12:23:44.056485
2017-12-16T05:55:57
2017-12-16T05:55:57
113,594,180
1
0
null
null
null
null
UTF-8
Python
false
false
19,348
py
from sklearn.svm import SVC from sklearn.externals import joblib import numpy as np import tkinter import tkinter.filedialog import dlib import cv2 import sys import os import random from PIL import Image, ExifTags from src.face import Face FACE_DATASET = "crop" TRAIN_DATASET = "train" TEST_DATASET = "test" class StandAlone: def __init__(self, dataset, model_path, stand_flag=False): # location of classifier model self.model = None self.model_path = model_path # location of dataset self.dataset = dataset self.crop_dataset = os.path.join(dataset, FACE_DATASET) self.train_dataset = os.path.join(dataset, TRAIN_DATASET) self.test_dataset = os.path.join(dataset, TEST_DATASET) self.clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) self.ensmeble_ratio = 0.75 # trains : tests = 3 : 1 self.stand_flag = stand_flag self.dlib_face = Face('dlib') self.haar_face = Face('haar') self.face_width = 151 self.face_height = 151 self.labels = ["angry", "contemp", "disgust", "fear", "happy", "neutral", "sadness", "suprise"] self.rect_color = (0, 255, 0) self.text_color = (255, 0, 255) # load the model sys.stdout.write("Loading the model.\n") success = self.load() # if not success: # # No exist trained model, so training... # self.train_model() def load(self): if os.path.isfile(self.model_path): try: # loading self.model = joblib.load(self.model_path) return True except Exception as ex: print(ex) else: sys.stdout.write(" No exist Model {}, so it should be trained\n".format(self.model_path)) def load_image(self, file_path): try: image = Image.open(file_path) orientation = None for key in ExifTags.TAGS.keys(): if ExifTags.TAGS[key] == 'Orientation': orientation = key break exif = dict(image._getexif().items()) if exif[orientation] == 3: image = image.rotate(180, expand=True) elif exif[orientation] == 6: image = image.rotate(270, expand=True) elif exif[orientation] == 8: image = image.rotate(90, expand=True) # image.save(file_path) # image.close() cv_img = np.array(image) cv_img = cv_img[:, :, ::-1].copy() return np.array(cv_img) except (AttributeError, KeyError, IndexError): # cases: image don't have getexif cv_img = cv2.imread(file_path) return cv_img def calib_orientation(self, image): face = self.dlib_face max_rects = [] max_image = image for rotate_code in range(3): rot_image = cv2.rotate(image, rotateCode=rotate_code) rects = face.detect_face(rot_image) if len(rects) > len(max_rects): max_rects = rects max_image = rot_image return max_rects, max_image def ensemble_data(self): crop_dataset = self.crop_dataset train_dataset = self.train_dataset if not os.path.isdir(train_dataset): os.mkdir(train_dataset) test_dataset = self.test_dataset if not os.path.isdir(test_dataset): os.mkdir(test_dataset) sys.stdout.write("Ensembiling the data.\n") if not os.path.isdir(crop_dataset): sys.stderr.write("\tNo exist such directory: {}\n".format(crop_dataset)) sys.exit(1) sys.stdout.write("\tdataset: {}\n".format(crop_dataset)) """ counting """ sys.stdout.write("\tCount the # files(faces) on dataset.\n") persons = [] cnts = [] for dirpath, dirnames, filenames in os.walk(crop_dataset): dirnames.sort() for subdirname in dirnames: subdirpath = os.path.join(dirpath, subdirname) cnts.append(len(os.listdir(subdirpath))) persons.append(subdirname) sys.stdout.write("\t\tperson: {}, images: {}\n".format(subdirname, len(os.listdir(subdirpath)))) break """ ensembling """ sys.stdout.write("\tBalance the dataset.\n") min_cnt = min(cnts) for person in persons: subdirpath = os.path.join(crop_dataset, person) files = os.listdir(subdirpath) samples = random.sample(files, min_cnt) # pickle the random items from the list for sample in samples: src = os.path.join(subdirpath, sample) if samples.index(sample) <= self.ensmeble_ratio * len(samples): # for training new_subdirpath = os.path.join(train_dataset, person) if not os.path.isdir(new_subdirpath): os.mkdir(new_subdirpath) dst = os.path.join(new_subdirpath, sample) else: # for testing new_subdirpath = os.path.join(test_dataset, person) if not os.path.isdir(new_subdirpath): os.mkdir(new_subdirpath) dst = os.path.join(new_subdirpath, sample) crop = cv2.imread(src) if self.stand_flag: stand_img = self.standardize_face(crop) else: stand_img = crop cv2.imwrite(dst, stand_img) cv2.imshow("face", crop) cv2.imshow("stand", stand_img) sys.stdout.write("\nEnsembled!\n") def standardize_face(self, face): gray = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY) clahe_image = self.clahe.apply(gray) stand = cv2.cvtColor(clahe_image, cv2.COLOR_GRAY2BGR) return stand def image_descriptions(self, image, face): if image.shape[:2] == (self.face_height, self.face_width): rects = [dlib.rectangle(int(0), int(0), int(image.shape[1]), int(image.shape[0]))] else: rects = face.detect_face(image) descriptions = [] calib_image = None if len(rects) == 0: _, calib_image = self.calib_orientation(image) else: calib_image = image for rect in rects: crop = calib_image[max(0, rect.top()): max(image.shape[0], rect.bottom()), max(rect.left(), 0):min(rect.right(), image.shape[1])] if self.stand_flag: stand_face = self.standardize_face(crop) else: stand_face = crop resize = cv2.resize(stand_face, (self.face_width, self.face_height)) description = self.dlib_face.recog_description(resize) descriptions.append(description) return calib_image, descriptions, rects def train_data(self, raw_data): dataset = self.crop_dataset if not os.path.isdir(dataset): os.mkdir(dataset) sys.stdout.write("Preparing the face dataset from the raw images.\n") if not os.path.isdir(raw_data): sys.stderr.write("\tCan not find source directory: {}\n".format(raw_data)) if not os.path.isdir(dataset): sys.stdout.write("\tNo exist destination director, so will create new directory: {}\n".format(dataset)) os.mkdir(dataset) sys.stdout.write("\tsource: {}\n".format(raw_data)) sys.stdout.write("\tdestination: {}\n".format(dataset)) sys.stdout.write("\tScaning the source directory.\n") for dirpath, dirnames, filenames in os.walk(raw_data): dirnames.sort() for subdirname in dirnames: subdirpath = os.path.join(dirpath, subdirname) new_subdirpath = os.path.join(dataset, subdirname) if not os.path.isdir(new_subdirpath): os.mkdir(new_subdirpath) for filename in os.listdir(subdirpath): sys.stdout.write("\r\t\t{} / {}".format(subdirname, filename)) sys.stdout.flush() crop = None image = self.load_image(os.path.join(subdirpath, filename)) if image.shape[:2] == (self.face_height, self.face_width): crop = image else: # cropping the face from the image and resizing rects = self.dlib_face.detect_face(image) if len(rects) == 0: # find the correct orientation rects, image = self.calib_orientation(image) if len(rects) != 0: (x, y, w, h) = (rects[0].left(), rects[0].top(), rects[0].right() - rects[0].left(), rects[0].bottom() - rects[0].top()) height, width = image.shape[:2] crop = image[max(0, y): min(y + h, height), max(0, x):min(width, x + w)] if self.stand_flag: crop = self.standardize_face(crop) if crop is not None: cv2.imwrite(filename=os.path.join(new_subdirpath, filename), img=crop) cv2.imshow("face", crop) cv2.waitKey(1) else: sys.stdout.write("\t no face: {} / {}\n".format(subdirpath, filename)) sys.stdout.write("\nCropped!\n") def train_model(self, model_path=None): if model_path is None: model_path = self.model_path else: self.model_path = model_path dataset = self.train_dataset sys.stdout.write("Training the model.\n") if not os.path.isdir(dataset): sys.stderr.write("\tNo exist Dataset for training{}\n".format(dataset)) exit(1) # initialize the data matrix and labels list data = [] labels = [] """-----------------------------------------------------------------------------------------""" sys.stdout.write("\tScanning the dataset.\n") # loop over the input images for dirpath, dirnames, filenames in os.walk(dataset): dirnames.sort() for subdirname in dirnames: subject_path = os.path.join(dirpath, subdirname) for filename in os.listdir(subject_path): sys.stdout.write("\r\t\tscanning: {} {}".format(subject_path, filename)) sys.stdout.flush() img = self.load_image(os.path.join(subject_path, filename)) _, descriptions, rects = self.image_descriptions(img, self.dlib_face) if len(descriptions) == 0: continue label, hist = subdirname, descriptions[0] # get label, histogram data.append(hist) labels.append(label) """-----------------------------------------------------------------------------------------""" sys.stdout.write("\nConfigure the SVM model.\n") # Configure the model : linear SVM model with probability capabilities """'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable.""" model = SVC(C=1.0, kernel='poly', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=True, tol=0.001, cache_size=200, class_weight='balanced', verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None) # model = SVC(C=1.0, kernel='linear') # model = SVC(probability=True) # Train the model model.fit(data, labels) joblib.dump(model, self.model_path) """-----------------------------------------------------------------------------------------""" sys.stdout.write("\tFinished the training.\n") self.model = model def check_precision(self, dir_path): confuse_mat = [] total = 0 num_pos = 0 num_neg = 0 sys.stdout.write("Check the precision with dataset {}\n".format(dir_path)) if not os.path.isdir(dir_path): sys.stderr.write("\tCan not find such directory: {}\n".format(dir_path)) sys.exit(1) sys.stdout.write("\tsource: {}\n".format(dir_path)) sys.stdout.write("\tScaning the source directory.\n") for dirpath, dirnames, filenames in os.walk(dir_path): dirnames.sort() for subdirname in dirnames: prec_line = np.zeros(len(dirnames), dtype=np.uint8).tolist() subdirpath = os.path.join(dirpath, subdirname) for filename in os.listdir(subdirpath): sys.stdout.write("\r\t\tscanning: {} {}".format(subdirname, filename)) sys.stdout.flush() img = self.load_image(os.path.join(subdirpath, filename)) _, descriptions, rects = self.image_descriptions(img, self.dlib_face) if len(descriptions) == 0: continue fid, idx, probs = self.classify_description(descriptions[0]) if fid is not None: prec_line[idx] += 1 if idx == dirnames.index(subdirname): num_pos += 1 else: num_neg += 1 total += 1 prec_line.append(subdirname) prec_line.append(len(os.listdir(subdirpath))) confuse_mat.append(prec_line) sys.stdout.write( "\ntotal: {}, positive: {}, negative: {}, precision:{}\n".format(total, num_pos, num_neg, float(num_pos) / float(total))) for line in confuse_mat: print(line) def classify_description(self, description): try: description = description.reshape(1, -1) # Get a prediction from the model including probability: probab = self.model.predict_proba(description) max_ind = np.argmax(probab) # Rearrange by size sort_probab = np.sort(probab, axis=None)[::-1] if sort_probab[0] / sort_probab[1] < 0.7: predlbl = "UnKnown" else: predlbl = self.model.classes_[max_ind] return predlbl, max_ind, probab except Exception as e: sys.stdout.write(str(e) + "\n") pass def test_image_file(self): root = tkinter.Tk() root.withdraw() select_file = (tkinter.filedialog.askopenfile(initialdir='.', title='Please select a image file')) image_path = select_file.name root.update() try: # Loop to recognize faces image = self.load_image(image_path) calib_image, descriptions, rects = self.image_descriptions(image, self.haar_face) if len(descriptions) == 0: sys.stdout.write("No face image\n") sys.exit(1) else: for i in range(len(rects)): description = descriptions[i] rect = rects[i] fid, idx, probs = self.classify_description(description) cv2.rectangle(calib_image, (rect.left(), rect.top()), (rect.right(), rect.bottom()), self.rect_color, 3) cv2.putText(calib_image, fid, (rect.left(), rect.top()), cv2.FONT_HERSHEY_SIMPLEX, 1, self.text_color, 3) show_image = cv2.resize(calib_image, (int(max(calib_image.shape[1] / 4, 130)), int(max(calib_image.shape[0] / 4, 150)))) cv2.imshow(image_path[-20:], show_image) sys.stdout.write("[{}] id: {}\n".format(fid, str(idx))) print(probs) cv2.waitKey(0) except Exception as e: sys.stdout.write(str(e) + "\n") def live_video(self, video_path): cap = cv2.VideoCapture(video_path) width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) ret, frame = cap.read() while ret: ret, frame = cap.read() frame = cv2.resize(frame, (int(width/2.5), int(height/2.5))) rects = self.dlib_face.detect_face(frame) for rect in rects: crop = frame[max(0, rect.top()): max(frame.shape[0], rect.bottom()), max(rect.left(), 0):min(rect.right(), frame.shape[1])] if self.stand_flag: stand_face = self.standardize_face(crop) else: stand_face = crop resize = cv2.resize(stand_face, (self.face_width, self.face_height)) description = self.dlib_face.recog_description(resize) fid, idx, probs = self.classify_description(description) frame = self.show_result(frame, rect, probs) cv2.imshow("frame", frame) cur_pos = cap.get(cv2.CAP_PROP_POS_FRAMES) cap.set(cv2.CAP_PROP_POS_FRAMES, cur_pos + 250) key = cv2.waitKey(5000) if key == ord('q'): break elif key == ord('n'): cur_pos = cap.get(cv2.CAP_PROP_POS_FRAMES) cap.set(cv2.CAP_PROP_POS_FRAMES, cur_pos + 500) cap.release() cv2.destroyAllWindows() def show_result(self, image, rect, probs): cv2.rectangle(image, (rect.left(), rect.top()), (rect.right(), rect.bottom()), self.rect_color, 1) cv2.circle(image, (rect.left(), rect.top()), 1, self.rect_color, -1) cv2.circle(image, (rect.left(), rect.bottom()), 1, self.rect_color, -1) cv2.circle(image, (rect.right(), rect.top()), 1, self.rect_color, -1) cv2.circle(image, (rect.right(), rect.bottom()), 1, self.rect_color, -1) sum = 0.0 for i in range(len(probs[0])): cv2.putText(image, "{:}:{:1.2f}".format(self.labels[i], probs[0][i]), (0, 10 + 20 * i), cv2.FONT_HERSHEY_SIMPLEX, 0.5, self.text_color, 2) cv2.line(image, (100, 10 + 20 * i), (int(100 + probs[0][i] * 200), 10 + 20 * i), self.text_color, 3) sum += probs[0][i] print sum return image if __name__ == '__main__': model = "../model/classifier/model.pkl" root_dataset = "../dataset" st = StandAlone(dataset=root_dataset, model_path=model) # raw_images_folder = "../dataset/raw_data" # st.train_data(raw_data=raw_images_folder) # st.ensemble_data() # st.train_model() # check_dataset = "../dataset/test"; # st.check_precision(check_dataset) # # st.test_image_file() st.live_video("../data/THE FINAL MANUP 20171080P.mp4")
[ "dreamyouth@engineer.com" ]
dreamyouth@engineer.com
2f2600b2bb687234a23788b3695b66ef8445a9fd
1ce2cd99bee3c5abf9c51138684efb73762174a5
/python/examples/example_grid_layout.py
6d726be732359f6a16e34851ad6aa3d1f545c6b2
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
BrainCOGS/neuroglancer
2c27d500c9cddec1472c7de760946067b791baa1
b0db084a167e60009ed8ae1ec787557a4b1ae626
refs/heads/master
2023-08-30T10:13:37.495165
2021-05-18T15:26:15
2021-05-18T15:26:15
290,582,565
2
1
Apache-2.0
2020-08-26T19:08:45
2020-08-26T19:08:44
null
UTF-8
Python
false
false
943
py
from __future__ import print_function import webbrowser import neuroglancer viewer = neuroglancer.Viewer() with viewer.txn() as s: s.layers['image'] = neuroglancer.ImageLayer( source='precomputed://gs://neuroglancer-public-data/flyem_fib-25/image', ) s.layers['ground_truth'] = neuroglancer.SegmentationLayer( source='precomputed://gs://neuroglancer-public-data/flyem_fib-25/ground_truth', ) s.layout = neuroglancer.row_layout([ neuroglancer.column_layout([ neuroglancer.LayerGroupViewer(layers=['image', 'ground_truth']), neuroglancer.LayerGroupViewer(layers=['image', 'ground_truth']), ]), neuroglancer.column_layout([ neuroglancer.LayerGroupViewer(layers=['ground_truth']), neuroglancer.LayerGroupViewer(layers=['ground_truth']), ]), ]) print(viewer.state) print(viewer) webbrowser.open_new(viewer.get_viewer_url())
[ "jbms@google.com" ]
jbms@google.com
ed50f20c4a664cdb4ac6f1c80a23dbc3833ed00e
15d015714f73ce97ba2ffe84924b94fcd3af7890
/Atividade-27.03.2020/mqtt2.py
c2665a7f1860a203d4d8cc193ab8b192087f1cb7
[]
no_license
MGStigger/PI_V
90ee2efc7b8476801bcb5c42849f1f5c4fc65840
fd96d62501dc6abb8bc68bd197ab47b29bb627d6
refs/heads/master
2021-05-21T22:57:27.103338
2020-07-08T06:10:55
2020-07-08T06:10:55
252,844,586
2
0
null
null
null
null
UTF-8
Python
false
false
199
py
# Ensures paho is in PYTHONPATH import context # Importa o publish do paho-mqtt import paho.mqtt.publish as publish # Publica publish.single("mgstigger", "Olá Mundo!", hostname="mqtt.eclipse.org")
[ "noreply@github.com" ]
MGStigger.noreply@github.com
56e7149515588bdc3a1f36861b7a5690a7c1b104
dd116fe1e94191749ab7a9b00be25bfd88641d82
/cairis/cairis/ExceptionListCtrl.py
70ab9eaa008416236f63a7f1c15b501471b4ec42
[ "Apache-2.0" ]
permissive
RobinQuetin/CAIRIS-web
fbad99327707ea3b995bdfb4841a83695989e011
4a6822db654fecb05a09689c8ba59a4b1255c0fc
HEAD
2018-12-28T10:53:00.595152
2015-06-20T16:53:39
2015-06-20T16:53:39
33,935,403
0
3
null
null
null
null
UTF-8
Python
false
false
4,415
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. #$URL$ $Id: ExceptionListCtrl.py 337 2010-11-07 23:58:53Z shaf $ import wx import armid import ARM from Borg import Borg from ExceptionDialog import ExceptionDialog import ObstacleFactory class ExceptionListCtrl(wx.ListCtrl): def __init__(self,parent,envName,stepGrid): wx.ListCtrl.__init__(self,parent,armid.USECASE_LISTEXCEPTIONS_ID,size=wx.DefaultSize,style=wx.LC_REPORT) self.stepGrid = stepGrid self.theEnvironmentName = envName self.theLastSelection = '' self.InsertColumn(0,'Exception') self.SetColumnWidth(0,250) self.theSelectedIdx = -1 self.theExcMenu = wx.Menu() self.theExcMenu.Append(armid.DIMLIST_MENUADD_ID,'Add') self.theExcMenu.Append(armid.DIMLIST_MENUDELETE_ID,'Delete') self.theExcMenu.Append(armid.DIMLIST_MENUGENERATE_ID,'Generate Obstacle') self.Bind(wx.EVT_RIGHT_DOWN,self.OnRightDown) wx.EVT_MENU(self.theExcMenu,armid.DIMLIST_MENUADD_ID,self.onAddException) wx.EVT_MENU(self.theExcMenu,armid.DIMLIST_MENUDELETE_ID,self.onDeleteException) wx.EVT_MENU(self.theExcMenu,armid.DIMLIST_MENUGENERATE_ID,self.onGenerateObstacle) self.Bind(wx.EVT_LIST_ITEM_SELECTED,self.OnItemSelected) self.Bind(wx.EVT_LIST_ITEM_DESELECTED,self.OnItemDeselected) self.Bind(wx.EVT_LIST_ITEM_ACTIVATED,self.onExceptionActivated) def setEnvironment(self,envName): self.theEnvironmentName = envName def OnItemSelected(self,evt): self.theSelectedIdx = evt.GetIndex() self.theLastSelection = self.GetItemText(self.theSelectedIdx) def OnItemDeselected(self,evt): self.theSelectedIdx = -1 def OnRightDown(self,evt): self.PopupMenu(self.theExcMenu) def onAddException(self,evt): dlg = ExceptionDialog(self,self.theEnvironmentName) if (dlg.ShowModal() == armid.EXCEPTION_BUTTONCOMMIT_ID): exc = dlg.parameters() pos = self.stepGrid.GetGridCursorRow() table = self.stepGrid.GetTable() currentStep = table.steps[pos] currentStep.addException(exc) table.steps[pos] = currentStep self.InsertStringItem(0,exc[0]) def onDeleteException(self,evt): if (self.theSelectedIdx == -1): dlg = wx.MessageDialog(self,'No exception selected','Delete exception',wx.OK) dlg.ShowModal() dlg.Destroy() else: excName = self.GetItemText(self.theSelectedIdx) self.DeleteItem(self.theSelectedIdx) pos = self.stepGrid.GetGridCursorRow() table = self.stepGrid.GetTable() currentStep = table.steps[pos] currentStep.deleteException(excName) table.steps[pos] = currentStep def onExceptionActivated(self,evt): self.theSelectedIdx = evt.GetIndex() excName = self.GetItemText(self.theSelectedIdx) exc = self.stepGrid.stepException(excName) dlg = ExceptionDialog(self,self.theEnvironmentName,exc[0],exc[1],exc[2],exc[3],exc[4]) if (dlg.ShowModal() == armid.EXCEPTION_BUTTONCOMMIT_ID): updExc = dlg.parameters() self.stepGrid.setStepException(self.theSelectedIdx,excName,updExc) self.SetStringItem(self.theSelectedIdx,0,updExc[0]) def onGenerateObstacle(self,evt): obsParameters = ObstacleFactory.build(self.theEnvironmentName,self.stepGrid.stepException(self.theLastSelection)) b = Borg() obsId = b.dbProxy.addObstacle(obsParameters) obsDict = b.dbProxy.getObstacles(obsId) obsName = (obsDict.keys())[0] dlg = wx.MessageDialog(self,'Generated obstacle: ' + obsName,'Generate obstacle',wx.OK) dlg.ShowModal() def load(self,excs): self.DeleteAllItems() for ex in excs: idx = self.GetItemCount() self.InsertStringItem(idx,ex)
[ "shamal.faily@googlemail.com" ]
shamal.faily@googlemail.com
b9fcca818f418d7a6017eb3122da668dc4416005
f85f09e2b1971d60a9d5ca4063fc99a41702d5b9
/summarypython/summarypython/urls.py
cc646bf193dd5e2c9dc1ac69435e35de7ea76c0e
[]
no_license
architsehgal019/Multimode-Summarized-Text-to-Speech-Conversion
9f47dbea1caa8137c45afafaba3bc9fc5361e9e8
858b589cefe33db6daf677f8e259288e090aa56e
refs/heads/master
2020-12-19T06:10:22.246185
2020-01-22T19:17:38
2020-01-22T19:17:38
235,640,744
0
0
null
null
null
null
UTF-8
Python
false
false
755
py
"""summarypython URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path urlpatterns = [ path('admin/', admin.site.urls), ]
[ "archit_150@yahoo.co.in" ]
archit_150@yahoo.co.in