hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
a2f62dfb448387dd95e74c860291fd442ab3a194
43
py
Python
iterasi/for.py
CodeinnAja/Learn-Python-Fundamental
12847cf998d69f2a02efe2e238b9e4693af86d37
[ "MIT" ]
2
2022-03-07T14:49:10.000Z
2022-03-07T14:52:28.000Z
iterasi/for.py
CodeinnAja/Learn-Python-Fundamental
12847cf998d69f2a02efe2e238b9e4693af86d37
[ "MIT" ]
null
null
null
iterasi/for.py
CodeinnAja/Learn-Python-Fundamental
12847cf998d69f2a02efe2e238b9e4693af86d37
[ "MIT" ]
null
null
null
#part 1 for isi in range(5): print(isi)
14.333333
20
0.627907
5f1df573429c34010d5ff1a9dd9063aba255450e
399
py
Python
exercices/questao16.py
LBarros77/Python
283b383d9d14c8d7b907b80f03f7cdc5dbd1e8af
[ "MIT" ]
null
null
null
exercices/questao16.py
LBarros77/Python
283b383d9d14c8d7b907b80f03f7cdc5dbd1e8af
[ "MIT" ]
null
null
null
exercices/questao16.py
LBarros77/Python
283b383d9d14c8d7b907b80f03f7cdc5dbd1e8af
[ "MIT" ]
null
null
null
def inverterOrdem(phrasex): word_lst = [] string = "" phrasex += " " for letter in phrasex: if letter == " ": word_lst.insert(0, string) string = "" else: string += letter new_phrase = "" for word in word_lst: new_phrase += word + " " return new_phrase[:-1] print(inverterOrdem("Romeu e Julieta"))
19.95
39
0.506266
02a8288d311501c3c9f56ef702c1d187cc82cca9
4,100
py
Python
tests/extension/fsm_/as_module_delayed/test_fsm_as_module_delayed.py
jesseclin/veriloggen
a645f2c53f04e5b88213eef17779d212192ea2b5
[ "Apache-2.0" ]
232
2015-09-01T16:07:48.000Z
2022-03-28T14:53:28.000Z
tests/extension/fsm_/as_module_delayed/test_fsm_as_module_delayed.py
jesseclin/veriloggen
a645f2c53f04e5b88213eef17779d212192ea2b5
[ "Apache-2.0" ]
34
2015-08-21T09:13:03.000Z
2022-03-21T23:52:44.000Z
tests/extension/fsm_/as_module_delayed/test_fsm_as_module_delayed.py
jesseclin/veriloggen
a645f2c53f04e5b88213eef17779d212192ea2b5
[ "Apache-2.0" ]
46
2015-09-24T14:39:57.000Z
2022-02-23T21:59:56.000Z
from __future__ import absolute_import from __future__ import print_function import veriloggen import fsm_as_module_delayed expected_verilog = """ module test; reg CLK; reg RST; wire valid; blinkled uut ( .CLK(CLK), .RST(RST), .valid(valid) ); initial begin CLK = 0; forever begin #5 CLK = !CLK; end end initial begin RST = 0; #100; RST = 1; #100; RST = 0; #1000; $finish; end endmodule module blinkled ( input CLK, input RST, output reg valid ); reg [32-1:0] fsm; localparam fsm_init = 0; reg [32-1:0] _d1_fsm; reg _fsm_cond_2_0_1; reg _fsm_cond_6_1_1; reg _fsm_cond_7_2_1; reg _fsm_cond_8_3_1; reg _fsm_cond_9_4_1; localparam fsm_1 = 1; localparam fsm_2 = 2; localparam fsm_3 = 3; localparam fsm_4 = 4; localparam fsm_5 = 5; localparam fsm_6 = 6; localparam fsm_7 = 7; localparam fsm_8 = 8; localparam fsm_9 = 9; localparam fsm_10 = 10; wire [32-1:0] _fsm_out_0; always @(*) begin fsm = _fsm_out_0; end wire [32-1:0] __d1_fsm_out_1; always @(*) begin _d1_fsm = __d1_fsm_out_1; end wire _fsm_valid_2; always @(*) begin valid = _fsm_valid_2; end sub_fsm inst_sub_fsm ( .CLK(CLK), .RST(RST), .fsm(_fsm_out_0), ._d1_fsm(__d1_fsm_out_1), .valid(_fsm_valid_2) ); endmodule module sub_fsm ( input CLK, input RST, output reg [32-1:0] fsm, output reg [32-1:0] _d1_fsm, output reg valid ); localparam fsm_init = 0; localparam fsm_2 = 2; localparam fsm_6 = 6; localparam fsm_7 = 7; localparam fsm_8 = 8; localparam fsm_9 = 9; localparam fsm_1 = 1; localparam fsm_3 = 3; localparam fsm_4 = 4; localparam fsm_5 = 5; localparam fsm_10 = 10; reg _fsm_cond_2_0_1; reg _fsm_cond_6_1_1; reg _fsm_cond_7_2_1; reg _fsm_cond_8_3_1; reg _fsm_cond_9_4_1; always @(posedge CLK) begin if(RST) begin fsm <= fsm_init; _d1_fsm <= fsm_init; valid <= 0; _fsm_cond_2_0_1 <= 0; _fsm_cond_6_1_1 <= 0; _fsm_cond_7_2_1 <= 0; _fsm_cond_8_3_1 <= 0; _fsm_cond_9_4_1 <= 0; end else begin _d1_fsm <= fsm; case(_d1_fsm) fsm_2: begin if(_fsm_cond_2_0_1) begin valid <= 0; end end fsm_6: begin if(_fsm_cond_6_1_1) begin valid <= 0; end end fsm_7: begin if(_fsm_cond_7_2_1) begin valid <= 0; end end fsm_8: begin if(_fsm_cond_8_3_1) begin valid <= 0; end end fsm_9: begin if(_fsm_cond_9_4_1) begin valid <= 0; end end endcase case(fsm) fsm_init: begin fsm <= fsm_1; end fsm_1: begin fsm <= fsm_2; end fsm_2: begin valid <= 1; _fsm_cond_2_0_1 <= 1; fsm <= fsm_3; end fsm_3: begin fsm <= fsm_4; end fsm_4: begin fsm <= fsm_5; end fsm_5: begin fsm <= fsm_6; end fsm_6: begin valid <= 1; _fsm_cond_6_1_1 <= 1; fsm <= fsm_7; end fsm_7: begin valid <= 1; _fsm_cond_7_2_1 <= 1; fsm <= fsm_8; end fsm_8: begin valid <= 1; _fsm_cond_8_3_1 <= 1; fsm <= fsm_9; end fsm_9: begin valid <= 1; _fsm_cond_9_4_1 <= 1; fsm <= fsm_10; end endcase end end endmodule """ def test(): veriloggen.reset() test_module = fsm_as_module_delayed.mkTest() code = test_module.to_verilog() from pyverilog.vparser.parser import VerilogParser from pyverilog.ast_code_generator.codegen import ASTCodeGenerator parser = VerilogParser() expected_ast = parser.parse(expected_verilog) codegen = ASTCodeGenerator() expected_code = codegen.visit(expected_ast) assert(expected_code == code)
17.748918
69
0.56122
b2097b16770dff69757b0bd6d3b8e0aec04daa70
10,461
py
Python
bank2ynab/b2y_utilities.py
mkjeldsen/bank2ynab
449b664ee51597a5c57c4e5427144dab1d295761
[ "MIT" ]
1
2021-04-14T13:20:57.000Z
2021-04-14T13:20:57.000Z
bank2ynab/b2y_utilities.py
jtpedersen/bank2ynab
407b10acab6bf181d0da245aa179e2d2a812e67d
[ "MIT" ]
null
null
null
bank2ynab/b2y_utilities.py
jtpedersen/bank2ynab
407b10acab6bf181d0da245aa179e2d2a812e67d
[ "MIT" ]
null
null
null
import os import configparser import chardet import logging import codecs import csv # Generic utilities def get_configs(): """ Retrieve all configuration parameters.""" # TODO - fix path for these path = os.path.realpath(__file__) parent_dir = os.path.dirname(path) project_dir = os.path.dirname(parent_dir) conf_files = [ os.path.join(project_dir, "bank2ynab.conf"), os.path.join(project_dir, "user_configuration.conf"), ] try: if not os.path.exists(conf_files[0]): raise FileNotFoundError except FileNotFoundError: s = "Configuration file not found: {}".format(conf_files[0]) logging.error(s) raise FileNotFoundError(s) else: config = configparser.RawConfigParser() config.read(conf_files, encoding="utf-8") return config def fix_conf_params(conf_obj, section_name): """from a ConfigParser object, return a dictionary of all parameters for a given section in the expected format. Because ConfigParser defaults to values under [DEFAULT] if present, these values should always appear unless the file is really bad. :param configparser_object: ConfigParser instance :param section_name: string of section name in config file (e.g. "MyBank" matches "[MyBank]" in file) :return: dict with all parameters """ config = { "input_columns": ["Input Columns", False, ","], "output_columns": ["Output Columns", False, ","], "input_filename": ["Source Filename Pattern", False, ""], "path": ["Source Path", False, ""], "ext": ["Source Filename Extension", False, ""], "regex": ["Use Regex For Filename", True, ""], "fixed_prefix": ["Output Filename Prefix", False, ""], "input_delimiter": ["Source CSV Delimiter", False, ""], "header_rows": ["Header Rows", False, ""], "footer_rows": ["Footer Rows", False, ""], "date_format": ["Date Format", False, ""], "delete_original": ["Delete Source File", True, ""], "cd_flags": ["Inflow or Outflow Indicator", False, ","], "payee_to_memo": ["Use Payee for Memo", True, ""], "plugin": ["Plugin", False, ""], "api_token": ["YNAB API Access Token", False, ""], "api_account": ["YNAB Account ID", False, "|"], } for key in config: config[key] = get_config_line(conf_obj, section_name, config[key]) config["bank_name"] = section_name # quick n' dirty fix for tabs as delimiters if config["input_delimiter"] == "\\t": config["input_delimiter"] = "\t" return config def get_config_line(conf_obj, section_name, args): """Get parameter for a given section in the expected format.""" param = args[0] boolean = args[1] splitter = args[2] if boolean is True: line = conf_obj.getboolean(section_name, param) else: line = conf_obj.get(section_name, param) if splitter != "": line = line.split(splitter) return line def find_directory(filepath): """finds the downloads folder for the active user if filepath is not set""" if filepath == "": if os.name == "nt": # Windows try: import winreg except ImportError: import _winreg as winreg shell_path = ( "SOFTWARE\\Microsoft\\Windows\\CurrentVersion" "\\Explorer\\Shell Folders" ) dl_key = "{374DE290-123F-4565-9164-39C4925E467B}" with winreg.OpenKey(winreg.HKEY_CURRENT_USER, shell_path) as key: input_dir = winreg.QueryValueEx(key, dl_key)[0] else: # Linux, OSX userhome = os.path.expanduser("~") input_dir = os.path.join(userhome, "Downloads") else: if not os.path.exists(filepath): s = "Error: Input directory not found: {}" raise FileNotFoundError(s.format(filepath)) input_dir = filepath return input_dir def option_selection(options, msg): """ Used to select from a list of options If only one item in list, selects that by default Otherwise displays "msg" asking for input selection (integer only) :param options: list of [name, option] pairs to select from :param msg: the message to display on the input line :return option_selected: the selected item from the list """ selection = 1 count = len(options) if count > 1: index = 0 for option in options: index += 1 print("| {} | {}".format(index, option[0])) selection = int_input(1, count, msg) option_selected = options[selection - 1][1] return option_selected def int_input(min, max, msg): """ Makes a user select an integer between min & max stated values :param min: the minimum acceptable integer value :param max: the maximum acceptable integer value :param msg: the message to display on the input line :return user_input: sanitised integer input in acceptable range """ while True: try: user_input = int( input("{} (range {} - {}): ".format(msg, min, max)) ) if user_input not in range(min, max + 1): raise ValueError break except ValueError: logging.info( "This integer is not in the acceptable range, try again!" ) return user_input def string_num_diff(str1, str2): """ converts strings to floats and subtracts 1 from 2 also convert output to "milliunits" """ try: num1 = float(str1) except ValueError: num1 = 0.0 try: num2 = float(str2) except ValueError: num2 = 0.0 difference = int(1000 * (num2 - num1)) return difference def detect_encoding(filepath): """ Utility to detect file encoding. This is imperfect, but should work for the most common cases. :param filepath: string path to a given file :return: encoding alias that can be used with open() """ # First try to guess the encoding with chardet. Take it if the # confidence is >50% (randomly chosen) with open(filepath, "rb") as f: file_content = f.read() rslt = chardet.detect(file_content) confidence, encoding = rslt["confidence"], rslt["encoding"] if confidence > 0.5: logging.info( "Using encoding {} with confidence {}".format( encoding, confidence ) ) return encoding # because some encodings will happily encode anything even if wrong, # keeping the most common near the top should make it more likely that # we're doing the right thing. encodings = [ "ascii", "utf-8", "utf-16", "cp1251", "utf_32", "utf_32_be", "utf_32_le", "utf_16", "utf_16_be", "utf_16_le", "utf_7", "utf_8_sig", "cp850", "cp852", "latin_1", "big5", "big5hkscs", "cp037", "cp424", "cp437", "cp500", "cp720", "cp737", "cp775", "cp855", "cp856", "cp857", "cp858", "cp860", "cp861", "cp862", "cp863", "cp864", "cp865", "cp866", "cp869", "cp874", "cp875", "cp932", "cp949", "cp950", "cp1006", "cp1026", "cp1140", "cp1250", "cp1252", "cp1253", "cp1254", "cp1255", "cp1256", "cp1257", "cp1258", "euc_jp", "euc_jis_2004", "euc_jisx0213", "euc_kr", "gb2312", "gbk", "gb18030", "hz", "iso2022_jp", "iso2022_jp_1", "iso2022_jp_2", "iso2022_jp_2004", "iso2022_jp_3", "iso2022_jp_ext", "iso2022_kr", "latin_1", "iso8859_2", "iso8859_3", "iso8859_4", "iso8859_5", "iso8859_6", "iso8859_7", "iso8859_8", "iso8859_9", "iso8859_10", "iso8859_11", "iso8859_13", "iso8859_14", "iso8859_15", "iso8859_16", "johab", "koi8_r", "koi8_u", "mac_cyrillic", "mac_greek", "mac_iceland", "mac_latin2", "mac_roman", "mac_turkish", "ptcp154", "shift_jis", "shift_jis_2004", "shift_jisx0213", ] result = None error = (ValueError, UnicodeError, UnicodeDecodeError, UnicodeEncodeError) for enc in encodings: try: with codecs.open(filepath, "r", encoding=enc) as f: for line in f: line.encode("utf-8") return enc except error: continue return result # classes dealing with input and output charsets class EncodingFileContext(object): """ ContextManager class for common operations on files""" def __init__(self, file_path, **kwds): self.file_path = os.path.abspath(file_path) self.stream = None self.csv_object = None self.params = kwds def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): # cleanup del self.csv_object if self.stream is not None: self.stream.close() if exc_type is not None: # this signals not to suppress any exception return False class EncodingCsvReader(EncodingFileContext): """ context manager returning a csv.Reader-compatible object""" def __enter__(self): encoding = detect_encoding(self.file_path) self.stream = open(self.file_path, encoding=encoding) self.csv_object = csv.reader(self.stream, **self.params) return self.csv_object class EncodingCsvWriter(EncodingFileContext): """context manager returning a csv.Writer-compatible object regardless of Python version""" def __enter__(self): self.stream = open(self.file_path, "w", encoding="utf-8", newline="") self.csv_object = csv.writer(self.stream, **self.params) return self.csv_object # -- end of utilities
29.22067
79
0.570118
f0c26255459d57e348a3a962afcfa98534f42cdc
5,719
py
Python
wgdi/dotplot.py
xuzhougeng/wgdi
c1dcea0ed48860b4011dea274908a48277a26318
[ "BSD-2-Clause" ]
null
null
null
wgdi/dotplot.py
xuzhougeng/wgdi
c1dcea0ed48860b4011dea274908a48277a26318
[ "BSD-2-Clause" ]
null
null
null
wgdi/dotplot.py
xuzhougeng/wgdi
c1dcea0ed48860b4011dea274908a48277a26318
[ "BSD-2-Clause" ]
null
null
null
import re import sys import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np import pandas as pd import wgdi.base as base class dotplot(): def __init__(self, options): self.multiple = 1 self.score = 100 self.evalue = 1e-5 self.repeat_number = 20 self.markersize = 0.5 self.figsize = 'default' self.position = 'order' self.ancestor_top = None self.ancestor_left = None self.blast_reverse = 'False' for k, v in options: setattr(self, str(k), v) print(k, ' = ', v) if self.ancestor_top == 'none' or self.ancestor_top == '': self.ancestor_top = None if self.ancestor_left == 'none' or self.ancestor_left == '': self.ancestor_left = None def pair_positon(self, blast, gff1, gff2, rednum, repeat_number): blast['color'] = '' blast['loc1'] = blast[0].map(gff1['loc']) blast['loc2'] = blast[1].map(gff2['loc']) bluenum = 5+rednum index = [group.sort_values(by=[11], ascending=[False])[:repeat_number].index.tolist() for name, group in blast.groupby([0])] reddata = np.array([k[:rednum] for k in index], dtype=object) bluedata = np.array([k[rednum:bluenum] for k in index], dtype=object) graydata = np.array([k[bluenum:repeat_number] for k in index], dtype=object) if len(reddata): redindex = np.concatenate(reddata) else: redindex = [] if len(bluedata): blueindex = np.concatenate(bluedata) else: blueindex = [] if len(graydata): grayindex = np.concatenate(graydata) else: grayindex = [] blast.loc[redindex, 'color'] = 'red' blast.loc[blueindex, 'color'] = 'blue' blast.loc[grayindex, 'color'] = 'gray' return blast[blast['color'].str.contains('\w')] def run(self): length = 1 axis = [0, 1, 1, 0] left, right, top, bottom = 0.07, 0.97, 0.93, 0.03 lens1 = base.newlens(self.lens1, self.position) lens2 = base.newlens(self.lens2, self.position) step1 = 1 / float(lens1.sum()) step2 = 1 / float(lens2.sum()) if self.ancestor_left != None: axis[0] = -0.02 lens_ancestor_left = pd.read_csv( self.ancestor_left, sep="\t", header=None) lens_ancestor_left[0] = lens_ancestor_left[0].astype(str) lens_ancestor_left[3] = lens_ancestor_left[3].astype(str) lens_ancestor_left = lens_ancestor_left[lens_ancestor_left[0].isin( lens1.index)] if self.ancestor_top != None: axis[3] = -0.02 lens_ancestor_top = pd.read_csv( self.ancestor_top, sep="\t", header=None) lens_ancestor_top[0] = lens_ancestor_top[0].astype(str) lens_ancestor_top[3] = lens_ancestor_top[3].astype(str) lens_ancestor_top = lens_ancestor_top[lens_ancestor_top[0].isin( lens2.index)] if re.search('\d', self.figsize): self.figsize = [float(k) for k in self.figsize.split(',')] else: self.figsize = np.array( [1, float(lens1.sum())/float(lens2.sum())])*10 plt.rcParams['ytick.major.pad'] = 0 fig, ax = plt.subplots(figsize=self.figsize) ax.xaxis.set_ticks_position('top') base.dotplot_frame(fig, ax, lens1, lens2, step1, step2, self.genome1_name, self.genome2_name, [axis[0], axis[3]]) gff1 = base.newgff(self.gff1) gff2 = base.newgff(self.gff2) gff1 = base.gene_location(gff1, lens1, step1, self.position) gff2 = base.gene_location(gff2, lens2, step2, self.position) if self.ancestor_top != None: top = top self.ancestor_posion(ax, gff2, lens_ancestor_top, 'top') if self.ancestor_left != None: left = left self.ancestor_posion(ax, gff1, lens_ancestor_left, 'left') blast = base.newblast(self.blast, int(self.score), float(self.evalue), gff1, gff2, self.blast_reverse) df = self.pair_positon(blast, gff1, gff2, int(self.multiple), int(self.repeat_number)) ax.scatter(df['loc2'], df['loc1'], s=float(self.markersize), c=df['color'], alpha=0.5, edgecolors=None, linewidths=0, marker='o') ax.axis(axis) plt.subplots_adjust(left=left, right=right, top=top, bottom=bottom) plt.savefig(self.savefig, dpi=500) plt.show() sys.exit(0) def Rectangle(self, ax, loc, heigt, width, color, alpha): p = mpatches.Rectangle( loc, width, heigt, edgecolor=None, facecolor=color, alpha=alpha) ax.add_patch(p) def ancestor_posion(self, ax, gff, lens, mark): for index, row in lens.iterrows(): loc1 = gff[(gff['chr'] == row[0]) & ( gff['order'] == int(row[1]))].index loc2 = gff[(gff['chr'] == row[0]) & ( gff['order'] == int(row[2]))].index loc1, loc2 = gff.loc[[loc1[0], loc2[0]], 'loc'] if mark == 'top': width = abs(loc1-loc2) loc = [min(loc1, loc2), 0] height = -0.02 self.Rectangle(ax, loc, height, width, row[3], 1) if mark == 'left': height = abs(loc1-loc2) loc = [-0.02, min(loc1, loc2), ] width = 0.02 self.Rectangle(ax, loc, height, width, row[3], 1) return None
41.744526
93
0.553768
9cb965ed410135a4a71957c22b53158b5d29d1dd
1,217
py
Python
PolicyGradient/DDPG/pendulum/tensorflow/main_tf.py
SuperSaiyan-God/Reinforcement-Learning
b43a2997e28ec3bf437c37d060637f6deecf89c6
[ "MIT" ]
null
null
null
PolicyGradient/DDPG/pendulum/tensorflow/main_tf.py
SuperSaiyan-God/Reinforcement-Learning
b43a2997e28ec3bf437c37d060637f6deecf89c6
[ "MIT" ]
null
null
null
PolicyGradient/DDPG/pendulum/tensorflow/main_tf.py
SuperSaiyan-God/Reinforcement-Learning
b43a2997e28ec3bf437c37d060637f6deecf89c6
[ "MIT" ]
null
null
null
import os import gym import numpy as np from ddpg_orig_tf import Agent from utils import plotLearning # Uncomment the lines below to specify which gpu to run on #os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" #os.environ["CUDA_VISIBLE_DEVICES"] = "0" if __name__ == '__main__': env = gym.make('Pendulum-v0') agent = Agent(alpha=0.00005, beta=0.0005, input_dims=[3], tau=0.001, env=env, batch_size=64, layer1_size=800, layer2_size=600, n_actions=1) np.random.seed(0) score_history = [] for i in range(1000): obs = env.reset() done = False score = 0 while not done: act = agent.choose_action(obs) new_state, reward, done, info = env.step(act) agent.remember(obs, act, reward, new_state, int(done)) agent.learn() score += reward obs = new_state #env.render() score_history.append(score) print('episode ', i, 'score %.2f' % score, 'trailing 100 games avg %.3f' % np.mean(score_history[-100:])) filename = 'Pendulum-alpha00005-beta0005-800-600-optimized.png' plotLearning(score_history, filename, window=100)
33.805556
76
0.612161
8b52c06f50ce0d4dd7979c26ea50fe435a9b1e43
2,448
py
Python
benchmarks/benchmarks/go_benchmark_functions/go_funcs_Y.py
pkienzle/scipy
424bfb976ada4164a007a0b62bc62ae67629c606
[ "BSD-3-Clause" ]
1
2022-03-16T21:20:15.000Z
2022-03-16T21:20:15.000Z
benchmarks/benchmarks/go_benchmark_functions/go_funcs_Y.py
pkienzle/scipy
424bfb976ada4164a007a0b62bc62ae67629c606
[ "BSD-3-Clause" ]
null
null
null
benchmarks/benchmarks/go_benchmark_functions/go_funcs_Y.py
pkienzle/scipy
424bfb976ada4164a007a0b62bc62ae67629c606
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from numpy import abs, sum, cos, pi from .go_benchmark import Benchmark class YaoLiu04(Benchmark): r""" Yao-Liu 4 objective function. This class defines the Yao-Liu function 4 [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{YaoLiu04}}(x) = {max}_i \left\{ \left | x_i \right | , 1 \leq i \leq n \right\} Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-10, 10]` for :math:`i = 1, ..., n`. *Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1, ..., n` .. [1] Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005 TODO line 1201. Gavana code and documentation differ. max(abs(x)) != abs(max(x)) """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N)) self.global_optimum = [[0 for _ in range(self.N)]] self.fglob = 0.0 self.change_dimensionality = True def fun(self, x, *args): self.nfev += 1 return abs(x).max() class YaoLiu09(Benchmark): r""" Yao-Liu 9 objective function. This class defines the Yao-Liu [1]_ function 9 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{YaoLiu09}}(x) = \sum_{i=1}^n \left [ x_i^2 - 10 \cos(2 \pi x_i ) + 10 \right ] Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-5.12, 5.12]` for :math:`i = 1, ..., n`. *Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1, ..., n` .. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015 TODO Yao-Liu Fast Evolutionary programming is the the original ref. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-5.12] * self.N, [5.12] * self.N)) self.global_optimum = [[0 for _ in range(self.N)]] self.fglob = 0.0 self.change_dimensionality = True def fun(self, x, *args): self.nfev += 1 return sum(x ** 2.0 - 10.0 * cos(2 * pi * x) + 10)
28.8
84
0.58701
cd70cd58cc872c05aefc953a26bd48588a4f5871
178,050
py
Python
src/transformers/__init__.py
manuelciosici/transformers
c33f6046c3dab8f41bedf893404e6469dea3bce8
[ "Apache-2.0" ]
null
null
null
src/transformers/__init__.py
manuelciosici/transformers
c33f6046c3dab8f41bedf893404e6469dea3bce8
[ "Apache-2.0" ]
null
null
null
src/transformers/__init__.py
manuelciosici/transformers
c33f6046c3dab8f41bedf893404e6469dea3bce8
[ "Apache-2.0" ]
null
null
null
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # When adding a new object to this init, remember to add it twice: once inside the `_import_structure` dictionary and # once inside the `if TYPE_CHECKING` branch. The `TYPE_CHECKING` should have import statements as usual, but they are # only there for type checking. The `_import_structure` is a dictionary submodule to list of object names, and is used # to defer the actual importing for when the objects are requested. This way `import transformers` provides the names # in the namespace without actually importing anything (and especially none of the backends). __version__ = "4.19.0.dev0" from typing import TYPE_CHECKING # Check the dependencies satisfy the minimal versions required. from . import dependency_versions_check from .utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_scatter_available, is_sentencepiece_available, is_speech_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_vision_available, logging, ) logger = logging.get_logger(__name__) # pylint: disable=invalid-name # Base objects, independent of any specific backend _import_structure = { "benchmark": [], "commands": [], "configuration_utils": ["PretrainedConfig"], "convert_graph_to_onnx": [], "convert_slow_tokenizers_checkpoints_to_fast": [], "convert_tf_hub_seq_to_seq_bert_to_pytorch": [], "data": [ "DataProcessor", "InputExample", "InputFeatures", "SingleSentenceClassificationProcessor", "SquadExample", "SquadFeatures", "SquadV1Processor", "SquadV2Processor", "glue_compute_metrics", "glue_convert_examples_to_features", "glue_output_modes", "glue_processors", "glue_tasks_num_labels", "squad_convert_examples_to_features", "xnli_compute_metrics", "xnli_output_modes", "xnli_processors", "xnli_tasks_num_labels", ], "data.data_collator": [ "DataCollator", "DataCollatorForLanguageModeling", "DataCollatorForPermutationLanguageModeling", "DataCollatorForSeq2Seq", "DataCollatorForSOP", "DataCollatorForTokenClassification", "DataCollatorForWholeWordMask", "DataCollatorWithPadding", "DefaultDataCollator", "default_data_collator", ], "data.metrics": [], "data.processors": [], "debug_utils": [], "dependency_versions_check": [], "dependency_versions_table": [], "dynamic_module_utils": [], "feature_extraction_sequence_utils": ["SequenceFeatureExtractor"], "feature_extraction_utils": ["BatchFeature", "FeatureExtractionMixin"], "file_utils": [], "hf_argparser": ["HfArgumentParser"], "integrations": [ "is_comet_available", "is_optuna_available", "is_ray_available", "is_ray_tune_available", "is_sigopt_available", "is_tensorboard_available", "is_wandb_available", ], "modelcard": ["ModelCard"], "modeling_tf_pytorch_utils": [ "convert_tf_weight_name_to_pt_weight_name", "load_pytorch_checkpoint_in_tf2_model", "load_pytorch_model_in_tf2_model", "load_pytorch_weights_in_tf2_model", "load_tf2_checkpoint_in_pytorch_model", "load_tf2_model_in_pytorch_model", "load_tf2_weights_in_pytorch_model", ], "models": [], # Models "models.albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig"], "models.auto": [ "ALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CONFIG_MAPPING", "FEATURE_EXTRACTOR_MAPPING", "MODEL_NAMES_MAPPING", "PROCESSOR_MAPPING", "TOKENIZER_MAPPING", "AutoConfig", "AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer", ], "models.bart": ["BartConfig", "BartTokenizer"], "models.barthez": [], "models.bartpho": [], "models.beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig"], "models.bert": [ "BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BasicTokenizer", "BertConfig", "BertTokenizer", "WordpieceTokenizer", ], "models.bert_generation": ["BertGenerationConfig"], "models.bert_japanese": ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"], "models.bertweet": ["BertweetTokenizer"], "models.big_bird": ["BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdConfig"], "models.bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", ], "models.blenderbot": ["BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotTokenizer"], "models.blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallTokenizer", ], "models.bort": [], "models.byt5": ["ByT5Tokenizer"], "models.camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig"], "models.canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig", "CanineTokenizer"], "models.clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPTextConfig", "CLIPTokenizer", "CLIPVisionConfig", ], "models.convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertTokenizer"], "models.convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig"], "models.cpm": [], "models.ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig", "CTRLTokenizer"], "models.data2vec": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig", "Data2VecTextConfig", "Data2VecVisionConfig", ], "models.deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaTokenizer"], "models.deberta_v2": ["DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaV2Config"], "models.decision_transformer": ["DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "DecisionTransformerConfig"], "models.deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig"], "models.detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig"], "models.dialogpt": [], "models.distilbert": ["DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertTokenizer"], "models.dit": [], "models.dpr": [ "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPRConfig", "DPRContextEncoderTokenizer", "DPRQuestionEncoderTokenizer", "DPRReaderOutput", "DPRReaderTokenizer", ], "models.dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"], "models.electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraTokenizer"], "models.encoder_decoder": ["EncoderDecoderConfig"], "models.flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertTokenizer"], "models.fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"], "models.fsmt": ["FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FSMTConfig", "FSMTTokenizer"], "models.funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig", "FunnelTokenizer"], "models.glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"], "models.gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2Tokenizer"], "models.gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig"], "models.gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig"], "models.herbert": ["HerbertTokenizer"], "models.hubert": ["HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "HubertConfig"], "models.ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig"], "models.imagegpt": ["IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ImageGPTConfig"], "models.layoutlm": ["LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMConfig", "LayoutLMTokenizer"], "models.layoutlmv2": [ "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config", "LayoutLMv2FeatureExtractor", "LayoutLMv2Processor", "LayoutLMv2Tokenizer", ], "models.layoutxlm": ["LayoutXLMProcessor"], "models.led": ["LED_PRETRAINED_CONFIG_ARCHIVE_MAP", "LEDConfig", "LEDTokenizer"], "models.longformer": ["LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerTokenizer"], "models.luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig", "LukeTokenizer"], "models.lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig", "LxmertTokenizer"], "models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"], "models.marian": ["MarianConfig"], "models.maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "models.mbart": ["MBartConfig"], "models.mbart50": [], "models.megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], "models.megatron_gpt2": [], "models.mluke": [], "models.mmbt": ["MMBTConfig"], "models.mobilebert": ["MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertTokenizer"], "models.mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig", "MPNetTokenizer"], "models.mt5": ["MT5Config"], "models.nystromformer": [ "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "NystromformerConfig", ], "models.openai": ["OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenAIGPTConfig", "OpenAIGPTTokenizer"], "models.pegasus": ["PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusConfig", "PegasusTokenizer"], "models.perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverTokenizer"], "models.phobert": ["PhobertTokenizer"], "models.plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"], "models.poolformer": ["POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig"], "models.prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig", "ProphetNetTokenizer"], "models.qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"], "models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"], "models.realm": ["REALM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RealmConfig", "RealmTokenizer"], "models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"], "models.regnet": ["REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "RegNetConfig"], "models.rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig"], "models.resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig"], "models.retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig", "RetriBertTokenizer"], "models.roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaTokenizer"], "models.roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerTokenizer"], "models.segformer": ["SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SegformerConfig"], "models.sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"], "models.sew_d": ["SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWDConfig"], "models.speech_encoder_decoder": ["SpeechEncoderDecoderConfig"], "models.speech_to_text": [ "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig", ], "models.speech_to_text_2": [ "SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2Text2Config", "Speech2Text2Processor", "Speech2Text2Tokenizer", ], "models.splinter": ["SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SplinterConfig", "SplinterTokenizer"], "models.squeezebert": ["SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertTokenizer"], "models.swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig"], "models.t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config"], "models.tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig", "TapasTokenizer"], "models.tapex": ["TapexTokenizer"], "models.transfo_xl": [ "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig", "TransfoXLCorpus", "TransfoXLTokenizer", ], "models.trocr": [ "TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig", "TrOCRProcessor", ], "models.unispeech": [ "UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig", ], "models.unispeech_sat": [ "UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechSatConfig", ], "models.van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"], "models.vilt": ["VILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViltConfig", "ViltFeatureExtractor", "ViltProcessor"], "models.vision_encoder_decoder": ["VisionEncoderDecoderConfig"], "models.vision_text_dual_encoder": ["VisionTextDualEncoderConfig", "VisionTextDualEncoderProcessor"], "models.visual_bert": ["VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VisualBertConfig"], "models.vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"], "models.vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"], "models.wav2vec2": [ "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config", "Wav2Vec2CTCTokenizer", "Wav2Vec2FeatureExtractor", "Wav2Vec2Processor", "Wav2Vec2Tokenizer", ], "models.wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"], "models.wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"], "models.wavlm": [ "WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig", ], "models.xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"], "models.xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMTokenizer"], "models.xlm_prophetnet": ["XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMProphetNetConfig"], "models.xlm_roberta": ["XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig"], "models.xlm_roberta_xl": ["XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig"], "models.xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"], "models.yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig"], "models.yoso": ["YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP", "YosoConfig"], "onnx": [], "pipelines": [ "AudioClassificationPipeline", "AutomaticSpeechRecognitionPipeline", "Conversation", "ConversationalPipeline", "CsvPipelineDataFormat", "FeatureExtractionPipeline", "FillMaskPipeline", "ImageClassificationPipeline", "ImageSegmentationPipeline", "JsonPipelineDataFormat", "NerPipeline", "ObjectDetectionPipeline", "PipedPipelineDataFormat", "Pipeline", "PipelineDataFormat", "QuestionAnsweringPipeline", "SummarizationPipeline", "TableQuestionAnsweringPipeline", "Text2TextGenerationPipeline", "TextClassificationPipeline", "TextGenerationPipeline", "TokenClassificationPipeline", "TranslationPipeline", "ZeroShotClassificationPipeline", "ZeroShotImageClassificationPipeline", "pipeline", ], "processing_utils": ["ProcessorMixin"], "testing_utils": [], "tokenization_utils": ["PreTrainedTokenizer"], "tokenization_utils_base": [ "AddedToken", "BatchEncoding", "CharSpan", "PreTrainedTokenizerBase", "SpecialTokensMixin", "TokenSpan", ], "trainer_callback": [ "DefaultFlowCallback", "EarlyStoppingCallback", "PrinterCallback", "ProgressCallback", "TrainerCallback", "TrainerControl", "TrainerState", ], "trainer_utils": ["EvalPrediction", "IntervalStrategy", "SchedulerType", "enable_full_determinism", "set_seed"], "training_args": ["TrainingArguments"], "training_args_seq2seq": ["Seq2SeqTrainingArguments"], "training_args_tf": ["TFTrainingArguments"], "utils": [ "CONFIG_NAME", "MODEL_CARD_NAME", "PYTORCH_PRETRAINED_BERT_CACHE", "PYTORCH_TRANSFORMERS_CACHE", "SPIECE_UNDERLINE", "TF2_WEIGHTS_NAME", "TF_WEIGHTS_NAME", "TRANSFORMERS_CACHE", "WEIGHTS_NAME", "TensorType", "add_end_docstrings", "add_start_docstrings", "cached_path", "is_apex_available", "is_datasets_available", "is_faiss_available", "is_flax_available", "is_phonemizer_available", "is_psutil_available", "is_py3nvml_available", "is_pyctcdecode_available", "is_scipy_available", "is_sentencepiece_available", "is_sklearn_available", "is_speech_available", "is_tf_available", "is_timm_available", "is_tokenizers_available", "is_torch_available", "is_torch_tpu_available", "is_vision_available", "logging", ], } # sentencepiece-backed objects try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_sentencepiece_objects _import_structure["utils.dummy_sentencepiece_objects"] = [ name for name in dir(dummy_sentencepiece_objects) if not name.startswith("_") ] else: _import_structure["models.albert"].append("AlbertTokenizer") _import_structure["models.barthez"].append("BarthezTokenizer") _import_structure["models.bartpho"].append("BartphoTokenizer") _import_structure["models.bert_generation"].append("BertGenerationTokenizer") _import_structure["models.big_bird"].append("BigBirdTokenizer") _import_structure["models.camembert"].append("CamembertTokenizer") _import_structure["models.cpm"].append("CpmTokenizer") _import_structure["models.deberta_v2"].append("DebertaV2Tokenizer") _import_structure["models.fnet"].append("FNetTokenizer") _import_structure["models.layoutxlm"].append("LayoutXLMTokenizer") _import_structure["models.m2m_100"].append("M2M100Tokenizer") _import_structure["models.marian"].append("MarianTokenizer") _import_structure["models.mbart"].append("MBartTokenizer") _import_structure["models.mbart50"].append("MBart50Tokenizer") _import_structure["models.mluke"].append("MLukeTokenizer") _import_structure["models.mt5"].append("MT5Tokenizer") _import_structure["models.pegasus"].append("PegasusTokenizer") _import_structure["models.plbart"].append("PLBartTokenizer") _import_structure["models.reformer"].append("ReformerTokenizer") _import_structure["models.rembert"].append("RemBertTokenizer") _import_structure["models.speech_to_text"].append("Speech2TextTokenizer") _import_structure["models.t5"].append("T5Tokenizer") _import_structure["models.xglm"].append("XGLMTokenizer") _import_structure["models.xlm_prophetnet"].append("XLMProphetNetTokenizer") _import_structure["models.xlm_roberta"].append("XLMRobertaTokenizer") _import_structure["models.xlnet"].append("XLNetTokenizer") # tokenizers-backed objects try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_tokenizers_objects _import_structure["utils.dummy_tokenizers_objects"] = [ name for name in dir(dummy_tokenizers_objects) if not name.startswith("_") ] else: # Fast tokenizers structure _import_structure["models.albert"].append("AlbertTokenizerFast") _import_structure["models.bart"].append("BartTokenizerFast") _import_structure["models.barthez"].append("BarthezTokenizerFast") _import_structure["models.bert"].append("BertTokenizerFast") _import_structure["models.big_bird"].append("BigBirdTokenizerFast") _import_structure["models.blenderbot"].append("BlenderbotTokenizerFast") _import_structure["models.blenderbot_small"].append("BlenderbotSmallTokenizerFast") _import_structure["models.camembert"].append("CamembertTokenizerFast") _import_structure["models.clip"].append("CLIPTokenizerFast") _import_structure["models.convbert"].append("ConvBertTokenizerFast") _import_structure["models.cpm"].append("CpmTokenizerFast") _import_structure["models.deberta"].append("DebertaTokenizerFast") _import_structure["models.deberta_v2"].append("DebertaV2TokenizerFast") _import_structure["models.distilbert"].append("DistilBertTokenizerFast") _import_structure["models.dpr"].extend( ["DPRContextEncoderTokenizerFast", "DPRQuestionEncoderTokenizerFast", "DPRReaderTokenizerFast"] ) _import_structure["models.electra"].append("ElectraTokenizerFast") _import_structure["models.fnet"].append("FNetTokenizerFast") _import_structure["models.funnel"].append("FunnelTokenizerFast") _import_structure["models.gpt2"].append("GPT2TokenizerFast") _import_structure["models.herbert"].append("HerbertTokenizerFast") _import_structure["models.layoutlm"].append("LayoutLMTokenizerFast") _import_structure["models.layoutlmv2"].append("LayoutLMv2TokenizerFast") _import_structure["models.layoutxlm"].append("LayoutXLMTokenizerFast") _import_structure["models.led"].append("LEDTokenizerFast") _import_structure["models.longformer"].append("LongformerTokenizerFast") _import_structure["models.lxmert"].append("LxmertTokenizerFast") _import_structure["models.mbart"].append("MBartTokenizerFast") _import_structure["models.mbart50"].append("MBart50TokenizerFast") _import_structure["models.mobilebert"].append("MobileBertTokenizerFast") _import_structure["models.mpnet"].append("MPNetTokenizerFast") _import_structure["models.mt5"].append("MT5TokenizerFast") _import_structure["models.openai"].append("OpenAIGPTTokenizerFast") _import_structure["models.pegasus"].append("PegasusTokenizerFast") _import_structure["models.realm"].append("RealmTokenizerFast") _import_structure["models.reformer"].append("ReformerTokenizerFast") _import_structure["models.rembert"].append("RemBertTokenizerFast") _import_structure["models.retribert"].append("RetriBertTokenizerFast") _import_structure["models.roberta"].append("RobertaTokenizerFast") _import_structure["models.roformer"].append("RoFormerTokenizerFast") _import_structure["models.splinter"].append("SplinterTokenizerFast") _import_structure["models.squeezebert"].append("SqueezeBertTokenizerFast") _import_structure["models.t5"].append("T5TokenizerFast") _import_structure["models.xglm"].append("XGLMTokenizerFast") _import_structure["models.xlm_roberta"].append("XLMRobertaTokenizerFast") _import_structure["models.xlnet"].append("XLNetTokenizerFast") _import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"] try: if not (is_sentencepiece_available() and is_tokenizers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_sentencepiece_and_tokenizers_objects _import_structure["utils.dummy_sentencepiece_and_tokenizers_objects"] = [ name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_") ] else: _import_structure["convert_slow_tokenizer"] = ["SLOW_TO_FAST_CONVERTERS", "convert_slow_tokenizer"] # Speech-specific objects try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_speech_objects _import_structure["utils.dummy_speech_objects"] = [ name for name in dir(dummy_speech_objects) if not name.startswith("_") ] else: _import_structure["models.speech_to_text"].append("Speech2TextFeatureExtractor") try: if not (is_sentencepiece_available() and is_speech_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_sentencepiece_and_speech_objects _import_structure["utils.dummy_sentencepiece_and_speech_objects"] = [ name for name in dir(dummy_sentencepiece_and_speech_objects) if not name.startswith("_") ] else: _import_structure["models.speech_to_text"].append("Speech2TextProcessor") # Vision-specific objects try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_vision_objects _import_structure["utils.dummy_vision_objects"] = [ name for name in dir(dummy_vision_objects) if not name.startswith("_") ] else: _import_structure["image_utils"] = ["ImageFeatureExtractionMixin"] _import_structure["models.beit"].append("BeitFeatureExtractor") _import_structure["models.clip"].append("CLIPFeatureExtractor") _import_structure["models.clip"].append("CLIPProcessor") _import_structure["models.convnext"].append("ConvNextFeatureExtractor") _import_structure["models.deit"].append("DeiTFeatureExtractor") _import_structure["models.detr"].append("DetrFeatureExtractor") _import_structure["models.dpt"].append("DPTFeatureExtractor") _import_structure["models.glpn"].append("GLPNFeatureExtractor") _import_structure["models.imagegpt"].append("ImageGPTFeatureExtractor") _import_structure["models.layoutlmv2"].append("LayoutLMv2FeatureExtractor") _import_structure["models.layoutlmv2"].append("LayoutLMv2Processor") _import_structure["models.layoutxlm"].append("LayoutXLMProcessor") _import_structure["models.maskformer"].append("MaskFormerFeatureExtractor") _import_structure["models.perceiver"].append("PerceiverFeatureExtractor") _import_structure["models.poolformer"].append("PoolFormerFeatureExtractor") _import_structure["models.segformer"].append("SegformerFeatureExtractor") _import_structure["models.vilt"].append("ViltFeatureExtractor") _import_structure["models.vilt"].append("ViltProcessor") _import_structure["models.vit"].append("ViTFeatureExtractor") _import_structure["models.yolos"].append("YolosFeatureExtractor") # Timm-backed objects try: if not (is_timm_available() and is_vision_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_timm_objects _import_structure["utils.dummy_timm_objects"] = [ name for name in dir(dummy_timm_objects) if not name.startswith("_") ] else: _import_structure["models.detr"].extend( [ "DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "DetrForObjectDetection", "DetrForSegmentation", "DetrModel", "DetrPreTrainedModel", ] ) try: if not is_scatter_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_scatter_objects _import_structure["utils.dummy_scatter_objects"] = [ name for name in dir(dummy_scatter_objects) if not name.startswith("_") ] else: _import_structure["models.tapas"].extend( [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] ) # PyTorch-backed objects try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_pt_objects _import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")] else: _import_structure["activations"] = [] _import_structure["benchmark.benchmark"] = ["PyTorchBenchmark"] _import_structure["benchmark.benchmark_args"] = ["PyTorchBenchmarkArguments"] _import_structure["data.datasets"] = [ "GlueDataset", "GlueDataTrainingArguments", "LineByLineTextDataset", "LineByLineWithRefDataset", "LineByLineWithSOPTextDataset", "SquadDataset", "SquadDataTrainingArguments", "TextDataset", "TextDatasetForNextSentencePrediction", ] _import_structure["deepspeed"] = [] _import_structure["generation_beam_constraints"] = [ "Constraint", "ConstraintListState", "DisjunctiveConstraint", "PhrasalConstraint", ] _import_structure["generation_beam_search"] = ["BeamScorer", "BeamSearchScorer", "ConstrainedBeamSearchScorer"] _import_structure["generation_logits_process"] = [ "ForcedBOSTokenLogitsProcessor", "ForcedEOSTokenLogitsProcessor", "HammingDiversityLogitsProcessor", "InfNanRemoveLogitsProcessor", "LogitsProcessor", "LogitsProcessorList", "LogitsWarper", "MinLengthLogitsProcessor", "NoBadWordsLogitsProcessor", "NoRepeatNGramLogitsProcessor", "PrefixConstrainedLogitsProcessor", "RepetitionPenaltyLogitsProcessor", "TemperatureLogitsWarper", "TopKLogitsWarper", "TopPLogitsWarper", ] _import_structure["generation_stopping_criteria"] = [ "MaxLengthCriteria", "MaxTimeCriteria", "StoppingCriteria", "StoppingCriteriaList", ] _import_structure["generation_utils"] = ["top_k_top_p_filtering"] _import_structure["modeling_outputs"] = [] _import_structure["modeling_utils"] = ["PreTrainedModel"] # PyTorch models structure _import_structure["models.albert"].extend( [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] ) _import_structure["models.auto"].extend( [ "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING", "MODEL_FOR_AUDIO_XVECTOR_MAPPING", "MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING", "MODEL_FOR_CAUSAL_LM_MAPPING", "MODEL_FOR_CTC_MAPPING", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING", "MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING", "MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING", "MODEL_FOR_MASKED_LM_MAPPING", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", "MODEL_FOR_OBJECT_DETECTION_MAPPING", "MODEL_FOR_PRETRAINING_MAPPING", "MODEL_FOR_QUESTION_ANSWERING_MAPPING", "MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "MODEL_FOR_VISION_2_SEQ_MAPPING", "MODEL_MAPPING", "MODEL_WITH_LM_HEAD_MAPPING", "AutoModel", "AutoModelForAudioClassification", "AutoModelForAudioFrameClassification", "AutoModelForAudioXVector", "AutoModelForCausalLM", "AutoModelForCTC", "AutoModelForImageClassification", "AutoModelForImageSegmentation", "AutoModelForInstanceSegmentation", "AutoModelForMaskedImageModeling", "AutoModelForMaskedLM", "AutoModelForMultipleChoice", "AutoModelForNextSentencePrediction", "AutoModelForObjectDetection", "AutoModelForPreTraining", "AutoModelForQuestionAnswering", "AutoModelForSemanticSegmentation", "AutoModelForSeq2SeqLM", "AutoModelForSequenceClassification", "AutoModelForSpeechSeq2Seq", "AutoModelForTableQuestionAnswering", "AutoModelForTokenClassification", "AutoModelForVision2Seq", "AutoModelWithLMHead", ] ) _import_structure["models.bart"].extend( [ "BART_PRETRAINED_MODEL_ARCHIVE_LIST", "BartForCausalLM", "BartForConditionalGeneration", "BartForQuestionAnswering", "BartForSequenceClassification", "BartModel", "BartPretrainedModel", "PretrainedBartModel", ] ) _import_structure["models.beit"].extend( [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] ) _import_structure["models.bert"].extend( [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] ) _import_structure["models.bert_generation"].extend( [ "BertGenerationDecoder", "BertGenerationEncoder", "BertGenerationPreTrainedModel", "load_tf_weights_in_bert_generation", ] ) _import_structure["models.big_bird"].extend( [ "BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdForCausalLM", "BigBirdForMaskedLM", "BigBirdForMultipleChoice", "BigBirdForPreTraining", "BigBirdForQuestionAnswering", "BigBirdForSequenceClassification", "BigBirdForTokenClassification", "BigBirdLayer", "BigBirdModel", "BigBirdPreTrainedModel", "load_tf_weights_in_big_bird", ] ) _import_structure["models.bigbird_pegasus"].extend( [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] ) _import_structure["models.blenderbot"].extend( [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] ) _import_structure["models.blenderbot_small"].extend( [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] ) _import_structure["models.camembert"].extend( [ "CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "CamembertForCausalLM", "CamembertForMaskedLM", "CamembertForMultipleChoice", "CamembertForQuestionAnswering", "CamembertForSequenceClassification", "CamembertForTokenClassification", "CamembertModel", ] ) _import_structure["models.canine"].extend( [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] ) _import_structure["models.clip"].extend( [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPVisionModel", ] ) _import_structure["models.convbert"].extend( [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] ) _import_structure["models.convnext"].extend( [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", ] ) _import_structure["models.ctrl"].extend( [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] ) _import_structure["models.data2vec"].extend( [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", "Data2VecVisionForImageClassification", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] ) _import_structure["models.deberta"].extend( [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] ) _import_structure["models.deberta_v2"].extend( [ "DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaV2ForMaskedLM", "DebertaV2ForMultipleChoice", "DebertaV2ForQuestionAnswering", "DebertaV2ForSequenceClassification", "DebertaV2ForTokenClassification", "DebertaV2Model", "DebertaV2PreTrainedModel", ] ) _import_structure["models.decision_transformer"].extend( [ "DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "DecisionTransformerGPT2Model", "DecisionTransformerGPT2PreTrainedModel", "DecisionTransformerModel", "DecisionTransformerPreTrainedModel", ] ) _import_structure["models.deit"].extend( [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] ) _import_structure["models.distilbert"].extend( [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] ) _import_structure["models.dpr"].extend( [ "DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", "DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", "DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST", "DPRContextEncoder", "DPRPretrainedContextEncoder", "DPRPreTrainedModel", "DPRPretrainedQuestionEncoder", "DPRPretrainedReader", "DPRQuestionEncoder", "DPRReader", ] ) _import_structure["models.dpt"].extend( [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] ) _import_structure["models.electra"].extend( [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] ) _import_structure["models.encoder_decoder"].append("EncoderDecoderModel") _import_structure["models.flaubert"].extend( [ "FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaubertForMultipleChoice", "FlaubertForQuestionAnswering", "FlaubertForQuestionAnsweringSimple", "FlaubertForSequenceClassification", "FlaubertForTokenClassification", "FlaubertModel", "FlaubertWithLMHeadModel", ] ) _import_structure["models.fnet"].extend( [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] ) _import_structure["models.fsmt"].extend(["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"]) _import_structure["models.funnel"].extend( [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] ) _import_structure["models.glpn"].extend( [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNModel", "GLPNPreTrainedModel", ] ) _import_structure["models.gpt2"].extend( [ "GPT2_PRETRAINED_MODEL_ARCHIVE_LIST", "GPT2DoubleHeadsModel", "GPT2ForSequenceClassification", "GPT2ForTokenClassification", "GPT2LMHeadModel", "GPT2Model", "GPT2PreTrainedModel", "load_tf_weights_in_gpt2", ] ) _import_structure["models.gpt_neo"].extend( [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForSequenceClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] ) _import_structure["models.gptj"].extend( [ "GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTJForCausalLM", "GPTJForQuestionAnswering", "GPTJForSequenceClassification", "GPTJModel", "GPTJPreTrainedModel", ] ) _import_structure["models.hubert"].extend( [ "HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "HubertForCTC", "HubertForSequenceClassification", "HubertModel", "HubertPreTrainedModel", ] ) _import_structure["models.ibert"].extend( [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] ) _import_structure["models.imagegpt"].extend( [ "IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "ImageGPTForCausalImageModeling", "ImageGPTForImageClassification", "ImageGPTModel", "ImageGPTPreTrainedModel", "load_tf_weights_in_imagegpt", ] ) _import_structure["models.layoutlm"].extend( [ "LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMForMaskedLM", "LayoutLMForSequenceClassification", "LayoutLMForTokenClassification", "LayoutLMModel", "LayoutLMPreTrainedModel", ] ) _import_structure["models.layoutlmv2"].extend( [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] ) _import_structure["models.led"].extend( [ "LED_PRETRAINED_MODEL_ARCHIVE_LIST", "LEDForConditionalGeneration", "LEDForQuestionAnswering", "LEDForSequenceClassification", "LEDModel", "LEDPreTrainedModel", ] ) _import_structure["models.longformer"].extend( [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] ) _import_structure["models.luke"].extend( [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] ) _import_structure["models.lxmert"].extend( [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] ) _import_structure["models.m2m_100"].extend( [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] ) _import_structure["models.marian"].extend(["MarianForCausalLM", "MarianModel", "MarianMTModel"]) _import_structure["models.maskformer"].extend( [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] ) _import_structure["models.mbart"].extend( [ "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] ) _import_structure["models.megatron_bert"].extend( [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] ) _import_structure["models.mmbt"].extend(["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]) _import_structure["models.mobilebert"].extend( [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] ) _import_structure["models.mpnet"].extend( [ "MPNET_PRETRAINED_MODEL_ARCHIVE_LIST", "MPNetForMaskedLM", "MPNetForMultipleChoice", "MPNetForQuestionAnswering", "MPNetForSequenceClassification", "MPNetForTokenClassification", "MPNetLayer", "MPNetModel", "MPNetPreTrainedModel", ] ) _import_structure["models.mt5"].extend(["MT5EncoderModel", "MT5ForConditionalGeneration", "MT5Model"]) _import_structure["models.nystromformer"].extend( [ "NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "NystromformerForMaskedLM", "NystromformerForMultipleChoice", "NystromformerForQuestionAnswering", "NystromformerForSequenceClassification", "NystromformerForTokenClassification", "NystromformerLayer", "NystromformerModel", "NystromformerPreTrainedModel", ] ) _import_structure["models.openai"].extend( [ "OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OpenAIGPTDoubleHeadsModel", "OpenAIGPTForSequenceClassification", "OpenAIGPTLMHeadModel", "OpenAIGPTModel", "OpenAIGPTPreTrainedModel", "load_tf_weights_in_openai_gpt", ] ) _import_structure["models.pegasus"].extend( ["PegasusForCausalLM", "PegasusForConditionalGeneration", "PegasusModel", "PegasusPreTrainedModel"] ) _import_structure["models.perceiver"].extend( [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] ) _import_structure["models.plbart"].extend( [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] ) _import_structure["models.poolformer"].extend( [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] ) _import_structure["models.prophetnet"].extend( [ "PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ProphetNetDecoder", "ProphetNetEncoder", "ProphetNetForCausalLM", "ProphetNetForConditionalGeneration", "ProphetNetModel", "ProphetNetPreTrainedModel", ] ) _import_structure["models.qdqbert"].extend( [ "QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "QDQBertForMaskedLM", "QDQBertForMultipleChoice", "QDQBertForNextSentencePrediction", "QDQBertForQuestionAnswering", "QDQBertForSequenceClassification", "QDQBertForTokenClassification", "QDQBertLayer", "QDQBertLMHeadModel", "QDQBertModel", "QDQBertPreTrainedModel", "load_tf_weights_in_qdqbert", ] ) _import_structure["models.rag"].extend( ["RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration"] ) _import_structure["models.realm"].extend( [ "REALM_PRETRAINED_MODEL_ARCHIVE_LIST", "RealmEmbedder", "RealmForOpenQA", "RealmKnowledgeAugEncoder", "RealmPreTrainedModel", "RealmReader", "RealmRetriever", "RealmScorer", "load_tf_weights_in_realm", ] ) _import_structure["models.reformer"].extend( [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] ) _import_structure["models.regnet"].extend( [ "REGNET_PRETRAINED_MODEL_ARCHIVE_LIST", "RegNetForImageClassification", "RegNetModel", "RegNetPreTrainedModel", ] ) _import_structure["models.rembert"].extend( [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] ) _import_structure["models.resnet"].extend( [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", ] ) _import_structure["models.retribert"].extend( ["RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RetriBertModel", "RetriBertPreTrainedModel"] ) _import_structure["models.roberta"].extend( [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] ) _import_structure["models.roformer"].extend( [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] ) _import_structure["models.segformer"].extend( [ "SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SegformerDecodeHead", "SegformerForImageClassification", "SegformerForSemanticSegmentation", "SegformerLayer", "SegformerModel", "SegformerPreTrainedModel", ] ) _import_structure["models.sew"].extend( [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] ) _import_structure["models.sew_d"].extend( [ "SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWDForCTC", "SEWDForSequenceClassification", "SEWDModel", "SEWDPreTrainedModel", ] ) _import_structure["models.speech_encoder_decoder"].extend(["SpeechEncoderDecoderModel"]) _import_structure["models.speech_to_text"].extend( [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] ) _import_structure["models.speech_to_text_2"].extend(["Speech2Text2ForCausalLM", "Speech2Text2PreTrainedModel"]) _import_structure["models.splinter"].extend( [ "SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST", "SplinterForQuestionAnswering", "SplinterLayer", "SplinterModel", "SplinterPreTrainedModel", ] ) _import_structure["models.squeezebert"].extend( [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] ) _import_structure["models.swin"].extend( [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", ] ) _import_structure["models.t5"].extend( [ "T5_PRETRAINED_MODEL_ARCHIVE_LIST", "T5EncoderModel", "T5ForConditionalGeneration", "T5Model", "T5PreTrainedModel", "load_tf_weights_in_t5", ] ) _import_structure["models.transfo_xl"].extend( [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] ) _import_structure["models.trocr"].extend( ["TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel"] ) _import_structure["models.unispeech"].extend( [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] ) _import_structure["models.unispeech_sat"].extend( [ "UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechSatForAudioFrameClassification", "UniSpeechSatForCTC", "UniSpeechSatForPreTraining", "UniSpeechSatForSequenceClassification", "UniSpeechSatForXVector", "UniSpeechSatModel", "UniSpeechSatPreTrainedModel", ] ) _import_structure["models.van"].extend( [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] ) _import_structure["models.vilt"].extend( [ "VILT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViltForImageAndTextRetrieval", "ViltForImagesAndTextClassification", "ViltForMaskedLM", "ViltForQuestionAnswering", "ViltLayer", "ViltModel", "ViltPreTrainedModel", ] ) _import_structure["models.vision_encoder_decoder"].extend(["VisionEncoderDecoderModel"]) _import_structure["models.vision_text_dual_encoder"].extend(["VisionTextDualEncoderModel"]) _import_structure["models.visual_bert"].extend( [ "VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "VisualBertForMultipleChoice", "VisualBertForPreTraining", "VisualBertForQuestionAnswering", "VisualBertForRegionToPhraseAlignment", "VisualBertForVisualReasoning", "VisualBertLayer", "VisualBertModel", "VisualBertPreTrainedModel", ] ) _import_structure["models.vit"].extend( [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] ) _import_structure["models.vit_mae"].extend( [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] ) _import_structure["models.wav2vec2"].extend( [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] ) _import_structure["models.wavlm"].extend( [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] ) _import_structure["models.xglm"].extend( [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] ) _import_structure["models.xlm"].extend( [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] ) _import_structure["models.xlm_prophetnet"].extend( [ "XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMProphetNetDecoder", "XLMProphetNetEncoder", "XLMProphetNetForCausalLM", "XLMProphetNetForConditionalGeneration", "XLMProphetNetModel", ] ) _import_structure["models.xlm_roberta"].extend( [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", ] ) _import_structure["models.xlm_roberta_xl"].extend( [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] ) _import_structure["models.xlnet"].extend( [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] ) _import_structure["models.yolos"].extend( [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] ) _import_structure["models.yoso"].extend( [ "YOSO_PRETRAINED_MODEL_ARCHIVE_LIST", "YosoForMaskedLM", "YosoForMultipleChoice", "YosoForQuestionAnswering", "YosoForSequenceClassification", "YosoForTokenClassification", "YosoLayer", "YosoModel", "YosoPreTrainedModel", ] ) _import_structure["optimization"] = [ "Adafactor", "AdamW", "get_constant_schedule", "get_constant_schedule_with_warmup", "get_cosine_schedule_with_warmup", "get_cosine_with_hard_restarts_schedule_with_warmup", "get_linear_schedule_with_warmup", "get_polynomial_decay_schedule_with_warmup", "get_scheduler", ] _import_structure["pytorch_utils"] = ["Conv1D", "apply_chunking_to_forward", "prune_layer"] _import_structure["sagemaker"] = [] _import_structure["trainer"] = ["Trainer"] _import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"] _import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"] # TensorFlow-backed objects try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_tf_objects _import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")] else: _import_structure["activations_tf"] = [] _import_structure["benchmark.benchmark_args_tf"] = ["TensorFlowBenchmarkArguments"] _import_structure["benchmark.benchmark_tf"] = ["TensorFlowBenchmark"] _import_structure["generation_tf_logits_process"] = [ "TFForcedBOSTokenLogitsProcessor", "TFForcedEOSTokenLogitsProcessor", "TFLogitsProcessor", "TFLogitsProcessorList", "TFLogitsWarper", "TFMinLengthLogitsProcessor", "TFNoBadWordsLogitsProcessor", "TFNoRepeatNGramLogitsProcessor", "TFRepetitionPenaltyLogitsProcessor", "TFTemperatureLogitsWarper", "TFTopKLogitsWarper", "TFTopPLogitsWarper", ] _import_structure["generation_tf_utils"] = ["tf_top_k_top_p_filtering"] _import_structure["keras_callbacks"] = ["KerasMetricCallback", "PushToHubCallback"] _import_structure["modeling_tf_outputs"] = [] _import_structure["modeling_tf_utils"] = [ "TFPreTrainedModel", "TFSequenceSummary", "TFSharedEmbeddings", "shape_list", ] # TensorFlow models structure _import_structure["models.albert"].extend( [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] ) _import_structure["models.auto"].extend( [ "TF_MODEL_FOR_CAUSAL_LM_MAPPING", "TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_MASKED_LM_MAPPING", "TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING", "TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", "TF_MODEL_FOR_PRETRAINING_MAPPING", "TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING", "TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING", "TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING", "TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_VISION_2_SEQ_MAPPING", "TF_MODEL_MAPPING", "TF_MODEL_WITH_LM_HEAD_MAPPING", "TFAutoModel", "TFAutoModelForCausalLM", "TFAutoModelForImageClassification", "TFAutoModelForMaskedLM", "TFAutoModelForMultipleChoice", "TFAutoModelForNextSentencePrediction", "TFAutoModelForPreTraining", "TFAutoModelForQuestionAnswering", "TFAutoModelForSeq2SeqLM", "TFAutoModelForSequenceClassification", "TFAutoModelForSpeechSeq2Seq", "TFAutoModelForTableQuestionAnswering", "TFAutoModelForTokenClassification", "TFAutoModelForVision2Seq", "TFAutoModelWithLMHead", ] ) _import_structure["models.bart"].extend(["TFBartForConditionalGeneration", "TFBartModel", "TFBartPretrainedModel"]) _import_structure["models.bert"].extend( [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] ) _import_structure["models.blenderbot"].extend( ["TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel"] ) _import_structure["models.blenderbot_small"].extend( ["TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel"] ) _import_structure["models.camembert"].extend( [ "TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCamembertForCausalLM", "TFCamembertForMaskedLM", "TFCamembertForMultipleChoice", "TFCamembertForQuestionAnswering", "TFCamembertForSequenceClassification", "TFCamembertForTokenClassification", "TFCamembertModel", ] ) _import_structure["models.clip"].extend( [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] ) _import_structure["models.convbert"].extend( [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] ) _import_structure["models.convnext"].extend( [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] ) _import_structure["models.ctrl"].extend( [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] ) _import_structure["models.data2vec"].extend( [ "TFData2VecVisionForImageClassification", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] ) _import_structure["models.deberta"].extend( [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] ) _import_structure["models.deberta_v2"].extend( [ "TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaV2ForMaskedLM", "TFDebertaV2ForQuestionAnswering", "TFDebertaV2ForSequenceClassification", "TFDebertaV2ForTokenClassification", "TFDebertaV2Model", "TFDebertaV2PreTrainedModel", ] ) _import_structure["models.distilbert"].extend( [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] ) _import_structure["models.dpr"].extend( [ "TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", "TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", "TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDPRContextEncoder", "TFDPRPretrainedContextEncoder", "TFDPRPretrainedQuestionEncoder", "TFDPRPretrainedReader", "TFDPRQuestionEncoder", "TFDPRReader", ] ) _import_structure["models.electra"].extend( [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] ) _import_structure["models.encoder_decoder"].append("TFEncoderDecoderModel") _import_structure["models.flaubert"].extend( [ "TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFlaubertForMultipleChoice", "TFFlaubertForQuestionAnsweringSimple", "TFFlaubertForSequenceClassification", "TFFlaubertForTokenClassification", "TFFlaubertModel", "TFFlaubertPreTrainedModel", "TFFlaubertWithLMHeadModel", ] ) _import_structure["models.funnel"].extend( [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] ) _import_structure["models.gpt2"].extend( [ "TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGPT2DoubleHeadsModel", "TFGPT2ForSequenceClassification", "TFGPT2LMHeadModel", "TFGPT2MainLayer", "TFGPT2Model", "TFGPT2PreTrainedModel", ] ) _import_structure["models.gptj"].extend( [ "TFGPTJForCausalLM", "TFGPTJForQuestionAnswering", "TFGPTJForSequenceClassification", "TFGPTJModel", "TFGPTJPreTrainedModel", ] ) _import_structure["models.hubert"].extend( [ "TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFHubertForCTC", "TFHubertModel", "TFHubertPreTrainedModel", ] ) _import_structure["models.layoutlm"].extend( [ "TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMForMaskedLM", "TFLayoutLMForSequenceClassification", "TFLayoutLMForTokenClassification", "TFLayoutLMMainLayer", "TFLayoutLMModel", "TFLayoutLMPreTrainedModel", ] ) _import_structure["models.led"].extend(["TFLEDForConditionalGeneration", "TFLEDModel", "TFLEDPreTrainedModel"]) _import_structure["models.longformer"].extend( [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] ) _import_structure["models.lxmert"].extend( [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] ) _import_structure["models.marian"].extend(["TFMarianModel", "TFMarianMTModel", "TFMarianPreTrainedModel"]) _import_structure["models.mbart"].extend( ["TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel"] ) _import_structure["models.mobilebert"].extend( [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] ) _import_structure["models.mpnet"].extend( [ "TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMPNetForMaskedLM", "TFMPNetForMultipleChoice", "TFMPNetForQuestionAnswering", "TFMPNetForSequenceClassification", "TFMPNetForTokenClassification", "TFMPNetMainLayer", "TFMPNetModel", "TFMPNetPreTrainedModel", ] ) _import_structure["models.mt5"].extend(["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]) _import_structure["models.openai"].extend( [ "TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFOpenAIGPTDoubleHeadsModel", "TFOpenAIGPTForSequenceClassification", "TFOpenAIGPTLMHeadModel", "TFOpenAIGPTMainLayer", "TFOpenAIGPTModel", "TFOpenAIGPTPreTrainedModel", ] ) _import_structure["models.pegasus"].extend( ["TFPegasusForConditionalGeneration", "TFPegasusModel", "TFPegasusPreTrainedModel"] ) _import_structure["models.rag"].extend( [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] ) _import_structure["models.rembert"].extend( [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] ) _import_structure["models.roberta"].extend( [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] ) _import_structure["models.roformer"].extend( [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] ) _import_structure["models.speech_to_text"].extend( [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] ) _import_structure["models.t5"].extend( [ "TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST", "TFT5EncoderModel", "TFT5ForConditionalGeneration", "TFT5Model", "TFT5PreTrainedModel", ] ) _import_structure["models.tapas"].extend( [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] ) _import_structure["models.transfo_xl"].extend( [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] ) _import_structure["models.vision_encoder_decoder"].extend(["TFVisionEncoderDecoderModel"]) _import_structure["models.vit"].extend( [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] ) _import_structure["models.vit_mae"].extend( [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] ) _import_structure["models.wav2vec2"].extend( [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", ] ) _import_structure["models.xlm"].extend( [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] ) _import_structure["models.xlm_roberta"].extend( [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", ] ) _import_structure["models.xlnet"].extend( [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] ) _import_structure["optimization_tf"] = ["AdamWeightDecay", "GradientAccumulator", "WarmUp", "create_optimizer"] _import_structure["tf_utils"] = [] _import_structure["trainer_tf"] = ["TFTrainer"] # FLAX-backed objects try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_flax_objects _import_structure["utils.dummy_flax_objects"] = [ name for name in dir(dummy_flax_objects) if not name.startswith("_") ] else: _import_structure["generation_flax_logits_process"] = [ "FlaxForcedBOSTokenLogitsProcessor", "FlaxForcedEOSTokenLogitsProcessor", "FlaxLogitsProcessor", "FlaxLogitsProcessorList", "FlaxLogitsWarper", "FlaxMinLengthLogitsProcessor", "FlaxTemperatureLogitsWarper", "FlaxTopKLogitsWarper", "FlaxTopPLogitsWarper", ] _import_structure["generation_flax_utils"] = [] _import_structure["modeling_flax_outputs"] = [] _import_structure["modeling_flax_utils"] = ["FlaxPreTrainedModel"] _import_structure["models.albert"].extend( [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] ) _import_structure["models.auto"].extend( [ "FLAX_MODEL_FOR_CAUSAL_LM_MAPPING", "FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_MASKED_LM_MAPPING", "FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING", "FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", "FLAX_MODEL_FOR_PRETRAINING_MAPPING", "FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING", "FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING", "FLAX_MODEL_MAPPING", "FlaxAutoModel", "FlaxAutoModelForCausalLM", "FlaxAutoModelForImageClassification", "FlaxAutoModelForMaskedLM", "FlaxAutoModelForMultipleChoice", "FlaxAutoModelForNextSentencePrediction", "FlaxAutoModelForPreTraining", "FlaxAutoModelForQuestionAnswering", "FlaxAutoModelForSeq2SeqLM", "FlaxAutoModelForSequenceClassification", "FlaxAutoModelForTokenClassification", "FlaxAutoModelForVision2Seq", ] ) # Flax models structure _import_structure["models.bart"].extend( [ "FlaxBartDecoderPreTrainedModel", "FlaxBartForCausalLM", "FlaxBartForConditionalGeneration", "FlaxBartForQuestionAnswering", "FlaxBartForSequenceClassification", "FlaxBartModel", "FlaxBartPreTrainedModel", ] ) _import_structure["models.beit"].extend( [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] ) _import_structure["models.bert"].extend( [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] ) _import_structure["models.big_bird"].extend( [ "FlaxBigBirdForCausalLM", "FlaxBigBirdForMaskedLM", "FlaxBigBirdForMultipleChoice", "FlaxBigBirdForPreTraining", "FlaxBigBirdForQuestionAnswering", "FlaxBigBirdForSequenceClassification", "FlaxBigBirdForTokenClassification", "FlaxBigBirdModel", "FlaxBigBirdPreTrainedModel", ] ) _import_structure["models.blenderbot"].extend( ["FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel"] ) _import_structure["models.blenderbot_small"].extend( [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] ) _import_structure["models.clip"].extend( [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] ) _import_structure["models.distilbert"].extend( [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] ) _import_structure["models.electra"].extend( [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] ) _import_structure["models.encoder_decoder"].append("FlaxEncoderDecoderModel") _import_structure["models.gpt2"].extend(["FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPT2PreTrainedModel"]) _import_structure["models.gpt_neo"].extend( ["FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel"] ) _import_structure["models.gptj"].extend(["FlaxGPTJForCausalLM", "FlaxGPTJModel", "FlaxGPTJPreTrainedModel"]) _import_structure["models.marian"].extend( [ "FlaxMarianModel", "FlaxMarianMTModel", "FlaxMarianPreTrainedModel", ] ) _import_structure["models.mbart"].extend( [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] ) _import_structure["models.mt5"].extend(["FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]) _import_structure["models.pegasus"].extend( [ "FlaxPegasusForConditionalGeneration", "FlaxPegasusModel", "FlaxPegasusPreTrainedModel", ] ) _import_structure["models.roberta"].extend( [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] ) _import_structure["models.roformer"].extend( [ "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] ) _import_structure["models.speech_encoder_decoder"].append("FlaxSpeechEncoderDecoderModel") _import_structure["models.t5"].extend(["FlaxT5ForConditionalGeneration", "FlaxT5Model", "FlaxT5PreTrainedModel"]) _import_structure["models.vision_encoder_decoder"].append("FlaxVisionEncoderDecoderModel") _import_structure["models.vision_text_dual_encoder"].extend(["FlaxVisionTextDualEncoderModel"]) _import_structure["models.vit"].extend(["FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel"]) _import_structure["models.wav2vec2"].extend( ["FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel"] ) _import_structure["models.xglm"].extend( [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] ) _import_structure["models.xlm_roberta"].extend( [ "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", ] ) # Direct imports for type-checking if TYPE_CHECKING: # Configuration from .configuration_utils import PretrainedConfig # Data from .data import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadV1Processor, SquadV2Processor, glue_compute_metrics, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_compute_metrics, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, ) from .data.data_collator import ( DataCollator, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeq2Seq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .feature_extraction_sequence_utils import SequenceFeatureExtractor # Feature Extractor from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .hf_argparser import HfArgumentParser # Integrations from .integrations import ( is_comet_available, is_optuna_available, is_ray_available, is_ray_tune_available, is_sigopt_available, is_tensorboard_available, is_wandb_available, ) # Model Cards from .modelcard import ModelCard # TF 2.0 <=> PyTorch conversion utilities from .modeling_tf_pytorch_utils import ( convert_tf_weight_name_to_pt_weight_name, load_pytorch_checkpoint_in_tf2_model, load_pytorch_model_in_tf2_model, load_pytorch_weights_in_tf2_model, load_tf2_checkpoint_in_pytorch_model, load_tf2_model_in_pytorch_model, load_tf2_weights_in_pytorch_model, ) from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig from .models.auto import ( ALL_PRETRAINED_CONFIG_ARCHIVE_MAP, CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, MODEL_NAMES_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, ) from .models.bart import BartConfig, BartTokenizer from .models.beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig from .models.bert import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BasicTokenizer, BertConfig, BertTokenizer, WordpieceTokenizer, ) from .models.bert_generation import BertGenerationConfig from .models.bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer from .models.bertweet import BertweetTokenizer from .models.big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig from .models.bigbird_pegasus import BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig from .models.blenderbot import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotTokenizer from .models.blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallTokenizer, ) from .models.byt5 import ByT5Tokenizer from .models.camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig from .models.canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig, CanineTokenizer from .models.clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPTextConfig, CLIPTokenizer, CLIPVisionConfig, ) from .models.convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertTokenizer from .models.convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig from .models.ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig, CTRLTokenizer from .models.data2vec import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, Data2VecAudioConfig, Data2VecTextConfig, Data2VecVisionConfig, ) from .models.deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaTokenizer from .models.deberta_v2 import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaV2Config from .models.decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, DecisionTransformerConfig, ) from .models.deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig from .models.detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig from .models.distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertTokenizer from .models.dpr import ( DPR_PRETRAINED_CONFIG_ARCHIVE_MAP, DPRConfig, DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderOutput, DPRReaderTokenizer, ) from .models.dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig from .models.electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraTokenizer from .models.encoder_decoder import EncoderDecoderConfig from .models.flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertTokenizer from .models.fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig from .models.fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig, FSMTTokenizer from .models.funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig, FunnelTokenizer from .models.glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig from .models.gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2Tokenizer from .models.gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig from .models.gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig from .models.herbert import HerbertTokenizer from .models.hubert import HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, HubertConfig from .models.ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig from .models.imagegpt import IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ImageGPTConfig from .models.layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig, LayoutLMTokenizer from .models.layoutlmv2 import ( LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMv2Config, LayoutLMv2FeatureExtractor, LayoutLMv2Processor, LayoutLMv2Tokenizer, ) from .models.layoutxlm import LayoutXLMProcessor from .models.led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig, LEDTokenizer from .models.longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerTokenizer from .models.luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig, LukeTokenizer from .models.lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig, LxmertTokenizer from .models.m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config from .models.marian import MarianConfig from .models.maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .models.mbart import MBartConfig from .models.megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig from .models.mmbt import MMBTConfig from .models.mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertTokenizer from .models.mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig, MPNetTokenizer from .models.mt5 import MT5Config from .models.nystromformer import NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, NystromformerConfig from .models.openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig, OpenAIGPTTokenizer from .models.pegasus import PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusConfig, PegasusTokenizer from .models.perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverTokenizer from .models.phobert import PhobertTokenizer from .models.plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig from .models.poolformer import POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig from .models.prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig, ProphetNetTokenizer from .models.qdqbert import QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, QDQBertConfig from .models.rag import RagConfig, RagRetriever, RagTokenizer from .models.realm import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP, RealmConfig, RealmTokenizer from .models.reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig from .models.regnet import REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP, RegNetConfig from .models.rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig from .models.resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig from .models.retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig, RetriBertTokenizer from .models.roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaTokenizer from .models.roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerTokenizer from .models.segformer import SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SegformerConfig from .models.sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig from .models.sew_d import SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWDConfig from .models.speech_encoder_decoder import SpeechEncoderDecoderConfig from .models.speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, Speech2TextConfig from .models.speech_to_text_2 import ( SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP, Speech2Text2Config, Speech2Text2Processor, Speech2Text2Tokenizer, ) from .models.splinter import SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP, SplinterConfig, SplinterTokenizer from .models.squeezebert import SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertTokenizer from .models.swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig from .models.t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config from .models.tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig, TapasTokenizer from .models.tapex import TapexTokenizer from .models.transfo_xl import ( TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig, TransfoXLCorpus, TransfoXLTokenizer, ) from .models.trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig, TrOCRProcessor from .models.unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig from .models.unispeech_sat import UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechSatConfig from .models.van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig from .models.vilt import VILT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViltConfig, ViltFeatureExtractor, ViltProcessor from .models.vision_encoder_decoder import VisionEncoderDecoderConfig from .models.vision_text_dual_encoder import VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor from .models.visual_bert import VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, VisualBertConfig from .models.vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig from .models.vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig from .models.wav2vec2 import ( WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, Wav2Vec2Config, Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, Wav2Vec2Tokenizer, ) from .models.wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizer from .models.wav2vec2_with_lm import Wav2Vec2ProcessorWithLM from .models.wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig from .models.xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig from .models.xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMTokenizer from .models.xlm_prophetnet import XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMProphetNetConfig from .models.xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig from .models.xlm_roberta_xl import XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig from .models.xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig from .models.yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig from .models.yoso import YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP, YosoConfig # Pipelines from .pipelines import ( AudioClassificationPipeline, AutomaticSpeechRecognitionPipeline, Conversation, ConversationalPipeline, CsvPipelineDataFormat, FeatureExtractionPipeline, FillMaskPipeline, ImageClassificationPipeline, ImageSegmentationPipeline, JsonPipelineDataFormat, NerPipeline, ObjectDetectionPipeline, PipedPipelineDataFormat, Pipeline, PipelineDataFormat, QuestionAnsweringPipeline, SummarizationPipeline, TableQuestionAnsweringPipeline, Text2TextGenerationPipeline, TextClassificationPipeline, TextGenerationPipeline, TokenClassificationPipeline, TranslationPipeline, ZeroShotClassificationPipeline, ZeroShotImageClassificationPipeline, pipeline, ) from .processing_utils import ProcessorMixin # Tokenization from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils_base import ( AddedToken, BatchEncoding, CharSpan, PreTrainedTokenizerBase, SpecialTokensMixin, TokenSpan, ) # Trainer from .trainer_callback import ( DefaultFlowCallback, EarlyStoppingCallback, PrinterCallback, ProgressCallback, TrainerCallback, TrainerControl, TrainerState, ) from .trainer_utils import EvalPrediction, IntervalStrategy, SchedulerType, enable_full_determinism, set_seed from .training_args import TrainingArguments from .training_args_seq2seq import Seq2SeqTrainingArguments from .training_args_tf import TFTrainingArguments # Files and general utilities from .utils import ( CONFIG_NAME, MODEL_CARD_NAME, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, TensorType, add_end_docstrings, add_start_docstrings, cached_path, is_apex_available, is_datasets_available, is_faiss_available, is_flax_available, is_phonemizer_available, is_psutil_available, is_py3nvml_available, is_pyctcdecode_available, is_scipy_available, is_sentencepiece_available, is_sklearn_available, is_speech_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_tpu_available, is_vision_available, logging, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_sentencepiece_objects import * else: from .models.albert import AlbertTokenizer from .models.barthez import BarthezTokenizer from .models.bartpho import BartphoTokenizer from .models.bert_generation import BertGenerationTokenizer from .models.big_bird import BigBirdTokenizer from .models.camembert import CamembertTokenizer from .models.cpm import CpmTokenizer from .models.deberta_v2 import DebertaV2Tokenizer from .models.fnet import FNetTokenizer from .models.layoutxlm import LayoutXLMTokenizer from .models.m2m_100 import M2M100Tokenizer from .models.marian import MarianTokenizer from .models.mbart import MBart50Tokenizer, MBartTokenizer from .models.mluke import MLukeTokenizer from .models.mt5 import MT5Tokenizer from .models.pegasus import PegasusTokenizer from .models.plbart import PLBartTokenizer from .models.reformer import ReformerTokenizer from .models.rembert import RemBertTokenizer from .models.speech_to_text import Speech2TextTokenizer from .models.t5 import T5Tokenizer from .models.xglm import XGLMTokenizer from .models.xlm_prophetnet import XLMProphetNetTokenizer from .models.xlm_roberta import XLMRobertaTokenizer from .models.xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_tokenizers_objects import * else: # Fast tokenizers imports from .models.albert import AlbertTokenizerFast from .models.bart import BartTokenizerFast from .models.barthez import BarthezTokenizerFast from .models.bert import BertTokenizerFast from .models.big_bird import BigBirdTokenizerFast from .models.blenderbot import BlenderbotTokenizerFast from .models.blenderbot_small import BlenderbotSmallTokenizerFast from .models.camembert import CamembertTokenizerFast from .models.clip import CLIPTokenizerFast from .models.convbert import ConvBertTokenizerFast from .models.cpm import CpmTokenizerFast from .models.deberta import DebertaTokenizerFast from .models.deberta_v2 import DebertaV2TokenizerFast from .models.distilbert import DistilBertTokenizerFast from .models.dpr import DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizerFast, DPRReaderTokenizerFast from .models.electra import ElectraTokenizerFast from .models.fnet import FNetTokenizerFast from .models.funnel import FunnelTokenizerFast from .models.gpt2 import GPT2TokenizerFast from .models.herbert import HerbertTokenizerFast from .models.layoutlm import LayoutLMTokenizerFast from .models.layoutlmv2 import LayoutLMv2TokenizerFast from .models.layoutxlm import LayoutXLMTokenizerFast from .models.led import LEDTokenizerFast from .models.longformer import LongformerTokenizerFast from .models.lxmert import LxmertTokenizerFast from .models.mbart import MBartTokenizerFast from .models.mbart50 import MBart50TokenizerFast from .models.mobilebert import MobileBertTokenizerFast from .models.mpnet import MPNetTokenizerFast from .models.mt5 import MT5TokenizerFast from .models.openai import OpenAIGPTTokenizerFast from .models.pegasus import PegasusTokenizerFast from .models.realm import RealmTokenizerFast from .models.reformer import ReformerTokenizerFast from .models.rembert import RemBertTokenizerFast from .models.retribert import RetriBertTokenizerFast from .models.roberta import RobertaTokenizerFast from .models.roformer import RoFormerTokenizerFast from .models.splinter import SplinterTokenizerFast from .models.squeezebert import SqueezeBertTokenizerFast from .models.t5 import T5TokenizerFast from .models.xglm import XGLMTokenizerFast from .models.xlm_roberta import XLMRobertaTokenizerFast from .models.xlnet import XLNetTokenizerFast from .tokenization_utils_fast import PreTrainedTokenizerFast try: if not (is_sentencepiece_available() and is_tokenizers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummies_sentencepiece_and_tokenizers_objects import * else: from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS, convert_slow_tokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_speech_objects import * else: from .models.speech_to_text import Speech2TextFeatureExtractor try: if not (is_speech_available() and is_sentencepiece_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_sentencepiece_and_speech_objects import * else: from .models.speech_to_text import Speech2TextProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_vision_objects import * else: from .image_utils import ImageFeatureExtractionMixin from .models.beit import BeitFeatureExtractor from .models.clip import CLIPFeatureExtractor, CLIPProcessor from .models.convnext import ConvNextFeatureExtractor from .models.deit import DeiTFeatureExtractor from .models.detr import DetrFeatureExtractor from .models.dpt import DPTFeatureExtractor from .models.glpn import GLPNFeatureExtractor from .models.imagegpt import ImageGPTFeatureExtractor from .models.layoutlmv2 import LayoutLMv2FeatureExtractor, LayoutLMv2Processor from .models.layoutxlm import LayoutXLMProcessor from .models.maskformer import MaskFormerFeatureExtractor from .models.perceiver import PerceiverFeatureExtractor from .models.poolformer import PoolFormerFeatureExtractor from .models.segformer import SegformerFeatureExtractor from .models.vilt import ViltFeatureExtractor, ViltProcessor from .models.vit import ViTFeatureExtractor from .models.yolos import YolosFeatureExtractor # Modeling try: if not (is_timm_available() and is_vision_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_timm_objects import * else: from .models.detr import ( DETR_PRETRAINED_MODEL_ARCHIVE_LIST, DetrForObjectDetection, DetrForSegmentation, DetrModel, DetrPreTrainedModel, ) try: if not is_scatter_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_scatter_objects import * else: from .models.tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * else: # Benchmarks from .benchmark.benchmark import PyTorchBenchmark from .benchmark.benchmark_args import PyTorchBenchmarkArguments from .data.datasets import ( GlueDataset, GlueDataTrainingArguments, LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, SquadDataset, SquadDataTrainingArguments, TextDataset, TextDatasetForNextSentencePrediction, ) from .generation_beam_constraints import ( Constraint, ConstraintListState, DisjunctiveConstraint, PhrasalConstraint, ) from .generation_beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer from .generation_logits_process import ( ForcedBOSTokenLogitsProcessor, ForcedEOSTokenLogitsProcessor, HammingDiversityLogitsProcessor, InfNanRemoveLogitsProcessor, LogitsProcessor, LogitsProcessorList, LogitsWarper, MinLengthLogitsProcessor, NoBadWordsLogitsProcessor, NoRepeatNGramLogitsProcessor, PrefixConstrainedLogitsProcessor, RepetitionPenaltyLogitsProcessor, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper, ) from .generation_stopping_criteria import ( MaxLengthCriteria, MaxTimeCriteria, StoppingCriteria, StoppingCriteriaList, ) from .generation_utils import top_k_top_p_filtering from .modeling_utils import PreTrainedModel # PyTorch model imports from .models.albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) from .models.auto import ( MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, MODEL_FOR_AUDIO_XVECTOR_MAPPING, MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_CTC_MAPPING, MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_IMAGE_SEGMENTATION_MAPPING, MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_FOR_VISION_2_SEQ_MAPPING, MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoModel, AutoModelForAudioClassification, AutoModelForAudioFrameClassification, AutoModelForAudioXVector, AutoModelForCausalLM, AutoModelForCTC, AutoModelForImageClassification, AutoModelForImageSegmentation, AutoModelForInstanceSegmentation, AutoModelForMaskedImageModeling, AutoModelForMaskedLM, AutoModelForMultipleChoice, AutoModelForNextSentencePrediction, AutoModelForObjectDetection, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSemanticSegmentation, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForSpeechSeq2Seq, AutoModelForTableQuestionAnswering, AutoModelForTokenClassification, AutoModelForVision2Seq, AutoModelWithLMHead, ) from .models.bart import ( BART_PRETRAINED_MODEL_ARCHIVE_LIST, BartForCausalLM, BartForConditionalGeneration, BartForQuestionAnswering, BartForSequenceClassification, BartModel, BartPretrainedModel, PretrainedBartModel, ) from .models.beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) from .models.bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) from .models.bert_generation import ( BertGenerationDecoder, BertGenerationEncoder, BertGenerationPreTrainedModel, load_tf_weights_in_bert_generation, ) from .models.big_bird import ( BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdForCausalLM, BigBirdForMaskedLM, BigBirdForMultipleChoice, BigBirdForPreTraining, BigBirdForQuestionAnswering, BigBirdForSequenceClassification, BigBirdForTokenClassification, BigBirdLayer, BigBirdModel, BigBirdPreTrainedModel, load_tf_weights_in_big_bird, ) from .models.bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) from .models.blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) from .models.blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) from .models.camembert import ( CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, CamembertForCausalLM, CamembertForMaskedLM, CamembertForMultipleChoice, CamembertForQuestionAnswering, CamembertForSequenceClassification, CamembertForTokenClassification, CamembertModel, ) from .models.canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) from .models.clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPVisionModel, ) from .models.convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) from .models.convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) from .models.ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) from .models.data2vec import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, Data2VecAudioForAudioFrameClassification, Data2VecAudioForCTC, Data2VecAudioForSequenceClassification, Data2VecAudioForXVector, Data2VecAudioModel, Data2VecAudioPreTrainedModel, Data2VecTextForCausalLM, Data2VecTextForMaskedLM, Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering, Data2VecTextForSequenceClassification, Data2VecTextForTokenClassification, Data2VecTextModel, Data2VecTextPreTrainedModel, Data2VecVisionForImageClassification, Data2VecVisionForSemanticSegmentation, Data2VecVisionModel, Data2VecVisionPreTrainedModel, ) from .models.deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) from .models.deberta_v2 import ( DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaV2ForMaskedLM, DebertaV2ForMultipleChoice, DebertaV2ForQuestionAnswering, DebertaV2ForSequenceClassification, DebertaV2ForTokenClassification, DebertaV2Model, DebertaV2PreTrainedModel, ) from .models.decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, DecisionTransformerGPT2Model, DecisionTransformerGPT2PreTrainedModel, DecisionTransformerModel, DecisionTransformerPreTrainedModel, ) from .models.deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) from .models.distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) from .models.dpr import ( DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, DPRContextEncoder, DPRPretrainedContextEncoder, DPRPreTrainedModel, DPRPretrainedQuestionEncoder, DPRPretrainedReader, DPRQuestionEncoder, DPRReader, ) from .models.dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) from .models.electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) from .models.encoder_decoder import EncoderDecoderModel from .models.flaubert import ( FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from .models.fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) from .models.fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel from .models.funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) from .models.glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNModel, GLPNPreTrainedModel, ) from .models.gpt2 import ( GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, GPT2DoubleHeadsModel, GPT2ForSequenceClassification, GPT2ForTokenClassification, GPT2LMHeadModel, GPT2Model, GPT2PreTrainedModel, load_tf_weights_in_gpt2, ) from .models.gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForSequenceClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) from .models.gptj import ( GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST, GPTJForCausalLM, GPTJForQuestionAnswering, GPTJForSequenceClassification, GPTJModel, GPTJPreTrainedModel, ) from .models.hubert import ( HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, HubertForCTC, HubertForSequenceClassification, HubertModel, HubertPreTrainedModel, ) from .models.ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) from .models.imagegpt import ( IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST, ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel, ImageGPTPreTrainedModel, load_tf_weights_in_imagegpt, ) from .models.layoutlm import ( LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMForMaskedLM, LayoutLMForSequenceClassification, LayoutLMForTokenClassification, LayoutLMModel, LayoutLMPreTrainedModel, ) from .models.layoutlmv2 import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMv2ForQuestionAnswering, LayoutLMv2ForSequenceClassification, LayoutLMv2ForTokenClassification, LayoutLMv2Model, LayoutLMv2PreTrainedModel, ) from .models.led import ( LED_PRETRAINED_MODEL_ARCHIVE_LIST, LEDForConditionalGeneration, LEDForQuestionAnswering, LEDForSequenceClassification, LEDModel, LEDPreTrainedModel, ) from .models.longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) from .models.luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeModel, LukePreTrainedModel, ) from .models.lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) from .models.m2m_100 import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, M2M100ForConditionalGeneration, M2M100Model, M2M100PreTrainedModel, ) from .models.marian import MarianForCausalLM, MarianModel, MarianMTModel from .models.maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .models.mbart import ( MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) from .models.megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) from .models.mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings from .models.mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) from .models.mpnet import ( MPNET_PRETRAINED_MODEL_ARCHIVE_LIST, MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetLayer, MPNetModel, MPNetPreTrainedModel, ) from .models.mt5 import MT5EncoderModel, MT5ForConditionalGeneration, MT5Model from .models.nystromformer import ( NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerLayer, NystromformerModel, NystromformerPreTrainedModel, ) from .models.openai import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, OpenAIGPTPreTrainedModel, load_tf_weights_in_openai_gpt, ) from .models.pegasus import ( PegasusForCausalLM, PegasusForConditionalGeneration, PegasusModel, PegasusPreTrainedModel, ) from .models.perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) from .models.plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) from .models.poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) from .models.prophetnet import ( PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST, ProphetNetDecoder, ProphetNetEncoder, ProphetNetForCausalLM, ProphetNetForConditionalGeneration, ProphetNetModel, ProphetNetPreTrainedModel, ) from .models.qdqbert import ( QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST, QDQBertForMaskedLM, QDQBertForMultipleChoice, QDQBertForNextSentencePrediction, QDQBertForQuestionAnswering, QDQBertForSequenceClassification, QDQBertForTokenClassification, QDQBertLayer, QDQBertLMHeadModel, QDQBertModel, QDQBertPreTrainedModel, load_tf_weights_in_qdqbert, ) from .models.rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration from .models.realm import ( REALM_PRETRAINED_MODEL_ARCHIVE_LIST, RealmEmbedder, RealmForOpenQA, RealmKnowledgeAugEncoder, RealmPreTrainedModel, RealmReader, RealmRetriever, RealmScorer, load_tf_weights_in_realm, ) from .models.reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) from .models.regnet import ( REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, RegNetForImageClassification, RegNetModel, RegNetPreTrainedModel, ) from .models.rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) from .models.resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) from .models.retribert import RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RetriBertModel, RetriBertPreTrainedModel from .models.roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) from .models.roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) from .models.segformer import ( SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SegformerDecodeHead, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerLayer, SegformerModel, SegformerPreTrainedModel, ) from .models.sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) from .models.sew_d import ( SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST, SEWDForCTC, SEWDForSequenceClassification, SEWDModel, SEWDPreTrainedModel, ) from .models.speech_encoder_decoder import SpeechEncoderDecoderModel from .models.speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, Speech2TextForConditionalGeneration, Speech2TextModel, Speech2TextPreTrainedModel, ) from .models.speech_to_text_2 import Speech2Text2ForCausalLM, Speech2Text2PreTrainedModel from .models.splinter import ( SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST, SplinterForQuestionAnswering, SplinterLayer, SplinterModel, SplinterPreTrainedModel, ) from .models.squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) from .models.swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) from .models.t5 import ( T5_PRETRAINED_MODEL_ARCHIVE_LIST, T5EncoderModel, T5ForConditionalGeneration, T5Model, T5PreTrainedModel, load_tf_weights_in_t5, ) from .models.transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) from .models.trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel from .models.unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) from .models.unispeech_sat import ( UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechSatForAudioFrameClassification, UniSpeechSatForCTC, UniSpeechSatForPreTraining, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, UniSpeechSatModel, UniSpeechSatPreTrainedModel, ) from .models.van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) from .models.vilt import ( VILT_PRETRAINED_MODEL_ARCHIVE_LIST, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltLayer, ViltModel, ViltPreTrainedModel, ) from .models.vision_encoder_decoder import VisionEncoderDecoderModel from .models.vision_text_dual_encoder import VisionTextDualEncoderModel from .models.visual_bert import ( VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForRegionToPhraseAlignment, VisualBertForVisualReasoning, VisualBertLayer, VisualBertModel, VisualBertPreTrainedModel, ) from .models.vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) from .models.vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) from .models.wav2vec2 import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, Wav2Vec2ForAudioFrameClassification, Wav2Vec2ForCTC, Wav2Vec2ForMaskedLM, Wav2Vec2ForPreTraining, Wav2Vec2ForSequenceClassification, Wav2Vec2ForXVector, Wav2Vec2Model, Wav2Vec2PreTrainedModel, ) from .models.wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) from .models.xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel from .models.xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) from .models.xlm_prophetnet import ( XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLMProphetNetDecoder, XLMProphetNetEncoder, XLMProphetNetForCausalLM, XLMProphetNetForConditionalGeneration, XLMProphetNetModel, ) from .models.xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, ) from .models.xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) from .models.xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) from .models.yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) from .models.yoso import ( YOSO_PRETRAINED_MODEL_ARCHIVE_LIST, YosoForMaskedLM, YosoForMultipleChoice, YosoForQuestionAnswering, YosoForSequenceClassification, YosoForTokenClassification, YosoLayer, YosoModel, YosoPreTrainedModel, ) # Optimization from .optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pytorch_utils import Conv1D, apply_chunking_to_forward, prune_layer # Trainer from .trainer import Trainer from .trainer_pt_utils import torch_distributed_zero_first from .trainer_seq2seq import Seq2SeqTrainer # TensorFlow try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: # Import the same objects as dummies to get them in the namespace. # They will raise an import error if the user tries to instantiate / use them. from .utils.dummy_tf_objects import * else: from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments # Benchmarks from .benchmark.benchmark_tf import TensorFlowBenchmark from .generation_tf_logits_process import ( TFForcedBOSTokenLogitsProcessor, TFForcedEOSTokenLogitsProcessor, TFLogitsProcessor, TFLogitsProcessorList, TFLogitsWarper, TFMinLengthLogitsProcessor, TFNoBadWordsLogitsProcessor, TFNoRepeatNGramLogitsProcessor, TFRepetitionPenaltyLogitsProcessor, TFTemperatureLogitsWarper, TFTopKLogitsWarper, TFTopPLogitsWarper, ) from .generation_tf_utils import tf_top_k_top_p_filtering from .keras_callbacks import KerasMetricCallback, PushToHubCallback from .modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMMainLayer, TFLayoutLMModel, TFLayoutLMPreTrainedModel, ) from .modeling_tf_utils import TFPreTrainedModel, TFSequenceSummary, TFSharedEmbeddings, shape_list # TensorFlow model imports from .models.albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) from .models.auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForImageClassification, TFAutoModelForMaskedLM, TFAutoModelForMultipleChoice, TFAutoModelForNextSentencePrediction, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForSpeechSeq2Seq, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelForVision2Seq, TFAutoModelWithLMHead, ) from .models.bart import TFBartForConditionalGeneration, TFBartModel, TFBartPretrainedModel from .models.bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) from .models.blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) from .models.blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) from .models.camembert import ( TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFCamembertForCausalLM, TFCamembertForMaskedLM, TFCamembertForMultipleChoice, TFCamembertForQuestionAnswering, TFCamembertForSequenceClassification, TFCamembertForTokenClassification, TFCamembertModel, ) from .models.clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) from .models.convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) from .models.convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel from .models.ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) from .models.data2vec import ( TFData2VecVisionForImageClassification, TFData2VecVisionModel, TFData2VecVisionPreTrainedModel, ) from .models.deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) from .models.deberta_v2 import ( TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaV2ForMaskedLM, TFDebertaV2ForQuestionAnswering, TFDebertaV2ForSequenceClassification, TFDebertaV2ForTokenClassification, TFDebertaV2Model, TFDebertaV2PreTrainedModel, ) from .models.distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) from .models.dpr import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, TFDPRContextEncoder, TFDPRPretrainedContextEncoder, TFDPRPretrainedQuestionEncoder, TFDPRPretrainedReader, TFDPRQuestionEncoder, TFDPRReader, ) from .models.electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) from .models.encoder_decoder import TFEncoderDecoderModel from .models.flaubert import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertPreTrainedModel, TFFlaubertWithLMHeadModel, ) from .models.funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) from .models.gpt2 import ( TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, TFGPT2DoubleHeadsModel, TFGPT2ForSequenceClassification, TFGPT2LMHeadModel, TFGPT2MainLayer, TFGPT2Model, TFGPT2PreTrainedModel, ) from .models.gptj import ( TFGPTJForCausalLM, TFGPTJForQuestionAnswering, TFGPTJForSequenceClassification, TFGPTJModel, TFGPTJPreTrainedModel, ) from .models.hubert import ( TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFHubertForCTC, TFHubertModel, TFHubertPreTrainedModel, ) from .models.led import TFLEDForConditionalGeneration, TFLEDModel, TFLEDPreTrainedModel from .models.longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) from .models.lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) from .models.marian import TFMarianModel, TFMarianMTModel, TFMarianPreTrainedModel from .models.mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel from .models.mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) from .models.mpnet import ( TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFMPNetForMaskedLM, TFMPNetForMultipleChoice, TFMPNetForQuestionAnswering, TFMPNetForSequenceClassification, TFMPNetForTokenClassification, TFMPNetMainLayer, TFMPNetModel, TFMPNetPreTrainedModel, ) from .models.mt5 import TFMT5EncoderModel, TFMT5ForConditionalGeneration, TFMT5Model from .models.openai import ( TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTForSequenceClassification, TFOpenAIGPTLMHeadModel, TFOpenAIGPTMainLayer, TFOpenAIGPTModel, TFOpenAIGPTPreTrainedModel, ) from .models.pegasus import TFPegasusForConditionalGeneration, TFPegasusModel, TFPegasusPreTrainedModel from .models.rag import TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration from .models.rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) from .models.roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) from .models.roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) from .models.speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeech2TextForConditionalGeneration, TFSpeech2TextModel, TFSpeech2TextPreTrainedModel, ) from .models.t5 import ( TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST, TFT5EncoderModel, TFT5ForConditionalGeneration, TFT5Model, TFT5PreTrainedModel, ) from .models.tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) from .models.transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) from .models.vision_encoder_decoder import TFVisionEncoderDecoderModel from .models.vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel from .models.vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel from .models.wav2vec2 import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWav2Vec2ForCTC, TFWav2Vec2Model, TFWav2Vec2PreTrainedModel, ) from .models.xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) from .models.xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, ) from .models.xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) # Optimization from .optimization_tf import AdamWeightDecay, GradientAccumulator, WarmUp, create_optimizer # Trainer from .trainer_tf import TFTrainer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: # Import the same objects as dummies to get them in the namespace. # They will raise an import error if the user tries to instantiate / use them. from .utils.dummy_flax_objects import * else: from .generation_flax_logits_process import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessor, FlaxLogitsProcessorList, FlaxLogitsWarper, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) from .modeling_flax_utils import FlaxPreTrainedModel # Flax model imports from .models.albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) from .models.auto import ( FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_MASKED_LM_MAPPING, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, FLAX_MODEL_FOR_PRETRAINING_MAPPING, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING, FLAX_MODEL_MAPPING, FlaxAutoModel, FlaxAutoModelForCausalLM, FlaxAutoModelForImageClassification, FlaxAutoModelForMaskedLM, FlaxAutoModelForMultipleChoice, FlaxAutoModelForNextSentencePrediction, FlaxAutoModelForPreTraining, FlaxAutoModelForQuestionAnswering, FlaxAutoModelForSeq2SeqLM, FlaxAutoModelForSequenceClassification, FlaxAutoModelForTokenClassification, FlaxAutoModelForVision2Seq, ) from .models.bart import ( FlaxBartDecoderPreTrainedModel, FlaxBartForCausalLM, FlaxBartForConditionalGeneration, FlaxBartForQuestionAnswering, FlaxBartForSequenceClassification, FlaxBartModel, FlaxBartPreTrainedModel, ) from .models.beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) from .models.bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) from .models.big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, FlaxBigBirdPreTrainedModel, ) from .models.blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) from .models.blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) from .models.clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) from .models.distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) from .models.electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) from .models.encoder_decoder import FlaxEncoderDecoderModel from .models.gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model, FlaxGPT2PreTrainedModel from .models.gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel from .models.gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel from .models.marian import FlaxMarianModel, FlaxMarianMTModel, FlaxMarianPreTrainedModel from .models.mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) from .models.mt5 import FlaxMT5ForConditionalGeneration, FlaxMT5Model from .models.pegasus import FlaxPegasusForConditionalGeneration, FlaxPegasusModel, FlaxPegasusPreTrainedModel from .models.roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) from .models.roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) from .models.speech_encoder_decoder import FlaxSpeechEncoderDecoderModel from .models.t5 import FlaxT5ForConditionalGeneration, FlaxT5Model, FlaxT5PreTrainedModel from .models.vision_encoder_decoder import FlaxVisionEncoderDecoderModel from .models.vision_text_dual_encoder import FlaxVisionTextDualEncoderModel from .models.vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel from .models.wav2vec2 import ( FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining, FlaxWav2Vec2Model, FlaxWav2Vec2PreTrainedModel, ) from .models.xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel from .models.xlm_roberta import ( FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, ) else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, extra_objects={"__version__": __version__}, ) if not is_tf_available() and not is_torch_available() and not is_flax_available(): logger.warning( "None of PyTorch, TensorFlow >= 2.0, or Flax have been found. " "Models won't be available and only tokenizers, configuration " "and file/data utilities can be used." )
38.773955
119
0.659787
120358f90748f7e1278719ae6b249462e66990ff
156
py
Python
config.py
infrub/Tensordot
f72ed978ba30e231dd393e043f65c2e1664ca4a5
[ "MIT" ]
7
2016-08-18T20:59:47.000Z
2020-05-02T09:25:16.000Z
config.py
infrub/Tensordot
f72ed978ba30e231dd393e043f65c2e1664ca4a5
[ "MIT" ]
8
2016-02-08T07:21:05.000Z
2019-06-29T07:11:38.000Z
config.py
infrub/Tensordot
f72ed978ba30e231dd393e043f65c2e1664ca4a5
[ "MIT" ]
7
2016-06-07T10:20:20.000Z
2022-02-23T07:10:13.000Z
import logging # Default parameters STYLE = "numpy" COMMENT_PREFIX = "#" NUMPY = "np" INDENT = " " LOGGING_LEVEL = logging.INFO DEFAULT_BOND_DIM = 10
13
28
0.698718
ff73f005721feb9dd86785bb7153b95760528b2e
3,167
py
Python
limix/scripts/iset_analyze.py
fpcasale/limix
a6bc2850f243fe779991bb53a24ddbebe0ab74d2
[ "Apache-2.0" ]
null
null
null
limix/scripts/iset_analyze.py
fpcasale/limix
a6bc2850f243fe779991bb53a24ddbebe0ab74d2
[ "Apache-2.0" ]
null
null
null
limix/scripts/iset_analyze.py
fpcasale/limix
a6bc2850f243fe779991bb53a24ddbebe0ab74d2
[ "Apache-2.0" ]
null
null
null
def entry_point(): import os import time from optparse import OptionParser import numpy as np import pandas as pd import scipy as sp from ..data import BedReader from ..iSet.iset import fit_iSet from ..util import unique_variants as f_uni_variants parser = OptionParser() parser.add_option("--bfile", dest='bfile', type=str, default=None) # parser.add_option("--cfile", dest='cfile', type=str, default=None) parser.add_option("--pfile", dest='pfile', type=str, default=None) parser.add_option("--wfile", dest='wfile', type=str, default=None) parser.add_option("--ffile", dest='ffile', type=str, default=None) parser.add_option("--ifile", dest='ifile', type=str, default=None) parser.add_option("--resdir", dest='resdir', type=str, default='./') # start window, end window and permutations parser.add_option("--n_perms", type=int, default=10) parser.add_option("--start_wnd", dest='i0', type=int, default=None) parser.add_option("--end_wnd", dest='i1', type=int, default=None) parser.add_option("--factr", dest='factr', type=float, default=1e7) parser.add_option( "--unique_variants", action="store_true", dest='unique_variants', default=False) parser.add_option( "--standardize", action="store_true", dest='standardize', default=False) (options, args) = parser.parse_args() print('importing data') F = sp.loadtxt(options.ffile + '.fe') Y = sp.loadtxt(options.pfile + '.phe') if len(Y.shape) == 1: Y = Y[:, sp.newaxis] sets = pd.DataFrame.from_csv( options.wfile + '.wnd', sep='\t', index_col=None) reader = BedReader(options.bfile) i0 = 1 if options.i0 is None else options.i0 i1 = sets.shape[0] if options.i1 is None else options.i1 df = pd.DataFrame() df0 = pd.DataFrame() if options.ifile is None: Ie = None else: Ie = sp.loadtxt(options.ifile + '.ind').flatten() == 1 res_dir = options.resdir if not os.path.exists(res_dir): os.makedirs(res_dir) n_digits = len(str(sets.shape[0])) fname = str(i0).zfill(n_digits) fname += '_' + str(i1).zfill(n_digits) resfile = os.path.join(res_dir, fname) for wnd_i in range(i0, i1): t0 = time.time() _set = sets.ix[wnd_i] print('.. set %d: %s' % (wnd_i, _set['setid'])) Xr = reader.getGenotypes( pos_start=_set['start'], pos_end=_set['end'], chrom=_set['chrom'], impute=True) if options.unique_variants: Xr = f_uni_variants(Xr) if options.standardize: Xr -= Xr.mean(0) Xr /= Xr.std(0) else: # encoding minor as 0 p = 0.5 * Xr.mean(0) Xr[:, p > 0.5] = 2 - Xr[:, p > 0.5] Xr /= np.sqrt(Xr.shape[1]) _df, _df0 = fit_iSet(Y, F=F, Xr=Xr, Ie=Ie, n_nulls=10) df = df.append(_df) df0 = df0.append(_df0) print('Elapsed:', time.time() - t0) df.to_csv(resfile + '.iSet.real') df0.to_csv(resfile + '.iSet.perm')
29.877358
72
0.587307
26300fbd3cfa17832d744010a5327d419aa62be4
582
py
Python
UPD/app.py
RIDCorix/UPD
8694d119181a4afffafbfbab510f697399c1ea13
[ "MIT" ]
null
null
null
UPD/app.py
RIDCorix/UPD
8694d119181a4afffafbfbab510f697399c1ea13
[ "MIT" ]
null
null
null
UPD/app.py
RIDCorix/UPD
8694d119181a4afffafbfbab510f697399c1ea13
[ "MIT" ]
null
null
null
from PySide6.QtCore import QFile, QTextStream from PySide6.QtWidgets import QApplication, QWidget import sys import threading from extension.utils import get_tools from peewee import * get_tools() from file_cabinet.models import Drawer app = QApplication(sys.argv) from main.ui import MainWindow from main.settings import tool window = MainWindow() window.show() from upd.conf import settings rendered = open("stylesheet/normal.qss", "r").read().format(**settings.to_dict()) app.setStyleSheet(rendered) t = threading.Thread(target=window.load) t.start() sys.exit(app.exec())
21.555556
81
0.786942
5633c380a7dc2a7ca5b35c3366ecc17a080bb1f9
3,120
py
Python
lecture5/lecture5/lecture5/settings.py
CSUChico-CINS465/CSCI465-Fall2016-Lecture-Examples
332df2821aef74c6522c53278e28ceb27cbe2fe6
[ "MIT" ]
null
null
null
lecture5/lecture5/lecture5/settings.py
CSUChico-CINS465/CSCI465-Fall2016-Lecture-Examples
332df2821aef74c6522c53278e28ceb27cbe2fe6
[ "MIT" ]
null
null
null
lecture5/lecture5/lecture5/settings.py
CSUChico-CINS465/CSCI465-Fall2016-Lecture-Examples
332df2821aef74c6522c53278e28ceb27cbe2fe6
[ "MIT" ]
null
null
null
""" Django settings for lecture5 project. Generated by 'django-admin startproject' using Django 1.10.1. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '17z=%xm7!wgdx)dukklj5vx0jh%c)%o2vf!4$6)im2!s0u0-7l' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'helloworld', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'lecture5.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'lecture5.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/'
25.57377
91
0.696474
58fabe882b4723cd93f0ad8d315ef29264126180
1,596
py
Python
meeting/api.py
Siddhant6078/meeting
6f602f3c5fa68b4aaed863f321639e356238b10e
[ "MIT" ]
null
null
null
meeting/api.py
Siddhant6078/meeting
6f602f3c5fa68b4aaed863f321639e356238b10e
[ "MIT" ]
null
null
null
meeting/api.py
Siddhant6078/meeting
6f602f3c5fa68b4aaed863f321639e356238b10e
[ "MIT" ]
null
null
null
import frappe from frappe import _ from frappe.utils import nowdate, add_days @frappe.whitelist() def send_invitation_emails(meeting): meeting = frappe.get_doc("Meeting",meeting) meeting.check_permission('email') if meeting.status == 'Planned': frappe.sendmail( recipients = [d.attendee for d in meeting.attendees], sender = frappe.session.user, subject = meeting.title, message = meeting.invitation_message, reference_doctype = meeting.doctype, reference_name = meeting.name ) meeting.status = 'Invitation Sent' meeting.save() frappe.msgprint(_("Invitation Sent")) else: frappe.msgprint(_("Meeting Status must be 'Planned'")) @frappe.whitelist() def get_meetings(start, end): if not frappe.has_permission("Meeting","read"): raise frappe.PermissionError return frappe.db.sql("""select timestamp(date, from_time) as start, timestamp(date, to_time) as end, name, title, status, 0 as all_day from `tabMeeting` where `date` between %(start)s and %(end)s""",{ "start": start, "end": end }, as_dict = True, debug = 1) def make_orientation_meeting(doc, method): """Create an orientation meeting when a new User is added""" meeting = frappe.get_doc({ "doctype": "Meeting", "title": "Orientation for {0}".format(doc.first_name), "date": add_days(nowdate(),1), "from_time": "09:00", "to_time": "09:30", "attendees": [{ "attendee" : doc.name }] }) # System Manager might not have permission to create a Meeting meeting.flags.ignore_permissions = True meeting.insert() frappe.msgprint(_("Orientation meeting created"))
26.6
63
0.708647
a6a06f44c7356b831c43a7d61b3e45d00997ff10
4,049
py
Python
pictures/settings.py
Tururocks101/Gallery
90826d38505b31a89e7fad65ac7fb9fd70c9798f
[ "MIT" ]
1
2020-12-10T20:40:36.000Z
2020-12-10T20:40:36.000Z
pictures/settings.py
Tururocks101/Gallery
90826d38505b31a89e7fad65ac7fb9fd70c9798f
[ "MIT" ]
7
2021-03-30T14:09:09.000Z
2021-09-22T19:32:47.000Z
pictures/settings.py
Tururocks101/Gallery
90826d38505b31a89e7fad65ac7fb9fd70c9798f
[ "MIT" ]
2
2020-10-01T15:21:24.000Z
2022-03-27T12:38:48.000Z
""" Django settings for gallery project. Generated by 'django-admin startproject' using Django 3.0.8. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os import django_heroku import dj_database_url from decouple import config,Csv # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) MODE = config('MODE', default='dev') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', default=False, cast=bool) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) # Application definition INSTALLED_APPS = [ 'picha.apps.PichaConfig', 'bootstrap4', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'gallery.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'gallery.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases if config('MODE')=='dev': DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': '', } } else: DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static'), ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') django_heroku.settings(locals())
27.174497
91
0.6898
7b888c78e9013d97c634028ab81ce2517a032cf9
9,581
py
Python
build/lib/cryspy_editor/widgets/interactive_graph_mod_mono.py
ikibalin/cryspy_editor
dbc84518c8e0de61185f9c66586ccc07af16350c
[ "MIT" ]
null
null
null
build/lib/cryspy_editor/widgets/interactive_graph_mod_mono.py
ikibalin/cryspy_editor
dbc84518c8e0de61185f9c66586ccc07af16350c
[ "MIT" ]
null
null
null
build/lib/cryspy_editor/widgets/interactive_graph_mod_mono.py
ikibalin/cryspy_editor
dbc84518c8e0de61185f9c66586ccc07af16350c
[ "MIT" ]
null
null
null
__author__ = 'ikibalin' __version__ = "2019_09_10" import os import sys import numpy from PyQt5 import QtWidgets from PyQt5 import QtGui from PyQt5 import QtCore import matplotlib import matplotlib.backends.backend_qt5agg import matplotlib.figure import matplotlib.pyplot class cwind_central(QtWidgets.QMainWindow): def __init__(self, fname): super(cwind_central, self).__init__() self.title = "program 'Graph'" self.setWindowTitle(self.title) widg_central = cwidg_central(fname) self.setCentralWidget(widg_central) self.show() class cwidg_central(QtWidgets.QWidget): def __init__(self, ffig_full = None): super(cwidg_central, self).__init__() self.init_layout_central(ffig_full) self.setLayout(self.layout_central) self.ffig_full = ffig_full def init_layout_central(self, ffig_full): lay_main = QtWidgets.QHBoxLayout() self.graph = Graph(self, width=5, height=4) lay_1 = QtWidgets.QVBoxLayout() _b_gm = QtWidgets.QPushButton("values to clipboard") _b_gm.clicked.connect(self.give_values) lay_1.addStretch(1) lay_1.addWidget(_b_gm) lay_main.addWidget(self.graph) lay_main.addLayout(lay_1) self.layout_central = lay_main def plot_file(self, x, y_exp, y_sig=None): """ Temporary file. It will be deleted """ self.graph.ax_pri.cla() self.graph.data_x = x self.graph.data_y = y_exp self.graph.data_sy = y_sig self.graph.set_data_to_graph() def plot_lines(self, x, l_y=None, l_y_sig=None): self.graph.ax_pri.cla() self.graph.data_x = x if l_y is not None: self.graph.data_l_y = l_y if ((l_y_sig is not None) & (self.graph.data_l_y is not None)): if (len(l_y_sig) == len(self.graph.data_l_y)): self.graph.data_l_y_sig = l_y_sig self.graph.set_data_to_graph() def give_values(self): val_x = self.graph.data_x val_y = self.graph.data_y val_sy = self.graph.data_sy sval_x = [f"{_:.3f}" for _ in val_x] sval_y = [" None" if (numpy.isnan(_) | (_ is None)) else f"{_:.3f}" for _ in val_y] if val_sy is None: sval_sy = ["" for _ in val_y] else: sval_sy = [" None" if (numpy.isnan(_) | (_ is None)) else f"{_:.3f}" for _ in val_sy] ls_out = [f"{_1:} {_2:} {_3:}" for _1, _2, _3 in zip(sval_x, sval_y, sval_sy)] cb = QtWidgets.QApplication.clipboard() cb.clear(mode=cb.Clipboard) cb.setText("\n".join(ls_out), mode=cb.Clipboard) class Graph(matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg): def __init__(self, parent=None, width=5, height=4, dpi=100): fig = matplotlib.figure.Figure(figsize=(width, height), dpi = dpi) fig.subplots_adjust(left = 0.07, right = 0.97, top = 0.97, bottom = 0.07, wspace = 0.0, hspace = 0.0) super(Graph, self).__init__(fig) self.info_press = (False, False) self.data_x = [] self.data_y = [] self.data_sy = [] self.data_l_y = [] self.data_l_y_sig = [] self.control = parent self.figure = fig self.setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) self.ax_pri = fig.add_subplot(111) fig.canvas.mpl_connect("button_press_event", self.onclick) def set_data_to_graph(self): col_1 = "#000000" #self.ax_pri.plot(self.data_x, self.data_y, "-") _x = self.data_x _y = self.data_y _y_sig = self.data_sy l_y = self.data_l_y l_y_sig = self.data_l_y_sig if (len(l_y) != 0): if (len(l_y)==len(l_y_sig)): for _y, _y_sig in zip(l_y, l_y_sig): if _y_sig is None: self.ax_pri.plot(_x, _y, "k-", linewidth=1.0) else: self.ax_pri.errorbar(_x, _y, yerr = _y_sig, ecolor = col_1, fmt='o', color=col_1, linewidth = 0.5) else: for _y in l_y: self.ax_pri.plot(_x, _y, "k-", linewidth=1.0) else: if _y_sig is None: self.ax_pri.plot(_x, _y, "k-", linewidth=1.0) else: self.ax_pri.plot(_x, _y_sig, "b-", linewidth=1.0) #self.ax_pri.errorbar(self.data_x, self.data_y, yerr = self.data_sy, ecolor = col_1, fmt='o', color=col_1, linewidth = 0.5) self.draw() def onclick(self, event): if event.button == 3: #print(event.xdata, event.ydata) #self.data_x.append(event.xdata) #self.data_y.append(event.ydata) #self.set_data_to_graph() if self.info_press == (False, False): self.info_press = (True, False) self.xlim = [event.xdata] self.ylim = [event.ydata] elif self.info_press == (True, False): self.info_press = (True, True) self.xlim.append(event.xdata) self.ylim.append(event.ydata) if self.info_press == (True, True): self.info_press = (False, False) xlim = (min(self.xlim), max(self.xlim)) ylim = (min(self.ylim), max(self.ylim)) self.ax_pri.set_xlim(xlim) self.ax_pri.set_ylim(ylim) self.xlim = [] self.ylim = [] self.draw() elif event.button == 2: self.info_press == (False, False) x_min = min(self.data_x) x_max = max(self.data_x) if len(self.data_l_y) != 0: l_y_min, l_y_max = [], [] for _y in self.data_l_y: if isinstance(_y, numpy.ndarray): _y_min = min(_y[numpy.logical_not(numpy.isnan(_y))]) _y_max = max(_y[numpy.logical_not(numpy.isnan(_y))]) else: _y_min = min([_1 for _1 in _y if _1 is not None]) _y_max = max([_1 for _1 in _y if _1 is not None]) l_y_min.append(_y_min) l_y_max.append(_y_max) y_min = min(l_y_min) y_max = max(l_y_max) else: y_min = min(self.data_y) y_max = max(self.data_y) x_diff = x_max - x_min y_diff = y_max - y_min xy_min = min([x_min, y_min]) xy_max = max([x_max, y_max]) xy_diff = xy_max - xy_min xlim = (xy_min - 0.05*xy_diff, xy_max + 0.05*xy_diff) x_lim = (x_min - 0.05*x_diff, x_max + 0.05*x_diff) y_lim = (y_min - 0.05*y_diff, y_max + 0.05*y_diff) self.ax_pri.set_xlim(x_lim) self.ax_pri.set_ylim(y_lim) self.xlim = [] self.ylim = [] self.draw() else: self.info_press == (False, False) self.xlim = [] self.ylim = [] if __name__ == '__main__': app = QtWidgets.QApplication(sys.argv) fname = "NaCaAlF_exp.out" fname = "oHoTi_p.dat" ex = cwind_central(fname) sys.exit(app.exec_()) """ def clean_fig(self): self.ldata = [] self.ldata_simple = [] self.pcanvas.figure.clf() self.pcanvas.make_plot() self.pcanvas.draw() def replot_fig(self): lhelp=['#005555','#BB5555','#550055','#55BB55','#555500','#5555BB'] for iddata, ddata in enumerate(self.ldata_simple): lflags = [ (isinstance(hh1,(float, int))&isinstance(hh2,(float, int))&isinstance(hh3,(float, int))&isinstance(hh4,(float, int))) for hh1,hh2,hh3,hh4 in zip(ddata["IntUP"],ddata["sIntUP"],ddata["IntDOWN"],ddata["sIntDOWN"])] lx = [hh for hh, flag in zip(ddata["ttheta"], lflags) if flag] li_u_exp = [hh for hh, flag in zip(ddata["IntUP"], lflags) if flag] lsi_u_exp = [hh for hh, flag in zip(ddata["sIntUP"], lflags) if flag] li_d_exp = [hh for hh, flag in zip(ddata["IntDOWN"], lflags) if flag] lsi_d_exp = [hh for hh, flag in zip(ddata["sIntDOWN"], lflags) if flag] #li_u_exp = ddata["IntUP"] #lsi_u_exp = ddata["sIntUP"] #li_d_exp = ddata["IntDOWN"] #lsi_d_exp = ddata["sIntDOWN"] ldiff_exp = [hh1-hh2 for hh1, hh2 in zip(li_u_exp, li_d_exp)] lsdiff_exp = [(hh1**2+hh2**2)**0.5 for hh1, hh2 in zip(lsi_u_exp, lsi_d_exp)] lcolors=[lhelp[iddata] for hh in range(3)] self.pcanvas.plot(lx,[li_u_exp,lsi_u_exp,None],[li_d_exp,lsi_d_exp,None],[ldiff_exp,lsdiff_exp,None],None,lcolors) xmin = float(self.le_xmin.text()) xmax = float(self.le_xmax.text()) ymin = float(self.le_ymin.text()) ymax = float(self.le_ymax.text()) self.pcanvas.set_limits(xmin,xmax,ymin,ymax) self.pcanvas.draw() """
36.568702
235
0.530007
e88136b2f099d19ba422b16ae59f18bde23665b8
4,177
py
Python
histomicstk/features/compute_gradient_features.py
Leengit/HistomicsTK
7105b8341647a465f5fa12c3bd4bf181cb0beed7
[ "Apache-2.0" ]
null
null
null
histomicstk/features/compute_gradient_features.py
Leengit/HistomicsTK
7105b8341647a465f5fa12c3bd4bf181cb0beed7
[ "Apache-2.0" ]
null
null
null
histomicstk/features/compute_gradient_features.py
Leengit/HistomicsTK
7105b8341647a465f5fa12c3bd4bf181cb0beed7
[ "Apache-2.0" ]
null
null
null
import numpy as np def compute_gradient_features(im_label, im_intensity, num_hist_bins=10, rprops=None): """Calculates gradient features from an intensity image. Parameters ---------- im_label : array_like A labeled mask image wherein intensity of a pixel is the ID of the object it belongs to. Non-zero values are considered to be foreground objects. im_intensity : array_like Intensity image num_hist_bins: int, optional Number of bins used to computed the gradient histogram of an object. Histogram is used to energy and entropy features. Default is 10. rprops : output of skimage.measure.regionprops, optional rprops = skimage.measure.regionprops( im_label ). If rprops is not passed then it will be computed inside which will increase the computation time. Returns ------- fdata: pandas.DataFrame A pandas dataframe containing the gradient features listed below for each object/label. Notes ----- List of gradient features computed by this function: Gradient.Mag.Mean : float Mean of gradient data. Gradient.Mag.Std : float Standard deviation of gradient data. Gradient.Mag.Skewness : float Skewness of gradient data. Value is 0 when all values are equal. Gradient.Mag.Kurtosis : float Kurtosis of gradient data. Value is -3 when all values are equal. Gradient.Mag.HistEnergy : float Energy of the gradient magnitude histogram of object pixels Gradient.Mag.HistEnergy : float Entropy of the gradient magnitude histogram of object pixels. Gradient.Canny.Sum : float Sum of canny filtered gradient data. Gradient.Canny.Mean : float Mean of canny filtered gradient data. References ---------- .. [#] Daniel Zwillinger and Stephen Kokoska. "CRC standard probability and statistics tables and formulae," Crc Press, 1999. """ import pandas as pd import scipy.stats from skimage.feature import canny from skimage.measure import regionprops # List of feature names feature_list = [ 'Gradient.Mag.Mean', 'Gradient.Mag.Std', 'Gradient.Mag.Skewness', 'Gradient.Mag.Kurtosis', 'Gradient.Mag.HistEntropy', 'Gradient.Mag.HistEnergy', 'Gradient.Canny.Sum', 'Gradient.Canny.Mean', ] # compute object properties if not provided if rprops is None: rprops = regionprops(im_label) # create pandas data frame containing the features for each object numFeatures = len(feature_list) numLabels = len(rprops) fdata = pd.DataFrame(np.zeros((numLabels, numFeatures)), columns=feature_list) Gx, Gy = np.gradient(im_intensity) diffG = np.sqrt(Gx**2 + Gy**2) cannyG = canny(im_intensity) for i in range(numLabels): # get gradients of object pixels pixelGradients = np.sort( diffG[rprops[i].coords[:, 0], rprops[i].coords[:, 1]] ) # compute mean fdata.at[i, 'Gradient.Mag.Mean'] = np.mean(pixelGradients) # compute standard deviation fdata.at[i, 'Gradient.Mag.Std'] = np.std(pixelGradients) # compute skewness fdata.at[i, 'Gradient.Mag.Skewness'] = scipy.stats.skew(pixelGradients) # compute kurtosis fdata.at[i, 'Gradient.Mag.Kurtosis'] = \ scipy.stats.kurtosis(pixelGradients) # compute intensity histogram hist, bins = np.histogram(pixelGradients, bins=num_hist_bins) prob = hist/np.sum(hist, dtype=np.float32) # compute entropy fdata.at[i, 'Gradient.Mag.HistEntropy'] = scipy.stats.entropy(prob) # compute energy fdata.at[i, 'Gradient.Mag.HistEnergy'] = np.sum(prob**2) bw_canny = cannyG[rprops[i].coords[:, 0], rprops[i].coords[:, 1]] canny_sum = np.sum(bw_canny).astype('float') fdata.at[i, 'Gradient.Canny.Sum'] = canny_sum fdata.at[i, 'Gradient.Canny.Mean'] = canny_sum / len(pixelGradients) return fdata
31.406015
79
0.644721
baa2716054483b4fd526567d27e2bc671a4bd40b
777
py
Python
forum/urls.py
darkun7/Anonim-Forum
515d73535c7156e87adee08b39534b6d36f8162e
[ "MIT" ]
null
null
null
forum/urls.py
darkun7/Anonim-Forum
515d73535c7156e87adee08b39534b6d36f8162e
[ "MIT" ]
null
null
null
forum/urls.py
darkun7/Anonim-Forum
515d73535c7156e87adee08b39534b6d36f8162e
[ "MIT" ]
null
null
null
from django.urls import path from . import views urlpatterns=[ path('', views.home, name="home"), path('thread/', views.post, name="post"), path('thread/create/', views.createPost, name="createpost"), path('thread/show/<str:id>', views.showPost, name="showpost"), path('thread/edit/<str:id>', views.editPost, name="editpost"), path('thread/delete/<str:id>', views.deletePost, name="deletepost"), path('komentar/create/<str:thread_id>', views.createKomentar, name="createkomentar"), path('komentar/edit/<str:thread_id>/<str:id>', views.editKomentar, name="editkomentar"), path('komentar/delete/<str:thread_id>/<str:id>', views.deleteKomentar, name="deletekomentar"), path('author/<str:penulis>', views.authorThreads, name="author") ]
43.166667
98
0.687259
0625e50f9a518489a144bb85e6ef1dd7a10e9bf5
282
py
Python
HACKEREARTH/Data Structures/Arrays/1-D/chargedUpArray.py
belikesayantan/daily-problem-solving
f6960edeb151838f00c9444d8232b99b48769784
[ "MIT" ]
null
null
null
HACKEREARTH/Data Structures/Arrays/1-D/chargedUpArray.py
belikesayantan/daily-problem-solving
f6960edeb151838f00c9444d8232b99b48769784
[ "MIT" ]
2
2021-08-24T08:45:10.000Z
2021-11-11T06:53:12.000Z
HACKEREARTH/Data Structures/Arrays/1-D/chargedUpArray.py
belikesayantan/daily-problem-solving
f6960edeb151838f00c9444d8232b99b48769784
[ "MIT" ]
null
null
null
def solve (A,N): sum = 0 for i in range(N): if A[i] >= pow(2, N) / 2: sum += A[i] return int(sum % 1000000007) T = int(input()) for _ in range(T): N = int(input()) A = [int(x) for x in input().split()] out_ = solve(A,N) print (out_)
20.142857
41
0.475177
50b28c95c0a694178abdcec113d25cddf565d45c
1,475
py
Python
test/test_base.py
yangxuan0261/pyecharts
31cbd4dcd8c77988d1678a05b7f3bd0d845160bd
[ "MIT" ]
null
null
null
test/test_base.py
yangxuan0261/pyecharts
31cbd4dcd8c77988d1678a05b7f3bd0d845160bd
[ "MIT" ]
null
null
null
test/test_base.py
yangxuan0261/pyecharts
31cbd4dcd8c77988d1678a05b7f3bd0d845160bd
[ "MIT" ]
null
null
null
#!/usr/bin/env python #coding=utf-8 from __future__ import unicode_literals import json from pyecharts import Bar def test_embed_option(): # bar_0 title = "柱状图数据堆叠示例" attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] v1 = [5, 20, 36, 10, 75, 90] v2 = [10, 25, 8, 60, 20, 80] bar = Bar(title) bar.add("商家A", attr, v1, is_stack=True) bar.add("商家B", attr, v2, is_stack=True) html = bar.render_embed() json_encoded_title = json.dumps(title) assert json_encoded_title in html assert "<html>" not in html assert "<body>" not in html def test_numpy_array(): import numpy as np title = "柱状图数据堆叠示例" attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] v1 = np.array([5, 20, 36, 10, 75, 90]) bar = Bar(title) bar.add("商家A", attr, v1, is_stack=True) html = bar.render_embed() json_encoded_title = json.dumps(title) assert json_encoded_title in html def test_pandas_dataframe(): import pandas as pd import numpy as np title = 'Bar chart' index = pd.date_range('3/8/2017', periods=6, freq='M') df1 = pd.DataFrame(np.random.randn(6), index=index) df2 = pd.DataFrame(np.random.randn(6), index=index) dtvalue1 = [i[0] for i in df1.values] dtvalue2 = [i[0] for i in df2.values] bar = Bar(title, 'Profit and loss situation') bar.add('profit', df1.index, dtvalue1) bar.add('loss', df2.index, dtvalue2) html = bar.render_embed() assert title in html
25.877193
58
0.623729
b6c2f30fcf9226c3e38a620a54ca3f340d89c63c
2,849
py
Python
examples/scroll-text-in-my-font.py
teknolog2000/scroll-phat
c5eaf447944deb9b1548e4839751afbe0e009245
[ "MIT" ]
115
2015-12-04T13:29:34.000Z
2021-11-11T14:17:07.000Z
examples/scroll-text-in-my-font.py
PDServices/scroll-phat
9236c7c6359ed0b23721a8229bdf0211a49e540e
[ "MIT" ]
63
2015-11-28T22:30:20.000Z
2022-02-09T13:10:59.000Z
examples/scroll-text-in-my-font.py
PDServices/scroll-phat
9236c7c6359ed0b23721a8229bdf0211a49e540e
[ "MIT" ]
76
2015-11-26T22:29:05.000Z
2022-01-26T18:19:55.000Z
#!/usr/bin/env python import os import sys import time import scrollphat # ----------------------------------------------------------------------------- # This example uses a custome font set, read from # the image file my-font, which has the lower-case # letters replaced with symbols. # For example: # a - tick # b - cross # f - flag # h - love heart # j - smiley face # u,d,l,r - arrows (up down left and right respectively) # ------------------------------------------------------------------------------- try: from PIL import Image except ImportError: exit("This script requires the pillow module\nInstall with: sudo pip install pillow") # ----------------------------------------------------------------------------- # This funtion will read the supplied image # and convert it into font data for Scoll pHAT. # The expect format of the image is as follows: # Each font image contains a 16 x 6 table of squares, # one for each ASCII character, starting with a space (0x20) and # incrementing from left to right. Each square is 6x6 box # boarding the 5x5 image of the individual characters. def convert_png2font(font_file): font = {} font_path = os.path.join(os.path.dirname(__file__), font_file) font_image = Image.open(font_path) char = 0x20 gridsize_x = 16 gridsize_y = 6 border = 1 for char_y in range(0, gridsize_y): for char_x in range(0, gridsize_x): char_bits = [] for x in range(0, 5): bits = 0 for y in range(0, 5): pixel = font_image.getpixel((border + (char_x * 6) + x, border + (char_y * 6) + y)) if pixel == 1: bits |= (1 << y) char_bits.append(bits) # remove all "empty" columns from the right of the character while len(char_bits) > 0 and char_bits[-1] == 0: char_bits.pop() font[char] = char_bits char += 1 return font # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Main program block # ----------------------------------------------------------------------------- scrollphat.set_brightness(2) scrollphat.set_rotate(True) scrollphat.load_font(convert_png2font('my-font.png')) if len(sys.argv) != 2: print(""" Usage: python scroll-text-in-my-font.py "MESSAGE" Press CTRL-C to exit! In this example the lettters are read from the "my-font.png" file, where lower-case letters are replaced with fun symbols and icons. """) sys.exit(0) scrollphat.write_string(sys.argv[1], 11) while True: try: scrollphat.scroll() time.sleep(0.1) except KeyboardInterrupt: scrollphat.clear() sys.exit(-1)
30.308511
103
0.525799
aa6eb3bef0eeef2d2f04e3870b9588b839b6ae02
14,525
py
Python
azure-mgmt-network/azure/mgmt/network/v2018_08_01/models/network_management_client_enums.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-network/azure/mgmt/network/v2018_08_01/models/network_management_client_enums.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-network/azure/mgmt/network/v2018_08_01/models/network_management_client_enums.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2019-06-17T22:18:23.000Z
2019-06-17T22:18:23.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from enum import Enum class IPAllocationMethod(str, Enum): static = "Static" dynamic = "Dynamic" class SecurityRuleProtocol(str, Enum): tcp = "Tcp" udp = "Udp" asterisk = "*" class SecurityRuleAccess(str, Enum): allow = "Allow" deny = "Deny" class SecurityRuleDirection(str, Enum): inbound = "Inbound" outbound = "Outbound" class RouteNextHopType(str, Enum): virtual_network_gateway = "VirtualNetworkGateway" vnet_local = "VnetLocal" internet = "Internet" virtual_appliance = "VirtualAppliance" none = "None" class PublicIPAddressSkuName(str, Enum): basic = "Basic" standard = "Standard" class IPVersion(str, Enum): ipv4 = "IPv4" ipv6 = "IPv6" class TransportProtocol(str, Enum): udp = "Udp" tcp = "Tcp" all = "All" class ApplicationGatewayProtocol(str, Enum): http = "Http" https = "Https" class ApplicationGatewayCookieBasedAffinity(str, Enum): enabled = "Enabled" disabled = "Disabled" class ApplicationGatewayBackendHealthServerHealth(str, Enum): unknown = "Unknown" up = "Up" down = "Down" partial = "Partial" draining = "Draining" class ApplicationGatewaySkuName(str, Enum): standard_small = "Standard_Small" standard_medium = "Standard_Medium" standard_large = "Standard_Large" waf_medium = "WAF_Medium" waf_large = "WAF_Large" standard_v2 = "Standard_v2" waf_v2 = "WAF_v2" class ApplicationGatewayTier(str, Enum): standard = "Standard" waf = "WAF" standard_v2 = "Standard_v2" waf_v2 = "WAF_v2" class ApplicationGatewaySslProtocol(str, Enum): tl_sv1_0 = "TLSv1_0" tl_sv1_1 = "TLSv1_1" tl_sv1_2 = "TLSv1_2" class ApplicationGatewaySslPolicyType(str, Enum): predefined = "Predefined" custom = "Custom" class ApplicationGatewaySslPolicyName(str, Enum): app_gw_ssl_policy20150501 = "AppGwSslPolicy20150501" app_gw_ssl_policy20170401 = "AppGwSslPolicy20170401" app_gw_ssl_policy20170401_s = "AppGwSslPolicy20170401S" class ApplicationGatewaySslCipherSuite(str, Enum): tls_ecdhe_rsa_with_aes_256_cbc_sha384 = "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384" tls_ecdhe_rsa_with_aes_128_cbc_sha256 = "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256" tls_ecdhe_rsa_with_aes_256_cbc_sha = "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA" tls_ecdhe_rsa_with_aes_128_cbc_sha = "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA" tls_dhe_rsa_with_aes_256_gcm_sha384 = "TLS_DHE_RSA_WITH_AES_256_GCM_SHA384" tls_dhe_rsa_with_aes_128_gcm_sha256 = "TLS_DHE_RSA_WITH_AES_128_GCM_SHA256" tls_dhe_rsa_with_aes_256_cbc_sha = "TLS_DHE_RSA_WITH_AES_256_CBC_SHA" tls_dhe_rsa_with_aes_128_cbc_sha = "TLS_DHE_RSA_WITH_AES_128_CBC_SHA" tls_rsa_with_aes_256_gcm_sha384 = "TLS_RSA_WITH_AES_256_GCM_SHA384" tls_rsa_with_aes_128_gcm_sha256 = "TLS_RSA_WITH_AES_128_GCM_SHA256" tls_rsa_with_aes_256_cbc_sha256 = "TLS_RSA_WITH_AES_256_CBC_SHA256" tls_rsa_with_aes_128_cbc_sha256 = "TLS_RSA_WITH_AES_128_CBC_SHA256" tls_rsa_with_aes_256_cbc_sha = "TLS_RSA_WITH_AES_256_CBC_SHA" tls_rsa_with_aes_128_cbc_sha = "TLS_RSA_WITH_AES_128_CBC_SHA" tls_ecdhe_ecdsa_with_aes_256_gcm_sha384 = "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384" tls_ecdhe_ecdsa_with_aes_128_gcm_sha256 = "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256" tls_ecdhe_ecdsa_with_aes_256_cbc_sha384 = "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384" tls_ecdhe_ecdsa_with_aes_128_cbc_sha256 = "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256" tls_ecdhe_ecdsa_with_aes_256_cbc_sha = "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA" tls_ecdhe_ecdsa_with_aes_128_cbc_sha = "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA" tls_dhe_dss_with_aes_256_cbc_sha256 = "TLS_DHE_DSS_WITH_AES_256_CBC_SHA256" tls_dhe_dss_with_aes_128_cbc_sha256 = "TLS_DHE_DSS_WITH_AES_128_CBC_SHA256" tls_dhe_dss_with_aes_256_cbc_sha = "TLS_DHE_DSS_WITH_AES_256_CBC_SHA" tls_dhe_dss_with_aes_128_cbc_sha = "TLS_DHE_DSS_WITH_AES_128_CBC_SHA" tls_rsa_with_3_des_ede_cbc_sha = "TLS_RSA_WITH_3DES_EDE_CBC_SHA" class ApplicationGatewayCustomErrorStatusCode(str, Enum): http_status403 = "HttpStatus403" http_status502 = "HttpStatus502" class ApplicationGatewayRequestRoutingRuleType(str, Enum): basic = "Basic" path_based_routing = "PathBasedRouting" class ApplicationGatewayRedirectType(str, Enum): permanent = "Permanent" found = "Found" see_other = "SeeOther" temporary = "Temporary" class ApplicationGatewayOperationalState(str, Enum): stopped = "Stopped" starting = "Starting" running = "Running" stopping = "Stopping" class ApplicationGatewayFirewallMode(str, Enum): detection = "Detection" prevention = "Prevention" class ProvisioningState(str, Enum): succeeded = "Succeeded" updating = "Updating" deleting = "Deleting" failed = "Failed" class AzureFirewallRCActionType(str, Enum): allow = "Allow" deny = "Deny" class AzureFirewallApplicationRuleProtocolType(str, Enum): http = "Http" https = "Https" class AzureFirewallNatRCActionType(str, Enum): snat = "Snat" dnat = "Dnat" class AzureFirewallNetworkRuleProtocol(str, Enum): tcp = "TCP" udp = "UDP" any = "Any" icmp = "ICMP" class AuthorizationUseStatus(str, Enum): available = "Available" in_use = "InUse" class ExpressRouteCircuitPeeringAdvertisedPublicPrefixState(str, Enum): not_configured = "NotConfigured" configuring = "Configuring" configured = "Configured" validation_needed = "ValidationNeeded" class Access(str, Enum): allow = "Allow" deny = "Deny" class ExpressRoutePeeringType(str, Enum): azure_public_peering = "AzurePublicPeering" azure_private_peering = "AzurePrivatePeering" microsoft_peering = "MicrosoftPeering" class ExpressRoutePeeringState(str, Enum): disabled = "Disabled" enabled = "Enabled" class CircuitConnectionStatus(str, Enum): connected = "Connected" connecting = "Connecting" disconnected = "Disconnected" class ExpressRouteCircuitPeeringState(str, Enum): disabled = "Disabled" enabled = "Enabled" class ExpressRouteCircuitSkuTier(str, Enum): standard = "Standard" premium = "Premium" basic = "Basic" class ExpressRouteCircuitSkuFamily(str, Enum): unlimited_data = "UnlimitedData" metered_data = "MeteredData" class ServiceProviderProvisioningState(str, Enum): not_provisioned = "NotProvisioned" provisioning = "Provisioning" provisioned = "Provisioned" deprovisioning = "Deprovisioning" class ExpressRouteLinkConnectorType(str, Enum): lc = "LC" sc = "SC" class ExpressRouteLinkAdminState(str, Enum): enabled = "Enabled" disabled = "Disabled" class ExpressRoutePortsEncapsulation(str, Enum): dot1_q = "Dot1Q" qin_q = "QinQ" class LoadBalancerSkuName(str, Enum): basic = "Basic" standard = "Standard" class LoadDistribution(str, Enum): default = "Default" source_ip = "SourceIP" source_ip_protocol = "SourceIPProtocol" class ProbeProtocol(str, Enum): http = "Http" tcp = "Tcp" https = "Https" class NetworkOperationStatus(str, Enum): in_progress = "InProgress" succeeded = "Succeeded" failed = "Failed" class EffectiveSecurityRuleProtocol(str, Enum): tcp = "Tcp" udp = "Udp" all = "All" class EffectiveRouteSource(str, Enum): unknown = "Unknown" user = "User" virtual_network_gateway = "VirtualNetworkGateway" default = "Default" class EffectiveRouteState(str, Enum): active = "Active" invalid = "Invalid" class AssociationType(str, Enum): associated = "Associated" contains = "Contains" class Direction(str, Enum): inbound = "Inbound" outbound = "Outbound" class IpFlowProtocol(str, Enum): tcp = "TCP" udp = "UDP" class NextHopType(str, Enum): internet = "Internet" virtual_appliance = "VirtualAppliance" virtual_network_gateway = "VirtualNetworkGateway" vnet_local = "VnetLocal" hyper_net_gateway = "HyperNetGateway" none = "None" class PcProtocol(str, Enum): tcp = "TCP" udp = "UDP" any = "Any" class PcStatus(str, Enum): not_started = "NotStarted" running = "Running" stopped = "Stopped" error = "Error" unknown = "Unknown" class PcError(str, Enum): internal_error = "InternalError" agent_stopped = "AgentStopped" capture_failed = "CaptureFailed" local_file_failed = "LocalFileFailed" storage_failed = "StorageFailed" class Protocol(str, Enum): tcp = "Tcp" http = "Http" https = "Https" icmp = "Icmp" class HTTPMethod(str, Enum): get = "Get" class Origin(str, Enum): local = "Local" inbound = "Inbound" outbound = "Outbound" class Severity(str, Enum): error = "Error" warning = "Warning" class IssueType(str, Enum): unknown = "Unknown" agent_stopped = "AgentStopped" guest_firewall = "GuestFirewall" dns_resolution = "DnsResolution" socket_bind = "SocketBind" network_security_rule = "NetworkSecurityRule" user_defined_route = "UserDefinedRoute" port_throttled = "PortThrottled" platform = "Platform" class ConnectionStatus(str, Enum): unknown = "Unknown" connected = "Connected" disconnected = "Disconnected" degraded = "Degraded" class ConnectionMonitorSourceStatus(str, Enum): uknown = "Uknown" active = "Active" inactive = "Inactive" class ConnectionState(str, Enum): reachable = "Reachable" unreachable = "Unreachable" unknown = "Unknown" class EvaluationState(str, Enum): not_started = "NotStarted" in_progress = "InProgress" completed = "Completed" class VerbosityLevel(str, Enum): normal = "Normal" minimum = "Minimum" full = "Full" class PublicIPPrefixSkuName(str, Enum): standard = "Standard" class VirtualNetworkPeeringState(str, Enum): initiated = "Initiated" connected = "Connected" disconnected = "Disconnected" class VirtualNetworkGatewayType(str, Enum): vpn = "Vpn" express_route = "ExpressRoute" class VpnType(str, Enum): policy_based = "PolicyBased" route_based = "RouteBased" class VirtualNetworkGatewaySkuName(str, Enum): basic = "Basic" high_performance = "HighPerformance" standard = "Standard" ultra_performance = "UltraPerformance" vpn_gw1 = "VpnGw1" vpn_gw2 = "VpnGw2" vpn_gw3 = "VpnGw3" vpn_gw1_az = "VpnGw1AZ" vpn_gw2_az = "VpnGw2AZ" vpn_gw3_az = "VpnGw3AZ" er_gw1_az = "ErGw1AZ" er_gw2_az = "ErGw2AZ" er_gw3_az = "ErGw3AZ" class VirtualNetworkGatewaySkuTier(str, Enum): basic = "Basic" high_performance = "HighPerformance" standard = "Standard" ultra_performance = "UltraPerformance" vpn_gw1 = "VpnGw1" vpn_gw2 = "VpnGw2" vpn_gw3 = "VpnGw3" vpn_gw1_az = "VpnGw1AZ" vpn_gw2_az = "VpnGw2AZ" vpn_gw3_az = "VpnGw3AZ" er_gw1_az = "ErGw1AZ" er_gw2_az = "ErGw2AZ" er_gw3_az = "ErGw3AZ" class VpnClientProtocol(str, Enum): ike_v2 = "IkeV2" sstp = "SSTP" open_vpn = "OpenVPN" class IpsecEncryption(str, Enum): none = "None" des = "DES" des3 = "DES3" aes128 = "AES128" aes192 = "AES192" aes256 = "AES256" gcmaes128 = "GCMAES128" gcmaes192 = "GCMAES192" gcmaes256 = "GCMAES256" class IpsecIntegrity(str, Enum): md5 = "MD5" sha1 = "SHA1" sha256 = "SHA256" gcmaes128 = "GCMAES128" gcmaes192 = "GCMAES192" gcmaes256 = "GCMAES256" class IkeEncryption(str, Enum): des = "DES" des3 = "DES3" aes128 = "AES128" aes192 = "AES192" aes256 = "AES256" gcmaes256 = "GCMAES256" gcmaes128 = "GCMAES128" class IkeIntegrity(str, Enum): md5 = "MD5" sha1 = "SHA1" sha256 = "SHA256" sha384 = "SHA384" gcmaes256 = "GCMAES256" gcmaes128 = "GCMAES128" class DhGroup(str, Enum): none = "None" dh_group1 = "DHGroup1" dh_group2 = "DHGroup2" dh_group14 = "DHGroup14" dh_group2048 = "DHGroup2048" ecp256 = "ECP256" ecp384 = "ECP384" dh_group24 = "DHGroup24" class PfsGroup(str, Enum): none = "None" pfs1 = "PFS1" pfs2 = "PFS2" pfs2048 = "PFS2048" ecp256 = "ECP256" ecp384 = "ECP384" pfs24 = "PFS24" pfs14 = "PFS14" pfsmm = "PFSMM" class BgpPeerState(str, Enum): unknown = "Unknown" stopped = "Stopped" idle = "Idle" connecting = "Connecting" connected = "Connected" class ProcessorArchitecture(str, Enum): amd64 = "Amd64" x86 = "X86" class AuthenticationMethod(str, Enum): eaptls = "EAPTLS" eapmscha_pv2 = "EAPMSCHAPv2" class VirtualNetworkGatewayConnectionStatus(str, Enum): unknown = "Unknown" connecting = "Connecting" connected = "Connected" not_connected = "NotConnected" class VirtualNetworkGatewayConnectionType(str, Enum): ipsec = "IPsec" vnet2_vnet = "Vnet2Vnet" express_route = "ExpressRoute" vpn_client = "VPNClient" class VirtualNetworkGatewayConnectionProtocol(str, Enum): ik_ev2 = "IKEv2" ik_ev1 = "IKEv1" class OfficeTrafficCategory(str, Enum): optimize = "Optimize" optimize_and_allow = "OptimizeAndAllow" all = "All" none = "None" class VpnGatewayTunnelingProtocol(str, Enum): ike_v2 = "IkeV2" open_vpn = "OpenVPN" class VpnConnectionStatus(str, Enum): unknown = "Unknown" connecting = "Connecting" connected = "Connected" not_connected = "NotConnected" class VirtualWanSecurityProviderType(str, Enum): external = "External" native = "Native" class TunnelConnectionStatus(str, Enum): unknown = "Unknown" connecting = "Connecting" connected = "Connected" not_connected = "NotConnected" class HubVirtualNetworkConnectionStatus(str, Enum): unknown = "Unknown" connecting = "Connecting" connected = "Connected" not_connected = "NotConnected"
20.602837
87
0.69136
b0380758cdb9a9f5ee5ec949a0cf3b752b91fef1
538
py
Python
rbacProject/apps/adm/urls_asset.py
xeroCBW/testmodel
6000d79f91d11bcf6ba76befb3a94a007231ecdc
[ "MIT" ]
null
null
null
rbacProject/apps/adm/urls_asset.py
xeroCBW/testmodel
6000d79f91d11bcf6ba76befb3a94a007231ecdc
[ "MIT" ]
54
2020-06-24T07:12:19.000Z
2022-03-12T00:43:57.000Z
rbacProject/apps/adm/urls_asset.py
xeroCBW/testmodel
6000d79f91d11bcf6ba76befb3a94a007231ecdc
[ "MIT" ]
null
null
null
from django.urls import path from adm import views_asset app_name='[adm]' urlpatterns = [ path('', views_asset.AssetView, name='asset'), path('list/', views_asset.AssetListView, name="list"), path('create/', views_asset.AssetCreateView, name="create"), path('update/', views_asset.AssetUpdateView, name="update"), path('detail/', views_asset.AssetDetailView, name="asset-detail"), path('delete/', views_asset.AssetDeleteView, name='delete'), path('upload/', views_asset.AssetUploadView, name='upload'), ]
29.888889
70
0.702602
aa75b850dea5a387c2849822b8fce802ac7acf64
152
py
Python
table/coffee/apps.py
deltaGPhys/CNCCoffeeTable
412b1d788a86f78ba3ad57885143f8121508c1fb
[ "MIT" ]
null
null
null
table/coffee/apps.py
deltaGPhys/CNCCoffeeTable
412b1d788a86f78ba3ad57885143f8121508c1fb
[ "MIT" ]
null
null
null
table/coffee/apps.py
deltaGPhys/CNCCoffeeTable
412b1d788a86f78ba3ad57885143f8121508c1fb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.apps import AppConfig class CoffeeConfig(AppConfig): name = 'coffee'
16.888889
39
0.730263
b9353348d7bf6e1b928900095f3f2ca497a64599
10,933
py
Python
maintenancemanagement/views/views_equipmentType.py
Open-CMMS/openCMMS_backend
56511ebac83a5dc1fb8768a98bc675e88530a447
[ "BSD-3-Clause" ]
3
2021-03-08T19:14:38.000Z
2022-02-01T17:57:31.000Z
maintenancemanagement/views/views_equipmentType.py
Open-CMMS/openCMMS_backend
56511ebac83a5dc1fb8768a98bc675e88530a447
[ "BSD-3-Clause" ]
null
null
null
maintenancemanagement/views/views_equipmentType.py
Open-CMMS/openCMMS_backend
56511ebac83a5dc1fb8768a98bc675e88530a447
[ "BSD-3-Clause" ]
null
null
null
"""This module defines the views corresponding to the equipment types.""" import logging from drf_yasg.utils import swagger_auto_schema from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from maintenancemanagement.models import EquipmentType, FieldGroup, Field, FieldValue from maintenancemanagement.serializers import ( EquipmentTypeCreateSerializer, EquipmentTypeDetailsSerializer, EquipmentTypeQuerySerializer, EquipmentTypeSerializer, EquipmentTypeValidationSerializer, FieldCreateSerializer, FieldValidationSerializer, FieldValueCreateSerializer, FieldValueValidationSerializer, ) from rest_framework import status from rest_framework.response import Response from rest_framework.views import APIView logger = logging.getLogger(__name__) User = settings.AUTH_USER_MODEL VIEW_EQUIPMENTTYPE = "maintenancemanagement.view_equipmenttype" ADD_EQUIPMENTTYPE = "maintenancemanagement.add_equipmenttype" CHANGE_EQUIPMENTTYPE = "maintenancemanagement.change_equipmenttype" DELETE_EQUIPMENTTYPE = "maintenancemanagement.delete_equipmenttype" class EquipmentTypeList(APIView): r""" \n# List all the equipment types or create a new one. Parameter : request (HttpRequest) : the request coming from the front-end Return : response (Response) : the response. GET request : list all equipment types and return the data POST request : - create a new equipment type, send HTTP 201. If the request \ is not valid, send HTTP 400. - If the user doesn't have the permissions, it will send HTTP 401. - The request must contain name : the name of the equipment \ type (String) - The request must contain equipment_set : a list (which can \ be empty) of the equipment id (List<int>) """ @swagger_auto_schema( operation_description='Send the list of EquipmentType in the database.', query_serializer=None, responses={ 200: EquipmentTypeSerializer(many=True), 401: "Unhauthorized", }, ) def get(self, request): """Send the list of EquipmentType in the database.""" if request.user.has_perm(VIEW_EQUIPMENTTYPE): equipment_types = EquipmentType.objects.all() serializer = EquipmentTypeSerializer(equipment_types, many=True) return Response(serializer.data) else: return Response(status=status.HTTP_401_UNAUTHORIZED) @swagger_auto_schema( operation_description='Add an EquipmentType into the database.', query_serializer=EquipmentTypeQuerySerializer(many=False), responses={ 201: EquipmentTypeDetailsSerializer(many=False), 400: "Bad request", 401: "Unhauthorized", }, ) def post(self, request): """Add an EquipmentType into the database.""" if request.user.has_perm(ADD_EQUIPMENTTYPE): fields = request.data.pop('field', None) equipment_type_validation_serializer = EquipmentTypeValidationSerializer(data=request.data) if equipment_type_validation_serializer.is_valid(): data = request.data if fields: error = self._validate_fields(fields) if error: return error else: field_group = self._create_fields(request, fields) data.update({'fields_groups': [field_group.id]}) equipment_type_serializer = EquipmentTypeCreateSerializer(data=data) if equipment_type_serializer.is_valid(): equipment_type = equipment_type_serializer.save() logger.info( "{user} CREATED EquipmentType with {params}".format(user=request.user, params=request.data) ) equipment_type_details = EquipmentTypeDetailsSerializer(equipment_type) return Response(equipment_type_details.data, status=status.HTTP_201_CREATED) return Response(equipment_type_serializer.errors, status=status.HTTP_400_BAD_REQUEST) return Response(equipment_type_validation_serializer.errors, status=status.HTTP_400_BAD_REQUEST) return Response(status=status.HTTP_401_UNAUTHORIZED) def _validate_fields(self, fields): for field in fields: field_values = field.get('value', None) field_validation_serializer = FieldValidationSerializer(data=field) if not field_validation_serializer.is_valid(): return Response(field_validation_serializer.errors, status=status.HTTP_400_BAD_REQUEST) if field_values: for field_value in field_values: field_value_data = {"value": field_value} field_value_validation_serializer = FieldValueValidationSerializer(data=field_value_data) if not field_value_validation_serializer.is_valid(): return Response(field_value_validation_serializer.errors, status=status.HTTP_400_BAD_REQUEST) def _create_fields(self, request, fields): field_group = FieldGroup(name=request.data['name'], is_equipment=True) field_group.save() for field in fields: field_values = field.get('value', None) field.update({'field_group': field_group.id}) field_serializer = FieldCreateSerializer(data=field) if field_serializer.is_valid(): field_instance = field_serializer.save() logger.info("{user} CREATED Field with {params}".format(user=request.user, params=field)) if field_values: for field_value in field_values: field_value_data = {"value": field_value} field_value_data.update({'field': field_instance.id}) field_value_serializer = FieldValueCreateSerializer(data=field_value_data) if field_value_serializer.is_valid(): field_value_serializer.save() logger.info( "{user} CREATED FieldValue with {params}".format( user=request.user, params=field_value ) ) return field_group class EquipmentTypeDetail(APIView): r""" \n# Retrieve, update or delete an equipment type. Parameters : request (HttpRequest) : the request coming from the front-end id (int) : the id of the equipment type Return : response (Response) : the response. GET request : return the equipment type's data. PUT request : change the equipment type with the data on the request \ or if the data isn't well formed, send HTTP 400. DELETE request: delete the equipment type and send HTTP 204. If the user doesn't have the permissions, it will send HTTP 401. If the id doesn't exist, it will send HTTP 404. The PUT request can contain one or more of the following fields : - name (String): the name of the equipment type - equipment_set (List<int>) : a list of equipment's ids """ @swagger_auto_schema( operation_description='Send the EquipmentType corresponding to the given key.', query_serializer=None, responses={ 200: EquipmentTypeDetailsSerializer(many=False), 401: "Unhauthorized", 404: "Not found", }, ) def get(self, request, pk): """Send the EquipmentType corresponding to the given key.""" try: equipment_type = EquipmentType.objects.get(pk=pk) except ObjectDoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.user.has_perm(VIEW_EQUIPMENTTYPE): serializer = EquipmentTypeDetailsSerializer(equipment_type) return Response(serializer.data) return Response(status=status.HTTP_401_UNAUTHORIZED) @swagger_auto_schema( operation_description='Update the EquipmentType corresponding to the given key.', query_serializer=EquipmentTypeSerializer(many=False), responses={ 200: EquipmentTypeSerializer(many=False), 400: "Bad request", 401: "Unhauthorized", 404: "Not found", }, ) def put(self, request, pk): """Update the EquipmentType corresponding to the given key.""" try: equipment_type = EquipmentType.objects.get(pk=pk) except ObjectDoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.user.has_perm(CHANGE_EQUIPMENTTYPE): field_objects = request.data.get("field", None) if field_objects is not None : self._update_field_values(field_objects) serializer = EquipmentTypeSerializer(equipment_type, data=request.data, partial=True) if serializer.is_valid(): logger.info( "{user} UPDATED {object} with {params}".format( user=request.user, object=repr(equipment_type), params=request.data ) ) serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) return Response(status=status.HTTP_401_UNAUTHORIZED) def _update_field_values(self, field_objects): for field_object in field_objects: field = Field.objects.get(pk=field_object.get('id')) new_values = field_object.get('value') old_values = field.value_set.all().values_list('value', flat=True) for value in new_values: if value not in old_values: FieldValue.objects.create(value=value, field=field) @swagger_auto_schema( operation_description='Delete the EquipmentType corresponding to the given key.', query_serializer=None, responses={ 204: "No content", 401: "Unhauthorized", 404: "Not found", }, ) def delete(self, request, pk): """Delete the EquipmentType corresponding to the given key.""" try: equipment_type = EquipmentType.objects.get(pk=pk) except ObjectDoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.user.has_perm(DELETE_EQUIPMENTTYPE): logger.info("{user} DELETED {object}".format(user=request.user, object=repr(equipment_type))) equipment_type.delete() return Response(status=status.HTTP_204_NO_CONTENT) return Response(status=status.HTTP_401_UNAUTHORIZED)
43.732
117
0.647947
4c31813dee0de5ea8cc2098e6387d8e8fa21419f
2,885
py
Python
lib/concurrence/_unittest.py
toymachine/concurrence
02f14e90e5f591970f87828c4a6e8f985d67834f
[ "BSD-2-Clause", "BSD-3-Clause" ]
1
2015-11-05T06:06:33.000Z
2015-11-05T06:06:33.000Z
lib/concurrence/_unittest.py
toymachine/concurrence
02f14e90e5f591970f87828c4a6e8f985d67834f
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
lib/concurrence/_unittest.py
toymachine/concurrence
02f14e90e5f591970f87828c4a6e8f985d67834f
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
# Copyright (C) 2009, Hyves (Startphone Ltd.) # # This module is part of the Concurrence Framework and is released under # the New BSD License: http://www.opensource.org/licenses/bsd-license.php import unittest import logging import time from concurrence import dispatch, Tasklet, Channel, quit, get_version_info from concurrence.core import EXIT_CODE_TIMEOUT from concurrence.io import IOStream, Socket class TestSocket(object): _installed = {} def __init__(self, callback): self._step_count = 0 self._address = None self._callback = callback def _step(self, event, args, kwargs): res = self._callback(self, self._step_count, event, args, kwargs) self._step_count += 1 return res def _connect(self, *args, **kwargs): self._address = args[0] res = self._step("connect", args, kwargs) return res def close(self, *args, **kwargs): return self._step("close", args, kwargs) def write(self, *args, **kwargs): res = self._step("write", args, kwargs) if res is None: #by default read bytes return len(args[0].read_bytes(-1)) def read(self, *args, **kwargs): res = self._step("read", args, kwargs) if res is None: return 0 #0 bytes read by default else: args[0].write_bytes(res) return len(res) @classmethod def install(cls, addr, callback): cls._installed[addr] = TestSocket(callback) def interceptor(addr): return cls._installed[addr] Socket.set_interceptor(interceptor) class TestCase(unittest.TestCase): def setUp(self): logging.debug("setUp %s, %s", self, '; '.join(['%s: %s' % (k, v) for k, v in get_version_info().items()])) def tearDown(self): try: Tasklet.yield_() #this make sure that everything gets a change to exit before we start the next test logging.debug("tearDown %s, tasklet count #%d", self, Tasklet.count()) except: pass class _Timer: def __enter__(self): self._start = time.time() return self def __exit__(self, type, value, traceback): self._end = time.time() def __str__(self): self._end - self._start def sec(self, n): return n / (self._end - self._start) def timer(): return _Timer() def main(timeout = None): logging.basicConfig() logging.root.setLevel(logging.DEBUG) if timeout is not None: def quit_test(): logging.error("quiting unittest on timeout") quit(EXIT_CODE_TIMEOUT) logging.debug("test will timeout in %s seconds", timeout) timeout_task = Tasklet.later(timeout, quit_test, name = 'unittest_timeout')() from concurrence.core import _profile #_profile(unittest.main) dispatch(unittest.main)
28.284314
114
0.629116
5d6bf1a8c2abdc166dcc91bc68e88bdb8e55099c
988
py
Python
admin/migrations/0037_auto_20190202_0956.py
rodlukas/UP-admin
08f36de0773f39c6222da82016bf1384af2cce18
[ "MIT" ]
4
2019-07-19T17:39:04.000Z
2022-03-22T21:02:15.000Z
admin/migrations/0037_auto_20190202_0956.py
rodlukas/UP-admin
08f36de0773f39c6222da82016bf1384af2cce18
[ "MIT" ]
53
2019-08-04T14:25:40.000Z
2022-03-26T20:30:55.000Z
admin/migrations/0037_auto_20190202_0956.py
rodlukas/UP-admin
08f36de0773f39c6222da82016bf1384af2cce18
[ "MIT" ]
3
2020-03-09T07:11:03.000Z
2020-09-11T01:22:50.000Z
# Generated by Django 2.1.5 on 2019-02-02 08:56 import platform from django.db import migrations class Migration(migrations.Migration): dependencies = [("admin", "0036_auto_20190128_1144")] if platform.system() == "Windows": collation = migrations.RunSQL('CREATE COLLATION cz (locale = "cs-CZ-x-icu")') else: collation = migrations.RunSQL('CREATE COLLATION cz (locale = "cs_CZ.utf8")') operations = [ collation, migrations.RunSQL( "ALTER TABLE admin_attendancestate ALTER COLUMN name TYPE VARCHAR COLLATE cz;" ), migrations.RunSQL("ALTER TABLE admin_client ALTER COLUMN name TYPE VARCHAR COLLATE cz;"), migrations.RunSQL("ALTER TABLE admin_client ALTER COLUMN surname TYPE VARCHAR COLLATE cz;"), migrations.RunSQL("ALTER TABLE admin_course ALTER COLUMN name TYPE VARCHAR COLLATE cz;"), migrations.RunSQL("ALTER TABLE admin_group ALTER COLUMN name TYPE VARCHAR COLLATE cz;"), ]
36.592593
100
0.692308
59163e671c4dcc82a60f43b1e00b7c802568b805
13,525
py
Python
rabbitmq.py
summa-platform/summa-deeptagger
9effc39541395999c5b3f5df2f5d9ba1401b820f
[ "MIT" ]
null
null
null
rabbitmq.py
summa-platform/summa-deeptagger
9effc39541395999c5b3f5df2f5d9ba1401b820f
[ "MIT" ]
null
null
null
rabbitmq.py
summa-platform/summa-deeptagger
9effc39541395999c5b3f5df2f5d9ba1401b820f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # # Author: Didzis Gosko <didzis.gosko@leta.lv> # import sys, asyncio, json, traceback, inspect from concurrent.futures import CancelledError from aio_pika import connect, Message, ExchangeType import pika.exceptions try: from task import NoFinalResult except ImportError: class NoFinalResult(Exception): pass try: from task import ErrorMessage except ImportError: class ErrorMessage(Exception): pass try: from task import RejectError except ImportError: class RejectError(Exception): pass try: from task import RejectRequeueError except ImportError: class RejectRequeueError(Exception): pass try: from task import NoReply except ImportError: class NoReply(Exception): pass try: import task except ImportError: if __name__ == "__main__": print('warning: module task not found, use "--dummy" argument to use dummy test task for RabbitMQ client', file=sys.stderr) import sys if '--dummy' not in sys.argv[1:]: raise class DummyTask: name = 'DUMMY-TEST-TASK' def setup_argparser(self, parser): parser.add_argument('--test', action='store_true', help='test with %s' % self.name) def init(self, args=None): print('Initializing %s ...' % self.name, file=sys.stderr) if args.test: print('%s test mode enabled') self.args = args def shutdown(self): print('shutting down %s ...' % self.name, file=sys.stderr) def reset(self): print('restarting %s ...' % self.name, file=sys.stderr) async def process_message(self, task_data, loop=None, send_reply=None, **kwargs): print('%s will process input data:' % self.name, task_data) if self.args: print('Test mode enabled') for i in range(5): print('Waiting %i seconds for first partial result to be sent' % i) await asyncio.sleep(i) if send_reply: await send_reply('%i. partial result from %s' % (i, self.name)) print('%s is complete!' % self.name) return 'Final result of %s: SUCCESS' % self.name task = DummyTask() async def on_message(message, reply, loop=None, name=task.name, verbose=True, **kwargs): # with message.process(): # with message auto acknowledgement routing_keys = message.headers['replyToRoutingKeys'] body_dict = json.loads(message.body.decode("utf-8")) task_data = body_dict['taskData'] task_metadata = body_dict['taskMetadata'] async def send_reply(result_data, result_type='partialResult'): await reply( Message( bytes(json.dumps(dict(resultData=result_data, resultType=result_type, taskMetadata=task_metadata)), 'utf8'), headers=dict(resultProducerName=name) ), routing_keys[result_type] ) try: item = task_metadata.get('itemId', 'unknown') if verbose: print('New job request for item %s received!' % item) # print(task_metadata) # print(task_data) result_data = await task.process_message(task_data, loop=loop, send_reply=send_reply, metadata=task_metadata, reject=message.reject, **kwargs) if verbose: print('Job for item %s completed!' % item) await send_reply(result_data, 'finalResult') message.ack() except NoReply as e: print('Job for item %s finished:' % item, e) except NoFinalResult: print('Job for item %s completed!' % item) message.ack() except RejectError as e: if verbose: print('Job for item %s rejected:' % item, e) message.reject(requeue=False) return except RejectRequeueError as e: if verbose: print('Job for item %s rejected (and requeued):' % item, e) message.reject(requeue=True) return except CancelledError: # stop, do not send reply, requeue incomming message if verbose: print('Job for item %s cancelled!' % item) try: message.reject(requeue=True) except pika.exceptions.ConnectionClosed: pass # raise return except KeyboardInterrupt: # stop, do not send reply, requeue incomming message if verbose: print('Job for item %s cancelled!' % item) message.reject(requeue=True) # raise return except ErrorMessage as e: if verbose: print('Job for item %s failed with error:' % item, e) else: log(e) await send_reply(str(e), 'processingError') message.ack() except Exception as e: # traceback.print_exc() exception = ''.join(traceback.format_exception(*sys.exc_info())) if verbose: print('Job for item %s failed with error: %s\n%s' % (item, str(e), exception)) await send_reply(exception, 'processingError') # await send_reply(str(e), 'processingError') message.ack() # await reply( # Message( # bytes(json.dumps(dict(resultData=result_data, resultType=result_type, taskMetadata=task_metadata)), 'utf8'), # headers=dict(resultProducerName=name) # ), # routing_keys[result_type] # ) def log(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) async def run(url, input_queue, output_exchange, loop=None, num_parallel=1, reconnect_delay=5, on_message=None, handle_all_exceptions=True, kwargs={}): async def reconnect(first=True): nonlocal reconnect_delay log('Connecting' if first else 'Reconnecting', 'to', url, end=' ', flush=True) while True: try: if not first: await asyncio.sleep(reconnect_delay) else: first = False log('.', end='', flush=True) await _connect() break except pika.exceptions.IncompatibleProtocolError: # keep silent, this happens during rabbitmq startup pass except ConnectionRefusedError: # was unable to connect, will retry pass except ConnectionError as e: log('Connection error:', e) # except pika.exceptions.ChannelClosed as e: # pass except KeyboardInterrupt: log('RECONNECT INTERRUPTED') raise except Exception as e: if handle_all_exceptions: log('Unexpected exception at reconnect()') traceback.print_exc() await connection.close() else: await connection.close() if hasattr(task, 'shutdown'): task.shutdown() # loop.stop() raise def on_connection_closed(future): try: future.result() except ConnectionError as e: log('Connection lost, will reconnect') # asyncio.sleep(connection.close()) t = asyncio.ensure_future(reconnect(False)) # do not await lost messages for t in asyncio.Task.all_tasks(): if hasattr(t, 'must_await'): t.must_await = False t.cancel() if hasattr(task, 'reset'): task.reset() except Exception as e: log('Unexpected exception at on_connection_closed()') traceback.print_exc() def get_on_message(): global on_message return on_message def message_callback(message): t = asyncio.ensure_future((on_message or get_on_message())(message, exchange_out.publish, loop=loop, **kwargs)) t.must_await = True # hack to identify on_message tasks async def _connect(): nonlocal connection, queue_in, exchange_out connection = await connect(url, loop=loop) connection.add_close_callback(on_connection_closed) log(' connected!') try: channel_in = await connection.channel() await channel_in.set_qos(prefetch_count=num_parallel) channel_out = await connection.channel() exchange_out = await channel_out.declare_exchange(output_exchange, ExchangeType.TOPIC, durable=False) queue_in = await channel_in.declare_queue(input_queue, passive=False) if inspect.iscoroutinefunction(queue_in.consume): await queue_in.consume(message_callback) else: queue_in.consume(message_callback) # queue_in.consume(lambda message: asyncio.ensure_future( # (on_message or get_on_message())(message, exchange_out.publish, loop=loop, **kwargs)) # ) # except: except Exception as e: print('_CONNNECT EXCEPTION:', e) # await connection.close() # if closed, will not reconnect # will be handled at reconnect() raise connection = None queue_in = None exchange_out = None if not loop: loop = asyncio.get_event_loop() await reconnect() def wait_for_incomplete_message_callbacks(loop): pending_on_message_tasks = [t for t in asyncio.Task.all_tasks() if hasattr(t, 'must_await') and t.must_await] loop.run_until_complete(asyncio.gather(*pending_on_message_tasks)) # loop.run_until_complete(loop.shutdown_asyncgens()) # Python 3.6 def run_forever(url=None, queue_in=None, exchange_out=None, num_parallel=1, reconnect_delay=5, debug=False, on_message=None, handle_all_exceptions=True, **kwargs): try: loop = asyncio.get_event_loop() loop.set_debug(False) loop.create_task(run(url, queue_in, exchange_out, loop=loop, num_parallel=num_parallel, reconnect_delay=reconnect_delay, on_message=on_message, handle_all_exceptions=handle_all_exceptions, kwargs=kwargs)) loop.run_forever() except KeyboardInterrupt: log('MAIN INTERRUPTED') for f in asyncio.Task.all_tasks(): f.cancel() loop.stop() loop.run_forever() return try: wait_for_incomplete_message_callbacks(loop) if hasattr(task, 'shutdown'): wait_for_tasks = task.shutdown() if wait_for_tasks: loop.run_until_complete(asyncio.gather(*wait_for_tasks)) except CancelledError: pass except KeyboardInterrupt: log('MAIN INTERRUPTED') loop.stop() def main(task=task): import os import argparse parser = argparse.ArgumentParser(description='RabbitMQ Worker', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--parallel', '-n', dest='PARALLEL', type=int, default=os.environ.get('PARALLEL',1), help='messages to process in parallel (or set env variable PARALLEL)') parser.add_argument('--reconnect-delay', type=int, default=os.environ.get('RECONNECT_DELAY', 5), help='number of seconds to wait before reconnect attempt (or set env variable RECONNECT_DELAY)') parser.add_argument('--startup-delay', type=int, default=os.environ.get('STARTUP_DELAY', 0), help='number of seconds to wait before starting RabbitMQ client (or set env variable STARTUP_DELAY)') parser.add_argument('--debug', action='store_true', help='debug mode for asyncio') parser.add_argument('--verbose', '-v', action='store_true', help='verbose message processing mode') parser.add_argument('--out', dest='EXCHANGE_OUT', type=str, default=os.environ.get('EXCHANGE_OUT'), help='output exchange (or set env variable EXCHANGE_OUT)') parser.add_argument('--in', dest='QUEUE_IN', type=str, default=os.environ.get('QUEUE_IN'), help='input queue (or set env variable QUEUE_IN)') parser.add_argument('--url', dest='RABBITMQ_URL', type=str, default=os.environ.get('RABBITMQ_URL'), help='RabbitMQ URL (or set env variable RABBITMQ_URL)') if hasattr(task, 'setup_argparser'): task.setup_argparser(parser) args = parser.parse_args() if not args.RABBITMQ_URL: log("error: RabbitMQ URL is not set") sys.exit(1) if not args.QUEUE_IN: log("error: RabbitMQ input queue is not set") sys.exit(1) if not args.EXCHANGE_OUT: log("error: RabbitMQ output exchange is not set") sys.exit(1) try: if hasattr(task, 'init'): task.init(args) if args.startup_delay > 0: import time log("Waiting %i seconds before starting RabbitMQ client ..." % args.startup_delay) time.sleep(args.startup_delay) except KeyboardInterrupt: log("INTERRUPTED") if hasattr(task, 'shutdown'): task.shutdown() sys.exit(1) log("Starting RabbitMQ client ...") run_forever(args.RABBITMQ_URL, args.QUEUE_IN, args.EXCHANGE_OUT, num_parallel=args.PARALLEL, reconnect_delay=args.reconnect_delay, debug=args.debug, verbose=args.verbose) if __name__ == "__main__": main()
36.653117
150
0.60976
708df51432ec170514aabeae3446f15fd6ab671c
5,764
py
Python
pulsar/apps/test/plugins/bench.py
goodboy/pulsar
e4b42d94b7e262a165782747d65f8b39fb8d3ba9
[ "BSD-3-Clause" ]
1
2020-11-30T07:36:57.000Z
2020-11-30T07:36:57.000Z
pulsar/apps/test/plugins/bench.py
goodboy/pulsar
e4b42d94b7e262a165782747d65f8b39fb8d3ba9
[ "BSD-3-Clause" ]
null
null
null
pulsar/apps/test/plugins/bench.py
goodboy/pulsar
e4b42d94b7e262a165782747d65f8b39fb8d3ba9
[ "BSD-3-Clause" ]
null
null
null
''' :class:`.BenchMark` is a :class:`.TestPlugin` for benchmarking test functions. To use the plugin follow these three steps: * Flag a ``unittest.TestCase`` class with the ``__benchmark__ = True`` class attribute:: class MyBenchmark(unittest.TestCase): __benchmark__ = True def test_mybenchmark_function1(self): ... def test_mybenchmark_function2(self): ... * Run the test suite with the ``--benchmark`` command line option. Alternatively, you can use the ``bench`` command from your ``setup.py`` file. Simply add the ``bench`` entry in the ``setup.cfg``. [bench] test_modules = tests/bench The test class can implement additional methods to fine-tune how the benchmark plugin evaluate the performance and display results: * When implemented, the ``startUp`` method is invoked before each run of a test function. * The time taken to run a test once can be modified by implementing the ``getTime`` method which receives as only argument the time interval taken. By default it returns the same time interval. .. autoclass:: BenchMark ''' import sys import time import math from inspect import isawaitable from unittest import TestSuite import pulsar from .base import WrapTest, TestPlugin if sys.platform == "win32": # pragma nocover default_timer = time.clock else: default_timer = time.time BENCHMARK_TEMPLATE = ('{0[name]}: repeated {0[repeat]}(x{0[times]}) times, ' 'average {0[mean]} secs, stdev {0[std]}') def simple(info, *args): return info class BenchTest(WrapTest): def __init__(self, test, number, repeat): super().__init__(test) self.number = number self.repeat = repeat def update_summary(self, info, repeat, total_time, total_time2): mean = total_time/repeat std = math.sqrt((total_time2 - total_time*mean)/repeat) std = round(100*std/mean, 2) info.update({'repeat': repeat, 'times': self.number, 'mean': '%.5f' % mean, 'std': '{0} %'.format(std)}) async def _call(self): testMethod = self.testMethod testStartUp = getattr(self.test, 'startUp', lambda: None) testGetTime = getattr(self.test, 'getTime', lambda dt: dt) testGetInfo = getattr(self.test, 'getInfo', simple) testGetSummary = getattr(self.test, 'getSummary', simple) t = 0 t2 = 0 info = {'name': '%s.%s' % (self.test.__class__.__name__, testMethod.__name__)} for r in range(self.repeat): DT = 0 for r in range(self.number): testStartUp() start = default_timer() result = testMethod() if isawaitable(result): await result delta = default_timer() - start dt = testGetTime(delta) testGetInfo(info, delta, dt) DT += dt t += DT t2 += DT*DT self.update_summary(info, self.repeat, t, t2) self.set_test_attribute('bench_info', testGetSummary(info, self.repeat, t, t2)) class BenchMark(TestPlugin): '''Benchmarking addon for pulsar test suite.''' desc = '''Run benchmarks function flagged with __benchmark__ attribute''' repeat = pulsar.Setting(flags=['--repeat'], type=int, default=10, validator=pulsar.validate_pos_int, desc=('Default number of repetition ' 'when benchmarking.')) def loadTestsFromTestCase(self, test_cls): bench = getattr(test_cls, '__benchmark__', False) if self.config.benchmark != bench: # skip the loading return TestSuite() def before_test_function_run(self, test, local): if self.config.benchmark: method_name = getattr(test, '_testMethodName', None) if method_name: method = getattr(test, method_name, None) bench = getattr(test, '__benchmark__', False) if not bench and method: bench = getattr(method, '__benchmark__', False) if bench: number = getattr(test, '__number__', 1) return BenchTest(test, number, self.config.repeat) def addSuccess(self, test): if self.config.benchmark and self.stream: result = getattr(test, 'bench_info', None) # if result and self.stream.showAll: if result: stream = self.stream.handler('benchmark') template = getattr(test, 'benchmark_template', BENCHMARK_TEMPLATE) stream.writeln(template.format(result)) stream.flush() self.result.addSuccess(test) return True def addError(self, test, err): msg = self._msg(test, 'ERROR') if msg: self.result.addError(test, err) return msg def addFailure(self, test, err): msg = self._msg(test, 'FAILURE') if msg: self.result.addFailure(test, err) return msg def addSkip(self, test, reason): msg = self._msg(test, 'SKIPPED') if msg: self.result.addSkip(test, reason) return msg def _msg(self, test, msg): if self.config.benchmark and self.stream: stream = self.stream.handler('benchmark') stream.writeln('%s: %s' % (test, msg)) stream.flush() return True
33.317919
78
0.573387
0d598da391f120ef0af2e36496897550617cde53
7,441
py
Python
storages/views.py
Kuebler-IT/WebVirtNG
2412c5ca2bbd06d64db48e0508a4c3f26248f80b
[ "Apache-2.0" ]
null
null
null
storages/views.py
Kuebler-IT/WebVirtNG
2412c5ca2bbd06d64db48e0508a4c3f26248f80b
[ "Apache-2.0" ]
null
null
null
storages/views.py
Kuebler-IT/WebVirtNG
2412c5ca2bbd06d64db48e0508a4c3f26248f80b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts import render, redirect from django.utils.translation import ugettext_lazy as _ from servers.models import Compute from storages.forms import AddStgPool, AddImage, CloneImage from vrtManager.storage import wvmStorage, wvmStorages from libvirt import libvirtError def storages(request, host_id): """ Storage pool block """ if not request.user.is_authenticated(): return redirect('login') errors = [] compute = Compute.objects.get(id=host_id) try: conn = wvmStorages(compute.hostname, compute.login, compute.password, compute.type) storages = conn.get_storages_info() secrets = conn.get_secrets() if request.method == 'POST': if 'create' in request.POST: form = AddStgPool(request.POST) if form.is_valid(): data = form.cleaned_data if data['name'] in storages: msg = _("Pool name already use") errors.append(msg) if data['stg_type'] == 'rbd': if not data['secret']: msg = _("You need create secret for pool") errors.append(msg) if not data['ceph_pool'] and not data['ceph_host'] and not data['ceph_user']: msg = _("You need input all fields for creating ceph pool") errors.append(msg) if not errors: if data['stg_type'] == 'rbd': conn.create_storage_ceph(data['stg_type'], data['name'], data['ceph_pool'], data['ceph_host'], data['ceph_user'], data['secret']) elif data['stg_type'] == 'netfs': conn.create_storage_netfs(data['stg_type'], data['name'], data['netfs_host'], data['source'], data['source_format'], data['target']) else: conn.create_storage(data['stg_type'], data['name'], data['source'], data['target']) return redirect('storage', args=[host_id, data['name']]) conn.close() except libvirtError as err: errors.append(err) return render(request, 'storages.html', locals()) def storage(request, host_id, pool): """ Storage pool block """ if not request.user.is_authenticated(): return redirect('login') def handle_uploaded_file(path, f_name): target = path + '/' + str(f_name) destination = open(target, 'wb+') for chunk in f_name.chunks(): destination.write(chunk) destination.close() errors = [] compute = Compute.objects.get(id=host_id) meta_prealloc = False try: conn = wvmStorage(compute.hostname, compute.login, compute.password, compute.type, pool) storages = conn.get_storages() state = conn.is_active() size, free = conn.get_size() used = (size - free) if state: percent = (used * 100) / size else: percent = 0 status = conn.get_status() path = conn.get_target_path() type = conn.get_type() autostart = conn.get_autostart() if state: conn.refresh() volumes = conn.update_volumes() else: volumes = None except libvirtError as err: errors.append(err) if request.method == 'POST': if 'start' in request.POST: try: conn.start() return redirect(request.get_full_path()) except libvirtError as error_msg: errors.append(error_msg.message) if 'stop' in request.POST: try: conn.stop() return redirect(request.get_full_path()) except libvirtError as error_msg: errors.append(error_msg.message) if 'delete' in request.POST: try: conn.delete() return redirect('storages', args=[host_id]) except libvirtError as error_msg: errors.append(error_msg.message) if 'set_autostart' in request.POST: try: conn.set_autostart(1) return redirect(request.get_full_path()) except libvirtError as error_msg: errors.append(error_msg.message) if 'unset_autostart' in request.POST: try: conn.set_autostart(0) return redirect(request.get_full_path()) except libvirtError as error_msg: errors.append(error_msg.message) if 'add_volume' in request.POST: form = AddImage(request.POST) if form.is_valid(): data = form.cleaned_data if data['meta_prealloc'] and data['format'] == 'qcow2': meta_prealloc = True try: conn.create_volume(data['name'], data['size'], data['format'], meta_prealloc) return redirect(request.get_full_path()) except libvirtError as err: errors.append(err) if 'del_volume' in request.POST: volname = request.POST.get('volname', '') try: vol = conn.get_volume(volname) vol.delete(0) return redirect(request.get_full_path()) except libvirtError as error_msg: errors.append(error_msg.message) if 'iso_upload' in request.POST: if str(request.FILES['file']) in conn.update_volumes(): msg = _("ISO image already exist") errors.append(msg) else: handle_uploaded_file(path, request.FILES['file']) return redirect(request.get_full_path()) if 'cln_volume' in request.POST: form = CloneImage(request.POST) if form.is_valid(): data = form.cleaned_data img_name = data['name'] + '.img' meta_prealloc = 0 if img_name in conn.update_volumes(): msg = _("Name of volume name already use") errors.append(msg) if not errors: if data['convert']: format = data['format'] if data['meta_prealloc'] and data['format'] == 'qcow2': meta_prealloc = True else: format = None try: conn.clone_volume(data['image'], data['name'], format, meta_prealloc) return redirect(request.get_full_path()) except libvirtError as err: errors.append(err) conn.close() return render(request, 'storage.html', locals())
38.755208
111
0.502352
39c9c685e26fcfc07eb9c45fbe9035548ed53a1c
864
py
Python
Source-codes/VanillaSVDRepresentation.py
ad93/FaiRIR
c1ad74470a2efe3abef6dc09d6faae583670b6a8
[ "MIT" ]
null
null
null
Source-codes/VanillaSVDRepresentation.py
ad93/FaiRIR
c1ad74470a2efe3abef6dc09d6faae583670b6a8
[ "MIT" ]
null
null
null
Source-codes/VanillaSVDRepresentation.py
ad93/FaiRIR
c1ad74470a2efe3abef6dc09d6faae583670b6a8
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from scipy.sparse.linalg import svds import json ratings_list = [i.strip().split("::") for i in open('ratings.dat', 'r').readlines()] ratings_df = pd.DataFrame(ratings_list, columns = ['UserID', 'MovieID', 'Rating', 'Timestamp'], dtype = float) #print(ratings_df) R_df = ratings_df.pivot(index = 'UserID', columns ='MovieID', values = 'Rating').fillna(0) R_df.head() #print(R_df.head()) print(len(list(R_df.head()))) lists = [] for i in list(R_df.head()): lists.append(int(i)) json.dump(lists, open('MovieList.txt', 'w')) R = R_df.as_matrix() user_ratings_mean = np.mean(R, axis = 1) R_demeaned = R - user_ratings_mean.reshape(-1, 1) u, s, vt = svds(R_demeaned, k = 128) sigma = np.diag(s) vt = np.dot(sigma, vt) print('Learning done') df2 = pd.DataFrame(vt.T) print(vt.T.shape) df2.to_csv('Movie_Representation.csv')
27.870968
110
0.690972
74219837d1e00c956401808df387bf58cb9361a9
2,331
py
Python
bw2calc/utils.py
brightway-lca/brightway2-calc-copy
770cb83954499199888bb7422442cbdc7ef553b3
[ "BSD-3-Clause" ]
4
2021-09-21T14:22:49.000Z
2022-02-23T12:45:01.000Z
bw2calc/utils.py
brightway-lca/brightway2-calc
796bfe4cd839f1c8014797f1945f305d57f19c19
[ "BSD-3-Clause" ]
30
2020-03-03T09:12:48.000Z
2022-03-29T15:24:04.000Z
bw2calc/utils.py
brightway-lca/brightway2-calc-copy
770cb83954499199888bb7422442cbdc7ef553b3
[ "BSD-3-Clause" ]
5
2020-06-26T19:01:53.000Z
2022-02-21T15:40:17.000Z
from pathlib import Path import bw_processing as bwp import numpy as np from fs.base import FS from fs.osfs import OSFS from fs.zipfs import ZipFS from .errors import InconsistentGlobalIndex def get_seed(seed=None): """Get valid Numpy random seed value""" # https://groups.google.com/forum/#!topic/briansupport/9ErDidIBBFM random = np.random.RandomState(seed) return random.randint(0, 2147483647) def consistent_global_index(packages, matrix="characterization_matrix"): global_list = [ resource.get("global_index") for package in packages for resource in package.filter_by_attribute("matrix", matrix).filter_by_attribute("kind", "indices").resources ] if len(set(global_list)) > 1: raise InconsistentGlobalIndex( f"Multiple global index values found: {global_list}. If multiple LCIA datapackages are present, they must use the same value for ``GLO``, the global location, in order for filtering for site-generic LCIA to work correctly." ) return global_list[0] if global_list else None def wrap_functional_unit(dct): """Transform functional units for effective logging. Turns ``Activity`` objects into their keys.""" data = [] for key, amount in dct.items(): if isinstance(key, int): data.append({"id": key, "amount": amount}) else: try: data.append({"database": key[0], "code": key[1], "amount": amount}) except TypeError: data.append({"key": key, "amount": amount}) return data def get_datapackage(obj): if isinstance(obj, bwp.DatapackageBase): return obj elif isinstance(obj, FS): return bwp.load_datapackage(obj) elif isinstance(obj, Path) and obj.suffix.lower() == ".zip": return bwp.load_datapackage(ZipFS(obj)) elif isinstance(obj, Path) and obj.is_dir(): return bwp.load_datapackage(OSFS(obj)) elif isinstance(obj, str) and obj.lower().endswith(".zip") and Path(obj).is_file(): return bwp.load_datapackage(ZipFS(Path(obj))) elif isinstance(obj, str) and Path(obj).is_dir(): return bwp.load_datapackage(OSFS(Path(obj))) else: raise TypeError( "Unknown input type for loading datapackage: {}: {}".format(type(obj), obj) )
35.861538
235
0.66538
866c3815e4d32d0178bc39510ed2913a9b3718a8
9,881
py
Python
build/archive.py
dzeromsk/goma
350f67319eb985013515b533f03f2f95570c37d3
[ "BSD-3-Clause" ]
4
2018-12-26T10:54:24.000Z
2022-03-31T21:19:47.000Z
build/archive.py
dzeromsk/goma
350f67319eb985013515b533f03f2f95570c37d3
[ "BSD-3-Clause" ]
null
null
null
build/archive.py
dzeromsk/goma
350f67319eb985013515b533f03f2f95570c37d3
[ "BSD-3-Clause" ]
1
2021-05-31T13:27:25.000Z
2021-05-31T13:27:25.000Z
#!/usr/bin/env python # Copyright 2012 The Goma Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Creates goma client release archives.""" from __future__ import print_function import hashlib import optparse import os import re import shutil import subprocess import sys import tarfile import zipfile BASE_DIR = os.path.dirname(os.path.abspath(__file__)) GOMACC_CMDS = ('g++', 'gcc', 'javac', 'cc', 'c++', 'clang', 'clang++') CHROMEOS_GOMACC_CMDS = ( 'i686-pc-linux-gnu-gcc', 'i686-pc-linux-gnu-g++', 'armv7a-cros-linux-gnueabi-gcc', 'armv7a-cros-linux-gnueabi-g++', 'x86_64-pc-linux-gnu-gcc', 'x86_64-pc-linux-gnu-g++', 'arm-none-eabi-gcc', 'arm-none-eabi-g++', 'x86_64-cros-linux-gnu-gcc', 'x86_64-cros-linux-gnu-g++') try: os.symlink except AttributeError: # no os.symlink on Windows. def __fake_symlink(src, dst): raise NotImplementedError('symlink %s %s' % (src, dst)) os.symlink = __fake_symlink def CreatePlatformGomacc(distname, platform): """Creates gomacc symlinks in distname. Args: distname: distribution directory platform: platform name """ if platform in ('linux', 'mac', 'goobuntu', 'chromeos'): gomacc = list(GOMACC_CMDS) else: raise NotImplementedError(platform) if platform == 'chromeos': gomacc.extend(CHROMEOS_GOMACC_CMDS) for cmd in gomacc: os.symlink('gomacc', os.path.join(distname, cmd)) def DeleteSymlinksToGomacc(distname): """Deletes symlinks to gomacc in distname. Args: distname: distribution directory """ for name in os.listdir(distname): abs_name = os.path.join(distname, name) # since symlink only works on posix, we do not need to check gomacc.exe. if os.path.islink(abs_name) and os.readlink(abs_name) == 'gomacc': os.remove(abs_name) def InstallPlatformFiles(distname, platform): """Install platform specific files in distname. Args: distname: distribution directory platform: platname name. Returns: a list of files. """ if platform in ('linux', 'mac', 'goobuntu'): return if platform != 'chromeos': raise NotImplementedError(platform) files = ['goma-wrapper', 'goma-make'] for f in files: shutil.copy(f, distname) def CreateAndroidDir(distname, platform): """Creates android support directory if necessary. Args: distname: distribution directory. platform: platform name. Returns: a list of files to be released. """ if platform in ('linux', 'mac', 'goobuntu'): distname = os.path.join(distname, 'android') shutil.rmtree(distname, ignore_errors=True) os.mkdir(distname) for cmd in ('gomacc', 'compiler_proxy', 'goma_fetch', 'goma_auth.py', 'goma_ctl.py'): os.symlink(os.path.join('..', cmd), os.path.join(distname, cmd)) for cmd in GOMACC_CMDS: os.symlink('gomacc', os.path.join(distname, cmd)) for prefix in ('arm-eabi', 'arm-linux-androideabi', 'i686-android-linux', 'i686-linux', 'i686-unknown-linux-gnu', 'i686-unknown-linux-gnu-i686-unknown-linux-gnu', 'sh-linux-gnu'): os.symlink('gomacc', os.path.join(distname, '%s-gcc' % prefix)) os.symlink('gomacc', os.path.join(distname, '%s-g++' % prefix)) def MkTarball(src, dst_tar_file): """Make tarball. Note: basename of |src| would show up as a file's directory name in a tar file. e.g. If you give "/tmp/foo/bar" that has followings inside as |src|: /tmp/foo/bar/gomacc /tmp/foo/bar/compiler_proxy then, the generated archive would have files with following path names: bar/gomacc bar/compiler_proxy Args: src: an absolute path name of the directory to archive. dst_tar_file: a filename (with extension) to output tarball. """ dirname = os.path.dirname(src) assert os.path.abspath(dirname) def Filter(info): assert info.name.startswith(dirname[1:]) info.name = info.name[len(dirname):] if info.name: print('Adding: %s' % info.name) return info mode = 'w:gz' if os.path.splitext(dst_tar_file)[1] == '.tbz': mode = 'w:bz2' with tarfile.open(dst_tar_file, mode) as tf: for path in os.listdir(src): tf.add(os.path.join(src, path), filter=Filter) def MkZip(src, dst_zip_file): """Make zip file. Note: basename of |src| would show up as a file's directory name in a zip file. e.g. If you give "c:\\Users\\foo\\bar" that has followings inside as |src|: c:\\Users\\foo\\bar\\gomacc c:\\Users\\foo\\bar\\compiler_proxy then, the generated archive would have files with following path names: bar\\gomacc bar\\compiler_proxy Args: src: a full path name of the directory to archive. dst_tar_file: an output zip filename. """ dirname = os.path.dirname(src) with zipfile.ZipFile(dst_zip_file, 'w', compression=zipfile.ZIP_DEFLATED) as zf: for dirpath, _, filenames in os.walk(src): for f in filenames: orig_path = os.path.join(dirpath, f) path = orig_path[len(dirname) + 1:] print('Adding: %s' % path) zf.write(orig_path, arcname=path) def main(): option_parser = optparse.OptionParser() option_parser.add_option('--platform', default={'linux2': 'linux', 'darwin': 'mac', 'win32': 'win', 'cygwin': 'win'}.get(sys.platform, None), choices=('linux', 'mac', 'win', 'goobuntu', 'chromeos', 'win64'), help='platform name') option_parser.add_option('--build_dir', default='out', help='directory of build output') option_parser.add_option('--target_dir', default='Release', help='subdirectory in build_dir to archive') option_parser.add_option('--dist_dir', default='..', help='directory to put tgz') option_parser.add_option('--store_in_commit_dir', action='store_true', help='store tgz in commit dir under dist_dir') options, args = option_parser.parse_args() if args: option_parser.error('Unsupported args: %s' % ' '.join(args)) dist_top_absdir = os.path.abspath(options.dist_dir) dist_absdir = dist_top_absdir src_dir = os.getcwd() if not os.path.isdir(dist_absdir): os.makedirs(dist_absdir, 0o755) if options.store_in_commit_dir: gitproc = subprocess.Popen(['git', 'log', '-1', '--pretty=%H'], shell=(sys.platform == 'win32'), stdout=subprocess.PIPE, cwd=src_dir) commit = gitproc.communicate()[0].strip() if gitproc.returncode: print('ERROR: git failed to get commit. exit=%d' % gitproc.returncode) return gitproc.returncode if not commit: print('ERROR: empty commit hash?') return 1 print('Commit: %s' % commit) dist_absdir = os.path.join(dist_absdir, commit) shutil.rmtree(dist_absdir, ignore_errors=True) os.mkdir(dist_absdir, 0o755) os.chdir(os.path.join(src_dir, options.build_dir, options.target_dir)) distname = 'goma-%s' % options.platform shutil.rmtree(distname, ignore_errors=True) print('Preparing files in %s in %s...' % (distname, os.getcwd())) print('mkdir %s' % distname) os.mkdir(distname, 0o755) if options.platform in ('win', 'win64'): for cmd in ('gomacc.exe', 'compiler_proxy.exe', 'vcflags.exe', 'goma_fetch.exe'): shutil.copy(cmd, distname) pdb = os.path.splitext(cmd)[0] + '.pdb' if not os.path.exists(pdb): pdb = cmd + '.pdb' shutil.copy(pdb, distname) for f in ('.vpython', 'goma_auth.py', 'goma_ctl.py', 'goma_ctl.bat', 'diagnose_goma_log.py', 'compiler_proxy.sym', 'sha256.json', 'gomacc.sym', 'LICENSE'): shutil.copy(f, distname) else: for f in ('.vpython', 'gomacc', 'compiler_proxy', 'goma_fetch', 'report_env.sh', 'diagnose_goma_log.py', 'compiler_proxy.sym', 'goma_auth.py', 'goma_ctl.py', 'sha256.json', 'gomacc.sym', 'LICENSE'): shutil.copy(f, distname) CreatePlatformGomacc(distname, options.platform) InstallPlatformFiles(distname, options.platform) CreateAndroidDir(distname, options.platform) # Create an archive file. if options.platform in ('win', 'win64'): target_file = os.path.join(dist_absdir, '%s.zip' % distname) print('Archiving in %s.zip' % distname) MkZip(os.path.realpath(distname), target_file) compiler_proxy_path = 'compiler_proxy.exe' else: target_file = os.path.join(dist_absdir, '%s.tgz' % distname) print('Archiving in %s.tgz' % distname) MkTarball(os.path.realpath(distname), target_file) compiler_proxy_path = os.path.join(distname, 'compiler_proxy') # Since CIPD uses this directory for creating CIPD package, # we need to remove gomacc symlinks. DeleteSymlinksToGomacc(distname) print() print('%s created.' % target_file) cp = open(compiler_proxy_path, 'rb') # Finds user-agent string (starts with 'compiler-proxy' and ends with 'Z', # which is the last letter of timestamp) for compiler_proxy_user_agent.csv # e.g. "compiler-proxy built by goma at " + # "9d6775c48911ad1b80624720121a5e0d0c320adf@1330938783 " + # "on 2012-03-05T09:20:30.931701Z" m = re.search(r'(compiler-proxy[- a-zA-Z0-9:.@]*Z)', cp.read()) if m: print('"%s",,%s' % (m.group(1), options.platform)) else: print('ERROR: user-agent string not found in %s' % compiler_proxy_path) return 1 cp.close() return 0 if __name__ == '__main__': sys.exit(main())
33.494915
77
0.637992
11a9f9eea0788e34286d6b68f55629bb4808a2a0
10,190
py
Python
pretrain/model.py
yuningkang/APIRecX
aaef5f3f0b669d7a907ddb3273e6658c9267c68a
[ "MIT" ]
49
2020-03-17T08:15:49.000Z
2022-03-23T08:42:16.000Z
pretrain/model.py
yuningkang/APIRecX
aaef5f3f0b669d7a907ddb3273e6658c9267c68a
[ "MIT" ]
2
2020-07-01T08:29:59.000Z
2020-08-17T18:53:48.000Z
pretrain/model.py
yuningkang/APIRecX
aaef5f3f0b669d7a907ddb3273e6658c9267c68a
[ "MIT" ]
4
2021-01-14T14:13:48.000Z
2021-07-06T12:55:53.000Z
import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): def __init__(self, d_k, attn_pdrop): super(ScaledDotProductAttention, self).__init__() self.d_k = d_k self.dropout = nn.Dropout(attn_pdrop) def forward(self, q, k, v, attn_mask): # |q| : (batch_size, n_heads, q_len, d_k) # |k| : (batch_size, n_heads, k_len, d_k) # |v| : (batch_size, n_heads, v_len, d_v) # |attn_mask| : (batch_size, n_heads, q_len, k_len) attn_score = torch.matmul(q, k.transpose(-1, -2)) / (self.d_k ** 0.5) attn_score.masked_fill_(attn_mask, -1e9) # |attn_scroe| : (batch_size, n_heads, q_len, k_len) attn_weights = nn.Softmax(dim=-1)(attn_score) attn_weights = self.dropout(attn_weights) # |attn_weights| : (batch_size, n_heads, q_len, k_len) output = torch.matmul(attn_weights, v) # |output| : (batch_size, n_heads, q_len, d_v) return output, attn_weights class MultiHeadAttention(nn.Module): def __init__(self, d_model, n_heads, attn_pdrop): super(MultiHeadAttention, self).__init__() self.n_heads = n_heads self.d_k = self.d_v = d_model//n_heads self.WQ = nn.Linear(d_model, d_model) self.WK = nn.Linear(d_model, d_model) self.WV = nn.Linear(d_model, d_model) self.scaled_dot_product_attn = ScaledDotProductAttention(self.d_k, attn_pdrop) self.linear = nn.Linear(n_heads * self.d_v, d_model) def forward(self, Q, K, V, attn_mask): # |Q| : (batch_size, q_len(=seq_len), d_model) # |K| : (batch_size, k_len(=seq_len), d_model) # |V| : (batch_size, v_len(=seq_len), d_model) # |attn_mask| : (batch_size, q_len, k_len) batch_size = Q.size(0) q_heads = self.WQ(Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2) k_heads = self.WK(K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2) v_heads = self.WV(V).view(batch_size, -1, self.n_heads, self.d_v).transpose(1, 2) # |q_heads| : (batch_size, n_heads, q_len, d_k), |k_heads| : (batch_size, n_heads, k_len, d_k), |v_heads| : (batch_size, n_heads, v_len, d_v) attn_mask = attn_mask.unsqueeze(1).repeat(1, self.n_heads, 1, 1) # |attn_mask| : (batch_size, n_heads, q_len, k_len) attn, attn_weights = self.scaled_dot_product_attn(q_heads, k_heads, v_heads, attn_mask) # |attn| : (batch_size, n_heads, q_len, d_v) # |attn_weights| : (batch_size, n_heads, q_len, k_len) attn = attn.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads * self.d_v) # |attn| : (batch_size, q_len, n_heads * d_v) outputs = self.linear(attn) # |outputs| : (batch_size, q_len, d_model) return outputs, attn_weights class PositionWiseFeedForwardNetwork(nn.Module): def __init__(self, d_model, d_ff): super(PositionWiseFeedForwardNetwork, self).__init__() self.linear1 = nn.Linear(d_model, d_ff) self.linear2 = nn.Linear(d_ff, d_model) self.gelu = nn.GELU() nn.init.normal_(self.linear1.weight, std=0.02) nn.init.normal_(self.linear2.weight, std=0.02) def forward(self, inputs): # |inputs| : (batch_size, seq_len, d_model) outputs = self.gelu(self.linear1(inputs)) # |outputs| : (batch_size, seq_len, d_ff) outputs = self.linear2(outputs) # |outputs| : (batch_size, seq_len, d_model) return outputs class DecoderLayer(nn.Module): def __init__(self, d_model, n_heads, d_ff, attn_pdrop, resid_pdrop): super(DecoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, n_heads, attn_pdrop) self.dropout1 = nn.Dropout(resid_pdrop) self.layernorm1 = nn.LayerNorm(d_model, eps=1e-5) self.ffn = PositionWiseFeedForwardNetwork(d_model, d_ff) self.dropout2 = nn.Dropout(resid_pdrop) self.layernorm2 = nn.LayerNorm(d_model, eps=1e-5) def forward(self, inputs, attn_mask): # |inputs| : (batch_size, seq_len, d_model) # |attn_mask| : (batch_size, seq_len, seq_len) attn_outputs, attn_weights = self.mha(inputs, inputs, inputs, attn_mask) attn_outputs = self.dropout1(attn_outputs) attn_outputs = self.layernorm1(inputs + attn_outputs) # |attn_outputs| : (batch_size, seq_len, d_model) # |attn_weights| : (batch_size, n_heads, q_len(=seq_len), k_len(=seq_len)) ffn_outputs = self.ffn(attn_outputs) ffn_outputs = self.dropout2(ffn_outputs) ffn_outputs = self.layernorm2(attn_outputs + ffn_outputs) # |ffn_outputs| : (batch_size, seq_len, d_model) return ffn_outputs, attn_weights class TransformerDecoder(nn.Module): def __init__(self, vocab_size, seq_len, d_model, n_layers, n_heads, d_ff, embd_pdrop, attn_pdrop, resid_pdrop, pad_id): super(TransformerDecoder, self).__init__() self.pad_id = pad_id # layers self.embedding = nn.Embedding(vocab_size, d_model) self.dropout = nn.Dropout(embd_pdrop) self.pos_embedding = nn.Embedding(seq_len+1, d_model) self.layers = nn.ModuleList([DecoderLayer(d_model, n_heads, d_ff, attn_pdrop, resid_pdrop) for _ in range(n_layers)]) nn.init.normal_(self.embedding.weight, std=0.02) def forward(self, inputs): # |inputs| : (batch_size, seq_len) positions = torch.arange(inputs.size(1), device=inputs.device, dtype=inputs.dtype).repeat(inputs.size(0), 1) + 1 position_pad_mask = inputs.eq(self.pad_id) positions.masked_fill_(position_pad_mask, 0) # |positions| : (batch_size, seq_len) outputs = self.dropout(self.embedding(inputs)) + self.pos_embedding(positions) # |outputs| : (batch_size, seq_len, d_model) attn_pad_mask = self.get_attention_padding_mask(inputs, inputs, self.pad_id) # |attn_pad_mask| : (batch_size, seq_len, seq_len) subsequent_mask = self.get_attention_subsequent_mask(inputs).to(device=attn_pad_mask.device) # |subsequent_mask| : (batch_size, seq_len, seq_len) attn_mask = torch.gt((attn_pad_mask.to(dtype=subsequent_mask.dtype) + subsequent_mask), 0) # |attn_mask| : (batch_size, seq_len, seq_len) attention_weights = [] for layer in self.layers: outputs, attn_weights = layer(outputs, attn_mask) # |outputs| : (batch_size, seq_len, d_model) # |attn_weights| : (batch_size, n_heads, seq_len, seq_len) attention_weights.append(attn_weights) return outputs, attention_weights def get_attention_padding_mask(self, q, k, pad_id): attn_pad_mask = k.eq(pad_id).unsqueeze(1).repeat(1, q.size(1), 1) # |attn_pad_mask| : (batch_size, q_len, k_len) return attn_pad_mask def get_attention_subsequent_mask(self, q): bs, q_len = q.size() subsequent_mask = torch.ones(bs, q_len, q_len).triu(diagonal=1) # |subsequent_mask| : (batch_size, q_len, q_len) return subsequent_mask class GPT(nn.Module): def __init__(self, vocab_size, seq_len=512, d_model=768, n_layers=12, n_heads=12, d_ff=3072, embd_pdrop=0.1, attn_pdrop=0.1, resid_pdrop=0.1, pad_id=0): super(GPT, self).__init__() self.decoder = TransformerDecoder(vocab_size, seq_len, d_model, n_layers, n_heads, d_ff, embd_pdrop, attn_pdrop, resid_pdrop, pad_id) def forward(self, inputs): # |inputs| : (batch_size, seq_len) outputs, attention_weights = self.decoder(inputs) # |outputs| : (batch_size, seq_len, d_model) # |attention_weights| : [(batch_size, n_heads, seq_len, seq_len)] * n_layers return outputs, attention_weights class GPTLMHead(nn.Module): def __init__(self, gpt): super(GPTLMHead, self).__init__() vocab_size, d_model = gpt.decoder.embedding.weight.size() self.gpt = gpt self.linear = nn.Linear(d_model, vocab_size, bias=False) self.linear.weight = gpt.decoder.embedding.weight def forward(self, inputs): # |inputs| : (batch_size, seq_len) outputs, attention_weights = self.gpt(inputs) # |outputs| : (batch_size, seq_len, d_model) # |attention_weights| : [(batch_size, n_heads, seq_len, seq_len)] * n_layers lm_logits = self.linear(outputs) # |lm_logits| : (batch_size, seq_len, vocab_size) return lm_logits class GPTClsHead(nn.Module): def __init__(self, gpt, n_class, cls_token_id, cls_pdrop=0.1): super(GPTClsHead, self).__init__() vocab_size, d_model = gpt.decoder.embedding.weight.size() self.cls_token_id = cls_token_id self.gpt = gpt # LM self.linear1 = nn.Linear(d_model, vocab_size, bias=False) self.linear1.weight = gpt.decoder.embedding.weight # Classification self.linear2 = nn.Linear(d_model, n_class) self.dropout = nn.Dropout(cls_pdrop) nn.init.normal_(self.linear2.weight, std=0.02) nn.init.normal_(self.linear2.bias, 0) def forward(self, inputs): # |inputs| : (batch_size, seq_len) outputs, attention_weights = self.gpt(inputs) # |outputs| : (batch_size, seq_len, d_model) # |attention_weights| : [(batch_size, n_heads, seq_len, seq_len)] * n_layers lm_logits = self.linear1(outputs) # |lm_logits| : (batch_size, seq_len, vocab_size) outputs = outputs[inputs.eq(self.cls_token_id)] # |outputs| : (batch_size, d_model) cls_logits = self.linear2(self.dropout(outputs)) # |cls_logits| : (batch_size, n_class) return lm_logits, cls_logits
41.08871
149
0.624338
4ffa974e1429618cdcee7cca8c4ffc7b04ab1861
2,756
py
Python
setup.py
just-work/celery-amqp-events
a6a2236ceb9ba982bfd733aa0a858da8443a69e9
[ "MIT" ]
1
2021-03-05T20:14:49.000Z
2021-03-05T20:14:49.000Z
setup.py
just-work/celery-amqp-events
a6a2236ceb9ba982bfd733aa0a858da8443a69e9
[ "MIT" ]
21
2020-09-18T07:52:03.000Z
2022-03-06T07:29:21.000Z
setup.py
just-work/celery-amqp-events
a6a2236ceb9ba982bfd733aa0a858da8443a69e9
[ "MIT" ]
2
2020-10-01T12:29:37.000Z
2020-10-31T17:37:07.000Z
import os import re import subprocess from setuptools import setup # type: ignore from pathlib import Path with open('README.md') as f: long_description = f.read() version_re = re.compile('^Version: (.+)$', re.M) package_name = 'celery-amqp-events' def get_version(): """ Reads version from git status or PKG-INFO https://gist.github.com/pwithnall/7bc5f320b3bdf418265a """ d: Path = Path(__file__).absolute().parent git_dir = d.joinpath('.git') if git_dir.is_dir(): # Get the version using "git describe". cmd = 'git describe --tags --match [0-9]*'.split() try: version = subprocess.check_output(cmd).decode().strip() except subprocess.CalledProcessError: return None # PEP 386 compatibility if '-' in version: version = '.post'.join(version.split('-')[:2]) # Don't declare a version "dirty" merely because a time stamp has # changed. If it is dirty, append a ".dev1" suffix to indicate a # development revision after the release. with open(os.devnull, 'w') as fd_devnull: subprocess.call(['git', 'status'], stdout=fd_devnull, stderr=fd_devnull) cmd = 'git diff-index --name-only HEAD'.split() try: dirty = subprocess.check_output(cmd).decode().strip() except subprocess.CalledProcessError: return None if dirty != '': version += '.dev1' else: # Extract the version from the PKG-INFO file. try: with open('PKG-INFO') as v: version = version_re.search(v.read()).group(1) except FileNotFoundError: version = None return version setup( name=package_name, version=get_version() or 'dev', long_description=long_description, long_description_content_type='text/markdown', packages=['amqp_events'], url='https://github.com/just-work/celery-amqp-events', license='MIT', author='Sergey Tikhonov', author_email='zimbler@gmail.com', description='Distributed event handling on top of Celery', install_requires=[ 'Celery', 'typing_extensions; python_version < "3.8.0"', ], classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Operating System :: POSIX', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Topic :: Software Development :: Libraries', 'Topic :: System :: Distributed Computing', ] )
31.318182
73
0.600508
750d303f385ca519738672d4216bde25702591fc
8,816
py
Python
models/frustum_pointnets_v1.py
voidrank/Geo-CNN
4e8a7d5cc0d14ffa2a1b8bef854f294ae4e25f8b
[ "Apache-2.0" ]
37
2019-04-02T08:25:39.000Z
2022-01-16T22:26:17.000Z
models/frustum_pointnets_v1.py
voidrank/Geo-CNN
4e8a7d5cc0d14ffa2a1b8bef854f294ae4e25f8b
[ "Apache-2.0" ]
6
2019-05-10T02:26:14.000Z
2020-05-06T01:30:11.000Z
models/frustum_pointnets_v1.py
voidrank/Geo-CNN
4e8a7d5cc0d14ffa2a1b8bef854f294ae4e25f8b
[ "Apache-2.0" ]
7
2019-06-24T17:29:17.000Z
2020-04-30T06:28:24.000Z
''' Frsutum PointNets v1 Model. ''' from __future__ import print_function import sys import os import tensorflow as tf import numpy as np BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(BASE_DIR) sys.path.append(os.path.join(ROOT_DIR, 'utils')) import tf_util from model_util import NUM_HEADING_BIN, NUM_SIZE_CLUSTER, NUM_OBJECT_POINT from model_util import point_cloud_masking, get_center_regression_net from model_util import placeholder_inputs, parse_output_to_tensors, get_loss def get_instance_seg_v1_net(point_cloud, one_hot_vec, is_training, bn_decay, end_points): ''' 3D instance segmentation PointNet v1 network. Input: point_cloud: TF tensor in shape (B,N,4) frustum point clouds with XYZ and intensity in point channels XYZs are in frustum coordinate one_hot_vec: TF tensor in shape (B,3) length-3 vectors indicating predicted object type is_training: TF boolean scalar bn_decay: TF float scalar end_points: dict Output: logits: TF tensor in shape (B,N,2), scores for bkg/clutter and object end_points: dict ''' batch_size = point_cloud.get_shape()[0].value num_point = point_cloud.get_shape()[1].value net = tf.expand_dims(point_cloud, 2) net = tf_util.conv2d(net, 64, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv1', bn_decay=bn_decay) vis = net net = tf_util.conv2d(net, 64, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv2', bn_decay=bn_decay) point_feat = tf_util.conv2d(net, 64, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv3', bn_decay=bn_decay) net = tf_util.conv2d(point_feat, 128, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv4', bn_decay=bn_decay) net = tf_util.conv2d(net, 1024, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv5', bn_decay=bn_decay) global_feat = tf_util.max_pool2d(net, [num_point,1], padding='VALID', scope='maxpool') global_feat = tf.concat([global_feat, tf.expand_dims(tf.expand_dims(one_hot_vec, 1), 1)], axis=3) global_feat_expand = tf.tile(global_feat, [1, num_point, 1, 1]) concat_feat = tf.concat(axis=3, values=[point_feat, global_feat_expand]) net = tf_util.conv2d(concat_feat, 512, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv6', bn_decay=bn_decay) net = tf_util.conv2d(net, 256, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv7', bn_decay=bn_decay) net = tf_util.conv2d(net, 128, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv8', bn_decay=bn_decay) net = tf_util.conv2d(net, 128, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv9', bn_decay=bn_decay) net = tf_util.dropout(net, is_training, 'dp1', keep_prob=0.5) logits = tf_util.conv2d(net, 2, [1,1], padding='VALID', stride=[1,1], activation_fn=None, scope='conv10') logits = tf.squeeze(logits, [2]) # BxNxC end_points['vis'] = vis return logits, end_points def get_3d_box_estimation_v1_net(object_point_cloud, one_hot_vec, is_training, bn_decay, end_points): ''' 3D Box Estimation PointNet v1 network. Input: object_point_cloud: TF tensor in shape (B,M,C) point clouds in object coordinate one_hot_vec: TF tensor in shape (B,3) length-3 vectors indicating predicted object type Output: output: TF tensor in shape (B,3+NUM_HEADING_BIN*2+NUM_SIZE_CLUSTER*4) including box centers, heading bin class scores and residuals, and size cluster scores and residuals ''' num_point = object_point_cloud.get_shape()[1].value net = tf.expand_dims(object_point_cloud, 2) net = tf_util.conv2d(net, 128, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv-reg1', bn_decay=bn_decay) net = tf_util.conv2d(net, 128, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv-reg2', bn_decay=bn_decay) net = tf_util.conv2d(net, 256, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv-reg3', bn_decay=bn_decay) net = tf_util.conv2d(net, 512, [1,1], padding='VALID', stride=[1,1], bn=True, is_training=is_training, scope='conv-reg4', bn_decay=bn_decay) net = tf_util.max_pool2d(net, [num_point,1], padding='VALID', scope='maxpool2') net = tf.squeeze(net, axis=[1,2]) net = tf.concat([net, one_hot_vec], axis=1) net = tf_util.fully_connected(net, 512, scope='fc1', bn=True, is_training=is_training, bn_decay=bn_decay) net = tf_util.fully_connected(net, 256, scope='fc2', bn=True, is_training=is_training, bn_decay=bn_decay) # The first 3 numbers: box center coordinates (cx,cy,cz), # the next NUM_HEADING_BIN*2: heading bin class scores and bin residuals # next NUM_SIZE_CLUSTER*4: box cluster scores and residuals output = tf_util.fully_connected(net, 3+NUM_HEADING_BIN*2+NUM_SIZE_CLUSTER*4, activation_fn=None, scope='fc3') return output, end_points def get_model(point_cloud, one_hot_vec, is_training, bn_decay=None): ''' Frustum PointNets model. The model predict 3D object masks and amodel bounding boxes for objects in frustum point clouds. Input: point_cloud: TF tensor in shape (B,N,4) frustum point clouds with XYZ and intensity in point channels XYZs are in frustum coordinate one_hot_vec: TF tensor in shape (B,3) length-3 vectors indicating predicted object type is_training: TF boolean scalar bn_decay: TF float scalar Output: end_points: dict (map from name strings to TF tensors) ''' end_points = {} # 3D Instance Segmentation PointNet logits, end_points = get_instance_seg_v1_net(\ point_cloud, one_hot_vec, is_training, bn_decay, end_points) end_points['mask_logits'] = logits # Masking # select masked points and translate to masked points' centroid object_point_cloud_xyz, mask_xyz_mean, end_points = \ point_cloud_masking(point_cloud, logits, end_points) # T-Net and coordinate translation center_delta, end_points = get_center_regression_net(\ object_point_cloud_xyz, one_hot_vec, is_training, bn_decay, end_points) stage1_center = center_delta + mask_xyz_mean # Bx3 end_points['stage1_center'] = stage1_center # Get object point cloud in object coordinate object_point_cloud_xyz_new = \ object_point_cloud_xyz - tf.expand_dims(center_delta, 1) # Amodel Box Estimation PointNet output, end_points = get_3d_box_estimation_v1_net(\ object_point_cloud_xyz_new, one_hot_vec, is_training, bn_decay, end_points) # Parse output to 3D box parameters end_points = parse_output_to_tensors(output, end_points) end_points['center'] = end_points['center_boxnet'] + stage1_center # Bx3 return end_points if __name__=='__main__': with tf.Graph().as_default(): inputs = tf.zeros((32,1024,4)) outputs = get_model(inputs, tf.ones((32,3)), tf.constant(True)) for key in outputs: print((key, outputs[key])) loss = get_loss(tf.zeros((32,1024),dtype=tf.int32), tf.zeros((32,3)), tf.zeros((32,),dtype=tf.int32), tf.zeros((32,)), tf.zeros((32,),dtype=tf.int32), tf.zeros((32,3)), outputs) print(loss)
43.860697
101
0.607645
fc6de5031f3077d3a446554baf4681b394ffaf20
3,401
py
Python
ome_data/original_files.py
fireofearth/ome_seadragon
35cab3a18c4ee559390f63c42199e93940ab2079
[ "MIT" ]
1
2019-11-14T14:15:19.000Z
2019-11-14T14:15:19.000Z
ome_data/original_files.py
fireofearth/ome_seadragon
35cab3a18c4ee559390f63c42199e93940ab2079
[ "MIT" ]
null
null
null
ome_data/original_files.py
fireofearth/ome_seadragon
35cab3a18c4ee559390f63c42199e93940ab2079
[ "MIT" ]
null
null
null
# Copyright (c) 2019, CRS4 # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import omero.model as om import omero.rtypes as ot from omero.model.enums import ChecksumAlgorithmSHA1160 from utils import switch_to_default_search_group import logging logger = logging.getLogger(__name__) class DuplicatedEntryError(Exception): pass def save_original_file(connection, name, path, mimetype, size, sha1): of = get_original_file(connection, name, mimetype) if of is None: of = om.OriginalFileI() of.setName(ot.wrap(name)) of.setPath(ot.wrap(path)) of.setMimetype(ot.wrap(mimetype)) of.setSize(ot.rlong(size)) of.setHash(ot.wrap(sha1)) hasher = om.ChecksumAlgorithmI() hasher.setValue(ot.wrap(ChecksumAlgorithmSHA1160)) of.setHasher(hasher) of = connection.getUpdateService().saveAndReturnObject(of) return of.getId().getValue() else: raise DuplicatedEntryError( 'OriginalFile with name %s and mimetype %s already exists' % (name, mimetype) ) def get_original_files(connection, name, mimetype=None): switch_to_default_search_group(connection) query_filter = {'name': name} if mimetype: query_filter['mimetype'] = mimetype return list(connection.getObjects('OriginalFile', attributes=query_filter)) def get_original_file(connection, name, mimetype): ofiles = get_original_files(connection, name, mimetype) if len(ofiles) == 0: return None elif len(ofiles) == 1: return ofiles[0] else: raise DuplicatedEntryError('File %s with mimetype %s is not unique' % (name, mimetype)) def delete_original_files(connection, name, mimetype=None): ofiles = get_original_files(connection, name, mimetype) of_ids = [] if len(ofiles) > 0: of_ids = [of.getId() for of in ofiles] try: connection.deleteObjects('OriginalFile', of_ids, deleteAnns=False, deleteChildren=False) except: return False, 0 return True, len(of_ids) def get_original_file_infos(connection, name, mimetype): ofile = get_original_file(connection, name, mimetype) if ofile: return { 'file_path': ofile.getPath(), 'file_hash': ofile.getHash() }
35.8
89
0.690679
03dd3cfe55a5e5124494d5bc293a7fe6def2da4b
14,637
py
Python
tests/helpers/test_config_validation.py
boojew/home-assistant
697c331903f8a440a4ce324a4fb0788351dc86c3
[ "Apache-2.0" ]
1
2019-05-19T08:05:02.000Z
2019-05-19T08:05:02.000Z
tests/helpers/test_config_validation.py
boojew/home-assistant
697c331903f8a440a4ce324a4fb0788351dc86c3
[ "Apache-2.0" ]
6
2021-02-08T21:02:40.000Z
2022-03-12T00:52:16.000Z
tests/helpers/test_config_validation.py
boojew/home-assistant
697c331903f8a440a4ce324a4fb0788351dc86c3
[ "Apache-2.0" ]
1
2019-08-13T11:54:30.000Z
2019-08-13T11:54:30.000Z
"""Test config validators.""" from datetime import timedelta, datetime, date import enum import os from socket import _GLOBAL_DEFAULT_TIMEOUT from unittest.mock import Mock, patch import pytest import voluptuous as vol import homeassistant.helpers.config_validation as cv def test_boolean(): """Test boolean validation.""" schema = vol.Schema(cv.boolean) for value in ('T', 'negative', 'lock'): with pytest.raises(vol.MultipleInvalid): schema(value) for value in ('true', 'On', '1', 'YES', 'enable', 1, True): assert schema(value) for value in ('false', 'Off', '0', 'NO', 'disable', 0, False): assert not schema(value) def test_latitude(): """Test latitude validation.""" schema = vol.Schema(cv.latitude) for value in ('invalid', None, -91, 91, '-91', '91', '123.01A'): with pytest.raises(vol.MultipleInvalid): schema(value) for value in ('-89', 89, '12.34'): schema(value) def test_longitude(): """Test longitude validation.""" schema = vol.Schema(cv.longitude) for value in ('invalid', None, -181, 181, '-181', '181', '123.01A'): with pytest.raises(vol.MultipleInvalid): schema(value) for value in ('-179', 179, '12.34'): schema(value) def test_port(): """Test TCP/UDP network port.""" schema = vol.Schema(cv.port) for value in ('invalid', None, -1, 0, 80000, '81000'): with pytest.raises(vol.MultipleInvalid): schema(value) for value in ('1000', 21, 24574): schema(value) def test_isfile(): """Validate that the value is an existing file.""" schema = vol.Schema(cv.isfile) fake_file = 'this-file-does-not.exist' assert not os.path.isfile(fake_file) for value in ('invalid', None, -1, 0, 80000, fake_file): with pytest.raises(vol.Invalid): schema(value) # patching methods that allow us to fake a file existing # with write access with patch('os.path.isfile', Mock(return_value=True)), \ patch('os.access', Mock(return_value=True)): schema('test.txt') def test_url(): """Test URL.""" schema = vol.Schema(cv.url) for value in ('invalid', None, 100, 'htp://ha.io', 'http//ha.io', 'http://??,**', 'https://??,**'): with pytest.raises(vol.MultipleInvalid): schema(value) for value in ('http://localhost', 'https://localhost/test/index.html', 'http://home-assistant.io', 'http://home-assistant.io/test/', 'https://community.home-assistant.io/'): assert schema(value) def test_platform_config(): """Test platform config validation.""" options = ( {}, {'hello': 'world'}, ) for value in options: with pytest.raises(vol.MultipleInvalid): cv.PLATFORM_SCHEMA(value) options = ( {'platform': 'mqtt'}, {'platform': 'mqtt', 'beer': 'yes'}, ) for value in options: cv.PLATFORM_SCHEMA(value) def test_ensure_list(): """Test ensure_list.""" schema = vol.Schema(cv.ensure_list) assert [] == schema(None) assert [1] == schema(1) assert [1] == schema([1]) assert ['1'] == schema('1') assert ['1'] == schema(['1']) assert [{'1': '2'}] == schema({'1': '2'}) def test_entity_id(): """Test entity ID validation.""" schema = vol.Schema(cv.entity_id) with pytest.raises(vol.MultipleInvalid): schema('invalid_entity') assert schema('sensor.LIGHT') == 'sensor.light' def test_entity_ids(): """Test entity ID validation.""" schema = vol.Schema(cv.entity_ids) options = ( 'invalid_entity', 'sensor.light,sensor_invalid', ['invalid_entity'], ['sensor.light', 'sensor_invalid'], ['sensor.light,sensor_invalid'], ) for value in options: with pytest.raises(vol.MultipleInvalid): schema(value) options = ( [], ['sensor.light'], 'sensor.light' ) for value in options: schema(value) assert schema('sensor.LIGHT, light.kitchen ') == [ 'sensor.light', 'light.kitchen' ] def test_entity_domain(): """Test entity domain validation.""" schema = vol.Schema(cv.entity_domain('sensor')) options = ( 'invalid_entity', 'cover.demo', ) for value in options: with pytest.raises(vol.MultipleInvalid): print(value) schema(value) assert schema('sensor.LIGHT') == 'sensor.light' def test_entities_domain(): """Test entities domain validation.""" schema = vol.Schema(cv.entities_domain('sensor')) options = ( None, '', 'invalid_entity', ['sensor.light', 'cover.demo'], ['sensor.light', 'sensor_invalid'], ) for value in options: with pytest.raises(vol.MultipleInvalid): schema(value) options = ( 'sensor.light', ['SENSOR.light'], ['sensor.light', 'sensor.demo'] ) for value in options: schema(value) assert schema('sensor.LIGHT, sensor.demo ') == [ 'sensor.light', 'sensor.demo' ] assert schema(['sensor.light', 'SENSOR.demo']) == [ 'sensor.light', 'sensor.demo' ] def test_ensure_list_csv(): """Test ensure_list_csv.""" schema = vol.Schema(cv.ensure_list_csv) options = ( None, 12, [], ['string'], 'string1,string2' ) for value in options: schema(value) assert schema('string1, string2 ') == [ 'string1', 'string2' ] def test_event_schema(): """Test event_schema validation.""" options = ( {}, None, { 'event_data': {}, }, { 'event': 'state_changed', 'event_data': 1, }, ) for value in options: with pytest.raises(vol.MultipleInvalid): cv.EVENT_SCHEMA(value) options = ( {'event': 'state_changed'}, {'event': 'state_changed', 'event_data': {'hello': 'world'}}, ) for value in options: cv.EVENT_SCHEMA(value) def test_icon(): """Test icon validation.""" schema = vol.Schema(cv.icon) for value in (False, 'work'): with pytest.raises(vol.MultipleInvalid): schema(value) schema('mdi:work') schema('custom:prefix') def test_time_period(): """Test time_period validation.""" schema = vol.Schema(cv.time_period) options = ( None, '', 'hello:world', '12:', '12:34:56:78', {}, {'wrong_key': -10} ) for value in options: with pytest.raises(vol.MultipleInvalid): schema(value) options = ( '8:20', '23:59', '-8:20', '-23:59:59', '-48:00', {'minutes': 5}, 1, '5' ) for value in options: schema(value) assert timedelta(seconds=180) == schema('180') assert timedelta(hours=23, minutes=59) == schema('23:59') assert -1 * timedelta(hours=1, minutes=15) == schema('-1:15') def test_service(): """Test service validation.""" schema = vol.Schema(cv.service) with pytest.raises(vol.MultipleInvalid): schema('invalid_turn_on') schema('homeassistant.turn_on') def test_service_schema(): """Test service_schema validation.""" options = ( {}, None, { 'service': 'homeassistant.turn_on', 'service_template': 'homeassistant.turn_on' }, { 'data': {'entity_id': 'light.kitchen'}, }, { 'service': 'homeassistant.turn_on', 'data': None }, { 'service': 'homeassistant.turn_on', 'data_template': { 'brightness': '{{ no_end' } }, ) for value in options: with pytest.raises(vol.MultipleInvalid): cv.SERVICE_SCHEMA(value) options = ( {'service': 'homeassistant.turn_on'}, { 'service': 'homeassistant.turn_on', 'entity_id': 'light.kitchen', }, { 'service': 'light.turn_on', 'entity_id': 'all', }, { 'service': 'homeassistant.turn_on', 'entity_id': ['light.kitchen', 'light.ceiling'], }, ) for value in options: cv.SERVICE_SCHEMA(value) def test_slug(): """Test slug validation.""" schema = vol.Schema(cv.slug) for value in (None, 'hello world'): with pytest.raises(vol.MultipleInvalid): schema(value) for value in (12345, 'hello'): schema(value) def test_string(): """Test string validation.""" schema = vol.Schema(cv.string) with pytest.raises(vol.Invalid): schema(None) with pytest.raises(vol.Invalid): schema([]) with pytest.raises(vol.Invalid): schema({}) for value in (True, 1, 'hello'): schema(value) def test_temperature_unit(): """Test temperature unit validation.""" schema = vol.Schema(cv.temperature_unit) with pytest.raises(vol.MultipleInvalid): schema('K') schema('C') schema('F') def test_x10_address(): """Test x10 addr validator.""" schema = vol.Schema(cv.x10_address) with pytest.raises(vol.Invalid): schema('Q1') schema('q55') schema('garbage_addr') schema('a1') schema('C11') def test_template(): """Test template validator.""" schema = vol.Schema(cv.template) for value in (None, '{{ partial_print }', '{% if True %}Hello', ['test']): with pytest.raises(vol.Invalid, message='{} not considered invalid'.format(value)): schema(value) options = ( 1, 'Hello', '{{ beer }}', '{% if 1 == 1 %}Hello{% else %}World{% endif %}', ) for value in options: schema(value) def test_template_complex(): """Test template_complex validator.""" schema = vol.Schema(cv.template_complex) for value in (None, '{{ partial_print }', '{% if True %}Hello'): with pytest.raises(vol.MultipleInvalid): schema(value) options = ( 1, 'Hello', '{{ beer }}', '{% if 1 == 1 %}Hello{% else %}World{% endif %}', {'test': 1, 'test2': '{{ beer }}'}, ['{{ beer }}', 1] ) for value in options: schema(value) def test_time_zone(): """Test time zone validation.""" schema = vol.Schema(cv.time_zone) with pytest.raises(vol.MultipleInvalid): schema('America/Do_Not_Exist') schema('America/Los_Angeles') schema('UTC') def test_date(): """Test date validation.""" schema = vol.Schema(cv.date) for value in ['Not a date', '23:42', '2016-11-23T18:59:08']: with pytest.raises(vol.Invalid): schema(value) schema(datetime.now().date()) schema('2016-11-23') def test_time(): """Test date validation.""" schema = vol.Schema(cv.time) for value in ['Not a time', '2016-11-23', '2016-11-23T18:59:08']: with pytest.raises(vol.Invalid): schema(value) schema(datetime.now().time()) schema('23:42:00') schema('23:42') def test_datetime(): """Test date time validation.""" schema = vol.Schema(cv.datetime) for value in [date.today(), 'Wrong DateTime', '2016-11-23']: with pytest.raises(vol.MultipleInvalid): schema(value) schema(datetime.now()) schema('2016-11-23T18:59:08') def test_deprecated(caplog): """Test deprecation log.""" schema = vol.Schema({ 'venus': cv.boolean, 'mars': cv.boolean }) deprecated_schema = vol.All( cv.deprecated('mars'), schema ) deprecated_schema({'venus': True}) # pylint: disable=len-as-condition assert len(caplog.records) == 0 deprecated_schema({'mars': True}) assert len(caplog.records) == 1 assert caplog.records[0].name == __name__ assert ("The 'mars' option (with value 'True') is deprecated, " "please remove it from your configuration.") in caplog.text def test_key_dependency(): """Test key_dependency validator.""" schema = vol.Schema(cv.key_dependency('beer', 'soda')) options = ( {'beer': None} ) for value in options: with pytest.raises(vol.MultipleInvalid): schema(value) options = ( {'beer': None, 'soda': None}, {'soda': None}, {} ) for value in options: schema(value) def test_has_at_least_one_key(): """Test has_at_least_one_key validator.""" schema = vol.Schema(cv.has_at_least_one_key('beer', 'soda')) for value in (None, [], {}, {'wine': None}): with pytest.raises(vol.MultipleInvalid): schema(value) for value in ({'beer': None}, {'soda': None}): schema(value) def test_enum(): """Test enum validator.""" class TestEnum(enum.Enum): """Test enum.""" value1 = "Value 1" value2 = "Value 2" schema = vol.Schema(cv.enum(TestEnum)) with pytest.raises(vol.Invalid): schema('value3') def test_socket_timeout(): # pylint: disable=invalid-name """Test socket timeout validator.""" schema = vol.Schema(cv.socket_timeout) with pytest.raises(vol.Invalid): schema(0.0) with pytest.raises(vol.Invalid): schema(-1) assert _GLOBAL_DEFAULT_TIMEOUT == schema(None) assert schema(1) == 1.0 def test_matches_regex(): """Test matches_regex validator.""" schema = vol.Schema(cv.matches_regex('.*uiae.*')) with pytest.raises(vol.Invalid): schema(1.0) with pytest.raises(vol.Invalid): schema(" nrtd ") test_str = "This is a test including uiae." assert(schema(test_str) == test_str) def test_is_regex(): """Test the is_regex validator.""" schema = vol.Schema(cv.is_regex) with pytest.raises(vol.Invalid): schema("(") with pytest.raises(vol.Invalid): schema({"a dict": "is not a regex"}) valid_re = ".*" schema(valid_re) def test_comp_entity_ids(): """Test config validation for component entity IDs.""" schema = vol.Schema(cv.comp_entity_ids) for valid in ('ALL', 'all', 'AlL', 'light.kitchen', ['light.kitchen'], ['light.kitchen', 'light.ceiling'], []): schema(valid) for invalid in (['light.kitchen', 'not-entity-id'], '*', ''): with pytest.raises(vol.Invalid): schema(invalid)
24.193388
79
0.568081
b4384fc006c1f86bddf400b66621de5289a72069
4,827
py
Python
cv2/document_scanner.py
NNDEV1/CV2Stuff
fc31a51cdd816e313351f0d83ffb0c7339e73ef3
[ "MIT" ]
3
2021-01-09T23:55:34.000Z
2021-08-15T22:04:34.000Z
cv2/document_scanner.py
NNDEV1/CV2Stuff
fc31a51cdd816e313351f0d83ffb0c7339e73ef3
[ "MIT" ]
null
null
null
cv2/document_scanner.py
NNDEV1/CV2Stuff
fc31a51cdd816e313351f0d83ffb0c7339e73ef3
[ "MIT" ]
null
null
null
import cv2 import numpy as np ########################################## widthImg = 480 heightImg = 640 ########################################## frameWidth = 480 frameHeight = 360 cap = cv2.VideoCapture(0) cap.set(3, widthImg) cap.set(4, heightImg) def stackImages(scale,imgArray): rows = len(imgArray) cols = len(imgArray[0]) rowsAvailable = isinstance(imgArray[0], list) width = imgArray[0][0].shape[1] height = imgArray[0][0].shape[0] if rowsAvailable: for x in range ( 0, rows): for y in range(0, cols): if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]: imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale) else: imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale) if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR) imageBlank = np.zeros((height, width, 3), np.uint8) hor = [imageBlank]*rows hor_con = [imageBlank]*rows for x in range(0, rows): hor[x] = np.hstack(imgArray[x]) ver = np.vstack(hor) else: for x in range(0, rows): if imgArray[x].shape[:2] == imgArray[0].shape[:2]: imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale) else: imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale) if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR) hor= np.hstack(imgArray) ver = hor return ver def preprocessing(img): imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) imgCanny = cv2.Canny(imgBlur, 200, 200) kernel = np.ones((5, 5)) imgDi = cv2.dilate(imgCanny, kernel, iterations=2) imgThresh = cv2.erode(imgDi, kernel, iterations=1) return imgThresh def get_contours(img): biggest = np.array([]) maxArea = 0 contours,hierarchy = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) for cnt in contours: area = cv2.contourArea(cnt) if area>5000: #cv2.drawContours(imgContour, cnt, -1, (255, 0, 0), 3) peri = cv2.arcLength(cnt,True) approx = cv2.approxPolyDP(cnt,0.02*peri,True) if area >maxArea and len(approx) == 4: biggest = approx maxArea = area cv2.drawContours(imgContour, biggest, -1, (255, 0, 0), 20) return biggest #print(len(approx)) #objCor = len(approx) #x, y, w, h = cv2.boundingRect(approx) def reorder(myPoints): myPoints = myPoints.reshape((4, 2)) myPointsNew = np.zeros((4, 1, 2), np.int32) add = myPoints.sum(1) #print("add", add) myPointsNew[0] = myPoints[np.argmin(add)] myPointsNew[3] = myPoints[np.argmax(add)] diff = np.diff(myPoints, axis = 1) myPointsNew[1] = myPoints[np.argmin(diff)] myPointsNew[2] = myPoints[np.argmax(diff)] #print(myPointsNew) return myPointsNew myPoints = myPoints.reshape((4,2)) myPointsNew = np.zeros((4,1,2),np.int32) add = myPoints.sum(1) #print("add", add) myPointsNew[0] = myPoints[np.argmin(add)] myPointsNew[3] = myPoints[np.argmax(add)] diff = np.diff(myPoints, axis=1) myPointsNew[1]= myPoints[np.argmin(diff)] myPointsNew[2] = myPoints[np.argmax(diff)] #print("NewPoints",myPointsNew) return myPointsNew def getWarp(img,biggest): biggest = reorder(biggest) pts1 = np.float32(biggest) pts2 = np.float32([[0, 0], [widthImg, 0], [0, heightImg], [widthImg, heightImg]]) matrix = cv2.getPerspectiveTransform(pts1, pts2) imgOutput = cv2.warpPerspective(img, matrix, (widthImg, heightImg)) #imgCropped = imgOutput[20:imgOutput.shape[0]-20,20:imgOutput.shape[1]-20] #imgCropped = cv2.resize(imgCropped,(widthImg,heightImg)) return imgOutput while True: success, img = cap.read() img = cv2.resize(img,(widthImg,heightImg)) imgContour = img.copy() imgThres = preprocessing(img) biggest = get_contours(imgThres) #print(biggest) if biggest.size !=0: imgWarped=getWarp(img,biggest) # imageArray = ([img,imgThres], # [imgContour,imgWarped]) imageArray = ([imgContour, imgWarped]) cv2.imshow("ImageWarped", imgWarped) else: # imageArray = ([img, imgThres], # [img, img]) imageArray = ([img, imgContour]) stackedImages = stackImages(0.6,imageArray) cv2.imshow("WorkFlow", stackedImages) if cv2.waitKey(1) & 0xFF == ord('q'): break
34.726619
135
0.591879
493b74fcf53409e0e3da9a1043573b947dfbfb48
138
py
Python
junkfile/gui/windows/arrange_window/arrange_model.py
IvanFrezzaJr/junkfile2
13894955fba1f200bdb6dc8f4175d5320927c55e
[ "MIT" ]
null
null
null
junkfile/gui/windows/arrange_window/arrange_model.py
IvanFrezzaJr/junkfile2
13894955fba1f200bdb6dc8f4175d5320927c55e
[ "MIT" ]
null
null
null
junkfile/gui/windows/arrange_window/arrange_model.py
IvanFrezzaJr/junkfile2
13894955fba1f200bdb6dc8f4175d5320927c55e
[ "MIT" ]
null
null
null
from dataclasses import dataclass @dataclass class Model: directory_in: str = "" directory_out: str = "" copy: bool = False
15.333333
33
0.673913
561c13eee14d30a42651e4d73bcd63ddcdf5a6b9
39,745
py
Python
ofa/imagenet_codebase/data_providers/roi.py
ronjian/once-for-all
6d0a76be5007fda31c8b366a51f23b626bb8f24c
[ "Apache-2.0" ]
null
null
null
ofa/imagenet_codebase/data_providers/roi.py
ronjian/once-for-all
6d0a76be5007fda31c8b366a51f23b626bb8f24c
[ "Apache-2.0" ]
null
null
null
ofa/imagenet_codebase/data_providers/roi.py
ronjian/once-for-all
6d0a76be5007fda31c8b366a51f23b626bb8f24c
[ "Apache-2.0" ]
null
null
null
# import glob # import math # import os # import random # import shutil # import time # from pathlib import Path # from threading import Thread # import cv2 # import numpy as np # import torch # from PIL import Image, ExifTags # from torch.utils.data import Dataset # from tqdm import tqdm # # from utils.utils import xyxy2xywh, xywh2xyxy # help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' # img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng'] # vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv', '.mkv'] # def xyxy2xywh(x): # # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right # y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) # y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center # y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center # y[:, 2] = x[:, 2] - x[:, 0] # width # y[:, 3] = x[:, 3] - x[:, 1] # height # return y # def xywh2xyxy(x): # # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right # y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) # y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x # y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y # y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x # y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y # return y # # Get orientation exif tag # for orientation in ExifTags.TAGS.keys(): # if ExifTags.TAGS[orientation] == 'Orientation': # break # def get_hash(files): # # Returns a single hash value of a list of files # return sum(os.path.getsize(f) for f in files if os.path.isfile(f)) # def exif_size(img): # # Returns exif-corrected PIL size # s = img.size # (width, height) # try: # rotation = dict(img._getexif().items())[orientation] # if rotation == 6: # rotation 270 # s = (s[1], s[0]) # elif rotation == 8: # rotation 90 # s = (s[1], s[0]) # except: # pass # return s # def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False): # dataset = LoadImagesAndLabels(path, imgsz, batch_size, # augment=augment, # augment images # hyp=hyp, # augmentation hyperparameters # rect=rect, # rectangular training # cache_images=cache, # single_cls=opt.single_cls, # stride=int(stride), # pad=pad) # batch_size = min(batch_size, len(dataset)) # nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers # dataloader = torch.utils.data.DataLoader(dataset, # batch_size=batch_size, # num_workers=nw, # pin_memory=True, # collate_fn=LoadImagesAndLabels.collate_fn) # return dataloader, dataset # class LoadImages: # for inference # def __init__(self, path, img_size=640): # path = str(Path(path)) # os-agnostic # files = [] # if os.path.isdir(path): # files = sorted(glob.glob(os.path.join(path, '*.*'))) # elif os.path.isfile(path): # files = [path] # images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats] # videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats] # nI, nV = len(images), len(videos) # self.img_size = img_size # self.files = images + videos # self.nF = nI + nV # number of files # self.video_flag = [False] * nI + [True] * nV # self.mode = 'images' # if any(videos): # self.new_video(videos[0]) # new video # else: # self.cap = None # assert self.nF > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \ # (path, img_formats, vid_formats) # def __iter__(self): # self.count = 0 # return self # def __next__(self): # if self.count == self.nF: # raise StopIteration # path = self.files[self.count] # if self.video_flag[self.count]: # # Read video # self.mode = 'video' # ret_val, img0 = self.cap.read() # if not ret_val: # self.count += 1 # self.cap.release() # if self.count == self.nF: # last video # raise StopIteration # else: # path = self.files[self.count] # self.new_video(path) # ret_val, img0 = self.cap.read() # self.frame += 1 # print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='') # else: # # Read image # self.count += 1 # img0 = cv2.imread(path) # BGR # assert img0 is not None, 'Image Not Found ' + path # print('image %g/%g %s: ' % (self.count, self.nF, path), end='') # # Padded resize # img = letterbox(img0, new_shape=self.img_size)[0] # # Convert # img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 # img = np.ascontiguousarray(img) # # cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image # return path, img, img0, self.cap # def new_video(self, path): # self.frame = 0 # self.cap = cv2.VideoCapture(path) # self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) # def __len__(self): # return self.nF # number of files # class LoadWebcam: # for inference # def __init__(self, pipe=0, img_size=640): # self.img_size = img_size # if pipe == '0': # pipe = 0 # local camera # # pipe = 'rtsp://192.168.1.64/1' # IP camera # # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login # # pipe = 'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # IP traffic camera # # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera # # https://answers.opencv.org/question/215996/changing-gstreamer-pipeline-to-opencv-in-pythonsolved/ # # pipe = '"rtspsrc location="rtsp://username:password@192.168.1.64/1" latency=10 ! appsink' # GStreamer # # https://answers.opencv.org/question/200787/video-acceleration-gstremer-pipeline-in-videocapture/ # # https://stackoverflow.com/questions/54095699/install-gstreamer-support-for-opencv-python-package # install help # # pipe = "rtspsrc location=rtsp://root:root@192.168.0.91:554/axis-media/media.amp?videocodec=h264&resolution=3840x2160 protocols=GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! queue ! vaapih264dec ! videoconvert ! appsink" # GStreamer # self.pipe = pipe # self.cap = cv2.VideoCapture(pipe) # video capture object # self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size # def __iter__(self): # self.count = -1 # return self # def __next__(self): # self.count += 1 # if cv2.waitKey(1) == ord('q'): # q to quit # self.cap.release() # cv2.destroyAllWindows() # raise StopIteration # # Read frame # if self.pipe == 0: # local camera # ret_val, img0 = self.cap.read() # img0 = cv2.flip(img0, 1) # flip left-right # else: # IP camera # n = 0 # while True: # n += 1 # self.cap.grab() # if n % 30 == 0: # skip frames # ret_val, img0 = self.cap.retrieve() # if ret_val: # break # # Print # assert ret_val, 'Camera Error %s' % self.pipe # img_path = 'webcam.jpg' # print('webcam %g: ' % self.count, end='') # # Padded resize # img = letterbox(img0, new_shape=self.img_size)[0] # # Convert # img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 # img = np.ascontiguousarray(img) # return img_path, img, img0, None # def __len__(self): # return 0 # class LoadStreams: # multiple IP or RTSP cameras # def __init__(self, sources='streams.txt', img_size=640): # self.mode = 'images' # self.img_size = img_size # if os.path.isfile(sources): # with open(sources, 'r') as f: # sources = [x.strip() for x in f.read().splitlines() if len(x.strip())] # else: # sources = [sources] # n = len(sources) # self.imgs = [None] * n # self.sources = sources # for i, s in enumerate(sources): # # Start the thread to read frames from the video stream # print('%g/%g: %s... ' % (i + 1, n, s), end='') # cap = cv2.VideoCapture(0 if s == '0' else s) # assert cap.isOpened(), 'Failed to open %s' % s # w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # fps = cap.get(cv2.CAP_PROP_FPS) % 100 # _, self.imgs[i] = cap.read() # guarantee first frame # thread = Thread(target=self.update, args=([i, cap]), daemon=True) # print(' success (%gx%g at %.2f FPS).' % (w, h, fps)) # thread.start() # print('') # newline # # check for common shapes # s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes # self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal # if not self.rect: # print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.') # def update(self, index, cap): # # Read next stream frame in a daemon thread # n = 0 # while cap.isOpened(): # n += 1 # # _, self.imgs[index] = cap.read() # cap.grab() # if n == 4: # read every 4th frame # _, self.imgs[index] = cap.retrieve() # n = 0 # time.sleep(0.01) # wait time # def __iter__(self): # self.count = -1 # return self # def __next__(self): # self.count += 1 # img0 = self.imgs.copy() # if cv2.waitKey(1) == ord('q'): # q to quit # cv2.destroyAllWindows() # raise StopIteration # # Letterbox # img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0] # # Stack # img = np.stack(img, 0) # # Convert # img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416 # img = np.ascontiguousarray(img) # return self.sources, img, img0, None # def __len__(self): # return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years # class LoadImagesAndLabels(Dataset): # for training/testing # def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, # cache_images=False, single_cls=False, stride=32, pad=0.0): # try: # f = [] # image files # for p in path if isinstance(path, list) else [path]: # p = str(Path(p)) # os-agnostic # parent = str(Path(p).parent) + os.sep # if os.path.isfile(p): # file # with open(p, 'r') as t: # t = t.read().splitlines() # f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path # elif os.path.isdir(p): # folder # f += glob.iglob(p + os.sep + '*.*') # else: # raise Exception('%s does not exist' % p) # self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats] # except Exception as e: # raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url)) # n = len(self.img_files) # assert n > 0, 'No images found in %s. See %s' % (path, help_url) # bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index # nb = bi[-1] + 1 # number of batches # self.n = n # number of images # self.batch = bi # batch index of image # self.img_size = img_size # self.augment = augment # self.hyp = hyp # self.image_weights = image_weights # self.rect = False if image_weights else rect # self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) # self.mosaic_border = [-img_size // 2, -img_size // 2] # self.stride = stride # # Define labels # self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in # self.img_files] # # Check cache # cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels # if os.path.isfile(cache_path): # cache = torch.load(cache_path) # load # if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed # cache = self.cache_labels(cache_path) # re-cache # else: # cache = self.cache_labels(cache_path) # cache # # Get labels # cache_arr = [] # for x in self.img_files: # cache_arr.append(cache[x]) # labels, shapes = zip(*cache_arr) # self.shapes = np.array(shapes, dtype=np.float64) # self.labels = list(labels) # # Rectangular Training https://github.com/ultralytics/yolov3/issues/232 # if self.rect: # # Sort by aspect ratio # s = self.shapes # wh # ar = s[:, 1] / s[:, 0] # aspect ratio # irect = ar.argsort() # self.img_files = [self.img_files[i] for i in irect] # self.label_files = [self.label_files[i] for i in irect] # self.labels = [self.labels[i] for i in irect] # self.shapes = s[irect] # wh # ar = ar[irect] # # Set training image shapes # shapes = [[1, 1]] * nb # for i in range(nb): # ari = ar[bi == i] # mini, maxi = ari.min(), ari.max() # if maxi < 1: # shapes[i] = [maxi, 1] # elif mini > 1: # shapes[i] = [1, 1 / mini] # self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride # # Cache labels # create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False # nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate # pbar = tqdm(self.label_files) # for i, file in enumerate(pbar): # l = self.labels[i] # label # if l.shape[0]: # assert l.shape[1] == 5, '> 5 label columns: %s' % file # assert (l >= 0).all(), 'negative labels: %s' % file # assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file # if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows # nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows # if single_cls: # l[:, 0] = 0 # force dataset into single-class mode # self.labels[i] = l # nf += 1 # file found # # Create subdataset (a smaller dataset) # if create_datasubset and ns < 1E4: # if ns == 0: # create_folder(path='./datasubset') # os.makedirs('./datasubset/images') # exclude_classes = 43 # if exclude_classes not in l[:, 0]: # ns += 1 # # shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image # with open('./datasubset/images.txt', 'a') as f: # f.write(self.img_files[i] + '\n') # # Extract object detection boxes for a second stage classifier # if extract_bounding_boxes: # p = Path(self.img_files[i]) # img = cv2.imread(str(p)) # h, w = img.shape[:2] # for j, x in enumerate(l): # f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name) # if not os.path.exists(Path(f).parent): # os.makedirs(Path(f).parent) # make new output folder # b = x[1:] * [w, h, w, h] # box # b[2:] = b[2:].max() # rectangle to square # b[2:] = b[2:] * 1.3 + 30 # pad # b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) # b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image # b[[1, 3]] = np.clip(b[[1, 3]], 0, h) # assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes' # else: # ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty # # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove # pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % ( # cache_path, nf, nm, ne, nd, n) # assert nf > 0, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url) # # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) # self.imgs = [None] * n # if cache_images: # gb = 0 # Gigabytes of cached images # pbar = tqdm(range(len(self.img_files)), desc='Caching images') # self.img_hw0, self.img_hw = [None] * n, [None] * n # for i in pbar: # max 10k images # self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized # gb += self.imgs[i].nbytes # pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9) # def cache_labels(self, path='labels.cache'): # # Cache dataset labels, check images and read shapes # x = {} # dict # pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files)) # for (img, label) in pbar: # try: # l = [] # image = Image.open(img) # image.verify() # PIL verify # # _ = io.imread(img) # skimage verify (from skimage import io) # shape = exif_size(image) # image size # if os.path.isfile(label): # with open(label, 'r') as f: # l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels # if len(l) == 0: # l = np.zeros((0, 5), dtype=np.float32) # x[img] = [l, shape] # except Exception as e: # x[img] = None # print('WARNING: %s: %s' % (img, e)) # x['hash'] = get_hash(self.label_files + self.img_files) # torch.save(x, path) # save for next time # return x # def __len__(self): # return len(self.img_files) # # def __iter__(self): # # self.count = -1 # # print('ran dataset iter') # # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) # # return self # def __getitem__(self, index): # if self.image_weights: # index = self.indices[index] # hyp = self.hyp # if self.mosaic: # # Load mosaic # img, labels = load_mosaic(self, index) # shapes = None # else: # # Load image # img, (h0, w0), (h, w) = load_image(self, index) # # print('!!!1', img.shape) # # Letterbox # shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape # # print('self.rect', self.rect, 'shape', shape) # img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) # shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling # # print('!!!2', img.shape) # # Load labels # labels = [] # x = self.labels[index] # if x.size > 0: # # Normalized xywh to pixel xyxy format # labels = x.copy() # labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width # labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height # labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0] # labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1] # if self.augment: # # Augment imagespace # if not self.mosaic: # img, labels = random_affine(img, labels, # degrees=hyp['degrees'], # translate=hyp['translate'], # scale=hyp['scale'], # shear=hyp['shear']) # # Augment colorspace # augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) # # Apply cutouts # # if random.random() < 0.9: # # labels = cutout(img, labels) # nL = len(labels) # number of labels # if nL: # # convert xyxy to xywh # labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # # Normalize coordinates 0 - 1 # labels[:, [2, 4]] /= img.shape[0] # height # labels[:, [1, 3]] /= img.shape[1] # width # if self.augment: # # random left-right flip # lr_flip = True # if lr_flip and random.random() < 0.5: # img = np.fliplr(img) # if nL: # labels[:, 1] = 1 - labels[:, 1] # # random up-down flip # ud_flip = False # if ud_flip and random.random() < 0.5: # img = np.flipud(img) # if nL: # labels[:, 2] = 1 - labels[:, 2] # labels_out = torch.zeros((nL, 6)) # if nL: # labels_out[:, 1:] = torch.from_numpy(labels) # # Convert # img = img[:, :, ::-1].transpose(2, 0, 1) # img = np.ascontiguousarray(img) # return torch.from_numpy(img), labels_out, self.img_files[index], shapes # @staticmethod # def collate_fn(batch): # img, label, path, shapes = zip(*batch) # transposed # for i, l in enumerate(label): # l[:, 0] = i # add target image index for build_targets() # return torch.stack(img, 0), torch.cat(label, 0), path, shapes # def load_image(self, index): # # loads 1 image from dataset, returns img, original hw, resized hw # img = self.imgs[index] # if img is None: # not cached # path = self.img_files[index] # img = cv2.imread(path) # BGR # assert img is not None, 'Image Not Found ' + path # h0, w0 = img.shape[:2] # orig hw # r = self.img_size / max(h0, w0) # resize image to img_size # if r != 1: # always resize down, only resize up if training with augmentation # interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR # img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) # return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized # else: # return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized # def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): # r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains # hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) # dtype = img.dtype # uint8 # x = np.arange(0, 256, dtype=np.int16) # lut_hue = ((x * r[0]) % 180).astype(dtype) # lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) # lut_val = np.clip(x * r[2], 0, 255).astype(dtype) # img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) # cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed # # Histogram equalization # # if random.random() < 0.2: # # for i in range(3): # # img[:, :, i] = cv2.equalizeHist(img[:, :, i]) # def load_mosaic(self, index): # # loads images in a mosaic # labels4 = [] # s = self.img_size # yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y # indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices # for i, index in enumerate(indices): # # Load image # img, _, (h, w) = load_image(self, index) # # place img in img4 # if i == 0: # top left # img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles # x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) # x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) # elif i == 1: # top right # x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc # x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h # elif i == 2: # bottom left # x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) # x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h) # elif i == 3: # bottom right # x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) # x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) # img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] # padw = x1a - x1b # padh = y1a - y1b # # Labels # x = self.labels[index] # labels = x.copy() # if x.size > 0: # Normalized xywh to pixel xyxy format # labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw # labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh # labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw # labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh # labels4.append(labels) # # Concat/clip labels # if len(labels4): # labels4 = np.concatenate(labels4, 0) # # np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:]) # use with center crop # np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_affine # # Replicate # # img4, labels4 = replicate(img4, labels4) # # Augment # # img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning) # img4, labels4 = random_affine(img4, labels4, # degrees=self.hyp['degrees'], # translate=self.hyp['translate'], # scale=self.hyp['scale'], # shear=self.hyp['shear'], # border=self.mosaic_border) # border to remove # return img4, labels4 # def replicate(img, labels): # # Replicate labels # h, w = img.shape[:2] # boxes = labels[:, 1:].astype(int) # x1, y1, x2, y2 = boxes.T # s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) # for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices # x1b, y1b, x2b, y2b = boxes[i] # bh, bw = y2b - y1b, x2b - x1b # yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y # x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] # img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] # labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) # return img, labels # def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): # # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 # shape = img.shape[:2] # current shape [height, width] # if isinstance(new_shape, int): # new_shape = (new_shape, new_shape) # # Scale ratio (new / old) # r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) # if not scaleup: # only scale down, do not scale up (for better test mAP) # r = min(r, 1.0) # # Compute padding # ratio = r, r # width, height ratios # new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) # dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding # if auto: # minimum rectangle # dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding # elif scaleFill: # stretch # dw, dh = 0.0, 0.0 # new_unpad = (new_shape[1], new_shape[0]) # ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios # dw /= 2 # divide padding into 2 sides # dh /= 2 # if shape[::-1] != new_unpad: # resize # print('new_unpad', new_unpad) # img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) # top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) # left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) # # print('top, bottom, left, right', top, bottom, left, right) # img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border # return img, ratio, (dw, dh) # def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=(0, 0)): # # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4 # # targets = [cls, xyxy] # height = img.shape[0] + border[0] * 2 # shape(h,w,c) # width = img.shape[1] + border[1] * 2 # # Rotation and Scale # R = np.eye(3) # a = random.uniform(-degrees, degrees) # # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations # s = random.uniform(1 - scale, 1 + scale) # # s = 2 ** random.uniform(-scale, scale) # R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s) # # Translation # T = np.eye(3) # T[0, 2] = random.uniform(-translate, translate) * img.shape[1] + border[1] # x translation (pixels) # T[1, 2] = random.uniform(-translate, translate) * img.shape[0] + border[0] # y translation (pixels) # # Shear # S = np.eye(3) # S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) # S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) # # Combined rotation matrix # M = S @ T @ R # ORDER IS IMPORTANT HERE!! # if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed # img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=(114, 114, 114)) # # Transform label coordinates # n = len(targets) # if n: # # warp points # xy = np.ones((n * 4, 3)) # xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 # xy = (xy @ M.T)[:, :2].reshape(n, 8) # # create new boxes # x = xy[:, [0, 2, 4, 6]] # y = xy[:, [1, 3, 5, 7]] # xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # # # apply angle-based reduction of bounding boxes # # radians = a * math.pi / 180 # # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5 # # x = (xy[:, 2] + xy[:, 0]) / 2 # # y = (xy[:, 3] + xy[:, 1]) / 2 # # w = (xy[:, 2] - xy[:, 0]) * reduction # # h = (xy[:, 3] - xy[:, 1]) * reduction # # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T # # reject warped points outside of image # xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) # xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) # w = xy[:, 2] - xy[:, 0] # h = xy[:, 3] - xy[:, 1] # area = w * h # area0 = (targets[:, 3] - targets[:, 1]) * (targets[:, 4] - targets[:, 2]) # ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) # aspect ratio # i = (w > 2) & (h > 2) & (area / (area0 * s + 1e-16) > 0.2) & (ar < 20) # targets = targets[i] # targets[:, 1:5] = xy[i] # return img, targets # def cutout(image, labels): # # https://arxiv.org/abs/1708.04552 # # https://github.com/hysts/pytorch_cutout/blob/master/dataloader.py # # https://towardsdatascience.com/when-conventional-wisdom-fails-revisiting-data-augmentation-for-self-driving-cars-4831998c5509 # h, w = image.shape[:2] # def bbox_ioa(box1, box2): # # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2 # box2 = box2.transpose() # # Get the coordinates of bounding boxes # b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] # b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] # # Intersection area # inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ # (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) # # box2 area # box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16 # # Intersection over box2 area # return inter_area / box2_area # # create random masks # scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction # for s in scales: # mask_h = random.randint(1, int(h * s)) # mask_w = random.randint(1, int(w * s)) # # box # xmin = max(0, random.randint(0, w) - mask_w // 2) # ymin = max(0, random.randint(0, h) - mask_h // 2) # xmax = min(w, xmin + mask_w) # ymax = min(h, ymin + mask_h) # # apply random color mask # image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] # # return unobscured labels # if len(labels) and s > 0.03: # box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) # ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area # labels = labels[ioa < 0.60] # remove >60% obscured labels # return labels # def reduce_img_size(path='../data/sm4/images', img_size=1024): # from utils.datasets import *; reduce_img_size() # # creates a new ./images_reduced folder with reduced size images of maximum size img_size # path_new = path + '_reduced' # reduced images path # create_folder(path_new) # for f in tqdm(glob.glob('%s/*.*' % path)): # try: # img = cv2.imread(f) # h, w = img.shape[:2] # r = img_size / max(h, w) # size ratio # if r < 1.0: # img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest # fnew = f.replace(path, path_new) # .replace(Path(f).suffix, '.jpg') # cv2.imwrite(fnew, img) # except: # print('WARNING: image failure %s' % f) # def convert_images2bmp(): # from utils.datasets import *; convert_images2bmp() # # Save images # formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats] # # for path in ['../coco/images/val2014', '../coco/images/train2014']: # for path in ['../data/sm4/images', '../data/sm4/background']: # create_folder(path + 'bmp') # for ext in formats: # ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng'] # for f in tqdm(glob.glob('%s/*%s' % (path, ext)), desc='Converting %s' % ext): # cv2.imwrite(f.replace(ext.lower(), '.bmp').replace(path, path + 'bmp'), cv2.imread(f)) # # Save labels # # for path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']: # for file in ['../data/sm4/out_train.txt', '../data/sm4/out_test.txt']: # with open(file, 'r') as f: # lines = f.read() # # lines = f.read().replace('2014/', '2014bmp/') # coco # lines = lines.replace('/images', '/imagesbmp') # lines = lines.replace('/background', '/backgroundbmp') # for ext in formats: # lines = lines.replace(ext, '.bmp') # with open(file.replace('.txt', 'bmp.txt'), 'w') as f: # f.write(lines) # def recursive_dataset2bmp(dataset='../data/sm4_bmp'): # from utils.datasets import *; recursive_dataset2bmp() # # Converts dataset to bmp (for faster training) # formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats] # for a, b, files in os.walk(dataset): # for file in tqdm(files, desc=a): # p = a + '/' + file # s = Path(file).suffix # if s == '.txt': # replace text # with open(p, 'r') as f: # lines = f.read() # for f in formats: # lines = lines.replace(f, '.bmp') # with open(p, 'w') as f: # f.write(lines) # elif s in formats: # replace image # cv2.imwrite(p.replace(s, '.bmp'), cv2.imread(p)) # if s != '.bmp': # os.system("rm '%s'" % p) # def imagelist2folder(path='data/coco_64img.txt'): # from utils.datasets import *; imagelist2folder() # # Copies all the images in a text file (list of images) into a folder # create_folder(path[:-4]) # with open(path, 'r') as f: # for line in f.read().splitlines(): # os.system('cp "%s" %s' % (line, path[:-4])) # print(line) # def create_folder(path='./new_folder'): # # Create folder # if os.path.exists(path): # shutil.rmtree(path) # delete output folder # os.makedirs(path) # make new output folder
43.342421
240
0.509221
38ec7f10464cf22f6d6318e9e4de8f6a3f24a3c9
20,160
py
Python
lightlab/equipment/abstract_drivers/configurable.py
ZhimuG/lightlab-ZG
cceb417be153c31d62b6e07b347ef093b9462b84
[ "MIT" ]
null
null
null
lightlab/equipment/abstract_drivers/configurable.py
ZhimuG/lightlab-ZG
cceb417be153c31d62b6e07b347ef093b9462b84
[ "MIT" ]
null
null
null
lightlab/equipment/abstract_drivers/configurable.py
ZhimuG/lightlab-ZG
cceb417be153c31d62b6e07b347ef093b9462b84
[ "MIT" ]
null
null
null
from lightlab import visalogger as logger from pyvisa import VisaIOError from contextlib import contextmanager import dpath.util import json from numpy import floor from pathlib import Path from lightlab.util.io import lightlabDevelopmentDir defaultFileDir = lightlabDevelopmentDir / 'savedConfigDefaults/' from . import AbstractDriver class AccessException(Exception): pass class TekConfig(object): ''' Wraps a dictionary attribute. Uses dpath for operations. Commands are defined as tuples (cStr, val). For example (':PATH:TO:CMD', 4). Use these by doing scope.write(' '.join(TekConfig.get('PATH:TO:CMD'))) The val is always a string. Todo: :transferring subgroup from one instance to another. :returning a dictionary representing a subgroup (actually this might currently be happening in error) :transferring subgroup values to a different subgroup in the same instance (for example, CH1 to CH2) ''' separator = ':' def __init__(self, initDict=None): if initDict is None: initDict = dict() self.dico = initDict.copy() def __str__(self): return json.dumps(self.dico, indent=2, sort_keys=True) def print(self, subgroup=''): sub = type(self)() sub.transfer(self, subgroup=subgroup) print(sub) def copy(self, subgroup=''): ret = type(self)() ret.transfer(self, subgroup=subgroup) return ret def get(self, cStr, asCmd=True): ''' Returns the value only, not a dictionary Args: asCmd (bool): if true, returns a tuple representing a command. Otherwise returns just the value ''' try: val = dpath.util.get(self.dico, cStr, separator=self.separator) except KeyError: raise KeyError(cStr + ' is not present in this TekConfig instance') if type(val) is dict and '&' in val.keys(): val = val['&'] if not asCmd: return val else: return (cStr, str(val)) def set(self, cStr, val): ''' Takes the value only, not a dictionary ''' # First check that it does not exist as a subdir try: ex = dpath.util.get(self.dico, cStr, separator=self.separator) except KeyError: # doesn't exist, we are good to go pass else: if type(ex) is dict: # we don't want to overwrite this subdirectory, so put a tag on cmd cStr = cStr + self.separator + '&' cmd = (cStr, val) success = dpath.util.set(self.dico, *cmd, separator=self.separator) if success != 1: # it doesn't exist yet try: dpath.util.new(self.dico, *cmd, separator=self.separator) except (ValueError, dpath.exceptions.PathNotFound): # We probably have an integer leaf where we would also like to have a directory parent = self.separator.join(cmd[0].split(self.separator)[:-1]) try: oldV = self.get(parent, asCmd=False) except KeyError: print('dpath did not take ' + str(cmd)) raise dpath.util.set(self.dico, parent, {'&': oldV}, separator=self.separator) dpath.util.new(self.dico, *cmd, separator=self.separator) def getList(self, subgroup='', asCmd=True): ''' Deep crawler that goes in and generates a command for every leaf. Args: subgroup (str): subgroup must be a subdirectory. If '', it is root directory. It can also be a command string, in which case, the returned list has length 1 asCmd (bool): if false, returns a list of strings that can be sent to scopes Returns: list: list of valid commands (cstr, val) on the subgroup subdirectory ''' cList = [] children = dpath.util.search(self.dico, subgroup + '*', yielded=True, separator=self.separator) for cmd in children: s, v = cmd if type(v) is not dict: if s[0] != self.separator: s = self.separator + s cList += [(s, v)] else: cList += self.getList(subgroup=cmd[0] + self.separator) if asCmd: return cList else: writeList = [None] * len(cList) for i, cmd in enumerate(cList): cStr, val = cmd if cStr[-1] == '&': # check for tokens cStr = cStr[:-2] writeList[i] = cStr + ' ' + str(val) return writeList def setList(self, cmdList): ''' The inverse of getList ''' for c in cmdList: self.set(*c) def transfer(self, source, subgroup=''): ''' Pulls config from the source TekConfig object. This is useful for subgrouping. For example, you might want to load from default only the trigger configuration. Args: source (TekConfig or dict): the object from which config values are pulled into self subgroup (str): subgroup must be a subdirectory. If '', it is root directory. It can also be a command string, in which case, only that parameter is affected ''' if type(source) is dict: sCon = type(self)(source) elif type(source) is type(self): sCon = source else: raise Exception('Invalid source for transfer. Got ' + str(type(source))) commands = sCon.getList(subgroup=subgroup) self.setList(commands) return self @classmethod def fromFile(cls, fname, subgroup=''): fpath = Path(fname) with fpath.open('r') as fx: d = json.load(fx) full = cls(d) ret = cls() ret.transfer(full, subgroup=subgroup) return ret @classmethod def __parseShorthand(cls, setResponse): ''' Turns shorthand multi-command strings into list of proper command tuples ''' pairs = setResponse.split(';') commands = [None] * len(pairs) cmdGrp = None for i in range(len(pairs)): words = pairs[i].split(' ') cmdLeaf, val = words[0:2] if len(words) > 2: print('Warning 2-value returns not handled by TekConfig class. Ignoring...') print(*words) if cmdLeaf[0] == cls.separator: pat = cmdLeaf[1:] cmdGrp = cls.separator.join(pat.split(cls.separator)[:-1]) else: pat = cmdGrp + cls.separator + cmdLeaf commands[i] = (pat, val) return commands @classmethod def fromSETresponse(cls, setResponse, subgroup=''): ''' setResponse (str): what is returned by the scope in response to query('SET?') It will require some parsing for subgroup shorthand ''' commandList = cls.__parseShorthand(setResponse) full = cls() full.setList(commandList) if subgroup == '': return full else: ret = cls() ret.transfer(full, subgroup=subgroup) return ret def save(self, fname, subgroup='', overwrite=False): ''' Saves dictionary parameters in json format. Merges if there's something already there, unless overwrite is True. Args: fname (str): file name subgroup (str): groups of commands to write. If '', it is everything. overwrite (bool): will make a new file exactly corresponding to this instance, otherwise merges with existing ''' try: existingConfig = TekConfig.fromFile(fname) except FileNotFoundError: # file probably doesn't exist existingConfig = None overwrite = True if overwrite: configToSave = type(self)() configToSave.transfer(self, subgroup=subgroup) else: configToSave = existingConfig.transfer(self, subgroup=subgroup) fpath = Path(fname) with fpath.open('w+') as fx: fx.write(str(configToSave)) # __str__ gives nice json format # pylint: disable=no-member class Configurable(AbstractDriver): ''' Instruments can be configurable to keep track of settings within the instrument This class is setup so that the hardware state is reflected exactly in the 'live' config **unless somebody changes something in lab**. Watch out for that and use ``forceHardware`` if that is a risk This clas uses query/write methods that are not directly inherited, so the subclass or its parents must implement those functions ''' config = None #: Dictionary of :class:`TekConfig` objects. def __init__(self, headerIsOptional=True, verboseIsOptional=False, precedingColon=True, interveningSpace=True, **kwargs): self._hardwareinit = False self.verboseIsOptional = verboseIsOptional self.headerIsOptional = headerIsOptional self.header = not headerIsOptional self.colon = precedingColon self.space = interveningSpace self.config = dict() self.config['default'] = None self.config['init'] = TekConfig() self.config['live'] = TekConfig() self.separator = self.config['live'].separator super().__init__(**kwargs) def initHardware(self): ''' Runs upon first hardware access. Tells the instrument how to format its commands ''' if not self._hardwareinit: if self.verboseIsOptional: self.write('VERBOSE ON') if self.headerIsOptional: self.write('HEADER OFF') self._hardwareinit = True return self._hardwareinit # Simple, individual getter and setter def setConfigParam(self, cStr, val=None, forceHardware=False): ''' Sets an individual configuration parameter. If the value has been read before, and there is no change, then it will **not** write to the hardware. Args: cStr (str): name of the command val (any): value to send. Detects type, so if it's an int, it will be stored as int forceHardware (bool): will always send to hardware, in case it is critical or if it tends to be changed by pesky lab users Returns: (bool): Did it requre a write to hardware? ''' if val is None: val = '' try: prevVal = self.config['live'].get(cStr, asCmd=False) except KeyError: prevVal = None refresh = True else: refresh = (str(val) != str(prevVal)) if refresh or forceHardware: self.config['live'].set(cStr, val) if prevVal is None: self.config['init'].transfer(self.config['live'], cStr) self._setHardwareConfig(cStr) # send only the one that changed return True else: return False def getConfigParam(self, cStr, forceHardware=False): ''' Gets a single parameter. If the value has been read before, and there is no change, then it will **not** query the hardware. This is much faster than getting from hardware; however, it assumes that nobody in lab touched anything. Args: cStr (str): name of the command forceHardware (bool): will always query from hardware, in case it is critical or if it tends to be changed by pesky lab users Returns: (any): command value. Detects type, so that ``'2.5'`` will return as ``float`` If the command is not recognized, attempts to get it from hardware ''' try: prevVal = self.config['live'].get(cStr, asCmd=False) except KeyError: prevVal = None if prevVal is None or forceHardware: # Try getting from hardware self._getHardwareConfig(cStr) if prevVal is None: # This is the first time getting, so it goes in 'init' self.config['init'].transfer(self.config['live'], cStr) return self.config['live'].get(cStr, asCmd=False) @contextmanager def tempConfig(self, cStr, tempVal, forceHardware=False): ''' Changes a parameter within the context of a "with" block. Args are same as in :meth:`getConfigParam`. ''' oldVal = self.getConfigParam(cStr, forceHardware) try: self.setConfigParam(cStr, tempVal) yield self finally: self.setConfigParam(cStr, oldVal) def getDefaultFilename(self): r''' Combines the :data:`lightlab.util.io.paths.defaultFileDir` with the \*IDN? string of this instrument. Returns: (str): the default filename ''' info = self.instrID().split(',') deffile = defaultFileDir / '-'.join(info[:3]) + '.json' return deffile def saveConfig(self, dest='+user', subgroup='', overwrite=False): ''' If you would like to setup a temporary state (i.e. taking some measurements and going back), use a file and `subgroup=` Args: subgroup (str): a group of commands or a single command. If '', it means everything. Side effects: if dest is object or dict, modifies it if dest is token, modifies the config library of self if dest is filename, writes that file ''' if type(dest) in [TekConfig, dict]: dest.transfer(self.config['live'], subgroup=subgroup) elif type(dest) is str and dest[0] == '+': # tokens if dest[1:] in ['default, init']: raise AccessException( 'You are not allowed to change defaults or initialization history') self.config[dest[1:]] = TekConfig() self.config[dest[1:]].transfer( self.config['live'], subgroup=subgroup) elif type(dest) is str: self.config['live'].save(dest, subgroup, overwrite) else: raise Exception( 'Invalid save destination. It must be a file, token, or TekConfig object') def loadConfig(self, source='+user', subgroup=''): ''' Loads some configuration parameters from a source which is either: * a file name string, or * a special token ['+default' or '+init'], or * some TekConfig object or dict you have out there Args: source (str/TekConfig): load source subgroup (str): a group of commands or a single command. If '', it means everything. ''' if type(source) in [TekConfig, dict]: srcObj = source elif type(source) is str and source[0] == '+': # tokens if source[1:] == 'default' and self.config['default'] is None: # need to load default self.config['default'] = TekConfig.fromFile( self.getDefaultFilename()) srcObj = self.config[source[1:]] elif type(source) is str: srcObj = TekConfig.fromFile(source) else: raise Exception( 'Invalid load source. It must be a file, token, or TekConfig object') for liveInit in ['live', 'init']: self.config[liveInit].transfer(srcObj, subgroup=subgroup) # This writes everything without checking how it is set currently self._setHardwareConfig(subgroup) def __getFullHardwareConfig(self, subgroup=''): ''' Get everything that is returned by the SET? query Args: subgroup (str): default '' means everything Returns: TekConfig: structured configuration object ''' self.initHardware() logger.info('Querying SET? response of %s', self.instrID()) try: resp = self.query('SET?') return TekConfig.fromSETresponse(resp, subgroup=subgroup) except VisaIOError as err: # SET timed out. You are done. logger.error('%s timed out on \'SET?\'. \ Try resetting with \'*RST\'.', self.instrID()) raise err def _getHardwareConfig(self, cStrList): ''' Queries all or a subgroup of commands using the state of the 'live' config. This does not return, but it puts it in the config['live'] attribute Args: cStrList (list or str): list of command strings. Can also be a scalar string ''' self.initHardware() if type(cStrList) is not list and type(cStrList) is str: cStrList = [cStrList] for cStr in cStrList: if cStr[-1] == '&': # handle the sibling subdir token cStr = cStr[:-2] try: ret = self.query(cStr + '?') except VisaIOError: logger.error('Problematic parameter was %s.\n' 'Likely it does not exist in this instrument command structure.', cStr) raise logger.debug('Queried %s, got %s', cStr, ret) if self.header: val = ret.split(' ')[-1] else: val = ret # Type detection try: val = float(val) except ValueError: pass else: if val == floor(val): val = int(val) self.config['live'].set(cStr, val) def _setHardwareConfig(self, subgroup=''): ''' Writes all or a subgroup of commands using the state of the 'live' config. Args: subgroup (str): a subgroup of commands. If '', we write everything ''' self.initHardware() live = self.config['live'].getList(subgroup, asCmd=False) for cmd in live: if not self.colon and cmd[0] == self.separator: cmd = cmd[1:] if not self.space: ''.join(cmd.split(' ')) logger.debug('Sending %s to configurable hardware', cmd) self.write(cmd) def generateDefaults(self, filename=None, overwrite=False): ''' Attempts to read every configuration parameter. Handles several cases where certain parameters do not make sense and must be skipped Generates a new default file which is saved in configurable.defaultFileDir *This takes a while.* Args: filename (str): simple name. You can't control the directory. overwrite (bool): If False, stops if the file already exists. ''' if filename is None: filename = self.getDefaultFilename() if Path(filename).exists() and not overwrite: logger.warning('%s already exists.' 'Use `overwrite` if you really want.', filename) return allConfig = self.__getFullHardwareConfig() allSetCmds = allConfig.getList('', asCmd=True) cfgBuild = TekConfig() for cmd in allSetCmds: if cmd[0][-1] != '&': # handle the sibling subdir token cStr = cmd[0] else: cStr = cmd[0][:-2] try: val = self.query(cStr + '?', withTimeout=1000) cfgBuild.set(cStr, val) logger.info(cStr, '<--', val) except VisaIOError: logger.info(cStr, 'X -- skipping') cfgBuild.save(filename) logger.info('New default saved to %s', filename) # pylint: enable=no-member
38.326996
172
0.567659
389410478e6f499ac51d7e391fbacc1c42e73e89
27,305
py
Python
msoffcrypto/format/ppt97.py
lunarobliq/msoffcrypto-tool
36d1d0e5abaa57624271ba6344cad3478b25021d
[ "MIT" ]
1
2019-12-20T06:17:24.000Z
2019-12-20T06:17:24.000Z
msoffcrypto/format/ppt97.py
lunarobliq/msoffcrypto-tool
36d1d0e5abaa57624271ba6344cad3478b25021d
[ "MIT" ]
null
null
null
msoffcrypto/format/ppt97.py
lunarobliq/msoffcrypto-tool
36d1d0e5abaa57624271ba6344cad3478b25021d
[ "MIT" ]
null
null
null
import logging, io, shutil, tempfile from struct import pack, unpack from collections import namedtuple import olefile from . import base from .common import _parse_encryptionheader, _parse_encryptionverifier from ..method.rc4_cryptoapi import DocumentRC4CryptoAPI logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) RecordHeader = namedtuple('RecordHeader', [ 'recVer', 'recInstance', 'recType', 'recLen', ]) def _parseRecordHeader(blob): # RecordHeader: https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/df201194-0cd0-4dfb-bf10-eea353d8eabc getBitSlice = lambda bits, i, w: (bits & (2 ** w - 1 << i)) >> i blob.seek(0) buf, = unpack("<H", blob.read(2)) recVer = getBitSlice(buf, 0, 4) recInstance = getBitSlice(buf, 4, 12) recType, = unpack("<H", blob.read(2)) recLen, = unpack("<I", blob.read(4)) rh = RecordHeader( recVer=recVer, recInstance=recInstance, recType=recType, recLen=recLen, ) return rh def _packRecordHeader(rh): setBitSlice = lambda bits, i, w, v: (bits & ~((2**w - 1) << i)) | ((v & (2**w - 1)) << i) blob = io.BytesIO() _buf = 0xffff _buf = setBitSlice(_buf, 0, 4, rh.recVer) _buf = setBitSlice(_buf, 4, 12, rh.recInstance) buf = pack("<H", _buf) blob.write(buf) buf = pack("<H", rh.recType) blob.write(buf) buf = pack("<I", rh.recLen) blob.write(buf) blob.seek(0) return blob CurrentUserAtom = namedtuple('CurrentUserAtom', [ 'rh', 'size', 'headerToken', 'offsetToCurrentEdit', 'lenUserName', 'docFileVersion', 'majorVersion', 'minorVersion', 'unused', 'ansiUserName', 'relVersion', 'unicodeUserName', ]) def _parseCurrentUserAtom(blob): # CurrentUserAtom: https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/940d5700-e4d7-4fc0-ab48-fed5dbc48bc1 # rh (8 bytes): A RecordHeader structure... buf = io.BytesIO(blob.read(8)) rh = _parseRecordHeader(buf) # logger.debug(rh) # ...Sub-fields are further specified in the following table. assert rh.recVer == 0x0 assert rh.recInstance == 0x000 assert rh.recType == 0x0ff6 size, = unpack("<I", blob.read(4)) # logger.debug(hex(size)) # size (4 bytes): ...It MUST be 0x00000014. assert size == 0x00000014 # headerToken (4 bytes): An unsigned integer that specifies # a token used to identify whether the file is encrypted. headerToken, = unpack("<I", blob.read(4)) # TODO: Check headerToken value offsetToCurrentEdit, = unpack("<I", blob.read(4)) lenUserName, = unpack("<H", blob.read(2)) docFileVersion, = unpack("<H", blob.read(2)) majorVersion, minorVersion, = unpack("<BB", blob.read(2)) unused = blob.read(2) ansiUserName = blob.read(lenUserName) relVersion, = unpack("<I", blob.read(4)) unicodeUserName = blob.read(2*lenUserName) return CurrentUserAtom( rh=rh, size=size, headerToken=headerToken, offsetToCurrentEdit=offsetToCurrentEdit, lenUserName=lenUserName, docFileVersion=docFileVersion, majorVersion=majorVersion, minorVersion=minorVersion, unused=unused, ansiUserName=ansiUserName, relVersion=relVersion, unicodeUserName=unicodeUserName, ) def _packCurrentUserAtom(currentuseratom): blob = io.BytesIO() buf = _packRecordHeader(currentuseratom.rh).read() blob.write(buf) buf = pack("<I", currentuseratom.size) blob.write(buf) buf = pack("<I", currentuseratom.headerToken) blob.write(buf) buf = pack("<I", currentuseratom.offsetToCurrentEdit) blob.write(buf) buf = pack("<H", currentuseratom.lenUserName) blob.write(buf) buf = pack("<H", currentuseratom.docFileVersion) blob.write(buf) buf = pack("<BB", currentuseratom.majorVersion, currentuseratom.minorVersion) blob.write(buf) buf = currentuseratom.unused blob.write(buf) buf = currentuseratom.ansiUserName blob.write(buf) buf = pack("<I", currentuseratom.relVersion) blob.write(buf) buf = currentuseratom.unicodeUserName blob.write(buf) blob.seek(0) return blob CurrentUser = namedtuple('CurrentUser', ['currentuseratom']) def _parseCurrentUser(blob): # Current User Stream: https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/76cfa657-07a6-464b-81ab-4c017c611f64 currentuser = CurrentUser( currentuseratom=_parseCurrentUserAtom(blob) ) return currentuser def _packCurrentUser(currentuser): blob = io.BytesIO() buf = _packCurrentUserAtom(currentuser.currentuseratom).read() blob.write(buf) blob.seek(0) return blob UserEditAtom = namedtuple('UserEditAtom', [ 'rh', 'lastSlideIdRef', 'version', 'minorVersion', 'majorVersion', 'offsetLastEdit', 'offsetPersistDirectory', 'docPersistIdRef', 'persistIdSeed', 'lastView', 'unused', 'encryptSessionPersistIdRef', ]) def _parseUserEditAtom(blob): # UserEditAtom: https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/3ffb3fab-95de-4873-98aa-d508fbbac981 # rh (8 bytes): A RecordHeader structure... buf = io.BytesIO(blob.read(8)) rh = _parseRecordHeader(buf) # logger.debug(rh) # ...Sub-fields are further specified in the following table. assert rh.recVer == 0x0 assert rh.recInstance == 0x000 assert rh.recType == 0x0ff5 assert rh.recLen == 0x0000001c or rh.recLen == 0x00000020 # 0x0000001c + len(encryptSessionPersistIdRef) lastSlideIdRef, = unpack("<I", blob.read(4)) version, = unpack("<H", blob.read(2)) minorVersion, majorVersion, = unpack("<BB", blob.read(2)) # majorVersion, minorVersion, = unpack("<BB", blob.read(2)) offsetLastEdit, = unpack("<I", blob.read(4)) offsetPersistDirectory, = unpack("<I", blob.read(4)) docPersistIdRef, = unpack("<I", blob.read(4)) persistIdSeed, = unpack("<I", blob.read(4)) lastView, = unpack("<H", blob.read(2)) unused = blob.read(2) # encryptSessionPersistIdRef (4 bytes): An optional PersistIdRef # that specifies the value to look up in the persist object directory # to find the offset of the CryptSession10Container record (section 2.3.7). encryptSessionPersistIdRef, = unpack("<I", blob.read(4)) return UserEditAtom( rh=rh, lastSlideIdRef=lastSlideIdRef, version=version, minorVersion=minorVersion, majorVersion=majorVersion, offsetLastEdit=offsetLastEdit, offsetPersistDirectory=offsetPersistDirectory, docPersistIdRef=docPersistIdRef, persistIdSeed=persistIdSeed, lastView=lastView, unused=unused, encryptSessionPersistIdRef=encryptSessionPersistIdRef, ) def _packUserEditAtom(usereditatom): blob = io.BytesIO() buf = _packRecordHeader(usereditatom.rh).read() blob.write(buf) buf = pack("<I", usereditatom.lastSlideIdRef) blob.write(buf) buf = pack("<H", usereditatom.version) blob.write(buf) buf = pack("<BB", usereditatom.minorVersion, usereditatom.majorVersion) blob.write(buf) buf = pack("<I", usereditatom.offsetLastEdit) blob.write(buf) buf = pack("<I", usereditatom.offsetPersistDirectory) blob.write(buf) buf = pack("<I", usereditatom.docPersistIdRef) blob.write(buf) buf = pack("<I", usereditatom.persistIdSeed) blob.write(buf) buf = pack("<H", usereditatom.lastView) blob.write(buf) buf = usereditatom.unused blob.write(buf) buf = pack("<I", usereditatom.encryptSessionPersistIdRef) blob.write(buf) blob.seek(0) return blob PersistDirectoryEntry = namedtuple('PersistDirectoryEntry', [ 'persistId', 'cPersist', 'rgPersistOffset', ]) def _parsePersistDirectoryEntry(blob): # PersistDirectoryEntry: https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/6214b5a6-7ca2-4a86-8a0e-5fd3d3eff1c9 getBitSlice = lambda bits, i, w: (bits & (2 ** w - 1 << i)) >> i buf, = unpack("<I", blob.read(4)) persistId = getBitSlice(buf, 0, 20) cPersist = getBitSlice(buf, 20, 12) # cf. PersistOffsetEntry: https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/a056484a-2132-4e1e-aa54-6e387f9695cf size_rgPersistOffset = 4 * cPersist _rgPersistOffset = blob.read(size_rgPersistOffset) _rgPersistOffset = io.BytesIO(_rgPersistOffset) rgPersistOffset = [] pos = 0 while pos < size_rgPersistOffset: persistoffsetentry, = unpack("<I", _rgPersistOffset.read(4)) rgPersistOffset.append(persistoffsetentry) pos += 4 return PersistDirectoryEntry( persistId=persistId, cPersist=cPersist, rgPersistOffset=rgPersistOffset, ) def _packPersistDirectoryEntry(directoryentry): setBitSlice = lambda bits, i, w, v: (bits & ~((2**w - 1) << i)) | ((v & (2**w - 1)) << i) blob = io.BytesIO() _buf = 0xffffffff _buf = setBitSlice(_buf, 0, 20, directoryentry.persistId) _buf = setBitSlice(_buf, 20, 12, directoryentry.cPersist) buf = pack("<I", _buf) blob.write(buf) for v in directoryentry.rgPersistOffset: buf = pack("<I", v) blob.write(buf) blob.seek(0) return blob PersistDirectoryAtom = namedtuple('PersistDirectoryAtom', [ 'rh', 'rgPersistDirEntry', ]) def _parsePersistDirectoryAtom(blob): # PersistDirectoryAtom: https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/d10a093d-860f-409c-b065-aeb24b830505 # rh (8 bytes): A RecordHeader structure... buf = io.BytesIO(blob.read(8)) rh = _parseRecordHeader(buf) # logger.debug(rh) # ...Sub-fields are further specified in the following table. assert rh.recVer == 0x0 assert rh.recInstance == 0x000 assert rh.recType == 0x1772 _rgPersistDirEntry = blob.read(rh.recLen) _rgPersistDirEntry = io.BytesIO(_rgPersistDirEntry) rgPersistDirEntry = [] pos = 0 while pos < rh.recLen: persistdirectoryentry = _parsePersistDirectoryEntry(_rgPersistDirEntry) size_persistdirectoryentry = 4 + 4 * len(persistdirectoryentry.rgPersistOffset) # logger.debug((persistdirectoryentry, size_persistdirectoryentry)) rgPersistDirEntry.append(persistdirectoryentry) pos += size_persistdirectoryentry return PersistDirectoryAtom( rh=rh, rgPersistDirEntry=rgPersistDirEntry, ) def _packPersistDirectoryAtom(directoryatom): blob = io.BytesIO() buf = _packRecordHeader(directoryatom.rh).read() blob.write(buf) for v in directoryatom.rgPersistDirEntry: buf = _packPersistDirectoryEntry(v) blob.write(buf.read()) blob.seek(0) return blob def _parseCryptSession10Container(blob): # CryptSession10Container: https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/b0963334-4408-4621-879a-ef9c54551fd8 CryptSession10Container = namedtuple('CryptSession10Container', [ 'rh', 'data', ]) # rh (8 bytes): A RecordHeader structure... buf = io.BytesIO(blob.read(8)) rh = _parseRecordHeader(buf) # logger.debug(rh) # ...Sub-fields are further specified in the following table. assert rh.recVer == 0xf # The specified value fails # assert rh.recInstance == 0x000 assert rh.recType == 0x2f14 data = blob.read(rh.recLen) return CryptSession10Container( rh=rh, data=data, ) def construct_persistobjectdirectory(data): # PowerPoint Document Stream: https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/1fc22d56-28f9-4818-bd45-67c2bf721ccf # 1. Read the CurrentUserAtom record (section 2.3.2) from the Current User Stream (section 2.1.1). ... data.currentuser.seek(0) currentuser = _parseCurrentUser(data.currentuser) # logger.debug(currentuser) # 2. Seek, in the PowerPoint Document Stream, to the offset specified by the offsetToCurrentEdit field of # the CurrentUserAtom record identified in step 1. data.powerpointdocument.seek(currentuser.currentuseratom.offsetToCurrentEdit) persistdirectoryatom_stack = [] # The stream MUST contain exactly one UserEditAtom record. # https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/b0963334-4408-4621-879a-ef9c54551fd8 for i in range(1): # 3. Read the UserEditAtom record at the current offset. ... usereditatom = _parseUserEditAtom(data.powerpointdocument) # logger.debug(usereditatom) # 4. Seek to the offset specified by the offsetPersistDirectory field of the UserEditAtom record identified in step 3. data.powerpointdocument.seek(usereditatom.offsetPersistDirectory) # 5. Read the PersistDirectoryAtom record at the current offset. ... persistdirectoryatom = _parsePersistDirectoryAtom(data.powerpointdocument) # logger.debug(persistdirectoryatom) persistdirectoryatom_stack.append(persistdirectoryatom) # 6. Seek to the offset specified by the offsetLastEdit field in the UserEditAtom record identified in step 3. # 7. Repeat steps 3 through 6 until offsetLastEdit is 0x00000000. if usereditatom.offsetLastEdit == 0x00000000: break else: data.powerpointdocument.seek(usereditatom.offsetLastEdit) # 8. Construct the complete persist object directory for this file as follows: persistobjectdirectory = {} # 8a. For each PersistDirectoryAtom record previously identified in step 5, # add the persist object identifier and persist object stream offset pairs to # the persist object directory starting with the PersistDirectoryAtom record # last identified, that is, the one closest to the beginning of the stream. # 8b. Continue adding these pairs to the persist object directory for each PersistDirectoryAtom record # in the reverse order that they were identified in step 5; that is, the pairs from the PersistDirectoryAtom record # closest to the end of the stream are added last. # 8c. When adding a new pair to the persist object directory, if the persist object identifier # already exists in the persist object directory, the persist object stream offset from # the new pair replaces the existing persist object stream offset for that persist object identifier. while len(persistdirectoryatom_stack) > 0: persistdirectoryatom = persistdirectoryatom_stack.pop() for entry in persistdirectoryatom.rgPersistDirEntry: # logger.debug("persistId: %d" % entry.persistId) for i, offset in enumerate(entry.rgPersistOffset): persistobjectdirectory[entry.persistId + i] = offset return persistobjectdirectory def _parse_header_RC4CryptoAPI(encryptionInfo): flags = encryptionInfo.read(4) headerSize, = unpack("<I", encryptionInfo.read(4)) logger.debug(headerSize) blob = io.BytesIO(encryptionInfo.read(headerSize)) header = _parse_encryptionheader(blob) logger.debug(header) blob = io.BytesIO(encryptionInfo.read()) verifier = _parse_encryptionverifier(blob, "RC4") # TODO: Fix (cf. ooxml.py) logger.debug(verifier) info = { 'salt': verifier['salt'], 'keySize': header['keySize'], 'encryptedVerifier': verifier['encryptedVerifier'], 'encryptedVerifierHash': verifier['encryptedVerifierHash'], } return info class Ppt97File(base.BaseOfficeFile): def __init__(self, file): self.file = file ole = olefile.OleFileIO(file) # do not close this, would close file self.ole = ole self.format = "ppt97" self.keyTypes = ['password'] self.key = None self.salt = None # streams closed in destructor: currentuser = ole.openstream('Current User') powerpointdocument = ole.openstream('PowerPoint Document') Data = namedtuple('Data', ['currentuser', 'powerpointdocument']) self.data = Data( currentuser=currentuser, powerpointdocument=powerpointdocument, ) def __del__(self): """Destructor, closes opened streams.""" if hasattr(self, 'data') and self.data: if self.data.currentuser: self.data.currentuser.close() if self.data.powerpointdocument: self.data.powerpointdocument.close() def load_key(self, password=None): persistobjectdirectory = construct_persistobjectdirectory(self.data) logger.debug("[*] persistobjectdirectory: {}".format(persistobjectdirectory)) self.data.currentuser.seek(0) currentuser = _parseCurrentUser(self.data.currentuser) logger.debug("[*] currentuser: {}".format(currentuser)) self.data.powerpointdocument.seek(currentuser.currentuseratom.offsetToCurrentEdit) usereditatom = _parseUserEditAtom(self.data.powerpointdocument) logger.debug("[*] usereditatom: {}".format(usereditatom)) # cf. Part 2 in https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/1fc22d56-28f9-4818-bd45-67c2bf721ccf cryptsession10container_offset = persistobjectdirectory[usereditatom.encryptSessionPersistIdRef] logger.debug("[*] cryptsession10container_offset: {}".format(cryptsession10container_offset)) self.data.powerpointdocument.seek(cryptsession10container_offset) cryptsession10container = _parseCryptSession10Container(self.data.powerpointdocument) logger.debug("[*] cryptsession10container: {}".format(cryptsession10container)) encryptionInfo = io.BytesIO(cryptsession10container.data) encryptionVersionInfo = encryptionInfo.read(4) vMajor, vMinor = unpack("<HH", encryptionVersionInfo) logger.debug("[*] encryption version: {} {}".format(vMajor, vMinor)) assert vMajor in [0x0002, 0x0003, 0x0004] and vMinor == 0x0002 # RC4 CryptoAPI info = _parse_header_RC4CryptoAPI(encryptionInfo) if DocumentRC4CryptoAPI.verifypw(password, info['salt'], info['keySize'], info['encryptedVerifier'], info['encryptedVerifierHash']): self.type = 'rc4_cryptoapi' self.key = password self.salt = info['salt'] self.keySize = info['keySize'] else: raise Exception("Failed to verify password") def decrypt(self, ofile): # Current User Stream self.data.currentuser.seek(0) currentuser = _parseCurrentUser(self.data.currentuser) # logger.debug(currentuser) cuatom = currentuser.currentuseratom currentuser_new = CurrentUser( currentuseratom=CurrentUserAtom( rh=cuatom.rh, size=cuatom.size, # https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/940d5700-e4d7-4fc0-ab48-fed5dbc48bc1 # 0xE391C05F: The file SHOULD NOT<6> be an encrypted document. headerToken=0xe391c05f, offsetToCurrentEdit=cuatom.offsetToCurrentEdit, lenUserName=cuatom.lenUserName, docFileVersion=cuatom.docFileVersion, majorVersion=cuatom.majorVersion, minorVersion=cuatom.minorVersion, unused=cuatom.unused, ansiUserName=cuatom.ansiUserName, relVersion=cuatom.relVersion, unicodeUserName=cuatom.unicodeUserName, ) ) buf = _packCurrentUser(currentuser_new) buf.seek(0) currentuser_buf = buf # List of encrypted parts: https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-ppt/b0963334-4408-4621-879a-ef9c54551fd8 # PowerPoint Document Stream self.data.powerpointdocument.seek(0) powerpointdocument_size = len(self.data.powerpointdocument.read()) logger.debug("[*] powerpointdocument_size: {}".format(powerpointdocument_size)) self.data.powerpointdocument.seek(0) dec_bytearray = bytearray(self.data.powerpointdocument.read()) # UserEditAtom self.data.powerpointdocument.seek(currentuser.currentuseratom.offsetToCurrentEdit) # currentuseratom_raw = self.data.powerpointdocument.read(40) self.data.powerpointdocument.seek(currentuser.currentuseratom.offsetToCurrentEdit) usereditatom = _parseUserEditAtom(self.data.powerpointdocument) # logger.debug(usereditatom) # logger.debug(["offsetToCurrentEdit", currentuser.currentuseratom.offsetToCurrentEdit]) rh_new = RecordHeader( recVer=usereditatom.rh.recVer, recInstance=usereditatom.rh.recInstance, recType=usereditatom.rh.recType, recLen=usereditatom.rh.recLen - 4, # Omit encryptSessionPersistIdRef field ) # logger.debug([_packRecordHeader(usereditatom.rh).read(), _packRecordHeader(rh_new).read()]) usereditatom_new = UserEditAtom( rh=rh_new, lastSlideIdRef=usereditatom.lastSlideIdRef, version=usereditatom.version, minorVersion=usereditatom.minorVersion, majorVersion=usereditatom.majorVersion, offsetLastEdit=usereditatom.offsetLastEdit, offsetPersistDirectory=usereditatom.offsetPersistDirectory, docPersistIdRef=usereditatom.docPersistIdRef, persistIdSeed=usereditatom.persistIdSeed, lastView=usereditatom.lastView, unused=usereditatom.unused, encryptSessionPersistIdRef=0x00000000, # Clear ) # logger.debug(currentuseratom_raw) # logger.debug(_packUserEditAtom(usereditatom).read()) # logger.debug(_packUserEditAtom(usereditatom_new).read()) buf = _packUserEditAtom(usereditatom_new) buf.seek(0) buf_bytes = bytearray(buf.read()) offset = currentuser.currentuseratom.offsetToCurrentEdit dec_bytearray[offset:offset+len(buf_bytes)] = buf_bytes # PersistDirectoryAtom self.data.powerpointdocument.seek(currentuser.currentuseratom.offsetToCurrentEdit) usereditatom = _parseUserEditAtom(self.data.powerpointdocument) # logger.debug(usereditatom) self.data.powerpointdocument.seek(usereditatom.offsetPersistDirectory) persistdirectoryatom = _parsePersistDirectoryAtom(self.data.powerpointdocument) # logger.debug(persistdirectoryatom) persistdirectoryatom_new = PersistDirectoryAtom( rh=persistdirectoryatom.rh, rgPersistDirEntry=[ PersistDirectoryEntry( persistId=persistdirectoryatom.rgPersistDirEntry[0].persistId, # Omit CryptSession10Container cPersist=persistdirectoryatom.rgPersistDirEntry[0].cPersist-1, rgPersistOffset=persistdirectoryatom.rgPersistDirEntry[0].rgPersistOffset, ), ], ) self.data.powerpointdocument.seek(usereditatom.offsetPersistDirectory) buf = _packPersistDirectoryAtom(persistdirectoryatom_new) buf_bytes = bytearray(buf.read()) offset = usereditatom.offsetPersistDirectory dec_bytearray[offset:offset+len(buf_bytes)] = buf_bytes # Persist Objects self.data.powerpointdocument.seek(0) persistobjectdirectory = construct_persistobjectdirectory(self.data) directory_items = list(persistobjectdirectory.items()) for i, (persistId, offset) in enumerate(directory_items): self.data.powerpointdocument.seek(offset) buf = self.data.powerpointdocument.read(8) rh = _parseRecordHeader(io.BytesIO(buf)) logger.debug("[*] rh: {}".format(rh)) # CryptSession10Container if rh.recType == 0x2f14: logger.debug("[*] CryptSession10Container found") # Remove encryption, pad by zero to preserve stream size dec_bytearray[offset:offset+(8+rh.recLen)] = b"\x00" * (8+rh.recLen) continue # The UserEditAtom record (section 2.3.3) and the PersistDirectoryAtom record (section 2.3.4) MUST NOT be encrypted. if rh.recType in [0x0ff5, 0x1772]: logger.debug("[*] UserEditAtom/PersistDirectoryAtom found") continue # TODO: Fix here recLen = directory_items[i+1][1] - offset - 8 logger.debug("[*] recLen: {}".format(recLen)) self.data.powerpointdocument.seek(offset) enc_buf = io.BytesIO(self.data.powerpointdocument.read(8+recLen)) blocksize = self.keySize * ((8 + recLen) // self.keySize + 1) # Undocumented dec = DocumentRC4CryptoAPI.decrypt(self.key, self.salt, self.keySize, enc_buf, blocksize=blocksize, block=persistId) dec_bytes = bytearray(dec.read()) dec_bytearray[offset:offset+len(dec_bytes)] = dec_bytes # To BytesIO dec_buf = io.BytesIO(dec_bytearray) dec_buf.seek(0) for i, (persistId, offset) in enumerate(directory_items): dec_buf.seek(offset) buf = dec_buf.read(8) rh = _parseRecordHeader(io.BytesIO(buf)) logger.debug("[*] rh: {}".format(rh)) dec_buf.seek(0) logger.debug("[*] powerpointdocument_size={}, len(dec_buf.read())={}".format(powerpointdocument_size, len(dec_buf.read()))) dec_buf.seek(0) powerpointdocument_dec_buf = dec_buf # TODO: Pictures Stream # TODO: Encrypted Summary Info Stream with tempfile.TemporaryFile() as _ofile: self.file.seek(0) shutil.copyfileobj(self.file, _ofile) outole = olefile.OleFileIO(_ofile, write_mode=True) outole.write_stream('Current User', currentuser_buf.read()) outole.write_stream('PowerPoint Document', powerpointdocument_dec_buf.read()) # Finalize _ofile.seek(0) shutil.copyfileobj(_ofile, ofile) return def is_encrypted(self): r''' Test if the file is encrypted. >>> f = open("tests/inputs/plain.ppt", "rb") >>> file = Ppt97File(f) >>> file.is_encrypted() False >>> f = open("tests/inputs/rc4cryptoapi_password.ppt", "rb") >>> file = Ppt97File(f) >>> file.is_encrypted() True ''' self.data.currentuser.seek(0) currentuser = _parseCurrentUser(self.data.currentuser) logger.debug("[*] currentuser: {}".format(currentuser)) self.data.powerpointdocument.seek(currentuser.currentuseratom.offsetToCurrentEdit) usereditatom = _parseUserEditAtom(self.data.powerpointdocument) logger.debug("[*] usereditatom: {}".format(usereditatom)) if usereditatom.rh.recLen == 0x00000020: # Cf. _parseUserEditAtom return True else: return False
35.78637
141
0.670756
e457308233e565cd2db07e56db970fca3960dce8
929
py
Python
catalog/dto/inventory.py
Guya-LTD/catalog
632b3c3766e2600275c0a18db6378b2d38e3c463
[ "RSA-MD" ]
null
null
null
catalog/dto/inventory.py
Guya-LTD/catalog
632b3c3766e2600275c0a18db6378b2d38e3c463
[ "RSA-MD" ]
null
null
null
catalog/dto/inventory.py
Guya-LTD/catalog
632b3c3766e2600275c0a18db6378b2d38e3c463
[ "RSA-MD" ]
null
null
null
# -*- coding: utf-8 -*- """Copyright Header Details Copyright --------- Copyright (C) Guya , PLC - All Rights Reserved (As Of Pending...) Unauthorized copying of this file, via any medium is strictly prohibited Proprietary and confidential LICENSE ------- This file is subject to the terms and conditions defined in file 'LICENSE.txt', which is part of this source code package. Authors ------- * [Simon Belete](https://github.com/Simonbelete) Project ------- * Name: - Guya E-commerce & Guya Express * Sub Project Name: - Catalog Service * Description - Catlog Catalog Service """ from flask_restplus import Namespace, fields from catalog.blueprint.v1.catalog import namespace class CatalogDto: """Request and Respons Data Transfer Object.""" request = namespace.model('catalog_request', {}) response = namespace.model('catalog_response', {})
22.658537
76
0.668461
8d665c30acd00ae75ea57ccebf4c7e48c21d2949
1,851
py
Python
PhysicsTools/HeppyCore/python/framework/config_test.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
PhysicsTools/HeppyCore/python/framework/config_test.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
PhysicsTools/HeppyCore/python/framework/config_test.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
from __future__ import absolute_import import unittest import os import shutil import copy from .config import * class ConfigTestCase(unittest.TestCase): def test_analyzer(self): class Ana1(object): pass ana1 = Analyzer( Ana1, toto = '1', tata = 'a' ) # checking that the analyzer name does not contain a slash, # to make sure the output directory name does not contain a subdirectory self.assertTrue( '/' not in ana1.name ) def test_MCComponent(self): DYJets = MCComponent( name = 'DYJets', files ='blah_mc.root', xSection = 3048., nGenEvents = 34915945, triggers = ['HLT_MC'], vertexWeight = 1., effCorrFactor = 1 ) self.assertTrue(True) def test_config(self): class Ana1(object): pass ana1 = Analyzer( Ana1, toto = '1', tata = 'a' ) comp1 = Component( 'comp1', files='*.root', triggers='HLT_stuff' ) from PhysicsTools.HeppyCore.framework.chain import Chain as Events config = Config( components = [comp1], sequence = [ana1], services = [], events_class = Events ) def test_copy(self): class Ana1(object): pass ana1 = Analyzer( Ana1, instance_label = 'inst1', toto = '1', ) ana2 = copy.copy(ana1) ana2.instance_label = 'inst2' ana2.toto2 = '2' self.assertEqual(ana2.name, '__main__.Ana1_inst2') self.assertEqual(ana2.toto2, '2') if __name__ == '__main__': unittest.main()
26.826087
80
0.504592
9b61ef01252892818c9b97a43515f3b770dca33b
5,931
py
Python
poblacionInicial2Preprocessing.py
learsi1911/GAMA_pygmo_SHA
8da8c7930f0768492065633c433ce7c811c73e98
[ "Apache-2.0" ]
null
null
null
poblacionInicial2Preprocessing.py
learsi1911/GAMA_pygmo_SHA
8da8c7930f0768492065633c433ce7c811c73e98
[ "Apache-2.0" ]
null
null
null
poblacionInicial2Preprocessing.py
learsi1911/GAMA_pygmo_SHA
8da8c7930f0768492065633c433ce7c811c73e98
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sun Aug 15 18:14:22 2021 @author: 20210595 """ # -*- coding: utf-8 -*- """ Created on Sat Aug 14 21:24:18 2021 @author: 20210595 """ from gama.genetic_programming.components.individual import Individual from gama.genetic_programming.compilers.scikitlearn import compile_individual from gama.genetic_programming.components.primitive_node import PrimitiveNode from gama.genetic_programming.components.primitive import Primitive from gama.genetic_programming.components.terminal import Terminal from sklearn.decomposition import PCA from sklearn.pipeline import Pipeline from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.decomposition import FastICA import numpy as np from sklearn.ensemble import ( ExtraTreesClassifier, RandomForestClassifier, GradientBoostingClassifier, ) from sklearn.preprocessing import ( MaxAbsScaler, MinMaxScaler, Normalizer, PolynomialFeatures, RobustScaler, StandardScaler, Binarizer, ) # pipe = Pipeline([('scaler', StandardScaler()), ('svc', SVC(C=1.2, # kernel='linear', # degree=2, # gamma='auto', # coef0=0.1))]) # InstanciaClase = Individual(SVC(C=1.2, kernel='linear', degree=2, gamma='auto', coef0=0.1), compile_individual) # print(InstanciaClase) # clf_config = { # RandomForestClassifier: { # "n_estimators": 100, # "criterion": "gini", # "max_features": 0.05, # "min_samples_split": 4, # "min_samples_leaf": 3, # "bootstrap": False, # } # } #InstanciaClase = Individual(clf_config, compile_individual) #print(InstanciaClase) ## crear un main node, es un primitive node primero para preprocesamiento y luego para clasificadores # pre = PrimitiveNode("Normalizer", "data", ['l1']) primitiveEjemplo1 = Primitive(['PolynomialFeatures.degree', 'PolynomialFeatures.include_bias', 'PolynomialFeatures.interaction_only'], "data", PolynomialFeatures) # print(primitivoEjemplo.output) # print(primitivoEjemplo.identifier) ## Ahora es crear las terminales que concuerdan con el Primitive termi1 = Terminal(2, "PolynomialFeatures.degree", "PolynomialFeatures.degree") termi2 = Terminal(False, "PolynomialFeatures.include_bias", "PolynomialFeatures.include_bias") termi3 = Terminal(False, "PolynomialFeatures.interaction_only", "PolynomialFeatures.interaction_only") ## Recuerda el orden listaTerminals1 = [termi1, termi2, termi3] ## Ahora con el primitivo vamos a crear un PrimitiveNode de pre-procesamiento primitiveNodePreProcesamiento1 = PrimitiveNode(primitiveEjemplo1, "data", listaTerminals1) ## Primero es crear un Primitive, en Primitive.output = "data" para preprocesamiento y Primitive.output = "prediction" para las técncias de classificación primitiveEjemplo = Primitive(['PCA.svd_solver', 'PCA.iterated_power'], "data", PCA) # print(primitivoEjemplo.output) # print(primitivoEjemplo.identifier) ## Ahora es crear las terminales que concuerdan con el Primitive termiSVD_solver = Terminal("randomized", "PCA.svd_solver", "PCA.svd_solver") termiITERATED = Terminal(9, "PCA.iterated_power", "PCA.iterated_power") ## Recuerda el orden listaTerminals = [termiITERATED, termiSVD_solver] ## Ahora con el primitivo vamos a crear un PrimitiveNode de pre-procesamiento primitiveNodePreProcesamiento = PrimitiveNode(primitiveEjemplo, primitiveNodePreProcesamiento1, listaTerminals) ## Con el PrimitiveNode de pre-procesamiento vamos a crear el PrimitiveNode para classificacion ## Recuerda el primer paso es crear el Primitive con Primitive.output = prediction primitiveClassification = Primitive(['RandomForestClassifier.n_estimators', # Primitive.input 'RandomForestClassifier.criterion', 'RandomForestClassifier.max_features', 'RandomForestClassifier.min_samples_split', 'RandomForestClassifier.min_samples_leaf', 'RandomForestClassifier.bootstrap'], "prediction", # Primitive.output RandomForestClassifier # Primitive.identifier ) ## Ahora es crear las terminales que concuerdan con el Primitive terminal1 = Terminal(100, 'RandomForestClassifier.n_estimators', 'RandomForestClassifier.n_estimators') terminal2 = Terminal("gini", 'RandomForestClassifier.criterion', 'RandomForestClassifier.criterion') terminal3 = Terminal(0.05, 'RandomForestClassifier.max_features', 'RandomForestClassifier.max_features') terminal4 = Terminal(3, 'RandomForestClassifier.min_samples_split', 'RandomForestClassifier.min_samples_split') terminal5 = Terminal(1, 'RandomForestClassifier.min_samples_leaf', 'RandomForestClassifier.min_samples_leaf') terminal6 = Terminal(False, 'RandomForestClassifier.bootstrap', 'RandomForestClassifier.bootstrap') terminalClassification = [terminal1, terminal2, terminal3, terminal4, terminal5, terminal6] ## Ahora con el primitivo vamos a crear un PrimitiveNode de classification ## NOTA: SI NO HAY TÉCNICA DE PREPROCESAMIENTO PrimitiveNode._data_node = "data" (de tipo string), de lo contario ## es decir si hay PrimitiveNode de preprocesamiento, se tiene que tragar el PrimitiveNode de preprocesamiento, como aqui: primitiveNodeClassification = PrimitiveNode(primitiveClassification, primitiveNodePreProcesamiento, terminalClassification) #print(primitiveNodeClassification) #Ahora crearemos un Individual ind = Individual(primitiveNodeClassification, compile_individual) print(ind)
43.291971
154
0.711179
ba28867b51bc9c57df9025487bd12b909edc9d63
2,391
py
Python
parsedatetime/pdt_locales/it_IT.py
MadChadJack/parsedatetime
113886ab2460f4d2f350214b1afa7ad83baae0b2
[ "Apache-2.0" ]
null
null
null
parsedatetime/pdt_locales/it_IT.py
MadChadJack/parsedatetime
113886ab2460f4d2f350214b1afa7ad83baae0b2
[ "Apache-2.0" ]
null
null
null
parsedatetime/pdt_locales/it_IT.py
MadChadJack/parsedatetime
113886ab2460f4d2f350214b1afa7ad83baae0b2
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from .base import * # don't use an unicode string localeID = 'it_IT' dateSep = ['/'] timeSep = [':', '.'] meridian= ['del mattino', 'di pomeriggio'] usesMeridian = True uses24 = True Weekdays = [ 'lunedì', 'martedì', 'mercoledì', 'giovedì', 'venerdì', 'sabato', 'domenica', ] shortWeekdays = [ 'lun', 'mar', 'mer', 'gio', 'ven', 'sab', 'dom', ] Months = [ 'gennaio', 'febbraio', 'marzo', 'aprile', 'maggio', 'giugno', 'luglio', 'agosto', 'settembre', 'ottobre', 'novembre', 'dicembre', ] shortMonths = [ 'gen', 'feb', 'mar', 'apr', 'mag', 'giu', 'lug', 'ago', 'set', 'ott', 'nov', 'dic', ] # use the same formats as ICU by default dateFormats = { 'full': 'EEEE d MMMM yyyy', 'long': 'd MMMM yyyy', 'medium': 'd MMM yyyy', 'short': 'd/M/yy' } timeFormats = { 'full': 'h:mm:ss a z', 'long': 'h:mm:ss a z', 'medium': 'h:mm:ss a', 'short': 'h:mm a', } dp_order = ['d', 'm', 'y'] # Used to parse expressions like "in 5 hours" numbers = { 'zero': 0, 'una': 1, 'uno': 1, 'un\'ora': 1, 'due': 2, 'tre': 3, 'quattro': 4, 'cinque': 5, 'sei': 6, 'sette': 7, 'otto': 8, 'nove': 9, 'dieci': 10, 'undici': 11, 'dodici' 'tredici': 13, 'quattordici': 14, 'quindici': 15, 'sedici': 16, 'diciassette': 17, 'diciotto': 18, 'diciannove': 19, 'venti': 20, 'ventuno': 21, 'ventidue': 22, 'ventre': 23, 'ventiquattro': 24 } decimal_mark = ',' # this will be added to re_values later units = { 'seconds': ['seconda', 'secondo', 'secondi', 'sec', 'seci', 's'], 'minutes': ['minuta', 'minuto', 'minuti','min', 'mini', 'm'], 'hours': ['ora', 'ore', 'o'], 'days': ['giorno', 'giorni', 'g'], 'weeks': ['settimana', 'settimane', 's'], 'months': ['mese', 'mesi', 'm'], 'years': ['anno', 'anni', 'a'], } # text constants to be used by later regular expressions re_values = { 'daysuffix': '°', 'qunits': 'h|m|s|d|w|y', 'now': ['adesso', 'proprio adesso'], } # Used to adjust the returned date before/after the source Modifiers = { 'prima': -1, 'dopo': 1, 'fa': -1, 'lo scorso': -1, 'scorsa': -1, 'precedente': -1, 'questa': 0 } dayOffsets = { 'domani': 1, 'oggi': 0, 'ieri': -1, }
20.262712
69
0.513174
f75158b499dfb05fef535b2348c00c185ed59ba4
405
py
Python
sales/migrations/0008_auto_20200912_0910.py
zhou-en/turf_portal
2424ac15248c9f1c0fa4f65ca18fe0ea71d7ff4e
[ "MIT" ]
null
null
null
sales/migrations/0008_auto_20200912_0910.py
zhou-en/turf_portal
2424ac15248c9f1c0fa4f65ca18fe0ea71d7ff4e
[ "MIT" ]
47
2020-10-14T21:54:35.000Z
2022-02-25T05:21:39.000Z
sales/migrations/0008_auto_20200912_0910.py
zhou-en/turf_portal
2424ac15248c9f1c0fa4f65ca18fe0ea71d7ff4e
[ "MIT" ]
null
null
null
# Generated by Django 3.1.1 on 2020-09-12 09:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sales', '0007_order_orderline'), ] operations = [ migrations.AlterField( model_name='orderline', name='price', field=models.FloatField(blank=True, default=0.0, null=True), ), ]
21.315789
72
0.6
1ecb21181485e8f306420834a220b195e5562c27
294
py
Python
xu/compa/Parapluie/__init__.py
sonnts996/XuCompa-Request
f343e7bfd1b4263eb76438c96d347c549cc75ce3
[ "Apache-2.0" ]
null
null
null
xu/compa/Parapluie/__init__.py
sonnts996/XuCompa-Request
f343e7bfd1b4263eb76438c96d347c549cc75ce3
[ "Apache-2.0" ]
null
null
null
xu/compa/Parapluie/__init__.py
sonnts996/XuCompa-Request
f343e7bfd1b4263eb76438c96d347c549cc75ce3
[ "Apache-2.0" ]
null
null
null
import xu.compa.Parapluie.res as PResource import xu.compa.Parapluie.src.PFunction as PFunction import xu.compa.Parapluie.src.Parapluie as Parapluie from xu.compa.Parapluie.src.ActionWidget import * from xu.compa.Parapluie.src.Adapter import * from xu.compa.Parapluie.src.StickyWindow import *
42
52
0.829932
56f6cd18a5841aa57d02f1be9ed59c235956a456
2,292
py
Python
demo/drawmaps.py
zx64/omgifol
622737dea233dc653463bd6e9a8544c7aff899f2
[ "MIT" ]
51
2015-03-02T14:26:46.000Z
2021-11-01T13:52:28.000Z
demo/drawmaps.py
zx64/omgifol
622737dea233dc653463bd6e9a8544c7aff899f2
[ "MIT" ]
31
2015-03-18T00:35:23.000Z
2022-03-13T07:30:05.000Z
demo/drawmaps.py
zx64/omgifol
622737dea233dc653463bd6e9a8544c7aff899f2
[ "MIT" ]
22
2015-02-13T17:08:17.000Z
2022-03-31T18:54:33.000Z
from __future__ import print_function from omg import * import sys from PIL import Image, ImageDraw def drawmap(wad, name, filename, width, format): xsize = width - 8 edit = MapEditor(wad.maps[name]) xmin = ymin = 32767 xmax = ymax = -32768 for v in edit.vertexes: xmin = min(xmin, v.x) xmax = max(xmax, v.x) ymin = min(ymin, -v.y) ymax = max(ymax, -v.y) scale = xsize / float(xmax - xmin) xmax = int(xmax * scale) xmin = int(xmin * scale) ymax = int(ymax * scale) ymin = int(ymin * scale) for v in edit.vertexes: v.x = v.x * scale v.y = -v.y * scale im = Image.new('RGB', ((xmax - xmin) + 8, (ymax - ymin) + 8), (255,255,255)) draw = ImageDraw.Draw(im) edit.linedefs.sort(key=lambda a: not a.two_sided) for line in edit.linedefs: p1x = edit.vertexes[line.vx_a].x - xmin + 4 p1y = edit.vertexes[line.vx_a].y - ymin + 4 p2x = edit.vertexes[line.vx_b].x - xmin + 4 p2y = edit.vertexes[line.vx_b].y - ymin + 4 color = (0, 0, 0) if line.two_sided: color = (144, 144, 144) if line.action: color = (220, 130, 50) draw.line((p1x, p1y, p2x, p2y), fill=color) draw.line((p1x+1, p1y, p2x+1, p2y), fill=color) draw.line((p1x-1, p1y, p2x-1, p2y), fill=color) draw.line((p1x, p1y+1, p2x, p2y+1), fill=color) draw.line((p1x, p1y-1, p2x, p2y-1), fill=color) del draw im.save(filename, format) #import psyco #psyco.full() if (len(sys.argv) < 5): print("\n Omgifol script: draw maps to image files\n") print(" Usage:") print(" drawmaps.py source.wad pattern width format\n") print(" Draw all maps whose names match the given pattern (eg E?M4 or MAP*)") print(" to image files of a given format (PNG, BMP, etc). width specifies the") print(" desired width of the output images.") else: print("Loading %s..." % sys.argv[1]) inwad = WAD() inwad.from_file(sys.argv[1]) width = int(sys.argv[3]) format = sys.argv[4].upper() for name in inwad.maps.find(sys.argv[2]): print("Drawing %s" % name) drawmap(inwad, name, name + "_map" + "." + format.lower(), width, format)
30.157895
86
0.569808
e8e07d74f19a693d87df99b4ce22393547d47aa5
437
py
Python
infomemes/plots/styles.py
luiztauffer/infomemes
7a54546aa688b703e6e020e53eeabae9dc922619
[ "MIT" ]
6
2019-09-05T17:14:20.000Z
2021-09-24T10:19:30.000Z
infomemes/plots/styles.py
luiztauffer/infomemes
7a54546aa688b703e6e020e53eeabae9dc922619
[ "MIT" ]
2
2019-09-08T16:59:04.000Z
2020-02-15T11:51:24.000Z
infomemes/plots/styles.py
luiztauffer/infomemes
7a54546aa688b703e6e020e53eeabae9dc922619
[ "MIT" ]
null
null
null
# Color palettes palettes = {} palettes['palette_0'] = ["rgba(134, 149, 184, 0.5)", "rgba(184, 179, 134, 0.5)", "rgba(184, 134, 134, 0.5)", "rgba(134, 184, 132, 0.5)", "rgba(140, 134, 184, 0.5)", "rgba(184, 134, 176, 0.5)"] palettes['Tableau10'] = ["#4e79a7", "#f28e2c", "#e15759", "#76b7b2", "#59a14f", "#edc949", "#af7aa1", "#ff9da7", "#9c755f", "#bab0ab"]
39.727273
80
0.469108
9c0bc90bb82cfe8889c2ca1acd6d174054ed2f20
3,612
py
Python
distributors/urlobject/netloc.py
fish2000/django-signalqueue
2d98b8e6b7bf2bd131c4d7c18d54d7fb008ed989
[ "BSD-3-Clause" ]
12
2015-02-27T19:26:13.000Z
2019-04-21T12:16:01.000Z
distributors/urlobject/netloc.py
Steckelfisch/django-signalqueue
851bf3641bd940a49b7a2da74c9809bdfcac8fd3
[ "BSD-3-Clause" ]
1
2017-08-25T10:11:47.000Z
2017-08-25T10:11:47.000Z
distributors/urlobject/netloc.py
Steckelfisch/django-signalqueue
851bf3641bd940a49b7a2da74c9809bdfcac8fd3
[ "BSD-3-Clause" ]
null
null
null
import urlparse class Netloc(unicode): """ A netloc string (``username:password@hostname:port``). Contains methods for accessing and (non-destructively) modifying those four components of the netloc. All methods return new instances. """ def __repr__(self): return 'Netloc(%r)' % (unicode(self),) @classmethod def __unsplit(cls, username, password, hostname, port): """Put together a :class:`Netloc` from its constituent parts.""" auth_string = u'' if username: auth_string = username if password: auth_string += u':' + password auth_string += '@' port_string = u'' if port is not None: port_string = u':%d' % port return cls(auth_string + hostname + port_string) @property def username(self): """The username portion of this netloc, or ``None``.""" return self.__urlsplit.username def with_username(self, username): """Replace or add a username to this netloc.""" return self.__replace(username=username) def without_username(self): """Remove any username (and password) from this netloc.""" return self.without_password().with_username('') @property def password(self): """The password portion of this netloc, or ``None``.""" return self.__urlsplit.password def with_password(self, password): """ Replace or add a password to this netloc. Raises a ``ValueError`` if you attempt to add a password to a netloc with no username. """ if password and not self.username: raise ValueError("Can't set a password on a netloc with no username") return self.__replace(password=password) def without_password(self): """Remove any password from this netloc.""" return self.with_password('') @property def auth(self): """The username and password of this netloc as a 2-tuple.""" return (self.username, self.password) def with_auth(self, username, *password): """Replace or add a username and password in one method call.""" netloc = self.without_auth() if password: return netloc.with_username(username).with_password(*password) return netloc.with_username(username) def without_auth(self): return self.without_password().without_username() @property def hostname(self): """The hostname portion of this netloc.""" return self.__urlsplit.hostname def with_hostname(self, hostname): """Replace the hostname on this netloc.""" return self.__replace(hostname=hostname) @property def port(self): """The port number on this netloc (as an ``int``), or ``None``.""" return self.__urlsplit.port def with_port(self, port): """Replace or add a port number to this netloc.""" return self.__replace(port=port) def without_port(self): """Remove any port number from this netloc.""" return self.__replace(port=None) @property def __urlsplit(self): return urlparse.SplitResult('', self, '', '', '') def __replace(self, **params): """Replace any number of components on this netloc.""" unsplit_args = {'username': self.username, 'password': self.password, 'hostname': self.hostname, 'port': self.port} unsplit_args.update(params) return self.__unsplit(**unsplit_args)
31.684211
81
0.611019
0f5e127b221ad48b4fa1f05caba7446fc471c4c0
1,969
py
Python
adv/natalie.py
smashwidget/dl-1
352a65b9e40a623d7a9e5a693fa2b412f27d8cff
[ "Apache-2.0" ]
null
null
null
adv/natalie.py
smashwidget/dl-1
352a65b9e40a623d7a9e5a693fa2b412f27d8cff
[ "Apache-2.0" ]
null
null
null
adv/natalie.py
smashwidget/dl-1
352a65b9e40a623d7a9e5a693fa2b412f27d8cff
[ "Apache-2.0" ]
null
null
null
import adv.adv_test import adv.adv_test import adv from adv import * from module import energy from slot.d import * from slot.a import * import slot import random def module(): return Natalie class Natalie(adv.Adv): comment = 's2 without str buff' conf = {} conf['slot.a'] = slot.a.HoH() + slot.a.One_with_the_Shadows() conf['slot.d'] = Fatalis() conf['acl'] = """ `s2, pin='prep' `s2, seq=5 `s1 `s3, fsc `s3, seq=5 and s1.charged < s1.sp-200 `fs, seq=5 and s1.sp-212<=s1.charged and s1.charged<=s1.sp `fs, seq=5 and s1.sp > 3000 and s3.charged>=s3.sp """ def d_slots(this): from adv.adv_test import sim_duration if sim_duration <= 60: this.slots.a = TL()+The_Chocolatiers() def init(this): random.seed() this.hp = 100 if this.condition('energy'): this.prerun = this.c_prerun def prerun(this): this.energy = energy.Energy(this, self={} , team={} ) def c_prerun(this): this.energy = energy.Energy(this, self={'s1':1,'a1':1} , team={} ) def s1_proc(this, e): with adv.CrisisModifier('s1', 2, this.hp): this.dmg_make('o_s1_crisis', this.conf.s1.dmg) if this.energy() == 5: dmg = this.conf.s1.dmg * this.energy.get_energy_boost() this.dmg_make('o_s1_crisis_energized', dmg) if random.random() < 0.8: this.energy.add_energy('a1') def s2_proc(this, e): if this.hp > 30: this.hp = 20 this.a3atk = Selfbuff('a3atk',0.20,-1,'att','passive').on() this.a3spd = Spdbuff('a3spd',0.10,-1).on() # else: # Selfbuff('s2', 0.15, 10).on() if __name__ == '__main__': conf = {} adv.adv_test.test(module(), conf, verbose=-2, mass=1)
25.907895
71
0.527171
cf0821b35fe876e29a5dc28707fe0804b678aa3b
821
py
Python
pythogic/pl/semantics/PLInterpretation.py
MarcoFavorito/pythogic
aaa74fec41fbf08d96371f62218c462e9a2b69e0
[ "MIT" ]
4
2018-02-21T10:43:55.000Z
2018-04-13T07:55:04.000Z
pythogic/pl/semantics/PLInterpretation.py
marcofavorito/pythogic
aaa74fec41fbf08d96371f62218c462e9a2b69e0
[ "MIT" ]
34
2018-03-04T18:30:12.000Z
2018-08-14T21:36:29.000Z
pythogic/pl/semantics/PLInterpretation.py
marcofavorito/pythogic
aaa74fec41fbf08d96371f62218c462e9a2b69e0
[ "MIT" ]
1
2018-03-04T18:27:57.000Z
2018-03-04T18:27:57.000Z
from typing import Dict from pythogic.base.Alphabet import Alphabet from pythogic.base.Symbol import Symbol from pythogic.base.Formula import AtomicFormula, Formula class PLInterpretation(object): def __init__(self, alphabet: Alphabet, symbol2truth:Dict[Symbol, bool]): assert alphabet.symbols == symbol2truth.keys() and all(type(v)==bool for v in symbol2truth.values()) self.alphabet = alphabet self.symbol2truth = symbol2truth def __eq__(self, other): if type(self) == type(other): return self.alphabet == other.alphabet and self.symbol2truth == other.symbol2truth else: return False def _members(self): return self.alphabet, tuple(sorted(self.symbol2truth.items())) def __hash__(self): return hash(self._members())
31.576923
108
0.694275
487b84644c8a287a21128e46fed522cef0f18567
1,933
py
Python
examples/ad_manager/v202202/line_item_service/get_line_items_that_need_creatives.py
MarkusBordihn/googleads-python-lib
09bbcb01f9443f1d140efd8f2d27ef0e4aa74d20
[ "Apache-2.0" ]
null
null
null
examples/ad_manager/v202202/line_item_service/get_line_items_that_need_creatives.py
MarkusBordihn/googleads-python-lib
09bbcb01f9443f1d140efd8f2d27ef0e4aa74d20
[ "Apache-2.0" ]
null
null
null
examples/ad_manager/v202202/line_item_service/get_line_items_that_need_creatives.py
MarkusBordihn/googleads-python-lib
09bbcb01f9443f1d140efd8f2d27ef0e4aa74d20
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example gets all line items that are missing creatives. """ # Import appropriate modules from the client library. from googleads import ad_manager def main(client): # Initialize appropriate service. line_item_service = client.GetService('LineItemService', version='v202202') # Create a statement to select line items. statement = (ad_manager.StatementBuilder(version='v202202') .Where('isMissingCreatives = :isMissingCreatives') .WithBindVariable('isMissingCreatives', True)) # Retrieve a small amount of line items at a time, paging # through until all line items have been retrieved. while True: response = line_item_service.getLineItemsByStatement(statement.ToStatement( )) if 'results' in response and len(response['results']): for line_item in response['results']: # Print out some information for each line item. print('Line item with ID "%d" and name "%s" was found.\n' % (line_item['id'], line_item['name'])) statement.offset += statement.limit else: break print('\nNumber of results found: %s' % response['totalResultSetSize']) if __name__ == '__main__': # Initialize client object. ad_manager_client = ad_manager.AdManagerClient.LoadFromStorage() main(ad_manager_client)
37.173077
79
0.722193
dcaad8742da99cd8f9af8820faf026c4df69231c
900
py
Python
python/Data Structures/Linked Lists/removeNthNode.py
sinderpl/CodingExamples
9bc59a0345589bf51fc74fe9ad527e9498b9b5c9
[ "MIT" ]
null
null
null
python/Data Structures/Linked Lists/removeNthNode.py
sinderpl/CodingExamples
9bc59a0345589bf51fc74fe9ad527e9498b9b5c9
[ "MIT" ]
null
null
null
python/Data Structures/Linked Lists/removeNthNode.py
sinderpl/CodingExamples
9bc59a0345589bf51fc74fe9ad527e9498b9b5c9
[ "MIT" ]
null
null
null
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def removeNthFromEnd(self, head: Optional[ListNode], n: int) -> Optional[ListNode]: if not head or not head.next: return None if n == 0: return head slow = fast = head # Increment the fast pointer up to N if possible for _ in range(n): fast = fast.next # If we need to delete the first value in the list # this will not cover the edge case where n > len(head) if not fast: return head.next # keep going until the end to reach end - nth node while fast.next: slow = slow.next fast = fast.next slow.next = slow.next.next return head
32.142857
87
0.546667
32f2333474e380b71ac2b141778e8ec5c128cdac
6,683
py
Python
test_LPRNet.py
barrypitman/LPRNet_Pytorch
f165e1cd4bc0e116e2c30f1443b48aa0f6f559f5
[ "Apache-2.0" ]
null
null
null
test_LPRNet.py
barrypitman/LPRNet_Pytorch
f165e1cd4bc0e116e2c30f1443b48aa0f6f559f5
[ "Apache-2.0" ]
null
null
null
test_LPRNet.py
barrypitman/LPRNet_Pytorch
f165e1cd4bc0e116e2c30f1443b48aa0f6f559f5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # /usr/bin/env/python3 ''' test pretrained model. Author: aiboy.wei@outlook.com . ''' from data.load_data import CHARS, CHARS_DICT, LPRDataLoader from PIL import Image, ImageDraw, ImageFont from model.LPRNet import build_lprnet # import torch.backends.cudnn as cudnn from torch.autograd import Variable import torch.nn.functional as F from torch.utils.data import DataLoader from torch import optim import torch.nn as nn import numpy as np import argparse import torch import time import cv2 import os def get_parser(): parser = argparse.ArgumentParser(description='parameters to train net') parser.add_argument('--img_size', default=[94, 24], help='the image size') parser.add_argument('--test_img_dirs', default="./data/test", help='the test images path') parser.add_argument('--dropout_rate', default=0, help='dropout rate.') parser.add_argument('--lpr_max_len', default=8, help='license plate number max length.') parser.add_argument('--test_batch_size', default=100, type=int, help='testing batch size.') parser.add_argument('--phase_train', default=False, type=bool, help='train or test phase flag.') parser.add_argument('--num_workers', default=8, type=int, help='Number of workers used in dataloading') parser.add_argument('--cuda', default=True, type=bool, help='Use cuda to train model') parser.add_argument('--show', default=False, type=bool, help='show test image and its predict result or not.') parser.add_argument('--pretrained_model', default='./weights/Final_LPRNet_model.pth', help='pretrained base model') args = parser.parse_args() return args def collate_fn(batch): imgs = [] labels = [] lengths = [] for _, sample in enumerate(batch): img, label, length = sample imgs.append(torch.from_numpy(img)) labels.extend(label) lengths.append(length) labels = np.asarray(labels).flatten().astype(np.float32) return (torch.stack(imgs, 0), torch.from_numpy(labels), lengths) def test(): args = get_parser() lprnet = build_lprnet(lpr_max_len=args.lpr_max_len, phase=args.phase_train, class_num=len(CHARS), dropout_rate=args.dropout_rate) device = torch.device("cuda:0" if args.cuda else "cpu") lprnet.to(device) print("Successful to build network!") # load pretrained model if args.pretrained_model: lprnet.load_state_dict(torch.load(args.pretrained_model)) print("load pretrained model successful!") else: print("[Error] Can't found pretrained mode, please check!") return False test_img_dirs = os.path.expanduser(args.test_img_dirs) test_dataset = LPRDataLoader(test_img_dirs.split(','), args.img_size, args.lpr_max_len) try: Greedy_Decode_Eval(lprnet, test_dataset, args) finally: cv2.destroyAllWindows() def Greedy_Decode_Eval(Net, datasets, args): # TestNet = Net.eval() epoch_size = len(datasets) // args.test_batch_size batch_iterator = iter(DataLoader(datasets, args.test_batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collate_fn)) Tp = 0 Tn_1 = 0 Tn_2 = 0 t1 = time.time() for i in range(epoch_size): # load train data images, labels, lengths = next(batch_iterator) start = 0 targets = [] for length in lengths: label = labels[start:start+length] targets.append(label) start += length targets = np.array([el.numpy() for el in targets]) imgs = images.numpy().copy() if args.cuda: images = Variable(images.cuda()) else: images = Variable(images) # forward prebs = Net(images) # greedy decode prebs = prebs.cpu().detach().numpy() print(prebs.shape) preb_labels = list() for i in range(prebs.shape[0]): preb = prebs[i, :, :] preb_label = list() for j in range(preb.shape[1]): preb_label.append(np.argmax(preb[:, j], axis=0)) print('') print(preb[:, j]) print(np.argmax(preb[:, j], axis=0)) no_repeat_blank_label = list() pre_c = preb_label[0] if pre_c != len(CHARS) - 1: no_repeat_blank_label.append(pre_c) for c in preb_label: # dropout repeate label and blank label if (pre_c == c) or (c == len(CHARS) - 1): if c == len(CHARS) - 1: pre_c = c continue no_repeat_blank_label.append(c) pre_c = c preb_labels.append(no_repeat_blank_label) for i, label in enumerate(preb_labels): # show image and its predict label lb = "" for x in label: lb += CHARS[x] tg = "" for j in targets[i].tolist(): tg += CHARS[int(j)] print("expected " + tg + ", got " + lb) if args.show: show(imgs[i], label, targets[i]) if len(label) != len(targets[i]): Tn_1 += 1 continue if (np.asarray(targets[i]) == np.asarray(label)).all(): Tp += 1 else: Tn_2 += 1 Acc = Tp * 1.0 / (Tp + Tn_1 + Tn_2) print("[Info] Test Accuracy: {} [{}:{}:{}:{}]".format(Acc, Tp, Tn_1, Tn_2, (Tp+Tn_1+Tn_2))) t2 = time.time() print("[Info] Test Speed: {}s 1/{}]".format((t2 - t1) / len(datasets), len(datasets))) def show(img, label, target): img = np.transpose(img, (1, 2, 0)) img *= 128. img += 127.5 img = img.astype(np.uint8) lb = "" for i in label: lb += CHARS[i] tg = "" for j in target.tolist(): tg += CHARS[int(j)] flag = "F" if lb == tg: flag = "T" # img = cv2.putText(img, lb, (0,16), cv2.FONT_HERSHEY_COMPLEX_SMALL, 0.6, (0, 0, 255), 1) img = cv2ImgAddText(img, lb, (0, 0)) cv2.imshow("test", img) print("target: ", tg, " ### {} ### ".format(flag), "predict: ", lb) cv2.waitKey() cv2.destroyAllWindows() def cv2ImgAddText(img, text, pos, textColor=(255, 0, 0), textSize=12): if (isinstance(img, np.ndarray)): # detect opencv format or not img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) draw = ImageDraw.Draw(img) fontText = ImageFont.truetype("data/NotoSansCJK-Regular.ttc", textSize, encoding="utf-8") draw.text(pos, text, textColor, font=fontText) return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) if __name__ == "__main__": test()
35.359788
136
0.602574
8c39ba45f5d218c4da274872a7140ef2f904521c
1,854
py
Python
gitlabform/gitlabform/processors/project/members_processor.py
llamasoft/gitlabform
bcf4db607209b00845da39d22b668ec5c77f18f2
[ "MIT" ]
null
null
null
gitlabform/gitlabform/processors/project/members_processor.py
llamasoft/gitlabform
bcf4db607209b00845da39d22b668ec5c77f18f2
[ "MIT" ]
15
2020-03-04T19:39:16.000Z
2022-03-21T23:01:19.000Z
gitlabform/gitlabform/processors/project/members_processor.py
grzesuav/gitlabform
c62bc4b3459194e28ed78aef807d5737e88d24e7
[ "MIT" ]
null
null
null
import logging from gitlabform.gitlab import GitLab from gitlabform.gitlabform.processors.abstract_processor import AbstractProcessor class MembersProcessor(AbstractProcessor): def __init__(self, gitlab: GitLab): super().__init__("members") self.gitlab = gitlab def _process_configuration(self, project_and_group: str, configuration: dict): groups = configuration.get("members|groups") if groups: for group in groups: logging.debug("Setting group '%s' as a member", group) access = ( groups[group]["group_access"] if "group_access" in groups[group] else None ) expiry = ( groups[group]["expires_at"] if "expires_at" in groups[group] else "" ) # we will remove group access first and then re-add them, # to ensure that the groups have the expected access level self.gitlab.unshare_with_group(project_and_group, group) self.gitlab.share_with_group(project_and_group, group, access, expiry) users = configuration.get("members|users") if users: for user in users: logging.debug("Setting user '%s' as a member", user) access = ( users[user]["access_level"] if "access_level" in users[user] else None ) expiry = ( users[user]["expires_at"] if "expires_at" in users[user] else "" ) self.gitlab.remove_member_from_project(project_and_group, user) self.gitlab.add_member_to_project( project_and_group, user, access, expiry )
39.446809
88
0.555556
abb1ea68260f821a7e273fede6d8d0adef7f027f
3,084
py
Python
scripts/psk-frontend.py
cclauss/tuya-convert
2cf2fa59ca04838da89b0c9ac273c1c4227676d3
[ "MIT" ]
null
null
null
scripts/psk-frontend.py
cclauss/tuya-convert
2cf2fa59ca04838da89b0c9ac273c1c4227676d3
[ "MIT" ]
null
null
null
scripts/psk-frontend.py
cclauss/tuya-convert
2cf2fa59ca04838da89b0c9ac273c1c4227676d3
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 import socket import select import ssl import sslpsk from Crypto.Cipher import AES from hashlib import md5 from binascii import hexlify, unhexlify def listener(host, port): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((host, port)) sock.listen(1) return sock def client(host, port): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((host, port)) return sock def gen_psk(identity, hint): print("ID: %s" % hexlify(identity)) key = md5(hint[-16:]).digest() iv = md5(identity[1:]).digest() cipher = AES.new(key, AES.MODE_CBC, iv) psk = cipher.encrypt(identity[1:33]) print("PSK: %s" % hexlify(psk)) return psk class PskFrontend(): def __init__(self, listening_host, listening_port, host, port): self.listening_port = listening_port self.listening_host = listening_host self.host = host self.port = port self.server_sock = listener(listening_host, listening_port) self.sessions = [] self.hint = '1dHRsc2NjbHltbGx3eWh5' '0000000000000000' def readables(self): readables = [self.server_sock] for (s1, s2) in self.sessions: readables.append(s1) readables.append(s2) return readables def new_client(self, s1): try: ssl_sock = sslpsk.wrap_socket(s1, server_side = True, ssl_version=ssl.PROTOCOL_TLSv1_2, ciphers='PSK-AES128-CBC-SHA256', psk=lambda identity: gen_psk(identity, self.hint), hint=self.hint) s2 = client(self.host, self.port) self.sessions.append((ssl_sock, s2)) except Exception as e: print("could not establish sslpsk socket:", e) def data_ready_cb(self, s): if s == self.server_sock: _s, frm = s.accept() print("new client on port %d from %s:%d"%(self.listening_port, frm[0], frm[1])) self.new_client(_s) for (s1, s2) in self.sessions: if s == s1 or s == s2: c = s1 if s == s2 else s2 try: buf = s.recv(4096) if len(buf) > 0: c.send(buf) else: s1.shutdown(socket.SHUT_RDWR) s2.shutdown(socket.SHUT_RDWR) self.sessions.remove((s1,s2)) except: self.sessions.remove((s1,s2)) def main(): gateway = '10.42.42.1' proxies = [PskFrontend(gateway, 443, gateway, 80), PskFrontend(gateway, 8886, gateway, 1883)] while True: readables = [] for p in proxies: readables = readables + p.readables() r,_,_ = select.select(readables, [], []) for s in r: for p in proxies: p.data_ready_cb(s) if __name__ == '__main__': main()
29.09434
97
0.56096
ef4bd5b4abec7115157b7e530f849eb55b05eb91
746
py
Python
preconvert/output/bson.py
timothycrosley/preconvert
828a35998908162695543ae7781b0527485cda77
[ "MIT" ]
12
2019-08-20T16:01:49.000Z
2022-02-09T16:08:36.000Z
preconvert/output/bson.py
timothycrosley/preconvert
828a35998908162695543ae7781b0527485cda77
[ "MIT" ]
4
2019-08-21T09:18:09.000Z
2021-06-02T00:02:18.000Z
preconvert/output/bson.py
timothycrosley/preconvert
828a35998908162695543ae7781b0527485cda77
[ "MIT" ]
3
2019-08-18T11:07:07.000Z
2021-02-27T21:34:42.000Z
import bson from bson import * from preconvert.converters import convert_namedtuple from preconvert.output import convert def dumps(content, *args, on_unknown=convert.bson, **kwargs): # type: ignore """BSON dumps with preconversion for common unserializable types in place""" if isinstance(content, tuple): content = convert_namedtuple(content) return bson.dumps(content, on_unknown=on_unknown, *args, **kwargs) def dump(content, *args, on_unknown=convert.bson, **kwargs): # type: ignore """BSON dump with preconversion for common unserializable types in place""" if isinstance(content, tuple): content = convert_namedtuple(content) return bson.dump(content, on_unknown=on_unknown, *args, **kwargs)
37.3
80
0.739946
f11e5b6bc023e353c735ed691854ebebc4aedd1f
1,728
py
Python
util.py
thomasmorgan/LilyLib
5b45876d4902379fdfe3295a89b23d01c828b0d5
[ "MIT" ]
null
null
null
util.py
thomasmorgan/LilyLib
5b45876d4902379fdfe3295a89b23d01c828b0d5
[ "MIT" ]
null
null
null
util.py
thomasmorgan/LilyLib
5b45876d4902379fdfe3295a89b23d01c828b0d5
[ "MIT" ]
null
null
null
from copy import deepcopy def flatten(List): while any([isinstance(i, list) or isinstance(i, tuple) for i in List]): new_list = [] for i in List: if isinstance(i, list) or isinstance(i, tuple): new_list += i else: new_list += [i] List = new_list return List def split_and_flatten(item): item = flatten([item]) for subitem in item: if not isinstance(subitem, str) and not isinstance(subitem, int): raise ValueError("Cannot split and flatten {} as it is not a string or int".format(subitem)) return flatten([subitem.split(" ") if isinstance(subitem, str) else subitem for subitem in item]) def select(List, *indexes): indexes = flatten(list(indexes)) return [j for i, j in enumerate(List) if (i + 1) in indexes] def pattern(List, *indexes): indexes = flatten(list(indexes)) new_list = [] for i in indexes: new_list.append(List[i - 1]) return new_list def omit(List, *indexes): indexes = flatten(list(indexes)) return [j for i, j in enumerate(List) if (i + 1) not in indexes] def subset(List, start, stop): if stop >= start: return List[start - 1:stop] else: if stop == 1: return List[start - 1::-1] else: return List[start - 1:stop - 2:-1] def join(*motifs): if isinstance(motifs[0], list): motifs = motifs[0] joined = motifs[0] for motif in motifs[1:]: for key in joined: joined[key] += motif[key] return joined def rep(passage, times=1): new_passage = [] for t in range(times): new_passage += deepcopy(passage) return(new_passage)
25.411765
104
0.592593
f3935a7fd1208bbf1627594d0e62ed61cbacff1b
2,916
py
Python
config/base_settings.py
hemor/tursh
81be09eb6d74f3234de0341b9fe442ea4cc1001d
[ "MIT" ]
null
null
null
config/base_settings.py
hemor/tursh
81be09eb6d74f3234de0341b9fe442ea4cc1001d
[ "MIT" ]
null
null
null
config/base_settings.py
hemor/tursh
81be09eb6d74f3234de0341b9fe442ea4cc1001d
[ "MIT" ]
null
null
null
""" Django settings for TURSH project. Generated by 'django-admin startproject' using Django 1.10.2. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) STATIC_DIR = os.path.join(BASE_DIR, 'assets', 'static') TEMPLATE_DIR = os.path.join(BASE_DIR, 'assets', 'templates') # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'shortener', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR, ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Lagos' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' STATIC_ROOT = os.path.join(BASE_DIR, 'assets', 'staticfiles') STATICFILES_DIRS = [STATIC_DIR, ] STATIC_URL = '/static/' SESSION_COOKIE_AGE = 3600
26.509091
91
0.706104
0779d14ab004983a352e4b21b9b5f2824bab56a7
836
py
Python
src/hbcomp/profile/views.py
zgoda/hbcomp
0b787a05f2cd512c44363daaa560ec74cc9d6261
[ "MIT" ]
null
null
null
src/hbcomp/profile/views.py
zgoda/hbcomp
0b787a05f2cd512c44363daaa560ec74cc9d6261
[ "MIT" ]
null
null
null
src/hbcomp/profile/views.py
zgoda/hbcomp
0b787a05f2cd512c44363daaa560ec74cc9d6261
[ "MIT" ]
null
null
null
from flask import render_template, redirect, url_for, flash from flask_login import login_required from flask_babel import _ from ..ext import db from ..profile import profile_bp from ..profile.forms import ProfileForm from ..models import User @profile_bp.route('/<int:user_id>', methods=['POST', 'GET']) @login_required def details(user_id): user = User.query.get_or_404(user_id) form = ProfileForm() if form.validate_on_submit(): form.populate_obj(obj=user) db.session.add(user) db.session.commit() flash(_('your profile data has been saved'), category='success') return redirect(url_for('profile.details', user_id=user_id)) form = ProfileForm(obj=user) ctx = { 'user': user, 'form': form, } return render_template('profile/details.html', **ctx)
29.857143
72
0.687799
f6f69db33d11d1b598c6556c9421194e50dc6d4c
217
py
Python
WebMirror/management/rss_parser_funcs/feed_parse_extractKeyoTranslations.py
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
193
2016-08-02T22:04:35.000Z
2022-03-09T20:45:41.000Z
WebMirror/management/rss_parser_funcs/feed_parse_extractKeyoTranslations.py
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
533
2016-08-23T20:48:23.000Z
2022-03-28T15:55:13.000Z
WebMirror/management/rss_parser_funcs/feed_parse_extractKeyoTranslations.py
rrosajp/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
19
2015-08-13T18:01:08.000Z
2021-07-12T17:13:09.000Z
def extractKeyoTranslations(item): """ """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol or frag) or 'preview' in item['title'].lower(): return None return False
24.111111
74
0.705069
789e5cf434cdbaa040d0738182f6301cbc1ee3f8
513
py
Python
python/find_no_list_divisible_by_two_nos.py
codevscolor/codevscolor
35ef9042bdc86f45ef87795c35963b75fb64d5d7
[ "Apache-2.0" ]
6
2019-04-26T03:11:54.000Z
2021-05-07T21:48:29.000Z
python/find_no_list_divisible_by_two_nos.py
akojif/codevscolor
56db3dffeac8f8d76ff8fcf5656770f33765941f
[ "Apache-2.0" ]
null
null
null
python/find_no_list_divisible_by_two_nos.py
akojif/codevscolor
56db3dffeac8f8d76ff8fcf5656770f33765941f
[ "Apache-2.0" ]
26
2019-02-23T14:50:46.000Z
2022-02-04T23:44:24.000Z
#1 list_size = int(input("How many numbers are in the list : ")) #2 number_list = [] final_list = [] #3 for i in range(0,list_size): number_list.append(int(input("Enter list item {} : ".format(i)))) #4 m = int(input("Enter the first divider : ")) n = int(input("Enter the second divider : ")) #5 for i in range(0,list_size): if number_list[i] % m == 0 and number_list[i] % n == 0 : final_list.append(number_list[i]) #6 print("Numbers that are divisible by {} and {} is : ".format(m,n),final_list)
28.5
77
0.643275
3df327b63a2f5076a1412d69760118ccb1503a3e
320
py
Python
No_0171_Excel Sheet Column Number/No_171_Excel Sheet Column Number_description.py
coderMaruf/leetcode-1
20ffe26e43999e44c8acf9800acb371a49bb5853
[ "MIT" ]
32
2020-01-05T13:37:16.000Z
2022-03-26T07:27:09.000Z
No_0171_Excel Sheet Column Number/No_171_Excel Sheet Column Number_description.py
coderMaruf/leetcode-1
20ffe26e43999e44c8acf9800acb371a49bb5853
[ "MIT" ]
null
null
null
No_0171_Excel Sheet Column Number/No_171_Excel Sheet Column Number_description.py
coderMaruf/leetcode-1
20ffe26e43999e44c8acf9800acb371a49bb5853
[ "MIT" ]
8
2020-06-18T16:17:27.000Z
2022-03-15T23:58:18.000Z
''' Description: Given a column title as appear in an Excel sheet, return its corresponding column number. For example: A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -> 27 AB -> 28 ... Example 1: Input: "A" Output: 1 Example 2: Input: "AB" Output: 28 Example 3: Input: "ZY" Output: 701 '''
10.666667
89
0.559375
9eefae3a8be4fce8211ee5a4de2dd154ef913a88
18,789
py
Python
icevision/models/mmseg/models/deeplabv3/backbones/resnet.py
lgvaz/mantisshrimp2
743cb7df0dae7eb1331fc2bb66fc9ca09db496cd
[ "Apache-2.0" ]
17
2020-07-31T22:09:07.000Z
2020-08-30T11:18:36.000Z
icevision/models/mmseg/models/deeplabv3/backbones/resnet.py
Borda/icevision
743cb7df0dae7eb1331fc2bb66fc9ca09db496cd
[ "Apache-2.0" ]
115
2020-08-01T09:19:54.000Z
2020-09-04T18:51:28.000Z
icevision/models/mmseg/models/deeplabv3/backbones/resnet.py
lgvaz/mantisshrimp2
743cb7df0dae7eb1331fc2bb66fc9ca09db496cd
[ "Apache-2.0" ]
1
2020-08-25T06:04:34.000Z
2020-08-25T06:04:34.000Z
__all__ = [ "resnet101_d8", "resnet101_d16_mg124", "resnet101b_d8", "resnet18_d8", "resnet18b_d8", "resnet50_d8", "resnet50b_d8", ] from icevision.imports import * from icevision.models.mmseg.utils import * class MMSegDeeplabBackboneConfig(MMSegBackboneConfig): def __init__(self, **kwargs): super().__init__(model_name="deeplabv3", **kwargs) base_config_path = mmseg_configs_path / "deeplabv3" base_weights_url = "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3" resnet101_d16_mg124 = MMSegDeeplabBackboneConfig( backbone_type="R101-D16-MG124", pre_trained_variants=[ { "config_path": "deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes.py", "crop_size": (512, 1024), "lr_schd": "40k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-67b0c992.pth", }, { "default": True, "config_path": "deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes.py", "crop_size": (512, 1024), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth", }, ], ) resnet101_d8 = MMSegDeeplabBackboneConfig( backbone_type="R-101-D8", pre_trained_variants=[ { "config_path": "deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context.py", "crop_size": (480, 480), "lr_schd": "40k", "pre_training_dataset": "pascal_context", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59.py", "crop_size": (480, 480), "lr_schd": "40k", "pre_training_dataset": "pascal_context_59", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context.py", "crop_size": (480, 480), "lr_schd": "80k", "pre_training_dataset": "pascal_context", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59.py", "crop_size": (480, 480), "lr_schd": "80k", "pre_training_dataset": "pascal_context_59", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes.py", "crop_size": (512, 1024), "lr_schd": "40k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth", }, { "default": True, "config_path": "deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py", "crop_size": (512, 1024), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k.py", "crop_size": (512, 512), "lr_schd": "160k", "pre_training_dataset": "ade20k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug.py", "crop_size": (512, 512), "lr_schd": "20k", "pre_training_dataset": "voc12aug", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug.py", "crop_size": (512, 512), "lr_schd": "40k", "pre_training_dataset": "voc12aug", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k.py", "crop_size": (512, 512), "lr_schd": "160k", "pre_training_dataset": "coco-stuff164k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k.py", "crop_size": (512, 512), "lr_schd": "20k", "pre_training_dataset": "coco-stuff10k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k.py", "crop_size": (512, 512), "lr_schd": "320k", "pre_training_dataset": "coco-stuff164k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k.py", "crop_size": (512, 512), "lr_schd": "40k", "pre_training_dataset": "coco-stuff10k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k.py", "crop_size": (512, 512), "lr_schd": "80k", "pre_training_dataset": "coco-stuff164k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k.py", "crop_size": (512, 512), "lr_schd": "80k", "pre_training_dataset": "ade20k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes.py", "crop_size": (769, 769), "lr_schd": "40k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth", }, { "config_path": "deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes.py", "crop_size": (769, 769), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth", }, ], ) resnet101b_d8 = MMSegDeeplabBackboneConfig( backbone_type="R-101B-D8", pre_trained_variants=[ { "config_path": "deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes.py", "crop_size": (512, 1024), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth", }, { "default": True, "config_path": "deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes.py", "crop_size": (769, 769), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth", }, ], ) resnet18_d8 = MMSegDeeplabBackboneConfig( backbone_type="R-18-D8", pre_trained_variants=[ { "default": True, "config_path": "deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes.py", "crop_size": (512, 1024), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth", }, { "config_path": "deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes.py", "crop_size": (769, 769), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth", }, ], ) resnet18b_d8 = MMSegDeeplabBackboneConfig( backbone_type="R-18B-D8", pre_trained_variants=[ { "default": True, "config_path": "deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes.py", "crop_size": (512, 1024), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth", }, { "config_path": "deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes.py", "crop_size": (769, 769), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth", }, ], ) resnet50_d8 = MMSegDeeplabBackboneConfig( backbone_type="R-50-D8", pre_trained_variants=[ { "config_path": "deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py", "crop_size": (512, 1024), "lr_schd": "40k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth", }, { "default": True, "config_path": "deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py", "crop_size": (512, 1024), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k.py", "crop_size": (512, 512), "lr_schd": "160k", "pre_training_dataset": "ade20k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug.py", "crop_size": (512, 512), "lr_schd": "20k", "pre_training_dataset": "voc12aug", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug.py", "crop_size": (512, 512), "lr_schd": "40k", "pre_training_dataset": "voc12aug", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k.py", "crop_size": (512, 512), "lr_schd": "160k", "pre_training_dataset": "coco-stuff164k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k.py", "crop_size": (512, 512), "lr_schd": "20k", "pre_training_dataset": "coco-stuff10k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k.py", "crop_size": (512, 512), "lr_schd": "320k", "pre_training_dataset": "coco-stuff164k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k.py", "crop_size": (512, 512), "lr_schd": "40k", "pre_training_dataset": "coco-stuff10k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k.py", "crop_size": (512, 512), "lr_schd": "80k", "pre_training_dataset": "coco-stuff164k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k.py", "crop_size": (512, 512), "lr_schd": "80k", "pre_training_dataset": "ade20k", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes.py", "crop_size": (769, 769), "lr_schd": "40k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth", }, { "config_path": "deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes.py", "crop_size": (769, 769), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth", }, ], ) resnet50b_d8 = MMSegDeeplabBackboneConfig( backbone_type="R-50B-D8", pre_trained_variants=[ { "default": True, "config_path": "deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes.py", "crop_size": (512, 1024), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth", }, { "config_path": "deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes.py", "crop_size": (769, 769), "lr_schd": "80k", "pre_training_dataset": "cityscapes", "weights_url": "https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth", }, ], )
53.529915
219
0.670658
267037a78db14ab8eb08e4d1608dc32e3024218a
4,530
py
Python
modules/gapi/misc/python/test/test_gapi_core.py
lefatoum2/opencv
f7cab121fe2954c67b343b3b7805e1c092812093
[ "Apache-2.0" ]
2,406
2020-04-22T15:47:54.000Z
2022-03-31T10:27:37.000Z
thirdparty/fluid/modules/gapi/misc/python/test/test_gapi_core.py
thomas-yanxin/openvino
031e998a15ec738c64cc2379d7f30fb73087c272
[ "Apache-2.0" ]
4,948
2020-04-22T15:12:39.000Z
2022-03-31T18:45:42.000Z
inference-engine/thirdparty/fluid/modules/gapi/misc/python/test/test_gapi_core.py
mmakridi/openvino
769bb7709597c14debdaa356dd60c5a78bdfa97e
[ "Apache-2.0" ]
991
2020-04-23T18:21:09.000Z
2022-03-31T18:40:57.000Z
#!/usr/bin/env python import numpy as np import cv2 as cv import os from tests_common import NewOpenCVTests # Plaidml is an optional backend pkgs = [ ('ocl' , cv.gapi.core.ocl.kernels()), ('cpu' , cv.gapi.core.cpu.kernels()), ('fluid' , cv.gapi.core.fluid.kernels()) # ('plaidml', cv.gapi.core.plaidml.kernels()) ] class gapi_core_test(NewOpenCVTests): def test_add(self): # TODO: Extend to use any type and size here sz = (720, 1280) in1 = np.full(sz, 100) in2 = np.full(sz, 50) # OpenCV expected = cv.add(in1, in2) # G-API g_in1 = cv.GMat() g_in2 = cv.GMat() g_out = cv.gapi.add(g_in1, g_in2) comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out)) for pkg_name, pkg in pkgs: actual = comp.apply(cv.gin(in1, in2), args=cv.compile_args(pkg)) # Comparison self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF), 'Failed on ' + pkg_name + ' backend') self.assertEqual(expected.dtype, actual.dtype, 'Failed on ' + pkg_name + ' backend') def test_add_uint8(self): sz = (720, 1280) in1 = np.full(sz, 100, dtype=np.uint8) in2 = np.full(sz, 50 , dtype=np.uint8) # OpenCV expected = cv.add(in1, in2) # G-API g_in1 = cv.GMat() g_in2 = cv.GMat() g_out = cv.gapi.add(g_in1, g_in2) comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out)) for pkg_name, pkg in pkgs: actual = comp.apply(cv.gin(in1, in2), args=cv.compile_args(pkg)) # Comparison self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF), 'Failed on ' + pkg_name + ' backend') self.assertEqual(expected.dtype, actual.dtype, 'Failed on ' + pkg_name + ' backend') def test_mean(self): img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) in_mat = cv.imread(img_path) # OpenCV expected = cv.mean(in_mat) # G-API g_in = cv.GMat() g_out = cv.gapi.mean(g_in) comp = cv.GComputation(g_in, g_out) for pkg_name, pkg in pkgs: actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg)) # Comparison self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF), 'Failed on ' + pkg_name + ' backend') def test_split3(self): img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) in_mat = cv.imread(img_path) # OpenCV expected = cv.split(in_mat) # G-API g_in = cv.GMat() b, g, r = cv.gapi.split3(g_in) comp = cv.GComputation(cv.GIn(g_in), cv.GOut(b, g, r)) for pkg_name, pkg in pkgs: actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg)) # Comparison for e, a in zip(expected, actual): self.assertEqual(0.0, cv.norm(e, a, cv.NORM_INF), 'Failed on ' + pkg_name + ' backend') self.assertEqual(e.dtype, a.dtype, 'Failed on ' + pkg_name + ' backend') def test_threshold(self): img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY) maxv = (30, 30) # OpenCV expected_thresh, expected_mat = cv.threshold(in_mat, maxv[0], maxv[0], cv.THRESH_TRIANGLE) # G-API g_in = cv.GMat() g_sc = cv.GScalar() mat, threshold = cv.gapi.threshold(g_in, g_sc, cv.THRESH_TRIANGLE) comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(mat, threshold)) for pkg_name, pkg in pkgs: actual_mat, actual_thresh = comp.apply(cv.gin(in_mat, maxv), args=cv.compile_args(pkg)) # Comparison self.assertEqual(0.0, cv.norm(expected_mat, actual_mat, cv.NORM_INF), 'Failed on ' + pkg_name + ' backend') self.assertEqual(expected_mat.dtype, actual_mat.dtype, 'Failed on ' + pkg_name + ' backend') self.assertEqual(expected_thresh, actual_thresh[0], 'Failed on ' + pkg_name + ' backend') if __name__ == '__main__': NewOpenCVTests.bootstrap()
34.06015
99
0.559382
2b111004892c19302bfb166baf93f4c9eaa6b3a0
721
py
Python
tests/frequency.py
cmu-sei/usersim
0a90e1c2f32ce27bbb564c7196050c50409989dd
[ "BSL-1.0" ]
10
2018-05-07T07:52:51.000Z
2021-09-04T05:34:46.000Z
tests/frequency.py
cmu-sei/usersim
0a90e1c2f32ce27bbb564c7196050c50409989dd
[ "BSL-1.0" ]
null
null
null
tests/frequency.py
cmu-sei/usersim
0a90e1c2f32ce27bbb564c7196050c50409989dd
[ "BSL-1.0" ]
4
2018-04-09T17:59:13.000Z
2019-11-17T01:33:35.000Z
# Copyright 2017 Carnegie Mellon University. See LICENSE.md file for terms. import api import usersim def run_test(): reps = 10 config = {'type': 'frequency', 'config': {'frequency': 2000, 'repetitions': reps, 'task': {'type': 'test', 'config': {}}}} sim = usersim.UserSim(True) task_id = api.new_task(config) while True: result = sim.cycle() if len(result) > 1: print(result) # Break once the final task has been stopped. if api.status_task(task_id + reps)['state'] == api.States.STOPPED: break if __name__ == '__main__': run_test()
23.258065
75
0.521498
1f3d9ea0f1fcf24d0e18c32ebdc87cd562dbc0f1
688
py
Python
LC_problems/954.py
Howardhuang98/Blog
cf58638d6d0bbf55b95fe08e43798e7dd14219ac
[ "MIT" ]
null
null
null
LC_problems/954.py
Howardhuang98/Blog
cf58638d6d0bbf55b95fe08e43798e7dd14219ac
[ "MIT" ]
null
null
null
LC_problems/954.py
Howardhuang98/Blog
cf58638d6d0bbf55b95fe08e43798e7dd14219ac
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @File : 954.py @Contact : huanghoward@foxmail.com @Modify Time : 2022/4/1 11:41 ------------ """ import collections from typing import List class Solution: def canReorderDoubled(self, arr: List[int]) -> bool: c = collections.Counter(arr) if c[0] % 2 != 0: return False for k in sorted(c, key=abs): if c[k] > c[2 * k]: return False elif c[k]!=0: c[2 * k] = c[2 * k] - c[k] c[k] = 0 return True if __name__ == '__main__': s = Solution() print(s.canReorderDoubled([2, 4, 0, 0, 8, 1]))
22.933333
56
0.482558
d184d3c62162a6d403c105290f2ca67fafc309aa
2,655
py
Python
webapp/python_utils/blob_upload.py
alan-turing-institute/DetectorCheckerWebApp
68b802907d6b07ae5154c0979c8adfce65b56348
[ "MIT" ]
2
2020-02-11T10:50:05.000Z
2020-07-14T16:55:15.000Z
webapp/python_utils/blob_upload.py
alan-turing-institute/DetectorCheckerWebApp
68b802907d6b07ae5154c0979c8adfce65b56348
[ "MIT" ]
10
2019-03-29T14:46:12.000Z
2020-06-12T16:09:55.000Z
webapp/python_utils/blob_upload.py
alan-turing-institute/DetectorCheckerWebApp
68b802907d6b07ae5154c0979c8adfce65b56348
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ A simple script to upload data to azure as a blob. """ import os import argparse import smtplib from azure.storage.blob import BlockBlobService CONTAINER_NAME = os.environ["AZURE_CONTAINER"] BLOCK_BLOB_SERVICE = BlockBlobService( account_name=os.environ["AZURE_STORAGE_ACCOUNT"], connection_string=os.environ["AZURE_CONNECTION_STRING"], ) def check_blob_exists(blob_name): """ Checks if blob exists """ exist = False generator = BLOCK_BLOB_SERVICE.list_blobs(CONTAINER_NAME) for blob in generator: if blob.name == blob_name: exist = True break return exist def email_confirmation(blob_name, email_to): """ Sends email confirmation of upload is successful. """ mail_user = os.environ["DC_EMAIL_ACC"] mail_password = os.environ["DC_EMAIL_PWD"] cc_list = os.environ["DC_EMAIL_CC"] sent_from = mail_user subject = "Data upload notification" email_text = """\ From: %s To: %s Cc: %s Subject: %s Dear DetectorChecker user, File %s has been uploaded successfuly. - DetectorChecker Team """ % (sent_from, email_to, cc_list, subject, blob_name) try: server = smtplib.SMTP("smtp.mail.com", 587) server.login(mail_user, mail_password) server.sendmail(sent_from, email_to, email_text) except Exception as exception: print(exception) finally: server.quit() def main(): """ Main upload routine """ parser = argparse.ArgumentParser(description="Uploads blobs to Azure") parser.add_argument("--source", default=None) parser.add_argument("--target", default=None) parser.add_argument("--email", default=None) args = parser.parse_args() if not args.source or not args.target: raise RuntimeError("Source file and/or target file were not specified.") file_path = (args.source).strip() blob_name = (args.target).strip() if args.email is not None: email = (args.email).strip() else: email = None blob_exists = check_blob_exists(blob_name) if not blob_exists: try: BLOCK_BLOB_SERVICE.create_blob_from_path( CONTAINER_NAME, blob_name, file_path ) except ValueError as exception: raise RuntimeError(exception) else: raise RuntimeError( "A blob with the filename of %s already exists!" % (blob_name) ) # # upload was successful let's send a email notification # if email is not None: # email_confirmation(blob_name, email) if __name__ == "__main__": main()
21.942149
80
0.656874
df9c0b2064a18c7b2377e6b38a3f4264b204c9b9
979
py
Python
api/tests/opentrons/commands/test_commands.py
faliester/opentrons
e945d0f72fed39b0f68c0b30b7afd1981644184f
[ "Apache-2.0" ]
null
null
null
api/tests/opentrons/commands/test_commands.py
faliester/opentrons
e945d0f72fed39b0f68c0b30b7afd1981644184f
[ "Apache-2.0" ]
null
null
null
api/tests/opentrons/commands/test_commands.py
faliester/opentrons
e945d0f72fed39b0f68c0b30b7afd1981644184f
[ "Apache-2.0" ]
null
null
null
import pytest from opentrons.commands import protocol_commands @pytest.mark.parametrize( argnames="seconds," "minutes," "expected_seconds," "expected_minutes," "expected_text", argvalues=[ [10, 0, 10, 0, "Delaying for 0 minutes and 10 seconds"], [10, 9, 10, 9, "Delaying for 9 minutes and 10 seconds"], [100, 0, 40, 1, "Delaying for 1 minutes and 40 seconds"], [105, 5.25, 0, 7, "Delaying for 7 minutes and 0 seconds"], ] ) def test_delay(seconds, minutes, expected_seconds, expected_minutes, expected_text ): command = protocol_commands.delay(seconds, minutes) name = command['name'] payload = command['payload'] assert name == 'command.DELAY' assert payload['seconds'] == expected_seconds assert payload['minutes'] == expected_minutes assert payload['text'] == expected_text
30.59375
66
0.590398
e598f975dec6f9ad78ecd34befd188e3ab80d4ff
13,053
py
Python
tests/generator/test_compression.py
DevMau5x/goldcoin-blockchain-2
ed223dd16fa290ea710db7202d6c52a056242cfa
[ "Apache-2.0" ]
17
2021-09-08T17:07:54.000Z
2022-03-30T04:11:58.000Z
tests/generator/test_compression.py
DevMau5x/goldcoin-blockchain-2
ed223dd16fa290ea710db7202d6c52a056242cfa
[ "Apache-2.0" ]
15
2021-09-28T21:09:49.000Z
2022-03-22T21:13:23.000Z
tests/generator/test_compression.py
Pierre21dd/gold2
4a35f207ed4c8a7745bfbc73fd3c190bd8b60a3f
[ "Apache-2.0" ]
9
2021-09-12T10:03:23.000Z
2022-03-15T08:35:11.000Z
# flake8: noqa: F501 from dataclasses import dataclass from typing import List, Any from unittest import TestCase from goldcoin.full_node.bundle_tools import ( bundle_suitable_for_compression, compressed_coin_spend_entry_list, compressed_spend_bundle_solution, match_standard_transaction_at_any_index, simple_solution_generator, spend_bundle_to_serialized_coin_spend_entry_list, ) from goldcoin.full_node.generator import run_generator, create_generator_args from goldcoin.types.blockchain_format.program import Program, SerializedProgram, INFINITE_COST from goldcoin.types.generator_types import BlockGenerator, CompressorArg, GeneratorArg from goldcoin.types.spend_bundle import SpendBundle from goldcoin.util.byte_types import hexstr_to_bytes from goldcoin.util.ints import uint32 from goldcoin.wallet.puzzles.load_clvm import load_clvm from tests.core.make_block_generator import make_spend_bundle from clvm import SExp import io from clvm.serialize import sexp_from_stream from clvm_tools import binutils TEST_GEN_DESERIALIZE = load_clvm("test_generator_deserialize.clvm", package_or_requirement="goldcoin.wallet.puzzles") DESERIALIZE_MOD = load_clvm("chialisp_deserialisation.clvm", package_or_requirement="goldcoin.wallet.puzzles") DECOMPRESS_PUZZLE = load_clvm("decompress_puzzle.clvm", package_or_requirement="goldcoin.wallet.puzzles") DECOMPRESS_CSE = load_clvm("decompress_coin_spend_entry.clvm", package_or_requirement="goldcoin.wallet.puzzles") DECOMPRESS_CSE_WITH_PREFIX = load_clvm( "decompress_coin_spend_entry_with_prefix.clvm", package_or_requirement="goldcoin.wallet.puzzles" ) DECOMPRESS_BLOCK = load_clvm("block_program_zero.clvm", package_or_requirement="goldcoin.wallet.puzzles") TEST_MULTIPLE = load_clvm("test_multiple_generator_input_arguments.clvm", package_or_requirement="goldcoin.wallet.puzzles") Nil = Program.from_bytes(b"\x80") original_generator = hexstr_to_bytes( "ff01ffffffa00000000000000000000000000000000000000000000000000000000000000000ff830186a080ffffff02ffff01ff02ffff01ff02ffff03ff0bffff01ff02ffff03ffff09ff05ffff1dff0bffff1effff0bff0bffff02ff06ffff04ff02ffff04ff17ff8080808080808080ffff01ff02ff17ff2f80ffff01ff088080ff0180ffff01ff04ffff04ff04ffff04ff05ffff04ffff02ff06ffff04ff02ffff04ff17ff80808080ff80808080ffff02ff17ff2f808080ff0180ffff04ffff01ff32ff02ffff03ffff07ff0580ffff01ff0bffff0102ffff02ff06ffff04ff02ffff04ff09ff80808080ffff02ff06ffff04ff02ffff04ff0dff8080808080ffff01ff0bffff0101ff058080ff0180ff018080ffff04ffff01b081963921826355dcb6c355ccf9c2637c18adf7d38ee44d803ea9ca41587e48c913d8d46896eb830aeadfc13144a8eac3ff018080ffff80ffff01ffff33ffa06b7a83babea1eec790c947db4464ab657dbe9b887fe9acc247062847b8c2a8a9ff830186a08080ff8080808080" ) # noqa gen1 = b"aaaaaaaaaa" + original_generator gen2 = b"bb" + original_generator FAKE_BLOCK_HEIGHT1 = uint32(100) FAKE_BLOCK_HEIGHT2 = uint32(200) @dataclass(frozen=True) class MultipleCompressorArg: arg: List[CompressorArg] split_offset: int def create_multiple_ref_generator(args: MultipleCompressorArg, spend_bundle: SpendBundle) -> BlockGenerator: """ Decompress a transaction by referencing bytes from multiple input generator references """ compressed_cse_list = compressed_coin_spend_entry_list(spend_bundle) program = TEST_MULTIPLE.curry( DECOMPRESS_PUZZLE, DECOMPRESS_CSE_WITH_PREFIX, args.arg[0].start, args.arg[0].end - args.split_offset, args.arg[1].end - args.split_offset, args.arg[1].end, compressed_cse_list, ) # TODO aqk: Improve ergonomics of CompressorArg -> GeneratorArg conversion generator_args = [ GeneratorArg(FAKE_BLOCK_HEIGHT1, args.arg[0].generator), GeneratorArg(FAKE_BLOCK_HEIGHT2, args.arg[1].generator), ] return BlockGenerator(program, generator_args) def spend_bundle_to_coin_spend_entry_list(bundle: SpendBundle) -> List[Any]: r = [] for coin_spend in bundle.coin_spends: entry = [ coin_spend.coin.parent_coin_info, sexp_from_stream(io.BytesIO(bytes(coin_spend.puzzle_reveal)), SExp.to), coin_spend.coin.amount, sexp_from_stream(io.BytesIO(bytes(coin_spend.solution)), SExp.to), ] r.append(entry) return r class TestCompression(TestCase): def test_spend_bundle_suitable(self): sb: SpendBundle = make_spend_bundle(1) assert bundle_suitable_for_compression(sb) def test_compress_spend_bundle(self): pass def test_multiple_input_gen_refs(self): start1, end1 = match_standard_transaction_at_any_index(gen1) start2, end2 = match_standard_transaction_at_any_index(gen2) ca1 = CompressorArg(FAKE_BLOCK_HEIGHT1, SerializedProgram.from_bytes(gen1), start1, end1) ca2 = CompressorArg(FAKE_BLOCK_HEIGHT2, SerializedProgram.from_bytes(gen2), start2, end2) prefix_len1 = end1 - start1 prefix_len2 = end2 - start2 assert prefix_len1 == prefix_len2 prefix_len = prefix_len1 results = [] for split_offset in range(prefix_len): gen_args = MultipleCompressorArg([ca1, ca2], split_offset) spend_bundle: SpendBundle = make_spend_bundle(1) multi_gen = create_multiple_ref_generator(gen_args, spend_bundle) cost, result = run_generator(multi_gen, INFINITE_COST) results.append(result) assert result is not None assert cost > 0 assert all(r == results[0] for r in results) def test_compressed_block_results(self): sb: SpendBundle = make_spend_bundle(1) start, end = match_standard_transaction_at_any_index(original_generator) ca = CompressorArg(uint32(0), SerializedProgram.from_bytes(original_generator), start, end) c = compressed_spend_bundle_solution(ca, sb) s = simple_solution_generator(sb) assert c != s cost_c, result_c = run_generator(c, INFINITE_COST) cost_s, result_s = run_generator(s, INFINITE_COST) print(result_c) assert result_c is not None assert result_s is not None assert result_c == result_s def test_spend_byndle_coin_spend(self): for i in range(0, 10): sb: SpendBundle = make_spend_bundle(i) cs1 = SExp.to(spend_bundle_to_coin_spend_entry_list(sb)).as_bin() cs2 = spend_bundle_to_serialized_coin_spend_entry_list(sb) assert cs1 == cs2 class TestDecompression(TestCase): def __init__(self, *args, **kwargs): super(TestDecompression, self).__init__(*args, **kwargs) self.maxDiff = None def test_deserialization(self): self.maxDiff = None cost, out = DESERIALIZE_MOD.run_with_cost(INFINITE_COST, [bytes(Program.to("hello"))]) assert out == Program.to("hello") def test_deserialization_as_argument(self): self.maxDiff = None cost, out = TEST_GEN_DESERIALIZE.run_with_cost( INFINITE_COST, [DESERIALIZE_MOD, Nil, bytes(Program.to("hello"))] ) print(bytes(Program.to("hello"))) print() print(out) assert out == Program.to("hello") def test_decompress_puzzle(self): cost, out = DECOMPRESS_PUZZLE.run_with_cost( INFINITE_COST, [DESERIALIZE_MOD, b"\xff", bytes(Program.to("pubkey")), b"\x80"] ) print() print(out) # An empty CSE is invalid. (An empty CSE list may be okay) # def test_decompress_empty_cse(self): # cse0 = binutils.assemble("()") # cost, out = DECOMPRESS_CSE.run_with_cost(INFINITE_COST, [DESERIALIZE_MOD, DECOMPRESS_PUZZLE, b"\xff", b"\x80", cse0]) # print() # print(out) def test_decompress_cse(self): """Decompress a single CSE / CoinSpendEntry""" cse0 = binutils.assemble( "((0x0000000000000000000000000000000000000000000000000000000000000000 0x0186a0) (0xb081963921826355dcb6c355ccf9c2637c18adf7d38ee44d803ea9ca41587e48c913d8d46896eb830aeadfc13144a8eac3 (() (q (51 0x6b7a83babea1eec790c947db4464ab657dbe9b887fe9acc247062847b8c2a8a9 0x0186a0)) ())))" ) # noqa cost, out = DECOMPRESS_CSE.run_with_cost( INFINITE_COST, [DESERIALIZE_MOD, DECOMPRESS_PUZZLE, b"\xff", b"\x80", cse0] ) print() print(out) def test_decompress_cse_with_prefix(self): cse0 = binutils.assemble( "((0x0000000000000000000000000000000000000000000000000000000000000000 0x0186a0) (0xb081963921826355dcb6c355ccf9c2637c18adf7d38ee44d803ea9ca41587e48c913d8d46896eb830aeadfc13144a8eac3 (() (q (51 0x6b7a83babea1eec790c947db4464ab657dbe9b887fe9acc247062847b8c2a8a9 0x0186a0)) ())))" ) # noqa start = 2 + 44 end = start + 238 prefix = original_generator[start:end] # (deserialize decompress_puzzle puzzle_prefix cse) cost, out = DECOMPRESS_CSE_WITH_PREFIX.run_with_cost( INFINITE_COST, [DESERIALIZE_MOD, DECOMPRESS_PUZZLE, prefix, cse0] ) print() print(out) def test_block_program_zero(self): "Decompress a list of CSEs" self.maxDiff = None cse1 = binutils.assemble( "(((0x0000000000000000000000000000000000000000000000000000000000000000 0x0186a0) (0xb081963921826355dcb6c355ccf9c2637c18adf7d38ee44d803ea9ca41587e48c913d8d46896eb830aeadfc13144a8eac3 (() (q (51 0x6b7a83babea1eec790c947db4464ab657dbe9b887fe9acc247062847b8c2a8a9 0x0186a0)) ()))))" ) # noqa cse2 = binutils.assemble( """ ( ((0x0000000000000000000000000000000000000000000000000000000000000000 0x0186a0) (0xb081963921826355dcb6c355ccf9c2637c18adf7d38ee44d803ea9ca41587e48c913d8d46896eb830aeadfc13144a8eac3 (() (q (51 0x6b7a83babea1eec790c947db4464ab657dbe9b887fe9acc247062847b8c2a8a9 0x0186a0)) ())) ) ((0x0000000000000000000000000000000000000000000000000000000000000001 0x0186a0) (0xb0a6207f5173ec41491d9f2c1b8fff5579e13703077e0eaca8fe587669dcccf51e9209a6b65576845ece5f7c2f3229e7e3 (() (q (51 0x24254a3efc3ebfac9979bbe0d615e2eda043aa329905f65b63846fa24149e2b6 0x0186a0)) ()))) ) """ ) # noqa start = 2 + 44 end = start + 238 # (mod (decompress_puzzle decompress_coin_spend_entry start end compressed_cses deserialize generator_list reserved_arg) # cost, out = DECOMPRESS_BLOCK.run_with_cost(INFINITE_COST, [DECOMPRESS_PUZZLE, DECOMPRESS_CSE, start, Program.to(end), cse0, DESERIALIZE_MOD, bytes(original_generator)]) cost, out = DECOMPRESS_BLOCK.run_with_cost( INFINITE_COST, [ DECOMPRESS_PUZZLE, DECOMPRESS_CSE_WITH_PREFIX, start, Program.to(end), cse2, DESERIALIZE_MOD, [bytes(original_generator)], ], ) print() print(out) def test_block_program_zero_with_curry(self): self.maxDiff = None cse1 = binutils.assemble( "(((0x0000000000000000000000000000000000000000000000000000000000000000 0x0186a0) (0xb081963921826355dcb6c355ccf9c2637c18adf7d38ee44d803ea9ca41587e48c913d8d46896eb830aeadfc13144a8eac3 (() (q (51 0x6b7a83babea1eec790c947db4464ab657dbe9b887fe9acc247062847b8c2a8a9 0x0186a0)) ()))))" ) # noqa cse2 = binutils.assemble( """ ( ((0x0000000000000000000000000000000000000000000000000000000000000000 0x0186a0) (0xb081963921826355dcb6c355ccf9c2637c18adf7d38ee44d803ea9ca41587e48c913d8d46896eb830aeadfc13144a8eac3 (() (q (51 0x6b7a83babea1eec790c947db4464ab657dbe9b887fe9acc247062847b8c2a8a9 0x0186a0)) ())) ) ((0x0000000000000000000000000000000000000000000000000000000000000001 0x0186a0) (0xb0a6207f5173ec41491d9f2c1b8fff5579e13703077e0eaca8fe587669dcccf51e9209a6b65576845ece5f7c2f3229e7e3 (() (q (51 0x24254a3efc3ebfac9979bbe0d615e2eda043aa329905f65b63846fa24149e2b6 0x0186a0)) ()))) ) """ ) # noqa start = 2 + 44 end = start + 238 # (mod (decompress_puzzle decompress_coin_spend_entry start end compressed_cses deserialize generator_list reserved_arg) # cost, out = DECOMPRESS_BLOCK.run_with_cost(INFINITE_COST, [DECOMPRESS_PUZZLE, DECOMPRESS_CSE, start, Program.to(end), cse0, DESERIALIZE_MOD, bytes(original_generator)]) p = DECOMPRESS_BLOCK.curry(DECOMPRESS_PUZZLE, DECOMPRESS_CSE_WITH_PREFIX, start, Program.to(end)) cost, out = p.run_with_cost(INFINITE_COST, [cse2, DESERIALIZE_MOD, [bytes(original_generator)]]) print() print(p) print(out) p_with_cses = DECOMPRESS_BLOCK.curry( DECOMPRESS_PUZZLE, DECOMPRESS_CSE_WITH_PREFIX, start, Program.to(end), cse2, DESERIALIZE_MOD ) generator_args = create_generator_args([SerializedProgram.from_bytes(original_generator)]) cost, out = p_with_cses.run_with_cost(INFINITE_COST, generator_args) print() print(p_with_cses) print(out)
44.247458
792
0.73914
5ce2152bee561b8e9bcca8688e657b30883286e4
3,667
py
Python
ooobuild/lo/frame/control_event.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/frame/control_event.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/frame/control_event.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Struct Class # this is a auto generated file generated by Cheetah # Namespace: com.sun.star.frame # Libre Office Version: 7.3 from ooo.oenv.env_const import UNO_NONE import typing from ..beans.named_value import NamedValue as NamedValue_a37a0af3 from ..util.url import URL as URL_57ad07b9 class ControlEvent(object): """ Struct Class describes a control event sent by extended user interface controls. **since** OOo 2.0.3 See Also: `API ControlEvent <https://api.libreoffice.org/docs/idl/ref/structcom_1_1sun_1_1star_1_1frame_1_1ControlEvent.html>`_ """ __ooo_ns__: str = 'com.sun.star.frame' __ooo_full_ns__: str = 'com.sun.star.frame.ControlEvent' __ooo_type_name__: str = 'struct' typeName: str = 'com.sun.star.frame.ControlEvent' """Literal Constant ``com.sun.star.frame.ControlEvent``""" def __init__(self, aInformation: typing.Optional[typing.Tuple[NamedValue_a37a0af3, ...]] = UNO_NONE, aURL: typing.Optional[URL_57ad07b9] = UNO_NONE, Event: typing.Optional[str] = '') -> None: """ Constructor Arguments: aInformation (typing.Tuple[NamedValue, ...], optional): aInformation value. aURL (URL, optional): aURL value. Event (str, optional): Event value. """ super().__init__() if isinstance(aInformation, ControlEvent): oth: ControlEvent = aInformation self.aInformation = oth.aInformation self.aURL = oth.aURL self.Event = oth.Event return kargs = { "aInformation": aInformation, "aURL": aURL, "Event": Event, } if kargs["aInformation"] is UNO_NONE: kargs["aInformation"] = None if kargs["aURL"] is UNO_NONE: kargs["aURL"] = None self._init(**kargs) def _init(self, **kwargs) -> None: self._a_information = kwargs["aInformation"] self._a_url = kwargs["aURL"] self._event = kwargs["Event"] @property def aInformation(self) -> typing.Tuple[NamedValue_a37a0af3, ...]: """ specifies a sequence of named values which are used as additional values for the event. The number and types of named values depend on the event. """ return self._a_information @aInformation.setter def aInformation(self, value: typing.Tuple[NamedValue_a37a0af3, ...]) -> None: self._a_information = value @property def aURL(self) -> URL_57ad07b9: """ fully parsed URL describing the control that sends this notification. """ return self._a_url @aURL.setter def aURL(self, value: URL_57ad07b9) -> None: self._a_url = value @property def Event(self) -> str: """ specifies the event which has occurred. """ return self._event @Event.setter def Event(self, value: str) -> None: self._event = value __all__ = ['ControlEvent']
31.076271
195
0.638942
16f1754e579b0d12de894b3d0751c0eabfdf8e6f
9,280
py
Python
Ryven/packages/auto_generated/ctypes.test.test_repr/nodes.py
tfroehlich82/Ryven
cb57c91d13949712844a4410a9302c4a90d28dcd
[ "MIT" ]
2,872
2020-07-01T09:06:34.000Z
2022-03-31T05:52:32.000Z
Ryven/packages/auto_generated/ctypes.test.test_repr/nodes.py
dhf327/Ryven
a11e361528d982a9dd3c489dd536f8b05ffd56e1
[ "MIT" ]
59
2020-06-28T12:50:50.000Z
2022-03-27T19:07:54.000Z
Ryven/packages/auto_generated/ctypes.test.test_repr/nodes.py
dhf327/Ryven
a11e361528d982a9dd3c489dd536f8b05ffd56e1
[ "MIT" ]
339
2020-07-05T04:36:20.000Z
2022-03-24T07:25:18.000Z
from NENV import * import ctypes.test.test_repr class NodeBase(Node): pass class Array_Node(NodeBase): """ """ title = 'ARRAY' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='typ'), NodeInputBP(label='len'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.ARRAY(self.input(0), self.input(1))) class Cfunctype_Node(NodeBase): """ CFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False) -> function prototype. restype: the result type argtypes: a sequence specifying the argument types The function prototype can be called in different ways to create a callable object: prototype(integer address) -> foreign function prototype(callable) -> create and return a C callable function from callable prototype(integer index, method name[, paramflags]) -> foreign function calling a COM method prototype((ordinal number, dll object)[, paramflags]) -> foreign function exported by ordinal prototype((function name, dll object)[, paramflags]) -> foreign function exported by name """ title = 'CFUNCTYPE' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='restype'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.CFUNCTYPE(self.input(0))) class Dllcanunloadnow_Node(NodeBase): """ """ title = 'DllCanUnloadNow' type_ = 'ctypes.test.test_repr' init_inputs = [ ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.DllCanUnloadNow()) class Dllgetclassobject_Node(NodeBase): """ """ title = 'DllGetClassObject' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='rclsid'), NodeInputBP(label='riid'), NodeInputBP(label='ppv'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.DllGetClassObject(self.input(0), self.input(1), self.input(2))) class Pyfunctype_Node(NodeBase): """ """ title = 'PYFUNCTYPE' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='restype'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.PYFUNCTYPE(self.input(0))) class Setpointertype_Node(NodeBase): """ """ title = 'SetPointerType' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='pointer'), NodeInputBP(label='cls'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.SetPointerType(self.input(0), self.input(1))) class Winfunctype_Node(NodeBase): """ """ title = 'WINFUNCTYPE' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='restype'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.WINFUNCTYPE(self.input(0))) class Winerror_Node(NodeBase): """ """ title = 'WinError' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='code', dtype=dtypes.Data(default=None, size='s')), NodeInputBP(label='descr', dtype=dtypes.Data(default=None, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.WinError(self.input(0), self.input(1))) class _Calcsize_Node(NodeBase): """ Return size in bytes of the struct described by the format string.""" title = '_calcsize' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='format'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr._calcsize(self.input(0))) class _Check_Size_Node(NodeBase): """ """ title = '_check_size' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='typ'), NodeInputBP(label='typecode', dtype=dtypes.Data(default=None, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr._check_size(self.input(0), self.input(1))) class _Reset_Cache_Node(NodeBase): """ """ title = '_reset_cache' type_ = 'ctypes.test.test_repr' init_inputs = [ ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr._reset_cache()) class C_Buffer_Node(NodeBase): """ """ title = 'c_buffer' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='init'), NodeInputBP(label='size', dtype=dtypes.Data(default=None, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.c_buffer(self.input(0), self.input(1))) class Cast_Node(NodeBase): """ """ title = 'cast' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='obj'), NodeInputBP(label='typ'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.cast(self.input(0), self.input(1))) class Create_String_Buffer_Node(NodeBase): """ create_string_buffer(aBytes) -> character array create_string_buffer(anInteger) -> character array create_string_buffer(aBytes, anInteger) -> character array """ title = 'create_string_buffer' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='init'), NodeInputBP(label='size', dtype=dtypes.Data(default=None, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.create_string_buffer(self.input(0), self.input(1))) class Create_Unicode_Buffer_Node(NodeBase): """ create_unicode_buffer(aString) -> character array create_unicode_buffer(anInteger) -> character array create_unicode_buffer(aString, anInteger) -> character array """ title = 'create_unicode_buffer' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='init'), NodeInputBP(label='size', dtype=dtypes.Data(default=None, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.create_unicode_buffer(self.input(0), self.input(1))) class String_At_Node(NodeBase): """ string_at(addr[, size]) -> string Return the string at addr.""" title = 'string_at' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='ptr'), NodeInputBP(label='size', dtype=dtypes.Data(default=-1, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.string_at(self.input(0), self.input(1))) class Wstring_At_Node(NodeBase): """ wstring_at(addr[, size]) -> string Return the string at addr.""" title = 'wstring_at' type_ = 'ctypes.test.test_repr' init_inputs = [ NodeInputBP(label='ptr'), NodeInputBP(label='size', dtype=dtypes.Data(default=-1, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, ctypes.test.test_repr.wstring_at(self.input(0), self.input(1))) export_nodes( Array_Node, Cfunctype_Node, Dllcanunloadnow_Node, Dllgetclassobject_Node, Pyfunctype_Node, Setpointertype_Node, Winfunctype_Node, Winerror_Node, _Calcsize_Node, _Check_Size_Node, _Reset_Cache_Node, C_Buffer_Node, Cast_Node, Create_String_Buffer_Node, Create_Unicode_Buffer_Node, String_At_Node, Wstring_At_Node, )
24.879357
116
0.613901
15e8e7c26c629cbd9f1425f27c9b00a8ea3be94e
13,203
py
Python
scripts/community.py
communcom/commun.contracts
98aaa55d33b91af130013c82780253f39eae47e7
[ "MIT" ]
null
null
null
scripts/community.py
communcom/commun.contracts
98aaa55d33b91af130013c82780253f39eae47e7
[ "MIT" ]
null
null
null
scripts/community.py
communcom/commun.contracts
98aaa55d33b91af130013c82780253f39eae47e7
[ "MIT" ]
1
2020-10-25T13:58:12.000Z
2020-10-25T13:58:12.000Z
from deployutils.testnet import * from deployutils import log_action from copy import deepcopy def issueCommunToken(owner, quantity, clientKey, **kwargs): pushAction('cyber.token', 'issue', 'c.issuer@issue', { 'to':'c.issuer', 'quantity':quantity, 'memo':'issue for '+owner }, providebw='c.issuer/c@providebw', keys=clientKey, **kwargs) pushAction('cyber.token', 'transfer', 'c.issuer@issue', { 'from':'c.issuer', 'to':owner, 'quantity':quantity, 'memo':'issue for '+owner }, providebw='c.issuer/c@providebw', keys=clientKey, **kwargs) def buyCommunityPoints(owner, quantity, community, ownerKey, clientKey, **kwargs): issueCommunToken(owner, quantity, clientKey, **kwargs) return pushAction('cyber.token', 'transfer', owner, { 'from':owner, 'to':'c.point', 'quantity':quantity, 'memo':community }, providebw=owner+'/c@providebw', keys=[ownerKey, clientKey], **kwargs) def createCommunityUser(community, creator, creatorKey, clientKey, *, buyPointsOn=None, leaderUrl=None): (private, public) = createKey() account = createRandomAccount(public, creator=creator, keys=creatorKey) openBalance(account, community, creator, keys=creatorKey) if buyPointsOn: buyCommunityPoints(account, buyPointsOn, community, private, clientKey) if leaderUrl: regLeader(commun_code=community, leader=account, url=leaderUrl, providebw=account+'/'+creator, keys=[private, creatorKey]) return (account, private) def recover(account, active_key=None, owner_key=None, provider=None, **kwargs): args = {'account':account} if active_key: args['active_key'] = active_key if owner_key: args['owner_key'] = owner_key providebw = ['c.recover/'+provider] if provider else None if active_key and provider: providebw.append(account+'/'+provider) return pushAction('c.recover', 'recover', 'c.recover@recover', args, providebw=providebw, **kwargs) def applyOwner(account, **kwargs): return pushAction('c.recover', 'applyowner', account, {'account': account}, **kwargs) def cancelOwner(account, **kwargs): return pushAction('c.recover', 'cancelowner', account, {'account': account}, **kwargs) def getUnusedPointSymbol(): while True: point = ''.join(random.choice("ABCDEFGHIJKLMNOPQRSTUVWXYZ") for i in range(6)) if getPointParam(point) == None: return point def getPointParam(point): param = mongoClient["_CYBERWAY_c_point"]["param"].find_one({"max_supply._sym":point}) if param: param['max_supply'] = Asset.fromdb(param['max_supply']) param['transfer_fee'] = int(param['transfer_fee'].to_decimal()) return param def getPointStat(point): stat = mongoClient["_CYBERWAY_c_point"]["stat"].find_one({"supply._sym":point}) if stat: stat['supply'] = Asset.fromdb(stat['supply']) stat['reserve'] = Asset.fromdb(stat['reserve']) return stat def getPointBalance(point, account): res = mongoClient["_CYBERWAY_c_point"]["accounts"].find_one({"balance._sym":point,"_SERVICE_.scope":account}) if res: res = Asset.fromdb(res['balance']) return res def transferPoints(sender, recipient, amount, memo='', **kwargs): args = {'from':sender, 'to':recipient, 'quantity':amount, 'memo':memo} return pushAction('c.point', 'transfer', sender, args, providebw=sender+'/c@providebw', **kwargs) def lockPoints(owner, period, **kwargs): args = {'owner':owner, 'period':period} return pushAction('c.point', 'globallock', owner, args, providebw=owner+'/c@providebw', **kwargs) def enableSafe(owner, unlock, delay, trusted="", **kwargs): args = {'owner':owner, 'unlock':unlock, 'delay':delay, 'trusted':trusted} return pushAction('c.point', 'enablesafe', owner, args, providebw=owner+'/c@providebw', **kwargs) def disableSafe(owner, modId, point, signer=None, **kwargs): actor = [owner, signer] if signer else owner args = {'owner':owner, 'mod_id':modId, 'commun_code':point} return pushAction('c.point', 'disablesafe', actor, args, providebw=owner+'/c@providebw', **kwargs) def unlockSafe(owner, modId, unlock, signer=None, **kwargs): actor = [owner, signer] if signer else owner provide = [owner+'/c@providebw', signer+'/c@providebw'] if signer else owner+'/c@providebw' args = {'owner':owner, 'mod_id':modId, 'unlock':unlock} return pushAction('c.point', 'unlocksafe', actor, args, providebw=provide, **kwargs) def lockSafe(owner, lock, **kwargs): args = {'owner':owner, 'lock':lock} return pushAction('c.point', 'locksafe', owner, args, providebw=owner+'/c@providebw', **kwargs) def modifySafe(owner, modId, point, delay=None, trusted=None, signer=None, **kwargs): actor = [owner, signer] if signer else owner args = {'owner':owner, 'mod_id':modId, 'commun_code':point} if delay is not None: args["delay"] = delay if trusted is not None: args["trusted"] = trusted return pushAction('c.point', 'modifysafe', actor, args, providebw=owner+'/c@providebw', **kwargs) def applySafeMod(owner, modId, signer=None, **kwargs): actor = [owner, signer] if signer else owner args = {'owner':owner, 'mod_id':modId} return pushAction('c.point', 'applysafemod', actor, args, providebw=owner+'/c@providebw', **kwargs) def cancelSafeMod(owner, modId, **kwargs): args = {'owner':owner, 'mod_id':modId} return pushAction('c.point', 'cancelsafemod', owner, args, providebw=owner+'/c@providebw', **kwargs) def getPointGlobalLock(account): return mongoClient["_CYBERWAY_c_point"]["lock"].find_one({"_SERVICE_.scope":account}) def getPointSafe(point, account): res = mongoClient["_CYBERWAY_c_point"]["safe"].find_one({"unlocked._sym":point,"_SERVICE_.scope":account}) if res: res["unlocked"] = Asset.fromdb(res['unlocked']) return res def getPointSafeMod(point, account, modId): return mongoClient["_CYBERWAY_c_point"]["safemod"].find_one({"id":modId,"commun_code":point,"_SERVICE_.scope":account}) def createCommunity(community_name, creator_auth, creator_key, maximum_supply, reserve_amount, *, cw=3333, fee=100, owner_account=None, output=False): symbol = maximum_supply.symbol initial_supply = Asset.fromstr(str(maximum_supply)) initial_supply.amount //= 1000 c = parseAuthority(creator_auth) (creator_account, creator_permission) = (c['actor'],c['permission']) creator_auth = '{acc}@{perm}'.format(acc=creator_account, perm=creator_permission) if owner_account is None: owner_account = getRandomAccount() with log_action("0. Create <Owner> account '{}'".format(owner_account)): createAccount(creator_auth, owner_account, 'c@active', creator_auth, providebw=creator_account+'/c@providebw', keys=creator_key, output=output) trx = Trx() for auth in ('lead.smajor', 'lead.major', 'lead.minor'): trx.addAction('cyber', 'updateauth', owner_account, { 'account': owner_account, 'permission': auth, 'parent': 'active', 'auth': createAuthority([], ['c.ctrl@cyber.code'])}) trx.addAction('cyber', 'linkauth', owner_account, { 'account': owner_account, 'code': 'c.gallery', 'type': 'ban', 'requirement': 'lead.minor'}) trx.addAction('cyber', 'linkauth', owner_account, { 'account': owner_account, 'code': 'c.list', 'type': 'ban', 'requirement': 'lead.minor'}) trx.addAction('cyber', 'linkauth', owner_account, { 'account': owner_account, 'code': 'c.list', 'type': 'unban', 'requirement': 'lead.minor'}) trx.addAction('cyber', 'updateauth', owner_account, { 'account': owner_account, 'permission': 'transferperm', 'parent': 'active', 'auth': createAuthority([], ['c.emit@cyber.code'])}) trx.addAction('cyber', 'linkauth', owner_account, { 'account': owner_account, 'code': 'c.point', 'type': 'transfer', 'requirement': 'transferperm'}) trx.addAction('cyber', 'providebw', 'c@providebw', { 'provider': 'c', 'account': owner_account}) pushTrx(trx, keys=[creator_key], output=output) with log_action('1. Buy some value of CMN tokens (for testing purposes c.issuer@issue)'): trx = Trx() trx.addAction('cyber.token', 'issue', 'c.issuer@issue', { 'to':'c.issuer', 'quantity':reserve_amount, 'memo':"Reserve for {c}".format(c=community_name) }) trx.addAction('cyber.token', 'transfer', 'c.issuer@issue', { 'from':'c.issuer', 'to':owner_account, 'quantity':reserve_amount, 'memo':"Reserve for {c}".format(c=community_name) }) trx.addAction('cyber', 'providebw', 'c@providebw', { 'provider': 'c', 'account': 'c.issuer'}) pushTrx(trx, keys=creator_key, output=output) with log_action('2. Create community points'): pushAction('c.point', 'create', 'c.point@clients', { 'issuer': owner_account, 'initial_supply': initial_supply, 'maximum_supply': maximum_supply, 'cw': cw, 'fee': fee }, providebw='c.point/c@providebw', keys=creator_key, output=output) with log_action('3. Restock CMN tokens for community points'): transfer(owner_account, 'c.point', reserve_amount, 'restock: {code}'.format(code=symbol.code), providebw=owner_account+'/c@providebw', keys=creator_key, output=output) with log_action('4. Open point balance for c.gallery & c.ctrl'): trx = Trx() for acc in ('c.gallery', 'c.ctrl'): trx.addAction('c.point', 'open', 'c@providebw', { "owner": acc, "commun_code": symbol.code, "ram_payer": "c" }) pushTrx(trx, keys=creator_key, output=output) with log_action('5. Register community (c.list:create)'): pushAction('c.list', 'create', 'c.list@clients', { "commun_code": symbol.code, "community_name": community_name }, providebw=['c.list/c@providebw', 'c.emit/c@providebw', 'c.ctrl/c@providebw', 'c.gallery/c@providebw'], keys=creator_key, output=output) with log_action('6. Pass account to community'): updateAuth(owner_account, 'active', 'owner', [], [owner_account+'@lead.smajor'], providebw=owner_account+'/c@providebw', keys=creator_key, output=output) return owner_account def openBalance(owner, commun_code, payer, **kwargs): return pushAction('c.point', 'open', payer, { 'owner':owner, 'commun_code':commun_code, 'ram_payer':payer }, **kwargs) def regLeader(commun_code, leader, url, **kwargs): return pushAction('c.ctrl', 'regleader', leader, { 'commun_code': commun_code, 'leader': leader, 'url': url }, **kwargs) def voteLeader(commun_code, voter, leader, pct, **kwargs): return pushAction('c.ctrl', 'voteleader', voter, { 'commun_code': commun_code, 'voter': parseAuthority(voter)['actor'], 'leader': leader, 'pct': pct }, **kwargs) def unvoteLeader(commun_code, voter, leader, **kwargs): return pushAction('c.ctrl', 'unvotelead', voter, { 'commun_code': commun_code, 'voter': voter, 'leader': leader, }, **kwargs) def createPost(commun_code, author, permlink, category, header, body, **kwargs): return pushAction('c.gallery', 'create', author, { 'commun_code':commun_code, 'message_id':{'author':author, 'permlink':permlink}, 'parent_id':{'author':"", 'permlink':category}, 'header':header, 'body':body, 'tags':[], 'metadata':'' }, **kwargs) def upvotePost(commun_code, voter, author, permlink, **kwargs): return pushAction('c.gallery', 'upvote', voter, { 'commun_code':commun_code, 'voter':voter, 'message_id':{'author':author, 'permlink':permlink} }, **kwargs) def downvotePost(commun_code, voter, author, permlink, **kwargs): return pushAction('c.gallery', 'downvote', voter, { 'commun_code':commun_code, 'voter':voter, 'message_id':{'author':author, 'permlink':permlink} }, **kwargs) def unvotePost(commun_code, voter, author, permlink, **kwargs): return pushAction('c.gallery', 'unvote', voter, { 'commun_code':commun_code, 'voter':voter, 'message_id':{'author':author, 'permlink':permlink} }, **kwargs)
42.182109
150
0.613876
e92a12277358ecba1fa43e833301dc9a1efc44c2
7,574
py
Python
mogp_emulator/benchmarks/benchmark_pivot.py
EXAUQ/mogp-emulator
9d5772135498bdf5b95b44b4afb065c2c266f899
[ "MIT" ]
21
2021-01-20T07:02:12.000Z
2022-03-30T21:09:04.000Z
mogp_emulator/benchmarks/benchmark_pivot.py
EXAUQ/mogp-emulator
9d5772135498bdf5b95b44b4afb065c2c266f899
[ "MIT" ]
114
2019-04-25T14:53:11.000Z
2021-01-06T17:07:41.000Z
mogp_emulator/benchmarks/benchmark_pivot.py
EXAUQ/mogp-emulator
9d5772135498bdf5b95b44b4afb065c2c266f899
[ "MIT" ]
8
2021-02-02T08:56:12.000Z
2022-02-15T10:03:15.000Z
'''This benchmark performs convergence tests using the pivoted Cholesky routines applied to the 2D Branin function. Details of the 2D Branin function can be found at https://www.sfu.ca/~ssurjano/branin.html. The code samples the Branin function using an increasing number of points, with a duplicate point added to make the matrix singular. When pivoting is not used, the algorithm is stabilized by adding a nugget term to the diagonal of the covariance matrix. This degrades the performance of the emulator globally, despite the fact that the problem arises from a local problem in fitting the emulator. Pivoting ignores points that are too close to one another, ensuring that there is no loss of performance as the number of points increases. Note that this benchmark only covers relatively small designs. Tests have revealed that there are some stability issues when applying pivoting to larger numbers of inputs -- this appears to be due to the minimization algorithm, perhaps due to the fact that pivoting computes the inverse of a slightly different matrix which may influence the fitting algorithm performance. Care should thus be taken to examine the resulting performance when applying pivoting in practice. Future versions may implement other approaches to ensure that pivoting gives stable performance on a wide variety of input data. ''' import numpy as np from mogp_emulator import GaussianProcess, fit_GP_MAP from mogp_emulator import MonteCarloDesign, LatinHypercubeDesign from scipy.stats import uniform try: import matplotlib.pyplot as plt makeplots = True except ImportError: makeplots = False def branin_2d(x): "2D Branin function, see https://www.sfu.ca/~ssurjano/branin.html for more information" if np.array(x).shape == (2,): x1, x2 = x else: assert len(np.array(x).shape) == 2 assert np.array(x).shape[1] == 2 x1 = x[:,0] x2 = x[:,1] a, b, c, r, s, t = 1., 5.1/4./np.pi**2, 5./np.pi, 6., 10., 1./8./np.pi return a*(x2 - b*x1**2 + c*x1 - r)**2 + s*(1. - t)*np.cos(x1) + s f = branin_2d n_dim = 2 design_space = [uniform(loc = -5., scale = 15.).ppf, uniform(loc = 0., scale = 15.).ppf] simulations = [5, 10, 15, 20, 25, 30] def generate_input_data(n_simulations, method = "random"): "Generate random points x1 and x2 for evaluating the multivalued 2D Branin function" n_simulations = int(n_simulations) assert(n_simulations > 0) assert method == "random" or method == "lhd" if method == "random": ed = MonteCarloDesign(design_space) elif method == "lhd": ed = LatinHypercubeDesign(design_space) inputs = ed.sample(n_simulations) return inputs def generate_target_data(inputs): "Generate target data for multivalued emulator benchmark" inputs = np.array(inputs) assert len(inputs.shape) == 2 assert inputs.shape[1] == n_dim n_simulations = inputs.shape[0] targets = f(inputs) return targets def generate_training_data(n_simulations): "Generate n_simulations input data and add a duplicate point to make matrix singular" inputs = generate_input_data(n_simulations, method = "lhd") targets = generate_target_data(inputs) inputs_new = np.zeros((inputs.shape[0] + 1, inputs.shape[1])) targets_new = np.zeros(targets.shape[0] + 1) inputs_new[:-1, :] = np.copy(inputs) targets_new[:-1] = np.copy(targets) inputs_new[-1,:] = np.copy(inputs[0,:]) targets_new[-1] = np.copy(targets[0]) return inputs_new, targets_new def generate_test_data(n_testing): "Generate n_testing points for testing the accuracy of an emulator" testing = generate_input_data(n_testing, method = "random") test_targets = generate_target_data(testing) return testing, test_targets def run_model(n_simulations, n_testing): "Generate training data, fit emulator, and test model accuracy on random points, returning RMSE" print('fitting GPs') # run LHD model inputs, targets = generate_training_data(n_simulations) gp = GaussianProcess(inputs, targets, nugget="adaptive") gp = fit_GP_MAP(gp) print("fitting pivoted GP") gp_pivot = GaussianProcess(inputs, targets, nugget="pivot") gp_pivot = fit_GP_MAP(gp_pivot) print("making predictions") testing, test_targets = generate_test_data(n_testing) norm_const = np.max(test_targets)-np.min(test_targets) test_vals_pivot, unc_pivot, deriv = gp_pivot.predict(testing, deriv = False, unc = True) test_vals, unc, deriv = gp.predict(testing, deriv = False, unc = True) return (np.sqrt(np.sum((test_vals - test_targets)**2)/float(n_testing))/norm_const, np.sqrt(np.sum(unc**2)/float(n_testing))/norm_const**2, np.sqrt(np.sum((test_vals_pivot - test_targets)**2)/float(n_testing))/norm_const, np.sqrt(np.sum(unc_pivot**2)/float(n_testing))/norm_const**2) def plot_model_errors(simulation_list, error, unc, error_pivot, unc_pivot, n_testing): "Makes plot showing accuracy of emulator as a function of n_simulations" plt.figure(figsize=(4,3)) plt.semilogy(simulation_list, error_pivot,'-o', label = 'Pivot') plt.semilogy(simulation_list, error,'-x', label = 'Nugget') plt.xlabel('Number of design points') plt.ylabel('Average prediction RMSE') plt.legend() plt.title('Error for '+str(n_testing)+' predictions') plt.savefig('pivot_error.png',bbox_inches='tight') plt.figure(figsize=(4,3)) plt.semilogy(simulation_list, unc_pivot,'-o', label = "Pivot") plt.semilogy(simulation_list, unc,'-x', label = 'Nugget') plt.xlabel('Number of design points') plt.ylabel('Average prediction variance') plt.legend() plt.title('Uncertainty for '+str(n_testing)+' predictions') plt.savefig('pivot_unc.png',bbox_inches='tight') def run_all_models(n_testing, simulation_list, n_iter = 10): "Runs all models, printing out results and optionally making plots" n_simtrials = len(simulation_list) errors = np.zeros((n_simtrials, n_iter)) uncs = np.zeros((n_simtrials, n_iter)) errors_pivot = np.zeros((n_simtrials, n_iter)) uncs_pivot = np.zeros((n_simtrials, n_iter)) for iteration in range(n_iter): for sim_index in range(n_simtrials): print(sim_index, iteration) (errors[sim_index, iteration], uncs[sim_index, iteration], errors_pivot[sim_index, iteration], uncs_pivot[sim_index, iteration]) = run_model(simulation_list[sim_index], n_testing) error = np.mean(errors, axis = -1) unc = np.mean(uncs, axis = -1) error_pivot = np.mean(errors_pivot, axis = -1) unc_pivot = np.mean(uncs_pivot, axis = -1) print("\n") print("Convergence test results:") print("Num. design points RMSE Nugget RMSE Pivot") for sim, err, pivot_err in zip(simulation_list, error, error_pivot): print('{:19} {:19} {:19}'.format(str(sim), str(err), str(pivot_err))) print("\n") print("Num. design points Variance Nugget Variance Pivot") for sim, un, pivot_un in zip(simulation_list, unc, unc_pivot): print('{:19} {:19} {:19}'.format(str(sim), str(un), str(pivot_un))) if makeplots: plot_model_errors(simulation_list, error, unc, error_pivot, unc_pivot, n_testing) if __name__ == '__main__': run_all_models(100, [int(x) for x in simulations], n_iter = 10)
38.841026
100
0.687748
72bd2d3324384e9e36ab67f1c6e2f46a69b72575
3,663
py
Python
photo_rename/copy_metadata.py
eigenholser/jpeg_rename
bd498fcff87fa94fc29ce85bc9f6d8063bc12095
[ "MIT" ]
null
null
null
photo_rename/copy_metadata.py
eigenholser/jpeg_rename
bd498fcff87fa94fc29ce85bc9f6d8063bc12095
[ "MIT" ]
null
null
null
photo_rename/copy_metadata.py
eigenholser/jpeg_rename
bd498fcff87fa94fc29ce85bc9f6d8063bc12095
[ "MIT" ]
1
2018-06-24T14:53:28.000Z
2018-06-24T14:53:28.000Z
import logging import os import re import stat import sys import pyexiv2 import photo_rename from photo_rename import FileMetadata, Harvester from photo_rename.utils import CustomArgumentParser logger = logging.getLogger(__name__) def process_all_files(src_directory, dst_directory, simon_sez=None): """ Manage the entire process of gathering data and renaming files. """ error = False if not os.path.exists(src_directory): logger.error( "Directory {0} does not exist. Exiting.".format( src_directory)) error = True if not os.access(dst_directory, os.W_OK): logger.error( "Destination directory {0} is not writable. Exiting.".format( dst_directory)) error = True if error: logger.warn("Exiting due to errors.") sys.exit(1) harvester = Harvester(src_directory, metadata_dst_directory=dst_directory) filemaps = harvester["filemaps"] count = 0 for fm in filemaps.get(): count += 1 src_fmd = FileMetadata(os.path.join(src_directory, fm.src_fn)) if simon_sez: logger.info( "Copying metadata from {} ==> {}".format( fm.src_fn, fm.dst_fn)) src_fmd.copy_metadata(os.path.join(dst_directory, fm.dst_fn)) else: logger.info( "DRY RUN: Copying metadata from {} ==> {}".format( fm.src_fn, fm.dst_fn)) if count == 0: logger.warn("No matching files found. Check src and dst.") def main(): """ Parse command-line arguments. Initiate file processing. """ parser = CustomArgumentParser() parser.add_argument("-s", "--simon-sez", help="Really, Simon sez copy the data!", action="store_true") parser.add_argument("-r", "--src-directory", help="Copy metadata from files in this directory.") parser.add_argument("-d", "--dst-directory", help="Copy metadata to matching files in this directory.") parser.add_argument("-v", "--verbose", help="Log level to DEBUG.", action="store_true") args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) error = False # Require these two arguments. for arg in [args.src_directory, args.dst_directory]: if not arg: logger.error( "Required src or dst directory parameter missing.") error = True # XXX: Duplicates exit below. Can't check directory if null. logger.error("Exiting due to errors.") parser.usage_message() sys.exit(1) if (os.path.exists(args.src_directory) and os.path.isdir(args.src_directory)): src_directory = args.src_directory else: logger.error( "--src-directory={} does not exist or is not a directory.".format( args.dst_directory)) error = True if (os.path.exists(args.dst_directory) and os.path.isdir(args.dst_directory)): dst_directory = args.dst_directory else: logger.error( "--dst-directory={} does not exist or is not a directory.".format( args.dst_directory)) error = True if error: logger.error("Exiting due to errors.") parser.usage_message() sys.exit(1) else: process_all_files(src_directory, dst_directory, simon_sez=args.simon_sez) if __name__ == '__main__': # pragma: no cover main()
31.307692
81
0.603877
f319bae6accce0c48a7049259aa2cd23c7657bb2
1,517
py
Python
truestory/datautil.py
savvybit/TrueStory
4b329ee82b07bdcb79947dded7e6d3ede02bf9e6
[ "MIT" ]
2
2021-06-08T20:05:31.000Z
2021-12-16T10:41:32.000Z
truestory/datautil.py
savvybit/TrueStory
4b329ee82b07bdcb79947dded7e6d3ede02bf9e6
[ "MIT" ]
null
null
null
truestory/datautil.py
savvybit/TrueStory
4b329ee82b07bdcb79947dded7e6d3ede02bf9e6
[ "MIT" ]
null
null
null
"""Utilities playing with data files.""" import csv import functools import io import json import addict import toml import pkg_resources from truestory import settings LOADERS = { "json": json.load, "toml": toml.load, "csv": csv.DictReader, } def get_string(path): """Returns string content from `path` file.""" content = pkg_resources.resource_string(settings.PROJECT_NAME, path) return content.decode(settings.ENCODING).strip() def get_stream(path, binary=True): """Returns a file-like object for the one pointed by `path`.""" stream = pkg_resources.resource_stream(settings.PROJECT_NAME, path) if not binary: stream = io.TextIOWrapper(stream) return stream def get_structured(path, *, file_type): """Get deserialized content within a JSON or Toml file. Args: path (str): Path to file on disk. file_type (str): Choose between json/toml/csv. Returns: addict.Dict: Dictionary-like object containing the read data. """ assert file_type in LOADERS, "invalid file type for loading content" stream = get_stream(path, binary=file_type in ("json",)) message_dict = LOADERS[file_type](stream) if file_type == "csv": message_dict = {"reader": message_dict} return addict.Dict(message_dict) get_json_data = functools.partial(get_structured, file_type="json") get_toml_data = functools.partial(get_structured, file_type="toml") get_csv_data = functools.partial(get_structured, file_type="csv")
26.155172
72
0.709295
578ed2e1d6a1bee6874e670bf4e05d56d15c22ce
931
py
Python
env/lib/python3.6/site-packages/altair/vegalite/v1/data.py
anthowen/duplify
846d01c1b21230937fdf0281b0cf8c0b08a8c24e
[ "MIT" ]
1,134
2015-09-19T05:38:36.000Z
2021-09-21T15:15:11.000Z
env/lib/python3.6/site-packages/altair/vegalite/v1/data.py
anthowen/duplify
846d01c1b21230937fdf0281b0cf8c0b08a8c24e
[ "MIT" ]
165
2015-09-19T05:09:33.000Z
2018-10-08T19:42:28.000Z
env/lib/python3.6/site-packages/altair/vegalite/v1/data.py
anthowen/duplify
846d01c1b21230937fdf0281b0cf8c0b08a8c24e
[ "MIT" ]
75
2015-09-19T03:30:25.000Z
2018-11-19T05:37:38.000Z
from ..data import (MaxRowsError, curry, default_data_transformer, limit_rows, pipe, sample, to_csv, to_json, to_values, DataTransformerRegistry) # ============================================================================== # VegaLite 1 data transformers # ============================================================================== ENTRY_POINT_GROUP = 'altair.vegalite.v1.data_transformer' # type: str data_transformers = DataTransformerRegistry(entry_point_group=ENTRY_POINT_GROUP) # type: DataTransformerRegistry data_transformers.register('default', default_data_transformer) data_transformers.register('json', to_json) data_transformers.register('csv', to_csv) data_transformers.enable('default') __all__ = ( 'MaxRowsError', 'curry', 'default_data_transformer', 'limit_rows', 'pipe', 'sample', 'to_csv', 'to_json', 'to_values', 'data_transformers' )
29.09375
113
0.606874
fa388732e0a7a30d27ee5e4ef1e0737117d28bcf
5,725
py
Python
telethon/client/dialogs.py
justinjohnymathew/Telethon
fb40e7b50837d67fe5e8df27995a2c80bdc26296
[ "MIT" ]
null
null
null
telethon/client/dialogs.py
justinjohnymathew/Telethon
fb40e7b50837d67fe5e8df27995a2c80bdc26296
[ "MIT" ]
null
null
null
telethon/client/dialogs.py
justinjohnymathew/Telethon
fb40e7b50837d67fe5e8df27995a2c80bdc26296
[ "MIT" ]
1
2018-09-05T14:59:27.000Z
2018-09-05T14:59:27.000Z
import itertools from collections import UserList from async_generator import async_generator, yield_ from .users import UserMethods from .. import utils from ..tl import types, functions, custom class DialogMethods(UserMethods): # region Public methods @async_generator async def iter_dialogs( self, limit=None, *, offset_date=None, offset_id=0, offset_peer=types.InputPeerEmpty(), ignore_migrated=False, _total=None): """ Returns an iterator over the dialogs, yielding 'limit' at most. Dialogs are the open "chats" or conversations with other people, groups you have joined, or channels you are subscribed to. Args: limit (`int` | `None`): How many dialogs to be retrieved as maximum. Can be set to ``None`` to retrieve all dialogs. Note that this may take whole minutes if you have hundreds of dialogs, as Telegram will tell the library to slow down through a ``FloodWaitError``. offset_date (`datetime`, optional): The offset date to be used. offset_id (`int`, optional): The message ID to be used as an offset. offset_peer (:tl:`InputPeer`, optional): The peer to be used as an offset. ignore_migrated (`bool`, optional): Whether :tl:`Chat` that have ``migrated_to`` a :tl:`Channel` should be included or not. By default all the chats in your dialogs are returned, but setting this to ``True`` will hide them in the same way official applications do. _total (`list`, optional): A single-item list to pass the total parameter by reference. Yields: Instances of `telethon.tl.custom.dialog.Dialog`. """ limit = float('inf') if limit is None else int(limit) if limit == 0: if not _total: return # Special case, get a single dialog and determine count dialogs = await self(functions.messages.GetDialogsRequest( offset_date=offset_date, offset_id=offset_id, offset_peer=offset_peer, limit=1 )) _total[0] = getattr(dialogs, 'count', len(dialogs.dialogs)) return seen = set() req = functions.messages.GetDialogsRequest( offset_date=offset_date, offset_id=offset_id, offset_peer=offset_peer, limit=0 ) while len(seen) < limit: req.limit = min(limit - len(seen), 100) r = await self(req) if _total: _total[0] = getattr(r, 'count', len(r.dialogs)) entities = {utils.get_peer_id(x): x for x in itertools.chain(r.users, r.chats)} messages = {m.id: custom.Message(self, m, entities, None) for m in r.messages} # Happens when there are pinned dialogs if len(r.dialogs) > limit: r.dialogs = r.dialogs[:limit] for d in r.dialogs: peer_id = utils.get_peer_id(d.peer) if peer_id not in seen: seen.add(peer_id) cd = custom.Dialog(self, d, entities, messages) if cd.dialog.pts: self._channel_pts[cd.id] = cd.dialog.pts if not ignore_migrated or getattr( cd.entity, 'migrated_to', None) is None: await yield_(cd) if len(r.dialogs) < req.limit\ or not isinstance(r, types.messages.DialogsSlice): # Less than we requested means we reached the end, or # we didn't get a DialogsSlice which means we got all. break req.offset_date = r.messages[-1].date req.offset_peer = entities[utils.get_peer_id(r.dialogs[-1].peer)] if req.offset_id == r.messages[-1].id: # In some very rare cases this will get stuck in an infinite # loop, where the offsets will get reused over and over. If # the new offset is the same as the one before, break already. break req.offset_id = r.messages[-1].id req.exclude_pinned = True async def get_dialogs(self, *args, **kwargs): """ Same as :meth:`iter_dialogs`, but returns a list instead with an additional ``.total`` attribute on the list. """ total = [0] kwargs['_total'] = total dialogs = UserList() async for x in self.iter_dialogs(*args, **kwargs): dialogs.append(x) dialogs.total = total[0] return dialogs @async_generator async def iter_drafts(self): """ Iterator over all open draft messages. Instances of `telethon.tl.custom.draft.Draft` are yielded. You can call `telethon.tl.custom.draft.Draft.set_message` to change the message or `telethon.tl.custom.draft.Draft.delete` among other things. """ r = await self(functions.messages.GetAllDraftsRequest()) for update in r.updates: await yield_(custom.Draft._from_update(self, update)) async def get_drafts(self): """ Same as :meth:`iter_drafts`, but returns a list instead. """ result = [] async for x in self.iter_drafts(): result.append(x) return result # endregion
36.698718
78
0.559301
225b90bdaab50a8bb49152deb0d9af8f7e77e741
3,771
py
Python
setup.py
tonysimpson/Ni
e1fd80852538d7d4b918aa929e48eba8bf503b5b
[ "MIT" ]
1
2020-04-21T21:40:41.000Z
2020-04-21T21:40:41.000Z
setup.py
tonysimpson/Ni
e1fd80852538d7d4b918aa929e48eba8bf503b5b
[ "MIT" ]
null
null
null
setup.py
tonysimpson/Ni
e1fd80852538d7d4b918aa929e48eba8bf503b5b
[ "MIT" ]
null
null
null
#! /usr/bin/env python """ Ni aims to provide a module that just makes Python faster. Ni is based on a fork of Armin Rigo's Psyco, Armin and the other Psyco developers moved onto PyPy so go check that out if you want a high performance implementation of Python (http://pypy.org). """ from __future__ import print_function import os, sys import glob from distutils.core import setup from distutils.extension import Extension #################################################################### # Override defaults using environment variables e.g. dev mode # install with debug trace points: # > NI_TRACE=1 pip install -e . # # If the following is set to 1, Psyco is compiled by #including all .c # files into ni.c. # It provides a version of _psyco.so whose only exported (non-static) # symbol is init_psyco(). It also seems that the GDB debugger doesn't locate # too well non-static symbols in shared libraries. Recompiling after minor # changes is faster if ALL_STATIC=0. ALL_STATIC = int(os.environ.get('NI_ALL_STATIC', 0)) # Enable debugger trace points and compiler with debug options by # setting to 1 NI_TRACE = int(os.environ.get('NI_TRACE', 0)) # Extra checks enable with 1 ALL_CHECKS = int(os.environ.get('NI_ALL_CHECKS', 0)) #################################################################### macros = [ ('ALL_STATIC', str(ALL_STATIC)), ('NI_TRACE', str(NI_TRACE)), ('ALL_CHECKS', str(ALL_CHECKS)), ] class ProcessorAutodetectError(Exception): pass def autodetect(): platform = sys.platform.lower() if platform.startswith('win'): # assume an Intel Windows mach = 'win' else: mach = os.popen('uname -m', 'r').read().strip() if not mach: raise ProcessorAutodetectError("cannot run 'uname -m'") try: return { 'x86_64': 'x64', }[mach] except KeyError: raise ProcessorAutodetectError("unsupported processor '%s'" % mach) PROCESSOR = autodetect() def find_sources(processor, all_static): if all_static: return ['./ni/ni.c'] else: result = glob.glob('./ni/*.c') result += glob.glob('./ni/Python/*.c') result += glob.glob('./ni/Modules/*.c') result += glob.glob('./ni/Objects/*.c') result += glob.glob('./ni/%s/*.c' % (processor,)) return result if NI_TRACE: extra_compile_args = ['-O0', '-g3', '-Wall', '-fno-stack-protector'] else: extra_compile_args = ['-O3'] extra_link_args = [] sources = find_sources(PROCESSOR, ALL_STATIC==1) processor_dir = os.path.join('./ni', PROCESSOR) CLASSIFIERS = [ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: C', 'Topic :: Software Development :: Compilers', 'Topic :: Software Development :: Interpreters', ] setup( name = "ni", version = "0.1a2", description = "Plugin JIT for CPython", maintainer = "Tony Simpson", maintainer_email = "agjasimpson@gmail.com", url = "http://github.com/tonysimpson/ni", license = "MIT License", long_description = __doc__, packages = ['ni'], ext_modules=[Extension(name = 'ni', sources = sources, extra_compile_args = extra_compile_args, extra_link_args = extra_link_args, define_macros = macros, debug = True, include_dirs = [processor_dir], libraries = ['ffi'], )], classifiers=CLASSIFIERS, )
32.508621
78
0.596924
d4f47e8a37f113531f6f718b2275ccf9d42a5e2b
534
py
Python
push_me_out/apps/notifier/serializers.py
dev-prakhar/push-me-out-server
bd5fe94e1f08663fb4059ec2b5d6b4dea5ea2c58
[ "MIT" ]
null
null
null
push_me_out/apps/notifier/serializers.py
dev-prakhar/push-me-out-server
bd5fe94e1f08663fb4059ec2b5d6b4dea5ea2c58
[ "MIT" ]
null
null
null
push_me_out/apps/notifier/serializers.py
dev-prakhar/push-me-out-server
bd5fe94e1f08663fb4059ec2b5d6b4dea5ea2c58
[ "MIT" ]
1
2020-12-17T10:16:08.000Z
2020-12-17T10:16:08.000Z
from rest_framework import serializers from apps.notifier.models import Subscriber, NotificationType class SubscriberSerializer(serializers.ModelSerializer): class Meta: model = Subscriber fields = ('id', 'service_endpoint', 'p256dh', 'auth') extra_kwargs = { 'p256dh': {'write_only': True}, 'auth': {'write_only': True}, } class NotificationTypeSerializer(serializers.ModelSerializer): class Meta: model = NotificationType fields = ('id', 'name', )
28.105263
62
0.649813
0a717f699f2aaa6d5e9dfec9c25be7096f65d9fd
1,020
py
Python
tests/test_utils.py
confuzeus/time-attack
d76e4eeb0d7561302d789b701665477f01ca4a68
[ "MIT" ]
null
null
null
tests/test_utils.py
confuzeus/time-attack
d76e4eeb0d7561302d789b701665477f01ca4a68
[ "MIT" ]
null
null
null
tests/test_utils.py
confuzeus/time-attack
d76e4eeb0d7561302d789b701665477f01ca4a68
[ "MIT" ]
null
null
null
from unittest import TestCase from unittest.mock import patch from time_attack.utils import yes_or_no class TestUtils(TestCase): def test_yes_or_no(self): msg = "abcd" expected_msg = "abcd (y/n) " with patch("builtins.input") as mock_input: mock_input.return_value = "y" answer = yes_or_no(msg) mock_input.assert_called_with(expected_msg) self.assertTrue(answer) mock_input.return_value = "Y" answer = yes_or_no(msg) self.assertTrue(answer) mock_input.return_value = "n" answer = yes_or_no(msg) self.assertFalse(answer) mock_input.return_value = "N" answer = yes_or_no(msg) self.assertFalse(answer) mock_input.reset_mock() mock_input.side_effect = ("Nein", "y") answer = yes_or_no(msg) self.assertEqual(mock_input.call_count, 2) self.assertTrue(answer)
20.4
55
0.584314
605140f91cc829cba9587d6368c9662f2be82375
3,777
py
Python
acl18/io.py
tzshi/mh4-parser-acl18
20234703d6a2824fb6f76d45499db0a6ec6e27fb
[ "MIT" ]
4
2018-08-22T13:54:38.000Z
2021-05-16T16:22:36.000Z
acl18/io.py
tzshi/mh4-parser-acl18
20234703d6a2824fb6f76d45499db0a6ec6e27fb
[ "MIT" ]
null
null
null
acl18/io.py
tzshi/mh4-parser-acl18
20234703d6a2824fb6f76d45499db0a6ec6e27fb
[ "MIT" ]
1
2019-05-19T16:59:20.000Z
2019-05-19T16:59:20.000Z
#!/usr/bin/env python # encoding: utf-8 from .const import ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC from .graph import DependencyGraph, Word def read_conll(filename): def get_word(columns): return Word(columns[FORM], columns[UPOS], lemma=columns[LEMMA], xpos=columns[XPOS], feats=columns[FEATS], misc=columns[MISC]) def get_graph(graphs, words, tokens, edges, comments): graph = DependencyGraph(words, tokens) for (h, d, r) in edges: graph.attach(h, d, r) graph.comments = comments graphs.append(graph) file = open(filename, "r", encoding="utf-8") graphs = [] words = [] tokens = [] edges = [] comments = [] sentence_start = False while True: line = file.readline() if not line: if len(words) > 0: get_graph(graphs, words, tokens, edges, comments) words, tokens, edges, comments = [], [], [], [] break line = line.rstrip("\r\n") # Handle sentence start boundaries if not sentence_start: # Skip comments if line.startswith("#"): comments.append(line) continue # Start a new sentence sentence_start = True if not line: sentence_start = False if len(words) > 0: get_graph(graphs, words, tokens, edges, comments) words, tokens, edges, comments = [], [], [], [] continue # Read next token/word columns = line.split("\t") # Skip empty nodes if "." in columns[ID]: continue # Handle multi-word tokens to save word(s) if "-" in columns[ID]: start, end = map(int, columns[ID].split("-")) tokens.append((start, end + 1, columns[FORM])) for _ in range(start, end + 1): word_line = file.readline().rstrip("\r\n") word_columns = word_line.split("\t") words.append(get_word(word_columns)) if word_columns[HEAD].isdigit(): head = int(word_columns[HEAD]) else: head = -1 edges.append((head, int(word_columns[ID]), word_columns[DEPREL].split(":")[0])) # Basic tokens/words else: words.append(get_word(columns)) if columns[HEAD].isdigit(): head = int(columns[HEAD]) else: head = -1 edges.append((head, int(columns[ID]), columns[DEPREL].split(":")[0])) file.close() return graphs def write_conll(filename, graphs, append=False): if append: file = open(filename, "a", encoding="utf-8") else: file = open(filename, "w", encoding="utf-8") for j in range(len(graphs)): graph = graphs[j] curtoken = 0 for i in range(1, len(graph.nodes)): if curtoken < len(graph.tokens) and i == graph.tokens[curtoken][0]: file.write("{}-{}\t{}\t_\t_\t_\t_\t_\t_\t_\t_\n".format(graph.tokens[curtoken][0], graph.tokens[curtoken][1] - 1, graph.tokens[curtoken][2])) curtoken += 1 file.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t_\t{}\n".format( i, graph.nodes[i].word, graph.nodes[i].lemma, graph.nodes[i].upos, graph.nodes[i].xpos, graph.nodes[i].feats, graph.heads[i], graph.rels[i], graph.nodes[i].misc)) file.write("\n") file.close() def read_text(filename): file = open(filename, "r") text = file.read() file.close() documents = text.split("\n\n") ret = [" ".join(x.split("\n")).strip() for x in documents] return ret
31.739496
157
0.530845
845d086e0175ac3e128640fe5dd42e06f5959913
2,059
py
Python
examples/gmm/sine/vi_gmm.py
pnickl/mimo
81c4bbd2594e2136445009eae752ab8a1602a1cf
[ "MIT" ]
3
2020-05-19T12:01:48.000Z
2020-10-15T11:51:37.000Z
examples/gmm/sine/vi_gmm.py
pnickl/mimo
81c4bbd2594e2136445009eae752ab8a1602a1cf
[ "MIT" ]
null
null
null
examples/gmm/sine/vi_gmm.py
pnickl/mimo
81c4bbd2594e2136445009eae752ab8a1602a1cf
[ "MIT" ]
null
null
null
import copy import operator import numpy as np import numpy.random as npr from matplotlib import pyplot as plt from mimo.distributions import Dirichlet from mimo.distributions import CategoricalWithDirichlet from mimo.distributions import NormalWishart from mimo.distributions import GaussianWithNormalWishart from mimo.mixtures import BayesianMixtureOfGaussians from mimo.util.text import progprint_xrange npr.seed(1337) nb_samples = 2500 data = np.zeros((nb_samples, 2)) step = 14. * np.pi / nb_samples for i in range(data.shape[0]): x = i * step - 6. data[i, 0] = x + npr.normal(0, 0.1) data[i, 1] = 3. * (np.sin(x) + npr.normal(0, .1)) plt.figure() plt.plot(data[:, 0], data[:, 1], 'kx') plt.title('data') nb_models = 25 gating_hypparams = dict(K=nb_models, alphas=np.ones((nb_models, ))) gating_prior = Dirichlet(**gating_hypparams) components_hypparams = dict(mu=np.zeros((2, )), kappa=0.01, psi=np.eye(2), nu=3) components_prior = NormalWishart(**components_hypparams) gmm = BayesianMixtureOfGaussians(gating=CategoricalWithDirichlet(gating_prior), components=[GaussianWithNormalWishart(components_prior) for _ in range(nb_models)]) gmm.add_data(data) allscores = [] allmodels = [] for superitr in range(5): # Gibbs sampling to wander around the posterior print('Gibbs Sampling') for _ in progprint_xrange(25): gmm.resample() # mean field to lock onto a mode print('Mean Field') gmm.resample() # sample once to initialize posterior scores = [gmm.meanfield_update() for _ in progprint_xrange(100)] allscores.append(scores) allmodels.append(copy.deepcopy(gmm)) plt.figure() plt.title('model vlb scores vs iteration') for scores in allscores: plt.plot(scores) models_and_scores = sorted([(m, s[-1]) for m, s in zip(allmodels, allscores)], key=operator.itemgetter(1), reverse=True) plt.figure() plt.title('best model') gmm.plot() plt.show()
26.74026
88
0.682856
ac16bf3fe447908a896b7bf2e8611e1f09de6309
12,475
py
Python
notification_integration/utilities/service_handler_test.py
GoogleCloudPlatform/cloud-alerting-notification-forwarding
1bd47043de723c92dee3f49ddf4bbe226ba5d106
[ "Apache-2.0" ]
3
2021-12-08T02:59:28.000Z
2022-02-04T01:14:54.000Z
notification_integration/utilities/service_handler_test.py
GoogleCloudPlatform/cloud-alerting-notification-forwarding
1bd47043de723c92dee3f49ddf4bbe226ba5d106
[ "Apache-2.0" ]
null
null
null
notification_integration/utilities/service_handler_test.py
GoogleCloudPlatform/cloud-alerting-notification-forwarding
1bd47043de723c92dee3f49ddf4bbe226ba5d106
[ "Apache-2.0" ]
1
2021-12-25T17:32:04.000Z
2021-12-25T17:32:04.000Z
# Copyright 2021 Google, LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for service_handler.py.""" import copy import json import httplib2 import unittest from unittest.mock import Mock from utilities import service_handler # A valid config map used in the tests. _SERVICE_NAME = 'google_chat' _HTTP_METHOD = 'POST' _CONFIG_PARAMS = {'service_name': _SERVICE_NAME, 'webhook_url': 'https://chat.123.com', 'msg_format': 'card' } _BAD_CONFIG_PARAMS = [ {'service': _SERVICE_NAME}, # Bad service name key {'service_name': 'wrong_xxx'}, # Bad service name value {'service_name': 'google_chat', 'url': '123.com'}, # Bad url key {'service_name': 'google_chat', 'webhook_url': 123}, # Bad url value {'service_name': 'google_chat', 'webhook_url': '123.com', 'format': 'card'}, # Bad format key {'service_name': 'google_chat', 'webhook_url': '123.com', 'msg_format': 'video'}, # Bad format value ] # Test notification json object. _NOTIF = { "incident": { "condition": { "conditionThreshold": { "aggregations": [ { "alignmentPeriod": "60s", "crossSeriesReducer": "REDUCE_SUM", "perSeriesAligner": "ALIGN_SUM" } ], "comparison": "COMPARISON_GT", "duration": "60s", "filter": "metric.type=\"compute.googleapis.com/instance/cpu/usage_time\" AND resource.type=\"gce_instance\"", "trigger": { "count": 1 } }, "displayName": "test condition", "name": "projects/tf-test/alertPolicies/3528831492076541324/conditions/3528831492076543949" }, "condition_name": "test condition", "ended_at": 1621359336, "incident_id": "0.m2d61b3s6d5d", "metric": { "displayName": "CPU usage", "type": "compute.googleapis.com/instance/cpu/usage_time" }, "policy_name": "test Alert Policy", "resource": { "labels": { "project_id": "tf-test" }, "type": "gce_instance" }, "resource_id": "", "resource_name": "tf-test VM Instance labels {project_id=tf-test}", "resource_type_display_name": "VM Instance", "started_at": 1620754533, "state": "closed", "summary": "CPU usage for tf-test VM Instance labels {project_id=tf-test} returned to normal with a value of 0.081.", "url": "https://console.cloud.google.com/monitoring/alerting/incidents/0.m2d61b3s6d5d?project=tf-test" }, "version": "1.2" } class ServiceHandlerTest(unittest.TestCase): def testAbstactServiceHandlerCanNotBeInitialized(self): with self.assertRaises(TypeError): service_handler.ServiceHandler(_SERVICE_NAME) # pylint: disable=abstract-class-instantiated class HttpRequestBasedHandlerTest(unittest.TestCase): def testAbstactclassHttpRequestBasedHandlerCanNotBeInitialized(self): with self.assertRaises(TypeError): service_handler.HttpRequestBasedHandler(_SERVICE_NAME, _HTTP_METHOD) # pylint: disable=abstract-class-instantiated class GchatHandlerTest(unittest.TestCase): def setUp(self): # To mock the GCS blob returned by bucket.get_blob. self._http_obj_mock = Mock() self._http_mock = Mock(return_value=self._http_obj_mock) httplib2.Http = self._http_mock def testCheckServiceNameInConfigParamsFailed(self): handler = service_handler.GchatHandler() bad_configs = [ {'service': _SERVICE_NAME}, # Bad key {'service_name': 'wrong_xxx'} # Bad value ] for bad_config in bad_configs: with self.assertRaises(service_handler.ConfigParamsError): handler.CheckServiceNameInConfigParams(bad_config) def testCheckConfigParamsFailed(self): handler = service_handler.GchatHandler() for bad_config in _BAD_CONFIG_PARAMS: with self.assertRaises(service_handler.ConfigParamsError): handler.CheckConfigParams(bad_config) def testSendNotificationFailedDueToBadConfig(self): handler = service_handler.GchatHandler() for bad_config in _BAD_CONFIG_PARAMS: _, status_code = handler.SendNotification(bad_config, _NOTIF) self.assertEqual(status_code, 400) def testSendNotificationFailedDueToUnexpectedCheckConfigParamsException(self): handler = service_handler.GchatHandler() # Set the config_param to None to cause exception. _, status_code = handler.SendNotification(None, _NOTIF) self.assertEqual(status_code, 500) def testSendNotificationFormatTextFailedDuetoException(self): handler = service_handler.GchatHandler() config_params = _CONFIG_PARAMS.copy() self._http_obj_mock.request.side_effect = Exception('unknown exception') config_params['msg_format'] = 'text' _, status_code = handler.SendNotification(config_params, _NOTIF) self.assertEqual(status_code, 400) self._http_obj_mock.request.assert_called_once() def testSendNotificationFormatTextSucceed(self): handler = service_handler.GchatHandler() config_params = _CONFIG_PARAMS.copy() config_params['msg_format'] = 'text' self._http_obj_mock.request.return_value = httplib2.Response({'status': 200}), b'OK' _, status_code = handler.SendNotification(config_params, _NOTIF) self.assertEqual(status_code, 200) expected_body = ( '{"text": "{\\"incident\\": {\\"condition\\": {\\"conditionThreshold\\": ' '{\\"aggregations\\": [{\\"alignmentPeriod\\": \\"60s\\", ' '\\"crossSeriesReducer\\": \\"REDUCE_SUM\\", \\"perSeriesAligner\\":' ' \\"ALIGN_SUM\\"}], \\"comparison\\": \\"COMPARISON_GT\\", ' '\\"duration\\": \\"60s\\", \\"filter\\": \\"metric.type=\\\\\\' '"compute.googleapis.com/instance/cpu/usage_time\\\\\\" AND ' 'resource.type=\\\\\\"gce_instance\\\\\\"\\", \\"trigger\\": ' '{\\"count\\": 1}}, \\"displayName\\": \\"test condition\\", \\"name\\":' ' \\"projects/tf-test/alertPolicies/3528831492076541324/conditions/' '3528831492076543949\\"}, \\"condition_name\\": \\"test condition\\",' ' \\"ended_at\\": 1621359336, \\"incident_id\\": \\"0.m2d61b3s6d5d\\",' ' \\"metric\\": {\\"displayName\\": \\"CPU usage\\", \\"type\\": ' '\\"compute.googleapis.com/instance/cpu/usage_time\\"}, \\"policy_name\\":' ' \\"test Alert Policy\\", \\"resource\\": {\\"labels\\": ' '{\\"project_id\\": \\"tf-test\\"}, \\"type\\": \\"gce_instance\\"}, ' '\\"resource_id\\": \\"\\", \\"resource_name\\": \\"tf-test VM Instance ' 'labels {project_id=tf-test}\\", \\"resource_type_display_name\\": \\"VM ' 'Instance\\", \\"started_at\\": 1620754533, \\"state\\": \\"closed\\", ' '\\"summary\\": \\"CPU usage for tf-test VM Instance labels ' '{project_id=tf-test} returned to normal with a value of 0.081.\\", ' '\\"url\\": \\"https://console.cloud.google.com/monitoring/alerting/' 'incidents/0.m2d61b3s6d5d?project=tf-test\\"}, \\"version\\": \\"1.2\\"}"}' ) self._http_obj_mock.request.assert_called_once_with( uri='https://chat.123.com', method='POST', headers={'Content-Type': 'application/json; charset=UTF-8'}, body=expected_body, ) def testSendNotificationFormatCardSucceed(self): handler = service_handler.GchatHandler() self._http_obj_mock.request.return_value = httplib2.Response({'status': 200}), b'OK' http_response, status_code = handler.SendNotification(_CONFIG_PARAMS, _NOTIF) self.assertEqual(status_code, 200) self.assertEqual(http_response, 'OK') expected_body = ( '{"cards": [{"sections": [{"widgets": [{"textParagraph": {"text":' ' "<b><font color=\\"#0000FF\\">Summary:</font></b> CPU usage for ' 'tf-test VM Instance labels {project_id=tf-test} returned to normal' ' with a value of 0.081., <br><b><font color=\\"#0000FF\\">' 'State:</font></b> closed"}}, {"textParagraph": {"text": ' '"<b>Condition Display Name:</b> test condition <br><b>Start ' 'at:</b> 2021-05-11 17:35:33 (UTC)<br><b>Incident Labels:</b> ' '{\'project_id\': \'tf-test\'}"}}, {"buttons": [{"textButton": ' '{"text": "View Incident Details", "onClick": {"openLink": ' '{"url": "https://console.cloud.google.com/monitoring/alerting/' 'incidents/0.m2d61b3s6d5d?project=tf-test"}}}}]}]}]}]}' ) self._http_obj_mock.request.assert_called_once_with( uri='https://chat.123.com', method='POST', headers={'Content-Type': 'application/json; charset=UTF-8'}, body=expected_body, ) def testSendNotificationFormatTextNon200Status(self): handler = service_handler.GchatHandler() config_params = _CONFIG_PARAMS.copy() self._http_obj_mock.request.return_value = httplib2.Response({'status': 500}), b'Server error' config_params['msg_format'] = 'text' http_response, status_code = handler.SendNotification(config_params, _NOTIF) self.assertEqual(status_code, 500) self.assertEqual(http_response, 'Server error') self._http_obj_mock.request.assert_called_once() def testSendNotificationFormatCardFailedDueToMissingField(self): missing_fields = ['condition', 'resource', 'url', 'state', 'summary'] handler = service_handler.GchatHandler() self._http_obj_mock.request.return_value = httplib2.Response({'status': 200}), b'OK' for missing_field in missing_fields: notif = copy.deepcopy(_NOTIF) del notif['incident'][missing_field] _, status_code = handler.SendNotification(_CONFIG_PARAMS, notif) self.assertEqual(status_code, 400) def testSendNotificationFormatCardStartedAtMissing(self): handler = service_handler.GchatHandler() notif_without_startime = copy.deepcopy(_NOTIF) del notif_without_startime['incident']['started_at'] self._http_obj_mock.request.return_value = httplib2.Response({'status': 200}), b'OK' _, status_code = handler.SendNotification(_CONFIG_PARAMS, notif_without_startime) self.assertEqual(status_code, 200) expected_body = ( '{"cards": [{"sections": [{"widgets": [{"textParagraph": {"text":' ' "<b><font color=\\"#0000FF\\">Summary:</font></b> CPU usage for ' 'tf-test VM Instance labels {project_id=tf-test} returned to normal' ' with a value of 0.081., <br><b><font color=\\"#0000FF\\">' 'State:</font></b> closed"}}, {"textParagraph": {"text": ' '"<b>Condition Display Name:</b> test condition <br><b>Start ' 'at:</b> <br><b>Incident Labels:</b> ' '{\'project_id\': \'tf-test\'}"}}, {"buttons": [{"textButton": ' '{"text": "View Incident Details", "onClick": {"openLink": ' '{"url": "https://console.cloud.google.com/monitoring/alerting/' 'incidents/0.m2d61b3s6d5d?project=tf-test"}}}}]}]}]}]}' ) self._http_obj_mock.request.assert_called_once_with( uri='https://chat.123.com', method='POST', headers={'Content-Type': 'application/json; charset=UTF-8'}, body=expected_body, ) if __name__ == '__main__': unittest.main()
48.352713
128
0.611703
0a44efe7625cf61a5fd91e20812d25065e30dc7d
498
py
Python
mainapp/migrations/0055_rescuecamp_facilities_available.py
reyasmohammed/rescuekerala
68ee6cd4ea7b94e04fd32c4d488bcd7a8f2d371c
[ "MIT" ]
1
2018-09-22T21:08:38.000Z
2018-09-22T21:08:38.000Z
mainapp/migrations/0055_rescuecamp_facilities_available.py
reyasmohammed/rescuekerala
68ee6cd4ea7b94e04fd32c4d488bcd7a8f2d371c
[ "MIT" ]
1
2018-08-23T11:38:02.000Z
2018-08-23T11:38:02.000Z
mainapp/migrations/0055_rescuecamp_facilities_available.py
reyasmohammed/rescuekerala
68ee6cd4ea7b94e04fd32c4d488bcd7a8f2d371c
[ "MIT" ]
5
2019-11-07T11:34:56.000Z
2019-11-07T11:36:00.000Z
# Generated by Django 2.1 on 2018-08-19 08:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mainapp', '0054_auto_20180819_1211'), ] operations = [ migrations.AddField( model_name='rescuecamp', name='facilities_available', field=models.TextField(blank=True, null=True, verbose_name='Facilities existing, (light, kitchen, toilets), etc - ലഭ്യമായ സൗകര്യങ്ങൾ '), ), ]
26.210526
148
0.63253
9f85188b3513563a7444f7a0e908f11af985498b
18,179
py
Python
tensorflow/python/ops/math_ops_test.py
zhangyujing/tensorflow
c7a04561fb8972fb64907acc5f10f3c6d4cef9f2
[ "Apache-2.0" ]
13
2018-07-23T18:53:35.000Z
2021-11-18T19:56:45.000Z
tensorflow/python/ops/math_ops_test.py
Iorizy2/tensorflow
10878ede0688fbf6d720bef1d132a1537f9ea72c
[ "Apache-2.0" ]
1
2018-03-28T23:47:43.000Z
2018-03-28T23:47:43.000Z
tensorflow/python/ops/math_ops_test.py
Iorizy2/tensorflow
10878ede0688fbf6d720bef1d132a1537f9ea72c
[ "Apache-2.0" ]
13
2018-09-07T13:28:38.000Z
2020-07-17T15:06:24.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.math_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradients from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest exp = np.exp log = np.log @test_util.with_c_api class ReduceTest(test_util.TensorFlowTestCase): @test_util.run_in_graph_and_eager_modes() def testReduceAllDims(self): x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) with test_util.device(use_gpu=True): y_tf = self.evaluate(math_ops.reduce_sum(x)) self.assertEqual(y_tf, 21) @test_util.run_in_graph_and_eager_modes() def testReduceExplicitAxes(self): x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) with test_util.device(use_gpu=True): for axis in (0, -2, (0, 0), (0, -2)): self.assertAllEqual(self.evaluate(math_ops.reduce_sum(x, axis=axis)), [5, 7, 9]) for axis in (1, -1, (1, 1), (1, -1)): self.assertAllEqual(self.evaluate(math_ops.reduce_sum(x, axis=axis)), [6, 15]) for axis in (None, (0, 1), (-1, -2), (-2, -1, 0, 1)): self.assertEqual(self.evaluate(math_ops.reduce_sum(x, axis=axis)), 21) @test_util.run_in_graph_and_eager_modes() def testReduceInvalidAxis(self): if context.executing_eagerly(): # The shape check is in run a graph construction time. In eager mode, # it misses the check, magically return result given wrong shape. return x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) axis = np.array([[0], [1]]) with self.assertRaisesRegexp(ValueError, "must be at most rank 1"): math_ops.reduce_sum(x, axis) @test_util.with_c_api class LogSumExpTest(test_util.TensorFlowTestCase): def testReduceLogSumExp(self): for dtype in [np.float16, np.float32, np.double]: x_np = np.random.rand(5, 5).astype(dtype) with self.test_session(use_gpu=True): y_tf_np = math_ops.reduce_logsumexp(x_np).eval() y_np = log(np.sum(exp(x_np))) self.assertAllClose(y_tf_np, y_np) def testReductionIndices(self): for dtype in [np.float16, np.float32, np.double]: x_np = np.random.rand(5, 5).astype(dtype) with self.test_session(use_gpu=True): y_tf = math_ops.reduce_logsumexp(x_np, reduction_indices=[0]) y_np = log(np.sum(exp(x_np), axis=0)) self.assertShapeEqual(y_np, y_tf) y_tf_np = y_tf.eval() self.assertAllClose(y_tf_np, y_np) def testReductionIndices2(self): for dtype in [np.float16, np.float32, np.double]: x_np = np.random.rand(5, 5).astype(dtype) with self.test_session(use_gpu=True): y_tf = math_ops.reduce_logsumexp(x_np, reduction_indices=0) y_np = log(np.sum(exp(x_np), axis=0)) self.assertShapeEqual(y_np, y_tf) y_tf_np = y_tf.eval() self.assertAllClose(y_tf_np, y_np) def testKeepDims(self): for dtype in [np.float16, np.float32, np.double]: x_np = np.random.rand(5, 5).astype(dtype) with self.test_session(use_gpu=True): y_tf_np = math_ops.reduce_logsumexp(x_np, keepdims=True).eval() self.assertEqual(y_tf_np.ndim, x_np.ndim) y_np = log(np.sum(exp(x_np), keepdims=True)) self.assertAllClose(y_tf_np, y_np) def testOverflow(self): x = [1000, 1001, 1002, 1003] for dtype in [np.float16, np.float32, np.double]: x_np = np.array(x, dtype=dtype) max_np = np.max(x_np) with self.assertRaisesRegexp(RuntimeWarning, "overflow encountered in exp"): out = log(np.sum(exp(x_np))) if out == np.inf: raise RuntimeWarning("overflow encountered in exp") with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y_tf_np = math_ops.reduce_logsumexp(x_tf).eval() y_np = log(np.sum(exp(x_np - max_np))) + max_np self.assertAllClose(y_tf_np, y_np) def testUnderflow(self): x = [-1000, -1001, -1002, -1003] for dtype in [np.float16, np.float32, np.double]: x_np = np.array(x, dtype=dtype) max_np = np.max(x_np) with self.assertRaisesRegexp(RuntimeWarning, "divide by zero encountered in log"): out = log(np.sum(exp(x_np))) if out == -np.inf: raise RuntimeWarning("divide by zero encountered in log") with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y_tf_np = math_ops.reduce_logsumexp(x_tf).eval() y_np = log(np.sum(exp(x_np - max_np))) + max_np self.assertAllClose(y_tf_np, y_np) def testInfinity(self): with self.test_session(use_gpu=True): res = math_ops.reduce_logsumexp(-np.inf).eval() self.assertEqual(-np.inf, res) @test_util.with_c_api class RoundTest(test_util.TensorFlowTestCase): @test_util.run_in_graph_and_eager_modes() def testRounding(self): x = [0.49, 0.7, -0.3, -0.8] # TODO(nolivia): Remove this when RoundOp is forwards compatible # x = np.arange(-5.0, 5.0, .25) for dtype in [np.float32, np.double, np.int32]: x_np = np.array(x, dtype=dtype) with test_util.device(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y_tf = math_ops.round(x_tf) y_tf_np = self.evaluate(y_tf) y_np = np.round(x_np) self.assertAllClose(y_tf_np, y_np, atol=1e-2) @test_util.with_c_api class ModTest(test_util.TensorFlowTestCase): def testFloat(self): x = [0.5, 0.7, 0.3] for dtype in [np.float32, np.double]: # Test scalar and vector versions. for denom in [x[0], [x[0]] * 3]: x_np = np.array(x, dtype=dtype) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y_tf = math_ops.mod(x_tf, denom) y_tf_np = y_tf.eval() y_np = np.fmod(x_np, denom) self.assertAllClose(y_tf_np, y_np, atol=1e-2) def testFixed(self): x = [5, 10, 23] for dtype in [np.int32, np.int64]: # Test scalar and vector versions. for denom in [x[0], x]: x_np = np.array(x, dtype=dtype) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y_tf = math_ops.mod(x_tf, denom) y_tf_np = y_tf.eval() y_np = np.mod(x_np, denom) self.assertAllClose(y_tf_np, y_np) @test_util.with_c_api class SquaredDifferenceTest(test_util.TensorFlowTestCase): @test_util.run_in_graph_and_eager_modes() def testSquaredDifference(self): for dtype in [np.int32, np.float16]: x = np.array([[1, 2, 3], [4, 5, 6]], dtype=dtype) y = np.array([-3, -2, -1], dtype=dtype) z = (x - y) * (x - y) with test_util.device(use_gpu=True): z_tf = self.evaluate(math_ops.squared_difference(x, y)) self.assertAllClose(z, z_tf) @test_util.with_c_api class ApproximateEqualTest(test_util.TensorFlowTestCase): @test_util.run_in_graph_and_eager_modes() def testApproximateEqual(self): for dtype in [np.float32, np.double]: x = dtype(1) y = dtype(1.00009) z = False with test_util.device(use_gpu=True): # Default tolerance is 0.00001 z_tf = self.evaluate(math_ops.approximate_equal(x, y)) self.assertAllEqual(z, z_tf) for dtype in [np.float32, np.double]: x = dtype(1) y = dtype(1.000009) z = True with test_util.device(use_gpu=True): # Default tolerance is 0.00001 z_tf = self.evaluate(math_ops.approximate_equal(x, y)) self.assertAllEqual(z, z_tf) for dtype in [np.float32, np.double]: x = np.array([[[[-1, 2.00009999], [-3, 4.01]]]], dtype=dtype) y = np.array([[[[-1.001, 2], [-3.00009, 4]]]], dtype=dtype) z = np.array([[[[False, True], [True, False]]]], dtype=np.bool) with test_util.device(use_gpu=True): z_tf = self.evaluate(math_ops.approximate_equal(x, y, tolerance=0.0001)) self.assertAllEqual(z, z_tf) @test_util.with_c_api class ScalarMulTest(test_util.TensorFlowTestCase): @test_util.run_in_graph_and_eager_modes() def testAcceptsRefs(self): if context.executing_eagerly(): var = resource_variable_ops.ResourceVariable(10, name="var") else: var = variables.Variable(10) result = math_ops.scalar_mul(3, var) init = variables.global_variables_initializer() with test_util.device(use_gpu=True): self.evaluate(init) self.assertEqual(30, self.evaluate(result)) @test_util.run_in_graph_and_eager_modes() def testAcceptsConstant(self): const = constant_op.constant(10) result = math_ops.scalar_mul(3, const) with test_util.device(use_gpu=True): self.assertEqual(30, self.evaluate(result)) @test_util.run_in_graph_and_eager_modes() def testAcceptsTensor(self): tensor = array_ops.ones([10, 10]) result = math_ops.scalar_mul(3, tensor) expected = array_ops.ones([10, 10]) * 3 with test_util.device(use_gpu=True): self.assertAllEqual(self.evaluate(expected), self.evaluate(result)) @test_util.run_in_graph_and_eager_modes() def testAcceptsIndexedSlices(self): values = constant_op.constant([2, 3, 5, 7, 0, -1], shape=[3, 2]) indices = constant_op.constant([0, 2, 5]) x = math_ops.scalar_mul(-3, ops.IndexedSlices(values, indices)) with test_util.device(use_gpu=True): self.assertAllEqual(self.evaluate(x.values), [[-6, -9], [-15, -21], [0, 3]]) self.assertAllEqual(self.evaluate(x.indices), [0, 2, 5]) @test_util.with_c_api class AccumulateNTest(test_util.TensorFlowTestCase): def testFloat(self): np.random.seed(12345) x = [np.random.random((1, 2, 3, 4, 5)) - 0.5 for _ in range(5)] tf_x = ops.convert_n_to_tensor(x) with self.test_session(use_gpu=True): self.assertAllClose(sum(x), math_ops.accumulate_n(tf_x).eval()) self.assertAllClose(x[0] * 5, math_ops.accumulate_n([tf_x[0]] * 5).eval()) def testInt(self): np.random.seed(54321) x = [np.random.randint(-128, 128, (5, 4, 3, 2, 1)) for _ in range(6)] tf_x = ops.convert_n_to_tensor(x) with self.test_session(use_gpu=True): self.assertAllEqual(sum(x), math_ops.accumulate_n(tf_x).eval()) self.assertAllEqual(x[0] * 6, math_ops.accumulate_n([tf_x[0]] * 6).eval()) @test_util.with_c_api class AddNTest(test_util.TensorFlowTestCase): def testPartials(self): """Test that previously revealed a bug in buffer forwarding for AddN.""" partials = [] for _ in range(98): partials.append(math_ops.add_n([constant_op.constant(1)])) partials.append( math_ops.add_n([constant_op.constant(1), constant_op.constant(1)])) res = math_ops.add_n(partials) + constant_op.constant(0) with self.test_session(use_gpu=True): self.assertAllEqual(res.eval(), 100) def testFloat(self): np.random.seed(12345) for num_inputs in range(1, 10): x = [np.random.random((1, 2, 3, 4, 5)) - 0.5 for _ in range(num_inputs)] tf_x = ops.convert_n_to_tensor(x) with self.test_session(use_gpu=True): self.assertAllClose(sum(x), math_ops.add_n(tf_x).eval()) self.assertAllClose(x[0] * num_inputs, math_ops.add_n([tf_x[0]] * num_inputs).eval()) def testInt(self): np.random.seed(54321) for num_inputs in range(1, 10): x = [ np.random.randint(-128, 128, (5, 4, 3, 2, 1)) for _ in range(num_inputs) ] tf_x = ops.convert_n_to_tensor(x) with self.test_session(use_gpu=True): self.assertAllEqual(sum(x), math_ops.add_n(tf_x).eval()) self.assertAllEqual(x[0] * num_inputs, math_ops.add_n([tf_x[0]] * num_inputs).eval()) def testGrad(self): np.random.seed(42) for num_inputs in range(1, 10): with self.test_session(use_gpu=True) as sess: input_vars = [ variables.Variable(10.0 * np.random.random()) for i in range(0, num_inputs) ] addn = math_ops.add_n(input_vars) sess.run(variables.global_variables_initializer()) add_n_grad = gradients.gradients(addn, input_vars) self.assertAllEqual(np.repeat(1.0, num_inputs), # d/dx (x + y + ...) = 1 [g.eval() for g in add_n_grad]) @test_util.with_c_api class DivAndModTest(test_util.TensorFlowTestCase): # TODO(aselle): Test more types before exposing new division operators. def intTestData(self): nums = np.arange(-10, 10, 1).reshape(20, 1) divs = np.arange(-3, 4, 2).reshape(1, 4) return nums, divs def floatTestData(self): nums = np.arange(-10, 10, .25).reshape(80, 1) divs = np.arange(-3, 0, .25).reshape(1, 12) return nums, divs def testFloorModInt(self): nums, divs = self.intTestData() with self.test_session(): # TODO(aselle): Change test to use % after switch # tf_result = math_ops.floor_mod(nums, divs).eval() tf_result = math_ops.floormod(nums, divs).eval() np_result = nums % divs self.assertAllEqual(tf_result, np_result) def testFloorModFloat(self): nums, divs = self.floatTestData() with self.test_session(): tf_result = math_ops.floormod(nums, divs).eval() np_result = nums % divs self.assertAllEqual(tf_result, np_result) # TODO(aselle): put this test in once % switched to floormod # tf2_result = (array_ops.constant(nums) # % array_ops.constant(divs)).eval() # self.assertAllEqual(tf2_result, tf_result) def testTruncateModInt(self): nums, divs = self.intTestData() with self.test_session(): tf_result = math_ops.truncatemod(nums, divs).eval() np_result = np.fmod(nums, divs) self.assertAllEqual(tf_result, np_result) def testTruncateModFloat(self): nums, divs = self.floatTestData() with self.test_session(): tf_result = math_ops.truncatemod(nums, divs).eval() np_result = np.fmod(nums, divs) self.assertAllEqual(tf_result, np_result) def testDivideInt(self): nums, divs = self.intTestData() with self.test_session(): tf_result = math_ops.floor_div(nums, divs).eval() np_result = nums // divs self.assertAllEqual(tf_result, np_result) # TODO(aselle): Put this test in once // is switched to floordiv # tf2_result = (array_ops.constant(nums) # // array_ops.constant(divs)).eval() # self.assertAllEqual(tf2_result, tf_result) def testDivideName(self): with self.test_session(): op = math_ops.divide( array_ops.constant(3), array_ops.constant(4), name="my_cool_divide") self.assertEqual(op.name, "my_cool_divide:0") def testRealDiv(self): nums, divs = self.floatTestData() with self.test_session(): tf_result = math_ops.realdiv(nums, divs).eval() np_result = np.divide(nums, divs) self.assertAllEqual(tf_result, np_result) def testComplexDiv(self): foo = array_ops.constant([1. + 3.j]) with self.test_session(): _ = math_ops.divide(foo, 1.).eval() _ = math_ops.div(foo, 2.).eval() def testFloorDivGrad(self): with self.test_session(): a = variables.Variable(2.) b = variables.Variable(4.) with self.test_session() as sess: sess.run(variables.global_variables_initializer()) c_grad = gradients.gradients(math_ops.divide(a, b), [a, b]) self.assertAllEqual([x.eval() for x in c_grad], [.25, -.125]) c_grad = gradients.gradients(math_ops.div(a, b), [a, b]) self.assertAllEqual([x.eval() for x in c_grad], [.25, -.125]) c_grad = gradients.gradients(math_ops.floordiv(a, b), [a, b]) self.assertAllEqual([None if x is None else x.eval() for x in c_grad], [None, None]) def testConsistent(self): nums, divs = self.intTestData() with self.test_session(): tf_result = (math_ops.floor_div(nums, divs) * divs + math_ops.floormod( nums, divs)).eval() tf_nums = array_ops.constant(nums) tf_divs = array_ops.constant(divs) tf2_result = (tf_nums // tf_divs * tf_divs + tf_nums % tf_divs).eval() np_result = (nums // divs) * divs + (nums % divs) # Consistent with numpy self.assertAllEqual(tf_result, np_result) # Consistent with two forms of divide self.assertAllEqual(tf_result, tf2_result) # consistency for truncation form tf3_result = (math_ops.truncatediv(nums, divs) * divs + math_ops.truncatemod(nums, divs)).eval() expanded_nums = np.reshape( np.tile(nums, divs.shape[1]), (nums.shape[0], divs.shape[1])) # Consistent with desire to get numerator self.assertAllEqual(tf3_result, expanded_nums) # Consistent with desire to get numerator self.assertAllEqual(tf_result, expanded_nums) if __name__ == "__main__": googletest.main()
37.794179
80
0.651521
20c3784d719d8f9a2dc4cbafe409e44f634ba40d
10,380
py
Python
sdk/tables/azure-data-tables/tests/test_table_service_properties_async.py
aiven/azure-sdk-for-python
8764dc07423beca46ed0b51212d81289d9e52c60
[ "MIT" ]
1
2020-03-05T18:10:35.000Z
2020-03-05T18:10:35.000Z
sdk/tables/azure-data-tables/tests/test_table_service_properties_async.py
aiven/azure-sdk-for-python
8764dc07423beca46ed0b51212d81289d9e52c60
[ "MIT" ]
2
2020-03-03T23:11:13.000Z
2020-03-30T18:50:55.000Z
sdk/tables/azure-data-tables/tests/test_table_service_properties_async.py
aiven/azure-sdk-for-python
8764dc07423beca46ed0b51212d81289d9e52c60
[ "MIT" ]
null
null
null
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import unittest import time import pytest from msrest.exceptions import ValidationError # TODO This should be an azure-core error. from devtools_testutils import ResourceGroupPreparer, StorageAccountPreparer from azure.core.exceptions import HttpResponseError from azure.data.tables._models import TableAnalyticsLogging, Metrics, RetentionPolicy, CorsRule from azure.data.tables.aio import TableServiceClient from _shared.testcase import TableTestCase from devtools_testutils import CachedResourceGroupPreparer, CachedStorageAccountPreparer # ------------------------------------------------------------------------------ class TableServicePropertiesTest(TableTestCase): # --Helpers----------------------------------------------------------------- def _assert_properties_default(self, prop): assert prop is not None self._assert_logging_equal(prop['analytics_logging'], TableAnalyticsLogging()) self._assert_metrics_equal(prop['hour_metrics'], Metrics()) self._assert_metrics_equal(prop['minute_metrics'], Metrics()) self._assert_cors_equal(prop['cors'], list()) def _assert_logging_equal(self, log1, log2): if log1 is None or log2 is None: assert log1 == log2 return assert log1.version == log2.version assert log1.read == log2.read assert log1.write == log2.write assert log1.delete == log2.delete self._assert_retention_equal(log1.retention_policy, log2.retention_policy) def _assert_delete_retention_policy_equal(self, policy1, policy2): if policy1 is None or policy2 is None: assert policy1 == policy2 return assert policy1.enabled == policy2.enabled assert policy1.days == policy2.days def _assert_static_website_equal(self, prop1, prop2): if prop1 is None or prop2 is None: assert prop1 == prop2 return assert prop1.enabled == prop2.enabled assert prop1.index_document == prop2.index_document assert prop1.error_document404_path == prop2.error_document404_path def _assert_delete_retention_policy_not_equal(self, policy1, policy2): if policy1 is None or policy2 is None: assert policy1 != policy2 return assert not (policy1.enabled == policy2.enabled and policy1.days == policy2.days) def _assert_metrics_equal(self, metrics1, metrics2): if metrics1 is None or metrics2 is None: assert metrics1 == metrics2 return assert metrics1.version == metrics2.version assert metrics1.enabled == metrics2.enabled assert metrics1.include_apis == metrics2.include_apis self._assert_retention_equal(metrics1.retention_policy, metrics2.retention_policy) def _assert_cors_equal(self, cors1, cors2): if cors1 is None or cors2 is None: assert cors1 == cors2 return assert len(cors1) == len(cors2) for i in range(0, len(cors1)): rule1 = cors1[i] rule2 = cors2[i] assert len(rule1.allowed_origins) == len(rule2.allowed_origins) assert len(rule1.allowed_methods) == len(rule2.allowed_methods) assert rule1.max_age_in_seconds == rule2.max_age_in_seconds assert len(rule1.exposed_headers) == len(rule2.exposed_headers) assert len(rule1.allowed_headers) == len(rule2.allowed_headers) def _assert_retention_equal(self, ret1, ret2): assert ret1.enabled == ret2.enabled assert ret1.days == ret2.days # --Test cases per service --------------------------------------- @CachedResourceGroupPreparer(name_prefix="tablestest") @CachedStorageAccountPreparer(name_prefix="tablestest") async def test_table_service_properties_async(self, resource_group, location, storage_account, storage_account_key): # Arrange url = self.account_url(storage_account, "table") tsc = TableServiceClient(url, storage_account_key, logging_enable=True) # Act resp = await tsc.set_service_properties( analytics_logging=TableAnalyticsLogging(), hour_metrics=Metrics(), minute_metrics=Metrics(), cors=list()) # Assert assert resp is None if self.is_live: time.sleep(30) self._assert_properties_default(await tsc.get_service_properties()) # --Test cases per feature --------------------------------------- @CachedResourceGroupPreparer(name_prefix="tablestest") @CachedStorageAccountPreparer(name_prefix="tablestest") async def test_set_logging_async(self, resource_group, location, storage_account, storage_account_key): # Arrange url = self.account_url(storage_account, "table") tsc = TableServiceClient(url, storage_account_key) logging = TableAnalyticsLogging(read=True, write=True, delete=True, retention_policy=RetentionPolicy(enabled=True, days=5)) # Act await tsc.set_service_properties(analytics_logging=logging) # Assert if self.is_live: time.sleep(30) received_props = await tsc.get_service_properties() self._assert_logging_equal(received_props['analytics_logging'], logging) @CachedResourceGroupPreparer(name_prefix="tablestest") @CachedStorageAccountPreparer(name_prefix="tablestest") async def test_set_hour_metrics_async(self, resource_group, location, storage_account, storage_account_key): # Arrange url = self.account_url(storage_account, "table") tsc = TableServiceClient(url, storage_account_key) hour_metrics = Metrics(enabled=True, include_apis=True, retention_policy=RetentionPolicy(enabled=True, days=5)) # Act await tsc.set_service_properties(hour_metrics=hour_metrics) # Assert if self.is_live: time.sleep(30) received_props = await tsc.get_service_properties() self._assert_metrics_equal(received_props['hour_metrics'], hour_metrics) @CachedResourceGroupPreparer(name_prefix="tablestest") @CachedStorageAccountPreparer(name_prefix="tablestest") async def test_set_minute_metrics_async(self, resource_group, location, storage_account, storage_account_key): # Arrange url = self.account_url(storage_account, "table") tsc = TableServiceClient(url, storage_account_key) minute_metrics = Metrics(enabled=True, include_apis=True, retention_policy=RetentionPolicy(enabled=True, days=5)) # Act await tsc.set_service_properties(minute_metrics=minute_metrics) # Assert if self.is_live: time.sleep(30) received_props = await tsc.get_service_properties() self._assert_metrics_equal(received_props['minute_metrics'], minute_metrics) @CachedResourceGroupPreparer(name_prefix="tablestest") @CachedStorageAccountPreparer(name_prefix="tablestest") async def test_set_cors_async(self, resource_group, location, storage_account, storage_account_key): # Arrange url = self.account_url(storage_account, "table") tsc = TableServiceClient(url, storage_account_key) cors_rule1 = CorsRule(['www.xyz.com'], ['GET']) allowed_origins = ['www.xyz.com', "www.ab.com", "www.bc.com"] allowed_methods = ['GET', 'PUT'] max_age_in_seconds = 500 exposed_headers = ["x-ms-meta-data*", "x-ms-meta-source*", "x-ms-meta-abc", "x-ms-meta-bcd"] allowed_headers = ["x-ms-meta-data*", "x-ms-meta-target*", "x-ms-meta-xyz", "x-ms-meta-foo"] cors_rule2 = CorsRule( allowed_origins, allowed_methods, max_age_in_seconds=max_age_in_seconds, exposed_headers=exposed_headers, allowed_headers=allowed_headers) cors = [cors_rule1, cors_rule2] # Act await tsc.set_service_properties(cors=cors) # Assert if self.is_live: time.sleep(30) received_props = await tsc.get_service_properties() self._assert_cors_equal(received_props['cors'], cors) # --Test cases for errors --------------------------------------- @CachedResourceGroupPreparer(name_prefix="tablestest") @CachedStorageAccountPreparer(name_prefix="tablestest") async def test_retention_no_days_async(self, resource_group, location, storage_account, storage_account_key): # Assert pytest.raises(ValueError, RetentionPolicy, True, None) @CachedResourceGroupPreparer(name_prefix="tablestest") @CachedStorageAccountPreparer(name_prefix="tablestest") async def test_too_many_cors_rules_async(self, resource_group, location, storage_account, storage_account_key): # Arrange tsc = TableServiceClient(self.account_url(storage_account, "table"), storage_account_key) cors = [] for i in range(0, 6): cors.append(CorsRule(['www.xyz.com'], ['GET'])) # Assert with pytest.raises(HttpResponseError): await tsc.set_service_properties(None, None, None, cors) @CachedResourceGroupPreparer(name_prefix="tablestest") @CachedStorageAccountPreparer(name_prefix="tablestest") async def test_retention_too_long_async(self, resource_group, location, storage_account, storage_account_key): # Arrange tsc = TableServiceClient(self.account_url(storage_account, "table"), storage_account_key) minute_metrics = Metrics(enabled=True, include_apis=True, retention_policy=RetentionPolicy(enabled=True, days=366)) # Assert with pytest.raises(HttpResponseError): await tsc.set_service_properties(None, None, minute_metrics) # ------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
42.892562
131
0.657129
7748fe6fda00b90f45509eabcb11c72721f25b7e
1,473
py
Python
docs/samples/pipelines/sample-tf-pipeline.py
titoeb/kfserving
b072a76842b57e904dbdf46a136474a22051500d
[ "Apache-2.0" ]
6
2022-02-15T21:54:19.000Z
2022-02-16T21:18:54.000Z
docs/samples/pipelines/sample-tf-pipeline.py
titoeb/kfserving
b072a76842b57e904dbdf46a136474a22051500d
[ "Apache-2.0" ]
7
2021-08-31T23:55:06.000Z
2022-03-02T11:34:58.000Z
docs/samples/pipelines/sample-tf-pipeline.py
titoeb/kfserving
b072a76842b57e904dbdf46a136474a22051500d
[ "Apache-2.0" ]
2
2021-12-16T10:32:07.000Z
2022-02-28T17:08:52.000Z
# Copyright 2019 kubeflow.org. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import kfp.compiler as compiler import kfp.dsl as dsl from kfp import components kfserving_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/' 'master/components/kubeflow/kfserving/component.yaml') @dsl.pipeline( name='KFServing pipeline', description='A pipeline for KFServing.' ) def kfservingPipeline( action='apply', model_name='tensorflow-sample', model_uri='gs://kfserving-samples/models/tensorflow/flowers', namespace='anonymous', framework='tensorflow'): kfserving_op(action=action, model_name=model_name, model_uri=model_uri, namespace=namespace, framework=framework) if __name__ == '__main__': compiler.Compiler().compile(kfservingPipeline, __file__ + '.tar.gz')
35.071429
105
0.692464
858f17363a1dccfde714bf60b9abbaab3e1ddc50
9,679
py
Python
lib/python2.7/site-packages/networkx/tests/test_convert.py
nishaero/wifi-userseg-ryu
1132f2c813b79eff755bdd1a9e73e7ad3980af7c
[ "Apache-2.0" ]
15
2018-04-26T08:17:18.000Z
2021-03-05T08:44:13.000Z
lib/python2.7/site-packages/networkx/tests/test_convert.py
nishaero/wifi-userseg-ryu
1132f2c813b79eff755bdd1a9e73e7ad3980af7c
[ "Apache-2.0" ]
null
null
null
lib/python2.7/site-packages/networkx/tests/test_convert.py
nishaero/wifi-userseg-ryu
1132f2c813b79eff755bdd1a9e73e7ad3980af7c
[ "Apache-2.0" ]
6
2018-04-12T15:49:27.000Z
2022-01-27T12:34:50.000Z
#!/usr/bin/env python from nose.tools import * from networkx import * from networkx.convert import * from networkx.algorithms.operators import * from networkx.generators.classic import barbell_graph,cycle_graph class TestConvert(): def edgelists_equal(self,e1,e2): return sorted(sorted(e) for e in e1)==sorted(sorted(e) for e in e2) def test_simple_graphs(self): for dest, source in [(to_dict_of_dicts, from_dict_of_dicts), (to_dict_of_lists, from_dict_of_lists)]: G=barbell_graph(10,3) dod=dest(G) # Dict of [dicts, lists] GG=source(dod) assert_equal(sorted(G.nodes()), sorted(GG.nodes())) assert_equal(sorted(G.edges()), sorted(GG.edges())) GW=to_networkx_graph(dod) assert_equal(sorted(G.nodes()), sorted(GW.nodes())) assert_equal(sorted(G.edges()), sorted(GW.edges())) GI=Graph(dod) assert_equal(sorted(G.nodes()), sorted(GI.nodes())) assert_equal(sorted(G.edges()), sorted(GI.edges())) # With nodelist keyword P4=path_graph(4) P3=path_graph(3) dod=dest(P4,nodelist=[0,1,2]) Gdod=Graph(dod) assert_equal(sorted(Gdod.nodes()), sorted(P3.nodes())) assert_equal(sorted(Gdod.edges()), sorted(P3.edges())) def test_digraphs(self): for dest, source in [(to_dict_of_dicts, from_dict_of_dicts), (to_dict_of_lists, from_dict_of_lists)]: G=cycle_graph(10) # Dict of [dicts, lists] dod=dest(G) GG=source(dod) assert_equal(sorted(G.nodes()), sorted(GG.nodes())) assert_equal(sorted(G.edges()), sorted(GG.edges())) GW=to_networkx_graph(dod) assert_equal(sorted(G.nodes()), sorted(GW.nodes())) assert_equal(sorted(G.edges()), sorted(GW.edges())) GI=Graph(dod) assert_equal(sorted(G.nodes()), sorted(GI.nodes())) assert_equal(sorted(G.edges()), sorted(GI.edges())) G=cycle_graph(10,create_using=DiGraph()) dod=dest(G) GG=source(dod, create_using=DiGraph()) assert_equal(sorted(G.nodes()), sorted(GG.nodes())) assert_equal(sorted(G.edges()), sorted(GG.edges())) GW=to_networkx_graph(dod, create_using=DiGraph()) assert_equal(sorted(G.nodes()), sorted(GW.nodes())) assert_equal(sorted(G.edges()), sorted(GW.edges())) GI=DiGraph(dod) assert_equal(sorted(G.nodes()), sorted(GI.nodes())) assert_equal(sorted(G.edges()), sorted(GI.edges())) def test_graph(self): G=cycle_graph(10) e=G.edges() source=[u for u,v in e] dest=[v for u,v in e] ex=zip(source,dest,source) G=Graph() G.add_weighted_edges_from(ex) # Dict of dicts dod=to_dict_of_dicts(G) GG=from_dict_of_dicts(dod,create_using=Graph()) assert_equal(sorted(G.nodes()), sorted(GG.nodes())) assert_equal(sorted(G.edges()), sorted(GG.edges())) GW=to_networkx_graph(dod,create_using=Graph()) assert_equal(sorted(G.nodes()), sorted(GW.nodes())) assert_equal(sorted(G.edges()), sorted(GW.edges())) GI=Graph(dod) assert_equal(sorted(G.nodes()), sorted(GI.nodes())) assert_equal(sorted(G.edges()), sorted(GI.edges())) # Dict of lists dol=to_dict_of_lists(G) GG=from_dict_of_lists(dol,create_using=Graph()) # dict of lists throws away edge data so set it to none enone=[(u,v,{}) for (u,v,d) in G.edges(data=True)] assert_equal(sorted(G.nodes()), sorted(GG.nodes())) assert_equal(enone, sorted(GG.edges(data=True))) GW=to_networkx_graph(dol,create_using=Graph()) assert_equal(sorted(G.nodes()), sorted(GW.nodes())) assert_equal(enone, sorted(GW.edges(data=True))) GI=Graph(dol) assert_equal(sorted(G.nodes()), sorted(GI.nodes())) assert_equal(enone, sorted(GI.edges(data=True))) def test_with_multiedges_self_loops(self): G=cycle_graph(10) e=G.edges() source,dest = list(zip(*e)) ex=list(zip(source,dest,source)) XG=Graph() XG.add_weighted_edges_from(ex) XGM=MultiGraph() XGM.add_weighted_edges_from(ex) XGM.add_edge(0,1,weight=2) # multiedge XGS=Graph() XGS.add_weighted_edges_from(ex) XGS.add_edge(0,0,weight=100) # self loop # Dict of dicts # with self loops, OK dod=to_dict_of_dicts(XGS) GG=from_dict_of_dicts(dod,create_using=Graph()) assert_equal(sorted(XGS.nodes()), sorted(GG.nodes())) assert_equal(sorted(XGS.edges()), sorted(GG.edges())) GW=to_networkx_graph(dod,create_using=Graph()) assert_equal(sorted(XGS.nodes()), sorted(GW.nodes())) assert_equal(sorted(XGS.edges()), sorted(GW.edges())) GI=Graph(dod) assert_equal(sorted(XGS.nodes()), sorted(GI.nodes())) assert_equal(sorted(XGS.edges()), sorted(GI.edges())) # Dict of lists # with self loops, OK dol=to_dict_of_lists(XGS) GG=from_dict_of_lists(dol,create_using=Graph()) # dict of lists throws away edge data so set it to none enone=[(u,v,{}) for (u,v,d) in XGS.edges(data=True)] assert_equal(sorted(XGS.nodes()), sorted(GG.nodes())) assert_equal(enone, sorted(GG.edges(data=True))) GW=to_networkx_graph(dol,create_using=Graph()) assert_equal(sorted(XGS.nodes()), sorted(GW.nodes())) assert_equal(enone, sorted(GW.edges(data=True))) GI=Graph(dol) assert_equal(sorted(XGS.nodes()), sorted(GI.nodes())) assert_equal(enone, sorted(GI.edges(data=True))) # Dict of dicts # with multiedges, OK dod=to_dict_of_dicts(XGM) GG=from_dict_of_dicts(dod,create_using=MultiGraph(), multigraph_input=True) assert_equal(sorted(XGM.nodes()), sorted(GG.nodes())) assert_equal(sorted(XGM.edges()), sorted(GG.edges())) GW=to_networkx_graph(dod,create_using=MultiGraph(),multigraph_input=True) assert_equal(sorted(XGM.nodes()), sorted(GW.nodes())) assert_equal(sorted(XGM.edges()), sorted(GW.edges())) GI=MultiGraph(dod) # convert can't tell whether to duplicate edges! assert_equal(sorted(XGM.nodes()), sorted(GI.nodes())) #assert_not_equal(sorted(XGM.edges()), sorted(GI.edges())) assert_false(sorted(XGM.edges()) == sorted(GI.edges())) GE=from_dict_of_dicts(dod,create_using=MultiGraph(), multigraph_input=False) assert_equal(sorted(XGM.nodes()), sorted(GE.nodes())) assert_not_equal(sorted(XGM.edges()), sorted(GE.edges())) GI=MultiGraph(XGM) assert_equal(sorted(XGM.nodes()), sorted(GI.nodes())) assert_equal(sorted(XGM.edges()), sorted(GI.edges())) GM=MultiGraph(G) assert_equal(sorted(GM.nodes()), sorted(G.nodes())) assert_equal(sorted(GM.edges()), sorted(G.edges())) # Dict of lists # with multiedges, OK, but better write as DiGraph else you'll # get double edges dol=to_dict_of_lists(G) GG=from_dict_of_lists(dol,create_using=MultiGraph()) assert_equal(sorted(G.nodes()), sorted(GG.nodes())) assert_equal(sorted(G.edges()), sorted(GG.edges())) GW=to_networkx_graph(dol,create_using=MultiGraph()) assert_equal(sorted(G.nodes()), sorted(GW.nodes())) assert_equal(sorted(G.edges()), sorted(GW.edges())) GI=MultiGraph(dol) assert_equal(sorted(G.nodes()), sorted(GI.nodes())) assert_equal(sorted(G.edges()), sorted(GI.edges())) def test_edgelists(self): P=path_graph(4) e=[(0,1),(1,2),(2,3)] G=Graph(e) assert_equal(sorted(G.nodes()), sorted(P.nodes())) assert_equal(sorted(G.edges()), sorted(P.edges())) assert_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True))) e=[(0,1,{}),(1,2,{}),(2,3,{})] G=Graph(e) assert_equal(sorted(G.nodes()), sorted(P.nodes())) assert_equal(sorted(G.edges()), sorted(P.edges())) assert_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True))) e=((n,n+1) for n in range(3)) G=Graph(e) assert_equal(sorted(G.nodes()), sorted(P.nodes())) assert_equal(sorted(G.edges()), sorted(P.edges())) assert_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True))) def test_directed_to_undirected(self): edges1 = [(0, 1), (1, 2), (2, 0)] edges2 = [(0, 1), (1, 2), (0, 2)] assert_true(self.edgelists_equal(nx.Graph(nx.DiGraph(edges1)).edges(),edges1)) assert_true(self.edgelists_equal(nx.Graph(nx.DiGraph(edges2)).edges(),edges1)) assert_true(self.edgelists_equal(nx.MultiGraph(nx.DiGraph(edges1)).edges(),edges1)) assert_true(self.edgelists_equal(nx.MultiGraph(nx.DiGraph(edges2)).edges(),edges1)) assert_true(self.edgelists_equal(nx.MultiGraph(nx.MultiDiGraph(edges1)).edges(), edges1)) assert_true(self.edgelists_equal(nx.MultiGraph(nx.MultiDiGraph(edges2)).edges(), edges1)) assert_true(self.edgelists_equal(nx.Graph(nx.MultiDiGraph(edges1)).edges(),edges1)) assert_true(self.edgelists_equal(nx.Graph(nx.MultiDiGraph(edges2)).edges(),edges1))
44.399083
91
0.605434
a8c75bdcad7859c2cd45cd6a901f3bd8d7805d26
290
py
Python
genshin_wishes/standard_wishes.py
EYH0602/Genshin_Impact_Wishes_Analyzer
ee178cd7fde995a5ca1b979f97a6b77af912a86a
[ "MIT" ]
null
null
null
genshin_wishes/standard_wishes.py
EYH0602/Genshin_Impact_Wishes_Analyzer
ee178cd7fde995a5ca1b979f97a6b77af912a86a
[ "MIT" ]
4
2021-09-08T05:38:09.000Z
2021-09-19T16:32:50.000Z
genshin_wishes/standard_wishes.py
EYH0602/Genshin_Impact_Wishes_Analyzer
ee178cd7fde995a5ca1b979f97a6b77af912a86a
[ "MIT" ]
null
null
null
from .wishes_base import WishesBase class StandardWishes(WishesBase): def init_params(self): self.params['gacha_type'] = '200' self.file_name = 'genshine_standard_wishes.csv' self.rst_file_name = 'standard_analysis.txt' self.table = 'standard_wishes'
26.363636
55
0.696552
4c76a20add8d869f56e604bc510ab00a49eeaa7b
697
py
Python
djstripe/context_managers.py
hoopit/dj-stripe
726853081cd95be86777492c23fb61de5d35a72a
[ "MIT" ]
2
2020-09-01T20:05:28.000Z
2021-07-22T08:20:42.000Z
djstripe/context_managers.py
hoopit/dj-stripe
726853081cd95be86777492c23fb61de5d35a72a
[ "MIT" ]
null
null
null
djstripe/context_managers.py
hoopit/dj-stripe
726853081cd95be86777492c23fb61de5d35a72a
[ "MIT" ]
2
2020-01-31T14:26:09.000Z
2020-07-14T04:24:15.000Z
""" dj-stripe Context Managers """ from contextlib import contextmanager from . import settings as djstripe_settings @contextmanager def stripe_temporary_api_version(version, validate=True): """ Temporarily replace the global api_version used in stripe API calls with the given value. The original value is restored as soon as context exits. """ old_version = djstripe_settings.get_stripe_api_version() try: djstripe_settings.set_stripe_api_version(version, validate=validate) yield finally: # Validation is bypassed since we're restoring a previous value. djstripe_settings.set_stripe_api_version(old_version, validate=False)
27.88
77
0.747489
bc9cf1f00b95f02e09bb27f69cd3c05c28c637b5
11,954
py
Python
stackalytics/dashboard/helpers.py
Mirantis/stackalytics
96ec7c6c630a9f2532b808069e045d434bbac200
[ "Apache-2.0" ]
3
2015-06-18T14:16:59.000Z
2021-02-10T03:41:31.000Z
stackalytics/dashboard/helpers.py
Mirantis/stackalytics
96ec7c6c630a9f2532b808069e045d434bbac200
[ "Apache-2.0" ]
2
2015-07-01T08:10:59.000Z
2017-05-22T02:19:44.000Z
stackalytics/dashboard/helpers.py
Mirantis/stackalytics
96ec7c6c630a9f2532b808069e045d434bbac200
[ "Apache-2.0" ]
4
2015-11-08T12:12:19.000Z
2019-06-17T09:44:47.000Z
# Copyright (c) 2013 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import operator import re import time import six from stackalytics.dashboard import parameters from stackalytics.dashboard import vault from stackalytics.processor import utils INFINITY_HTML = '&#x221E;' def _extend_author_fields(record): record['author_link'] = make_link( record['author_name'], '/', {'user_id': record['user_id'], 'company': ''}) record['company_link'] = make_link( record['company_name'], '/', {'company': record['company_name'], 'user_id': ''}) def _extend_record_common_fields(record): _extend_author_fields(record) record['date_str'] = format_datetime(record['date']) record['module_link'] = make_link( record['module'], '/', {'module': record['module'], 'company': '', 'user_id': ''}) record['blueprint_id_count'] = len(record.get('blueprint_id', [])) record['bug_id_count'] = len(record.get('bug_id', [])) for coauthor in record.get('coauthor') or []: _extend_author_fields(coauthor) def _extend_by_parent_info(record, parent, prefix='parent_'): parent = vault.extend_record(parent) _extend_record_common_fields(parent) for k, v in six.iteritems(parent): record[prefix + k] = v def extend_record(record): record = vault.extend_record(record) _extend_record_common_fields(record) if record['record_type'] == 'commit': record['branches'] = ','.join(record['branches']) if 'correction_comment' not in record: record['correction_comment'] = '' record['message'] = make_commit_message(record) if record['commit_date']: record['commit_date_str'] = format_datetime(record['commit_date']) elif record['record_type'] == 'mark': review = vault.get_memory_storage().get_record_by_primary_key( record['review_id']) patch = vault.get_memory_storage().get_record_by_primary_key( utils.get_patch_id(record['review_id'], record['patch'])) if not review or not patch: return None _extend_by_parent_info(record, review, 'parent_') _extend_by_parent_info(record, patch, 'patch_') elif record['record_type'] == 'patch': review = vault.get_memory_storage().get_record_by_primary_key( record['review_id']) _extend_by_parent_info(record, review, 'parent_') elif record['record_type'] == 'email': record['email_link'] = record.get('email_link') or '' record['blueprint_links'] = [] for bp_id in record.get('blueprint_id', []): bp_module, bp_name = bp_id.split(':') record['blueprint_links'].append( make_blueprint_link(bp_module, bp_name)) elif record['record_type'] in ['bpd', 'bpc']: record['summary'] = utils.format_text(record['summary']) if record.get('mention_count'): record['mention_date_str'] = format_datetime( record['mention_date']) record['blueprint_link'] = make_blueprint_link(record['module'], record['name']) elif record['record_type'] in ['bugr', 'bugf']: record['number'] = record['web_link'].split('/')[-1] record['title'] = filter_bug_title(record['title']) record['status_class'] = re.sub('\s+', '', record['status']) elif record['record_type'] == 'tr': record['date_str'] = format_date(record['date']) # no need for hours return record def get_current_company(user): now = time.time() idx = -1 for i, r in enumerate(user['companies']): if now < r['end_date']: idx = i return user['companies'][idx]['company_name'] def extend_user(user): user = user.copy() user['id'] = user['user_id'] user['text'] = user['user_name'] if user['companies']: company_name = get_current_company(user) user['company_link'] = make_link( company_name, '/', {'company': company_name, 'user_id': ''}) else: user['company_link'] = '' return user def extend_module(module_id, project_type, release): module_id_index = vault.get_vault()['module_id_index'] module_id = module_id.lower() if module_id not in module_id_index: return None repos_index = vault.get_vault()['repos_index'] module = module_id_index[module_id] name = module['module_group_name'] if name[0].islower(): name = name.capitalize() # (module, release) pairs own_sub_modules = set(vault.resolve_modules([module_id], [release])) visible_sub_modules = own_sub_modules & set(vault.resolve_modules( vault.resolve_project_types([project_type]), [release])) child_modules = [] for m, r in own_sub_modules: child = {'module_name': m, 'visible': (m, r) in visible_sub_modules} if m in repos_index: child['repo_uri'] = repos_index[m]['uri'] child_modules.append(child) child_modules.sort(key=lambda x: x['module_name']) return { 'id': module_id, 'name': name, 'tag': module['tag'], 'modules': child_modules, } def get_activity(records, start_record, page_size, query_message=None): if query_message: # note that all records are now dicts! key_func = operator.itemgetter('date') records = [vault.extend_record(r) for r in records] records = [r for r in records if (r.get('message') and r.get('message').find(query_message) > 0)] else: key_func = operator.attrgetter('date') records_sorted = sorted(records, key=key_func, reverse=True) result = [] for record in records_sorted[start_record:]: processed_record = extend_record(record) if processed_record: result.append(processed_record) if len(result) == page_size: break return result def get_contribution_summary(records): marks = dict((m, 0) for m in [-2, -1, 0, 1, 2, 'A', 'WIP', 'x', 's']) commit_count = 0 loc = 0 drafted_blueprint_count = 0 completed_blueprint_count = 0 email_count = 0 filed_bug_count = 0 resolved_bug_count = 0 patch_set_count = 0 change_request_count = 0 abandoned_change_requests_count = 0 translations = 0 for record in records: record_type = record.record_type if record_type == 'commit': commit_count += 1 loc += record.loc elif record_type == 'mark': value = 0 if record.type == 'Workflow': if record.value == 1: value = 'A' else: value = 'WIP' elif record.type == 'Code-Review': value = record.value elif record.type == 'Abandon': value = 'x' elif record.type[:5] == 'Self-': value = 's' marks[value] += 1 elif record_type == 'email': email_count += 1 elif record_type == 'bpd': drafted_blueprint_count += 1 elif record_type == 'bpc': completed_blueprint_count += 1 elif record_type == 'bugf': filed_bug_count += 1 elif record_type == 'bugr': resolved_bug_count += 1 elif record_type == 'patch': patch_set_count += 1 elif record_type == 'review': change_request_count += 1 if record.status == 'ABANDONED': abandoned_change_requests_count += 1 elif record_type == 'tr': translations += record.loc result = { 'drafted_blueprint_count': drafted_blueprint_count, 'completed_blueprint_count': completed_blueprint_count, 'commit_count': commit_count, 'email_count': email_count, 'loc': loc, 'marks': marks, 'filed_bug_count': filed_bug_count, 'resolved_bug_count': resolved_bug_count, 'patch_set_count': patch_set_count, 'change_request_count': change_request_count, 'abandoned_change_requests_count': abandoned_change_requests_count, 'translations': translations, } return result def format_datetime(timestamp): return datetime.datetime.utcfromtimestamp( timestamp).strftime('%d %b %Y %H:%M:%S') + ' UTC' def format_date(timestamp): return datetime.datetime.utcfromtimestamp(timestamp).strftime('%d %b %Y') def format_launchpad_module_link(module): return '<a href="https://launchpad.net/%s">%s</a>' % (module, module) def make_link(title, uri=None, options=None): param_names = ('release', 'project_type', 'module', 'company', 'user_id', 'metric') param_values = {} for param_name in param_names: value = parameters.get_parameter({}, param_name) if value: param_values[param_name] = ','.join(value) if options: param_values.update(options) if param_values: uri += '?' + '&'.join(['%s=%s' % (n, utils.safe_encode(v)) for n, v in six.iteritems(param_values)]) return '<a href="%(uri)s">%(title)s</a>' % {'uri': uri, 'title': title} def make_blueprint_link(module, name): uri = '/report/blueprint/' + module + '/' + name return '<a href="%(uri)s">%(title)s</a>' % {'uri': uri, 'title': name} def make_commit_message(record): s = record['message'] module = record['module'] s = utils.format_text(s) # insert links s = re.sub(re.compile('(blueprint\s+)([\w-]+)', flags=re.IGNORECASE), r'\1<a href="https://blueprints.launchpad.net/' + module + r'/+spec/\2" class="ext_link">\2</a>', s) s = re.sub(re.compile('(bug[\s#:]*)([\d]{5,7})', flags=re.IGNORECASE), r'\1<a href="https://bugs.launchpad.net/bugs/\2" ' r'class="ext_link">\2</a>', s) s = re.sub(r'\s+(I[0-9a-f]{40})', r' <a href="https://review.openstack.org/#q,\1,n,z" ' r'class="ext_link">\1</a>', s) s = utils.unwrap_text(s) return s def make_page_title(project_type_inst, release, module_inst, company, user_inst): pt_class = project_type_inst['id'] if project_type_inst.get('parent'): pt_class = project_type_inst['parent']['id'] is_openstack = pt_class == 'all' or pt_class[:9] == 'openstack' if company or user_inst: if user_inst: s = user_inst['user_name'] if company: s += ' (%s)' % company else: s = company else: if is_openstack: s = 'OpenStack community' else: s = project_type_inst['title'] + ' community' s += ' contribution' if module_inst: s += ' to %s' % module_inst['module_group_name'] if is_openstack: s += ' in' if release != 'all': if company or user_inst: s += ' OpenStack' s += ' %s release' % release.capitalize() else: s += ' all releases' else: if release != 'all': s += ' during OpenStack %s release' % release.capitalize() return s def filter_bug_title(title): return re.sub(r'^(?:Bug #\d+.+:\s+)"(.*)"', r'\1', title)
33.578652
78
0.59821
1ca6e49965d2e6e498f370ee92dec0ef087bfde1
3,000
py
Python
book_figures/chapter7/fig_PCA_rotation.py
aragilar/astroML
d3f6279eb632957662338761cb559a1dcd541fb0
[ "BSD-2-Clause" ]
3
2017-02-23T07:59:15.000Z
2021-01-16T18:49:32.000Z
book_figures/chapter7/fig_PCA_rotation.py
aragilar/astroML
d3f6279eb632957662338761cb559a1dcd541fb0
[ "BSD-2-Clause" ]
null
null
null
book_figures/chapter7/fig_PCA_rotation.py
aragilar/astroML
d3f6279eb632957662338761cb559a1dcd541fb0
[ "BSD-2-Clause" ]
1
2021-01-16T18:49:36.000Z
2021-01-16T18:49:36.000Z
""" Scematic Diagram of PCA ----------------------- Figure 7.2 A distribution of points drawn from a bivariate Gaussian and centered on the origin of x and y. PCA defines a rotation such that the new axes (x' and y') are aligned along the directions of maximal variance (the principal components) with zero covariance. This is equivalent to minimizing the square of the perpendicular distances between the points and the principal components. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from matplotlib.patches import Ellipse #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Set parameters and draw the random sample np.random.seed(42) r = 0.9 sigma1 = 0.25 sigma2 = 0.08 rotation = np.pi / 6 s = np.sin(rotation) c = np.cos(rotation) X = np.random.normal(0, [sigma1, sigma2], size=(100, 2)).T R = np.array([[c, -s], [s, c]]) X = np.dot(R, X) #------------------------------------------------------------ # Plot the diagram fig = plt.figure(figsize=(5, 5), facecolor='w') ax = plt.axes((0, 0, 1, 1), xticks=[], yticks=[], frameon=False) # draw axes ax.annotate(r'$x$', (-r, 0), (r, 0), ha='center', va='center', arrowprops=dict(arrowstyle='<->', color='k', lw=1)) ax.annotate(r'$y$', (0, -r), (0, r), ha='center', va='center', arrowprops=dict(arrowstyle='<->', color='k', lw=1)) # draw rotated axes ax.annotate(r'$x^\prime$', (-r * c, -r * s), (r * c, r * s), ha='center', va='center', arrowprops=dict(color='k', arrowstyle='<->', lw=1)) ax.annotate(r'$y^\prime$', (r * s, -r * c), (-r * s, r * c), ha='center', va='center', arrowprops=dict(color='k', arrowstyle='<->', lw=1)) # scatter points ax.scatter(X[0], X[1], s=25, lw=0, c='k', zorder=2) # draw lines vnorm = np.array([s, -c]) for v in (X.T): d = np.dot(v, vnorm) v1 = v - d * vnorm ax.plot([v[0], v1[0]], [v[1], v1[1]], '-k') # draw ellipses for sigma in (1, 2, 3): ax.add_patch(Ellipse((0, 0), 2 * sigma * sigma1, 2 * sigma * sigma2, rotation * 180. / np.pi, ec='k', fc='gray', alpha=0.2, zorder=1)) ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) plt.show()
34.090909
79
0.583
b4fd89bd03784082575be592f19792ca18d0b899
6,598
py
Python
tensorflow/python/kernel_tests/qr_op_test.py
tycho/tensorflow
27767d8e9c1325979cf32ff5b81c10df9006fd57
[ "Apache-2.0" ]
2
2020-02-18T04:08:18.000Z
2020-05-20T07:14:44.000Z
tensorflow/python/kernel_tests/qr_op_test.py
tycho/tensorflow
27767d8e9c1325979cf32ff5b81c10df9006fd57
[ "Apache-2.0" ]
1
2021-05-26T02:25:04.000Z
2021-05-26T02:25:31.000Z
tensorflow/python/kernel_tests/qr_op_test.py
tycho/tensorflow
27767d8e9c1325979cf32ff5b81c10df9006fd57
[ "Apache-2.0" ]
3
2018-10-26T19:30:26.000Z
2021-03-19T19:30:40.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.math_ops.matrix_inverse.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test def _AddTest(test_class, op_name, testcase_name, fn): test_name = "_".join(["test", op_name, testcase_name]) if hasattr(test_class, test_name): raise RuntimeError("Test %s defined more than once" % test_name) setattr(test_class, test_name, fn) class QrOpTest(test.TestCase): def testWrongDimensions(self): # The input to qr should be a tensor of at least rank 2. scalar = constant_op.constant(1.) with self.assertRaisesRegexp(ValueError, "Shape must be at least rank 2 but is rank 0"): linalg_ops.qr(scalar) vector = constant_op.constant([1., 2.]) with self.assertRaisesRegexp(ValueError, "Shape must be at least rank 2 but is rank 1"): linalg_ops.qr(vector) def testConcurrentExecutesWithoutError(self): with self.test_session(use_gpu=True) as sess: all_ops = [] for full_matrices_ in True, False: for rows_ in 4, 5: for cols_ in 4, 5: matrix1 = random_ops.random_normal([rows_, cols_], seed=42) matrix2 = random_ops.random_normal([rows_, cols_], seed=42) q1, r1 = linalg_ops.qr(matrix1, full_matrices=full_matrices_) q2, r2 = linalg_ops.qr(matrix2, full_matrices=full_matrices_) all_ops += [q1, r1, q2, r2] val = sess.run(all_ops) for i in range(8): q = 4 * i self.assertAllEqual(val[q], val[q + 2]) # q1 == q2 self.assertAllEqual(val[q + 1], val[q + 3]) # r1 == r2 def _GetQrOpTest(dtype_, shape_, full_matrices_, use_static_shape_): is_complex = dtype_ in (np.complex64, np.complex128) is_single = dtype_ in (np.float32, np.complex64) def CompareOrthogonal(self, x, y, rank): if is_single: atol = 5e-4 else: atol = 5e-14 # We only compare the first 'rank' orthogonal vectors since the # remainder form an arbitrary orthonormal basis for the # (row- or column-) null space, whose exact value depends on # implementation details. Notice that since we check that the # matrices of singular vectors are unitary elsewhere, we do # implicitly test that the trailing vectors of x and y span the # same space. x = x[..., 0:rank] y = y[..., 0:rank] # Q is only unique up to sign (complex phase factor for complex matrices), # so we normalize the sign first. sum_of_ratios = np.sum(np.divide(y, x), -2, keepdims=True) phases = np.divide(sum_of_ratios, np.abs(sum_of_ratios)) x *= phases self.assertAllClose(x, y, atol=atol) def CheckApproximation(self, a, q, r): if is_single: tol = 1e-5 else: tol = 1e-14 # Tests that a ~= q*r. a_recon = math_ops.matmul(q, r) self.assertAllClose(a_recon.eval(), a, rtol=tol, atol=tol) def CheckUnitary(self, x): # Tests that x[...,:,:]^H * x[...,:,:] is close to the identity. xx = math_ops.matmul(x, x, adjoint_a=True) identity = array_ops.matrix_band_part(array_ops.ones_like(xx), 0, 0) if is_single: tol = 1e-5 else: tol = 1e-14 self.assertAllClose(identity.eval(), xx.eval(), atol=tol) def Test(self): np.random.seed(1) x_np = np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape_)).reshape(shape_).astype(dtype_) if is_complex: x_np += 1j * np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape_)).reshape(shape_).astype(dtype_) with self.test_session(use_gpu=True) as sess: if use_static_shape_: x_tf = constant_op.constant(x_np) else: x_tf = array_ops.placeholder(dtype_) q_tf, r_tf = linalg_ops.qr(x_tf, full_matrices=full_matrices_) if use_static_shape_: q_tf_val, r_tf_val = sess.run([q_tf, r_tf]) else: q_tf_val, r_tf_val = sess.run([q_tf, r_tf], feed_dict={x_tf: x_np}) q_dims = q_tf_val.shape np_q = np.ndarray(q_dims, dtype_) np_q_reshape = np.reshape(np_q, (-1, q_dims[-2], q_dims[-1])) new_first_dim = np_q_reshape.shape[0] x_reshape = np.reshape(x_np, (-1, x_np.shape[-2], x_np.shape[-1])) for i in range(new_first_dim): if full_matrices_: np_q_reshape[i,:,:], _ = \ np.linalg.qr(x_reshape[i,:,:], mode="complete") else: np_q_reshape[i,:,:], _ = \ np.linalg.qr(x_reshape[i,:,:], mode="reduced") np_q = np.reshape(np_q_reshape, q_dims) CompareOrthogonal(self, np_q, q_tf_val, min(shape_[-2:])) CheckApproximation(self, x_np, q_tf_val, r_tf_val) CheckUnitary(self, q_tf_val) return Test if __name__ == "__main__": for dtype in np.float32, np.float64, np.complex64, np.complex128: for rows in 1, 2, 5, 10, 32, 100: for cols in 1, 2, 5, 10, 32, 100: for full_matrices in False, True: for batch_dims in [(), (3,)] + [(3, 2)] * (max(rows, cols) < 10): for use_static_shape in True, False: shape = batch_dims + (rows, cols) name = "%s_%s_full_%s_static_%s" % (dtype.__name__, "_".join(map(str, shape)), full_matrices, use_static_shape) _AddTest(QrOpTest, "Qr", name, _GetQrOpTest(dtype, shape, full_matrices, use_static_shape)) test.main()
38.360465
80
0.625947
3743cfdf1eb458fba7e04801a6e1be033e923638
4,034
py
Python
broadcast_message_producer.py
alifzl/YomKippur
2bec1384b7ba20c818678474f5089d6203bdc491
[ "MIT" ]
1
2021-11-16T09:41:02.000Z
2021-11-16T09:41:02.000Z
broadcast_message_producer.py
atknin/YomKippur
2bec1384b7ba20c818678474f5089d6203bdc491
[ "MIT" ]
null
null
null
broadcast_message_producer.py
atknin/YomKippur
2bec1384b7ba20c818678474f5089d6203bdc491
[ "MIT" ]
1
2020-05-25T09:51:47.000Z
2020-05-25T09:51:47.000Z
import requests import json from configs.readconfig import configp import logging import pika import uuid import unittest from appium import webdriver from time import sleep from selenium.common.exceptions import NoSuchElementException import sys, logging, json, re, os from workers.whatsapp_broadcast_message_worker import WhatsAppBroadcastMessage,BroadcastParametrizedTestCase class Rabbit: def __init__(self): rhost = configp.get('rabbitmq', 'ip') username = configp.get('rabbitmq', 'username') password = configp.get('rabbitmq', 'password') credentials = pika.PlainCredentials(username, password) parameters = pika.ConnectionParameters(rhost,5672,'/',credentials) self.connection = pika.BlockingConnection(parameters) self.channel = self.connection.channel() result = self.channel.queue_declare(exclusive=True) self.callback_queue = result.method.queue def broadcastmsgproducer(self,queuename,message, emulatername, action): # Get the service resource try: routingkey = queuename+".*" exchange = queuename+".exchange" self.response = None self.corr_id = str(uuid.uuid4()) res = self.channel.basic_publish(exchange=exchange, routing_key=routingkey, body=message,properties = pika.BasicProperties(reply_to = self.callback_queue, correlation_id = self.corr_id,headers={'emulator_name':emulatername, 'action': action})) if res: self.connection.close() return self.corr_id else: self.connection.close() return False except Exception as e: print e return False def msgworker(self, queuename): while 1: self.channel.basic_consume(self.callback, queue=queuename, no_ack=True) print "Waiting For Messages" self.channel.start_consuming() def callback(self,ch, method, properties, body): print body print properties if properties.headers['action'] == 'send_only': print type(body) body = eval(body) print body #body = json.loads(body) emulator_name = body['emulator_name'] mobile_number_list = body['mobile_number_list'] message_body = body['message_body'] print message_body try: print "entered" #obj = WhatsAppBroadcastMessage().var_setup(emulator_name,mobile_number_list,message_body) suite = unittest.TestSuite() suite.addTest(BroadcastParametrizedTestCase.parametrize(WhatsAppBroadcastMessage, emulator_name=emulator_name,mobile_number_list=mobile_number_list,message_body=message_body)) #suite.addTest(BroadcastParametrizedTestCase.parametrize(TestOne, param=13)) result = unittest.TextTestRunner(verbosity=2).run(suite) # unittest.TextTestRunner().run(suite) print "de-entetred" except Exception as e: print e elif properties.headers['action'] == 'create_and_send': print "Not handled" else: print "default handle" print(" [x] Received %r" % body) def main(self): global LOGGER FORMAT = '%(levelname)s: %(asctime)-15s: %(filename)s: %(funcName)s: %(module)s: %(message)s' logging.basicConfig(filename="/var/log/whatsapp_single_worker.log", level=logging.DEBUG, format=FORMAT) LOGGER = logging.getLogger("Broadcastworker") broadcast_message_queue_name = configp.get('queue_name', 'broadcast_message') try: self.msgworker(broadcast_message_queue_name) except Exception as e: LOGGER.error(e) if __name__ == '__main__': rabbitInstance = Rabbit() rabbitInstance.main()
36.342342
191
0.630392
f7ff04a0d14c05d62eebf33a07be72d3158395ce
2,012
py
Python
tests/testKuhn.py
1696012928/RoomAI
37be09590489ab5f7c85083173e83ea31c40b76c
[ "MIT" ]
1
2018-03-02T00:49:31.000Z
2018-03-02T00:49:31.000Z
tests/testKuhn.py
1696012928/RoomAI
37be09590489ab5f7c85083173e83ea31c40b76c
[ "MIT" ]
null
null
null
tests/testKuhn.py
1696012928/RoomAI
37be09590489ab5f7c85083173e83ea31c40b76c
[ "MIT" ]
null
null
null
import unittest import roomai.kuhn import roomai.common class KuhnTester(unittest.TestCase): """ """ def testKuhn(self): """ """ for i in range(1000): players = [roomai.kuhn.Example_KuhnPokerAlwaysBetPlayer() for i in range(2)] + [roomai.kuhn.KuhnPokerChancePlayer()] env = roomai.kuhn.KuhnPokerEnv() infos,public_state,_,_ = env.init() for i in range(len(players)): players[i].receive_info(infos[i]) while public_state.is_terminal == False: turn = infos[-1].public_state.turn action = players[turn].take_action() infos,public_state,_,_ = env.forward(action) for i in range(len(players)): players[i].receive_info(infos[i]) print (env.public_state.scores) def testKuhnEnvBackward(self): env = roomai.kuhn.KuhnPokerEnv() env.init({"backward_enable":True}) env.forward(roomai.kuhn.KuhnPokerActionChance.lookup("0,2")) action = roomai.kuhn.KuhnPokerAction("bet") infos, public_state, person_states, private_state = env.forward(action) print (public_state.action_history,person_states[public_state.turn].id) assert(len(public_state.action_history) == 2) infos, public_state, person_states, private_state = env.forward(roomai.kuhn.KuhnPokerAction("bet")) print (public_state.action_history,person_states[public_state.turn].id) assert(len(public_state.action_history) == 3) infos, public_state, person_states, private_state = env.backward() print (public_state.action_history,person_states[public_state.turn].id) assert(len(public_state.action_history) == 2) def testCompete(self): players = [roomai.kuhn.Example_KuhnPokerAlwaysBetPlayer() for i in range(2)] env = roomai.kuhn.KuhnPokerEnv() env.compete(env, players + [roomai.common.RandomPlayerChance()])
36.581818
128
0.644135
7e8f9a9a0306c6f4cda3607aa0d6c0e0e9199755
2,856
py
Python
packages/lektor_python_colombia_plugin/lektor_python_colombia_plugin.py
sorelyss/sitio-web
5c279f7daa3e1270285b7ae947ad4b6a962de014
[ "MIT" ]
9
2018-08-09T17:55:18.000Z
2021-12-26T20:06:03.000Z
packages/lektor_python_colombia_plugin/lektor_python_colombia_plugin.py
sorelyss/sitio-web
5c279f7daa3e1270285b7ae947ad4b6a962de014
[ "MIT" ]
110
2018-02-23T01:18:33.000Z
2021-04-02T15:50:12.000Z
packages/lektor_python_colombia_plugin/lektor_python_colombia_plugin.py
sorelyss/sitio-web
5c279f7daa3e1270285b7ae947ad4b6a962de014
[ "MIT" ]
34
2017-10-30T17:27:46.000Z
2021-10-12T23:49:23.000Z
# -*- coding: utf-8 -*- """Custom plugin to add extra functionality to the Python Colombia site.""" # Standard library imports from collections import OrderedDict import os import sys # Third party imports from PIL import Image as ImagePIL from jinja2 import Undefined # Local imports from lektor.db import Image from lektor.pluginsystem import Plugin from lektor.project import Project from lektor.reporter import reporter from lektor.utils import portable_popen PY3 = sys.version_info[0] == 3 PROJECT = Project.discover() ROOT_PATH = os.path.abspath(os.path.dirname(PROJECT.project_path)) CONTENT_PATH = os.path.join(ROOT_PATH, 'content') class PythonColombiaPlugin(Plugin): name = 'Python Colombia Custom Lektor Plugin' description = 'This is a custom local plugin to add extra functionality.' def on_after_build(self, builder, build_state, source, prog): if isinstance(source, Image) and source.parent['_model'] == 'user': w, h = source.width, source.height fpath = CONTENT_PATH + source.path if isinstance(w, Undefined): with ImagePIL.open(fpath) as img: w, h = img.size if w != 400 and (h != 200 or h != 400): if fpath.endswith(source.parent['image']): print('Size should be 400x400. Current size is {}x{} ({})'.format(w, h, source.path)) elif fpath.endswith(source.parent['image_alt']): print('Size should be 400x200. Current size is {}x{} ({})'.format(w, h, source.path)) if source.parent['type'] == 'persona' and not fpath.lower().endswith(('.jpg', '.jpeg')): print('User images should be of type .jpg ({})'.format(source.path)) if fpath.lower().endswith('.jpeg'): print('File extension should be .jpg ({})'.format(source.path)) def on_after_build_all(self, *args, **kwargs): def run_map_generation_script(): """Run the map generation script located at `/scripts/map.py`.""" scripts_root = os.path.join(self.env.root_path, 'scripts') args = [sys.executable, os.path.join(scripts_root, 'map.py')] portable_popen(args, cwd=scripts_root).communicate() run_map_generation_script() # reporter.report_build_all_failure(10) def on_setup_env(self, **extra): def estimate_reading_time(content): """Estimate reading time in minutes for content.""" words = content.split(' ') time = len(words)/200.0 # Average word reading speed for adults return int(round(time, 0)) self.env.jinja_env.globals.update(dir=dir) self.env.jinja_env.globals.update(OrderedDict=OrderedDict) self.env.jinja_env.globals.update(estimate_reading_time=estimate_reading_time)
39.123288
105
0.647409
5b2b796ab665612c7e31992ad809e61f9fcc99c8
697
py
Python
opensanctions/helpers/__init__.py
quantumchips/opensanctions
56f19dcfea704480e56a311d2a807c8446237457
[ "MIT" ]
null
null
null
opensanctions/helpers/__init__.py
quantumchips/opensanctions
56f19dcfea704480e56a311d2a807c8446237457
[ "MIT" ]
19
2021-12-01T12:04:03.000Z
2022-03-01T12:03:40.000Z
opensanctions/helpers/__init__.py
quantumchips/opensanctions
56f19dcfea704480e56a311d2a807c8446237457
[ "MIT" ]
null
null
null
from opensanctions.helpers.gender import clean_gender from opensanctions.helpers.emails import clean_emails from opensanctions.helpers.phones import clean_phones from opensanctions.helpers.addresses import make_address, apply_address from opensanctions.helpers.sanctions import make_sanction from opensanctions.helpers.features import apply_feature from opensanctions.helpers.dates import extract_years, parse_date from opensanctions.helpers.excel import convert_excel_cell __all__ = [ "clean_gender", "clean_emails", "clean_phones", "make_address", "apply_address", "make_sanction", "extract_years", "parse_date", "apply_feature", "convert_excel_cell", ]
31.681818
71
0.799139