hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
c06e23ed799b3c26013ae87b60031567becb3c33
15,687
py
Python
app.py
G-Radhika/BooksCatalogApp
595a84b55086e4ee05c2b3b1107fa8d3506ca965
[ "MIT" ]
null
null
null
app.py
G-Radhika/BooksCatalogApp
595a84b55086e4ee05c2b3b1107fa8d3506ca965
[ "MIT" ]
null
null
null
app.py
G-Radhika/BooksCatalogApp
595a84b55086e4ee05c2b3b1107fa8d3506ca965
[ "MIT" ]
null
null
null
from flask import Flask, render_template, request, redirect from flask import jsonify, url_for, flash, session as login_session from sqlalchemy import create_engine, asc from sqlalchemy.orm import sessionmaker from database_setup import Base, BookSeries, IndividualBook, User import random import string # imports for oauth2client from oauth2client.client import flow_from_clientsecrets from oauth2client.client import FlowExchangeError import httplib2 import json from flask import make_response import requests app = Flask(__name__) CLIENT_ID = json.loads( open('client_secrets.json', 'r').read())['web']['client_id'] APPLICATION_NAME = "Books Catalog Application" # Connect to Database and create database session engine = create_engine('sqlite:///bookseries_User.db') Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() @app.route('/login') def showLogin(): '''Create anti-forgery state token''' state = ''.join(random.choice(string.ascii_uppercase + string.digits) for x in xrange(32)) login_session['state'] = state # return "The current session state is %s" % login_session['state'] return render_template('login.html', STATE=state) @app.route('/gconnect', methods=['POST']) def gconnect(): '''Gathers data from Google Sign In API and places it inside a session variable.''' # Validate state token if request.args.get('state') != login_session['state']: response = make_response(json.dumps('Invalid state parameter.'), 401) response.headers['Content-Type'] = 'application/json' return response # Obtain authorization code code = request.data code = request.data.decode('utf-8') try: # Upgrade the authorization code into a credentials object oauth_flow = flow_from_clientsecrets('client_secrets.json', scope='') oauth_flow.redirect_uri = 'postmessage' credentials = oauth_flow.step2_exchange(code) except FlowExchangeError: response = make_response( json.dumps('Failed to upgrade the authorization code.'), 401) response.headers['Content-Type'] = 'application/json' return response # Check that the access token is valid. access_token = credentials.access_token url = ('https://www.googleapis.com/oauth2/v1/tokeninfo?access_token=%s' % access_token) h = httplib2.Http() result = json.loads(h.request(url, 'GET')[1]) # If there was an error in the access token info, abort. if result.get('error') is not None: response = make_response(json.dumps(result.get('error')), 500) response.headers['Content-Type'] = 'application/json' return response # Verify that the access token is used for the intended user. gplus_id = credentials.id_token['sub'] if result['user_id'] != gplus_id: response = make_response( json.dumps("Token's user ID doesn't match given user ID."), 401) response.headers['Content-Type'] = 'application/json' return response # Verify that the access token is valid for this app. if result['issued_to'] != CLIENT_ID: response = make_response( json.dumps("Token's client ID does not match app's."), 401) # print "Token's client ID does not match app's." response.headers['Content-Type'] = 'application/json' return response stored_access_token = login_session.get('access_token') stored_gplus_id = login_session.get('gplus_id') if stored_access_token is not None and gplus_id == stored_gplus_id: response = make_response(json.dumps('Current user is already connected.'),200) response.headers['Content-Type'] = 'application/json' return response # Store the access token in the session for later use. login_session['access_token'] = credentials.access_token login_session['gplus_id'] = gplus_id # Get user info userinfo_url = "https://www.googleapis.com/oauth2/v1/userinfo" params = {'access_token': credentials.access_token, 'alt': 'json'} answer = requests.get(userinfo_url, params=params) data = answer.json() login_session['username'] = data['name'] login_session['picture'] = data['picture'] login_session['email'] = data['email'] # Check if user exists user_id = getUserID(login_session['email']) if not user_id: user_id = createUser(login_session) login_session['user_id'] = user_id output = '' output += '<h1>Welcome, ' output += login_session['username'] output += '!</h1>' output += '<img src="' output += login_session['picture'] output += ' " style = "width: 300px; height: 300px;border-radius: 150px;-webkit-border-radius: 150px;-moz-border-radius: 150px;"> ' flash("you are now logged in as %s" % login_session['username']) #print "done!" return output # User Helper Functions def createUser(login_session): newUser = User(name=login_session['username'], email=login_session['email'], picture=login_session['picture']) session.add(newUser) session.commit() user = session.query(User).filter_by(email=login_session['email']).one_or_none() return user.id def getUserInfo(user_id): user = session.query(User).filter_by(id=user_id).one_or_none() return user def getUserID(email): try: user = session.query(User).filter_by(email=email).one_or_none() return user.id except: return None @app.route('/gdisconnect') def gdisconnect(): '''DISCONNECT - Revoke a current user's token and reset their login_session''' access_token = login_session['access_token'] # print 'In gdisconnect access token is %s', access_token # print 'User name is: ' # print login_session['username'] if access_token is None: # print 'Access Token is None' response = make_response(json.dumps('Current user not connected.'), 401) response.headers['Content-Type'] = 'application/json' return response url = 'https://accounts.google.com/o/oauth2/revoke?token=%s' % login_session['access_token'] h = httplib2.Http() result = h.request(url, 'GET')[0] #print 'result is ' #print result if result['status'] == '200': del login_session['access_token'] del login_session['gplus_id'] del login_session['username'] del login_session['email'] del login_session['picture'] response = make_response(json.dumps('Successfully disconnected.'), 200) response.headers['Content-Type'] = 'application/json' return response else: response = make_response(json.dumps ('Failed to revoke token for given user.', 400)) response.headers['Content-Type'] = 'application/json' return response # jsonify data @app.route('/bookseries/<int:bookseries_id>/book/JSON') def IndividualBookJSON(bookseries_id): bookseries = session.query(BookSeries).filter_by(id=bookseries_id).one_or_none() items = session.query(IndividualBook).filter_by( bookseries_id=bookseries_id).all() return jsonify(IndividualBook=[i.serialize for i in items]) @app.route('/bookseries/<int:bookseries_id>/book/<int:book_id>/JSON') def bookItemJSON(bookseries_id, book_id): Book_Item = session.query(IndividualBook).filter_by(id=book_id).one_or_none() return jsonify(Book_Item=Book_Item.serialize) @app.route('/bookseries/JSON') def bookseriesJSON(): bookseries = session.query(BookSeries).all() return jsonify(bookseries=[i.serialize for i in bookseries]) @app.route('/') @app.route('/booksCatalog') def home(): return render_template('booksCatalog.html') @app.route('/about') def about(): return render_template('about.html') @app.route('/bookseries') def showBookSeries(): '''Show titles of book series.''' bookseries = session.query(BookSeries).all() if 'username' not in login_session: return render_template('public_bookSeries.html', bookseries=bookseries) else: return render_template('bookSeries.html', bookseries=bookseries) @app.route('/bookseries/new/', methods=['GET', 'POST']) def bookSeries_new(): '''ADD NEW BOOK Series''' if 'username' not in login_session: return redirect('/login') if request.method == 'POST': newBookSeries = BookSeries(name=request.form['name'], user_id=login_session['user_id']) session.add(newBookSeries) flash('New Book Series %s Successfully Created' % newBookSeries.name) session.commit() return redirect(url_for('showBookSeries')) else: return render_template('bookSeries_new.html') # EDIT BOOK SERIES, if you change your mind click # cancle and land on the Book Series Page @app.route('/bookseries/<int:bookseries_id>/edit/', methods=['GET', 'POST']) def bookSeries_edit(bookseries_id): editedBookSeries = session.query(BookSeries).filter_by(id=bookseries_id).one_or_none() if 'username' not in login_session: return redirect('/login') if editedBookSeries.user_id != login_session['user_id']: return "<script>function myFunction() {alert('You are not authorized to EDIT this BOOK SERIES. Please create your own LOGIN in order to EDIT.');}</script><body onload='myFunction()''>" if request.method == 'POST': if request.form['name']: editedBookSeries.name = request.form['name'] flash('Book Series Successfully Edited %s' % editedBookSeries.name) return redirect(url_for('showBookSeries')) else: return render_template('bookSeries_edit.html', bookseries=editedBookSeries) # DELETE Book Series, if you change your mind click cancle and land # on the Book Series Page @app.route('/bookseries/<int:bookseries_id>/delete/', methods=['GET', 'POST']) def bookSeries_delete(bookseries_id): bookSeriesToDelete = session.query(BookSeries).filter_by(id=bookseries_id).one_or_none() if 'username' not in login_session: return redirect('/login') if bookSeriesToDelete.user_id != login_session['user_id']: return "<script>function myFunction() {alert('You are not authorized to DELETE this BOOK SERIES. Please create your own LOGIN in order to DELETE.');}</script><body onload='myFunction()''>" if request.method == 'POST': session.delete(bookSeriesToDelete) session.commit() flash('Book Series Successfully DELETED %s' % bookSeriesToDelete.name) return redirect(url_for('showBookSeries', bookseries_id=bookseries_id)) else: return render_template('bookSeries_delete.html', bookseries=bookSeriesToDelete) # Show the indivual books in the bookseries. # This page has the NEW/Edit/Delete functionality @app.route('/bookseries/<int:bookseries_id>/') @app.route('/bookseries/<int:bookseries_id>/book') def showBookList(bookseries_id): bookseries = session.query(BookSeries).filter_by(id=bookseries_id).one() creator = getUserInfo(bookseries.user_id) items = session.query(IndividualBook).filter_by(bookseries_id=bookseries_id).all() if 'username' not in login_session or creator.id != login_session['user_id']: return render_template('public_bookList.html', items=items, bookseries=bookseries, creator=creator) else: return render_template('bookList.html', items=items, bookseries=bookseries, creator=creator) ## http://localhost:5000/bookseries/11/book/new/ ## "POST /bookseries/new/?bookseries_id= HTTP/1.1" 302 - ## Bad Request:The browser (or proxy) sent a request that this server could not understand. @app.route('/bookseries/<int:bookseries_id>/book/new/', methods=['GET', 'POST']) def bookList_new(bookseries_id): if 'username' not in login_session: return redirect('/login') bookseries = session.query(BookSeries).filter_by(id=bookseries_id).one() if request.method == 'POST': newBook = IndividualBook(name=request.form.get('name'), author=request.form.get('author'), language=request.form.get('language'), year= request.form.get('year'), genre=request.form.get('genre'), description=request.form.get('description'), review=request.form.get('review'), bookseries_id=bookseries_id, user_id=bookseries.user_id) session.add(newBook) session.commit() flash('New Book %s Item Successfully Created' % (newBook.name)) return redirect(url_for('showBookList', bookseries_id=bookseries_id)) else: return render_template('bookList_new.html', bookseries_id=bookseries_id) @app.route('/bookseries/<int:bookseries_id>/book/<int:book_id>/edit',methods=['GET', 'POST']) def bookList_edit(bookseries_id, book_id): if 'username' not in login_session: return redirect('/login') bookList_edited = session.query(IndividualBook).filter_by(id=book_id).one_or_none() bookseries = session.query(BookSeries).filter_by(id=bookseries_id).one_or_none() if login_session['user_id'] != bookseries.user_id: return "<script>function myFunction() {alert('You are not authorized to edit BOOK in this series. Please create your own BookSeries in order to edit items.');}</script><body onload='myFunction()''>" if request.method == 'POST': if request.form['name']: bookList_edited.name = request.form['name'] if request.form['author']: bookList_edited.author = request.form['author'] if request.form['language']: bookList_edited.language = request.form['language'] if request.form['discription']: bookList_edited.discription = request.form['discription'] session.add(bookList_edited) session.commit() flash('Book Successfully Edited') return redirect(url_for('showBookList', bookseries_id=bookseries_id)) else: return render_template('bookList_edit.html',bookseries_id=bookseries_id, item=bookList_edit) # Delete BOOK @app.route('/bookseries/<int:bookseries_id>/book/<int:book_id>/delete',methods=['GET', 'POST']) def bookList_delete(bookseries_id, book_id): if 'username' not in login_session: return redirect('/login') bookseries = session.query(BookSeries).filter_by(id=bookseries_id).one_or_none() bookToDelete = session.query(IndividualBook).filter_by(id=book_id).one_or_none() if login_session['user_id'] != bookseries.user_id: return "<script>function myFunction() {alert('You are not authorized to delete books. Please create your own Book Series in order to so.');}</script><body onload='myFunction()''>" if request.method == 'POST': session.delete(bookToDelete) session.commit() flash('Book Successful Deleted') return redirect(url_for('showBookList', bookseries_id=bookseries_id)) else: return render_template('bookList_delete.html', item=bookToDelete) '''Add new user sign up!''' @app.route('/register') def register(): return render_template('register.html') if __name__ == '__main__': app.secret_key = 'super_SECRET_key' app.debug = True app.run(host='0.0.0.0', port=5000)
42.860656
207
0.671894
f92f2efed4ddc52b04e5f912d2d90c9dd2642839
10,135
py
Python
func/train_eval_ops.py
gongda0e/AVT
d6a7032b86416e852c76cc04a20ccabe34f111dc
[ "Apache-2.0" ]
102
2021-09-24T03:49:34.000Z
2022-03-29T19:55:50.000Z
func/train_eval_ops.py
gongda0e/AVT
d6a7032b86416e852c76cc04a20ccabe34f111dc
[ "Apache-2.0" ]
32
2021-10-02T04:31:39.000Z
2022-03-16T05:46:30.000Z
func/train_eval_ops.py
gongda0e/AVT
d6a7032b86416e852c76cc04a20ccabe34f111dc
[ "Apache-2.0" ]
19
2021-09-25T01:57:37.000Z
2022-03-15T07:02:37.000Z
# Copyright (c) Facebook, Inc. and its affiliates. """ Modular implementation of the basic train ops """ from typing import Dict, Union, Tuple import torch import torch.nn as nn import hydra from hydra.types import TargetConf from common import utils from datasets.base_video_dataset import FUTURE_PREFIX from models.base_model import PAST_LOGITS_PREFIX from loss_fn.multidim_xentropy import MultiDimCrossEntropy class NoLossAccuracy(nn.Module): def __init__(self, *args, **kwargs): super().__init__() def forward(self, *args, **kwargs): return {}, {} class BasicLossAccuracy(nn.Module): def __init__(self, dataset, device, balance_classes=False): super().__init__() kwargs = {'ignore_index': -1} if balance_classes: assert dataset.class_balanced_sampling is False, ( 'Do not re-weight the losses, and do balanced sampling') weight = torch.zeros((len(dataset.classes, )), device=device, dtype=torch.float) for cls_id, count in dataset.classes_counts.items(): weight[cls_id] = count weight = weight / torch.sum(weight) # To get ratios for non -1 cls weight = 1 / (weight + 0.00001) kwargs['weight'] = weight kwargs['reduction'] = 'none' # to get batch level output self.cls_criterion = MultiDimCrossEntropy(**kwargs) def forward(self, outputs, target, target_subclips): """ Args: outputs['logits'] torch.Tensor (B, num_classes) or (B, T, num_classes) Latter in case of dense prediction target: {type: (B) or (B, T')}; latter in case of dense prediction target_subclips: {type: (B, #clips, T)}: The target for each input frame """ losses = {} accuracies = {} for tgt_type, tgt_val in target.items(): logits = outputs[f'logits/{tgt_type}'] assert logits.ndim == tgt_val.ndim + 1 loss = self.cls_criterion(logits, tgt_val) dataset_max_classes = logits.size(-1) acc1, acc5 = utils.accuracy(logits, tgt_val, topk=(1, min(5, dataset_max_classes))) # Don't use / in loss since I use the config to set weights, and # can't use / there. losses[f'cls_{tgt_type}'] = loss accuracies[f'acc1/{tgt_type}'] = acc1 accuracies[f'acc5/{tgt_type}'] = acc5 # Incur past losses past_logits_key = f'{PAST_LOGITS_PREFIX}logits/{tgt_type}' # If this key exists, means we asked for classifier on the last # layer, so the loss should be incurred. if past_logits_key in outputs and target_subclips is not None: past_logits = outputs[past_logits_key] # Take mode over the frames to get the subclip level loss past_target = torch.mode(target_subclips[tgt_type], -1)[0] assert past_logits.shape[:-1] == past_target.shape, ( f'The subclips should be set such that the past logits ' f'and past targets match in shape. Currently they are ' f'{past_logits.shape} and {past_target.shape}') losses[f'past_cls_{tgt_type}'] = self.cls_criterion( past_logits, past_target) # Else likely not using subclips, so no way to do this loss return losses, accuracies class Basic: def __init__(self, model, device, dataset, cls_loss_acc_fn: TargetConf, reg_criterion: TargetConf = None): super().__init__() self.model = model self.device = device self.cls_loss_acc_fn = hydra.utils.instantiate(cls_loss_acc_fn, dataset, device) del reg_criterion # not used here def _basic_preproc(self, data, train_mode): if not isinstance(data, dict): video, target = data # Make a dict so that later code can use it data = {} data['video'] = video data['target'] = target data['idx'] = -torch.ones_like(target) if train_mode: self.model.train() else: self.model.eval() return data def __call__( self, data: Union[Dict[str, torch.Tensor], # If dict Tuple[torch.Tensor, torch.Tensor]], # vid, target train_mode: bool = True): """ Args: data (dict): Dictionary of all the data from the data loader """ data = self._basic_preproc(data, train_mode) video = data['video'].to(self.device, non_blocking=True) target = {} target_subclips = {} for key in data['target'].keys(): target[key] = data['target'][key].to(self.device, non_blocking=True) outputs, aux_losses = self.model(video, target_shape=next( iter(target.values())).shape) if 'target_subclips' in data: for key in data['target_subclips'].keys(): target_subclips[key] = data['target_subclips'][key].to( self.device, non_blocking=True) else: target_subclips = None losses, accuracies = self.cls_loss_acc_fn(outputs, target, target_subclips) losses.update(aux_losses) return data, outputs, losses, accuracies class PredFutureFeat(Basic): def __init__(self, *args, reg_criterion: TargetConf = None, future_target: str = 'temp_agg_projected', incur_loss_style: str = 'separately', combine_future_losses: TargetConf = {'_target_': 'torch.min'}, cumulative_future: bool = False, **kwargs): ''' Args: incur_loss_style (str): Defines how to incur losses for multiple futures. Could do 'separately', and then combine using `combine_future_losses`. Or 'together', such as for MIL-NCE. ''' super().__init__(*args, **kwargs) self.reg_criterion = hydra.utils.instantiate(reg_criterion) self.future_target = future_target self.incur_loss_style = incur_loss_style self.combine_future_losses = combine_future_losses self.cumulative_future = cumulative_future def __call__( self, data: Union[Dict[str, torch.Tensor], # If dict Tuple[torch.Tensor, torch.Tensor]], # vid, target train_mode: bool = True): data = self._basic_preproc(data, train_mode) video = data['video'].to(self.device, non_blocking=True) target = { key: val.to(self.device, non_blocking=True) for key, val in data['target'].items() } batch_size = video.size(0) if train_mode: # At test time, I don't sample the extra future video, since # that is only used during training all_videos = [video] nfutures = len( [key for key in data.keys() if key.startswith(FUTURE_PREFIX)]) for i in range(nfutures): future_vid = data[f'{FUTURE_PREFIX}_{i}_video'].to( self.device, non_blocking=True) all_videos.append(future_vid) video = torch.cat(all_videos, dim=0) # Add to batch dim outputs_full, aux_losses = self.model(video) # Just the actual video for outputs outputs = {key: val[:batch_size] for key, val in outputs_full.items()} # if self.cls_loss_wt != 0: # Doing this makes some layers not have gradients and it gives errors, # so just leaving it here for now. The gradient should be 0 anyway losses, accuracies = self.cls_loss_acc_fn(outputs, target) losses.update(aux_losses) losses['cls'] = losses['cls'] if train_mode: # Incur the regression losses, for each of the futures reg_losses = [] if self.incur_loss_style == 'separately': for i in range(nfutures): future_feats = outputs_full[self.future_target][ (i + 1) * batch_size:(i + 2) * batch_size] if self.cumulative_future: future_feats = torch.cumsum(future_feats, 0) # Divide by the position to get mean of features until then future_feats = future_feats / (torch.range( 1, future_feats.size(0), device=future_feats.device, dtype=future_feats.dtype).unsqueeze(1)) loss = self.reg_criterion(outputs['future_projected'], future_feats) reg_losses.append(loss) final_reg_loss = hydra.utils.call(self.combine_future_losses, torch.stack(reg_losses)) elif self.incur_loss_style == 'together': future_feats = outputs_full[self.future_target][batch_size:] future_feats = future_feats.reshape( (-1, batch_size, future_feats.size(-1))).transpose(0, 1) final_reg_loss = self.reg_criterion( outputs['future_projected'], future_feats) else: raise NotImplementedError(self.incur_loss_style) losses['reg'] = final_reg_loss return data, outputs, losses, accuracies
43.685345
83
0.551554
9f6dc01827aeac22b6a3b84669a4595bb6cb8a35
17,135
py
Python
src/python/joint_state_publisher.py
quan-dao/ECN-MANIP
4b455cb5e0db06d9e24b1a70dd7289a68f29067f
[ "MIT" ]
null
null
null
src/python/joint_state_publisher.py
quan-dao/ECN-MANIP
4b455cb5e0db06d9e24b1a70dd7289a68f29067f
[ "MIT" ]
null
null
null
src/python/joint_state_publisher.py
quan-dao/ECN-MANIP
4b455cb5e0db06d9e24b1a70dd7289a68f29067f
[ "MIT" ]
3
2018-11-08T13:32:15.000Z
2021-09-13T23:33:37.000Z
#!/usr/bin/env python import rospy import random from python_qt_binding.QtCore import pyqtSlot from python_qt_binding.QtCore import Qt from python_qt_binding.QtCore import Signal from python_qt_binding.QtGui import QFont from python_qt_binding.QtWidgets import QApplication from python_qt_binding.QtWidgets import QHBoxLayout from python_qt_binding.QtWidgets import QLabel from python_qt_binding.QtWidgets import QLineEdit from python_qt_binding.QtWidgets import QPushButton from python_qt_binding.QtWidgets import QSlider from python_qt_binding.QtWidgets import QVBoxLayout from python_qt_binding.QtWidgets import QGridLayout from python_qt_binding.QtWidgets import QScrollArea from python_qt_binding.QtWidgets import QSpinBox from python_qt_binding.QtWidgets import QWidget import xml.dom.minidom from sensor_msgs.msg import JointState from math import pi from threading import Thread import sys import signal import math RANGE = 10000 def get_param(name, value=None): private = "~%s" % name if rospy.has_param(private): return rospy.get_param(private) elif rospy.has_param(name): return rospy.get_param(name) else: return value class JointStatePublisher(): def init_collada(self, robot): robot = robot.getElementsByTagName('kinematics_model')[0].getElementsByTagName('technique_common')[0] for child in robot.childNodes: if child.nodeType is child.TEXT_NODE: continue if child.localName == 'joint': name = child.getAttribute('name') if child.getElementsByTagName('revolute'): joint = child.getElementsByTagName('revolute')[0] else: rospy.logwarn("Unknown joint type %s", child) continue if joint: limit = joint.getElementsByTagName('limits')[0] minval = float(limit.getElementsByTagName('min')[0].childNodes[0].nodeValue) maxval = float(limit.getElementsByTagName('max')[0].childNodes[0].nodeValue) if minval == maxval: # this is fixed joint continue self.joint_list.append(name) joint = {'min':minval*pi/180.0, 'max':maxval*pi/180.0, 'zero':0, 'position':0, 'velocity':0, 'effort':0} self.free_joints[name] = joint def init_urdf(self, robot): robot = robot.getElementsByTagName('robot')[0] # Find all non-fixed joints for child in robot.childNodes: if child.nodeType is child.TEXT_NODE: continue if child.localName == 'joint': jtype = child.getAttribute('type') if jtype == 'fixed' or jtype == 'floating': continue name = child.getAttribute('name') self.joint_list.append(name) if jtype == 'continuous': minval = -pi maxval = pi else: try: limit = child.getElementsByTagName('limit')[0] minval = float(limit.getAttribute('lower')) maxval = float(limit.getAttribute('upper')) except: rospy.logwarn("%s is not fixed, nor continuous, but limits are not specified!" % name) continue safety_tags = child.getElementsByTagName('safety_controller') if self.use_small and len(safety_tags) == 1: tag = safety_tags[0] if tag.hasAttribute('soft_lower_limit'): minval = max(minval, float(tag.getAttribute('soft_lower_limit'))) if tag.hasAttribute('soft_upper_limit'): maxval = min(maxval, float(tag.getAttribute('soft_upper_limit'))) mimic_tags = child.getElementsByTagName('mimic') if self.use_mimic and len(mimic_tags) == 1: tag = mimic_tags[0] entry = {'parent': tag.getAttribute('joint')} if tag.hasAttribute('multiplier'): entry['factor'] = float(tag.getAttribute('multiplier')) if tag.hasAttribute('offset'): entry['offset'] = float(tag.getAttribute('offset')) self.dependent_joints[name] = entry continue if name in self.dependent_joints: continue if self.zeros and name in self.zeros: zeroval = self.zeros[name] elif minval > 0 or maxval < 0: zeroval = (maxval + minval)/2 else: zeroval = 0 joint = {'min': minval, 'max': maxval, 'zero': zeroval} if self.pub_def_positions: joint['position'] = zeroval if self.pub_def_vels: joint['velocity'] = 0.0 if self.pub_def_efforts: joint['effort'] = 0.0 if jtype == 'continuous': joint['continuous'] = True self.free_joints[name] = joint def __init__(self, joint_manual): description = get_param('/robot_description') self.free_joints = {} self.joint_list = [] # for maintaining the original order of the joints self.dependent_joints = get_param("dependent_joints", {}) self.use_mimic = get_param('use_mimic_tags', True) self.use_small = get_param('use_smallest_joint_limits', True) self.zeros = get_param("zeros") self.pub_def_positions = get_param("publish_default_positions", True) self.pub_def_vels = get_param("publish_default_velocities", False) self.pub_def_efforts = get_param("publish_default_efforts", False) robot = xml.dom.minidom.parseString(description) if robot.getElementsByTagName('COLLADA'): self.init_collada(robot) else: self.init_urdf(robot) num_rows = get_param("num_rows", 0) self.gui = JointStatePublisherGui("Joint State Publisher", self, num_rows) joint_manual.addWidget(self.gui) source_list = get_param("source_list", []) self.sources = [] for source in source_list: self.sources.append(rospy.Subscriber(source, JointState, self.source_cb)) self.pub = rospy.Publisher('joint_states', JointState, queue_size=5) def source_cb(self, msg): for i in range(len(msg.name)): name = msg.name[i] if name not in self.free_joints: continue if msg.position: position = msg.position[i] else: position = None if msg.velocity: velocity = msg.velocity[i] else: velocity = None if msg.effort: effort = msg.effort[i] else: effort = None joint = self.free_joints[name] if position is not None: joint['position'] = position if velocity is not None: joint['velocity'] = velocity if effort is not None: joint['effort'] = effort if self.gui is not None: # signal instead of directly calling the update_sliders method, to switch to the QThread self.gui.sliderUpdateTrigger.emit() def loop(self): hz = get_param("rate", 10) # 10hz r = rospy.Rate(hz) delta = get_param("delta", 0.0) # Publish Joint States while not rospy.is_shutdown(): msg = JointState() msg.header.stamp = rospy.Time.now() if delta > 0: self.update(delta) # Initialize msg.position, msg.velocity, and msg.effort. has_position = len(self.dependent_joints.items()) > 0 has_velocity = False has_effort = False for name, joint in self.free_joints.items(): if not has_position and 'position' in joint: has_position = True if not has_velocity and 'velocity' in joint: has_velocity = True if not has_effort and 'effort' in joint: has_effort = True num_joints = (len(self.free_joints.items()) + len(self.dependent_joints.items())) if has_position: msg.position = num_joints * [0.0] if has_velocity: msg.velocity = num_joints * [0.0] if has_effort: msg.effort = num_joints * [0.0] for i, name in enumerate(self.joint_list): msg.name.append(str(name)) joint = None # Add Free Joint if name in self.free_joints: joint = self.free_joints[name] factor = 1 offset = 0 # Add Dependent Joint elif name in self.dependent_joints: param = self.dependent_joints[name] parent = param['parent'] factor = param.get('factor', 1) offset = param.get('offset', 0) # Handle recursive mimic chain recursive_mimic_chain_joints = [name] while parent in self.dependent_joints: if parent in recursive_mimic_chain_joints: error_message = "Found an infinite recursive mimic chain" rospy.logerr("%s: [%s, %s]", error_message, ', '.join(recursive_mimic_chain_joints), parent) sys.exit(-1) recursive_mimic_chain_joints.append(parent) param = self.dependent_joints[parent] parent = param['parent'] offset += factor * param.get('offset', 0) factor *= param.get('factor', 1) joint = self.free_joints[parent] if has_position and 'position' in joint: msg.position[i] = joint['position'] * factor + offset if has_velocity and 'velocity' in joint: msg.velocity[i] = joint['velocity'] * factor if has_effort and 'effort' in joint: msg.effort[i] = joint['effort'] if msg.name or msg.position or msg.velocity or msg.effort: # Only publish non-empty messages self.pub.publish(msg) try: r.sleep() except rospy.exceptions.ROSTimeMovedBackwardsException: pass def update(self, delta): for name, joint in self.free_joints.iteritems(): forward = joint.get('forward', True) if forward: joint['position'] += delta if joint['position'] > joint['max']: if joint.get('continuous', False): joint['position'] = joint['min'] else: joint['position'] = joint['max'] joint['forward'] = not forward else: joint['position'] -= delta if joint['position'] < joint['min']: joint['position'] = joint['min'] joint['forward'] = not forward class JointStatePublisherGui(QWidget): sliderUpdateTrigger = Signal() def __init__(self, title, jsp, num_rows=0): super(JointStatePublisherGui, self).__init__() self.jsp = jsp self.joint_map = {} self.vlayout = QVBoxLayout(self) self.scrollable = QWidget() self.gridlayout = QGridLayout() self.scroll = QScrollArea() self.scroll.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.scroll.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.scroll.setWidgetResizable(True) font = QFont("Helvetica", 9, QFont.Bold) ### Generate sliders ### sliders = [] for name in self.jsp.joint_list: if name not in self.jsp.free_joints: continue joint = self.jsp.free_joints[name] if joint['min'] == joint['max']: continue joint_layout = QVBoxLayout() row_layout = QHBoxLayout() label = QLabel(name) label.setFont(font) row_layout.addWidget(label) display = QLineEdit("0.00") display.setAlignment(Qt.AlignRight) display.setFont(font) display.setReadOnly(True) row_layout.addWidget(display) joint_layout.addLayout(row_layout) slider = QSlider(Qt.Horizontal) slider.setFont(font) slider.setRange(0, RANGE) slider.setValue(RANGE/2) joint_layout.addWidget(slider) self.joint_map[name] = {'slidervalue': 0, 'display': display, 'slider': slider, 'joint': joint} # Connect to the signal provided by QSignal slider.valueChanged.connect(self.onValueChanged) sliders.append(joint_layout) # Determine number of rows to be used in grid self.num_rows = num_rows # if desired num of rows wasn't set, default behaviour is a vertical layout if self.num_rows == 0: self.num_rows = len(sliders) # equals VBoxLayout # Generate positions in grid and place sliders there self.positions = self.generate_grid_positions(len(sliders), self.num_rows) for item, pos in zip(sliders, self.positions): self.gridlayout.addLayout(item, *pos) # Set zero positions read from parameters self.center() # Synchronize slider and displayed value self.sliderUpdate(None) # Set up a signal for updating the sliders based on external joint info self.sliderUpdateTrigger.connect(self.updateSliders) self.scrollable.setLayout(self.gridlayout) self.scroll.setWidget(self.scrollable) self.vlayout.addWidget(self.scroll) # Buttons for randomizing and centering sliders and # Spinbox for on-the-fly selecting number of rows self.ctrbutton = QPushButton('Center', self) self.ctrbutton.clicked.connect(self.center_event) self.vlayout.addWidget(self.ctrbutton) self.setLayout(self.vlayout) @pyqtSlot(int) def onValueChanged(self, event): # A slider value was changed, but we need to change the joint_info metadata. for name, joint_info in self.joint_map.items(): joint_info['slidervalue'] = joint_info['slider'].value() joint = joint_info['joint'] joint['position'] = self.sliderToValue(joint_info['slidervalue'], joint) joint_info['display'].setText("%.2f" % joint['position']) @pyqtSlot() def updateSliders(self): self.update_sliders() def update_sliders(self): for name, joint_info in self.joint_map.items(): joint = joint_info['joint'] joint_info['slidervalue'] = self.valueToSlider(joint['position'], joint) joint_info['slider'].setValue(joint_info['slidervalue']) def center_event(self, event): self.center() def center(self): rospy.loginfo("Centering") for name, joint_info in self.joint_map.items(): joint = joint_info['joint'] joint_info['slider'].setValue(self.valueToSlider(joint['zero'], joint)) def generate_grid_positions(self, num_items, num_rows): if num_rows==0: return [] positions = [(y, x) for x in range(int((math.ceil(float(num_items) / num_rows)))) for y in range(num_rows)] positions = positions[:num_items] return positions def sliderUpdate(self, event): for name, joint_info in self.joint_map.items(): joint_info['slidervalue'] = joint_info['slider'].value() self.update_sliders() def valueToSlider(self, value, joint): return (value - joint['min']) * float(RANGE) / (joint['max'] - joint['min']) def sliderToValue(self, slider, joint): pctvalue = slider / float(RANGE) return joint['min'] + (joint['max']-joint['min']) * pctvalue if __name__ == '__main__': try: rospy.init_node('joint_state_publisher') jsp = JointStatePublisher() if jsp.gui is None: jsp.loop() else: Thread(target=jsp.loop).start() signal.signal(signal.SIGINT, signal.SIG_DFL) sys.exit(jsp.app.exec_()) except rospy.ROSInterruptException: pass
38.854875
120
0.564634
f90f5d930fb15540a14e95e705f189dfa2f40acc
1,424
py
Python
test/functional/wallet_resendwallettransactions.py
torunxxx001/MyOriginalCoin
7f0558d07d065f1d89b7998d6beb088b8e941e7d
[ "MIT" ]
null
null
null
test/functional/wallet_resendwallettransactions.py
torunxxx001/MyOriginalCoin
7f0558d07d065f1d89b7998d6beb088b8e941e7d
[ "MIT" ]
null
null
null
test/functional/wallet_resendwallettransactions.py
torunxxx001/MyOriginalCoin
7f0558d07d065f1d89b7998d6beb088b8e941e7d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test resendwallettransactions RPC.""" from test_framework.test_framework import MyOriginalCoinTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error class ResendWalletTransactionsTest(MyOriginalCoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [['--walletbroadcast=false']] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # Should raise RPC_WALLET_ERROR (-4) if walletbroadcast is disabled. assert_raises_rpc_error(-4, "Error: Wallet transaction broadcasting is disabled with -walletbroadcast", self.nodes[0].resendwallettransactions) # Should return an empty array if there aren't unconfirmed wallet transactions. self.stop_node(0) self.start_node(0, extra_args=[]) assert_equal(self.nodes[0].resendwallettransactions(), []) # Should return an array with the unconfirmed wallet transaction. txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) assert_equal(self.nodes[0].resendwallettransactions(), [txid]) if __name__ == '__main__': ResendWalletTransactionsTest().main()
43.151515
151
0.742275
6830f7381beee5c886faf15a83c033172ec363e5
3,768
py
Python
app.py
srdg/GRAider
4850002b5794dd34538b62acc1489be0fc43b407
[ "MIT" ]
null
null
null
app.py
srdg/GRAider
4850002b5794dd34538b62acc1489be0fc43b407
[ "MIT" ]
null
null
null
app.py
srdg/GRAider
4850002b5794dd34538b62acc1489be0fc43b407
[ "MIT" ]
null
null
null
try: from tkinter import * except: import subprocess subprocess.call(['pip3','install','tkinter']) from tkinter import font import shutil import os, sys import urllib.request import requests class downloadGradeCard(): def __init__(self,master): ''' initializes and sets up UI requires the user to mention sem [SEM1 by default] and stream [CSE by default] ''' master.geometry("300x300") master.title("GrAider") Label(master,text="\n\n").grid(row=1, column=2,sticky=W) Label(master,text="Choose stream : ").grid(row=1, column=3,sticky=E) self.stream = StringVar() STREAMS = ["CSE","ECE","IT","ME","CE","EE"] self.stream.set(STREAMS[0]) OptionMenu(master, self.stream, *STREAMS).grid(row = 1,column = 4,sticky=E) Label(master,text="\n\nChoose semester : ").grid(row=2, column=3,sticky=E) self.sem = StringVar() SEMS = ["SEM1","SEM2","SEM3","SEM4","SEM5","SEM6", "SEM7", "SEM8"] self.sem.set(SEMS[0]) OptionMenu(master, self.sem, *SEMS).grid(row = 2, column=4, sticky=E) Label(master,text="\n\nAdmission Year : ").grid(row=3, column=3,sticky=E) self.year = StringVar() YEARS = ["2013","2014","2015","2016","2017","2018"] self.year.set(YEARS[2]) OptionMenu(master, self.year, *YEARS).grid(row = 3, column=4, sticky=E) Label(master,text="\n\nType of admission : ").grid(row=4, column=3,sticky=E) self.typeofstudent = IntVar() Radiobutton(master, text="Regular", variable = self.typeofstudent, value=0).grid(row = 5, column = 3, sticky = E) Radiobutton(master, text="Lateral", variable = self.typeofstudent, value=1).grid(row = 5, column = 4, sticky = E) Label(master,text="\n\n\n").grid(row=6, column=3,sticky=W) download = Button(master, text="Start Now", command = self.startDownload) font_obj = font.Font(download,download.cget("font")) font_obj.configure(underline = True) download.configure(font=font_obj) download.grid(row = 6, column = 4, sticky = E) quit = Button(master, text="Quit", command = self.quitWindow) font_obj = font.Font(download,download.cget("font")) font_obj.configure(underline = True) quit.configure(font=font_obj) quit.grid(row = 7, column = 4, sticky = W) def startDownload(self): ''' Generates the url by parsing arguments entered as inputs Retrieves the file using urlretrieve() [might be deprecated] Saves and stores the retrieved file to a local system folder ''' endset = {'CSE': '40', 'ECE': '50', 'IT': '60', 'CE':'10','EE':'20','ME':'30'} _url = "http://jgec.ac.in/php/coe/results/"+self.sem.get()[3]+"/"+self.stream.get()+"_"+self.sem.get()+"_" preset = self.year.get()[-2:] roll = str(int(preset) -1*(self.typeofstudent.get()))+"10110"+endset[self.stream.get()] # create custom directory if not available if not os.path.exists(self.stream.get()+"_"+self.sem.get()+"_Results Stored Here"): os.makedirs(self.stream.get()+"_"+self.sem.get()+"_Results Stored Here") start,stop = 1,100 for offset in range(start,stop): complete_url = _url+roll+"0"*(offset<10)+str(offset)+".pdf" print("Generating custom URL ... done.") response = requests.get(complete_url) with open(complete_url[36:], 'wb') as fw: fw.write(response.content) fw.close() shutil.move(complete_url[36:], os.getcwd()+"/"+self.stream.get()+"_"+self.sem.get()+"_Results Stored Here") print("Saving file "+complete_url[36:]+" .... done.") if offset==70: if self.typeofstudent.get()==1: roll = preset+"10110"+endset[self.stream.get()] else: roll = str(int(preset)+1)+"10110"+endset[self.stream.get()] def quitWindow(self): ''' Quits the window ''' global root root.destroy() root = Tk() def main(): downloaderObject = downloadGradeCard(root) root.mainloop() if __name__=="__main__": main()
34.254545
115
0.669851
0da3affe055e9cddc72a6e450dbb6e0ef4dda1ac
2,506
py
Python
cosmic-core/systemvm/patches/centos7/opt/cosmic/startup/setup_ssvm.py
RobbertJanSW/cosmic
08cfd7be26bbd943de8a49c04042a7e08638b214
[ "Apache-2.0" ]
null
null
null
cosmic-core/systemvm/patches/centos7/opt/cosmic/startup/setup_ssvm.py
RobbertJanSW/cosmic
08cfd7be26bbd943de8a49c04042a7e08638b214
[ "Apache-2.0" ]
null
null
null
cosmic-core/systemvm/patches/centos7/opt/cosmic/startup/setup_ssvm.py
RobbertJanSW/cosmic
08cfd7be26bbd943de8a49c04042a7e08638b214
[ "Apache-2.0" ]
null
null
null
import logging import os from utils import Utils def setup_html(): html_dir = "/var/www/html/copy" if not os.path.isdir(html_dir): os.makedirs(html_dir, 0o755, True) def setup_iptable_rules(cmdline): iptables_rules = """ *nat :PREROUTING ACCEPT [0:0] :POSTROUTING ACCEPT [0:0] :OUTPUT ACCEPT [0:0] COMMIT *filter :INPUT DROP [0:0] :FORWARD DROP [0:0] :OUTPUT ACCEPT [0:0] :HTTP - [0:0] -A INPUT -i %s -m state --state RELATED,ESTABLISHED -j ACCEPT -A INPUT -i %s -m state --state RELATED,ESTABLISHED -j ACCEPT -A INPUT -i %s -m state --state RELATED,ESTABLISHED -j ACCEPT -A INPUT -i lo -j ACCEPT -A INPUT -p icmp --icmp-type 13 -j DROP -A INPUT -p icmp -j ACCEPT -A INPUT -i %s -p tcp -m state --state NEW -s 169.254.0.1/32 --dport 3922 -j ACCEPT -A OUTPUT -o %s -p tcp -m state --state NEW -m tcp --dport 80 -j REJECT -A OUTPUT -o %s -p tcp -m state --state NEW -m tcp --dport 443 -j REJECT COMMIT """ % ( cmdline['controlnic'], cmdline['mgtnic'], cmdline['publicnic'], cmdline['controlnic'], cmdline['mgtnic'], cmdline['mgtnic'] ) with open("/tmp/iptables-secstorage", "w") as f: f.write(iptables_rules) os.system("iptables-restore < /tmp/iptables-secstorage") class SecondaryStorageVM: def __init__(self, cmdline) -> None: super().__init__() self.cmdline = cmdline self.config_dir = "/etc/cosmic/agent/" def start(self): logging.info("Setting up configuration for %s" % self.cmdline["type"]) self.setup_agent_config() setup_html() setup_iptable_rules(self.cmdline) self.setup_nginx() Utils(self.cmdline).set_rfc1918_routes() os.system("systemctl start cosmic-agent") def setup_agent_config(self): Utils(self.cmdline).setup_agent_properties() def setup_nginx(self): if not os.path.isdir("/var/www/html/userdata"): os.makedirs("/var/www/html/userdata", 0o755, True) vhost = """ server { listen %s:80; listen %s:443 ssl; server_name _; root /var/www/html; autoindex off; location /userdata { autoindex off; } } """ % (self.cmdline["publicip"], self.cmdline["publicip"]) filename = "/etc/nginx/conf.d/vhost-%s.conf" % (self.cmdline["publicip"]) with open(filename, 'w') as f: f.write(vhost) os.system("systemctl start nginx") os.system("systemctl reload nginx")
25.571429
83
0.618117
5684f1976bb22fffb5b49debd8914197c130e4ea
956
py
Python
openstack_dashboard/dashboards/project/volumes/panel.py
ameoba/horizon
ff9e367c98a8bb79f10914abffaaa04b0a461819
[ "Apache-2.0" ]
2
2019-12-29T09:20:13.000Z
2020-01-01T13:12:34.000Z
openstack_dashboard/dashboards/project/volumes/panel.py
yongquanf/horizon
9aad7fd6f66588fed7c27b720642e47a4a12854b
[ "Apache-2.0" ]
1
2015-03-12T01:03:44.000Z
2015-03-12T01:03:44.000Z
openstack_dashboard/dashboards/project/volumes/panel.py
yongquanf/horizon
9aad7fd6f66588fed7c27b720642e47a4a12854b
[ "Apache-2.0" ]
4
2015-05-05T08:17:28.000Z
2020-02-05T10:47:06.000Z
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.utils.translation import ugettext_lazy as _ # noqa import horizon from openstack_dashboard.dashboards.project import dashboard class Volumes(horizon.Panel): name = _("Volumes") slug = 'volumes' permissions = ('openstack.services.volume',) dashboard.Project.register(Volumes)
30.83871
78
0.736402
963426f7641e12509298f2e5b683006f7272e0f7
3,338
py
Python
Smart Buy/myproject/settings.py
chandankeshri1812/IEEE-Megaproject
081479294d90914625315f9f2ce8a9e2020f3e00
[ "MIT" ]
8
2022-01-07T14:07:07.000Z
2022-02-05T04:03:07.000Z
Smart Buy/myproject/settings.py
chandankeshri1812/IEEE-Megaproject
081479294d90914625315f9f2ce8a9e2020f3e00
[ "MIT" ]
41
2022-01-08T08:42:08.000Z
2022-02-28T01:49:15.000Z
Smart Buy/myproject/settings.py
chandankeshri1812/IEEE-Megaproject
081479294d90914625315f9f2ce8a9e2020f3e00
[ "MIT" ]
50
2022-01-07T13:15:15.000Z
2022-02-25T04:35:15.000Z
""" Django settings for myproject project. Generated by 'django-admin startproject' using Django 4.0. For more information on this file, see https://docs.djangoproject.com/en/4.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/4.0/ref/settings/ """ from pathlib import Path import os import myapp # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/4.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-%qv_6v*i-vz2unr-w4!__m6j+_8ca)ka!c7je7(x(bsnnjraxe' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'myapp' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'myproject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR,'templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'myproject.wsgi.application' # Database # https://docs.djangoproject.com/en/4.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/4.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/4.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/4.0/howto/static-files/ STATIC_URL = 'static/' STATICFILES_DIRS = (os.path.join(BASE_DIR,'static'),) # Default primary key field type # https://docs.djangoproject.com/en/4.0/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
25.875969
91
0.704314
aa5eaa34d2ce9770466e260eb750ade08ba62275
1,163
py
Python
setup.py
LysandreJik/doc-builder
6f689181aafb70b98a0c1035e202311e60f07f6c
[ "Apache-2.0" ]
null
null
null
setup.py
LysandreJik/doc-builder
6f689181aafb70b98a0c1035e202311e60f07f6c
[ "Apache-2.0" ]
null
null
null
setup.py
LysandreJik/doc-builder
6f689181aafb70b98a0c1035e202311e60f07f6c
[ "Apache-2.0" ]
null
null
null
# Doc-builder package setup. # The line above is checked by some of the utilities in this repo, do not change it. from setuptools import find_packages, setup install_requires = ["tqdm", "pyyaml", "packaging", "nbformat"] extras = {} extras["transformers"] = ["transformers[dev]"] extras["testing"] = ["pytest", "pytest-xdist", "torch", "transformers"] extras["quality"] = ["black~=22.0", "isort>=5.5.4", "flake8>=3.8.3"] extras["all"] = extras["testing"] + extras["quality"] extras["dev"] = extras["all"] setup( name="hf-doc-builder", version="0.2.0.dev0", author="Hugging Face, Inc.", author_email="sylvain@huggingface.co", description="Doc building utility", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="doc documentation doc-builder huggingface hugging face", url="https://github.com/huggingface/doc-builder", package_dir={"": "src"}, packages=find_packages("src"), extras_require=extras, install_requires=install_requires, entry_points={"console_scripts": ["doc-builder=doc_builder.commands.doc_builder_cli:main"]}, )
34.205882
96
0.692175
82f9cf71e3a867a6c4797754199353d7ee0dc887
782
py
Python
checkov/terraform/checks/resource/aws/S3ObjectCopyEncryptedWithCMK.py
jamesholland-uk/checkov
d73fd4bd7096d48ab3434a92a177bcc55605460a
[ "Apache-2.0" ]
1
2021-02-13T15:24:42.000Z
2021-02-13T15:24:42.000Z
checkov/terraform/checks/resource/aws/S3ObjectCopyEncryptedWithCMK.py
jamesholland-uk/checkov
d73fd4bd7096d48ab3434a92a177bcc55605460a
[ "Apache-2.0" ]
7
2021-04-12T06:54:07.000Z
2022-03-21T14:04:14.000Z
checkov/terraform/checks/resource/aws/S3ObjectCopyEncryptedWithCMK.py
jamesholland-uk/checkov
d73fd4bd7096d48ab3434a92a177bcc55605460a
[ "Apache-2.0" ]
1
2021-12-16T03:09:55.000Z
2021-12-16T03:09:55.000Z
from checkov.common.models.consts import ANY_VALUE from checkov.terraform.checks.resource.base_resource_value_check import BaseResourceValueCheck from checkov.common.models.enums import CheckCategories class S3ObjectCopyEncryptedWithCMK(BaseResourceValueCheck): def __init__(self): name = "Ensure S3 Object Copy is encrypted by KMS using a customer managed Key (CMK)" id = "CKV_AWS_181" supported_resources = ['aws_s3_object_copy'] categories = [CheckCategories.ENCRYPTION] super().__init__(name=name, id=id, categories=categories, supported_resources=supported_resources) def get_inspected_key(self): return "kms_key_id" def get_expected_value(self): return ANY_VALUE check = S3ObjectCopyEncryptedWithCMK()
35.545455
106
0.762148
a575a6dac2fdc58854714d382eb1feed82a07352
2,270
py
Python
ooobuild/lo/drawing/framework/basic_pane_factory.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/drawing/framework/basic_pane_factory.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/drawing/framework/basic_pane_factory.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Service Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.drawing.framework import typing from abc import abstractmethod from .x_resource_factory import XResourceFactory as XResourceFactory_b3561268 if typing.TYPE_CHECKING: from ...frame.x_controller import XController as XController_b00e0b8f class BasicPaneFactory(XResourceFactory_b3561268): """ Service Class The BasicPaneFactory is a resource factory that provides the panes used by the Draw and Impress applications. This factory provides the center, left, and right pane. For the left pane there are two URLS, private:resource/floater/LeftImpressPane and private:resource/floater/LeftDrawPane, one for Impress, the other for Draw. The center pane and the right pane have the URLs private:resource/floater/CenterPane and private:resource/floater/RightPane respectively. This factory is typically created indirectly by registering it in the configuration and have the XModuleController create it on demand. See Also: `API BasicPaneFactory <https://api.libreoffice.org/docs/idl/ref/servicecom_1_1sun_1_1star_1_1drawing_1_1framework_1_1BasicPaneFactory.html>`_ """ __ooo_ns__: str = 'com.sun.star.drawing.framework' __ooo_full_ns__: str = 'com.sun.star.drawing.framework.BasicPaneFactory' __ooo_type_name__: str = 'service' @abstractmethod def create(self, xController: 'XController_b00e0b8f') -> None: """ Give the controller to new instances so that they have access to the drawing framework controllers. """ __all__ = ['BasicPaneFactory']
42.830189
356
0.76696
2939e2770fb523882a5ceec188838d06d210e1d9
43,599
py
Python
sdk/core/azure-core/tests/test_basic_transport.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
1
2022-03-09T08:59:13.000Z
2022-03-09T08:59:13.000Z
sdk/core/azure-core/tests/test_basic_transport.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
sdk/core/azure-core/tests/test_basic_transport.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
1
2022-03-04T06:21:56.000Z
2022-03-04T06:21:56.000Z
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See LICENSE.txt in the project root for # license information. # ------------------------------------------------------------------------- from six.moves.http_client import HTTPConnection from collections import OrderedDict import sys try: from unittest import mock except ImportError: import mock from azure.core.pipeline.transport import HttpResponse as PipelineTransportHttpResponse, RequestsTransport from azure.core.pipeline.transport._base import HttpTransport, _deserialize_response, _urljoin from azure.core.pipeline.policies import HeadersPolicy from azure.core.pipeline import Pipeline from azure.core.exceptions import HttpResponseError import logging import pytest from utils import HTTP_REQUESTS, request_and_responses_product, HTTP_CLIENT_TRANSPORT_RESPONSES, create_transport_response from azure.core.rest._http_response_impl import HttpResponseImpl as RestHttpResponseImpl from azure.core.pipeline._tools import is_rest class PipelineTransportMockResponse(PipelineTransportHttpResponse): def __init__(self, request, body, content_type): super(PipelineTransportMockResponse, self).__init__(request, None) self._body = body self.content_type = content_type def body(self): return self._body class RestMockResponse(RestHttpResponseImpl): def __init__(self, request, body, content_type): super(RestMockResponse, self).__init__( request=request, internal_response=None, content_type=content_type, block_size=None, status_code=200, reason="OK", headers={}, stream_download_generator=None, ) # the impl takes in a lot more kwargs. It's not public and is a # helper implementation shared across our azure core transport responses self._body = body def body(self): return self._body @property def content(self): return self._body MOCK_RESPONSES = [PipelineTransportMockResponse, RestMockResponse] @pytest.mark.skipif(sys.version_info < (3, 6), reason="Multipart serialization not supported on 2.7 + dict order not deterministic on 3.5") @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_http_request_serialization(http_request): # Method + Url request = http_request("DELETE", "/container0/blob0") serialized = request.serialize() expected = ( b'DELETE /container0/blob0 HTTP/1.1\r\n' # No headers b'\r\n' ) assert serialized == expected # Method + Url + Headers request = http_request( "DELETE", "/container0/blob0", # Use OrderedDict to get consistent test result on 3.5 where order is not guaranteed headers=OrderedDict({ "x-ms-date": "Thu, 14 Jun 2018 16:46:54 GMT", "Authorization": "SharedKey account:G4jjBXA7LI/RnWKIOQ8i9xH4p76pAQ+4Fs4R1VxasaE=", # fake key suppressed in credscan "Content-Length": "0", }) ) serialized = request.serialize() expected = ( b'DELETE /container0/blob0 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'Authorization: SharedKey account:G4jjBXA7LI/RnWKIOQ8i9xH4p76pAQ+4Fs4R1VxasaE=\r\n' # fake key suppressed in credscan b'Content-Length: 0\r\n' b'\r\n' ) assert serialized == expected # Method + Url + Headers + Body request = http_request( "DELETE", "/container0/blob0", headers={ "x-ms-date": "Thu, 14 Jun 2018 16:46:54 GMT", }, ) request.set_bytes_body(b"I am groot") serialized = request.serialize() expected = ( b'DELETE /container0/blob0 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'Content-Length: 10\r\n' b'\r\n' b'I am groot' ) assert serialized == expected @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_url_join(http_request): assert _urljoin('devstoreaccount1', '') == 'devstoreaccount1/' assert _urljoin('devstoreaccount1', 'testdir/') == 'devstoreaccount1/testdir/' assert _urljoin('devstoreaccount1/', '') == 'devstoreaccount1/' assert _urljoin('devstoreaccount1/', 'testdir/') == 'devstoreaccount1/testdir/' @pytest.mark.parametrize("http_request,http_response", request_and_responses_product(HTTP_CLIENT_TRANSPORT_RESPONSES)) def test_http_client_response(port, http_request, http_response): # Create a core request request = http_request("GET", "http://localhost:{}".format(port)) # Fake a transport based on http.client conn = HTTPConnection("localhost", port) conn.request("GET", "/get") r1 = conn.getresponse() response = create_transport_response(http_response, request, r1) if is_rest(http_response): response.read() # Don't assume too much in those assert, since we reach a real server assert response.internal_response is r1 assert response.reason is not None assert isinstance(response.status_code, int) assert len(response.headers.keys()) != 0 assert len(response.text()) != 0 assert "content-type" in response.headers assert "Content-Type" in response.headers @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_response_deserialization(http_request): # Method + Url request = http_request("DELETE", "/container0/blob0") body = ( b'HTTP/1.1 202 Accepted\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' ) response = _deserialize_response(body, request) assert response.status_code == 202 assert response.reason == "Accepted" assert response.headers == { 'x-ms-request-id': '778fdc83-801e-0000-62ff-0334671e284f', 'x-ms-version': '2018-11-09' } # Method + Url + Headers + Body request = http_request( "DELETE", "/container0/blob0", headers={ "x-ms-date": "Thu, 14 Jun 2018 16:46:54 GMT", }, ) request.set_bytes_body(b"I am groot") body = ( b'HTTP/1.1 200 OK\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'I am groot' ) response = _deserialize_response(body, request) assert isinstance(response.status_code, int) assert response.reason == "OK" assert response.headers == { 'x-ms-request-id': '778fdc83-801e-0000-62ff-0334671e284f', 'x-ms-version': '2018-11-09' } assert response.text() == "I am groot" @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_response_deserialization_utf8_bom(http_request): request = http_request("DELETE", "/container0/blob0") body = ( b'HTTP/1.1 400 One of the request inputs is not valid.\r\n' b'x-ms-error-code: InvalidInput\r\n' b'x-ms-request-id: 5f3f9f2f-e01e-00cc-6eb1-6d00b5000000\r\n' b'x-ms-version: 2019-02-02\r\n' b'Content-Length: 220\r\n' b'Content-Type: application/xml\r\n' b'Server: Windows-Azure-Blob/1.0\r\n' b'\r\n' b'\xef\xbb\xbf<?xml version="1.0" encoding="utf-8"?>\n<Error><Code>InvalidInput</Code><Message>One' b'of the request inputs is not valid.\nRequestId:5f3f9f2f-e01e-00cc-6eb1-6d00b5000000\nTime:2019-09-17T23:44:07.4671860Z</Message></Error>' ) response = _deserialize_response(body, request) assert response.body().startswith(b'\xef\xbb\xbf') @pytest.mark.skipif(sys.version_info < (3, 0), reason="Multipart serialization not supported on 2.7") @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_multipart_send(http_request): transport = mock.MagicMock(spec=HttpTransport) header_policy = HeadersPolicy({ 'x-ms-date': 'Thu, 14 Jun 2018 16:46:54 GMT' }) req0 = http_request("DELETE", "/container0/blob0") req1 = http_request("DELETE", "/container1/blob1") request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( req0, req1, policies=[header_policy], boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525" # Fix it so test are deterministic ) with Pipeline(transport) as pipeline: pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.skipif(sys.version_info < (3, 0), reason="Multipart serialization not supported on 2.7") @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_multipart_send_with_context(http_request): transport = mock.MagicMock(spec=HttpTransport) header_policy = HeadersPolicy({ 'x-ms-date': 'Thu, 14 Jun 2018 16:46:54 GMT' }) req0 = http_request("DELETE", "/container0/blob0") req1 = http_request("DELETE", "/container1/blob1") request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( req0, req1, policies=[header_policy], boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525", # Fix it so test are deterministic headers={'Accept': 'application/json'} ) with Pipeline(transport) as pipeline: pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'Accept: application/json\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'Accept: application/json\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.skipif(sys.version_info < (3, 0), reason="Multipart serialization not supported on 2.7") @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_multipart_send_with_one_changeset(http_request): transport = mock.MagicMock(spec=HttpTransport) header_policy = HeadersPolicy({ 'x-ms-date': 'Thu, 14 Jun 2018 16:46:54 GMT' }) requests = [ http_request("DELETE", "/container0/blob0"), http_request("DELETE", "/container1/blob1") ] changeset = http_request("", "") changeset.set_multipart_mixed( *requests, policies=[header_policy], boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( changeset, boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525", ) with Pipeline(transport) as pipeline: pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.skipif(sys.version_info < (3, 0), reason="Multipart serialization not supported on 2.7") @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_multipart_send_with_multiple_changesets(http_request): transport = mock.MagicMock(spec=HttpTransport) header_policy = HeadersPolicy({ 'x-ms-date': 'Thu, 14 Jun 2018 16:46:54 GMT' }) changeset1 = http_request("", "") changeset1.set_multipart_mixed( http_request("DELETE", "/container0/blob0"), http_request("DELETE", "/container1/blob1"), policies=[header_policy], boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) changeset2 = http_request("", "") changeset2.set_multipart_mixed( http_request("DELETE", "/container2/blob2"), http_request("DELETE", "/container3/blob3"), policies=[header_policy], boundary="changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314" ) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( changeset1, changeset2, policies=[header_policy], boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525", ) with Pipeline(transport) as pipeline: pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'DELETE /container2/blob2 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 3\r\n' b'\r\n' b'DELETE /container3/blob3 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.skipif(sys.version_info < (3, 0), reason="Multipart serialization not supported on 2.7") @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_multipart_send_with_combination_changeset_first(http_request): transport = mock.MagicMock(spec=HttpTransport) header_policy = HeadersPolicy({ 'x-ms-date': 'Thu, 14 Jun 2018 16:46:54 GMT' }) changeset = http_request("", "") changeset.set_multipart_mixed( http_request("DELETE", "/container0/blob0"), http_request("DELETE", "/container1/blob1"), policies=[header_policy], boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( changeset, http_request("DELETE", "/container2/blob2"), policies=[header_policy], boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) with Pipeline(transport) as pipeline: pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'DELETE /container2/blob2 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.skipif(sys.version_info < (3, 0), reason="Multipart serialization not supported on 2.7") @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_multipart_send_with_combination_changeset_last(http_request): transport = mock.MagicMock(spec=HttpTransport) header_policy = HeadersPolicy({ 'x-ms-date': 'Thu, 14 Jun 2018 16:46:54 GMT' }) changeset = http_request("", "") changeset.set_multipart_mixed( http_request("DELETE", "/container1/blob1"), http_request("DELETE", "/container2/blob2"), policies=[header_policy], boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( http_request("DELETE", "/container0/blob0"), changeset, policies=[header_policy], boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) with Pipeline(transport) as pipeline: pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'DELETE /container2/blob2 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.skipif(sys.version_info < (3, 0), reason="Multipart serialization not supported on 2.7") @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_multipart_send_with_combination_changeset_middle(http_request): transport = mock.MagicMock(spec=HttpTransport) header_policy = HeadersPolicy({ 'x-ms-date': 'Thu, 14 Jun 2018 16:46:54 GMT' }) changeset = http_request("", "") changeset.set_multipart_mixed( http_request("DELETE", "/container1/blob1"), policies=[header_policy], boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( http_request("DELETE", "/container0/blob0"), changeset, http_request("DELETE", "/container2/blob2"), policies=[header_policy], boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) with Pipeline(transport) as pipeline: pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'DELETE /container2/blob2 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.parametrize("http_request,mock_response", request_and_responses_product(MOCK_RESPONSES)) def test_multipart_receive(http_request, mock_response): class ResponsePolicy(object): def on_response(self, request, response): # type: (PipelineRequest, PipelineResponse) -> None response.http_response.headers['x-ms-fun'] = 'true' req0 = http_request("DELETE", "/container0/blob0") req1 = http_request("DELETE", "/container1/blob1") request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( req0, req1, policies=[ResponsePolicy()] ) body_as_str = ( "--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n" "Content-Type: application/http\r\n" "Content-ID: 0\r\n" "\r\n" "HTTP/1.1 202 Accepted\r\n" "x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n" "x-ms-version: 2018-11-09\r\n" "\r\n" "--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n" "Content-Type: application/http\r\n" "Content-ID: 2\r\n" "\r\n" "HTTP/1.1 404 The specified blob does not exist.\r\n" "x-ms-error-code: BlobNotFound\r\n" "x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e2852\r\n" "x-ms-version: 2018-11-09\r\n" "Content-Length: 216\r\n" "Content-Type: application/xml\r\n" "\r\n" '<?xml version="1.0" encoding="utf-8"?>\r\n' "<Error><Code>BlobNotFound</Code><Message>The specified blob does not exist.\r\n" "RequestId:778fdc83-801e-0000-62ff-0334671e2852\r\n" "Time:2018-06-14T16:46:54.6040685Z</Message></Error>\r\n" "--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--" ) response = mock_response( request, body_as_str.encode('ascii'), "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) response = response.parts() assert len(response) == 2 res0 = response[0] assert res0.status_code == 202 assert res0.headers['x-ms-fun'] == 'true' res1 = response[1] assert res1.status_code == 404 assert res1.headers['x-ms-fun'] == 'true' @pytest.mark.parametrize("mock_response", MOCK_RESPONSES) def test_raise_for_status_bad_response(mock_response): response = mock_response(request=None, body=None, content_type=None) response.status_code = 400 with pytest.raises(HttpResponseError): response.raise_for_status() @pytest.mark.parametrize("mock_response", MOCK_RESPONSES) def test_raise_for_status_good_response(mock_response): response = mock_response(request=None, body=None, content_type=None) response.status_code = 200 response.raise_for_status() @pytest.mark.parametrize("http_request,mock_response", request_and_responses_product(MOCK_RESPONSES)) def test_multipart_receive_with_one_changeset(http_request, mock_response): changeset = http_request(None, None) changeset.set_multipart_mixed( http_request("DELETE", "/container0/blob0"), http_request("DELETE", "/container1/blob1") ) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(changeset) body_as_bytes = ( b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525"\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'HTTP/1.1 202 Accepted\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'HTTP/1.1 202 Accepted\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--\r\n' ) response = mock_response( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] for part in response.parts(): parts.append(part) assert len(parts) == 2 res0 = parts[0] assert res0.status_code == 202 @pytest.mark.parametrize("http_request,mock_response", request_and_responses_product(MOCK_RESPONSES)) def test_multipart_receive_with_multiple_changesets(http_request, mock_response): changeset1 = http_request(None, None) changeset1.set_multipart_mixed( http_request("DELETE", "/container0/blob0"), http_request("DELETE", "/container1/blob1") ) changeset2 = http_request(None, None) changeset2.set_multipart_mixed( http_request("DELETE", "/container2/blob2"), http_request("DELETE", "/container3/blob3") ) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(changeset1, changeset2) body_as_bytes = ( b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525"\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'HTTP/1.1 200\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'HTTP/1.1 202\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314"\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'HTTP/1.1 404\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 3\r\n' b'\r\n' b'HTTP/1.1 409\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--\r\n' ) response = mock_response( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] for part in response.parts(): parts.append(part) assert len(parts) == 4 assert parts[0].status_code == 200 assert parts[1].status_code == 202 assert parts[2].status_code == 404 assert parts[3].status_code == 409 @pytest.mark.parametrize("http_request,mock_response", request_and_responses_product(MOCK_RESPONSES)) def test_multipart_receive_with_combination_changeset_first(http_request, mock_response): changeset = http_request(None, None) changeset.set_multipart_mixed( http_request("DELETE", "/container0/blob0"), http_request("DELETE", "/container1/blob1") ) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(changeset, http_request("DELETE", "/container2/blob2")) body_as_bytes = ( b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525"\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'HTTP/1.1 200\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'HTTP/1.1 202\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'HTTP/1.1 404\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--\r\n' ) response = mock_response( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] for part in response.parts(): parts.append(part) assert len(parts) == 3 assert parts[0].status_code == 200 assert parts[1].status_code == 202 assert parts[2].status_code == 404 @pytest.mark.parametrize("http_request,mock_response", request_and_responses_product(MOCK_RESPONSES)) def test_multipart_receive_with_combination_changeset_middle(http_request, mock_response): changeset = http_request(None, None) changeset.set_multipart_mixed(http_request("DELETE", "/container1/blob1")) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( http_request("DELETE", "/container0/blob0"), changeset, http_request("DELETE", "/container2/blob2") ) body_as_bytes = ( b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'HTTP/1.1 200\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525"\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'HTTP/1.1 202\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'HTTP/1.1 404\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--\r\n' ) response = mock_response( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] for part in response.parts(): parts.append(part) assert len(parts) == 3 assert parts[0].status_code == 200 assert parts[1].status_code == 202 assert parts[2].status_code == 404 @pytest.mark.parametrize("http_request,mock_response", request_and_responses_product(MOCK_RESPONSES)) def test_multipart_receive_with_combination_changeset_last(http_request, mock_response): changeset = http_request(None, None) changeset.set_multipart_mixed( http_request("DELETE", "/container1/blob1"), http_request("DELETE", "/container2/blob2") ) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(http_request("DELETE", "/container0/blob0"), changeset) body_as_bytes = ( b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'HTTP/1.1 200\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525"\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'HTTP/1.1 202\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'HTTP/1.1 404\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--\r\n' ) response = mock_response( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] for part in response.parts(): parts.append(part) assert len(parts) == 3 assert parts[0].status_code == 200 assert parts[1].status_code == 202 assert parts[2].status_code == 404 @pytest.mark.parametrize("http_request,mock_response", request_and_responses_product(MOCK_RESPONSES)) def test_multipart_receive_with_bom(http_request, mock_response): req0 = http_request("DELETE", "/container0/blob0") request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(req0) body_as_bytes = ( b"--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\n" b"Content-Type: application/http\n" b"Content-Transfer-Encoding: binary\n" b"Content-ID: 0\n" b'\r\n' b'HTTP/1.1 400 One of the request inputs is not valid.\r\n' b'Content-Length: 220\r\n' b'Content-Type: application/xml\r\n' b'Server: Windows-Azure-Blob/1.0\r\n' b'\r\n' b'\xef\xbb\xbf<?xml version="1.0" encoding="utf-8"?>\n<Error><Code>InvalidInput</Code><Message>One' b'of the request inputs is not valid.\nRequestId:5f3f9f2f-e01e-00cc-6eb1-6d00b5000000\nTime:2019-09-17T23:44:07.4671860Z</Message></Error>\n' b"--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--" ) response = mock_response( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) response = response.parts() assert len(response) == 1 res0 = response[0] assert res0.status_code == 400 assert res0.body().startswith(b'\xef\xbb\xbf') @pytest.mark.parametrize("http_request,mock_response", request_and_responses_product(MOCK_RESPONSES)) def test_recursive_multipart_receive(http_request, mock_response): req0 = http_request("DELETE", "/container0/blob0") internal_req0 = http_request("DELETE", "/container0/blob0") req0.set_multipart_mixed(internal_req0) request = http_request("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(req0) internal_body_as_str = ( "--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n" "Content-Type: application/http\r\n" "Content-ID: 0\r\n" "\r\n" "HTTP/1.1 400 Accepted\r\n" "x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n" "x-ms-version: 2018-11-09\r\n" "\r\n" "--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--" ) body_as_str = ( "--batchresponse_8d5f5bcd-2cb5-44bb-91b5-e9a722e68cb6\r\n" "Content-Type: application/http\r\n" "Content-ID: 0\r\n" "\r\n" "HTTP/1.1 202 Accepted\r\n" "Content-Type: multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n" "\r\n" "{}" "--batchresponse_8d5f5bcd-2cb5-44bb-91b5-e9a722e68cb6--" ).format(internal_body_as_str) response = mock_response( request, body_as_str.encode('ascii'), "multipart/mixed; boundary=batchresponse_8d5f5bcd-2cb5-44bb-91b5-e9a722e68cb6" ) response = response.parts() assert len(response) == 1 res0 = response[0] assert res0.status_code == 202 internal_response = res0.parts() assert len(internal_response) == 1 internal_response0 = internal_response[0] assert internal_response0.status_code == 400 def test_close_unopened_transport(): transport = RequestsTransport() transport.close() @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_timeout(caplog, port, http_request): transport = RequestsTransport() request = http_request("GET", "http://localhost:{}/basic/string".format(port)) with caplog.at_level(logging.WARNING, logger="azure.core.pipeline.transport"): with Pipeline(transport) as pipeline: pipeline.run(request, connection_timeout=100) assert "Tuple timeout setting is deprecated" not in caplog.text @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_tuple_timeout(caplog, port, http_request): transport = RequestsTransport() request = http_request("GET", "http://localhost:{}/basic/string".format(port)) with caplog.at_level(logging.WARNING, logger="azure.core.pipeline.transport"): with Pipeline(transport) as pipeline: pipeline.run(request, connection_timeout=(100, 100)) assert "Tuple timeout setting is deprecated" in caplog.text @pytest.mark.parametrize("http_request", HTTP_REQUESTS) def test_conflict_timeout(caplog, port, http_request): transport = RequestsTransport() request = http_request("GET", "http://localhost:{}/basic/string".format(port)) with pytest.raises(ValueError): with Pipeline(transport) as pipeline: pipeline.run(request, connection_timeout=(100, 100), read_timeout = 100)
36.423559
149
0.641941
68b0edb448645cc1ec3735e533a8e694e11aa872
8,543
py
Python
train_abstractor.py
silenceliang/Cascading-agents-hybridSum
6c127df51bd8cc926878f62ebdb66bc1042bb58c
[ "MIT" ]
1
2020-02-23T15:38:18.000Z
2020-02-23T15:38:18.000Z
train_abstractor.py
silenceliang/CascadingAgentsHybridSum
6c127df51bd8cc926878f62ebdb66bc1042bb58c
[ "MIT" ]
null
null
null
train_abstractor.py
silenceliang/CascadingAgentsHybridSum
6c127df51bd8cc926878f62ebdb66bc1042bb58c
[ "MIT" ]
null
null
null
""" train the abstractor""" import argparse import json import os from os.path import join, exists import pickle as pkl from cytoolz import compose import torch from torch import optim from torch.nn import functional as F from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import DataLoader from model.copy_summ import CopySumm from model.util import sequence_loss from training import get_basic_grad_fn, basic_validate from training import BasicPipeline, BasicTrainer from data.data import CnnDmDataset from data.batcher import coll_fn, prepro_fn from data.batcher import convert_batch_copy, batchify_fn_copy from data.batcher import BucketedGenerater from utils import PAD, UNK, START, END from utils import make_vocab, make_embedding # NOTE: bucket size too large may sacrifice randomness, # to low may increase # of PAD tokens BUCKET_SIZE = 6400 try: DATA_DIR = os.environ['DATA'] except KeyError: print('please use environment variable to specify data directories') class MatchDataset(CnnDmDataset): """ single article sentence -> single abstract sentence (dataset created by greedily matching ROUGE) """ def __init__(self, split): super().__init__(split, DATA_DIR) def __getitem__(self, i): js_data = super().__getitem__(i) art_sents, abs_sents, extracts = ( js_data['article'], js_data['abstract'], js_data['extracted']) # 被label的句子 matched_arts = [art_sents[i] for i in extracts] return matched_arts, abs_sents[:len(extracts)] def configure_net(vocab_size, emb_dim, n_hidden, bidirectional, n_layer): net_args = {} net_args['vocab_size'] = vocab_size net_args['emb_dim'] = emb_dim net_args['n_hidden'] = n_hidden net_args['bidirectional'] = bidirectional net_args['n_layer'] = n_layer net = CopySumm(**net_args) return net, net_args def configure_training(opt, lr, clip_grad, lr_decay, batch_size): """ supports Adam optimizer only""" assert opt in ['adam'] opt_kwargs = {} opt_kwargs['lr'] = lr train_params = {} train_params['optimizer'] = (opt, opt_kwargs) train_params['clip_grad_norm'] = clip_grad train_params['batch_size'] = batch_size train_params['lr_decay'] = lr_decay nll = lambda logit, target: F.nll_loss(logit, target, reduce=False) def criterion(logits, targets): return sequence_loss(logits, targets, nll, pad_idx=PAD) return criterion, train_params def build_batchers(word2id, cuda, debug): prepro = prepro_fn(args.max_art, args.max_abs) def sort_key(sample): src, target = sample return (len(target), len(src)) batchify = compose( batchify_fn_copy(PAD, START, END, cuda=cuda), convert_batch_copy(UNK, word2id) ) train_loader = DataLoader( MatchDataset('train'), batch_size=BUCKET_SIZE, shuffle=not debug, num_workers=4 if cuda and not debug else 0, collate_fn=coll_fn ) train_batcher = BucketedGenerater(train_loader, prepro, sort_key, batchify, single_run=False, fork=not debug) val_loader = DataLoader( MatchDataset('val'), batch_size=BUCKET_SIZE, shuffle=False, num_workers=4 if cuda and not debug else 0, collate_fn=coll_fn ) val_batcher = BucketedGenerater(val_loader, prepro, sort_key, batchify, single_run=True, fork=not debug) return train_batcher, val_batcher def main(args): # create data batcher, vocabulary # batcher with open(join(DATA_DIR, 'vocab_cnt.pkl'), 'rb') as f: wc = pkl.load(f) word2id = make_vocab(wc, args.vsize) train_batcher, val_batcher = build_batchers(word2id, args.cuda, args.debug) # make net net, net_args = configure_net(len(word2id), args.emb_dim, args.n_hidden, args.bi, args.n_layer) if args.w2v: # NOTE: the pretrained embedding having the same dimension # as args.emb_dim should already be trained embedding, _ = make_embedding( {i: w for w, i in word2id.items()}, args.w2v) net.set_embedding(embedding) # configure training setting criterion, train_params = configure_training( 'adam', args.lr, args.clip, args.decay, args.batch ) # save experiment setting if not exists(args.path): os.makedirs(args.path) with open(join(args.path, 'vocab.pkl'), 'wb') as f: pkl.dump(word2id, f, pkl.HIGHEST_PROTOCOL) meta = {} meta['net'] = 'base_abstractor' meta['net_args'] = net_args meta['traing_params'] = train_params with open(join(args.path, 'meta.json'), 'w') as f: json.dump(meta, f, indent=4) # prepare trainer val_fn = basic_validate(net, criterion) grad_fn = get_basic_grad_fn(net, args.clip) optimizer = optim.Adam(net.parameters(), **train_params['optimizer'][1]) scheduler = ReduceLROnPlateau(optimizer, 'min', verbose=True, factor=args.decay, min_lr=0, patience=args.lr_p) if args.cuda: net = net.cuda() pipeline = BasicPipeline(meta['net'], net, train_batcher, val_batcher, args.batch, val_fn, criterion, optimizer, grad_fn) trainer = BasicTrainer(pipeline, args.path, args.ckpt_freq, args.patience, scheduler) print('start training with the following hyper-parameters:') print(meta) trainer.train() if __name__ == '__main__': parser = argparse.ArgumentParser( description='training of the abstractor (ML)' ) parser.add_argument('--path', required=True, help='root of the model') parser.add_argument('--vsize', type=int, action='store', default=50000, help='vocabulary size') parser.add_argument('--emb_dim', type=int, action='store', default=512, help='the dimension of word embedding') # parser.add_argument('--vsize', type=int, action='store', default=30000, # help='vocabulary size') # parser.add_argument('--emb_dim', type=int, action='store', default=128, # help='the dimension of word embedding') parser.add_argument('--w2v', action='store', help='use pretrained word2vec embedding') parser.add_argument('--n_hidden', type=int, action='store', default=256, help='the number of hidden units of LSTM') parser.add_argument('--n_layer', type=int, action='store', default=1, help='the number of layers of LSTM') parser.add_argument('--no-bi', action='store_true', help='disable bidirectional LSTM encoder') # length limit parser.add_argument('--max_art', type=int, action='store', default=100, help='maximun words in a single article sentence') parser.add_argument('--max_abs', type=int, action='store', default=30, help='maximun words in a single abstract sentence') # training options parser.add_argument('--lr', type=float, action='store', default=1e-3, help='learning rate') parser.add_argument('--decay', type=float, action='store', default=0.5, help='learning rate decay ratio') parser.add_argument('--lr_p', type=int, action='store', default=0, help='patience for learning rate decay') parser.add_argument('--clip', type=float, action='store', default=2.0, help='gradient clipping') parser.add_argument('--batch', type=int, action='store', default=32, help='the training batch size') parser.add_argument( '--ckpt_freq', type=int, action='store', default=3000, help='number of update steps for checkpoint and validation' ) parser.add_argument('--patience', type=int, action='store', default=5, help='patience for early stopping') parser.add_argument('--debug', action='store_true', help='run in debugging mode') parser.add_argument('--no-cuda', action='store_true', help='disable GPU training') args = parser.parse_args() args.bi = not args.no_bi args.cuda = torch.cuda.is_available() and not args.no_cuda main(args)
38.138393
99
0.638886
71503e0df20e900fa7f9883d5159fc985aa88ac9
518
py
Python
formatter.py
pooran/githubot
87afe422cb4ac6e3888324e67c50aeeff81f9527
[ "MIT" ]
2
2018-03-08T16:57:54.000Z
2018-12-14T23:48:33.000Z
formatter.py
pooran/githubot
87afe422cb4ac6e3888324e67c50aeeff81f9527
[ "MIT" ]
null
null
null
formatter.py
pooran/githubot
87afe422cb4ac6e3888324e67c50aeeff81f9527
[ "MIT" ]
3
2018-09-01T16:17:07.000Z
2021-10-13T03:41:13.000Z
import re def format_issue(author, number, title, text, url): max_length = 4000 if len(title + text) > max_length: text = text[:max_length - len(title)] + '...' string = ('<b>Issue #{}</b>\n' '<b>Título:</b> {}\n' '<b>Autor:</b> {}\n\n' '{}\n\n' '<a href="{}">Link</a>'.format(number, title, author, text, url)) return string def fix_html(text): return re.sub('<.*?>', 'IMAGEN', text)
27.263158
73
0.449807
0325cc5c74249fc957fecf49949974ad375ea887
5,423
py
Python
lib/os/__init__.py
wangwansan/grumpy
aff3b3ff62a34c5baa9783307764f640df021337
[ "Apache-2.0" ]
11,252
2017-01-04T16:19:12.000Z
2022-03-31T13:42:31.000Z
lib/os/__init__.py
wangwansan/grumpy
aff3b3ff62a34c5baa9783307764f640df021337
[ "Apache-2.0" ]
301
2017-01-04T17:34:00.000Z
2022-03-15T21:40:21.000Z
lib/os/__init__.py
wangwansan/grumpy
aff3b3ff62a34c5baa9783307764f640df021337
[ "Apache-2.0" ]
819
2017-01-04T17:26:26.000Z
2022-03-20T14:11:28.000Z
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Miscellaneous operating system interfaces.""" # pylint: disable=g-multiple-import from '__go__/io/ioutil' import ReadDir from '__go__/os' import (Chdir, Chmod, Environ, Getpid as getpid, Getwd, Pipe, ProcAttr, Remove, StartProcess, Stat, Stdout, Stdin, Stderr, Mkdir) from '__go__/path/filepath' import Separator from '__go__/grumpy' import (NewFileFromFD, StartThread, ToNative) from '__go__/reflect' import MakeSlice from '__go__/runtime' import GOOS from '__go__/syscall' import (Close, SYS_FCNTL, Syscall, F_GETFD, Wait4, WaitStatus, WNOHANG) from '__go__/sync' import WaitGroup from '__go__/time' import Second import _syscall from os import path import stat as stat_module import sys sep = chr(Separator) error = OSError # pylint: disable=invalid-name curdir = '.' name = 'posix' environ = {} for var in Environ(): k, v = var.split('=', 1) environ[k] = v def mkdir(path, mode=0o777): err = Mkdir(path, mode) if err: raise OSError(err.Error()) def chdir(path): err = Chdir(path) if err: raise OSError(err.Error()) def chmod(filepath, mode): # TODO: Support mode flags other than perms. err = Chmod(filepath, stat(filepath).st_mode & ~0o777 | mode & 0o777) if err: raise OSError(err.Error()) def close(fd): err = Close(fd) if err: raise OSError(err.Error()) def fdopen(fd, mode='r'): # pylint: disable=unused-argument # Ensure this is a valid file descriptor to match CPython behavior. _, _, err = Syscall(SYS_FCNTL, fd, F_GETFD, 0) if err: raise OSError(err.Error()) return NewFileFromFD(fd, None) def listdir(p): files, err = ReadDir(p) if err: raise OSError(err.Error()) return [x.Name() for x in files] def getcwd(): dir, err = Getwd() if err: raise OSError(err.Error()) return dir class _Popen(object): def __init__(self, command, mode): self.mode = mode self.result = None self.r, self.w, err = Pipe() if err: raise OSError(err.Error()) attr = ProcAttr.new() # Create a slice using a reflect.Type returned by ToNative. # TODO: There should be a cleaner way to create slices in Python. files_type = ToNative(__frame__(), attr.Files).Type() files = MakeSlice(files_type, 3, 3).Interface() if self.mode == 'r': fd = self.r.Fd() files[0], files[1], files[2] = Stdin, self.w, Stderr elif self.mode == 'w': fd = self.w.Fd() files[0], files[1], files[2] = self.r, Stdout, Stderr else: raise ValueError('invalid popen mode: %r', self.mode) attr.Files = files # TODO: There should be a cleaner way to create slices in Python. args_type = ToNative(__frame__(), StartProcess).Type().In(1) args = MakeSlice(args_type, 3, 3).Interface() shell = environ['SHELL'] args[0] = shell args[1] = '-c' args[2] = command self.proc, err = StartProcess(shell, args, attr) if err: raise OSError(err.Error()) self.wg = WaitGroup.new() self.wg.Add(1) StartThread(self._thread_func) self.file = NewFileFromFD(fd, self.close) def _thread_func(self): self.result = self.proc.Wait() if self.mode == 'r': self.w.Close() self.wg.Done() def close(self, _): if self.mode == 'w': self.w.Close() self.wg.Wait() state, err = self.result if err: raise OSError(err.Error()) return state.Sys() def popen(command, mode='r'): return _Popen(command, mode).file def remove(filepath): if stat_module.S_ISDIR(stat(filepath).st_mode): raise OSError('Operation not permitted: ' + filepath) err = Remove(filepath) if err: raise OSError(err.Error()) def rmdir(filepath): if not stat_module.S_ISDIR(stat(filepath).st_mode): raise OSError('Operation not permitted: ' + filepath) err = Remove(filepath) if err: raise OSError(err.Error()) class StatResult(object): def __init__(self, info): self._info = info def st_mode(self): # TODO: This is an incomplete mode flag. It should include S_IFDIR, etc. return self._info.Mode() # TODO: Make this a decorator once they're implemented. st_mode = property(st_mode) def st_mtime(self): return float(self._info.ModTime().UnixNano()) / Second # TODO: Make this a decorator once they're implemented. st_mtime = property(st_mtime) def st_size(self): return self._info.Size() # TODO: Make this a decorator once they're implemented. st_size = property(st_size) def stat(filepath): info, err = Stat(filepath) if err: raise OSError(err.Error()) return StatResult(info) unlink = remove def waitpid(pid, options): status = WaitStatus.new() _syscall.invoke(Wait4, pid, status, options, None) return pid, _encode_wait_result(status) def _encode_wait_result(status): return status.Signal() | (status.ExitStatus() << 8)
26.072115
78
0.678776
678b32f7a9fb0553d6b1753a5ea827c3bd12858a
2,005
py
Python
2021/day25.py
mbcollins2/aoc
b94380fd5e92b4fe9f4af654e7762174c1c6ac91
[ "MIT" ]
null
null
null
2021/day25.py
mbcollins2/aoc
b94380fd5e92b4fe9f4af654e7762174c1c6ac91
[ "MIT" ]
3
2021-12-15T19:12:38.000Z
2021-12-15T19:14:42.000Z
2021/day25.py
mbcollins2/aoc
b94380fd5e92b4fe9f4af654e7762174c1c6ac91
[ "MIT" ]
null
null
null
from util.util import base from util import grid from collections import defaultdict class solve_day(base): def __init__(self, type='data'): super().__init__(type=type) self.data = grid.parse_as_grid(self.data, dtype='str') def get_moves(self, dir): moves = defaultdict(str) for row_i, row in enumerate(self.data): row_check = row_i+1 if row_i < len(self.data)-1 else 0 for column_i, column in enumerate(row): column_check = column_i+1 if column_i < len(row)-1 else 0 # east moves if dir == 'east': if column == '>': if self.data[row_i][column_check] == '.': moves[(row_i, column_i)] = '.' moves[(row_i, column_check)] = '>' # south moves if dir == 'south': if column == 'v': if self.data[row_check][column_i] == '.': moves[(row_i, column_i)] = '.' moves[(row_check, column_i)] = 'v' return moves def make_moves(self, moves): for coord in moves: self.data[coord[0]][coord[1]] = moves[coord] def part1(self): i=0 while True: i += 1 no_move_count = 0 moves = self.get_moves(dir='east') if len(moves) == 0: no_move_count += 1 pass else: self.make_moves(moves) moves = self.get_moves(dir='south') if len(moves) == 0: no_move_count += 1 pass else: self.make_moves(moves) if no_move_count == 2: return i def part2(self): pass if __name__ == '__main__': s = solve_day('lines') s.sub(s.part1(), part='a') s.sub(s.part2(), part='b')
27.847222
73
0.458853
b79e6501a7f82561d1ab03a6129fde115713c666
17,243
py
Python
octis/dataset/dataset.py
atypon/OCTIS
ff49bb3785197ca929c5626a3f04fbb917de2376
[ "MIT" ]
null
null
null
octis/dataset/dataset.py
atypon/OCTIS
ff49bb3785197ca929c5626a3f04fbb917de2376
[ "MIT" ]
null
null
null
octis/dataset/dataset.py
atypon/OCTIS
ff49bb3785197ca929c5626a3f04fbb917de2376
[ "MIT" ]
null
null
null
import codecs import json import pickle from os.path import join, exists from pathlib import Path import pandas as pd from octis.dataset.downloader import get_data_home, _pkl_filepath, download_dataset class Dataset: """ Dataset handles a dataset and offers methods to access, save and edit the dataset data """ def __init__(self, corpus=None, raw_corpus=None, vocabulary=None, labels=None, covariates=None, metadata=None, document_indexes=None): """ Initialize a dataset, parameters are optional if you want to load a dataset, initialize this class with default values and use the load method Parameters ---------- corpus : corpus of the dataset vocabulary : vocabulary of the dataset labels : labels of the dataset metadata : metadata of the dataset """ self.__corpus = corpus self.__raw_corpus = raw_corpus self.__vocabulary = vocabulary self.__metadata = metadata self.__labels = labels self.__covariates = covariates self.__original_indexes = document_indexes self.dataset_path = None self.is_cached = False # Partitioned Corpus getter def get_partitioned_corpus(self, use_validation=True): if "last-training-doc" in self.__metadata: last_training_doc = self.__metadata["last-training-doc"] if use_validation: last_validation_doc = self.__metadata["last-validation-doc"] if self.__corpus is not None and last_training_doc != 0: train_corpus = [] test_corpus = [] validation_corpus = [] for i in range(last_training_doc): train_corpus.append(self.__corpus[i]) for i in range(last_training_doc, last_validation_doc): validation_corpus.append(self.__corpus[i]) for i in range(last_validation_doc, len(self.__corpus)): test_corpus.append(self.__corpus[i]) return train_corpus, validation_corpus, test_corpus else: if self.__corpus is not None and last_training_doc != 0: if "last-validation-doc" in self.__metadata.keys(): last_validation_doc = self.__metadata["last-validation-doc"] else: last_validation_doc = 0 train_corpus = [] test_corpus = [] for i in range(last_training_doc): train_corpus.append(self.__corpus[i]) if last_validation_doc != 0: for i in range(last_validation_doc, len(self.__corpus)): test_corpus.append(self.__corpus[i]) else: for i in range(last_training_doc, len(self.__corpus)): test_corpus.append(self.__corpus[i]) return train_corpus, test_corpus else: return [self.__corpus] def get_split_indices(self, use_validation=False): train_indices = None test_indices = None valid_indices = None if "last-training-doc" in self.__metadata: last_training_doc = self.__metadata["last-training-doc"] if use_validation: last_validation_doc = self.__metadata["last-validation-doc"] if self.__corpus is not None and last_training_doc != 0: train_indices = list(range(0, last_training_doc)) valid_indices = list(range(last_training_doc, last_validation_doc)) test_indices = list(range(last_validation_doc, len(self.__corpus))) else: if self.__corpus is not None and last_training_doc != 0: if "last-validation-doc" in self.__metadata.keys(): last_validation_doc = self.__metadata["last-validation-doc"] else: last_validation_doc = 0 train_indices = list(range(0, last_training_doc)) if last_validation_doc != 0: test_indices = list(range(last_validation_doc, len(self.__corpus))) else: test_indices = list(range(last_training_doc, len(self.__corpus))) return train_indices, test_indices, valid_indices # Corpus getter def get_raw_corpus(self): return self.__raw_corpus # Corpus getter def get_corpus(self): return self.__corpus # Indexes getter def get_document_indexes(self): return self.__original_indexes # Edges getter def get_edges(self): return self.__edges # Labels getter def get_labels(self): return self.__labels # Covariates getter def get_covariates(self): return self.__covariates # Metadata getter def get_metadata(self): return self.__metadata # Info getter def get_info(self): if "info" in self.__metadata: return self.__metadata["info"] else: return None # Vocabulary getter def get_vocabulary(self): return self.__vocabulary def _save_metadata(self, file_name): """ Saves metadata in json serialized format Parameters ---------- file_name : name of the file to write Returns ------- True if the data is saved """ data = self.get_metadata() if data is not None: with open(file_name, 'w') as outfile: json.dump(data, outfile) return True else: raise Exception("error in saving metadata") def _load_metadata(self, file_name): """ Loads metadata from json serialized format Parameters ---------- file_name : name of the file to read """ file = Path(file_name) if file.is_file(): with open(file_name, 'r') as metadata_file: metadata = json.load(metadata_file) self.__metadata = metadata def _load_corpus(self, file_name): """ Loads corpus from a file Parameters ---------- file_name : name of the file to read """ file = Path(file_name) if file.is_file(): with open(file_name, 'r') as corpus_file: corpus = [line.strip().split() for line in corpus_file] self.__corpus = corpus else: raise Exception("error in loading corpus") def _load_raw_corpus(self, file_name): """ Loads raw corpus from a file Parameters ---------- file_name : name of the file to read """ file = Path(file_name) if file.is_file(): with open(file_name, 'r') as corpus_file: corpus = [line.strip().split() for line in corpus_file] self.__raw_corpus = corpus else: raise Exception("error in loading raw corpus") def _save_edges(self, file_name): """ Saves edges in a file, a line for each document Parameters ---------- file_name : name of the file to write """ data = self.get_edges() if data is not None: with open(file_name, 'w') as outfile: for element in data: outfile.write("%s\n" % element) else: raise Exception("error in saving edges") def _load_edges(self, file_name): """ Loads edges from a file Parameters ---------- file_name : name of the file to read """ file = Path(file_name) if file.is_file(): with open(file_name, 'r') as edges_file: edges = [line[0:len(line) - 1] for line in edges_file] self.__edges = edges def _save_labels(self, file_name): """ Saves the labels in a file, each line contains the labels of a single document Parameters ---------- file_name : name of the file to write """ data = self.get_labels() if data is not None: with open(file_name, 'w') as outfile: for element in data: outfile.write("%s\n" % json.dumps(element)) else: raise Exception("error in saving labels") def _load_labels(self, file_name): """ Loads labels from a file Parameters ---------- file_name : name of the file to read ---------- """ file = Path(file_name) if file.is_file(): with open(file_name, 'r') as labels_file: labels = [json.loads(line.strip()) for line in labels_file] self.__labels = labels def _load_covariates(self, file_name): """ Loads covariates from a file Parameters ---------- file_name : name of the file to read ---------- """ file = Path(file_name) if file.is_file(): with open(file_name, 'r') as covariates_file: covariates = [json.loads(line.strip()) for line in covariates_file] self.__covariates = covariates def _save_vocabulary(self, file_name): """ Saves vocabulary dictionary in a file Parameters ---------- file_name : name of the file to write ------- """ data = self.get_vocabulary() if data is not None: with open(file_name, 'w', encoding='utf8') as outfile: for word in data: outfile.write(word + "\n") else: raise Exception("error in saving vocabulary") def _save_document_indexes(self, file_name): """ Saves document indexes in a file Parameters ---------- file_name : name of the file to write ------- """ if self.__original_indexes is not None: with open(file_name, 'w') as outfile: for i in self.__original_indexes: outfile.write(str(i) + "\n") def _load_vocabulary(self, file_name): """ Loads vocabulary from a file Parameters ---------- file_name : name of the file to read """ vocabulary = [] file = Path(file_name) if file.is_file(): with open(file_name, 'r') as vocabulary_file: for line in vocabulary_file: vocabulary.append(line.strip()) self.__vocabulary = vocabulary else: raise Exception("error in loading vocabulary") def _load_document_indexes(self, file_name): """ Loads document indexes from a file Parameters ---------- file_name : name of the file to read """ document_indexes = [] file = Path(file_name) if file.is_file(): with open(file_name, 'r') as indexes_file: for line in indexes_file: document_indexes.append(line.strip()) self.__original_indexes = document_indexes else: raise Exception("error in loading vocabulary") def save(self, path): """ Saves all the dataset info in a folder Parameters ---------- path : path to the folder in which files are saved. If the folder doesn't exist it will be created """ Path(path).mkdir(parents=True, exist_ok=True) try: partitions = self.get_partitioned_corpus() corpus, partition = [], [] for i, p in enumerate(partitions): if i == 0: part = 'train' elif i == 1 and len(partitions) == 3: part = 'val' else: part = 'test' for doc in p: corpus.append(' '.join(doc)) partition.append(part) df = pd.DataFrame(data=corpus) df = pd.concat([df, pd.DataFrame(partition)], axis=1) labs = [' '.join(lab) for lab in self.__labels] covars = [' '.join(lab) for lab in self.__covariates] if self.__labels: df = pd.concat([df, pd.DataFrame(labs), pd.DataFrame(covars)], axis=1) df.to_csv(path + '/corpus.tsv', sep='\t', index=False, header=False) self._save_vocabulary(path + "/vocabulary.txt") self._save_metadata(path + "/metadata.json") self._save_document_indexes(path + "/indexes.txt") self.dataset_path = path except: raise Exception("error in saving the dataset") # TODO :: update this method to load labels, covaraites, and edges def load_custom_dataset_from_folder(self, path, multilabel=False): """ Loads all the dataset from a folder Parameters ---------- path : path of the folder to read """ self.dataset_path = path try: if exists(self.dataset_path + "/metadata.json"): self._load_metadata(self.dataset_path + "/metadata.json") else: self.__metadata = dict() df = pd.read_csv(self.dataset_path + "/corpus.tsv", sep='\t', header=None) if len(df.keys()) > 1: # just make sure docs are sorted in the right way (train - val - test) final_df = df[df[1] == 'train'].append(df[df[1] == 'val']) final_df = final_df.append(df[df[1] == 'test']) self.__metadata['last-training-doc'] = len(final_df[final_df[1] == 'train']) self.__metadata['last-validation-doc'] = len(final_df[final_df[1] == 'val']) + \ len(final_df[final_df[1] == 'train']) self.__corpus = [d.split() for d in final_df[0].tolist()] if len(final_df.keys()) > 2: if multilabel: self.__labels = [doc.split() for doc in final_df[2].tolist()] else: self.__labels = final_df[2].tolist() else: self.__corpus = [d.split() for d in df[0].tolist()] self.__metadata['last-training-doc'] = len(df[0]) if exists(self.dataset_path + "/vocabulary.txt"): self._load_vocabulary(self.dataset_path + "/vocabulary.txt") else: vocab = set() for d in self.__corpus: for w in set(d): vocab.add(w) self.__vocabulary = list(vocab) if exists(self.dataset_path + "/indexes.txt"): self._load_document_indexes(self.dataset_path + "/indexes.txt") except: raise Exception("error in loading the dataset:" + self.dataset_path) def fetch_dataset(self, dataset_name, data_home=None, download_if_missing=True): """Load the filenames and data from a dataset. Parameters ---------- dataset_name: name of the dataset to download or retrieve data_home : optional, default: None Specify a download and cache folder for the datasets. If None, all data is stored in '~/octis' subfolders. download_if_missing : optional, True by default If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site. """ data_home = get_data_home(data_home=data_home) cache_path = _pkl_filepath(data_home, dataset_name + ".pkz") dataset_home = join(data_home, dataset_name) cache = None if exists(cache_path): try: with open(cache_path, 'rb') as f: compressed_content = f.read() uncompressed_content = codecs.decode( compressed_content, 'zlib_codec') cache = pickle.loads(uncompressed_content) except Exception as e: print(80 * '_') print('Cache loading failed') print(80 * '_') print(e) if cache is None: if download_if_missing: cache = download_dataset(dataset_name, target_dir=dataset_home, cache_path=cache_path) else: raise IOError(dataset_name + ' dataset not found') self.is_cached = True self.__corpus = [d.split() for d in cache["corpus"]] self.__raw_corpus = cache["raw_corpus"] self.__vocabulary = cache["vocabulary"] self.__metadata = cache["metadata"] self.dataset_path = cache_path self.__labels = cache["labels"] self.__covariates = cache["covariates"]
36.377637
114
0.544801
4bb8e2093657109726e544796caf330dd10af5bf
1,235
py
Python
Angle_model_file/detect_img.py
HAIbingshuai/chinese_ocr
36c06226b3762b2e516427579f2c2614770e60ae
[ "MIT" ]
21
2019-11-16T15:12:17.000Z
2022-02-24T03:08:44.000Z
Angle_model_file/detect_img.py
HAIbingshuai/chinese_ocr
36c06226b3762b2e516427579f2c2614770e60ae
[ "MIT" ]
1
2019-12-03T00:41:09.000Z
2020-10-16T13:46:11.000Z
Angle_model_file/detect_img.py
HAIbingshuai/chinese_ocr
36c06226b3762b2e516427579f2c2614770e60ae
[ "MIT" ]
3
2019-12-10T02:43:20.000Z
2021-05-12T07:31:41.000Z
# coding=utf-8 python3.6 # ================================================================ # Copyright (C) 2019 * Ltd. All rights reserved. # license='MIT License' # Author : haibingshuai  # Created date: 2019/11/8 9:38 # Description : # ================================================================ from Angle_model_file.text.opencv_dnn_detect import angle_detect from PIL import Image import cv2 import numpy as np image_path = './data_test/img.jpeg' image = cv2.imread(image_path) angle = angle_detect(image) if angle == 90: im = Image.fromarray(image).transpose(Image.ROTATE_90) img = np.array(im) elif angle == 180: im = Image.fromarray(image).transpose(Image.ROTATE_180) img = np.array(im) elif angle == 270: im = Image.fromarray(image).transpose(Image.ROTATE_270) img = np.array(im) print(angle) # result = union_rbox(result, 0.2) # res = [{'text': x['text'], # 'name': str(i), # 'box': {'cx': x['cx'], # 'cy': x['cy'], # 'w': x['w'], # 'h': x['h'], # 'angle': x['degree'] # # } # } for i, x in enumerate(result)] # res = adjust_box_to_origin(img, angle, res) ##修正box
25.204082
66
0.519028
935eb517e05278cc10295b753607fdcd06ec500b
3,409
py
Python
modeling/backbones/resnet.py
CHENGY12/APNet
95fc5b5893d562fe57600f9a1df589cf3711ee7b
[ "MIT" ]
31
2021-07-29T15:52:33.000Z
2022-03-17T07:01:48.000Z
modeling/backbones/resnet.py
Mawandasmat/APNet
8ba6e078ff062415b2b2b34115bbadb4cfd6e827
[ "MIT" ]
7
2021-09-02T08:54:40.000Z
2022-02-10T16:56:43.000Z
modeling/backbones/resnet.py
Mawandasmat/APNet
8ba6e078ff062415b2b2b34115bbadb4cfd6e827
[ "MIT" ]
5
2021-08-30T00:55:18.000Z
2021-10-19T03:13:11.000Z
import math import torch from torch import nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, last_stride=2, block=Bottleneck, layers=[3, 4, 6, 3]): self.inplanes = 64 super().__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) #self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer( block, 512, layers[3], stride=last_stride) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) #x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def random_init(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
31.859813
77
0.565855
ffeb0bcfbaa095d5f3c6c5a007d61e5e56a570fc
21,269
py
Python
core/controllers/topic_viewer_test.py
abhinavrastogi2627/oppia
1a6321c18cb57653787e9fed395a32eae33fbecb
[ "Apache-2.0" ]
null
null
null
core/controllers/topic_viewer_test.py
abhinavrastogi2627/oppia
1a6321c18cb57653787e9fed395a32eae33fbecb
[ "Apache-2.0" ]
null
null
null
core/controllers/topic_viewer_test.py
abhinavrastogi2627/oppia
1a6321c18cb57653787e9fed395a32eae33fbecb
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the topic viewer page.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules from constants import constants from core.domain import question_services from core.domain import skill_services from core.domain import story_domain from core.domain import story_services from core.domain import topic_domain from core.domain import topic_services from core.domain import user_services from core.tests import test_utils import feconf import python_utils class BaseTopicViewerControllerTests(test_utils.GenericTestBase): def setUp(self): """Completes the sign-up process for the various users.""" super(BaseTopicViewerControllerTests, self).setUp() self.signup(self.NEW_USER_EMAIL, self.NEW_USER_USERNAME) self.user_id = self.get_user_id_from_email(self.NEW_USER_EMAIL) self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.set_admins([self.ADMIN_USERNAME]) self.admin = user_services.UserActionsInfo(self.admin_id) self.topic_id = 'topic' self.story_id_1 = 'story_id_1' self.story_id_2 = 'story_id_2' self.topic_id_1 = 'topic1' self.topic_id_2 = 'topic2' self.skill_id_1 = skill_services.get_new_skill_id() self.skill_id_2 = skill_services.get_new_skill_id() self.story_1 = story_domain.Story.create_default_story( self.story_id_1, 'story_title', 'description', self.topic_id_1, 'story-frag-one') self.story_1.description = 'story_description' self.story_1.node_titles = [] self.story_2 = story_domain.Story.create_default_story( self.story_id_2, 'story_title', 'description', self.topic_id_2, 'story-frag-two') self.story_2.description = 'story_description' self.story_2.node_titles = [] self.topic = topic_domain.Topic.create_default_topic( self.topic_id, 'public_topic_name', 'public', 'description') self.topic.uncategorized_skill_ids.append(self.skill_id_1) self.topic.subtopics.append(topic_domain.Subtopic( 1, 'subtopic_name', [self.skill_id_2], 'image.svg', constants.ALLOWED_THUMBNAIL_BG_COLORS['subtopic'][0], 'subtopic-name')) self.topic.next_subtopic_id = 2 self.topic.thumbnail_filename = 'Image.svg' self.topic.thumbnail_bg_color = ( constants.ALLOWED_THUMBNAIL_BG_COLORS['topic'][0]) self.topic.canonical_story_references.append( topic_domain.StoryReference.create_default_story_reference( self.story_id_1)) self.topic.additional_story_references.append( topic_domain.StoryReference.create_default_story_reference( self.story_id_2)) topic_services.save_new_topic(self.admin_id, self.topic) story_services.save_new_story(self.admin_id, self.story_1) story_services.save_new_story(self.admin_id, self.story_2) self.topic = topic_domain.Topic.create_default_topic( self.topic_id_1, 'private_topic_name', 'private_topic_name', 'description') self.topic.thumbnail_filename = 'Image.svg' self.topic.thumbnail_bg_color = ( constants.ALLOWED_THUMBNAIL_BG_COLORS['topic'][0]) self.topic.url_fragment = 'private' topic_services.save_new_topic(self.admin_id, self.topic) topic_services.publish_topic(self.topic_id, self.admin_id) topic_services.publish_story( self.topic_id, self.story_id_1, self.admin_id) topic_services.publish_story( self.topic_id, self.story_id_2, self.admin_id) self.save_new_skill( self.skill_id_1, self.user_id, description='Skill Description 1') self.save_new_skill( self.skill_id_2, self.user_id, description='Skill Description 2') skill_services.create_user_skill_mastery( self.user_id, self.skill_id_1, 0.3) skill_services.create_user_skill_mastery( self.user_id, self.skill_id_2, 0.5) class TopicViewerPageTests(BaseTopicViewerControllerTests): def test_any_user_can_access_topic_viewer_page(self): self.get_html_response('/learn/staging/%s' % 'public') def test_accessibility_of_unpublished_topic_viewer_page(self): self.get_html_response( '/learn/staging/%s' % 'private', expected_status_int=404) self.login(self.ADMIN_EMAIL) self.get_html_response('/learn/staging/%s' % 'private') self.logout() class TopicPageDataHandlerTests( BaseTopicViewerControllerTests, test_utils.EmailTestBase): def test_get_with_no_user_logged_in(self): json_response = self.get_json( '%s/staging/%s' % (feconf.TOPIC_DATA_HANDLER, 'public')) expected_dict = { 'topic_name': 'public_topic_name', 'topic_id': self.topic_id, 'canonical_story_dicts': [{ 'id': self.story_1.id, 'title': self.story_1.title, 'description': self.story_1.description, 'node_titles': self.story_1.node_titles, 'thumbnail_filename': None, 'thumbnail_bg_color': None, 'story_is_published': True, 'completed_node_titles': [], 'url_fragment': 'story-frag-one' }], 'additional_story_dicts': [{ 'id': self.story_2.id, 'title': self.story_2.title, 'description': self.story_2.description, 'node_titles': self.story_2.node_titles, 'thumbnail_filename': None, 'thumbnail_bg_color': None, 'story_is_published': True, 'completed_node_titles': [], 'url_fragment': 'story-frag-two' }], 'uncategorized_skill_ids': [self.skill_id_1], 'subtopics': [{ u'thumbnail_filename': u'image.svg', u'thumbnail_bg_color': u'#FFFFFF', u'skill_ids': [self.skill_id_2], u'id': 1, u'title': u'subtopic_name', u'url_fragment': u'subtopic-name'}], 'degrees_of_mastery': { self.skill_id_1: None, self.skill_id_2: None }, 'skill_descriptions': { self.skill_id_1: 'Skill Description 1', self.skill_id_2: 'Skill Description 2' }, 'train_tab_should_be_displayed': False } self.assertDictContainsSubset(expected_dict, json_response) def test_get_with_user_logged_in(self): skill_services.delete_skill(self.admin_id, self.skill_id_1) self.login(self.NEW_USER_EMAIL) with self.swap(feconf, 'CAN_SEND_EMAILS', True): messages = self._get_sent_email_messages( feconf.ADMIN_EMAIL_ADDRESS) self.assertEqual(len(messages), 0) json_response = self.get_json( '%s/staging/%s' % (feconf.TOPIC_DATA_HANDLER, 'public')) messages = self._get_sent_email_messages( feconf.ADMIN_EMAIL_ADDRESS) expected_email_html_body = ( 'The deleted skills: %s are still' ' present in topic with id %s' % ( self.skill_id_1, self.topic_id)) self.assertEqual(len(messages), 1) self.assertIn( expected_email_html_body, messages[0].html.decode()) expected_dict = { 'topic_name': 'public_topic_name', 'topic_id': self.topic_id, 'canonical_story_dicts': [{ 'id': self.story_1.id, 'title': self.story_1.title, 'description': self.story_1.description, 'node_titles': self.story_1.node_titles, 'thumbnail_filename': None, 'thumbnail_bg_color': None, 'story_is_published': True, 'completed_node_titles': [], 'url_fragment': 'story-frag-one' }], 'additional_story_dicts': [{ 'id': self.story_2.id, 'title': self.story_2.title, 'description': self.story_2.description, 'node_titles': self.story_2.node_titles, 'thumbnail_filename': None, 'thumbnail_bg_color': None, 'story_is_published': True, 'completed_node_titles': [], 'url_fragment': 'story-frag-two' }], 'uncategorized_skill_ids': [self.skill_id_1], 'subtopics': [{ u'thumbnail_filename': u'image.svg', u'thumbnail_bg_color': u'#FFFFFF', u'skill_ids': [self.skill_id_2], u'id': 1, u'title': u'subtopic_name', u'url_fragment': u'subtopic-name'}], 'degrees_of_mastery': { self.skill_id_1: 0.3, self.skill_id_2: 0.5 }, 'skill_descriptions': { self.skill_id_1: None, self.skill_id_2: 'Skill Description 2' }, 'train_tab_should_be_displayed': False } self.assertDictContainsSubset(expected_dict, json_response) self.logout() def test_get_with_no_skills_ids(self): self.topic = topic_domain.Topic.create_default_topic( self.topic_id, 'topic_with_no_skills', 'topic-with-no-skills', 'description') topic_services.save_new_topic(self.admin_id, self.topic) topic_services.publish_topic(self.topic_id, self.admin_id) json_response = self.get_json( '%s/staging/%s' % ( feconf.TOPIC_DATA_HANDLER, 'topic-with-no-skills')) expected_dict = { 'topic_name': 'topic_with_no_skills', 'topic_id': self.topic_id, 'canonical_story_dicts': [], 'additional_story_dicts': [], 'uncategorized_skill_ids': [], 'subtopics': [], 'degrees_of_mastery': {}, 'skill_descriptions': {}, 'train_tab_should_be_displayed': False } self.assertDictContainsSubset(expected_dict, json_response) def test_get_with_five_or_more_questions(self): number_of_questions = 6 self.topic_id = 'new_topic' self.skill_id_1 = skill_services.get_new_skill_id() self.topic = topic_domain.Topic.create_default_topic( self.topic_id, 'new_topic', 'new-topic', 'description') self.topic.uncategorized_skill_ids.append(self.skill_id_1) self.topic.thumbnail_filename = 'Image.svg' self.topic.thumbnail_bg_color = ( constants.ALLOWED_THUMBNAIL_BG_COLORS['topic'][0]) topic_services.save_new_topic(self.admin_id, self.topic) topic_services.publish_topic(self.topic_id, self.admin_id) self.save_new_skill( self.skill_id_1, self.admin_id, description='Skill Description 1') for index in python_utils.RANGE(number_of_questions): question_id = question_services.get_new_question_id() self.save_new_question( question_id, self.admin_id, self._create_valid_question_data(index), [self.skill_id_1]) question_services.create_new_question_skill_link( self.admin_id, question_id, self.skill_id_1, 0.5) json_response = self.get_json( '%s/staging/%s' % (feconf.TOPIC_DATA_HANDLER, 'new-topic')) expected_dict = { 'topic_name': 'new_topic', 'topic_id': self.topic_id, 'canonical_story_dicts': [], 'additional_story_dicts': [], 'uncategorized_skill_ids': [self.skill_id_1], 'subtopics': [], 'degrees_of_mastery': { self.skill_id_1: None }, 'skill_descriptions': { self.skill_id_1: 'Skill Description 1' }, 'train_tab_should_be_displayed': True } self.assertDictContainsSubset(expected_dict, json_response) self.logout() def test_get_with_twenty_or_more_questions(self): number_of_questions = 50 self.topic_id = 'new_topic' self.skill_id_1 = skill_services.get_new_skill_id() self.topic = topic_domain.Topic.create_default_topic( self.topic_id, 'new_topic', 'new-topic', 'description') self.topic.uncategorized_skill_ids.append(self.skill_id_1) self.topic.thumbnail_filename = 'Image.svg' self.topic.thumbnail_bg_color = ( constants.ALLOWED_THUMBNAIL_BG_COLORS['topic'][0]) topic_services.save_new_topic(self.admin_id, self.topic) topic_services.publish_topic(self.topic_id, self.admin_id) self.save_new_skill( self.skill_id_1, self.admin_id, description='Skill Description 1') for index in python_utils.RANGE(number_of_questions): question_id = question_services.get_new_question_id() self.save_new_question( question_id, self.admin_id, self._create_valid_question_data(index), [self.skill_id_1]) question_services.create_new_question_skill_link( self.admin_id, question_id, self.skill_id_1, 0.5) json_response = self.get_json( '%s/staging/%s' % (feconf.TOPIC_DATA_HANDLER, 'new-topic')) expected_dict = { 'topic_name': 'new_topic', 'topic_id': self.topic_id, 'canonical_story_dicts': [], 'additional_story_dicts': [], 'uncategorized_skill_ids': [self.skill_id_1], 'subtopics': [], 'degrees_of_mastery': { self.skill_id_1: None }, 'skill_descriptions': { self.skill_id_1: 'Skill Description 1' }, 'train_tab_should_be_displayed': True } self.assertDictContainsSubset(expected_dict, json_response) self.logout() def test_get_with_twenty_or_more_questions_with_multiple_skills(self): number_of_skills = 3 number_of_questions = [1, 2, 2] self.topic_id = 'new_topic' skill_ids = ( [skill_services.get_new_skill_id() for _ in python_utils.RANGE( number_of_skills)]) self.topic = topic_domain.Topic.create_default_topic( self.topic_id, 'new_topic', 'new-topic', 'description') for index in python_utils.RANGE(number_of_skills): self.topic.uncategorized_skill_ids.append(skill_ids[index]) self.topic.thumbnail_filename = 'Image.svg' self.topic.thumbnail_bg_color = ( constants.ALLOWED_THUMBNAIL_BG_COLORS['topic'][0]) topic_services.save_new_topic(self.admin_id, self.topic) topic_services.publish_topic(self.topic_id, self.admin_id) for i in python_utils.RANGE(number_of_skills): self.save_new_skill( skill_ids[i], self.admin_id, description='Skill Description') for i in python_utils.RANGE(number_of_skills): for j in python_utils.RANGE(number_of_questions[i]): question_id = question_services.get_new_question_id() self.save_new_question( question_id, self.admin_id, self._create_valid_question_data(j), [skill_ids[i]]) question_services.create_new_question_skill_link( self.admin_id, question_id, skill_ids[i], 0.5) json_response = self.get_json( '%s/staging/%s' % (feconf.TOPIC_DATA_HANDLER, 'new-topic')) expected_dict = { 'topic_name': 'new_topic', 'topic_id': self.topic_id, 'canonical_story_dicts': [], 'additional_story_dicts': [], 'train_tab_should_be_displayed': True } self.assertDictContainsSubset(expected_dict, json_response) self.logout() def test_get_with_lesser_questions_with_fifty_or_more_skills(self): number_of_skills = 60 number_of_questions = [0] * 60 number_of_questions[46] = 2 self.topic_id = 'new_topic' skill_ids = ( [skill_services.get_new_skill_id() for _ in python_utils.RANGE( number_of_skills)]) self.topic = topic_domain.Topic.create_default_topic( self.topic_id, 'new_topic', 'new-topic', 'description') for index in python_utils.RANGE(number_of_skills): self.topic.uncategorized_skill_ids.append(skill_ids[index]) self.topic.thumbnail_filename = 'Image.svg' self.topic.thumbnail_bg_color = ( constants.ALLOWED_THUMBNAIL_BG_COLORS['topic'][0]) topic_services.save_new_topic(self.admin_id, self.topic) topic_services.publish_topic(self.topic_id, self.admin_id) for i in python_utils.RANGE(number_of_skills): self.save_new_skill( skill_ids[i], self.admin_id, description='Skill Description') for i in python_utils.RANGE(number_of_skills): for j in python_utils.RANGE(number_of_questions[i]): question_id = question_services.get_new_question_id() self.save_new_question( question_id, self.admin_id, self._create_valid_question_data(j), [skill_ids[i]]) question_services.create_new_question_skill_link( self.admin_id, question_id, skill_ids[i], 0.5) json_response = self.get_json( '%s/staging/%s' % (feconf.TOPIC_DATA_HANDLER, 'new-topic')) expected_dict = { 'topic_name': 'new_topic', 'topic_id': self.topic_id, 'canonical_story_dicts': [], 'additional_story_dicts': [], 'train_tab_should_be_displayed': False } self.assertDictContainsSubset(expected_dict, json_response) self.logout() def test_get_with_more_questions_with_fifty_or_more_skills(self): number_of_skills = 60 number_of_questions = [0] * 60 number_of_questions[46] = 2 number_of_questions[20] = 3 number_of_questions[29] = 10 self.topic_id = 'new_topic' skill_ids = ( [skill_services.get_new_skill_id() for _ in python_utils.RANGE( number_of_skills)]) self.topic = topic_domain.Topic.create_default_topic( self.topic_id, 'new_topic', 'new-topic', 'description') for index in python_utils.RANGE(number_of_skills): self.topic.uncategorized_skill_ids.append(skill_ids[index]) self.topic.thumbnail_filename = 'Image.svg' self.topic.thumbnail_bg_color = ( constants.ALLOWED_THUMBNAIL_BG_COLORS['topic'][0]) topic_services.save_new_topic(self.admin_id, self.topic) topic_services.publish_topic(self.topic_id, self.admin_id) for i in python_utils.RANGE(number_of_skills): self.save_new_skill( skill_ids[i], self.admin_id, description='Skill Description') for i in python_utils.RANGE(number_of_skills): for j in python_utils.RANGE(number_of_questions[i]): question_id = question_services.get_new_question_id() self.save_new_question( question_id, self.admin_id, self._create_valid_question_data(j), [skill_ids[i]]) question_services.create_new_question_skill_link( self.admin_id, question_id, skill_ids[i], 0.5) json_response = self.get_json( '%s/staging/%s' % (feconf.TOPIC_DATA_HANDLER, 'new-topic')) expected_dict = { 'topic_name': 'new_topic', 'topic_id': self.topic_id, 'canonical_story_dicts': [], 'additional_story_dicts': [], 'train_tab_should_be_displayed': True } self.assertDictContainsSubset(expected_dict, json_response) self.logout()
44.966173
78
0.619493
eba5a441d78efa329f1bc931e66bad1f9d4556a0
806
py
Python
globalitc/globalitc/urls.py
Ghevondyan04/new_globalitc.am
7afffe58143590987b9e16a9d575bfa49ce3ef08
[ "Apache-2.0" ]
null
null
null
globalitc/globalitc/urls.py
Ghevondyan04/new_globalitc.am
7afffe58143590987b9e16a9d575bfa49ce3ef08
[ "Apache-2.0" ]
null
null
null
globalitc/globalitc/urls.py
Ghevondyan04/new_globalitc.am
7afffe58143590987b9e16a9d575bfa49ce3ef08
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from django.urls import path, include from home_page.views import home_view, services_list_view, fac_program_view, fac_web_program_view, fac_multimedia_view from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), # path('auth/', include('users.urls')), path('', home_view, name="home"), path('services', services_list_view, name="services_list"), path('faculties/web', fac_web_program_view, name="faculties_web"), path('faculties/programming', fac_program_view, name="faculties_programming"), path('faculties/multimedia', fac_multimedia_view, name="faculties_multimedia") ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
42.421053
118
0.766749
b51d3979c662b2e11a126bfe14ae18a7c30e3266
34,449
py
Python
ansible/lib/ansible/modules/core/files/unarchive.py
kiv-box/redis
966a0c3f0a51282cd173b42a6e249d23f4e89dec
[ "Apache-2.0" ]
null
null
null
ansible/lib/ansible/modules/core/files/unarchive.py
kiv-box/redis
966a0c3f0a51282cd173b42a6e249d23f4e89dec
[ "Apache-2.0" ]
null
null
null
ansible/lib/ansible/modules/core/files/unarchive.py
kiv-box/redis
966a0c3f0a51282cd173b42a6e249d23f4e89dec
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2012, Michael DeHaan <michael.dehaan@gmail.com> # (c) 2013, Dylan Martin <dmartin@seattlecentral.edu> # (c) 2015, Toshio Kuratomi <tkuratomi@ansible.com> # (c) 2016, Dag Wieers <dag@wieers.com> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. DOCUMENTATION = ''' --- module: unarchive version_added: 1.4 short_description: Unpacks an archive after (optionally) copying it from the local machine. extends_documentation_fragment: files description: - The M(unarchive) module unpacks an archive. By default, it will copy the source file from the local system to the target before unpacking - set remote_src=yes to unpack an archive which already exists on the target.. options: src: description: - If remote_src=no (default), local path to archive file to copy to the target server; can be absolute or relative. If remote_src=yes, path on the target server to existing archive file to unpack. - If remote_src=yes and src contains ://, the remote machine will download the file from the url first. (version_added 2.0) required: true default: null dest: description: - Remote absolute path where the archive should be unpacked required: true default: null copy: description: - "If true, the file is copied from local 'master' to the target machine, otherwise, the plugin will look for src archive at the target machine." - "This option has been deprecated in favor of C(remote_src)" - "This option is mutually exclusive with C(remote_src)." required: false choices: [ "yes", "no" ] default: "yes" creates: description: - a filename, when it already exists, this step will B(not) be run. required: no default: null version_added: "1.6" list_files: description: - If set to True, return the list of files that are contained in the tarball. required: false choices: [ "yes", "no" ] default: "no" version_added: "2.0" exclude: description: - List the directory and file entries that you would like to exclude from the unarchive action. required: false default: [] version_added: "2.1" keep_newer: description: - Do not replace existing files that are newer than files from the archive. required: false default: no version_added: "2.1" extra_opts: description: - Specify additional options by passing in an array. default: required: false version_added: "2.1" remote_src: description: - "Set to C(yes) to indicate the archived file is already on the remote system and not local to the Ansible controller." - "This option is mutually exclusive with C(copy)." required: false default: "no" choices: ["yes", "no"] version_added: "2.2" validate_certs: description: - This only applies if using a https url as the source of the file. - This should only set to C(no) used on personally controlled sites using self-signed cer - Prior to 2.2 the code worked as if this was set to C(yes). required: false default: "yes" choices: ["yes", "no"] version_added: "2.2" author: "Dag Wieers (@dagwieers)" todo: - re-implement tar support using native tarfile module - re-implement zip support using native zipfile module notes: - requires C(gtar)/C(unzip) command on target host - can handle I(.zip) files using C(unzip) as well as I(.tar), I(.tar.gz), I(.tar.bz2) and I(.tar.xz) files using C(gtar) - uses gtar's C(--diff arg) to calculate if changed or not. If this C(arg) is not supported, it will always unpack the archive - existing files/directories in the destination which are not in the archive are not touched. This is the same behavior as a normal archive extraction - existing files/directories in the destination which are not in the archive are ignored for purposes of deciding if the archive should be unpacked or not ''' EXAMPLES = ''' # Example from Ansible Playbooks - unarchive: src=foo.tgz dest=/var/lib/foo # Unarchive a file that is already on the remote machine - unarchive: src=/tmp/foo.zip dest=/usr/local/bin remote_src=yes # Unarchive a file that needs to be downloaded (added in 2.0) - unarchive: src=https://example.com/example.zip dest=/usr/local/bin remote_src=yes ''' import re import os import stat import pwd import grp import datetime import time import binascii import codecs from zipfile import ZipFile, BadZipfile from ansible.module_utils._text import to_text try: # python 3.3+ from shlex import quote except ImportError: # older python from pipes import quote # String from tar that shows the tar contents are different from the # filesystem OWNER_DIFF_RE = re.compile(r': Uid differs$') GROUP_DIFF_RE = re.compile(r': Gid differs$') MODE_DIFF_RE = re.compile(r': Mode differs$') MOD_TIME_DIFF_RE = re.compile(r': Mod time differs$') #NEWER_DIFF_RE = re.compile(r' is newer or same age.$') EMPTY_FILE_RE = re.compile(r': : Warning: Cannot stat: No such file or directory$') MISSING_FILE_RE = re.compile(r': Warning: Cannot stat: No such file or directory$') ZIP_FILE_MODE_RE = re.compile(r'([r-][w-][SsTtx-]){3}') # When downloading an archive, how much of the archive to download before # saving to a tempfile (64k) BUFSIZE = 65536 def crc32(path): ''' Return a CRC32 checksum of a file ''' return binascii.crc32(open(path).read()) & 0xffffffff def shell_escape(string): ''' Quote meta-characters in the args for the unix shell ''' return re.sub(r'([^A-Za-z0-9_])', r'\\\1', string) class UnarchiveError(Exception): pass # class to handle .zip files class ZipArchive(object): def __init__(self, src, dest, file_args, module): self.src = src self.dest = dest self.file_args = file_args self.opts = module.params['extra_opts'] self.module = module self.excludes = module.params['exclude'] self.includes = [] self.cmd_path = self.module.get_bin_path('unzip') self._files_in_archive = [] self._infodict = dict() def _permstr_to_octal(self, modestr, umask): ''' Convert a Unix permission string (rw-r--r--) into a mode (0644) ''' revstr = modestr[::-1] mode = 0 for j in range(0, 3): for i in range(0, 3): if revstr[i+3*j] in ['r', 'w', 'x', 's', 't']: mode += 2**(i+3*j) # The unzip utility does not support setting the stST bits # if revstr[i+3*j] in ['s', 't', 'S', 'T' ]: # mode += 2**(9+j) return ( mode & ~umask ) def _legacy_file_list(self, force_refresh=False): unzip_bin = self.module.get_bin_path('unzip') if not unzip_bin: raise UnarchiveError('Python Zipfile cannot read %s and unzip not found' % self.src) rc, out, err = self.module.run_command([unzip_bin, '-v', self.src]) if rc: raise UnarchiveError('Neither python zipfile nor unzip can read %s' % self.src) for line in out.splitlines()[3:-2]: fields = line.split(None, 7) self._files_in_archive.append(fields[7]) self._infodict[fields[7]] = long(fields[6]) def _crc32(self, path): if self._infodict: return self._infodict[path] try: archive = ZipFile(self.src) except BadZipfile: e = get_exception() if e.args[0].lower().startswith('bad magic number'): # Python2.4 can't handle zipfiles with > 64K files. Try using # /usr/bin/unzip instead self._legacy_file_list() else: raise else: try: for item in archive.infolist(): self._infodict[item.filename] = long(item.CRC) except: archive.close() raise UnarchiveError('Unable to list files in the archive') return self._infodict[path] @property def files_in_archive(self, force_refresh=False): if self._files_in_archive and not force_refresh: return self._files_in_archive self._files_in_archive = [] try: archive = ZipFile(self.src) except BadZipfile: e = get_exception() if e.args[0].lower().startswith('bad magic number'): # Python2.4 can't handle zipfiles with > 64K files. Try using # /usr/bin/unzip instead self._legacy_file_list(force_refresh) else: raise else: try: for member in archive.namelist(): if member not in self.excludes: self._files_in_archive.append(to_native(member)) except: archive.close() raise UnarchiveError('Unable to list files in the archive') archive.close() return self._files_in_archive def is_unarchived(self): cmd = [ self.cmd_path, '-ZT', '-s', self.src ] if self.excludes: cmd.extend([ ' -x ', ] + self.excludes) rc, out, err = self.module.run_command(cmd) old_out = out diff = '' out = '' if rc == 0: unarchived = True else: unarchived = False # Get some information related to user/group ownership umask = os.umask(0) os.umask(umask) # Get current user and group information groups = os.getgroups() run_uid = os.getuid() run_gid = os.getgid() try: run_owner = pwd.getpwuid(run_uid).pw_name except: run_owner = run_uid try: run_group = grp.getgrgid(run_gid).gr_name except: run_group = run_gid # Get future user ownership fut_owner = fut_uid = None if self.file_args['owner']: try: tpw = pwd.getpwname(self.file_args['owner']) except: try: tpw = pwd.getpwuid(self.file_args['owner']) except: tpw = pwd.getpwuid(run_uid) fut_owner = tpw.pw_name fut_uid = tpw.pw_uid else: try: fut_owner = run_owner except: pass fut_uid = run_uid # Get future group ownership fut_group = fut_gid = None if self.file_args['group']: try: tgr = grp.getgrnam(self.file_args['group']) except: try: tgr = grp.getgrgid(self.file_args['group']) except: tgr = grp.getgrgid(run_gid) fut_group = tgr.gr_name fut_gid = tgr.gr_gid else: try: fut_group = run_group except: pass fut_gid = run_gid for line in old_out.splitlines(): change = False pcs = line.split(None, 7) if len(pcs) != 8: # Too few fields... probably a piece of the header or footer continue # Check first and seventh field in order to skip header/footer if len(pcs[0]) != 7 and len(pcs[0]) != 10: continue if len(pcs[6]) != 15: continue # Possible entries: # -rw-rws--- 1.9 unx 2802 t- defX 11-Aug-91 13:48 perms.2660 # -rw-a-- 1.0 hpf 5358 Tl i4:3 4-Dec-91 11:33 longfilename.hpfs # -r--ahs 1.1 fat 4096 b- i4:2 14-Jul-91 12:58 EA DATA. SF # --w------- 1.0 mac 17357 bx i8:2 4-May-92 04:02 unzip.macr if pcs[0][0] not in 'dl-?' or not frozenset(pcs[0][1:]).issubset('rwxstah-'): continue ztype = pcs[0][0] permstr = pcs[0][1:] version = pcs[1] ostype = pcs[2] size = int(pcs[3]) path = to_text(pcs[7], errors='surrogate_or_strict') # Skip excluded files if path in self.excludes: out += 'Path %s is excluded on request\n' % path continue # Itemized change requires L for symlink if path[-1] == '/': if ztype != 'd': err += 'Path %s incorrectly tagged as "%s", but is a directory.\n' % (path, ztype) ftype = 'd' elif ztype == 'l': ftype = 'L' elif ztype == '-': ftype = 'f' elif ztype == '?': ftype = 'f' # Some files may be storing FAT permissions, not Unix permissions if len(permstr) == 6: if path[-1] == '/': permstr = 'rwxrwxrwx' elif permstr == 'rwx---': permstr = 'rwxrwxrwx' else: permstr = 'rw-rw-rw-' # Test string conformity if len(permstr) != 9 or not ZIP_FILE_MODE_RE.match(permstr): raise UnarchiveError('ZIP info perm format incorrect, %s' % permstr) # DEBUG # err += "%s%s %10d %s\n" % (ztype, permstr, size, path) dest = os.path.join(self.dest, path) try: st = os.lstat(dest) except: change = True self.includes.append(path) err += 'Path %s is missing\n' % path diff += '>%s++++++.?? %s\n' % (ftype, path) continue # Compare file types if ftype == 'd' and not stat.S_ISDIR(st.st_mode): change = True self.includes.append(path) err += 'File %s already exists, but not as a directory\n' % path diff += 'c%s++++++.?? %s\n' % (ftype, path) continue if ftype == 'f' and not stat.S_ISREG(st.st_mode): change = True unarchived = False self.includes.append(path) err += 'Directory %s already exists, but not as a regular file\n' % path diff += 'c%s++++++.?? %s\n' % (ftype, path) continue if ftype == 'L' and not stat.S_ISLNK(st.st_mode): change = True self.includes.append(path) err += 'Directory %s already exists, but not as a symlink\n' % path diff += 'c%s++++++.?? %s\n' % (ftype, path) continue itemized = list('.%s.......??' % ftype) # Note: this timestamp calculation has a rounding error # somewhere... unzip and this timestamp can be one second off # When that happens, we report a change and re-unzip the file dt_object = datetime.datetime(*(time.strptime(pcs[6], '%Y%m%d.%H%M%S')[0:6])) timestamp = time.mktime(dt_object.timetuple()) # Compare file timestamps if stat.S_ISREG(st.st_mode): if self.module.params['keep_newer']: if timestamp > st.st_mtime: change = True self.includes.append(path) err += 'File %s is older, replacing file\n' % path itemized[4] = 't' elif stat.S_ISREG(st.st_mode) and timestamp < st.st_mtime: # Add to excluded files, ignore other changes out += 'File %s is newer, excluding file\n' % path self.excludes.append(path) continue else: if timestamp != st.st_mtime: change = True self.includes.append(path) err += 'File %s differs in mtime (%f vs %f)\n' % (path, timestamp, st.st_mtime) itemized[4] = 't' # Compare file sizes if stat.S_ISREG(st.st_mode) and size != st.st_size: change = True err += 'File %s differs in size (%d vs %d)\n' % (path, size, st.st_size) itemized[3] = 's' # Compare file checksums if stat.S_ISREG(st.st_mode): crc = crc32(dest) if crc != self._crc32(path): change = True err += 'File %s differs in CRC32 checksum (0x%08x vs 0x%08x)\n' % (path, self._crc32(path), crc) itemized[2] = 'c' # Compare file permissions # Do not handle permissions of symlinks if ftype != 'L': # Use the new mode provided with the action, if there is one if self.file_args['mode']: if isinstance(self.file_args['mode'], int): mode = self.file_args['mode'] else: try: mode = int(self.file_args['mode'], 8) except Exception: e = get_exception() self.module.fail_json(path=path, msg="mode %(mode)s must be in octal form" % self.file_args, details=str(e)) # Only special files require no umask-handling elif ztype == '?': mode = self._permstr_to_octal(permstr, 0) else: mode = self._permstr_to_octal(permstr, umask) if mode != stat.S_IMODE(st.st_mode): change = True itemized[5] = 'p' err += 'Path %s differs in permissions (%o vs %o)\n' % (path, mode, stat.S_IMODE(st.st_mode)) # Compare file user ownership owner = uid = None try: owner = pwd.getpwuid(st.st_uid).pw_name except: uid = st.st_uid # If we are not root and requested owner is not our user, fail if run_uid != 0 and (fut_owner != run_owner or fut_uid != run_uid): raise UnarchiveError('Cannot change ownership of %s to %s, as user %s' % (path, fut_owner, run_owner)) if owner and owner != fut_owner: change = True err += 'Path %s is owned by user %s, not by user %s as expected\n' % (path, owner, fut_owner) itemized[6] = 'o' elif uid and uid != fut_uid: change = True err += 'Path %s is owned by uid %s, not by uid %s as expected\n' % (path, uid, fut_uid) itemized[6] = 'o' # Compare file group ownership group = gid = None try: group = grp.getgrgid(st.st_gid).gr_name except: gid = st.st_gid if run_uid != 0 and fut_gid not in groups: raise UnarchiveError('Cannot change group ownership of %s to %s, as user %s' % (path, fut_group, run_owner)) if group and group != fut_group: change = True err += 'Path %s is owned by group %s, not by group %s as expected\n' % (path, group, fut_group) itemized[6] = 'g' elif gid and gid != fut_gid: change = True err += 'Path %s is owned by gid %s, not by gid %s as expected\n' % (path, gid, fut_gid) itemized[6] = 'g' # Register changed files and finalize diff output if change: if path not in self.includes: self.includes.append(path) diff += '%s %s\n' % (''.join(itemized), path) if self.includes: unarchived = False # DEBUG # out = old_out + out return dict(unarchived=unarchived, rc=rc, out=out, err=err, cmd=cmd, diff=diff) def unarchive(self): cmd = [ self.cmd_path, '-o', self.src ] if self.opts: cmd.extend(self.opts) # NOTE: Including (changed) files as arguments is problematic (limits on command line/arguments) # if self.includes: # NOTE: Command unzip has this strange behaviour where it expects quoted filenames to also be escaped # cmd.extend(map(shell_escape, self.includes)) if self.excludes: cmd.extend([ '-x' ] + self.excludes) cmd.extend([ '-d', self.dest ]) rc, out, err = self.module.run_command(cmd) return dict(cmd=cmd, rc=rc, out=out, err=err) def can_handle_archive(self): if not self.cmd_path: return False, 'Command "unzip" not found.' cmd = [ self.cmd_path, '-l', self.src ] rc, out, err = self.module.run_command(cmd) if rc == 0: return True, None return False, 'Command "%s" could not handle archive.' % self.cmd_path # class to handle gzipped tar files class TgzArchive(object): def __init__(self, src, dest, file_args, module): self.src = src self.dest = dest self.file_args = file_args self.opts = module.params['extra_opts'] self.module = module if self.module.check_mode: self.module.exit_json(skipped=True, msg="remote module (%s) does not support check mode when using gtar" % self.module._name) self.excludes = [ path.rstrip('/') for path in self.module.params['exclude']] # Prefer gtar (GNU tar) as it supports the compression options -z, -j and -J self.cmd_path = self.module.get_bin_path('gtar', None) if not self.cmd_path: # Fallback to tar self.cmd_path = self.module.get_bin_path('tar') self.zipflag = '-z' self._files_in_archive = [] if self.cmd_path: self.tar_type = self._get_tar_type() else: self.tar_type = None def _get_tar_type(self): cmd = [self.cmd_path, '--version'] (rc, out, err) = self.module.run_command(cmd) tar_type = None if out.startswith('bsdtar'): tar_type = 'bsd' elif out.startswith('tar') and 'GNU' in out: tar_type = 'gnu' return tar_type @property def files_in_archive(self, force_refresh=False): if self._files_in_archive and not force_refresh: return self._files_in_archive cmd = [ self.cmd_path, '--list', '-C', self.dest ] if self.zipflag: cmd.append(self.zipflag) if self.opts: cmd.extend([ '--show-transformed-names' ] + self.opts) if self.excludes: cmd.extend([ '--exclude=' + quote(f) for f in self.excludes ]) cmd.extend([ '-f', self.src ]) rc, out, err = self.module.run_command(cmd, cwd=self.dest, environ_update=dict(LANG='C', LC_ALL='C', LC_MESSAGES='C')) if rc != 0: raise UnarchiveError('Unable to list files in the archive') for filename in out.splitlines(): # Compensate for locale-related problems in gtar output (octal unicode representation) #11348 # filename = filename.decode('string_escape') filename = codecs.escape_decode(filename)[0] if filename and filename not in self.excludes: self._files_in_archive.append(to_native(filename)) return self._files_in_archive def is_unarchived(self): cmd = [ self.cmd_path, '--diff', '-C', self.dest ] if self.zipflag: cmd.append(self.zipflag) if self.opts: cmd.extend([ '--show-transformed-names' ] + self.opts) if self.file_args['owner']: cmd.append('--owner=' + quote(self.file_args['owner'])) if self.file_args['group']: cmd.append('--group=' + quote(self.file_args['group'])) if self.module.params['keep_newer']: cmd.append('--keep-newer-files') if self.excludes: cmd.extend([ '--exclude=' + quote(f) for f in self.excludes ]) cmd.extend([ '-f', self.src ]) rc, out, err = self.module.run_command(cmd, cwd=self.dest, environ_update=dict(LANG='C', LC_ALL='C', LC_MESSAGES='C')) # Check whether the differences are in something that we're # setting anyway # What is different unarchived = True old_out = out out = '' run_uid = os.getuid() # When unarchiving as a user, or when owner/group/mode is supplied --diff is insufficient # Only way to be sure is to check request with what is on disk (as we do for zip) # Leave this up to set_fs_attributes_if_different() instead of inducing a (false) change for line in old_out.splitlines() + err.splitlines(): # FIXME: Remove the bogus lines from error-output as well ! # Ignore bogus errors on empty filenames (when using --split-component) if EMPTY_FILE_RE.search(line): continue if run_uid == 0 and not self.file_args['owner'] and OWNER_DIFF_RE.search(line): out += line + '\n' if run_uid == 0 and not self.file_args['group'] and GROUP_DIFF_RE.search(line): out += line + '\n' if not self.file_args['mode'] and MODE_DIFF_RE.search(line): out += line + '\n' if MOD_TIME_DIFF_RE.search(line): out += line + '\n' if MISSING_FILE_RE.search(line): out += line + '\n' if out: unarchived = False return dict(unarchived=unarchived, rc=rc, out=out, err=err, cmd=cmd) def unarchive(self): cmd = [ self.cmd_path, '--extract', '-C', self.dest ] if self.zipflag: cmd.append(self.zipflag) if self.opts: cmd.extend([ '--show-transformed-names' ] + self.opts) if self.file_args['owner']: cmd.append('--owner=' + quote(self.file_args['owner'])) if self.file_args['group']: cmd.append('--group=' + quote(self.file_args['group'])) if self.module.params['keep_newer']: cmd.append('--keep-newer-files') if self.excludes: cmd.extend([ '--exclude=' + quote(f) for f in self.excludes ]) cmd.extend([ '-f', self.src ]) rc, out, err = self.module.run_command(cmd, cwd=self.dest, environ_update=dict(LANG='C', LC_ALL='C', LC_MESSAGES='C')) return dict(cmd=cmd, rc=rc, out=out, err=err) def can_handle_archive(self): if not self.cmd_path: return False, 'Commands "gtar" and "tar" not found.' if self.tar_type != 'gnu': return False, 'Command "%s" detected as tar type %s. GNU tar required.' % (self.cmd_path, self.tar_type) try: if self.files_in_archive: return True, None except UnarchiveError: return False, 'Command "%s" could not handle archive.' % self.cmd_path # Errors and no files in archive assume that we weren't able to # properly unarchive it return False, 'Command "%s" found no files in archive.' % self.cmd_path # class to handle tar files that aren't compressed class TarArchive(TgzArchive): def __init__(self, src, dest, file_args, module): super(TarArchive, self).__init__(src, dest, file_args, module) # argument to tar self.zipflag = '' # class to handle bzip2 compressed tar files class TarBzipArchive(TgzArchive): def __init__(self, src, dest, file_args, module): super(TarBzipArchive, self).__init__(src, dest, file_args, module) self.zipflag = '-j' # class to handle xz compressed tar files class TarXzArchive(TgzArchive): def __init__(self, src, dest, file_args, module): super(TarXzArchive, self).__init__(src, dest, file_args, module) self.zipflag = '-J' # try handlers in order and return the one that works or bail if none work def pick_handler(src, dest, file_args, module): handlers = [ZipArchive, TgzArchive, TarArchive, TarBzipArchive, TarXzArchive] reasons = set() for handler in handlers: obj = handler(src, dest, file_args, module) (can_handle, reason) = obj.can_handle_archive() if can_handle: return obj reasons.add(reason) reason_msg = ' '.join(reasons) module.fail_json(msg='Failed to find handler for "%s". Make sure the required command to extract the file is installed. %s' % (src, reason_msg)) def main(): module = AnsibleModule( # not checking because of daisy chain to file module argument_spec = dict( src = dict(required=True, type='path'), original_basename = dict(required=False, type='str'), # used to handle 'dest is a directory' via template, a slight hack dest = dict(required=True, type='path'), copy = dict(required=False, default=True, type='bool'), remote_src = dict(required=False, default=False, type='bool'), creates = dict(required=False, type='path'), list_files = dict(required=False, default=False, type='bool'), keep_newer = dict(required=False, default=False, type='bool'), exclude = dict(required=False, default=[], type='list'), extra_opts = dict(required=False, default=[], type='list'), validate_certs = dict(required=False, default=True, type='bool'), ), add_file_common_args = True, mutually_exclusive = [("copy", "remote_src"),], # check-mode only works for zip files, we cover that later supports_check_mode = True, ) src = os.path.expanduser(module.params['src']) dest = os.path.expanduser(module.params['dest']) copy = module.params['copy'] remote_src = module.params['remote_src'] file_args = module.load_file_common_arguments(module.params) # did tar file arrive? if not os.path.exists(src): if not remote_src and copy: module.fail_json(msg="Source '%s' failed to transfer" % src) # If copy=false, and src= contains ://, try and download the file to a temp directory. elif '://' in src: tempdir = os.path.dirname(os.path.realpath(__file__)) package = os.path.join(tempdir, str(src.rsplit('/', 1)[1])) try: rsp, info = fetch_url(module, src) # If download fails, raise a proper exception if rsp is None: raise Exception(info['msg']) f = open(package, 'w') # Read 1kb at a time to save on ram while True: data = rsp.read(BUFSIZE) if data == "": break # End of file, break while loop f.write(data) f.close() src = package except Exception: e = get_exception() module.fail_json(msg="Failure downloading %s, %s" % (src, e)) else: module.fail_json(msg="Source '%s' does not exist" % src) if not os.access(src, os.R_OK): module.fail_json(msg="Source '%s' not readable" % src) # skip working with 0 size archives try: if os.path.getsize(src) == 0: module.fail_json(msg="Invalid archive '%s', the file is 0 bytes" % src) except Exception: e = get_exception() module.fail_json(msg="Source '%s' not readable" % src) # is dest OK to receive tar file? if not os.path.isdir(dest): module.fail_json(msg="Destination '%s' is not a directory" % dest) handler = pick_handler(src, dest, file_args, module) res_args = dict(handler=handler.__class__.__name__, dest=dest, src=src) # do we need to do unpack? check_results = handler.is_unarchived() # DEBUG # res_args['check_results'] = check_results if module.check_mode: res_args['changed'] = not check_results['unarchived'] elif check_results['unarchived']: res_args['changed'] = False else: # do the unpack try: res_args['extract_results'] = handler.unarchive() if res_args['extract_results']['rc'] != 0: module.fail_json(msg="failed to unpack %s to %s" % (src, dest), **res_args) except IOError: module.fail_json(msg="failed to unpack %s to %s" % (src, dest), **res_args) else: res_args['changed'] = True # Get diff if required if check_results.get('diff', False): res_args['diff'] = { 'prepared': check_results['diff'] } # Run only if we found differences (idempotence) or diff was missing if res_args.get('diff', True) and not module.check_mode: # do we need to change perms? for filename in handler.files_in_archive: file_args['path'] = os.path.join(dest, filename) try: res_args['changed'] = module.set_fs_attributes_if_different(file_args, res_args['changed']) except (IOError, OSError): e = get_exception() module.fail_json(msg="Unexpected error when accessing exploded file: %s" % str(e), **res_args) if module.params['list_files']: res_args['files'] = handler.files_in_archive module.exit_json(**res_args) # import module snippets from ansible.module_utils.basic import * from ansible.module_utils.urls import * from ansible.module_utils._text import to_native if __name__ == '__main__': main()
39.596552
223
0.568812
7d527ce1c0c35b42b2044c8b81d4fdaefbf15120
919
py
Python
Lab06_GUI/exercise-42.py
rodrigoc-silva/Python-course
327b20738a4b383510faddc0ec26a54be1bbd717
[ "MIT" ]
null
null
null
Lab06_GUI/exercise-42.py
rodrigoc-silva/Python-course
327b20738a4b383510faddc0ec26a54be1bbd717
[ "MIT" ]
null
null
null
Lab06_GUI/exercise-42.py
rodrigoc-silva/Python-course
327b20738a4b383510faddc0ec26a54be1bbd717
[ "MIT" ]
null
null
null
#this program demostrates a Button widget. #When the user clicks the button, an info #dialog box is displayed. import tkinter import tkinter.messagebox class MyGUI: def __init__(self): #create the main widget self.main_window = tkinter.Tk() #create a button widget. #The do_something method should be executed self.my_button = tkinter.Button(self.main_window, text='Click Me!', command=self.do_something) #pack the button self.my_button.pack() #enter tkinter main loop tkinter.mainloop() #do_something method is a callback function for the button def do_something(self): #display an info dialog box tkinter.messagebox.showinfo('Response', 'Thanks for clicking the button') my_gui = MyGUI()
28.71875
81
0.595212
1cd0739cef82578ff8ae876d4ff8e164a3172dd4
11,950
py
Python
cde-root/usr/lib64/python2.4/site-packages/Bio/PDB/Polypeptide.py
NirBenTalLab/proorigami-cde-package
273379075830a9b94d3f2884661a54f853777ff6
[ "MIT" ]
null
null
null
cde-root/usr/lib64/python2.4/site-packages/Bio/PDB/Polypeptide.py
NirBenTalLab/proorigami-cde-package
273379075830a9b94d3f2884661a54f853777ff6
[ "MIT" ]
null
null
null
cde-root/usr/lib64/python2.4/site-packages/Bio/PDB/Polypeptide.py
NirBenTalLab/proorigami-cde-package
273379075830a9b94d3f2884661a54f853777ff6
[ "MIT" ]
null
null
null
# Copyright (C) 2002, Thomas Hamelryck (thamelry@binf.ku.dk) # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. from types import StringType from Bio.Alphabet import ProteinAlphabet from Bio.Seq import Seq from Bio.SCOP.Raf import to_one_letter_code from Bio.PDB.PDBExceptions import PDBException from Bio.PDB.Residue import Residue, DisorderedResidue from Vector import calc_dihedral, calc_angle __doc__=""" Polypeptide related classes (construction and representation). Example: >>> ppb=PPBuilder() >>> for pp in ppb.build_peptides(structure): >>> print pp.get_sequence() """ standard_aa_names=["ALA", "CYS", "ASP", "GLU", "PHE", "GLY", "HIS", "ILE", "LYS", "LEU", "MET", "ASN", "PRO", "GLN", "ARG", "SER", "THR", "VAL", "TRP", "TYR"] aa1="ACDEFGHIKLMNPQRSTVWY" aa3=standard_aa_names d1_to_index={} dindex_to_1={} d3_to_index={} dindex_to_3={} # Create some lookup tables for i in range(0, 20): n1=aa1[i] n3=aa3[i] d1_to_index[n1]=i dindex_to_1[i]=n1 d3_to_index[n3]=i dindex_to_3[i]=n3 def index_to_one(index): """ Index to corresponding one letter amino acid name. For example: 0 to A. """ return dindex_to_1[index] def one_to_index(s): """ One letter code to index. For example: A to 0. """ return d1_to_index[s] def index_to_three(i): """ Index to corresponding three letter amino acid name. For example: 0 to ALA. """ return dindex_to_3[i] def three_to_index(s): """ Three letter code to index. For example: ALA to 0. """ return d3_to_index[s] def three_to_one(s): """ Three letter code to one letter code. For example: ALA to A. """ i=d3_to_index[s] return dindex_to_1[i] def one_to_three(s): """ One letter code to three letter code. For example: A to ALA. """ i=d1_to_index[s] return dindex_to_3[i] def is_aa(residue, standard=0): """ Return 1 if residue object/string is an amino acid. @param residue: a L{Residue} object OR a three letter amino acid code @type residue: L{Residue} or string @param standard: flag to check for the 20 AA (default false) @type standard: boolean """ if not type(residue)==StringType: residue=residue.get_resname() residue=residue.upper() if standard: return d3_to_index.has_key(residue) else: return to_one_letter_code.has_key(residue) class Polypeptide(list): """ A polypeptide is simply a list of L{Residue} objects. """ def get_ca_list(self): """ @return: the list of C-alpha atoms @rtype: [L{Atom}, L{Atom}, ...] """ ca_list=[] for res in self: ca=res["CA"] ca_list.append(ca) return ca_list def get_phi_psi_list(self): """ Return the list of phi/psi dihedral angles """ ppl=[] lng=len(self) for i in range(0, lng): res=self[i] try: n=res['N'].get_vector() ca=res['CA'].get_vector() c=res['C'].get_vector() except: # Some atoms are missing # Phi/Psi cannot be calculated for this residue ppl.append((None, None)) res.xtra["PHI"]=None res.xtra["PSI"]=None continue # Phi if i>0: rp=self[i-1] try: cp=rp['C'].get_vector() phi=calc_dihedral(cp, n, ca, c) except: phi=None else: # No phi for residue 0! phi=None # Psi if i<(lng-1): rn=self[i+1] try: nn=rn['N'].get_vector() psi=calc_dihedral(n, ca, c, nn) except: psi=None else: # No psi for last residue! psi=None ppl.append((phi, psi)) # Add Phi/Psi to xtra dict of residue res.xtra["PHI"]=phi res.xtra["PSI"]=psi return ppl def get_tau_list(self): """ Return list of tau torsions angles for all 4 consecutive Calpha atoms. """ ca_list=self.get_ca_list() tau_list=[] for i in range(0, len(ca_list)-3): atom_list=[ca_list[i], ca_list[i+1], ca_list[i+2], ca_list[i+3]] vector_list=map(lambda a: a.get_vector(), atom_list) v1, v2, v3, v4=vector_list tau=calc_dihedral(v1, v2, v3, v4) tau_list.append(tau) # Put tau in xtra dict of residue res=ca_list[i+2].get_parent() res.xtra["TAU"]=tau return tau_list def get_theta_list(self): """ Return list of theta angles for all 3 consecutive Calpha atoms. """ theta_list=[] ca_list=self.get_ca_list() for i in range(0, len(ca_list)-2): atom_list=[ca_list[i], ca_list[i+1], ca_list[i+2]] vector_list=map(lambda a: a.get_vector(), atom_list) v1, v2, v3=vector_list theta=calc_angle(v1, v2, v3) theta_list.append(theta) # Put tau in xtra dict of residue res=ca_list[i+1].get_parent() res.xtra["THETA"]=theta return theta_list def get_sequence(self): """ Return the AA sequence. @return: polypeptide sequence @rtype: L{Seq} """ s="" for res in self: resname=res.get_resname() if to_one_letter_code.has_key(resname): resname=to_one_letter_code[resname] else: resname='X' s=s+resname seq=Seq(s, ProteinAlphabet) return seq def __repr__(self): """ Return <Polypeptide start=START end=END>, where START and END are sequence identifiers of the outer residues. """ start=self[0].get_id()[1] end=self[-1].get_id()[1] s="<Polypeptide start=%s end=%s>" % (start, end) return s class _PPBuilder: """ Base class to extract polypeptides. It checks if two consecutive residues in a chain are connected. The connectivity test is implemented by a subclass. """ def __init__(self, radius): """ @param radius: distance @type radius: float """ self.radius=radius def _accept(self, residue): "Check if the residue is an amino acid." if is_aa(residue): return 1 else: if "CA" in residue.child_dict: #It has an alpha carbon... #We probably need to update the hard coded list of #non-standard residues, see function is_aa for details. import warnings warnings.warn("Assuming residue %s is an unknown modified " "amino acid" % residue.get_resname()) return 1 # not a standard AA so skip return 0 def build_peptides(self, entity, aa_only=1): """ Build and return a list of Polypeptide objects. @param entity: polypeptides are searched for in this object @type entity: L{Structure}, L{Model} or L{Chain} @param aa_only: if 1, the residue needs to be a standard AA @type aa_only: int """ is_connected=self._is_connected accept=self._accept level=entity.get_level() # Decide wich entity we are dealing with if level=="S": model=entity[0] chain_list=model.get_list() elif level=="M": chain_list=entity.get_list() elif level=="C": chain_list=[entity] else: raise PDBException("Entity should be Structure, Model or Chain.") pp_list=[] for chain in chain_list: chain_it=iter(chain) prev=chain_it.next() pp=None for next in chain_it: if aa_only and not accept(prev): prev=next continue if is_connected(prev, next): if pp is None: pp=Polypeptide() pp.append(prev) pp_list.append(pp) pp.append(next) else: pp=None prev=next return pp_list class CaPPBuilder(_PPBuilder): """ Use CA--CA distance to find polypeptides. """ def __init__(self, radius=4.3): _PPBuilder.__init__(self, radius) def _is_connected(self, prev, next): for r in [prev, next]: if not r.has_id("CA"): return 0 n=next["CA"] p=prev["CA"] # Unpack disordered if n.is_disordered(): nlist=n.disordered_get_list() else: nlist=[n] if p.is_disordered(): plist=p.disordered_get_list() else: plist=[p] for nn in nlist: for pp in plist: if (nn-pp)<self.radius: return 1 return 0 class PPBuilder(_PPBuilder): """ Use C--N distance to find polypeptides. """ def __init__(self, radius=1.8): _PPBuilder.__init__(self, radius) def _is_connected(self, prev, next): if not prev.has_id("C"): return 0 if not next.has_id("N"): return 0 test_dist=self._test_dist c=prev["C"] n=next["N"] # Test all disordered atom positions! if c.is_disordered(): clist=c.disordered_get_list() else: clist=[c] if n.is_disordered(): nlist=n.disordered_get_list() else: nlist=[n] for nn in nlist: for cc in clist: # To form a peptide bond, N and C must be # within radius and have the same altloc # identifier or one altloc blank n_altloc=nn.get_altloc() c_altloc=cc.get_altloc() if n_altloc==c_altloc or n_altloc==" " or c_altloc==" ": if test_dist(nn, cc): # Select the disordered atoms that # are indeed bonded if c.is_disordered(): c.disordered_select(c_altloc) if n.is_disordered(): n.disordered_select(n_altloc) return 1 return 0 def _test_dist(self, c, n): "Return 1 if distance between atoms<radius" if (c-n)<self.radius: return 1 else: return 0 if __name__=="__main__": import sys from Bio.PDB.PDBParser import PDBParser p=PDBParser(PERMISSIVE=1) s=p.get_structure("scr", sys.argv[1]) ppb=PPBuilder() print "C-N" for pp in ppb.build_peptides(s): print pp.get_sequence() for pp in ppb.build_peptides(s[0]): print pp.get_sequence() for pp in ppb.build_peptides(s[0]["A"]): print pp.get_sequence() for pp in ppb.build_peptides(s): for phi, psi in pp.get_phi_psi_list(): print phi, psi ppb=CaPPBuilder() print "CA-CA" for pp in ppb.build_peptides(s): print pp.get_sequence() for pp in ppb.build_peptides(s[0]): print pp.get_sequence() for pp in ppb.build_peptides(s[0]["A"]): print pp.get_sequence()
28.117647
82
0.533389
57bda62ab5e60118f2299455fdc87eaab4ef3052
3,162
py
Python
chroma_core/management/__init__.py
AlexTalker/integrated-manager-for-lustre
251099e5c776f3c1898af50bb7cc77924c7cf7c7
[ "MIT" ]
1
2021-02-08T16:59:14.000Z
2021-02-08T16:59:14.000Z
chroma_core/management/__init__.py
AlexTalker/integrated-manager-for-lustre
251099e5c776f3c1898af50bb7cc77924c7cf7c7
[ "MIT" ]
null
null
null
chroma_core/management/__init__.py
AlexTalker/integrated-manager-for-lustre
251099e5c776f3c1898af50bb7cc77924c7cf7c7
[ "MIT" ]
null
null
null
# Copyright (c) 2018 DDN. All rights reserved. # Use of this source code is governed by a MIT-style # license that can be found in the LICENSE file. import django.contrib.auth.models from django.contrib.contenttypes.models import ContentType import django.contrib.auth as auth from south.signals import post_migrate import chroma_core.models import settings def setup_groups(app, **kwargs): if app != "chroma_core": return if auth.models.Group.objects.count() == 0: print("Creating groups...") auth.models.Group.objects.create(name="superusers") fsadmin_group = auth.models.Group.objects.create(name="filesystem_administrators") def grant_write(group, model): for perm in auth.models.Permission.objects.filter(content_type=ContentType.objects.get_for_model(model)): group.permissions.add(perm) def all_subclasses(cls): for subclass in cls.__subclasses__(): yield subclass for subclass in all_subclasses(subclass): yield subclass grant_write(fsadmin_group, chroma_core.models.ManagedTarget) grant_write(fsadmin_group, chroma_core.models.ManagedHost) grant_write(fsadmin_group, chroma_core.models.ManagedFilesystem) grant_write(fsadmin_group, chroma_core.models.StorageResourceRecord) grant_write(fsadmin_group, chroma_core.models.Job) grant_write(fsadmin_group, chroma_core.models.Command) grant_write(fsadmin_group, chroma_core.models.Volume) grant_write(fsadmin_group, chroma_core.models.VolumeNode) grant_write(fsadmin_group, django.contrib.auth.models.User) grant_write(fsadmin_group, chroma_core.models.RegistrationToken) # Allow fs admins to dismiss alerts grant_write(fsadmin_group, chroma_core.models.AlertState) for alert_klass in all_subclasses(chroma_core.models.AlertStateBase): grant_write(fsadmin_group, alert_klass) fsusers_group = auth.models.Group.objects.create(name="filesystem_users") # For modifying his own account grant_write(fsusers_group, django.contrib.auth.models.User) if settings.DEBUG and auth.models.User.objects.count() == 0: print("***\n" * 3), print("*** SECURITY WARNING: You are running in DEBUG mode and default users have been created") print("***\n" * 3) user = auth.models.User.objects.create_superuser("admin", "admin@debug.co.eh", "lustre") user.groups.add(auth.models.Group.objects.get(name="superusers")) user = auth.models.User.objects.create_user("debug", "debug@debug.co.eh", "lustre") user.groups.add(auth.models.Group.objects.get(name="filesystem_administrators")) user = auth.models.User.objects.create_user("user", "user@debug.co.eh", "lustre") user.groups.add(auth.models.Group.objects.get(name="filesystem_users")) # Ensure that the auto post_syncdb hook is installed # before our hook, so that Permission objects will be there # by the time we are called. import django.contrib.auth.management post_migrate.connect(setup_groups)
43.315068
117
0.71284
4ebc15ef7053cdf1bbb12427c8c93e5db1b85655
5,246
py
Python
test/gtest_xml_outfiles_test.py
CM-Archive/android_external_gtest
75f109c3120bf78ee89124f1f21b50ea24225236
[ "BSD-3-Clause" ]
1
2019-01-31T05:16:59.000Z
2019-01-31T05:16:59.000Z
test/gtest_xml_outfiles_test.py
CM-Archive/android_external_gtest
75f109c3120bf78ee89124f1f21b50ea24225236
[ "BSD-3-Clause" ]
null
null
null
test/gtest_xml_outfiles_test.py
CM-Archive/android_external_gtest
75f109c3120bf78ee89124f1f21b50ea24225236
[ "BSD-3-Clause" ]
1
2019-01-31T05:17:00.000Z
2019-01-31T05:17:00.000Z
#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for the gtest_xml_output module.""" __author__ = "keith.ray@gmail.com (Keith Ray)" import gtest_test_utils import os import sys import tempfile import unittest from xml.dom import minidom, Node import gtest_xml_test_utils GTEST_OUTPUT_1_TEST = "gtest_xml_outfile1_test_" GTEST_OUTPUT_2_TEST = "gtest_xml_outfile2_test_" EXPECTED_XML_1 = """<?xml version="1.0" encoding="UTF-8"?> <testsuite tests="1" failures="0" disabled="0" errors="0" time="*" name="AllTests"> <testsuite name="PropertyOne" tests="1" failures="0" disabled="0" errors="0" time="*"> <testcase name="TestSomeProperties" status="run" time="*" classname="PropertyOne" SetUpProp="1" TestSomeProperty="1" TearDownProp="1" /> </testsuite> </testsuite> """ EXPECTED_XML_2 = """<?xml version="1.0" encoding="UTF-8"?> <testsuite tests="1" failures="0" disabled="0" errors="0" time="*" name="AllTests"> <testsuite name="PropertyTwo" tests="1" failures="0" disabled="0" errors="0" time="*"> <testcase name="TestSomeProperties" status="run" time="*" classname="PropertyTwo" SetUpProp="2" TestSomeProperty="2" TearDownProp="2" /> </testsuite> </testsuite> """ class GTestXMLOutFilesTest(gtest_xml_test_utils.GTestXMLTestCase): """Unit test for Google Test's XML output functionality.""" def setUp(self): # We want the trailing '/' that the last "" provides in os.path.join, for # telling Google Test to create an output directory instead of a single file # for xml output. self.output_dir_ = os.path.join(tempfile.mkdtemp(), "") self.DeleteFilesAndDir() def tearDown(self): self.DeleteFilesAndDir() def DeleteFilesAndDir(self): try: os.remove(os.path.join(self.output_dir_, GTEST_OUTPUT_1_TEST + ".xml")) except os.error: pass try: os.remove(os.path.join(self.output_dir_, GTEST_OUTPUT_2_TEST + ".xml")) except os.error: pass try: os.removedirs(self.output_dir_) except os.error: pass def testOutfile1(self): self._TestOutFile(GTEST_OUTPUT_1_TEST, EXPECTED_XML_1) def testOutfile2(self): self._TestOutFile(GTEST_OUTPUT_2_TEST, EXPECTED_XML_2) def _TestOutFile(self, test_name, expected_xml): gtest_prog_path = os.path.join(gtest_test_utils.GetBuildDir(), test_name) command = [gtest_prog_path, "--gtest_output=xml:%s" % self.output_dir_] p = gtest_test_utils.Subprocess(command, working_dir=tempfile.mkdtemp()) self.assert_(p.exited) self.assertEquals(0, p.exit_code) # TODO(wan@google.com): libtool causes the built test binary to be # named lt-gtest_xml_outfiles_test_ instead of # gtest_xml_outfiles_test_. To account for this possibillity, we # allow both names in the following code. We should remove this # hack when Chandler Carruth's libtool replacement tool is ready. output_file_name1 = test_name + ".xml" output_file1 = os.path.join(self.output_dir_, output_file_name1) output_file_name2 = 'lt-' + output_file_name1 output_file2 = os.path.join(self.output_dir_, output_file_name2) self.assert_(os.path.isfile(output_file1) or os.path.isfile(output_file2), output_file1) expected = minidom.parseString(expected_xml) if os.path.isfile(output_file1): actual = minidom.parse(output_file1) else: actual = minidom.parse(output_file2) self.NormalizeXml(actual.documentElement) self.AssertEquivalentNodes(expected.documentElement, actual.documentElement) expected.unlink() actual.unlink() if __name__ == "__main__": os.environ["GTEST_STACK_TRACE_DEPTH"] = "0" gtest_test_utils.Main()
38.859259
140
0.727221
fa936cb125d27698927a89093b09a059c5d97cd9
931
py
Python
gfootball/agent.py
level-antoine/football
516f63da0ea4696f4c8b6668c65ac4b20385a8fa
[ "Apache-2.0" ]
null
null
null
gfootball/agent.py
level-antoine/football
516f63da0ea4696f4c8b6668c65ac4b20385a8fa
[ "Apache-2.0" ]
null
null
null
gfootball/agent.py
level-antoine/football
516f63da0ea4696f4c8b6668c65ac4b20385a8fa
[ "Apache-2.0" ]
1
2022-03-02T14:01:00.000Z
2022-03-02T14:01:00.000Z
import time import gfootball.env as football_env import random class Agent: def __init__(self): pass if __name__ == '__main__': env = football_env.create_environment(env_name='1_vs_1_easy', representation='extracted', render=True) state = env.reset() action_simple = football_env.observation_preprocessing.football_action_set.action_set_dict["simple"] obs = env.reset() while True: action = random.choice(action_simple) observation, reward, done, info = env.step(action) print('-----------------------------------------') i = 1 for obs in observation: print(i) print(obs) i += 1 time.sleep(1000000000) print(reward) print(done) print(info) print('-----------------------------------------') if done: env.reset() env.close()
23.275
106
0.531686
ad1e78ba07a6af53098a2914b156e1a4d2a0e850
40,422
py
Python
flow/coderepo/github/github.py
jander99/flow
33c418547e3693bf277fd6d089d5f3242c83e14a
[ "Apache-2.0" ]
null
null
null
flow/coderepo/github/github.py
jander99/flow
33c418547e3693bf277fd6d089d5f3242c83e14a
[ "Apache-2.0" ]
null
null
null
flow/coderepo/github/github.py
jander99/flow
33c418547e3693bf277fd6d089d5f3242c83e14a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # github.py import json import os import re import shutil import subprocess import tarfile import time import requests from flow.buildconfig import BuildConfig from flow.coderepo.code_repo_abc import Code_Repo import flow.utils.commons as cicommons import flow.utils.commons as commons from flow.utils.commons import Object class GitHub(Code_Repo): clazz = 'GitHub' url = None org = None repo = None token = None config = BuildConfig http_timeout = 10 all_tags_and_shas = [] all_commits = [] found_all_commits = False def __init__(self, config_override=None, verify_repo=True): method = '__init__' commons.print_msg(GitHub.clazz, method, 'begin') # check if we provided an override if config_override is not None: self.config = config_override if verify_repo is True: self._load_github_token() #self._refresh_tags() self._verify_required_attributes() self._verify_repo_existence(GitHub.url, GitHub.org, GitHub.repo) commons.print_msg(GitHub.clazz, method, 'end') def _load_github_token(self): method = '_load_github_token' commons.print_msg(GitHub.clazz, method, 'begin') GitHub.token = os.getenv('GITHUB_TOKEN') if not GitHub.token: commons.print_msg(GitHub.clazz, method, "No github token found. If your repo doesn't allow anonymous " "access, some operations may fail. To define a token, please set " "environment variable 'GITHUB_TOKEN'", 'WARN') commons.print_msg(GitHub.clazz, method, 'end') def _refresh_tags(self): method = '_refresh_tags' commons.print_msg(GitHub.clazz, method, 'getting latest tags') pull_tags_cmd = "git pull --tags" pull_tags = subprocess.Popen(pull_tags_cmd.split(), shell=False, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) pull_tags_outputs, pull_tags_errs = pull_tags.communicate(timeout=300) for tag_line in pull_tags_outputs.splitlines(): commons.print_msg(GitHub.clazz, method, tag_line.decode("utf-8")) def _verify_required_attributes(self): method = '_verify_required_attributes' try: # noinspection PyStatementEffect self.config.json_config['github'] GitHub.url = self.config.json_config['github']['URL'] GitHub.org = self.config.json_config['github']['org'] GitHub.repo = self.config.json_config['github']['repo'] except KeyError as e: commons.print_msg(GitHub.clazz, method, "The build config associated with github is missing, {}." .format(e), 'ERROR') exit(1) def _verify_repo_existence(self, url, org, repo, token=None): method = '_verify_repo_existence' commons.print_msg(GitHub.clazz, method, 'begin') repo_url = url + '/' + org + '/' + repo if token is None: token = GitHub.token if token is not None: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json, 'Authorization': ('token ' + token)} else: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json} commons.print_msg(GitHub.clazz, method, repo_url) retries = 0 finished = False while not finished: try: resp = requests.get(repo_url, headers=headers, timeout=self.http_timeout) finished = True except requests.ConnectionError: commons.print_msg(GitHub.clazz, method, "Request to GitHub timed out, retrying...") if retries < 2: time.sleep(retries * 5) retries += 1 continue commons.print_msg(GitHub.clazz, method, "Request to GitHub timed out.", "ERROR") exit(1) except Exception as e: commons.print_msg(GitHub.clazz, method, "Failed to access github location {}, retrying".format(e)) if retries < 2: time.sleep(retries * 5) retries += 1 continue commons.print_msg(GitHub.clazz, method, "Failed to access github location {}".format(e), "ERROR") exit(1) # noinspection PyUnboundLocalVariable commons.print_msg(GitHub.clazz, method, resp) if resp.status_code != 200: commons.print_msg(GitHub.clazz, method, "Failed to access github location {url}\r\n Response: {rsp}" .format(url=repo_url, rsp=resp.text), "ERROR") exit(1) commons.print_msg(GitHub.clazz, method, 'end') def add_tag_and_release_notes_to_github(self, new_version_tag_array, release_notes=None): # TODO this needs to be split out and better unit testing added. # testing is hard because json attributes are not ordered. method = 'add_tag_and_release_notes_to_github' commons.print_msg(GitHub.clazz, method, 'begin') me = Object() me.tag_name = self.convert_semver_tag_array_to_semver_string(new_version_tag_array) me.target_commitish = self.config.build_env_info['associatedBranchName'] me.name = self.convert_semver_tag_array_to_semver_string(new_version_tag_array) if release_notes is not None and len(release_notes) > 0: me.body = release_notes else: me.body = 'No Release Notes' me.draft = False me.prerelease = True # release builds will have a build index of 0. if self._is_semver_tag_array_release_or_snapshot(new_version_tag_array) == 'release': me.prerelease = False tag_and_release_note_payload = me.to_JSON() url_params = {'org': self.org, 'repo': self.repo} commons.print_msg(GitHub.clazz, method, self.url) commons.print_msg(GitHub.clazz, method, self.org) commons.print_msg(GitHub.clazz, method, self.repo) release_url = self.url + '/' + self.org + '/' + self.repo + '/releases' commons.print_msg(GitHub.clazz, method, release_url) commons.print_msg(GitHub.clazz, method, tag_and_release_note_payload) commons.print_msg(GitHub.clazz, method, ("?", url_params)) if self.token is not None: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json, 'Authorization': ('token ' + self.token)} else: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json} try: resp = requests.post(release_url, tag_and_release_note_payload, headers=headers, params=url_params, timeout=self.http_timeout) except requests.ConnectionError: commons.print_msg(GitHub.clazz, method, 'Request to GitHub timed out.', 'ERROR') exit(1) except: commons.print_msg(GitHub.clazz, method, "The github add release notes call failed to {} has failed".format( release_url), 'ERROR') exit(1) # noinspection PyUnboundLocalVariable if resp.status_code != 200 and resp.status_code != 201: commons.print_msg(GitHub.clazz, method, "The github add release notes call failed to {url}\r\n Response: {rsp}" .format(url=release_url, rsp=resp.text), 'ERROR') exit(1) else: commons.print_msg(GitHub.clazz, method, resp.text) commons.print_msg(GitHub.clazz, method, 'end') def format_github_specific_release_notes_from_project_tracker_story_details(self, story_details): formatted_release_notes = None if story_details is not None and isinstance(story_details, list) and len(story_details) > 0: for i, release_note in enumerate(story_details): if release_note.get('story_type') == "release": story_emoji = ":checkered_flag:" elif release_note.get('story_type') == "bug": story_emoji = ":beetle:" elif release_note.get('story_type') == "chore": story_emoji = ":wrench:" else: story_emoji = ":star:" if formatted_release_notes is None: formatted_release_notes = "" formatted_release_notes = formatted_release_notes + story_emoji + '<a href="' + release_note.get('url') + '">' + release_note.get('story_type') + ' **' + str(release_note.get('id')) + '**</a>' + ' ' + '\r\n ' + \ '&nbsp;&nbsp;&nbsp;&nbsp; **' + release_note.get('name') + '** \r\n ' + \ '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;' + (release_note.get('description').replace('\n', '\r\n &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;') + '\r\n' if release_note.get('description') is not None else '') + '\r\n\r\n' if formatted_release_notes is None: formatted_release_notes = 'No Release Notes' return formatted_release_notes def append_release_notes(self, release_name, text_to_append): method='append_release_notes' commons.print_msg(GitHub.clazz, method, 'begin') release_url_api = self.url + '/' + self.org + '/' + self.repo + '/releases/tags/' + release_name if self.token is None: commons.print_msg(GitHub.clazz, method, 'GITHUB_TOKEN is required to use this method.', 'ERROR') exit(1) headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json, 'Authorization': ('token ' + self.token)} try: resp = requests.get(release_url_api, headers=headers, timeout=self.http_timeout) except requests.ConnectionError: commons.print_msg(GitHub.clazz, method, 'Request to GitHub timed out.', 'ERROR') exit(1) except: commons.print_msg(GitHub.clazz, method, 'The github add release notes call failed to {} has failed'.format( release_url_api), 'ERROR') exit(1) # noinspection PyUnboundLocalVariable resp_json = resp.json() git_release_body = resp_json['body'] git_release_id = resp_json['id'] git_release_body += '\r\n\r\n%s' % text_to_append jsonMessage = { 'body' : git_release_body } release_url_api = self.url + '/' + self.org + '/' + self.repo + '/releases/' + str(git_release_id) try: requests.patch(release_url_api, json=jsonMessage, headers=headers, timeout=self.http_timeout) except requests.ConnectionError: commons.print_msg(GitHub.clazz, method, 'Request to GitHub timed out.', 'ERROR') exit(1) except: commons.print_msg(GitHub.clazz, method, 'The github add release notes call failed to {} has failed'.format( release_url_api), 'ERROR') exit(1) commons.print_msg(GitHub.clazz, method, 'end') def calculate_next_semver(self, tag_type, bump_type, highest_version_array): method = 'calculate_next_semver' commons.print_msg(GitHub.clazz, method, 'begin') if highest_version_array is not None: commons.print_msg(GitHub.clazz, method, "Hightest Git tag: {}".format( self.convert_semver_tag_array_to_semver_string(highest_version_array))) else: commons.print_msg(GitHub.clazz, method, "Hightest Git tag: {}".format(str(highest_version_array))) commons.print_msg(GitHub.clazz, method, "Bump Type: {}".format(str(bump_type))) commons.print_msg(GitHub.clazz, method, "Tag Type: {}".format(str(tag_type))) new_version_array = None if tag_type != "release" and tag_type != "snapshot": commons.print_msg(GitHub.clazz, method, "Tag types can only be 'release' or 'snapshot', instead {} was " "provided.".format(str(tag_type))) exit(1) if tag_type == "release" and bump_type != "major" and bump_type != "minor" and bump_type != "bug": commons.print_msg(GitHub.clazz, method, "Bump types can only be 'major', 'minor' or 'bug', instead {} was " "provided.".format(str(bump_type))) exit(1) if tag_type == 'snapshot': if highest_version_array is None: # no previous snapshot new_version_array = [0, 0, 0, 1] else: commons.print_msg(GitHub.clazz, method, "Incrementing +buildnumber based on last tag, since it's a " "snapshot build.") new_version_array = highest_version_array[:] # the build index is the 4th item (3rd position) new_version_array[3] = new_version_array[3]+1 elif tag_type == 'release': commons.print_msg(GitHub.clazz, method, 'New Release semver') if highest_version_array is None: new_version_array = [0, 0, 0, 0] else: new_version_array = highest_version_array[:] # release builds don't have build numbers, so always set to zero new_version_array[3] = 0 if bump_type == 'major': # if major rolls then set minor and bug to zero. new_version_array[0] = new_version_array[0]+1 new_version_array[1] = 0 new_version_array[2] = 0 elif bump_type == 'minor': # if minor rolls then set bug to zero. new_version_array[1] = new_version_array[1]+1 new_version_array[2] = 0 elif bump_type == 'bug': new_version_array[2] = new_version_array[2]+1 commons.print_msg(GitHub.clazz, method, "New Git tag {}".format(self.convert_semver_tag_array_to_semver_string( new_version_array))) commons.print_msg(GitHub.clazz, method, 'end') return new_version_array def get_git_last_tag(self, start_from_version=None): method = "get_git_last_tag" commons.print_msg(GitHub.clazz, method, 'begin') if start_from_version is not None: return start_from_version last_tag = None if self.config.artifact_category.lower() == 'release': tags = self.get_all_tags_and_shas_from_github(need_release=1) for name, _ in tags: if '+' not in name: last_tag = name break else: tags = self.get_all_tags_and_shas_from_github(need_snapshot=1) for name, _ in tags: if '+' in name: last_tag = name break commons.print_msg(GitHub.clazz, method, "last_tag is: {}".format(last_tag)) return last_tag def get_git_previous_tag(self, start_from_version=None): method = "get_git_previous_tag" commons.print_msg(GitHub.clazz, method, 'begin') beginning_tag = None if self.config.artifact_category.lower() == 'release': tags = self.get_all_tags_and_shas_from_github(need_release=2) else: tags = self.get_all_tags_and_shas_from_github(need_snapshot=2) if start_from_version is None: for name, _ in tags: if self.config.artifact_category.lower() == 'release' and '+' not in name: beginning_tag = name break elif self.config.artifact_category.lower() != 'release' and '+' in name: beginning_tag = name break else: beginning_tag = start_from_version commons.print_msg(GitHub.clazz, method, "starting with {}".format(beginning_tag)) commons.print_msg(GitHub.clazz, method, "Category: " + self.config.artifact_category.lower()) found_tag = False for name, _ in tags: if found_tag: out_name = None if self.config.artifact_category.lower() == 'release' and '+' not in name: out_name = name elif self.config.artifact_category.lower() != 'release' and '+' in name: out_name = name if out_name is not None: commons.print_msg(GitHub.clazz, method, name) commons.print_msg(GitHub.clazz, method, 'end') return out_name if name == beginning_tag: found_tag = True commons.print_msg(GitHub.clazz, method, 'tag not found, or was the first tag') return None def get_all_commits_from_github(self, start_from_sha=None): method = "get_all_commits_from_github" commons.print_msg(GitHub.clazz, method, 'begin') if len(GitHub.all_commits) > 0: if GitHub.found_all_commits: commons.print_msg(GitHub.clazz, method, 'All commits pulled, returning cached results') return GitHub.all_commits foundSha = False for commit in GitHub.all_commits: if commit['sha'] == start_from_sha: foundSha = True commons.print_msg(GitHub.clazz, method, 'The beginning sha is in our cached list') if foundSha: commons.print_msg(GitHub.clazz, method, 'Returning cached results') return GitHub.all_commits commons.print_msg(GitHub.clazz, method, 'Beginning sha is not in our cached list, pulling more commits') per_page = 100 start_page = (len(GitHub.all_commits)//per_page)+1 finished = False output = GitHub.all_commits branch = self.config.build_env_info['associatedBranchName'] repo_url = GitHub.url + '/' + GitHub.org + '/' + GitHub.repo + '/commits?per_page=' + str(per_page) + '&page=' + str(start_page) + '&sha=' + str(branch) token = GitHub.token if token is not None: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json, 'Authorization': ('token ' + token)} else: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json} retries = 0 while not finished: commons.print_msg(GitHub.clazz, method, repo_url) try: resp = requests.get(repo_url, headers=headers, timeout=self.http_timeout) except Exception as e: commons.print_msg(GitHub.clazz, method, "Failed to access github location {}".format(e)) if retries < 2: time.sleep(retries * 5) retries += 1 continue commons.print_msg(GitHub.clazz, method, "Failed to access github location {}".format(e), "ERROR") exit(1) retries = 0 if 'next' in resp.links: repo_url = resp.links['next']['url'] else: GitHub.found_all_commits = True finished = True if resp.status_code != 200: commons.print_msg(GitHub.clazz, method, "Failed to access github location {url}\r\n Response: {rsp}" .format(url=repo_url, rsp=resp.text), "ERROR") exit(1) else: #commons.print_msg(GitHub.clazz, method, resp.text) #commons.print_msg(GitHub.clazz, method, resp.json()) simplified = [] for commit in resp.json(): simplified.append({'sha': commit['sha'], 'commit': { 'message': commit['commit']['message'] } }) if commit['sha'] == start_from_sha: commons.print_msg(GitHub.clazz, method, 'Found the beginning sha, stopping lookup') finished = True output.extend(simplified) commons.print_msg(GitHub.clazz, method, '{} total commits'.format(len(output))) commons.print_msg(GitHub.clazz, method, 'end') GitHub.all_commits = output return output def _verify_tags_found(self, tag_list, need_snapshot, need_release, need_tag, need_base): found_snapshot = 0 found_release = 0 found_tag = need_tag is None for name, _ in tag_list: if need_snapshot > found_snapshot: if '+' in name: found_snapshot += 1 if need_release > found_release: if '+' not in name: found_release += 1 if not found_tag: if need_base: if name.split("+")[0] == need_tag: found_tag = True elif name == need_tag: found_tag = True if found_snapshot >= need_snapshot and found_release >= need_release and found_tag: return True return False # if need_snapshot, need_release, and need_tag are all left as defaults, # this method will only pull one page of results. def get_all_tags_and_shas_from_github(self, need_snapshot=0, need_release=0, need_tag=None, need_base=False): method = "get_all_tags_and_shas_from_github" if len(GitHub.all_tags_and_shas) > 0: if self._verify_tags_found(GitHub.all_tags_and_shas, need_snapshot, need_release, need_tag, need_base): commons.print_msg(GitHub.clazz, method, 'Already pulled necessary tags, returning cached results') return GitHub.all_tags_and_shas commons.print_msg(GitHub.clazz, method, 'Necessary tags are not in our cached list, pulling more tags') per_page = 100 start_page = (len(GitHub.all_tags_and_shas)//per_page)+1 finished = False output = GitHub.all_tags_and_shas repo_url = GitHub.url + '/' + GitHub.org + '/' + GitHub.repo + '/tags?per_page=' + str(per_page) + '&page=' + str(start_page) token = GitHub.token if token is not None: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json, 'Authorization': ('token ' + token)} else: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json} retries = 0 while not finished: commons.print_msg(GitHub.clazz, method, repo_url) try: resp = requests.get(repo_url, headers=headers, timeout=self.http_timeout) except Exception as e: commons.print_msg(GitHub.clazz, method, "Failed to access github location {}".format(e)) if retries < 2: time.sleep(retries * 5) retries += 1 continue commons.print_msg(GitHub.clazz, method, "Failed to access github location {}".format(e), "ERROR") exit(1) retries = 0 if 'next' in resp.links: repo_url = resp.links['next']['url'] else: finished = True if resp.status_code != 200: commons.print_msg(GitHub.clazz, method, "Failed to access github location {url}\r\n Response: {rsp}" .format(url=repo_url, rsp=resp.text), "ERROR") exit(1) else: #commons.print_msg(GitHub.clazz, method, resp.text) #commons.print_msg(GitHub.clazz, method, resp.json()) simplified = list(map(lambda obj: (obj['name'], obj['commit']['sha']), resp.json())) output.extend(simplified) if self._verify_tags_found(output, need_snapshot, need_release, need_tag, need_base): commons.print_msg(GitHub.clazz, method, 'Found necessary tags, stopping lookup') finished = True #commons.print_msg(GitHub.clazz, method, output) commons.print_msg(GitHub.clazz, method, '{} total tags'.format(len(output))) commons.print_msg(GitHub.clazz, method, 'end') GitHub.all_tags_and_shas = output return output def get_all_semver_tags(self, need_snapshot=0, need_release=0, need_tag=None, need_base=False): method = "get_all_semver_tags" all_tags_output = self.get_all_tags_and_shas_from_github(need_snapshot=need_snapshot, need_release=need_release, need_tag=need_tag, need_base=need_base) all_tags = all_tags_output#.splitlines() tag_data = [] for tag, _ in all_tags: try: tag_data.append(self.convert_semver_string_to_semver_tag_array(tag)) except Exception: commons.print_msg(GitHub.clazz, method, "This tag didn't parse right skipping: {} ".format(tag)) tag_data.sort(reverse=True) GitHub.all_tags_sorted = tag_data return tag_data def get_highest_semver_tag(self): all_semver_tags = self.get_all_semver_tags() # index 0 is the highest order number if len(all_semver_tags) > 0: return all_semver_tags[0] else: return None def get_highest_semver_release_tag(self): all_semver_tags = self.get_all_semver_tags(need_release=1) # index 0 is the highest order semver number # since array is in order from highest version # to lowest version, then start at 0 # and find the last release build for tag in all_semver_tags: if self._is_semver_tag_array_release_or_snapshot(tag) == 'release': return tag return None def get_highest_semver_snapshot_tag(self): all_semver_tags = self.get_all_semver_tags(need_snapshot=1) # index 0 is the highest order semver number # since array is in order from highest version # to lowest version, then start at 0 # and find the last snapshot build for tag in all_semver_tags: if self._is_semver_tag_array_release_or_snapshot(tag) == 'snapshot': return tag return None def get_highest_semver_array_snapshot_tag_from_base(self, base_release_version): all_semver_tags = self.get_all_semver_tags(need_tag=self.convert_semver_tag_array_to_semver_string(base_release_version), need_base=True) # index 0 is the highest order semver number # since array is in order from highest version # to lowest version, then start at 0 # There are three options to this effort: # Found a snapshot that matches the base, then return the highest # Found only a release that matches the base, no snapshots, return release # no base found, return base. found_tag = None for tag in all_semver_tags: if tag[0] == base_release_version[0] and tag[1] == base_release_version[1] and tag[2] == base_release_version[2]: # this could be a snapshot, or release, really don't care. # both are fine. found_tag = tag break return found_tag def _does_semver_tag_exist(self, tag_array): all_semver_tags = self.get_all_semver_tags(need_tag=self.convert_semver_tag_array_to_semver_string(tag_array)) # index 0 is the highest order number if tag_array in all_semver_tags: return True else: return False def convert_semver_tag_array_to_semver_string(self, tag_array): if tag_array is None: return None tag_string = "v" tag_string += str(tag_array[0]) # major tag_string += "." + str(tag_array[1]) # minor tag_string += "." + str(tag_array[2]) # bug if len(tag_array) == 4 and tag_array[3] != 0: tag_string += "+" + str(tag_array[3]) # build return tag_string def convert_semver_string_to_semver_tag_array(self, tag_string): if tag_string is None: return None tag_array = [] regex = "^v(\d+)\.(\d+).(\d+)(\+(\d+))?$" match = re.fullmatch(regex, tag_string.strip()) if match: # major tag_array.append(int(match.group(1))) # minor tag_array.append(int(match.group(2))) # bug tag_array.append(int(match.group(3))) # build # group 3 is the "+digit" match # group 4 is the digit match sub group # so skip 3 if match.group(5) is not None: tag_array.append(int(match.group(5))) else: tag_array.append(0) else: raise Exception("Tag format invalid v0.0.0[+0] instead it was: " + tag_string) return tag_array def verify_sem_ver_tag(self, tag): # None tags are valid (no tags for the repo) if tag is None: return True tag_string = self.convert_semver_tag_array_to_semver_string(tag) regex = "^v(\d+)\.(\d+).(\d+)(\+(\d+))?$" match = re.fullmatch(regex, tag_string.strip()) if match: return True else: return False def get_all_git_commit_history_between_provided_tags(self, semver_array_beginning_version, semver_array_ending_version=None): # if you set the semver_array_beginning_version to None, it will pull *ALL* history **be gentle** method = 'get_all_git_commit_history_between_provided_tags' commons.print_msg(GitHub.clazz, method, method) if self.verify_sem_ver_tag(semver_array_beginning_version) is False: commons.print_msg(GitHub.clazz, method, "Invalid beginning version defined {}".format( semver_array_beginning_version), 'ERROR') exit(1) if semver_array_ending_version is not None and self.verify_sem_ver_tag(semver_array_ending_version) is False: commons.print_msg(GitHub.clazz, method, "Invalid ending version defined {}".format( semver_array_ending_version), 'ERROR') exit(1) semver_array_beginning_version = self.convert_semver_tag_array_to_semver_string(semver_array_beginning_version) # noinspection PyTypeChecker semver_array_ending_version = self.convert_semver_tag_array_to_semver_string(semver_array_ending_version) # get all tags to get shas tags = self.get_all_tags_and_shas_from_github(need_tag=semver_array_beginning_version) ending_sha = '' beginning_sha = '' if semver_array_ending_version is not None: commons.print_msg(GitHub.clazz, method, semver_array_ending_version) filtered_tags = list(filter(lambda tag: tag[0] == semver_array_ending_version, tags)) if len(filtered_tags) == 0: print("Version tag not found {}".format(semver_array_ending_version)) commons.print_msg(GitHub.clazz, method, "Version tag not found {}".format(semver_array_ending_version), 'ERROR') exit(1) else: beginning_sha = filtered_tags[0][1] ending_sha = filtered_tags[0][1] if semver_array_beginning_version is not None: commons.print_msg(GitHub.clazz, method, semver_array_beginning_version) filtered_tags = list(filter(lambda tag: tag[0] == semver_array_beginning_version, tags)) if len(filtered_tags) == 0: print("Version tag not found {}".format(semver_array_beginning_version)) commons.print_msg(GitHub.clazz, method, "Version tag not found {}".format(semver_array_beginning_version), 'ERROR') exit(1) else: beginning_sha = filtered_tags[0][1] commons.print_msg(GitHub.clazz, method, ending_sha + ' , ' + beginning_sha) # get all commits here commits = self.get_all_commits_from_github(beginning_sha) trimmed_commits = [] found_beginning = False if semver_array_beginning_version is None and semver_array_ending_version is None: # Everything! commons.print_msg(GitHub.clazz, method, "No tag present. Pulling all git commit statements instead.") trimmed_commits = commits[:] found_beginning = True elif semver_array_ending_version is None: # Everything since tag commons.print_msg(GitHub.clazz, method, "The first tag: {}".format(semver_array_beginning_version)) for commit in commits: if commit['sha'] == beginning_sha: found_beginning = True break trimmed_commits.append(commit) else: # Between two tags. Mostly used when re-deploying old versions to send release notes commons.print_msg(GitHub.clazz, method, "The first tag: ".format(semver_array_beginning_version)) commons.print_msg(GitHub.clazz, method, "The last tag: ".format(semver_array_ending_version)) found_end = False for commit in commits: if commit['sha'] == ending_sha: found_end = True if commit['sha'] == beginning_sha: found_beginning = True break if found_end: trimmed_commits.append(commit) trimmed_commits = list(map(lambda current_sommit: "{} {}".format(current_sommit['sha'][0:7], current_sommit['commit']['message']), trimmed_commits)) commons.print_msg(GitHub.clazz, method, "Number of commits found: {}".format(len(trimmed_commits))) if not found_beginning: branch = self.config.build_env_info['associatedBranchName'] commons.print_msg(GitHub.clazz, method, "The commit sha {} could not be found in the commit history of branch '{}', so no tracker stories will be pulled.".format(beginning_sha, branch), 'WARN') commons.print_msg(GitHub.clazz, method, "This likely means tag {} was created on a branch other than {}.".format(semver_array_beginning_version, branch)) trimmed_commits = [] commons.print_msg(GitHub.clazz, method, 'end') return trimmed_commits def _is_semver_tag_array_release_or_snapshot(self, semver_array): # check the 0.0.0.x position. # if x == 0 then it is release # if x > 0 then it is snapshot. if semver_array[3] == 0: return 'release' elif semver_array[3] > 0: return 'snapshot' else: return None def download_code_at_version(self): method = "download_code_at_version" commons.print_msg(GitHub.clazz, method, "begin") artifact_to_download = self._get_artifact_url() artifact = self.config.version_number + '.tar.gz' commons.print_msg(GitHub.clazz, method, ("Attempting to download from github: {}".format(artifact_to_download))) if not os.path.exists(os.path.join(self.config.push_location, 'unzipped')): os.makedirs(os.path.join(self.config.push_location, 'unzipped')) download_path = self.config.push_location + "/" + artifact if GitHub.token is not None: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json, 'Authorization': ('token ' + GitHub.token)} else: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json} try: download_resp = requests.get(artifact_to_download, headers=headers) with open(download_path, 'wb') as f: for chunk in download_resp.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) tar = tarfile.open(self.config.push_location + '/' + artifact) tar.extractall(os.path.join(self.config.push_location, 'unzipped')) tar.close() self._copy_unzipped_file_to_deployment_directory() except Exception as ex: commons.print_msg(GitHub.clazz, method, "Failed to download {art}. Error: {e}".format(art=artifact, e=ex), 'ERROR') exit(1) commons.print_msg(GitHub.clazz, method, "end") def _get_artifact_url(self): method = "_get_artifact_url" commons.print_msg(GitHub.clazz, method, "begin") if GitHub.token is not None: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json, 'Authorization': ('token ' + GitHub.token)} else: headers = {'Content-type': cicommons.content_json, 'Accept': cicommons.content_json} tag_information_url = GitHub.url.replace('\\', '/').rstrip('/') + '/' + self.org + '/' + self.repo + \ '/releases/tags/' + self.config.version_number commons.print_msg(GitHub.clazz, method, ("Retrieving Github information from " + tag_information_url)) resp = requests.get(tag_information_url, headers=headers) if resp.status_code != 200: commons.print_msg(GitHub.clazz, method, ("Failed to access github tag information at " + tag_information_url + "\r\n Response: " + resp.text), "ERROR") exit(1) else: commons.print_msg(GitHub.clazz, method, resp.text) json_data = json.loads(resp.text) artifact_to_download = json_data['tarball_url'] return artifact_to_download # return self.domainURL.replace('\\','/').rstrip('/') + '/' + \ # self.org + '/' + \ # self.repo + '/archive/' + \ # self.config.version_number + \ # 'tar.gz' def _copy_unzipped_file_to_deployment_directory(self): method = "_copy_unzipped_file_to_deployment_directory" commons.print_msg(GitHub.clazz, method, "begin") try: # github tar puts it in a parent directory. Pull everything out of the parent directory if len([name for name in os.listdir(os.path.join(self.config.push_location, 'unzipped')) if os.path.isdir(os.path.join(self.config.push_location, 'unzipped', name))]) == 1: commons.print_msg(GitHub.clazz, method, "Github contents unzipped. Copying out of parent directory. ") for current_dir in os.listdir(os.path.join(self.config.push_location, 'unzipped')): if os.path.isdir(os.path.join(self.config.push_location, 'unzipped', current_dir)): self._copy_tree(os.path.join(self.config.push_location, 'unzipped', current_dir), self.config.push_location+'/', False, None) except Exception as ex: print(ex) commons.print_msg(GitHub.clazz, method, ("failed to move files from", os.path.join(self.config.push_location, 'unzipped'), "to", self.config.push_location), "ERROR") exit(1) commons.print_msg(GitHub.clazz, method, "end") def _copy_tree(self, src, dst, symlinks=False, ignore=None): for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isdir(s): shutil.copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d)
43.79415
229
0.597125
8ec9a1b7243ca1684da9a8a412738ef444351e5d
936
py
Python
Machine Learning Algorithms/a. Linear Regression/other works/Medical Cost Personal Datasets/MCPD Linear Regression Study.py
kerimmstfdemir/Machine_Learning_Algorithms_with_Python
8e12b7d1ff437fccb543075d7757dbb2ba99f2a1
[ "MIT" ]
null
null
null
Machine Learning Algorithms/a. Linear Regression/other works/Medical Cost Personal Datasets/MCPD Linear Regression Study.py
kerimmstfdemir/Machine_Learning_Algorithms_with_Python
8e12b7d1ff437fccb543075d7757dbb2ba99f2a1
[ "MIT" ]
null
null
null
Machine Learning Algorithms/a. Linear Regression/other works/Medical Cost Personal Datasets/MCPD Linear Regression Study.py
kerimmstfdemir/Machine_Learning_Algorithms_with_Python
8e12b7d1ff437fccb543075d7757dbb2ba99f2a1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Mar 25 16:09:03 2020 @author: Kerim Demir """ #import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression #import data received_dataset = pd.read_csv("insurance/insurance.csv") dataset = received_dataset.dropna() #Plotting Data plt.scatter(dataset.age,dataset.charges) plt.xlabel("Age") plt.ylabel("Charges") plt.show() #Linear Regression linear_reg = LinearRegression() x = dataset.age.values.reshape(-1,1) y = dataset.charges.values.reshape(-1,1) linear_reg.fit(x,y) #Prediction b0 = linear_reg.predict([[0]]) print("b0 =",b0) b0_ = linear_reg.intercept_ print("b0_ =",b0_) b1 = linear_reg.coef_ print("b1 =",b1) print(linear_reg.predict([[43]])) #Line Visualition array = np.array(range(0,65)).reshape(-1,1) y_head = linear_reg.predict(array) plt.plot(array,y_head,color="red") plt.show()
15.864407
57
0.725427
fc77bd05a1e67e84e0663b92ee98d589a9ac19f5
1,175
wsgi
Python
wsgi/playdoh.wsgi
ANKIT-KS/fjord
fec88521d3179e11bc6d7a35587092167be02c48
[ "BSD-3-Clause" ]
null
null
null
wsgi/playdoh.wsgi
ANKIT-KS/fjord
fec88521d3179e11bc6d7a35587092167be02c48
[ "BSD-3-Clause" ]
null
null
null
wsgi/playdoh.wsgi
ANKIT-KS/fjord
fec88521d3179e11bc6d7a35587092167be02c48
[ "BSD-3-Clause" ]
null
null
null
# This gets used by stage/prod to set up the WSGI application for stage/prod # use. We do some minor environment setup and then have `fjord/wsgi.py` do # the rest. import os import site # Set up NewRelic stuff. try: import newrelic.agent except ImportError: newrelic = False if newrelic: newrelic_ini = os.getenv('NEWRELIC_PYTHON_INI_FILE', False) if newrelic_ini: newrelic.agent.initialize(newrelic_ini) else: newrelic = False # NOTE: you can also set DJANGO_SETTINGS_MODULE in your environment to override # the default value in manage.py # Add the app dir to the python path so we can import manage. wsgidir = os.path.dirname(__file__) site.addsitedir(os.path.abspath(os.path.join(wsgidir, '../'))) # Explicitly set these so that fjord.manage_utils does the right # thing in production. os.environ['USING_VENDOR'] = '1' os.environ['SKIP_CHECK'] = '1' # Importing manage has the side-effect of adding vendor/ stuff and # doing other environment setup. import manage from fjord.wsgi import get_wsgi_application application = get_wsgi_application() if newrelic: application = newrelic.agent.wsgi_application()(application)
26.111111
79
0.748085
4594d8bd7036f8def7c6155d365fe862af456356
348
py
Python
backend/src/asset_manager/data/schemas/asset.py
JonathanLoscalzo/asset-license-dev-demo
522c1d531e508ae7e85b212f804eee505d284b2b
[ "Xnet", "X11" ]
null
null
null
backend/src/asset_manager/data/schemas/asset.py
JonathanLoscalzo/asset-license-dev-demo
522c1d531e508ae7e85b212f804eee505d284b2b
[ "Xnet", "X11" ]
null
null
null
backend/src/asset_manager/data/schemas/asset.py
JonathanLoscalzo/asset-license-dev-demo
522c1d531e508ae7e85b212f804eee505d284b2b
[ "Xnet", "X11" ]
null
null
null
from typing import Optional from asset_manager.data.schemas.base import BaseMongoModel, PydanticObjectId from asset_manager.models.models import TypeAssetEnum, uid class AssetMongo(BaseMongoModel): id: uid brand: str model: str type: TypeAssetEnum user: Optional[PydanticObjectId] class Config: orm_mode = True
20.470588
76
0.75
f9525ac6914d5dbd62e558ea5a3fe758a07fd542
6,210
py
Python
tests/cli/test_experiment.py
deeplearninc/auger-ai
b50af35e8ea28b528ec233a2f4a8d4e412059be9
[ "MIT" ]
null
null
null
tests/cli/test_experiment.py
deeplearninc/auger-ai
b50af35e8ea28b528ec233a2f4a8d4e412059be9
[ "MIT" ]
25
2019-07-09T04:26:19.000Z
2020-07-21T06:43:25.000Z
tests/cli/test_experiment.py
deeplearninc/auger-ai
b50af35e8ea28b528ec233a2f4a8d4e412059be9
[ "MIT" ]
1
2019-07-09T15:19:13.000Z
2019-07-09T15:19:13.000Z
import os import pytest from auger.cli.cli import cli from .utils import interceptor, ORGANIZATIONS, PROJECTS PROJECT_FILE = { 'data': { 'name': 'iris-1.csv', 'id': 1256, 'statistics': { 'columns_count': 5, 'count': 150, 'stat_data': [{ 'datatype': 'categorical', 'column_name': 'class', 'unique_values': 3 }] }, } } PROJECT_FILES = { 'meta': { 'pagination': {'offset': 0, 'count': 1, 'total': 1, 'limit': 100}, 'status': 200}, 'data': [PROJECT_FILE['data']] } EXPERIMENTS = { 'meta': { 'pagination': {'offset': 0, 'count': 1, 'total': 1, 'limit': 100}, 'status': 200}, 'data': [{ 'name': 'iris-1.csv-experiment', 'project_file_id': 1256, }] } EXPERIMENT_SESSIONS = { 'meta': { 'pagination': {'offset': 0, 'count': 2, 'total': 2, 'limit': 100}, 'status': 200}, 'data': [{ 'id': 'test_id_1', 'model_settings': {'start_time': '2019-06-26 22:00:00.405'}, 'status': 'completed', }, { 'id': 'test_id_2', 'model_settings': {'start_time': '2019-06-28 20:30:00.992405'}, 'status': 'completed', } ] } EXPERIMENT_SESSION = { 'data': { 'id': 'test_id_2', 'model_settings': {'start_time': '2019-06-28 20:30:00.992405'}, 'status': 'completed', 'project_file_id': '1234', } } TRIALS = { 'meta': {'pagination': {'offset': 0, 'limit': 100, 'count': 20, 'total': 20}, 'status': 200}, 'data': [{ 'id': 'A79FBADD8CCD417', 'score_name': 'f1_macro', 'score_value': 0.123, 'hyperparameter': {'algorithm_name': 'auger_ml.algorithms.baseline.BaselineClassifier'}, }]*20 } PROJECT = { 'data': { 'status': 'running', } } class TestExperimentCLI(): def test_list(self, runner, log, project, authenticated, monkeypatch): PAYLOAD = { 'get_organizations': ORGANIZATIONS, 'get_projects': PROJECTS, 'get_project': PROJECT, 'get_project_files': PROJECT_FILES, 'get_experiments': EXPERIMENTS, } interceptor(PAYLOAD, monkeypatch) result = runner.invoke(cli, ['experiment', 'list']) assert result.exit_code == 0 assert log.messages[0] == 'iris-1.csv-experiment' assert log.messages[-1] == '1 Experiment(s) listed' def test_start(self, runner, log, project, authenticated, monkeypatch): PAYLOAD = { 'get_organizations': ORGANIZATIONS, 'get_projects': PROJECTS, 'get_project': PROJECT, 'get_project_files': PROJECT_FILES, 'get_project_file': PROJECT_FILE, 'get_experiments': EXPERIMENTS, 'get_experiment_sessions': EXPERIMENT_SESSIONS, 'create_experiment_session': EXPERIMENT_SESSION, 'get_experiment_session': EXPERIMENT_SESSION, 'update_experiment_session': EXPERIMENT_SESSION, 'get_trials': TRIALS, } interceptor(PAYLOAD, monkeypatch) result = runner.invoke(cli, ['experiment', 'start']) assert result.exit_code == 0 assert log.messages[0] == 'Started Experiment iris-1.csv-experiment search...' @pytest.mark.skip(reason="Make it work first, edge cases next") def test_start_without_target(self, runner, log, project, authenticated, monkeypatch): PAYLOAD = { 'get_organizations': ORGANIZATIONS, 'get_projects': PROJECTS, 'get_project_files': PROJECT_FILES, 'get_experiments': EXPERIMENTS, 'get_experiment_sessions': EXPERIMENT_SESSIONS, 'get_trials': TRIALS, } interceptor(PAYLOAD, monkeypatch) # TODO: ensure cli throws error on trying to start exp w/o target result = runner.invoke(cli, ['experiment', 'start']) assert result.exit_code != 0 assert log.messages[-1] == 'Please set target to build model.' def test_stop(self, runner, log, project, authenticated, monkeypatch): PAYLOAD = { 'get_organizations': ORGANIZATIONS, 'get_projects': PROJECTS, 'get_project_files': PROJECT_FILES, 'get_experiments': EXPERIMENTS, 'get_experiment_sessions': EXPERIMENT_SESSIONS, 'update_experiment_session': EXPERIMENT_SESSION, } interceptor(PAYLOAD, monkeypatch) monkeypatch.setattr('auger.api.cloud.experiment_session.AugerExperimentSessionApi.status', lambda *a, **kw: 'started') result = runner.invoke(cli, ['experiment', 'stop']) assert result.exit_code == 0 assert log.messages[0] == 'Search is stopped...' def test_leaderboard(self, runner, log, project, authenticated, monkeypatch): PAYLOAD = { 'get_organizations': ORGANIZATIONS, 'get_projects': PROJECTS, 'get_project_files': PROJECT_FILES, 'get_experiments': EXPERIMENTS, 'get_experiment_session': EXPERIMENT_SESSION, 'get_experiment_sessions': EXPERIMENT_SESSIONS, 'get_trials': TRIALS, } interceptor(PAYLOAD, monkeypatch) result = runner.invoke(cli, ['experiment', 'leaderboard']) assert result.exit_code == 0 assert len(log.messages) == 45 assert log.messages[-1] == 'Search is completed.' def test_history(self, runner, log, project, authenticated, monkeypatch): PAYLOAD = { 'get_organizations': ORGANIZATIONS, 'get_projects': PROJECTS, 'get_project_files': PROJECT_FILES, 'get_experiments': EXPERIMENTS, 'get_experiment_sessions': EXPERIMENT_SESSIONS, } interceptor(PAYLOAD, monkeypatch) result = runner.invoke(cli, ['experiment', 'history']) assert result.exit_code == 0 assert (log.messages[0] == '''run id: test_id_1, start time: 2019-06-26 22:00:00.405, ''' '''status: completed''') assert 'run id: test_id_2' in log.messages[1]
34.5
126
0.583575
813c20327cbe42cebe3e1557e2ecd69d712c4b58
1,258
py
Python
dolphin_doc_lib/process_test.py
jianzhoufeng/dolphin-doc
65def92b21bcde6a962458753e59002c2ac125b5
[ "Apache-2.0" ]
1
2019-09-04T10:28:46.000Z
2019-09-04T10:28:46.000Z
dolphin_doc_lib/process_test.py
zhongbiaodev/dolphin-doc
d4134bdca2224f34a40a22277e8435edbfa393f6
[ "Apache-2.0" ]
1
2019-09-22T10:15:24.000Z
2019-09-22T10:15:24.000Z
dolphin_doc_lib/process_test.py
jianzhoufeng/dolphin-doc
65def92b21bcde6a962458753e59002c2ac125b5
[ "Apache-2.0" ]
1
2019-09-07T03:37:31.000Z
2019-09-07T03:37:31.000Z
"Unit test for process" from typing import cast from dolphin_doc_lib.base.text import TextParagraph, TextSegment from dolphin_doc_lib.process import process, Content, ContentSource from dolphin_doc_lib.base.doc import Doc def test_plain_text(): text = "paragraph 1\nparagraph 2\n\n \n \nparagraph 3\n" doc = process(Content(data=text)) par1 = TextParagraph().append_text_segment(TextSegment("paragraph 1")) par2 = TextParagraph().append_text_segment(TextSegment("paragraph 2")) par3 = TextParagraph().append_text_segment(TextSegment("paragraph 3")) expect_doc = Doc().append_blocks([par1, par2, par3]) assert doc.to_dict() == expect_doc.to_dict() def test_plain_text_from_file(): doc = process( Content(source=ContentSource.FILE, path="dolphin_doc_lib/testdata/plain_text.txt")) par1 = TextParagraph().append_text_segment(TextSegment("paragraph 1")) par2 = TextParagraph().append_text_segment(TextSegment("paragraph 2")) par3 = TextParagraph().append_text_segment(TextSegment("paragraph 3")) par4 = TextParagraph().append_text_segment(TextSegment("paragraph 4")) expect_doc = Doc().append_blocks([par1, par2, par3, par4]) assert doc.to_dict() == expect_doc.to_dict()
38.121212
74
0.735294
6194a226533105a99b04750c80b72a986e3432c3
4,633
py
Python
xlsxwriter/test/worksheet/test_worksheet09.py
adgear/XlsxWriter
79bcaad28d57ac29038b1c74bccc6d611b7a385e
[ "BSD-2-Clause-FreeBSD" ]
2
2019-07-25T06:08:09.000Z
2019-11-01T02:33:56.000Z
xlsxwriter/test/worksheet/test_worksheet09.py
adgear/XlsxWriter
79bcaad28d57ac29038b1c74bccc6d611b7a385e
[ "BSD-2-Clause-FreeBSD" ]
13
2019-07-14T00:29:05.000Z
2019-11-26T06:16:46.000Z
xlsxwriter/test/worksheet/test_worksheet09.py
adgear/XlsxWriter
79bcaad28d57ac29038b1c74bccc6d611b7a385e
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2019, John McNamara, jmcnamara@cpan.org # import unittest from ...compatibility import StringIO from ..helperfunctions import _xml_to_list from ...worksheet import Worksheet from ...format import Format class TestAssembleWorksheet(unittest.TestCase): """ Test assembling a complete Worksheet file. """ def test_assemble_xml_file(self): """Test writing a worksheet with a blank cell.""" self.maxDiff = None fh = StringIO() worksheet = Worksheet() worksheet._set_filehandle(fh) cell_format = Format({'xf_index': 1}) # No format. Should be ignored. worksheet.write_blank(0, 0, None) worksheet.write_blank(1, 2, None, cell_format) worksheet.select() worksheet._assemble_xml_file() exp = _xml_to_list(""" <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <worksheet xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main" xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"> <dimension ref="C2"/> <sheetViews> <sheetView tabSelected="1" workbookViewId="0"/> </sheetViews> <sheetFormatPr defaultRowHeight="15"/> <sheetData> <row r="2" spans="3:3"> <c r="C2" s="1"/> </row> </sheetData> <pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75" header="0.3" footer="0.3"/> </worksheet> """) got = _xml_to_list(fh.getvalue()) self.assertEqual(got, exp) def test_assemble_xml_file_write(self): """Test writing a worksheet with a blank cell with write() method.""" self.maxDiff = None fh = StringIO() worksheet = Worksheet() worksheet._set_filehandle(fh) cell_format = Format({'xf_index': 1}) # No format. Should be ignored. worksheet.write(0, 0, None) worksheet.write(1, 2, None, cell_format) worksheet.select() worksheet._assemble_xml_file() exp = _xml_to_list(""" <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <worksheet xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main" xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"> <dimension ref="C2"/> <sheetViews> <sheetView tabSelected="1" workbookViewId="0"/> </sheetViews> <sheetFormatPr defaultRowHeight="15"/> <sheetData> <row r="2" spans="3:3"> <c r="C2" s="1"/> </row> </sheetData> <pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75" header="0.3" footer="0.3"/> </worksheet> """) got = _xml_to_list(fh.getvalue()) self.assertEqual(got, exp) def test_assemble_xml_file_A1(self): """Test writing a worksheet with a blank cell with A1 notation.""" self.maxDiff = None fh = StringIO() worksheet = Worksheet() worksheet._set_filehandle(fh) cell_format = Format({'xf_index': 1}) # No format. Should be ignored. worksheet.write_blank('A1', None) worksheet.write_blank('C2', None, cell_format) worksheet.select() worksheet._assemble_xml_file() exp = _xml_to_list(""" <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <worksheet xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main" xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"> <dimension ref="C2"/> <sheetViews> <sheetView tabSelected="1" workbookViewId="0"/> </sheetViews> <sheetFormatPr defaultRowHeight="15"/> <sheetData> <row r="2" spans="3:3"> <c r="C2" s="1"/> </row> </sheetData> <pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75" header="0.3" footer="0.3"/> </worksheet> """) got = _xml_to_list(fh.getvalue()) self.assertEqual(got, exp)
34.834586
171
0.529031
e2e1117c03a9a899e70fcbfa3e569f714c8041d7
5,887
py
Python
ykman/cli/apdu.py
maxthomas/yubikey-manager
79bf111093401dbbe18ef7627d45e8c472ba17dd
[ "BSD-2-Clause" ]
null
null
null
ykman/cli/apdu.py
maxthomas/yubikey-manager
79bf111093401dbbe18ef7627d45e8c472ba17dd
[ "BSD-2-Clause" ]
null
null
null
ykman/cli/apdu.py
maxthomas/yubikey-manager
79bf111093401dbbe18ef7627d45e8c472ba17dd
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) 2020 Yubico AB # All rights reserved. # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from binascii import a2b_hex from yubikit.core import AID from yubikit.core.smartcard import SmartCardConnection, SmartCardProtocol, ApduError, SW from .util import EnumChoice, ykman_command import re import sys import click import struct import logging logger = logging.getLogger(__name__) APDU_PATTERN = re.compile( r"^" r"(?P<cla>[0-9a-f]{2})?(?P<ins>[0-9a-f]{2})(?P<params>[0-9a-f]{4})?" r"(?::(?P<body>(?:[0-9a-f]{2})+))?" r"(?P<check>=(?P<sw>[0-9a-f]{4})?)?" r"$", re.IGNORECASE, ) def _hex(data): return " ".join(f"{d:02X}" for d in data) def _parse_apdu(data): m = APDU_PATTERN.match(data) if not m: raise ValueError("Invalid APDU format: " + data) cla = int(m.group("cla") or "00", 16) ins = int(m.group("ins"), 16) params = int(m.group("params") or "0000", 16) body = a2b_hex(m.group("body") or "") if m.group("check"): sw = int(m.group("sw") or "9000", 16) else: sw = None p1, p2 = params >> 8, params & 0xFF return (cla, ins, p1, p2, body), sw def _print_response(resp, sw, no_pretty): click.echo(f"RECV (SW={sw:04X})" + (":" if resp else "")) if no_pretty: click.echo(resp.hex().upper()) else: for i in range(0, len(resp), 16): chunk = resp[i : i + 16] click.echo( " ".join(f"{c:02X}" for c in chunk).ljust(50) # Replace non-printable characters with a dot. + "".join(chr(c) if 31 < c < 127 else chr(183) for c in chunk) ) @ykman_command(SmartCardConnection, hidden="--full-help" not in sys.argv) @click.pass_context @click.option( "-x", "--no-pretty", is_flag=True, help="Print only the hex output of a response" ) @click.option( "-a", "--app", type=EnumChoice(AID), required=False, help="Select application", ) @click.argument("apdu", nargs=-1) @click.option("-s", "--send-apdu", multiple=True, help="Provide full APDUs") def apdu(ctx, no_pretty, app, apdu, send_apdu): """ Execute arbitary APDUs. Provide APDUs as a hex encoded, space-separated list using the following syntax: [CLA]INS[P1P2][:DATA][=EXPECTED_SW] If not provided CLA, P1 and P2 are all set to zero. Setting EXPECTED_SW will cause the command to check the response SW an fail if it differs. "=" can be used as shorthand for "=9000" (SW=OK). Examples: \b Select the OATH application, send a LIST instruction (0xA1), and make sure we get sw=9000 (these are equivalent): $ ykman apdu a40400:a000000527210101=9000 a1=9000 or $ ykman apdu -a oath a1= \b Factory reset the OATH application: $ ykman apdu -a oath 04dead or $ ykman apdu a40400:a000000527210101 04dead or (using full-apdu mode) $ ykman apdu -s 00a4040008a000000527210101 -s 0004dead """ if apdu and send_apdu: ctx.fail("Cannot mix positional APDUs and -s/--send-apdu.") elif not send_apdu: apdus = [_parse_apdu(data) for data in apdu] if not apdus and not app: ctx.fail("No commands provided.") protocol = SmartCardProtocol(ctx.obj["conn"]) is_first = True if app: is_first = False click.echo("SELECT AID: " + _hex(app)) resp = protocol.select(app) _print_response(resp, SW.OK, no_pretty) if send_apdu: # Compatibility mode (full APDUs) for apdu in send_apdu: if not is_first: click.echo() else: is_first = False apdu = a2b_hex(apdu) click.echo("SEND: " + _hex(apdu)) resp, sw = protocol.connection.send_and_receive(apdu) _print_response(resp, sw, no_pretty) else: # Standard mode for apdu, check in apdus: if not is_first: click.echo() else: is_first = False header, body = apdu[:4], apdu[4] req = _hex(struct.pack(">BBBB", *header)) if body: req += " -- " + _hex(body) click.echo("SEND: " + req) try: resp = protocol.send_apdu(*apdu) sw = SW.OK except ApduError as e: resp = e.data sw = e.sw _print_response(resp, sw, no_pretty) if check is not None and sw != check: click.echo(f"Aborted due to error (expected SW={check:04X}).") ctx.exit(1)
34.226744
88
0.618312
c178333c7f8850f50e1b427c9e8297d3d9e8b8bb
5,074
py
Python
mars/tensor/random/vonmises.py
haijohn/mars
672b3a33a70565f01b1a3f508908445491d85acf
[ "Apache-2.0" ]
1
2021-06-10T02:43:01.000Z
2021-06-10T02:43:01.000Z
mars/tensor/random/vonmises.py
JeffroMF/mars
2805241ac55b50c4f6319baa41113fbf8c723832
[ "Apache-2.0" ]
null
null
null
mars/tensor/random/vonmises.py
JeffroMF/mars
2805241ac55b50c4f6319baa41113fbf8c723832
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ... import opcodes as OperandDef from ...serialization.serializables import AnyField from ..utils import gen_random_seeds from .core import TensorRandomOperandMixin, handle_array, TensorDistribution class TensorVonmises(TensorDistribution, TensorRandomOperandMixin): _input_fields_ = ['_mu', '_kappa'] _op_type_ = OperandDef.RAND_VONMISES _fields_ = '_mu', '_kappa', '_size' _mu = AnyField('mu') _kappa = AnyField('kappa') _func_name = 'vonmises' def __init__(self, size=None, dtype=None, **kw): dtype = np.dtype(dtype) if dtype is not None else dtype super().__init__(_size=size, dtype=dtype, **kw) @property def mu(self): return self._mu @property def kappa(self): return self._kappa def __call__(self, mu, kappa, chunk_size=None): return self.new_tensor([mu, kappa], None, raw_chunk_size=chunk_size) def vonmises(random_state, mu, kappa, size=None, chunk_size=None, gpu=None, dtype=None): r""" Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. chunk_size : int or tuple of int or tuple of ints, optional Desired chunk size on each dimension gpu : bool, optional Allocate the tensor on GPU if True, False as default dtype : data-type, optional Data-type of the returned tensor. Returns ------- out : Tensor or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> import mars.tensor as mt >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = mt.random.vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 >>> plt.hist(s.execute(), 50, normed=True) >>> x = mt.linspace(-mt.pi, mt.pi, num=51) >>> y = mt.exp(kappa*mt.cos(x-mu))/(2*mt.pi*i0(kappa)) >>> plt.plot(x.execute(), y.execute(), linewidth=2, color='r') >>> plt.show() """ if dtype is None: dtype = np.random.RandomState().vonmises( handle_array(mu), handle_array(kappa), size=(0,)).dtype size = random_state._handle_size(size) seed = gen_random_seeds(1, random_state.to_numpy())[0] op = TensorVonmises(size=size, seed=seed, gpu=gpu, dtype=dtype) return op(mu, kappa, chunk_size=chunk_size)
35.985816
88
0.667915
378645c49022aafce008b388a896d2de3586a77d
1,459
py
Python
Configuration/GenProduction/python/ThirteenTeV/GMSB_noSLHA/GMSB_L250TeV_Ctau200cm_Pythia8_13TeV_cff.py
zhangzc11/cms-gmsb-sps8-configs
838e6aac1d13251e050c0ee8c4ed26ca0c6cef7e
[ "Apache-2.0" ]
null
null
null
Configuration/GenProduction/python/ThirteenTeV/GMSB_noSLHA/GMSB_L250TeV_Ctau200cm_Pythia8_13TeV_cff.py
zhangzc11/cms-gmsb-sps8-configs
838e6aac1d13251e050c0ee8c4ed26ca0c6cef7e
[ "Apache-2.0" ]
null
null
null
Configuration/GenProduction/python/ThirteenTeV/GMSB_noSLHA/GMSB_L250TeV_Ctau200cm_Pythia8_13TeV_cff.py
zhangzc11/cms-gmsb-sps8-configs
838e6aac1d13251e050c0ee8c4ed26ca0c6cef7e
[ "Apache-2.0" ]
null
null
null
with open("/cvmfs/cms.cern.ch/phys_generator/gridpacks/slc6_amd64_gcc481/13TeV/madgraph/GMSB_SHLA/GMSB_Lambda250TeV_CTau200cm.slha") as f: SLHA_TABLE = f.read() import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.MCTunes2017.PythiaCP5Settings_cfi import * from Configuration.Generator.PSweightsPythia.PythiaPSweightsSettings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", comEnergy = cms.double(13000.0), pythiaHepMCVerbosity = cms.untracked.bool(False), pythiaPylistVerbosity = cms.untracked.int32(1), filterEfficiency = cms.untracked.double(1.0), SLHATableForPythia8 = cms.string('%s' % SLHA_TABLE), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CP5SettingsBlock, pythia8PSweightsSettingsBlock, processParameters = cms.vstring( 'ParticleDecays:limitTau0 = off', 'ParticleDecays:tau0Max = 10000000', 'SUSY:all on', ), parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CP5Settings', 'pythia8PSweightsSettings', 'processParameters') ) ) ProductionFilterSequence = cms.Sequence(generator)
42.911765
138
0.632625
8e324c46337721d269fb542f86512c62f9b4ce3f
410
py
Python
utils/tool.py
HKUNLP/UnifiedSKG
49a2ff950bb312b980c22ad72b11520db72ab6a3
[ "Apache-2.0" ]
191
2021-12-14T11:33:09.000Z
2022-03-31T09:20:41.000Z
utils/tool.py
HKUNLP/UnifiedSKG
49a2ff950bb312b980c22ad72b11520db72ab6a3
[ "Apache-2.0" ]
7
2022-01-20T05:41:51.000Z
2022-03-20T06:43:22.000Z
utils/tool.py
HKUNLP/UnifiedSKG
49a2ff950bb312b980c22ad72b11520db72ab6a3
[ "Apache-2.0" ]
22
2021-12-14T12:59:42.000Z
2022-03-29T03:45:51.000Z
import importlib def get_model(model): Model = importlib.import_module('models.{}'.format(model)).Model return Model def get_constructor(constructor): Constructor = importlib.import_module('{}'.format(constructor)).Constructor return Constructor def get_evaluator(evaluate_tool): EvaluateTool = importlib.import_module('{}'.format(evaluate_tool)).EvaluateTool return EvaluateTool
24.117647
83
0.758537
db5ee61de20d488f4996518cc833ad1bdfe6d294
419
py
Python
setup.py
docloud/luna.sso
a62c0ee788b72b39340165e41de16e248eb5edad
[ "MIT" ]
null
null
null
setup.py
docloud/luna.sso
a62c0ee788b72b39340165e41de16e248eb5edad
[ "MIT" ]
null
null
null
setup.py
docloud/luna.sso
a62c0ee788b72b39340165e41de16e248eb5edad
[ "MIT" ]
null
null
null
#!/usr/bin/env python from setuptools import setup, find_packages entry_points = [ ] setup( name='luna.sso', version='0.0.1', description='Luna Project', url='http://github.com/luna/luna', include_package_data=True, packages=find_packages(), entry_points={"console_scripts": entry_points}, # package_data={'folder': ['']}, install_requires=open('requirements.txt').readlines(), )
22.052632
58
0.675418
0d366264faa390921804bbe6ad027f89493a81a2
696
py
Python
submit/migrations/versions/344c3f86394c_add_is_locked_field_.py
xavierholt/submit-cs
70724b5dbc02d87e4b0e06c4ca4593be104919d6
[ "BSD-2-Clause" ]
10
2015-02-09T12:09:35.000Z
2021-07-20T00:44:09.000Z
submit/migrations/versions/344c3f86394c_add_is_locked_field_.py
xavierholt/submit-cs
70724b5dbc02d87e4b0e06c4ca4593be104919d6
[ "BSD-2-Clause" ]
20
2015-01-31T01:16:23.000Z
2018-02-23T19:01:26.000Z
submit/migrations/versions/344c3f86394c_add_is_locked_field_.py
xavierholt/submit-cs
70724b5dbc02d87e4b0e06c4ca4593be104919d6
[ "BSD-2-Clause" ]
6
2015-02-09T12:09:35.000Z
2021-05-04T03:03:48.000Z
"""Add is_locked field to testable. Revision ID: 344c3f86394c Revises: 15e554bd88aa Create Date: 2013-10-14 21:02:27.239190 """ # revision identifiers, used by Alembic. revision = '344c3f86394c' down_revision = '15e554bd88aa' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('testable', sa.Column('is_locked', sa.Boolean(), server_default=u'0', nullable=False)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('testable', 'is_locked') ### end Alembic commands ###
24.857143
77
0.662356
c7c1eeb58b6b31926536b9ce01e58cc5ed500222
978
py
Python
kubernetes/test/test_v1beta1_token_review.py
woqer/python
3a6fe8231cefe1fa39a0a69d4b2f33044ab32745
[ "Apache-2.0" ]
1
2019-07-12T05:38:06.000Z
2019-07-12T05:38:06.000Z
kubernetes/test/test_v1beta1_token_review.py
woqer/python
3a6fe8231cefe1fa39a0a69d4b2f33044ab32745
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1beta1_token_review.py
woqer/python
3a6fe8231cefe1fa39a0a69d4b2f33044ab32745
[ "Apache-2.0" ]
1
2021-05-18T12:25:56.000Z
2021-05-18T12:25:56.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.11.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1beta1_token_review import V1beta1TokenReview class TestV1beta1TokenReview(unittest.TestCase): """ V1beta1TokenReview unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1beta1TokenReview(self): """ Test V1beta1TokenReview """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v1beta1_token_review.V1beta1TokenReview() pass if __name__ == '__main__': unittest.main()
21.733333
105
0.713701
32dc1702bb5bd934d7588dee9298dde14e0b8f0f
1,638
py
Python
setup.py
Global19-atlassian-net/hyperledger-py
f24e9cc409b50628b911950466786be6fe74f09f
[ "Apache-2.0" ]
73
2016-04-19T06:49:59.000Z
2020-04-24T16:55:53.000Z
setup.py
Global19-atlassian-net/hyperledger-py
f24e9cc409b50628b911950466786be6fe74f09f
[ "Apache-2.0" ]
12
2016-06-01T03:46:25.000Z
2018-01-11T02:35:13.000Z
setup.py
yeasy/hyperledger-py
f24e9cc409b50628b911950466786be6fe74f09f
[ "Apache-2.0" ]
45
2016-04-19T03:24:35.000Z
2020-07-31T17:10:02.000Z
#!/usr/bin/env python import os from setuptools import setup from hyperledger import version ROOT_DIR = os.path.dirname(__file__) SOURCE_DIR = os.path.join(ROOT_DIR) requirements = [ 'requests >= 2.5.0', 'six >= 1.4.0', # 'websocket-client >= 0.32.0', ] exec(open('hyperledger/version.py').read()) with open('README.md') as f: long_description = f.read() with open('./test-requirements.txt') as test_reqs_txt: test_requirements = [line for line in test_reqs_txt] setup( name='hyperledger', version=version, keywords=('hyperledger', 'blockchain'), license='Apache License v2.0', description="Python client for Hyperledger.", long_description=long_description, author='Baohua Yang', author_email='yangbaohua@gmail.com', url='https://github.com/yeasy/hyperledger-py/', packages=[ 'hyperledger', 'hyperledger.api', 'hyperledger.auth', 'hyperledger.ssladapter', 'hyperledger.utils', ], platforms='any', install_requires=requirements, tests_require=test_requirements, zip_safe=False, test_suite='tests', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Other Environment', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Topic :: Utilities', 'License :: OSI Approved :: Apache Software License', ], )
28.736842
61
0.64591
3b66adf46c30955c6c7241943b506f820dbc57e4
14,807
py
Python
tests/conftest.py
uuip/redis-py
8638d24f1480a747e90467dc9950a278a895182d
[ "MIT" ]
null
null
null
tests/conftest.py
uuip/redis-py
8638d24f1480a747e90467dc9950a278a895182d
[ "MIT" ]
null
null
null
tests/conftest.py
uuip/redis-py
8638d24f1480a747e90467dc9950a278a895182d
[ "MIT" ]
null
null
null
import argparse import random import time from typing import Callable, TypeVar from unittest.mock import Mock from urllib.parse import urlparse import pytest from packaging.version import Version import redis from redis.backoff import NoBackoff from redis.connection import parse_url from redis.exceptions import RedisClusterException from redis.retry import Retry REDIS_INFO = {} default_redis_url = "redis://localhost:6379/9" default_redismod_url = "redis://localhost:36379" default_redis_unstable_url = "redis://localhost:6378" # default ssl client ignores verification for the purpose of testing default_redis_ssl_url = "rediss://localhost:6666" default_cluster_nodes = 6 _DecoratedTest = TypeVar("_DecoratedTest", bound="Callable") _TestDecorator = Callable[[_DecoratedTest], _DecoratedTest] # Taken from python3.9 class BooleanOptionalAction(argparse.Action): def __init__( self, option_strings, dest, default=None, type=None, choices=None, required=False, help=None, metavar=None, ): _option_strings = [] for option_string in option_strings: _option_strings.append(option_string) if option_string.startswith("--"): option_string = "--no-" + option_string[2:] _option_strings.append(option_string) if help is not None and default is not None: help += f" (default: {default})" super().__init__( option_strings=_option_strings, dest=dest, nargs=0, default=default, type=type, choices=choices, required=required, help=help, metavar=metavar, ) def __call__(self, parser, namespace, values, option_string=None): if option_string in self.option_strings: setattr(namespace, self.dest, not option_string.startswith("--no-")) def format_usage(self): return " | ".join(self.option_strings) def pytest_addoption(parser): parser.addoption( "--redis-url", default=default_redis_url, action="store", help="Redis connection string," " defaults to `%(default)s`", ) parser.addoption( "--redismod-url", default=default_redismod_url, action="store", help="Connection string to redis server" " with loaded modules," " defaults to `%(default)s`", ) parser.addoption( "--redis-ssl-url", default=default_redis_ssl_url, action="store", help="Redis SSL connection string," " defaults to `%(default)s`", ) parser.addoption( "--redis-cluster-nodes", default=default_cluster_nodes, action="store", help="The number of cluster nodes that need to be " "available before the test can start," " defaults to `%(default)s`", ) parser.addoption( "--redis-unstable-url", default=default_redis_unstable_url, action="store", help="Redis unstable (latest version) connection string " "defaults to %(default)s`", ) parser.addoption( "--uvloop", action=BooleanOptionalAction, help="Run tests with uvloop" ) def _get_info(redis_url): client = redis.Redis.from_url(redis_url) info = client.info() cmds = [command.upper() for command in client.command().keys()] if "dping" in cmds: info["enterprise"] = True else: info["enterprise"] = False client.connection_pool.disconnect() return info def pytest_sessionstart(session): redis_url = session.config.getoption("--redis-url") info = _get_info(redis_url) version = info["redis_version"] arch_bits = info["arch_bits"] cluster_enabled = info["cluster_enabled"] REDIS_INFO["version"] = version REDIS_INFO["arch_bits"] = arch_bits REDIS_INFO["cluster_enabled"] = cluster_enabled REDIS_INFO["enterprise"] = info["enterprise"] # module info, if the second redis is running try: redismod_url = session.config.getoption("--redismod-url") info = _get_info(redismod_url) REDIS_INFO["modules"] = info["modules"] except redis.exceptions.ConnectionError: pass except KeyError: pass if cluster_enabled: cluster_nodes = session.config.getoption("--redis-cluster-nodes") wait_for_cluster_creation(redis_url, cluster_nodes) use_uvloop = session.config.getoption("--uvloop") if use_uvloop: try: import uvloop uvloop.install() except ImportError as e: raise RuntimeError( "Can not import uvloop, make sure it is installed" ) from e def wait_for_cluster_creation(redis_url, cluster_nodes, timeout=60): """ Waits for the cluster creation to complete. As soon as all :cluster_nodes: nodes become available, the cluster will be considered ready. :param redis_url: the cluster's url, e.g. redis://localhost:16379/0 :param cluster_nodes: The number of nodes in the cluster :param timeout: the amount of time to wait (in seconds) """ now = time.time() end_time = now + timeout client = None print(f"Waiting for {cluster_nodes} cluster nodes to become available") while now < end_time: try: client = redis.RedisCluster.from_url(redis_url) if len(client.get_nodes()) == int(cluster_nodes): print("All nodes are available!") break except RedisClusterException: pass time.sleep(1) now = time.time() if now >= end_time: available_nodes = 0 if client is None else len(client.get_nodes()) raise RedisClusterException( f"The cluster did not become available after {timeout} seconds. " f"Only {available_nodes} nodes out of {cluster_nodes} are available" ) def skip_if_server_version_lt(min_version: str) -> _TestDecorator: redis_version = REDIS_INFO["version"] check = Version(redis_version) < Version(min_version) return pytest.mark.skipif(check, reason=f"Redis version required >= {min_version}") def skip_if_server_version_gte(min_version: str) -> _TestDecorator: redis_version = REDIS_INFO["version"] check = Version(redis_version) >= Version(min_version) return pytest.mark.skipif(check, reason=f"Redis version required < {min_version}") def skip_unless_arch_bits(arch_bits: int) -> _TestDecorator: return pytest.mark.skipif( REDIS_INFO["arch_bits"] != arch_bits, reason=f"server is not {arch_bits}-bit" ) def skip_ifmodversion_lt(min_version: str, module_name: str): try: modules = REDIS_INFO["modules"] except KeyError: return pytest.mark.skipif(True, reason="Redis server does not have modules") if modules == []: return pytest.mark.skipif(True, reason="No redis modules found") for j in modules: if module_name == j.get("name"): version = j.get("ver") mv = int(min_version.replace(".", "")) check = version < mv return pytest.mark.skipif(check, reason="Redis module version") raise AttributeError(f"No redis module named {module_name}") def skip_if_redis_enterprise() -> _TestDecorator: check = REDIS_INFO["enterprise"] is True return pytest.mark.skipif(check, reason="Redis enterprise") def skip_ifnot_redis_enterprise() -> _TestDecorator: check = REDIS_INFO["enterprise"] is False return pytest.mark.skipif(check, reason="Not running in redis enterprise") def skip_if_nocryptography() -> _TestDecorator: try: import cryptography # noqa return pytest.mark.skipif(False, reason="Cryptography dependency found") except ImportError: return pytest.mark.skipif(True, reason="No cryptography dependency") def skip_if_cryptography() -> _TestDecorator: try: import cryptography # noqa return pytest.mark.skipif(True, reason="Cryptography dependency found") except ImportError: return pytest.mark.skipif(False, reason="No cryptography dependency") def _get_client( cls, request, single_connection_client=True, flushdb=True, from_url=None, **kwargs ): """ Helper for fixtures or tests that need a Redis client Uses the "--redis-url" command line argument for connection info. Unlike ConnectionPool.from_url, keyword arguments to this function override values specified in the URL. """ if from_url is None: redis_url = request.config.getoption("--redis-url") else: redis_url = from_url cluster_mode = REDIS_INFO["cluster_enabled"] if not cluster_mode: url_options = parse_url(redis_url) url_options.update(kwargs) pool = redis.ConnectionPool(**url_options) client = cls(connection_pool=pool) else: client = redis.RedisCluster.from_url(redis_url, **kwargs) single_connection_client = False if single_connection_client: client = client.client() if request: def teardown(): if not cluster_mode: if flushdb: try: client.flushdb() except redis.ConnectionError: # handle cases where a test disconnected a client # just manually retry the flushdb client.flushdb() client.close() client.connection_pool.disconnect() else: cluster_teardown(client, flushdb) request.addfinalizer(teardown) return client def cluster_teardown(client, flushdb): if flushdb: try: client.flushdb(target_nodes="primaries") except redis.ConnectionError: # handle cases where a test disconnected a client # just manually retry the flushdb client.flushdb(target_nodes="primaries") client.close() client.disconnect_connection_pools() # specifically set to the zero database, because creating # an index on db != 0 raises a ResponseError in redis @pytest.fixture() def modclient(request, **kwargs): rmurl = request.config.getoption("--redismod-url") with _get_client( redis.Redis, request, from_url=rmurl, decode_responses=True, **kwargs ) as client: yield client @pytest.fixture() def r(request): with _get_client(redis.Redis, request) as client: yield client @pytest.fixture() def r_timeout(request): with _get_client(redis.Redis, request, socket_timeout=1) as client: yield client @pytest.fixture() def r2(request): "A second client for tests that need multiple" with _get_client(redis.Redis, request) as client: yield client @pytest.fixture() def sslclient(request): with _get_client(redis.Redis, request, ssl=True) as client: yield client def _gen_cluster_mock_resp(r, response): connection = Mock() connection.retry = Retry(NoBackoff(), 0) connection.read_response.return_value = response r.connection = connection return r @pytest.fixture() def mock_cluster_resp_ok(request, **kwargs): r = _get_client(redis.Redis, request, **kwargs) return _gen_cluster_mock_resp(r, "OK") @pytest.fixture() def mock_cluster_resp_int(request, **kwargs): r = _get_client(redis.Redis, request, **kwargs) return _gen_cluster_mock_resp(r, "2") @pytest.fixture() def mock_cluster_resp_info(request, **kwargs): r = _get_client(redis.Redis, request, **kwargs) response = ( "cluster_state:ok\r\ncluster_slots_assigned:16384\r\n" "cluster_slots_ok:16384\r\ncluster_slots_pfail:0\r\n" "cluster_slots_fail:0\r\ncluster_known_nodes:7\r\n" "cluster_size:3\r\ncluster_current_epoch:7\r\n" "cluster_my_epoch:2\r\ncluster_stats_messages_sent:170262\r\n" "cluster_stats_messages_received:105653\r\n" ) return _gen_cluster_mock_resp(r, response) @pytest.fixture() def mock_cluster_resp_nodes(request, **kwargs): r = _get_client(redis.Redis, request, **kwargs) response = ( "c8253bae761cb1ecb2b61857d85dfe455a0fec8b 172.17.0.7:7006 " "slave aa90da731f673a99617dfe930306549a09f83a6b 0 " "1447836263059 5 connected\n" "9bd595fe4821a0e8d6b99d70faa660638a7612b3 172.17.0.7:7008 " "master - 0 1447836264065 0 connected\n" "aa90da731f673a99617dfe930306549a09f83a6b 172.17.0.7:7003 " "myself,master - 0 0 2 connected 5461-10922\n" "1df047e5a594f945d82fc140be97a1452bcbf93e 172.17.0.7:7007 " "slave 19efe5a631f3296fdf21a5441680f893e8cc96ec 0 " "1447836262556 3 connected\n" "4ad9a12e63e8f0207025eeba2354bcf4c85e5b22 172.17.0.7:7005 " "master - 0 1447836262555 7 connected 0-5460\n" "19efe5a631f3296fdf21a5441680f893e8cc96ec 172.17.0.7:7004 " "master - 0 1447836263562 3 connected 10923-16383\n" "fbb23ed8cfa23f17eaf27ff7d0c410492a1093d6 172.17.0.7:7002 " "master,fail - 1447829446956 1447829444948 1 disconnected\n" ) return _gen_cluster_mock_resp(r, response) @pytest.fixture() def mock_cluster_resp_slaves(request, **kwargs): r = _get_client(redis.Redis, request, **kwargs) response = ( "['1df047e5a594f945d82fc140be97a1452bcbf93e 172.17.0.7:7007 " "slave 19efe5a631f3296fdf21a5441680f893e8cc96ec 0 " "1447836789290 3 connected']" ) return _gen_cluster_mock_resp(r, response) @pytest.fixture(scope="session") def master_host(request): url = request.config.getoption("--redis-url") parts = urlparse(url) yield parts.hostname, parts.port @pytest.fixture() def unstable_r(request): url = request.config.getoption("--redis-unstable-url") with _get_client( redis.Redis, request, from_url=url, decode_responses=True ) as client: yield client def wait_for_command(client, monitor, command, key=None): # issue a command with a key name that's local to this process. # if we find a command with our key before the command we're waiting # for, something went wrong if key is None: # generate key redis_version = REDIS_INFO["version"] if Version(redis_version) >= Version("5.0.0"): id_str = str(client.client_id()) else: id_str = f"{random.randrange(2 ** 32):08x}" key = f"__REDIS-PY-{id_str}__" client.get(key) while True: monitor_response = monitor.next_command() if command in monitor_response["command"]: return monitor_response if key in monitor_response["command"]: return None
32.049784
87
0.662119
d3dbd1137b4c46e78024d66be5f2b97ce124c7b0
21,077
py
Python
mivisionx_calibration_tool.py
kiritigowda/MIVisionX-calibration-tool
d67d5ff36d8db0b09aa14d5cba4a53d620f0226c
[ "MIT" ]
1
2019-10-24T13:47:25.000Z
2019-10-24T13:47:25.000Z
mivisionx_calibration_tool.py
kiritigowda/MIVisionX-calibration-tool
d67d5ff36d8db0b09aa14d5cba4a53d620f0226c
[ "MIT" ]
null
null
null
mivisionx_calibration_tool.py
kiritigowda/MIVisionX-calibration-tool
d67d5ff36d8db0b09aa14d5cba4a53d620f0226c
[ "MIT" ]
3
2019-08-02T17:02:51.000Z
2019-12-05T08:56:04.000Z
__author__ = "Kiriti Nagesh Gowda" __copyright__ = "Copyright 2019, AMD MIVisionX" __license__ = "MIT" __version__ = "0.9.0" __maintainer__ = "Kiriti Nagesh Gowda" __email__ = "Kiriti.NageshGowda@amd.com" __status__ = "ALPHA" __script_name__ = "MIVisionX Calibration Tool" import argparse import os import sys import ctypes import cv2 import time import numpy import numpy as np from numpy.ctypeslib import ndpointer # global variables FP16inference = False verbosePrint = False labelNames = None colors =[ (0,153,0), # Top1 (153,153,0), # Top2 (153,76,0), # Top3 (0,128,255), # Top4 (255,102,102), # Top5 ]; # AMD Neural Net python wrapper class AnnAPI: def __init__(self,library): self.lib = ctypes.cdll.LoadLibrary(library) self.annQueryInference = self.lib.annQueryInference self.annQueryInference.restype = ctypes.c_char_p self.annQueryInference.argtypes = [] self.annQueryLocals = self.lib.annQueryLocals self.annQueryLocals.restype = ctypes.c_char_p self.annQueryLocals.argtypes = [] self.annCreateInference = self.lib.annCreateInference self.annCreateInference.restype = ctypes.c_void_p self.annCreateInference.argtypes = [ctypes.c_char_p] self.annReleaseInference = self.lib.annReleaseInference self.annReleaseInference.restype = ctypes.c_int self.annReleaseInference.argtypes = [ctypes.c_void_p] self.annCopyToInferenceInput = self.lib.annCopyToInferenceInput self.annCopyToInferenceInput.restype = ctypes.c_int self.annCopyToInferenceInput.argtypes = [ctypes.c_void_p, ndpointer(ctypes.c_float, flags="C_CONTIGUOUS"), ctypes.c_size_t, ctypes.c_bool] self.annCopyFromInferenceOutput = self.lib.annCopyFromInferenceOutput self.annCopyFromInferenceOutput.restype = ctypes.c_int self.annCopyFromInferenceOutput.argtypes = [ctypes.c_void_p, ndpointer(ctypes.c_float, flags="C_CONTIGUOUS"), ctypes.c_size_t] self.annCopyFromInferenceLocal = self.lib.annCopyFromInferenceLocal self.annCopyFromInferenceLocal.restype = ctypes.c_int self.annCopyFromInferenceLocal.argtypes = [ctypes.c_void_p, ctypes.c_char_p, ndpointer(ctypes.c_float, flags="C_CONTIGUOUS"), ctypes.c_size_t] self.annRunInference = self.lib.annRunInference self.annRunInference.restype = ctypes.c_int self.annRunInference.argtypes = [ctypes.c_void_p, ctypes.c_int] print('OK: AnnAPI found "' + self.annQueryInference().decode("utf-8") + '" as configuration in ' + library) # classifier definition class annieObjectWrapper(): def __init__(self, annpythonlib, weightsfile): select = 1 self.api = AnnAPI(annpythonlib) input_info,output_info,empty = self.api.annQueryInference().decode("utf-8").split(';') input,name,n_i,c_i,h_i,w_i = input_info.split(',') outputCount = output_info.split(",") stringcount = len(outputCount) if stringcount == 6: output,opName,n_o,c_o,h_o,w_o = output_info.split(',') else: output,opName,n_o,c_o= output_info.split(',') h_o = '1'; w_o = '1'; self.hdl = self.api.annCreateInference(weightsfile.encode('utf-8')) self.dim = (int(w_i),int(h_i)) self.outputDim = (int(n_o),int(c_o),int(h_o),int(w_o)) def __del__(self): self.api.annReleaseInference(self.hdl) def runInference(self, img, out): # create input.f32 file img_r = img[:,:,0] img_g = img[:,:,1] img_b = img[:,:,2] img_t = np.concatenate((img_r, img_g, img_b), 0) # copy input f32 to inference input status = self.api.annCopyToInferenceInput(self.hdl, np.ascontiguousarray(img_t, dtype=np.float32), (img.shape[0]*img.shape[1]*3*4), 0) # run inference status = self.api.annRunInference(self.hdl, 1) # copy output f32 status = self.api.annCopyFromInferenceOutput(self.hdl, np.ascontiguousarray(out, dtype=np.float32), out.nbytes) return out def classify(self, img): # create output.f32 buffer out_buf = bytearray(self.outputDim[0]*self.outputDim[1]*self.outputDim[2]*self.outputDim[3]*4) out = np.frombuffer(out_buf, dtype=numpy.float32) # run inference & receive output output = self.runInference(img, out) return output def getLocalDetails(self, localsDict): for each in filter(None,self.api.annQueryLocals().decode("utf-8").split(';')): types,name,n,c,h,w = each.split(',') if name[0:5] == "conv_": local_size = int(n)*int(c)*int(h)*int(w)*4 local_buf = bytearray(local_size) local = np.frombuffer(local_buf, dtype=np.float32) localsDict[name] = local def getLocals(self, img, localsDict, img_num): if not os.path.exists("dumpBuffers"): os.makedirs("dumpBuffers") for each in filter(None,self.api.annQueryLocals().decode("utf-8").split(';')): types,name,n,c,h,w = each.split(',') if not os.path.exists('dumpBuffers/img_%d' %(img_num)): os.makedirs('dumpBuffers/img_%d' %(img_num)) if name in localsDict: #print types,name local_size = int(n)*int(c)*int(h)*int(w)*4 status = self.api.annCopyFromInferenceLocal(self.hdl, name, np.ascontiguousarray(localsDict[name], dtype=np.float32), local_size) #fid = open('dumpBuffers/img_%d/%s.bin' %(img_num,name), 'wb+') #fid.write(localsDict[name].tobytes()) #fid.close() #print('INFO: annCopyFromInferenceLocal status %d' %(status)) # process classification output function def processClassificationOutput(inputImage, modelName, modelOutput): # post process output file start = time.time() softmaxOutput = np.float32(modelOutput) topIndex = [] topLabels = [] topProb = [] for x in softmaxOutput.argsort()[-5:]: topIndex.append(x) topLabels.append(labelNames[x]) topProb.append(softmaxOutput[x]) end = time.time() if(verbosePrint): print '%30s' % 'Processed results in ', str((end - start)*1000), 'ms' # display output start = time.time() # initialize the result image resultImage = np.zeros((250, 525, 3), dtype="uint8") resultImage.fill(255) cv2.putText(resultImage, 'MIVisionX Object Classification', (25, 25),cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2) topK = 1 for i in reversed(range(5)): txt = topLabels[i].decode('utf-8')[:-1] conf = topProb[i] txt = 'Top'+str(topK)+':'+txt+' '+str(int(round((conf*100), 0)))+'%' size = cv2.getTextSize(txt, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) t_width = size[0][0] t_height = size[0][1] textColor = (colors[topK - 1]) cv2.putText(resultImage,txt,(45,t_height+(topK*30+40)),cv2.FONT_HERSHEY_SIMPLEX,0.5,textColor,1) topK = topK + 1 end = time.time() if(verbosePrint): print '%30s' % 'Processed results image in ', str((end - start)*1000), 'ms' return resultImage, topIndex, topProb # MIVisionX Classifier if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_format', type=str, required=True, help='pre-trained model format, options:caffe/onnx/nnef [required]') parser.add_argument('--model_name', type=str, required=True, help='model name [required]') parser.add_argument('--model', type=str, required=True, help='pre_trained model file [required]') parser.add_argument('--model_input_dims', type=str, required=True, help='c,h,w - channel,height,width [required]') parser.add_argument('--model_output_dims', type=str, required=True, help='c,h,w - channel,height,width [required]') parser.add_argument('--label', type=str, required=True, help='labels text file [required]') parser.add_argument('--output_dir', type=str, required=True, help='output dir to store ADAT results [required]') parser.add_argument('--image_dir', type=str, required=True, help='image directory for analysis [required]') parser.add_argument('--image_val', type=str, default='', help='image list with ground truth [optional]') parser.add_argument('--hierarchy', type=str, default='', help='AMD proprietary hierarchical file [optional]') parser.add_argument('--add', type=str, default='', help='input preprocessing factor [optional - default:0]') parser.add_argument('--multiply', type=str, default='', help='input preprocessing factor [optional - default:1]') parser.add_argument('--fp16', type=str, default='no', help='quantize to FP16 [optional - default:no]') parser.add_argument('--replace', type=str, default='no', help='replace/overwrite model [optional - default:no]') parser.add_argument('--verbose', type=str, default='no', help='verbose [optional - default:no]') args = parser.parse_args() # get arguments modelFormat = args.model_format modelName = args.model_name modelLocation = args.model modelInputDims = args.model_input_dims modelOutputDims = args.model_output_dims label = args.label outputDir = args.output_dir imageDir = args.image_dir imageVal = args.image_val hierarchy = args.hierarchy inputAdd = args.add inputMultiply = args.multiply fp16 = args.fp16 replaceModel = args.replace verbose = args.verbose # set verbose print if(verbose != 'no'): verbosePrint = True # set fp16 inference turned on/off if(fp16 != 'no'): FP16inference = True # set paths modelCompilerPath = '/opt/rocm/mivisionx/model_compiler/python' ADATPath= '/opt/rocm/mivisionx/toolkit/analysis_and_visualization/classification' setupDir = '~/.mivisionx-calibration-tool' analyzerDir = os.path.expanduser(setupDir) modelDir = analyzerDir+'/'+modelName+'_dir' nnirDir = modelDir+'/nnir-files' openvxDir = modelDir+'/openvx-files' modelBuildDir = modelDir+'/build' adatOutputDir = os.path.expanduser(outputDir) inputImageDir = os.path.expanduser(imageDir) trainedModel = os.path.expanduser(modelLocation) labelText = os.path.expanduser(label) hierarchyText = os.path.expanduser(hierarchy) imageValText = os.path.expanduser(imageVal) pythonLib = modelBuildDir+'/libannpython.so' weightsFile = openvxDir+'/weights.bin' finalImageResultsFile = modelDir+'/imageResultsFile.csv' # get input & output dims str_c_i, str_h_i, str_w_i = modelInputDims.split(',') c_i = int(str_c_i); h_i = int(str_h_i); w_i = int(str_w_i) str_c_o, str_h_o, str_w_o = modelOutputDims.split(',') c_o = int(str_c_o); h_o = int(str_h_o); w_o = int(str_w_o) # input pre-processing values Ax=0 if(inputAdd != ''): Ax = float(inputAdd) Mx=1 if(inputMultiply != ''): Mx = float(inputMultiply) # check pre-trained model if(not os.path.isfile(trainedModel) and modelFormat != 'nnef' ): print("\nPre-Trained Model not found, check argument --model\n") quit() # check for label file if (not os.path.isfile(labelText)): print("\nlabels.txt not found, check argument --label\n") quit() else: fp = open(labelText, 'r') labelNames = fp.readlines() fp.close() # MIVisionX setup if(os.path.exists(analyzerDir)): print("\nMIVisionX Calibration Tool\n") # replace old model or throw error if(replaceModel == 'yes'): os.system('rm -rf '+modelDir) elif(os.path.exists(modelDir)): print("ERROR: Model exists, use --replace yes option to overwrite or use a different name in --model_name") quit() else: print("\nMIVisionX Calibration Tool Created\n") os.system('(cd ; mkdir .mivisionx-calibration-tool)') # Compile Model and generate python .so files os.system('mkdir '+modelDir) if(os.path.exists(modelDir)): # convert to NNIR if(modelFormat == 'caffe'): os.system('(cd '+modelDir+'; python '+modelCompilerPath+'/caffe_to_nnir.py '+trainedModel+' nnir-files --input-dims 1,'+modelInputDims+' )') elif(modelFormat == 'onnx'): os.system('(cd '+modelDir+'; python '+modelCompilerPath+'/onnx_to_nnir.py '+trainedModel+' nnir-files --input-dims 1,'+modelInputDims+' )') elif(modelFormat == 'nnef'): os.system('(cd '+modelDir+'; python '+modelCompilerPath+'/nnef_to_nnir.py '+trainedModel+' nnir-files )') else: print("ERROR: Neural Network Format Not supported, use caffe/onnx/nnef in arugment --model_format") quit() # convert the model to FP16 if(FP16inference): os.system('(cd '+modelDir+'; python '+modelCompilerPath+'/nnir_update.py --convert-fp16 1 --fuse-ops 1 nnir-files nnir-files)') print("\nModel Quantized to FP16\n") # convert to openvx if(os.path.exists(nnirDir)): os.system('(cd '+modelDir+'; python '+modelCompilerPath+'/nnir_to_openvx.py --virtual_tensor 0 nnir-files openvx-files)') else: print("ERROR: Converting Pre-Trained model to NNIR Failed") quit() # build model if(os.path.exists(openvxDir)): os.system('mkdir '+modelBuildDir) os.system('(cd '+modelBuildDir+'; cmake ../openvx-files; make; ./anntest ../openvx-files/weights.bin )') print("\nSUCCESS: Converting Pre-Trained model to MIVisionX Runtime successful\n") else: print("ERROR: Converting NNIR to OpenVX Failed") quit() else: print("ERROR: MIVisionX Calibration Tool Failed") quit() # opencv display window windowInput = "MIVisionX Calibration Tool - Input Image" windowResult = "MIVisionX Calibration Tool - Results" windowProgress = "MIVisionX Calibration Tool - Progress" cv2.namedWindow(windowInput, cv2.WINDOW_GUI_EXPANDED) cv2.resizeWindow(windowInput, 800, 800) # create inference classifier classifier = annieObjectWrapper(pythonLib, weightsFile) # check for image val text totalImages = 0; if(imageVal != ''): if (not os.path.isfile(imageValText)): print("\nImage Validation Text not found, check argument --image_val\n") quit() else: fp = open(imageValText, 'r') imageValidation = fp.readlines() fp.close() totalImages = len(imageValidation) else: print("\nFlow without Image Validation Text not implemented, pass argument --image_val\n") quit() # original std out location orig_stdout = sys.stdout # setup results output file sys.stdout = open(finalImageResultsFile,'a') print('Image File Name,Ground Truth Label,Output Label 1,Output Label 2,Output Label 3,\ Output Label 4,Output Label 5,Prob 1,Prob 2,Prob 3,Prob 4,Prob 5') sys.stdout = orig_stdout #calibrate - create memory for local tensors localsDict = {} start = time.time() classifier.getLocalDetails(localsDict) end = time.time() if(verbosePrint): print '%30s' % 'Allocating memory for locals took ', str((end - start)*1000), 'ms' #calibrate - get tensor names and allocate histogram mem # process images correctTop5 = 0; correctTop1 = 0; wrong = 0; noGroundTruth = 0; for x in range(totalImages): imageFileName,grountTruth = imageValidation[x].decode("utf-8").split(' ') groundTruthIndex = int(grountTruth) imageFile = os.path.expanduser(inputImageDir+'/'+imageFileName) if (not os.path.isfile(imageFile)): print 'Image File - '+imageFile+' not found' quit() else: # read image start = time.time() frame = cv2.imread(imageFile) end = time.time() if(verbosePrint): print '%30s' % 'Read Image in ', str((end - start)*1000), 'ms' # resize and process frame start = time.time() resizedFrame = cv2.resize(frame, (w_i,h_i)) RGBframe = cv2.cvtColor(resizedFrame, cv2.COLOR_BGR2RGB) if(inputAdd != '' or inputMultiply != ''): RGBframe = ( RGBframe.copy() * Mx) + Ax end = time.time() if(verbosePrint): print '%30s' % 'Input pre-processed in ', str((end - start)*1000), 'ms' # run inference start = time.time() output = classifier.classify(RGBframe) end = time.time() if(verbosePrint): print '%30s' % 'Executed Model in ', str((end - start)*1000), 'ms' start = time.time() outputLocals = classifier.getLocals(RGBframe, localsDict, x) end = time.time() if(verbosePrint): print '%30s' % 'Obtained intermediate tensors for calibration ', str((end - start)*1000), 'ms' # process output and display resultImage, topIndex, topProb = processClassificationOutput(resizedFrame, modelName, output) start = time.time() cv2.imshow(windowInput, frame) cv2.imshow(windowResult, resultImage) end = time.time() if(verbosePrint): print '%30s' % 'Processed display in ', str((end - start)*1000), 'ms\n' # write image results to a file start = time.time() sys.stdout = open(finalImageResultsFile,'a') print(imageFileName+','+str(groundTruthIndex)+','+str(topIndex[4])+ ','+str(topIndex[3])+','+str(topIndex[2])+','+str(topIndex[1])+','+str(topIndex[0])+','+str(topProb[4])+ ','+str(topProb[3])+','+str(topProb[2])+','+str(topProb[1])+','+str(topProb[0])) sys.stdout = orig_stdout end = time.time() if(verbosePrint): print '%30s' % 'Image result saved in ', str((end - start)*1000), 'ms' # create progress image start = time.time() progressImage = np.zeros((400, 500, 3), dtype="uint8") progressImage.fill(255) cv2.putText(progressImage, 'Inference Analyzer Progress', (25, 25),cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2) size = cv2.getTextSize(modelName, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) t_width = size[0][0] t_height = size[0][1] headerX_start = int(250 -(t_width/2)) cv2.putText(progressImage,modelName,(headerX_start,t_height+(20+40)),cv2.FONT_HERSHEY_SIMPLEX,0.7,(0,0,0),2) txt = 'Processed: '+str(x+1)+' of '+str(totalImages) size = cv2.getTextSize(txt, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2) cv2.putText(progressImage,txt,(50,t_height+(60+40)),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) # progress bar cv2.rectangle(progressImage, (50,150), (450,180), (192,192,192), -1) progressWidth = int(50+ ((400*(x+1))/totalImages)) cv2.rectangle(progressImage, (50,150), (progressWidth,180), (255,204,153), -1) percentage = int(((x+1)/float(totalImages))*100) pTxt = 'progress: '+str(percentage)+'%' cv2.putText(progressImage,pTxt,(175,170),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) if(groundTruthIndex == topIndex[4]): correctTop1 = correctTop1 + 1 correctTop5 = correctTop5 + 1 elif(groundTruthIndex == topIndex[3] or groundTruthIndex == topIndex[2] or groundTruthIndex == topIndex[1] or groundTruthIndex == topIndex[0]): correctTop5 = correctTop5 + 1 elif(groundTruthIndex == -1): noGroundTruth = noGroundTruth + 1 else: wrong = wrong + 1 # top 1 progress cv2.rectangle(progressImage, (50,200), (450,230), (192,192,192), -1) progressWidth = int(50 + ((400*correctTop1)/totalImages)) cv2.rectangle(progressImage, (50,200), (progressWidth,230), (0,153,0), -1) percentage = int((correctTop1/float(totalImages))*100) pTxt = 'Top1: '+str(percentage)+'%' cv2.putText(progressImage,pTxt,(195,220),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) # top 5 progress cv2.rectangle(progressImage, (50,250), (450,280), (192,192,192), -1) progressWidth = int(50+ ((400*correctTop5)/totalImages)) cv2.rectangle(progressImage, (50,250), (progressWidth,280), (0,255,0), -1) percentage = int((correctTop5/float(totalImages))*100) pTxt = 'Top5: '+str(percentage)+'%' cv2.putText(progressImage,pTxt,(195,270),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) # wrong progress cv2.rectangle(progressImage, (50,300), (450,330), (192,192,192), -1) progressWidth = int(50+ ((400*wrong)/totalImages)) cv2.rectangle(progressImage, (50,300), (progressWidth,330), (0,0,255), -1) percentage = int((wrong/float(totalImages))*100) pTxt = 'Mismatch: '+str(percentage)+'%' cv2.putText(progressImage,pTxt,(175,320),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) # no ground truth progress cv2.rectangle(progressImage, (50,350), (450,380), (192,192,192), -1) progressWidth = int(50+ ((400*noGroundTruth)/totalImages)) cv2.rectangle(progressImage, (50,350), (progressWidth,380), (0,255,255), -1) percentage = int((noGroundTruth/float(totalImages))*100) pTxt = 'Ground Truth unavailable: '+str(percentage)+'%' cv2.putText(progressImage,pTxt,(125,370),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) cv2.imshow(windowProgress, progressImage) end = time.time() if(verbosePrint): print '%30s' % 'Progress image created in ', str((end - start)*1000), 'ms' # exit on ESC key = cv2.waitKey(2) if key == 27: break # Calibration - get histogram print("\nSUCCESS: Images Inferenced with the Model\n") cv2.destroyWindow(windowInput) cv2.destroyWindow(windowResult) # Create ADAT folder and file print("\nADAT tool called to create the analysis toolkit\n") if(os.path.exists(adatOutputDir)): if(hierarchy == ''): os.system('python '+ADATPath+'/generate-visualization.py -i '+finalImageResultsFile+ ' -d '+inputImageDir+' -l '+labelText+' -m '+modelName+' -o '+adatOutputDir+' -f '+modelName+'-ADAT') else: os.system('python '+ADATPath+'/generate-visualization.py -i '+finalImageResultsFile+ ' -d '+inputImageDir+' -l '+labelText+' -h '+hierarchyText+' -m '+modelName+' -o '+adatOutputDir+' -f '+modelName+'-ADAT') print("\nSUCCESS: Image Analysis Toolkit Created\n") print("Press ESC to exit or close progess window\n") while True: key = cv2.waitKey(2) if key == 27: cv2.destroyAllWindows() break if cv2.getWindowProperty(windowProgress,cv2.WND_PROP_VISIBLE) < 1: break outputHTMLFile = os.path.expanduser(adatOutputDir+'/'+modelName+'-ADAT-toolKit/index.html') os.system('firefox '+outputHTMLFile)
41.408644
146
0.69787
27fe33b13760598918be8fd06be21302084c12dc
17,691
py
Python
pycql/integrations/django/filters.py
tomkralidis/pycql
35cea1ee462e06b75bbe47bf766e8f0bf79b0018
[ "MIT" ]
10
2019-09-18T13:29:17.000Z
2021-07-15T18:21:54.000Z
pycql/integrations/django/filters.py
tomkralidis/pycql
35cea1ee462e06b75bbe47bf766e8f0bf79b0018
[ "MIT" ]
6
2019-09-18T14:55:57.000Z
2021-08-30T21:43:46.000Z
pycql/integrations/django/filters.py
tomkralidis/pycql
35cea1ee462e06b75bbe47bf766e8f0bf79b0018
[ "MIT" ]
4
2020-05-13T12:35:12.000Z
2021-06-29T10:37:11.000Z
# ------------------------------------------------------------------------------ # # Project: pycql <https://github.com/geopython/pycql> # Authors: Fabian Schindler <fabian.schindler@eox.at> # # ------------------------------------------------------------------------------ # Copyright (C) 2019 EOX IT Services GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies of this Software or works derived from this Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ------------------------------------------------------------------------------ from operator import and_, or_, add, sub, mul, truediv from datetime import datetime, timedelta from functools import reduce try: from collections import OrderedDict except ImportError: from django.utils.datastructures import SortedDict as OrderedDict from django.db.models import Q, F, ForeignKey, Value from django.db.models.expressions import Expression from django.contrib.gis.gdal import SpatialReference from django.contrib.gis.geos import Polygon from django.contrib.gis.measure import D ARITHMETIC_TYPES = (Expression, F, Value, int, float) # ------------------------------------------------------------------------------ # Filters # ------------------------------------------------------------------------------ def combine(sub_filters, combinator="AND"): """ Combine filters using a logical combinator :param sub_filters: the filters to combine :param combinator: a string: "AND" / "OR" :type sub_filters: list[django.db.models.Q] :return: the combined filter :rtype: :class:`django.db.models.Q` """ for sub_filter in sub_filters: assert isinstance(sub_filter, Q) assert combinator in ("AND", "OR") op = and_ if combinator == "AND" else or_ return reduce(lambda acc, q: op(acc, q) if acc else q, sub_filters) def negate(sub_filter): """ Negate a filter, opposing its meaning. :param sub_filter: the filter to negate :type sub_filter: :class:`django.db.models.Q` :return: the negated filter :rtype: :class:`django.db.models.Q` """ assert isinstance(sub_filter, Q) return ~sub_filter OP_TO_COMP = { "<": "lt", "<=": "lte", ">": "gt", ">=": "gte", "<>": None, "=": "exact" } def compare(lhs, rhs, op, mapping_choices=None): """ Compare a filter with an expression using a comparison operation :param lhs: the field to compare :type lhs: :class:`django.db.models.F` :param rhs: the filter expression :type rhs: :class:`django.db.models.F` :param op: a string denoting the operation. one of ``"<"``, ``"<="``, ``">"``, ``">="``, ``"<>"``, ``"="`` :type op: str :param mapping_choices: a dict to lookup potential choices for a certain field. :type mapping_choices: dict[str, str] :return: a comparison expression object :rtype: :class:`django.db.models.Q` """ assert isinstance(lhs, F) # assert isinstance(rhs, Q) # TODO!! assert op in OP_TO_COMP comp = OP_TO_COMP[op] field_name = lhs.name if mapping_choices and field_name in mapping_choices: try: if isinstance(rhs, str): rhs = mapping_choices[field_name][rhs] elif hasattr(rhs, 'value'): rhs = Value(mapping_choices[field_name][rhs.value]) except KeyError as e: raise AssertionError("Invalid field value %s" % e) if comp: return Q(**{"%s__%s" % (lhs.name, comp): rhs}) return ~Q(**{field_name: rhs}) def between(lhs, low, high, not_=False): """ Create a filter to match elements that have a value within a certain range. :param lhs: the field to compare :type lhs: :class:`django.db.models.F` :param low: the lower value of the range :type low: :param high: the upper value of the range :type high: :param not_: whether the range shall be inclusive (the default) or exclusive :type not_: bool :return: a comparison expression object :rtype: :class:`django.db.models.Q` """ assert isinstance(lhs, F) # assert isinstance(low, BaseExpression) # assert isinstance(high, BaseExpression) # TODO q = Q(**{"%s__range" % lhs.name: (low, high)}) return ~q if not_ else q def like(lhs, rhs, case=False, not_=False, mapping_choices=None): """ Create a filter to filter elements according to a string attribute using wildcard expressions. :param lhs: the field to compare :type lhs: :class:`django.db.models.F` :param rhs: the wildcard pattern: a string containing any number of '%' characters as wildcards. :type rhs: str :param case: whether the lookup shall be done case sensitively or not :type case: bool :param not_: whether the range shall be inclusive (the default) or exclusive :type not_: bool :param mapping_choices: a dict to lookup potential choices for a certain field. :type mapping_choices: dict[str, str] :return: a comparison expression object :rtype: :class:`django.db.models.Q` """ assert isinstance(lhs, F) if isinstance(rhs, str): pattern = rhs elif hasattr(rhs, 'value'): pattern = rhs.value else: raise AssertionError('Invalid pattern specified') parts = pattern.split("%") length = len(parts) if mapping_choices and lhs.name in mapping_choices: # special case when choices are given for the field: # compare statically and use 'in' operator to check if contained cmp_av = [ (a, a if case else a.lower()) for a in mapping_choices[lhs.name].keys() ] for idx, part in enumerate(parts): if not part: continue cmp_p = part if case else part.lower() if idx == 0 and length > 1: # startswith cmp_av = [a for a in cmp_av if a[1].startswith(cmp_p)] elif idx == 0: # exact matching cmp_av = [a for a in cmp_av if a[1] == cmp_p] elif idx == length - 1: # endswith cmp_av = [a for a in cmp_av if a[1].endswith(cmp_p)] else: # middle cmp_av = [a for a in cmp_av if cmp_p in a[1]] q = Q(**{ "%s__in" % lhs.name: [ mapping_choices[lhs.name][a[0]] for a in cmp_av ] }) else: i = "" if case else "i" q = None for idx, part in enumerate(parts): if not part: continue if idx == 0 and length > 1: # startswith new_q = Q(**{ "%s__%s" % (lhs.name, "%sstartswith" % i): part }) elif idx == 0: # exact matching new_q = Q(**{ "%s__%s" % (lhs.name, "%sexact" % i): part }) elif idx == length - 1: # endswith new_q = Q(**{ "%s__%s" % (lhs.name, "%sendswith" % i): part }) else: # middle new_q = Q(**{ "%s__%s" % (lhs.name, "%scontains" % i): part }) q = q & new_q if q else new_q return ~q if not_ else q def contains(lhs, items, not_=False, mapping_choices=None): """ Create a filter to match elements attribute to be in a list of choices. :param lhs: the field to compare :type lhs: :class:`django.db.models.F` :param items: a list of choices :type items: list :param not_: whether the range shall be inclusive (the default) or exclusive :type not_: bool :param mapping_choices: a dict to lookup potential choices for a certain field. :type mapping_choices: dict[str, str] :return: a comparison expression object :rtype: :class:`django.db.models.Q` """ assert isinstance(lhs, F) # for item in items: # assert isinstance(item, BaseExpression) if mapping_choices and lhs.name in mapping_choices: def map_value(item): try: if isinstance(item, str): item = mapping_choices[lhs.name][item] elif hasattr(item, 'value'): item = Value(mapping_choices[lhs.name][item.value]) except KeyError as e: raise AssertionError("Invalid field value %s" % e) return item items = map(map_value, items) q = Q(**{"%s__in" % lhs.name: items}) return ~q if not_ else q def null(lhs, not_=False): """ Create a filter to match elements whose attribute is (not) null :param lhs: the field to compare :type lhs: :class:`django.db.models.F` :param not_: whether the range shall be inclusive (the default) or exclusive :type not_: bool :return: a comparison expression object :rtype: :class:`django.db.models.Q` """ assert isinstance(lhs, F) return Q(**{"%s__isnull" % lhs.name: not not_}) def temporal(lhs, time_or_period, op): """ Create a temporal filter for the given temporal attribute. :param lhs: the field to compare :type lhs: :class:`django.db.models.F` :param time_or_period: the time instant or time span to use as a filter :type time_or_period: :class:`datetime.datetime` or a tuple of two datetimes or a tuple of one datetime and one :class:`datetime.timedelta` :param op: the comparison operation. one of ``"BEFORE"``, ``"BEFORE OR DURING"``, ``"DURING"``, ``"DURING OR AFTER"``, ``"AFTER"``. :type op: str :return: a comparison expression object :rtype: :class:`django.db.models.Q` """ assert isinstance(lhs, F) assert op in ( "BEFORE", "BEFORE OR DURING", "DURING", "DURING OR AFTER", "AFTER" ) low = None high = None if op in ("BEFORE", "AFTER"): assert isinstance(time_or_period, datetime) if op == "BEFORE": high = time_or_period else: low = time_or_period else: low, high = time_or_period assert isinstance(low, datetime) or isinstance(high, datetime) if isinstance(low, timedelta): low = high - low if isinstance(high, timedelta): high = low + high if low and high: return Q(**{"%s__range" % lhs.name: (low, high)}) elif low: return Q(**{"%s__gte" % lhs.name: low}) else: return Q(**{"%s__lte" % lhs.name: high}) def time_interval(time_or_period, containment='overlaps', begin_time_field='begin_time', end_time_field='end_time'): """ """ gt_op = "__gte" lt_op = "__lte" is_slice = len(time_or_period) == 1 if len(time_or_period) == 1: is_slice = True value = time_or_period[0] else: is_slice = False low, high = time_or_period if is_slice or (high == low and containment == "overlaps"): return Q(**{ begin_time_field + "__lte": time_or_period[0], end_time_field + "__gte": time_or_period[0] }) elif high == low: return Q(**{ begin_time_field + "__gte": value, end_time_field + "__lte": value }) else: q = Q() # check if the temporal bounds must be strictly contained if containment == "contains": if high is not None: q &= Q(**{ end_time_field + lt_op: high }) if low is not None: q &= Q(**{ begin_time_field + gt_op: low }) # or just overlapping else: if high is not None: q &= Q(**{ begin_time_field + lt_op: high }) if low is not None: q &= Q(**{ end_time_field + gt_op: low }) return q UNITS_LOOKUP = { "kilometers": "km", "meters": "m" } def spatial(lhs, rhs, op, pattern=None, distance=None, units=None): """ Create a spatial filter for the given spatial attribute. :param lhs: the field to compare :type lhs: :class:`django.db.models.F` :param rhs: the time instant or time span to use as a filter :type rhs: :param op: the comparison operation. one of ``"INTERSECTS"``, ``"DISJOINT"``, `"CONTAINS"``, ``"WITHIN"``, ``"TOUCHES"``, ``"CROSSES"``, ``"OVERLAPS"``, ``"EQUALS"``, ``"RELATE"``, ``"DWITHIN"``, ``"BEYOND"`` :type op: str :param pattern: the spatial relation pattern :type pattern: str :param distance: the distance value for distance based lookups: ``"DWITHIN"`` and ``"BEYOND"`` :type distance: float :param units: the units the distance is expressed in :type units: str :return: a comparison expression object :rtype: :class:`django.db.models.Q` """ assert isinstance(lhs, F) # assert isinstance(rhs, BaseExpression) # TODO assert op in ( "INTERSECTS", "DISJOINT", "CONTAINS", "WITHIN", "TOUCHES", "CROSSES", "OVERLAPS", "EQUALS", "RELATE", "DWITHIN", "BEYOND" ) if op == "RELATE": assert pattern elif op in ("DWITHIN", "BEYOND"): assert distance assert units if op in ( "INTERSECTS", "DISJOINT", "CONTAINS", "WITHIN", "TOUCHES", "CROSSES", "OVERLAPS", "EQUALS"): return Q(**{"%s__%s" % (lhs.name, op.lower()): rhs}) elif op == "RELATE": return Q(**{"%s__relate" % lhs.name: (rhs, pattern)}) elif op in ("DWITHIN", "BEYOND"): # TODO: maybe use D.unit_attname(units) d = D(**{UNITS_LOOKUP[units]: distance}) if op == "DWITHIN": return Q(**{"%s__distance_lte" % lhs.name: (rhs, d, 'spheroid')}) return Q(**{"%s__distance_gte" % lhs.name: (rhs, d, 'spheroid')}) def bbox(lhs, minx, miny, maxx, maxy, crs=None, bboverlaps=True): """ Create a bounding box filter for the given spatial attribute. :param lhs: the field to compare :param minx: the lower x part of the bbox :type minx: float :param miny: the lower y part of the bbox :type miny: float :param maxx: the upper x part of the bbox :type maxx: float :param maxy: the upper y part of the bbox :type maxy: float :param crs: the CRS the bbox is expressed in :type crs: str :type lhs: :class:`django.db.models.F` :return: a comparison expression object :rtype: :class:`django.db.models.Q` """ assert isinstance(lhs, F) box = Polygon.from_bbox((minx, miny, maxx, maxy)) if crs: box.srid = SpatialReference(crs).srid box.transform(4326) if bboverlaps: return Q(**{"%s__bboverlaps" % lhs.name: box}) return Q(**{"%s__intersects" % lhs.name: box}) def attribute(name, field_mapping=None): """ Create an attribute lookup expression using a field mapping dictionary. :param name: the field filter name :type name: str :param field_mapping: the dictionary to use as a lookup. :type mapping_choices: dict[str, str] :rtype: :class:`django.db.models.F` """ if field_mapping: field = field_mapping.get(name, name) else: field = name return F(field) def literal(value): return Value(value) OP_TO_FUNC = { "+": add, "-": sub, "*": mul, "/": truediv } def arithmetic(lhs, rhs, op): """ Create an arithmetic filter :param lhs: left hand side of the arithmetic expression. either a scalar or a field lookup or another type of expression :param rhs: same as `lhs` :param op: the arithmetic operation. one of ``"+"``, ``"-"``, ``"*"``, ``"/"`` :rtype: :class:`django.db.models.F` """ assert isinstance(lhs, ARITHMETIC_TYPES), '%r is not a compatible type' % lhs assert isinstance(rhs, ARITHMETIC_TYPES), '%r is not a compatible type' % rhs assert op in OP_TO_FUNC func = OP_TO_FUNC[op] return func(lhs, rhs)
33.826004
86
0.561246
5c748f1d963e25045b7d09340d89d2abf55e9130
1,750
py
Python
app/core/models.py
elam91/recipe-app-api
0a30e9f7928ae737c26da20ecc4cce0570709fbb
[ "MIT" ]
null
null
null
app/core/models.py
elam91/recipe-app-api
0a30e9f7928ae737c26da20ecc4cce0570709fbb
[ "MIT" ]
null
null
null
app/core/models.py
elam91/recipe-app-api
0a30e9f7928ae737c26da20ecc4cce0570709fbb
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, \ PermissionsMixin from django.conf import settings class UserManager(BaseUserManager): def create_user(self, email, password=None, **extra_fields): """Creates and saves a new user""" if not email: raise ValueError("Email is required for creating a user") user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): """Creates and saves a new superuser""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): """Custom user model that supports using email instead of username""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email' class Tag(models.Model): """Tag to be used for a recipe""" name = models.CharField(max_length=255) user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ) def __str__(self): return self.name class Ingredient(models.Model): """Ingredient to be used in a recipe""" name = models.CharField(max_length=255) user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE ) def __str__(self): return self.name
28.688525
76
0.677714
5642c2345debf2f20442b2bda22099eb2f8a601a
2,692
py
Python
data_sources/collect_list_of_beaches.py
Mithul/spaceapps
933a58af940cc0de2070b6d3f069a3c64a22be96
[ "MIT" ]
null
null
null
data_sources/collect_list_of_beaches.py
Mithul/spaceapps
933a58af940cc0de2070b6d3f069a3c64a22be96
[ "MIT" ]
null
null
null
data_sources/collect_list_of_beaches.py
Mithul/spaceapps
933a58af940cc0de2070b6d3f069a3c64a22be96
[ "MIT" ]
null
null
null
import json from bs4 import BeautifulSoup from pymongo import * import requests import pdb import LatLon req = requests.get("https://en.wikipedia.org/wiki/List_of_beaches") soup = BeautifulSoup(req.text,'html.parser') ul = soup.find_all('ul')[3:94] all_links = [] for u in ul: links = u.find_all('a') for i,a in enumerate(links): print i try: if(a.has_attr("class")): if(a["class"][0]=="new"): continue all_links.append(a['href']) except Exception as e: print str(e) continue big_countries = soup.find_all("div",{"role": "note"})[1:-1] for country in big_countries: url = "http://www.wikipedia.com"+country.find('a')["href"] soup1 = BeautifulSoup(requests.get(url).text,'html.parser') uls = soup1.find_all('ul') uls = uls[2:] uls = uls[:18] for u in uls: for i,a in enumerate(u.find_all('a')): print i if(a.has_attr("class")): if(a["class"][0]=="new"): continue try: all_links.append(a['href']) except Exception as e: if(a["class"][1]=='selflink'): continue continue lines = [] skip = 0 filtered_list = [] for a in all_links: if 'wikimedia' not in a and ':' not in a and '=' not in a and 'cite_note' not in a and 'wiki' in a and 'List' not in a: filtered_list.append(a) for i,link in enumerate(all_links): print i try: s = BeautifulSoup(requests.get("http://www.wikipedia.com"+link).text,'html.parser') latlong = s.find('span',{'class': 'geo-dec'}).text lat = float(latlong.split(' ')[0].split(u'\xb0')[0]) lon = float(latlong.split(' ')[1].split(u'\xb0')[0]) except Exception as e: continue name = s.find('title').text.split('-')[0] req = requests.get("https://maps.googleapis.com/maps/api/geocode/json?latlng={},{}&key={}".format(lat,lon,"AIzaSyCa-e3nbLmkMeczwrZ5U3-bhSyzEl4_d_g")) try: address = json.loads(req.text)["results"][0]["formatted_address"] lines.append("Beach.create(name:'{}' ,latitude:{} ,longitude:{} , address:'{}')\n".format(name.encode('utf-8'),lat,lon,address.encode('utf-8'))) except Exception as e: skip+=1 print "Skip" continue with open("seed.rb","w") as fp: for line in lines: try: fp.write(line) except Exception as e: pdb.set_trace() print skip
33.234568
150
0.533432
ffb6161a8d042e3926de262758424c40c0f2b7ce
14,114
py
Python
official/vision/beta/tasks/retinanet.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
null
null
null
official/vision/beta/tasks/retinanet.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
null
null
null
official/vision/beta/tasks/retinanet.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RetinaNet task definition.""" from typing import Any, Optional, List, Tuple, Mapping from absl import logging import tensorflow as tf from official.common import dataset_fn from official.core import base_task from official.core import task_factory from official.vision import keras_cv from official.vision.beta.configs import retinanet as exp_cfg from official.vision.beta.dataloaders import input_reader_factory from official.vision.beta.dataloaders import retinanet_input from official.vision.beta.dataloaders import tf_example_decoder from official.vision.beta.dataloaders import tfds_factory from official.vision.beta.dataloaders import tf_example_label_map_decoder from official.vision.beta.evaluation import coco_evaluator from official.vision.beta.modeling import factory @task_factory.register_task_cls(exp_cfg.RetinaNetTask) class RetinaNetTask(base_task.Task): """A single-replica view of training procedure. RetinaNet task provides artifacts for training/evalution procedures, including loading/iterating over Datasets, initializing the model, calculating the loss, post-processing, and customized metrics with reduction. """ def build_model(self): """Build RetinaNet model.""" input_specs = tf.keras.layers.InputSpec( shape=[None] + self.task_config.model.input_size) l2_weight_decay = self.task_config.losses.l2_weight_decay # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss. # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2) # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss) l2_regularizer = (tf.keras.regularizers.l2( l2_weight_decay / 2.0) if l2_weight_decay else None) model = factory.build_retinanet( input_specs=input_specs, model_config=self.task_config.model, l2_regularizer=l2_regularizer) return model def initialize(self, model: tf.keras.Model): """Loading pretrained checkpoint.""" if not self.task_config.init_checkpoint: return ckpt_dir_or_file = self.task_config.init_checkpoint if tf.io.gfile.isdir(ckpt_dir_or_file): ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file) # Restoring checkpoint. if self.task_config.init_checkpoint_modules == 'all': ckpt = tf.train.Checkpoint(**model.checkpoint_items) status = ckpt.restore(ckpt_dir_or_file) status.assert_consumed() elif self.task_config.init_checkpoint_modules == 'backbone': ckpt = tf.train.Checkpoint(backbone=model.backbone) status = ckpt.restore(ckpt_dir_or_file) status.expect_partial().assert_existing_objects_matched() else: raise ValueError( "Only 'all' or 'backbone' can be used to initialize the model.") logging.info('Finished loading pretrained checkpoint from %s', ckpt_dir_or_file) def build_inputs(self, params: exp_cfg.DataConfig, input_context: Optional[tf.distribute.InputContext] = None): """Build input dataset.""" if params.tfds_name: decoder = tfds_factory.get_detection_decoder(params.tfds_name) else: decoder_cfg = params.decoder.get() if params.decoder.type == 'simple_decoder': decoder = tf_example_decoder.TfExampleDecoder( regenerate_source_id=decoder_cfg.regenerate_source_id) elif params.decoder.type == 'label_map_decoder': decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap( label_map=decoder_cfg.label_map, regenerate_source_id=decoder_cfg.regenerate_source_id) else: raise ValueError('Unknown decoder type: {}!'.format( params.decoder.type)) parser = retinanet_input.Parser( output_size=self.task_config.model.input_size[:2], min_level=self.task_config.model.min_level, max_level=self.task_config.model.max_level, num_scales=self.task_config.model.anchor.num_scales, aspect_ratios=self.task_config.model.anchor.aspect_ratios, anchor_size=self.task_config.model.anchor.anchor_size, dtype=params.dtype, match_threshold=params.parser.match_threshold, unmatched_threshold=params.parser.unmatched_threshold, aug_rand_hflip=params.parser.aug_rand_hflip, aug_scale_min=params.parser.aug_scale_min, aug_scale_max=params.parser.aug_scale_max, skip_crowd_during_training=params.parser.skip_crowd_during_training, max_num_instances=params.parser.max_num_instances) reader = input_reader_factory.input_reader_generator( params, dataset_fn=dataset_fn.pick_dataset_fn(params.file_type), decoder_fn=decoder.decode, parser_fn=parser.parse_fn(params.is_training)) dataset = reader.read(input_context=input_context) return dataset def build_attribute_loss(self, attribute_heads: List[exp_cfg.AttributeHead], outputs: Mapping[str, Any], labels: Mapping[str, Any], box_sample_weight: tf.Tensor) -> float: """Computes attribute loss. Args: attribute_heads: a list of attribute head configs. outputs: RetinaNet model outputs. labels: RetinaNet labels. box_sample_weight: normalized bounding box sample weights. Returns: Attribute loss of all attribute heads. """ attribute_loss = 0.0 for head in attribute_heads: if head.name not in labels['attribute_targets']: raise ValueError(f'Attribute {head.name} not found in label targets.') if head.name not in outputs['attribute_outputs']: raise ValueError(f'Attribute {head.name} not found in model outputs.') y_true_att = keras_cv.losses.multi_level_flatten( labels['attribute_targets'][head.name], last_dim=head.size) y_pred_att = keras_cv.losses.multi_level_flatten( outputs['attribute_outputs'][head.name], last_dim=head.size) if head.type == 'regression': att_loss_fn = tf.keras.losses.Huber( 1.0, reduction=tf.keras.losses.Reduction.SUM) att_loss = att_loss_fn( y_true=y_true_att, y_pred=y_pred_att, sample_weight=box_sample_weight) else: raise ValueError(f'Attribute type {head.type} not supported.') attribute_loss += att_loss return attribute_loss def build_losses(self, outputs: Mapping[str, Any], labels: Mapping[str, Any], aux_losses: Optional[Any] = None): """Build RetinaNet losses.""" params = self.task_config attribute_heads = self.task_config.model.head.attribute_heads cls_loss_fn = keras_cv.losses.FocalLoss( alpha=params.losses.focal_loss_alpha, gamma=params.losses.focal_loss_gamma, reduction=tf.keras.losses.Reduction.SUM) box_loss_fn = tf.keras.losses.Huber( params.losses.huber_loss_delta, reduction=tf.keras.losses.Reduction.SUM) # Sums all positives in a batch for normalization and avoids zero # num_positives_sum, which would lead to inf loss during training cls_sample_weight = labels['cls_weights'] box_sample_weight = labels['box_weights'] num_positives = tf.reduce_sum(box_sample_weight) + 1.0 cls_sample_weight = cls_sample_weight / num_positives box_sample_weight = box_sample_weight / num_positives y_true_cls = keras_cv.losses.multi_level_flatten( labels['cls_targets'], last_dim=None) y_true_cls = tf.one_hot(y_true_cls, params.model.num_classes) y_pred_cls = keras_cv.losses.multi_level_flatten( outputs['cls_outputs'], last_dim=params.model.num_classes) y_true_box = keras_cv.losses.multi_level_flatten( labels['box_targets'], last_dim=4) y_pred_box = keras_cv.losses.multi_level_flatten( outputs['box_outputs'], last_dim=4) cls_loss = cls_loss_fn( y_true=y_true_cls, y_pred=y_pred_cls, sample_weight=cls_sample_weight) box_loss = box_loss_fn( y_true=y_true_box, y_pred=y_pred_box, sample_weight=box_sample_weight) model_loss = cls_loss + params.losses.box_loss_weight * box_loss if attribute_heads: model_loss += self.build_attribute_loss(attribute_heads, outputs, labels, box_sample_weight) total_loss = model_loss if aux_losses: reg_loss = tf.reduce_sum(aux_losses) total_loss = model_loss + reg_loss return total_loss, cls_loss, box_loss, model_loss def build_metrics(self, training: bool = True): """Build detection metrics.""" metrics = [] metric_names = ['total_loss', 'cls_loss', 'box_loss', 'model_loss'] for name in metric_names: metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32)) if not training: if self.task_config.validation_data.tfds_name and self.task_config.annotation_file: raise ValueError( "Can't evaluate using annotation file when TFDS is used.") self.coco_metric = coco_evaluator.COCOEvaluator( annotation_file=self.task_config.annotation_file, include_mask=False, per_category_metrics=self.task_config.per_category_metrics) return metrics def train_step(self, inputs: Tuple[Any, Any], model: tf.keras.Model, optimizer: tf.keras.optimizers.Optimizer, metrics: Optional[List[Any]] = None): """Does forward and backward. Args: inputs: a dictionary of input tensors. model: the model, forward pass definition. optimizer: the optimizer for this training step. metrics: a nested structure of metrics objects. Returns: A dictionary of logs. """ features, labels = inputs num_replicas = tf.distribute.get_strategy().num_replicas_in_sync with tf.GradientTape() as tape: outputs = model(features, training=True) outputs = tf.nest.map_structure( lambda x: tf.cast(x, tf.float32), outputs) # Computes per-replica loss. loss, cls_loss, box_loss, model_loss = self.build_losses( outputs=outputs, labels=labels, aux_losses=model.losses) scaled_loss = loss / num_replicas # For mixed_precision policy, when LossScaleOptimizer is used, loss is # scaled for numerical stability. if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer): scaled_loss = optimizer.get_scaled_loss(scaled_loss) tvars = model.trainable_variables grads = tape.gradient(scaled_loss, tvars) # Scales back gradient when LossScaleOptimizer is used. if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer): grads = optimizer.get_unscaled_gradients(grads) optimizer.apply_gradients(list(zip(grads, tvars))) logs = {self.loss: loss} all_losses = { 'total_loss': loss, 'cls_loss': cls_loss, 'box_loss': box_loss, 'model_loss': model_loss, } if metrics: for m in metrics: m.update_state(all_losses[m.name]) logs.update({m.name: m.result()}) return logs def validation_step(self, inputs: Tuple[Any, Any], model: tf.keras.Model, metrics: Optional[List[Any]] = None): """Validatation step. Args: inputs: a dictionary of input tensors. model: the keras.Model. metrics: a nested structure of metrics objects. Returns: A dictionary of logs. """ features, labels = inputs outputs = model(features, anchor_boxes=labels['anchor_boxes'], image_shape=labels['image_info'][:, 1, :], training=False) loss, cls_loss, box_loss, model_loss = self.build_losses( outputs=outputs, labels=labels, aux_losses=model.losses) logs = {self.loss: loss} all_losses = { 'total_loss': loss, 'cls_loss': cls_loss, 'box_loss': box_loss, 'model_loss': model_loss, } coco_model_outputs = { 'detection_boxes': outputs['detection_boxes'], 'detection_scores': outputs['detection_scores'], 'detection_classes': outputs['detection_classes'], 'num_detections': outputs['num_detections'], 'source_id': labels['groundtruths']['source_id'], 'image_info': labels['image_info'] } logs.update({self.coco_metric.name: (labels['groundtruths'], coco_model_outputs)}) if metrics: for m in metrics: m.update_state(all_losses[m.name]) logs.update({m.name: m.result()}) return logs def aggregate_logs(self, state=None, step_outputs=None): if state is None: self.coco_metric.reset_states() state = self.coco_metric self.coco_metric.update_state(step_outputs[self.coco_metric.name][0], step_outputs[self.coco_metric.name][1]) return state def reduce_aggregated_logs(self, aggregated_logs, global_step=None): return self.coco_metric.result()
40.210826
90
0.675783
8a0b06919976e3ffd2664b4a50e362df093c61f6
10,334
py
Python
src/deepke/name_entity_re/few_shot/module/train.py
zjunlp/deepke-dre
0de6bdb4d03e5b36b84e93a509788b6fa9bbbce9
[ "MIT" ]
3
2022-02-18T05:03:02.000Z
2022-03-19T12:32:16.000Z
src/deepke/name_entity_re/few_shot/module/train.py
zjunlp/deepke-dre
0de6bdb4d03e5b36b84e93a509788b6fa9bbbce9
[ "MIT" ]
null
null
null
src/deepke/name_entity_re/few_shot/module/train.py
zjunlp/deepke-dre
0de6bdb4d03e5b36b84e93a509788b6fa9bbbce9
[ "MIT" ]
null
null
null
import torch from torch import optim from tqdm import tqdm from ..utils import convert_preds_to_outputs, write_predictions import random class Trainer(object): def __init__(self, train_data=None, dev_data=None, test_data=None, model=None, process=None, args=None, logger=None, loss=None, metrics=None, writer=None) -> None: self.train_data = train_data self.dev_data = dev_data self.test_data = test_data self.model = model self.process = process self.logger = logger self.metrics = metrics self.writer = writer self.loss = loss self.num_epochs = args.num_epochs self.batch_size = args.batch_size self.lr = args.learning_rate self.eval_begin_epoch = args.eval_begin_epoch self.device = args.device self.load_path = args.load_path self.save_path = args.save_path self.refresh_step = 1 self.best_metric = 0 self.best_dev_epoch = None self.optimizer = None if self.train_data is not None: self.train_num_steps = len(self.train_data) * self.num_epochs self.step = 0 self.args = args def train(self): self.before_train() # something should do before training self.step = 0 self.model.train() self.logger.info("***** Running training *****") self.logger.info(" Num instance = %d", len(self.train_data)*self.batch_size) self.logger.info(" Num epoch = %d", self.num_epochs) self.logger.info(" Batch size = %d", self.batch_size) self.logger.info(" Learning rate = {}".format(self.lr)) self.logger.info(" Evaluate begin = %d", self.eval_begin_epoch) if self.load_path is not None: # load model from load_path self.logger.info("Loading model from {}".format(self.load_path)) load_model_dict = torch.load(self.args.load_path) model_dict = self.model.state_dict() for name in load_model_dict: if name in model_dict: if model_dict[name].shape == load_model_dict[name].shape: model_dict[name] = load_model_dict[name] else: self.logger.info(f"Skip loading parameter: {name}, " f"required shape: {model_dict[name].shape}, " f"loaded shape: {load_model_dict[name].shape}") else: self.logger.info(f"Not Found! Skip loading parameter: {name}.") self.model.load_state_dict(model_dict) self.logger.info("Load model successful!") with tqdm(total=self.train_num_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True, initial=self.step) as pbar: self.pbar = pbar avg_loss = 0 for epoch in range(self.num_epochs): pbar.set_description_str(desc="Epoch {}/{}".format(epoch, self.num_epochs)) for batch in self.train_data: self.step += 1 batch = (tup.to(self.device) if isinstance(tup, torch.Tensor) else tup for tup in batch) loss = self._step(batch, mode="train") avg_loss += loss.item() self.optimizer.zero_grad() loss.backward() self.optimizer.step() if self.step % self.refresh_step == 0: avg_loss = float(avg_loss) / self.refresh_step print_output = "loss:{:<6.5f}".format(avg_loss) pbar.update(1) pbar.set_postfix_str(print_output) # self.writer.add_scalar(tag='loss', scalar_value=avg_loss, global_step=self.step) # tensorbordx self.writer.log({ 'avg_loss':avg_loss}) avg_loss = 0 if epoch >= self.eval_begin_epoch: self.evaluate(epoch) # generator to dev. pbar.close() self.pbar = None self.logger.info("Get best performance at epoch {}, best f1 score is {:.2f}".format(self.best_dev_epoch, self.best_metric)) def evaluate(self, epoch): self.model.eval() self.logger.info("***** Running evaluate *****") self.logger.info(" Num instance = %d", len(self.dev_data)*self.batch_size) self.logger.info(" Batch size = %d", self.batch_size) with torch.no_grad(): with tqdm(total=len(self.dev_data), leave=False, dynamic_ncols=True) as pbar: pbar.set_description_str(desc="Dev") for batch in self.dev_data: batch = (tup.to(self.device) if isinstance(tup, torch.Tensor) else tup for tup in batch) # to cpu/cuda device self._step(batch, mode="dev") pbar.update() # evaluate done eva_result = self.metrics.get_metric() pbar.close() self.logger.info("Epoch {}/{}, best f1: {}, current f1 score: {:.2f}, recall: {:.2f}, precision: {:.2f}."\ .format(epoch, self.num_epochs, self.best_metric, eva_result['f'], eva_result['rec'], eva_result['pre'])) # self.writer.add_scalars('evaluate', {'f1': eva_result['f'], # 'recall': eva_result['rec'], # 'precision': eva_result['pre']}, epoch) self.writer.log({'f1': eva_result['f'],'recall': eva_result['rec'],'precision': eva_result['pre']}) if eva_result['f'] >= self.best_metric: # this epoch get best performance self.logger.info("Get better performance at epoch {}".format(epoch)) self.best_dev_epoch = epoch self.best_metric = eva_result['f'] # update best metric(f1 score) if self.save_path is not None: # need to save model torch.save(self.model.state_dict(), self.save_path+"/best_model.pth") self.logger.info("Save best model at {}".format(self.save_path)) self.model.train() def predict(self): self.model.eval() self.logger.info("***** Running testing *****") self.logger.info(" Num instance = %d", len(self.test_data)*self.batch_size) self.logger.info(" Batch size = %d", self.batch_size) if self.load_path is not None: # load model from load_path self.logger.info("Loading model from {}".format(self.load_path)) self.model.load_state_dict(torch.load(self.load_path)) self.logger.info("Load model successful!") self.model.to(self.device) with torch.no_grad(): with tqdm(total=len(self.test_data), leave=False, dynamic_ncols=True) as pbar: pbar.set_description_str(desc="Test") texts = [] labels = [] for batch in self.test_data: batch = (tup.to(self.device) if isinstance(tup, torch.Tensor) else tup for tup in batch) # to cpu/cuda device src_tokens, src_seq_len, first, raw_words = batch preds = self._step((src_tokens, src_seq_len, first), mode="test") outputs = convert_preds_to_outputs(preds, raw_words, self.process.mapping, self.process.tokenizer) texts.extend(raw_words) labels.extend(outputs) pbar.update() self.logger.info("***** Predict example *****") idx = random.randint(0, len(texts)) print(len(texts), len(labels)) self.logger.info("Raw texts: " + " ".join(texts[idx])) self.logger.info("Prediction: " + " ".join(labels[idx])) if self.args.write_path is not None: # write predict write_predictions(self.args.write_path, texts, labels) self.logger.info("Write into {}!".format(self.args.write_path)) def _step(self, batch, mode="train"): if mode=="dev": # dev: compute metric src_tokens, tgt_tokens, src_seq_len, tgt_seq_len, first, target_span = batch pred = self.model.predict(src_tokens, src_seq_len, first) self.metrics.evaluate(target_span, pred, tgt_tokens) return elif mode=="test": # test: just get pred src_tokens, src_seq_len, first = batch pred = self.model.predict(src_tokens, src_seq_len, first) return pred else: # train: get loss src_tokens, tgt_tokens, src_seq_len, tgt_seq_len, first, target_span = batch pred = self.model(src_tokens, tgt_tokens, src_seq_len, first) loss = self.loss(tgt_tokens, tgt_seq_len, pred) return loss def before_train(self): parameters = [] params = {'lr':self.lr, 'weight_decay':1e-2} params['params'] = [param for name, param in self.model.named_parameters() if not ('bart_encoder' in name or 'bart_decoder' in name)] parameters.append(params) params = {'lr':self.lr, 'weight_decay':1e-2} params['params'] = [] for name, param in self.model.named_parameters(): if ('bart_encoder' in name or 'bart_decoder' in name) and not ('layernorm' in name or 'layer_norm' in name): params['params'].append(param) parameters.append(params) params = {'lr':self.lr, 'weight_decay':0} params['params'] = [] for name, param in self.model.named_parameters(): if ('bart_encoder' in name or 'bart_decoder' in name) and ('layernorm' in name or 'layer_norm' in name): params['params'].append(param) parameters.append(params) self.optimizer = optim.AdamW(parameters) if self.args.freeze_plm: # freeze pretrained language model(bart) for name, par in self.model.named_parameters(): if 'prompt_encoder' in name or 'prompt_decoder' in name and "bart_mlp" not in name: par.requires_grad = False self.model.to(self.device)
49.682692
167
0.570544
dc0e4e2d7a484ff56e62d9c50041f9f254b128de
2,695
py
Python
beagle/building/loader.py
FernandoGaGu/beagle
b1c968ec84d560e9903a582413e6334fcf447735
[ "BSD-3-Clause" ]
1
2020-12-27T15:58:14.000Z
2020-12-27T15:58:14.000Z
beagle/building/loader.py
FernandoGaGu/beagle
b1c968ec84d560e9903a582413e6334fcf447735
[ "BSD-3-Clause" ]
null
null
null
beagle/building/loader.py
FernandoGaGu/beagle
b1c968ec84d560e9903a582413e6334fcf447735
[ "BSD-3-Clause" ]
null
null
null
from ..fitness import Fitness from ..population import Population from ..report import Report, MOEAReport from ..algorithm import Algorithm from ..exceptions import UnrecognisedParameter from .basic import basic_ga_1, basic_ga_2 from .nsga2 import nsga2 from .spea2 import spea2 NSGA2_ID = 'NSGA2' SPEA2_ID = 'SPEA2' AVAILABLE_BUILDINGS = { 'GA1': basic_ga_1, 'GA2': basic_ga_2, NSGA2_ID: nsga2, SPEA2_ID: spea2 } _MOEAs = [NSGA2_ID, SPEA2_ID] def use_algorithm(name: str, fitness: Fitness, **kwargs): """ Function that returns a Algorithm based on a pre-defined schema. Currently available: 'GA1' for more info use: help(beagle.AVAILABLE_BUILDINGS['GA1') 'GA2' for more info use: help(beagle.AVAILABLE_BUILDINGS['GA2') To specify parameters for each operator it is required to prefix the process name (e.g. mutation, recombination or selection) with a _ and the parameter name. For example to specify the mutation probability it is necessary to use the argument: 'mutation_probability'. Parameters ---------- :param name: str Pre-defined schema name. Available: 'GA1' :param fitness: beagle.Fitness Fitness object used to evaluate the individuals in population. :param initial_population: beagle.Population Initial population. :param evaluate_out_of_step: bool (optional, by default False) Indicates whether to make an initial evaluation of the population before calling the step() function at the first interaction. In most algorithms, except for multi-objective ones such as NSGA2 or SPEA2 the parameter will be True. :param kwargs: Parameters of the mutation, recombination and selection operators. Returns ------- :return beagle.Algorithm Pre-build algorithm. """ if name not in AVAILABLE_BUILDINGS: raise UnrecognisedParameter(name, 'name: str in use_algorithm()') initial_population = None if name in _MOEAs: kwargs['report'] = MOEAReport(num_objectives=len(fitness)) # create report for multi-objective algorithms kwargs['evaluate_out_of_step'] = False else: kwargs['report'] = Report() # create report for basic algorithms if 'initial_population' in kwargs: initial_population = kwargs['initial_population'] if not isinstance(initial_population, Population): raise TypeError('initial_population must be a Population.') del kwargs['initial_population'] # eliminate initial_population from kwargs return Algorithm(step=AVAILABLE_BUILDINGS[name], fitness=fitness, initial_population=initial_population, **kwargs)
36.917808
118
0.715399
b62cd451ff7df9af5c1129f4885678cf4af82765
7,812
py
Python
CodonSubstitution/build/biopython/Bio/SeqIO/FastaIO.py
JackCurragh/DARNED
13963d129bd8f69fb1106ad1f47394b3211a939c
[ "MIT" ]
8
2021-12-14T21:30:01.000Z
2022-02-14T11:30:03.000Z
CodonSubstitution/build/biopython/Bio/SeqIO/FastaIO.py
JackCurragh/DARNED
13963d129bd8f69fb1106ad1f47394b3211a939c
[ "MIT" ]
null
null
null
CodonSubstitution/build/biopython/Bio/SeqIO/FastaIO.py
JackCurragh/DARNED
13963d129bd8f69fb1106ad1f47394b3211a939c
[ "MIT" ]
1
2021-11-04T21:48:14.000Z
2021-11-04T21:48:14.000Z
# Copyright 2006-2009 by Peter Cock. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. # # This module is for reading and writing FASTA format files as SeqRecord # objects. The code is partly inspired by earlier Biopython modules, # Bio.Fasta.* and the now deprecated Bio.SeqIO.FASTA """Bio.SeqIO support for the "fasta" (aka FastA or Pearson) file format. You are expected to use this module via the Bio.SeqIO functions.""" from Bio.Alphabet import single_letter_alphabet from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio.SeqIO.Interfaces import SequentialSequenceWriter #This is a generator function! def FastaIterator(handle, alphabet = single_letter_alphabet, title2ids = None): """Generator function to iterate over Fasta records (as SeqRecord objects). handle - input file alphabet - optional alphabet title2ids - A function that, when given the title of the FASTA file (without the beginning >), will return the id, name and description (in that order) for the record as a tuple of strings. If this is not given, then the entire title line will be used as the description, and the first word as the id and name. Note that use of title2ids matches that of Bio.Fasta.SequenceParser but the defaults are slightly different. """ #Skip any text before the first record (e.g. blank lines, comments) while True: line = handle.readline() if line == "" : return #Premature end of file, or just empty? if line[0] == ">": break while True: if line[0]!=">": raise ValueError("Records in Fasta files should start with '>' character") if title2ids: id, name, descr = title2ids(line[1:].rstrip()) else: descr = line[1:].rstrip() try: id = descr.split()[0] except IndexError: assert not descr, repr(line) #Should we use SeqRecord default for no ID? id = "" name = id lines = [] line = handle.readline() while True: if not line : break if line[0] == ">": break lines.append(line.rstrip()) line = handle.readline() #Remove trailing whitespace, and any internal spaces #(and any embedded \r which are possible in mangled files #when not opened in universal read lines mode) result = "".join(lines).replace(" ", "").replace("\r", "") #Return the record and then continue... yield SeqRecord(Seq(result, alphabet), id = id, name = name, description = descr) if not line : return #StopIteration assert False, "Should not reach this line" class FastaWriter(SequentialSequenceWriter): """Class to write Fasta format files.""" def __init__(self, handle, wrap=60, record2title=None): """Create a Fasta writer. handle - Handle to an output file, e.g. as returned by open(filename, "w") wrap - Optional line length used to wrap sequence lines. Defaults to wrapping the sequence at 60 characters Use zero (or None) for no wrapping, giving a single long line for the sequence. record2title - Optional function to return the text to be used for the title line of each record. By default the a combination of the record.id and record.description is used. If the record.description starts with the record.id, then just the record.description is used. You can either use: myWriter = FastaWriter(open(filename,"w")) writer.write_file(myRecords) Or, follow the sequential file writer system, for example: myWriter = FastaWriter(open(filename,"w")) writer.write_header() # does nothing for Fasta files ... Multiple calls to writer.write_record() and/or writer.write_records() ... writer.write_footer() # does nothing for Fasta files writer.close() """ SequentialSequenceWriter.__init__(self, handle) #self.handle = handle self.wrap = None if wrap: if wrap < 1: raise ValueError self.wrap = wrap self.record2title = record2title def write_record(self, record): """Write a single Fasta record to the file.""" assert self._header_written assert not self._footer_written self._record_written = True if self.record2title: title=self.clean(self.record2title(record)) else: id = self.clean(record.id) description = self.clean(record.description) #if description[:len(id)]==id: if description and description.split(None,1)[0]==id: #The description includes the id at the start title = description elif description: title = "%s %s" % (id, description) else: title = id assert "\n" not in title assert "\r" not in title self.handle.write(">%s\n" % title) data = self._get_seq_string(record) #Catches sequence being None assert "\n" not in data assert "\r" not in data if self.wrap: for i in range(0, len(data), self.wrap): self.handle.write(data[i:i+self.wrap] + "\n") else: self.handle.write(data + "\n") if __name__ == "__main__": print "Running quick self test" import os from Bio.Alphabet import generic_protein, generic_nucleotide #Download the files from here: #ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Nanoarchaeum_equitans fna_filename = "NC_005213.fna" faa_filename = "NC_005213.faa" def genbank_name_function(text): text, descr = text.split(None,1) id = text.split("|")[3] name = id.split(".",1)[0] return id, name, descr def print_record(record): #See also bug 2057 #http://bugzilla.open-bio.org/show_bug.cgi?id=2057 print "ID:" + record.id print "Name:" + record.name print "Descr:" + record.description print record.seq for feature in record.annotations: print '/%s=%s' % (feature, record.annotations[feature]) if record.dbxrefs: print "Database cross references:" for x in record.dbxrefs : print " - %s" % x if os.path.isfile(fna_filename): print "--------" print "FastaIterator (single sequence)" iterator = FastaIterator(open(fna_filename, "r"), alphabet=generic_nucleotide, title2ids=genbank_name_function) count=0 for record in iterator: count=count+1 print_record(record) assert count == 1 print str(record.__class__) if os.path.isfile(faa_filename): print "--------" print "FastaIterator (multiple sequences)" iterator = FastaIterator(open(faa_filename, "r"), alphabet=generic_protein, title2ids=genbank_name_function) count=0 for record in iterator: count=count+1 print_record(record) break assert count>0 print str(record.__class__) from cStringIO import StringIO print "--------" print "FastaIterator (empty input file)" #Just to make sure no errors happen iterator = FastaIterator(StringIO("")) count = 0 for record in iterator: count = count+1 assert count==0 print "Done"
35.834862
119
0.611367
5f409391616e463a98d2d80e3b677bd331748c33
3,235
py
Python
url_migration/tests/test_resolver.py
riklaunim/django-url-migration
0d1115d02b64a895934ecdd7387e65b34b3d68e7
[ "BSD-3-Clause" ]
4
2017-04-28T18:58:31.000Z
2017-10-04T07:32:47.000Z
url_migration/tests/test_resolver.py
riklaunim/django-url-migration
0d1115d02b64a895934ecdd7387e65b34b3d68e7
[ "BSD-3-Clause" ]
3
2021-04-23T11:30:49.000Z
2021-04-26T14:12:29.000Z
url_migration/tests/test_resolver.py
riklaunim/django-url-migration
0d1115d02b64a895934ecdd7387e65b34b3d68e7
[ "BSD-3-Clause" ]
1
2021-04-23T11:07:36.000Z
2021-04-23T11:07:36.000Z
from unittest import mock from django import test from .. import models from .. import views from . import factories class TestUrlResolverIntegration(test.TestCase): def test_if_url_is_resolved(self): factories.UrlMappingFactory(source_url='/bar', target_url='/foo') response = self.client.get('/bar') self.assertEqual('/foo', response.url) self.assertEqual(301, response.status_code) def test_if_url_is_resolved_by_regexp(self): factories.UrlRegexpMappingFactory( source_mapping=r'/profil-v/(?P<pk>[0-9]+)/', target_mapping=r'/profil-miejsca/\1/' ) response = self.client.get('/profil-v/10/') self.assertEqual('/profil-miejsca/10/', response.url) self.assertEqual(301, response.status_code) def test_if_404_is_returned(self): response = self.client.get('/abc/10/') self.assertEqual(404, response.status_code) @mock.patch('url_migration.views.logger') def test_if_404_is_returned_for_invalid_redirect(self, logger): factories.UrlMappingFactory( source_url='/a/', target_url='/a/', ) response = self.client.get('/a/') self.assertTrue(logger.exception.called) self.assertEqual(404, response.status_code) class TestRegexpMapping(test.TestCase): META = { 'HTTP_REFERER': 'http://google.pl', 'HTTP_USER_AGENT': 'Firefox 1', 'HTTP_X_REAL_IP': '10.0.0.2', } def test_if_get_or_create_url_mapping_returns_existing_mapping(self): rule = factories.UrlRegexpMappingFactory( source_mapping=r'/a/b/(?P<pk>[0-9]+)/') mapping = factories.RegexpGeneratedMappingFactory( source_url='/a/b/1/', regexp=rule) other_rule = factories.UrlRegexpMappingFactory( source_mapping=r'/a/(.*)/') request = mock.Mock(path='/a/b/1/') resolver = views.UrlResolver(request) result = resolver._get_or_create_url_mapping(other_rule) self.assertEqual(mapping, result) self.assertEqual(1, models.RegexpGeneratedMapping.objects.count()) def test_if_get_or_create_url_mapping_creates_new_mapping(self): rule = factories.UrlRegexpMappingFactory( source_mapping=r'/a/(?P<pk>[0-9]+)/', target_mapping=r'/b/\1/', ) factories.RegexpGeneratedMappingFactory( source_url='/a/1234/', regexp=rule) request = mock.Mock(path='/a/1/') resolver = views.UrlResolver(request) result = resolver._get_or_create_url_mapping(rule) expected = models.RegexpGeneratedMapping.objects.get( source_url='/a/1/', target_url='/b/1/', regexp=rule ) self.assertEqual(expected, result) self.assertEqual(2, models.RegexpGeneratedMapping.objects.count()) def test_if_exception_is_raised_for_redirect_loop(self): factories.UrlMappingFactory( source_url='/a/', target_url='/a/', ) request = test.RequestFactory().get('/a/') resolver = views.UrlResolver(request) with self.assertRaises(views.InvalidRedirect): list(resolver.map())
35.944444
74
0.643277
5dde6523ade23b141b81dd1e07eb6ea734c0b560
38,015
py
Python
venv/Lib/site-packages/twilio/rest/taskrouter/v1/workspace/task/reservation.py
Kenny-Z/IOT-Message-Board-with-Face-Recognition
81b9a778ebf850b9f78e5d18a52720bd78593565
[ "MIT" ]
4
2020-11-13T02:31:25.000Z
2020-12-24T22:04:30.000Z
twilio/rest/taskrouter/v1/workspace/task/reservation.py
Sephra1/twilio-python
7dd04209e2d38a31c2783ee8f8ae8be6222a43f2
[ "MIT" ]
7
2020-06-06T01:19:11.000Z
2021-06-10T19:42:05.000Z
bot/lib/python3.7/site-packages/twilio/rest/taskrouter/v1/workspace/task/reservation.py
carlosrh18/DavinciBot
d73a6b7f68d7bab25d134d3f85c6b63a86c206c5
[ "MIT" ]
1
2020-08-27T01:33:19.000Z
2020-08-27T01:33:19.000Z
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import deserialize from twilio.base import serialize from twilio.base import values from twilio.base.instance_context import InstanceContext from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page class ReservationList(ListResource): """ """ def __init__(self, version, workspace_sid, task_sid): """ Initialize the ReservationList :param Version version: Version that contains the resource :param workspace_sid: The SID of the Workspace that this task is contained within. :param task_sid: The SID of the reserved Task resource :returns: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationList :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationList """ super(ReservationList, self).__init__(version) # Path Solution self._solution = {'workspace_sid': workspace_sid, 'task_sid': task_sid, } self._uri = '/Workspaces/{workspace_sid}/Tasks/{task_sid}/Reservations'.format(**self._solution) def stream(self, reservation_status=values.unset, limit=None, page_size=None): """ Streams ReservationInstance records from the API as a generator stream. This operation lazily loads records as efficiently as possible until the limit is reached. The results are returned as a generator, so this operation is memory efficient. :param ReservationInstance.Status reservation_status: Returns the list of reservations for a task with a specified ReservationStatus :param int limit: Upper limit for the number of records to return. stream() guarantees to never return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, stream() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationInstance] """ limits = self._version.read_limits(limit, page_size) page = self.page(reservation_status=reservation_status, page_size=limits['page_size'], ) return self._version.stream(page, limits['limit'], limits['page_limit']) def list(self, reservation_status=values.unset, limit=None, page_size=None): """ Lists ReservationInstance records from the API as a list. Unlike stream(), this operation is eager and will load `limit` records into memory before returning. :param ReservationInstance.Status reservation_status: Returns the list of reservations for a task with a specified ReservationStatus :param int limit: Upper limit for the number of records to return. list() guarantees never to return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, list() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationInstance] """ return list(self.stream(reservation_status=reservation_status, limit=limit, page_size=page_size, )) def page(self, reservation_status=values.unset, page_token=values.unset, page_number=values.unset, page_size=values.unset): """ Retrieve a single page of ReservationInstance records from the API. Request is executed immediately :param ReservationInstance.Status reservation_status: Returns the list of reservations for a task with a specified ReservationStatus :param str page_token: PageToken provided by the API :param int page_number: Page Number, this value is simply for client state :param int page_size: Number of records to return, defaults to 50 :returns: Page of ReservationInstance :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationPage """ data = values.of({ 'ReservationStatus': reservation_status, 'PageToken': page_token, 'Page': page_number, 'PageSize': page_size, }) response = self._version.page(method='GET', uri=self._uri, params=data, ) return ReservationPage(self._version, response, self._solution) def get_page(self, target_url): """ Retrieve a specific page of ReservationInstance records from the API. Request is executed immediately :param str target_url: API-generated URL for the requested results page :returns: Page of ReservationInstance :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationPage """ response = self._version.domain.twilio.request( 'GET', target_url, ) return ReservationPage(self._version, response, self._solution) def get(self, sid): """ Constructs a ReservationContext :param sid: The SID of the TaskReservation resource to fetch :returns: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationContext :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationContext """ return ReservationContext( self._version, workspace_sid=self._solution['workspace_sid'], task_sid=self._solution['task_sid'], sid=sid, ) def __call__(self, sid): """ Constructs a ReservationContext :param sid: The SID of the TaskReservation resource to fetch :returns: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationContext :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationContext """ return ReservationContext( self._version, workspace_sid=self._solution['workspace_sid'], task_sid=self._solution['task_sid'], sid=sid, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Taskrouter.V1.ReservationList>' class ReservationPage(Page): """ """ def __init__(self, version, response, solution): """ Initialize the ReservationPage :param Version version: Version that contains the resource :param Response response: Response from the API :param workspace_sid: The SID of the Workspace that this task is contained within. :param task_sid: The SID of the reserved Task resource :returns: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationPage :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationPage """ super(ReservationPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of ReservationInstance :param dict payload: Payload response from the API :returns: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationInstance :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationInstance """ return ReservationInstance( self._version, payload, workspace_sid=self._solution['workspace_sid'], task_sid=self._solution['task_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Taskrouter.V1.ReservationPage>' class ReservationContext(InstanceContext): """ """ def __init__(self, version, workspace_sid, task_sid, sid): """ Initialize the ReservationContext :param Version version: Version that contains the resource :param workspace_sid: The SID of the Workspace with the TaskReservation resource to fetch :param task_sid: The SID of the reserved Task resource with the TaskReservation resource to fetch :param sid: The SID of the TaskReservation resource to fetch :returns: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationContext :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationContext """ super(ReservationContext, self).__init__(version) # Path Solution self._solution = {'workspace_sid': workspace_sid, 'task_sid': task_sid, 'sid': sid, } self._uri = '/Workspaces/{workspace_sid}/Tasks/{task_sid}/Reservations/{sid}'.format(**self._solution) def fetch(self): """ Fetch the ReservationInstance :returns: The fetched ReservationInstance :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationInstance """ payload = self._version.fetch(method='GET', uri=self._uri, ) return ReservationInstance( self._version, payload, workspace_sid=self._solution['workspace_sid'], task_sid=self._solution['task_sid'], sid=self._solution['sid'], ) def update(self, reservation_status=values.unset, worker_activity_sid=values.unset, instruction=values.unset, dequeue_post_work_activity_sid=values.unset, dequeue_from=values.unset, dequeue_record=values.unset, dequeue_timeout=values.unset, dequeue_to=values.unset, dequeue_status_callback_url=values.unset, call_from=values.unset, call_record=values.unset, call_timeout=values.unset, call_to=values.unset, call_url=values.unset, call_status_callback_url=values.unset, call_accept=values.unset, redirect_call_sid=values.unset, redirect_accept=values.unset, redirect_url=values.unset, to=values.unset, from_=values.unset, status_callback=values.unset, status_callback_method=values.unset, status_callback_event=values.unset, timeout=values.unset, record=values.unset, muted=values.unset, beep=values.unset, start_conference_on_enter=values.unset, end_conference_on_exit=values.unset, wait_url=values.unset, wait_method=values.unset, early_media=values.unset, max_participants=values.unset, conference_status_callback=values.unset, conference_status_callback_method=values.unset, conference_status_callback_event=values.unset, conference_record=values.unset, conference_trim=values.unset, recording_channels=values.unset, recording_status_callback=values.unset, recording_status_callback_method=values.unset, conference_recording_status_callback=values.unset, conference_recording_status_callback_method=values.unset, region=values.unset, sip_auth_username=values.unset, sip_auth_password=values.unset, dequeue_status_callback_event=values.unset, post_work_activity_sid=values.unset, supervisor_mode=values.unset, supervisor=values.unset, end_conference_on_customer_exit=values.unset, beep_on_customer_entrance=values.unset): """ Update the ReservationInstance :param ReservationInstance.Status reservation_status: The new status of the reservation :param unicode worker_activity_sid: The new worker activity SID if rejecting a reservation :param unicode instruction: The assignment instruction for reservation :param unicode dequeue_post_work_activity_sid: The SID of the Activity resource to start after executing a Dequeue instruction :param unicode dequeue_from: The Caller ID of the call to the worker when executing a Dequeue instruction :param unicode dequeue_record: Whether to record both legs of a call when executing a Dequeue instruction :param unicode dequeue_timeout: Timeout for call when executing a Dequeue instruction :param unicode dequeue_to: The Contact URI of the worker when executing a Dequeue instruction :param unicode dequeue_status_callback_url: The Callback URL for completed call event when executing a Dequeue instruction :param unicode call_from: The Caller ID of the outbound call when executing a Call instruction :param unicode call_record: Whether to record both legs of a call when executing a Call instruction :param unicode call_timeout: Timeout for call when executing a Call instruction :param unicode call_to: The Contact URI of the worker when executing a Call instruction :param unicode call_url: TwiML URI executed on answering the worker's leg as a result of the Call instruction :param unicode call_status_callback_url: The URL to call for the completed call event when executing a Call instruction :param bool call_accept: Whether to accept a reservation when executing a Call instruction :param unicode redirect_call_sid: The Call SID of the call parked in the queue when executing a Redirect instruction :param bool redirect_accept: Whether the reservation should be accepted when executing a Redirect instruction :param unicode redirect_url: TwiML URI to redirect the call to when executing the Redirect instruction :param unicode to: The Contact URI of the worker when executing a Conference instruction :param unicode from_: The Caller ID of the call to the worker when executing a Conference instruction :param unicode status_callback: The URL we should call to send status information to your application :param unicode status_callback_method: The HTTP method we should use to call status_callback :param ReservationInstance.CallStatus status_callback_event: The call progress events that we will send to status_callback :param unicode timeout: Timeout for call when executing a Conference instruction :param bool record: Whether to record the participant and their conferences :param bool muted: Whether to mute the agent :param unicode beep: Whether to play a notification beep when the participant joins :param bool start_conference_on_enter: Whether the conference starts when the participant joins the conference :param bool end_conference_on_exit: Whether to end the conference when the agent leaves :param unicode wait_url: URL that hosts pre-conference hold music :param unicode wait_method: The HTTP method we should use to call `wait_url` :param bool early_media: Whether agents can hear the state of the outbound call :param unicode max_participants: The maximum number of agent conference participants :param unicode conference_status_callback: The callback URL for conference events :param unicode conference_status_callback_method: HTTP method for requesting `conference_status_callback` URL :param ReservationInstance.ConferenceEvent conference_status_callback_event: The conference status events that we will send to conference_status_callback :param unicode conference_record: Whether to record the conference the participant is joining :param unicode conference_trim: How to trim leading and trailing silence from your recorded conference audio files :param unicode recording_channels: Specify `mono` or `dual` recording channels :param unicode recording_status_callback: The URL that we should call using the `recording_status_callback_method` when the recording status changes :param unicode recording_status_callback_method: The HTTP method we should use when we call `recording_status_callback` :param unicode conference_recording_status_callback: The URL we should call using the `conference_recording_status_callback_method` when the conference recording is available :param unicode conference_recording_status_callback_method: The HTTP method we should use to call `conference_recording_status_callback` :param unicode region: The region where we should mix the conference audio :param unicode sip_auth_username: The SIP username used for authentication :param unicode sip_auth_password: The SIP password for authentication :param unicode dequeue_status_callback_event: The Call progress events sent via webhooks as a result of a Dequeue instruction :param unicode post_work_activity_sid: The new worker activity SID after executing a Conference instruction :param ReservationInstance.SupervisorMode supervisor_mode: The Supervisor mode when executing the Supervise instruction :param unicode supervisor: The Supervisor SID/URI when executing the Supervise instruction :param bool end_conference_on_customer_exit: Whether to end the conference when the customer leaves :param bool beep_on_customer_entrance: Whether to play a notification beep when the customer joins :returns: The updated ReservationInstance :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationInstance """ data = values.of({ 'ReservationStatus': reservation_status, 'WorkerActivitySid': worker_activity_sid, 'Instruction': instruction, 'DequeuePostWorkActivitySid': dequeue_post_work_activity_sid, 'DequeueFrom': dequeue_from, 'DequeueRecord': dequeue_record, 'DequeueTimeout': dequeue_timeout, 'DequeueTo': dequeue_to, 'DequeueStatusCallbackUrl': dequeue_status_callback_url, 'CallFrom': call_from, 'CallRecord': call_record, 'CallTimeout': call_timeout, 'CallTo': call_to, 'CallUrl': call_url, 'CallStatusCallbackUrl': call_status_callback_url, 'CallAccept': call_accept, 'RedirectCallSid': redirect_call_sid, 'RedirectAccept': redirect_accept, 'RedirectUrl': redirect_url, 'To': to, 'From': from_, 'StatusCallback': status_callback, 'StatusCallbackMethod': status_callback_method, 'StatusCallbackEvent': serialize.map(status_callback_event, lambda e: e), 'Timeout': timeout, 'Record': record, 'Muted': muted, 'Beep': beep, 'StartConferenceOnEnter': start_conference_on_enter, 'EndConferenceOnExit': end_conference_on_exit, 'WaitUrl': wait_url, 'WaitMethod': wait_method, 'EarlyMedia': early_media, 'MaxParticipants': max_participants, 'ConferenceStatusCallback': conference_status_callback, 'ConferenceStatusCallbackMethod': conference_status_callback_method, 'ConferenceStatusCallbackEvent': serialize.map(conference_status_callback_event, lambda e: e), 'ConferenceRecord': conference_record, 'ConferenceTrim': conference_trim, 'RecordingChannels': recording_channels, 'RecordingStatusCallback': recording_status_callback, 'RecordingStatusCallbackMethod': recording_status_callback_method, 'ConferenceRecordingStatusCallback': conference_recording_status_callback, 'ConferenceRecordingStatusCallbackMethod': conference_recording_status_callback_method, 'Region': region, 'SipAuthUsername': sip_auth_username, 'SipAuthPassword': sip_auth_password, 'DequeueStatusCallbackEvent': serialize.map(dequeue_status_callback_event, lambda e: e), 'PostWorkActivitySid': post_work_activity_sid, 'SupervisorMode': supervisor_mode, 'Supervisor': supervisor, 'EndConferenceOnCustomerExit': end_conference_on_customer_exit, 'BeepOnCustomerEntrance': beep_on_customer_entrance, }) payload = self._version.update(method='POST', uri=self._uri, data=data, ) return ReservationInstance( self._version, payload, workspace_sid=self._solution['workspace_sid'], task_sid=self._solution['task_sid'], sid=self._solution['sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Taskrouter.V1.ReservationContext {}>'.format(context) class ReservationInstance(InstanceResource): """ """ class Status(object): PENDING = "pending" ACCEPTED = "accepted" REJECTED = "rejected" TIMEOUT = "timeout" CANCELED = "canceled" RESCINDED = "rescinded" WRAPPING = "wrapping" COMPLETED = "completed" class CallStatus(object): INITIATED = "initiated" RINGING = "ringing" ANSWERED = "answered" COMPLETED = "completed" class ConferenceEvent(object): START = "start" END = "end" JOIN = "join" LEAVE = "leave" MUTE = "mute" HOLD = "hold" SPEAKER = "speaker" class SupervisorMode(object): MONITOR = "monitor" WHISPER = "whisper" BARGE = "barge" def __init__(self, version, payload, workspace_sid, task_sid, sid=None): """ Initialize the ReservationInstance :returns: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationInstance :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationInstance """ super(ReservationInstance, self).__init__(version) # Marshaled Properties self._properties = { 'account_sid': payload.get('account_sid'), 'date_created': deserialize.iso8601_datetime(payload.get('date_created')), 'date_updated': deserialize.iso8601_datetime(payload.get('date_updated')), 'reservation_status': payload.get('reservation_status'), 'sid': payload.get('sid'), 'task_sid': payload.get('task_sid'), 'worker_name': payload.get('worker_name'), 'worker_sid': payload.get('worker_sid'), 'workspace_sid': payload.get('workspace_sid'), 'url': payload.get('url'), 'links': payload.get('links'), } # Context self._context = None self._solution = { 'workspace_sid': workspace_sid, 'task_sid': task_sid, 'sid': sid or self._properties['sid'], } @property def _proxy(self): """ Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: ReservationContext for this ReservationInstance :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationContext """ if self._context is None: self._context = ReservationContext( self._version, workspace_sid=self._solution['workspace_sid'], task_sid=self._solution['task_sid'], sid=self._solution['sid'], ) return self._context @property def account_sid(self): """ :returns: The SID of the Account that created the resource :rtype: unicode """ return self._properties['account_sid'] @property def date_created(self): """ :returns: The ISO 8601 date and time in GMT when the resource was created :rtype: datetime """ return self._properties['date_created'] @property def date_updated(self): """ :returns: The ISO 8601 date and time in GMT when the resource was last updated :rtype: datetime """ return self._properties['date_updated'] @property def reservation_status(self): """ :returns: The current status of the reservation :rtype: ReservationInstance.Status """ return self._properties['reservation_status'] @property def sid(self): """ :returns: The unique string that identifies the resource :rtype: unicode """ return self._properties['sid'] @property def task_sid(self): """ :returns: The SID of the reserved Task resource :rtype: unicode """ return self._properties['task_sid'] @property def worker_name(self): """ :returns: The friendly_name of the Worker that is reserved :rtype: unicode """ return self._properties['worker_name'] @property def worker_sid(self): """ :returns: The SID of the reserved Worker resource :rtype: unicode """ return self._properties['worker_sid'] @property def workspace_sid(self): """ :returns: The SID of the Workspace that this task is contained within. :rtype: unicode """ return self._properties['workspace_sid'] @property def url(self): """ :returns: The absolute URL of the TaskReservation reservation :rtype: unicode """ return self._properties['url'] @property def links(self): """ :returns: The URLs of related resources :rtype: unicode """ return self._properties['links'] def fetch(self): """ Fetch the ReservationInstance :returns: The fetched ReservationInstance :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationInstance """ return self._proxy.fetch() def update(self, reservation_status=values.unset, worker_activity_sid=values.unset, instruction=values.unset, dequeue_post_work_activity_sid=values.unset, dequeue_from=values.unset, dequeue_record=values.unset, dequeue_timeout=values.unset, dequeue_to=values.unset, dequeue_status_callback_url=values.unset, call_from=values.unset, call_record=values.unset, call_timeout=values.unset, call_to=values.unset, call_url=values.unset, call_status_callback_url=values.unset, call_accept=values.unset, redirect_call_sid=values.unset, redirect_accept=values.unset, redirect_url=values.unset, to=values.unset, from_=values.unset, status_callback=values.unset, status_callback_method=values.unset, status_callback_event=values.unset, timeout=values.unset, record=values.unset, muted=values.unset, beep=values.unset, start_conference_on_enter=values.unset, end_conference_on_exit=values.unset, wait_url=values.unset, wait_method=values.unset, early_media=values.unset, max_participants=values.unset, conference_status_callback=values.unset, conference_status_callback_method=values.unset, conference_status_callback_event=values.unset, conference_record=values.unset, conference_trim=values.unset, recording_channels=values.unset, recording_status_callback=values.unset, recording_status_callback_method=values.unset, conference_recording_status_callback=values.unset, conference_recording_status_callback_method=values.unset, region=values.unset, sip_auth_username=values.unset, sip_auth_password=values.unset, dequeue_status_callback_event=values.unset, post_work_activity_sid=values.unset, supervisor_mode=values.unset, supervisor=values.unset, end_conference_on_customer_exit=values.unset, beep_on_customer_entrance=values.unset): """ Update the ReservationInstance :param ReservationInstance.Status reservation_status: The new status of the reservation :param unicode worker_activity_sid: The new worker activity SID if rejecting a reservation :param unicode instruction: The assignment instruction for reservation :param unicode dequeue_post_work_activity_sid: The SID of the Activity resource to start after executing a Dequeue instruction :param unicode dequeue_from: The Caller ID of the call to the worker when executing a Dequeue instruction :param unicode dequeue_record: Whether to record both legs of a call when executing a Dequeue instruction :param unicode dequeue_timeout: Timeout for call when executing a Dequeue instruction :param unicode dequeue_to: The Contact URI of the worker when executing a Dequeue instruction :param unicode dequeue_status_callback_url: The Callback URL for completed call event when executing a Dequeue instruction :param unicode call_from: The Caller ID of the outbound call when executing a Call instruction :param unicode call_record: Whether to record both legs of a call when executing a Call instruction :param unicode call_timeout: Timeout for call when executing a Call instruction :param unicode call_to: The Contact URI of the worker when executing a Call instruction :param unicode call_url: TwiML URI executed on answering the worker's leg as a result of the Call instruction :param unicode call_status_callback_url: The URL to call for the completed call event when executing a Call instruction :param bool call_accept: Whether to accept a reservation when executing a Call instruction :param unicode redirect_call_sid: The Call SID of the call parked in the queue when executing a Redirect instruction :param bool redirect_accept: Whether the reservation should be accepted when executing a Redirect instruction :param unicode redirect_url: TwiML URI to redirect the call to when executing the Redirect instruction :param unicode to: The Contact URI of the worker when executing a Conference instruction :param unicode from_: The Caller ID of the call to the worker when executing a Conference instruction :param unicode status_callback: The URL we should call to send status information to your application :param unicode status_callback_method: The HTTP method we should use to call status_callback :param ReservationInstance.CallStatus status_callback_event: The call progress events that we will send to status_callback :param unicode timeout: Timeout for call when executing a Conference instruction :param bool record: Whether to record the participant and their conferences :param bool muted: Whether to mute the agent :param unicode beep: Whether to play a notification beep when the participant joins :param bool start_conference_on_enter: Whether the conference starts when the participant joins the conference :param bool end_conference_on_exit: Whether to end the conference when the agent leaves :param unicode wait_url: URL that hosts pre-conference hold music :param unicode wait_method: The HTTP method we should use to call `wait_url` :param bool early_media: Whether agents can hear the state of the outbound call :param unicode max_participants: The maximum number of agent conference participants :param unicode conference_status_callback: The callback URL for conference events :param unicode conference_status_callback_method: HTTP method for requesting `conference_status_callback` URL :param ReservationInstance.ConferenceEvent conference_status_callback_event: The conference status events that we will send to conference_status_callback :param unicode conference_record: Whether to record the conference the participant is joining :param unicode conference_trim: How to trim leading and trailing silence from your recorded conference audio files :param unicode recording_channels: Specify `mono` or `dual` recording channels :param unicode recording_status_callback: The URL that we should call using the `recording_status_callback_method` when the recording status changes :param unicode recording_status_callback_method: The HTTP method we should use when we call `recording_status_callback` :param unicode conference_recording_status_callback: The URL we should call using the `conference_recording_status_callback_method` when the conference recording is available :param unicode conference_recording_status_callback_method: The HTTP method we should use to call `conference_recording_status_callback` :param unicode region: The region where we should mix the conference audio :param unicode sip_auth_username: The SIP username used for authentication :param unicode sip_auth_password: The SIP password for authentication :param unicode dequeue_status_callback_event: The Call progress events sent via webhooks as a result of a Dequeue instruction :param unicode post_work_activity_sid: The new worker activity SID after executing a Conference instruction :param ReservationInstance.SupervisorMode supervisor_mode: The Supervisor mode when executing the Supervise instruction :param unicode supervisor: The Supervisor SID/URI when executing the Supervise instruction :param bool end_conference_on_customer_exit: Whether to end the conference when the customer leaves :param bool beep_on_customer_entrance: Whether to play a notification beep when the customer joins :returns: The updated ReservationInstance :rtype: twilio.rest.taskrouter.v1.workspace.task.reservation.ReservationInstance """ return self._proxy.update( reservation_status=reservation_status, worker_activity_sid=worker_activity_sid, instruction=instruction, dequeue_post_work_activity_sid=dequeue_post_work_activity_sid, dequeue_from=dequeue_from, dequeue_record=dequeue_record, dequeue_timeout=dequeue_timeout, dequeue_to=dequeue_to, dequeue_status_callback_url=dequeue_status_callback_url, call_from=call_from, call_record=call_record, call_timeout=call_timeout, call_to=call_to, call_url=call_url, call_status_callback_url=call_status_callback_url, call_accept=call_accept, redirect_call_sid=redirect_call_sid, redirect_accept=redirect_accept, redirect_url=redirect_url, to=to, from_=from_, status_callback=status_callback, status_callback_method=status_callback_method, status_callback_event=status_callback_event, timeout=timeout, record=record, muted=muted, beep=beep, start_conference_on_enter=start_conference_on_enter, end_conference_on_exit=end_conference_on_exit, wait_url=wait_url, wait_method=wait_method, early_media=early_media, max_participants=max_participants, conference_status_callback=conference_status_callback, conference_status_callback_method=conference_status_callback_method, conference_status_callback_event=conference_status_callback_event, conference_record=conference_record, conference_trim=conference_trim, recording_channels=recording_channels, recording_status_callback=recording_status_callback, recording_status_callback_method=recording_status_callback_method, conference_recording_status_callback=conference_recording_status_callback, conference_recording_status_callback_method=conference_recording_status_callback_method, region=region, sip_auth_username=sip_auth_username, sip_auth_password=sip_auth_password, dequeue_status_callback_event=dequeue_status_callback_event, post_work_activity_sid=post_work_activity_sid, supervisor_mode=supervisor_mode, supervisor=supervisor, end_conference_on_customer_exit=end_conference_on_customer_exit, beep_on_customer_entrance=beep_on_customer_entrance, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Taskrouter.V1.ReservationInstance {}>'.format(context)
50.085639
182
0.68886
a0722f59de3763d8e3638aae4f25355508df57eb
270
py
Python
src/chapter6/exercise5.py
Group3BCS1/BCS-2021
b8ee8f900e3fd23822844e10fb2c6475a4f3400a
[ "MIT" ]
null
null
null
src/chapter6/exercise5.py
Group3BCS1/BCS-2021
b8ee8f900e3fd23822844e10fb2c6475a4f3400a
[ "MIT" ]
null
null
null
src/chapter6/exercise5.py
Group3BCS1/BCS-2021
b8ee8f900e3fd23822844e10fb2c6475a4f3400a
[ "MIT" ]
2
2021-06-11T08:18:48.000Z
2021-06-12T20:31:44.000Z
word = 'X-DSPAM-Confidence: 0.8475' # Finds the colon character atpos = word.find(':') # Extracts portion after colon var_float = word [atpos + 1:] # Converts to floating point number var_float = float(var_float) print(f'This is a floating point number {var_float}')
33.75
55
0.72963
c68bcc1bfdd00695d0138fbfb4c63aec658ecf13
3,377
py
Python
q/protocol.py
rymurr/q
af44753108d2c569d520b6c1ef719a4e0b616f3e
[ "MIT" ]
null
null
null
q/protocol.py
rymurr/q
af44753108d2c569d520b6c1ef719a4e0b616f3e
[ "MIT" ]
null
null
null
q/protocol.py
rymurr/q
af44753108d2c569d520b6c1ef719a4e0b616f3e
[ "MIT" ]
null
null
null
''' Primary source of kdb ipc protocol definitions here we define all the q data types and their on the wire form A parser is used to convert between the python format and kdb/q format types are found here: http://www.kx.com/q/d/q1.htm Note on dates and times dates are number of days since Jan 1 2000 times are number of hours/minutes/seconds/millis datetimes are float64 days since Jan 1 (fractional day is converted to millis and parsed) TODO: need some docstrings add in async/concurrency stuff for speed profile! integrate back into connection class and do full tests clarify handling of OrderedDict add in pd.Series clarify handling of sorted and keyed tables add indicies (associated with keys) ''' import pandas import datetime import numpy as np from bitstring import ConstBitStream from collections import OrderedDict from time import mktime #types: -ve is atomic +ve is vector types = { -1: ('int', '4'), #bool 1: ('int', '4', np.bool), #bool vector -4: ('int','8'), #byte 4: ('int','8', np.int8), #byte vector -5: ('int', '16'), #short 5: ('int', '16', np.int16), #short vector -6: ('int','32'), #int 6: ('int','32', np.int32), #int vector -7: ('int','64'), #long 7: ('int','64', np.int64), #long vector -8: ('float','32'), #real 8: ('float','32', np.float32), #real vector -9: ('float','64'), #float 9: ('float','64', np.float64), #float vector -10:('int', '8'), #char 10:('int', '8', np.char), #char vector -11:('symbol',''), #symbol 11:('symbol',''), #symbol vector -12:('int', '64'), #nanos 12: ('int', '64'), #nanos vector -13:('int', '32'), #month 13:('int', '32'), #month vector -14:('int', '32'), #date 14:('int', '32'), #date vector -15:('float', '64'), #datetime 15:('float', '64'), #datetime vector -16:('int', '64'), #nano datetime 16:('int', '64'), #nano datetime vector -17:('int', '32'), #hour 17:('int', '32'), #hour vector -18:('int', '32'), #second 18:('int', '32'), #second vector -19:('int', '32'), #time 19:('int', '32'), #time vector 0:('list','0'), #list } inv_types = { bool: (1, 'int', '8'), np.bool: (-1, 'int', '8'), np.int8: (4, 'int','8'), 'int': (-5, 'int', '16'), np.int16: (5, 'int', '16'), long: (-7, 'int', '64'), np.int64: (7, 'int', '64'), float: (-9, 'float', '64'), 'float': (-8, 'float', '32'), np.float32: (8, 'float', '32'), np.float64: (8, 'float', '64'), int: (-6, 'int', '32'), list: (0, '', ''), dict: (99, '', ''), str: (-11, 'hex', '8'), 'str': (-10, 'hex', '8'), OrderedDict: (127, '', ''), np.int64: (6, 'int', '32'), np.int8: (4, 'int', '8'), np.object_: (11, 'hex', 8,), pandas.DataFrame: (98, '', ''), } INT = -6 BYTE = -4 NULL = ConstBitStream('0x00') Y2KDAYS = datetime.datetime(2000,1,1).toordinal() Y2KMILLIS = mktime(datetime.datetime(2000,1,1).utctimetuple()) MILLIS = 8.64E7 #header format header_format = 'int{0}:8=endian, int{0}:8=async, pad:16, int{0}:32=length, bits=data'
32.161905
93
0.517619
b65ef215969f9d3a248c8538f776589a5f306c73
4,890
py
Python
testsuite/python-imageoutput/src/test_imageoutput.py
Nedra1998/oiio
1a105a6496606a6070df0a5ae5ab64416803e02e
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
testsuite/python-imageoutput/src/test_imageoutput.py
Nedra1998/oiio
1a105a6496606a6070df0a5ae5ab64416803e02e
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
testsuite/python-imageoutput/src/test_imageoutput.py
Nedra1998/oiio
1a105a6496606a6070df0a5ae5ab64416803e02e
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python from __future__ import print_function from __future__ import absolute_import import OpenImageIO as oiio import numpy as np # Read the one subimage from input then write it to output using # write_image, write_scanlines, write_scanline, write_tile, or write_tiles, # depending on the 'method' argument). (Just copy one subimage, one MIP # level.) def copy_subimage (input, output, method="image", memformat=oiio.TypeFloat) : spec = input.spec () if method == "image" : pixels = input.read_image (memformat) if pixels is None : print ("Error reading input pixels in", in_filename) return False output.write_image (pixels) elif method == "scanlines" and spec.tile_width == 0 : pixels = input.read_image (memformat) if pixels is None : print ("Error reading input pixels in", in_filename) return False output.write_scanlines (spec.y, spec.y+spec.height, spec.z, pixels) elif method == "scanline" and spec.tile_width == 0 : for z in range(spec.z, spec.z+spec.depth) : for y in range(spec.y, spec.y+spec.height) : pixels = input.read_scanline (y, z, memformat) if pixels is None : print ("Error reading input pixels in", in_filename) return False output.write_scanline (y, z, pixels) elif method == "tiles" and spec.tile_width != 0 : pixels = input.read_image (memformat) if pixels is None : print ("Error reading input pixels in", in_filename) return False output.write_tiles (spec.x, spec.x+spec.width, spec.y, spec.y+spec.height, spec.z, spec.z+spec.depth, pixels) elif method == "tile" and spec.tile_width != 0 : for z in range(spec.z, spec.z+spec.depth, spec.tile_depth) : for y in range(spec.y, spec.y+spec.height, spec.tile_height) : for x in range(spec.x, spec.x+spec.width, spec.tile_width) : pixels = input.read_tile (x, y, z, memformat) if pixels is None : print ("Error reading input pixels in", in_filename) return False output.write_tile (x, y, z, pixels) else : print ("Unknown method:", method) return False return True # Read the whole image then write using write_image, write_scanlines, # write_scanline, write_tile, or write_tiles, depending on the 'method' # argument). (Just copy one subimage, one MIP level.) def copy_image (in_filename, out_filename, method="image", memformat=oiio.TypeFloat, outformat=oiio.TypeUnknown) : input = oiio.ImageInput.open (in_filename) if not input : print ('Could not open "' + filename + '"') print ("\tError: ", oiio.geterror()) print () return outspec = input.spec() if outformat != oiio.TypeUnknown : outspec.format = outformat output = oiio.ImageOutput.create (out_filename) if not output : print ("Could not create ImageOutput for", out_filename) return ok = output.open (out_filename, outspec) if not ok : print ("Could not open", out_filename) return ok = copy_subimage (input, output, method, memformat) input.close () output.close () if ok : print ("Copied", in_filename, "to", out_filename, "as", method) def test_subimages (out_filename="multipart.exr") : output = oiio.ImageOutput.create (out_filename) spec = oiio.ImageSpec (64, 64, 3, "half") specs = (spec, spec, spec) output.open (out_filename, specs) buffer = np.zeros ((64, 64, 3), dtype=float) for i in range(3) : if i != 0 : output.open (out_filename, specs[i], "AppendSubimage") output.write_image (buffer) output.close () ###################################################################### # main test starts here try: copy_image ("scanline.tif", "grid-image.tif", method="image") copy_image ("scanline.tif", "grid-scanline.tif", method="scanline") copy_image ("scanline.tif", "grid-scanlines.tif", method="scanlines") copy_image ("tiled.tif", "grid-timage.tif", method="image") copy_image ("tiled.tif", "grid-tile.tif", method="tile") copy_image ("tiled.tif", "grid-tiles.tif", method="tiles") # Regression test for crash when changing formats copy_image ("scanline.tif", "grid-image.tif", memformat=oiio.TypeUInt8, outformat=oiio.TypeUInt16) # Ensure we can write multiple subimages test_subimages () print ("Done.") except Exception as detail: print ("Unknown exception:", detail)
39.12
76
0.600818
57b86119c931246e4ca06d032a20b189278b76f0
1,072
py
Python
onlinecourse/admin.py
jcampbellaccount/ibm-developer-skills-network-final-cloud-app-with-database
e43b264eeb3f19199077e8502ae3af1ccab4a743
[ "Apache-2.0" ]
null
null
null
onlinecourse/admin.py
jcampbellaccount/ibm-developer-skills-network-final-cloud-app-with-database
e43b264eeb3f19199077e8502ae3af1ccab4a743
[ "Apache-2.0" ]
null
null
null
onlinecourse/admin.py
jcampbellaccount/ibm-developer-skills-network-final-cloud-app-with-database
e43b264eeb3f19199077e8502ae3af1ccab4a743
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin # <HINT> Import any new Models here from .models import Course, Lesson, Instructor, Learner, Question, Choice class QuestionInline(admin.StackedInline): model = Question extra = 5 class ChoiceInline(admin.StackedInline): model = Choice extra = 5 class LessonInline(admin.StackedInline): model = Lesson extra = 5 # Register your models here. class CourseAdmin(admin.ModelAdmin): inlines = [LessonInline] list_display = ('name', 'pub_date') list_filter = ['pub_date'] search_fields = ['name', 'description'] class LessonAdmin(admin.ModelAdmin): list_display = ['title'] class QuestionAdmin(admin.ModelAdmin): list_display = ['lesson', 'question_text'] inlines = [ChoiceInline] class ChoiceAdmin(admin.ModelAdmin): list_display = ['choice_text'] admin.site.register(Course, CourseAdmin) admin.site.register(Lesson, LessonAdmin) admin.site.register(Instructor) admin.site.register(Learner) admin.site.register(Question, QuestionAdmin) admin.site.register(Choice, ChoiceAdmin)
24.930233
73
0.738806
759a8a57a9590ed2963d29e2ad70c9267e4e6b29
99
py
Python
importcrdata/apps.py
JZ1999/crelectoralregister
dd5e314608a8a715ae7c29014b9ff87dab585980
[ "Apache-2.0" ]
null
null
null
importcrdata/apps.py
JZ1999/crelectoralregister
dd5e314608a8a715ae7c29014b9ff87dab585980
[ "Apache-2.0" ]
8
2019-12-04T22:53:01.000Z
2022-02-10T07:54:51.000Z
importcrdata/apps.py
JZ1999/crelectoralregister
dd5e314608a8a715ae7c29014b9ff87dab585980
[ "Apache-2.0" ]
1
2019-06-21T15:09:56.000Z
2019-06-21T15:09:56.000Z
from django.apps import AppConfig class ImportcrdataConfig(AppConfig): name = 'importcrdata'
16.5
36
0.777778
0149487795819c0262e4c74300873349225eb122
481
py
Python
temboo/core/Library/CorpWatch/Relationships/__init__.py
jordanemedlock/psychtruths
52e09033ade9608bd5143129f8a1bfac22d634dd
[ "Apache-2.0" ]
7
2016-03-07T02:07:21.000Z
2022-01-21T02:22:41.000Z
temboo/core/Library/CorpWatch/Relationships/__init__.py
jordanemedlock/psychtruths
52e09033ade9608bd5143129f8a1bfac22d634dd
[ "Apache-2.0" ]
null
null
null
temboo/core/Library/CorpWatch/Relationships/__init__.py
jordanemedlock/psychtruths
52e09033ade9608bd5143129f8a1bfac22d634dd
[ "Apache-2.0" ]
8
2016-06-14T06:01:11.000Z
2020-04-22T09:21:44.000Z
from temboo.Library.CorpWatch.Relationships.CompanyChildren import CompanyChildren, CompanyChildrenInputSet, CompanyChildrenResultSet, CompanyChildrenChoreographyExecution from temboo.Library.CorpWatch.Relationships.CompanyParents import CompanyParents, CompanyParentsInputSet, CompanyParentsResultSet, CompanyParentsChoreographyExecution from temboo.Library.CorpWatch.Relationships.TopParent import TopParent, TopParentInputSet, TopParentResultSet, TopParentChoreographyExecution
120.25
171
0.912682
0fd4bee75e332bf7bc38a260bb4dddf478ca1c4f
3,498
py
Python
filepart/__init__.py
UnknownPlayer78/filepart
0ebb3a4428b1d415185b13be24034f688ac6185b
[ "MIT" ]
1
2020-01-18T14:13:43.000Z
2020-01-18T14:13:43.000Z
filepart/__init__.py
UnknownPlayer78/filepart
0ebb3a4428b1d415185b13be24034f688ac6185b
[ "MIT" ]
null
null
null
filepart/__init__.py
UnknownPlayer78/filepart
0ebb3a4428b1d415185b13be24034f688ac6185b
[ "MIT" ]
null
null
null
import sys, getopt from .__main__ import __version__ from os.path import exists, isfile from .utils import parse_size from .utils import Help from .wizard import Wizard from .split import Splitter from .build import Builder # TODO wizard file not found (check for .part file exists) # -> file.ext -> check for startswith file.ext endswith .part # TODO find solution for part systems # -> file.ext.1.part # -> file.ext.2.part # -> file.ext.3.part # -> file.ext -> file.ext.x.part -> file.ext def main(argv=None): if argv == None: argv = sys.argv[1:] try: opts, args = getopt.getopt(argv, "hvsbp:o:", ["help", "version", "split", "build", "parts=", "output="]) except getopt.GetoptError: print(Help.SHORT) sys.exit(2) if len(opts) > 0: mode = "" file = " ".join(args) if len(args) > 0 else "" parts = "" output = "" for opt, arg in opts: if opt in ("-h", "--help"): print(Help.LONG) sys.exit(0) elif opt in ("-v", "--version"): print(__version__) sys.exit(0) elif opt in ("-s", "--split"): mode = "split" elif opt in ("-b", "--build"): mode = "build" if not file: print(Help.SHORT) print(f"\n\n{__name__}: error: You must provide a file.") sys.exit(2) for opt, arg in opts: if opt in ("-p", "--parts"): parts = arg elif opt in ("-o", "--output"): output = arg if mode == "split": if not parts: print(Help.SHORT) print(f"\n\n{__name__}: error: You must provide the parts.") sys.exit(2) if not exists(file) or not isfile(file): print(f"{__name__}: error: " + file + ": No such file.") sys.exit(2) try: parts = parse_size(parts) except Exception as error: print(f"{__name__}: error: " + str(error)) sys.exit(2) if not output: output = "./" else: if not exists(output) or isfile(output): print(f"{__name__}: error: " + output + " No such directory.") sys.exit(2) if mode == "split": splitter = Splitter( file=file, parts=parts, output=output ) splitter.split() elif mode == "build": builder = Builder( file=file, output=output ) builder.build() elif len(args) < 1: wizard = Wizard() mode = wizard.options["mode"] file = wizard.options["file"] if mode == "split": parts = wizard.options["parts"] output = wizard.options["output"] if mode == "split": splitter = Splitter( file=file, parts=parts, output=output ) splitter.split() elif mode == "build": builder = Builder( file=file, output=output ) builder.build() else: print(Help.SHORT) sys.exit(2)
28.209677
112
0.450543
92ea3966b0f87d0effd8e95d039615f6012482c9
3,058
py
Python
homeassistant/components/sensor/zwave.py
shire210/home-assistant
63cd8bbee6f1b74ae9c6c249ac820119a8a573d8
[ "Apache-2.0" ]
null
null
null
homeassistant/components/sensor/zwave.py
shire210/home-assistant
63cd8bbee6f1b74ae9c6c249ac820119a8a573d8
[ "Apache-2.0" ]
null
null
null
homeassistant/components/sensor/zwave.py
shire210/home-assistant
63cd8bbee6f1b74ae9c6c249ac820119a8a573d8
[ "Apache-2.0" ]
null
null
null
""" Interfaces with Z-Wave sensors. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.zwave/ """ import logging # Because we do not compile openzwave on CI # pylint: disable=import-error from homeassistant.components.sensor import DOMAIN from homeassistant.components import zwave from homeassistant.const import TEMP_CELSIUS, TEMP_FAHRENHEIT from homeassistant.components.zwave import async_setup_platform # noqa # pylint: disable=unused-import _LOGGER = logging.getLogger(__name__) def get_device(node, values, **kwargs): """Create zwave entity device.""" # Generic Device mappings if node.has_command_class(zwave.const.COMMAND_CLASS_SENSOR_MULTILEVEL): return ZWaveMultilevelSensor(values) if node.has_command_class(zwave.const.COMMAND_CLASS_METER) and \ values.primary.type == zwave.const.TYPE_DECIMAL: return ZWaveMultilevelSensor(values) if node.has_command_class(zwave.const.COMMAND_CLASS_ALARM) or \ node.has_command_class(zwave.const.COMMAND_CLASS_SENSOR_ALARM): return ZWaveAlarmSensor(values) return None class ZWaveSensor(zwave.ZWaveDeviceEntity): """Representation of a Z-Wave sensor.""" def __init__(self, values): """Initialize the sensor.""" zwave.ZWaveDeviceEntity.__init__(self, values, DOMAIN) self.update_properties() def update_properties(self): """Callback on data changes for node values.""" self._state = self.values.primary.data self._units = self.values.primary.units @property def force_update(self): """Return force_update.""" return True @property def state(self): """Return the state of the sensor.""" return self._state @property def unit_of_measurement(self): """Return the unit of measurement the value is expressed in.""" return self._units class ZWaveMultilevelSensor(ZWaveSensor): """Representation of a multi level sensor Z-Wave sensor.""" @property def state(self): """Return the state of the sensor.""" if self._units in ('C', 'F'): return round(self._state, 1) elif isinstance(self._state, float): return round(self._state, 2) return self._state @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" if self._units == 'C': return TEMP_CELSIUS elif self._units == 'F': return TEMP_FAHRENHEIT else: return self._units class ZWaveAlarmSensor(ZWaveSensor): """Representation of a Z-Wave sensor that sends Alarm alerts. Examples include certain Multisensors that have motion and vibration capabilities. Z-Wave defines various alarm types such as Smoke, Flood, Burglar, CarbonMonoxide, etc. This wraps these alarms and allows you to use them to trigger things, etc. COMMAND_CLASS_ALARM is what we get here. """ pass
31.204082
103
0.690974
590e630cb10ec47be4d25ae9b8259d01da28e8cc
18,624
py
Python
spidey_simulation/spidey_py/spidey_python/omniverse/robot/articulated_object.py
JasonJZLiu/Spidey-Quadruped
74c1817f997b354bae4fffd2728f2cc94947062c
[ "MIT" ]
5
2021-06-14T03:12:18.000Z
2021-12-23T12:58:56.000Z
spidey_simulation/spidey_py/spidey_python/omniverse/robot/articulated_object.py
JasonJZLiu/Spidey-Quadruped
74c1817f997b354bae4fffd2728f2cc94947062c
[ "MIT" ]
null
null
null
spidey_simulation/spidey_py/spidey_python/omniverse/robot/articulated_object.py
JasonJZLiu/Spidey-Quadruped
74c1817f997b354bae4fffd2728f2cc94947062c
[ "MIT" ]
null
null
null
""" @author Mayank Mittal @email mittalma@ethz.ch @brief Implementation of an articulated object. """ # python import os import numpy as np import scipy.spatial.transform as tf from typing import Optional, List # omniverse from pxr import Usd, UsdGeom, Gf, Semantics import omni.isaac.dynamic_control._dynamic_control as omni_dc # mpulator gym from spidey_python.utils.message import * from spidey_python.utils.errors import * from spidey_python.omniverse.robot.robot_base import RobotBase class ArticulatedObject(RobotBase): """ @brief Implementation of an articulated object. Articulated object differs from a "articulated object" in the sense that these are passive instances in the environment, i.e. the joints are not actuated. However, since their interface resembles that of a articulated object, they derive from the base class `RobotBase`. """ """ Instantiation """ def __init__(self, stage: Usd.Stage, prim_path: str, usd_path: Optional[str] = None, frame_names: List[str] = None, meters_per_unit: Optional[float] = 1.0): """ Defines the variables and constants for the articulated object. :param stage: The USD stage to import articulated object into. :param prim_path: The path for the primitive in the stage. :param usd_path: The path to the USD file to load. :param frame_names: A list of frame names whose pose to store. :param meters_per_unit: The units of conversion from simulator's scale to meters. """ super().__init__() # Check that input is correct assert os.path.isabs(prim_path) assert isinstance(meters_per_unit, float) # Copy args to internal variables self._prim_path = prim_path self._meters_per_unit = meters_per_unit self._usd_path = usd_path # Check if any frames specified whose pose to store if frame_names is None: self._frame_handle_names = list() else: self._frame_handle_names = frame_names # Persistent Scene-graph related in Universal Scene Description self._stage = stage self._prim = None # Handles to various ov-kit plugins self._dc_handle = None # Handles related to articulated object self._articulation_handle = None # Count of number of DOF in object self._num_dofs = 0 # Store DOF properties self._dof_properties = { "lower_limits": np.array([]), "upper_limits": np.array([]), "max_velocity": np.array([]), "max_efforts": np.array([]), } # Store frame handles and poses self._frames_info = dict() for frame_name in self._frame_handle_names: self._frames_info[frame_name] = { 'handle': None, 'pos': np.empty(3), 'quat': np.empty(4) } # Default state of the articulated object self._default_state = { "pos": np.array([]), "vel": np.array([]) } # Dynamics information of the articulated object self._state = { # Generalized coordinates "pos": np.array([]), # Generalized velocities "vel": np.array([]) } def __del__(self): """ Cleanup after exiting """ pass def __str__(self) -> str: """ :return: A string containing information about the instance's state. """ # set print options for numpy np.set_printoptions(precision=4) # print message msg = f"Articulated Object @ \'{self._prim_path}\'\n" \ " State:\n" \ f" q: {self.q} \n" \ f" u: {self.u} \n" return msg """ Properties """ @property def prim(self) -> Usd.Prim: """ :return: The USD primitive instance corresponding to the articulated object. """ return self._prim @property def prim_path(self) -> str: """ :return: The path to the prim the stage. """ return self._prim_path @property def dof_properties(self) -> dict: """ :return: A dictionary containing the DOF properties such as joint limits. """ return self._dof_properties @property def q(self) -> np.ndarray: """ :return: The generalized coordinates of the articulated object. """ return self._state["pos"] @property def u(self) -> np.ndarray: """ :return: The generalized velocities of the articulated object. """ return self._state["vel"] @property def frames_info(self) -> dict: """ :return: A nested dictionary with key as the frame names and values as the information about the frame such as position and orientation in world frame. """ return self._frames_info @property def default_state(self) -> dict: """ :return: The default state of the articulated object. """ return self._default_state @property def state(self) -> dict: """ :return: The current state of the articulated object. """ return self._state """ Helpers """ def toggle_visibility(self, visible: bool): """ Toggle visibility of the articulated object prim in the scene. :param visible: Flag to whether make prim visible or invisible. """ # get imageable object imageable = UsdGeom.Imageable(self._prim) # toggle visibility if visible: imageable.MakeVisible() else: imageable.MakeInvisible() def set_semantic_label(self, label: str): """ Set the semantic label corresponding to the prim. :param label: Name of the semantic label. """ # create semantics api if not exists if not self._prim.HasAPI(Semantics.SemanticsAPI): sem = Semantics.SemanticsAPI.Apply(self._prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() else: sem = Semantics.SemanticsAPI.Get(self._prim, "Semantics") # set attributes sem.GetSemanticTypeAttr().Set("class") sem.GetSemanticDataAttr().Set(label) def set_prim_pose(self, pos: np.ndarray, quat: Optional[np.ndarray] = None): """ Set location of the root of the object in the stage. :param pos: (x, y, z) cartesian coordinates for location of root of the articulated object in the world frame. :param quat: (x, y, z, w) quaternion coordinates of orientation of root of the articulated object in the world frame. Default orientation is (0, 0, 0, 1), i.e. identity w.r.t. world. """ if self._prim is None: print_warn(f"Prim not found at \'{self._prim_path}\'. Please ensure that the USD stage has the prim.") return # convert to datatypes accepted by simulator if not isinstance(pos, Gf.Vec3d): pos = pos / self._meters_per_unit pos = Gf.Vec3d(*pos) # if orientation not provided, default to identity if quat is not None: rotm = tf.Rotation.from_quat(quat).as_matrix() rotm = Gf.Matrix3d(*rotm.ravel()) else: rotm = Gf.Matrix3d().SetIdentity() # set attribute properties for the transform on the primitive properties = self._prim.GetPropertyNames() if "xformOp:transform" in properties: transform_attr = self._prim.GetAttribute("xformOp:transform") matrix = self._prim.GetAttribute("xformOp:transform").Get() matrix.SetTranslateOnly(pos).SetRotateOnly(rotm) transform_attr.Set(matrix) else: xform = UsdGeom.Xformable(self._prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") xform_op.Set(Gf.Matrix4d().SetTranslate(pos).SetRotate(rotm)) def set_state(self, q: np.ndarray, u: np.ndarray, **kwargs): """ Set the dof state of the articulated object. :param q: Generalized coordinates for the object. :param u: Generalized velocities for the object. """ # convert input to numpy array (sanity) q = np.asarray(q) u = np.asarray(u) # check input is of right shape assert q.shape == (self._num_dofs,) assert u.shape == (self._num_dofs,) # assign # for arm dof_states = self._dc_handle.get_articulation_dof_states(self._articulation_handle, omni_dc.STATE_ALL) for index in range(self._num_dofs): # set initial joint stat dof_states["pos"][index] = q[index] dof_states["vel"][index] = u[index] self._dc_handle.set_articulation_dof_states(self._articulation_handle, dof_states, omni_dc.STATE_ALL) """ Operations """ def create(self): """ Loads the articulated object into the Omniverse stage. @note This function is kept separate in case one wants to create an instance of the class without launching the simulator. Or, if one doesn't want to create a new primitive programmatically but refer to an exisiting one in the current USD stage. """ # Extract USD path from configuration usd_path = self._usd_path # check that path exists if not os.path.exists(usd_path): msg = f"File not found: {usd_path}" print_error(msg) raise FileNotFoundError(msg) else: print_info(f"Loading from: {usd_path}.") # define persistent scene graph geometry for the articulated object self._prim = self._stage.DefinePrim(self._prim_path, "Xform") # add reference to the USD in the current stage self._prim.GetReferences().AddReference(usd_path) # check that the path to articulation in scene-graph is correct assert self._prim_path == self._prim.GetPath().pathString def setup(self, dc: omni_dc.DynamicControl): """ Registers the assets and configures internal variables of the articulated object. :param dc: Handle to dynamic control plugin instance. """ # get prim if it doesn't exist yet # this is to deal with the scenario when the stage already has the prim so user does not create one. if self._prim is None: self._prim = self._stage.GetPrimAtPath(self._prim_path) # check that prim exists. (GetPrimPath returns invalid prim if one doesn't exist) if not self._prim.IsValid(): msg = f"Prim not found at \'{self._prim_path}\'. Please ensure that the USD stage has the prim." print_error(msg) raise OmniverseError(msg) # initialize dynamic control handle self._dc_handle = dc # initialize handle to the articulation for articulated object through dynamic control toolbox self._articulation_handle = self._dc_handle.get_articulation(self._prim_path) if self._articulation_handle == omni_dc.INVALID_HANDLE: raise InvalidHandleError(f"Failed to obtain articulated object at \'{self._prim_path}\'") # get number of degrees of freedom of articulated object self._num_dofs = self._dc_handle.get_articulation_dof_count(self._articulation_handle) # setup corresponding frame handle self._setup_handles() # setup links of the robot self._setup_links() # setup controls for the robot self._setup_control() # record initial state of the object in the scene as default state dof_states = self._dc_handle.get_articulation_dof_states(self._articulation_handle, omni_dc.STATE_ALL) self._default_state["pos"] = np.asarray(dof_states["pos"]) self._default_state["vel"] = np.zeros_like(self._default_state["pos"]) # root spawned position self.set_prim_pose(pos=np.array([0.0, 0.0, 0.0]), quat=None) # set default initial state of the articulated object self.set_state(q=self._default_state["pos"], u=self._default_state["vel"]) # update the internal buffers self.update() # print status print_notify(f"Setup complete for articulated object \'{self._prim_path}\'.") def advance(self): """Apply input command to the articulated object. @note Passive object in the scene with no joint commands. """ pass def update(self): """ Updates the buffers for dynamics state of the articulated object. """ # get frame poses for frame_name in self._frames_info: frame_handle = self._frames_info[frame_name]['handle'] # pose of the base of the robot frame_pose = self._dc_handle.get_rigid_body_pose(frame_handle) pos = np.array([frame_pose.p.x, frame_pose.p.y, frame_pose.p.z]) quat = np.array([frame_pose.r.x, frame_pose.r.y, frame_pose.r.z, frame_pose.r.w]) # convert from simulator's units to meters pos = pos * self._meters_per_unit # store into the dictionary self._frames_info[frame_name]['pos'] = pos self._frames_info[frame_name]['quat'] = quat # fill joint state of the object dof_states = self._dc_handle.get_articulation_dof_states(self._articulation_handle, omni_dc.STATE_ALL) self._default_state["pos"] = np.asarray(dof_states["pos"]) self._default_state["vel"] = np.asarray(dof_states["vel"]) def display(self): """ Display the configuration of the articulated object. """ print(f"Articulation handle: {self._articulation_handle}") # Print information about kinematic chain root_link_index = self._dc_handle.get_articulation_root_body(self._articulation_handle) print("--- Hierarchy:\n" f"{self._convert_kinematic_hierarchy_to_string(root_link_index)}") # Information about the body states of the articulated object body_states = self._dc_handle.get_articulation_body_states(self._articulation_handle, omni_dc.STATE_ALL) print_info("--- Body states:\n" f"{body_states}") # Information about the DOF states of the articulated object. dof_states = self._dc_handle.get_articulation_dof_states(self._articulation_handle, omni_dc.STATE_ALL) print_info("--- DOF states:\n" f"{dof_states}") # Information about the DOF properties of the articulated object. dof_props = self._dc_handle.get_articulation_dof_properties(self._articulation_handle) print_info("--- DOF properties:\n" "[type] [has-limits] [lower] [upper] [drive-mode] [max-vel] [max-effort] [stiffness] [damping]\n" f"{dof_props}") """ Internals """ def _setup_handles(self): """ Configures the handles of the frames. """ for frame_name in self._frame_handle_names: # get frame handle frame_handle = self._dc_handle.find_articulation_body(self._articulation_handle, frame_name) # check handles are valid if frame_handle == omni_dc.INVALID_HANDLE: msg = f"*** Failed to load handle at \'{frame_name}\'" print_error(msg) raise InvalidHandleError(msg) # store information into information dictionary self._frames_info[frame_name]['handle'] = frame_handle def _setup_links(self): """ Configures the properties of the links in the object. """ pass def _setup_control(self): """ Configures the controllers for the robot system. Since passive system, we set the DOF type to None for all joints. """ # get joint poperties dof_props = self._dc_handle.get_articulation_dof_properties(self._articulation_handle) # store essential dof properties internally self._dof_properties["lower_limits"] = np.asarray(dof_props["lower"]) self._dof_properties["upper_limits"] = np.asarray(dof_props["upper"]) self._dof_properties["max_velocity"] = np.asarray(dof_props["maxVelocity"]) self._dof_properties["max_effort"] = np.asarray(dof_props["maxEffort"]) # joints: set control type based on specification for index in range(self._num_dofs): # set drive mode dof_props["driveMode"][index] = omni_dc.DRIVE_NONE dof_props["stiffness"][index] = 0.0 dof_props["damping"][index] = 0.0 # set dof properties self._dc_handle.set_articulation_dof_properties(self._articulation_handle, dof_props) def _convert_kinematic_hierarchy_to_string(self, body_index, indent_level=0) -> str: """ Reads the articulation handle and converts kinematic tree into a string. :param body_index: Index of the body to start iteration with. :param indent_level: Indentation level in the converted message :return: A string message containing the kinematic tree. """ # define current indentation indent = "|" + "-" * indent_level # get name of the body body_name = self._dc_handle.get_rigid_body_name(body_index) # add body name to string str_output = f"{indent}Body: {body_name}\n" # iterate over children of the body for i in range(self._dc_handle.get_rigid_body_child_joint_count(body_index)): # get joint name joint = self._dc_handle.get_rigid_body_child_joint(body_index, i) joint_name = self._dc_handle.get_joint_name(joint) # get child link name child = self._dc_handle.get_joint_child_body(joint) child_name = self._dc_handle.get_rigid_body_name(child) # add information to string output str_output += f"{indent}>>Joint: {joint_name} -> {child_name}\n" # iterate recrusively for depth-first-search str_output += self._convert_kinematic_hierarchy_to_string(child, indent_level + 4) # return result return str_output # EOF
40.311688
125
0.628329
d64ae0a62a7cf4f7f2c63334793249f295a4af74
2,476
py
Python
proj/archs/cluster/net5g_two_head.py
zqma/IIC
9d4e30b51535c6ca381389d9c22ce45be4d11883
[ "MIT" ]
null
null
null
proj/archs/cluster/net5g_two_head.py
zqma/IIC
9d4e30b51535c6ca381389d9c22ce45be4d11883
[ "MIT" ]
null
null
null
proj/archs/cluster/net5g_two_head.py
zqma/IIC
9d4e30b51535c6ca381389d9c22ce45be4d11883
[ "MIT" ]
null
null
null
import torch.nn as nn from .net5g import ClusterNet5gTrunk from .residual import BasicBlock, ResNet # resnet34 and full channels __all__ = ["ClusterNet5gTwoHead"] class ClusterNet5gTwoHeadHead(nn.Module): def __init__(self, config, output_k, semisup=False): super(ClusterNet5gTwoHeadHead, self).__init__() self.batchnorm_track = config.batchnorm_track self.semisup = semisup if not semisup: self.num_sub_heads = config.num_sub_heads self.heads = nn.ModuleList([nn.Sequential( nn.Linear(512 * BasicBlock.expansion, output_k), nn.Softmax(dim=1)) for _ in xrange(self.num_sub_heads)]) else: self.head = nn.Linear(512 * BasicBlock.expansion, output_k) def forward(self, x, kmeans_use_features=False): if not self.semisup: results = [] for i in xrange(self.num_sub_heads): if kmeans_use_features: results.append(x) # duplicates else: results.append(self.heads[i](x)) return results else: return self.head(x) class ClusterNet5gTwoHead(ResNet): def __init__(self, config): # no saving of configs super(ClusterNet5gTwoHead, self).__init__() self.batchnorm_track = config.batchnorm_track self.trunk = ClusterNet5gTrunk(config) self.head_A = ClusterNet5gTwoHeadHead(config, output_k=config.output_k_A) semisup = (hasattr(config, "semisup") and config.semisup) print("semisup: %s" % semisup) self.head_B = ClusterNet5gTwoHeadHead(config, output_k=config.output_k_B, semisup=semisup) self._initialize_weights() def forward(self, x, head="B", kmeans_use_features=False, trunk_features=False, penultimate_features=False): # default is "B" for use by eval proj # training script switches between A and B x = self.trunk(x, penultimate_features=penultimate_features) if trunk_features: # for semisup return x # returns list or single if head == "A": x = self.head_A(x, kmeans_use_features=kmeans_use_features) elif head == "B": x = self.head_B(x, kmeans_use_features=kmeans_use_features) else: assert (False) return x
30.195122
81
0.607835
4199be6b5d4205a76b1333d1a62ff4364bad69a4
9,759
py
Python
spacegraphcats/search/search_utils.py
rhysnewell/spacegraphcats
e4d8b29171af0d1c8507066021be3b6a50c7802b
[ "BSD-3-Clause" ]
null
null
null
spacegraphcats/search/search_utils.py
rhysnewell/spacegraphcats
e4d8b29171af0d1c8507066021be3b6a50c7802b
[ "BSD-3-Clause" ]
null
null
null
spacegraphcats/search/search_utils.py
rhysnewell/spacegraphcats
e4d8b29171af0d1c8507066021be3b6a50c7802b
[ "BSD-3-Clause" ]
null
null
null
import collections import csv import os import sqlite3 import numpy from screed.screedRecord import Record from screed.utils import to_str from sourmash import MinHash from spacegraphcats.utils.bgzf.bgzf import BgzfReader from . import MPHF_KmerIndex def sqlite_get_max_offset(cursor): cursor.execute("SELECT max(sequences.offset) FROM sequences") (last_offset,) = next(cursor) return last_offset def sqlite_get_offsets(cursor, cdbg_ids): seen_offsets = set() seen_labels = set() cursor.execute("DROP TABLE IF EXISTS cdbg_query") cursor.execute("CREATE TEMPORARY TABLE cdbg_query (cdbg_id INTEGER PRIMARY KEY);") for label in cdbg_ids: cursor.execute("INSERT INTO cdbg_query (cdbg_id) VALUES (?)", (label,)) cursor.execute( "SELECT DISTINCT sequences.offset,sequences.cdbg_id FROM sequences WHERE cdbg_id in (SELECT cdbg_id FROM cdbg_query) ORDER BY offset" ) for n, (offset, label) in enumerate(cursor): if offset not in seen_offsets: yield offset seen_offsets.add(offset) seen_labels.add(label) seen_labels -= cdbg_ids assert not seen_labels # should have gotten ALL the labels class GrabBGZF_Random(object): def __init__(self, filename): self.reader = BgzfReader(filename, "rt") ch = self.reader.read(1) if ch == ">": iter_fn = my_fasta_iter elif ch == "@": iter_fn = my_fastq_iter else: raise Exception("unknown start chr {}".format(ch)) self.iter_fn = iter_fn def get_sequence_at(self, pos): self.reader.seek(pos) record = next(self.iter_fn(self.reader)) return record def iterate_bgzf(reader): ch = reader.read(1) if ch == ">": iter_fn = my_fasta_iter elif ch == "@": iter_fn = my_fastq_iter else: raise Exception("unknown start chr {}".format(ch)) reader.seek(0) for record, pos in iter_fn(reader): yield record, pos def my_fasta_iter(handle, parse_description=False, line=None): """ Iterator over the given FASTA file handle, returning records. handle is a handle to a file opened for reading """ last_start = handle.tell() if line is None: line = handle.readline() while line: data = {} line = to_str(line.strip()) if not line.startswith(">"): raise IOError( "Bad FASTA format: no '>' at beginning of line: {}".format(line) ) if parse_description: # Try to grab the name and optional description try: data["name"], data["description"] = line[1:].split(" ", 1) except ValueError: # No optional description data["name"] = line[1:] data["description"] = "" else: data["name"] = line[1:] data["description"] = "" data["name"] = data["name"].strip() data["description"] = data["description"].strip() # Collect sequence lines into a list sequenceList = [] pos = handle.tell() line = to_str(handle.readline()) while line and not line.startswith(">"): sequenceList.append(line.strip()) pos = handle.tell() line = to_str(handle.readline()) data["sequence"] = "".join(sequenceList) yield Record(**data), last_start last_start = pos def my_fastq_iter(handle, line=None, parse_description=False): """ Iterator over the given FASTQ file handle returning records. handle is a handle to a file opened for reading CTB: this relies on each FASTQ record being exactly 4 lines. """ while 1: pos = handle.tell() line = handle.readline() if not line: return assert line.startswith("@"), line name = to_str(line.strip())[1:] line = handle.readline() sequence = to_str(line.strip()) line = handle.readline() plus = to_str(line.strip()) assert plus == "+" line = handle.readline() quality = to_str(line.strip()) yield Record(name, sequence, quality=quality), pos def get_reads_by_cdbg(sqlite_filename, reads_filename, cdbg_ids): """ Given a list of cDBG IDs, retrieve the actual sequences corresponding to them by using offsets into a BGZF file. """ # connect to sqlite db db = sqlite3.connect(sqlite_filename) cursor = db.cursor() # open readsfile for random access reads_grabber = GrabBGZF_Random(reads_filename) ## get last offset in file as measure of progress last_offset = sqlite_get_max_offset(cursor) # pull out the offsets of all sequences with matches in cdbg_ids. for offset in sqlite_get_offsets(cursor, cdbg_ids): offset_f = offset / last_offset record, xx = reads_grabber.get_sequence_at(offset) assert xx == offset yield record, offset_f def get_contigs_by_cdbg_sqlite(db, cdbg_ids): """ Given a list of cDBG IDs, retrieve the actual contig sequences corresponding to them from a sqlite database created by sort_bcalm_unitigs. """ cursor = db.cursor() for cdbg_id in cdbg_ids: cdbg_id = int(cdbg_id) cursor.execute("SELECT sequence FROM sequences WHERE id=?", (cdbg_id,)) results = cursor.fetchall() assert len(results) == 1 (seq,) = results[0] yield Record(str(cdbg_id), seq) def contigs_iter_sqlite(contigs_db): """ Yield all the sequences in the contigs database. """ cursor = contigs_db.cursor() cursor.execute("SELECT id, sequence FROM sequences") for ident, sequence in cursor: yield Record(str(ident), sequence) ### MPHF stuff def load_kmer_index(catlas_prefix): "Load kmer index created by search.contigs_by_kmer." return MPHF_KmerIndex.from_catlas_directory(catlas_prefix) def load_cdbg_size_info(catlas_prefix, min_abund=0.0): filename = os.path.join(catlas_prefix, "contigs.info.csv") with open(filename, "rt") as fp: cdbg_kmer_sizes = {} cdbg_weighted_kmer_sizes = {} r = csv.DictReader(fp) for row in r: contig_id = int(row["contig_id"]) n_kmers = int(row["n_kmers"]) mean_abund = float(row["mean_abund"]) if not min_abund or mean_abund >= min_abund: cdbg_kmer_sizes[contig_id] = n_kmers cdbg_weighted_kmer_sizes[contig_id] = mean_abund * n_kmers return cdbg_kmer_sizes, cdbg_weighted_kmer_sizes def decorate_catlas_with_kmer_sizes( layer1_to_cdbg, dag, dag_levels, cdbg_kmer_sizes, cdbg_weighted_kmer_sizes ): x = [] for (node_id, level) in dag_levels.items(): x.append((level, node_id)) x.sort() node_kmer_sizes = {} node_weighted_kmer_sizes = {} for level, node_id in x: if level == 1: # aggregate across cDBG nodes total_kmers = 0 total_weighted_kmers = 0 for cdbg_node in layer1_to_cdbg.get(node_id): total_kmers += cdbg_kmer_sizes.get(cdbg_node, 0) total_weighted_kmers += cdbg_weighted_kmer_sizes.get(cdbg_node, 0) node_kmer_sizes[node_id] = total_kmers node_weighted_kmer_sizes[node_id] = total_weighted_kmers else: # aggregate across children sub_size = 0 sub_weighted_size = 0 for child_id in dag[node_id]: sub_size += node_kmer_sizes[child_id] sub_weighted_size += node_weighted_kmer_sizes[child_id] node_kmer_sizes[node_id] = sub_size node_weighted_kmer_sizes[node_id] = sub_weighted_size return node_kmer_sizes, node_weighted_kmer_sizes def output_response_curve(outname, match_counts, kmer_idx, layer1_to_cdbg): curve = [] # track total containment total = 0 # walk over all layer1 nodes for node_id, cdbg_nodes in sorted(layer1_to_cdbg.items()): n_matches = 0 n_kmers = 0 # aggregate counts across cDBG nodes under this layer1 node. for cdbg_node in cdbg_nodes: n_matches += match_counts.get(cdbg_node, 0) n_kmers += kmer_idx.get_cdbg_size(cdbg_node) # do we keep this layer1 node, i.e. does it have positive containment? if n_matches: n_cont = n_matches n_oh = n_kmers - n_matches total += n_cont curve.append((n_cont, n_oh, node_id)) # sort by absolute containment curve.sort(reverse=True) # track total containment etc sofar = 0 total_oh = 0 total_cont = 0 # CTB: remove redundant sum_cont fields # CTB: switch to CSV output # CTB: ask Mike what he wants here :) with open(outname, "wt") as fp: fp.write( "sum_cont relative_cont relative_overhead sum_cont2 sum_oh catlas_id\n" ) # only output ~200 points sampling_rate = max(int(len(curve) / 200), 1) # do the output thing for pos, (n_cont, n_oh, node_id) in enumerate(curve): sofar += n_cont total_oh += n_oh total_cont += n_cont # output first and last points, as well as at sampling rate. if pos % sampling_rate == 0 or pos == 0 or pos + 1 == len(curve): fp.write( "{} {} {} {} {} {}\n".format( sofar, total_cont / total, total_oh / total, n_cont, n_oh, node_id, ) )
29.572727
141
0.613895
22ee5b16e3a779bd422a65e15e655aeed02b07b3
266
py
Python
src/wechaty_plugin_contrib/__init__.py
fish-ball/python-wechaty-plugin-contrib
ae2226300d87f1d13b52215a11a73618e0567d72
[ "Apache-2.0" ]
null
null
null
src/wechaty_plugin_contrib/__init__.py
fish-ball/python-wechaty-plugin-contrib
ae2226300d87f1d13b52215a11a73618e0567d72
[ "Apache-2.0" ]
null
null
null
src/wechaty_plugin_contrib/__init__.py
fish-ball/python-wechaty-plugin-contrib
ae2226300d87f1d13b52215a11a73618e0567d72
[ "Apache-2.0" ]
null
null
null
"""import all plugins""" from wechaty_plugin_contrib.ding_dong_plugin import DingDongPlugin from wechaty_plugin_contrib.daily_plugin import ( DailyPluginOptions, DailyPlugin ) __all__ = [ 'DingDongPlugin', 'DailyPluginOptions', 'DailyPlugin' ]
19
66
0.755639
7c942090eb7f092b1b3ef8781dcf5021f9fbc35e
3,003
py
Python
aegea/flow_logs.py
jshoe/aegea
dfcb46672a703e831961dc5dd1c6f36488374555
[ "Apache-2.0" ]
null
null
null
aegea/flow_logs.py
jshoe/aegea
dfcb46672a703e831961dc5dd1c6f36488374555
[ "Apache-2.0" ]
null
null
null
aegea/flow_logs.py
jshoe/aegea
dfcb46672a703e831961dc5dd1c6f36488374555
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import, division, print_function, unicode_literals import os, sys, argparse from botocore.exceptions import ClientError from .ls import register_parser, register_listing_parser, grep, add_time_bound_args from .util import Timestamp, paginate, hashabledict from .util.printing import format_table, page_output, get_field, get_cell, tabulate from .util.exceptions import AegeaException from .util.aws import ARN, resources, clients, ensure_iam_role, ensure_vpc, expect_error_codes def flow_logs(args): flow_logs_parser.print_help() flow_logs_parser = register_parser(flow_logs, help="Manage EC2 VPC flow logs", description=__doc__, formatter_class=argparse.RawTextHelpFormatter) def create(args): if args.resource and args.resource.startswith("vpc-"): resource_type = "VPC" elif args.resource and args.resource.startswith("subnet-"): resource_type = "Subnet" elif args.resource and args.resource.startswith("eni-"): resource_type = "NetworkInterface" elif args.resource: raise AegeaException('Unrecognized resource type: "{}"'.format(args.resource)) else: args.resource = ensure_vpc().id resource_type = "VPC" flow_logs_iam_role = ensure_iam_role(__name__, policies=["service-role/AmazonAPIGatewayPushToCloudWatchLogs"], trust=["vpc-flow-logs"]) try: return clients.ec2.create_flow_logs(ResourceIds=[args.resource], ResourceType=resource_type, TrafficType=args.traffic_type, LogGroupName=__name__, DeliverLogsPermissionArn=flow_logs_iam_role.arn) except ClientError as e: expect_error_codes(e, "FlowLogAlreadyExists") return dict(FlowLogAlreadyExists=True) parser = register_parser(create, parent=flow_logs_parser, help="Create VPC flow logs") parser.add_argument("--resource") parser.add_argument("--traffic_type", choices=["ACCEPT", "REJECT", "ALL"], default="ALL") def ls(args): describe_flow_logs_args = dict(Filters=[dict(Name="resource-id", Values=[args.resource])]) if args.resource else {} page_output(tabulate(clients.ec2.describe_flow_logs(**describe_flow_logs_args)["FlowLogs"], args)) parser = register_listing_parser(ls, parent=flow_logs_parser, help="List VPC flow logs") parser.add_argument("--resource") def get(args): args.log_group, args.pattern = __name__, None args.log_stream = "-".join([args.network_interface, args.traffic_type]) if args.network_interface else None grep(args) parser = register_parser(get, parent=flow_logs_parser, help="Get VPC flow logs") parser.add_argument("--network-interface") parser.add_argument("--traffic_type", choices=["ACCEPT", "REJECT", "ALL"], default="ALL") add_time_bound_args(parser)
47.666667
119
0.689977
6b32c6147c7208216630b5da677a4bb72525200c
4,697
py
Python
examples/working_with_files/concatenate_files.py
LiamBindle/gcpy
64ac8f236ecc11da88d874c558463dd5f8cc6503
[ "NCSA", "Apache-2.0", "MIT" ]
1
2020-02-20T23:41:26.000Z
2020-02-20T23:41:26.000Z
examples/working_with_files/concatenate_files.py
LiamBindle/gcpy
64ac8f236ecc11da88d874c558463dd5f8cc6503
[ "NCSA", "Apache-2.0", "MIT" ]
null
null
null
examples/working_with_files/concatenate_files.py
LiamBindle/gcpy
64ac8f236ecc11da88d874c558463dd5f8cc6503
[ "NCSA", "Apache-2.0", "MIT" ]
null
null
null
#!/usr/bin/env python ''' This Python script concatenates several individual netCDF files into a single netCDF file using xarray. Calling sequence: ./concatentate_files.py Remarks: If you have several individual files with one variable per file, you should consider concatenating them into a single file. This is often more efficient, as opening each netCDF file incurs computational overhead. It is usually faster to read data from a file with multiple variables than to having to open several files with one variable each. ''' # Imports from gcpy import core import os import numpy as np import xarray as xr from xarray.coding.variables import SerializationWarning import warnings # Suppress harmless run-time warnings (mostly about underflow or NaNs) warnings.filterwarnings("ignore", category=RuntimeWarning) warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=SerializationWarning) def find_files_in_dir(path, substrs): ''' Returns a list of all files in a directory that match one or more substrings. Args: ----- path : str Path to the directory in which to search for files. substrs : list of str List of substrings used in the search for files. Returns: -------- file_list : list of str List of files in the directory (specified by path) that match all substrings (specified in substrs). ''' # Initialize file_list = [] # Walk through the given data directory. Then for each file found, # add it to file_list if it matches text in search_list. for root, directory, files in os.walk(path): for f in files: for s in substrs: if s in f: file_list.append(os.path.join(root, f)) # Return an alphabetically sorted list of files file_list.sort() return file_list def replace_nans_with_zeroes(ds, verbose=True): ''' Replaces NaN values with zeroes for each variable within an an xarray Dataset. Args: ---- ds : xarray Dataset The input dataset, containing one or more data variables. Keyword Args (optional): ------------------------ verbose : boolean Set this switch to print out the variable name, as well as the min and max of the variable. This will illustrate the replacement of NaNs with zeroes. ''' # Keep all netCDF attributes with xr.set_options(keep_attrs=True): # Loop over all variables in the Dataset for v in ds.data_vars.keys(): # OPTIONAL STEP: # Xarray will try convert missing values to NaN's, # so you may need to replace these with zeroes. # # If your netCDF files represent e.g. emissions, # or other physical quantities, you may want to # replace these with zeros, so that NaNs won't # get read into atmospheric models, etc. # # NOTE: ds[v].values converts to a numpy ndarray, # so that you can use numpy functions. ds[v].where(np.isnan(ds[v].values), other=0.0, drop=False) # OPTIONAL: Print min & max for each variable # Comment out if you wish if verbose: print('{} : {} {}'.format( v, np.min(ds[v].values), np.max(ds[v].values))) # Return the modified Datast return ds def main(): ''' Main program. ''' # File path containing data files # (YOU CAN EDIT THIS) path_to_dir = '/path/to/my/netcdf/files/' # List of search strings that each file must contain # (YOU CAN EDIT THIS) substrs = ['SpeciesConc'] # Get a list of variables that GCPy should not read. # These are mostly variables introduced into GCHP with the MAPL v1.0.0 # update. These variables contain either repeated or non-standard # dimensions that can cause problems in xarray when combining datasets. skip_vars = core.skip_these_vars() # Look for all the netCDF files in the path file_list = find_files_in_dir(path_to_dir, substrs) ds = xr.open_mfdataset(file_list, drop_variables=skip_vars) # Replace NaN values with zeroes ds = replace_nans_with_zeroes(ds, verbose=True) # Specify the path and filename for the concatenated data # (YOU CAN EDIT THIS) outdir = '/path/to/my/output/file' outfile = os.path.join(outdir, 'my_concatenated_output_file.nc') # Write concatenated data to a netCDF file ds.to_netcdf(outfile) if __name__ == "__main__": main()
30.699346
75
0.648073
067b11b2c7d2dcadeded241ea22612126a0a8b65
274
py
Python
config.py
banan039pl/flask_leaderboard
832c7039f0697c5004a35b67d01957c718e5d4ef
[ "MIT" ]
5
2020-06-15T02:56:39.000Z
2021-12-28T19:18:18.000Z
config.py
banan039pl/flask_leaderboard
832c7039f0697c5004a35b67d01957c718e5d4ef
[ "MIT" ]
2
2019-12-01T15:50:05.000Z
2021-12-17T07:54:23.000Z
config.py
banan039pl/flask_leaderboard
832c7039f0697c5004a35b67d01957c718e5d4ef
[ "MIT" ]
9
2020-01-19T11:21:33.000Z
2022-02-22T06:28:52.000Z
import os basedir = os.path.abspath(os.path.dirname(__file__)) print(basedir) class Config(object): # ... SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'app.db') SQLALCHEMY_TRACK_MODIFICATIONS = False
30.444444
65
0.693431
42b1dcf864839aee4d3bd7f0d8eb1e786f00123f
12,192
py
Python
tensorlayer/layers/normalization.py
lllcho/tensorlayer
87591b4945a6a67dfb4ea797a575efae997fd9d2
[ "Apache-2.0" ]
null
null
null
tensorlayer/layers/normalization.py
lllcho/tensorlayer
87591b4945a6a67dfb4ea797a575efae997fd9d2
[ "Apache-2.0" ]
null
null
null
tensorlayer/layers/normalization.py
lllcho/tensorlayer
87591b4945a6a67dfb4ea797a575efae997fd9d2
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from .core import * from .. import _logging as logging import tensorflow as tf __all__ = [ 'LocalResponseNormLayer', 'BatchNormLayer', 'InstanceNormLayer', 'LayerNormLayer', ] class LocalResponseNormLayer(Layer): """The :class:`LocalResponseNormLayer` layer is for Local Response Normalization. See ``tf.nn.local_response_normalization`` or ``tf.nn.lrn`` for new TF version. The 4-D input tensor is a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted square-sum of inputs within depth_radius. Parameters ----------- layer : :class:`Layer` The previous layer with a 4D output shape. depth_radius : int Depth radius. 0-D. Half-width of the 1-D normalization window. bias : float An offset which is usually positive and shall avoid dividing by 0. alpha : float A scale factor which is usually positive. beta : float An exponent. name : str A unique layer name. """ def __init__( self, prev_layer, depth_radius=None, bias=None, alpha=None, beta=None, name='lrn_layer', ): Layer.__init__(self, prev_layer=prev_layer, name=name) self.inputs = prev_layer.outputs logging.info("LocalResponseNormLayer %s: depth_radius: %s, bias: %s, alpha: %s, beta: %s" % (self.name, str(depth_radius), str(bias), str(alpha), str(beta))) with tf.variable_scope(name): self.outputs = tf.nn.lrn(self.inputs, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta) # self.all_layers = list(layer.all_layers) # self.all_params = list(layer.all_params) # self.all_drop = dict(layer.all_drop) self.all_layers.append(self.outputs) class BatchNormLayer(Layer): """ The :class:`BatchNormLayer` is a batch normalization layer for both fully-connected and convolution outputs. See ``tf.nn.batch_normalization`` and ``tf.nn.moments``. Parameters ---------- layer : :class:`Layer` The previous layer. decay : float A decay factor for `ExponentialMovingAverage`. Suggest to use a large value for large dataset. epsilon : float Eplison. act : activation function The activation function of this layer. is_train : boolean Is being used for training or inference. beta_init : initializer or None The initializer for initializing beta, if None, skip beta. Usually you should not skip beta unless you know what happened. gamma_init : initializer or None The initializer for initializing gamma, if None, skip gamma. When the batch normalization layer is use instead of 'biases', or the next layer is linear, this can be disabled since the scaling can be done by the next layer. see `Inception-ResNet-v2 <https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py>`__ dtype : TensorFlow dtype tf.float32 (default) or tf.float16. name : str A unique layer name. References ---------- - `Source <https://github.com/ry/tensorflow-resnet/blob/master/resnet.py>`__ - `stackoverflow <http://stackoverflow.com/questions/38312668/how-does-one-do-inference-with-batch-normalization-with-tensor-flow>`__ """ def __init__( self, prev_layer, decay=0.9, epsilon=0.00001, act=tf.identity, is_train=False, beta_init=tf.zeros_initializer, gamma_init=tf.random_normal_initializer(mean=1.0, stddev=0.002), name='batchnorm_layer', ): Layer.__init__(self, prev_layer=prev_layer, name=name) self.inputs = prev_layer.outputs logging.info("BatchNormLayer %s: decay:%f epsilon:%f act:%s is_train:%s" % (self.name, decay, epsilon, act.__name__, is_train)) x_shape = self.inputs.get_shape() params_shape = x_shape[-1:] from tensorflow.python.training import moving_averages with tf.variable_scope(name): axis = list(range(len(x_shape) - 1)) # 1. beta, gamma variables = [] if beta_init: if tf.__version__ > '0.12.1' and beta_init == tf.zeros_initializer: beta_init = beta_init() beta = tf.get_variable('beta', shape=params_shape, initializer=beta_init, dtype=LayersConfig.tf_dtype, trainable=is_train) variables.append(beta) else: beta = None if gamma_init: gamma = tf.get_variable( 'gamma', shape=params_shape, initializer=gamma_init, dtype=LayersConfig.tf_dtype, trainable=is_train, ) variables.append(gamma) else: gamma = None # 2. if tf.__version__ > '0.12.1': moving_mean_init = tf.zeros_initializer() else: moving_mean_init = tf.zeros_initializer moving_mean = tf.get_variable('moving_mean', params_shape, initializer=moving_mean_init, dtype=LayersConfig.tf_dtype, trainable=False) moving_variance = tf.get_variable( 'moving_variance', params_shape, initializer=tf.constant_initializer(1.), dtype=LayersConfig.tf_dtype, trainable=False, ) # 3. # These ops will only be preformed when training. mean, variance = tf.nn.moments(self.inputs, axis) try: # TF12 update_moving_mean = moving_averages.assign_moving_average(moving_mean, mean, decay, zero_debias=False) # if zero_debias=True, has bias update_moving_variance = moving_averages.assign_moving_average( moving_variance, variance, decay, zero_debias=False) # if zero_debias=True, has bias # logging.info("TF12 moving") except Exception: # TF11 update_moving_mean = moving_averages.assign_moving_average(moving_mean, mean, decay) update_moving_variance = moving_averages.assign_moving_average(moving_variance, variance, decay) # logging.info("TF11 moving") def mean_var_with_update(): with tf.control_dependencies([update_moving_mean, update_moving_variance]): return tf.identity(mean), tf.identity(variance) if is_train: mean, var = mean_var_with_update() self.outputs = act(tf.nn.batch_normalization(self.inputs, mean, var, beta, gamma, epsilon)) else: self.outputs = act(tf.nn.batch_normalization(self.inputs, moving_mean, moving_variance, beta, gamma, epsilon)) variables.extend([moving_mean, moving_variance]) # logging.info(len(variables)) # for idx, v in enumerate(variables): # logging.info(" var {:3}: {:15} {}".format(idx, str(v.get_shape()), v)) # exit() # self.all_layers = list(layer.all_layers) # self.all_params = list(layer.all_params) # self.all_drop = dict(layer.all_drop) self.all_layers.append(self.outputs) self.all_params.extend(variables) class InstanceNormLayer(Layer): """The :class:`InstanceNormLayer` class is a for instance normalization. Parameters ----------- layer : :class:`Layer` The previous layer. act : activation function. The activation function of this layer. epsilon : float Eplison. name : str A unique layer name """ def __init__( self, prev_layer, act=tf.identity, epsilon=1e-5, name='instan_norm', ): Layer.__init__(self, prev_layer=prev_layer, name=name) self.inputs = prev_layer.outputs logging.info("InstanceNormLayer %s: epsilon:%f act:%s" % (self.name, epsilon, act.__name__)) with tf.variable_scope(name) as vs: mean, var = tf.nn.moments(self.inputs, [1, 2], keep_dims=True) scale = tf.get_variable( 'scale', [self.inputs.get_shape()[-1]], initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02), dtype=LayersConfig.tf_dtype) offset = tf.get_variable('offset', [self.inputs.get_shape()[-1]], initializer=tf.constant_initializer(0.0), dtype=LayersConfig.tf_dtype) self.outputs = scale * tf.div(self.inputs - mean, tf.sqrt(var + epsilon)) + offset self.outputs = act(self.outputs) variables = tf.get_collection(TF_GRAPHKEYS_VARIABLES, scope=vs.name) # self.all_layers = list(layer.all_layers) # self.all_params = list(layer.all_params) # self.all_drop = dict(layer.all_drop) self.all_layers.append(self.outputs) self.all_params.extend(variables) class LayerNormLayer(Layer): """ The :class:`LayerNormLayer` class is for layer normalization, see `tf.contrib.layers.layer_norm <https://www.tensorflow.org/api_docs/python/tf/contrib/layers/layer_norm>`__. Parameters ---------- layer : :class:`Layer` The previous layer. act : activation function The activation function of this layer. others : _ `tf.contrib.layers.layer_norm <https://www.tensorflow.org/api_docs/python/tf/contrib/layers/layer_norm>`__. """ def __init__(self, prev_layer, center=True, scale=True, act=tf.identity, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, begin_norm_axis=1, begin_params_axis=-1, name='layernorm'): Layer.__init__(self, prev_layer=prev_layer, name=name) self.inputs = prev_layer.outputs logging.info("LayerNormLayer %s: act:%s" % (self.name, act.__name__)) if tf.__version__ < "1.3": # raise Exception("Please use TF 1.3+") with tf.variable_scope(name) as vs: self.outputs = tf.contrib.layers.layer_norm( self.inputs, center=center, scale=scale, activation_fn=act, reuse=reuse, variables_collections=variables_collections, outputs_collections=outputs_collections, trainable=trainable, # begin_norm_axis=begin_norm_axis, # begin_params_axis=begin_params_axis, scope='var', ) variables = tf.get_collection(TF_GRAPHKEYS_VARIABLES, scope=vs.name) else: with tf.variable_scope(name) as vs: self.outputs = tf.contrib.layers.layer_norm( self.inputs, center=center, scale=scale, activation_fn=act, reuse=reuse, variables_collections=variables_collections, outputs_collections=outputs_collections, trainable=trainable, begin_norm_axis=begin_norm_axis, begin_params_axis=begin_params_axis, scope='var', ) variables = tf.get_collection(TF_GRAPHKEYS_VARIABLES, scope=vs.name) # self.all_layers = list(layer.all_layers) # self.all_params = list(layer.all_params) # self.all_drop = dict(layer.all_drop) self.all_layers.append(self.outputs) self.all_params.extend(variables)
39.97377
186
0.594242
9fc7f5937bcae855c1b8166dcf6331c36b7aa350
25,149
py
Python
Packs/Base/Scripts/DBotFindSimilarIncidentsByIndicators/DBotFindSimilarIncidentsByIndicators.py
SergeBakharev/content
d66cc274f5bf6f9f0e9ed7e4df1af7b6f305aacf
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/Base/Scripts/DBotFindSimilarIncidentsByIndicators/DBotFindSimilarIncidentsByIndicators.py
SergeBakharev/content
d66cc274f5bf6f9f0e9ed7e4df1af7b6f305aacf
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/Base/Scripts/DBotFindSimilarIncidentsByIndicators/DBotFindSimilarIncidentsByIndicators.py
SergeBakharev/content
d66cc274f5bf6f9f0e9ed7e4df1af7b6f305aacf
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import demistomock as demisto from CommonServerPython import * from CommonServerUserPython import * from sklearn.base import BaseEstimator, TransformerMixin import pandas as pd import numpy as np from collections import Counter import re import math from typing import List, Dict STATUS_DICT = { 0: "Pending", 1: "Active", 2: "Closed", 3: "Archive", } ROUND_SCORING = 2 PLAYGROUND_PATTERN = '[a-z0-9]{8}-[a-z0-9]{4}-[a-z0-9]{4}-[a-z0-9]{4}-[a-z0-9]{12}' FIRST_COLUMNS_INCIDENTS_DISPLAY = ['incident ID', 'created', 'name'] FIELDS_TO_REMOVE_TO_DISPLAY = ['id'] INCIDENT_FIELDS_TO_USE = ['indicators'] FIELD_INDICATOR_TYPE = 'indicator_type' def normalize(x: List[str]) -> str: """ Normalize function for indicators :param x: list of indicators :return: """ return ' '.join(x) def identity_score(x): """ Identity function :param x: object :return: """ return x def flatten_list(my_list: List[List]) -> List: """ Flatten a list of list :param l: list of list :return: list """ return [item for sublist in my_list for item in sublist] class FrequencyIndicators(BaseEstimator, TransformerMixin): """ FrequencyIndicators class for indicator frequencies computation """ def __init__(self, incident_field, normalize_function, current_incident): self.incident_field = incident_field self.normalize_function = normalize_function self.frequency = {} if self.normalize_function: current_incident = current_incident[self.incident_field].apply(self.normalize_function) else: current_incident = current_incident[self.incident_field] self.vocabulary = current_incident.iloc[0].split(' ') def fit(self, x): if self.normalize_function: x = x[self.incident_field].apply(self.normalize_function) else: x = x[self.incident_field] size = len(x) + 1 frequencies = Counter(flatten_list([t.split(' ') for t in x.values])) frequencies.update(Counter(self.vocabulary)) self.frequency = {k: math.log(1 + size / v) for k, v in frequencies.items()} return self def transform(self, x): if self.normalize_function: x = x[self.incident_field].apply(self.normalize_function) else: x = x[self.incident_field] return x.apply(self.compute_term_score) def compute_term_score(self, indicators_values_string: str) -> float: x = indicators_values_string.split(' ') return sum([1 * self.frequency[word] for word in self.vocabulary if word in x]) / sum( [self.frequency[word] for word in self.vocabulary]) TRANSFORMATION = { 'frequency_indicators': {'transformer': FrequencyIndicators, 'normalize': None, 'scoring_function': identity_score } } class Transformer(): def __init__(self, p_transformer_type, incident_field, p_incidents_df, p_current_incident, p_params): """ :param p_transformer_type: One of the key value of TRANSFORMATION dict :param incident_field: incident field used in this transformation :param p_incidents_df: DataFrame of incident (should contains one columns which same name than incident_field) :param p_current_incident: DataFrame of the current incident :param p_params: Dictionary of all the transformation - TRANSFORMATION """ self.transformer_type = p_transformer_type self.incident_field = incident_field self.current_incident = p_current_incident self.incidents_df = p_incidents_df self.params = p_params def fit_transform(self): transformation = self.params[self.transformer_type] transformer = transformation['transformer'](self.incident_field, transformation['normalize'], self.current_incident) X_vect = transformer.fit_transform(self.incidents_df) incident_vect = transformer.transform(self.current_incident) return X_vect, incident_vect def get_score(self): scoring_function = self.params[self.transformer_type]['scoring_function'] X_vect, incident_vect = self.fit_transform() distance = scoring_function(X_vect) self.incidents_df['similarity %s' % self.incident_field] = np.round(distance, ROUND_SCORING) return self.incidents_df class Model: def __init__(self, p_transformation): """ :param p_transformation: Dict with the transformers parameters - TRANSFORMATION """ self.transformation = p_transformation def init_prediction(self, p_incident_to_match, p_incidents_df, p_fields_for_frequencyIndicators=[]): """ :param p_incident_to_match: Dataframe with one incident :param p_incidents_df: Dataframe with all the incidents :param p_fields_indicators_transformation: list of incident fields that for the transformer 'indicators' :return: """ self.incident_to_match = p_incident_to_match self.incidents_df = p_incidents_df self.fields_for_frequencyIndicators = p_fields_for_frequencyIndicators def predict(self): self.remove_empty_field() self.get_score() self.prepare_for_display() return self.incidents_df def remove_empty_field(self): remove_list = [] for field in self.fields_for_frequencyIndicators: if field not in self.incident_to_match.columns or not self.incident_to_match[field].values[ 0] or not isinstance(self.incident_to_match[field].values[0], str) or \ self.incident_to_match[field].values[0] == 'None' or \ self.incident_to_match[field].values[0] == 'N/A': remove_list.append(field) self.fields_for_frequencyIndicators = [x for x in self.fields_for_frequencyIndicators if x not in remove_list] def get_score(self): for field in self.fields_for_frequencyIndicators: t = Transformer('frequency_indicators', field, self.incidents_df, self.incident_to_match, self.transformation) t.get_score() def prepare_for_display(self): vocabulary = self.incident_to_match['indicators'].iloc[0].split(' ') self.incidents_df['Identical indicators'] = self.incidents_df['indicators'].apply( lambda x: ','.join([id for id in x.split(' ') if id in vocabulary])) def get_all_indicators_for_incident(incident_id: str) -> List[Dict]: """ Get indicators for one incident :param incident_id: incident id :return: """ query = 'incident.id:%s' % incident_id res = demisto.executeCommand("findIndicators", {'query': query}) if is_error(res): get_error(res) if not res[0]['Contents']: return [] indicators = res[0]['Contents'] return indicators def get_number_of_invs_for_indicators(indicator: Dict) -> int: """ :param indicator: list of dict representing indicators :return: lenght of investigation ids for this indicators """ invs = indicator.get('investigationIDs') or [] return len(invs) def get_indicators_from_incident_ids(ids: List[str]) -> List[Dict]: """ Get indicators for list of incidents ids :param ids: List of incident ids :return: List of indicators for each id """ ids_string = [] for id_ in ids: ids_string.append('incident.id: "%s"' % id_) query = " OR ".join(ids_string) res = demisto.executeCommand('findIndicators', { 'query': query }) if is_error(res): get_error(res) if not res[0]['Contents']: return [] indicators = res[0]['Contents'] return indicators def match_indicators_incident(indicators: List[Dict], incident_ids: List[str]) -> Dict[str, List]: """ :param indicators: list of dict representing indicators :param incident_ids: list of incident ids :return: dict of {incident id : list of indicators ids related to this incident) """ d = {k: [] for k in incident_ids} # type: Dict[str, List] for indicator in indicators: inv_ids = indicator.get('investigationIDs', None) if inv_ids: for inv_id in inv_ids: if inv_id in d.keys(): d[inv_id] = d[inv_id] + [indicator['id']] return d def enriched_incidents(df, fields_incident_to_display, from_date: str): """ Enriched incidents with data :param df: Incidents dataFrame :param fields_incident_to_display: Fields selected for enrichement :param from_date: from_date :return: Incidents dataFrame enriched """ if 'id' in df.columns: ids = df.id.tolist() else: ids = df.index ids_string = [] for id_ in ids: ids_string.append('id: "%s"' % id_) query = " OR ".join(ids_string) res = demisto.executeCommand('GetIncidentsByQuery', { 'query': query, 'populateFields': ' , '.join(fields_incident_to_display), 'fromDate': from_date, }) if is_error(res): return_error(res) if not json.loads(res[0]['Contents']): return df else: incidents = json.loads(res[0]['Contents']) incidents_dict = {incident['id']: incident for incident in incidents} for field in fields_incident_to_display: if field == 'created': df[field] = [incidents_dict.get(id_, {}).get(field, '')[:10] if len(incidents_dict.get(id_, {}).get(field, '')) > 10 else '' for id_ in ids] elif field == 'status': df[field] = [STATUS_DICT.get(incidents_dict.get(id_, {}).get(field, '')) if incidents_dict.get(id_, {}).get(field, '') in STATUS_DICT else ' ' for id_ in ids] else: df[field] = [incidents_dict.get(id_, {}).get(field, '') for id_ in ids] return df def return_outputs_custom(readable_output, outputs=None): return_entry = { "Type": entryTypes["note"], "HumanReadable": readable_output, "ContentsFormat": formats['json'], "Contents": outputs, "EntryContext": outputs, } demisto.results(return_entry) def return_no_mututal_indicators_found_entry(): hr = '### Mutual Indicators' + '\n' hr += 'No mutual indicators were found.' return_outputs_custom(hr, add_context_key(create_context_for_indicators())) def create_context_for_indicators(indicators_df=None): if indicators_df is None: indicators_context = [] else: indicators_df.rename({'Value': 'value'}, axis=1, inplace=True) indicators_df = indicators_df[['id', 'value']] indicators_context = indicators_df.to_dict(orient='records') return {'indicators': indicators_context} def add_context_key(entry_context): new_context = {} for k, v in entry_context.items(): new_context['{}.{}'.format('MutualIndicators', k)] = v return new_context def return_indicator_entry(incident_ids, indicators_types, indicators_list): indicators_query = 'investigationIDs:({})'.format(' '.join('"{}"'.format(id_) for id_ in incident_ids)) fields = ['id', 'indicator_type', 'investigationIDs', 'relatedIncCount', 'score', 'value'] indicators_args = {'query': indicators_query, 'limit': '150', 'populateFields': ','.join(fields)} res = demisto.executeCommand('GetIndicatorsByQuery', args=indicators_args) if is_error(res): return_error(res) indicators = res[0]['Contents'] indicators_df = pd.DataFrame(data=indicators) if len(indicators_df) == 0: return_no_mututal_indicators_found_entry() return indicators_df indicators_df = indicators_df[indicators_df['relatedIncCount'] < 150] indicators_df['Involved Incidents Count'] = \ indicators_df['investigationIDs'].apply(lambda x: sum(id_ in incident_ids for id_ in x)) indicators_df = indicators_df[indicators_df['Involved Incidents Count'] > 1] if indicators_types: indicators_df = indicators_df[indicators_df.indicator_type.isin(indicators_types)] indicators_df = indicators_df[indicators_df.id.isin([x.get('id') for x in indicators_list])] if len(indicators_df) == 0: return_no_mututal_indicators_found_entry() return indicators_df indicators_df['Id'] = indicators_df['id'].apply(lambda x: "[%s](#/indicator/%s)" % (x, x)) indicators_df = indicators_df.sort_values(['score', 'Involved Incidents Count'], ascending=False) indicators_df['Reputation'] = indicators_df['score'].apply(scoreToReputation) indicators_df.rename({'value': 'Value', 'indicator_type': 'Type'}, axis=1, inplace=True) indicators_headers = ['Id', 'Value', 'Type', 'Reputation', 'Involved Incidents Count'] hr = tableToMarkdown('Mutual Indicators', indicators_df.to_dict(orient='records'), headers=indicators_headers) return_outputs_custom(hr, add_context_key(create_context_for_indicators(indicators_df))) return indicators_df def get_indicators_map(indicators: List[Dict]) -> Dict[str, Dict]: """ :param indicators: list of dict representing indicators :return: Dictionary {id of indicators: indicators} """ return {ind['id']: ind for ind in indicators} def join(my_list: List) -> str: return ' '.join(my_list) def organize_data(similar_incidents: pd.DataFrame, indicators_map: Dict[str, Dict], threshold: float, max_incidents_to_display: int) \ -> pd.DataFrame: """ Clean and organize dataframe before displaying :param similar_incidents: DataFrame of incident :param indicators_map: Dict of indicators :param threshold: threshold for similarity score :param max_incidents_to_display: Max number of incidents we want to display :return: Clean DataFrame of incident """ similar_incidents = similar_incidents.reset_index().rename(columns={'index': 'id'}) similar_incidents['incident ID'] = similar_incidents['id'].apply(lambda _id: "[%s](#/Details/%s)" % (_id, _id)) similar_incidents['Identical indicators'] = similar_incidents['Identical indicators'].apply( lambda _ids: '\n'.join( [indicators_map.get(x).get('value') if indicators_map.get(x) else ' ' for x in # type: ignore _ids.split(',')])) # type: ignore similar_incidents = similar_incidents[['incident ID', 'id', 'Identical indicators', 'similarity indicators']] similar_incidents = similar_incidents[similar_incidents['similarity indicators'] > threshold] similar_incidents.sort_values(['similarity indicators'], inplace=True, ascending=False) return similar_incidents.head(max_incidents_to_display) def return_no_similar_incident_found_entry(): hr = '### No Similar indicators' + '\n' hr += 'No Similar indicators were found.' return_outputs(readable_output=hr, outputs={'DBotFindSimilarIncidentsByIndicators': create_context_for_incidents()}, raw_response={}) def create_context_for_incidents(similar_incidents=pd.DataFrame()): """ Return context from dataframe of incident :param similar_incidents: DataFrame of incidents with indicators :return: context """ if len(similar_incidents) == 0: context = { 'similarIncidentList': {}, 'isSimilarIncidentFound': False } else: context = { 'similarIncident': (similar_incidents.to_dict(orient='records')), 'isSimilarIncidentFound': True } return context def display_actual_incident(incident_df: pd.DataFrame, incident_id: str, fields_incident_to_display: List[str], from_date: str) -> None: """ Display current incident :param incident_df: DataFrame of incident :param incident_id: incident ID :param fields_incident_to_display: fields to display :param from_date: fields to from_date :return: None """ incident_df['id'] = [incident_id] incident_df = enriched_incidents(incident_df, fields_incident_to_display, from_date) incident_df['Incident ID'] = incident_df['id'].apply(lambda _id: "[%s](#/Details/%s)" % (_id, _id)) col_incident = incident_df.columns.tolist() col_incident = FIRST_COLUMNS_INCIDENTS_DISPLAY + [x for x in col_incident if x not in FIRST_COLUMNS_INCIDENTS_DISPLAY + ['id', 'indicators']] col_incident = [x.title() for x in col_incident] incident_df = incident_df.rename(str.title, axis='columns') incident_json = incident_df.to_dict(orient='records') return_outputs(readable_output=tableToMarkdown("Actual Incident", incident_json, col_incident)) def load_indicators_for_current_incident(incident_id: str, indicators_types: List[str], min_nb_of_indicators: int, max_indicators_for_white_list: int): """ Take :param incident_id: ID of current incident :param indicators_types: list of indicators type accepted :param limit_nb_of_indicators: Min number of indicators in the current incident :param max_indicators: Max incidents in indicators for white list :return: return [*indicators] and dictionnary {key: indicators} and if early_stop """ indicators = get_all_indicators_for_incident(incident_id) if not indicators: return_no_mututal_indicators_found_entry() return_no_similar_incident_found_entry() return [], {}, True indicators_map = get_indicators_map(indicators) indicators = list( filter(lambda x: get_number_of_invs_for_indicators(x) < max_indicators_for_white_list, indicators)) if indicators_types: indicators = [x for x in indicators if x.get(FIELD_INDICATOR_TYPE) in indicators_types] if len(indicators) < min_nb_of_indicators: return_no_mututal_indicators_found_entry() return_no_similar_incident_found_entry() return [], {}, True return indicators, indicators_map, False def get_incidents_ids_related_to_indicators(indicators): """ Return incident ids from a list of indicators :param indicators: List of indicators :return: [*incidents_ids] """ incident_ids = [indicator.get('investigationIDs', None) for indicator in indicators if indicator.get('investigationIDs', None)] incident_ids = flatten_list(incident_ids) p = re.compile(PLAYGROUND_PATTERN) incident_ids = [x for x in incident_ids if not p.match(x)] if not incident_ids: return_no_mututal_indicators_found_entry() return_no_similar_incident_found_entry() return [], True return incident_ids, False def get_related_incidents_with_indicators(incident_ids: List[str], indicators_types: List[str], incident_id: str) -> pd.DataFrame: """ Create dataframe of incident with indicators from incidents ids list :param incident_ids: List if incident id :param indicators_types: List of indicators type :param incident_id: current incident (in order to remove it) :return: dataframe of incident with indicators """ indicators_related = get_indicators_from_incident_ids(incident_ids) if not indicators_related: return_no_similar_incident_found_entry() return pd.DataFrame(), True if indicators_types: indicators_related = [x for x in indicators_related if x.get(FIELD_INDICATOR_TYPE) in indicators_types] if not indicators_related: return_no_similar_incident_found_entry() return pd.DataFrame(), True incidents_with_indicators = match_indicators_incident(indicators_related, incident_ids) incidents_with_indicators_join = {k: join(v) for k, v in incidents_with_indicators.items()} incidents_with_indicators_join.pop(incident_id, None) if not bool(incidents_with_indicators_join): return_no_similar_incident_found_entry() return pd.DataFrame(), True incidents_df = pd.DataFrame.from_dict(incidents_with_indicators_join, orient='index') incidents_df.columns = ['indicators'] return incidents_df, False def organize_current_incident(current_incident_df, indicators_map): current_incident_df['Indicators'] = current_incident_df['indicators'].apply( lambda _ids: '\n'.join( [indicators_map.get(x).get('value') if indicators_map.get(x) else ' ' for x in # type: ignore _ids.split(' ')])) # type: ignore return current_incident_df def return_outputs_tagged(similar_incidents: pd.DataFrame, context: Dict, tag: Optional[str] = None): colums_to_display = FIRST_COLUMNS_INCIDENTS_DISPLAY + [x for x in similar_incidents.columns.tolist() if x not in FIRST_COLUMNS_INCIDENTS_DISPLAY + FIELDS_TO_REMOVE_TO_DISPLAY] similar_incidents_renamed = similar_incidents.rename(str.title, axis='columns') similar_incidents_json = similar_incidents_renamed.to_dict(orient='records') colums_to_display = [x.title() for x in colums_to_display] readable_output = tableToMarkdown("Similar incidents", similar_incidents_json, colums_to_display) return_entry = { "Type": entryTypes["note"], "HumanReadable": readable_output, "ContentsFormat": formats['json'], "Contents": similar_incidents.to_dict(orient='records'), "EntryContext": {'DBotFindSimilarIncidents': context}, } if tag is not None: return_entry["Tags"] = [tag] demisto.results(return_entry) def main(): max_indicators_for_white_list = int(demisto.args()['maxIncidentsInIndicatorsForWhiteList']) min_nb_of_indicators = int(demisto.args()['minNumberOfIndicators']) threshold = float(demisto.args()['threshold']) indicators_types = demisto.args().get('indicatorsTypes') if indicators_types: indicators_types = indicators_types.split(',') indicators_types = [x.strip() for x in indicators_types if x] show_actual_incident = demisto.args().get('showActualIncident') max_incidents_to_display = int(demisto.args()['maxIncidentsToDisplay']) fields_incident_to_display = demisto.args()['fieldsIncidentToDisplay'].split(',') fields_incident_to_display = [x.strip() for x in fields_incident_to_display if x] fields_incident_to_display = list(set(['created', 'name'] + fields_incident_to_display)) from_date = demisto.args().get('fromDate') # load the Dcurrent incident incident_id = demisto.args().get('incidentId') if not incident_id: incident = demisto.incidents()[0] incident_id = incident['id'] # load the related indicators to the incidents indicators, indicators_map, early_exit = load_indicators_for_current_incident(incident_id, indicators_types, min_nb_of_indicators, max_indicators_for_white_list) if early_exit: return # Get the Investigation IDs related to the indicators if the incidents incident_ids, early_exit = get_incidents_ids_related_to_indicators(indicators) if early_exit: return # Return Mutual indicators _ = return_indicator_entry(incident_ids, indicators_types, indicators) # Get related incidents with indicators incidents_df, early_exit = get_related_incidents_with_indicators(incident_ids, indicators_types, incident_id) if early_exit: return # Current incident indicators_for_incident = [' '.join(set([x.get('id') for x in indicators]))] # type: ignore current_incident_df = pd.DataFrame(indicators_for_incident, columns=['indicators']) # Prediction model = Model(p_transformation=TRANSFORMATION) model.init_prediction(current_incident_df, incidents_df, INCIDENT_FIELDS_TO_USE) similar_incidents = model.predict() # Display and enriched incidents data current_incident_df = organize_current_incident(current_incident_df, indicators_map) similar_incidents = organize_data(similar_incidents, indicators_map, threshold, max_incidents_to_display) similar_incidents = enriched_incidents(similar_incidents, fields_incident_to_display, from_date) incident_found_bool = (len(similar_incidents) > 0) if show_actual_incident == 'True': display_actual_incident(current_incident_df, incident_id, fields_incident_to_display, from_date) if incident_found_bool: context = create_context_for_incidents(similar_incidents) return_outputs_tagged(similar_incidents, context, 'similarIncidents') else: return_no_similar_incident_found_entry() if __name__ in ['__main__', '__builtin__', 'builtins']: main()
41.706468
130
0.679351
a535cc8dcd8d6d31206b2ce52ec495f9ecda7d7e
150
py
Python
bin/ominoes/pentominoes-eye.py
tiwo/puzzler
7ad3d9a792f0635f7ec59ffa85fb46b54fd77a7e
[ "Intel" ]
null
null
null
bin/ominoes/pentominoes-eye.py
tiwo/puzzler
7ad3d9a792f0635f7ec59ffa85fb46b54fd77a7e
[ "Intel" ]
null
null
null
bin/ominoes/pentominoes-eye.py
tiwo/puzzler
7ad3d9a792f0635f7ec59ffa85fb46b54fd77a7e
[ "Intel" ]
1
2022-01-02T16:54:14.000Z
2022-01-02T16:54:14.000Z
#!/usr/bin/env python # $Id$ """? solutions""" import puzzler from puzzler.puzzles.pentominoes import PentominoesEye as puzzle puzzler.run(puzzle)
15
64
0.746667
0c9792ae4ecebab8c55d363de60de93ddb74b28c
311
py
Python
website/__init__.py
andrequeiroz2/targit
7e42b8e40d492c1cd17c14b0300cfa5c000df2b9
[ "MIT" ]
null
null
null
website/__init__.py
andrequeiroz2/targit
7e42b8e40d492c1cd17c14b0300cfa5c000df2b9
[ "MIT" ]
null
null
null
website/__init__.py
andrequeiroz2/targit
7e42b8e40d492c1cd17c14b0300cfa5c000df2b9
[ "MIT" ]
null
null
null
## -- Script inicial do módulo website -- ## Não é necessário alterar nada nesse arquivo from flask import Flask def create_app(): app = Flask(__name__) app.config['SECRET_KEY'] = 'secretkey' from .views import views app.register_blueprint(views, url_prefix='/') return app
22.214286
50
0.665595
9bd21cba149be094afc6b4534541036ced792921
9,642
py
Python
purple/keyboard/sweep/layout/soar.py
a8ksh4/purple
11460cc44cda7edf6f8fce5a5c841d4b04a47741
[ "MIT" ]
null
null
null
purple/keyboard/sweep/layout/soar.py
a8ksh4/purple
11460cc44cda7edf6f8fce5a5c841d4b04a47741
[ "MIT" ]
null
null
null
purple/keyboard/sweep/layout/soar.py
a8ksh4/purple
11460cc44cda7edf6f8fce5a5c841d4b04a47741
[ "MIT" ]
null
null
null
from adafruit_hid.keycode import Keycode from adafruit_hid.mouse import Mouse from purple.action import Action, Lock, MouseMove, MousePress, OneShot, Press, ToLayer from purple.helpers import key from purple.layer import Layer class Layout: auto_mod = [] layers = [ Layer( # Base { key(5): Action(Press(Keycode.A)), key(10): Action(Press(Keycode.B)), key(12): Action(Press(Keycode.C)), key(13): Action(Press(Keycode.D)), key(7): Action(Press(Keycode.E)), key(2): Action(Press(Keycode.F)), key(4): Action(Press(Keycode.G)), key(6)+key(7): Action(Press(Keycode.H)), key(7)+key(8): Action(Press(Keycode.I)), key(9)+key(16): Action(Press(Keycode.J)), key(1)+key(16): Action(Press(Keycode.K)), key(5)+key(16): Action(Press(Keycode.L)), key(9): Action(Press(Keycode.M)), key(8)+key(16): Action(Press(Keycode.N)), key(6): Action(Press(Keycode.O)), key(3): Action(Press(Keycode.P)), key(14)+key(16): Action(Press(Keycode.Q)), key(6)+key(16): Action(Press(Keycode.R)), key(7)+key(16): Action(Press(Keycode.S)), key(8): Action(Press(Keycode.T)), key(11): Action(Press(Keycode.U)), key(0): Action(Press(Keycode.V)), key(1): Action(Press(Keycode.W)), key(11)+key(16): Action(Press(Keycode.X)), key(14): Action(Press(Keycode.Y)), key(10)+key(16): Action(Press(Keycode.Z)), key(4)+key(16): Action(Press(Keycode.GRAVE_ACCENT)), key(3)+key(8): Action(Press(Keycode.SEMICOLON)), key(11)+key(12): Action(Press(Keycode.PERIOD)), key(12)+key(13): Action(Press(Keycode.COMMA)), key(2)+key(16): Action(Press(Keycode.LEFT_BRACKET)), key(3)+key(16): Action(Press(Keycode.RIGHT_BRACKET)), key(8)+key(13): Action(Press(Keycode.QUOTE)), key(13)+key(16): Action(Press(Keycode.MINUS)), key(12)+key(16): Action(Press(Keycode.EQUALS)), key(9)+key(14): Action(Press(Keycode.FORWARD_SLASH)), key(4)+key(9): Action(Press(Keycode.BACKSLASH)), key(2)+key(7)+key(16): Action(Press(Keycode.SHIFT, Keycode.NINE)), key(3)+key(8)+key(16): Action(Press(Keycode.SHIFT, Keycode.ZERO)), # Modifiers key(5)+key(6): Action(OneShot(Keycode.SHIFT), Press(Keycode.SHIFT), hold=True), key(5)+key(8): Action(OneShot(Keycode.CONTROL), Press(Keycode.CONTROL), hold=True), key(5)+key(13): Action(OneShot(Keycode.ALT), Press(Keycode.ALT), hold=True), key(5)+key(9): Action(OneShot(Keycode.GUI), Press(Keycode.GUI), hold=True), # Locked Modifiers key(5)+key(6)+key(15): Action(Lock(Keycode.SHIFT)), key(15)+key(16): Action(Lock(Keycode.SHIFT)), key(5)+key(8)+key(15): Action(Lock(Keycode.CONTROL)), key(5)+key(13)+key(15): Action(Lock(Keycode.ALT)), key(5)+key(9)+key(15): Action(Lock(Keycode.GUI)), # Other key(16): Action(Press(Keycode.SPACE), Press(Keycode.SHIFT), hold=True), key(5)+key(6)+key(16): Action(Press(Keycode.TAB)), key(7)+key(8)+key(16): Action(Press(Keycode.ENTER)), key(15): Action(Press(Keycode.BACKSPACE), hold=True), key(10)+key(13): Action(Press(Keycode.DELETE), hold=True), key(0)+key(16): Action(Press(Keycode.ESCAPE)), key(7)+key(15): Action(ToLayer(1)), key(6)+key(15): Action(ToLayer(2)), key(8)+key(15): Action(ToLayer(3)), key(5)+key(15): Action(ToLayer(4)), }, (0, 0, 0) ), Layer( # Nav { key(0): Action(Press(Keycode.PAGE_UP)), key(1): Action(Press(Keycode.HOME)), key(2): Action(Press(Keycode.UP_ARROW), hold=True), key(3): Action(Press(Keycode.END)), key(5): Action(Press(Keycode.PAGE_DOWN)), key(6): Action(Press(Keycode.LEFT_ARROW), hold=True), key(7): Action(Press(Keycode.DOWN_ARROW), hold=True), key(8): Action(Press(Keycode.RIGHT_ARROW), hold=True), # Shifted key(0)+key(16): Action(Press(Keycode.SHIFT, Keycode.PAGE_UP)), key(1)+key(16): Action(Press(Keycode.SHIFT, Keycode.HOME)), key(2)+key(16): Action(Press(Keycode.SHIFT, Keycode.UP_ARROW), hold=True), key(3)+key(16): Action(Press(Keycode.SHIFT, Keycode.END)), key(5)+key(16): Action(Press(Keycode.SHIFT, Keycode.PAGE_DOWN)), key(6)+key(16): Action(Press(Keycode.SHIFT, Keycode.LEFT_ARROW), hold=True), key(7)+key(16): Action(Press(Keycode.SHIFT, Keycode.DOWN_ARROW), hold=True), key(8)+key(16): Action(Press(Keycode.SHIFT, Keycode.RIGHT_ARROW), hold=True), # Other key(9): Action(ToLayer(0)), }, (64, 0, 64) ), Layer( # Mouse { key(0): Action(MouseMove(0, 0, 1), hold=True), key(1): Action(MousePress(Mouse.RIGHT_BUTTON)), key(2): Action(MouseMove(0, -8), hold=True), key(3): Action(MousePress(Mouse.LEFT_BUTTON)), key(5): Action(MouseMove(0, 0, -1), hold=True), key(6): Action(MouseMove(-8, 0), hold=True), key(7): Action(MouseMove(0, 8), hold=True), key(8): Action(MouseMove(8, 0), hold=True), # Diagonals key(2)+key(6): Action(MouseMove(-8, -8), hold=True), key(2)+key(8): Action(MouseMove(8, -8), hold=True), key(7)+key(8): Action(MouseMove(8, 8), hold=True), key(6)+key(7): Action(MouseMove(-8, 8), hold=True), # Other key(9): Action(ToLayer(0)), }, (64, 0, 0) ), Layer( # Numbers { # Base key(5): Action(Press(Keycode.ZERO)), key(6): Action(Press(Keycode.ONE)), key(7): Action(Press(Keycode.TWO)), key(8): Action(Press(Keycode.THREE)), key(11): Action(Press(Keycode.FOUR)), key(12): Action(Press(Keycode.FIVE)), key(13): Action(Press(Keycode.SIX)), key(1): Action(Press(Keycode.SEVEN)), key(2): Action(Press(Keycode.EIGHT)), key(3): Action(Press(Keycode.NINE)), # Shifted key(5)+key(16): Action(Press(Keycode.SHIFT, Keycode.ZERO)), key(6)+key(16): Action(Press(Keycode.SHIFT, Keycode.ONE)), key(7)+key(16): Action(Press(Keycode.SHIFT, Keycode.TWO)), key(8)+key(16): Action(Press(Keycode.SHIFT, Keycode.THREE)), key(11)+key(16): Action(Press(Keycode.SHIFT, Keycode.FOUR)), key(12)+key(16): Action(Press(Keycode.SHIFT, Keycode.FIVE)), key(13)+key(16): Action(Press(Keycode.SHIFT, Keycode.SIX)), key(1)+key(16): Action(Press(Keycode.SHIFT, Keycode.SEVEN)), key(2)+key(16): Action(Press(Keycode.SHIFT, Keycode.EIGHT)), key(3)+key(16): Action(Press(Keycode.SHIFT, Keycode.NINE)), # Other key(9): Action(ToLayer(0)), }, (0, 64, 64) ), Layer( # Functions { # Base key(10): Action(Press(Keycode.F1)), key(11): Action(Press(Keycode.F2)), key(12): Action(Press(Keycode.F3)), key(13): Action(Press(Keycode.F4)), key(5): Action(Press(Keycode.F5)), key(6): Action(Press(Keycode.F6)), key(7): Action(Press(Keycode.F7)), key(8): Action(Press(Keycode.F8)), key(0): Action(Press(Keycode.F9)), key(1): Action(Press(Keycode.F10)), key(2): Action(Press(Keycode.F11)), key(3): Action(Press(Keycode.F12)), # Shifted key(10)+key(16): Action(Press(Keycode.SHIFT, Keycode.F1)), key(11)+key(16): Action(Press(Keycode.SHIFT, Keycode.F2)), key(12)+key(16): Action(Press(Keycode.SHIFT, Keycode.F3)), key(13)+key(16): Action(Press(Keycode.SHIFT, Keycode.F4)), key(5)+key(16): Action(Press(Keycode.SHIFT, Keycode.F5)), key(6)+key(16): Action(Press(Keycode.SHIFT, Keycode.F6)), key(7)+key(16): Action(Press(Keycode.SHIFT, Keycode.F7)), key(8)+key(16): Action(Press(Keycode.SHIFT, Keycode.F8)), key(0)+key(16): Action(Press(Keycode.SHIFT, Keycode.F9)), key(1)+key(16): Action(Press(Keycode.SHIFT, Keycode.F10)), key(2)+key(16): Action(Press(Keycode.SHIFT, Keycode.F11)), key(3)+key(16): Action(Press(Keycode.SHIFT, Keycode.F12)), # Other key(9): Action(ToLayer(0)), }, (0, 64, 0) ), ]
48.69697
99
0.505289
bae25105d78be674f0a2ca4bcba7a12d8636ee7a
11,998
py
Python
designate_tempest_plugin/tests/api/v2/test_transfer_request.py
izadorozhna/designate-tempest-plugin
c1708fc0c878ea3fa544454c7e96c58581478853
[ "Apache-2.0" ]
null
null
null
designate_tempest_plugin/tests/api/v2/test_transfer_request.py
izadorozhna/designate-tempest-plugin
c1708fc0c878ea3fa544454c7e96c58581478853
[ "Apache-2.0" ]
null
null
null
designate_tempest_plugin/tests/api/v2/test_transfer_request.py
izadorozhna/designate-tempest-plugin
c1708fc0c878ea3fa544454c7e96c58581478853
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as logging from tempest.lib.common.utils import data_utils from tempest.lib import decorators from tempest.lib import exceptions as lib_exc from designate_tempest_plugin.tests import base from designate_tempest_plugin import data_utils as dns_data_utils LOG = logging.getLogger(__name__) class BaseTransferRequestTest(base.BaseDnsV2Test): excluded_keys = ['created_at', 'updated_at', 'key', 'links'] class TransferRequestTest(BaseTransferRequestTest): credentials = ['primary', 'alt'] @classmethod def setup_credentials(cls): # Do not create network resources for these test. cls.set_network_resources() super(TransferRequestTest, cls).setup_credentials() @classmethod def setup_clients(cls): super(TransferRequestTest, cls).setup_clients() cls.zone_client = cls.os_primary.zones_client cls.client = cls.os_primary.transfer_request_client cls.alt_client = cls.os_alt.transfer_request_client @decorators.idempotent_id('2381d489-ad84-403d-b0a2-8b77e4e966bf') def test_create_transfer_request(self): LOG.info('Create a zone') _, zone = self.zone_client.create_zone() self.addCleanup(self.wait_zone_delete, self.zone_client, zone['id']) LOG.info('Create a zone transfer_request') _, transfer_request = self.client.create_transfer_request(zone['id']) self.addCleanup(self.client.delete_transfer_request, transfer_request['id']) LOG.info('Ensure we respond with ACTIVE status') self.assertEqual('ACTIVE', transfer_request['status']) @decorators.idempotent_id('5deae1ac-7c14-42dc-b14e-4e4b2725beb7') def test_create_transfer_request_scoped(self): LOG.info('Create a zone') _, zone = self.zone_client.create_zone() self.addCleanup(self.wait_zone_delete, self.zone_client, zone['id']) transfer_request_data = dns_data_utils.rand_transfer_request_data( target_project_id=self.os_alt.credentials.project_id) LOG.info('Create a scoped zone transfer_request') _, transfer_request = self.client.create_transfer_request( zone['id'], transfer_request_data) self.addCleanup(self.client.delete_transfer_request, transfer_request['id']) LOG.info('Ensure we respond with ACTIVE status') self.assertEqual('ACTIVE', transfer_request['status']) @decorators.idempotent_id('4505152f-0a9c-4f02-b385-2216c914a0be') def test_create_transfer_request_empty_body(self): LOG.info('Create a zone') _, zone = self.zone_client.create_zone() self.addCleanup(self.wait_zone_delete, self.zone_client, zone['id']) LOG.info('Create a zone transfer_request') _, transfer_request = self.client.create_transfer_request_empty_body( zone['id']) self.addCleanup(self.client.delete_transfer_request, transfer_request['id']) LOG.info('Ensure we respond with ACTIVE status') self.assertEqual('ACTIVE', transfer_request['status']) @decorators.idempotent_id('64a7be9f-8371-4ce1-a242-c1190de7c985') def test_show_transfer_request(self): LOG.info('Create a zone') _, zone = self.zone_client.create_zone() self.addCleanup(self.wait_zone_delete, self.zone_client, zone['id']) LOG.info('Create a zone transfer_request') _, transfer_request = self.client.create_transfer_request(zone['id']) self.addCleanup(self.client.delete_transfer_request, transfer_request['id']) LOG.info('Fetch the transfer_request') _, body = self.client.show_transfer_request(transfer_request['id']) LOG.info('Ensure the fetched response matches the ' 'created transfer_request') self.assertExpected(transfer_request, body, self.excluded_keys) @decorators.idempotent_id('235ded87-0c47-430b-8cad-4f3194b927a6') def test_show_transfer_request_as_target(self): # Checks the target of a scoped transfer request can see # the request. LOG.info('Create a zone') _, zone = self.zone_client.create_zone() self.addCleanup(self.wait_zone_delete, self.zone_client, zone['id']) transfer_request_data = dns_data_utils.rand_transfer_request_data( target_project_id=self.os_alt.credentials.project_id) LOG.info('Create a scoped zone transfer_request') _, transfer_request = self.client.create_transfer_request( zone['id'], transfer_request_data) self.addCleanup(self.client.delete_transfer_request, transfer_request['id']) LOG.info('Fetch the transfer_request as the target') _, body = self.alt_client.show_transfer_request(transfer_request['id']) LOG.info('Ensure the fetched response matches the ' 'created transfer_request') excluded_keys = self.excluded_keys + ["target_project_id", "project_id"] self.assertExpected(transfer_request, body, excluded_keys) @decorators.idempotent_id('7d81c487-aa15-44c4-b3e5-424ab9e6a3e5') def test_delete_transfer_request(self): LOG.info('Create a zone') _, zone = self.zone_client.create_zone() self.addCleanup(self.wait_zone_delete, self.zone_client, zone['id']) LOG.info('Create a transfer_request') _, transfer_request = self.client.create_transfer_request(zone['id']) self.addCleanup(self.client.delete_transfer_request, transfer_request['id'], ignore_errors=lib_exc.NotFound) LOG.info('Delete the transfer_request') _, body = self.client.delete_transfer_request(transfer_request['id']) self.assertRaises(lib_exc.NotFound, lambda: self.client.show_transfer_request(transfer_request['id'])) @decorators.idempotent_id('ddd42a19-1768-428c-846e-32f9d6493011') def test_list_transfer_requests(self): LOG.info('Create a zone') _, zone = self.zone_client.create_zone() self.addCleanup(self.wait_zone_delete, self.zone_client, zone['id']) LOG.info('Create a zone transfer_request') _, transfer_request = self.client.create_transfer_request(zone['id']) self.addCleanup(self.client.delete_transfer_request, transfer_request['id']) LOG.info('List transfer_requests') _, body = self.client.list_transfer_requests() self.assertGreater(len(body['transfer_requests']), 0) @decorators.idempotent_id('de5e9d32-c723-4518-84e5-58da9722cc13') def test_update_transfer_request(self): LOG.info('Create a zone') _, zone = self.zone_client.create_zone() self.addCleanup(self.wait_zone_delete, self.zone_client, zone['id']) LOG.info('Create a zone transfer_request') _, transfer_request = self.client.create_transfer_request(zone['id']) self.addCleanup(self.client.delete_transfer_request, transfer_request['id']) LOG.info('Update the transfer_request') data = { "description": "demo descripion" } _, transfer_request_patch = self.client.update_transfer_request( transfer_request['id'], transfer_request_data=data) self.assertEqual(data['description'], transfer_request_patch['description']) @decorators.idempotent_id('73b754a9-e856-4fd6-80ba-e8d1b80f5dfa') def test_list_transfer_requests_dot_json_fails(self): uri = self.client.get_uri('transfer_requests.json') self.assertRaises(lib_exc.NotFound, lambda: self.client.get(uri)) class TestTransferRequestNotFound(BaseTransferRequestTest): @classmethod def setup_credentials(cls): # Do not create network resources for these test. cls.set_network_resources() super(TestTransferRequestNotFound, cls).setup_credentials() @classmethod def setup_clients(cls): super(TestTransferRequestNotFound, cls).setup_clients() cls.client = cls.os_primary.transfer_request_client @decorators.idempotent_id('d255f72f-ba24-43df-9dba-011ed7f4625d') def test_show_transfer_request_404(self): e = self.assertRaises(lib_exc.NotFound, self.client.show_transfer_request, data_utils.rand_uuid()) self.assertTransferRequest404(e.resp, e.resp_body) @decorators.idempotent_id('9ff383fb-c31d-4c6f-8085-7b261e401223') def test_update_transfer_request_404(self): e = self.assertRaises(lib_exc.NotFound, self.client.update_transfer_request, data_utils.rand_uuid()) self.assertTransferRequest404(e.resp, e.resp_body) @decorators.idempotent_id('5a4a0755-c01d-448f-b856-b081b96ae77e') def test_delete_transfer_request_404(self): e = self.assertRaises(lib_exc.NotFound, self.client.delete_transfer_request, data_utils.rand_uuid()) self.assertTransferRequest404(e.resp, e.resp_body) def assertTransferRequest404(self, resp, resp_body): self.assertEqual(404, resp.status) self.assertEqual(404, resp_body['code']) self.assertEqual("zone_transfer_request_not_found", resp_body['type']) self.assertEqual("Could not find ZoneTransferRequest", resp_body['message']) class TestTransferRequestInvalidId(BaseTransferRequestTest): @classmethod def setup_credentials(cls): # Do not create network resources for these test. cls.set_network_resources() super(TestTransferRequestInvalidId, cls).setup_credentials() @classmethod def setup_clients(cls): super(TestTransferRequestInvalidId, cls).setup_clients() cls.client = cls.os_primary.transfer_request_client @decorators.idempotent_id('2205dd19-ecc7-4c68-9e89-63c47d642b07') def test_show_transfer_request_invalid_uuid(self): e = self.assertRaises(lib_exc.BadRequest, self.client.show_transfer_request, 'foo') self.assertTransferRequestInvalidId(e.resp, e.resp_body) @decorators.idempotent_id('af0ce46f-10be-4cce-a1d5-1b5c2a39fb97') def test_update_transfer_request_invalid_uuid(self): e = self.assertRaises(lib_exc.BadRequest, self.client.update_transfer_request, 'foo') self.assertTransferRequestInvalidId(e.resp, e.resp_body) @decorators.idempotent_id('1728dca5-01f1-45f4-b59d-7a981d479394') def test_delete_transfer_request_invalid_uuid(self): e = self.assertRaises(lib_exc.BadRequest, self.client.delete_transfer_request, 'foo') self.assertTransferRequestInvalidId(e.resp, e.resp_body) def assertTransferRequestInvalidId(self, resp, resp_body): self.assertEqual(400, resp.status) self.assertEqual(400, resp_body['code']) self.assertEqual("invalid_uuid", resp_body['type'])
43.158273
79
0.681197
54f0026203e6d9d3428efedfd03cff9f4452df68
3,221
py
Python
selfdrive/controls/lib/lane_planner.py
funk222/openpilot
f6d3a507a6aa568c30a2af097d94c61a65d7dc6a
[ "MIT" ]
null
null
null
selfdrive/controls/lib/lane_planner.py
funk222/openpilot
f6d3a507a6aa568c30a2af097d94c61a65d7dc6a
[ "MIT" ]
null
null
null
selfdrive/controls/lib/lane_planner.py
funk222/openpilot
f6d3a507a6aa568c30a2af097d94c61a65d7dc6a
[ "MIT" ]
1
2020-01-14T03:05:37.000Z
2020-01-14T03:05:37.000Z
from common.numpy_fast import interp import numpy as np from cereal import log CAMERA_OFFSET = 0.00 # m from center car to camera def compute_path_pinv(l=50): deg = 3 x = np.arange(l*1.0) X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T pinv = np.linalg.pinv(X) return pinv def model_polyfit(points, path_pinv): return np.dot(path_pinv, [float(x) for x in points]) def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width): # This will improve behaviour when lanes suddenly widen lane_width = min(4.0, lane_width) l_prob = l_prob * interp(abs(l_poly[3]), [2, 2.5], [1.0, 0.0]) r_prob = r_prob * interp(abs(r_poly[3]), [2, 2.5], [1.0, 0.0]) path_from_left_lane = l_poly.copy() path_from_left_lane[3] -= lane_width / 2.0 path_from_right_lane = r_poly.copy() path_from_right_lane[3] += lane_width / 2.0 lr_prob = l_prob + r_prob - l_prob * r_prob d_poly_lane = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001) return lr_prob * d_poly_lane + (1.0 - lr_prob) * p_poly class LanePlanner(): def __init__(self): self.l_poly = [0., 0., 0., 0.] self.r_poly = [0., 0., 0., 0.] self.p_poly = [0., 0., 0., 0.] self.d_poly = [0., 0., 0., 0.] self.lane_width_estimate = 3.0 self.lane_width_certainty = 1.0 self.lane_width = 3.0 self.l_prob = 0. self.r_prob = 0. self.l_lane_change_prob = 0. self.r_lane_change_prob = 0. self._path_pinv = compute_path_pinv() self.x_points = np.arange(50) def parse_model(self, md): if len(md.leftLane.poly): self.l_poly = np.array(md.leftLane.poly) self.r_poly = np.array(md.rightLane.poly) self.p_poly = np.array(md.path.poly) else: self.l_poly = model_polyfit(md.leftLane.points, self._path_pinv) # left line self.r_poly = model_polyfit(md.rightLane.points, self._path_pinv) # right line self.p_poly = model_polyfit(md.path.points, self._path_pinv) # predicted path self.l_prob = md.leftLane.prob # left line prob self.r_prob = md.rightLane.prob # right line prob if len(md.meta.desirePrediction): self.l_lane_change_prob = md.meta.desirePrediction[log.PathPlan.Desire.laneChangeLeft - 1] self.r_lane_change_prob = md.meta.desirePrediction[log.PathPlan.Desire.laneChangeRight - 1] def update_d_poly(self, v_ego): # only offset left and right lane lines; offsetting p_poly does not make sense self.l_poly[3] += CAMERA_OFFSET self.r_poly[3] += CAMERA_OFFSET # Find current lanewidth self.lane_width_certainty += 0.05 * (self.l_prob * self.r_prob - self.lane_width_certainty) current_lane_width = abs(self.l_poly[3] - self.r_poly[3]) self.lane_width_estimate += 0.005 * (current_lane_width - self.lane_width_estimate) speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5]) self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \ (1 - self.lane_width_certainty) * speed_lane_width self.d_poly = calc_d_poly(self.l_poly, self.r_poly, self.p_poly, self.l_prob, self.r_prob, self.lane_width) def update(self, v_ego, md): self.parse_model(md) self.update_d_poly(v_ego)
35.788889
111
0.68488
2041745c5c4aa16ecfdbfa4c2cff16ed721d65c6
39,805
py
Python
shapash/explainer/smart_explainer.py
GAP01/shapash
4223278b91a4456bf334deb26220a6501a282f13
[ "Apache-2.0" ]
null
null
null
shapash/explainer/smart_explainer.py
GAP01/shapash
4223278b91a4456bf334deb26220a6501a282f13
[ "Apache-2.0" ]
null
null
null
shapash/explainer/smart_explainer.py
GAP01/shapash
4223278b91a4456bf334deb26220a6501a282f13
[ "Apache-2.0" ]
null
null
null
""" Smart explainer module """ import logging import copy import pandas as pd import numpy as np from shapash.webapp.smart_app import SmartApp from shapash.utils.io import save_pickle from shapash.utils.io import load_pickle from shapash.utils.transform import inverse_transform, apply_postprocessing from shapash.utils.transform import adapt_contributions from shapash.utils.utils import get_host_name from shapash.utils.threading import CustomThread from shapash.utils.shap_backend import shap_contributions, check_explainer, get_shap_interaction_values from shapash.utils.check import check_model, check_label_dict, check_ypred, check_contribution_object,\ check_postprocessing, check_features_name from shapash.manipulation.select_lines import keep_right_contributions from .smart_state import SmartState from .multi_decorator import MultiDecorator from .smart_plotter import SmartPlotter from .smart_predictor import SmartPredictor from shapash.utils.model import predict_proba, predict logging.basicConfig(level=logging.INFO) class SmartExplainer: """ The SmartExplainer class is the main object of the Shapash library. It allows the Data Scientists to perform many operations to make the results more understandable : linking encoders, models, predictions, label dict and datasets. SmartExplainer users have several methods which are described below. The SmartExplainer Attributes : data: dict Data dictionary has 3 entries. Each key returns a pd.DataFrame (regression) or a list of pd.DataFrame (classification - The length of the lists is equivalent to the number of labels). All pd.DataFrame have she same shape (n_samples, n_features). For the regression case, data that should be regarded as a single array of size (n_samples, n_features, 3). data['contrib_sorted']: pandas.DataFrame (regression) or list of pandas.DataFrame (classification) Contains local contributions of the prediction set, with common line index. Columns are 'contrib_1', 'contrib_2', ... and contains the top contributions for each line from left to right. In multi-class problems, this is a list of contributions, one for each class. data['var_dict']: pandas.DataFrame (regression) or list of pandas.DataFrame (classification) Must contain only ints. It gives, for each line, the list of most import features regarding the local decomposition. In order to save space, columns are denoted by integers, the conversion being done with the columns_dict member. In multi-class problems, this is a list of dataframes, one for each class. data['x_sorted']: pandas.DataFrame (regression) or list of pandas.DataFrame (classification) It gives, for each line, the list of most important features values regarding the local decomposition. These values can only be understood with respect to data['var_dict'] x_init: pandas.DataFrame preprocessed dataset used by the model to perform the prediction. x_pred: pandas.DataFrame x_init dataset with inverse transformation with eventual postprocessing modifications. x_contrib_plot: pandas.DataFrame x_init dataset with inverse transformation, without postprocessing used for contribution_plot. y_pred: pandas.DataFrame User-specified prediction values. contributions: pandas.DataFrame (regression) or list (classification) local contributions aggregated if the preprocessing part requires it (e.g. one-hot encoding). features_dict: dict Dictionary mapping technical feature names to domain names. inv_features_dict: dict Inverse features_dict mapping. label_dict: dict Dictionary mapping integer labels to domain names (classification - target values). inv_label_dict: dict Inverse label_dict mapping. columns_dict: dict Dictionary mapping integer column number to technical feature names. inv_columns_dict: dict Inverse columns_dict mapping. plot: object Helper object containing all plotting functions (Bridge pattern). model: model object model used to check the different values of target estimate predict proba features_desc: dict Dictionary that references the numbers of feature values ​​in the x_pred features_imp: pandas.Series (regression) or list (classification) Features importance values preprocessing : category_encoders, ColumnTransformer, list or dict The processing apply to the original data. postprocessing : dict Dictionnary of postprocessing modifications to apply in x_pred dataframe. How to declare a new SmartExplainer object? Example -------- >>> xpl = SmartExplainer(features_dict=featd,label_dict=labeld) features_dict & label_dict are both optional. features_dict maps technical feature names to domain names. label_dict specify the labels of target (classification). """ def __init__(self, features_dict={}, label_dict=None): if isinstance(features_dict, dict) == False: raise ValueError( """ features_dict must be a dict """ ) if label_dict is not None and isinstance(label_dict, dict) == False: raise ValueError( """ label_dict must be a dict """ ) self.features_dict = features_dict self.label_dict = label_dict self.plot = SmartPlotter(self) def compile(self, x, model, explainer=None, contributions=None, y_pred=None, preprocessing=None, postprocessing=None): """ The compile method is the first step to understand model and prediction. It performs the sorting of contributions, the reverse preprocessing steps and performs all the calculations necessary for a quick display of plots and efficient display of summary of explanation. Most of the parameters are optional but all help to display results that can be understood This step can last a few moments with large datasets. Parameters ---------- x : pandas.DataFrame Prediction set. IMPORTANT: this should be the raw prediction set, whose values are seen by the end user. x is a preprocessed dataset: Shapash can apply the model to it model : model object model used to consistency check. model object can also be used by some method to compute predict and predict_proba values explainer : explainer object explainer must be a shap object contributions : pandas.DataFrame, np.ndarray or list single or multiple contributions (multi-class) to handle. if pandas.Dataframe, the index and columns should be share with the prediction set. if np.ndarray, index and columns will be generated according to x dataset y_pred : pandas.Series or pandas.DataFrame, optional (default: None) Prediction values (1 column only). The index must be identical to the index of x_pred. This is an interesting parameter for more explicit outputs. Shapash lets users define their own predict, as they may wish to set their own threshold (classification) preprocessing : category_encoders, ColumnTransformer, list, dict, optional (default: None) --> Differents types of preprocessing are available: - A single category_encoders (OrdinalEncoder/OnehotEncoder/BaseNEncoder/BinaryEncoder/TargetEncoder) - A single ColumnTransformer with scikit-learn encoding or category_encoders transformers - A list with multiple category_encoders with optional (dict, list of dict) - A list with a single ColumnTransformer with optional (dict, list of dict) - A dict - A list of dict postprocessing : dict, optional (default: None) Dictionnary of postprocessing modifications to apply in x_pred dataframe. Dictionnary with feature names as keys (or number, or well labels referencing to features names), which modifies dataset features by features. --> Different types of postprocessing are available, but the syntax is this one: One key by features, 5 different types of modifications: >>> { ‘feature1’ : { ‘type’ : ‘prefix’, ‘rule’ : ‘age: ‘ }, ‘feature2’ : { ‘type’ : ‘suffix’, ‘rule’ : ‘$/week ‘ }, ‘feature3’ : { ‘type’ : ‘transcoding’, ‘rule‘: { ‘code1’ : ‘single’, ‘code2’ : ‘married’}}, ‘feature4’ : { ‘type’ : ‘regex’ , ‘rule‘: { ‘in’ : ‘AND’, ‘out’ : ‘ & ‘ }}, ‘feature5’ : { ‘type’ : ‘case’ , ‘rule‘: ‘lower’‘ } } Only one transformation by features is possible. Example -------- >>> xpl.compile(x=xtest_df,model=my_model) """ self.x_init = x self.x_pred = inverse_transform(self.x_init, preprocessing) self.preprocessing = preprocessing self.model = model self._case, self._classes = self.check_model() self.check_label_dict() if self.label_dict: self.inv_label_dict = {v: k for k, v in self.label_dict.items()} if explainer is not None and contributions is not None: raise ValueError("You have to specify just one of these arguments: explainer, contributions") if contributions is None: contributions, explainer = shap_contributions(model, self.x_init, self.check_explainer(explainer)) adapt_contrib = self.adapt_contributions(contributions) self.state = self.choose_state(adapt_contrib) self.contributions = self.apply_preprocessing(self.validate_contributions(adapt_contrib), preprocessing) self.check_contributions() self.explainer = explainer self.y_pred = self.check_y_pred(y_pred) self.columns_dict = {i: col for i, col in enumerate(self.x_pred.columns)} self.inv_columns_dict = {v: k for k, v in self.columns_dict.items()} self.check_features_dict() self.inv_features_dict = {v: k for k, v in self.features_dict.items()} postprocessing = self.modify_postprocessing(postprocessing) self.check_postprocessing(postprocessing) self.postprocessing_modifications = self.check_postprocessing_modif_strings(postprocessing) self.postprocessing = postprocessing if self.postprocessing_modifications: self.x_contrib_plot = copy.deepcopy(self.x_pred) self.x_pred = self.apply_postprocessing(postprocessing) self.data = self.state.assign_contributions( self.state.rank_contributions( self.contributions, self.x_pred ) ) self.features_imp = None self.features_desc = self.check_features_desc() def add(self, y_pred=None, label_dict=None, features_dict=None): """ add method allows the user to add a label_dict, features_dict or y_pred without compiling again (and it can last a few moments). y_pred can be used in the plot to color scatter. y_pred is needed in the to_pandas method. label_dict and features_dict displays allow to display clearer results. Parameters ---------- y_pred : pandas.Series, optional (default: None) Prediction values (1 column only). The index must be identical to the index of x_pred. label_dict: dict, optional (default: None) Dictionary mapping integer labels to domain names. features_dict: dict, optional (default: None) Dictionary mapping technical feature names to domain names. """ if y_pred is not None: self.y_pred = self.check_y_pred(y_pred) if label_dict is not None: if isinstance(label_dict, dict) == False: raise ValueError( """ label_dict must be a dict """ ) self.label_dict = label_dict self.check_label_dict() self.inv_label_dict = {v: k for k, v in self.label_dict.items()} if features_dict is not None: if isinstance(features_dict, dict) == False: raise ValueError( """ features_dict must be a dict """ ) self.features_dict = features_dict self.check_features_dict() self.inv_features_dict = {v: k for k, v in self.features_dict.items()} def choose_state(self, contributions): """ Select implementation of the smart explainer. Typically check if it is a multi-class problem, in which case the implementation should be adapted to lists of contributions. Parameters ---------- contributions : object Local contributions. Could also be a list of local contributions. Returns ------- object SmartState or SmartMultiState, depending on the nature of the input. """ if isinstance(contributions, list): return MultiDecorator(SmartState()) else: return SmartState() def adapt_contributions(self, contributions): """ If _case is "classification" and contributions a np.array or pd.DataFrame this function transform contributions matrix in a list of 2 contributions matrices: Opposite contributions and contributions matrices. Parameters ---------- contributions : pandas.DataFrame, np.ndarray or list Returns ------- pandas.DataFrame, np.ndarray or list contributions object modified """ return adapt_contributions(self._case, contributions) def validate_contributions(self, contributions): """ Check len of list if _case is "classification" Check contributions object type if _case is "regression" Check type of contributions and transform into (list of) pd.Dataframe if necessary Parameters ---------- contributions : pandas.DataFrame, np.ndarray or list Returns ------- pandas.DataFrame or list """ check_contribution_object(self._case, self._classes, contributions) return self.state.validate_contributions(contributions, self.x_init) def get_interaction_values(self, n_samples_max=None, selection=None): """ Compute shap interaction values for each row of x_init. This function is only available for explainer of type TreeExplainer (used for tree based models). Please refer to the official tree shap paper for more information : https://arxiv.org/pdf/1802.03888.pdf Parameters ---------- n_samples_max : int, optional Limit the number of points for which we compute the interactions. selection : list, optional Contains list of index, subset of the input DataFrame that we want to plot Returns ------- np.ndarray Shap interaction values for each sample as an array of shape (# samples x # features x # features). """ x = copy.deepcopy(self.x_init) if selection: x = x.loc[selection] if hasattr(self, 'x_interaction'): if self.x_interaction.equals(x[:n_samples_max]): return self.interaction_values self.x_interaction = x[:n_samples_max] self.interaction_values = get_shap_interaction_values(self.x_interaction, self.explainer) return self.interaction_values def apply_preprocessing(self, contributions, preprocessing=None): """ Reconstruct contributions for original features, taken into account a preprocessing. Parameters ---------- contributions : object Local contributions, or list of local contributions. preprocessing : object Encoder taken from scikit-learn or category_encoders Returns ------- object Reconstructed local contributions in the original space. Can be a list. """ if preprocessing: return self.state.inverse_transform_contributions( contributions, preprocessing ) else: return contributions def check_postprocessing_modif_strings(self, postprocessing=None): """ Check if any modification of postprocessing will convert numeric values into strings values. If so, return True, otherwise False. Parameters ---------- postprocessing: dict Dict of postprocessing modifications to apply. Returns ------- modif: bool Boolean which is True if any numerical variable will be converted into string. """ modif = False if postprocessing is not None: for key in postprocessing.keys(): dict_postprocess = postprocessing[key] if dict_postprocess['type'] in {'prefix', 'suffix'} \ and pd.api.types.is_numeric_dtype(self.x_pred[key]): modif = True return modif def modify_postprocessing(self, postprocessing=None): """ Modifies postprocessing parameter, to change only keys, with features name, in case of parameters are not real feature names (with columns_dict, or inv_features_dict). Parameters ---------- postprocessing : Dict Dictionnary of postprocessing to modify. Returns ------- Dict Modified dictionnary, with same values but keys directly referencing to feature names. """ if postprocessing: new_dic = dict() for key in postprocessing.keys(): if key in self.features_dict: new_dic[key] = postprocessing[key] elif key in self.columns_dict.keys(): new_dic[self.columns_dict[key]] = postprocessing[key] elif key in self.inv_features_dict: new_dic[self.inv_features_dict[key]] = postprocessing[key] else: raise ValueError(f"Feature name '{key}' not found in the dataset.") return new_dic def check_postprocessing(self, postprocessing): """ Check that postprocessing parameter has good attributes. Check if postprocessing is a dictionnary, and if its parameters are good. Parameters ---------- postprocessing : dict Dictionnary of postprocessing that need to be checked. """ check_postprocessing(self.x_pred, postprocessing) def apply_postprocessing(self, postprocessing=None): """ Modifies x_pred Dataframe according to postprocessing modifications, if exists. Parameters ---------- postprocessing: Dict Dictionnary of postprocessing modifications to apply in x_pred. Returns ------- pandas.Dataframe Returns x_pred if postprocessing is empty, modified dataframe otherwise. """ if postprocessing: return apply_postprocessing(self.x_pred, postprocessing) else: return self.x_pred def check_y_pred(self, ypred=None): """ Check if y_pred is a one column dataframe of integer or float and if y_pred index matches x_pred index Parameters ---------- ypred: pandas.DataFrame (optional) User-specified prediction values. """ return check_ypred(self.x_pred, ypred) def check_model(self): """ Check if model has a predict_proba method is a one column dataframe of integer or float and if y_pred index matches x_pred index Returns ------- string: 'regression' or 'classification' according to the attributes of the model """ _case, _classes = check_model(self.model) return _case, _classes def check_label_dict(self): """ Check if label_dict and model _classes match """ if self._case != "regression": return check_label_dict(self.label_dict, self._case, self._classes) def check_features_dict(self): """ Check the features_dict and add the necessary keys if all the input X columns are not present """ for feature in (set(list(self.columns_dict.values())) - set(list(self.features_dict))): self.features_dict[feature] = feature def check_contributions(self): """ Check if contributions and prediction set match in terms of shape and index. """ if not self.state.check_contributions(self.contributions, self.x_pred): raise ValueError( """ Prediction set and contributions should have exactly the same number of lines and number of columns. the order of the columns must be the same Please check x, contributions and preprocessing arguments. """ ) def check_label_name(self, label, origin=None): """ Convert a string label in integer. If the label is already an integer nothing is done. In all other cases an error is raised. Parameters ---------- label: int or string Integer (id) or string (business names) origin: None, 'num', 'code', 'value' (default: None) Kind of the label used in parameter Returns ------- tuple label num, label code (class of the mode), label value """ if origin is None: if label in self._classes: origin = 'code' elif self.label_dict is not None and label in self.label_dict.values(): origin = 'value' elif isinstance(label, int) and label in range(-1, len(self._classes)): origin = 'num' try: if origin == 'num': label_num = label label_code = self._classes[label] label_value = self.label_dict[label_code] if self.label_dict else label_code elif origin == 'code': label_code = label label_num = self._classes.index(label) label_value = self.label_dict[label_code] if self.label_dict else label_code elif origin == 'value': label_code = self.inv_label_dict[label] label_num = self._classes.index(label_code) label_value = label else: raise ValueError except ValueError: raise Exception({"message": "Origin must be 'num', 'code' or 'value'."}) except Exception: raise Exception({"message": f"Label ({label}) not found for origin ({origin})"}) return label_num, label_code, label_value def check_features_name(self, features): """ Convert a list of feature names (string) or features ids into features ids. Features names can be part of columns_dict or features_dict. Parameters ---------- features : List List of ints (columns ids) or of strings (business names) Returns ------- list of ints Columns ids compatible with var_dict """ return check_features_name(self.columns_dict, self.features_dict, features) def check_features_desc(self): """ Check x_pred dataframe, compute value counts of each feature used in plot part Returns ------- dict Number of unique values in x_pred """ return dict(self.x_pred.nunique()) def check_attributes(self, attribute): """ Check that explainer has the attribute precised Parameters ---------- attribute: string the label of the attribute to test Returns ------- Object content of the attribute specified from SmartExplainer instance """ if not hasattr(self, attribute): raise ValueError( """ attribute {0} isn't an attribute of the explainer precised. """.format(attribute)) return self.__dict__[attribute] def filter( self, features_to_hide=None, threshold=None, positive=None, max_contrib=None ): """ The filter method is an important method which allows to summarize the local explainability by using the user defined parameters which correspond to its use case. Filter method is used with the local_plot method of Smarplotter to see the concrete result of this summary with a local contribution barchart Please, watch the local_plot tutorial to see how these two methods are combined with a concrete example Parameters ---------- features_to_hide : list, optional (default: None) List of strings, containing features to hide. threshold : float, optional (default: None) Absolute threshold below which any contribution is hidden. positive: bool, optional (default: None) If True, hide negative values. False, hide positive values If None, hide nothing. max_contrib : int, optional (default: None) Maximum number of contributions to show. """ mask = [self.state.init_mask(self.data['contrib_sorted'], True)] if features_to_hide: mask.append( self.state.hide_contributions( self.data['var_dict'], features_list=self.check_features_name(features_to_hide) ) ) if threshold: mask.append( self.state.cap_contributions( self.data['contrib_sorted'], threshold=threshold ) ) if positive is not None: mask.append( self.state.sign_contributions( self.data['contrib_sorted'], positive=positive ) ) self.mask = self.state.combine_masks(mask) if max_contrib: self.mask = self.state.cutoff_contributions(self.mask, max_contrib=max_contrib) self.masked_contributions = self.state.compute_masked_contributions( self.data['contrib_sorted'], self.mask ) self.mask_params = { 'features_to_hide': features_to_hide, 'threshold': threshold, 'positive': positive, 'max_contrib': max_contrib } def save(self, path): """ Save method allows user to save SmartExplainer object on disk using a pickle file. Save method can be useful: you don't have to recompile to display results later Parameters ---------- path : str File path to store the pickle file Example -------- >>> xpl.save('path_to_pkl/xpl.pkl') """ dict_to_save = {} for att in self.__dict__.keys(): if isinstance(getattr(self, att), (list, dict, pd.DataFrame, pd.Series, type(None), bool)) or att == "model": dict_to_save.update({att: getattr(self, att)}) save_pickle(dict_to_save, path) def load(self, path): """ Load method allows Shapash user to use pickled SmartExplainer. To use this method you must first declare your SmartExplainer object Watch the following example Parameters ---------- path : str File path of the pickle file. Example -------- >>> xpl = SmartExplainer() >>> xpl.load('path_to_pkl/xpl.pkl') """ dict_to_load = load_pickle(path) if isinstance(dict_to_load, dict): for elem in dict_to_load.keys(): setattr(self, elem, dict_to_load[elem]) self._case, self._classes = self.check_model() self.state = self.choose_state(self.contributions) else: raise ValueError( "pickle file must contain dictionary" ) def predict_proba(self): """ The predict_proba compute the proba values for each x_init row """ self.proba_values = predict_proba(self.model, self.x_init, self._classes) def predict(self): """ The predict method computes the model output for each x_init row and stores it in y_pred attribute """ self.y_pred = predict(self.model, self.x_init) def to_pandas( self, features_to_hide=None, threshold=None, positive=None, max_contrib=None, proba=False ): """ The to_pandas method allows to export the summary of local explainability. This method proposes a set of parameters to summarize the explainability of each point. If the user does not specify any, the to_pandas method uses the parameter specified during the last execution of the filter method. In classification case, The method to_pandas summarizes the explicability which corresponds to the predicted values specified by the user (with compile or add method). the proba parameter displays the corresponding predict proba value for each point In classification case, There are 2 ways to use this to pandas method. - Provide a real prediction set to explain - Focus on a constant target value and look at the proba and explainability corresponding to each point. (in that case, specify a constant pd.Series with add or compile method) Examples are presented in the tutorial local_plot (please check tutorial part of this doc) Parameters ---------- features_to_hide : list, optional (default: None) List of strings, containing features to hide. threshold : float, optional (default: None) Absolute threshold below which any contribution is hidden. positive: bool, optional (default: None) If True, hide negative values. Hide positive values otherwise. If None, hide nothing. max_contrib : int, optional (default: 5) Number of contributions to show in the pandas df proba : bool, optional (default: False) adding proba in output df Returns ------- pandas.DataFrame - selected explanation of each row for classification case Examples -------- >>> summary_df = xpl.to_pandas(max_contrib=2,proba=True) >>> summary_df pred proba feature_1 value_1 contribution_1 feature_2 value_2 contribution_2 0 0 0.756416 Sex 1.0 0.322308 Pclass 3.0 0.155069 1 3 0.628911 Sex 2.0 0.585475 Pclass 1.0 0.370504 2 0 0.543308 Sex 2.0 -0.486667 Pclass 3.0 0.255072 """ # Classification: y_pred is needed if self.y_pred is None: raise ValueError( "You have to specify y_pred argument. Please use add() or compile() method" ) # Apply filter method if necessary if all(var is None for var in [features_to_hide, threshold, positive, max_contrib]) \ and hasattr(self, 'mask_params'): print('to_pandas params: ' + str(self.mask_params)) else: self.filter(features_to_hide=features_to_hide, threshold=threshold, positive=positive, max_contrib=max_contrib) # Summarize information self.data['summary'] = self.state.summarize( self.data['contrib_sorted'], self.data['var_dict'], self.data['x_sorted'], self.mask, self.columns_dict, self.features_dict ) # Matching with y_pred if proba: self.predict_proba() if proba else None proba_values = self.proba_values else: proba_values = None y_pred, summary = keep_right_contributions(self.y_pred, self.data['summary'], self._case, self._classes, self.label_dict, proba_values) return pd.concat([y_pred,summary], axis=1) def compute_features_import(self, force=False): """ Compute a relative features importance, sum of absolute values of the contributions for each. Features importance compute in base 100 Parameters ---------- force: bool (default: False) True to force de compute if features importance is already calculated Returns ------- pd.Serie (Regression) or list of pd.Serie (Classification: One Serie for each target modality) Each Serie: feature importance, One row by feature, index of the serie = contributions.columns """ if self.features_imp is None or force: self.features_imp = self.state.compute_features_import(self.contributions) def init_app(self): """ Simple init of SmartApp in case of host smartapp by another way """ self.smartapp = SmartApp(self) def run_app(self, port: int = None, host: str = None) -> CustomThread: """ run_app method launches the interpretability web app associated with the shapash object. run_app method can be used directly in a Jupyter notebook The link to the webapp is directly mentioned in the Jupyter output Use object.kill() method to kill the current instance Examples are presented in the web_app tutorial (please check tutorial part of this doc) Parameters ---------- port: int (default: None) The port is by default on 8050. You can specify a custom port for your webapp. host: str (default: None) The default host is '0.0.0.0'. You can specify a custom ip address for your app Returns ------- CustomThread Return the thread instance of your server. Example -------- >>> app = xpl.run_app() >>> app.kill() """ if self.y_pred is None: self.predict() if hasattr(self, '_case'): self.smartapp = SmartApp(self) if host is None: host = "0.0.0.0" if port is None: port = 8050 host_name = get_host_name() server_instance = CustomThread( target=lambda: self.smartapp.app.run_server(debug=False, host=host, port=port)) if host_name is None: host_name = host elif host != "0.0.0.0": host_name = host server_instance.start() logging.info(f"Your Shapash application run on http://{host_name}:{port}/") logging.info("Use the method .kill() to down your app.") return server_instance else: raise ValueError("Explainer must be compiled before running app.") def to_smartpredictor(self): """ Create a SmartPredictor object designed from the following attributes needed from the SmartExplainer Object : features_dict: dict Dictionary mapping technical feature names to domain names. label_dict: dict Dictionary mapping integer labels to domain names (classification - target values). columns_dict: dict Dictionary mapping integer column number to technical feature names. features_types: dict Dictionnary mapping features with the right types needed. model: model object model used to check the different values of target estimate predict proba explainer : explainer object explainer must be a shap object preprocessing: category_encoders, ColumnTransformer, list or dict The processing apply to the original data. postprocessing: dict Dictionnary of postprocessing modifications to apply in x_pred dataframe. _case: string String that informs if the model used is for classification or regression problem. _classes: list, None List of labels if the model used is for classification problem, None otherwise. mask_params: dict (optional) Dictionnary allowing the user to define a apply a filter to summarize the local explainability. """ if self.explainer is None: raise ValueError("""SmartPredictor need an explainer, please compile without contributions or specify the explainer used. Make change in compile() step""") self.features_types = {features : str(self.x_pred[features].dtypes) for features in self.x_pred.columns} listattributes = ["features_dict", "model", "columns_dict", "explainer", "features_types", "label_dict", "preprocessing", "postprocessing"] params_smartpredictor = [self.check_attributes(attribute) for attribute in listattributes] if not hasattr(self,"mask_params"): self.mask_params = { "features_to_hide": None, "threshold": None, "positive": None, "max_contrib": None } params_smartpredictor.append(self.mask_params) return SmartPredictor(*params_smartpredictor) def check_x_y_attributes(self, x_str, y_str): """ Check if x_str and y_str are attributes of the SmartExplainer Parameters ---------- x_str: string label of the attribute x y_str: string label of the attribute y Returns ------- list of object detained by attributes x and y. """ if not (isinstance(x_str, str) and isinstance(y_str, str)): raise ValueError( """ x and y must be strings. """ ) params_checkypred = [] attributs_explainer = [x_str, y_str] for attribut in attributs_explainer: if hasattr(self, attribut): params_checkypred.append(self.__dict__[attribut]) else: params_checkypred.append(None) return params_checkypred def check_explainer(self, explainer): """ Check if explainer class correspond to a shap explainer object """ return check_explainer(explainer)
39.924774
122
0.616656
fa576414e811b144e70930efd78051478bbfc481
805
py
Python
logs/migrations/0001_initial.py
afg984/nthucourses
9f28f8e9480b9d7a9db1f9c023955fb23b1a28aa
[ "BSD-3-Clause" ]
null
null
null
logs/migrations/0001_initial.py
afg984/nthucourses
9f28f8e9480b9d7a9db1f9c023955fb23b1a28aa
[ "BSD-3-Clause" ]
null
null
null
logs/migrations/0001_initial.py
afg984/nthucourses
9f28f8e9480b9d7a9db1f9c023955fb23b1a28aa
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Log', fields=[ ('id', models.AutoField(primary_key=True, auto_created=True, verbose_name='ID', serialize=False)), ('message', models.CharField(max_length=256)), ('exc_name', models.CharField(max_length=256, default='')), ('traceback', models.TextField(default='')), ('success', models.NullBooleanField()), ('started', models.DateTimeField(auto_now_add=True)), ('ended', models.DateTimeField(null=True)), ], ), ]
30.961538
114
0.567702
7877b4a5681246924fd790db4485244ed9b35f3c
890
py
Python
readthedocs/builds/migrations/0043_add_cancelled_state.py
yarons/readthedocs.org
05c99a0adc222a1d48654d305b492ec142c3026b
[ "MIT" ]
4,054
2015-01-01T00:58:07.000Z
2019-06-28T05:50:49.000Z
readthedocs/builds/migrations/0043_add_cancelled_state.py
yarons/readthedocs.org
05c99a0adc222a1d48654d305b492ec142c3026b
[ "MIT" ]
4,282
2015-01-01T21:38:49.000Z
2019-06-28T15:41:00.000Z
readthedocs/builds/migrations/0043_add_cancelled_state.py
yarons/readthedocs.org
05c99a0adc222a1d48654d305b492ec142c3026b
[ "MIT" ]
3,224
2015-01-01T07:38:45.000Z
2019-06-28T09:19:10.000Z
# Generated by Django 3.2.13 on 2022-05-04 11:03 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("builds", "0042_version_state"), ] operations = [ migrations.AlterField( model_name="build", name="state", field=models.CharField( choices=[ ("triggered", "Triggered"), ("cloning", "Cloning"), ("installing", "Installing"), ("building", "Building"), ("uploading", "Uploading"), ("finished", "Finished"), ("cancelled", "Cancelled"), ], db_index=True, default="finished", max_length=55, verbose_name="State", ), ), ]
26.969697
49
0.44382
73ac13439dcb5cb60cc320b3fa4ba6c274e2430d
23,827
py
Python
pytorch_widedeep/callbacks.py
5uperpalo/pytorch-widedeep
c95c327671a21780f33f3fefdeba8e2c96aa426b
[ "MIT" ]
null
null
null
pytorch_widedeep/callbacks.py
5uperpalo/pytorch-widedeep
c95c327671a21780f33f3fefdeba8e2c96aa426b
[ "MIT" ]
null
null
null
pytorch_widedeep/callbacks.py
5uperpalo/pytorch-widedeep
c95c327671a21780f33f3fefdeba8e2c96aa426b
[ "MIT" ]
null
null
null
""" Code here is mostly based on the code from the torchsample and Keras packages CREDIT TO THE TORCHSAMPLE AND KERAS TEAMS """ import os import datetime import warnings import numpy as np import torch from torch.optim.lr_scheduler import ReduceLROnPlateau from pytorch_widedeep.wdtypes import * # noqa: F403 def _get_current_time(): return datetime.datetime.now().strftime("%B %d, %Y - %I:%M%p") def _is_metric(monitor: str): # We assume no one will use f3 or more if any([s in monitor for s in ["acc", "prec", "rec", "fscore", "f1", "f2"]]): return True else: return False class CallbackContainer(object): """ Container holding a list of callbacks. """ def __init__(self, callbacks: Optional[List] = None, queue_length: int = 10): instantiated_callbacks = [] if callbacks is not None: for callback in callbacks: if isinstance(callback, type): instantiated_callbacks.append(callback()) else: instantiated_callbacks.append(callback) self.callbacks = [c for c in instantiated_callbacks] self.queue_length = queue_length def set_params(self, params): for callback in self.callbacks: callback.set_params(params) def set_model(self, model: Any): self.model = model for callback in self.callbacks: callback.set_model(model) def set_trainer(self, trainer: Any): self.trainer = trainer for callback in self.callbacks: callback.set_trainer(trainer) def on_epoch_begin(self, epoch: int, logs: Optional[Dict] = None): logs = logs or {} for callback in self.callbacks: callback.on_epoch_begin(epoch, logs) def on_epoch_end( self, epoch: int, logs: Optional[Dict] = None, metric: Optional[float] = None ): logs = logs or {} for callback in self.callbacks: callback.on_epoch_end(epoch, logs, metric) def on_batch_begin(self, batch: int, logs: Optional[Dict] = None): logs = logs or {} for callback in self.callbacks: callback.on_batch_begin(batch, logs) def on_batch_end(self, batch: int, logs: Optional[Dict] = None): logs = logs or {} for callback in self.callbacks: callback.on_batch_end(batch, logs) def on_train_begin(self, logs: Optional[Dict] = None): logs = logs or {} logs["start_time"] = _get_current_time() for callback in self.callbacks: callback.on_train_begin(logs) def on_eval_begin(self, logs: Optional[Dict] = None): # at the moment only used to reset metrics before eval logs = logs or {} for callback in self.callbacks: callback.on_eval_begin(logs) def on_train_end(self, logs: Optional[Dict] = None): logs = logs or {} # logs['final_loss'] = self.model.history.epoch_losses[-1], # logs['best_loss'] = min(self.model.history.epoch_losses), # logs['stop_time'] = _get_current_time() for callback in self.callbacks: callback.on_train_end(logs) def on_eval_begin(self, logs: Optional[Dict] = None): logs = logs or {} for callback in self.callbacks: callback.on_eval_begin(logs) class Callback(object): """ Base class used to build new callbacks. """ def __init__(self): pass def set_params(self, params): self.params = params def set_model(self, model: Any): self.model = model def set_trainer(self, trainer: Any): self.trainer = trainer def on_epoch_begin(self, epoch: int, logs: Optional[Dict] = None): pass def on_epoch_end( self, epoch: int, logs: Optional[Dict] = None, metric: Optional[float] = None ): pass def on_batch_begin(self, batch: int, logs: Optional[Dict] = None): pass def on_batch_end(self, batch: int, logs: Optional[Dict] = None): pass def on_train_begin(self, logs: Optional[Dict] = None): pass def on_eval_begin(self, logs: Optional[Dict] = None): # at the moment only used to reset metrics before eval pass def on_train_end(self, logs: Optional[Dict] = None): pass def on_eval_begin(self, logs: Optional[Dict] = None): pass class History(Callback): r"""Callback that records metrics to a ``history`` attribute. This callback runs by default within :obj:`Trainer`, therefore, should not be passed to the :obj:`Trainer`. Is included here just for completion. """ def on_train_begin(self, logs: Optional[Dict] = None): self.trainer.history = {} def on_epoch_end( self, epoch: int, logs: Optional[Dict] = None, metric: Optional[float] = None ): logs = logs or {} for k, v in logs.items(): self.trainer.history.setdefault(k, []).append(v) class LRShedulerCallback(Callback): r"""Callback for the learning rate schedulers to take a step This callback runs by default within :obj:`Trainer`, therefore, should not be passed to the :obj:`Trainer`. Is included here just for completion. """ def on_batch_end(self, batch: int, logs: Optional[Dict] = None): if self.trainer.lr_scheduler is not None: if self._multiple_scheduler(): for ( model_name, scheduler, ) in self.trainer.lr_scheduler._schedulers.items(): if self._is_cyclic(model_name): scheduler.step() elif self.trainer.cyclic_lr: self.trainer.lr_scheduler.step() def on_epoch_end( self, epoch: int, logs: Optional[Dict] = None, metric: Optional[float] = None ): if self.trainer.lr_scheduler is not None: if self._multiple_scheduler(): for ( model_name, scheduler, ) in self.trainer.lr_scheduler._schedulers.items(): if not self._is_cyclic(model_name): if isinstance(scheduler, ReduceLROnPlateau): scheduler.step(metric) else: scheduler.step() elif not self.trainer.cyclic_lr: if isinstance(self.trainer.lr_scheduler, ReduceLROnPlateau): self.trainer.lr_scheduler.step(metric) else: self.trainer.lr_scheduler.step() def _multiple_scheduler(self): return self.trainer.lr_scheduler.__class__.__name__ == "MultipleLRScheduler" def _is_cyclic(self, model_name: str): return ( self._has_scheduler(model_name) and "cycl" in self.trainer.lr_scheduler._schedulers[ model_name ].__class__.__name__.lower() ) def _has_scheduler(self, model_name: str): return model_name in self.trainer.lr_scheduler._schedulers class LRHistory(Callback): r"""Saves the learning rates during training to a ``lr_history`` attribute. Callbacks are passed as input parameters to the :obj:`Trainer` class. See :class:`pytorch_widedeep.trainer.Trainer` Parameters ---------- n_epochs: int number of epochs durint training Examples -------- >>> from pytorch_widedeep.callbacks import LRHistory >>> from pytorch_widedeep.models import TabMlp, Wide, WideDeep >>> from pytorch_widedeep.training import Trainer >>> >>> embed_input = [(u, i, j) for u, i, j in zip(["a", "b", "c"][:4], [4] * 3, [8] * 3)] >>> column_idx = {k: v for v, k in enumerate(["a", "b", "c"])} >>> wide = Wide(10, 1) >>> deep = TabMlp(mlp_hidden_dims=[8, 4], column_idx=column_idx, embed_input=embed_input) >>> model = WideDeep(wide, deep) >>> trainer = Trainer(model, objective="regression", callbacks=[LRHistory(n_epochs=10)]) """ def __init__(self, n_epochs: int): super(LRHistory, self).__init__() self.n_epochs = n_epochs def on_epoch_begin(self, epoch: int, logs: Optional[Dict] = None): if epoch == 0 and self.trainer.lr_scheduler is not None: self.trainer.lr_history = {} if self._multiple_scheduler(): self._save_group_lr_mulitple_scheduler(step_location="on_epoch_begin") else: self._save_group_lr(self.trainer.optimizer) def on_batch_end(self, batch: int, logs: Optional[Dict] = None): if self.trainer.lr_scheduler is not None: if self._multiple_scheduler(): self._save_group_lr_mulitple_scheduler(step_location="on_batch_end") elif self.trainer.cyclic_lr: self._save_group_lr(self.trainer.optimizer) def on_epoch_end( self, epoch: int, logs: Optional[Dict] = None, metric: Optional[float] = None ): if epoch != (self.n_epochs - 1) and self.trainer.lr_scheduler is not None: if self._multiple_scheduler(): self._save_group_lr_mulitple_scheduler(step_location="on_epoch_end") elif not self.trainer.cyclic_lr: self._save_group_lr(self.trainer.optimizer) def _save_group_lr_mulitple_scheduler(self, step_location: str): for model_name, opt in self.trainer.optimizer._optimizers.items(): if step_location == "on_epoch_begin": self._save_group_lr(opt, model_name) if step_location == "on_batch_end": if self._is_cyclic(model_name): self._save_group_lr(opt, model_name) if step_location == "on_epoch_end": if not self._is_cyclic(model_name): self._save_group_lr(opt, model_name) def _save_group_lr(self, opt: Optimizer, model_name: Optional[str] = None): for group_idx, group in enumerate(opt.param_groups): if model_name is not None: group_name = ("_").join(["lr", model_name, str(group_idx)]) else: group_name = ("_").join(["lr", str(group_idx)]) self.trainer.lr_history.setdefault(group_name, []).append(group["lr"]) def _multiple_scheduler(self): return self.trainer.lr_scheduler.__class__.__name__ == "MultipleLRScheduler" def _is_cyclic(self, model_name: str): return ( self._has_scheduler(model_name) and "cycl" in self.trainer.lr_scheduler._schedulers[ model_name ].__class__.__name__.lower() ) def _has_scheduler(self, model_name: str): return model_name in self.trainer.lr_scheduler._schedulers class ModelCheckpoint(Callback): r"""Saves the model after every epoch. This class is almost identical to the corresponding keras class. Therefore, **credit** to the Keras Team. Callbacks are passed as input parameters to the :obj:`Trainer` class. See :class:`pytorch_widedeep.trainer.Trainer` Parameters ---------- filepath: str Full path to save the output weights. It must contain only the root of the filenames. Epoch number and ``.pt`` extension (for pytorch) will be added. e.g. ``filepath="path/to/output_weights/weights_out"`` And the saved files in that directory will be named: ``weights_out_1.pt, weights_out_2.pt, ...`` monitor: str, default="loss" quantity to monitor. Typically 'val_loss' or metric name (e.g. 'val_acc') verbose:int, default=0, verbosity mode save_best_only: bool, default=False, the latest best model according to the quantity monitored will not be overwritten. mode: str, default="auto", If ``save_best_only=True``, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For `'acc'`, this should be `'max'`, for `'loss'` this should be `'min'`, etc. In `'auto'` mode, the direction is automatically inferred from the name of the monitored quantity. period: int, default=1, Interval (number of epochs) between checkpoints. max_save: int, default=-1 Maximum number of outputs to save. If -1 will save all outputs Attributes ---------- best: float best metric best_epoch: int best epoch Examples -------- >>> from pytorch_widedeep.callbacks import ModelCheckpoint >>> from pytorch_widedeep.models import TabMlp, Wide, WideDeep >>> from pytorch_widedeep.training import Trainer >>> >>> embed_input = [(u, i, j) for u, i, j in zip(["a", "b", "c"][:4], [4] * 3, [8] * 3)] >>> column_idx = {k: v for v, k in enumerate(["a", "b", "c"])} >>> wide = Wide(10, 1) >>> deep = TabMlp(mlp_hidden_dims=[8, 4], column_idx=column_idx, embed_input=embed_input) >>> model = WideDeep(wide, deep) >>> trainer = Trainer(model, objective="regression", callbacks=[ModelCheckpoint(filepath='checkpoints/weights_out')]) """ def __init__( self, filepath: str, monitor: str = "val_loss", verbose: int = 0, save_best_only: bool = False, mode: str = "auto", period: int = 1, max_save: int = -1, ): super(ModelCheckpoint, self).__init__() self.filepath = filepath self.monitor = monitor self.verbose = verbose self.save_best_only = save_best_only self.mode = mode self.period = period self.max_save = max_save self.epochs_since_last_save = 0 if len(self.filepath.split("/")[:-1]) == 0: raise ValueError( "'filepath' must be the full path to save the output weights," " including the root of the filenames. e.g. 'checkpoints/weights_out'" ) root_dir = ("/").join(self.filepath.split("/")[:-1]) if not os.path.exists(root_dir): os.makedirs(root_dir) if self.max_save > 0: self.old_files: List[str] = [] if self.mode not in ["auto", "min", "max"]: warnings.warn( "ModelCheckpoint mode %s is unknown, " "fallback to auto mode." % (self.mode), RuntimeWarning, ) self.mode = "auto" if self.mode == "min": self.monitor_op = np.less self.best = np.Inf elif self.mode == "max": self.monitor_op = np.greater self.best = -np.Inf else: if _is_metric(self.monitor): self.monitor_op = np.greater self.best = -np.Inf else: self.monitor_op = np.less self.best = np.Inf def on_epoch_end( # noqa: C901 self, epoch: int, logs: Optional[Dict] = None, metric: Optional[float] = None ): logs = logs or {} self.epochs_since_last_save += 1 if self.epochs_since_last_save >= self.period: self.epochs_since_last_save = 0 filepath = "{}_{}.p".format(self.filepath, epoch + 1) if self.save_best_only: current = logs.get(self.monitor) if current is None: warnings.warn( "Can save best model only with %s available, " "skipping." % (self.monitor), RuntimeWarning, ) else: if self.monitor_op(current, self.best): if self.verbose > 0: print( "\nEpoch %05d: %s improved from %0.5f to %0.5f," " saving model to %s" % ( epoch + 1, self.monitor, self.best, current, filepath, ) ) self.best = current self.best_epoch = epoch torch.save(self.model.state_dict(), filepath) if self.max_save > 0: if len(self.old_files) == self.max_save: try: os.remove(self.old_files[0]) except FileNotFoundError: pass self.old_files = self.old_files[1:] self.old_files.append(filepath) else: if self.verbose > 0: print( "\nEpoch %05d: %s did not improve from %0.5f" % (epoch + 1, self.monitor, self.best) ) else: if self.verbose > 0: print("\nEpoch %05d: saving model to %s" % (epoch + 1, filepath)) torch.save(self.model.state_dict(), filepath) if self.max_save > 0: if len(self.old_files) == self.max_save: try: os.remove(self.old_files[0]) except FileNotFoundError: pass self.old_files = self.old_files[1:] self.old_files.append(filepath) def __getstate__(self): d = self.__dict__ self_dict = {k: d[k] for k in d if k not in ["trainer", "model"]} return self_dict def __setstate__(self, state): self.__dict__ = state class EarlyStopping(Callback): r"""Stop training when a monitored quantity has stopped improving. This class is almost identical to the corresponding keras class. Therefore, **credit** to the Keras Team. Callbacks are passed as input parameters to the :obj:`Trainer` class. See :class:`pytorch_widedeep.trainer.Trainer` Parameters ----------- monitor: str, default='val_loss'. Quantity to monitor. Typically 'val_loss' or metric name (e.g. 'val_acc') min_delta: float, default=0. minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. patience: int, default=10. Number of epochs that produced the monitored quantity with no improvement after which training will be stopped. verbose: int. verbosity mode. mode: str, default='auto' one of {'`auto`', '`min`', '`max`'}. In `'min'` mode, training will stop when the quantity monitored has stopped decreasing; in `'max'` mode it will stop when the quantity monitored has stopped increasing; in `'auto'` mode, the direction is automatically inferred from the name of the monitored quantity. baseline: float, Optional. default=None. Baseline value for the monitored quantity to reach. Training will stop if the model does not show improvement over the baseline. restore_best_weights: bool, default=None Whether to restore model weights from the epoch with the best value of the monitored quantity. If ``False``, the model weights obtained at the last step of training are used. Attributes ---------- best: float best metric stopped_epoch: int epoch when the training stopped Examples -------- >>> from pytorch_widedeep.callbacks import EarlyStopping >>> from pytorch_widedeep.models import TabMlp, Wide, WideDeep >>> from pytorch_widedeep.training import Trainer >>> >>> embed_input = [(u, i, j) for u, i, j in zip(["a", "b", "c"][:4], [4] * 3, [8] * 3)] >>> column_idx = {k: v for v, k in enumerate(["a", "b", "c"])} >>> wide = Wide(10, 1) >>> deep = TabMlp(mlp_hidden_dims=[8, 4], column_idx=column_idx, embed_input=embed_input) >>> model = WideDeep(wide, deep) >>> trainer = Trainer(model, objective="regression", callbacks=[EarlyStopping(patience=10)]) """ def __init__( self, monitor: str = "val_loss", min_delta: float = 0.0, patience: int = 10, verbose: int = 0, mode: str = "auto", baseline: Optional[float] = None, restore_best_weights: bool = False, ): super(EarlyStopping, self).__init__() self.monitor = monitor self.min_delta = min_delta self.patience = patience self.verbose = verbose self.mode = mode self.baseline = baseline self.restore_best_weights = restore_best_weights self.wait = 0 self.stopped_epoch = 0 self.state_dict = None if self.mode not in ["auto", "min", "max"]: warnings.warn( "EarlyStopping mode %s is unknown, " "fallback to auto mode." % self.mode, RuntimeWarning, ) self.mode = "auto" if self.mode == "min": self.monitor_op = np.less elif self.mode == "max": self.monitor_op = np.greater else: if _is_metric(self.monitor): self.monitor_op = np.greater else: self.monitor_op = np.less if self.monitor_op == np.greater: self.min_delta *= 1 else: self.min_delta *= -1 def on_train_begin(self, logs: Optional[Dict] = None): # Allow instances to be re-used self.wait = 0 self.stopped_epoch = 0 if self.baseline is not None: self.best = self.baseline else: self.best = np.Inf if self.monitor_op == np.less else -np.Inf def on_epoch_end( self, epoch: int, logs: Optional[Dict] = None, metric: Optional[float] = None ): current = self.get_monitor_value(logs) if current is None: return if self.monitor_op(current - self.min_delta, self.best): self.best = current self.wait = 0 if self.restore_best_weights: self.state_dict = self.model.state_dict() else: self.wait += 1 if self.wait >= self.patience: self.stopped_epoch = epoch self.trainer.early_stop = True if self.restore_best_weights: if self.verbose > 0: print("Restoring model weights from the end of the best epoch") self.model.load_state_dict(self.state_dict) def on_train_end(self, logs: Optional[Dict] = None): if self.stopped_epoch > 0 and self.verbose > 0: print("Epoch %05d: early stopping" % (self.stopped_epoch + 1)) def get_monitor_value(self, logs): monitor_value = logs.get(self.monitor) if monitor_value is None: warnings.warn( "Early stopping conditioned on metric `%s` " "which is not available. Available metrics are: %s" % (self.monitor, ",".join(list(logs.keys()))), RuntimeWarning, ) return monitor_value def __getstate__(self): d = self.__dict__ self_dict = {k: d[k] for k in d if k not in ["trainer", "model"]} return self_dict def __setstate__(self, state): self.__dict__ = state
36.544479
121
0.573467
59b2aa9528090042793fe6036ef512d830b76093
1,182
py
Python
test/e2e/test_apply_metadata.py
ImageMarkup/isic-archive
7cd8097886d685ec629e2fcba079271fb77d028f
[ "Apache-2.0" ]
42
2015-12-12T14:05:46.000Z
2022-03-26T15:20:39.000Z
test/e2e/test_apply_metadata.py
ImageMarkup/isic-archive
7cd8097886d685ec629e2fcba079271fb77d028f
[ "Apache-2.0" ]
494
2015-07-09T16:14:12.000Z
2021-03-09T09:37:36.000Z
test/e2e/test_apply_metadata.py
ImageMarkup/uda
d221af3368baf3a06ecab67e69e9d0077426c8f9
[ "Apache-2.0" ]
12
2015-08-20T14:20:48.000Z
2020-10-20T01:14:44.000Z
from girder.models.user import User from isic_archive.models.dataset import Dataset from isic_archive.models.image import Image def test_apply_metadata(session, dataset_id): user = list(User().getAdmins())[0] dataset = Dataset().load(dataset_id, force=True) image = Dataset().addImage( dataset, open('test/data/should-pass.jpg', 'rb'), 286_460, 'foo.jpg', 'some-signature', user ) with open('test/data/test-metadata.csv') as infile: r = session.post( f'dataset/{dataset_id}/metadata', params={'filename': 'test-metadata.csv'}, data=infile.read(), headers={'Content-Type': 'text/csv'}, ) r.raise_for_status() # reload to capture metadata file id dataset = Dataset().load(dataset_id, force=True) metadata_file_id = dataset['metadataFiles'][-1]['fileId'] r = session.post(f'dataset/{dataset_id}/metadata/{metadata_file_id}/apply', data={'save': True}) assert r.ok, r.text image = Image().load(image['_id'], force=True) assert image['meta']['clinical']['benign_malignant'] == 'benign' assert image['meta']['unstructured']['some_key'] == 'some_value'
39.4
100
0.650592
b649bf93b519105865f936afa04309a44ee11c21
52
py
Python
Question 41 - 50/Q50.py
debdutgoswami/python-semester-practical
9abdc9091d825a2425b36437f6f8fe6806ac84f2
[ "MIT" ]
null
null
null
Question 41 - 50/Q50.py
debdutgoswami/python-semester-practical
9abdc9091d825a2425b36437f6f8fe6806ac84f2
[ "MIT" ]
null
null
null
Question 41 - 50/Q50.py
debdutgoswami/python-semester-practical
9abdc9091d825a2425b36437f6f8fe6806ac84f2
[ "MIT" ]
null
null
null
l = [45, 52, 45, 65, 79] l = list(set(l)) print(l)
10.4
24
0.5
21d97e4b8b4dc36458693fe195998ec453412f8f
4,600
py
Python
pyIsoDep/functions/batemansolvers.py
MattKrecicki/PYTHON-ISOTOPIC-DEPLETION-PACKAGE
ccad214de8721aa9b499ef70cd39966f18bceb76
[ "MIT" ]
null
null
null
pyIsoDep/functions/batemansolvers.py
MattKrecicki/PYTHON-ISOTOPIC-DEPLETION-PACKAGE
ccad214de8721aa9b499ef70cd39966f18bceb76
[ "MIT" ]
null
null
null
pyIsoDep/functions/batemansolvers.py
MattKrecicki/PYTHON-ISOTOPIC-DEPLETION-PACKAGE
ccad214de8721aa9b499ef70cd39966f18bceb76
[ "MIT" ]
null
null
null
"""batemansolvers Three solvers are enabled here to solve the Bateman equations: (1) ODEINT solver ----------------- Integrate a system of ordinary differential equations (2) EXPM solver --------------- Compute the matrix exponential using Pade approximation (3) CRAM solver --------------- CHBV computes the direct action of the matrix exponential on a vector: y = exp(H)*x. It uses the partial fraction expansion of the uniform rational Chebyshev approximation of type (14,14). About 14-digit accuracy is expected if the matrix H is symmetric negative definite. The algorithm may behave poorly otherwise. See also PADM, EXPOKIT. Roger B. Sidje (rbs@maths.uq.edu.au) EXPOKIT: Software Package for Computing Matrix Exponentials. ACM - Transactions On Mathematical Software, 24(1):130-156, 1998 """ import numpy as np from scipy.linalg import solve as linsolver from scipy.linalg import expm # ----------------------------------------------------------------------------- # Coefficients and poles of the partial fraction expansion # ----------------------------------------------------------------------------- # Coefficients for IPF Cram 14 C14_ALPHA = np.array([ +0.557503973136501826E+02 - 0.204295038779771857E+03j, -0.938666838877006739E+02 + 0.912874896775456363E+02j, +0.469965415550370835E+02 - 0.116167609985818103E+02j, -0.961424200626061065E+01 - 0.264195613880262669E+01j, +0.752722063978321642E+00 + 0.670367365566377770E+00j, -0.188781253158648576E-01 - 0.343696176445802414E-01j, +0.143086431411801849E-03 + 0.287221133228814096E-03j, ], dtype=np.complex128) C14_THETA = np.array([ -0.562314417475317895E+01 + 0.119406921611247440E+01j, -0.508934679728216110E+01 + 0.358882439228376881E+01j, -0.399337136365302569E+01 + 0.600483209099604664E+01j, -0.226978543095856366E+01 + 0.846173881758693369E+01j, +0.208756929753827868E+00 + 0.109912615662209418E+02j, +0.370327340957595652E+01 + 0.136563731924991884E+02j, +0.889777151877331107E+01 + 0.166309842834712071E+02j, ], dtype=np.complex128) C14_ALPHA0 = 0.183216998528140087E-11 class CramSolver: """CRAM depletion solver that uses incomplete partial factorization A method that uses an incomplete partial factorization (IPF) for the Chebyshev Rational Approximation Method (CRAM), as described in: M. Pusa, "`Higher-Order Chebyshev Rational Approximation Method and Application to Burnup Equations <https://doi.org/10.13182/NSE15-26>`_," Nucl. Sci. Eng., 182:3, 297-318. Parameters ---------- alpha : numpy.ndarray Complex residues of poles used in the factorization. Must be a vector with even number of items. theta : numpy.ndarray Complex poles. Must have an equal size as ``alpha``. alpha0 : float Limit of the approximation at infinity Attributes ---------- alpha : numpy.ndarray Complex residues of poles :attr:`theta` in the incomplete partial factorization. Denoted as :math:`\tilde{\alpha}` theta : numpy.ndarray Complex poles :math:`\theta` of the rational approximation alpha0 : float Limit of the approximation at infinity """ def __init__(self): """reset the number of partial factorization""" self.alpha = -C14_ALPHA self.theta = -C14_THETA self.alpha0 = C14_ALPHA0 def solve(self, A, n0, dt): """Solve depletion equations using IPF CRAM Parameters ---------- A : scipy.sparse.csr_matrix Sparse transmutation matrix ``A[j, i]`` desribing rates at which isotope ``i`` transmutes to isotope ``j`` n0 : numpy.ndarray Initial compositions, typically given in number of atoms in some material or an atom density dt : float Time [s] of the specific interval to be solved Returns ------- numpy.ndarray Final compositions after ``dt`` """ H = A * dt y = n0 * self.alpha0 ident = np.eye(A.shape[0]) for alpha, theta in zip(self.alpha, self.theta): y += np.real(linsolver(H - theta*ident, alpha*n0)) y[y < 1E-25] = 0 return y class expmSolver: """Built-in expm solver that relies on the pade approximation""" def __init__(self): """reset values with a complete list of all the nuclides""" pass def solve(self, mtx, n0, dt): """Solve the exponential of a matrix""" n1 = np.dot(expm(mtx * dt), n0) return n1
33.823529
79
0.646957
bdc4a9c0683d9a7dcd541758afe48602384b224b
36,656
py
Python
synapse/rest/client/account.py
Fizzadar/synapse
6b46c3eb3d526d903e1e4833b2e8ae9b73de8502
[ "Apache-2.0" ]
null
null
null
synapse/rest/client/account.py
Fizzadar/synapse
6b46c3eb3d526d903e1e4833b2e8ae9b73de8502
[ "Apache-2.0" ]
null
null
null
synapse/rest/client/account.py
Fizzadar/synapse
6b46c3eb3d526d903e1e4833b2e8ae9b73de8502
[ "Apache-2.0" ]
null
null
null
# Copyright 2015, 2016 OpenMarket Ltd # Copyright 2017 Vector Creations Ltd # Copyright 2018 New Vector Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import random from http import HTTPStatus from typing import TYPE_CHECKING, Optional, Tuple from urllib.parse import urlparse from twisted.web.server import Request from synapse.api.constants import LoginType from synapse.api.errors import ( Codes, InteractiveAuthIncompleteError, SynapseError, ThreepidValidationError, ) from synapse.config.emailconfig import ThreepidBehaviour from synapse.handlers.ui_auth import UIAuthSessionDataConstants from synapse.http.server import HttpServer, finish_request, respond_with_html from synapse.http.servlet import ( RestServlet, assert_params_in_dict, parse_json_object_from_request, parse_string, ) from synapse.http.site import SynapseRequest from synapse.metrics import threepid_send_requests from synapse.push.mailer import Mailer from synapse.types import JsonDict from synapse.util.msisdn import phone_number_to_msisdn from synapse.util.stringutils import assert_valid_client_secret, random_string from synapse.util.threepids import check_3pid_allowed, validate_email from ._base import client_patterns, interactive_auth_handler if TYPE_CHECKING: from synapse.server import HomeServer logger = logging.getLogger(__name__) class EmailPasswordRequestTokenRestServlet(RestServlet): PATTERNS = client_patterns("/account/password/email/requestToken$") def __init__(self, hs: "HomeServer"): super().__init__() self.hs = hs self.datastore = hs.get_datastores().main self.config = hs.config self.identity_handler = hs.get_identity_handler() if self.config.email.threepid_behaviour_email == ThreepidBehaviour.LOCAL: self.mailer = Mailer( hs=self.hs, app_name=self.config.email.email_app_name, template_html=self.config.email.email_password_reset_template_html, template_text=self.config.email.email_password_reset_template_text, ) async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: if self.config.email.threepid_behaviour_email == ThreepidBehaviour.OFF: if self.config.email.local_threepid_handling_disabled_due_to_email_config: logger.warning( "User password resets have been disabled due to lack of email config" ) raise SynapseError( 400, "Email-based password resets have been disabled on this server" ) body = parse_json_object_from_request(request) assert_params_in_dict(body, ["client_secret", "email", "send_attempt"]) # Extract params from body client_secret = body["client_secret"] assert_valid_client_secret(client_secret) # Canonicalise the email address. The addresses are all stored canonicalised # in the database. This allows the user to reset his password without having to # know the exact spelling (eg. upper and lower case) of address in the database. # Stored in the database "foo@bar.com" # User requests with "FOO@bar.com" would raise a Not Found error try: email = validate_email(body["email"]) except ValueError as e: raise SynapseError(400, str(e)) send_attempt = body["send_attempt"] next_link = body.get("next_link") # Optional param if next_link: # Raise if the provided next_link value isn't valid assert_valid_next_link(self.hs, next_link) await self.identity_handler.ratelimit_request_token_requests( request, "email", email ) # The email will be sent to the stored address. # This avoids a potential account hijack by requesting a password reset to # an email address which is controlled by the attacker but which, after # canonicalisation, matches the one in our database. existing_user_id = await self.hs.get_datastores().main.get_user_id_by_threepid( "email", email ) if existing_user_id is None: if self.config.server.request_token_inhibit_3pid_errors: # Make the client think the operation succeeded. See the rationale in the # comments for request_token_inhibit_3pid_errors. # Also wait for some random amount of time between 100ms and 1s to make it # look like we did something. await self.hs.get_clock().sleep(random.randint(1, 10) / 10) return 200, {"sid": random_string(16)} raise SynapseError(400, "Email not found", Codes.THREEPID_NOT_FOUND) if self.config.email.threepid_behaviour_email == ThreepidBehaviour.REMOTE: assert self.hs.config.registration.account_threepid_delegate_email # Have the configured identity server handle the request ret = await self.identity_handler.requestEmailToken( self.hs.config.registration.account_threepid_delegate_email, email, client_secret, send_attempt, next_link, ) else: # Send password reset emails from Synapse sid = await self.identity_handler.send_threepid_validation( email, client_secret, send_attempt, self.mailer.send_password_reset_mail, next_link, ) # Wrap the session id in a JSON object ret = {"sid": sid} threepid_send_requests.labels(type="email", reason="password_reset").observe( send_attempt ) return 200, ret class PasswordRestServlet(RestServlet): PATTERNS = client_patterns("/account/password$") def __init__(self, hs: "HomeServer"): super().__init__() self.hs = hs self.auth = hs.get_auth() self.auth_handler = hs.get_auth_handler() self.datastore = self.hs.get_datastores().main self.password_policy_handler = hs.get_password_policy_handler() self._set_password_handler = hs.get_set_password_handler() @interactive_auth_handler async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: body = parse_json_object_from_request(request) # we do basic sanity checks here because the auth layer will store these # in sessions. Pull out the new password provided to us. new_password = body.pop("new_password", None) if new_password is not None: if not isinstance(new_password, str) or len(new_password) > 512: raise SynapseError(400, "Invalid password") self.password_policy_handler.validate_password(new_password) # there are two possibilities here. Either the user does not have an # access token, and needs to do a password reset; or they have one and # need to validate their identity. # # In the first case, we offer a couple of means of identifying # themselves (email and msisdn, though it's unclear if msisdn actually # works). # # In the second case, we require a password to confirm their identity. requester = None if self.auth.has_access_token(request): requester = await self.auth.get_user_by_req(request) try: params, session_id = await self.auth_handler.validate_user_via_ui_auth( requester, request, body, "modify your account password", ) except InteractiveAuthIncompleteError as e: # The user needs to provide more steps to complete auth, but # they're not required to provide the password again. # # If a password is available now, hash the provided password and # store it for later. if new_password: new_password_hash = await self.auth_handler.hash(new_password) await self.auth_handler.set_session_data( e.session_id, UIAuthSessionDataConstants.PASSWORD_HASH, new_password_hash, ) raise user_id = requester.user.to_string() else: try: result, params, session_id = await self.auth_handler.check_ui_auth( [[LoginType.EMAIL_IDENTITY]], request, body, "modify your account password", ) except InteractiveAuthIncompleteError as e: # The user needs to provide more steps to complete auth, but # they're not required to provide the password again. # # If a password is available now, hash the provided password and # store it for later. if new_password: new_password_hash = await self.auth_handler.hash(new_password) await self.auth_handler.set_session_data( e.session_id, UIAuthSessionDataConstants.PASSWORD_HASH, new_password_hash, ) raise if LoginType.EMAIL_IDENTITY in result: threepid = result[LoginType.EMAIL_IDENTITY] if "medium" not in threepid or "address" not in threepid: raise SynapseError(500, "Malformed threepid") if threepid["medium"] == "email": # For emails, canonicalise the address. # We store all email addresses canonicalised in the DB. # (See add_threepid in synapse/handlers/auth.py) try: threepid["address"] = validate_email(threepid["address"]) except ValueError as e: raise SynapseError(400, str(e)) # if using email, we must know about the email they're authing with! threepid_user_id = await self.datastore.get_user_id_by_threepid( threepid["medium"], threepid["address"] ) if not threepid_user_id: raise SynapseError(404, "Email address not found", Codes.NOT_FOUND) user_id = threepid_user_id else: logger.error("Auth succeeded but no known type! %r", result.keys()) raise SynapseError(500, "", Codes.UNKNOWN) # If we have a password in this request, prefer it. Otherwise, use the # password hash from an earlier request. if new_password: password_hash: Optional[str] = await self.auth_handler.hash(new_password) elif session_id is not None: password_hash = await self.auth_handler.get_session_data( session_id, UIAuthSessionDataConstants.PASSWORD_HASH, None ) else: # UI validation was skipped, but the request did not include a new # password. password_hash = None if not password_hash: raise SynapseError(400, "Missing params: password", Codes.MISSING_PARAM) logout_devices = params.get("logout_devices", True) await self._set_password_handler.set_password( user_id, password_hash, logout_devices, requester ) return 200, {} class DeactivateAccountRestServlet(RestServlet): PATTERNS = client_patterns("/account/deactivate$") def __init__(self, hs: "HomeServer"): super().__init__() self.hs = hs self.auth = hs.get_auth() self.auth_handler = hs.get_auth_handler() self._deactivate_account_handler = hs.get_deactivate_account_handler() @interactive_auth_handler async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: body = parse_json_object_from_request(request) erase = body.get("erase", False) if not isinstance(erase, bool): raise SynapseError( HTTPStatus.BAD_REQUEST, "Param 'erase' must be a boolean, if given", Codes.BAD_JSON, ) requester = await self.auth.get_user_by_req(request) # allow ASes to deactivate their own users if requester.app_service: await self._deactivate_account_handler.deactivate_account( requester.user.to_string(), erase, requester ) return 200, {} await self.auth_handler.validate_user_via_ui_auth( requester, request, body, "deactivate your account", ) result = await self._deactivate_account_handler.deactivate_account( requester.user.to_string(), erase, requester, id_server=body.get("id_server"), ) if result: id_server_unbind_result = "success" else: id_server_unbind_result = "no-support" return 200, {"id_server_unbind_result": id_server_unbind_result} class EmailThreepidRequestTokenRestServlet(RestServlet): PATTERNS = client_patterns("/account/3pid/email/requestToken$") def __init__(self, hs: "HomeServer"): super().__init__() self.hs = hs self.config = hs.config self.identity_handler = hs.get_identity_handler() self.store = self.hs.get_datastores().main if self.config.email.threepid_behaviour_email == ThreepidBehaviour.LOCAL: self.mailer = Mailer( hs=self.hs, app_name=self.config.email.email_app_name, template_html=self.config.email.email_add_threepid_template_html, template_text=self.config.email.email_add_threepid_template_text, ) async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: if self.config.email.threepid_behaviour_email == ThreepidBehaviour.OFF: if self.config.email.local_threepid_handling_disabled_due_to_email_config: logger.warning( "Adding emails have been disabled due to lack of an email config" ) raise SynapseError( 400, "Adding an email to your account is disabled on this server" ) body = parse_json_object_from_request(request) assert_params_in_dict(body, ["client_secret", "email", "send_attempt"]) client_secret = body["client_secret"] assert_valid_client_secret(client_secret) # Canonicalise the email address. The addresses are all stored canonicalised # in the database. # This ensures that the validation email is sent to the canonicalised address # as it will later be entered into the database. # Otherwise the email will be sent to "FOO@bar.com" and stored as # "foo@bar.com" in database. try: email = validate_email(body["email"]) except ValueError as e: raise SynapseError(400, str(e)) send_attempt = body["send_attempt"] next_link = body.get("next_link") # Optional param if not await check_3pid_allowed(self.hs, "email", email): raise SynapseError( 403, "Your email domain is not authorized on this server", Codes.THREEPID_DENIED, ) await self.identity_handler.ratelimit_request_token_requests( request, "email", email ) if next_link: # Raise if the provided next_link value isn't valid assert_valid_next_link(self.hs, next_link) existing_user_id = await self.store.get_user_id_by_threepid("email", email) if existing_user_id is not None: if self.config.server.request_token_inhibit_3pid_errors: # Make the client think the operation succeeded. See the rationale in the # comments for request_token_inhibit_3pid_errors. # Also wait for some random amount of time between 100ms and 1s to make it # look like we did something. await self.hs.get_clock().sleep(random.randint(1, 10) / 10) return 200, {"sid": random_string(16)} raise SynapseError(400, "Email is already in use", Codes.THREEPID_IN_USE) if self.config.email.threepid_behaviour_email == ThreepidBehaviour.REMOTE: assert self.hs.config.registration.account_threepid_delegate_email # Have the configured identity server handle the request ret = await self.identity_handler.requestEmailToken( self.hs.config.registration.account_threepid_delegate_email, email, client_secret, send_attempt, next_link, ) else: # Send threepid validation emails from Synapse sid = await self.identity_handler.send_threepid_validation( email, client_secret, send_attempt, self.mailer.send_add_threepid_mail, next_link, ) # Wrap the session id in a JSON object ret = {"sid": sid} threepid_send_requests.labels(type="email", reason="add_threepid").observe( send_attempt ) return 200, ret class MsisdnThreepidRequestTokenRestServlet(RestServlet): PATTERNS = client_patterns("/account/3pid/msisdn/requestToken$") def __init__(self, hs: "HomeServer"): self.hs = hs super().__init__() self.store = self.hs.get_datastores().main self.identity_handler = hs.get_identity_handler() async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: body = parse_json_object_from_request(request) assert_params_in_dict( body, ["client_secret", "country", "phone_number", "send_attempt"] ) client_secret = body["client_secret"] assert_valid_client_secret(client_secret) country = body["country"] phone_number = body["phone_number"] send_attempt = body["send_attempt"] next_link = body.get("next_link") # Optional param msisdn = phone_number_to_msisdn(country, phone_number) if not await check_3pid_allowed(self.hs, "msisdn", msisdn): raise SynapseError( 403, "Account phone numbers are not authorized on this server", Codes.THREEPID_DENIED, ) await self.identity_handler.ratelimit_request_token_requests( request, "msisdn", msisdn ) if next_link: # Raise if the provided next_link value isn't valid assert_valid_next_link(self.hs, next_link) existing_user_id = await self.store.get_user_id_by_threepid("msisdn", msisdn) if existing_user_id is not None: if self.hs.config.server.request_token_inhibit_3pid_errors: # Make the client think the operation succeeded. See the rationale in the # comments for request_token_inhibit_3pid_errors. # Also wait for some random amount of time between 100ms and 1s to make it # look like we did something. await self.hs.get_clock().sleep(random.randint(1, 10) / 10) return 200, {"sid": random_string(16)} raise SynapseError(400, "MSISDN is already in use", Codes.THREEPID_IN_USE) if not self.hs.config.registration.account_threepid_delegate_msisdn: logger.warning( "No upstream msisdn account_threepid_delegate configured on the server to " "handle this request" ) raise SynapseError( 400, "Adding phone numbers to user account is not supported by this homeserver", ) ret = await self.identity_handler.requestMsisdnToken( self.hs.config.registration.account_threepid_delegate_msisdn, country, phone_number, client_secret, send_attempt, next_link, ) threepid_send_requests.labels(type="msisdn", reason="add_threepid").observe( send_attempt ) return 200, ret class AddThreepidEmailSubmitTokenServlet(RestServlet): """Handles 3PID validation token submission for adding an email to a user's account""" PATTERNS = client_patterns( "/add_threepid/email/submit_token$", releases=(), unstable=True ) def __init__(self, hs: "HomeServer"): super().__init__() self.config = hs.config self.clock = hs.get_clock() self.store = hs.get_datastores().main if self.config.email.threepid_behaviour_email == ThreepidBehaviour.LOCAL: self._failure_email_template = ( self.config.email.email_add_threepid_template_failure_html ) async def on_GET(self, request: Request) -> None: if self.config.email.threepid_behaviour_email == ThreepidBehaviour.OFF: if self.config.email.local_threepid_handling_disabled_due_to_email_config: logger.warning( "Adding emails have been disabled due to lack of an email config" ) raise SynapseError( 400, "Adding an email to your account is disabled on this server" ) elif self.config.email.threepid_behaviour_email == ThreepidBehaviour.REMOTE: raise SynapseError( 400, "This homeserver is not validating threepids. Use an identity server " "instead.", ) sid = parse_string(request, "sid", required=True) token = parse_string(request, "token", required=True) client_secret = parse_string(request, "client_secret", required=True) assert_valid_client_secret(client_secret) # Attempt to validate a 3PID session try: # Mark the session as valid next_link = await self.store.validate_threepid_session( sid, client_secret, token, self.clock.time_msec() ) # Perform a 302 redirect if next_link is set if next_link: request.setResponseCode(302) request.setHeader("Location", next_link) finish_request(request) return None # Otherwise show the success template html = self.config.email.email_add_threepid_template_success_html_content status_code = 200 except ThreepidValidationError as e: status_code = e.code # Show a failure page with a reason template_vars = {"failure_reason": e.msg} html = self._failure_email_template.render(**template_vars) respond_with_html(request, status_code, html) class AddThreepidMsisdnSubmitTokenServlet(RestServlet): """Handles 3PID validation token submission for adding a phone number to a user's account """ PATTERNS = client_patterns( "/add_threepid/msisdn/submit_token$", releases=(), unstable=True ) def __init__(self, hs: "HomeServer"): super().__init__() self.config = hs.config self.clock = hs.get_clock() self.store = hs.get_datastores().main self.identity_handler = hs.get_identity_handler() async def on_POST(self, request: Request) -> Tuple[int, JsonDict]: if not self.config.registration.account_threepid_delegate_msisdn: raise SynapseError( 400, "This homeserver is not validating phone numbers. Use an identity server " "instead.", ) body = parse_json_object_from_request(request) assert_params_in_dict(body, ["client_secret", "sid", "token"]) assert_valid_client_secret(body["client_secret"]) # Proxy submit_token request to msisdn threepid delegate response = await self.identity_handler.proxy_msisdn_submit_token( self.config.registration.account_threepid_delegate_msisdn, body["client_secret"], body["sid"], body["token"], ) return 200, response class ThreepidRestServlet(RestServlet): PATTERNS = client_patterns("/account/3pid$") def __init__(self, hs: "HomeServer"): super().__init__() self.hs = hs self.identity_handler = hs.get_identity_handler() self.auth = hs.get_auth() self.auth_handler = hs.get_auth_handler() self.datastore = self.hs.get_datastores().main async def on_GET(self, request: SynapseRequest) -> Tuple[int, JsonDict]: requester = await self.auth.get_user_by_req(request) threepids = await self.datastore.user_get_threepids(requester.user.to_string()) return 200, {"threepids": threepids} async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: if not self.hs.config.registration.enable_3pid_changes: raise SynapseError( 400, "3PID changes are disabled on this server", Codes.FORBIDDEN ) requester = await self.auth.get_user_by_req(request) user_id = requester.user.to_string() body = parse_json_object_from_request(request) threepid_creds = body.get("threePidCreds") or body.get("three_pid_creds") if threepid_creds is None: raise SynapseError( 400, "Missing param three_pid_creds", Codes.MISSING_PARAM ) assert_params_in_dict(threepid_creds, ["client_secret", "sid"]) sid = threepid_creds["sid"] client_secret = threepid_creds["client_secret"] assert_valid_client_secret(client_secret) validation_session = await self.identity_handler.validate_threepid_session( client_secret, sid ) if validation_session: await self.auth_handler.add_threepid( user_id, validation_session["medium"], validation_session["address"], validation_session["validated_at"], ) return 200, {} raise SynapseError( 400, "No validated 3pid session found", Codes.THREEPID_AUTH_FAILED ) class ThreepidAddRestServlet(RestServlet): PATTERNS = client_patterns("/account/3pid/add$") def __init__(self, hs: "HomeServer"): super().__init__() self.hs = hs self.identity_handler = hs.get_identity_handler() self.auth = hs.get_auth() self.auth_handler = hs.get_auth_handler() @interactive_auth_handler async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: if not self.hs.config.registration.enable_3pid_changes: raise SynapseError( 400, "3PID changes are disabled on this server", Codes.FORBIDDEN ) requester = await self.auth.get_user_by_req(request) user_id = requester.user.to_string() body = parse_json_object_from_request(request) assert_params_in_dict(body, ["client_secret", "sid"]) sid = body["sid"] client_secret = body["client_secret"] assert_valid_client_secret(client_secret) await self.auth_handler.validate_user_via_ui_auth( requester, request, body, "add a third-party identifier to your account", ) validation_session = await self.identity_handler.validate_threepid_session( client_secret, sid ) if validation_session: await self.auth_handler.add_threepid( user_id, validation_session["medium"], validation_session["address"], validation_session["validated_at"], ) return 200, {} raise SynapseError( 400, "No validated 3pid session found", Codes.THREEPID_AUTH_FAILED ) class ThreepidBindRestServlet(RestServlet): PATTERNS = client_patterns("/account/3pid/bind$") def __init__(self, hs: "HomeServer"): super().__init__() self.hs = hs self.identity_handler = hs.get_identity_handler() self.auth = hs.get_auth() async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: body = parse_json_object_from_request(request) assert_params_in_dict(body, ["id_server", "sid", "client_secret"]) id_server = body["id_server"] sid = body["sid"] id_access_token = body.get("id_access_token") # optional client_secret = body["client_secret"] assert_valid_client_secret(client_secret) requester = await self.auth.get_user_by_req(request) user_id = requester.user.to_string() await self.identity_handler.bind_threepid( client_secret, sid, user_id, id_server, id_access_token ) return 200, {} class ThreepidUnbindRestServlet(RestServlet): PATTERNS = client_patterns("/account/3pid/unbind$") def __init__(self, hs: "HomeServer"): super().__init__() self.hs = hs self.identity_handler = hs.get_identity_handler() self.auth = hs.get_auth() self.datastore = self.hs.get_datastores().main async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: """Unbind the given 3pid from a specific identity server, or identity servers that are known to have this 3pid bound """ requester = await self.auth.get_user_by_req(request) body = parse_json_object_from_request(request) assert_params_in_dict(body, ["medium", "address"]) medium = body.get("medium") address = body.get("address") id_server = body.get("id_server") # Attempt to unbind the threepid from an identity server. If id_server is None, try to # unbind from all identity servers this threepid has been added to in the past result = await self.identity_handler.try_unbind_threepid( requester.user.to_string(), {"address": address, "medium": medium, "id_server": id_server}, ) return 200, {"id_server_unbind_result": "success" if result else "no-support"} class ThreepidDeleteRestServlet(RestServlet): PATTERNS = client_patterns("/account/3pid/delete$") def __init__(self, hs: "HomeServer"): super().__init__() self.hs = hs self.auth = hs.get_auth() self.auth_handler = hs.get_auth_handler() async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: if not self.hs.config.registration.enable_3pid_changes: raise SynapseError( 400, "3PID changes are disabled on this server", Codes.FORBIDDEN ) body = parse_json_object_from_request(request) assert_params_in_dict(body, ["medium", "address"]) requester = await self.auth.get_user_by_req(request) user_id = requester.user.to_string() try: ret = await self.auth_handler.delete_threepid( user_id, body["medium"], body["address"], body.get("id_server") ) except Exception: # NB. This endpoint should succeed if there is nothing to # delete, so it should only throw if something is wrong # that we ought to care about. logger.exception("Failed to remove threepid") raise SynapseError(500, "Failed to remove threepid") if ret: id_server_unbind_result = "success" else: id_server_unbind_result = "no-support" return 200, {"id_server_unbind_result": id_server_unbind_result} def assert_valid_next_link(hs: "HomeServer", next_link: str) -> None: """ Raises a SynapseError if a given next_link value is invalid next_link is valid if the scheme is http(s) and the next_link.domain_whitelist config option is either empty or contains a domain that matches the one in the given next_link Args: hs: The homeserver object next_link: The next_link value given by the client Raises: SynapseError: If the next_link is invalid """ valid = True # Parse the contents of the URL next_link_parsed = urlparse(next_link) # Scheme must not point to the local drive if next_link_parsed.scheme == "file": valid = False # If the domain whitelist is set, the domain must be in it if ( valid and hs.config.server.next_link_domain_whitelist is not None and next_link_parsed.hostname not in hs.config.server.next_link_domain_whitelist ): valid = False if not valid: raise SynapseError( 400, "'next_link' domain not included in whitelist, or not http(s)", errcode=Codes.INVALID_PARAM, ) class WhoamiRestServlet(RestServlet): PATTERNS = client_patterns("/account/whoami$") def __init__(self, hs: "HomeServer"): super().__init__() self.auth = hs.get_auth() async def on_GET(self, request: SynapseRequest) -> Tuple[int, JsonDict]: requester = await self.auth.get_user_by_req(request, allow_guest=True) response = { "user_id": requester.user.to_string(), # Entered spec in Matrix 1.2 "is_guest": bool(requester.is_guest), } # Appservices and similar accounts do not have device IDs # that we can report on, so exclude them for compliance. if requester.device_id is not None: response["device_id"] = requester.device_id return 200, response class AccountStatusRestServlet(RestServlet): PATTERNS = client_patterns( "/org.matrix.msc3720/account_status$", unstable=True, releases=() ) def __init__(self, hs: "HomeServer"): super().__init__() self._auth = hs.get_auth() self._account_handler = hs.get_account_handler() async def on_POST(self, request: SynapseRequest) -> Tuple[int, JsonDict]: await self._auth.get_user_by_req(request) body = parse_json_object_from_request(request) if "user_ids" not in body: raise SynapseError( 400, "Required parameter 'user_ids' is missing", Codes.MISSING_PARAM ) statuses, failures = await self._account_handler.get_account_statuses( body["user_ids"], allow_remote=True, ) return 200, {"account_statuses": statuses, "failures": failures} def register_servlets(hs: "HomeServer", http_server: HttpServer) -> None: EmailPasswordRequestTokenRestServlet(hs).register(http_server) PasswordRestServlet(hs).register(http_server) DeactivateAccountRestServlet(hs).register(http_server) EmailThreepidRequestTokenRestServlet(hs).register(http_server) MsisdnThreepidRequestTokenRestServlet(hs).register(http_server) AddThreepidEmailSubmitTokenServlet(hs).register(http_server) AddThreepidMsisdnSubmitTokenServlet(hs).register(http_server) ThreepidRestServlet(hs).register(http_server) ThreepidAddRestServlet(hs).register(http_server) ThreepidBindRestServlet(hs).register(http_server) ThreepidUnbindRestServlet(hs).register(http_server) ThreepidDeleteRestServlet(hs).register(http_server) WhoamiRestServlet(hs).register(http_server) if hs.config.experimental.msc3720_enabled: AccountStatusRestServlet(hs).register(http_server)
38.954304
94
0.636158
7982bbb93cc579623c501401bddc35f0c0f0ad1d
670
py
Python
Lib/site-packages/traitlets/utils/bunch.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/traitlets/utils/bunch.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/traitlets/utils/bunch.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
"""Yet another implementation of bunch attribute-access of items on a dict. """ # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. class Bunch(dict): # type:ignore[type-arg] """A dict with attribute-access""" def __getattr__(self, key): try: return self.__getitem__(key) except KeyError: raise AttributeError(key) def __setattr__(self, key, value): self.__setitem__(key, value) def __dir__(self): # py2-compat: can't use super because dict doesn't have __dir__ names = dir({}) names.extend(self.keys()) return names
24.814815
71
0.638806
dee20f0ca68e4575842d172e514e10be131d0af5
1,334
py
Python
setup.py
dinceraslancom/internetdownloadmanager
35d2c57c4fadb93b57952f4e5584546731a082d4
[ "Apache-2.0" ]
10
2019-12-10T13:51:07.000Z
2021-08-16T13:27:47.000Z
setup.py
dinceraslancom/internetdownloadmanager
35d2c57c4fadb93b57952f4e5584546731a082d4
[ "Apache-2.0" ]
null
null
null
setup.py
dinceraslancom/internetdownloadmanager
35d2c57c4fadb93b57952f4e5584546731a082d4
[ "Apache-2.0" ]
null
null
null
from setuptools import setup, find_packages requires = [ 'chardet>=3.0.2,<3.1.0', 'idna>=2.5,<2.9', 'urllib3>=1.21.1,<1.26,!=1.25.0,!=1.25.1', 'certifi>=2017.4.17', 'requests>=2.22.0', ] with open("README.rst", "r", encoding="utf8") as f: readme = f.read() with open("HISTORY.rst", "r", encoding="utf8") as f: history = f.read() setup( name='internetdownloadmanager', version='0.0.1', package_dir={'internetdownloadmanager': 'internetdownloadmanager'}, author="Dincer Aslan", author_email="dinceraslan.com@gmail.com", description="file downloader with many requests", long_description=readme, url="https://github.com/dinceraslancom/internetdownloadmanager", packages=find_packages(), python_requires=">=3.0, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*", install_requires=requires, classifiers=[ 'Natural Language :: English', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], project_urls={ 'Source': 'https://github.com/dinceraslancom/internetdownloadmanager', }, )
31.023256
78
0.613943
4ca3cc064795e84e8a8f092b3e424a25c8dc6aa0
487
py
Python
83/removeduplicatiesfromsortedlinkedlist.py
cccccccccccccc/Myleetcode
fb3fa6df7c77feb2d252feea7f3507569e057c70
[ "Apache-2.0" ]
null
null
null
83/removeduplicatiesfromsortedlinkedlist.py
cccccccccccccc/Myleetcode
fb3fa6df7c77feb2d252feea7f3507569e057c70
[ "Apache-2.0" ]
null
null
null
83/removeduplicatiesfromsortedlinkedlist.py
cccccccccccccc/Myleetcode
fb3fa6df7c77feb2d252feea7f3507569e057c70
[ "Apache-2.0" ]
null
null
null
# Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def deleteDuplicates(self, head: ListNode) -> ListNode: if head is None or head.next is None: return head cur = head while head.next: if head.val == head.next.val: head.next = head.next.next else: head = head.next return cur
30.4375
59
0.554415
c6b107d5f51d7704c7e7742336fc49cb91579cc4
3,721
py
Python
VWCemail.py
DennisH3/Virtual-Water-Cooler
4f62ab890c54a20d619a6d58fbef9fd84f22ce1b
[ "MIT" ]
null
null
null
VWCemail.py
DennisH3/Virtual-Water-Cooler
4f62ab890c54a20d619a6d58fbef9fd84f22ce1b
[ "MIT" ]
2
2020-11-24T13:59:49.000Z
2020-12-04T19:32:42.000Z
VWCemail.py
DennisH3/Virtual-Water-Cooler
4f62ab890c54a20d619a6d58fbef9fd84f22ce1b
[ "MIT" ]
2
2020-11-24T12:36:45.000Z
2020-11-25T14:56:22.000Z
# coding: utf-8 # In[ ]: # Pip Installs #!pip install pywin32 # In[ ]: import pandas as pd from IPython.display import display import win32com.client as win32 import time # In[ ]: """ Desc: Function that sends an email. Params: recipients (string), subject (string), text (string) Output: An email Note: you must be logged onto your Outlook 2013 account first before this will run """ def email(recipients, text, profilename="Outlook 2013"): oa = win32.Dispatch("Outlook.Application") Msg = oa.CreateItem(0) Msg.To = recipients Msg.Subject = "Virtual Water Cooler" Msg.Body = text Msg.Display() # Msg.Send() # In[ ]: """Load the data""" df = pd.read_csv("emailVWC.csv") # Filter the data for people who have been matched df = df[df["matched"] == 1] # Display display(df) # In[ ]: """Automated Emails for Matched Groups""" # For each pair in list of matches for i in range(0, len(df.index)-1, 2): # Body text of email (English) text = """Hello {} and {}, You have been matched together for a Virtual Watercooler conversation. We recommend using MS Teams scheduled during regular business hours for a conversation of at about 10 minutes, but it is up to you to decide how to proceed. The group prefers to chat in {} in the {}. You work in {} and {}, respectively. {} Please reach out to [name] <email> with all of your feedback, questions and suggestions. Thank you for using the StatCan Virtual Watercooler. Sincerely, The StatCan Virtual Watercooler Team Innovation Secretariat""".format(df.iloc[i]['name'], # Name of Person 1 df.iloc[i+1]['name'], # Name of Person 2 df.iloc[i]['lang'], # Language preference df.iloc[i]['t'], # Time preference df.iloc[i]['field'], # Field of Person 1 df.iloc[i+1]['field'], # Field of Person 2 df.iloc[i]['comInterests'] # Common interests ) # French translation of the email textFr = """Bonjour {} et {}, Vous avez été jumelés pour une causerie virtuelle. Nous vous recommandons d’utiliser MS Teams pendant les heures normales de travail pour discuter environ 10 minutes, mais c’est à vous de décider de la manière de procéder. Le groupe préfère discuter en {} dans {}. Vous travaillez dans {} et {}, respectivement. {} Nous vous invitons à communiquer avec [nom] <email> si vous avez des commentaires, des questions et des suggestions. Nous vous remercions de participer aux causeries virtuelles de Statistique Canada. Bien cordialement, L’Équipe des causeries virtuelles de Statistique Canada Secrétariat de l’innovation""".format(df.iloc[i]['name'], # Name of Person 1 df.iloc[i+1]['name'], # Name of Person 2 df.iloc[i]['langFR'], # Language preference df.iloc[i]['tFR'], # Time preference df.iloc[i]['fieldFR'], # Field of Person 1 df.iloc[i+1]['fieldFR'], # Field of Person 2 df.iloc[i]['comInterestsFR'] # Common interests ) # Final email message message = text + "\n\n\n" + textFr print(message) # The emails from each person in the pair recipients = df.iloc[i]['email'] + "; " + df.iloc[i+1]['email'] print(recipients) # Send the emails email(recipients, message) # Wait 3 seconds before next email time.sleep(3)
26.769784
105
0.596345
f5bef131802030115074e01d8a8d8f9f7edb8667
369
py
Python
section_cmab/algorithms/lrfu.py
myron0330/caching-research
adb61e6d7246af13d4428254d456618cd6ccf0dc
[ "MIT" ]
null
null
null
section_cmab/algorithms/lrfu.py
myron0330/caching-research
adb61e6d7246af13d4428254d456618cd6ccf0dc
[ "MIT" ]
null
null
null
section_cmab/algorithms/lrfu.py
myron0330/caching-research
adb61e6d7246af13d4428254d456618cd6ccf0dc
[ "MIT" ]
null
null
null
# -*- coding: UTF-8 -*- # **********************************************************************************# # File: # **********************************************************************************# from __future__ import division def lfu(x): """ Lfu function """ return 1 def lru(x): """ Lru function """ return (1./2)**x
18.45
85
0.254743
ae6a0695f5bf250b3c7ac7a4ea833f270582af2c
1,449
py
Python
nativecompile.py
antimatter15/microwave
aef41f6b57e3171ca22c12422c0a05e17cc002c6
[ "Apache-2.0" ]
1
2017-03-08T18:45:50.000Z
2017-03-08T18:45:50.000Z
nativecompile.py
antimatter15/microwave
aef41f6b57e3171ca22c12422c0a05e17cc002c6
[ "Apache-2.0" ]
null
null
null
nativecompile.py
antimatter15/microwave
aef41f6b57e3171ca22c12422c0a05e17cc002c6
[ "Apache-2.0" ]
null
null
null
#/usr/bin/python import httplib, urllib, fileinput, sys, re print "Reading Developement HTML" prefix = './' codes = open(prefix+'native.html','r').read() compile_regex = r'START_JS(.*?)END_JS' js = '' for match in re.finditer(compile_regex, codes, re.DOTALL): print "Found script compile block" includetext = match.group(1) for include in re.finditer(r'src=[\"\'](.*)[\"\']', includetext): fn = include.group(1) js += "//File: "+fn+ '\n\n\n' js += open(prefix+fn,'r').read() + '\n\n\n' html = codes.replace(match.group(0),'') print "Writing concatenated JS" open(prefix+'microwave.native.js','w').write(js) #exit(); html = html.replace('<!--RELEASE','') html = html.replace('RELEASE-->','') html = html.replace('<!---->','') print "Writing compiled HTML" open(prefix+'native.out.html','w').write(html) print "Querying Closure Compiler REST API for compressed JS" params = urllib.urlencode([ ('js_code', js), ('compilation_level', 'SIMPLE_OPTIMIZATIONS'), ('output_format', 'text'), ('output_info', 'compiled_code'), ]) # Always use the following value for the Content-type header. headers = { "Content-type": "application/x-www-form-urlencoded" } conn = httplib.HTTPConnection('closure-compiler.appspot.com') conn.request('POST', '/compile', params, headers) response = conn.getresponse() data = response.read()#.replace('\n','') print "Writing compressed JS" open(prefix+'native.min.js','w').write(data)
31.5
67
0.668737
13d005db04e6d2496073ed7dd6b35cf8d9e21343
2,605
py
Python
test/IECore/TypedPrimitiveOp.py
gcodebackups/cortex-vfx
72fa6c6eb3327fce4faf01361c8fcc2e1e892672
[ "BSD-3-Clause" ]
5
2016-07-26T06:09:28.000Z
2022-03-07T03:58:51.000Z
test/IECore/TypedPrimitiveOp.py
turbosun/cortex
4bdc01a692652cd562f3bfa85f3dae99d07c0b15
[ "BSD-3-Clause" ]
null
null
null
test/IECore/TypedPrimitiveOp.py
turbosun/cortex
4bdc01a692652cd562f3bfa85f3dae99d07c0b15
[ "BSD-3-Clause" ]
3
2015-03-25T18:45:24.000Z
2020-02-15T15:37:18.000Z
########################################################################## # # Copyright (c) 2007, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import unittest import os.path from IECore import * class TestTypedPrimitiveOp( unittest.TestCase ) : class MeshCopyOp( MeshPrimitiveOp ) : def __init__( self ): MeshPrimitiveOp.__init__( self, "MeshCopyOp", "A simple op to copy meshes" ) def modifyTypedPrimitive( self, mesh, operands ) : # ModifyOp should automatically copy the input for us, so we can just # return it. return mesh def testMeshPrimitiveOp( self ) : """ Test TypedPrimitiveOp for use with MeshPrimitive """ op = TestTypedPrimitiveOp.MeshCopyOp() inputMesh = MeshPrimitive() outputMesh = op( input = inputMesh ) self.assert_( outputMesh.isInstanceOf( TypeId.MeshPrimitive ) ) self.failIf( inputMesh is outputMesh ) self.assertEqual( inputMesh, outputMesh ) if __name__ == "__main__": unittest.main()
37.753623
79
0.702111
b887a82a2e6404b6cf33bd37dca2ad5e543a6c49
53
py
Python
pydeeplator/_version.py
sunhailin-Leo/deepL-translator-api
20aa5347ce5fa9be116488c729bb389602e229f5
[ "MIT" ]
18
2020-04-02T06:07:51.000Z
2022-01-19T12:54:43.000Z
pydeeplator/_version.py
sunhailin-Leo/deepL-translator-api
20aa5347ce5fa9be116488c729bb389602e229f5
[ "MIT" ]
3
2020-04-07T04:48:23.000Z
2022-01-19T12:55:40.000Z
pydeeplator/_version.py
sunhailin-Leo/deepL-translator-api
20aa5347ce5fa9be116488c729bb389602e229f5
[ "MIT" ]
3
2020-04-27T04:15:59.000Z
2021-02-12T04:02:46.000Z
__version__ = "0.0.2" __author__ = "sunhailin-Leo"
17.666667
29
0.679245
eece5b6be4f9a6c959d7890085dc9ca69487e6f6
2,053
py
Python
common_python/testing/helpers.py
ScienceStacks/PythonCommon
2732f928e13592f2089269731c8e2b04f856a77d
[ "MIT" ]
1
2019-03-26T20:30:08.000Z
2019-03-26T20:30:08.000Z
common_python/testing/helpers.py
ScienceStacks/PythonCommon
2732f928e13592f2089269731c8e2b04f856a77d
[ "MIT" ]
1
2019-05-31T21:59:30.000Z
2019-05-31T21:59:30.000Z
common_python/testing/helpers.py
ScienceStacks/PythonCommon
2732f928e13592f2089269731c8e2b04f856a77d
[ "MIT" ]
null
null
null
""" Helpers for Tests. """ import os.path import pandas as pd DEBUG = True def isValidDataFrame(df, expected_columns, min_rows=1, nan_columns=None, key=None, valid_dict=None): """ Simple test of a data frame. a) Contains the expected columns b) Has a minimum number of rows c) Does not contain np.nan values :param pd.DataFrame df: DataFrame to validate :param list-of-str expected_columns: :param int min_rows: :param list-of-str nan_columns: columns where there may be nan values :param str or list-of-str key: Columns that is a key :param dict valid_dict: key=column name, value=function of value :return bool: True if passes tests """ bads = [x for x in expected_columns if not x in df.columns.tolist()] if len(bads) > 0: if DEBUG: import pdb; pdb.set_trace() return False if len(df) < min_rows: if DEBUG: import pdb; pdb.set_trace() return False if (key is not None) and len(key) > 0: df_key = pd.DataFrame(df[key]) if len(key) == 1: keys = df[key] if None in keys: keys.remove(None) df_key[key] = keys df_key = df_key.drop_duplicates() if len(df_key) != len(df.drop_duplicates()): if DEBUG: import pdb; pdb.set_trace() return False if valid_dict is not None: for col, func in valid_dict.items(): trues = [func(x) for x in df[col]] if not all(trues): import pdb; pdb.set_trace() if DEBUG: import pdb; pdb.set_trace() return False return True class MockFileDescriptor(): def __init__(self, path, mode): self.fd = open(path, mode) def __enter__(*pargs, **kwargs): pass def __exit__(*pargs, **kwargs): pass def close(self): self.fd.close() def read(*pargs): self = pargs[0] if len(pargs) > 1: return self.fd.read(pargs[1]) else: return self.fd.read() def readlines(self): return self.fd.readlines() def write(*pargs, **kwargs): pass def writelines(*pargs, **kwargs): pass
23.597701
70
0.632245
d05007e2dce7d45e935e832d7ff1822bd7f71a53
1,214
py
Python
helm-chart/images/kubessh/kubessh_config.py
yuvipanda/kubessh
ba6350b671f37d1bdcc7db9c19d39c26fef6ef85
[ "Apache-2.0" ]
33
2018-04-03T17:43:55.000Z
2022-01-10T19:36:36.000Z
helm-chart/images/kubessh/kubessh_config.py
yuvipanda/kubessh
ba6350b671f37d1bdcc7db9c19d39c26fef6ef85
[ "Apache-2.0" ]
30
2018-04-03T20:16:11.000Z
2020-11-23T06:20:42.000Z
helm-chart/images/kubessh/kubessh_config.py
kubessh/kubessh
ba6350b671f37d1bdcc7db9c19d39c26fef6ef85
[ "Apache-2.0" ]
5
2020-04-16T15:01:46.000Z
2020-11-28T01:49:56.000Z
from ruamel.yaml import YAML from kubessh.authentication.github import GitHubAuthenticator from kubessh.authentication.gitlab import GitLabAuthenticator from kubessh.authentication.dummy import DummyAuthenticator yaml = YAML() c.KubeSSH.host_key_path = '/etc/kubessh/secrets/kubessh.host-key' c.KubeSSH.debug = True with open('/etc/kubessh/config/values.yaml') as f: config = yaml.load(f) if config['auth']['type'] == 'github': c.KubeSSH.authenticator_class = GitHubAuthenticator c.KubeSSH.authenticator_class.allowed_users = config['auth']['github']['allowedUsers'] elif config['auth']['type'] == 'gitlab': c.KubeSSH.authenticator_class = GitLabAuthenticator c.KubeSSH.authenticator_class.instance_url = config['auth']['gitlab']['instanceUrl'] c.KubeSSH.authenticator_class.allowed_users = config['auth']['gitlab']['allowedUsers'] elif config['auth']['type'] == 'dummy': c.KubeSSH.authenticator_class = DummyAuthenticator if 'defaultNamespace' in config: c.KubeSSH.default_namespace = config['defaultNamespace'] if 'podTemplate' in config: c.UserPod.pod_template = config['podTemplate'] if 'pvcTemplates' in config: c.UserPod.pvc_templates = config['pvcTemplates']
36.787879
90
0.757002
b2a868e3b0f668de6ba15a4add3eaf29595f4583
1,096
py
Python
base-excel/Demo1.py
meteor1993/python-learning
4ee574c9360caf6e63bb6ee2ef31fa6a9918fa40
[ "MIT" ]
83
2019-10-15T06:54:06.000Z
2022-03-28T14:08:21.000Z
base-excel/Demo1.py
wenxuefeng3930/python-learning
4ee574c9360caf6e63bb6ee2ef31fa6a9918fa40
[ "MIT" ]
1
2020-04-16T08:13:19.000Z
2020-07-14T01:52:46.000Z
base-excel/Demo1.py
wenxuefeng3930/python-learning
4ee574c9360caf6e63bb6ee2ef31fa6a9918fa40
[ "MIT" ]
74
2019-11-02T08:10:36.000Z
2022-02-19T12:23:36.000Z
import xlsxwriter import datetime workbook = xlsxwriter.Workbook('demo.xlsx') sheet1 = workbook.add_worksheet('test_sheet') workfomat = workbook.add_format() # 字体加粗 workfomat.set_bold(True) # 单元格边框宽度 workfomat.set_border(1) # 对齐方式 workfomat.set_align('left') # 格式化数据格式为小数点后两位 workfomat.set_num_format('0.00') heads = ['', '语文', '数学', '英语'] datas = [ ['小明', 76, 85, 95], ['小红', 85, 58, 92], ['小王', 98, 96, 91] ] sheet1.write_row('A1', heads, workfomat) sheet1.write_row('A2', datas[0], workfomat) sheet1.write_row('A3', datas[1], workfomat) sheet1.write_row('A4', datas[2], workfomat) fomat1 = workbook.add_format({'num_format': 'yyyy/mm/dd/ hh:mm:ss'}) sheet1.write_datetime('E5', datetime.datetime(2019, 11, 9, 22, 44, 26), fomat1) sheet1.insert_image('I6', 'wx.jpg') chart = workbook.add_chart({'type': 'column'}) chart.add_series({'values': '=test_sheet!$B$2:$B$4'}) chart.add_series({'values': '=test_sheet!$C$2:$C$4'}) chart.add_series({'values': '=test_sheet!$D$2:$D$4'}) sheet1.insert_chart('A7', chart) workbook.close()
24.355556
80
0.655109
3fb027e6f1ccd8038e26ce54c7f80ff4275d30c0
1,153
py
Python
setup.py
marqeta/marqeta-python
66fa690eb910825c510a391720b0fe717fac0234
[ "MIT" ]
21
2019-04-12T09:02:17.000Z
2022-02-18T11:39:06.000Z
setup.py
marqeta/marqeta-python
66fa690eb910825c510a391720b0fe717fac0234
[ "MIT" ]
1
2020-07-22T21:27:40.000Z
2020-07-23T17:38:43.000Z
setup.py
marqeta/marqeta-python
66fa690eb910825c510a391720b0fe717fac0234
[ "MIT" ]
10
2019-05-08T14:20:37.000Z
2021-09-20T18:09:26.000Z
from setuptools import setup, find_packages from marqeta.version import __version__ with open('requirements.txt', 'r') as requirements: install_requires = requirements.read() with open('README.md') as f: long_description = f.read() setup( name="marqeta", version=__version__, description="Marqeta Python SDK", author="Marqeta, Inc.", url="https://github.com/marqeta/marqeta-python", license="MIT", keywords=["marqeta"], project_urls={ "Documentation": "https://marqeta.com/api", "Source Code": "https://github.com/marqeta/marqeta-python", }, classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Topic :: Software Development :: Libraries :: Python Modules", ], packages=find_packages(exclude=['tests', 'tests.*']), include_package_data=True, install_requires=install_requires, long_description=long_description, long_description_content_type="text/markdown", )
32.027778
71
0.660885
a4e6f31ae88411363b680e641a5b521ba2d032c1
287
py
Python
test/espnet2/bin/test_enh_scoring.py
texpomru13/espnet
7ef005e832e2fb033f356c16f54e0f08762fb4b0
[ "Apache-2.0" ]
5,053
2017-12-13T06:21:41.000Z
2022-03-31T13:38:29.000Z
test/espnet2/bin/test_enh_scoring.py
texpomru13/espnet
7ef005e832e2fb033f356c16f54e0f08762fb4b0
[ "Apache-2.0" ]
3,666
2017-12-14T05:58:50.000Z
2022-03-31T22:11:49.000Z
test/espnet2/bin/test_enh_scoring.py
texpomru13/espnet
7ef005e832e2fb033f356c16f54e0f08762fb4b0
[ "Apache-2.0" ]
1,709
2017-12-13T01:02:42.000Z
2022-03-31T11:57:45.000Z
from argparse import ArgumentParser import pytest from espnet2.bin.enh_scoring import get_parser from espnet2.bin.enh_scoring import main def test_get_parser(): assert isinstance(get_parser(), ArgumentParser) def test_main(): with pytest.raises(SystemExit): main()
17.9375
51
0.766551
03695a84bd5fa9630bf6c787f19ddc47a5103a76
4,003
py
Python
dependencies/panda/Panda3D-1.10.0-x64/direct/showbase/Job.py
CrankySupertoon01/Toontown-2
60893d104528a8e7eb4aced5d0015f22e203466d
[ "MIT" ]
3
2018-03-09T12:07:29.000Z
2021-02-25T06:50:25.000Z
direct/src/showbase/Job.py
Sinkay/panda3d
16bfd3750f726a8831771b81649d18d087917fd5
[ "PHP-3.01", "PHP-3.0" ]
1
2018-07-28T20:07:04.000Z
2018-07-30T18:28:34.000Z
direct/src/showbase/Job.py
Sinkay/panda3d
16bfd3750f726a8831771b81649d18d087917fd5
[ "PHP-3.01", "PHP-3.0" ]
2
2019-12-02T01:39:10.000Z
2021-02-13T22:41:00.000Z
from direct.showbase.DirectObject import DirectObject if __debug__: from panda3d.core import PStatCollector class Job(DirectObject): # Base class for cpu-intensive or non-time-critical operations that # are run through the JobManager. # values to yield from your run() generator method Done = object() Continue = None # 'yield None' is acceptable in place of 'yield Job.Continue' Sleep = object() # yield any remaining time for this job until next frame # These priorities determine how many timeslices a job gets relative to other # jobs. A job with priority of 1000 will run 10 times more often than a job # with priority of 100. Priorities = ScratchPad(Min=1, Low=100, Normal=1000, High=10000) _SerialGen = SerialNumGen() def __init__(self, name): self._name = name self._generator = None self._id = Job._SerialGen.next() self._printing = False self._priority = Job.Priorities.Normal self._finished = False if __debug__: self._pstats = PStatCollector("App:Show code:jobManager:%s" % self._name) def destroy(self): del self._name del self._generator del self._printing def getFinishedEvent(self): return 'job-finished-%s' % self._id def run(self): # this is a generator # override and do your processing # yield Job.Continue when possible/reasonable # try not to run longer than the JobManager's timeslice between yields # # when done, yield Job.Done # raise "don't call down" def getPriority(self): return self._priority def setPriority(self, priority): self._priority = priority def printingBegin(self): self._printing = True def printingEnd(self): self._printing = False def resume(self): # called every time JobManager is going to start running this job """ if self._printing: # we may be suspended/resumed multiple times per frame, that gets spammy # if we need to pick out the output of a job, put a prefix onto each line # of the output print 'JOB:%s:RESUME' % self._name """ pass def suspend(self): # called when JobManager is going to stop running this job for a while """ if self._printing: #print 'JOB:%s:SUSPEND' % self._name pass """ pass def _setFinished(self): self._finished = True self.finished() def isFinished(self): return self._finished def finished(self): # called when the job finishes and has been removed from the JobManager pass def getJobName(self): return self._name def _getJobId(self): return self._id def _getGenerator(self): if self._generator is None: self._generator = self.run() return self._generator def _cleanupGenerator(self): if self._generator is not None: self._generator = None if __debug__: # __dev__ not yet available at this point from direct.showbase.Job import Job class TestJob(Job): def __init__(self): Job.__init__(self, 'TestJob') self._counter = 0 self._accum = 0 self._finished = False def run(self): self.printingBegin() while True: while self._accum < 100: self._accum += 1 print 'counter = %s, accum = %s' % (self._counter, self._accum) yield None self._accum = 0 self._counter += 1 if self._counter >= 100: print 'Job.Done' self.printingEnd() yield Job.Done else: yield None def addTestJob(): jobMgr.add(TestJob())
30.792308
85
0.587559
ffd1f7252f8490538850365c3e9142cb7070edb4
1,091
py
Python
xos/synchronizer/veg-synchronizer.py
opencord/vEG
3f332f376b800ca5e486a14a6ecf55f0b2974e50
[ "Apache-2.0" ]
3
2017-09-13T09:45:59.000Z
2018-01-26T03:02:34.000Z
xos/synchronizer/veg-synchronizer.py
opencord/vEG
3f332f376b800ca5e486a14a6ecf55f0b2974e50
[ "Apache-2.0" ]
null
null
null
xos/synchronizer/veg-synchronizer.py
opencord/vEG
3f332f376b800ca5e486a14a6ecf55f0b2974e50
[ "Apache-2.0" ]
null
null
null
# Copyright 2017-present Open Networking Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python # This imports and runs ../../xos-observer.py import importlib import os import sys from xosconfig import Config config_file = os.path.abspath(os.path.dirname(os.path.realpath(__file__)) + '/veg_config.yaml') Config.init(config_file, 'synchronizer-config-schema.yaml') observer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)),"../../synchronizers/new_base") sys.path.append(observer_path) mod = importlib.import_module("xos-synchronizer") mod.main()
31.171429
104
0.767186
eeb3ad84b0dc55300a5ccc598a712ac2995deb82
7,886
py
Python
docs/conf.py
ebborchers/kaggle_petfinder
4a5992a718e0e323e943824c7a0227e0ff98128d
[ "FTL" ]
null
null
null
docs/conf.py
ebborchers/kaggle_petfinder
4a5992a718e0e323e943824c7a0227e0ff98128d
[ "FTL" ]
null
null
null
docs/conf.py
ebborchers/kaggle_petfinder
4a5992a718e0e323e943824c7a0227e0ff98128d
[ "FTL" ]
null
null
null
# -*- coding: utf-8 -*- # # petfinder_kaggle documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'petfinder_kaggle' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'kaggle_petfinderdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'kaggle_petfinder.tex', u'petfinder_kaggle Documentation', u"Eric Borchers", 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'kaggle_petfinder', u'petfinder_kaggle Documentation', [u"Eric Borchers"], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'kaggle_petfinder', u'petfinder_kaggle Documentation', u"Eric Borchers", 'petfinder_kaggle', 'Kaggle competition, predicting adoption rates for animals on petfinder.my', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
32.187755
99
0.710373
b994043f502a756e5c47402e7c7679f129c5d331
74,756
py
Python
instabot/api/api.py
Tkd-Alex/instabot
230eba37c2d9f229bf9f08eb804a166a26c1d60e
[ "Apache-2.0" ]
5
2019-08-15T14:47:56.000Z
2021-11-24T10:53:15.000Z
instabot/api/api.py
Tkd-Alex/instabot
230eba37c2d9f229bf9f08eb804a166a26c1d60e
[ "Apache-2.0" ]
null
null
null
instabot/api/api.py
Tkd-Alex/instabot
230eba37c2d9f229bf9f08eb804a166a26c1d60e
[ "Apache-2.0" ]
2
2019-08-23T23:39:21.000Z
2021-04-18T19:18:39.000Z
import base64 import datetime import hashlib import hmac import json import logging import os import random import sys import time import uuid import pytz import requests import requests.utils import six.moves.urllib as urllib from requests_toolbelt import MultipartEncoder from tqdm import tqdm from . import config, devices from .api_login import ( change_device_simulation, generate_all_uuids, load_uuid_and_cookie, login_flow, pre_login_flow, reinstall_app_simulation, save_uuid_and_cookie, set_device, sync_device_features, sync_launcher, sync_user_features, ) from .api_photo import configure_photo, download_photo, upload_photo, rupload_igphoto from .api_story import configure_story, download_story, upload_story_photo from .api_video import configure_video, download_video, upload_video from .prepare import delete_credentials, get_credentials try: from json.decoder import JSONDecodeError except ImportError: JSONDecodeError = ValueError PY2 = sys.version_info[0] == 2 class API(object): def __init__(self, device=None, base_path="", save_logfile=True, log_filename=None): # Setup device and user_agent self.device = device or devices.DEFAULT_DEVICE self.cookie_fname = None self.base_path = base_path self.is_logged_in = False self.last_login = None self.last_response = None self.total_requests = 0 # Setup logging self.logger = logging.getLogger("[instabot_{}]".format(id(self))) if not os.path.exists("./config/"): os.makedirs("./config/") # create base_path if not exists if save_logfile is True: if log_filename is None: log_filename = os.path.join( base_path, "instabot_{}.log".format(id(self)) ) fh = logging.FileHandler(filename=log_filename) fh.setLevel(logging.INFO) fh.setFormatter(logging.Formatter("%(asctime)s %(message)s")) self.logger.addHandler(fh) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) ch.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")) self.logger.addHandler(ch) self.logger.setLevel(logging.DEBUG) self.last_json = None def set_user(self, username, password, generate_all_uuids=True, set_device=True): self.username = username self.password = password self.logger = logging.getLogger("[instabot_{}]".format(self.username)) if set_device is True: self.set_device() if generate_all_uuids is True: self.generate_all_uuids() def set_contact_point_prefill(self, usage="prefill"): data = json.dumps( { "id": self.uuid, "phone_id": self.phone_id, "_csrftoken": self.token, "usage": usage, } ) return self.send_request("accounts/contact_point_prefill/", data, login=True) def get_suggested_searches(self, _type="users"): return self.send_request( "fbsearch/suggested_searches/", self.json_data({"type": _type}) ) def read_msisdn_header(self, usage="default"): data = json.dumps({"device_id": self.uuid, "mobile_subno_usage": usage}) return self.send_request( "accounts/read_msisdn_header/", data, login=True, headers={"X-DEVICE-ID": self.uuid}, ) def log_attribution(self, usage="default"): data = json.dumps({"adid": self.advertising_id}) return self.send_request("attribution/log_attribution/", data, login=True) # ====== ALL METHODS IMPORT FROM api_login ====== # def sync_device_features(self, login=False): return sync_device_features(self, login) def sync_launcher(self, login=False): return sync_launcher(self, login) def sync_user_features(self): return sync_user_features(self) def pre_login_flow(self): return pre_login_flow(self) def login_flow(self, just_logged_in=False, app_refresh_interval=1800): return login_flow(self, just_logged_in, app_refresh_interval) def set_device(self): return set_device(self) def generate_all_uuids(self): return generate_all_uuids(self) def reinstall_app_simulation(self): return reinstall_app_simulation(self) def change_device_simulation(self): return change_device_simulation(self) def load_uuid_and_cookie(self, load_uuid=True, load_cookie=True): return load_uuid_and_cookie(self, load_uuid=load_uuid, load_cookie=load_cookie) def save_uuid_and_cookie(self): return save_uuid_and_cookie(self) def login( self, username=None, password=None, force=False, proxy=None, use_cookie=True, use_uuid=True, cookie_fname=None, ask_for_code=False, set_device=True, generate_all_uuids=True, solve_challenge=False, solve_2fa=False, is_threaded=True, ): if password is None: username, password = get_credentials(username=username) self.set_user(username, password) self.session = requests.Session() self.proxy = proxy self.set_proxy() # Only happens if `self.proxy` self.cookie_fname = cookie_fname if self.cookie_fname is None: cookie_fname = "{username}_uuid_and_cookie.json".format(username=username) self.cookie_fname = os.path.join(self.base_path, cookie_fname) cookie_is_loaded = False if use_cookie is True: # try: if ( self.load_uuid_and_cookie(load_cookie=use_cookie, load_uuid=use_uuid) is True ): if ( self.login_flow(False) is True ): # Check if the token loaded is valid. cookie_is_loaded = True self.save_successful_login() else: self.logger.info( "Login flow failed, the cookie is broken. Relogin again." ) set_device = generate_all_uuids = False force = True # except Exception: # print("The cookie is not found, but don't worry `instabot` will create it for you using your login details.") if not cookie_is_loaded and (not self.is_logged_in or force): self.session = requests.Session() self.set_proxy() # Only happens if `self.proxy` if use_uuid is True: if ( self.load_uuid_and_cookie( load_cookie=use_cookie, load_uuid=use_uuid ) is False ): if set_device is True: self.set_device() if generate_all_uuids is True: self.generate_all_uuids() self.pre_login_flow() data = json.dumps( { "phone_id": self.phone_id, "_csrftoken": self.token, "username": self.username, "guid": self.uuid, "device_id": self.device_id, "password": self.password, "login_attempt_count": "0", } ) if self.send_request("accounts/login/", data, True): self.save_successful_login() self.login_flow(True) # self.device_id = self.uuid return True elif ( self.last_json.get("error_type", "") == "checkpoint_challenge_required" ): self.logger.info("Checkpoint challenge required...") if solve_challenge is True: solved = self.solve_challenge() if solved: self.save_successful_login() self.login_flow(True) return True else: self.save_failed_login() return False else: self.save_failed_login() return False elif self.last_json.get("two_factor_required"): self.logger.info("Two-factor authentication required") if solve_2fa is True: two_factor_code = input("Enter 2FA verification code: ") two_factor_id = self.last_json["two_factor_info"][ "two_factor_identifier" ] login = self.session.post( config.API_URL + "accounts/two_factor_login/", data={ "username": self.username, "verification_code": two_factor_code, "two_factor_identifier": two_factor_id, "password": self.password, "device_id": self.device_id, "ig_sig_key_version": 4, }, allow_redirects=True, ) if login.status_code == 200: resp_json = json.loads(login.text) if resp_json["status"] != "ok": if "message" in resp_json: self.logger.error( "Login error: {}".format(resp_json["message"]) ) else: self.logger.error( 'Login error: "{}" status and message {}.'.format( resp_json["status"], login.text ) ) self.save_failed_login() return False self.save_successful_login() self.login_flow(True) return True else: self.logger.error( "Two-factor authentication request returns {} error with message {} !".format( login.status_code, login.text ) ) self.save_failed_login() return False # End of Interactive Two-Factor Authentication else: self.save_failed_login() return False else: self.save_failed_login() return False def save_successful_login(self): self.is_logged_in = True self.last_login = time.time() self.logger.info("Logged-in successfully as '{}'!".format(self.username)) def save_failed_login(self): try: self.logger.info(self.last_json.get("message", "")) except Exception as e: self.logger.info("Username or password is incorrect.") self.is_logged_in = False delete_credentials() def solve_challenge(self): challenge_url = self.last_json["challenge"]["api_path"][1:] try: self.send_request(challenge_url, None, login=True, with_signature=False) except Exception as e: self.logger.error("solve_challenge; {}".format(e)) return False choices = self.get_challenge_choices() for choice in choices: print(choice) code = input("Insert choice: ") data = json.dumps({"choice": code}) try: self.send_request(challenge_url, data, login=True) except Exception as e: self.logger.error(e) return False print("A code has been sent to the method selected, please check.") code = input("Insert code: ") data = json.dumps({"security_code": code}) try: self.send_request(challenge_url, data, login=True) except Exception as e: self.logger.error(e) return False worked = ( ("logged_in_user" in self.last_json) and (self.last_json.get("action", "") == "close") and (self.last_json.get("status", "") == "ok") ) if worked: return True self.logger.error("Not possible to log in. Reset and try again") return False def get_challenge_choices(self): last_json = self.last_json choices = [] if last_json.get("step_name", "") == "select_verify_method": choices.append("Checkpoint challenge received") if "phone_number" in last_json["step_data"]: choices.append("0 - Phone") if "email" in last_json["step_data"]: choices.append("1 - Email") if last_json.get("step_name", "") == "delta_login_review": choices.append("Login attempt challenge received") choices.append("0 - It was me") choices.append("1 - It wasn't me") if not choices: choices.append( '"{}" challenge received'.format(last_json.get("step_name", "Unknown")) ) choices.append("0 - Default") return choices def was_me(self, challenge_url, was_me=True): data = json.dumps({"choice": 0 if was_me is True else 1}) return self.send_request(challenge_url, data, login=True) # {"message": "consent_required", "consent_data": {"headline": "Updates to Our Terms and Data Policy", "content": "We've updated our Terms and made some changes to our Data Policy. Please take a moment to review these ...", "button_text": "Review Now"}, "status": "fail"} # /api/v1/consent/existing_user_flow/ # signed_body=ae07b2fbf6fd391d26285b242215e97f6b8f9fa015c68a32027c0d5624a35766.{"current_screen_key":"dob","_csrftoken":"74UWcG2CYmiLqRPIYENHkrimkFdhsLnL","day":"3","_uid":"19450998546","year":"1994","_uuid":"ffbe7b2f-1663-43d4-847b-c3f51803637e","month":"9"}&ig_sig_key_version=4 def consent_required(self, day=None, month=None, year=None): if day is None: day = random.randint(1, 28) if month is None: month = random.randint(1, 12) if year is None: year = random.randint(1961, 2000) data = self.json_data( { "current_screen_key": "dob", "day": str(day), "month": str(month), "year": str(year), } ) url = "consent/existing_user_flow/" return self.send_request(url, data) def logout(self, *args, **kwargs): if not self.is_logged_in: return True data = json.dumps({}) self.is_logged_in = not self.send_request( "accounts/logout/", data, with_signature=False ) return not self.is_logged_in def set_proxy(self): if self.proxy: parsed = urllib.parse.urlparse(self.proxy) scheme = "http://" if not parsed.scheme else "" self.session.proxies["http"] = scheme + self.proxy self.session.proxies["https"] = scheme + self.proxy def send_request( # noqa: C901 self, endpoint, post=None, login=False, with_signature=True, headers=None, extra_sig=None, ): if not self.is_logged_in and not login: msg = "Not logged in!" self.logger.critical(msg) raise Exception(msg) self.session.headers.update(config.REQUEST_HEADERS) self.session.headers.update( { "User-Agent": self.user_agent, "X-IG-Connection-Speed": "{0:d}kbps".format(random.randint(1000, 5000)), "X-IG-Bandwidth-Speed-KBPS": str(random.randint(7000, 10000)), "X-IG-Bandwidth-TotalBytes-B": str(random.randint(500000, 900000)), "X-IG-Bandwidth-TotalTime-MS": str(random.randint(50, 150)), } ) if headers: self.session.headers.update(headers) try: self.total_requests += 1 if post is not None: # POST if with_signature: # Only `send_direct_item` doesn't need a signature post = self.generate_signature(post) if extra_sig is not None and extra_sig != []: post += "&".join(extra_sig) response = self.session.post(config.API_URL + endpoint, data=post) else: # GET response = self.session.get(config.API_URL + endpoint) except Exception: # as e: # self.logger.warning(str(e)) return False self.last_response = response if response.status_code == 200: try: self.last_json = json.loads(response.text) return True except JSONDecodeError as e: # self.logger.warning(str(e)) return False else: # self.logger.warning("[{}] : {} ...".format(response.status_code, response.text[:170])) try: # For debugging self.last_json = json.loads(response.text) except JSONDecodeError: pass # if self.last_json.get("message", "") == "consent_required": # self.consent_required() return False @property def cookie_dict(self): return self.session.cookies.get_dict() @property def token(self): return self.cookie_dict["csrftoken"] @property def user_id(self): try: return self.cookie_dict["ds_user_id"] except Exception: return self.cookie_dict["sessionid"].split(":")[0] @property def rank_token(self): return "{}_{}".format(self.user_id, self.uuid) @property def default_data(self): return {"_uuid": self.uuid, "_uid": self.user_id, "_csrftoken": self.token} def json_data(self, data=None): """Adds the default_data to data and dumps it to a json.""" if data is None: data = {} data.update(self.default_data) return json.dumps(data) def action_data(self, data): _data = {"radio_type": "wifi-none", "device_id": self.device_id} data.update(_data) return data def auto_complete_user_list(self): return self.send_request("friendships/autocomplete_user_list/") def batch_fetch(self): data = { "scale": 3, "version": 1, "vc_policy": "default", "surfaces_to_triggers": '{"5734":["instagram_feed_prompt"],"4715":["instagram_feed_header"],"5858":["instagram_feed_tool_tip"]}', "surfaces_to_queries": '{"5734":"viewer() {eligible_promotions.trigger_context_v2(<trigger_context_v2>).ig_parameters(<ig_parameters>).trigger_name(<trigger_name>).surface_nux_id(<surface>).external_gating_permitted_qps(<external_gating_permitted_qps>).supports_client_filters(true).include_holdouts(true) {edges {client_ttl_seconds,log_eligibility_waterfall,is_holdout,priority,time_range {start,end},node {id,promotion_id,logging_data,max_impressions,triggers,contextual_filters {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}},clauses {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}},clauses {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}},clauses {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}}}}}},is_uncancelable,template {name,parameters {name,required,bool_value,string_value,color_value,}},creatives {title {text},content {text},footer {text},social_context {text},social_context_images,primary_action{title {text},url,limit,dismiss_promotion},secondary_action{title {text},url,limit,dismiss_promotion},dismiss_action{title {text},url,limit,dismiss_promotion},image.scale(<scale>) {uri,width,height}}}}}}","4715":"viewer() {eligible_promotions.trigger_context_v2(<trigger_context_v2>).ig_parameters(<ig_parameters>).trigger_name(<trigger_name>).surface_nux_id(<surface>).external_gating_permitted_qps(<external_gating_permitted_qps>).supports_client_filters(true).include_holdouts(true) {edges {client_ttl_seconds,log_eligibility_waterfall,is_holdout,priority,time_range {start,end},node {id,promotion_id,logging_data,max_impressions,triggers,contextual_filters {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}},clauses {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}},clauses {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}},clauses {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}}}}}},is_uncancelable,template {name,parameters {name,required,bool_value,string_value,color_value,}},creatives {title {text},content {text},footer {text},social_context {text},social_context_images,primary_action{title {text},url,limit,dismiss_promotion},secondary_action{title {text},url,limit,dismiss_promotion},dismiss_action{title {text},url,limit,dismiss_promotion},image.scale(<scale>) {uri,width,height}}}}}}","5858":"viewer() {eligible_promotions.trigger_context_v2(<trigger_context_v2>).ig_parameters(<ig_parameters>).trigger_name(<trigger_name>).surface_nux_id(<surface>).external_gating_permitted_qps(<external_gating_permitted_qps>).supports_client_filters(true).include_holdouts(true) {edges {client_ttl_seconds,log_eligibility_waterfall,is_holdout,priority,time_range {start,end},node {id,promotion_id,logging_data,max_impressions,triggers,contextual_filters {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}},clauses {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}},clauses {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}},clauses {clause_type,filters {filter_type,unknown_action,value {name,required,bool_value,int_value,string_value},extra_datas {name,required,bool_value,int_value,string_value}}}}}},is_uncancelable,template {name,parameters {name,required,bool_value,string_value,color_value,}},creatives {title {text},content {text},footer {text},social_context {text},social_context_images,primary_action{title {text},url,limit,dismiss_promotion},secondary_action{title {text},url,limit,dismiss_promotion},dismiss_action{title {text},url,limit,dismiss_promotion},image.scale(<scale>) {uri,width,height}}}}}}"}', # Just copied from request. } data = self.json_data(data) return self.send_request("qp/batch_fetch/", data) def get_timeline_feed(self, options=[]): headers = {"X-Ads-Opt-Out": "0", "X-DEVICE-ID": self.uuid} data = { "_csrftoken": self.token, "_uuid": self.uuid, "is_prefetch": 0, "phone_id": self.phone_id, "device_id": self.uuid, "client_session_id": self.client_session_id, "battery_level": random.randint(25, 100), "is_charging": random.randint(0, 1), "will_sound_on": random.randint(0, 1), "is_on_screen": True, "timezone_offset": datetime.datetime.now(pytz.timezone("CET")).strftime( "%z" ), } if "is_pull_to_refresh" in options: data["reason"] = "pull_to_refresh" data["is_pull_to_refresh"] = "1" elif "is_pull_to_refresh" not in options: data["reason"] = "cold_start_fetch" data["is_pull_to_refresh"] = "0" # unseen_posts # feed_view_info # seen_posts if "push_disabled" in options: data["push_disabled"] = "true" if "recovered_from_crash" in options: data["recovered_from_crash"] = "1" data = json.dumps(data) return self.send_request( "feed/timeline/", data, with_signature=False, headers=headers ) def get_megaphone_log(self): return self.send_request("megaphone/log/") def expose(self): data = self.json_data( {"id": self.uuid, "experiment": "ig_android_profile_contextual_feed"} ) return self.send_request("qe/expose/", data) # ====== PHOTO METHODS ====== # def upload_photo( self, photo, caption=None, upload_id=None, from_video=False, force_resize=False, options={}, ): """Upload photo to Instagram @param photo Path to photo file (String) @param caption Media description (String) @param upload_id Unique upload_id (String). When None, then generate automatically @param from_video A flag that signals whether the photo is loaded from the video or by itself (Boolean, DEPRECATED: not used) @param force_resize Force photo resize (Boolean) @param options Object with difference options, e.g. configure_timeout, rename (Dict) Designed to reduce the number of function arguments! This is the simplest request object. @return Boolean """ return upload_photo( self, photo, caption, upload_id, from_video, force_resize, options ) def download_photo(self, media_id, filename, media=False, folder="photos"): return download_photo(self, media_id, filename, media, folder) def configure_photo(self, upload_id, photo, caption=""): return configure_photo(self, upload_id, photo, caption) # ====== STORY METHODS ====== # def download_story(self, filename, story_url, username): return download_story(self, filename, story_url, username) def upload_story_photo(self, photo, upload_id=None): return upload_story_photo(self, photo, upload_id) def configure_story(self, upload_id, photo): return configure_story(self, upload_id, photo) # ====== VIDEO METHODS ====== # def upload_video( self, video, caption=None, upload_id=None, thumbnail=None, options={} ): """Upload video to Instagram @param video Path to video file (String) @param caption Media description (String) @param upload_id Unique upload_id (String). When None, then generate automatically @param thumbnail Path to thumbnail for video (String). When None, then thumbnail is generate automatically @param options Object with difference options, e.g. configure_timeout, rename_thumbnail, rename (Dict) Designed to reduce the number of function arguments! This is the simplest request object. @return Object with state of uploading to Instagram (or False) """ return upload_video(self, video, caption, upload_id, thumbnail, options) def download_video(self, media_id, filename, media=False, folder="video"): return download_video(self, media_id, filename, media, folder) def configure_video( self, upload_id, video, thumbnail, width, height, duration, caption="", options={}, ): """Post Configure Video (send caption, thumbnail and more else to Instagram) @param upload_id Unique upload_id (String). Received from "upload_video" @param video Path to video file (String) @param thumbnail Path to thumbnail for video (String). When None, then thumbnail is generate automatically @param width Width in px (Integer) @param height Height in px (Integer) @param duration Duration in seconds (Integer) @param caption Media description (String) @param options Object with difference options, e.g. configure_timeout, rename_thumbnail, rename (Dict) Designed to reduce the number of function arguments! This is the simplest request object. """ return configure_video( self, upload_id, video, thumbnail, width, height, duration, caption, options ) # ====== MEDIA METHODS ====== # def edit_media(self, media_id, captionText=""): data = self.json_data({"caption_text": captionText}) url = "media/{media_id}/edit_media/".format(media_id=media_id) return self.send_request(url, data) def remove_self_tag(self, media_id): data = self.json_data() url = "media/{media_id}/remove/".format(media_id=media_id) return self.send_request(url, data) def media_info(self, media_id): # data = self.json_data({'media_id': media_id}) url = "media/{media_id}/info/".format(media_id=media_id) return self.send_request(url) def archive_media(self, media, undo=False): action = "only_me" if not undo else "undo_only_me" data = self.json_data({"media_id": media["id"]}) url = "media/{media_id}/{action}/?media_type={media_type}".format( media_id=media["id"], action=action, media_type=media["media_type"] ) return self.send_request(url, data) def delete_media(self, media): data = self.json_data({"media_id": media.get("id")}) url = "media/{media_id}/delete/".format(media_id=media.get("id")) return self.send_request(url, data) def gen_user_breadcrumb(self, size): key = "iN4$aGr0m" dt = int(time.time() * 1000) time_elapsed = random.randint(500, 1500) + size * random.randint(500, 1500) text_change_event_count = max(1, size / random.randint(3, 5)) data = "{size!s} {elapsed!s} {count!s} {dt!s}".format( **{ "size": size, "elapsed": time_elapsed, "count": text_change_event_count, "dt": dt, } ) return "{!s}\n{!s}\n".format( base64.b64encode( hmac.new( key.encode("ascii"), data.encode("ascii"), digestmod=hashlib.sha256 ).digest() ), base64.b64encode(data.encode("ascii")), ) def check_offensive_comment(self, comment_text): return self.send_request( endpoint="media/comment/check_offensive_comment/", post=self.json_data(self.action_data({"comment_text": comment_text})), ) def comment(self, media_id, comment_text): return self.send_request( endpoint="media/{media_id}/comment/".format(media_id=media_id), post=self.json_data( self.action_data( { "container_module": "comments_v2", "user_breadcrumb": self.gen_user_breadcrumb(len(comment_text)), "idempotence_token": self.generate_UUID(True), "comment_text": comment_text, } ) ), ) def reply_to_comment(self, media_id, comment_text, parent_comment_id): data = self.json_data( {"comment_text": comment_text, "replied_to_comment_id": parent_comment_id} ) url = "media/{media_id}/comment/".format(media_id=media_id) return self.send_request(url, data) def delete_comment(self, media_id, comment_id): data = self.json_data() url = "media/{media_id}/comment/{comment_id}/delete/" url = url.format(media_id=media_id, comment_id=comment_id) return self.send_request(url, data) def get_comment_likers(self, comment_id): url = "media/{comment_id}/comment_likers/?".format(comment_id=comment_id) return self.send_request(url) def get_media_likers(self, media_id): url = "media/{media_id}/likers/?".format(media_id=media_id) return self.send_request(url) def like_comment(self, comment_id): data = self.json_data( { "is_carousel_bumped_post": "false", "container_module": "comments_v2", "feed_position": "0", } ) url = "media/{comment_id}/comment_like/".format(comment_id=comment_id) return self.send_request(url, data) def unlike_comment(self, comment_id): data = self.json_data( { "is_carousel_bumped_post": "false", "container_module": "comments_v2", "feed_position": "0", } ) url = "media/{comment_id}/comment_unlike/".format(comment_id=comment_id) return self.send_request(url, data) # From profile => "is_carousel_bumped_post":"false", "container_module":"feed_contextual_profile", "feed_position":"0" # From home/feed => "inventory_source":"media_or_ad", "is_carousel_bumped_post":"false", "container_module":"feed_timeline", "feed_position":"0" def like( self, media_id, double_tap=None, container_module="feed_short_url", feed_position=0, username=None, user_id=None, hashtag_name=None, hashtag_id=None, entity_page_name=None, entity_page_id=None, ): data = self.action_data( { "media_id": media_id, "container_module": container_module, "feed_position": str(feed_position), "is_carousel_bumped_post": "false", } ) if container_module == "feed_timeline": data.update({"inventory_source": "media_or_ad"}) if username: data.update({"username": username, "user_id": user_id}) if hashtag_name: data.update({"hashtag_name": hashtag_name, "hashtag_id": hashtag_id}) if entity_page_name: data.update( {"entity_page_name": entity_page_name, "entity_page_id": entity_page_id} ) if double_tap is None: double_tap = random.randint(0, 1) json_data = self.json_data(data) # TODO: comment out debug log out when done self.logger.debug("post data: {}".format(json_data)) return self.send_request( endpoint="media/{media_id}/like/".format(media_id=media_id), post=json_data, extra_sig=["d={}".format(double_tap)], ) def unlike(self, media_id): data = self.json_data( { "media_id": media_id, "radio_type": "wifi-none", "is_carousel_bumped_post": "false", "container_module": "photo_view_other", "feed_position": "0", } ) url = "media/{media_id}/unlike/".format(media_id=media_id) return self.send_request(url, data) def get_media_comments(self, media_id, max_id=""): url = "media/{media_id}/comments/".format(media_id=media_id) if max_id: url += "?max_id={max_id}".format(max_id=max_id) return self.send_request(url) def explore(self, is_prefetch=False): data = { "is_prefetch": is_prefetch, "is_from_promote": False, "timezone_offset": datetime.datetime.now(pytz.timezone("CET")).strftime( "%z" ), "session_id": self.client_session_id, "supported_capabilities_new": config.SUPPORTED_CAPABILITIES, } if is_prefetch: data["max_id"] = 0 data["module"] = "explore_popular" data = json.dumps(data) return self.send_request("discover/explore/", data) def get_username_info(self, user_id): url = "users/{user_id}/info/".format(user_id=user_id) return self.send_request(url) def get_self_username_info(self): return self.get_username_info(self.user_id) def get_recent_activity(self): return self.send_request("news/inbox") def get_following_recent_activity(self): return self.send_request("news") def get_user_tags(self, user_id): url = "usertags/{user_id}/feed/?rank_token={rank_token}&ranked_content=true&" url = url.format(user_id=user_id, rank_token=self.rank_token) return self.send_request(url) def get_self_user_tags(self): return self.get_user_tags(self.user_id) def get_geo_media(self, user_id): url = "maps/user/{user_id}/".format(user_id=user_id) return self.send_request(url) def get_self_geo_media(self): return self.get_geo_media(self.user_id) def sync_from_adress_book(self, contacts): url = "address_book/link/?include=extra_display_name,thumbnails" return self.send_request(url, "contacts=" + json.dumps(contacts)) # ====== FEED METHODS ====== # def tag_feed(self, tag): url = "feed/tag/{tag}/?rank_token={rank_token}&ranked_content=true&" return self.send_request(url.format(tag=tag, rank_token=self.rank_token)) def get_timeline(self): url = "feed/timeline/?rank_token={rank_token}&ranked_content=true&" return self.send_request(url.format(rank_token=self.rank_token)) def get_archive_feed(self): url = "feed/only_me_feed/?rank_token={rank_token}&ranked_content=true&" return self.send_request(url.format(rank_token=self.rank_token)) def get_user_feed( self, user_id, exclude_comment=True, only_fetch_first_carousel_media=False, max_id=None, ranked_content=None, min_timestamp=None, ): url = "feed/user/{user_id}?exclude_comment={exclude_comment}&only_fetch_first_carousel_media={only_fetch_first_carousel_media}".format( user_id=user_id, exclude_comment=exclude_comment, only_fetch_first_carousel_media=only_fetch_first_carousel_media, ) if max_id is not None: url += "&max_id={}".format(max_id) if ranked_content is not None: url += "&ranked_content={}".format(ranked_content) if min_timestamp is not None: url += "&min_timestamp={}".format(min_timestamp) return self.send_request(url) def get_self_user_feed(self, max_id="", min_timestamp=None): return self.get_user_feed( self.user_id, max_id=max_id, min_timestamp=min_timestamp ) def get_hashtag_feed(self, hashtag, max_id="", ranked_content=False): url = "feed/tag/{hashtag}/?max_id={max_id}&rank_token={rank_token}&ranked_content={ranked_content}&" url = url.format( hashtag=hashtag, max_id=max_id, rank_token=self.rank_token, ranked_content=ranked_content, ) return self.send_request(url) def get_location_feed(self, location_id, max_id=""): url = "feed/location/{location_id}/?max_id={max_id}&rank_token={rank_token}&ranked_content=true&" url = url.format( location_id=location_id, max_id=max_id, rank_token=self.rank_token ) return self.send_request(url) def get_popular_feed(self): url = "feed/popular/?people_teaser_supported=1&rank_token={rank_token}&ranked_content=true&" return self.send_request(url.format(rank_token=self.rank_token)) def get_liked_media(self, max_id=""): url = "feed/liked/?max_id={max_id}".format(max_id=max_id) return self.send_request(url) # ====== FRIENDSHIPS METHODS ====== # def get_user_followings(self, user_id, max_id=""): url = "friendships/{user_id}/following/?max_id={max_id}&ig_sig_key_version={sig_key}&rank_token={rank_token}" url = url.format( user_id=user_id, max_id=max_id, sig_key=config.SIG_KEY_VERSION, rank_token=self.rank_token, ) return self.send_request(url) def get_self_users_following(self): return self.get_user_followings(self.user_id) def get_user_followers(self, user_id, max_id=""): url = "friendships/{user_id}/followers/?rank_token={rank_token}" url = url.format(user_id=user_id, rank_token=self.rank_token) if max_id: url += "&max_id={max_id}".format(max_id=max_id) return self.send_request(url) def get_self_user_followers(self): return self.followers def follow(self, user_id): data = self.json_data(self.action_data({"user_id": user_id})) self.logger.debug("post data: {}".format(data)) url = "friendships/create/{user_id}/".format(user_id=user_id) return self.send_request(url, data) def unfollow(self, user_id): data = self.json_data({"user_id": user_id, "radio_type": "wifi-none"}) url = "friendships/destroy/{user_id}/".format(user_id=user_id) return self.send_request(url, data) def block(self, user_id): data = self.json_data({"user_id": user_id}) url = "friendships/block/{user_id}/".format(user_id=user_id) return self.send_request(url, data) def unblock(self, user_id): data = self.json_data({"user_id": user_id}) url = "friendships/unblock/{user_id}/".format(user_id=user_id) return self.send_request(url, data) def user_friendship(self, user_id): data = self.json_data({"user_id": user_id}) url = "friendships/show/{user_id}/".format(user_id=user_id) return self.send_request(url, data) def mute_user(self, user, mute_story=False, mute_posts=False): data_dict = {} if mute_posts: data_dict["target_posts_author_id"] = user if mute_story: data_dict["target_reel_author_id"] = user data = self.json_data(data_dict) url = "friendships/mute_posts_or_story_from_follow/" return self.send_request(url, data) def unmute_user(self, user, unmute_posts=False, unmute_stories=False): data_dict = {} if unmute_posts: data_dict["target_posts_author_id"] = user if unmute_stories: data_dict["target_reel_author_id"] = user data = self.json_data(data_dict) url = "friendships/unmute_posts_or_story_from_follow/" return self.send_request(url, data) def get_pending_friendships(self): """Get pending follow requests""" url = "friendships/pending/" return self.send_request(url) def approve_pending_friendship(self, user_id): data = self.json_data( { "_uuid": self.uuid, "_uid": self.user_id, "user_id": user_id, "_csrftoken": self.token, } ) url = "friendships/approve/{}/".format(user_id) return self.send_request(url, post=data) def reject_pending_friendship(self, user_id): data = self.json_data( { "_uuid": self.uuid, "_uid": self.user_id, "user_id": user_id, "_csrftoken": self.token, } ) url = "friendships/ignore/{}/".format(user_id) return self.send_request(url, post=data) def get_direct_share(self): return self.send_request("direct_share/inbox/?") @staticmethod def _prepare_recipients(users, thread_id=None, use_quotes=False): if not isinstance(users, list): print("Users must be an list") return False result = {"users": "[[{}]]".format(",".join(users))} if thread_id: template = '["{}"]' if use_quotes else "[{}]" result["thread"] = template.format(thread_id) return result @staticmethod def generate_signature(data): body = ( hmac.new( config.IG_SIG_KEY.encode("utf-8"), data.encode("utf-8"), hashlib.sha256 ).hexdigest() + "." + urllib.parse.quote(data) ) signature = "ig_sig_key_version={sig_key}&signed_body={body}" return signature.format(sig_key=config.SIG_KEY_VERSION, body=body) @staticmethod def generate_device_id(seed): volatile_seed = "12345" m = hashlib.md5() m.update(seed.encode("utf-8") + volatile_seed.encode("utf-8")) return "android-" + m.hexdigest()[:16] @staticmethod def get_seed(*args): m = hashlib.md5() m.update(b"".join([arg.encode("utf-8") for arg in args])) return m.hexdigest() @staticmethod def generate_UUID(uuid_type): generated_uuid = str(uuid.uuid4()) if uuid_type: return generated_uuid else: return generated_uuid.replace("-", "") def get_total_followers_or_followings( # noqa: C901 self, user_id, amount=None, which="followers", filter_private=False, filter_business=False, filter_verified=False, usernames=False, to_file=None, overwrite=False, ): from io import StringIO if which == "followers": key = "follower_count" get = self.get_user_followers elif which == "followings": key = "following_count" get = self.get_user_followings sleep_track = 0 result = [] next_max_id = "" self.get_username_info(user_id) username_info = self.last_json if "user" in username_info: total = amount or username_info["user"][key] if total > 200000: print( "Consider temporarily saving the result of this big " "operation. This will take a while.\n" ) else: return False if filter_business: print( "--> You are going to filter business accounts. This will take time! <--" ) if to_file is not None: if os.path.isfile(to_file): if not overwrite: print("File `{}` already exists. Not overwriting.".format(to_file)) return False else: print("Overwriting file `{}`".format(to_file)) with open(to_file, "w"): pass desc = "Getting {} of {}".format(which, user_id) with tqdm(total=total, desc=desc, leave=True) as pbar: while True: get(user_id, next_max_id) last_json = self.last_json try: with open(to_file, "a") if to_file is not None else StringIO() as f: for item in last_json["users"]: if filter_private and item["is_private"]: continue if filter_business: time.sleep(2 * random.random()) self.get_username_info(item["pk"]) item_info = self.last_json if item_info["user"]["is_business"]: continue if filter_verified and item["is_verified"]: continue if to_file is not None: if usernames: f.write("{}\n".format(item["username"])) else: f.write("{}\n".format(item["pk"])) result.append(item) pbar.update(1) sleep_track += 1 if sleep_track >= 20000: sleep_time = random.uniform(120, 180) msg = "\nWaiting {:.2f} min. due to too many requests." print(msg.format(sleep_time / 60)) time.sleep(sleep_time) sleep_track = 0 if not last_json["users"] or len(result) >= total: return result[:total] except Exception as e: print("ERROR: {}".format(e)) return result[:total] if last_json["big_list"] is False: return result[:total] next_max_id = last_json.get("next_max_id", "") def get_total_followers(self, user_id, amount=None): return self.get_total_followers_or_followings(user_id, amount, "followers") def get_total_followings(self, user_id, amount=None): return self.get_total_followers_or_followings(user_id, amount, "followings") def get_total_user_feed(self, user_id, min_timestamp=None): return self.get_last_user_feed( user_id, amount=float("inf"), min_timestamp=min_timestamp ) def get_last_user_feed(self, user_id, amount, min_timestamp=None): user_feed = [] next_max_id = "" while True: if len(user_feed) >= float(amount): # one request returns max 13 items return user_feed[:amount] self.get_user_feed(user_id, max_id=next_max_id, min_timestamp=min_timestamp) time.sleep(0.2) last_json = self.last_json if "items" not in last_json: return user_feed user_feed += last_json["items"] if not last_json.get("more_available"): return user_feed next_max_id = last_json.get("next_max_id", "") def get_total_hashtag_feed(self, hashtag_str, amount=100): hashtag_feed = [] next_max_id = "" with tqdm(total=amount, desc="Getting hashtag media.", leave=False) as pbar: while True: self.get_hashtag_feed(hashtag_str, next_max_id) last_json = self.last_json if "items" not in last_json: return hashtag_feed[:amount] items = last_json["items"] try: pbar.update(len(items)) hashtag_feed += items if not items or len(hashtag_feed) >= amount: return hashtag_feed[:amount] except Exception: return hashtag_feed[:amount] next_max_id = last_json.get("next_max_id", "") def get_total_self_user_feed(self, min_timestamp=None): return self.get_total_user_feed(self.user_id, min_timestamp) def get_total_self_followers(self): return self.get_total_followers(self.user_id) def get_total_self_followings(self): return self.get_total_followings(self.user_id) def get_total_liked_media(self, scan_rate=1): next_id = "" liked_items = [] for _ in range(scan_rate): self.get_liked_media(next_id) last_json = self.last_json next_id = last_json.get("next_max_id", "") liked_items += last_json["items"] return liked_items # ====== ACCOUNT / PERSONAL INFO METHODS ====== # def change_password(self, new_password): data = self.json_data( { "old_password": self.password, "new_password1": new_password, "new_password2": new_password, } ) return self.send_request("accounts/change_password/", data) def remove_profile_picture(self): data = self.json_data() return self.send_request("accounts/remove_profile_picture/", data) def set_private_account(self): data = self.json_data() return self.send_request("accounts/set_private/", data) def set_public_account(self): data = self.json_data() return self.send_request("accounts/set_public/", data) def set_name_and_phone(self, name="", phone=""): return self.send_request( "accounts/set_phone_and_name/", self.json_data({"first_name": name, "phone_number": phone}), ) def get_profile_data(self): data = self.json_data() return self.send_request("accounts/current_user/?edit=true", data) def edit_profile(self, url, phone, first_name, biography, email, gender): data = self.json_data( { "external_url": url, "phone_number": phone, "username": self.username, "full_name": first_name, "biography": biography, "email": email, "gender": gender, } ) return self.send_request("accounts/edit_profile/", data) def edit_profile_picture(self, photo): upload_id = rupload_igphoto(self.session, photo, upload_id=None) if type(upload_id) == bool: return upload_id data = '_csrftoken={}&_uuid={}&use_fbuploader=true&upload_id={}'.format(self.token, self.uuid, upload_id) self.send_request("accounts/change_profile_picture/", data, with_signature=False) def fb_user_search(self, query): url = ( "fbsearch/topsearch/?context=blended&query={query}&rank_token={rank_token}" ) return self.send_request(url.format(query=query, rank_token=self.rank_token)) def search_users(self, query): url = "users/search/?ig_sig_key_version={sig_key}&is_typeahead=true&query={query}&rank_token={rank_token}" return self.send_request( url.format( sig_key=config.SIG_KEY_VERSION, query=query, rank_token=self.rank_token ) ) def search_username(self, username): url = "users/{username}/usernameinfo/".format(username=username) return self.send_request(url) def search_tags(self, query): url = "tags/search/?is_typeahead=true&q={query}&rank_token={rank_token}" return self.send_request(url.format(query=query, rank_token=self.rank_token)) def search_location(self, query="", lat=None, lng=None): url = ( "fbsearch/places/?rank_token={rank_token}&query={query}&lat={lat}&lng={lng}" ) url = url.format(rank_token=self.rank_token, query=query, lat=lat, lng=lng) return self.send_request(url) def get_user_reel(self, user_id): url = "feed/user/{}/reel_media/".format(user_id) return self.send_request(url) def get_reels_tray_feed( self, reason="pull_to_refresh" ): # reason can be = cold_start, pull_to_refresh data = { "supported_capabilities_new": config.SUPPORTED_CAPABILITIES, "reason": reason, "_csrftoken": self.token, "_uuid": self.uuid, } data = json.dumps(data) return self.send_request("feed/reels_tray/", data) def get_users_reel(self, user_ids): """ Input: user_ids - a list of user_id Output: dictionary: user_id - stories data. Basically, for each user output the same as after self.get_user_reel """ url = "feed/reels_media/" res = self.send_request( url, post=self.json_data({"user_ids": [str(x) for x in user_ids]}) ) if res: return self.last_json["reels"] if "reels" in self.last_json else [] return [] def see_reels(self, reels): """ Input - the list of reels jsons They can be aquired by using get_users_reel() or get_user_reel() methods """ if not isinstance(reels, list): # In case of only one reel as input reels = [reels] story_seen = {} now = int(time.time()) for i, story in enumerate( sorted(reels, key=lambda m: m["taken_at"], reverse=True) ): story_seen_at = now - min( i + 1 + random.randint(0, 2), max(0, now - story["taken_at"]) ) story_seen["{!s}_{!s}".format(story["id"], story["user"]["pk"])] = [ "{!s}_{!s}".format(story["taken_at"], story_seen_at) ] data = self.json_data( { "reels": story_seen, "_csrftoken": self.token, "_uuid": self.uuid, "_uid": self.user_id, } ) data = self.generate_signature(data) response = self.session.post( "https://i.instagram.com/api/v2/" + "media/seen/", data=data ) self.last_response = response try: self.last_json = json.loads(response.text) except JSONDecodeError: pass self.total_requests += 1 return response.ok """ api/v1/media/216239xxxx1413/180616xxx1178/story_quiz_answer/ answer=0&_csrftoken=PLLbSxxxxlnEt0ttA7F4QEYvxMJ&_uuid=ffbe7b2fxxxxxf51803637e "story_quizs":[ { "x":0.750863481121392, "y":0.8032984473240731, "z":0, "width":0.44030202326446105, "height":0.230359627090983, "rotation":0.0, "is_pinned":0, "is_hidden":0, "is_sticker":1, "quiz_sticker":{ "id":"quiz_sticker_default", "quiz_id":180616xxx1178, "question":"GUESS THE LOCATION", "tallies":[ { "text":"China \ud83c\udde8\ud83c\uddf3", "count":566 }, { "text":"Italy \ud83c\uddee\ud83c\uddf9", "count":2144 }, { "text":"Switzerland \ud83c\udde8\ud83c\udded", "count":517 } ], "correct_answer":1, "viewer_can_answer":true, "finished":false, "text_color":"#FFFFFF", "start_background_color":"#CA2EE1", "end_background_color":"#5EB1FF" } } ] """ def story_quiz_answer(self, media_id, quiz_id, answer=0): url = "media/{}/{}/story_quiz_answer/".format(media_id, quiz_id) data = {"answer": 0, "_csrftoken": self.token, "_uuid": self.uuid} return self.send_request(url, data, with_signature=False) """ /api/v1/media/216xxxx59723371_565xxxx417/1810xxxxxx2683/story_slider_vote/ signed_body=7c4a77f1fb5772xxxxxxxxxxc190dd2e968469789323.{"_csrftoken":"PLLbSfC53ZDxxxxx4QEYvxMJ","_uid":"17xxxx39","vote":"0.7019064","_uuid":"ffbe7bxxxxb-c3f51803637e"}&ig_sig_key_version=4 "story_sliders":[ { "x":0.7047914994500051, "y":0.341729222052124, "z":1, "width":0.372533219147195, "height":0.097990439015881, "rotation":-0.021944279891116, "is_pinned":0, "is_hidden":0, "is_sticker":1, "slider_sticker":{ "slider_id":1810xxxxxx2683, "question":"In love?", "emoji":"\ud83d\ude0d", "text_color":"#FFFFFF", "background_color":"#3897F0", "viewer_can_vote":true, "slider_vote_average":0.9468325791855203, "slider_vote_count":221 } } ] """ def story_slider_vote(self, media_id, slider_id, vote=0.5000000, vote_random=True): if vote_random is True: vote = round(random.uniform(0.10, 1), 7) url = "media/{}/{}/story_slider_vote/".format(media_id, slider_id) return self.send_request(url, self.json_data({"vote": str(vote)})) """ /api/v1/media/216241xxxx932_5658xxx17/178xx3572937/story_poll_vote/ signed_body=7c4a77f1fb5772xxxxxxxxxxc190dd2e968469789323.{"_csrftoken":"PLLbSfC53ZDxxxxx4QEYvxMJ","_uid":"17xxxx39","vote":"0","_uuid":"ffbe7bxxxxb-c3f51803637e"}&ig_sig_key_version=4 "story_polls":[ { "x":0.5124582744210741, "y":0.22404605674749803, "z":0, "width":0.415097946769426, "height":0.072929970970078, "rotation":0.0, "is_pinned":0, "is_hidden":0, "is_sticker":1, "poll_sticker":{ "id":"polling_sticker_vibrant", "poll_id":178xx3572937, "question":"", "tallies":[ { "text":"NOW!", "font_size":35.0, "count":242 }, { "text":"LATER", "font_size":35.0, "count":37 } ], "promotion_tallies":null, "viewer_can_vote":true, "is_shared_result":false, "finished":false } } ] """ def story_poll_vote(self, media_id, poll_id, vote=0, vote_random=True): if vote_random is True: vote = random.randint(0, 1) url = "media/{}/{}/story_poll_vote/".format(media_id, poll_id) return self.send_request(url, self.json_data({"vote": str(vote)})) """ /api/v1/media/21683xxxx7066343_8588684487/17xxx749730392/story_question_response/ signed_body=94391bcb0cf52dexxxxxx232f0c87774b.{"client_context":"47abf00e-xxxxx296fc5d5","_csrftoken":"PLLbSfC53xxxxQEYvxMJ","response":"Sempre+e+comunque","_uid":"17852xx39","type":"text","mutation_token":"47axxx831c296fc5d5","_uuid":"ffbe7b2fxxx-c3f51803637e"}&ig_sig_key_version=4 "story_questions":[ { "x":0.5, "y":0.5, "z":0, "width":0.7777778, "height":0.28145695, "rotation":0.0, "is_pinned":0, "is_hidden":0, "is_sticker":1, "question_sticker":{ "question_type":"text", "question_id":17xxx749730392, "question":"Esketit?", "media_id":21683xxxx7066343, "text_color":"#000000", "background_color":"#ffffff", "viewer_can_interact":true, "profile_pic_url":"" } } ] """ def story_question_response(self, media_id, question_id, response): data = { "client_context": self.generate_UUID(True), "mutation_token": self.generate_UUID(True), "response": response, "type": "text", } url = "media/{}/{}/story_question_response/".format(media_id, question_id) return self.send_request(url, self.json_data(data)) """ /api/v1/media/17863xxx85013/follow_story_countdown/ signed_body=e6f0c686xxxxxxx8897eec1f78d9b8d21d602c49.{"_csrftoken":"dbCGA1xxxxWvV8yCDhjw","_uid":"1785xxx439","_uuid":"ffbe7b2f-166xxxx3637e"}&ig_sig_key_version=4 "story_countdowns":[ { "x":0.36236402, "y":0.67162275, "z":0, "width":0.75, "height":0.25496688, "rotation":0.0, "is_pinned":0, "is_hidden":0, "is_sticker":1, "countdown_sticker":{ "countdown_id":17863xxx85013, "end_ts":1576969200, "text":"VIAGGIO IN FRANCIA ", "text_color":"#ffffff", "start_background_color":"#ca2ee1", "end_background_color":"#5eb1ff", "digit_color":"#7e0091", "digit_card_color":"#ffffffcc", "following_enabled":true, "is_owner":false, "attribution":null, "viewer_is_following":false } } ] """ def follow_story_countdown(self, countdown_id): url = "media/{}/follow_story_countdown/".format(countdown_id) return self.send_request(url) def get_user_stories(self, user_id): url = "feed/user/{}/story/?supported_capabilities_new={}".format( user_id, config.SUPPORTED_CAPABILITIES ) return self.send_request(url) def get_self_story_viewers(self, story_id, max_id=""): url = "media/{}/list_reel_media_viewer/?supported_capabilities_new={}".format( story_id, config.SUPPORTED_CAPABILITIES ) if max_id != "": url += "&max_id={}".format(max_id) return self.send_request(url) def get_tv_suggestions(self): url = "igtv/tv_guide/" return self.send_request(url) def get_hashtag_stories(self, hashtag): url = "tags/{}/story/".format(hashtag) return self.send_request(url) def follow_hashtag(self, hashtag): data = self.json_data({}) url = "tags/follow/{}/".format(hashtag) return self.send_request(url, data) def unfollow_hashtag(self, hashtag): data = self.json_data({}) url = "tags/unfollow/{}/".format(hashtag) return self.send_request(url, data) def get_tags_followed_by_user(self, user_id): url = "users/{}/following_tags_info/".format(user_id) return self.send_request(url) # Copied from burped device and SSL-Pinned IG-Version. def get_hashtag_sections( self, hashtag, page=0, next_max_id="", next_media_ids=[], tab="recent" ): data = "?_csrftoken={}".format(self.token) data += "&rank_token={}".format(self.rank_token) data += "&_uuid={}".format(self.uuid) data += "&include_persistent={}".format(True) data += "&tab={}".format(tab) if page != 0: data += "&page={}".format(page) if next_max_id != "": data += "&max_id={}".format(next_max_id) if next_media_ids != []: data += "&next_media_ids={}".format(str(next_media_ids)) url = "tags/{}/sections/".format(hashtag) return self.send_request(url, data, with_signature=False) def get_media_insight(self, media_id): url = "insights/media_organic_insights/{}/?ig_sig_key_version={}".format( media_id, config.IG_SIG_KEY ) return self.send_request(url) def get_self_insight(self): # TODO: url = "insights/account_organic_insights/?show_promotions_in_landing_page=true&first={}".format() return self.send_request(url) # From profile => "module_name":"feed_contextual_profile" # From home/feed => "module_name":"feed_timeline" def save_media(self, media_id, module_name="feed_timeline"): return self.send_request( endpoint="media/{media_id}/save/".format(media_id=media_id), post=self.json_data(self.action_data({"module_name": module_name})), ) def unsave_media(self, media_id): data = self.json_data() url = "media/{}/unsave/".format(media_id) return self.send_request(url, data) def get_saved_medias(self): url = "feed/saved/" return self.send_request(url) def get_loom_fetch_config(self): return self.send_request("loom/fetch_config/") def get_profile_notice(self): return self.send_request("users/profile_notice/") # ====== DIRECT METHODS ====== # def get_inbox_v2( self, visual_message_return_type="unseen", thread_message_limit=10, persistentBadging=True, limit=20, cursor=None, folder=None, ): url = "direct_v2/inbox/?visual_message_return_type={}&thread_message_limit={}&persistentBadging={}&limit={}".format( visual_message_return_type, thread_message_limit, persistentBadging, limit ) if cursor is not None: url += "&cursor={}".format(cursor) if folder is not None: url += "&folder={}".format(folder) return self.send_request(url) def get_presence(self): return self.send_request("direct_v2/get_presence/") def get_ranked_recipients(self, mode, show_threads, query=None): data = { "mode": mode, "show_threads": "false" if show_threads is False else "true", "use_unified_inbox": "true", } if query is not None: data["query"] = query return self.send_request("direct_v2/ranked_recipients/", json.dumps(data)) def send_direct_item(self, item_type, users, **options): data = {"client_context": self.generate_UUID(True), "action": "send_item"} headers = {} recipients = self._prepare_recipients( users, options.get("thread"), use_quotes=False ) if not recipients: return False data["recipient_users"] = recipients.get("users") if recipients.get("thread"): data["thread_ids"] = recipients.get("thread") data.update(self.default_data) url = "direct_v2/threads/broadcast/{}/".format(item_type) text = options.get("text", "") if item_type == "link": data["link_text"] = text data["link_urls"] = json.dumps(options.get("urls")) elif item_type == "text": data["text"] = text elif item_type == "media_share": data["text"] = text data["media_type"] = options.get("media_type", "photo") data["media_id"] = options.get("media_id", "") elif item_type == "hashtag": data["text"] = text data["hashtag"] = options.get("hashtag", "") elif item_type == "profile": data["text"] = text data["profile_user_id"] = options.get("profile_user_id") elif item_type == "photo": url = "direct_v2/threads/broadcast/upload_photo/" filepath = options["filepath"] upload_id = str(int(time.time() * 1000)) with open(filepath, "rb") as f: photo = f.read() data["photo"] = ( "direct_temp_photo_%s.jpg" % upload_id, photo, "application/octet-stream", {"Content-Transfer-Encoding": "binary"}, ) m = MultipartEncoder(data, boundary=self.uuid) data = m.to_string() headers.update({"Content-type": m.content_type}) return self.send_request(url, data, with_signature=False, headers=headers) def get_pending_inbox( self, visual_message_return_type="unseen", selected_filter="relevant", sort_order="relevant", persistentBadging=True, ): url = "direct_v2/pending_inbox/?visual_message_return_type={}&selected_filter={}&sort_order={}&persistentBadging={}".format( visual_message_return_type, selected_filter, sort_order, persistentBadging ) return self.send_request(url) def label_thread(self, thread_id): url = "direct_v2/threads/{}/label/".format(thread_id) data = self.json_data({"thread_label": 1}) return self.send_request(url, post=data) def unlabel_thread(self, thread_id): url = "direct_v2/threads/{}/unlabel/".format(thread_id) return self.send_request(url, post=self.json_data()) def delete_thread(self, thread_id): # It's the same of hide_pending_thread =_= url = "direct_v2/threads/{}/hide/".format(thread_id) return self.send_request(url, post=self.json_data()) def read_thread( self, thread_id, cursor=None, seq_id=None, visual_message_return_type="unseen", direction="older", limit=10, ): url = "direct_v2/threads/{}/?visual_message_return_type={}&direction={}&limit={}".format( thread_id, visual_message_return_type, cursor, direction, seq_id, limit ) if cursor is not None: url += "&cursor={}".format(cursor) if seq_id is not None: url += "&seq_id={}".format(seq_id) return self.send_request(url) def move_thread(self, thread_id, folder=1): url = "direct_v2/threads/{}/move/".format(thread_id) data = self.json_data({"folder": folder}) return self.send_request(url, post=data) def approve_pending_thread(self, thread_id, folder=1): # 1 GENERAL / 0 PRIMARY url = "direct_v2/threads/{}/approve/".format(thread_id) return self.send_request(url, post=self.json_data({"folder": folder})) def hide_pending_thread(self, thread_id): url = "direct_v2/threads/{}/hide/".format(thread_id) return self.send_request(url, post=self.json_data()) def decline_pending_thread(self, thread_id): url = "direct_v2/threads/{}/decline/".format(thread_id) return self.send_request(url, post=self.json_data()) def open_instagram_link(self, link): return self.send_request( "oembed/?url={}".format(urllib.parse.quote(link, safe="")) )
39.637328
4,772
0.587565