hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
7121bc90502bb714cdb2acbbcead4ac4b1af4fec
392
py
Python
src/pytorch_adapt/adapters/utils.py
MarkusSagen/pytorch-adapt
947b9f1b748d2078cecbf4a00c34f73108d9ecde
[ "MIT" ]
1
2021-12-15T19:36:01.000Z
2021-12-15T19:36:01.000Z
src/pytorch_adapt/adapters/utils.py
MarkusSagen/pytorch-adapt
947b9f1b748d2078cecbf4a00c34f73108d9ecde
[ "MIT" ]
null
null
null
src/pytorch_adapt/adapters/utils.py
MarkusSagen/pytorch-adapt
947b9f1b748d2078cecbf4a00c34f73108d9ecde
[ "MIT" ]
null
null
null
from collections.abc import MutableMapping import torch def default_optimizer_tuple(): return (torch.optim.Adam, {"lr": 0.0001}) def with_opt(x): suffix = "_opt" if isinstance(x, str): return f"{x}{suffix}" if isinstance(x, list): return [with_opt(y) for y in x] if isinstance(x, MutableMapping): return {with_opt(k): v for k, v in x.items()}
21.777778
53
0.635204
137c492195cb384797f0678ab5b2854dac59237e
166,434
py
Python
angr/analyses/cfg/cfg_fast.py
Pamplemousse/angr
0783af9afb379fd22940505ac031d8c0ab18ae23
[ "BSD-2-Clause" ]
null
null
null
angr/analyses/cfg/cfg_fast.py
Pamplemousse/angr
0783af9afb379fd22940505ac031d8c0ab18ae23
[ "BSD-2-Clause" ]
null
null
null
angr/analyses/cfg/cfg_fast.py
Pamplemousse/angr
0783af9afb379fd22940505ac031d8c0ab18ae23
[ "BSD-2-Clause" ]
null
null
null
import itertools import logging import math import re import string from typing import List, Optional from collections import defaultdict, OrderedDict from sortedcontainers import SortedDict import claripy import cle import pyvex from cle.address_translator import AT from archinfo.arch_soot import SootAddressDescriptor from archinfo.arch_arm import is_arm_arch, get_real_address_if_arm from ...knowledge_plugins.cfg import CFGNode, MemoryDataSort, MemoryData, IndirectJump from ...knowledge_plugins.xrefs import XRef, XRefType from ...misc.ux import deprecated from ... import sim_options as o from ...errors import (AngrCFGError, AngrSkipJobNotice, AngrUnsupportedSyscallError, SimEngineError, SimMemoryError, SimTranslationError, SimValueError, SimOperationError, SimError, SimIRSBNoDecodeError, ) from ...utils.constants import DEFAULT_STATEMENT from ..forward_analysis import ForwardAnalysis from .cfg_arch_options import CFGArchOptions from .cfg_base import CFGBase from .segment_list import SegmentList VEX_IRSB_MAX_SIZE = 400 l = logging.getLogger(name=__name__) class ContinueScanningNotification(RuntimeError): pass class FunctionReturn: """ FunctionReturn describes a function call in a specific location and its return location. Hashable and equatable """ __slots__ = ('callee_func_addr', 'caller_func_addr', 'call_site_addr', 'return_to', ) def __init__(self, callee_func_addr, caller_func_addr, call_site_addr, return_to): self.callee_func_addr = callee_func_addr self.caller_func_addr = caller_func_addr self.call_site_addr = call_site_addr self.return_to = return_to def __eq__(self, other): """ Comparison :param FunctionReturn other: The other object :return: True if equal, False otherwise """ return self.callee_func_addr == other.callee_func_addr and \ self.caller_func_addr == other.caller_func_addr and \ self.call_site_addr == other.call_site_addr and \ self.return_to == other.return_to def __hash__(self): return hash((self.callee_func_addr, self.caller_func_addr, self.call_site_addr, self.return_to)) class PendingJobs: """ A collection of pending jobs during CFG recovery. """ def __init__(self, functions, deregister_job_callback): self._jobs = OrderedDict() # A mapping between function addresses and lists of pending jobs self._functions = functions self._deregister_job_callback = deregister_job_callback self._returning_functions = set() self._updated_functions = set() # Addresses of functions whose returning status have changed between two # consecutive calls to cleanup(). self._job_count = 0 def __len__(self): return self._job_count def __bool__(self): return self._job_count > 0 __nonzero__ = __bool__ def _pop_job(self, func_addr): jobs = self._jobs[func_addr] j = jobs.pop(-1) if not jobs: del self._jobs[func_addr] self._job_count -= 1 return j def add_job(self, job): func_addr = job.returning_source if func_addr not in self._jobs: self._jobs[func_addr] = [ ] self._jobs[func_addr].append(job) self._job_count += 1 def pop_job(self, returning=True): """ Pop a job from the pending jobs list. When returning == True, we prioritize the jobs whose functions are known to be returning (function.returning is True). As an optimization, we are sorting the pending jobs list according to job.function.returning. :param bool returning: Only pop a pending job if the corresponding function returns. :return: A pending job if we can find one, or None if we cannot find any that satisfies the requirement. :rtype: angr.analyses.cfg.cfg_fast.CFGJob """ if not self: return None if not returning: return self._pop_job(next(reversed(self._jobs.keys()))) # Prioritize returning functions for func_addr in reversed(self._jobs.keys()): if func_addr not in self._returning_functions: continue return self._pop_job(func_addr) return None def cleanup(self): """ Remove those pending exits if: a) they are the return exits of non-returning SimProcedures b) they are the return exits of non-returning syscalls b) they are the return exits of non-returning functions :return: None """ pending_exits_to_remove = defaultdict(list) for func_addr in self._updated_functions: if func_addr not in self._jobs: continue jobs = self._jobs[func_addr] for i, pe in enumerate(jobs): if pe.returning_source is None: # The original call failed. This pending exit must be followed. continue func = self._functions.function(pe.returning_source) if func is None: # Why does it happen? l.warning("An expected function at %s is not found. Please report it to Fish.", pe.returning_source if pe.returning_source is not None else 'None') continue if func.returning is False: # Oops, it's not returning # Remove this pending exit pending_exits_to_remove[pe.returning_source].append(i) for func_addr, indices in pending_exits_to_remove.items(): jobs = self._jobs[func_addr] for index in reversed(indices): job = jobs[index] self._deregister_job_callback(job.func_addr, job) del jobs[index] self._job_count -= 1 if not jobs: del self._jobs[func_addr] self.clear_updated_functions() def add_returning_function(self, func_addr): """ Mark a function as returning. :param int func_addr: Address of the function that returns. :return: None """ self._returning_functions.add(func_addr) self._updated_functions.add(func_addr) def add_nonreturning_function(self, func_addr): """ Mark a function as not returning. :param int func_addr: Address of the function that does not return. :return: None """ self._updated_functions.add(func_addr) def clear_updated_functions(self): """ Clear the updated_functions set. :return: None """ self._updated_functions.clear() # # Descriptors of edges in individual function graphs # class FunctionEdge: __slots__ = ('src_func_addr', 'stmt_idx', 'ins_addr',) def apply(self, cfg): raise NotImplementedError() class FunctionTransitionEdge(FunctionEdge): __slots__ = ('src_node', 'dst_addr', 'src_func_addr', 'to_outside', 'dst_func_addr', 'is_exception', ) def __init__(self, src_node, dst_addr, src_func_addr, to_outside=False, dst_func_addr=None, stmt_idx=None, ins_addr=None, is_exception=False): self.src_node = src_node self.dst_addr = dst_addr self.src_func_addr = src_func_addr self.to_outside = to_outside self.dst_func_addr = dst_func_addr self.stmt_idx = stmt_idx self.ins_addr = ins_addr self.is_exception = is_exception def apply(self, cfg): to_outside = self.to_outside if not to_outside: # is it jumping to outside? Maybe we are seeing more functions now. dst_node = cfg.model.get_any_node(self.dst_addr, force_fastpath=True) if dst_node is not None and dst_node.function_address != self.src_func_addr: to_outside = True return cfg._function_add_transition_edge( self.dst_addr, self.src_node, self.src_func_addr, to_outside=to_outside, dst_func_addr=self.dst_func_addr, stmt_idx=self.stmt_idx, ins_addr=self.ins_addr, is_exception=self.is_exception, ) class FunctionCallEdge(FunctionEdge): __slots__ = ('src_node', 'dst_addr', 'ret_addr', 'syscall') def __init__(self, src_node, dst_addr, ret_addr, src_func_addr, syscall=False, stmt_idx=None, ins_addr=None): self.src_node = src_node self.dst_addr = dst_addr self.ret_addr = ret_addr self.src_func_addr = src_func_addr self.syscall = syscall self.stmt_idx = stmt_idx self.ins_addr = ins_addr def apply(self, cfg): return cfg._function_add_call_edge( self.dst_addr, self.src_node, self.src_func_addr, syscall=self.syscall, stmt_idx=self.stmt_idx, ins_addr=self.ins_addr, ) class FunctionFakeRetEdge(FunctionEdge): __slots__ = ('src_node', 'dst_addr', 'confirmed') def __init__(self, src_node, dst_addr, src_func_addr, confirmed=None): self.src_node = src_node self.dst_addr = dst_addr self.src_func_addr = src_func_addr self.confirmed = confirmed def apply(self, cfg): return cfg._function_add_fakeret_edge( self.dst_addr, self.src_node, self.src_func_addr, confirmed=self.confirmed, ) class FunctionReturnEdge(FunctionEdge): __slots__ = ('ret_from_addr', 'ret_to_addr', 'dst_func_addr') def __init__(self, ret_from_addr, ret_to_addr, dst_func_addr): self.ret_from_addr = ret_from_addr self.ret_to_addr = ret_to_addr self.dst_func_addr = dst_func_addr def apply(self, cfg): return cfg._function_add_return_edge( self.ret_from_addr, self.ret_to_addr, self.dst_func_addr ) # # CFGJob # class CFGJob: """ Defines a job to work on during the CFG recovery """ __slots__ = ('addr', 'func_addr', 'jumpkind', 'ret_target', 'last_addr', 'src_node', 'src_ins_addr', 'src_stmt_idx', 'returning_source', 'syscall', '_func_edges', 'job_type', 'gp', ) JOB_TYPE_NORMAL = "Normal" JOB_TYPE_FUNCTION_PROLOGUE = "Function-prologue" JOB_TYPE_COMPLETE_SCANNING = "Complete-scanning" def __init__(self, addr: int, func_addr: int, jumpkind: str, ret_target: Optional[int]=None, last_addr: Optional[int]=None, src_node: Optional[CFGNode]=None, src_ins_addr:Optional[int]=None, src_stmt_idx: Optional[int]=None, returning_source=None, syscall: bool=False, func_edges: Optional[List]=None, job_type=JOB_TYPE_NORMAL, gp: Optional[int]=None): self.addr = addr self.func_addr = func_addr self.jumpkind = jumpkind self.ret_target = ret_target self.last_addr = last_addr self.src_node = src_node self.src_ins_addr = src_ins_addr self.src_stmt_idx = src_stmt_idx self.returning_source = returning_source self.syscall = syscall self.job_type = job_type self.gp = gp # Used in MIPS32/MIPS64. Value of the gp register in the caller function. Only set at call sites. self._func_edges = func_edges def add_function_edge(self, edge): if self._func_edges is None: self._func_edges = [ ] self._func_edges.append(edge) def apply_function_edges(self, cfg, clear=False): if not self._func_edges: return for edge in self._func_edges: edge.apply(cfg) if clear: self._func_edges = None def __repr__(self): if isinstance(self.addr, SootAddressDescriptor): return "<CFGJob {}>".format(self.addr) else: return "<CFGJob%s %#08x @ func %#08x>" % (" syscall" if self.syscall else "", self.addr, self.func_addr) def __eq__(self, other): return self.addr == other.addr and \ self.func_addr == other.func_addr and \ self.jumpkind == other.jumpkind and \ self.ret_target == other.ret_target and \ self.last_addr == other.last_addr and \ self.src_node == other.src_node and \ self.src_stmt_idx == other.src_stmt_idx and \ self.src_ins_addr == other.src_ins_addr and \ self.returning_source == other.returning_source and \ self.syscall == other.syscall def __hash__(self): return hash((self.addr, self.func_addr, self.jumpkind, self.ret_target, self.last_addr, self.src_node, self.src_stmt_idx, self.src_ins_addr, self.returning_source, self.syscall) ) class CFGFast(ForwardAnalysis, CFGBase): # pylint: disable=abstract-method """ We find functions inside the given binary, and build a control-flow graph in very fast manners: instead of simulating program executions, keeping track of states, and performing expensive data-flow analysis, CFGFast will only perform light-weight analyses combined with some heuristics, and with some strong assumptions. In order to identify as many functions as possible, and as accurate as possible, the following operation sequence is followed: # Active scanning - If the binary has "function symbols" (TODO: this term is not accurate enough), they are starting points of the code scanning - If the binary does not have any "function symbol", we will first perform a function prologue scanning on the entire binary, and start from those places that look like function beginnings - Otherwise, the binary's entry point will be the starting point for scanning # Passive scanning - After all active scans are done, we will go through the whole image and scan all code pieces Due to the nature of those techniques that are used here, a base address is often not required to use this analysis routine. However, with a correct base address, CFG recovery will almost always yield a much better result. A custom analysis, called GirlScout, is specifically made to recover the base address of a binary blob. After the base address is determined, you may want to reload the binary with the new base address by creating a new Project object, and then re-recover the CFG. """ # TODO: Move arch_options to CFGBase, and add those logic to CFGEmulated as well. PRINTABLES = string.printable.replace("\x0b", "").replace("\x0c", "").encode() SPECIAL_THUNKS = { 'AMD64': { bytes.fromhex('E807000000F3900FAEE8EBF9488D642408C3'): ('ret',), bytes.fromhex('E807000000F3900FAEE8EBF948890424C3'): ('jmp', 'rax'), } } tag = "CFGFast" def __init__(self, binary=None, objects=None, regions=None, pickle_intermediate_results=False, symbols=True, function_prologues=True, resolve_indirect_jumps=True, force_segment=False, force_complete_scan=True, indirect_jump_target_limit=100000, data_references=False, cross_references=False, normalize=False, start_at_entry=True, function_starts=None, extra_memory_regions=None, data_type_guessing_handlers=None, arch_options=None, indirect_jump_resolvers=None, base_state=None, exclude_sparse_regions=True, skip_specific_regions=True, heuristic_plt_resolving=None, detect_tail_calls=False, low_priority=False, cfb=None, model=None, use_patches=False, elf_eh_frame=True, exceptions=True, start=None, # deprecated end=None, # deprecated collect_data_references=None, # deprecated extra_cross_references=None, # deprecated **extra_arch_options ): """ :param binary: The binary to recover CFG on. By default the main binary is used. :param objects: A list of objects to recover the CFG on. By default it will recover the CFG of all loaded objects. :param iterable regions: A list of tuples in the form of (start address, end address) describing memory regions that the CFG should cover. :param bool pickle_intermediate_results: If we want to store the intermediate results or not. :param bool symbols: Get function beginnings from symbols in the binary. :param bool function_prologues: Scan the binary for function prologues, and use those positions as function beginnings :param bool resolve_indirect_jumps: Try to resolve indirect jumps. This is necessary to resolve jump targets from jump tables, etc. :param bool force_segment: Force CFGFast to rely on binary segments instead of sections. :param bool force_complete_scan: Perform a complete scan on the binary and maximize the number of identified code blocks. :param bool data_references: Enables the collection of references to data used by individual instructions. This does not collect 'cross-references', particularly those that involve multiple instructions. For that, see `cross_references` :param bool cross_references: Whether CFGFast should collect "cross-references" from the entire program or not. This will populate the knowledge base with references to and from each recognizable address constant found in the code. Note that, because this performs constant propagation on the entire program, it may be much slower and consume more memory. This option implies `data_references=True`. :param bool normalize: Normalize the CFG as well as all function graphs after CFG recovery. :param bool start_at_entry: Begin CFG recovery at the entry point of this project. Setting it to False prevents CFGFast from viewing the entry point as one of the starting points of code scanning. :param list function_starts: A list of extra function starting points. CFGFast will try to resume scanning from each address in the list. :param list extra_memory_regions: A list of 2-tuple (start-address, end-address) that shows extra memory regions. Integers falling inside will be considered as pointers. :param list indirect_jump_resolvers: A custom list of indirect jump resolvers. If this list is None or empty, default indirect jump resolvers specific to this architecture and binary types will be loaded. :param base_state: A state to use as a backer for all memory loads :param bool detect_tail_calls: Enable aggressive tail-call optimization detection. :param bool elf_eh_frame: Retrieve function starts (and maybe sizes later) from the .eh_frame of ELF binaries. :param int start: (Deprecated) The beginning address of CFG recovery. :param int end: (Deprecated) The end address of CFG recovery. :param CFGArchOptions arch_options: Architecture-specific options. :param dict extra_arch_options: Any key-value pair in kwargs will be seen as an arch-specific option and will be used to set the option value in self._arch_options. Extra parameters that angr.Analysis takes: :param progress_callback: Specify a callback function to get the progress during CFG recovery. :param bool show_progressbar: Should CFGFast show a progressbar during CFG recovery or not. :return: None """ ForwardAnalysis.__init__(self, allow_merging=False) CFGBase.__init__( self, 'fast', 0, normalize=normalize, binary=binary, force_segment=force_segment, base_state=base_state, resolve_indirect_jumps=resolve_indirect_jumps, indirect_jump_resolvers=indirect_jump_resolvers, indirect_jump_target_limit=indirect_jump_target_limit, detect_tail_calls=detect_tail_calls, low_priority=low_priority, model=model, ) # necessary warnings regions_not_specified = regions is None and binary is None and not objects if self.project.loader._auto_load_libs is True and end is None and len(self.project.loader.all_objects) > 3 \ and regions_not_specified: l.warning('"auto_load_libs" is enabled. With libraries loaded in project, CFGFast will cover libraries, ' 'which may take significantly more time than expected. You may reload the binary with ' '"auto_load_libs" disabled, or specify "regions" to limit the scope of CFG recovery.' ) if collect_data_references is not None: l.warning('"collect_data_references" is deprecated and will be removed soon. Please use ' '"data_references" instead') data_references = collect_data_references if extra_cross_references is not None: l.warning('"extra_cross_references" is deprecated and will be removed soon. Please use ' '"cross_references" instead') cross_references = extra_cross_references if start is not None or end is not None: l.warning('"start" and "end" are deprecated and will be removed soon. Please use "regions" to specify one ' 'or more memory regions instead.' ) if regions is None: regions = [ (start, end) ] else: l.warning('"regions", "start", and "end" are all specified. Ignoring "start" and "end".') if binary is not None and not objects: objects = [ binary ] regions = regions if regions is not None else self._executable_memory_regions(objects=objects, force_segment=force_segment ) if exclude_sparse_regions: new_regions = [ ] for start_, end_ in regions: if not self._is_region_extremely_sparse(start_, end_, base_state=base_state): new_regions.append((start_, end_)) regions = new_regions if skip_specific_regions: if base_state is not None: l.warning("You specified both base_state and skip_specific_regions. They may conflict with each other.") new_regions = [ ] for start_, end_ in regions: if not self._should_skip_region(start_): new_regions.append((start_, end_)) regions = new_regions if not regions and self.project.arch.name != 'Soot': raise AngrCFGError("Regions are empty or all regions are skipped. You may want to manually specify regions.") # sort the regions regions = sorted(regions, key=lambda x: x[0]) self._regions_size = sum((b - a) for a, b in regions) # initial self._regions as a sorted dict self._regions = SortedDict(regions) self._pickle_intermediate_results = pickle_intermediate_results self._use_symbols = symbols self._use_function_prologues = function_prologues self._force_complete_scan = force_complete_scan self._use_elf_eh_frame = elf_eh_frame self._use_exceptions = exceptions if heuristic_plt_resolving is None: # If unspecified, we only enable heuristic PLT resolving when there is at least one binary loaded with the # ELF backend self._heuristic_plt_resolving = len(self.project.loader.all_elf_objects) > 0 else: self._heuristic_plt_resolving = heuristic_plt_resolving self._start_at_entry = start_at_entry self._extra_function_starts = function_starts self._extra_memory_regions = extra_memory_regions self._cross_references = cross_references # You need data refs to get cross refs self._collect_data_ref = data_references or self._cross_references self._use_patches = use_patches self._arch_options = arch_options if arch_options is not None else CFGArchOptions( self.project.arch, **extra_arch_options) self._data_type_guessing_handlers = [ ] if data_type_guessing_handlers is None else data_type_guessing_handlers self._cfb = cfb l.debug("CFG recovery covers %d regions:", len(self._regions)) for start_addr in self._regions: l.debug("... %#x - %#x", start_addr, self._regions[start_addr]) # mapping to all known thunks self._known_thunks = {} self._initial_state = None self._next_addr = None # Create the segment list self._seg_list = SegmentList() self._read_addr_to_run = defaultdict(list) self._write_addr_to_run = defaultdict(list) self._function_prologue_addrs = None self._remaining_function_prologue_addrs = None # exception handling self._exception_handling_by_endaddr = SortedDict() # # Variables used during analysis # self._pending_jobs = None self._traced_addresses = None self._function_returns = None self._function_exits = None self._gp_value: Optional[int] = None # A mapping between address and the actual data in memory # self._memory_data = { } # A mapping between address of the instruction that's referencing the memory data and the memory data itself # self.insn_addr_to_memory_data = { } # self._graph = None # Start working! self._analyze() def __getstate__(self): d = dict(self.__dict__) d['_progress_callback'] = None return d def __setstate__(self, d): self.__dict__.update(d) # # Utils # @staticmethod def _calc_entropy(data, size=None): """ Calculate the entropy of a piece of data :param data: The target data to calculate entropy on :param size: Size of the data, Optional. :return: A float """ if not data: return 0 entropy = 0 if size is None: size = len(data) data = bytes(pyvex.ffi.buffer(data, size)) for x in range(0, 256): p_x = float(data.count(x)) / size if p_x > 0: entropy += - p_x * math.log(p_x, 2) return entropy # # Properties # @property def graph(self): return self._model.graph @property def _insn_addr_to_memory_data(self): l.warning('_insn_addr_to_memory_data has been made public and is deprecated. Please fix your code accordingly.') return self._model.insn_addr_to_memory_data @property def _memory_data(self): return self._model.memory_data @property def memory_data(self): return self._model.memory_data @property def jump_tables(self): return self._model.jump_tables @property def insn_addr_to_memory_data(self): return self._model.insn_addr_to_memory_data # # Private methods # # Methods for determining scanning scope def _inside_regions(self, address): """ Check if the address is inside any existing region. :param int address: Address to check. :return: True if the address is within one of the memory regions, False otherwise. :rtype: bool """ try: start_addr = next(self._regions.irange(maximum=address, reverse=True)) except StopIteration: return False else: return address < self._regions[start_addr] def _get_min_addr(self): """ Get the minimum address out of all regions. We assume self._regions is sorted. :return: The minimum address. :rtype: int """ if not self._regions: if self.project.arch.name != "Soot": l.error("self._regions is empty or not properly set.") return None return next(self._regions.irange()) def _next_address_in_regions(self, address): """ Return the next immediate address that is inside any of the regions. :param int address: The address to start scanning. :return: The next address that is inside one of the memory regions. :rtype: int """ if self._inside_regions(address): return address try: return next(self._regions.irange(minimum=address, reverse=False)) except StopIteration: return None # Methods for scanning the entire image def _next_unscanned_addr(self, alignment=None): """ Find the next address that we haven't processed :param alignment: Assures the address returns must be aligned by this number :return: An address to process next, or None if all addresses have been processed """ # TODO: Take care of those functions that are already generated if self._next_addr is None: self._next_addr = self._get_min_addr() curr_addr = self._next_addr else: curr_addr = self._next_addr + 1 if not self._inside_regions(curr_addr): curr_addr = self._next_address_in_regions(curr_addr) if curr_addr is None: l.debug("All addresses within memory regions have been scanned.") return None if self._seg_list.has_blocks: curr_addr = self._seg_list.next_free_pos(curr_addr) if alignment is not None: if curr_addr % alignment > 0: curr_addr = curr_addr - (curr_addr % alignment) + alignment # Make sure curr_addr exists in binary accepted = False for start, end in self._regions.items(): if start <= curr_addr < end: # accept accepted = True break if curr_addr < start: # accept, but we are skipping the gap accepted = True curr_addr = start break if not accepted: # No memory available! return None self._next_addr = curr_addr if self._inside_regions(curr_addr): l.debug("Returning a new recon address: %#x", curr_addr) return curr_addr l.debug("%#x is beyond the ending point. Returning None.", curr_addr) return None def _load_a_byte_as_int(self, addr): if self._base_state is not None: try: val = self._base_state.mem_concrete(addr, 1, inspect=False, disable_actions=True) except SimValueError: # Not concretizable l.debug("Address %#x is not concretizable!", addr) return None else: val = self._fast_memory_load_byte(addr) if val is None: return None return val def _scan_for_printable_strings(self, start_addr): addr = start_addr sz = [] is_sz = True # Get data until we meet a null-byte while self._inside_regions(addr): l.debug("Searching address %x", addr) val = self._load_a_byte_as_int(addr) if val is None: break if val == 0: if len(sz) < 4: is_sz = False break if val not in self.PRINTABLES: is_sz = False break sz.append(val) addr += 1 if sz and is_sz: l.debug("Got a string of %d chars: [%s]", len(sz), bytes(sz).decode()) string_length = len(sz) + 1 return string_length # no string is found return 0 def _scan_for_repeating_bytes(self, start_addr, repeating_byte, threshold=2): """ Scan from a given address and determine the occurrences of a given byte. :param int start_addr: The address in memory to start scanning. :param int repeating_byte: The repeating byte to scan for. :param int threshold: The minimum occurrences. :return: The occurrences of a given byte. :rtype: int """ addr = start_addr repeating_length = 0 while self._inside_regions(addr): val = self._load_a_byte_as_int(addr) if val is None: break if val == repeating_byte: repeating_length += 1 else: break addr += 1 if repeating_length >= threshold: return repeating_length else: return 0 def _next_code_addr_core(self): """ Call _next_unscanned_addr() first to get the next address that is not scanned. Then check if data locates at that address seems to be code or not. If not, we'll continue to for the next un-scanned address. """ next_addr = self._next_unscanned_addr() if next_addr is None: return None start_addr = next_addr while True: string_length = self._scan_for_printable_strings(start_addr) if string_length: self._seg_list.occupy(start_addr, string_length, "string") start_addr += string_length if self.project.arch.name in ('X86', 'AMD64'): cc_length = self._scan_for_repeating_bytes(start_addr, 0xcc, threshold=1) if cc_length: self._seg_list.occupy(start_addr, cc_length, "alignment") start_addr += cc_length else: cc_length = 0 zeros_length = self._scan_for_repeating_bytes(start_addr, 0x00) if zeros_length: self._seg_list.occupy(start_addr, zeros_length, "alignment") start_addr += zeros_length if string_length == 0 and cc_length == 0 and zeros_length == 0: # umm now it's probably code break instr_alignment = self._initial_state.arch.instruction_alignment if start_addr % instr_alignment > 0: # occupy those few bytes self._seg_list.occupy(start_addr, instr_alignment - (start_addr % instr_alignment), 'alignment') start_addr = start_addr - start_addr % instr_alignment + \ instr_alignment # trickiness: aligning the start_addr may create a new address that is outside any mapped region. if not self._inside_regions(start_addr): raise ContinueScanningNotification() return start_addr def _next_code_addr(self): while True: try: addr = self._next_code_addr_core() except ContinueScanningNotification: continue if addr is None: return None # if the new address is already occupied if not self._seg_list.is_occupied(addr): return addr # Overriden methods from ForwardAnalysis def _job_key(self, job): return job.addr def _pre_analysis(self): # Call _initialize_cfg() before self.functions is used. self._initialize_cfg() # Scan for __x86_return_thunk and friends self._known_thunks = self._find_thunks() # Initialize variables used during analysis self._pending_jobs = PendingJobs(self.functions, self._deregister_analysis_job) self._traced_addresses = set() self._function_returns = defaultdict(set) # Sadly, not all calls to functions are explicitly made by call # instruction - they could be a jmp or b, or something else. So we # should record all exits from a single function, and then add # necessary calling edges in our call map during the post-processing # phase. self._function_exits = defaultdict(set) # Create an initial state. Store it to self so we can use it globally. self._initial_state = self.project.factory.blank_state(mode="fastpath", add_options={o.SYMBOL_FILL_UNCONSTRAINED_MEMORY, o.SYMBOL_FILL_UNCONSTRAINED_REGISTERS}) initial_options = self._initial_state.options - {o.TRACK_CONSTRAINTS} - o.refs initial_options |= {o.SUPER_FASTPATH} # initial_options.remove(o.COW_STATES) self._initial_state.options = initial_options # Process known exception handlings if self._use_exceptions: self._preprocess_exception_handlings() starting_points = set() # clear all existing functions self.kb.functions.clear() if self._use_symbols: starting_points |= self._function_addresses_from_symbols if self._use_elf_eh_frame: starting_points |= self._function_addresses_from_eh_frame if self._extra_function_starts: starting_points |= set(self._extra_function_starts) # Sort it starting_points = sorted(list(starting_points), reverse=False) if self._start_at_entry and self.project.entry is not None and self._inside_regions(self.project.entry) and \ self.project.entry not in starting_points: # make sure self.project.entry is inserted starting_points = [ self.project.entry ] + starting_points # Create jobs for all starting points for sp in starting_points: job = CFGJob(sp, sp, 'Ijk_Boring') self._insert_job(job) # register the job to function `sp` self._register_analysis_job(sp, job) self._updated_nonreturning_functions = set() if self._use_function_prologues and self.project.concrete_target is None: self._function_prologue_addrs = sorted(self._func_addrs_from_prologues()) # make a copy of those prologue addresses, so that we can pop from the list self._remaining_function_prologue_addrs = self._function_prologue_addrs[::] # make function_prologue_addrs a set for faster lookups self._function_prologue_addrs = set(self._function_prologue_addrs) def _pre_job_handling(self, job): # pylint:disable=arguments-differ """ Some pre job-processing tasks, like update progress bar. :param CFGJob job: The CFGJob instance. :return: None """ if self._low_priority: self._release_gil(len(self._nodes), 20, 0.000001) # a new entry is picked. Deregister it self._deregister_analysis_job(job.func_addr, job) if not self._inside_regions(job.addr): obj = self.project.loader.find_object_containing(job.addr) if obj is not None and isinstance(obj, self._cle_pseudo_objects): pass else: # it's outside permitted regions. skip. raise AngrSkipJobNotice() # Do not calculate progress if the user doesn't care about the progress at all if self._show_progressbar or self._progress_callback: max_percentage_stage_1 = 50.0 percentage = self._seg_list.occupied_size * max_percentage_stage_1 / self._regions_size if percentage > max_percentage_stage_1: percentage = max_percentage_stage_1 self._update_progress(percentage, cfg=self) def _intra_analysis(self): pass def _get_successors(self, job): # pylint:disable=arguments-differ # current_function_addr = job.func_addr # addr = job.addr # if current_function_addr != -1: # l.debug("Tracing new exit %#x in function %#x", addr, current_function_addr) # else: # l.debug("Tracing new exit %#x", addr) jobs = self._scan_block(job) # l.debug("... got %d jobs: %s", len(jobs), jobs) for job_ in jobs: # type: CFGJob # register those jobs self._register_analysis_job(job_.func_addr, job_) return jobs def _handle_successor(self, job, successor, successors): return [ successor ] def _merge_jobs(self, *jobs): pass def _widen_jobs(self, *jobs): pass def _post_process_successors(self, irsb, successors): if is_arm_arch(self.project.arch): if irsb.addr % 2 == 1: # we are in thumb mode. filter successors successors = self._arm_thumb_filter_jump_successors(irsb, successors, lambda tpl: tpl[1], lambda tpl: tpl[0], lambda tpl: tpl[3], ) return successors def _post_job_handling(self, job, new_jobs, successors): pass def _job_queue_empty(self): if self._pending_jobs: # fastpath # look for a job that comes from a function that must return # if we can find one, just use it job = self._pop_pending_job(returning=True) if job is not None: self._insert_job(job) return self._clean_pending_exits() # did we finish analyzing any function? # fill in self._completed_functions self._make_completed_functions() # analyze function features, most importantly, whether each function returns or not self._analyze_all_function_features() # Clear _changed_functions set self._updated_nonreturning_functions = set() if self._pending_jobs: self._clean_pending_exits() job = self._pop_pending_job(returning=True) if job is not None: self._insert_job(job) return # Try to see if there is any indirect jump left to be resolved # it's possible that certain indirect jumps must be resolved before the returning status of a function can be # determined. e.g., in AArch64 # __stubs:00000001000064B0 ___stack_chk_fail # __stubs:00000001000064B0 NOP # __stubs:00000001000064B4 LDR X16, =__imp____stack_chk_fail # __stubs:00000001000064B8 BR X16 # # we need to rely on indirect jump resolving to identify this call to stack_chk_fail before knowing that # function 0x100006480 does not return. Hence, we resolve indirect jumps before popping undecided pending jobs. if self._resolve_indirect_jumps and self._indirect_jumps_to_resolve: self._process_unresolved_indirect_jumps() if self._job_info_queue: return if self._pending_jobs: job = self._pop_pending_job(returning=False) if job is not None: self._insert_job(job) return if self._use_function_prologues and self._remaining_function_prologue_addrs: while self._remaining_function_prologue_addrs: prolog_addr = self._remaining_function_prologue_addrs[0] self._remaining_function_prologue_addrs = self._remaining_function_prologue_addrs[1:] if self._seg_list.is_occupied(prolog_addr): continue job = CFGJob(prolog_addr, prolog_addr, 'Ijk_Boring') self._insert_job(job) self._register_analysis_job(prolog_addr, job) return if self._force_complete_scan: addr = self._next_code_addr() if addr is None: l.debug("Force-scan jumping failed") else: l.debug("Force-scanning to %#x", addr) if addr is not None: # if this is ARM and addr % 4 != 0, it has to be THUMB if is_arm_arch(self.project.arch): if addr % 2 == 0 and addr % 4 != 0: addr |= 1 else: # load 8 bytes and test with THUMB-mode prologues bytes_prefix = self._fast_memory_load_bytes(addr, 8) if any(re.match(prolog, bytes_prefix) for prolog in self.project.arch.thumb_prologs): addr |= 1 job = CFGJob(addr, addr, "Ijk_Boring", last_addr=None, job_type=CFGJob.JOB_TYPE_COMPLETE_SCANNING) self._insert_job(job) self._register_analysis_job(addr, job) def _post_analysis(self): self._make_completed_functions() if self._normalize: # Normalize the control flow graph first before rediscovering all functions self.normalize() if self.project.arch.name in ('X86', 'AMD64', 'MIPS32'): self._remove_redundant_overlapping_blocks() self._updated_nonreturning_functions = set() # Revisit all edges and rebuild all functions to correctly handle returning/non-returning functions. self.make_functions() self._analyze_all_function_features(all_funcs_completed=True) # Scan all functions, and make sure all fake ret edges are either confirmed or removed for f in self.functions.values(): all_edges = f.transition_graph.edges(data=True) callsites_to_functions = defaultdict(list) # callsites to functions mapping for src, dst, data in all_edges: if 'type' in data: if data['type'] == 'call': callsites_to_functions[src.addr].append(dst.addr) edges_to_remove = [ ] for src, dst, data in all_edges: if 'type' in data: if data['type'] == 'fake_return' and 'confirmed' not in data: # Get all possible functions being called here target_funcs = [ self.functions.function(addr=func_addr) for func_addr in callsites_to_functions[src.addr] ] if target_funcs and all(t is not None and t.returning is False for t in target_funcs): # Remove this edge edges_to_remove.append((src, dst)) else: # Mark this edge as confirmed f._confirm_fakeret(src, dst) for edge in edges_to_remove: f.transition_graph.remove_edge(*edge) # Clear the cache f._local_transition_graph = None # Scan all functions, and make sure .returning for all functions are either True or False for f in self.functions.values(): if f.returning is None: f.returning = len(f.endpoints) > 0 # pylint:disable=len-as-condition # Finally, mark endpoints of every single function for function in self.kb.functions.values(): function.mark_nonreturning_calls_endpoints() # optional: remove functions that must be alignments self.mark_function_alignments() # make return edges self._make_return_edges() if self.project.arch.name != 'Soot': if self.project.loader.main_object.sections: # this binary has sections # make sure we have data entries assigned at the beginning of each data section for sec in self.project.loader.main_object.sections: if sec.memsize > 0 and not sec.is_executable and sec.is_readable: for seg in self.project.loader.main_object.segments: if seg.vaddr <= sec.vaddr < seg.vaddr + seg.memsize: break else: continue if sec.vaddr not in self.model.memory_data: self.model.memory_data[sec.vaddr] = MemoryData(sec.vaddr, 0, MemoryDataSort.Unknown) # If they asked for it, give it to them. All of it. if self._cross_references: self.do_full_xrefs() r = True while r: r = self._tidy_data_references() CFGBase._post_analysis(self) self._finish_progress() def do_full_xrefs(self, overlay_state=None): """ Perform xref recovery on all functions. :param SimState overlay: An overlay state for loading constant data. :return: None """ l.info("Building cross-references...") # Time to make our CPU hurt state = self.project.factory.blank_state() if overlay_state is None else overlay_state for f_addr in self.functions: f = None try: f = self.functions[f_addr] if f.is_simprocedure: continue l.debug("\tFunction %s", f.name) # constant prop prop = self.project.analyses.Propagator(func=f, base_state=state) # Collect all the refs self.project.analyses.XRefs(func=f, replacements=prop.replacements) except Exception: # pylint: disable=broad-except if f is not None: l.exception("Error collecting XRefs for function %s.", f.name, exc_info=True) else: l.exception("Error collecting XRefs for function %#x.", f_addr, exc_info=True) # Methods to get start points for scanning def _func_addrs_from_prologues(self): """ Scan the entire program image for function prologues, and start code scanning at those positions :return: A list of possible function addresses """ # Pre-compile all regexes regexes = list() for ins_regex in self.project.arch.function_prologs: r = re.compile(ins_regex) regexes.append(r) # EDG says: I challenge anyone bothering to read this to come up with a better # way to handle CPU modes that affect instruction decoding. # Since the only one we care about is ARM/Thumb right now # we have this gross hack. Sorry about that. thumb_regexes = list() if hasattr(self.project.arch, 'thumb_prologs'): for ins_regex in self.project.arch.thumb_prologs: # Thumb prologues are found at even addrs, but their actual addr is odd! # Isn't that great? r = re.compile(ins_regex) thumb_regexes.append(r) # Construct the binary blob first unassured_functions = [ ] for start_, bytes_ in self._binary.memory.backers(): for regex in regexes: # Match them! for mo in regex.finditer(bytes_): position = mo.start() + start_ if position % self.project.arch.instruction_alignment == 0: mapped_position = AT.from_rva(position, self._binary).to_mva() if self._addr_in_exec_memory_regions(mapped_position): unassured_functions.append(mapped_position) # HACK part 2: Yes, i really have to do this for regex in thumb_regexes: # Match them! for mo in regex.finditer(bytes_): position = mo.start() + start_ if position % self.project.arch.instruction_alignment == 0: mapped_position = AT.from_rva(position, self._binary).to_mva() if self._addr_in_exec_memory_regions(mapped_position): unassured_functions.append(mapped_position+1) l.info("Found %d functions with prologue scanning.", len(unassured_functions)) return unassured_functions # Basic block scanning def _scan_block(self, cfg_job): """ Scan a basic block starting at a specific address :param CFGJob cfg_job: The CFGJob instance. :return: a list of successors :rtype: list """ addr = cfg_job.addr current_func_addr = cfg_job.func_addr # Fix the function address # This is for rare cases where we cannot successfully determine the end boundary of a previous function, and # as a consequence, our analysis mistakenly thinks the previous function goes all the way across the boundary, # resulting the missing of the second function in function manager. if addr in self._function_addresses_from_symbols: current_func_addr = addr if self._addr_hooked_or_syscall(addr): entries = self._scan_procedure(cfg_job, current_func_addr) else: entries = self._scan_irsb(cfg_job, current_func_addr) return entries def _scan_procedure(self, cfg_job, current_func_addr): """ Checks the hooking procedure for this address searching for new static exit points to add to successors (generating entries for them) if this address has not been traced before. Updates previous CFG nodes with edges. :param CFGJob cfg_job: The CFGJob instance. :param int current_func_addr: Address of the current function. :return: List of successors :rtype: list """ addr = cfg_job.addr try: if self.project.is_hooked(addr): procedure = self.project.hooked_by(addr) name = procedure.display_name else: procedure = self.project.simos.syscall_from_addr(addr) name = procedure.display_name if addr not in self._nodes: cfg_node = CFGNode(addr, 0, self.model, function_address=current_func_addr, simprocedure_name=name, no_ret=procedure.NO_RET, block_id=addr, ) self._nodes[addr] = cfg_node self._nodes_by_addr[addr].append(cfg_node) else: cfg_node = self._nodes[addr] except (SimMemoryError, SimEngineError): return [ ] self._graph_add_edge(cfg_node, cfg_job.src_node, cfg_job.jumpkind, cfg_job.src_ins_addr, cfg_job.src_stmt_idx ) self._function_add_node(cfg_node, current_func_addr) # Add edges going to this node in function graphs cfg_job.apply_function_edges(self, clear=True) # If we have traced it before, don't trace it anymore if addr in self._traced_addresses: return [ ] else: # Mark the address as traced self._traced_addresses.add(addr) entries = [ ] if procedure.ADDS_EXITS: # Get two blocks ahead if cfg_job.src_node is None: l.warning("%s is supposed to yield new exits, but it fails to do so.", name) return [] grandparent_nodes = list(self.graph.predecessors(cfg_job.src_node)) grandparent_node = grandparent_nodes[0] if grandparent_nodes else None blocks_ahead = [ ] if grandparent_node is not None: blocks_ahead.append(self._lift(grandparent_node.addr).vex) blocks_ahead.append(self._lift(cfg_job.src_node.addr).vex) procedure.project = self.project procedure.arch = self.project.arch new_exits = procedure.static_exits(blocks_ahead) for new_exit in new_exits: addr_ = new_exit['address'] jumpkind = new_exit['jumpkind'] namehint = new_exit.get('namehint', None) if isinstance(addr_, claripy.ast.BV) and not addr_.symbolic: # pylint:disable=isinstance-second-argument-not-valid-type addr_ = addr_._model_concrete.value if not isinstance(addr_, int): continue entries += self._create_jobs(addr_, jumpkind, current_func_addr, None, addr_, cfg_node, None, None, ) if namehint and addr_ not in self.kb.labels: unique_label = self.kb.labels.get_unique_label(namehint) self.kb.labels[addr_] = unique_label if not procedure.NO_RET: # it returns cfg_node.has_return = True self._function_exits[current_func_addr].add(addr) self._function_add_return_site(addr, current_func_addr) else: # the procedure does not return self._updated_nonreturning_functions.add(current_func_addr) return entries def _scan_irsb(self, cfg_job, current_func_addr): """ Generate a list of successors (generating them each as entries) to IRSB. Updates previous CFG nodes with edges. :param CFGJob cfg_job: The CFGJob instance. :param int current_func_addr: Address of the current function :return: a list of successors :rtype: list """ addr, function_addr, cfg_node, irsb = self._generate_cfgnode(cfg_job, current_func_addr) # Add edges going to this node in function graphs cfg_job.apply_function_edges(self, clear=True) # function_addr and current_function_addr can be different. e.g. when tracing an optimized tail-call that jumps # into another function that has been identified before. if cfg_node is None: # exceptions occurred, or we cannot get a CFGNode for other reasons return [ ] self._graph_add_edge(cfg_node, cfg_job.src_node, cfg_job.jumpkind, cfg_job.src_ins_addr, cfg_job.src_stmt_idx ) self._function_add_node(cfg_node, function_addr) if self.functions.get_by_addr(function_addr).returning is not True: self._updated_nonreturning_functions.add(function_addr) # If we have traced it before, don't trace it anymore real_addr = get_real_address_if_arm(self.project.arch, addr) if real_addr in self._traced_addresses: # the address has been traced before return [ ] else: # Mark the address as traced self._traced_addresses.add(real_addr) # irsb cannot be None here # assert irsb is not None # IRSB is only used once per CFGNode. We should be able to clean up the CFGNode here in order to save memory cfg_node.irsb = None caller_gp = None if self.project.arch.name in {'MIPS32', 'MIPS64'}: # the caller might have gp passed on caller_gp = cfg_job.gp self._process_block_arch_specific(addr, irsb, function_addr, caller_gp=caller_gp) # Scan the basic block to collect data references if self._collect_data_ref: self._collect_data_references(irsb, addr) # Get all possible successors irsb_next, jumpkind = irsb.next, irsb.jumpkind successors = [ ] if irsb.statements: last_ins_addr = None ins_addr = addr for i, stmt in enumerate(irsb.statements): if isinstance(stmt, pyvex.IRStmt.Exit): successors.append((i, last_ins_addr if self.project.arch.branch_delay_slot else ins_addr, stmt.dst, stmt.jumpkind ) ) elif isinstance(stmt, pyvex.IRStmt.IMark): last_ins_addr = ins_addr ins_addr = stmt.addr + stmt.delta else: for ins_addr, stmt_idx, exit_stmt in irsb.exit_statements: branch_ins_addr = ins_addr if self.project.arch.branch_delay_slot \ and irsb.instruction_addresses \ and ins_addr in irsb.instruction_addresses: idx_ = irsb.instruction_addresses.index(ins_addr) if idx_ > 0: branch_ins_addr = irsb.instruction_addresses[idx_ - 1] successors.append(( stmt_idx, branch_ins_addr, exit_stmt.dst, exit_stmt.jumpkind )) # default statement default_branch_ins_addr = None if irsb.instruction_addresses: if self.project.arch.branch_delay_slot: if len(irsb.instruction_addresses) > 1: default_branch_ins_addr = irsb.instruction_addresses[-2] else: default_branch_ins_addr = irsb.instruction_addresses[-1] successors.append((DEFAULT_STATEMENT, default_branch_ins_addr, irsb_next, jumpkind)) # exception handling exc = self._exception_handling_by_endaddr.get(addr + irsb.size, None) if exc is not None: successors.append( (DEFAULT_STATEMENT, default_branch_ins_addr, exc.handler_addr, 'Ijk_Exception') ) entries = [ ] successors = self._post_process_successors(irsb, successors) # Process each successor for suc in successors: stmt_idx, ins_addr, target, jumpkind = suc entries += self._create_jobs(target, jumpkind, function_addr, irsb, addr, cfg_node, ins_addr, stmt_idx ) return entries def _create_jobs(self, target, jumpkind, current_function_addr, irsb, addr, cfg_node, ins_addr, stmt_idx): """ Given a node and details of a successor, makes a list of CFGJobs and if it is a call or exit marks it appropriately so in the CFG :param int target: Destination of the resultant job :param str jumpkind: The jumpkind of the edge going to this node :param int current_function_addr: Address of the current function :param pyvex.IRSB irsb: IRSB of the predecessor node :param int addr: The predecessor address :param CFGNode cfg_node: The CFGNode of the predecessor node :param int ins_addr: Address of the source instruction. :param int stmt_idx: ID of the source statement. :return: a list of CFGJobs :rtype: list """ if type(target) is pyvex.IRExpr.Const: # pylint: disable=unidiomatic-typecheck target_addr = target.con.value elif type(target) in (pyvex.IRConst.U8, pyvex.IRConst.U16, pyvex.IRConst.U32, pyvex.IRConst.U64): # pylint: disable=unidiomatic-typecheck target_addr = target.value elif type(target) is int: # pylint: disable=unidiomatic-typecheck target_addr = target else: target_addr = None if target_addr in self._known_thunks and jumpkind == 'Ijk_Boring': thunk_kind = self._known_thunks[target_addr][0] if thunk_kind == 'ret': jumpkind = 'Ijk_Ret' target_addr = None elif thunk_kind == 'jmp': pass # ummmmmm not sure about this one else: raise AngrCFGError("This shouldn't be possible") jobs = [ ] is_syscall = jumpkind.startswith("Ijk_Sys") # Special handling: # If a call instruction has a target that points to the immediate next instruction, we treat it as a boring jump if jumpkind == "Ijk_Call" and \ not self.project.arch.call_pushes_ret and \ cfg_node.instruction_addrs and \ ins_addr == cfg_node.instruction_addrs[-1] and \ target_addr == irsb.addr + irsb.size: jumpkind = "Ijk_Boring" if target_addr is None: # The target address is not a concrete value if jumpkind == "Ijk_Ret": # This block ends with a return instruction. if current_function_addr != -1: self._function_exits[current_function_addr].add(addr) self._function_add_return_site(addr, current_function_addr) self.functions[current_function_addr].returning = True self._pending_jobs.add_returning_function(current_function_addr) cfg_node.has_return = True elif self._resolve_indirect_jumps and \ (jumpkind in ('Ijk_Boring', 'Ijk_Call', 'Ijk_InvalICache') or jumpkind.startswith('Ijk_Sys')): # This is an indirect jump. Try to resolve it. # FIXME: in some cases, a statementless irsb will be missing its instr addresses # and this next part will fail. Use the real IRSB instead irsb = self._lift(cfg_node.addr, size=cfg_node.size).vex cfg_node.instruction_addrs = irsb.instruction_addresses resolved, resolved_targets, ij = self._indirect_jump_encountered(addr, cfg_node, irsb, current_function_addr, stmt_idx) if resolved: for resolved_target in resolved_targets: if jumpkind == 'Ijk_Call': jobs += self._create_job_call(cfg_node.addr, irsb, cfg_node, stmt_idx, ins_addr, current_function_addr, resolved_target, jumpkind) else: to_outside, target_func_addr = self._is_branching_to_outside(addr, resolved_target, current_function_addr) edge = FunctionTransitionEdge(cfg_node, resolved_target, current_function_addr, to_outside=to_outside, stmt_idx=stmt_idx, ins_addr=ins_addr, dst_func_addr=target_func_addr, ) ce = CFGJob(resolved_target, target_func_addr, jumpkind, last_addr=resolved_target, src_node=cfg_node, src_stmt_idx=stmt_idx, src_ins_addr=ins_addr, func_edges=[ edge ], ) jobs.append(ce) return jobs if ij is None: # this is not a valid indirect jump. maybe it failed sanity checks. # for example, `jr $v0` might show up in a MIPS binary without a following instruction (because # decoding failed). in this case, `jr $v0` shouldn't be a valid instruction, either. return [ ] if jumpkind in ("Ijk_Boring", 'Ijk_InvalICache'): resolved_as_plt = False if irsb and self._heuristic_plt_resolving: # Test it on the initial state. Does it jump to a valid location? # It will be resolved only if this is a .plt entry resolved_as_plt = self._resolve_plt(addr, irsb, ij) if resolved_as_plt: # this is definitely a PLT stub jump_target = next(iter(ij.resolved_targets)) target_func_addr = jump_target # TODO: FIX THIS edge = FunctionTransitionEdge(cfg_node, jump_target, current_function_addr, to_outside=True, dst_func_addr=jump_target, stmt_idx=stmt_idx, ins_addr=ins_addr, ) ce = CFGJob(jump_target, target_func_addr, jumpkind, last_addr=jump_target, src_node=cfg_node, src_stmt_idx=stmt_idx, src_ins_addr=ins_addr, func_edges=[edge], ) jobs.append(ce) if resolved_as_plt: # has been resolved as a PLT entry. Remove it from indirect_jumps_to_resolve if ij.addr in self._indirect_jumps_to_resolve: self._indirect_jumps_to_resolve.remove(ij.addr) self._deregister_analysis_job(current_function_addr, ij) else: is_plt = addr in self.functions and self.functions.get_by_addr(addr).is_plt if is_plt: # this is definitely a PLT entry, but we could not resolve it. this is probably due to # missing SimProcedures. we do not want to resolve this indirect jump again in the future. self._indirect_jump_unresolved(ij) else: # add it to indirect_jumps_to_resolve self._indirect_jumps_to_resolve.add(ij) # register it as a job for the current function self._register_analysis_job(current_function_addr, ij) else: # jumpkind == "Ijk_Call" or jumpkind.startswith('Ijk_Sys') self._indirect_jumps_to_resolve.add(ij) self._register_analysis_job(current_function_addr, ij) jobs += self._create_job_call(addr, irsb, cfg_node, stmt_idx, ins_addr, current_function_addr, None, jumpkind, is_syscall=is_syscall ) elif target_addr is not None: # This is a direct jump with a concrete target. # pylint: disable=too-many-nested-blocks if jumpkind in {'Ijk_Boring', 'Ijk_InvalICache', 'Ijk_Exception'}: to_outside, target_func_addr = self._is_branching_to_outside(addr, target_addr, current_function_addr) edge = FunctionTransitionEdge(cfg_node, target_addr, current_function_addr, to_outside=to_outside, dst_func_addr=target_func_addr, ins_addr=ins_addr, stmt_idx=stmt_idx, is_exception=jumpkind == 'Ijk_Exception', ) ce = CFGJob(target_addr, target_func_addr, jumpkind, last_addr=addr, src_node=cfg_node, src_ins_addr=ins_addr, src_stmt_idx=stmt_idx, func_edges=[ edge ], ) jobs.append(ce) elif jumpkind == 'Ijk_Call' or jumpkind.startswith("Ijk_Sys"): jobs += self._create_job_call(addr, irsb, cfg_node, stmt_idx, ins_addr, current_function_addr, target_addr, jumpkind, is_syscall=is_syscall ) else: # TODO: Support more jumpkinds l.debug("Unsupported jumpkind %s", jumpkind) l.debug("Instruction address: %#x", ins_addr) return jobs def _create_job_call(self, addr, irsb, cfg_node, stmt_idx, ins_addr, current_function_addr, target_addr, jumpkind, is_syscall=False): """ Generate a CFGJob for target address, also adding to _pending_entries if returning to succeeding position (if irsb arg is populated) :param int addr: Address of the predecessor node :param pyvex.IRSB irsb: IRSB of the predecessor node :param CFGNode cfg_node: The CFGNode instance of the predecessor node :param int stmt_idx: ID of the source statement :param int ins_addr: Address of the source instruction :param int current_function_addr: Address of the current function :param int target_addr: Destination of the call :param str jumpkind: The jumpkind of the edge going to this node :param bool is_syscall: Is the jump kind (and thus this) a system call :return: A list of CFGJobs :rtype: list """ jobs = [ ] if is_syscall: # Fix the target_addr for syscalls tmp_state = self.project.factory.blank_state(mode="fastpath", addr=cfg_node.addr, add_options={o.SYMBOL_FILL_UNCONSTRAINED_MEMORY, o.SYMBOL_FILL_UNCONSTRAINED_REGISTERS}) # Find the first successor with a syscall jumpkind successors = self._simulate_block_with_resilience(tmp_state) if successors is not None: succ = next(iter(succ for succ in successors.flat_successors if succ.history.jumpkind and succ.history.jumpkind.startswith("Ijk_Sys")), None) else: succ = None if succ is None: # For some reason, there is no such successor with a syscall jumpkind target_addr = self._unresolvable_call_target_addr else: try: syscall_stub = self.project.simos.syscall(succ) if syscall_stub: # can be None if simos is not a subclass of SimUserspace syscall_addr = syscall_stub.addr target_addr = syscall_addr else: target_addr = self._unresolvable_call_target_addr except AngrUnsupportedSyscallError: target_addr = self._unresolvable_call_target_addr if isinstance(target_addr, SootAddressDescriptor): new_function_addr = target_addr.method else: new_function_addr = target_addr if irsb is None: return_site = None else: if self.project.arch.name != 'Soot': return_site = addr + irsb.size # We assume the program will always return to the succeeding position else: # For Soot, we return to the next statement, which is not necessarily the next block (as Shimple does # not break blocks at calls) assert isinstance(ins_addr, SootAddressDescriptor) soot_block = irsb return_block_idx = ins_addr.block_idx if stmt_idx + 1 >= soot_block.label + len(soot_block.statements): # tick the block ID return_block_idx += 1 return_site = SootAddressDescriptor(ins_addr.method, return_block_idx, stmt_idx + 1) edge = None if new_function_addr is not None: edge = FunctionCallEdge(cfg_node, new_function_addr, return_site, current_function_addr, syscall=is_syscall, ins_addr=ins_addr, stmt_idx=stmt_idx, ) if new_function_addr is not None: # Keep tracing from the call ce = CFGJob(target_addr, new_function_addr, jumpkind, last_addr=addr, src_node=cfg_node, src_stmt_idx=stmt_idx, src_ins_addr=ins_addr, syscall=is_syscall, func_edges=[ edge ], gp=self.kb.functions[current_function_addr].info.get('gp', None), ) jobs.append(ce) callee_might_return = True callee_function = None if new_function_addr is not None: if is_syscall or self.project.is_hooked(new_function_addr): # we can create the function if it is a syscall or a SimProcedure and it does not exist yet. Note that # syscalls are handled as SimProcedures anyway. callee_function = self.kb.functions.function(addr=new_function_addr, syscall=is_syscall, create=True) else: callee_function = self.kb.functions.function(addr=new_function_addr, syscall=is_syscall) if callee_function is not None: callee_might_return = not (callee_function.returning is False) if callee_might_return: func_edges = [ ] if return_site is not None: if callee_function is not None and callee_function.returning is True: fakeret_edge = FunctionFakeRetEdge(cfg_node, return_site, current_function_addr, confirmed=True) func_edges.append(fakeret_edge) ret_edge = FunctionReturnEdge(new_function_addr, return_site, current_function_addr) func_edges.append(ret_edge) # Also, keep tracing from the return site ce = CFGJob(return_site, current_function_addr, 'Ijk_FakeRet', last_addr=addr, src_node=cfg_node, src_stmt_idx=stmt_idx, src_ins_addr=ins_addr, returning_source=new_function_addr, syscall=is_syscall, func_edges=func_edges) self._pending_jobs.add_job(ce) # register this job to this function self._register_analysis_job(current_function_addr, ce) elif callee_function is not None and callee_function.returning is False: pass # Don't go past a call that does not return! else: # HACK: We don't know where we are jumping. Let's assume we fakeret to the # next instruction after the block # TODO: FIXME: There are arch-specific hints to give the correct ret site # Such as looking for constant values of LR in this block for ARM stuff. fakeret_edge = FunctionFakeRetEdge(cfg_node, return_site, current_function_addr, confirmed=None) func_edges.append(fakeret_edge) fr = FunctionReturn(new_function_addr, current_function_addr, addr, return_site) if fr not in self._function_returns[new_function_addr]: self._function_returns[new_function_addr].add(fr) ce = CFGJob(return_site, current_function_addr, 'Ijk_FakeRet', last_addr=addr, src_node=cfg_node, src_stmt_idx=stmt_idx, src_ins_addr=ins_addr, returning_source=new_function_addr, syscall=is_syscall, func_edges=func_edges) self._pending_jobs.add_job(ce) # register this job to this function self._register_analysis_job(current_function_addr, ce) return jobs def _simulate_block_with_resilience(self, state): """ Execute a basic block with "On Error Resume Next". Give up when there is no way moving forward. :param SimState state: The initial state to start simulation with. :return: A SimSuccessors instance or None if we are unable to resume execution with resilience. :rtype: SimSuccessors or None """ stmt_idx = 0 successors = None # make PyCharm's linting happy while True: try: successors = self.project.factory.successors(state, skip_stmts=stmt_idx) break except SimOperationError as ex: stmt_idx = ex.stmt_idx + 1 continue except SimError: return None return successors def _is_branching_to_outside(self, src_addr, target_addr, current_function_addr): """ Determine if a branch is branching to a different function (i.e., branching to outside the current function). :param int src_addr: The source address. :param int target_addr: The destination address. :param int current_function_addr: Address of the current function. :return: A tuple of (to_outside, target_func_addr) :rtype: tuple """ if not self._addrs_belong_to_same_section(src_addr, target_addr): # if the target address is at another section, it has to be jumping to a new function target_func_addr = target_addr to_outside = True else: # it might be a jumpout target_func_addr = None real_target_addr = get_real_address_if_arm(self.project.arch, target_addr) if real_target_addr in self._traced_addresses: node = self.model.get_any_node(target_addr) if node is not None: target_func_addr = node.function_address if target_func_addr is None: target_func_addr = current_function_addr to_outside = not target_func_addr == current_function_addr return to_outside, target_func_addr # Data reference processing def _collect_data_references(self, irsb, irsb_addr): """ Unoptimizes IRSB and _add_data_reference's for individual statements or for parts of statements (e.g. Store) :param pyvex.IRSB irsb: Block to scan for data references :param int irsb_addr: Address of block :return: None """ if irsb.data_refs: self._process_irsb_data_refs(irsb) elif irsb.statements: # for each statement, collect all constants that are referenced or used. self._collect_data_references_by_scanning_stmts(irsb, irsb_addr) def _process_irsb_data_refs(self, irsb): for ref in irsb.data_refs: if ref.data_size: self._seg_list.occupy(ref.data_addr, ref.data_size, "unknown") self._add_data_reference( irsb.addr, ref.stmt_idx, ref.ins_addr, ref.data_addr, data_size=ref.data_size, data_type=ref.data_type_str ) def _collect_data_references_by_scanning_stmts(self, irsb, irsb_addr): # helper methods def _process(stmt_idx_, data_, insn_addr, next_insn_addr, data_size=None, data_type=None): """ Helper method used for calling _add_data_reference after checking for manipulation of constants :param pyvex.IRSB irsb_: Edited block (as might be de-optimised) :param pyvex.IRStmt.* stmt_: Statement :param int stmt_idx_: Statement ID :param data_: data manipulated by statement :param int insn_addr: instruction address :param int next_insn_addr: next instruction address :param data_size: Size of the data being manipulated :param str data_type: Type of the data being manipulated :return: None """ if type(data_) is pyvex.expr.Const: # pylint: disable=unidiomatic-typecheck val = data_.con.value elif type(data_) is int: val = data_ else: return if val != next_insn_addr: if data_size: # Mark the region as unknown so we won't try to create a code block covering this region in the # future. self._seg_list.occupy(val, data_size, "unknown") self._add_data_reference(irsb_addr, stmt_idx_, insn_addr, val, data_size=data_size, data_type=data_type) # get all instruction addresses instr_addrs = irsb.instruction_addresses # for each statement, collect all constants that are referenced or used. instr_addr = None next_instr_addr = None for stmt_idx, stmt in enumerate(irsb.statements): if type(stmt) is pyvex.IRStmt.IMark: # pylint: disable=unidiomatic-typecheck instr_addr = stmt.addr + stmt.delta # there can be weird cases sometimes... I've seen two IMarks with the exact same address showing up one # after the other. if instr_addrs and instr_addr == instr_addrs[0]: instr_addr = instr_addrs[0] instr_addrs = instr_addrs[1 : ] next_instr_addr = instr_addrs[0] if instr_addrs else None elif type(stmt) is pyvex.IRStmt.WrTmp: # pylint: disable=unidiomatic-typecheck if type(stmt.data) is pyvex.IRExpr.Load: # pylint: disable=unidiomatic-typecheck # load # e.g. t7 = LDle:I64(0x0000000000600ff8) size = stmt.data.result_size(irsb.tyenv) // 8 # convert to bytes _process(stmt_idx, stmt.data.addr, instr_addr, next_instr_addr, data_size=size, data_type='integer') elif type(stmt.data) in (pyvex.IRExpr.Binop, ): # pylint: disable=unidiomatic-typecheck # rip-related addressing if stmt.data.op in ('Iop_Add32', 'Iop_Add64') and \ all(type(arg) is pyvex.expr.Const for arg in stmt.data.args): # perform the addition loc = stmt.data.args[0].con.value + stmt.data.args[1].con.value _process(stmt_idx, loc, instr_addr, next_instr_addr) else: # binary operation for arg in stmt.data.args: _process(stmt_idx, arg, instr_addr, next_instr_addr) elif type(stmt.data) is pyvex.IRExpr.Const: # pylint: disable=unidiomatic-typecheck _process(stmt_idx, stmt.data, instr_addr, next_instr_addr) elif type(stmt.data) is pyvex.IRExpr.ITE: for child_expr in stmt.data.child_expressions: _process(stmt_idx, child_expr, instr_addr, next_instr_addr) elif type(stmt) is pyvex.IRStmt.Put: # pylint: disable=unidiomatic-typecheck # put # e.g. PUT(rdi) = 0x0000000000400714 if stmt.offset not in (self._initial_state.arch.ip_offset, ): _process(stmt_idx, stmt.data, instr_addr, next_instr_addr) elif type(stmt) is pyvex.IRStmt.Store: # pylint: disable=unidiomatic-typecheck # store addr _process(stmt_idx, stmt.addr, instr_addr, next_instr_addr) # store data _process(stmt_idx, stmt.data, instr_addr, next_instr_addr) elif type(stmt) is pyvex.IRStmt.Dirty: _process(stmt_idx, stmt.mAddr, instr_addr, next_instr_addr, data_size=stmt.mSize, data_type='fp') def _add_data_reference(self, irsb_addr, stmt_idx, insn_addr, data_addr, # pylint: disable=unused-argument data_size=None, data_type=None): """ Checks addresses are in the correct segments and creates or updates MemoryData in _memory_data as appropriate, labelling as segment boundaries or data type :param int irsb_addr: irsb address :param int stmt_idx: Statement ID :param int insn_addr: instruction address :param data_addr: address of data manipulated by statement :param data_size: Size of the data being manipulated :param str data_type: Type of the data being manipulated :return: None """ # Make sure data_addr is within a valid memory range if not self.project.loader.find_segment_containing(data_addr): # data might be at the end of some section or segment... # let's take a look for segment in self.project.loader.main_object.segments: if segment.vaddr + segment.memsize == data_addr: # yeah! new_data = False if data_addr not in self._memory_data: data = MemoryData(data_addr, 0, MemoryDataSort.SegmentBoundary) self._memory_data[data_addr] = data new_data = True if new_data or self._cross_references: cr = XRef(ins_addr=insn_addr, block_addr=irsb_addr, stmt_idx=stmt_idx, memory_data=self.model.memory_data[data_addr], xref_type=XRefType.Offset, ) self.kb.xrefs.add_xref(cr) break return new_data = False if data_addr not in self._memory_data: if data_type is not None and data_size is not None: data = MemoryData(data_addr, data_size, data_type, max_size=data_size) else: data = MemoryData(data_addr, 0, MemoryDataSort.Unknown) self._memory_data[data_addr] = data new_data = True if new_data or self._cross_references: cr = XRef(ins_addr=insn_addr, block_addr=irsb_addr, stmt_idx=stmt_idx, memory_data=self.model.memory_data[data_addr], xref_type=XRefType.Offset, ) self.kb.xrefs.add_xref(cr) self.insn_addr_to_memory_data[insn_addr] = self._memory_data[data_addr] def _tidy_data_references(self): """ :return: True if new data entries are found, False otherwise. :rtype: bool """ # Make sure all memory data entries cover all data sections keys = sorted(self._memory_data.keys()) for i, data_addr in enumerate(keys): data = self._memory_data[data_addr] if self._addr_in_exec_memory_regions(data.address): # TODO: Handle data among code regions (or executable regions) pass else: if i + 1 != len(keys): next_data_addr = keys[i + 1] else: next_data_addr = None # goes until the end of the section/segment # TODO: the logic needs more testing sec = self.project.loader.find_section_containing(data_addr) next_sec_addr = None if sec is not None: last_addr = sec.vaddr + sec.memsize else: # it does not belong to any section. what's the next adjacent section? any memory data does not go # beyong section boundaries next_sec = self.project.loader.find_section_next_to(data_addr) if next_sec is not None: next_sec_addr = next_sec.vaddr seg = self.project.loader.find_segment_containing(data_addr) if seg is not None: last_addr = seg.vaddr + seg.memsize else: # We got an address that is not inside the current binary... l.warning('_tidy_data_references() sees an address %#08x that does not belong to any ' 'section or segment.', data_addr ) last_addr = None if next_data_addr is None: boundary = last_addr elif last_addr is None: boundary = next_data_addr else: boundary = min(last_addr, next_data_addr) if next_sec_addr is not None: boundary = min(boundary, next_sec_addr) if boundary is not None: data.max_size = boundary - data_addr if data.max_size is None: print('wtf') keys = sorted(self._memory_data.keys()) new_data_found = False i = 0 # pylint:disable=too-many-nested-blocks while i < len(keys): data_addr = keys[i] i += 1 memory_data = self._memory_data[data_addr] if memory_data.sort == MemoryDataSort.SegmentBoundary: continue content_holder = [ ] # let's see what sort of data it is if memory_data.sort in (MemoryDataSort.Unknown, MemoryDataSort.Unspecified) or \ (memory_data.sort == MemoryDataSort.Integer and memory_data.size == self.project.arch.bytes): data_type, data_size = self._guess_data_type(data_addr, memory_data.max_size, content_holder=content_holder) else: data_type, data_size = memory_data.sort, memory_data.size if data_type is not None: memory_data.size = data_size memory_data.sort = data_type if len(content_holder) == 1: memory_data.content = content_holder[0] if memory_data.max_size is not None and (0 < memory_data.size < memory_data.max_size): # Create another memory_data object to fill the gap new_addr = data_addr + memory_data.size new_md = MemoryData(new_addr, None, None, max_size=memory_data.max_size - memory_data.size) self._memory_data[new_addr] = new_md # Make a copy of all old references old_crs = self.kb.xrefs.get_xrefs_by_dst(data_addr) crs = [ ] for old_cr in old_crs: cr = old_cr.copy() cr.memory_data = new_md crs.append(cr) self.kb.xrefs.add_xrefs(crs) keys.insert(i, new_addr) if data_type == MemoryDataSort.PointerArray: # make sure all pointers are identified pointer_size = self.project.arch.bytes old_crs = self.kb.xrefs.get_xrefs_by_dst(data_addr) for j in range(0, data_size, pointer_size): ptr = self._fast_memory_load_pointer(data_addr + j) # is this pointer coming from the current binary? obj = self.project.loader.find_object_containing(ptr, membership_check=False) if obj is not self.project.loader.main_object: # the pointer does not come from current binary. skip. continue if self._seg_list.is_occupied(ptr): sort = self._seg_list.occupied_by_sort(ptr) if sort == 'code': continue if sort == 'pointer-array': continue # TODO: other types if ptr not in self._memory_data: new_md = MemoryData(ptr, 0, MemoryDataSort.Unknown, pointer_addr=data_addr + j) self._memory_data[ptr] = new_md # Make a copy of the old reference crs = [ ] for old_cr in old_crs: cr = old_cr.copy() cr.memory_data = new_md crs.append(cr) self.kb.xrefs.add_xrefs(crs) new_data_found = True else: memory_data.size = memory_data.max_size self._seg_list.occupy(data_addr, memory_data.size, memory_data.sort) return new_data_found def _guess_data_type(self, data_addr, max_size, content_holder=None): """ Make a guess to the data type. Users can provide their own data type guessing code when initializing CFGFast instance, and each guessing handler will be called if this method fails to determine what the data is. :param int data_addr: Address of the data. :param int max_size: The maximum size this data entry can be. :return: a tuple of (data type, size). (None, None) if we fail to determine the type or the size. :rtype: tuple """ if max_size is None: max_size = 0 # quick check: if it's at the beginning of a binary, it might be the ELF header elfheader_sort, elfheader_size = self._guess_data_type_elfheader(data_addr, max_size) if elfheader_sort: return elfheader_sort, elfheader_size try: ref = next(iter(self.kb.xrefs.get_xrefs_by_dst(data_addr))) # type: XRef irsb_addr = ref.block_addr stmt_idx = ref.stmt_idx except StopIteration: irsb_addr, stmt_idx = None, None if self._seg_list.is_occupied(data_addr) and self._seg_list.occupied_by_sort(data_addr) == 'code': # it's a code reference # TODO: Further check if it's the beginning of an instruction return MemoryDataSort.CodeReference, 0 pointer_size = self.project.arch.bytes # who's using it? if isinstance(self.project.loader.main_object, cle.MetaELF): plt_entry = self.project.loader.main_object.reverse_plt.get(irsb_addr, None) if plt_entry is not None: # IRSB is owned by plt! return MemoryDataSort.GOTPLTEntry, pointer_size # is it in a section with zero bytes, like .bss? obj = self.project.loader.find_object_containing(data_addr) if obj is None: return None, None section = obj.find_section_containing(data_addr) if section is not None and section.only_contains_uninitialized_data: # Nothing much you can do return None, None pointers_count = 0 max_pointer_array_size = min(512 * pointer_size, max_size) for i in range(0, max_pointer_array_size, pointer_size): ptr = self._fast_memory_load_pointer(data_addr + i) if ptr is not None: #if self._seg_list.is_occupied(ptr) and self._seg_list.occupied_by_sort(ptr) == 'code': # # it's a code reference # # TODO: Further check if it's the beginning of an instruction # pass if self.project.loader.find_section_containing(ptr) is not None or \ self.project.loader.find_segment_containing(ptr) is not None or \ (self._extra_memory_regions and next(((a < ptr < b) for (a, b) in self._extra_memory_regions), None) ): # it's a pointer of some sort # TODO: Determine what sort of pointer it is pointers_count += 1 else: break if pointers_count: return MemoryDataSort.PointerArray, pointer_size * pointers_count try: data = self.project.loader.memory.load(data_addr, 1024) except KeyError: data = b'' # Is it an unicode string? # TODO: Support unicode string longer than the max length if len(data) >= 4 and data[1] == 0 and data[3] == 0 and data[0] in self.PRINTABLES: def can_decode(n): try: data[:n*2].decode('utf_16_le') except UnicodeDecodeError: return False return True if can_decode(4) or can_decode(5) or can_decode(6): running_failures = 0 last_success = 4 for i in range(4, len(data) // 2): if can_decode(i): last_success = i running_failures = 0 if data[i*2-2] == 0 and data[i*2-1] == 0: break else: running_failures += 1 if running_failures > 3: break return MemoryDataSort.UnicodeString, last_success if data: try: zero_pos = data.index(0) except ValueError: zero_pos = None if (zero_pos is not None and zero_pos > 0 and all(c in self.PRINTABLES for c in data[:zero_pos])) or \ all(c in self.PRINTABLES for c in data): # it's a string # however, it may not be terminated string_data = data if zero_pos is None else data[:zero_pos] if content_holder is not None: content_holder.append(string_data) return MemoryDataSort.String, min(len(string_data) + 1, 1024) for handler in self._data_type_guessing_handlers: irsb = None if irsb_addr is None else self.model.get_any_node(irsb_addr).block.vex sort, size = handler(self, irsb, irsb_addr, stmt_idx, data_addr, max_size) if sort is not None: return sort, size return None, None def _guess_data_type_elfheader(self, data_addr, max_size): """ Is the specified data chunk an ELF header? :param int data_addr: Address of the data chunk :param int max_size: Size of the data chunk. :return: A tuple of ('elf-header', size) if it is, or (None, None) if it is not. :rtype: tuple """ obj = self.project.loader.find_object_containing(data_addr) if obj is None: # it's not mapped return None, None if data_addr == obj.min_addr and 4 < max_size < 1000: # Does it start with the ELF magic bytes? try: data = self.project.loader.memory.load(data_addr, 4) except KeyError: return None, None if data == b"\x7fELF": # yes! return MemoryDataSort.ELFHeader, max_size return None, None # Indirect jumps processing def _resolve_plt(self, addr, irsb, indir_jump: IndirectJump): """ Determine if the IRSB at the given address is a PLT stub. If it is, concretely execute the basic block to resolve the jump target. :param int addr: Address of the block. :param irsb: The basic block. :param indir_jump: The IndirectJump instance. :return: True if the IRSB represents a PLT stub and we successfully resolved the target. False otherwise. :rtype: bool """ # is the address identified by CLE as a PLT stub? if self.project.loader.all_elf_objects: # restrict this heuristics to ELF files only if not any([ addr in obj.reverse_plt for obj in self.project.loader.all_elf_objects ]): return False # Make sure the IRSB has statements if not irsb.has_statements: irsb = self.project.factory.block(irsb.addr, size=irsb.size, opt_level=1, cross_insn_opt=False).vex # try to resolve the jump target simsucc = self.project.factory.default_engine.process(self._initial_state, irsb, force_addr=addr) if len(simsucc.successors) == 1: ip = simsucc.successors[0].ip if ip._model_concrete is not ip: target_addr = ip._model_concrete.value obj = self.project.loader.find_object_containing(target_addr, membership_check=False) if (obj is not None and obj is not self.project.loader.main_object) \ or self.project.is_hooked(target_addr): # resolved! # Fill the IndirectJump object indir_jump.resolved_targets.add(target_addr) l.debug("Address %#x is resolved as a PLT entry, jumping to %#x", addr, target_addr) return True return False def _indirect_jump_resolved(self, jump: IndirectJump, jump_addr, resolved_by, targets: List[int]): """ Called when an indirect jump is successfully resolved. :param jump: The resolved indirect jump. :param IndirectJumpResolver resolved_by: The resolver used to resolve this indirect jump. :param list targets: List of indirect jump targets. :return: None """ source_addr = jump.addr if jump.jumptable: # Fill in the jump_tables dict self.jump_tables[jump.addr] = jump # occupy the jump table region if jump.jumptable_addr is not None: self._seg_list.occupy(jump.jumptable_addr, jump.jumptable_size, "data") jump.resolved_targets = targets all_targets = set(targets) for addr in all_targets: to_outside = jump.jumpkind == 'Ijk_Call' or addr in self.functions or not self._addrs_belong_to_same_section(jump.addr, addr) # TODO: get a better estimate of the function address target_func_addr = jump.func_addr if not to_outside else addr func_edge = FunctionTransitionEdge(self._nodes[source_addr], addr, jump.func_addr, to_outside=to_outside, dst_func_addr=target_func_addr ) job = CFGJob(addr, target_func_addr, jump.jumpkind, last_addr=source_addr, src_node=self._nodes[source_addr], src_ins_addr=jump.ins_addr, src_stmt_idx=jump.stmt_idx, func_edges=[func_edge], ) self._insert_job(job) self._register_analysis_job(target_func_addr, job) self._deregister_analysis_job(jump.func_addr, jump) CFGBase._indirect_jump_resolved(self, jump, jump.addr, resolved_by, targets) def _indirect_jump_unresolved(self, jump): """ Called when we cannot resolve an indirect jump. :param IndirectJump jump: The unresolved indirect jump. :return: None """ # add a node from this node to UnresolvableJumpTarget or UnresolvalbeCallTarget node, # depending on its jump kind src_node = self._nodes[jump.addr] if jump.jumpkind == 'Ijk_Boring': unresolvable_target_addr = self._unresolvable_jump_target_addr simprocedure_name = 'UnresolvableJumpTarget' elif jump.jumpkind == 'Ijk_Call': unresolvable_target_addr = self._unresolvable_call_target_addr simprocedure_name = 'UnresolvableCallTarget' else: raise AngrCFGError('It should be impossible') dst_node = CFGNode(unresolvable_target_addr, 0, self.model, function_address=unresolvable_target_addr, simprocedure_name=simprocedure_name, block_id=unresolvable_target_addr, ) # add the dst_node to self._nodes if unresolvable_target_addr not in self._nodes: self._nodes[unresolvable_target_addr] = dst_node self._nodes_by_addr[unresolvable_target_addr].append(dst_node) self._graph_add_edge(dst_node, src_node, jump.jumpkind, jump.ins_addr, jump.stmt_idx) # mark it as a jumpout site for that function self._function_add_transition_edge(unresolvable_target_addr, src_node, jump.func_addr, to_outside=True, dst_func_addr=unresolvable_target_addr, ins_addr=jump.ins_addr, stmt_idx=jump.stmt_idx, ) self._deregister_analysis_job(jump.func_addr, jump) CFGBase._indirect_jump_unresolved(self, jump) # Exception handling def _preprocess_exception_handlings(self): self._exception_handling_by_endaddr.clear() bin_count = 0 for obj in self.project.loader.all_objects: if isinstance(obj, cle.MetaELF) and hasattr(obj, "exception_handlings") and obj.exception_handlings: bin_count += 1 for exc in obj.exception_handlings: if exc.handler_addr is not None and self._inside_regions(exc.handler_addr): if (exc.start_addr + exc.size) in self._exception_handling_by_endaddr: l.warning("Multiple exception handlings ending at %#x. Please report it to GitHub.", exc.start_addr + exc.size) continue self._exception_handling_by_endaddr[exc.start_addr + exc.size] = exc l.info("Loaded %d exception handlings from %d binaries.", len(self._exception_handling_by_endaddr), bin_count, ) # Removers def _remove_redundant_overlapping_blocks(self): """ On some architectures there are sometimes garbage bytes (usually nops) between functions in order to properly align the succeeding function. CFGFast does a linear sweeping which might create duplicated blocks for function epilogues where one block starts before the garbage bytes and the other starts after the garbage bytes. This method enumerates all blocks and remove overlapping blocks if one of them is aligned to 0x10 and the other contains only garbage bytes. :return: None """ sorted_nodes = sorted(self.graph.nodes(), key=lambda n: n.addr if n is not None else 0) all_plt_stub_addrs = set(itertools.chain.from_iterable(obj.reverse_plt.keys() for obj in self.project.loader.all_objects if isinstance(obj, cle.MetaELF))) # go over the list. for each node that is the beginning of a function and is not properly aligned, if its # leading instruction is a single-byte or multi-byte nop, make sure there is another CFGNode starts after the # nop instruction nodes_to_append = {} # pylint:disable=too-many-nested-blocks for a in sorted_nodes: if a.addr in self.functions and a.addr not in all_plt_stub_addrs and \ not self._addr_hooked_or_syscall(a.addr): all_in_edges = self.graph.in_edges(a, data=True) if not any([data['jumpkind'] == 'Ijk_Call' for _, _, data in all_in_edges]): # no one is calling it # this function might be created from linear sweeping try: block = self._lift(a.addr, size=0x10 - (a.addr % 0x10)) except SimTranslationError: continue nop_length = None if self._is_noop_block(self.project.arch, block): # fast path: in most cases, the entire block is a single byte or multi-byte nop, which VEX # optimizer is able to tell nop_length = block.size else: # this is not a no-op block. Determine where nop instructions terminate. insns = block.capstone.insns if insns: nop_length = self._get_nop_length(insns) if nop_length is None or nop_length <= 0: continue # leading nop for alignment. next_node_addr = a.addr + nop_length if nop_length < a.size and \ not (next_node_addr in self._nodes or next_node_addr in nodes_to_append): # create a new CFGNode that starts there next_node_size = a.size - nop_length next_node = CFGNode(next_node_addr, next_node_size, self.model, function_address=next_node_addr, instruction_addrs=[i for i in a.instruction_addrs if next_node_addr <= i < next_node_addr + next_node_size ], thumb=a.thumb, byte_string=None if a.byte_string is None else a.byte_string[nop_length:], block_id=next_node_addr, ) self.graph.add_node(next_node) # create edges accordingly all_out_edges = self.graph.out_edges(a, data=True) for _, dst, data in all_out_edges: self.graph.add_edge(next_node, dst, **data) nodes_to_append[next_node_addr] = next_node # make sure there is a function begins there try: snippet = self._to_snippet(addr=next_node_addr, size=next_node_size, base_state=self._base_state) self.functions._add_node(next_node_addr, snippet) except (SimEngineError, SimMemoryError): continue # append all new nodes to sorted nodes if nodes_to_append: sorted_nodes = sorted(sorted_nodes + list(nodes_to_append.values()), key=lambda n: n.addr if n is not None else 0) removed_nodes = set() a = None # it always hold the very recent non-removed node for i in range(len(sorted_nodes)): # pylint:disable=consider-using-enumerate if a is None: a = sorted_nodes[0] continue b = sorted_nodes[i] if self._addr_hooked_or_syscall(b.addr): continue if b in removed_nodes: # skip all removed nodes continue if a.addr <= b.addr and \ (a.addr + a.size > b.addr): # They are overlapping try: block = self.project.factory.fresh_block(a.addr, b.addr - a.addr, backup_state=self._base_state) except SimTranslationError: a = b continue if block.capstone.insns and all([ self._is_noop_insn(insn) for insn in block.capstone.insns ]): # It's a big nop - no function starts with nop # add b to indices self._nodes[b.addr] = b self._nodes_by_addr[b.addr].append(b) # shrink a self._shrink_node(a, b.addr - a.addr, remove_function=False) a = b continue all_functions = self.kb.functions # now things are a little harder # if there is no incoming edge to b, we should replace b with a # this is mostly because we misidentified the function beginning. In fact a is the function beginning, # but somehow we thought b is the beginning if a.addr + a.size == b.addr + b.size: in_edges = len([ _ for _, _, data in self.graph.in_edges([b], data=True) ]) if in_edges == 0: # we use node a to replace node b # link all successors of b to a for _, dst, data in self.graph.out_edges([b], data=True): self.graph.add_edge(a, dst, **data) if b.addr in self._nodes: del self._nodes[b.addr] if b.addr in self._nodes_by_addr and b in self._nodes_by_addr[b.addr]: self._nodes_by_addr[b.addr].remove(b) self.graph.remove_node(b) if b.addr in all_functions: del all_functions[b.addr] # skip b removed_nodes.add(b) continue # next case - if b is directly from function prologue detection, or a basic block that is a successor of # a wrongly identified basic block, we might be totally misdecoding b if b.instruction_addrs[0] not in a.instruction_addrs: # use a, truncate b new_b_addr = a.addr + a.size # b starts right after a terminates new_b_size = b.addr + b.size - new_b_addr # this may not be the size we want, since b might be # misdecoded # totally remove b if b.addr in self._nodes: del self._nodes[b.addr] if b.addr in self._nodes_by_addr and b in self._nodes_by_addr[b.addr]: self._nodes_by_addr[b.addr].remove(b) self.graph.remove_node(b) if b.addr in all_functions: del all_functions[b.addr] removed_nodes.add(b) if new_b_size > 0: # there are still some parts left in node b - we don't want to lose it dummy_job = CFGJob(new_b_addr, a.function_address, None) self._scan_block(dummy_job) continue # for other cases, we'll let them be for now a = b # update a def _remove_node(self, node): """ Remove a CFGNode from self.graph as well as from the function manager (if it is the beginning of a function) :param CFGNode node: The CFGNode to remove from the graph. :return: None """ self.graph.remove_node(node) if node.addr in self._nodes: del self._nodes[node.addr] # We wanna remove the function as well if node.addr in self.kb.functions: del self.kb.functions[node.addr] if node.addr in self.kb.functions.callgraph: self.kb.functions.callgraph.remove_node(node.addr) def _shrink_node(self, node, new_size, remove_function=True): """ Shrink the size of a node in CFG. :param CFGNode node: The CFGNode to shrink :param int new_size: The new size of the basic block :param bool remove_function: If there is a function starting at `node`, should we remove that function or not. :return: None """ # Generate the new node new_node = CFGNode(node.addr, new_size, self.model, function_address=None if remove_function else node.function_address, instruction_addrs=[i for i in node.instruction_addrs if node.addr <= i < node.addr + new_size ], thumb=node.thumb, byte_string=None if node.byte_string is None else node.byte_string[:new_size], block_id=node.addr, ) old_in_edges = self.graph.in_edges(node, data=True) for src, _, data in old_in_edges: self.graph.add_edge(src, new_node, **data) successor_node_addr = node.addr + new_size if successor_node_addr in self._nodes: successor = self._nodes[successor_node_addr] else: successor_size = node.size - new_size successor = CFGNode(successor_node_addr, successor_size, self.model, function_address=successor_node_addr if remove_function else node.function_address, instruction_addrs=[i for i in node.instruction_addrs if i >= node.addr + new_size], thumb=node.thumb, byte_string=None if node.byte_string is None else node.byte_string[new_size:] ) self.graph.add_edge(new_node, successor, jumpkind='Ijk_Boring') # if the node B already has resolved targets, we will skip all unresolvable successors when adding old out edges # from node A to node B. # this matters in cases where node B is resolved as a special indirect jump entry (like a PLT stub), but (node # A + node B) wasn't properly resolved. unresolvable_target_addrs = (self._unresolvable_jump_target_addr, self._unresolvable_call_target_addr) has_resolved_targets = any([ node_.addr not in unresolvable_target_addrs for node_ in self.graph.successors(successor) ] ) old_out_edges = self.graph.out_edges(node, data=True) for _, dst, data in old_out_edges: if (has_resolved_targets and dst.addr not in unresolvable_target_addrs) or \ not has_resolved_targets: self.graph.add_edge(successor, dst, **data) # remove the old node from indices if node.addr in self._nodes and self._nodes[node.addr] is node: del self._nodes[node.addr] if node.addr in self._nodes_by_addr and node in self._nodes_by_addr[node.addr]: self._nodes_by_addr[node.addr].remove(node) # remove the old node form the graph self.graph.remove_node(node) # add the new node to indices self._nodes[new_node.addr] = new_node self._nodes_by_addr[new_node.addr].append(new_node) # the function starting at this point is probably totally incorrect # hopefull future call to `make_functions()` will correct everything if node.addr in self.kb.functions: del self.kb.functions[node.addr] if not remove_function: # add functions back self._function_add_node(node, node.addr) successor_node = self.model.get_any_node(successor_node_addr) if successor_node and successor_node.function_address == node.addr: # if there is absolutely no predecessors to successor_node, we'd like to add it as a new function # so that it will not be left behind if not list(self.graph.predecessors(successor_node)): self._function_add_node(successor_node, successor_node_addr) #if node.addr in self.kb.functions.callgraph: # self.kb.functions.callgraph.remove_node(node.addr) def _analyze_all_function_features(self, all_funcs_completed=False): """ Iteratively analyze all changed functions, update their returning attribute, until a fix-point is reached (i.e. no new returning/not-returning functions are found). :return: None """ while True: new_changes = self._iteratively_analyze_function_features(all_funcs_completed=all_funcs_completed) new_returning_functions = new_changes['functions_return'] new_not_returning_functions = new_changes['functions_do_not_return'] if not new_returning_functions and not new_not_returning_functions: break for returning_function in new_returning_functions: self._pending_jobs.add_returning_function(returning_function.addr) if returning_function.addr in self._function_returns: for fr in self._function_returns[returning_function.addr]: # Confirm them all if not self.kb.functions.contains_addr(fr.caller_func_addr): # FIXME: A potential bug might arise here. After post processing (phase 2), if the function # specified by fr.caller_func_addr has been merged to another function during phase 2, we # will simply skip this FunctionReturn here. It might lead to unconfirmed fake_ret edges # in the newly merged function. Fix this bug in the future when it becomes an issue. continue if self.kb.functions.get_by_addr(fr.caller_func_addr).returning is not True: self._updated_nonreturning_functions.add(fr.caller_func_addr) return_to_node = self._nodes.get(fr.return_to, None) if return_to_node is None: return_to_snippet = self._to_snippet(addr=fr.return_to, base_state=self._base_state) else: return_to_snippet = self._to_snippet(cfg_node=self._nodes[fr.return_to]) self.kb.functions._add_return_from_call(fr.caller_func_addr, fr.callee_func_addr, return_to_snippet) del self._function_returns[returning_function.addr] for nonreturning_function in new_not_returning_functions: self._pending_jobs.add_nonreturning_function(nonreturning_function.addr) if nonreturning_function.addr in self._function_returns: for fr in self._function_returns[nonreturning_function.addr]: # Remove all pending FakeRet edges if self.kb.functions.contains_addr(fr.caller_func_addr) and \ self.kb.functions.get_by_addr(fr.caller_func_addr).returning is not True: self._updated_nonreturning_functions.add(fr.caller_func_addr) del self._function_returns[nonreturning_function.addr] def _pop_pending_job(self, returning=True): return self._pending_jobs.pop_job(returning=returning) def _clean_pending_exits(self): self._pending_jobs.cleanup() # # Graph utils # def _graph_add_edge(self, cfg_node, src_node, src_jumpkind, src_ins_addr, src_stmt_idx): """ Add edge between nodes, or add node if entry point :param CFGNode cfg_node: node which is jumped to :param CFGNode src_node: node which is jumped from none if entry point :param str src_jumpkind: what type of jump the edge takes :param int or str src_stmt_idx: source statements ID :return: None """ if src_node is None: self.graph.add_node(cfg_node) else: self.graph.add_edge(src_node, cfg_node, jumpkind=src_jumpkind, ins_addr=src_ins_addr, stmt_idx=src_stmt_idx) @staticmethod def _get_return_endpoints(func): all_endpoints = func.endpoints_with_type return all_endpoints.get('return', []) def _get_jumpout_targets(self, func): jumpout_targets = set() callgraph_outedges = self.functions.callgraph.out_edges(func.addr, data=True) # find the ones whose type is transition for _, dst, data in callgraph_outedges: if data.get('type', None) == 'transition': jumpout_targets.add(dst) return jumpout_targets def _get_return_sources(self, func): # We will create a return edge for each returning point of this function # Get all endpoints all_endpoints = func.endpoints_with_type # However, we do not want to create return edge if the endpoint is not a returning endpoint. # For example, a PLT stub on x86/x64 always jump to the real library function, so we should create a return # edge from that library function to the call site, instead of creating a return edge from the PLT stub to # the call site. if all_endpoints['transition']: # it has jump outs # it is, for example, a PLT stub # we take the endpoints of the function it calls. this is not always correct, but it can handle many # cases. jumpout_targets = self._get_jumpout_targets(func) jumpout_target_endpoints = set() for jumpout_func_addr in jumpout_targets: if jumpout_func_addr in self.functions: jumpout_target_endpoints |= set(self._get_return_endpoints(self.functions[jumpout_func_addr])) endpoints = jumpout_target_endpoints else: endpoints = set() # then we take all return endpoints of the current function endpoints |= all_endpoints.get('return', set()) return endpoints def _get_tail_caller(self, tailnode, seen): """ recursively search predecessors for the actual caller for a tailnode that we will return to :return: list of callers for a possible tailnode """ if tailnode.addr in seen: return [] seen.add(tailnode.addr) callers = self.model.get_predecessors(tailnode, jumpkind='Ijk_Call') direct_jumpers = self.model.get_predecessors(tailnode, jumpkind='Ijk_Boring') jump_callers = [] for jn in direct_jumpers: jf = self.model.get_any_node(jn.function_address) if jf is not None: jump_callers.extend(self._get_tail_caller(jf, seen)) callers.extend(jump_callers) return callers def _make_return_edges(self): """ For each returning function, create return edges in self.graph. :return: None """ for func_addr, func in self.functions.items(): if func.returning is False: continue # get the node on CFG if func.startpoint is None: l.warning('Function %#x does not have a startpoint (yet).', func_addr) continue startpoint = self.model.get_any_node(func.startpoint.addr) if startpoint is None: # weird... l.warning('No CFGNode is found for function %#x in _make_return_edges().', func_addr) continue endpoints = self._get_return_sources(func) # get all callers callers = self.model.get_predecessors(startpoint, jumpkind='Ijk_Call') # handle callers for tailcall optimizations if flag is enabled if self._detect_tail_calls and startpoint.addr in self._tail_calls: l.debug("Handling return address for tail call for func %x", func_addr) seen = set() tail_callers = self._get_tail_caller(startpoint, seen) callers.extend(tail_callers) # for each caller, since they all end with a call instruction, get the immediate successor return_targets = itertools.chain.from_iterable( self.model.get_successors(caller, excluding_fakeret=False, jumpkind='Ijk_FakeRet') for caller in callers ) return_targets = set(return_targets) for ep in endpoints: src = self.model.get_any_node(ep.addr) for rt in return_targets: if not src.instruction_addrs: ins_addr = None else: if self.project.arch.branch_delay_slot: if len(src.instruction_addrs) > 1: ins_addr = src.instruction_addrs[-2] else: l.error('At %s: expecting more than one instruction. Only got one.', src) ins_addr = None else: ins_addr = src.instruction_addrs[-1] self._graph_add_edge(rt, src, 'Ijk_Ret', ins_addr, DEFAULT_STATEMENT) # # Function utils # def _function_add_node(self, cfg_node, function_addr): """ Adds node to function manager, converting address to CodeNode if possible :param CFGNode cfg_node: A CFGNode instance. :param int function_addr: Address of the current function. :return: None """ snippet = self._to_snippet(cfg_node=cfg_node) self.kb.functions._add_node(function_addr, snippet) def _function_add_transition_edge(self, dst_addr, src_node, src_func_addr, to_outside=False, dst_func_addr=None, stmt_idx=None, ins_addr=None, is_exception=False): """ Add a transition edge to the function transiton map. :param int dst_addr: Address that the control flow transits to. :param CFGNode src_node: The source node that the control flow transits from. :param int src_func_addr: Function address. :return: True if the edge is correctly added. False if any exception occurred (for example, the target address does not exist) :rtype: bool """ try: target_node = self._nodes.get(dst_addr, None) if target_node is None: target_snippet = self._to_snippet(addr=dst_addr, base_state=self._base_state) else: target_snippet = self._to_snippet(cfg_node=target_node) if src_node is None: # Add this basic block into the function manager self.kb.functions._add_node(src_func_addr, target_snippet) else: src_snippet = self._to_snippet(cfg_node=src_node) if not to_outside: self.kb.functions._add_transition_to(src_func_addr, src_snippet, target_snippet, stmt_idx=stmt_idx, ins_addr=ins_addr, is_exception=is_exception ) else: self.kb.functions._add_outside_transition_to(src_func_addr, src_snippet, target_snippet, to_function_addr=dst_func_addr, stmt_idx=stmt_idx, ins_addr=ins_addr, is_exception=is_exception, ) return True except (SimMemoryError, SimEngineError): return False def _function_add_call_edge(self, addr, src_node, function_addr, syscall=False, stmt_idx=None, ins_addr=None): """ Add a call edge to the function transition map. :param int addr: Address that is being called (callee). :param CFGNode src_node: The source CFG node (caller). :param int ret_addr: Address that returns to (in case the function returns). :param int function_addr: Function address.. :param bool syscall: If this is a call to a syscall or not. :param int or str stmt_idx: Statement ID of this call. :param int or None ins_addr: Instruction address of this call. :return: True if the edge is added. False if any exception occurred. :rtype: bool """ try: if src_node is None: self.kb.functions._add_node(function_addr, addr, syscall=syscall) else: src_snippet = self._to_snippet(cfg_node=src_node) return_to_outside = False ret_snippet = None self.kb.functions._add_call_to(function_addr, src_snippet, addr, ret_snippet, syscall=syscall, stmt_idx=stmt_idx, ins_addr=ins_addr, return_to_outside=return_to_outside, ) return True except (SimMemoryError, SimEngineError): return False def _function_add_fakeret_edge(self, addr, src_node, src_func_addr, confirmed=None): """ Generate CodeNodes for target and source, if no source node add node for function, otherwise creates fake return to in function manager :param int addr: target address :param angr.analyses.CFGNode src_node: source node :param int src_func_addr: address of function :param confirmed: used as attribute on eventual digraph :return: None """ target_node = self._nodes.get(addr, None) if target_node is None: target_snippet = self._to_snippet(addr=addr, base_state=self._base_state) else: target_snippet = self._to_snippet(cfg_node=target_node) if src_node is None: self.kb.functions._add_node(src_func_addr, target_snippet) else: src_snippet = self._to_snippet(cfg_node=src_node) self.kb.functions._add_fakeret_to(src_func_addr, src_snippet, target_snippet, confirmed=confirmed) def _function_add_return_site(self, addr, function_addr): """ Generate CodeNodes for target address, registers node for function to function manager as return site :param int addr: target address :param int function_addr: address of function :return: None """ try: target = self._to_snippet(self._nodes[addr]) except KeyError: target = addr self.kb.functions._add_return_from(function_addr, target) def _function_add_return_edge(self, return_from_addr, return_to_addr, function_addr): """ Generate CodeNodes for return_to_addr, add this node for function to function manager generating new edge :param int return_from_addr: target address :param int return_to_addr: target address :param int function_addr: address of function :return: None """ return_to_node = self._nodes.get(return_to_addr, None) if return_to_node is None: return_to_snippet = self._to_snippet(addr=return_to_addr, base_state=self._base_state) to_outside = False else: return_to_snippet = self._to_snippet(cfg_node=return_to_node) to_outside = return_to_node.function_address != function_addr self.kb.functions._add_return_from_call(function_addr, return_from_addr, return_to_snippet, to_outside=to_outside) # # Architecture-specific methods # def _arm_track_lr_on_stack(self, addr, irsb, function): """ At the beginning of the basic block, we check if the first instruction stores the LR register onto the stack. If it does, we calculate the offset of that store, and record the offset in function.info. For instance, here is the disassembly of a THUMB mode function: 000007E4 STR.W LR, [SP,#var_4]! 000007E8 MOV R2, R1 000007EA SUB SP, SP, #0xC 000007EC MOVS R1, #0 ... 00000800 ADD SP, SP, #0xC 00000802 LDR.W PC, [SP+4+var_4],#4 The very last basic block has a jumpkind of Ijk_Boring, which is because VEX cannot do such complicated analysis to determine the real jumpkind. As we can see, instruction 7e4h stores LR at [sp-4], and at the end of this function, instruction 802 loads LR from [sp], then increments sp by 4. We execute the first instruction, and track the following things: - if the value from register LR is stored onto the stack. - the difference between the offset of the LR store on stack, and the SP after the store. If at the end of the function, the LR is read out from the stack at the exact same stack offset, we will change the jumpkind of the final IRSB to Ijk_Ret. This method can be enabled by setting "ret_jumpkind_heuristics", which is an architecture-specific option on ARM, to True. :param int addr: Address of the basic block. :param pyvex.IRSB irsb: The basic block object. :param Function function: The function instance. :return: None """ if irsb.statements is None: return if 'lr_saved_on_stack' in function.info: return # if it does, we log it down to the Function object. lr_offset = self.project.arch.registers['lr'][0] sp_offset = self.project.arch.sp_offset initial_sp = 0x7fff0000 initial_lr = 0xabcdef tmps = {} # pylint:disable=too-many-nested-blocks for stmt in irsb.statements: if isinstance(stmt, pyvex.IRStmt.IMark): if stmt.addr + stmt.delta != addr: break elif isinstance(stmt, pyvex.IRStmt.WrTmp): data = stmt.data if isinstance(data, pyvex.IRExpr.Get): if data.offset == sp_offset: tmps[stmt.tmp] = initial_sp elif data.offset == lr_offset: tmps[stmt.tmp] = initial_lr elif isinstance(data, pyvex.IRExpr.Binop): if data.op == 'Iop_Sub32': arg0, arg1 = data.args if isinstance(arg0, pyvex.IRExpr.RdTmp) and isinstance(arg1, pyvex.IRExpr.Const): if arg0.tmp in tmps: tmps[stmt.tmp] = tmps[arg0.tmp] - arg1.con.value elif isinstance(stmt, (pyvex.IRStmt.Store, pyvex.IRStmt.StoreG)): data = stmt.data storing_lr = False if isinstance(data, pyvex.IRExpr.RdTmp): if data.tmp in tmps: val = tmps[data.tmp] if val == initial_lr: # we are storing LR to somewhere storing_lr = True if storing_lr: if isinstance(stmt.addr, pyvex.IRExpr.RdTmp): if stmt.addr.tmp in tmps: storing_addr = tmps[stmt.addr.tmp] function.info['lr_saved_on_stack'] = True function.info['lr_on_stack_offset'] = storing_addr - initial_sp break if 'lr_saved_on_stack' not in function.info: function.info['lr_saved_on_stack'] = False def _arm_track_read_lr_from_stack(self, irsb, function): # pylint:disable=unused-argument """ At the end of a basic block, simulate the very last instruction to see if the return address is read from the stack and written in PC. If so, the jumpkind of this IRSB will be set to Ijk_Ret. For detailed explanations, please see the documentation of _arm_track_lr_on_stack(). :param pyvex.IRSB irsb: The basic block object. :param Function function: The function instance. :return: None """ if 'lr_saved_on_stack' not in function.info or not function.info['lr_saved_on_stack']: return sp_offset = self.project.arch.sp_offset initial_sp = 0x7fff0000 last_sp = None tmps = {} tmp_irsb = self._lift(irsb.instruction_addresses[-1]).vex # pylint:disable=too-many-nested-blocks for stmt in tmp_irsb.statements: if isinstance(stmt, pyvex.IRStmt.WrTmp): data = stmt.data if isinstance(data, pyvex.IRExpr.Get) and data.offset == sp_offset: # t0 = GET:I32(sp) tmps[stmt.tmp] = initial_sp elif isinstance(data, pyvex.IRExpr.Binop): # only support Add if data.op == 'Iop_Add32': arg0, arg1 = data.args if isinstance(arg0, pyvex.IRExpr.RdTmp) and isinstance(arg1, pyvex.IRExpr.Const): if arg0.tmp in tmps: tmps[stmt.tmp] = tmps[arg0.tmp] + arg1.con.value elif isinstance(data, pyvex.IRExpr.Load): if isinstance(data.addr, pyvex.IRExpr.RdTmp): if data.addr.tmp in tmps: tmps[stmt.tmp] = ('load', tmps[data.addr.tmp]) elif isinstance(stmt, pyvex.IRStmt.Put): if stmt.offset == sp_offset and isinstance(stmt.data, pyvex.IRExpr.RdTmp): if stmt.data.tmp in tmps: # loading things into sp last_sp = tmps[stmt.data.tmp] if last_sp is not None and isinstance(tmp_irsb.next, pyvex.IRExpr.RdTmp): val = tmps.get(tmp_irsb.next.tmp, None) # val being None means there are statements that we do not handle if isinstance(val, tuple) and val[0] == 'load': # the value comes from memory memory_addr = val[1] if isinstance(last_sp, int): lr_on_stack_offset = memory_addr - last_sp else: lr_on_stack_offset = memory_addr - last_sp[1] if lr_on_stack_offset == function.info['lr_on_stack_offset']: # the jumpkind should be Ret instead of boring irsb.jumpkind = 'Ijk_Ret' # # Other methods # def _generate_cfgnode(self, cfg_job, current_function_addr): """ Generate a CFGNode that starts at `cfg_job.addr`. Since lifting machine code to IRSBs is slow, self._nodes is used as a cache of CFGNodes. If the current architecture is ARM, this method will try to lift the block in the mode specified by the address (determined by the parity of the address: even for ARM, odd for THUMB), and in case of decoding failures, try the other mode. If the basic block is successfully decoded in the other mode (different from the initial one), `addr` and `current_function_addr` are updated. :param CFGJob cfg_job: The CFGJob instance. :param int current_function_addr: Address of the current function. :return: A 4-tuple of (new address, new function address, CFGNode instance, IRSB object) :rtype: tuple """ addr = cfg_job.addr try: if addr in self._nodes: cfg_node = self._nodes[addr] irsb = cfg_node.irsb if cfg_node.function_address != current_function_addr: # the node has been assigned to another function before. # we should update the function address. current_function_addr = cfg_node.function_address return addr, current_function_addr, cfg_node, irsb is_x86_x64_arch = self.project.arch.name in ('X86', 'AMD64') if is_arm_arch(self.project.arch): real_addr = addr & (~1) else: real_addr = addr # extra check for ARM if is_arm_arch(self.project.arch) and self._seg_list.occupied_by_sort(addr) == "code": existing_node = self.get_any_node(addr, anyaddr=True) if existing_node is not None and (addr & 1) != (existing_node.addr & 1): # we are trying to break an existing ARM node with a THUMB node, or vice versa # this is probably because our current node is unexpected return None, None, None, None distance = VEX_IRSB_MAX_SIZE # if there is exception handling code, check the distance between `addr` and the cloest ending address if self._exception_handling_by_endaddr: next_end = next(self._exception_handling_by_endaddr.irange(minimum=real_addr), None) if next_end is not None: distance = min(distance, next_end - real_addr) # if possible, check the distance between `addr` and the end of this section obj = self.project.loader.find_object_containing(addr, membership_check=False) if obj: # is there a section? has_executable_section = self._object_has_executable_sections(obj) section = obj.find_section_containing(addr) if has_executable_section and section is None: # the basic block should not exist here... return None, None, None, None if section is not None: if not section.is_executable: # the section is not executable... return None, None, None, None distance_ = section.vaddr + section.memsize - real_addr distance = min(distance_, VEX_IRSB_MAX_SIZE) # TODO: handle segment information as well # also check the distance between `addr` and the closest function. # we don't want to have a basic block that spans across function boundaries next_func = self.functions.ceiling_func(addr + 1) if next_func is not None: distance_to_func = (next_func.addr & (~1) if is_arm_arch(self.project.arch) else next_func.addr) - real_addr if distance_to_func != 0: if distance is None: distance = distance_to_func else: distance = min(distance, distance_to_func) # in the end, check the distance between `addr` and the closest occupied region in segment list next_noncode_addr = self._seg_list.next_pos_with_sort_not_in(addr, { "code" }, max_distance=distance) if next_noncode_addr is not None: distance_to_noncode_addr = next_noncode_addr - real_addr distance = min(distance, distance_to_noncode_addr) # Let's try to create the pyvex IRSB directly, since it's much faster nodecode = False irsb = None irsb_string = None lifted_block = None try: lifted_block = self._lift(addr, size=distance, collect_data_refs=True, strict_block_end=True) irsb = lifted_block.vex_nostmt irsb_string = lifted_block.bytes[:irsb.size] except SimTranslationError: nodecode = True if (nodecode or irsb.size == 0 or irsb.jumpkind == 'Ijk_NoDecode') and \ is_arm_arch(self.project.arch) and \ self._arch_options.switch_mode_on_nodecode: # maybe the current mode is wrong? nodecode = False if addr % 2 == 0: addr_0 = addr + 1 else: addr_0 = addr - 1 if addr_0 in self._nodes: # it has been analyzed before cfg_node = self._nodes[addr_0] irsb = cfg_node.irsb return addr_0, cfg_node.function_address, cfg_node, irsb try: lifted_block = self._lift(addr_0, size=distance, collect_data_refs=True, strict_block_end=True) irsb = lifted_block.vex_nostmt irsb_string = lifted_block.bytes[:irsb.size] except SimTranslationError: nodecode = True if not (nodecode or irsb.size == 0 or irsb.jumpkind == 'Ijk_NoDecode'): # it is decodeable if current_function_addr == addr: current_function_addr = addr_0 addr = addr_0 if nodecode or irsb.size == 0 or irsb.jumpkind == 'Ijk_NoDecode': # decoding error # is the current location already occupied and marked as non-code? # it happens in cases like the following: # # BL a_nonreturning_func (but we don't know it does not return) # alignment (mov r8, r8) # data_ref_0: # DCD "type found!" # occupied_sort = self._seg_list.occupied_by_sort(real_addr) if occupied_sort and occupied_sort != "code": # no wonder we cannot decode it return None, None, None, None # we still occupy that location since it cannot be decoded anyways if irsb is None: irsb_size = 0 else: irsb_size = irsb.size # special handling for ud, ud1, and ud2 on x86 and x86-64 if irsb_string[-2:] == b'\x0f\x0b' and self.project.arch.name == 'AMD64': # VEX supports ud2 and make it part of the block size, only in AMD64. valid_ins = True nodecode_size = 0 elif lifted_block is not None \ and is_x86_x64_arch \ and len(lifted_block.bytes) - irsb_size > 2 \ and lifted_block.bytes[irsb_size : irsb_size + 2] in { b'\x0f\xff', # ud0 b'\x0f\xb9', # ud1 b'\x0f\x0b', # ud2 }: # ud0, ud1, and ud2 are actually valid instructions. valid_ins = True # VEX does not support ud0 or ud1 or ud2 under AMD64. they are not part of the block size. nodecode_size = 2 else: valid_ins = False nodecode_size = 1 self._seg_list.occupy(addr, irsb_size, 'code') self._seg_list.occupy(addr + irsb_size, nodecode_size, 'nodecode') if not valid_ins: l.error("Decoding error occurred at address %#x of function %#x.", addr + irsb_size, current_function_addr ) return None, None, None, None is_thumb = False # Occupy the block in segment list if irsb.size > 0: if is_arm_arch(self.project.arch) and addr % 2 == 1: # thumb mode is_thumb=True self._seg_list.occupy(real_addr, irsb.size, "code") # Create a CFG node, and add it to the graph cfg_node = CFGNode(addr, irsb.size, self.model, function_address=current_function_addr, block_id=addr, irsb=irsb, thumb=is_thumb, byte_string=irsb_string, ) if self._cfb is not None: self._cfb.add_obj(addr, lifted_block) self._nodes[addr] = cfg_node self._nodes_by_addr[addr].append(cfg_node) return addr, current_function_addr, cfg_node, irsb except (SimMemoryError, SimEngineError): return None, None, None, None def _process_block_arch_specific(self, addr: int, irsb: pyvex.IRSB, func_addr: int, caller_gp: Optional[int]=None) -> None: # pylint: disable=unused-argument """ According to arch types ['ARMEL', 'ARMHF', 'MIPS32'] does different fixes For ARM deals with link register on the stack (see _arm_track_lr_on_stack) For MIPS32 simulates a new state where the global pointer is 0xffffffff from current address after three steps if the first successor does not adjust this value updates this function address (in function manager) to use a conrete global pointer :param addr: irsb address :param irsb: irsb :param func_addr: function address :param caller_gp: The gp register value that the caller function has. MIPS-specific. """ if is_arm_arch(self.project.arch): if self._arch_options.ret_jumpkind_heuristics: if addr == func_addr: self._arm_track_lr_on_stack(addr, irsb, self.functions[func_addr]) elif 'lr_saved_on_stack' in self.functions[func_addr].info and \ self.functions[func_addr].info['lr_saved_on_stack'] and \ irsb.jumpkind == 'Ijk_Boring' and \ irsb.next is not None and \ isinstance(irsb.next, pyvex.IRExpr.RdTmp): # do a bunch of checks to avoid unnecessary simulation from happening self._arm_track_read_lr_from_stack(irsb, self.functions[func_addr]) elif self.project.arch.name in {"MIPS32", "MIPS64"}: func = self.kb.functions.function(func_addr) if 'gp' not in func.info and addr >= func_addr and addr - func_addr < 15 * 4: gp_value = self._mips_determine_function_gp(addr, irsb, func_addr) if gp_value is not None and self._gp_value is None: self._gp_value = gp_value if gp_value is None: gp_value = caller_gp # fallback if gp_value is None: gp_value = self._gp_value # fallback to a previously found value func.info['gp'] = gp_value def _mips_determine_function_gp(self, addr: int, irsb: pyvex.IRSB, func_addr: int) -> Optional[int]: # check if gp is being written to last_gp_setting_insn_id = None insn_ctr = 0 if not irsb.statements: # Get an IRSB with statements irsb = self.project.factory.block(irsb.addr, size=irsb.size, opt_level=1, cross_insn_opt=False).vex for stmt in irsb.statements: if isinstance(stmt, pyvex.IRStmt.IMark): insn_ctr += 1 if insn_ctr >= 10: break elif isinstance(stmt, pyvex.IRStmt.Put) and stmt.offset == self.project.arch.registers['gp'][0]: last_gp_setting_insn_id = insn_ctr if last_gp_setting_insn_id is None: return None # Prudently search for $gp values state = self.project.factory.blank_state(addr=addr, mode="fastpath", remove_options=o.refs, add_options={o.NO_CROSS_INSN_OPT}, ) state.regs._t9 = func_addr state.regs._gp = 0xffffffff try: succ = self.project.factory.successors(state, num_inst=last_gp_setting_insn_id + 1) except SimIRSBNoDecodeError: # if last_gp_setting_insn_id is the last instruction, a SimIRSBNoDecodeError will be raised since # there is no instruction left in the current block return None if not succ.flat_successors: return None state = succ.flat_successors[0] gp = state.regs._gp if not gp.symbolic and state.solver.is_false(gp == 0xffffffff): return gp._model_concrete.value return None def _find_thunks(self): if self.project.arch.name not in self.SPECIAL_THUNKS: return {} result = {} for code, meaning in self.SPECIAL_THUNKS[self.project.arch.name].items(): for addr in self.project.loader.memory.find(code): if self._addr_in_exec_memory_regions(addr): result[addr] = meaning return result def _lift(self, addr, *args, opt_level=1, cross_insn_opt=False, **kwargs): # pylint:disable=arguments-differ kwargs['extra_stop_points'] = set(self._known_thunks) if self._use_patches: # let's see if there is a patch at this location all_patches = self.kb.patches.get_all_patches(addr, VEX_IRSB_MAX_SIZE) if all_patches: # Use bytes from patches instead offset = addr byte_string = b"" for p in all_patches: if offset < p.addr: byte_string += self._fast_memory_load_bytes(offset, p.addr - offset) offset = p.addr assert p.addr <= offset < p.addr + len(p) byte_string += p.new_bytes[offset - p.addr: min(VEX_IRSB_MAX_SIZE - (offset-addr), p.addr + len(p) - offset)] offset = p.addr + len(p) kwargs['byte_string'] = byte_string return super(CFGFast, self)._lift(addr, *args, opt_level=opt_level, cross_insn_opt=cross_insn_opt, **kwargs) # # Public methods # def copy(self): n = CFGFast.__new__(CFGFast) for attr, value in self.__dict__.items(): if attr.startswith('__') and attr.endswith('__'): continue setattr(n, attr, value) n._exec_mem_regions = self._exec_mem_regions[::] n._seg_list = self._seg_list.copy() n._function_addresses_from_symbols = self._function_addresses_from_symbols.copy() n._model = self._model.copy() return n def output(self): s = "%s" % self._graph.edges(data=True) return s @deprecated(replacement="angr.analyses.CFB") def generate_code_cover(self): """ Generate a list of all recovered basic blocks. """ lst = [] for cfg_node in self.graph.nodes(): size = cfg_node.size lst.append((cfg_node.addr, size)) lst = sorted(lst, key=lambda x: x[0]) return lst from angr.analyses import AnalysesHub AnalysesHub.register_default('CFGFast', CFGFast)
43.729375
162
0.577851
c0887dfd30009a5c85bae8707571a8f5a25464be
170
py
Python
scraper.py
hackcouver/python-workshop
2cac35e87b877345141ac00953ca876fde019e69
[ "MIT" ]
null
null
null
scraper.py
hackcouver/python-workshop
2cac35e87b877345141ac00953ca876fde019e69
[ "MIT" ]
null
null
null
scraper.py
hackcouver/python-workshop
2cac35e87b877345141ac00953ca876fde019e69
[ "MIT" ]
1
2020-06-13T23:58:12.000Z
2020-06-13T23:58:12.000Z
import twint c = twint.Config() c.Username = "realDonaldTrump" # switch to whichever Twitter account you would like c.Output = "data/trump.txt" s = twint.run.Search(c)
24.285714
84
0.735294
efef888fb64360962d6e90e0b67ea3a37e6824ea
1,384
py
Python
python/tink/core/_tink_error.py
hazaelsan/tink
9be3f690611bfab85284624de46ad6f36119d8bb
[ "Apache-2.0" ]
1
2019-01-08T16:38:47.000Z
2019-01-08T16:38:47.000Z
python/tink/core/_tink_error.py
bhaskatripathi/tink
841802758ae6fadb6bcb60e9053fb4c169549f29
[ "Apache-2.0" ]
1
2020-08-18T16:42:11.000Z
2020-08-25T16:13:11.000Z
python/tink/core/_tink_error.py
bhaskatripathi/tink
841802758ae6fadb6bcb60e9053fb4c169549f29
[ "Apache-2.0" ]
1
2020-11-30T06:38:02.000Z
2020-11-30T06:38:02.000Z
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module defines basic exceptions in Tink.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tink.cc.pybind import tink_bindings KNOWN_STATUS_NOT_OK_TYPES = (tink_bindings.StatusNotOk,) def register_status_not_ok_type(status_not_ok_type): global KNOWN_STATUS_NOT_OK_TYPES if status_not_ok_type not in KNOWN_STATUS_NOT_OK_TYPES: assert issubclass(status_not_ok_type, Exception) KNOWN_STATUS_NOT_OK_TYPES += (status_not_ok_type,) def use_tink_errors(func): """Transforms StatusNotOk errors into TinkErrors.""" def wrapper(*args): try: return func(*args) except KNOWN_STATUS_NOT_OK_TYPES as e: raise TinkError(e) return wrapper class TinkError(Exception): """Common exception in Tink."""
30.755556
74
0.774566
dbd3110622015b851f69746366c2dbd6783d2cff
7,027
py
Python
aae/auto_pose/eval/ae_multi_reconst.py
shbe-aau/multi-pose-estimation
0425ed9dcc7969f0281cb435615abc33c640e157
[ "MIT" ]
4
2021-12-28T09:25:06.000Z
2022-01-13T12:55:44.000Z
aae/auto_pose/eval/ae_multi_reconst.py
shbe-aau/multi-view-pose-estimation
22cea6cd09684fe655fb2214bc14856f589048e1
[ "MIT" ]
null
null
null
aae/auto_pose/eval/ae_multi_reconst.py
shbe-aau/multi-view-pose-estimation
22cea6cd09684fe655fb2214bc14856f589048e1
[ "MIT" ]
1
2022-01-13T13:00:15.000Z
2022-01-13T13:00:15.000Z
# -*- coding: utf-8 -*- import os import configparser import argparse import numpy as np import signal import shutil import cv2 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import progressbar import tensorflow as tf from auto_pose.ae import ae_factory as factory from auto_pose.ae import utils as u from auto_pose.eval import eval_plots def main(): workspace_path = os.environ.get('AE_WORKSPACE_PATH') if workspace_path == None: print('Please define a workspace path:\n') print('export AE_WORKSPACE_PATH=/path/to/workspace\n') exit(-1) gentle_stop = np.array((1,), dtype=np.bool) gentle_stop[0] = False def on_ctrl_c(signal, frame): gentle_stop[0] = True signal.signal(signal.SIGINT, on_ctrl_c) parser = argparse.ArgumentParser() parser.add_argument("experiment_name") parser.add_argument("-d", action='store_true', default=False) parser.add_argument("-gen", action='store_true', default=False) parser.add_argument("-vis_emb", action='store_true', default=False) parser.add_argument('--at_step', default=None, type=int, required=False) arguments = parser.parse_args() full_name = arguments.experiment_name.split('/') experiment_name = full_name.pop() experiment_group = full_name.pop() if len(full_name) > 0 else '' debug_mode = arguments.d generate_data = arguments.gen at_step = arguments.at_step cfg_file_path = u.get_config_file_path(workspace_path, experiment_name, experiment_group) log_dir = u.get_log_dir(workspace_path, experiment_name, experiment_group) checkpoint_file = u.get_checkpoint_basefilename(log_dir) ckpt_dir = u.get_checkpoint_dir(log_dir) train_fig_dir = u.get_train_fig_dir(log_dir) dataset_path = u.get_dataset_path(workspace_path) if not os.path.exists(cfg_file_path): print('Could not find config file:\n') print('{}\n'.format(cfg_file_path)) exit(-1) args = configparser.ConfigParser() args.read(cfg_file_path) num_iter = args.getint('Training', 'NUM_ITER') if not debug_mode else np.iinfo(np.int32).max save_interval = args.getint('Training', 'SAVE_INTERVAL') num_gpus = 1 model_type = args.get('Dataset', 'MODEL') with tf.variable_scope(experiment_name, reuse=tf.AUTO_REUSE): dataset = factory.build_dataset(dataset_path, args) multi_queue = factory.build_multi_queue(dataset, args) dev_splits = np.array_split(np.arange(24), num_gpus) iterator = multi_queue.create_iterator(dataset_path, args) all_object_views = tf.concat([inp[0] for inp in multi_queue.next_element],0) bs = multi_queue._batch_size encoding_splits = [] for dev in range(num_gpus): with tf.device('/device:GPU:%s' % dev): encoder = factory.build_encoder(all_object_views[dev_splits[dev][0]*bs:(dev_splits[dev][-1]+1)*bs], args, is_training=False) encoding_splits.append(tf.split(encoder.z, len(dev_splits[dev]),0)) with tf.variable_scope(experiment_name): decoders = [] for dev in range(num_gpus): with tf.device('/device:GPU:%s' % dev): for j,i in enumerate(dev_splits[dev]): decoders.append(factory.build_decoder(multi_queue.next_element[i], encoding_splits[dev][j], args, is_training=False, idx=i)) ae = factory.build_ae(encoder, decoders, args) codebook = factory.build_codebook(encoder, dataset, args) train_op = factory.build_train_op(ae, args) saver = tf.train.Saver(save_relative_paths=True) dataset.load_bg_images(dataset_path) multi_queue.create_tfrecord_training_images(dataset_path, args) widgets = ['Training: ', progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.Counter(), ' / %s' % num_iter, ' ', progressbar.ETA(), ' '] bar = progressbar.ProgressBar(maxval=num_iter,widgets=widgets) gpu_options = tf.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction = 0.9) config = tf.ConfigProto(gpu_options=gpu_options,log_device_placement=True,allow_soft_placement=True) with tf.Session(config=config) as sess: sess.run(multi_queue.bg_img_init.initializer) sess.run(iterator.initializer) chkpt = tf.train.get_checkpoint_state(ckpt_dir) if chkpt and chkpt.model_checkpoint_path: if at_step is None: checkpoint_file_basename = u.get_checkpoint_basefilename(log_dir,latest=args.getint('Training', 'NUM_ITER')) else: checkpoint_file_basename = u.get_checkpoint_basefilename(log_dir,latest=at_step) print('loading ', checkpoint_file_basename) saver.restore(sess, checkpoint_file_basename) else: if encoder._pre_trained_model != 'False': encoder.saver.restore(sess, encoder._pre_trained_model) all_vars = set([var for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)]) var_list = all_vars.symmetric_difference([v[1] for v in list(encoder.fil_var_list.items())]) sess.run(tf.variables_initializer(var_list)) print(sess.run(tf.report_uninitialized_variables())) else: sess.run(tf.global_variables_initializer()) if not debug_mode: print('Training with %s model' % args.get('Dataset','MODEL'), os.path.basename(args.get('Paths','MODEL_PATH'))) bar.start() while True: this,_,reconstr_train,enc_z = sess.run([multi_queue.next_element,multi_queue.next_bg_element,[decoder.x for decoder in decoders], encoder.z]) this_x = np.concatenate([el[0] for el in this]) this_y = np.concatenate([el[2] for el in this]) print(this_x.shape) reconstr_train = np.concatenate(reconstr_train) print(this_x.shape) cv2.imshow('sample batch', np.hstack(( u.tiles(this_x, 4, 6), u.tiles(reconstr_train, 4,6),u.tiles(this_y, 4, 6))) ) k = cv2.waitKey(0) idx = np.random.randint(0,24) this_y = np.repeat(this_y[idx:idx+1, :, :], 24, axis=0) reconstr_train = sess.run([decoder.x for decoder in decoders],feed_dict={encoder._input:this_y}) reconstr_train = np.array(reconstr_train) print(reconstr_train.shape) reconstr_train = reconstr_train.squeeze() cv2.imshow('sample batch 2', np.hstack((u.tiles(this_y, 4, 6), u.tiles(reconstr_train, 4, 6)))) k = cv2.waitKey(0) if k == 27: break if gentle_stop[0]: break if not debug_mode: bar.finish() if not gentle_stop[0] and not debug_mode: print('To create the embedding run:\n') print('ae_embed {}\n'.format(full_name)) if __name__ == '__main__': main()
39.926136
154
0.655045
b28d9f511993ae23dee8a12ad4023cc11cac137a
6,475
py
Python
model/net.py
Tianweidadada/RelationExtract-Pytorch
61ab88bae8dafb36c8efc03167df4ec599ca9e66
[ "MIT" ]
29
2019-10-31T07:54:39.000Z
2022-01-21T02:41:25.000Z
model/net.py
Tianweidadada/RelationExtract-Pytorch
61ab88bae8dafb36c8efc03167df4ec599ca9e66
[ "MIT" ]
3
2020-12-19T14:24:27.000Z
2021-09-22T12:39:10.000Z
model/net.py
Tianweidadada/RelationExtract-Pytorch
61ab88bae8dafb36c8efc03167df4ec599ca9e66
[ "MIT" ]
12
2020-10-13T09:22:59.000Z
2022-01-03T07:14:58.000Z
"""Define the neural network, loss function""" import torch import torch.nn as nn import torch.nn.functional as F class CNN(nn.Module): def __init__(self, data_loader, params): super(CNN, self).__init__() # loading embedding vectors of dataset embedding_vectors = data_loader.get_loaded_embedding_vectors() # word and position embedding layer self.word_embedding = nn.Embedding.from_pretrained(embeddings=embedding_vectors, freeze=False) self.pos1_embedding = nn.Embedding(params.pos_dis_limit * 2 + 3, params.pos_emb_dim) self.pos2_embedding = nn.Embedding(params.pos_dis_limit * 2 + 3, params.pos_emb_dim) self.max_len = params.max_len # dropout layer self.dropout = nn.Dropout(params.dropout_ratio) feature_dim = params.word_emb_dim + params.pos_emb_dim * 2 # encode sentence level features via cnn self.covns = nn.ModuleList([nn.Sequential(nn.Conv1d(in_channels=feature_dim, out_channels=params.filter_num, kernel_size=k),nn.Tanh(),nn.MaxPool1d(kernel_size=self.max_len-k+1)) for k in params.filters]) filter_dim = params.filter_num * len(params.filters) labels_num = len(data_loader.label2idx) # output layer self.linear = nn.Linear(filter_dim, labels_num) self.loss = nn.CrossEntropyLoss() if params.gpu >= 0: self.cuda(device=params.gpu) def forward(self, x): batch_sents = x['sents'] batch_pos1s = x['pos1s'] batch_pos2s = x['pos2s'] word_embs = self.word_embedding(batch_sents) pos1_embs = self.pos1_embedding(batch_pos1s) pos2_embs = self.pos2_embedding(batch_pos2s) input_feature = torch.cat([word_embs, pos1_embs, pos2_embs], dim=2) # batch_size x seq_len x feature_dim input_feature = input_feature.permute(0,2,1) #(batch_size,feature_dim,seq_len) input_feature = self.dropout(input_feature) out = [conv(input_feature) for conv in self.covns] #(batch_size,filter_num,1) """ 对应第二个维度(行)拼接起来,比如说5*2*1,5*3*1的拼接变成5*5*1 (维度1是max_pool的结果) 每个Window_size 产生filter_num个feature,然后把这些feature拼接起来 """ out = torch.cat(out,dim=1) out = self.dropout(out) out = out.view(-1,out.size(1)) #(batch_size, (filter_num*window_num)) x = self.dropout(out) x = self.linear(x) return x class BiLSTM_Att(nn.Module): def __init__(self,data_loader,params): super(BiLSTM_Att, self).__init__() embedding_vectors = data_loader.get_loaded_embedding_vectors() self.out_size = len(data_loader.label2idx) self.hidden_dim = params.hidden_dim self.batch_size = params.batch_size self.feature_dim = params.word_emb_dim + params.pos_emb_dim * 2 self.lstm = nn.LSTM(self.feature_dim,self.hidden_dim//2,bidirectional=True) self.word_embedding = nn.Embedding.from_pretrained(embedding_vectors,freeze=False) self.pos1_embedding = nn.Embedding(params.pos_dis_limit * 2 + 3, params.pos_emb_dim) self.pos2_embedding = nn.Embedding(params.pos_dis_limit * 2 + 3, params.pos_emb_dim) self.att_weight = nn.Parameter(torch.randn((self.batch_size, 1, self.hidden_dim))) self.dropout_emb = nn.Dropout(p=0.3) self.dropout_lstm = nn.Dropout(p=0.3) self.dropout_att = nn.Dropout(p=0.5) self.dense = nn.Linear(self.hidden_dim,self.out_size) self.device = None self.loss = nn.CrossEntropyLoss() if params.gpu >= 0: self.device = self.cuda(device=params.gpu) def begin_state(self): state = ( torch.zeros(2, self.batch_size, self.hidden_dim // 2), torch.zeros(2, self.batch_size, self.hidden_dim // 2)) if self.device: return state.to(self.device) else: return state ''' H: (batch_size,hidden_dim,seq_len) att_weight: (batch_size,1,hidden_dim) ''' def attention(self, H): M = torch.tanh(H) a = torch.bmm(self.att_weight, M) a = F.softmax(a, dim=2) # (batch_size,1,seq_len) a = a.transpose(1, 2) # after a: (batch_size,seq_len,1) return torch.bmm(H, a) # (batch_size,hidden_dim,1) def forward(self, X): batch_sents = X['sents'] batch_pos1s = X['pos1s'] batch_pos2s = X['pos2s'] word_embs = self.word_embedding(batch_sents) pos1_embs = self.pos1_embedding(batch_pos1s) pos2_embs = self.pos2_embedding(batch_pos2s) input_feature = torch.cat([word_embs, pos1_embs, pos2_embs], dim=2).transpose(0,1) # (seq_len,batch_size,vector_size) embeds = self.dropout_emb(input_feature) lstm_out, state = self.lstm(embeds, self.begin_state()) # list_out : (seq_len,batch_size,hidden_dim) lstm_out = lstm_out.permute(1, 2, 0) # (batch_size,hidden_dim,seq_len) lstm_out = self.dropout_lstm(lstm_out) att_out = torch.tanh(self.attention(lstm_out)) # (batch_size,hidden_dim,1) att_out = self.dropout_att(att_out) out = self.dense(att_out.view(self.batch_size, self.hidden_dim)) # 经过一个全连接矩阵 W*h + b return out class BiLSTM_MaxPooling(nn.Module): def __init__(self,data_loader,params): super(BiLSTM_MaxPooling, self).__init__() embedding_vectors = data_loader.get_loaded_embedding_vectors() self.out_size = len(data_loader.label2idx) self.hidden_dim = params.hidden_dim self.batch_size = params.batch_size self.feature_dim = params.word_emb_dim + params.pos_emb_dim * 2 self.lstm = nn.LSTM(self.feature_dim,self.hidden_dim//2,bidirectional=True) self.word_embedding = nn.Embedding.from_pretrained(embedding_vectors,freeze=False) self.pos1_embedding = nn.Embedding(params.pos_dis_limit * 2 + 3, params.pos_emb_dim) self.pos2_embedding = nn.Embedding(params.pos_dis_limit * 2 + 3, params.pos_emb_dim) self.att_weight = nn.Parameter(torch.randn((self.batch_size, 1, self.hidden_dim))) self.dense = nn.Linear(self.hidden_dim,self.out_size) self.device = None self.loss = nn.CrossEntropyLoss() if params.gpu >= 0: self.device = self.cuda(device=params.gpu) def begin_state(self): state = ( torch.zeros(2, self.batch_size, self.hidden_dim // 2), torch.zeros(2, self.batch_size, self.hidden_dim // 2)) if self.device: return state.to(self.device) else: return state def forward(self, X): batch_sents = X['sents'] batch_pos1s = X['pos1s'] batch_pos2s = X['pos2s'] word_embs = self.word_embedding(batch_sents) pos1_embs = self.pos1_embedding(batch_pos1s) pos2_embs = self.pos2_embedding(batch_pos2s) input_feature = torch.cat([word_embs, pos1_embs, pos2_embs], dim=2).transpose(0,1) lstm_out, state = self.lstm(input_feature, self.begin_state()) # list_out : (seq_len,batch_size,hidden_dim) out,_ = torch.max(lstm_out,dim=0) # (1,batch_size,hidden_dim) out = self.dense(out.squeeze(0)) # 经过一个全连接矩阵 W*h + b return out
35.382514
110
0.736988
0ab944737199a0f2f8a923affc731a753dac9b98
431
py
Python
malib/algorithm/dqn/__init__.py
ReinholdM/play_football_with_human
9ac2f0a8783aede56f4ac1f6074db7daa41b6b6c
[ "MIT" ]
258
2021-05-10T11:17:45.000Z
2022-03-30T13:41:09.000Z
malib/algorithm/dqn/__init__.py
ReinholdM/play_football_with_human
9ac2f0a8783aede56f4ac1f6074db7daa41b6b6c
[ "MIT" ]
28
2021-05-13T06:50:04.000Z
2022-03-30T14:19:15.000Z
malib/algorithm/dqn/__init__.py
ReinholdM/play_football_with_human
9ac2f0a8783aede56f4ac1f6074db7daa41b6b6c
[ "MIT" ]
34
2021-05-31T16:17:49.000Z
2022-03-26T06:59:59.000Z
from .policy import DQN from .trainer import DQNTrainer from .loss import DQNLoss NAME = "DQN" LOSS = DQNLoss TRAINER = DQNTrainer POLICY = DQN # custom_config CONFIG = { "training": {"tau": 0.01}, "policy": { "gamma": 0.98, "eps_min": 1e-2, "eps_max": 1.0, "eps_decay": 2000, "dueling": False, "use_cuda": False, }, } __all__ = ["NAME", "LOSS", "TRAINER", "POLICY"]
17.24
47
0.563805
7a74cda68faf5584260544b3af415aaf92fcb224
46
py
Python
auxjad/spanners/__init__.py
gilbertohasnofb/auxjad
553b7fe97221b6f378a93ade6262f024e3cbc678
[ "MIT" ]
6
2020-05-18T09:28:29.000Z
2021-12-22T00:40:54.000Z
auxjad/spanners/__init__.py
gilbertohasnofb/auxjad
553b7fe97221b6f378a93ade6262f024e3cbc678
[ "MIT" ]
1
2021-04-21T20:29:38.000Z
2021-04-22T19:44:54.000Z
auxjad/spanners/__init__.py
gilbertohasnofb/auxjad
553b7fe97221b6f378a93ade6262f024e3cbc678
[ "MIT" ]
1
2021-04-21T18:54:46.000Z
2021-04-21T18:54:46.000Z
""" spanners ======== Auxjad's spanners. """
6.571429
18
0.5
838aca80aedc5f21f25fc6d3dce7e9e268d9b416
1,521
py
Python
Code/GCcalculation.py
baby-phage/GC-Plotter
b8495b392a485944f495363639dad5874544c427
[ "MIT" ]
1
2021-11-11T03:04:10.000Z
2021-11-11T03:04:10.000Z
Code/GCcalculation.py
baby-phage/GC-Plotter
b8495b392a485944f495363639dad5874544c427
[ "MIT" ]
null
null
null
Code/GCcalculation.py
baby-phage/GC-Plotter
b8495b392a485944f495363639dad5874544c427
[ "MIT" ]
null
null
null
# Functions for GC% calculation def Multiple_Fasta_Parser(filepath: str) -> (list, list): """Parses given FASTA file and returns a DNA sequence list and their corresponding trimmed down FASTA ID list.""" # Import regex import re with open(filepath, "r") as file: DNA_seq_list = [] FASTA_ID_list = [] DNA_seq = "" for fileline in file.readlines(): fileline = fileline.strip("\n") if fileline.startswith(">"): FASTA_ID_list.append(fileline) if DNA_seq != "": DNA_seq_list.append(DNA_seq) DNA_seq = "" else: DNA_seq += fileline else: DNA_seq_list.append(DNA_seq) # Trimming FASTA ID to obtain only the unique identifier FASTA_ID_trimmed_list = [] for FASTA_ID in FASTA_ID_list: for match in re.findall(r"^>[A-Za-z\d.:\-_]+", FASTA_ID): FASTA_ID_trimmed_list.append(match) return DNA_seq_list, FASTA_ID_trimmed_list def GC_Calc(DNA_seq): """Returns GC % of a DNA sequence rounded up to 3 decimal places.""" DNA_len = len(DNA_seq) GC_count = 0 for nucleotide in DNA_seq: if nucleotide == "G" or nucleotide == "C": GC_count += 1 try: GC_percent = round((GC_count / DNA_len) * 100, 3) except ZeroDivisionError: GC_percent = 0.0 return GC_percent
27.654545
118
0.558185
3d1b624a40f09e64f8ddf4f3f213bfbf6184d57f
30,491
py
Python
preprocessing/feature_extraction.py
Artisan-Lab/SMTimer
8e0bbb854afd360dcc61d6b098c4ae8931bae14c
[ "MIT" ]
5
2021-04-25T08:33:15.000Z
2022-03-10T02:20:34.000Z
preprocessing/feature_extraction.py
Artisan-Lab/SMTimer
8e0bbb854afd360dcc61d6b098c4ae8931bae14c
[ "MIT" ]
1
2021-12-12T08:34:09.000Z
2021-12-12T10:21:32.000Z
preprocessing/feature_extraction.py
Artisan-Lab/SMTimer
8e0bbb854afd360dcc61d6b098c4ae8931bae14c
[ "MIT" ]
null
null
null
import json import math import sys # import torch import traceback from pysmt.smtlib.parser import SmtLibParser from six.moves import cStringIO from pysmt.operators import __OP_STR__ from .Operators import op, none_op, bv_constant, bool_constant, reserved_word sys.setrecursionlimit(1000000) from collections import defaultdict import pysmt from preprocessing.Tree import varTree as Tree import re import numpy as np # SMT script file information, program name, solving time with symbolic tools, solving time with different solvers class Script_Info: def __init__(self, string, is_json=False): self.script = None self.filename = None self.solving_time = None # a dict of solving time with different solvers as dict key, some solving time of each to avoid variety self.solving_time_dic = None self.is_json = is_json self.load(string) def load(self, string): if self.is_json: try: string = json.loads(string) self.is_json = True except: self.is_json = False self.get_attr(string, None) def get_attr(self, str, input): if self.is_json: try: if 'smt_script' in str.keys(): self.script = str["smt_script"] else: self.script = str["script"] self.solving_time = str['time'] self.filename = str['filename'].split("/")[-1] if 'solving_time_dic' in str.keys(): self.solving_time_dic = str['solving_time_dic'] else: self.solving_time_dic = {"z3":str['double_check_time']} except: pass else: data_list = str.split("\n") try: if data_list[0].startswith("filename"): self.filename = data_list[0].split("/")[-1] data_list = data_list[1:] # else: # self.filename = input.split("/")[-1] if data_list[-1] == "": data_list = data_list[:-1] if "time:" in data_list[-1] or "Elapsed" in data_list[-1]: solving_time = data_list[-1].split(" ")[-1] if solving_time[-1] == 's': solving_time = solving_time[:-1] self.solving_time = float(solving_time) self.solving_time_dic = None data_list = data_list[:-1] self.script = "\n".join(data_list) except: self.script = str # main preprocessing, parse the SMT scripts to give out abstract tree or feature vector for later prediction class feature_extractor: def __init__(self, script_info, time_selection="original", limit=100): self.feature_list = [] self.logic_tree = None self.val_list = [] self.val_dic = {} self.used = defaultdict(bool) self.mid_val = {} self.origin_time = None self.adjust_time = None self.cut_num = 0 self.feature = np.array([0] * (len(op) + 4)) self.script_info = script_info self.time_selection = time_selection self.type = [] self.constant = [] self.feature_number_limit = limit self.treeforassert = False # calculate the solving time label for data after adjustment(average), 0 for the lack of data def cal_training_label(self): solver_list = ["msat", "cvc4", "yices", "btor", "z3"] if isinstance(self.script_info.solving_time_dic, dict): if self.time_selection in solver_list: time_list = self.script_info.solving_time_dic[self.time_selection] else: time_list = list(self.script_info.solving_time_dic.values())[0] else: time_list = self.script_info.solving_time_dic if time_list: valid_time_list = [] for x in time_list: if float(x) > 0: valid_time_list.append(float(x)) # self.adjust_time = max(time_list) if len(valid_time_list) == 0: self.adjust_time = 0 else: self.adjust_time = sum(valid_time_list) / len(valid_time_list) else: self.adjust_time = 0 if self.script_info.solving_time: self.origin_time = float(self.script_info.solving_time) else: self.origin_time = 0 def script_to_feature(self): data = self.script_info.script self.cal_training_label() assertions = self.handle_variable_defination(data) # parse define-fun with pysmt parser # to do: handle more reserved word parser in SMT-LIB # if define_fun: # last_reserved_word = None # left_count = 0 # data_list = data.split("\n") # for i in range(len(data_list)): # if "declare-fun" in data_list[i]: # define_list.append(data_list[i]) # left_count, finish, last_reserved_word = finished(data_list[i], left_count) # elif "define-fun" in data_list[i]: # define_list.append(data_list[i]) # left_count, finish, last_reserved_word = finished(data_list[i], left_count) # elif last_reserved_word != # self.construct_define(define_list) try: # parse assertion stack into abstract trees self.assertions_to_feature_list(assertions) # merging sub tree: bottom_up_merging or accumulation self.accumulation() # self.bottom_up_merging() # truncate tree by depth. default 60 self.cut_length() # collecting tree structure information self.feature[-4] = self.logic_tree.node self.feature[-2] = self.logic_tree.depth except TimeoutError: raise TimeoutError except (KeyError,IndexError) as e: self.logic_tree = vartree('unknown', None, None, None) # raise e # record variables, other type defined with reserve word "declare-fun", "declare-sort", ..., # for later variable replacement # also allow the define after assertion has been added def handle_variable_defination(self, data): last_reserved_word = None left_count = 0 # replace variable with general symbol data_list = data.split("\n") define_fun = False sl = data.split("(assert") asserts = ["(assert" + x for x in sl[1:]] asserts_str = "".join(asserts) need_assert = False if "declare-fun" in asserts_str or "define-fun" in asserts_str: need_assert = True asserts = [] define_list = [] assert_str = "" for i in range(len(data_list)): if "declare-fun" in data_list[i] or "declare-sort" in data_list[i] or "define-sort" in data_list[i]: try: var_name = data_list[i].split(" ", maxsplit=1)[1] var_name = var_name.split(" (", maxsplit=1)[0] var_name = var_name.rstrip(" ") except: continue if "declare-fun" in data_list[i]: self.val_list.append(var_name) self.val_dic[var_name] = "var" + str(len(self.val_list)) elif "declare-sort" in data_list[i]: self.constant.append(var_name) elif "define-sort" in data_list[i]: self.type.append(var_name) define_list.append(data_list[i]) left_count, last_reserved_word = finished(data_list[i], left_count) elif "assert" in data_list[i]: if need_assert: assert_str = assert_str + data_list[i] left_count, last_reserved_word = finished(data_list[i], left_count) if not left_count: asserts.append(assert_str) assert_str = "" elif "declare" in data_list[i] or "define" in data_list[i]: define_fun = True define_list.append(data_list[i]) left_count, last_reserved_word = finished(data_list[i], left_count) elif last_reserved_word == "assert": if need_assert: assert_str = assert_str + data_list[i] left_count, word = finished(data_list[i], left_count) if not left_count: last_reserved_word = word asserts.append(assert_str) assert_str = "" elif last_reserved_word != None: define_list.append(data_list[i]) left_count, word = finished(data_list[i], left_count) if not left_count: last_reserved_word = word # else: # print(last_reserved_word) if define_fun: self.construct_define(define_list) self.feature[-1] = len(self.val_list) asserts = [sl[0]] + ["(assert" + x for x in sl[1:]] return asserts def get_variable(self, data): data_list = data.split("\n") for i in range(len(data_list)): if "declare-fun" in data_list[i]: var_name = data_list[i].split(" ", maxsplit=1)[1] var_name = var_name.split(" (", maxsplit=1)[0] var_name = var_name.rstrip(" ") self.val_list.append(var_name) self.val_dic[var_name] = "var" + str(len(self.val_list)) self.feature[-1] += 1 elif "assert" in data_list[i]: break sl = data.split("(assert") asserts = [sl[0]] + ["(assert" + x for x in sl[1:]] return asserts def construct_define(self, define_list): define_str = "\n".join(define_list) try: smt_parser = SmtLibParser() script = smt_parser.get_script(cStringIO(define_str)) except (KeyError,IndexError, pysmt.exceptions.PysmtTypeError): return try: assert_list = script.commands for assertion in assert_list: if assertion.name == "define-fun": new_tree = self.fnode_to_tree(assertion.args[3]) self.mid_val[assertion.args[0]] = new_tree self.used[assertion.args[0]] = False except (KeyError,IndexError): return def fnode_to_tree(self, fnode): transtable = list(__OP_STR__.values()) # print(fnode) if fnode.is_symbol(): if fnode.symbol_name() in self.val_list: root = vartree(self.val_dic[fnode.symbol_name()]) else: root = vartree("constant") elif fnode.is_constant(): root = vartree("constant") elif fnode.is_term(): if fnode.is_and() and fnode.arg(1).is_true(): root = self.fnode_to_tree(fnode.arg(0)) else: subnode_list = [] for subnode in fnode.args(): subnode_list.append(self.fnode_to_tree(subnode)) subnode_list.extend([None, None, None]) root = vartree(transtable[fnode.node_type()], subnode_list[0], subnode_list[1], subnode_list[2]) else: root = vartree("unknown") return root def cut_length(self): root = self.logic_tree if self.treeforassert: self.depth = 40 else: self.depth = 60 self._cut(root, 0) def _cut(self, root, depth): if root: if depth > self.depth: self.cut_num += 1 return self.generate_replace(root) if hasattr(root, "feature"): del root.feature root.left = self._cut(root.left, depth + 1) root.mid = self._cut(root.mid, depth + 1) root.right = self._cut(root.right, depth + 1) return root def generate_replace(self, root): try: newroot = vartree(np.log(root.feature + 1).tolist(), None, None, None) except (AttributeError, ValueError): var_list = list(root.var) + ['constant', None, None] for i in [0, 1, 2]: if var_list[i] != None: var_list[i] = vartree(var_list[i]) root.left = var_list[0] root.mid = var_list[1] root.right = var_list[2] newroot = vartree('compressed_op', var_list[0], var_list[1], var_list[2]) return newroot def bottom_up_merging(self): if len(self.feature_list) and not isinstance(self.feature_list[0], Tree): self.feature_list = list(map(lambda x:vartree(np.log(np.array(x) + 1).tolist()), self.feature_list)) tl = self.feature_list while len(tl) != 1: new_tl = [] if len(tl) % 3 != 0: tl.append(None) if len(tl) % 3 != 0: tl.append(None) for i in range(0, len(tl), 3): new_tl.append(vartree("and", tl[i], tl[i + 1], tl[i + 2])) tl = new_tl self.logic_tree = tl[0] def accumulation(self): if len(self.feature_list) and not isinstance(self.feature_list[0], Tree): self.feature_list = list(map(lambda x:vartree(np.log(np.array(x) + 1).tolist()), self.feature_list)) for ind, feature in enumerate(self.feature_list): if feature.node > 500: # print("cut large tree") self.feature_list[ind] = self.generate_replace(self.feature_list[ind]) tl = self.feature_list[1:] try: root = self.feature_list[0] except IndexError: return # print(self.script) while len(tl) != 0: if len(tl) == 1: root = vartree("and", root, tl[0]) else: root = vartree("and", root, tl[0], tl[1]) tl = tl[2:] self.logic_tree = root def assertions_to_feature_list(self, assertions): limit = self.feature_number_limit assertions[-1] = assertions[-1].replace("(check-sat)", "") assertions[-1] = assertions[-1].replace("(exit)", "") if len(assertions) > limit: assertions[-limit] = "\n".join(assertions[:-limit + 1]) assertions = assertions[-limit:] # assertion for assertion in assertions: val = list(map(lambda x:math.log(x+1),self.count_feature(assertion))) root = vartree(val) self.feature_list.append(root) # if not self.parse_smt_comp(assertion): # return # data_lines = assertion.split("\n") # # one line # for data_line in data_lines: # if data_line == "(check-sat)" or data_line == "": # continue # if "time:" in data_line: # break # else: # self.parse_angr_smt(data_line) # parse a wider SMT script(mainly on QF_ABV, QF_URA), second version, abandoned after switching to pysmt parse, if # pysmt parse failed, you may use this instead def parse_smt_comp(self, assertion): data_list = assertion.split(" ") current_ind = 0 data_len = len(data_list) stack = [] swap_stack = ["define"] try: while current_ind < data_len: current = data_list[current_ind].replace("\n", "") current = current.strip(")") current = current.strip("(") if data_list[current_ind].startswith("("): stack.extend(["("] * data_list[current_ind].count("(")) if current == "assert": current_ind += 1 continue elif current == "": current_ind += 1 continue elif current in ["let", "forall", "exists"]: swap_stack,stack = stack, swap_stack # stack = ["define"] elif current == "_": if data_list[current_ind + 1] in none_op: stack[-1] = data_list[current_ind + 1] elif data_list[current_ind + 1].startswith("bv"): stack[-1] = vartree("constant") else: raise SyntaxError("unknown single op", data_list[current_ind + 1]) if ")" in data_list[current_ind + 2]: current_ind += 2 else: current_ind += 3 data_list[current_ind] = data_list[current_ind].replace(")", "", 1) elif current in op: stack.append(current) self.feature[op.index(current)] += 1 elif current in self.mid_val or current[1:-1] in self.mid_val: # if stack[0] == "define": # pa_count = stack.count("(") # current_ind += 1 # while pa_count != 0: # pa_count += data_list[current_ind].count("(") - data_list[current_ind].count(")") # current_ind += 1 # swap_stack, stack = stack, swap_stack # swap_stack = ["define"] # continue if current[1:-1] in self.mid_val: current = current[1:-1] stack.append(self.mid_val[current]) # if self.used[current] == False: # stack.append(self.mid_val[current]) # self.used[current] = True # else: # if self.mid_val[current].node > 10: # stack.append(self.generate_replace(self.mid_val[current])) # else: # stack.append(copy(self.mid_val[current])) if stack[-2] == "(" and isinstance(stack[-1], Tree): left = 0 while (left >= 0 and current_ind < data_len - 1): current_ind += 1 current = data_list[current_ind] left = left + current.count("(") - current.count(")") # nested string trigger replace error # elif current.startswith("var"): # stack.append(vartree(current)) elif current in self.type: pass elif current in self.constant: stack.append(vartree("constant")) elif current in self.val_list: var_n = self.val_dic[current] stack.append(vartree(var_n)) elif re.match("bv[0-9]+", current) or current in ["true", "false"] or current[0] == '"' or is_number(current): stack.append(vartree("constant")) self.feature[-3] += 1 elif current.isalpha(): pass print("unknown symbol", current, data_list) else: stack.append(vartree("var")) res = data_list[current_ind].count(")") while (res != 0 and "(" in stack): stack_rev = stack[::-1] i = stack_rev.index("(") tree_val = stack[-i:] if len(tree_val) > 4: pop_list = [] for ind, tr in enumerate(tree_val): if ind != 0 and tr.val == "constant": pop_list.append(ind) tree_val = [tree_val[x] for x in range(len(tree_val)) if x not in pop_list] + [vartree("constant")] * 3 else: tree_val = tree_val + [None] * 3 if isinstance(tree_val[0], Tree): self.mid_val["val"] = tree_val[0] else: self.mid_val["val"] = vartree(tree_val[0], tree_val[1], tree_val[2], tree_val[3]) stack = stack[:-i - 1] res -= 1 stack.append(self.mid_val["val"]) if stack[0] == "define" and len(stack) == 5: if not isinstance(stack[3], Tree): self.mid_val[stack[3]] = stack[4] stack[4].set_name(stack[3]) self.used[stack[3]] = False stack = stack[:2] if res >= 2: stack[0] = "define-done" break else: res = 0 if current_ind + 1 == data_len and stack.count("(") + 1 == len(stack): stack[0] = stack[-1] break current_ind += 1 if stack[0] == "define-done": stack = swap_stack swap_stack = ["define"] if current_ind == data_len: self.feature_list.append(stack[0]) except TimeoutError: raise TimeoutError except Exception as e: traceback.print_exc() # print(assertion) # raise e return False return True # count the operators and variables of a piece of assertion of SMT, str->[int]*150 def count_feature(self, assertion): for var_name in self.val_list: if " " in var_name: assertion = assertion.replace(var_name, self.val_dic[var_name]) assertion = assertion.replace("(", " ") assertion = assertion.replace(")", " ") assertion = assertion.replace("\n", " ") from collections import Counter counts = Counter(assertion.split(" ")) feature = [0] * 150 for d in counts: if d in op: feature[op.index(d)] = counts[d] elif d in self.val_list: ind = min(int(self.val_dic[d][3:]), 20) feature[111 + ind] = counts[d] elif d[:3] == "var": try: ind = min(int(d[3:]), 20) feature[111 + ind] = counts[d] except (KeyError,IndexError,ValueError): pass elif d.startswith("?x") or d.startswith("$x"): feature[21] += 1 for i in range(len(self.feature) - 4): self.feature[i] += feature[i] # root = vartree(feature) # self.feature_list.append(vartree(feature)) return feature # parse angr SMT script(mainly on QF_BV), first version, abandoned after switching to pysmt parse def parse_angr_smt(self, data_line): for var_name in self.val_list: if " " in var_name: data_line = data_line.replace(var_name, self.val_dic[var_name]) data_list = data_line.split(" ") stack = [] name = None try: if "let" not in data_line: name = "midval" for da in data_list: if name and da.startswith("("): for i in range(da.count("(")): stack.append("(") d = da.strip("(") d = d.strip(")") if d in ['', '_', "let", "assert"]: continue elif d == "true" or d == "false": stack.append(vartree(bool_constant)) elif d in op: stack.append(d) self.feature[op.index(d)] += 1 elif d.startswith("?x") or d.startswith("$x"): if name: # stack.append(self.mid_val[d]) if self.used[d] == False: stack.append(self.mid_val[d]) self.used[d] = True else: stack.append(self.generate_replace(self.mid_val[d])) # if self.mid_val[d].node > 20: # stack.append(self.generate_replace(self.mid_val[d])) # else: # stack.append(copy(self.mid_val[d])) else: name = d if d in self.mid_val: return # nested string trigger replace error # elif d.startswith("var"): # stack.append(vartree(d)) elif d in self.val_list or d[:3] == "var": var_n = self.val_dic[d] stack.append(vartree(var_n)) elif re.match("bv[0-9]+", d): stack.append(vartree(bv_constant)) self.feature[-3] += 1 elif is_number(d): pass elif d.isalpha(): pass print("unknown symbol", d, data_line) else: pass print("unknown term", data_line, d) res = da.count(")") if len(stack) >= 2 and stack[-2] in none_op and isinstance(stack[-1], Tree): single_tree = vartree(stack[-2], stack[-1]) stack = stack[:-2] stack.append(single_tree) while (res != 0 and "(" in stack): if len(stack) >= 2 and stack[-2] in none_op and isinstance(stack[-1], Tree): single_tree = vartree(stack[-2], stack[-1]) stack = stack[:-2] stack.append(single_tree) stack_rev = stack[::-1] i = stack_rev.index("(") if len(stack[-i:]) == 1 or stack[-i] in none_op: self.mid_val["val"] = stack[-i:][0] else: tree_val = stack[-i:] + [None] * 3 self.mid_val["val"] = vartree(tree_val[0], tree_val[1], tree_val[2], tree_val[3]) stack = stack[:-i - 1] res -= 1 stack.append(self.mid_val["val"]) if len(stack) != 0: stack = stack + [None] * 3 if "let" in data_line and isinstance(stack[0], Tree): self.mid_val[name] = stack[0] stack[0].set_name(name) self.used[name] = False # print("let", stack[1]) else: if isinstance(stack[0], Tree): self.feature_list.append(stack[0]) # print("assert", self.feature_list[-1]) except (KeyError,IndexError) as e: # traceback.print_exc() if isinstance(e, TimeoutError): raise TimeoutError with open("parse_error.txt", "w") as f: f.write(data_line + "\n") data_line = data_line.replace("(", "") data_line = data_line.replace(")", "") data_list = data_line.split(" ") stack = [] name = None if "let" not in data_line: name = "midval" for d in data_list: if d.startswith("?x") or d.startswith("$x"): if name: if self.used[d] == False: stack.append(self.mid_val[d]) self.used[d] = True else: stack.append(self.generate_replace(self.mid_val[d])) # if self.mid_val[d].node > 20: # stack.append(self.generate_replace(self.mid_val[d])) # else: # stack.append(copy(self.mid_val[d])) else: name = d elif re.match("bv[0-9]+", d): stack.append(vartree(bv_constant)) elif d == "true" or d == "false": stack.append(vartree(bool_constant)) elif d.startswith("var"): stack.append(vartree(d)) stack = stack + [None] * 3 if "let" in data_line: tree = vartree("unknown", stack[0], stack[1], stack[2]) tree.set_name(name) self.mid_val[name] = tree self.used[name] = False else: self.feature_list.append(vartree("unknown", stack[0], stack[1], stack[2])) def copy(tree): ret = None if tree: ret = Tree(tree.val) ret.left = copy(tree.left) ret.mid = copy(tree.mid) ret.right = copy(tree.right) ret.var = tree.var ret.depth = tree.depth ret.compress_depth = tree.compress_depth return ret def vartree(val,left= None,mid= None,right= None): if left == None and isinstance(val, Tree): return val if isinstance(val, list): ret = Tree("") ret.val = val return ret try: ret = Tree(val, left, mid, right) ret.cal() except TypeError: ret = Tree("unknown", None, None, None) return ret def is_number(s): try: float(s) return True except ValueError: pass if re.match("b\#[0-9]+", s): return True return False def finished(string, left_count): word = None for i in reserved_word: if i in string: word = i left_count = 0 count = left_count + string.count("(") count = count - string.count(")") if not count: word = None return count, word
42.056552
127
0.490866
114e7948dbe67e0a7db7d258f76f824c3cbb2f9f
1,166
py
Python
test_unittest.py
danilovex/dojo-python-fizzbuzz
1f5647443c03b2a0078e912f9394a410d55f08c1
[ "MIT" ]
null
null
null
test_unittest.py
danilovex/dojo-python-fizzbuzz
1f5647443c03b2a0078e912f9394a410d55f08c1
[ "MIT" ]
null
null
null
test_unittest.py
danilovex/dojo-python-fizzbuzz
1f5647443c03b2a0078e912f9394a410d55f08c1
[ "MIT" ]
null
null
null
import service # The code to test import unittest # The test framework class Test_TestIncrementDecrement(unittest.TestCase): def test_deve_retornar_fizz_numeros_divisiveis_por3(self): self.assertEqual(service.eh_divisivel_por3(15), True) def test_deve_retornar_true_numeros_divisiveis_por5(self): self.assertEqual(service.eh_divisivel_por5(5), True) def test_deve_retornar_true_numeros_divisiveis_por3e5(self): self.assertEqual(service.eh_divisivel_por3e5(15), True) def test_3_deve_retornar_fizz(self): self.assertEqual(service.substituir(3), 'FIZZ') def test_5_deve_retornar_buzz(self): self.assertEqual(service.substituir(5), 'BUZZ') def test_15_deve_retornar_fizzbuzz(self): self.assertEqual(service.substituir(15), 'FIZZBUZZ') def test_4_deve_retornar_4(self): self.assertEqual(service.substituir(4), '4') def test_contem_31_retornar_fizz(self): self.assertEqual(service.substituir(31),'FIZZ') def test_contem_51_retornar_fizzbuzz(self): self.assertEqual(service.substituir(51),'FIZZBUZZ') if __name__ == '__main__': unittest.main()
34.294118
64
0.744425
33ed3d7bcd38b90c7a8f6692bb324ff0068e750e
1,979
py
Python
python/ql/test/query-tests/Functions/general/protocols.py
robertbrignull/ql
2ecef33c9d2c9a66b5359b68437c3229fcf54964
[ "MIT" ]
26
2020-06-30T03:07:19.000Z
2022-03-31T03:57:23.000Z
python/ql/test/query-tests/Functions/general/protocols.py
robertbrignull/ql
2ecef33c9d2c9a66b5359b68437c3229fcf54964
[ "MIT" ]
2
2020-06-30T06:00:59.000Z
2021-04-21T19:53:33.000Z
python/ql/test/query-tests/Functions/general/protocols.py
robertbrignull/ql
2ecef33c9d2c9a66b5359b68437c3229fcf54964
[ "MIT" ]
10
2021-03-24T13:09:08.000Z
2022-02-10T07:39:30.000Z
class Iterator: #Support both 2 and 3 protocol def __next__(self): pass def next(self): pass def __iter__(self): return self class X(object): def __iter__(self): return object() class IteratorMissingNext: def __iter__(self): return self class IterableMissingNext: def __iter__(self): return IteratorMissingNext() class IteratorMissingIter: def next(self): pass def __next__(self): pass class IterableMissingIter: def __iter__(self): return IteratorMissingIter() class IterableWithGenerator: # returning a generator from __iter__ in an iterable is ok def __iter__(self): i = 0 while True: yield i i += 1 #Iterator not returning self class AlmostIterator(object): def __next__(self): pass def next(self): pass def __iter__(self): return X.Xiter(X()) class AlmostIterable(object): def __iter__(self): return AlmostIterator() #Overly complex __del__ method class MegaDel(object): def __del__(self): a = self.x + self.y if a: print(a) if sys._getframe().f_lineno > 100: print("Hello") sum = 0 for a in range(100): sum += a print(sum) class MiniDel(object): def close(self): pass def __del__(self): self.close() class IncorrectSpecialMethods(object): def __add__(self, other): raise NotImplementedError() def __getitem__(self, index): raise ZeroDivisionError() def __getattr__(self): raise ZeroDivisionError() def f(self): pass class MissingMethods(object): __repr__ = f # This should be OK __add__ = f # But not this __set__ = f # or this #OK Special method class OK(object): def __call__(self): yield 0 raise StopIteration
16.630252
62
0.590702
c98af38e2fdce25e8b8e68467d698dc02b66bac5
2,451
py
Python
tfce_toolbox/tfce_computation.py
celine-alameda/cluster-analysis
0168bb8238f2e368f92d5fddbfe9330fd3465438
[ "BSD-3-Clause" ]
null
null
null
tfce_toolbox/tfce_computation.py
celine-alameda/cluster-analysis
0168bb8238f2e368f92d5fddbfe9330fd3465438
[ "BSD-3-Clause" ]
null
null
null
tfce_toolbox/tfce_computation.py
celine-alameda/cluster-analysis
0168bb8238f2e368f92d5fddbfe9330fd3465438
[ "BSD-3-Clause" ]
null
null
null
import concurrent import math # values as per doi:10.1016/j.neuroimage.2008.03.061 dh = 0.1 extend_weight = 0.5 height_weight = 2 def tfces_from_distributions_st(distributions: list): tfces = [] for distribution in distributions: tfce = tfce_from_distribution(distribution) tfces.append(tfce) return tfces def tfces_from_distributions_mt(distributions: list, n_workers): tfces = [] with concurrent.futures.ProcessPoolExecutor(max_workers=n_workers) as executor: future_to_url = {executor.submit(tfce_from_distribution, distrib): distrib for distrib in distributions} for future in concurrent.futures.as_completed(future_to_url): try: tfce = future.result() tfces.append(tfce) except Exception as exc: print('Exception: {}'.format(exc)) return tfces def tfce_from_distribution(distribution: list): """Given a distribution (1D list of values), computes the Threshold-Free Cluster Enhancement""" tfce_values = [] for i in range(len(distribution)): # floor to 0.1 # notations are similar to those in the paper if distribution[i] == 0: tfce_values.append(0) continue signum = distribution[i] / abs(distribution[i]) h_p = math.floor(abs(distribution[i]) / dh) * dh height = dh tfce = 0 while height <= h_p: # extent is how many samples have values of at least h # reach forward extend = 1 # at least this sample index = i + 1 while index < len(distribution): signum_at_index = distribution[index] / abs(distribution[index]) if abs(distribution[index] < height) or signum_at_index != signum: break extend += 1 index += 1 # reach backward index = i - 1 while index >= 0: signum_at_index = distribution[index] / abs(distribution[index]) if abs(distribution[index] < height) or signum_at_index != signum: break extend += 1 index -= 1 tfce = tfce + math.pow(extend, extend_weight) * math.pow(height, height_weight) height += dh tfce = tfce * signum tfce_values.append(tfce) return tfce_values
35.521739
99
0.587923
5f41b53106d4226c2773b4d0f47db1d50245abee
15,268
py
Python
src/mrack/providers/beaker.py
Tiboris/mrack
c3a91ad9c36113ad14d4ebbab8985616a0a1359c
[ "Apache-2.0" ]
2
2021-05-26T15:57:13.000Z
2021-08-21T02:14:01.000Z
src/mrack/providers/beaker.py
Tiboris/mrack
c3a91ad9c36113ad14d4ebbab8985616a0a1359c
[ "Apache-2.0" ]
81
2020-10-02T08:30:56.000Z
2022-03-31T11:47:41.000Z
src/mrack/providers/beaker.py
Tiboris/mrack
c3a91ad9c36113ad14d4ebbab8985616a0a1359c
[ "Apache-2.0" ]
7
2020-10-02T08:13:57.000Z
2022-03-31T11:22:53.000Z
# Copyright 2020 Red Hat Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Beaker Provider interface.""" import asyncio import logging import os import socket import xml.etree.ElementTree as eTree from copy import deepcopy from datetime import datetime, timedelta from xml.dom.minidom import Document as xml_doc from xmlrpc.client import Fault from bkr.client import BeakerJob, BeakerRecipe, BeakerRecipeSet from bkr.common.hub import HubProxy from bkr.common.pyconfig import PyConfigParser from mrack.context import global_context from mrack.errors import ProvisioningError, ValidationError from mrack.host import ( STATUS_ACTIVE, STATUS_DELETED, STATUS_ERROR, STATUS_OTHER, STATUS_PROVISIONING, ) from mrack.providers.provider import STRATEGY_ABORT, Provider from mrack.utils import add_dict_to_node logger = logging.getLogger(__name__) PROVISIONER_KEY = "beaker" def parse_bkr_exc_str(exc_str): """Parse exception string and return more readable string for mrack error.""" # we expect exception string to look like following: # '<class \'bkr.common.bexceptions.BX\'>:No distro tree matches Recipe: # <distroRequires> # <and> # <distro_name op="like" value="Fedora-33%"/> # </and> # </distroRequires>' if ( ":" not in exc_str.faultString and "bkr.common.bexceptions" not in exc_str.faultString ): # we got string we do not expect so just use the traceback return str(exc_str) # because of expected format we split by ":" and use last 2 values from list # in above example it would be # [ # '\tNo distro tree matches Recipe', # '\t<distroRequires><and><distro_name op="like" value="Fedora-33%"/> ... # ] fault = [f"\t{f.strip()}" for f in exc_str.faultString.split(":")[-2:]] return "\n".join(fault) class BeakerProvider(Provider): """Beaker Provider.""" def __init__(self): """Object initialization.""" self._name = PROVISIONER_KEY self.dsp_name = "Beaker" self.conf = PyConfigParser() self.poll_sleep = 45 # seconds self.pubkey = None self.max_retry = 1 # for retry strategy self.status_map = { "Reserved": STATUS_ACTIVE, "New": STATUS_PROVISIONING, "Scheduled": STATUS_PROVISIONING, "Queued": STATUS_PROVISIONING, "Processed": STATUS_PROVISIONING, "Waiting": STATUS_PROVISIONING, "Installing": STATUS_PROVISIONING, "Running": STATUS_PROVISIONING, "Cancelled": STATUS_DELETED, "Aborted": STATUS_ERROR, "Completed": STATUS_OTHER, "MRACK_REACHED_TIMEOUT": STATUS_ERROR, "MRACK_RESULT_NOT_PASSED": STATUS_ERROR, } async def init( self, distros, timeout, reserve_duration, pubkey, strategy=STRATEGY_ABORT, max_retry=1, ): """Initialize provider with data from Beaker configuration.""" logger.info(f"{self.dsp_name}: Initializing provider") self.strategy = strategy self.max_retry = max_retry self.distros = distros self.timeout = timeout self.reserve_duration = reserve_duration self.pubkey = pubkey login_start = datetime.now() default_config = os.path.expanduser( os.environ.get("BEAKER_CONF", "/etc/beaker/client.conf") # TODO use provc ) # get the beaker config for initialization of hub self.conf.load_from_file(default_config) self.hub = HubProxy(logger=logger, conf=self.conf) login_end = datetime.now() login_duration = login_end - login_start logger.info(f"{self.dsp_name}: Init duration {login_duration}") async def validate_hosts(self, reqs): """Validate that host requirements are well specified.""" for req in reqs: req_dstr = req.get("distro") if not req.get("meta_distro") and req_dstr not in self.distros: raise ValidationError( f"{self.dsp_name} provider does not support " f"'{req_dstr}' distro in provisioning config" ) return async def prepare_provisioning(self, reqs): """Prepare provisioning.""" return bool(reqs) async def can_provision(self, hosts): """Check that hosts can be provisioned.""" return True def _allow_ssh_key(self, pubkey): with open(os.path.expanduser(pubkey), "r") as key_file: key_content = key_file.read() return [ """%%post mkdir -p /root/.ssh cat >>/root/.ssh/authorized_keys << "__EOF__" %s__EOF__ restorecon -R /root/.ssh chmod go-w /root /root/.ssh /root/.ssh/authorized_keys %%end""" % "".join(key_content) ] def _req_to_bkr_job(self, req): # pylint: disable=too-many-locals """Transform requirement to beaker job xml.""" specs = deepcopy(req) # work with own copy, do not modify the input # Job attributes: specs.update({"retention_tag": "audit"}) specs.update({"product": "[internal]"}) specs.update({"whiteboard": "This job has been created using mrack."}) # RecipeSet attributes specs.update({"priority": "Normal"}) # Add allowed keys specs.update({"ks_append": self._allow_ssh_key(self.pubkey)}) # Use ks_meta specs.update({"ks_meta": "harness='restraint-rhts beakerlib-redhat'"}) # Recipe task definition specs.update( { # we use dummy task because beaker reuire a task in recipe "tasks": [{"name": "/distribution/dummy", "role": "STANDALONE"}] } ) # Create recipe with the specifications recipe = BeakerRecipe(**specs) recipe.addBaseRequires(**specs) # Specify the architecture arch_node = xml_doc().createElement("distro_arch") arch_node.setAttribute("op", "=") arch_node.setAttribute("value", specs["arch"]) recipe.addDistroRequires(arch_node) host_requires = global_context.PROV_CONFIG[PROVISIONER_KEY].get( "hostRequires", specs.get(f"mrack_{PROVISIONER_KEY}", {}).get("hostRequires", {}), ) if host_requires: # suppose to be dict like {"or": [dict()], "and": [dict()]} for operand, operand_value in host_requires.items(): if operand.startswith("_"): recipe.node.getElementsByTagName("hostRequires")[0].setAttribute( operand[1:], operand_value, ) continue # known operands are ["and", "or"] req_node = xml_doc().createElement(operand) for dct in operand_value: req_node = add_dict_to_node(req_node, dct) recipe.node.getElementsByTagName("hostRequires")[0].appendChild( req_node ) # Specify the custom xml distro_tag node with values from provisioning config distro_tags = global_context.PROV_CONFIG["beaker"].get("distro_tags") if distro_tags: for tag in distro_tags.get(specs["distro"], []): tag_node = xml_doc().createElement("distro_tag") tag_node.setAttribute("op", "=") tag_node.setAttribute("value", tag) recipe.addDistroRequires(tag_node) # Add ReserveSys element to reserve system after provisioning recipe.addReservesys(duration=str(self.reserve_duration)) for task in specs["tasks"]: recipe.addTask(task=task["name"], role=task["role"]) # Create RecipeSet and add our Recipe to it. recipe_set = BeakerRecipeSet(**specs) recipe_set.addRecipe(recipe) # Create job instance and inject created RecipeSet to it job = BeakerJob(**specs) job.addRecipeSet(recipe_set) return job async def create_server(self, req): """Issue creation of a server. req - dict of server requirements The req object can contain following additional attributes: * 'name': name for the VM * 'distro': beaker distribution to use * 'arch': architecture to request from beaker * 'variant': variant of the system Returns: A tuple containing, respectively, a string (<created beaker job id>) and a dict (<requirements for VM>) :rtype: (str, dict) """ logger.info(f"{self.dsp_name}: Creating server") job = self._req_to_bkr_job(req) # Generate the job try: job_id = self.hub.jobs.upload(job.toxml()) # schedule beaker job except Fault as bkr_fault: # use the name as id for the logging purposes req["host_id"] = req["name"] raise ProvisioningError( parse_bkr_exc_str(bkr_fault), req, ) from bkr_fault return (job_id, req) def prov_result_to_host_data(self, prov_result, req): """Transform provisioning result to needed host data.""" try: ip_address = socket.gethostbyname(prov_result["system"]) except (TypeError, socket.gaierror): ip_address = None result = { "id": prov_result["JobID"], "name": prov_result.get("mrack_req").get("name"), "addresses": [ip_address], "status": prov_result["status"], "fault": None, "os": prov_result.get("mrack_req").get("os"), "group": prov_result.get("mrack_req").get("group"), } if prov_result["result"] != "Pass": result.update( { "fault": prov_result["result"], "status": "MRACK_RESULT_NOT_PASSED", } ) return result def _get_recipe_info(self, beaker_id): """Get info about the recipe for beaker job id.""" bkr_job_xml = self.hub.taskactions.to_xml(beaker_id).encode("utf8") resources = [] for recipe in eTree.fromstring(bkr_job_xml).iter("recipe"): resources.append( { "system": recipe.get("system"), "status": recipe.get("status"), "result": recipe.get("result"), "rid": recipe.get("id"), "id": recipe.get("job_id"), } ) return resources[0] if len(resources) == 1 else [] async def wait_till_provisioned(self, resource): """Wait for Beaker provisioning result.""" beaker_id, req = resource resource = {} prev_status = "" job_url = "" # let us use timeout variable which is in minutes to define # maximum time to wait for beaker recipe to provide VM timeout_time = datetime.now() + timedelta(minutes=self.timeout) while datetime.now() < timeout_time: resource = self._get_recipe_info(beaker_id) status = resource["status"] job_url = ( f"{self.hub._hub_url}" # pylint: disable=protected-access f"/jobs/{resource['id']}" ) if prev_status != status: logger.info( f"{self.dsp_name}: Job {job_url} " f"has changed status ({prev_status} -> {status})" ) prev_status = status else: logger.info( f"{self.dsp_name}: Job {job_url} has not changed status " f"({status}), waiting another {self.poll_sleep:.1f}s" ) if self.status_map.get(status) == STATUS_PROVISIONING: await asyncio.sleep(self.poll_sleep) elif self.status_map.get(status) == STATUS_ACTIVE: break elif self.status_map.get(status) in [STATUS_ERROR, STATUS_DELETED]: logger.warning( f"{self.dsp_name}: Job {job_url} has errored with status " f"{status} and result {resource['result']}" ) resource.update({"result": f"Job {job_url} failed to provision"}) break else: logger.error( f"{self.dsp_name}: Job {job_url} has switched to unexpected " f"status {status} with result {resource['result']}" ) resource.update({"result": f"Job {job_url} failed to provision"}) break else: # In this case we failed to provision host in time: # we need to create failed host object for mrack # to delete the resource by cancelling the beaker job. logger.error( f"{self.dsp_name}: Job {job_url} failed to provide resource in" f" the timeout of {self.timeout} minutes" ) resource.update( { "status": "MRACK_REACHED_TIMEOUT", "result": f"Job {job_url} reached timeout", } ) resource.update( { "JobID": beaker_id, "mrack_req": req, } ) return resource, req async def delete_host(self, host_id): """Delete provisioned hosts based on input from provision_hosts.""" # host_id should start with 'J:' this way we know job has been scheduled # and proper response from beaker hub has beed returned. # Other way (In case of hub error or invalid host definition) # the provider uses hostname from metadata of the VM which has failed # to validate the requirements for the provider if not host_id.startswith("J:"): logger.warning( f"{self.dsp_name}: Job for host '{host_id}' does not exist yet" ) return True logger.info( f"{self.dsp_name}: Deleting host by cancelling Job " f"{self.hub._hub_url}" # pylint: disable=protected-access f"/jobs/{host_id.split(':')[1]}" ) return self.hub.taskactions.stop( host_id, "cancel", "Job has been stopped by mrack." ) def to_host(self, provisioning_result, req, username="root"): """Transform provisioning result into Host object.""" return super().to_host(provisioning_result, req, username)
36.439141
86
0.584228
1cd4d6519784f39b941570a118d4ced5254228aa
1,044
py
Python
tests/test_fitfuncs.py
david-hoffman/dphtools
f9f19ef5b0a00169562947c78a41c1f02e222a6a
[ "Apache-2.0" ]
null
null
null
tests/test_fitfuncs.py
david-hoffman/dphtools
f9f19ef5b0a00169562947c78a41c1f02e222a6a
[ "Apache-2.0" ]
4
2021-02-18T18:15:39.000Z
2022-02-09T06:49:58.000Z
tests/test_fitfuncs.py
david-hoffman/dphtools
f9f19ef5b0a00169562947c78a41c1f02e222a6a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # test_fitfuncs.py """ Testing for fitfuncs. Copyright (c) 2021, David Hoffman """ import unittest import numpy as np from dphtools.utils.fitfuncs import exponent, exponent_fit from numpy.testing import assert_allclose class TestExponentFit(unittest.TestCase): """Test exponent fit. This is not even close to testing edge cases. """ def setUp(self): """Set up.""" self.x = np.linspace(0, 10) self.params = (10, 3, 5) self.data = exponent(self.x, *self.params) self.data_noisy = np.random.randn(self.x.size) def test_positive(self): """Test a decaying signal.""" popt, pcov = exponent_fit(self.data, self.x) assert_allclose(popt, self.params, rtol=1e-3) def test_negative(self): """Test a rising signal.""" popt, pcov = exponent_fit(-self.data, self.x) amp, k, offset = self.params new_params = -amp, k, -offset assert_allclose(popt, new_params, rtol=1e-3)
24.857143
58
0.630268
a03095ee947027261254579a36557325dec1d234
4,688
py
Python
model-optimizer/extensions/front/tf/pooling_ext_test.py
apexxs/dldt
17e66dc5a6631d630da454506902bd7c25d4170b
[ "Apache-2.0" ]
2
2021-04-19T06:08:35.000Z
2021-08-25T02:43:43.000Z
model-optimizer/extensions/front/tf/pooling_ext_test.py
apexxs/dldt
17e66dc5a6631d630da454506902bd7c25d4170b
[ "Apache-2.0" ]
6
2022-01-11T18:56:22.000Z
2022-02-21T13:20:20.000Z
model-optimizer/extensions/front/tf/pooling_ext_test.py
apexxs/dldt
17e66dc5a6631d630da454506902bd7c25d4170b
[ "Apache-2.0" ]
3
2021-02-05T17:11:17.000Z
2021-04-19T08:33:31.000Z
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from extensions.front.tf.pooling_ext import AvgPoolFrontExtractor, MaxPoolFrontExtractor from mo.utils.unittest.extractors import PB, BaseExtractorsTestingClass class PoolingExtractorTest(BaseExtractorsTestingClass): @classmethod def setUpClass(cls): cls.strides = [1, 2, 3, 4] cls.ksize = [1, 3, 3, 1] cls.patcher = 'mo.ops.pooling.Pooling.infer' def test_pool_defaults(self): pb = PB({'attr': { 'data_format': PB({ 's': b"NHWC" }), 'strides': PB({ 'list': PB({ "i": self.strides }) }), 'ksize': PB({ 'list': PB({"i": self.ksize}) }), 'padding': PB({ 's': b'VALID' }) }}) self.expected = { 'pad': None, # will be inferred when input shape is known 'pad_spatial_shape': None, 'type': 'Pooling', 'exclude_pad': 'true', } node = PB({'pb': pb}) AvgPoolFrontExtractor.extract(node) self.res = node self.res["infer"](None) self.call_args = self.infer_mock.call_args self.expected_call_args = (None, None) self.compare() def test_avg_pool_nhwc(self): pb = PB({'attr': { 'data_format': PB({ 's': b"NHWC" }), 'strides': PB({ 'list': PB({"i": self.strides}) }), 'ksize': PB({ 'list': PB({"i": self.ksize}) }), 'padding': PB({ 's': b'VALID' }) }}) self.expected = { 'window': np.array(self.ksize, dtype=np.int8), 'spatial_dims': [1, 2], 'stride': np.array(self.strides, dtype=np.int8), 'pool_method': "avg", } node = PB({'pb': pb}) AvgPoolFrontExtractor.extract(node) self.res = node self.res["infer"](None) self.call_args = self.infer_mock.call_args self.expected_call_args = (None, "avg") self.compare() def test_avg_pool_nchw(self): pb = PB({'attr': { 'data_format': PB({ 's': b"NCHW" }), 'strides': PB({ 'list': PB({ "i": self.strides }) }), 'ksize': PB({ 'list': PB({ "i": self.ksize }) }), 'padding': PB({ 's': b'VALID' }) }}) self.expected = { 'window': np.array(self.ksize, dtype=np.int8), 'spatial_dims': [2, 3], 'stride': np.array(self.strides, dtype=np.int8), 'pool_method': "avg", } node = PB({'pb': pb}) AvgPoolFrontExtractor.extract(node) self.res = node self.res["infer"](None) self.call_args = self.infer_mock.call_args self.expected_call_args = (None, "avg") self.compare() def test_max_pool_nhwc(self): pb = PB({'attr': { 'data_format': PB({ 's': b"NHWC" }), 'strides': PB({ 'list': PB({ "i": self.strides }) }), 'ksize': PB({ 'list': PB({ "i": self.ksize }) }), 'padding': PB({ 's': b'VALID' }) }}) self.expected = { 'window': np.array(self.ksize, dtype=np.int8), 'spatial_dims': [1, 2], 'stride': np.array(self.strides, dtype=np.int64), 'pool_method': "max", } node = PB({'pb': pb}) MaxPoolFrontExtractor.extract(node) self.res = node self.res["infer"](None) self.call_args = self.infer_mock.call_args self.expected_call_args = (None, "max") self.compare()
30.245161
88
0.473763
855c33562f8b643d52b4221e8a9d697358e43676
7,014
py
Python
cni_challenge/evaluation/classification_metrics.py
sz144/pl-cni_challenge
eded4050329f3a54d5a67d91e2680a6b0dadc471
[ "MIT" ]
3
2019-06-07T21:46:33.000Z
2019-07-04T19:24:14.000Z
cni_challenge/evaluation/classification_metrics.py
sz144/pl-cni_challenge
eded4050329f3a54d5a67d91e2680a6b0dadc471
[ "MIT" ]
null
null
null
cni_challenge/evaluation/classification_metrics.py
sz144/pl-cni_challenge
eded4050329f3a54d5a67d91e2680a6b0dadc471
[ "MIT" ]
11
2019-06-30T20:14:02.000Z
2021-05-19T19:01:37.000Z
#!/shared/python3shared/bin/python3 """ :Summary: With the lack of consensus of which metric is most suitable to determine the most appropriate classifier, we use an inclusive approach. This includes multiple measures which are commonly used in classification tasks, such as accuracy and AUC, allowing for a more intuitive interpretation of the results, in addition to measures such as Geometric-mean and optimized precision (cf. M Hossin and MN Sulaiman. A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2):1,2015.) . :Description: We utilize accuracy, error rate, sensitivity, specificity, precision, recall, F-Measure, Geometric-mean, AUC, optimized precision (cf. Hossin and Sulaiman. A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2):1,2015). It compares estimated classification (est) and "ground truth" (gt) :Requires: :TODO: :AUTHOR: MDS :ORGANIZATION: MGH/HMS :CONTACT: software@markus-schirmer.com :SINCE: 2018-11-12 :VERSION: 0.1 """ #============================================= # Metadata #============================================= __author__ = 'mds' __contact__ = 'software@markus-schirmer.com' __copyright__ = '' __license__ = '' __date__ = '2019-04' __version__ = '0.1' #============================================= # Import statements #============================================= import sys import os import numpy as np import sklearn.metrics as skm import getopt import csv import pdb #============================================= # Helper functions #============================================= TP = np.inf FP = np.inf TN = np.inf FN = np.inf num_p = np.inf num_n = np.inf def help(): print("usage: classification_metrics.py -p <prediction_file> -g <groundtruth_file> -o <outputfile>") sys.exit() def get_confusion_matrix(est, gt): global TP, FP, TN, FN, num_p, num_n TP = np.float(np.sum(np.logical_and((est==1), (gt==1)).astype(int))) TN = np.float(np.sum(np.logical_and((est==0), (gt==0)).astype(int))) FP = np.float(np.sum(np.logical_and((est==1), (gt==0)).astype(int))) FN = np.float(np.sum(np.logical_and((gt==1), (est==0)).astype(int))) def get_tpr(): # sensitivity / recall / hit rate/ true positive rate if (TP+FN) == 0: return np.nan return TP/(TP+FN) def get_tnr(): # specificity / selectivity / true negative rate if (TN+FP) == 0: return np.nan return TN/(TN+FP) def get_ppv(): # precision / positive predictive value if (TP+FP) == 0: return np.nan return TP/(TP+FP) def get_npv(): # negative predictive value if (TN + FN) == 0: return np.nan return TN/(TN + FN) def get_fnr(): # false negative rate if (FN+TP) == 0 : return np.nan return FN/(FN+TP) def get_fpr(): # false positive rate if (FP+TN) == 0: return np.nan return FP/(FP+TN) def get_fdr(): if (FP+TP) == 0 : return np.nan # false discovery rate return FP/(FP+TP) def get_for(): # false omission rate if (FN+TN)==0: return np.nan return FN/(FN+TN) def get_accuracy(): # accuracy if (TP+TN+FP+FN) == 0: return np.nan return (TP+TN)/(TP+TN+FP+FN) def get_f1_score(): # harmonic mean of recall and precision if (get_tpr() == 0) or (get_ppv() == 0): return np.nan return 1./((1./get_tpr() + 1./get_ppv())/2.) def get_geom_mean(): # geometric mean of recall and precision return np.sqrt(get_tpr() * get_ppv()) def get_mcc(): # matthews correlation coefficient if np.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) == 0: return np.nan return (TP*TN - FP * FN)/np.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) def get_bm(): # informedness / bookmaker informedness return (get_tpr() + get_tnr() - 1) def get_markedness(): return (get_ppv() + get_npv() - 1) def get_plr(): # positive likelihood ratio if get_fpr()==0: return np.nan return get_tpr()/get_fpr() def get_nlr(): # negative likelihood ratio if get_tnr() == 0: return np.nan return get_fnr()/get_tnr() def get_dor(): # diagnostic odds ratio if get_nlr()==0: return np.nan return get_plr()/get_nlr() def get_AUC(est, gt): fpr, tpr, thresholds = skm.roc_curve(gt, est) return skm.auc(fpr, tpr) def get_OP(): sn = get_tpr() sp = get_tnr() P = sn* (TP+FN) + sp * (TN+FP) return P - np.abs(sp-sn)/(sp + sn) def get_metrics(est, gt): # set up global variables get_confusion_matrix(est, gt) # initialize output results = [] names = [] names.append('Sensitivity') results.append(get_tpr()) names.append('Specificity') results.append(get_tnr()) names.append('Precision') results.append(get_ppv()) names.append('Negative_predictive_value') results.append(get_npv()) names.append('False_negative_rate') results.append(get_fnr()) names.append('False_positive_rate') results.append(get_fpr()) names.append('False_discovery_rate') results.append(get_fdr()) names.append('False_omission_rate') results.append(get_for()) names.append('Accuracy') results.append(get_accuracy()) names.append('F1_score') results.append(get_f1_score()) names.append('Geom_mean') results.append(get_geom_mean()) names.append('Matthews_CC') results.append(get_mcc()) names.append('Informedness') results.append(get_bm()) names.append('Markedness') results.append(get_markedness()) # names.append('Positive_likelihood_ratio') # results.append(get_plr()) # names.append('Negative_likelihood_ratio') # results.append(get_nlr()) # names.append('Diagnostic_odds_ratio') # results.append(get_dor()) names.append('Optimized_precision') results.append(get_OP()) names.append('AUC') results.append(get_AUC(est,gt)) return results, names def evaluate_prediction(est, gt): # calculate metrics results, names = get_metrics(est, gt) return results, names def read_file(filename): data = [] with open(filename, 'r') as fid: reader = csv.reader(fid) for row in reader: data.append(np.int(row[0])) return np.asarray(data) #============================================= # Main method #============================================= def main(argv): prediction_file = None groundtruth_file = None output_file = None try: opts, args = getopt.getopt(argv[1:],"hp:g:o:",["prediction=","groundtruth=","output="]) except getopt.GetoptError: help() for opt, arg in opts: if opt == '-h': help() elif opt in ("-p", "--prediction"): prediction_file = arg elif opt in ("-g", "--groundtruth"): groundtruth_file = arg elif opt in ('-o', '--output'): output_file = arg if (prediction_file is None) or (groundtruth_file is None) or (output_file is None): help() # read input est = read_file(prediction_file) gt = read_file(groundtruth_file) # calculate metrics results, names = evaluate_prediction(est, gt) # save output with open(output_file, 'w') as fid: writer = csv.writer(fid) for ii in range(len(results)): writer.writerow([names[ii],results[ii]]) if __name__ == "__main__": main(sys.argv)
23.458194
184
0.660393
5b634996f2ec8af1ee6661602098aa61e692ad2b
668
py
Python
examples/simple_spider/python_documentation_spider.py
AirSpiders/AirSpider
a56e4b1c640e19113b2b078c9a8e7f3a02b2f721
[ "Apache-2.0" ]
21
2020-03-20T09:01:24.000Z
2021-06-30T02:00:56.000Z
examples/simple_spider/python_documentation_spider.py
LRENZ/AirSpider
a56e4b1c640e19113b2b078c9a8e7f3a02b2f721
[ "Apache-2.0" ]
null
null
null
examples/simple_spider/python_documentation_spider.py
LRENZ/AirSpider
a56e4b1c640e19113b2b078c9a8e7f3a02b2f721
[ "Apache-2.0" ]
6
2020-03-30T09:24:22.000Z
2020-10-30T16:45:02.000Z
import asyncio import sys from airspider import Item, TextField, AttrField class PythonDocumentationItem(Item): title = TextField(css_select="title") tutorial_link = AttrField(xpath_select="//a[text()='Tutorial']", attr="href") async def field_extraction(): url = "https://docs.python.org/3/" item = await PythonDocumentationItem.get_item(url=url) print(item.title) print(item.tutorial_link) if __name__ == "__main__": if sys.version_info[:2] == (3, 7): # Recommended for Python 3.7 asyncio.run(field_extraction()) else: loop = asyncio.new_event_loop() loop.run_until_complete(field_extraction())
25.692308
81
0.688623
27a1074d9b34002da448303d72bdbd5d894b542c
783
py
Python
tests/components/pages/form.py
T4rk1n/dazzler
69c49422dc19c910445ab265b1d3481041de8f43
[ "MIT" ]
15
2019-12-19T11:57:30.000Z
2021-11-15T23:34:41.000Z
tests/components/pages/form.py
T4rk1n/dazzler
69c49422dc19c910445ab265b1d3481041de8f43
[ "MIT" ]
196
2019-09-21T15:10:14.000Z
2022-03-31T11:07:48.000Z
tests/components/pages/form.py
jbampton/dazzler
4018f6cbcb55a9f482cb5c5cbf6a06b063c15e21
[ "MIT" ]
7
2019-10-30T19:38:15.000Z
2021-12-01T04:54:16.000Z
""" Page form of dazzler Created 2019-07-14 """ from aiohttp import web from dazzler.components import core from dazzler.system import Page, RouteMethod page = Page( __name__, core.Container([ core.Form( fields=[ { 'label': 'Field 1', 'name': 'field1', 'type': 'text' }, ], action='/submit-form', method='post', identity='form' ) ]) ) @page.route('/submit-form', method=RouteMethod.POST, prefix=False) async def submit(request: web.Request): data = await request.post() return web.Response( body=f'<div id="output">{data.get("field1")}</div>', content_type='text/html' )
21.75
66
0.51341
115d286b326f5209df02f17b28f66dabc9439ecf
722
py
Python
src/predict.py
BiswajeetNayak/BankruptcyPrediction
92ae5523210a27eb8ac1869118991d7be648d3aa
[ "MIT" ]
null
null
null
src/predict.py
BiswajeetNayak/BankruptcyPrediction
92ae5523210a27eb8ac1869118991d7be648d3aa
[ "MIT" ]
null
null
null
src/predict.py
BiswajeetNayak/BankruptcyPrediction
92ae5523210a27eb8ac1869118991d7be648d3aa
[ "MIT" ]
null
null
null
import pandas as pd from sklearn.ensemble import RandomForestClassifier, IsolationForest from sklearn.linear_model import LogisticRegression from models import * def i_f_predict(model, X): pred = model.predict(X) return pred def clf_predict(model, X): pred = model.predict(X) pred_proba = model.predict_proba(X) return pred, pred_proba def save_output(pred, proba, df,model_name): pred_df = pd.DataFrame([pred, proba], columns=['prediction_class', 'prediction_probability']) pred_df = pd.concat([pred_df, df['class']], axis=1) pred_df.rename(columns={'class': 'actual_class'}, inplace=True) pred_df.to_csv(f'{config.output_file_path}predictions_{model_name}.csv') return None
30.083333
97
0.739612
aabeeda2dff1300e9659c6a0083e6ffd105f5e5e
5,415
py
Python
electrumx/server/controller.py
UbuntuEvangelist/electrumx
3577dbc31cb9f661682dd7587a9a4ac400305f38
[ "CNRI-Python" ]
null
null
null
electrumx/server/controller.py
UbuntuEvangelist/electrumx
3577dbc31cb9f661682dd7587a9a4ac400305f38
[ "CNRI-Python" ]
null
null
null
electrumx/server/controller.py
UbuntuEvangelist/electrumx
3577dbc31cb9f661682dd7587a9a4ac400305f38
[ "CNRI-Python" ]
null
null
null
# Copyright (c) 2016-2021, Neil Booth # # All rights reserved. # # This file is licensed under the Open BSV License version 3, see LICENCE for details. from asyncio import Event from aiorpcx import _version as aiorpcx_version, TaskGroup import electrumx import electrumx.server.block_processor as block_proc from electrumx.lib.server_base import ServerBase from electrumx.lib.util import version_string from electrumx.server.daemon import Daemon from electrumx.server.db import DB from electrumx.server.mempool import MemPool, MemPoolAPI from electrumx.server.session import SessionManager class Notifications(object): # hashX notifications come from two sources: new blocks and # mempool refreshes. # # A user with a pending transaction is notified after the block it # gets in is processed. Block processing can take an extended # time, and the prefetcher might poll the daemon after the mempool # code in any case. In such cases the transaction will not be in # the mempool after the mempool refresh. We want to avoid # notifying clients twice - for the mempool refresh and when the # block is done. This object handles that logic by deferring # notifications appropriately. def __init__(self): self._touched_mp = {} self._touched_bp = {} self._highest_block = -1 async def _maybe_notify(self): tmp, tbp = self._touched_mp, self._touched_bp common = set(tmp).intersection(tbp) if common: height = max(common) elif tmp and max(tmp) == self._highest_block: height = self._highest_block else: # Either we are processing a block and waiting for it to # come in, or we have not yet had a mempool update for the # new block height return touched = tmp.pop(height) for old in [h for h in tmp if h <= height]: del tmp[old] for old in [h for h in tbp if h <= height]: touched.update(tbp.pop(old)) await self.notify(height, touched) async def notify(self, height, touched): pass async def start(self, height, notify_func): self._highest_block = height self.notify = notify_func await self.notify(height, set()) async def on_mempool(self, touched, height): self._touched_mp[height] = touched await self._maybe_notify() async def on_block(self, touched, height): self._touched_bp[height] = touched self._highest_block = height await self._maybe_notify() class Controller(ServerBase): '''Manages server initialisation and stutdown. Servers are started once the mempool is synced after the block processor first catches up with the daemon. ''' async def serve(self, shutdown_event): '''Start the RPC server and wait for the mempool to synchronize. Then start serving external clients. ''' if not (0, 22) <= aiorpcx_version < (0, 23): raise RuntimeError('aiorpcX version 0.22.x is required') env = self.env min_str, max_str = env.coin.SESSIONCLS.protocol_min_max_strings() self.logger.info(f'software version: {electrumx.version}') self.logger.info(f'aiorpcX version: {version_string(aiorpcx_version)}') self.logger.info(f'supported protocol versions: {min_str}-{max_str}') self.logger.info(f'event loop policy: {env.loop_policy}') self.logger.info(f'reorg limit is {env.reorg_limit:,d} blocks') notifications = Notifications() async with Daemon(env.coin, env.daemon_url) as daemon: db = DB(env) bp = block_proc.BlockProcessor(env, db, daemon, notifications) # Set notifications up to implement the MemPoolAPI def get_db_height(): return db.state.height notifications.height = daemon.height notifications.db_height = get_db_height notifications.cached_height = daemon.cached_height notifications.mempool_hashes = daemon.mempool_hashes notifications.raw_transactions = daemon.getrawtransactions notifications.lookup_utxos = db.lookup_utxos MemPoolAPI.register(Notifications) mempool = MemPool(env.coin, notifications) session_mgr = SessionManager(env, db, bp, daemon, mempool, shutdown_event) # Test daemon authentication, and also ensure it has a cached # height. Do this before entering the task group. await daemon.height() caught_up_event = Event() mempool_event = Event() async def wait_for_catchup(): await caught_up_event.wait() await group.spawn(db.populate_header_merkle_cache()) await group.spawn(mempool.keep_synchronized(mempool_event)) async with TaskGroup() as group: await group.spawn(session_mgr.serve(notifications, mempool_event)) await group.spawn(bp.fetch_and_process_blocks(caught_up_event)) await group.spawn(bp.check_cache_size_loop()) await group.spawn(wait_for_catchup()) async for task in group: if not task.cancelled(): task.result()
38.956835
86
0.651339
085c8959a975de56a879fc10c7d9d8dee1947bff
17,289
py
Python
code/huxt_analysis.py
University-of-Reading-Space-Science/GeoModelUncertainty
f5d26cb9c5888d23c1f96ed085dbda57e568af25
[ "MIT" ]
null
null
null
code/huxt_analysis.py
University-of-Reading-Space-Science/GeoModelUncertainty
f5d26cb9c5888d23c1f96ed085dbda57e568af25
[ "MIT" ]
null
null
null
code/huxt_analysis.py
University-of-Reading-Space-Science/GeoModelUncertainty
f5d26cb9c5888d23c1f96ed085dbda57e568af25
[ "MIT" ]
1
2021-07-12T11:46:26.000Z
2021-07-12T11:46:26.000Z
import numpy as np import astropy.units as u from astropy.time import Time import os import matplotlib.pyplot as plt import matplotlib as mpl import moviepy.editor as mpy import pandas as pd from moviepy.video.io.bindings import mplfig_to_npimage import huxt as H mpl.rc("axes", labelsize=16) mpl.rc("ytick", labelsize=16) mpl.rc("xtick", labelsize=16) mpl.rc("legend", fontsize=16) @u.quantity_input(time=u.day) def plot(model, time, save=False, tag=''): """ Make a contour plot on polar axis of the solar wind solution at a specific time. :param model: An instance of the HUXt class with a completed solution. :param time: Time to look up closet model time to (with an astropy.unit of time). :param save: Boolean to determine if the figure is saved. :param tag: String to append to the filename if saving the figure. :return fig: Figure handle. :return ax: Axes handle. """ if (time < model.time_out.min()) | (time > (model.time_out.max())): print("Error, input time outside span of model times. Defaulting to closest time") id_t = np.argmin(np.abs(model.time_out - time)) # Get plotting data lon_arr, dlon, nlon = H.longitude_grid() lon, rad = np.meshgrid(lon_arr.value, model.r.value) mymap = mpl.cm.viridis v_sub = model.v_grid.value[id_t, :, :].copy() plotvmin = 200 plotvmax = 810 dv = 10 ylab = "Solar Wind Speed (km/s)" # Insert into full array if lon_arr.size != model.lon.size: v = np.zeros((model.nr, nlon)) * np.NaN if model.lon.size != 1: for i, lo in enumerate(model.lon): id_match = np.argwhere(lon_arr == lo)[0][0] v[:, id_match] = v_sub[:, i] else: print('Warning: Trying to contour single radial solution will fail.') else: v = v_sub # Pad out to fill the full 2pi of contouring pad = lon[:, 0].reshape((lon.shape[0], 1)) + model.twopi lon = np.concatenate((lon, pad), axis=1) pad = rad[:, 0].reshape((rad.shape[0], 1)) rad = np.concatenate((rad, pad), axis=1) pad = v[:, 0].reshape((v.shape[0], 1)) v = np.concatenate((v, pad), axis=1) mymap.set_over('lightgrey') mymap.set_under([0, 0, 0]) levels = np.arange(plotvmin, plotvmax + dv, dv) fig, ax = plt.subplots(figsize=(10, 10), subplot_kw={"projection": "polar"}) cnt = ax.contourf(lon, rad, v, levels=levels, cmap=mymap, extend='both') # Add on CME boundaries cme_colors = ['r', 'c', 'm', 'y', 'deeppink', 'darkorange'] for j, cme in enumerate(model.cmes): cid = np.mod(j, len(cme_colors)) cme_lons = cme.coords[id_t]['lon'] cme_r = cme.coords[id_t]['r'].to(u.solRad) if np.any(np.isfinite(cme_r)): # Pad out to close the profile. cme_lons = np.append(cme_lons, cme_lons[0]) cme_r = np.append(cme_r, cme_r[0]) ax.plot(cme_lons, cme_r, '-', color=cme_colors[cid], linewidth=3) # Add on observers for body, style in zip(['EARTH', 'VENUS', 'MERCURY', 'STA', 'STB'], ['co', 'mo', 'ko', 'rs', 'y^']): obs = model.get_observer(body) deltalon = 0.0*u.rad if model.frame == 'sidereal': earth_pos = model.get_observer('EARTH') deltalon = earth_pos.lon_hae[id_t] - earth_pos.lon_hae[0] obslon = H._zerototwopi_(obs.lon[id_t] + deltalon) ax.plot(obslon, obs.r[id_t], style, markersize=16, label=body) # Add on a legend. fig.legend(ncol=5, loc='lower center', frameon=False, handletextpad=0.2, columnspacing=1.0) ax.set_ylim(0, model.r.value.max()) ax.set_yticklabels([]) ax.set_xticklabels([]) ax.patch.set_facecolor('slategrey') fig.subplots_adjust(left=0.05, bottom=0.16, right=0.95, top=0.99) # Add color bar pos = ax.get_position() dw = 0.005 dh = 0.045 left = pos.x0 + dw bottom = pos.y0 - dh wid = pos.width - 2 * dw cbaxes = fig.add_axes([left, bottom, wid, 0.03]) cbar1 = fig.colorbar(cnt, cax=cbaxes, orientation='horizontal') cbar1.set_label(ylab) cbar1.set_ticks(np.arange(plotvmin, plotvmax, dv*10)) # Add label label = "Time: {:3.2f} days".format(model.time_out[id_t].to(u.day).value) fig.text(0.675, pos.y0, label, fontsize=16) label = "HUXt2D" fig.text(0.175, pos.y0, label, fontsize=16) if save: cr_num = np.int32(model.cr_num.value) filename = "HUXt_CR{:03d}_{}_frame_{:03d}.png".format(cr_num, tag, id_t) filepath = os.path.join(model._figure_dir_, filename) fig.savefig(filepath) return fig, ax def animate(model, tag): """ Animate the model solution, and save as an MP4. :param model: An instance of the HUXt class with a completed solution. :param tag: String to append to the filename of the animation. """ # Set the duration of the movie # Scaled so a 5 day simulation with dt_scale=4 is a 10 second movie. duration = model.simtime.value * (10 / 432000) def make_frame(t): """ Produce the frame required by MoviePy.VideoClip. :param t: time through the movie """ # Get the time index closest to this fraction of movie duration i = np.int32((model.nt_out - 1) * t / duration) fig, ax = plot(model, model.time_out[i]) frame = mplfig_to_npimage(fig) plt.close('all') return frame cr_num = np.int32(model.cr_num.value) filename = "HUXt_CR{:03d}_{}_movie.mp4".format(cr_num, tag) filepath = os.path.join(model._figure_dir_, filename) animation = mpy.VideoClip(make_frame, duration=duration) animation.write_videofile(filepath, fps=24, codec='libx264') return def plot_radial(model, time, lon, save=False, tag=''): """ Plot the radial solar wind profile at model time closest to specified time. :param model: An instance of the HUXt class with a completed solution. :param time: Time (in seconds) to find the closest model time step to. :param lon: The model longitude of the selected radial to plot. :param save: Boolean to determine if the figure is saved. :param tag: String to append to the filename if saving the figure. :return: fig: Figure handle :return: ax: Axes handle """ if (time < model.time_out.min()) | (time > (model.time_out.max())): print("Error, input time outside span of model times. Defaulting to closest time") id_t = np.argmin(np.abs(model.time_out - time)) time = model.time_out[id_t] if model.lon.size != 1: if (lon < model.lon.min()) | (lon > (model.lon.max())): print("Error, input lon outside range of model longitudes. Defaulting to closest longitude") id_lon = np.argmin(np.abs(model.lon - lon)) lon = model.lon[id_lon] fig, ax = plt.subplots(figsize=(14, 7)) # Get plotting data id_t = np.argmin(np.abs(model.time_out - time)) time_out = model.time_out[id_t].to(u.day).value if model.lon.size == 1: id_lon = 0 lon_out = model.lon.value else: id_lon = np.argmin(np.abs(model.lon - lon)) lon_out = model.lon[id_lon].to(u.deg).value ylab = 'Solar Wind Speed (km/s)' ax.plot(model.r, model.v_grid[id_t, :, id_lon], 'k-') ymin = 200 ymax = 1000 # Plot the CME points on if needed cme_colors = ['r', 'c', 'm', 'y', 'deeppink', 'darkorange'] for c, cme in enumerate(model.cmes): cc = np.mod(c, len(cme_colors)) lon_cme = cme.coords[id_t]['lon'] r_cme = cme.coords[id_t]['r'].to(u.solRad) id_front = cme.coords[id_t]['front_id'] == 1.0 id_back = cme.coords[id_t]['front_id'] == 0.0 r_front = r_cme[id_front] lon_front = lon_cme[id_front] r_back = r_cme[id_back] lon_back = lon_cme[id_back] id_cme_lon = np.argmin(np.abs(lon_front - lon)) r_front = r_front[id_cme_lon] id_cme_lon = np.argmin(np.abs(lon_back - lon)) r_back = r_back[id_cme_lon] id_cme = (model.r >= r_back) & (model.r <= r_front) label = "CME {:02d}".format(c) ax.plot(model.r[id_cme], model.v_grid[id_t, id_cme, id_lon], '.', color=cme_colors[cc], label=label) ax.set_ylim(ymin, ymax) ax.set_ylabel(ylab) ax.set_xlim(model.r.value.min(), model.r.value.max()) ax.set_xlabel('Radial distance ($R_{sun}$)') fig.subplots_adjust(left=0.1, bottom=0.1, right=0.95, top=0.95) # Add label time_label = " Time: {:3.2f} days".format(time_out) lon_label = " Lon: {:3.2f}$^\circ$".format(lon_out) label = "HUXt" + time_label + lon_label ax.set_title(label, fontsize=20) if save: cr_num = np.int32(model.cr_num.value) lon_tag = "{}deg".format(lon.to(u.deg).value) filename = "HUXt_CR{:03d}_{}_radial_profile_lon_{}_frame_{:03d}.png".format(cr_num, tag, lon_tag, id_t) filepath = os.path.join(model._figure_dir_, filename) fig.savefig(filepath) return fig, ax def plot_timeseries(model, radius, lon, save=False, tag=''): """ Plot the solar wind model timeseries at model radius and longitude closest to those specified. :param model: An instance of the HUXt class with a completed solution. :param radius: Radius to find the closest model radius to. :param lon: Longitude to find the closest model longitude to. :param save: Boolean to determine if the figure is saved. :param tag: String to append to the filename if saving the figure. :return: fig: Figure handle :return: ax: Axes handle """ if (radius < model.r.min()) | (radius > (model.r.max())): print("Error, specified radius outside of model radial grid") if model.lon.size != 1: if (lon < model.lon.min()) | (lon > (model.lon.max())): print("Error, input lon outside range of model longitudes. Defaulting to closest longitude") id_lon = np.argmin(np.abs(model.lon - lon)) lon = model.lon[id_lon] fig, ax = plt.subplots(figsize=(14, 7)) # Get plotting data id_r = np.argmin(np.abs(model.r - radius)) r_out = model.r[id_r].value if model.lon.size == 1: id_lon = 0 lon_out = model.lon.value else: id_lon = np.argmin(np.abs(model.lon - lon)) lon_out = model.lon[id_lon].value t_day = model.time_out.to(u.day) ax.plot(t_day, model.v_grid[:, id_r, id_lon], 'k-') ylab = 'Solar Wind Speed (km/s)' ymin = 200 ymax = 1000 ax.set_ylim(ymin, ymax) ax.set_ylabel(ylab) ax.set_xlim(t_day.value.min(), t_day.value.max()) ax.set_xlabel('Time (days)') fig.subplots_adjust(left=0.1, bottom=0.1, right=0.95, top=0.95) # Add label radius_label = " Radius: {:3.2f}".format(r_out) + "$R_{sun}$ " lon_label = " Longitude: {:3.2f}".format(lon_out) + "$^\circ$" label = "HUXt" + radius_label + lon_label ax.set_title(label, fontsize=20) #ax.legend(loc=1) if save: cr_num = np.int32(model.cr_num.value) r_tag = np.int32(r_out) lon_tag = np.int32(lon_out) template_string = "HUXt1D_CR{:03d}_{}_time_series_radius_{:03d}_lon_{:03d}.png" filename = template_string.format(cr_num, tag, r_tag, lon_tag) filepath = os.path.join(model._figure_dir_, filename) fig.savefig(filepath) return fig, ax def get_earth_timeseries(model): """ Compute the solar wind time series at Earth. Returns a pandas dataframe with the solar wind speed time series at Earth interpolated from the model solution using the Earth ephemeris. Nearest neighbour interpolation in r, linear interpolation in longitude. """ earth_pos = model.get_observer('Earth') #adjust the HEEQ coordinates if the sidereal frame has been used if model.frame == 'sidereal': deltalon = earth_pos.lon_hae - earth_pos.lon_hae[0] lonheeq = H._zerototwopi_(earth_pos.lon.value + deltalon.value) elif model.frame == 'synodic': lonheeq = earth_pos.lon.value if model.nlon == 1: print('Single longitude simulated. Extracting time series at Earth r') time = np.ones((model.nt_out))*np.nan model_time = np.ones((model.nt_out))*np.nan lon = np.ones((model.nt_out))*np.nan rad = np.ones((model.nt_out))*np.nan speed = np.ones((model.nt_out))*np.nan for t in range(model.nt_out): model_time[t] = model.time_out[t].value time[t] = (model.time_init + model.time_out[t]).jd #find the nearest R coord id_r = np.argmin(np.abs(model.r.value - earth_pos.r[t].value)) rad[t] = model.r[id_r].value lon[t] = lonheeq[t] #then interpolate the values in longitude if model.nlon == 1: speed[t] = model.v_grid[t, id_r, 0].value else: speed[t] = np.interp(lonheeq[t], model.lon.value, model.v_grid[t, id_r, :].value, period=2*np.pi) time = Time(time, format='jd') #print(time, rad, lon, speed) earth_time_series = pd.DataFrame(data={'time':time.datetime, 'model_time':model_time, 'r':rad, 'lon':lon, 'vsw':speed}) return earth_time_series @u.quantity_input(time=u.day) def plot_3d_meridional(model3d, time, lon=np.NaN*u.deg, save=False, tag=''): """ Make a contour plot on polar axis of the solar wind solution at a specific time. :param model: An instance of the HUXt class with a completed solution. :param time: Time to look up closet model time to (with an astropy.unit of time). :param save: Boolean to determine if the figure is saved. :param tag: String to append to the filename if saving the figure. :return fig: Figure handle. :return ax: Axes handle. """ #get the metadata from one of the individual HUXt elements model=model3d.HUXtlat[0] if (time < model.time_out.min()) | (time > (model.time_out.max())): print("Error, input time outside span of model times. Defaulting to closest time") id_t = np.argmin(np.abs(model.time_out - time)) time_out = model.time_out[id_t].to(u.day).value #get the requested longitude if model.lon.size == 1: id_lon = 0 lon_out = model.lon.value else: id_lon = np.argmin(np.abs(model.lon - lon)) lon_out = model.lon[id_lon].to(u.deg).value #loop over latitudes and extract the radial profiles mercut=np.ones((len(model.r),model3d.nlat)) ymax=0.0 for n in range(0,model3d.nlat): model=model3d.HUXtlat[n] ymin=200; ymax=810; dv=19; ylab='Solar Wind Speed (km/s)' mercut[:,n]=model.v_grid[id_t, :, id_lon] mymap = mpl.cm.viridis mymap.set_over('lightgrey') mymap.set_under([0, 0, 0]) levels = np.arange(ymin, ymax + dv, dv) fig, ax = plt.subplots(figsize=(10, 10), subplot_kw={"projection": "polar"}) cnt = ax.contourf(model3d.lat.to(u.rad), model.r, mercut, levels=levels, cmap=mymap, extend='both') ax.set_ylim(0, model.r.value.max()) ax.set_yticklabels([]) ax.set_xticklabels([]) ax.patch.set_facecolor('slategrey') fig.subplots_adjust(left=0.05, bottom=0.16, right=0.95, top=0.99) # Add color bar pos = ax.get_position() dw = 0.005 dh = 0.045 left = pos.x0 + dw bottom = pos.y0 - dh wid = pos.width - 2 * dw cbaxes = fig.add_axes([left, bottom, wid, 0.03]) cbar1 = fig.colorbar(cnt, cax=cbaxes, orientation='horizontal') cbar1.set_label(ylab) cbar1.set_ticks(np.arange(ymin, ymax, dv*20)) # Add label label = "Time: {:3.2f} days".format(time_out) fig.text(0.675, pos.y0, label, fontsize=16) label = "HUXt2D" fig.text(0.175, pos.y0, label, fontsize=16) if save: cr_num = np.int32(model.cr_num.value) filename = "HUXt_CR{:03d}_{}_frame_{:03d}.png".format(cr_num, tag, id_t) filepath = os.path.join(model._figure_dir_, filename) fig.savefig(filepath) return fig, ax def animate_3d(model3d, lon=np.NaN*u.deg, tag=''): """ Animate the model solution, and save as an MP4. :param field: String, either 'cme', or 'ambient', specifying which solution to animate. :param tag: String to append to the filename of the animation. """ # Set the duration of the movie # Scaled so a 5 day simulation with dt_scale=4 is a 10 second movie. model=model3d.HUXtlat[0] duration = model.simtime.value * (10 / 432000) def make_frame_3d(t): """ Produce the frame required by MoviePy.VideoClip. :param t: time through the movie """ # Get the time index closest to this fraction of movie duration i = np.int32((model.nt_out - 1) * t / duration) fig, ax = plot_3d_meridional(model3d, model.time_out[i], lon) frame = mplfig_to_npimage(fig) plt.close('all') return frame cr_num = np.int32(model.cr_num.value) filename = "HUXt_CR{:03d}_{}_movie.mp4".format(cr_num, tag) filepath = os.path.join(model._figure_dir_, filename) animation = mpy.VideoClip(make_frame_3d, duration=duration) animation.write_videofile(filepath, fps=24, codec='libx264') return
37.100858
123
0.629186
ec61118776f4d1f2d21206c749a90f450dc07789
1,942
py
Python
masci_tools/io/cif2inp_ase.py
soumyajyotih/masci-tools
e4d9ea2fbf6e16378d0cbfb8828a11bdb09c2139
[ "MIT" ]
15
2018-11-07T10:04:46.000Z
2021-11-08T20:51:08.000Z
masci_tools/io/cif2inp_ase.py
soumyajyotih/masci-tools
e4d9ea2fbf6e16378d0cbfb8828a11bdb09c2139
[ "MIT" ]
120
2020-02-04T15:37:42.000Z
2022-03-17T10:49:40.000Z
masci_tools/io/cif2inp_ase.py
soumyajyotih/masci-tools
e4d9ea2fbf6e16378d0cbfb8828a11bdb09c2139
[ "MIT" ]
11
2018-10-18T08:09:07.000Z
2022-02-22T15:45:21.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ############################################################################### # Copyright (c), Forschungszentrum Jülich GmbH, IAS-1/PGI-1, Germany. # # All rights reserved. # # This file is part of the Masci-tools package. # # (Material science tools) # # # # The code is hosted on GitHub at https://github.com/judftteam/masci-tools # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.flapw.de or # # # ############################################################################### """ Independent utility script to convert cif file formats to input for the inpgen code Usage: `python cif2inp_ase.py <filename.cif>` """ import sys import ase.io import numpy as np cifFilename = sys.argv[1] structure = ase.io.read(cifFilename) structureFormula = structure.get_chemical_formula() inpFilename = 'inp_' + structureFormula Binv = np.linalg.inv(structure.cell) frac_coordinates = structure.arrays['positions'].dot(Binv) with open(inpFilename, 'w+') as f: natoms = len(structure.arrays['numbers']) f.write(structureFormula + '\r\n') f.write('&input film=F /\r\n') for i in range(3): f.write(' '.join(map('{:.12f}'.format, structure.cell[i])) + '\r\n') f.write('1.8897 !lattice const scaled as(1.0*bohr)\r\n1.0000 1.0000 1.0000 !scaling\r\n\r\n') f.write(str(natoms) + '\r\n') for i in range(natoms): f.write( str(structure.arrays['numbers'][i]) + ' ' + ' '.join(map('{:.12f}'.format, frac_coordinates[i])) + '\r\n') f.write('\r\n')
44.136364
118
0.49897
e02f3c2f3c34c30db4d9234a53c21efd2bb3f061
12,909
py
Python
lib/matplotlib/testing/compare.py
jbbrokaw/matplotlib
86ec1b6fc5628bfb2d09797c58d7eed0ca8c2427
[ "MIT", "BSD-3-Clause" ]
8
2017-04-11T08:55:30.000Z
2022-03-25T04:31:26.000Z
lib/matplotlib/testing/compare.py
jbbrokaw/matplotlib
86ec1b6fc5628bfb2d09797c58d7eed0ca8c2427
[ "MIT", "BSD-3-Clause" ]
2
2021-05-10T17:57:41.000Z
2021-07-26T16:23:09.000Z
lib/matplotlib/testing/compare.py
jbbrokaw/matplotlib
86ec1b6fc5628bfb2d09797c58d7eed0ca8c2427
[ "MIT", "BSD-3-Clause" ]
14
2015-10-05T04:15:46.000Z
2020-06-11T18:06:02.000Z
""" Provides a collection of utilities for comparing (image) results. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import hashlib import os import shutil import numpy as np import matplotlib from matplotlib.compat import subprocess from matplotlib.testing.noseclasses import ImageComparisonFailure from matplotlib import _png from matplotlib import _get_cachedir from matplotlib import cbook from distutils import version __all__ = ['compare_float', 'compare_images', 'comparable_formats'] def make_test_filename(fname, purpose): """ Make a new filename by inserting `purpose` before the file's extension. """ base, ext = os.path.splitext(fname) return '%s-%s%s' % (base, purpose, ext) def compare_float(expected, actual, relTol=None, absTol=None): """ Fail if the floating point values are not close enough, with the given message. You can specify a relative tolerance, absolute tolerance, or both. """ if relTol is None and absTol is None: raise ValueError("You haven't specified a 'relTol' relative " "tolerance or a 'absTol' absolute tolerance " "function argument. You must specify one.") msg = "" if absTol is not None: absDiff = abs(expected - actual) if absTol < absDiff: template = ['', 'Expected: {expected}', 'Actual: {actual}', 'Abs diff: {absDiff}', 'Abs tol: {absTol}'] msg += '\n '.join([line.format(**locals()) for line in template]) if relTol is not None: # The relative difference of the two values. If the expected value is # zero, then return the absolute value of the difference. relDiff = abs(expected - actual) if expected: relDiff = relDiff / abs(expected) if relTol < relDiff: # The relative difference is a ratio, so it's always unit-less. template = ['', 'Expected: {expected}', 'Actual: {actual}', 'Rel diff: {relDiff}', 'Rel tol: {relTol}'] msg += '\n '.join([line.format(**locals()) for line in template]) return msg or None def get_cache_dir(): cachedir = _get_cachedir() if cachedir is None: raise RuntimeError('Could not find a suitable configuration directory') cache_dir = os.path.join(cachedir, 'test_cache') if not os.path.exists(cache_dir): try: cbook.mkdirs(cache_dir) except IOError: return None if not os.access(cache_dir, os.W_OK): return None return cache_dir def get_file_hash(path, block_size=2 ** 20): md5 = hashlib.md5() with open(path, 'rb') as fd: while True: data = fd.read(block_size) if not data: break md5.update(data) return md5.hexdigest() def make_external_conversion_command(cmd): def convert(old, new): cmdline = cmd(old, new) pipe = subprocess.Popen( cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = pipe.communicate() errcode = pipe.wait() if not os.path.exists(new) or errcode: msg = "Conversion command failed:\n%s\n" % ' '.join(cmdline) if stdout: msg += "Standard output:\n%s\n" % stdout if stderr: msg += "Standard error:\n%s\n" % stderr raise IOError(msg) return convert def _update_converter(): gs, gs_v = matplotlib.checkdep_ghostscript() if gs_v is not None: cmd = lambda old, new: \ [gs, '-q', '-sDEVICE=png16m', '-dNOPAUSE', '-dBATCH', '-sOutputFile=' + new, old] converter['pdf'] = make_external_conversion_command(cmd) converter['eps'] = make_external_conversion_command(cmd) if matplotlib.checkdep_inkscape() is not None: cmd = lambda old, new: \ ['inkscape', '-z', old, '--export-png', new] converter['svg'] = make_external_conversion_command(cmd) #: A dictionary that maps filename extensions to functions which #: themselves map arguments `old` and `new` (filenames) to a list of strings. #: The list can then be passed to Popen to convert files with that #: extension to png format. converter = {} _update_converter() def comparable_formats(): """ Returns the list of file formats that compare_images can compare on this system. """ return ['png'] + list(six.iterkeys(converter)) def convert(filename, cache): """ Convert the named file into a png file. Returns the name of the created file. If *cache* is True, the result of the conversion is cached in `matplotlib._get_cachedir() + '/test_cache/'`. The caching is based on a hash of the exact contents of the input file. The is no limit on the size of the cache, so it may need to be manually cleared periodically. """ base, extension = filename.rsplit('.', 1) if extension not in converter: raise ImageComparisonFailure( "Don't know how to convert %s files to png" % extension) newname = base + '_' + extension + '.png' if not os.path.exists(filename): raise IOError("'%s' does not exist" % filename) # Only convert the file if the destination doesn't already exist or # is out of date. if (not os.path.exists(newname) or os.stat(newname).st_mtime < os.stat(filename).st_mtime): if cache: cache_dir = get_cache_dir() else: cache_dir = None if cache_dir is not None: hash_value = get_file_hash(filename) new_ext = os.path.splitext(newname)[1] cached_file = os.path.join(cache_dir, hash_value + new_ext) if os.path.exists(cached_file): shutil.copyfile(cached_file, newname) return newname converter[extension](filename, newname) if cache_dir is not None: shutil.copyfile(newname, cached_file) return newname #: Maps file extensions to a function which takes a filename as its #: only argument to return a list suitable for execution with Popen. #: The purpose of this is so that the result file (with the given #: extension) can be verified with tools such as xmllint for svg. verifiers = {} # Turning this off, because it seems to cause multiprocessing issues if matplotlib.checkdep_xmllint() and False: verifiers['svg'] = lambda filename: [ 'xmllint', '--valid', '--nowarning', '--noout', filename] def verify(filename): """Verify the file through some sort of verification tool.""" if not os.path.exists(filename): raise IOError("'%s' does not exist" % filename) base, extension = filename.rsplit('.', 1) verifier = verifiers.get(extension, None) if verifier is not None: cmd = verifier(filename) pipe = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = pipe.communicate() errcode = pipe.wait() if errcode != 0: msg = "File verification command failed:\n%s\n" % ' '.join(cmd) if stdout: msg += "Standard output:\n%s\n" % stdout if stderr: msg += "Standard error:\n%s\n" % stderr raise IOError(msg) def crop_to_same(actual_path, actual_image, expected_path, expected_image): # clip the images to the same size -- this is useful only when # comparing eps to pdf if actual_path[-7:-4] == 'eps' and expected_path[-7:-4] == 'pdf': aw, ah = actual_image.shape ew, eh = expected_image.shape actual_image = actual_image[int(aw / 2 - ew / 2):int( aw / 2 + ew / 2), int(ah / 2 - eh / 2):int(ah / 2 + eh / 2)] return actual_image, expected_image def calculate_rms(expectedImage, actualImage): "Calculate the per-pixel errors, then compute the root mean square error." num_values = np.prod(expectedImage.shape) abs_diff_image = abs(expectedImage - actualImage) # On Numpy 1.6, we can use bincount with minlength, which is much # faster than using histogram expected_version = version.LooseVersion("1.6") found_version = version.LooseVersion(np.__version__) if found_version >= expected_version: histogram = np.bincount(abs_diff_image.ravel(), minlength=256) else: histogram = np.histogram(abs_diff_image, bins=np.arange(257))[0] sum_of_squares = np.sum(histogram * np.arange(len(histogram)) ** 2) rms = np.sqrt(float(sum_of_squares) / num_values) return rms def compare_images(expected, actual, tol, in_decorator=False): """ Compare two "image" files checking differences within a tolerance. The two given filenames may point to files which are convertible to PNG via the `.converter` dictionary. The underlying RMS is calculated with the `.calculate_rms` function. Parameters ---------- expected : str The filename of the expected image. actual :str The filename of the actual image. tol : float The tolerance (a color value difference, where 255 is the maximal difference). The test fails if the average pixel difference is greater than this value. in_decorator : bool If called from image_comparison decorator, this should be True. (default=False) Example ------- img1 = "./baseline/plot.png" img2 = "./output/plot.png" compare_images( img1, img2, 0.001 ): """ if not os.path.exists(actual): msg = "Output image %s does not exist." % actual raise Exception(msg) if os.stat(actual).st_size == 0: msg = "Output image file %s is empty." % actual raise Exception(msg) verify(actual) # Convert the image to png extension = expected.split('.')[-1] if not os.path.exists(expected): raise IOError('Baseline image %r does not exist.' % expected) if extension != 'png': actual = convert(actual, False) expected = convert(expected, True) # open the image files and remove the alpha channel (if it exists) expectedImage = _png.read_png_int(expected) actualImage = _png.read_png_int(actual) expectedImage = expectedImage[:, :, :3] actualImage = actualImage[:, :, :3] actualImage, expectedImage = crop_to_same( actual, actualImage, expected, expectedImage) # convert to signed integers, so that the images can be subtracted without # overflow expectedImage = expectedImage.astype(np.int16) actualImage = actualImage.astype(np.int16) rms = calculate_rms(expectedImage, actualImage) diff_image = make_test_filename(actual, 'failed-diff') if rms <= tol: if os.path.exists(diff_image): os.unlink(diff_image) return None save_diff_image(expected, actual, diff_image) results = dict(rms=rms, expected=str(expected), actual=str(actual), diff=str(diff_image), tol=tol) if not in_decorator: # Then the results should be a string suitable for stdout. template = ['Error: Image files did not match.', 'RMS Value: {rms}', 'Expected: \n {expected}', 'Actual: \n {actual}', 'Difference:\n {diff}', 'Tolerance: \n {tol}', ] results = '\n '.join([line.format(**results) for line in template]) return results def save_diff_image(expected, actual, output): expectedImage = _png.read_png(expected) actualImage = _png.read_png(actual) actualImage, expectedImage = crop_to_same( actual, actualImage, expected, expectedImage) expectedImage = np.array(expectedImage).astype(np.float) actualImage = np.array(actualImage).astype(np.float) assert expectedImage.ndim == actualImage.ndim assert expectedImage.shape == actualImage.shape absDiffImage = abs(expectedImage - actualImage) # expand differences in luminance domain absDiffImage *= 255 * 10 save_image_np = np.clip(absDiffImage, 0, 255).astype(np.uint8) height, width, depth = save_image_np.shape # The PDF renderer doesn't produce an alpha channel, but the # matplotlib PNG writer requires one, so expand the array if depth == 3: with_alpha = np.empty((height, width, 4), dtype=np.uint8) with_alpha[:, :, 0:3] = save_image_np save_image_np = with_alpha # Hard-code the alpha channel to fully solid save_image_np[:, :, 3] = 255 _png.write_png(save_image_np, output)
34.060686
79
0.629173
c2142dbaff612a5a47a56fdb9c4a5adc22e34cb9
9,386
py
Python
ir_to_COCO/cal_ojb_num.py
WJ-Lai/CenterNet-CentralNet
d28a8c2438244782ccdd6805e555558b2c01ff46
[ "MIT" ]
6
2019-12-24T07:13:18.000Z
2021-06-12T17:06:36.000Z
ir_to_COCO/cal_ojb_num.py
WJ-Lai/CenterNet-CentralNet
d28a8c2438244782ccdd6805e555558b2c01ff46
[ "MIT" ]
null
null
null
ir_to_COCO/cal_ojb_num.py
WJ-Lai/CenterNet-CentralNet
d28a8c2438244782ccdd6805e555558b2c01ff46
[ "MIT" ]
1
2021-03-15T02:38:44.000Z
2021-03-15T02:38:44.000Z
import os import random import shutil import sys import json import glob import xml.etree.ElementTree as ET import re #from https://www.php.cn/python-tutorials-424348.html def mkdir(path): path=path.strip() path=path.rstrip("\\") isExists=os.path.exists(path) if not isExists: os.makedirs(path) # print(path+' ----- folder created') return True else: # print(path+' ----- folder existed') return False #foler to make, please enter full path """ main code below are from https://github.com/Tony607/voc2coco """ def get(root, name): vars = root.findall(name) return vars def get_and_check(root, name, length): vars = root.findall(name) if len(vars) == 0: raise ValueError("Can not find %s in %s." % (name, root.tag)) if length > 0 and len(vars) != length: raise ValueError( "The size of %s is supposed to be %d, but is %d." % (name, length, len(vars)) ) if length == 1: vars = vars[0] return vars def get_filename(xml_file, voc_images): filename = xml_file.split('/')[-1] filename = filename.replace('.xml', '.png') all_file = os.listdir(voc_images) if filename in all_file: image_not_exit = False else: image_not_exit = True return filename, image_not_exit def get_filename_as_int(filename): try: filename = os.path.splitext(os.path.basename(filename))[0] filename = re.sub("[^0-9]", "", filename) return int(filename) except: raise ValueError("Filename %s is supposed to be an integer." % (filename)) def get_categories(xml_files): """Generate category name to id mapping from a list of xml files. Arguments: xml_files {list} -- A list of xml file paths. Returns: dict -- category name to id mapping. """ classes_names = [] for xml_file in xml_files: tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall("object"): classes_names.append(member[0].text) classes_names = list(set(classes_names)) classes_names.sort() return {name: i for i, name in enumerate(classes_names)} def convert(xml_files, json_file, voc_images): num_obj = {'bike': 0, 'car': 0, 'car_stop': 0, 'color_cone': 0, 'person': 0} json_dict = {"images": [], "type": "instances", "annotations": [], "categories": []} if PRE_DEFINE_CATEGORIES is not None: categories = PRE_DEFINE_CATEGORIES else: categories = get_categories(xml_files) bnd_id = START_BOUNDING_BOX_ID for xml_file in xml_files: filename, image_not_exit = get_filename(xml_file, voc_images) if image_not_exit: continue try: tree = ET.parse(xml_file) except: continue root = tree.getroot() # root = get_and_check(root, sensor, 1) ## The filename must be a number image_id = get_filename_as_int(filename) width = image_size[sensor][0] height = image_size[sensor][1] image = { "file_name": filename, "height": height, "width": width, "id": image_id, } json_dict["images"].append(image) ## Currently we do not support segmentation. # segmented = get_and_check(root, 'segmented', 1).text # assert segmented == '0' for obj in get(root, "object"): category = get_and_check(obj, "name", 1).text # if category=='car_stop': # category = 'car' if category not in categories: # new_id = len(categories) # categories[category] = new_id # category = 'color_cone' continue num_obj[category] += 1 category_id = categories[category] bndbox = get_and_check(obj, "bndbox", 1) xmin = float(get_and_check(bndbox, "xmin", 1).text) ymin = float(get_and_check(bndbox, "ymin", 1).text) xmax = float(get_and_check(bndbox, "xmax", 1).text) ymax = float(get_and_check(bndbox, "ymax", 1).text) if xmax < xmin or ymax < ymin: continue assert xmax > xmin assert ymax > ymin o_width = abs(xmax - xmin) o_height = abs(ymax - ymin) ann = { "area": o_width * o_height, "iscrowd": 0, "image_id": image_id, "bbox": [xmin, ymin, o_width, o_height], "category_id": category_id, "id": bnd_id, "ignore": 0, "segmentation": [], } json_dict["annotations"].append(ann) bnd_id = bnd_id + 1 print(num_obj) for cate, cid in categories.items(): cat = {"supercategory": "none", "id": cid, "name": cate} json_dict["categories"].append(cat) os.makedirs(os.path.dirname(json_file), exist_ok=True) json_fp = open(json_file, "w") json_str = json.dumps(json_dict) json_fp.write(json_str) json_fp.close() def create_dir(dir_name): if os.path.exists(dir_name): shutil.rmtree(dir_name) else: mkdir(dir_name) def get_fileID(xml_file): filename = xml_file.split('/')[-1] filename = filename.split('.')[0] return filename def extract_night(merge_xml_path): xml_files = os.listdir(merge_xml_path) night_id = [] for xml_file in xml_files: try: tree = ET.parse(os.path.join(merge_xml_path, xml_file)) except: continue root = tree.getroot() time = get_and_check(root, "time", 1).text if time == 'night': night_id.append(get_fileID(xml_file)) return night_id def extract_merged_from_night(merged_ok_path, night_id): merge_ok_files = os.listdir(merged_ok_path) merged_night_id = [] for merge_ok_file in merge_ok_files: fileID = get_fileID(merge_ok_file) if fileID in night_id: merged_night_id.append(fileID) return merged_night_id def filter_no_images(images_path, merged_night_id): sensor_types = ['rgb', 'fir', 'mir', 'nir'] merged_night_id = set(merged_night_id) for sensor in sensor_types: sensor_path = os.path.join(images_path, sensor) sensor_imges = os.listdir(os.path.join(images_path, sensor)) for idx, sensor_imge in enumerate(sensor_imges): sensor_imges[idx] = get_fileID(sensor_imge) sensor_imges = set(sensor_imges) merged_night_id = merged_night_id & sensor_imges return merged_night_id """ You only need to set the following three parts 1.val_files_num : num of validation samples from your all samples 2.test_files_num = num of test samples from your all samples 3.voc_annotations : path to your VOC dataset Annotations """ # get merged and check file existence from ir_to_COCO.extract_night_merge_well import get_img_id merged_night_id = get_img_id() val_num_rate = 0.2 test_num_rate = 0.2 sensor_type = ['rgb', 'fir', 'mir', 'nir'] # image_size = {'rgb':[640, 480], 'fir':[640, 480], 'mir':[320, 256], 'nir':[320, 256]} # if ConvertedImages image_size = {'rgb': [320, 256], 'fir': [320, 256], 'mir': [320, 256], 'nir': [320, 256]} START_BOUNDING_BOX_ID = 0 PRE_DEFINE_CATEGORIES = None # If necessary, pre-define category and its id # PRE_DEFINE_CATEGORIES = {"bike": 0, "car": 1, 'car_stop': 2, "color_cone": 3, "person": 4} PRE_DEFINE_CATEGORIES = {"bike": 0, "car": 1, "color_cone": 2, "person": 3} val_files_num = int(len(merged_night_id)*val_num_rate) test_files_num = int(len(merged_night_id)*test_num_rate) # voc_annotations = '/home/vincent/Data/ir_det_dataset/Annotations_Converted/' # remember to modify the path voc_annotations = '/home/vincent/Data/ir_det_dataset/Annotations_ConvertedSummarized/' # remember to modify the path split = voc_annotations.split('/') coco_name = split[-3] del split[-2] del split[-1] del split[0] # print(split) main_path = '' for i in split: main_path += '/' + i main_path = main_path + '/' for sensor in sensor_type: print(sensor) coco_path = os.path.join(main_path, coco_name + '_COCO/', sensor) coco_images = os.path.join(main_path, coco_name + '_COCO', sensor, 'images/') coco_json_annotations = os.path.join(main_path, coco_name + '_COCO', sensor, 'annotations/') # xml_val = os.path.join(main_path, coco_name + '_COCO/', sensor, 'xml', 'xml_val/') # xml_test = os.path.join(main_path, coco_name + '_COCO/', sensor, 'xml/', 'xml_test/') xml_train = os.path.join(main_path, coco_name + '_COCO/', sensor, 'xml/', 'xml_train/') voc_images = os.path.join(main_path, 'ConvertedImages', sensor) dir_path = [coco_path, coco_images, coco_json_annotations, xml_train] for dir_name in dir_path: create_dir(dir_name) # voc annotations copy to coco annotations for i in os.listdir(voc_annotations): id = get_fileID(i) if id in merged_night_id: img_path = os.path.join(voc_annotations, i) shutil.copy(img_path, xml_train) # create json xml_train_files = glob.glob(os.path.join(xml_train, "*.xml")) convert(xml_train_files, coco_json_annotations + 'train.json', voc_images)
31.92517
117
0.623269
bc0f81cc6df2152342b298bb5e3eac46fc31a396
13,096
py
Python
quantum/tests/unit/nec/test_pfc_driver.py
yamt/neutron
f94126739a48993efaf1d1439dcd3dadb0c69742
[ "Apache-2.0" ]
null
null
null
quantum/tests/unit/nec/test_pfc_driver.py
yamt/neutron
f94126739a48993efaf1d1439dcd3dadb0c69742
[ "Apache-2.0" ]
null
null
null
quantum/tests/unit/nec/test_pfc_driver.py
yamt/neutron
f94126739a48993efaf1d1439dcd3dadb0c69742
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # @author: Ryota MIBU import random import string import mox from quantum import context from quantum.openstack.common import uuidutils from quantum.plugins.nec.common import ofc_client as ofc from quantum.plugins.nec.db import api as ndb from quantum.plugins.nec.db import models as nmodels from quantum.plugins.nec import drivers from quantum.tests import base class TestConfig(object): """Configuration for this test.""" host = '127.0.0.1' port = 8888 use_ssl = False key_file = None cert_file = None def _ofc(id): """OFC ID converter.""" return "ofc-%s" % id class PFCDriverTestBase(base.BaseTestCase): driver = 'quantum.plugins.nec.drivers.pfc.PFCDriverBase' def setUp(self): super(PFCDriverTestBase, self).setUp() self.mox = mox.Mox() self.driver = drivers.get_driver(self.driver)(TestConfig) self.mox.StubOutWithMock(ofc.OFCClient, 'do_request') self.addCleanup(self.mox.UnsetStubs) def get_ofc_item_random_params(self): """create random parameters for ofc_item test.""" tenant_id = uuidutils.generate_uuid() network_id = uuidutils.generate_uuid() port_id = uuidutils.generate_uuid() portinfo = nmodels.PortInfo(id=port_id, datapath_id="0x123456789", port_no=1234, vlan_id=321, mac="11:22:33:44:55:66") return tenant_id, network_id, portinfo def _generate_ofc_tenant_id(self, tenant_id): fields = tenant_id.split('-') # Strip 1st character (UUID version) of 3rd field fields[2] = fields[2][1:] return ''.join(fields) def get_ofc_description(self, desc): """OFC description consists of [A-Za-z0-9_].""" return desc.replace('-', '_').replace(' ', '_') def _create_tenant(self, t, ofc_t, post_id=False, post_desc=False): tenant_path = '/tenants/%s' % ofc_t path = "/tenants" description = "desc of %s" % t body = {} if post_desc: ofc_description = self.get_ofc_description(description) body['description'] = ofc_description if post_id: body['id'] = ofc_t ofc.OFCClient.do_request("POST", path, body=body) else: ofc.OFCClient.do_request("POST", path, body=body).\ AndReturn({'id': ofc_t}) self.mox.ReplayAll() ret = self.driver.create_tenant(description, t) self.mox.VerifyAll() self.assertEqual(ret, tenant_path) def testa_create_tenant(self): t, n, p = self.get_ofc_item_random_params() ofc_t = self._generate_ofc_tenant_id(t) self._create_tenant(t, ofc_t, post_id=True) def testc_delete_tenant(self): t, n, p = self.get_ofc_item_random_params() path = "/tenants/%s" % _ofc(t) ofc.OFCClient.do_request("DELETE", path) self.mox.ReplayAll() self.driver.delete_tenant(path) self.mox.VerifyAll() def testd_create_network(self): t, n, p = self.get_ofc_item_random_params() description = "desc of %s" % n ofc_description = self.get_ofc_description(description) tenant_path = "/tenants/%s" % _ofc(t) post_path = "%s/networks" % tenant_path body = {'description': ofc_description} network = {'id': _ofc(n)} ofc.OFCClient.do_request("POST", post_path, body=body).\ AndReturn(network) self.mox.ReplayAll() ret = self.driver.create_network(tenant_path, description, n) self.mox.VerifyAll() net_path = "/tenants/%s/networks/%s" % (_ofc(t), _ofc(n)) self.assertEqual(ret, net_path) def testf_delete_network(self): t, n, p = self.get_ofc_item_random_params() net_path = "/tenants/%s/networks/%s" % (_ofc(t), _ofc(n)) ofc.OFCClient.do_request("DELETE", net_path) self.mox.ReplayAll() self.driver.delete_network(net_path) self.mox.VerifyAll() def testg_create_port(self): t, n, p = self.get_ofc_item_random_params() net_path = "/tenants/%s/networks/%s" % (_ofc(t), _ofc(n)) post_path = "%s/ports" % net_path port_path = "/tenants/%s/networks/%s/ports/%s" % (_ofc(t), _ofc(n), _ofc(p.id)) body = {'datapath_id': p.datapath_id, 'port': str(p.port_no), 'vid': str(p.vlan_id)} port = {'id': _ofc(p.id)} ofc.OFCClient.do_request("POST", post_path, body=body).AndReturn(port) self.mox.ReplayAll() ret = self.driver.create_port(net_path, p, p.id) self.mox.VerifyAll() self.assertEqual(ret, port_path) def testh_delete_port(self): t, n, p = self.get_ofc_item_random_params() port_path = "/tenants/%s/networks/%s/ports/%s" % (_ofc(t), _ofc(n), _ofc(p.id)) ofc.OFCClient.do_request("DELETE", port_path) self.mox.ReplayAll() self.driver.delete_port(port_path) self.mox.VerifyAll() class PFCDriverBaseTest(PFCDriverTestBase): pass class PFCV3DriverTest(PFCDriverTestBase): driver = 'pfc_v3' def testa_create_tenant(self): t, n, p = self.get_ofc_item_random_params() self.mox.ReplayAll() ret = self.driver.create_tenant('dummy_desc', t) self.mox.VerifyAll() ofc_t_path = "/tenants/" + self._generate_ofc_tenant_id(t) self.assertEqual(ofc_t_path, ret) def testc_delete_tenant(self): pass class PFCV4DriverTest(PFCDriverTestBase): driver = 'pfc_v4' class PFCDriverStringTest(base.BaseTestCase): driver = 'quantum.plugins.nec.drivers.pfc.PFCDriverBase' def setUp(self): super(PFCDriverStringTest, self).setUp() self.driver = drivers.get_driver(self.driver)(TestConfig) def test_generate_pfc_id_uuid(self): id_str = uuidutils.generate_uuid() exp_str = (id_str[:14] + id_str[15:]).replace('-', '')[:31] ret_str = self.driver._generate_pfc_id(id_str) self.assertEqual(exp_str, ret_str) def test_generate_pfc_id_uuid_no_hyphen(self): # Keystone tenant_id style uuid id_str = uuidutils.generate_uuid() id_no_hyphen = id_str.replace('-', '') exp_str = (id_str[:14] + id_str[15:]).replace('-', '')[:31] ret_str = self.driver._generate_pfc_id(id_no_hyphen) self.assertEqual(exp_str, ret_str) def test_generate_pfc_id_string(self): id_str = uuidutils.generate_uuid() + 'x' exp_str = id_str[:31].replace('-', '_') ret_str = self.driver._generate_pfc_id(id_str) self.assertEqual(exp_str, ret_str) def test_generate_pfc_desc(self): random_list = [random.choice(string.printable) for x in range(128)] random_str = ''.join(random_list) accept_letters = string.letters + string.digits exp_list = [x if x in accept_letters else '_' for x in random_list] exp_str = ''.join(exp_list)[:127] ret_str = self.driver._generate_pfc_description(random_str) self.assertEqual(exp_str, ret_str) class PFCIdConvertTest(base.BaseTestCase): driver = 'quantum.plugins.nec.drivers.pfc.PFCDriverBase' def setUp(self): super(PFCIdConvertTest, self).setUp() self.mox = mox.Mox() self.driver = drivers.get_driver(self.driver)(TestConfig) self.ctx = self.mox.CreateMock(context.Context) self.ctx.session = "session" self.mox.StubOutWithMock(ndb, 'get_ofc_id_lookup_both') self.addCleanup(self.mox.UnsetStubs) def generate_random_ids(self, count=1): if count == 1: return uuidutils.generate_uuid() else: return [uuidutils.generate_uuid() for _ in xrange(count)] def test_convert_tenant_id(self): ofc_t_id = self.generate_random_ids(1) print ofc_t_id ret = self.driver.convert_ofc_tenant_id(self.ctx, ofc_t_id) self.assertEqual(ret, '/tenants/%s' % ofc_t_id) def test_convert_tenant_id_noconv(self): ofc_t_id = '/tenants/%s' % self.generate_random_ids(1) ret = self.driver.convert_ofc_tenant_id(self.ctx, ofc_t_id) self.assertEqual(ret, ofc_t_id) def test_convert_network_id(self): t_id, ofc_t_id, ofc_n_id = self.generate_random_ids(3) ndb.get_ofc_id_lookup_both( self.ctx.session, 'ofc_tenant', t_id).AndReturn(ofc_t_id) self.mox.ReplayAll() ret = self.driver.convert_ofc_network_id(self.ctx, ofc_n_id, t_id) self.assertEqual(ret, ('/tenants/%(tenant)s/networks/%(network)s' % {'tenant': ofc_t_id, 'network': ofc_n_id})) self.mox.VerifyAll() def test_convert_network_id_with_new_tenant_id(self): t_id, ofc_t_id, ofc_n_id = self.generate_random_ids(3) ofc_t_path = '/tenants/%s' % ofc_t_id ndb.get_ofc_id_lookup_both( self.ctx.session, 'ofc_tenant', t_id).AndReturn(ofc_t_path) self.mox.ReplayAll() ret = self.driver.convert_ofc_network_id(self.ctx, ofc_n_id, t_id) self.assertEqual(ret, ('/tenants/%(tenant)s/networks/%(network)s' % {'tenant': ofc_t_id, 'network': ofc_n_id})) self.mox.VerifyAll() def test_convert_network_id_noconv(self): t_id = 'dummy' ofc_t_id, ofc_n_id = self.generate_random_ids(2) ofc_n_id = ('/tenants/%(tenant)s/networks/%(network)s' % {'tenant': ofc_t_id, 'network': ofc_n_id}) ret = self.driver.convert_ofc_network_id(self.ctx, ofc_n_id, t_id) self.assertEqual(ret, ofc_n_id) def test_convert_port_id(self): t_id, n_id = self.generate_random_ids(2) ofc_t_id, ofc_n_id, ofc_p_id = self.generate_random_ids(3) ndb.get_ofc_id_lookup_both( self.ctx.session, 'ofc_network', n_id).AndReturn(ofc_n_id) ndb.get_ofc_id_lookup_both( self.ctx.session, 'ofc_tenant', t_id).AndReturn(ofc_t_id) self.mox.ReplayAll() ret = self.driver.convert_ofc_port_id(self.ctx, ofc_p_id, t_id, n_id) exp = ('/tenants/%(tenant)s/networks/%(network)s/ports/%(port)s' % {'tenant': ofc_t_id, 'network': ofc_n_id, 'port': ofc_p_id}) self.assertEqual(ret, exp) self.mox.VerifyAll() def test_convert_port_id_with_new_tenant_id(self): t_id, n_id = self.generate_random_ids(2) ofc_t_id, ofc_n_id, ofc_p_id = self.generate_random_ids(3) ofc_t_path = '/tenants/%s' % ofc_t_id ndb.get_ofc_id_lookup_both( self.ctx.session, 'ofc_network', n_id).AndReturn(ofc_n_id) ndb.get_ofc_id_lookup_both( self.ctx.session, 'ofc_tenant', t_id).AndReturn(ofc_t_path) self.mox.ReplayAll() ret = self.driver.convert_ofc_port_id(self.ctx, ofc_p_id, t_id, n_id) exp = ('/tenants/%(tenant)s/networks/%(network)s/ports/%(port)s' % {'tenant': ofc_t_id, 'network': ofc_n_id, 'port': ofc_p_id}) self.assertEqual(ret, exp) self.mox.VerifyAll() def test_convert_port_id_with_new_network_id(self): t_id, n_id = self.generate_random_ids(2) ofc_t_id, ofc_n_id, ofc_p_id = self.generate_random_ids(3) ofc_n_path = ('/tenants/%(tenant)s/networks/%(network)s' % {'tenant': ofc_t_id, 'network': ofc_n_id}) ndb.get_ofc_id_lookup_both( self.ctx.session, 'ofc_network', n_id).AndReturn(ofc_n_path) self.mox.ReplayAll() ret = self.driver.convert_ofc_port_id(self.ctx, ofc_p_id, t_id, n_id) exp = ('/tenants/%(tenant)s/networks/%(network)s/ports/%(port)s' % {'tenant': ofc_t_id, 'network': ofc_n_id, 'port': ofc_p_id}) self.assertEqual(ret, exp) self.mox.VerifyAll() def test_convert_port_id_noconv(self): t_id = n_id = 'dummy' ofc_t_id, ofc_n_id, ofc_p_id = self.generate_random_ids(3) ofc_p_id = ('/tenants/%(tenant)s/networs/%(network)s/ports/%(port)s' % {'tenant': ofc_t_id, 'network': ofc_n_id, 'port': ofc_p_id}) ret = self.driver.convert_ofc_port_id(self.ctx, ofc_p_id, t_id, n_id) self.assertEqual(ret, ofc_p_id)
36.890141
78
0.633476
f251922e0a52644957fe91c19aa2e8857ed95b5c
92,083
py
Python
powergenome/generators.py
deeglaze/PowerGenome
669e26c63ff1272a7afcfa34165b592eafa9e142
[ "MIT" ]
59
2021-01-09T03:00:11.000Z
2022-03-31T02:33:55.000Z
powergenome/generators.py
deeglaze/PowerGenome
669e26c63ff1272a7afcfa34165b592eafa9e142
[ "MIT" ]
77
2021-01-07T19:39:34.000Z
2022-03-25T01:30:31.000Z
powergenome/generators.py
deeglaze/PowerGenome
669e26c63ff1272a7afcfa34165b592eafa9e142
[ "MIT" ]
18
2021-01-31T16:43:17.000Z
2022-02-11T10:43:34.000Z
import collections import logging from numbers import Number from typing import Dict import re import requests import geopandas as gpd import numpy as np import pandas as pd from pathlib import Path import pudl from bs4 import BeautifulSoup from flatten_dict import flatten from powergenome.cluster_method import ( cluster_by_owner, cluster_kmeans, weighted_ownership_by_unit, ) from powergenome.eia_opendata import fetch_fuel_prices from powergenome.external_data import ( make_demand_response_profiles, demand_response_resource_capacity, add_resource_max_cap_spur, ) from powergenome.load_data import ( load_ipm_plant_region_map, load_ownership_eia860, load_plants_860, load_utilities_eia, ) from powergenome.nrelatb import ( atb_fixed_var_om_existing, atb_new_generators, fetch_atb_costs, fetch_atb_heat_rates, fetch_atb_offshore_spur_costs, investment_cost_calculator, ) from powergenome.params import CLUSTER_BUILDER, DATA_PATHS, IPM_GEOJSON_PATH from powergenome.price_adjustment import inflation_price_adjustment from powergenome.resource_clusters import map_eia_technology from powergenome.util import ( download_save, map_agg_region_names, reverse_dict_of_lists, snake_case_col, regions_to_keep, ) from scipy.stats import iqr from sklearn import cluster, preprocessing from xlrd import XLRDError logger = logging.getLogger(__name__) planned_col_map = { "Entity ID": "utility_id_eia", "Entity Name": "utility_name", "Plant ID": "plant_id_eia", "Plant Name": "plant_name", "Sector": "sector_name", "Plant State": "state", "Generator ID": "generator_id", "Unit Code": "unit_code", "Nameplate Capacity (MW)": "capacity_mw", "Net Summer Capacity (MW)": "summer_capacity_mw", "Net Winter Capacity (MW)": "winter_capacity_mw", "Technology": "technology_description", "Energy Source Code": "energy_source_code_1", "Prime Mover Code": "prime_mover_code", "Planned Operation Month": "planned_operating_month", "Planned Operation Year": "planned_operating_year", "Status": "operational_status", "County": "county", "Latitude": "latitude", "Longitude": "longitude", "Google Map": "google_map", "Bing Map": "bing_map", "Balancing Authority Code": "balancing_authority_code", } op_status_map = { "(V) Under construction, more than 50 percent complete": "V", "(TS) Construction complete, but not yet in commercial operation": "TS", "(U) Under construction, less than or equal to 50 percent complete": "U", "(T) Regulatory approvals received. Not under construction": "T", "(P) Planned for installation, but regulatory approvals not initiated": "P", "(L) Regulatory approvals pending. Not under construction": "L", "(OT) Other": "OT", } TRANSMISSION_TYPES = ["spur", "offshore_spur", "tx"] def fill_missing_tech_descriptions(df): """ EIA 860 records before 2014 don't have a technology description. If we want to include any of this data in the historical record (e.g. heat rates or capacity factors) then they need to be filled in. Parameters ---------- df : dataframe A pandas dataframe with columns plant_id_eia, generator_id, and technology_description. Returns ------- dataframe Same data that came in, but with missing technology_description values filled in. """ start_len = len(df) df = df.sort_values(by="report_date") df_list = [] for _, _df in df.groupby(["plant_id_eia", "generator_id"], as_index=False): _df["technology_description"].fillna(method="bfill", inplace=True) df_list.append(_df) results = pd.concat(df_list, ignore_index=True, sort=False) end_len = len(results) assert ( start_len == end_len ), "Somehow records were dropped when filling tech_descriptions" return results def group_generators_at_plant(df, by=["plant_id_eia"], agg_fn={"capacity_mw": "sum"}): """ Group generators at a plant. This is a flexible function that lets a user group by the desired attributes (e.g. plant id) and perform aggregated operations on each group. This function also might be a bit unnecessary given how simple it is. Parameters ---------- df : dataframe Pandas dataframe with information on power plants. by : list, optional Columns to use for the groupby, by default ["plant_id_eia"] agg_fn : dict, optional Aggregation function to pass to groupby, by default {"capacity_mw": "sum"} Returns ------- dataframe The grouped dataframe with aggregation functions applied. """ df_grouped = df.groupby(by, as_index=False).agg(agg_fn) return df_grouped def startup_fuel(df, settings): """Add startup fuel consumption for generators Parameters ---------- df : DataFrame All generator clusters. Must have a column "technology". Can include both EIA and NRELATB technology names. settings : dictionary User-defined settings loaded from a YAML file. Keys in "startup_fuel_use" must match those in "eia_atb_tech_map". Returns ------- DataFrame Modified dataframe with the new column "Start_fuel_MMBTU_per_MW". """ df["Start_fuel_MMBTU_per_MW"] = 0 for eia_tech, fuel_use in (settings.get("startup_fuel_use") or {}).items(): if not isinstance(settings["eia_atb_tech_map"][eia_tech], list): settings["eia_atb_tech_map"][eia_tech] = [ settings["eia_atb_tech_map"][eia_tech] ] atb_tech = settings["eia_atb_tech_map"][eia_tech] for tech in atb_tech: df.loc[df["technology"] == tech, "Start_fuel_MMBTU_per_MW"] = fuel_use df.loc[ df["technology"].str.contains(tech, case=False), "Start_fuel_MMBTU_per_MW", ] = fuel_use return df def startup_nonfuel_costs(df, settings): """Add inflation adjusted startup nonfuel costs per MW for generators Parameters ---------- df : DataFrame Must contain a column "technology" with the names of each technology type. settings : dict Dictionary based on YAML settings file. Must contain the keys "startup_costs_type", "startup_vom_costs_mw", "existing_startup_costs_tech_map", etc. Returns ------- DataFrame Modified df with new column "Start_cost_per_MW" """ logger.info("Adding non-fuel startup costs") target_usd_year = settings["target_usd_year"] vom_costs = settings["startup_vom_costs_mw"] vom_usd_year = settings["startup_vom_costs_usd_year"] logger.info( f"Changing non-fuel VOM costs from {vom_usd_year} to " f"{target_usd_year}" ) for key, cost in vom_costs.items(): vom_costs[key] = inflation_price_adjustment( price=cost, base_year=vom_usd_year, target_year=target_usd_year ) startup_type = settings["startup_costs_type"] startup_costs = settings[startup_type] startup_costs_usd_year = settings["startup_costs_per_cold_start_usd_year"] logger.info( f"Changing non-fuel startup costs from {vom_usd_year} to {target_usd_year}" ) for key, cost in startup_costs.items(): startup_costs[key] = inflation_price_adjustment( price=cost, base_year=startup_costs_usd_year, target_year=target_usd_year ) df["Start_cost_per_MW"] = 0 for existing_tech, cost_tech in settings["existing_startup_costs_tech_map"].items(): total_startup_costs = vom_costs[cost_tech] + startup_costs[cost_tech] df.loc[ df["technology"].str.contains(existing_tech), "Start_cost_per_MW" ] = total_startup_costs for new_tech, cost_tech in settings["new_build_startup_costs"].items(): total_startup_costs = vom_costs[cost_tech] + startup_costs[cost_tech] df.loc[ df["technology"].str.contains(new_tech), "Start_cost_per_MW" ] = total_startup_costs df.loc[:, "Start_cost_per_MW"] = df.loc[:, "Start_cost_per_MW"] # df.loc[df["technology"].str.contains("Nuclear"), "Start_cost_per_MW"] = "FILL VALUE" return df def group_technologies(df, settings): """ Group different technologies together based on parameters in the settings file. An example would be to put a bunch of different technologies under the umbrella category of "biomass" or "peaker". Parameters ---------- df : dataframe Pandas dataframe with settings : dictionary User-defined settings loaded from a YAML file. Must have key tech_groups. Returns ------- dataframe Same as incoming dataframe but with grouped technology types """ if settings.get("group_technologies"): df["_technology"] = df["technology_description"] for tech, group in settings["tech_groups"].items(): df.loc[df["technology_description"].isin(group), "_technology"] = tech for region, tech_list in (settings.get("regional_no_grouping") or {}).items(): df.loc[ (df["model_region"] == region) & (df["technology_description"].isin(tech_list)), "_technology", ] = df.loc[ (df["model_region"] == region) & (df["technology_description"].isin(tech_list)), "technology_description", ] df.loc[:, "technology_description"] = df.loc[:, "_technology"] df = df.drop(columns=["_technology"]) return df def label_hydro_region(gens_860, pudl_engine, model_regions_gdf): """ Label hydro facilities that don't have a region by default. Parameters ---------- gens_860 : dataframe Infomation on all generators from PUDL pudl_engine : sqlalchemy.Engine A sqlalchemy connection for use by pandas model_regions_gdf : dataframe Geodataframe of the model regions Returns ------- dataframe Plant id and region for any hydro that didn't originally have a region label. """ plant_entity = pd.read_sql_table("plants_entity_eia", pudl_engine) model_hydro = gens_860.loc[ gens_860["technology_description"] == "Conventional Hydroelectric" ].merge(plant_entity[["plant_id_eia", "latitude", "longitude"]], on="plant_id_eia") no_lat_lon = model_hydro.loc[ (model_hydro["latitude"].isnull()) | (model_hydro["longitude"].isnull()), : ] if not no_lat_lon.empty: print(no_lat_lon["summer_capacity_mw"].sum(), " MW without lat/lon") model_hydro = model_hydro.dropna(subset=["latitude", "longitude"]) # Convert the lon/lat values to geo points. Need to add an initial CRS and then # change it to align with the IPM regions model_hydro_gdf = gpd.GeoDataFrame( model_hydro, geometry=gpd.points_from_xy(model_hydro.longitude, model_hydro.latitude), crs="EPSG:4326", ) if model_hydro_gdf.crs != model_regions_gdf.crs: model_hydro_gdf = model_hydro_gdf.to_crs(model_regions_gdf.crs) model_hydro_gdf = gpd.sjoin(model_regions_gdf, model_hydro_gdf) model_hydro_gdf = model_hydro_gdf.rename(columns={"IPM_Region": "region"}) keep_cols = ["plant_id_eia", "region"] return model_hydro_gdf.loc[:, keep_cols] def load_plant_region_map( gens_860, pudl_engine, settings, model_regions_gdf, table="plant_region_map_epaipm" ): """ Load the region that each plant is located in. Parameters ---------- pudl_engine : sqlalchemy.Engine A sqlalchemy connection for use by pandas settings : dictionary The dictionary of settings with a dictionary of region aggregations table : str, optional The SQL table to load, by default "plant_region_map_epaipm" Returns ------- dataframe A dataframe where each plant has an associated "model_region" mapped from the original region labels. """ # Load dataframe of region labels for each EIA plant id region_map_df = pd.read_sql_table(table, con=pudl_engine) if settings.get("plant_region_map_fn"): user_region_map_df = pd.read_csv( Path(settings["input_folder"]) / settings["plant_region_map_fn"] ) assert ( "region" in user_region_map_df.columns ), f"The column 'region' must appear in {settings['plant_region_map_fn']}" assert ( "plant_id_eia" in user_region_map_df.columns ), f"The column 'plant_id_eia' must appear in {settings['plant_region_map_fn']}" user_region_map_df = user_region_map_df.set_index("plant_id_eia") region_map_df.loc[ region_map_df["plant_id_eia"].isin(user_region_map_df.index), "region" ] = region_map_df["plant_id_eia"].map(user_region_map_df["region"]) # Label hydro using the IPM shapefile because NEEDS seems to drop some hydro all_hydro_regions = label_hydro_region(gens_860, pudl_engine, model_regions_gdf) region_map_df = pd.concat( [region_map_df, all_hydro_regions], ignore_index=True, sort=False ).drop_duplicates(subset=["plant_id_eia"], keep="first") # Settings has a dictionary of lists for regional aggregations. Need # to reverse this to use in a map method. keep_regions, region_agg_map = regions_to_keep(settings) # Create a new column "model_region" with labels that we're using for aggregated # regions model_region_map_df = region_map_df.loc[ region_map_df.region.isin(keep_regions), : ].drop(columns="id") model_region_map_df = map_agg_region_names( df=model_region_map_df, region_agg_map=region_agg_map, original_col_name="region", new_col_name="model_region", ) # There are some cases of plants with generators assigned to different IPM regions. # If regions are aggregated there may be some duplicates in the results. model_region_map_df = model_region_map_df.drop_duplicates( subset=["plant_id_eia", "model_region"] ) return model_region_map_df def label_retirement_year( df, settings, age_col="operating_date", settings_retirement_table="retirement_ages", add_additional_retirements=True, ): """ Add a retirement year column to the dataframe based on the year each generator started operating. Parameters ---------- df : dataframe Dataframe of generators settings : dictionary The dictionary of settings with a dictionary of generator lifetimes age_col : str, optional The dataframe column to use when calculating the retirement year, by default "operating_date" settings_retirement_table : str, optional The settings dictionary key for another dictionary of generator retirement lifetimes, by default "retirement_ages" add_additional_retirements : bool, optional Logic to determine if additional retirements from the settings file should be checked. For example, this isn't necessary when adding proposed generators because we probably won't be setting an artifically early retirement year. """ start_len = len(df) retirement_ages = settings[settings_retirement_table] if df.loc[df["technology_description"].isnull(), :].empty is False: df = fill_missing_tech_descriptions(df) for tech, life in retirement_ages.items(): try: df.loc[df.technology_description == tech, "retirement_year"] = ( df.loc[df.technology_description == tech, age_col].dt.year + life ) except AttributeError: # This is a bit hacky but for the proposed plants I have an int column df.loc[df.technology_description == tech, "retirement_year"] = ( df.loc[df.technology_description == tech, age_col] + life ) try: df.loc[~df["planned_retirement_date"].isnull(), "retirement_year"] = df.loc[ ~df["planned_retirement_date"].isnull(), "planned_retirement_date" ].dt.year except KeyError: pass # Add additonal retirements from settings file if settings.get("additional_retirements") and add_additional_retirements: logger.info("Changing retirement dates based on settings file") model_year = settings["model_year"] start_ret_cap = df.loc[ df["retirement_year"] <= model_year, settings["capacity_col"] ].sum() logger.info(f"Starting retirement capacity is {start_ret_cap} MW") i = 0 ret_cap = 0 for record in settings["additional_retirements"]: plant_id, gen_id, ret_year = record # gen ids are strings, not integers gen_id = str(gen_id) df.loc[ (df["plant_id_eia"] == plant_id) & (df["generator_id"] == gen_id), "retirement_year", ] = ret_year i += 1 ret_cap += df.loc[ (df["plant_id_eia"] == plant_id) & (df["generator_id"] == gen_id), settings["capacity_col"], ].sum() end_ret_cap = df.loc[ df["retirement_year"] <= model_year, settings["capacity_col"] ].sum() logger.info(f"Ending retirement capacity is {end_ret_cap} MW") if not end_ret_cap > start_ret_cap: logger.debug( "Adding retirements from settings didn't change the retiring capacity." ) if end_ret_cap - start_ret_cap != ret_cap: logger.debug( f"Retirement diff is {end_ret_cap - start_ret_cap}, adding retirements " f"yields {ret_cap} MW" ) logger.info( f"The retirement year for {i} plants, totaling {ret_cap} MW, was changed " "based on settings file parameters" ) else: logger.info("No retirement dates changed based on the settings file") end_len = len(df) assert start_len == end_len return df def label_small_hydro(df, settings, by=["plant_id_eia"]): """ Use rules from the settings file to label plants below a certain size as small hydroelectric rather than conventional hydroelectric. Parameters ---------- df : dataframe EIA 860 data on generators settings : dict User-defined parameters from a settings file by : list, optional What columns to use in the groupby function when summing capacity, by default ["plant_id_eia"] Returns ------- dataframe If the user wants to label small hydro plants, some of the conventional hydro facilities will have their technology type changed to small hydro. """ if not settings.get("small_hydro"): return df if "report_date" not in by and "report_date" in df.columns: # by.append("report_date") logger.warning("'report_date' is in the df but not used in the groupby") region_agg_map = reverse_dict_of_lists(settings.get("region_aggregations", {})) keep_regions = [ x for x in settings["model_regions"] + list(region_agg_map) if x in settings["small_hydro_regions"] ] start_len = len(df) size_cap = settings["small_hydro_mw"] cap_col = settings.get("capacity_col") if not cap_col in df: cap_col = "capacity_mw" start_hydro_capacity = df.query( "technology_description=='Conventional Hydroelectric'" )[cap_col].sum() plant_capacity = ( df.loc[ (df["technology_description"] == "Conventional Hydroelectric") & (df["model_region"].isin(keep_regions)) ] .groupby(by, as_index=False)[cap_col] .sum() ) small_hydro_plants = plant_capacity.loc[ plant_capacity[cap_col] <= size_cap, "plant_id_eia" ] df.loc[ (df["technology_description"] == "Conventional Hydroelectric") & (df["plant_id_eia"].isin(small_hydro_plants)), "technology_description", ] = "Small Hydroelectric" end_len = len(df) small_hydro_capacity = df.query("technology_description=='Small Hydroelectric'")[ cap_col ].sum() end_conv_hydro_capacity = df.query( "technology_description=='Conventional Hydroelectric'" )[cap_col].sum() assert start_len == end_len assert np.allclose( start_hydro_capacity, small_hydro_capacity + end_conv_hydro_capacity ) return df def load_generator_860_data(pudl_engine, data_years=[2017]): """ Load EIA 860 generator data from the PUDL database Parameters ---------- pudl_engine : sqlalchemy.Engine A sqlalchemy connection for use by pandas data_years : list, optional Years of data to load, by default [2017] Returns ------- dataframe All of the generating units from PUDL """ sql = """ SELECT * FROM generators_eia860 WHERE operational_status_code NOT IN ('RE', 'OS', 'IP', 'CN') """ gens_860 = pd.read_sql_query( sql=sql, con=pudl_engine, parse_dates=["planned_retirement_date", "report_date"] ) gens_860 = gens_860.loc[gens_860["report_date"].dt.year.isin(data_years), :] return gens_860 def supplement_generator_860_data( gens_860, gens_entity, bga, model_region_map, settings ): """ Load data about each generating unit in the model area. Parameters ---------- gens_860 : dataframe Information on all generating units for the given data years. pudl_engine : sqlalchemy.Engine A sqlalchemy connection for use by pandas settings : dictionary The dictionary of settings with a dictionary of region aggregations pudl_out : pudl.PudlTabl A PudlTabl object for loading pre-calculated PUDL analysis data model_region_map : dataframe A dataframe with columns 'plant_id_eia' and 'model_region' (aggregated regions) data_years : list, optional Years of data to include, by default [2017] Returns ------- dataframe Data about each generator and generation unit that will be included in the model. Columns include: ['plant_id_eia', 'generator_id', 'capacity_mw', 'energy_source_code_1', 'energy_source_code_2', 'minimum_load_mw', 'operational_status_code', 'planned_new_capacity_mw', 'switch_oil_gas', 'technology_description', 'time_cold_shutdown_full_load_code', 'model_region', 'prime_mover_code', 'operating_date', 'boiler_id', 'unit_id_eia', 'unit_id_pudl', 'retirement_year'] """ initial_capacity = ( gens_860.loc[gens_860["plant_id_eia"].isin(model_region_map["plant_id_eia"])] .groupby("technology_description")[settings["capacity_col"]] .sum() ) # Add pudl unit ids, only include specified data years # Combine generator data that can change over time with static entity data # and only keep generators that are in a region of interest gen_cols = [ # "report_date", "plant_id_eia", # "plant_name", "generator_id", # "balancing_authority_code", settings["capacity_col"], "energy_source_code_1", "energy_source_code_2", "minimum_load_mw", "operational_status_code", "planned_new_capacity_mw", "switch_oil_gas", "technology_description", "time_cold_shutdown_full_load_code", "planned_retirement_date", ] entity_cols = ["plant_id_eia", "generator_id", "prime_mover_code", "operating_date"] bga_cols = [ "plant_id_eia", "generator_id", "boiler_id", "unit_id_eia", "unit_id_pudl", ] # In this merge of the three dataframes we're trying to label each generator with # the model region it is part of, the prime mover and operating date, and the # PUDL unit codes (where they exist). gens_860_model = ( pd.merge( gens_860[gen_cols], model_region_map.drop(columns="region"), on="plant_id_eia", how="inner", ) .merge( gens_entity[entity_cols], on=["plant_id_eia", "generator_id"], how="inner" ) .merge(bga[bga_cols], on=["plant_id_eia", "generator_id"], how="left") ) merged_capacity = gens_860_model.groupby("technology_description")[ settings["capacity_col"] ].sum() if not np.allclose(initial_capacity.sum(), merged_capacity.sum()): logger.warning( f"Capacity changed from {initial_capacity} \nto \n{merged_capacity}" ) return gens_860_model def create_plant_gen_id(df): """Combine the plant id and generator id to form a unique combination Parameters ---------- df : dataframe Must contain columns plant_id_eia and generator_id Returns ------- dataframe Same as input but with the additional column plant_gen_id """ df["plant_gen_id"] = ( df["plant_id_eia"].astype(str) + "_" + df["generator_id"].astype(str) ) return df def remove_canceled_860m(df, canceled_860m): """Remove generators that 860m shows as having been canceled Parameters ---------- df : dataframe All of the EIA 860 generators canceled_860m : dataframe From the 860m Canceled or Postponed sheet Returns ------- dataframe Same as input, but possibly without generators that were proposed """ df = create_plant_gen_id(df) canceled_860m = create_plant_gen_id(canceled_860m) canceled = df.loc[df["plant_gen_id"].isin(canceled_860m["plant_gen_id"]), :] not_canceled_df = df.loc[~df["plant_gen_id"].isin(canceled_860m["plant_gen_id"]), :] not_canceled_df = not_canceled_df.drop(columns="plant_gen_id") if not canceled.empty: assert len(df) == len(canceled) + len(not_canceled_df) return not_canceled_df def remove_retired_860m(df, retired_860m): """Remove generators that 860m shows as having been retired Parameters ---------- df : dataframe All of the EIA 860 generators retired_860m : dataframe From the 860m Retired sheet Returns ------- dataframe Same as input, but possibly without generators that have retired """ df = create_plant_gen_id(df) retired_860m = create_plant_gen_id(retired_860m) retired = df.loc[df["plant_gen_id"].isin(retired_860m["plant_gen_id"]), :] not_retired_df = df.loc[~df["plant_gen_id"].isin(retired_860m["plant_gen_id"]), :] not_retired_df = not_retired_df.drop(columns="plant_gen_id") if not retired.empty: assert len(df) == len(retired) + len(not_retired_df) return not_retired_df def remove_future_retirements_860m(df, retired_860m): """Remove generators that 860m shows as having been retired Parameters ---------- df : dataframe All of the EIA 860 generators retired_860m : dataframe From the 860m Retired sheet Returns ------- dataframe Same as input, but possibly without generators that have retired """ df = create_plant_gen_id(df) retired_860m = create_plant_gen_id(retired_860m) retired = df.loc[df["plant_gen_id"].isin(retired_860m["plant_gen_id"]), :] not_retired_df = df.loc[~df["plant_gen_id"].isin(retired_860m["plant_gen_id"]), :] not_retired_df = not_retired_df.drop(columns="plant_gen_id") if not retired.empty: assert len(df) == len(retired) + len(not_retired_df) return not_retired_df def load_923_gen_fuel_data(pudl_engine, pudl_out, model_region_map, data_years=[2017]): """ Load generation and fuel data for each plant. EIA-923 provides these values for each prime mover/fuel combination at every generator. This data can be used to calculate the heat rate of generators at a single plant. Generators sharing a prime mover (e.g. multiple combustion turbines) will end up sharing the same heat rate. Parameters ---------- pudl_engine : sqlalchemy.Engine A sqlalchemy connection for use by pandas pudl_out : pudl.PudlTabl A PudlTabl object for loading pre-calculated PUDL analysis data model_region_map : dataframe A dataframe with columns 'plant_id_eia' and 'model_region' (aggregated regions) data_years : list, optional Years of data to include, by default [2017] Returns ------- dataframe Generation, fuel use, and heat rates of prime mover/fuel combos over all data years. Columns are: ['plant_id_eia', 'fuel_type', 'fuel_type_code_pudl', 'fuel_type_code_aer', 'prime_mover_code', 'fuel_consumed_units', 'fuel_consumed_for_electricity_units', 'fuel_consumed_mmbtu', 'fuel_consumed_for_electricity_mmbtu', 'net_generation_mwh', 'heat_rate_mmbtu_mwh'] """ # Load 923 generation and fuel data for one or more years. # Only load plants in the model regions. sql = """ SELECT * FROM generation_fuel_eia923 """ gen_fuel_923 = pd.read_sql_query(sql, pudl_engine, parse_dates=["report_date"]) gen_fuel_923 = gen_fuel_923.loc[ (gen_fuel_923["report_date"].dt.year.isin(data_years)) & (gen_fuel_923["plant_id_eia"].isin(model_region_map.plant_id_eia)), :, ] return gen_fuel_923 def modify_cc_prime_mover_code(df, gens_860): """Change combined cycle prime movers from CA and CT to CC. The heat rate of combined cycle plants that aren't included in PUDL heat rate by unit should probably be done with the combustion and steam turbines combined. This modifies the prime mover code of those two generator types so that they match. It doesn't touch the CS code, which is for single shaft combined units. Parameters ---------- df : dataframe A dataframe with columns prime_mover_code, and plant_id_eia. gens_860 : dataframe EIA860 dataframe with technology_description, unit_id_pudl, plant_id_eia columns. Returns ------- dataframe Modified 923 dataframe where prime mover codes at CC generators that don't have a PUDL unit id are modified from CA and CT to CC. """ cc_without_pudl_id = gens_860.loc[ (gens_860["unit_id_pudl"].isnull()) & (gens_860["technology_description"] == "Natural Gas Fired Combined Cycle"), "plant_id_eia", ] df.loc[ (df["plant_id_eia"].isin(cc_without_pudl_id)) & (df["prime_mover_code"].isin(["CA", "CT"])), "prime_mover_code", ] = "CC" return df def group_gen_by_year_fuel_primemover(df): """ Group generation and fuel consumption by plant, prime mover, and fuel type. Only matters where multiple years of data are used, otherwise output should be the same as input. Parameters ---------- df : dataframe Generation and fuel consumption data from EIA 923 for each plant, prime mover, and fuel type Returns ------- dataframe Sum of generation and fuel consumption data (if multiple years). """ # Group the data by plant, fuel type, and prime mover by = [ "plant_id_eia", "fuel_type", "fuel_type_code_pudl", "fuel_type_code_aer", "prime_mover_code", ] annual_gen_fuel_923 = ( ( df.drop(columns=["id", "nuclear_unit_id"]) .groupby(by=by, as_index=False)[ "fuel_consumed_units", "fuel_consumed_for_electricity_units", "fuel_consumed_mmbtu", "fuel_consumed_for_electricity_mmbtu", "net_generation_mwh", ] .sum() ) .reset_index() .drop(columns="index") .sort_values(["plant_id_eia", "fuel_type", "prime_mover_code"]) ) return annual_gen_fuel_923 def add_923_heat_rate(df): """ Small function to calculate the heat rate of records with fuel consumption and net generation. Parameters ---------- df : dataframe Must contain the columns net_generation_mwh and fuel_consumed_for_electricity_mmbtu Returns ------- dataframe Same dataframe with new column of heat_rate_mmbtu_mwh """ # Calculate the heat rate for each prime mover/fuel combination df["heat_rate_mmbtu_mwh"] = ( df["fuel_consumed_for_electricity_mmbtu"] / df["net_generation_mwh"] ) return df def calculate_weighted_heat_rate(heat_rate_df): """ Calculate the weighed heat rate when multiple years of data are used. Net generation in each year is used as the weights. Parameters ---------- heat_rate_df : dataframe Currently the PudlTabl unit_hr method. Returns ------- dataframe Heat rate weighted by annual generation for each plant and PUDL unit """ def w_hr(df): weighted_hr = np.average( df["heat_rate_mmbtu_mwh"], weights=df["net_generation_mwh"] ) return weighted_hr weighted_unit_hr = ( heat_rate_df.groupby(["plant_id_eia", "unit_id_pudl"], as_index=False) .apply(w_hr) .reset_index() ) weighted_unit_hr = weighted_unit_hr.rename(columns={0: "heat_rate_mmbtu_mwh"}) return weighted_unit_hr def plant_pm_heat_rates(annual_gen_fuel_923): """ Calculate the heat rate by plant, prime mover, and fuel type. Values are saved as a dictionary. Parameters ---------- annual_gen_fuel_923 : dataframe Data from the 923 generation and fuel use table. Heat rate for each row should already be calculated. Returns ------- dict Keys are a tuple of plant id, prime mover, and fuel type. Values are the heat rate. """ by = ["plant_id_eia", "prime_mover_code", "fuel_type"] annual_gen_fuel_923_groups = annual_gen_fuel_923.groupby(by) prime_mover_hr_map = { _: df["heat_rate_mmbtu_mwh"].values[0] for _, df in annual_gen_fuel_923_groups } return prime_mover_hr_map def unit_generator_heat_rates(pudl_out, data_years): """ Calculate the heat rate for each PUDL unit and generators that don't have a PUDL unit id. Parameters ---------- pudl_out : pudl.PudlTabl A PudlTabl object for loading pre-calculated PUDL analysis data data_years : list Years of data to use Returns ------- dataframe, dict A dataframe of heat rates for each pudl unit (columsn are ['plant_id_eia', 'unit_id_pudl', 'heat_rate_mmbtu_mwh']). """ # Load the pre-calculated PUDL unit heat rates for selected years. # Remove rows without generation or with null values. unit_hr = pudl_out.hr_by_unit() unit_hr = unit_hr.loc[ (unit_hr.report_date.dt.year.isin(data_years)) & (unit_hr.net_generation_mwh > 0), :, ].dropna() weighted_unit_hr = calculate_weighted_heat_rate(unit_hr) return weighted_unit_hr def group_units(df, settings): """ Group by units within a region/technology/cluster. Add a unique unit code (plant plus generator) for any generators that aren't part of a unit. Returns ------- dataframe Grouped generators with the total capacity, minimum load, and average heat rate for each. """ by = ["plant_id_eia", "unit_id_pudl"] # add a unit code (plant plus generator code) in cases where one doesn't exist df_copy = df.reset_index() # All units should have the same heat rate so taking the mean will just keep the # same value. grouped_units = df_copy.groupby(by).agg( { settings["capacity_col"]: "sum", "minimum_load_mw": "sum", "heat_rate_mmbtu_mwh": "mean", "Fixed_OM_cost_per_MWyr": "mean", "Var_OM_cost_per_MWh": "mean", } ) grouped_units = grouped_units.replace([np.inf, -np.inf], np.nan) grouped_units = grouped_units.fillna(grouped_units.mean()) return grouped_units def calc_unit_cluster_values(df, settings, technology=None): """ Calculate the total capacity, minimum load, weighted heat rate, and number of units/generators in a technology cluster. Parameters ---------- df : dataframe A dataframe with units/generators of a single technology. One column should be 'cluster', to label units as belonging to a specific cluster grouping. technology : str, optional Name of the generating technology, by default None Returns ------- dataframe Aggragate values for generators in a technology cluster """ # Define a function to compute the weighted mean. # The issue here is that the df name needs to be used in the function. # So this will need to be within a function that takes df as an input def wm(x): return np.average(x, weights=df.loc[x.index, settings["capacity_col"]]) if df["heat_rate_mmbtu_mwh"].isnull().values.any(): # mean = # df["heat_rate_mmbtu_mwh"] = df["heat_rate_mmbtu_mwh"].fillna( # df["heat_rate_mmbtu_mwh"].median() # ) start_cap = df[settings["capacity_col"]].sum() df = df.loc[~df["heat_rate_mmbtu_mwh"].isnull(), :] end_cap = df[settings["capacity_col"]].sum() cap_diff = start_cap - end_cap logger.warning(f"dropped {cap_diff}MW because of null heat rate values") df_values = df.groupby("cluster").agg( { settings["capacity_col"]: "mean", "minimum_load_mw": "mean", "heat_rate_mmbtu_mwh": wm, "Fixed_OM_cost_per_MWyr": wm, "Var_OM_cost_per_MWh": wm, } ) if df_values["heat_rate_mmbtu_mwh"].isnull().values.any(): print(df) print(df_values) df_values["heat_rate_mmbtu_mwh_iqr"] = df.groupby("cluster").agg( {"heat_rate_mmbtu_mwh": iqr} ) df_values["heat_rate_mmbtu_mwh_std"] = df.groupby("cluster").agg( {"heat_rate_mmbtu_mwh": "std"} ) df_values["fixed_o_m_mw_std"] = df.groupby("cluster").agg( {"Fixed_OM_cost_per_MWyr": "std"} ) df_values["Min_power"] = ( df_values["minimum_load_mw"] / df_values[settings["capacity_col"]] ) df_values["num_units"] = df.groupby("cluster")["cluster"].count() if technology: df_values["technology"] = technology return df_values def add_genx_model_tags(df, settings): """ Each generator type needs to have certain tags for use by the GenX model. Each tag is a column, e.g. THERM for thermal generators. These columns and tag values are defined in the settings file and applied here. Tags are (usually?) boolean 0/1 values. Parameters ---------- df : dataframe Clusters of generators. The index should have a column 'technology', which is used to map tag values. settings : dict User-defined settings loaded from a YAML file. Returns ------- dataframe The original generator cluster results with new columns for each model tag. """ ignored = r"_" technology = df["technology"].str.replace(ignored, "") # Create a new dataframe with the same index default = settings.get("default_model_tag", 0) for tag_col in settings.get("model_tag_names", []): df[tag_col] = default try: for tech, tag_value in settings["model_tag_values"][tag_col].items(): tech = re.sub(ignored, "", tech) mask = technology.str.contains(fr"^{tech}", case=False) df.loc[mask, tag_col] = tag_value except (KeyError, AttributeError) as e: logger.warning(f"No model tag values found for {tag_col} ({e})") # Change tags with specific regional values for a technology flat_regional_tags = flatten(settings.get("regional_tag_values", {}) or {}) for tag_tuple, tag_value in flat_regional_tags.items(): region, tag_col, tech = tag_tuple tech = re.sub(ignored, "", tech) mask = technology.str.contains(fr"^{tech}", case=False) df.loc[(df["region"] == region) & mask, tag_col] = tag_value return df def load_ipm_shapefile(settings, path=IPM_GEOJSON_PATH): """ Load the shapefile of IPM regions Parameters ---------- settings : dict User-defined parameters from a settings YAML file. This is where any region aggregations would be defined. Returns ------- geodataframe Regions to use in the study with the matching geometry for each. """ keep_regions, region_agg_map = regions_to_keep(settings) ipm_regions = gpd.read_file(IPM_GEOJSON_PATH) if settings.get("user_region_geodata_fn"): logger.info("Appending user regions to IPM Regions") user_regions = gpd.read_file( Path(settings["input_folder"]) / settings["user_region_geodata_fn"] ) user_regions = user_regions.to_crs(ipm_regions.crs) ipm_regions = ipm_regions.append(user_regions) # ipm_regions = gpd.read_file(IPM_SHAPEFILE_PATH) model_regions_gdf = ipm_regions.loc[ipm_regions["IPM_Region"].isin(keep_regions)] model_regions_gdf = map_agg_region_names( model_regions_gdf, region_agg_map, "IPM_Region", "model_region" ).reset_index(drop=True) return model_regions_gdf def download_860m(settings: dict) -> pd.ExcelFile: """Load the entire 860m file into memory as an ExcelFile object. Parameters ---------- settings : dict User-defined settings loaded from a YAML file. This is where the EIA860m filename is defined. Returns ------- pd.ExcelFile The ExcelFile object with all sheets from 860m. """ try: fn = settings["eia_860m_fn"] except KeyError: # No key in the settings file logger.info("Trying to determine the most recent EIA860m file...") fn = find_newest_860m() # Only the most recent file will not have archive in the url url = f"https://www.eia.gov/electricity/data/eia860m/xls/{fn}" archive_url = f"https://www.eia.gov/electricity/data/eia860m/archive/xls/{fn}" local_file = DATA_PATHS["eia_860m"] / fn if local_file.exists(): logger.info(f"Reading a local copy of the EIA860m file {fn}") eia_860m = pd.ExcelFile(local_file) else: logger.info(f"Downloading the EIA860m file {fn}") try: download_save(url, local_file) eia_860m = pd.ExcelFile(local_file) except XLRDError: logger.warning("A more recent version of EIA-860m is available") download_save(archive_url, local_file) eia_860m = pd.ExcelFile(local_file) # write the file to disk return eia_860m def find_newest_860m() -> str: """Scrape the EIA 860m page to find the most recently posted file. Returns ------- str Name of most recently posted file """ site_url = "https://www.eia.gov/electricity/data/eia860m/" r = requests.get(site_url) soup = BeautifulSoup(r.content, "lxml") table = soup.find("table", attrs={"class": "simpletable"}) href = table.find("a")["href"] fn = href.split("/")[-1] return fn def clean_860m_sheet( eia_860m: pd.ExcelFile, sheet_name: str, settings: dict ) -> pd.DataFrame: """Load a sheet from the 860m ExcelFile object and clean it. Parameters ---------- eia_860m : ExcelFile Entire 860m file loaded into memory sheet_name : str Name of the sheet to load as a dataframe settings : dict User-defined settings loaded from a YAML file. Returns ------- pd.DataFrame One of the sheets from 860m """ df = eia_860m.parse(sheet_name=sheet_name, na_values=[" "]) for idx, row in df.iterrows(): if row.iloc[0] == "Entity ID": sr = idx + 1 break for idx in list(range(-10, 0)): if isinstance(df.iloc[idx, 0], str): sf = -idx break df = eia_860m.parse( sheet_name=sheet_name, skiprows=sr, skipfooter=sf, na_values=[" "] ) df = df.rename(columns=planned_col_map) if sheet_name in ["Operating", "Planned"]: df.loc[:, "operational_status_code"] = df.loc[:, "operational_status"].map( op_status_map ) if sheet_name == "Planned": df = df.loc[ df["operational_status_code"].isin(settings["proposed_status_included"]), : ] return df def load_860m(settings: dict) -> Dict[str, pd.DataFrame]: """Load the planned, canceled, and retired sheets from an EIA 860m file. Parameters ---------- settings : dict User-defined settings loaded from a YAML file. This is where the EIA860m filename is defined. Returns ------- Dict[str, pd.DataFrame] The 860m dataframes, with the keys 'planned', 'canceled', and 'retired'. """ sheet_map = { "planned": "Planned", "canceled": "Canceled or Postponed", "retired": "Retired", } fn = settings.get("eia_860m_fn") if not fn: fn = find_newest_860m() fn_name = Path(fn).stem data_dict = {} eia_860m_excelfile = None for name, sheet in sheet_map.items(): pkl_path = DATA_PATHS["eia_860m"] / f"{fn_name}_{name}.pkl" if pkl_path.exists(): data_dict[name] = pd.read_pickle(pkl_path) else: if eia_860m_excelfile is None: eia_860m_excelfile = download_860m(settings) data_dict[name] = clean_860m_sheet(eia_860m_excelfile, sheet, settings) data_dict[name].to_pickle(pkl_path) return data_dict def import_proposed_generators(planned, settings, model_regions_gdf): """ Load the most recent proposed generating units from EIA860m. Will also add any planned generators that are included in the settings file. Parameters ---------- settings : dict User defined parameters from a settings YAML file model_regions_gdf : geodataframe Contains the name and geometry of each region being used in the study Returns ------- dataframe All proposed generators. """ # Some plants don't have lat/lon data. Log this now to determine if any action is # needed, then drop them from the dataframe. no_lat_lon = planned.loc[ (planned["latitude"].isnull()) | (planned["longitude"].isnull()), : ].copy() if not no_lat_lon.empty: no_lat_lon_cap = no_lat_lon[settings["capacity_col"]].sum() logger.warning( "Some generators do not have lon/lat data. Check the source " "file to determine if they should be included in results. " f"\nThe affected generators account for {no_lat_lon_cap} in balancing " "authorities: " f"\n{no_lat_lon['balancing_authority_code'].tolist()}" ) planned = planned.dropna(subset=["latitude", "longitude"]) # Convert the lon/lat values to geo points. Need to add an initial CRS and then # change it to align with the IPM regions print("Creating gdf") planned_gdf = gpd.GeoDataFrame( planned.copy(), geometry=gpd.points_from_xy(planned.longitude.copy(), planned.latitude.copy()), crs="EPSG:4326", ) if planned_gdf.crs != model_regions_gdf.crs: planned_gdf = planned_gdf.to_crs(model_regions_gdf.crs) planned_gdf = gpd.sjoin(model_regions_gdf.drop(columns="IPM_Region"), planned_gdf) # Add planned additions from the settings file additional_planned = settings.get("additional_planned") or [] for record in additional_planned: plant_id, gen_id, model_region = record plant_record = planned.loc[ (planned["plant_id_eia"] == plant_id) & (planned["generator_id"] == gen_id), :, ] plant_record["model_region"] = model_region planned_gdf = planned_gdf.append(plant_record, sort=False) logger.info( f"{len(additional_planned)} generators were added to the planned list based on settings" ) planned_gdf.loc[:, "heat_rate_mmbtu_mwh"] = planned_gdf.loc[ :, "technology_description" ].map(settings["proposed_gen_heat_rates"]) # The default EIA heat rate for non-thermal technologies is 9.21 planned_gdf.loc[ planned_gdf["heat_rate_mmbtu_mwh"].isnull(), "heat_rate_mmbtu_mwh" ] = 9.21 planned_gdf.loc[:, "minimum_load_mw"] = ( planned_gdf["technology_description"].map(settings["proposed_min_load"]) * planned_gdf[settings["capacity_col"]] ) # Assume anything else being built at scale is wind/solar and will have a Min_power # of 0 planned_gdf.loc[planned_gdf["minimum_load_mw"].isnull(), "minimum_load_mw"] = 0 planned_gdf = planned_gdf.set_index( ["plant_id_eia", "prime_mover_code", "energy_source_code_1"] ) # Add a retirement year based on the planned start year label_retirement_year( df=planned_gdf, settings=settings, age_col="planned_operating_year", add_additional_retirements=False, ) if settings.get("group_technologies"): planned_gdf = group_technologies(planned_gdf, settings) print(planned_gdf["technology_description"].unique().tolist()) keep_cols = [ "model_region", "technology_description", "generator_id", settings["capacity_col"], "minimum_load_mw", "operational_status_code", "heat_rate_mmbtu_mwh", "retirement_year", ] return planned_gdf.loc[:, keep_cols] def gentype_region_capacity_factor( pudl_engine, plant_region_map, settings, years_filter=None ): """ Calculate the average capacity factor for all generators of a type/region. This uses all years of available data unless otherwise specified. The potential generation is calculated for every year a plant is in operation using the capacity type specified in settings (nameplate, summer, or winter) and the number of hours in each year. As of this time PUDL only has generation data back to 2011. Parameters ---------- pudl_engine : sqlalchemy.Engine A sqlalchemy connection for use by pandas plant_region_map : dataframe A dataframe with the region for every plant settings : dictionary The dictionary of settings with a dictionary of region aggregations Returns ------- DataFrame A dataframe with the capacity factor of every selected technology """ cap_col = settings["capacity_col"] # Include standby (SB) generators since they are in our capacity totals sql = """ SELECT G.report_date, G.plant_id_eia, G.generator_id, SUM(G.capacity_mw) AS capacity_mw, SUM(G.summer_capacity_mw) as summer_capacity_mw, SUM(G.winter_capacity_mw) as winter_capacity_mw, G.technology_description, G.fuel_type_code_pudl FROM generators_eia860 G WHERE operational_status_code NOT IN ('RE', 'OS', 'IP', 'CN') GROUP BY G.report_date, G.plant_id_eia, G.technology_description, G.fuel_type_code_pudl, G.generator_id ORDER by G.plant_id_eia, G.report_date """ plant_gen_tech_cap = pd.read_sql_query( sql, pudl_engine, parse_dates=["report_date"] ) plant_gen_tech_cap = plant_gen_tech_cap.loc[ plant_gen_tech_cap["plant_id_eia"].isin(plant_region_map["plant_id_eia"]), : ] plant_gen_tech_cap = fill_missing_tech_descriptions(plant_gen_tech_cap) plant_tech_cap = group_generators_at_plant( df=plant_gen_tech_cap, by=["plant_id_eia", "report_date", "technology_description"], agg_fn={cap_col: "sum"}, ) plant_tech_cap = plant_tech_cap.merge( plant_region_map, on="plant_id_eia", how="left" ) label_small_hydro(plant_tech_cap, settings, by=["plant_id_eia", "report_date"]) sql = """ SELECT strftime('%Y', GF.report_date) AS report_date, GF.plant_id_eia, SUM(GF.net_generation_mwh) AS net_generation_mwh, GF.fuel_type_code_pudl FROM generation_fuel_eia923 GF GROUP BY strftime('%Y', GF.report_date), GF.plant_id_eia, GF.fuel_type_code_pudl ORDER by GF.plant_id_eia, strftime('%Y', GF.report_date) """ generation = pd.read_sql_query(sql, pudl_engine, parse_dates={"report_date": "%Y"}) capacity_factor = pudl.helpers.merge_on_date_year( plant_tech_cap, generation, on=["plant_id_eia"], how="left" ) if settings.get("group_technologies"): capacity_factor = group_technologies(capacity_factor, settings) if years_filter is None: years_filter = { tech: settings["capacity_factor_default_year_filter"] for tech in plant_gen_tech_cap["technology_description"].unique() } if type(settings["alt_year_filters"]) is dict: for tech, value in settings["alt_year_filters"].items(): years_filter[tech] = value data_years = plant_gen_tech_cap["report_date"].dt.year.unique() # Use all years where the value is None for tech, value in years_filter.items(): if value is None: years_filter[tech] = data_years df_list = [] for tech, years in years_filter.items(): _df = capacity_factor.loc[ (capacity_factor["technology_description"] == tech) & (capacity_factor["report_date"].dt.year.isin(years)), :, ] df_list.append(_df) capacity_factor = pd.concat(df_list, sort=False) # get a unique set of dates to generate the number of hours dates = capacity_factor["report_date"].drop_duplicates() dates_to_hours = pd.DataFrame( data={ "report_date": dates, "hours": dates.apply( lambda d: ( pd.date_range(d, periods=2, freq="YS")[1] - pd.date_range(d, periods=2, freq="YS")[0] ) / pd.Timedelta(hours=1) ), } ) # merge in the hours for the calculation capacity_factor = capacity_factor.merge(dates_to_hours, on=["report_date"]) capacity_factor["potential_generation_mwh"] = ( capacity_factor[cap_col] * capacity_factor["hours"] ) capacity_factor_tech_region = capacity_factor.groupby( ["model_region", "technology_description"], as_index=False )[["potential_generation_mwh", "net_generation_mwh"]].sum() # actually calculate capacity factor wooo! capacity_factor_tech_region["capacity_factor"] = ( capacity_factor_tech_region["net_generation_mwh"] / capacity_factor_tech_region["potential_generation_mwh"] ) capacity_factor_tech_region.rename( columns={"model_region": "region", "technology_description": "technology"}, inplace=True, ) logger.debug(capacity_factor_tech_region) return capacity_factor_tech_region def add_fuel_labels(df, fuel_prices, settings): """Add a Fuel column with the approproriate regional fuel for each generator type Parameters ---------- df : DataFrame Generator clusters dataframe with all existing and proposed technologies fuel_prices : DataFrame Prices of fuels from EIA AEO scenarios in each census region. Columns include ['year', 'price', 'fuel', 'region', 'scenario', 'full_fuel_name'] settings : dictionary The dictionary of settings with fuel price variables Returns ------- DataFrame Same as input, but with a new column "Fuel" that is either the name of the corresponding fuel (coal, natural_gas, uranium, or distillate) or "None". """ df["Fuel"] = "None" for eia_tech, fuel in (settings.get("tech_fuel_map") or {}).items(): try: if eia_tech == "Natural Gas Steam Turbine": # No ATB natural gas steam turbine and I match it with coal for O&M # which would screw this up and list natural gas as a fuel for ATB # coal plants atb_tech = None else: if not isinstance(settings["eia_atb_tech_map"][eia_tech], list): settings["eia_atb_tech_map"][eia_tech] = [ settings["eia_atb_tech_map"][eia_tech] ] atb_tech = [ tech.split("_")[0] for tech in settings["eia_atb_tech_map"][eia_tech] ] except KeyError: # No corresponding ATB technology atb_tech = None scenario = settings["aeo_fuel_scenarios"][fuel] model_year = settings["model_year"] for aeo_region, model_regions in settings["aeo_fuel_region_map"].items(): fuel_name = ("_").join([aeo_region, scenario, fuel]) assert ( fuel_prices.query( "year==@model_year & full_fuel_name==@fuel_name" ).empty is False ), f"{fuel_name} doesn't show up in {model_year}" df.loc[ (df["technology"] == eia_tech) & df["region"].isin(model_regions), "Fuel", ] = fuel_name if atb_tech is not None: for tech in atb_tech: df.loc[ (df["technology"].str.contains(tech, case=False)) & df["region"].isin(model_regions), "Fuel", ] = fuel_name for ccs_tech, ccs_fuel in (settings.get("ccs_fuel_map") or {}).items(): scenario = settings["aeo_fuel_scenarios"][ccs_fuel.split("_")[0]] for aeo_region, model_regions in settings["aeo_fuel_region_map"].items(): ccs_fuel_name = ("_").join([aeo_region, scenario, ccs_fuel]) df.loc[ (df["technology"].str.contains(ccs_tech)) & df["region"].isin(model_regions), "Fuel", ] = ccs_fuel_name return df def calculate_transmission_inv_cost(resource_df, settings, offshore_spur_costs=None): """Calculate the transmission investment cost for each new resource. Parameters ---------- resource_df : DataFrame Each row represents a single resource within a region. Should have columns `region` and `<type>_miles`, where transmission <type> is one of 'spur', 'offshore_spure', or 'tx'. settings : dict A dictionary of user-supplied settings. Must have key `transmission_investment_cost` with the format: - <type> - `capex_mw_mile` (float) - `wacc` (float) - `investment_years` (int) - ... offshore_spur_costs : DataFrame Offshore spur costs per mile in the format `technology` ('OffShoreWind'), `tech_detail`, `cost_case`, and `capex_mw_mile`. Only used if `settings.transmission_investment_cost.capex_mw_mile` is missing. Returns ------- DataFrame Modified copy of the input dataframe with new columns '<type>_capex' and '<type>_inv_mwyr' for each column `<type>_miles`. Raises ------ KeyError Settings missing transmission types present in resources. KeyError Settings missing required keys. KeyError Setting capex_mw_mile missing regions present in resources. TypeError Setting capex_mw_mile is neither a dictionary nor a numeric value. """ SETTING = "transmission_investment_cost" KEYS = ["wacc", "investment_years", "capex_mw_mile"] ttypes = settings.get(SETTING, {}) # Check coverage of transmission types in resources resource_ttypes = [x for x in TRANSMISSION_TYPES if f"{x}_miles" in resource_df] missing_ttypes = list(set(resource_ttypes) - set(ttypes)) if missing_ttypes: raise KeyError(f"{SETTING} missing transmission line types {missing_ttypes}") # Apply calculation for each transmission type regions = resource_df["region"].unique() use_offshore_spur_costs = False for ttype, params in ttypes.items(): if ttype not in resource_ttypes: continue if ( ttype == "offshore_spur" and offshore_spur_costs is not None and not params.get("capex_mw_mile") ): use_offshore_spur_costs = True # Build technology: capex_mw_mile map params = params.copy() params["capex_mw_mile"] = ( offshore_spur_costs.assign( technology=offshore_spur_costs[ ["technology", "tech_detail", "cost_case"] ] .astype(str) .agg("_".join, axis=1) ) .set_index("technology")["capex_mw_mile"] .to_dict() ) # Check presence of required keys missing_keys = list(set(KEYS) - set(params)) if missing_keys: raise KeyError(f"{SETTING}.{ttype} missing required keys {missing_keys}") if isinstance(params["capex_mw_mile"], dict): if use_offshore_spur_costs: capex_mw_mile = resource_df["technology"].map(params["capex_mw_mile"]) else: # Check coverage of regions in resources missing_regions = list(set(regions) - set(params["capex_mw_mile"])) if missing_regions: raise KeyError( f"{SETTING}.{ttype}.capex_mw_mile missing regions {missing_regions}" ) capex_mw_mile = resource_df["region"].map(params["capex_mw_mile"]) elif isinstance(params["capex_mw_mile"], Number): capex_mw_mile = params["capex_mw_mile"] else: raise TypeError( f"{SETTING}.{ttype}.capex_mw_mile should be numeric or a dictionary" f" of <region>: <capex>, not {params['capex_mw_mile']}" ) resource_df[f"{ttype}_capex"] = ( capex_mw_mile.fillna(0) * resource_df[f"{ttype}_miles"] ) resource_df[f"{ttype}_inv_mwyr"] = investment_cost_calculator( resource_df[f"{ttype}_capex"], params["wacc"], params["investment_years"] ) return resource_df def add_transmission_inv_cost( resource_df: pd.DataFrame, settings: dict ) -> pd.DataFrame: """Add tranmission investment costs to plant investment costs Parameters ---------- resource_df Each row represents a single resource within a region. Should have columns `Inv_cost_per_MWyr` and transmission costs. - one or more `<type>_inv_mwyr`, where <type> is 'spur', 'offshore_spur', or 'tx'. - `interconnect_annuity` settings User settings. If `transmission_investment_cost.use_total` is present and true, `interconnect_annuity` is used over `<type>_inv_mwys` if present, not null, and not zero. Returns ------- DataFrame A modified copy of the input dataframe where 'Inv_cost_per_MWyr' represents the combined plant and transmission investment costs. The new column `plant_inv_cost_mwyr` represents just the plant investment costs. """ use_total = ( settings.get("transmission_investment_cost", {}).get("use_total", False) and "interconnect_annuity" in resource_df ) resource_df["plant_inv_cost_mwyr"] = resource_df["Inv_cost_per_MWyr"] columns = [ c for c in [f"{t}_inv_mwyr" for t in TRANSMISSION_TYPES] if c in resource_df ] cost = resource_df[columns].sum(axis=1) if use_total: total = resource_df["interconnect_annuity"] has_total = ~total.isna() & total != 0 cost[has_total] = total[has_total] if cost.isna().any() or (cost == 0).any(): logger.warning( "Transmission investment costs are missing or zero for some resources" " and will not be included in the total investment costs." ) resource_df["Inv_cost_per_MWyr"] += cost return resource_df def save_weighted_hr(weighted_unit_hr, pudl_engine): pass class GeneratorClusters: """ This class is used to determine genererating units that will likely be operating in a given year, clusters them according to parameters for the settings file, and determines the average operating characteristics of each cluster. Structuring this as a class isn't strictly necessary but makes it easier to access generator data part-way through the process. """ def __init__( self, pudl_engine, pudl_out, settings, current_gens=True, sort_gens=False, plant_region_map_table="plant_region_map_epaipm", settings_agg_key="region_aggregations", ): """ Parameters ---------- pudl_engine : sqlalchemy.Engine A sqlalchemy connection for use by pandas pudl_out : pudl.PudlTabl A PudlTabl object for loading pre-calculated PUDL analysis data settings : dictionary The dictionary of settings with a dictionary of region aggregations """ self.pudl_engine = pudl_engine self.pudl_out = pudl_out self.settings = settings self.current_gens = current_gens self.sort_gens = sort_gens self.model_regions_gdf = load_ipm_shapefile(self.settings) self.weighted_unit_hr = None if self.current_gens: self.data_years = self.settings["data_years"] self.gens_860 = load_generator_860_data(self.pudl_engine, self.data_years) self.gens_entity = pd.read_sql_table( "generators_entity_eia", self.pudl_engine ) bga = self.pudl_out.bga() self.bga = bga.loc[ bga.report_date.dt.year.isin(self.data_years), : ].drop_duplicates(["plant_id_eia", "generator_id"]) logger.info("Loading map of plants to IPM regions") self.plant_region_map = load_plant_region_map( self.gens_860, self.pudl_engine, self.settings, self.model_regions_gdf, table=plant_region_map_table, ) self.gen_923 = load_923_gen_fuel_data( self.pudl_engine, self.pudl_out, model_region_map=self.plant_region_map, data_years=self.data_years, ) self.eia_860m = load_860m(self.settings) self.planned_860m = self.eia_860m["planned"] self.canceled_860m = self.eia_860m["canceled"] self.retired_860m = self.eia_860m["retired"] # self.ownership = load_ownership_eia860(self.pudl_engine, self.data_years) self.plants_860 = load_plants_860(self.pudl_engine, self.data_years) # self.utilities_eia = load_utilities_eia(self.pudl_engine) else: self.existing_resources = pd.DataFrame() self.fuel_prices = fetch_fuel_prices(self.settings) self.atb_hr = fetch_atb_heat_rates(self.pudl_engine, self.settings) self.coal_fgd = pd.read_csv(DATA_PATHS["coal_fgd"]) def fill_na_heat_rates(self, s): """Fill null heat rate values with the median of the series. Not many null values are expected. Parameters ---------- df : DataFrame Must contain the column 'heat_rate_mmbtu_mwh' Returns ------- Dataframe Same as input but with any null values replaced by the median. """ if s.isnull().any(): median_hr = s.median() return s.fillna(median_hr) else: return s # median_hr = df["heat_rate_mmbtu_mwh"].median() # df["heat_rate_mmbtu_mwh"].fillna(median_hr, inplace=True) # return df def create_demand_response_gen_rows(self): """Create rows for demand response/management resources to include in the generators file. Returns ------- DataFrame One row for each region/DSM resource with values in all columns filled. """ year = self.settings["model_year"] df_list = [] self.demand_response_profiles = {} if not self.settings.get("demand_response_resources"): logger.warning( "A demand response file is included in extra inputs but the parameter " "`demand_response_resources` is not in the settings file. No demand " "response resources will be included with the generators." ) return pd.DataFrame() for resource, parameters in self.settings["demand_response_resources"][ year ].items(): _df = pd.DataFrame( index=self.settings["model_regions"], columns=list(self.settings["generator_columns"]) + ["profile"], ) _df = _df.drop(columns="Resource") _df["technology"] = resource _df["region"] = self.settings["model_regions"] dr_path = ( Path.cwd() / self.settings["input_folder"] / self.settings["demand_response_fn"] ) dr_profile = make_demand_response_profiles(dr_path, resource, self.settings) self.demand_response_profiles[resource] = dr_profile # Add hourly profile to demand response rows dr_cf = dr_profile / dr_profile.max() dr_regions = dr_cf.columns _df = _df.loc[dr_regions, :] _df["profile"] = list(dr_cf.values.T) dr_capacity = demand_response_resource_capacity( dr_profile, resource, self.settings ) # This is to solve a bug with only one region. Need to come back and solve # in a better fashion. if len(dr_capacity) > 1: dr_capacity_scenario = dr_capacity.squeeze() else: dr_capacity_scenario = dr_capacity _df["Existing_Cap_MW"] = _df["region"].map(dr_capacity_scenario) if not parameters.get("parameter_values"): logger.warning( "No model parameter values are provided in the settings file for " f"the demand response resource '{resource}'. If another DR resource" " has values under " "`demand_response_resource.<year>.<DR_type>.parameter_values`, " f"those columns will have a value of 0 for '{resource}'." ) for col, value in parameters.get("parameter_values", {}).items(): _df[col] = value df_list.append(_df) dr_rows = pd.concat(df_list) dr_rows["New_Build"] = -1 dr_rows["Fuel"] = "None" dr_rows["cluster"] = 1 dr_rows = dr_rows.fillna(0) return dr_rows def create_region_technology_clusters(self, return_retirement_capacity=False): """ Calculation of average unit characteristics within a technology cluster (capacity, minimum load, heat rate) and the number of units in the cluster. Parameters ---------- plant_region_map_table : str, optional Name of the table with region names for each plant, by default "plant_region_map_epaipm" settings_agg_key : str, optional Name of the settings dictionary key with regional aggregations, by default "region_aggregations" return_retirement_capacity : bool, optional If retired generators should be retured as a second dataframe, by default False Returns ------- dataframe """ self.gens_860_model = ( self.gens_860.pipe( supplement_generator_860_data, self.gens_entity, self.bga, self.plant_region_map, self.settings, ) .pipe(remove_canceled_860m, self.canceled_860m) .pipe(remove_retired_860m, self.retired_860m) .pipe(label_retirement_year, self.settings, add_additional_retirements=True) .pipe(label_small_hydro, self.settings, by=["plant_id_eia"]) .pipe(group_technologies, self.settings) ) self.gens_860_model = self.gens_860_model.pipe( modify_cc_prime_mover_code, self.gens_860_model ) self.gens_860_model.drop_duplicates(inplace=True) self.annual_gen_hr_923 = ( self.gen_923.pipe(modify_cc_prime_mover_code, self.gens_860_model) .pipe(group_gen_by_year_fuel_primemover) .pipe(add_923_heat_rate) ) # Add heat rates to the data we already have from 860 logger.info("Loading heat rate data for units and generator/fuel combinations") self.prime_mover_hr_map = plant_pm_heat_rates(self.annual_gen_hr_923) if self.weighted_unit_hr is None: self.weighted_unit_hr = unit_generator_heat_rates( self.pudl_out, self.data_years ) else: logger.info("Using unit heat rates from previous round.") # Merge the PUDL calculated heat rate data and set the index for easy # mapping using plant/prime mover heat rates from 923 hr_cols = ["plant_id_eia", "unit_id_pudl", "heat_rate_mmbtu_mwh"] idx = ["plant_id_eia", "prime_mover_code", "energy_source_code_1"] self.units_model = self.gens_860_model.merge( self.weighted_unit_hr[hr_cols], on=["plant_id_eia", "unit_id_pudl"], how="left", ).set_index(idx) logger.info( f"Units model technologies are " f"{self.units_model.technology_description.unique().tolist()}" ) # print(units_model.head()) logger.info( "Assigning technology/fuel heat rates where unit heat rates are not " "available" ) self.units_model.loc[ self.units_model.heat_rate_mmbtu_mwh.isnull(), "heat_rate_mmbtu_mwh" ] = self.units_model.loc[ self.units_model.heat_rate_mmbtu_mwh.isnull() ].index.map( self.prime_mover_hr_map ) self.units_model.loc[ self.units_model.heat_rate_mmbtu_mwh > 35, "heat_rate_mmbtu_mwh" ] = self.units_model.loc[self.units_model.heat_rate_mmbtu_mwh > 35].index.map( self.prime_mover_hr_map ) # Set negative heat rates to nan self.units_model.loc[ (self.units_model.heat_rate_mmbtu_mwh < 0) | (self.units_model.heat_rate_mmbtu_mwh > 35), "heat_rate_mmbtu_mwh", ] = np.nan # Fill any null heat rate values for each tech for tech in self.units_model["technology_description"]: self.units_model.loc[ self.units_model.technology_description == tech, "heat_rate_mmbtu_mwh" ] = self.fill_na_heat_rates( self.units_model.loc[ self.units_model.technology_description == tech, "heat_rate_mmbtu_mwh", ] ) # assert ( # self.units_model["heat_rate_mmbtu_mwh"].isnull().any() is False # ), "There are still some null heat rate values" logger.info( f"Units model technologies are " f"{self.units_model.technology_description.unique().tolist()}" ) logger.info( f"Before adding proposed generators, {len(self.units_model)} units with " f"{self.units_model[self.settings['capacity_col']].sum()} MW capacity" ) proposed_gens = import_proposed_generators( planned=self.planned_860m, settings=self.settings, model_regions_gdf=self.model_regions_gdf, ) logger.info( f"Proposed gen technologies are " f"{proposed_gens.technology_description.unique().tolist()}" ) logger.info(f"{proposed_gens[self.settings['capacity_col']].sum()} MW proposed") self.units_model = pd.concat([proposed_gens, self.units_model], sort=False) # Create a pudl unit id based on plant and generator id where one doesn't exist. # This is used later to match the cluster numbers to plants self.units_model.reset_index(inplace=True) self.units_model.loc[self.units_model.unit_id_pudl.isnull(), "unit_id_pudl"] = ( self.units_model.loc[ self.units_model.unit_id_pudl.isnull(), "plant_id_eia" ].astype(str) + "_" + self.units_model.loc[ self.units_model.unit_id_pudl.isnull(), "generator_id" ].astype(str) ).values self.units_model.set_index(idx, inplace=True) logger.info("Calculating plant O&M costs") techs = self.settings["num_clusters"].keys() self.units_model = ( self.units_model.rename(columns={"technology_description": "technology"}) .query("technology.isin(@techs).values") .pipe( atb_fixed_var_om_existing, self.atb_hr, self.settings, self.pudl_engine, self.coal_fgd, ) ) # logger.info( # f"After adding proposed, units model technologies are " # f"{self.units_model.technology_description.unique().tolist()}" # ) logger.info( f"After adding proposed generators, {len(self.units_model)} units with " f"{self.units_model[self.settings['capacity_col']].sum()} MW capacity" ) techs = list(self.settings["num_clusters"]) num_clusters = {} for region in self.settings["model_regions"]: num_clusters[region] = self.settings["num_clusters"].copy() if self.settings.get("alt_num_clusters"): for region in self.settings["alt_num_clusters"]: for tech, cluster_size in self.settings["alt_num_clusters"][ region ].items(): num_clusters[region][tech] = cluster_size region_tech_grouped = self.units_model.loc[ (self.units_model.technology.isin(techs)) & (self.units_model.retirement_year > self.settings["model_year"]), :, ].groupby(["model_region", "technology"]) self.retired = self.units_model.loc[ self.units_model.retirement_year <= self.settings["model_year"], : ] # gens_860 lost the ownership code... refactor this! # self.all_gens_860 = load_generator_860_data(self.pudl_engine, self.data_years) # Getting weighted ownership for each unit, which will be used below. # self.weighted_ownership = weighted_ownership_by_unit( # self.units_model, self.all_gens_860, self.ownership, self.settings # ) # For each group, cluster and calculate the average size/min load/heat rate # logger.info("Creating technology clusters by region") logger.info("Creating technology clusters by region") unit_list = [] self.cluster_list = [] alt_cluster_method = self.settings.get("alt_cluster_method") or {} for _, df in region_tech_grouped: region, tech = _ grouped = group_units(df, self.settings) # This is bad. Should be setting up a dictionary of objects that picks the # correct clustering method. Can't keep doing if statements as the number of # methods grows. CHANGE LATER. if not alt_cluster_method: if num_clusters[region][tech] > 0: cluster_cols = [ "Fixed_OM_cost_per_MWyr", # "Var_OM_cost_per_MWh", # "minimum_load_mw", "heat_rate_mmbtu_mwh", ] clusters = cluster.KMeans( n_clusters=num_clusters[region][tech], random_state=6 ).fit( preprocessing.StandardScaler().fit_transform( grouped[cluster_cols] ) ) grouped["cluster"] = ( clusters.labels_ + 1 ) # Change to 1-index for julia else: if ( region in alt_cluster_method and tech in alt_cluster_method[region]["technology_description"] ): grouped = cluster_by_owner( df, self.weighted_ownership, # self.ownership, self.plants_860, region, tech, self.settings, ) elif num_clusters[region][tech] > 0: clusters = cluster.KMeans( n_clusters=num_clusters[region][tech], random_state=6 ).fit(preprocessing.StandardScaler().fit_transform(grouped)) grouped["cluster"] = ( clusters.labels_ + 1 ) # Change to 1-index for julia # Saving individual unit data for later analysis (if needed) unit_list.append(grouped) # Don't add technologies with specified 0 clusters if num_clusters[region][tech] != 0: _df = calc_unit_cluster_values(grouped, self.settings, tech) _df["region"] = region _df["plant_id_eia"] = ( grouped.reset_index().groupby("cluster")["plant_id_eia"].apply(list) ) _df["unit_id_pudl"] = ( grouped.reset_index().groupby("cluster")["unit_id_pudl"].apply(list) ) self.cluster_list.append(_df) # Save some data about individual units for easy access self.all_units = pd.concat(unit_list, sort=False) self.all_units = pd.merge( self.units_model.reset_index(), self.all_units, on=["plant_id_eia", "unit_id_pudl"], how="left", ).merge( self.plants_860[["plant_id_eia", "utility_id_eia"]], on=["plant_id_eia"], how="left", ) logger.info("Finalizing generation clusters") self.results = pd.concat(self.cluster_list) logger.info( f"Results technologies are {self.results.technology.unique().tolist()}" ) # if self.settings.get("region_wind_pv_cap_fn"): # from powergenome.external_data import overwrite_wind_pv_capacity # logger.info("Setting existing wind/pv using external file") # self.results = overwrite_wind_pv_capacity(self.results, self.settings) self.results = self.results.reset_index().set_index( ["region", "technology", "cluster"] ) self.results.rename( columns={ self.settings["capacity_col"]: "Cap_size", "heat_rate_mmbtu_mwh": "Heat_rate_MMBTU_per_MWh", }, inplace=True, ) # Calculate average capacity factors if type(self.settings["capacity_factor_techs"]) is list: self.capacity_factors = gentype_region_capacity_factor( self.pudl_engine, self.plant_region_map, self.settings ) self.results = pd.merge( self.results.reset_index(), self.capacity_factors[["region", "technology", "capacity_factor"]], on=["region", "technology"], how="left", ) if self.settings.get("derate_capacity"): derate_techs = self.settings["derate_techs"] self.results.loc[:, "unmodified_cap_size"] = self.results.loc[ :, "Cap_size" ].copy() self.results.loc[ self.results["technology"].isin(derate_techs), "Cap_size" ] = ( self.results.loc[ self.results["technology"].isin(derate_techs), "unmodified_cap_size", ] * self.results.loc[ self.results["technology"].isin(derate_techs), "capacity_factor" ] ) # Round Cap_size to prevent GenX error. self.results = self.results.round(3) self.results["Cap_size"] = self.results["Cap_size"] self.results["Existing_Cap_MW"] = self.results.Cap_size * self.results.num_units self.results["unmodified_existing_cap_mw"] = ( self.results["unmodified_cap_size"] * self.results["num_units"] ) if self.settings.get("region_wind_pv_cap_fn"): from powergenome.external_data import overwrite_wind_pv_capacity logger.info("Setting existing wind/pv using external file") self.results = overwrite_wind_pv_capacity(self.results, self.settings) # Add fixed/variable O&M based on NREL atb self.results = ( self.results.reset_index() # .pipe( # atb_fixed_var_om_existing, self.atb_costs, self.atb_hr, self.settings # ) # .pipe(atb_new_generators, self.atb_costs, self.atb_hr, self.settings) .pipe(startup_fuel, self.settings) .pipe(add_fuel_labels, self.fuel_prices, self.settings) .pipe(startup_nonfuel_costs, self.settings) .pipe(add_genx_model_tags, self.settings) ) if self.sort_gens: logger.info("Sorting new resources alphabetically.") self.results = self.results.sort_values(["region", "technology"]) # self.results = self.results.rename(columns={"technology": "Resource"}) self.results["Resource"] = snake_case_col(self.results["technology"]) # Add variable resource profiles self.results["profile"] = None self.results = self.results.reset_index(drop=True) for i, row in enumerate(self.results.itertuples()): params = map_eia_technology(row.technology) if not params: # EIA technology not supported continue params.update({"existing": True}) groups = CLUSTER_BUILDER.find_groups(**params) if not groups: # No matching resource groups continue if len(groups) > 1: # Multiple matching resource groups raise ValueError( f"Multiple existing resource groups match EIA technology" + row.technology ) group = groups[0] if group.profiles is None: # Resource group has no profiles continue if row.region in self.settings.get("region_aggregations", {}): ipm_regions = self.settings.get("region_aggregations", {})[row.region] else: ipm_regions = [row.region] metadata = group.metadata.read() if not metadata["ipm_region"].isin(ipm_regions).any(): # Resource group has no resources in selected IPM regions continue clusters = group.get_clusters( ipm_regions=ipm_regions, max_clusters=1, utc_offset=self.settings.get("utc_offset", 0), ) self.results["profile"][i] = clusters["profile"][0] return self.results def create_new_generators(self): self.offshore_spur_costs = fetch_atb_offshore_spur_costs( self.pudl_engine, self.settings ) self.atb_costs = fetch_atb_costs( self.pudl_engine, self.settings, self.offshore_spur_costs ) self.new_generators = atb_new_generators( self.atb_costs, self.atb_hr, self.settings ) self.new_generators = ( self.new_generators.pipe(startup_fuel, self.settings) .pipe(add_fuel_labels, self.fuel_prices, self.settings) .pipe(startup_nonfuel_costs, self.settings) .pipe(add_genx_model_tags, self.settings) ) if self.sort_gens: logger.info("Sorting new resources alphabetically.") self.new_generators = self.new_generators.sort_values( ["region", "technology"] ) if self.settings.get("capacity_limit_spur_fn"): self.new_generators = self.new_generators.pipe( add_resource_max_cap_spur, self.settings ) else: logger.warning("No settings parameter for max capacity/spur file") self.new_generators = self.new_generators.pipe( calculate_transmission_inv_cost, self.settings, self.offshore_spur_costs ).pipe(add_transmission_inv_cost, self.settings) if self.settings.get("demand_response_fn"): dr_rows = self.create_demand_response_gen_rows() self.new_generators = pd.concat([self.new_generators, dr_rows], sort=False) self.new_generators["Resource"] = snake_case_col( self.new_generators["technology"] ) return self.new_generators def create_all_generators(self): if self.current_gens: self.existing_resources = self.create_region_technology_clusters() self.new_resources = self.create_new_generators() self.all_resources = pd.concat( [self.existing_resources, self.new_resources], ignore_index=True, sort=False ) self.all_resources = self.all_resources.round(3) self.all_resources["Cap_size"] = self.all_resources["Cap_size"] self.all_resources["Heat_rate_MMBTU_per_MWh"] = self.all_resources[ "Heat_rate_MMBTU_per_MWh" ] self.all_resources = self.all_resources.reset_index(drop=True) self.all_resources["variable_CF"] = 0.0 for i, p in enumerate(self.all_resources["profile"]): if isinstance(p, (collections.Sequence, np.ndarray)): self.all_resources.loc[i, "variable_CF"] = np.mean(p) # Set Min_power of wind/solar to 0 self.all_resources.loc[self.all_resources["DISP"] == 1, "Min_power"] = 0 self.all_resources["R_ID"] = np.arange(len(self.all_resources)) + 1 if self.current_gens: logger.info( f"Capacity of {self.all_resources['Existing_Cap_MW'].sum()} MW in final clusters" ) return self.all_resources
35.146183
97
0.627684
69bf4f90c112cfdcb70a009f749c3a71f9f17f0e
15,853
py
Python
src/etos_lib/lib/events.py
fredjn/etos-library
f0fe414abae178f36314dfc3ea25353b7d8780bb
[ "Apache-2.0" ]
null
null
null
src/etos_lib/lib/events.py
fredjn/etos-library
f0fe414abae178f36314dfc3ea25353b7d8780bb
[ "Apache-2.0" ]
3
2020-09-28T12:02:39.000Z
2022-01-20T08:39:52.000Z
src/etos_lib/lib/events.py
fredjn/etos-library
f0fe414abae178f36314dfc3ea25353b7d8780bb
[ "Apache-2.0" ]
3
2020-09-25T11:16:28.000Z
2020-12-02T10:16:07.000Z
# Copyright 2020-2021 Axis Communications AB. # # For a full list of individual contributors, please see the commit history. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ETOS Library event helper module.""" from eiffellib.events import EiffelActivityTriggeredEvent from eiffellib.events import EiffelActivityStartedEvent from eiffellib.events import EiffelActivityFinishedEvent from eiffellib.events import EiffelActivityCanceledEvent from eiffellib.events import EiffelAnnouncementPublishedEvent from eiffellib.events import EiffelConfidenceLevelModifiedEvent from eiffellib.events import EiffelEnvironmentDefinedEvent from eiffellib.events import EiffelTestSuiteStartedEvent from eiffellib.events import EiffelTestSuiteFinishedEvent from eiffellib.events import EiffelTestExecutionRecipeCollectionCreatedEvent from eiffellib.events import EiffelTestCaseTriggeredEvent from eiffellib.events import EiffelTestCaseStartedEvent from eiffellib.events import EiffelTestCaseFinishedEvent from eiffellib.events import EiffelArtifactCreatedEvent from eiffellib.events import EiffelArtifactPublishedEvent from eiffellib.events import EiffelCompositionDefinedEvent from .debug import Debug class Events: """Helper class for sending eiffel events.""" def __init__(self, publisher): """Initialize event helper.""" self.publisher = publisher self.debug = Debug() def __del__(self): """Delete reference to eiffel publisher.""" self.publisher = None def send(self, event, links, data): """Build an event and send it with an eiffel publisher. :param event: Initialized event to send. :type event: :obj:`eiffel.events.base_event.BaseEvent` :param links: Dictionary of links to add to event. :type links: dict :param data: Dictionary of data to add to event. :type data: dict :return: The event that was created with data and links added. :rtype: :obj:`eiffel.events.base_event.BaseEvent` """ for key, value in links.items(): if isinstance(value, list): for link in value: event.links.add(key.upper(), link) else: event.links.add(key.upper(), value) for key, value in data.items(): event.data.add(key, value) event.validate() self.debug.events_published.append(event) event.tag = self.debug.routing_key_tag if not self.debug.disable_sending_events: self.publisher.send_event(event) return event def send_activity_triggered(self, name, links=None, **optional): """Send activity triggered event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelActivityTriggeredEvent.md :param name: Name of the activity :type name: str :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict :return: The event that was created with data and links added. :rtype: :obj:`eiffel.events.EiffelActivityTriggeredEvent` """ links = links if links is not None else {} data = {"name": name} data.update(**optional) return self.send(EiffelActivityTriggeredEvent(), links, data) def send_activity_canceled(self, triggered, links=None, **optional): """Send activity canceled event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelActivityCanceledEvent.md :param triggered: Event ID of activity triggered event which is canceled. :type triggered: str :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} links.update({"ACTIVITY_EXECUTION": triggered}) data = optional return self.send(EiffelActivityCanceledEvent(), links, data) def send_activity_started(self, triggered, links=None, **optional): """Send activity started event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelActivityStartedEvent.md :param triggered: Event ID of activity triggered event which is started. :type triggered: str :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} links.update({"ACTIVITY_EXECUTION": triggered}) data = optional return self.send(EiffelActivityStartedEvent(), links, data) def send_activity_finished(self, triggered, outcome, links=None, **optional): """Send activity finished event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelActivityFinishedEvent.md :param triggered: Event ID of activity triggered event which is finished. :type triggered: str :param outcome: Outcome of the activity. :type outcome: dict :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} links.update({"ACTIVITY_EXECUTION": triggered}) data = {"outcome": outcome} data.update(**optional) return self.send(EiffelActivityFinishedEvent(), links, data) def send_environment_defined(self, name, links=None, **optional): """Send environment defined event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelEnvironmentDefinedEvent.md :param name: Name of environment. :type name: str :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ if ( optional.get("image") is None and optional.get("host") is None and optional.get("uri") is None ): raise Exception("At least one of 'host', 'image' or 'uri' must be provided") links = links if links is not None else {} data = {"name": name} data.update(**optional) return self.send(EiffelEnvironmentDefinedEvent(), links, data) def send_test_suite_started(self, name, links=None, **optional): """Publish a test suite started event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestSuiteStartedEvent.md :param name: Name of testsuite. :type name: str :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} data = {"name": name} data.update(**optional) return self.send(EiffelTestSuiteStartedEvent(), links, data) def send_test_suite_finished(self, test_suite, links=None, **optional): """Publish a test suite finished event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestSuiteFinishedEvent.md :param test_suite: A reference to the started test suite. :type test_suite: :obj:`eiffel.events.base_event.BaseEvent` :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} links.update({"TEST_SUITE_EXECUTION": test_suite}) data = optional return self.send(EiffelTestSuiteFinishedEvent(), links, data) def send_announcement_published( self, heading, body, severity, links=None, **optional ): """Publish an announcement event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelAnnouncementPublishedEvent.md :param heading: Heading for the announcement. :type heading: str :param body: Body for the announcement. :type body: str :param severity: Severity of the incident. :type severity: str :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} data = {"heading": heading, "body": body, "severity": severity} data.update(**optional) return self.send(EiffelAnnouncementPublishedEvent(), links, data) def send_test_execution_recipe_collection_created( self, selection_strategy, links=None, **optional ): """Publish a TERCC event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestExecutionRecipeCollectionCreatedEvent.md :param selection_strategy: Selection strategy used by tercc :type selection_strategy: dict :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ if optional.get("batches") is None and optional.get("batchesUri") is None: raise Exception( "At least one of 'batches' or 'batchesUri' must be provided" ) links = links if links is not None else {} data = {"selectionStrategy": selection_strategy} data.update(**optional) return self.send(EiffelTestExecutionRecipeCollectionCreatedEvent(), links, data) def send_confidence_level_modified(self, name, value, links=None, **optional): """Publish a confidence level event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelConfidenceLevelModifiedEvent.md :param name: Name of confidence level. :type name: str :param value: Value of confidence. :type value: str :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} data = {"name": name, "value": value} data.update(**optional) return self.send(EiffelConfidenceLevelModifiedEvent(), links, data) def send_test_case_triggered(self, test_case, iut, links=None, **optional): """Publish a confidence level event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestCaseTriggeredEvent.md :param test_case: TestCase that has been triggered. :type test_case: dict :param iut: Item under test. :type iut: :obj:`eiffel.events.base_event.BaseEvent` :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} links.update({"IUT": iut}) data = {"testCase": test_case} data.update(**optional) return self.send(EiffelTestCaseTriggeredEvent(), links, data) def send_test_case_started(self, test_case, links=None, **optional): """Publish a confidence level event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestCaseStartedEvent.md :param test_case: Item under test. :type test_case: :obj:`eiffel.events.base_event.BaseEvent` :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} links.update({"TEST_CASE_EXECUTION": test_case}) data = optional return self.send(EiffelTestCaseStartedEvent(), links, data) def send_test_case_finished(self, test_case, outcome, links=None, **optional): """Publish a confidence level event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestCaseFinishedEvent.md :param test_case: Item under test. :type test_case: :obj:`eiffel.events.base_event.BaseEvent` :param outcome: Outcome of the test case. :type outcome: dict :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} links.update({"TEST_CASE_EXECUTION": test_case}) data = {"outcome": outcome} data.update(**optional) return self.send(EiffelTestCaseFinishedEvent(), links, data) def send_artifact_created_event(self, identity, links=None, **optional): """Publish an artifact created event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelArtifactCreatedEvent.md :param identity: PURL identity specification :type identity: str :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} data = {"identity": identity} data.update(**optional) return self.send(EiffelArtifactCreatedEvent(), links, data) def send_artifact_published_event( self, locations, artifact, links=None, **optional ): """Publish an artifact created event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelArtifactPublishedEvent.md :param locations: Locations for this artifact. :type locations: list :param artifact: Artifact created link. :type artifact: :obj:`eiffel.events.base_event.BaseEvent` :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} links.update({"ARTIFACT": artifact}) data = {"locations": locations} data.update(**optional) return self.send(EiffelArtifactPublishedEvent(), links, data) def send_composition_defined_event(self, name, links=None, **optional): """Publish a composition defined event. https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelCompositionDefinedEvent.md :param name: Name of composition :type name: str :param links: Optional links to add to event. :type links: dict :param optional: Dictionary of optional data to add. :type optional: dict """ links = links if links is not None else {} data = {"name": name} data.update(**optional) return self.send(EiffelCompositionDefinedEvent(), links, data)
41.5
131
0.668202
ed475f8222ae28b790324c16f0c9863194da2b5f
1,690
py
Python
salt/grains/extra.py
markgras/salt
d66cd3c935533c63870b83228b978ce43e0ef70d
[ "Apache-2.0" ]
null
null
null
salt/grains/extra.py
markgras/salt
d66cd3c935533c63870b83228b978ce43e0ef70d
[ "Apache-2.0" ]
1
2017-07-10T21:44:39.000Z
2017-07-10T21:44:39.000Z
salt/grains/extra.py
markgras/salt
d66cd3c935533c63870b83228b978ce43e0ef70d
[ "Apache-2.0" ]
1
2021-08-19T13:30:13.000Z
2021-08-19T13:30:13.000Z
import logging import os import salt.utils.data import salt.utils.files import salt.utils.platform import salt.utils.yaml __proxyenabled__ = ["*"] log = logging.getLogger(__name__) def shell(): """ Return the default shell to use on this system """ # Provides: # shell if salt.utils.platform.is_windows(): env_var = "COMSPEC" default = r"C:\Windows\system32\cmd.exe" else: env_var = "SHELL" default = "/bin/sh" return {"shell": os.environ.get(env_var, default)} def config(): """ Return the grains set in the grains file """ if "conf_file" not in __opts__: return {} if os.path.isdir(__opts__["conf_file"]): if salt.utils.platform.is_proxy(): gfn = os.path.join( __opts__["conf_file"], "proxy.d", __opts__["id"], "grains" ) else: gfn = os.path.join(__opts__["conf_file"], "grains") else: if salt.utils.platform.is_proxy(): gfn = os.path.join( os.path.dirname(__opts__["conf_file"]), "proxy.d", __opts__["id"], "grains", ) else: gfn = os.path.join(os.path.dirname(__opts__["conf_file"]), "grains") if os.path.isfile(gfn): log.debug("Loading static grains from %s", gfn) with salt.utils.files.fopen(gfn, "rb") as fp_: try: return salt.utils.data.decode(salt.utils.yaml.safe_load(fp_)) except Exception: # pylint: disable=broad-except log.warning("Bad syntax in grains file! Skipping.") return {} return {}
27.704918
80
0.556213
7756cd889b741435a27128beb664f52b38def04c
13,463
py
Python
RI/TP2/indexer.py
lengors/ua-repository
4a2ff60af8b190783e1992fe8edb40fc1147224a
[ "MIT" ]
null
null
null
RI/TP2/indexer.py
lengors/ua-repository
4a2ff60af8b190783e1992fe8edb40fc1147224a
[ "MIT" ]
null
null
null
RI/TP2/indexer.py
lengors/ua-repository
4a2ff60af8b190783e1992fe8edb40fc1147224a
[ "MIT" ]
null
null
null
from corpus_reader import CorpusReader from tokenization import Tokenizer import collections, math, psutil import os, shutil, gc class Indexer: class __InnerIndexer: def __init__(self, tokenizer : Tokenizer, index_folder : str, max_memory_usage : float = 20): self.terms = {} self.segments = [] self.documents = set() self.__disposed = False self.tokenizer = tokenizer self.index_folder = index_folder self.max_memory_usage = max_memory_usage self.process = psutil.Process(os.getpid()) self._write_function = self._write_unranked self._parse_function = self._parse_unranked self._merge_function = self._merge_unranked self.temp_index_folder = os.path.join(index_folder, 'blocks') self.segm_index_folder = os.path.join(index_folder, 'segments') if not os.path.isdir(index_folder): os.mkdir(index_folder) if not os.path.isdir(self.temp_index_folder): os.mkdir(self.temp_index_folder) if not os.path.isdir(self.segm_index_folder): os.mkdir(self.segm_index_folder) def __del__(self): self.dispose() def dispatch(self): if type(self.terms) != collections.OrderedDict: self.sort() filename = os.path.join(self.temp_index_folder, 'block-{}'.format(len(os.listdir(self.temp_index_folder)))) with open(filename, 'w') as fout: fout.write(self.__str__()) self.terms = {} gc.collect() def dispose(self): if not self.__disposed: shutil.rmtree(self.index_folder) self.__disposed = True def index(self, corpus_reader : CorpusReader): for pmid, document in corpus_reader.items(): self.update(pmid, document) self.documents.add(pmid) if self.process.memory_percent() >= self.max_memory_usage: self.dispatch() def merge(self, calculate_tfidf : bool = False): self.segments.clear() # select which function to use write_func = self.__write_forced_ranked if calculate_tfidf else self._write_function # sort in-memory terms if necessary if type(self.terms) != collections.OrderedDict: self.sort() # get in disk blocks filenames = [ filename for filename in [ os.path.join(self.temp_index_folder, filename) for filename in os.listdir(self.temp_index_folder) ] if os.path.isfile(filename) ] files = [ open(filename, 'r') for filename in filenames ] # output file output_filename = os.path.join(self.segm_index_folder, 'segment-{}'.format(len(os.listdir(self.segm_index_folder)))) output_file = open(output_filename, 'w') # current term for each sorted block lines = [ self._parse_function(line) for line in [ file.readline() for file in files ] if line and len(line.strip()) > 0 ] if len(self.terms) > 0: lines.append(self.terms.popitem(0)) # temporary list to store terms before writing them to disk output = list() # gets first term (in order) cline = self.__get_line(lines, files, self._parse_function) # while terms to process are available while len(lines) > 0: # gets next term (in order) line = self.__get_line(lines, files, self._parse_function) # checks if current term and next term are mergable if line[0] == cline[0]: # merges them cline = (cline[0], self._merge_function(cline[1], line[1])) # else else: # stores stringified version of term (and associated data) output.append(write_func(cline)) # if too much memory in use then write to file stored terms if self.process.memory_percent() >= self.max_memory_usage: self.__flush(output, output_file, output_filename) output_filename = os.path.join(self.segm_index_folder, 'segment-{}'.format(len(os.listdir(self.segm_index_folder)))) output_file = open(output_filename, 'w') gc.collect() # update current term cline = line # stores stringified version of last term output.append(write_func(cline)) self.__flush(output, output_file, output_filename) # deletes temporary blocks in disk shutil.rmtree(self.temp_index_folder) # sets if the data is ranked or not if calculate_tfidf: self._write_function = self._write_ranked self._parse_function = self._parse_ranked # self._merge_function = self._merge_ranked def sort(self): self.terms = collections.OrderedDict(sorted(self.terms.items())) def update(self, pmid, document): terms = self.terms for i, term in enumerate(self.tokenizer.tokenize(document)): documents = terms.setdefault(term, {}) documents[pmid] = documents.get(pmid, 0) + 1 def _merge_unranked(self, docs0 : dict, docs1 : dict): return { key : docs0.get(key, 0) + docs1.get(key, 0) for key in docs0.keys() | docs1.keys() } def _parse_ranked(self, line : str): term, value = line.split(':', 1) idf, *docs = value.split(';') return (term, (float(idf), { pmid : (float(weight), round(10 ** (float(weight) / float(idf) - 1))) for pmid, weight in [ doc.split(':') for doc in docs ] })) def _parse_unranked(self, line : str): term, *docs = line.split(';') return (term, { key : int(value) for key, value in [ doc.split(':') for doc in docs ] }) def _rank(self, line : tuple): term, documents = line idf = math.log10(len(self.documents) / len(documents)) for pmid, count in documents.items(): documents[pmid] = ((1 + math.log10(count)) * idf, count) return (term, (idf, documents)) def _write_ranked(self, line : tuple): return '{}:{};{}'.format(line[0], line[1][0], ';'.join([ '{}:{}'.format(pmid, weight) for pmid, (weight, count) in line[1][1].items() ])) def _write_unranked(self, line : tuple): return '{};{}'.format(line[0], ';'.join([ '{}:{}'.format(pmid, count) for pmid, count in line[1].items() ])) def __repr__(self): return self.__str__() def __str__(self): return '\n'.join([ self._write_function(item) for item in self.terms.items() ]) def __flush(self, output : list, output_file, output_filename : str): self.segments.append((output[0][0], output[-1][0], output_filename)) output_file.write('\n'.join(output)) output_file.close() output.clear() def __get_line(self, lines, files, parse_func): i, line = min(enumerate(lines), key = lambda line: line[1][0]) if i >= len(files): if len(self.terms) > 0: lines[i] = self.terms.popitem(0) else: lines.pop(i) else: new_line = files[i].readline() if not new_line or len(new_line.strip()) == 0: lines.pop(i) files[i].close() files.pop(i) else: lines[i] = parse_func(new_line) return line def __get_segment(self, key): segment = [ filename for start, end, filename in self.segments if key >= start and key <= end ] return segment[0] if len(segment) > 0 else None def __load_segment(self, segment): with open(segment, 'r') as fin: self.terms = collections.OrderedDict([ self._parse_function(line) for line in fin ]) return self.terms def __write_forced_ranked(self, line : tuple): return self._write_ranked(self._rank(line)) # useful functions to interact with the indexer def __contains__(self, key): if key in self.terms: return True segment = self.__get_segment(key) if segment is None: return False return key in self.__load_segment(segment) def __getitem__(self, key): value = self.terms.get(key, None) if value is not None: return value segment = self.__get_segment(key) if segment is None: raise KeyError(key) return self.__load_segment(segment)[key] def __iter__(self): for start, end, filename in self.segments: for value in iter(self.__load_segment(filename)): yield value def __len__(self): length = 0 for start, end, filename in self.segments: length += len(self.__load_segment(filename)) return length def get(self, key, default = None): value = self.terms.get(key, None) if value is not None: return value segment = self.__get_segment(key) if segment is None: return default return self.__load_segment(segment).get(key, default) def items(self): for start, end, filename in self.segments: for item in self.__load_segment(filename).items(): yield item def keys(self): for start, end, filename in self.segments: for key in self.__load_segment(filename).keys(): yield key def save(self, output): if type(output) == str: with open(output, 'w') as fin: self.save(fin) else: for start, end, filename in self.segments: with open(filename, 'r') as fin: output.write(fin.read()) def values(self): for start, end, filename in self.segments: for value in self.__load_segment(filename).values(): yield value class __InnerPositionableIndexer(__InnerIndexer): def update(self, pmid, document): terms = self.terms for i, term in enumerate(self.tokenizer.tokenize(document)): documents = terms.setdefault(term, {}) positions = documents.setdefault(pmid, []) positions.append(i) def _merge_unranked(self, docs0 : dict, docs1 : dict): return { key : sorted(docs0.get(key, []) + docs1.get(key, [])) for key in docs0.keys() | docs1.keys() } def _parse_ranked(self, line : str): term, value = line.split(':', 1) idf, *docs = value.split(';') return (term, (float(idf), { pmid : (float(weight), [ int(position) for position in positions.split(',') ]) for pmid, weight, positions in [ doc.split(':') for doc in docs ] })) def _parse_unranked(self, line : str): term, *docs = line.split(';') return (term, { pmid : [ int(position) for position in positions.split(',') ] for pmid, positions in [ doc.split(':') for doc in docs ] }) def _rank(self, line : tuple): term, documents = line idf = math.log10(len(self.documents) / len(documents)) for pmid, positions in documents.items(): documents[pmid] = ((1 + math.log10(len(positions))) * idf, positions) return (term, (idf, documents)) def _write_ranked(self, line : tuple): return '{}:{};{}'.format(line[0], line[1][0], ';'.join([ '{}:{}:{}'.format(pmid, weight, ','.join([ str(position) for position in positions ])) for pmid, (weight, positions) in line[1][1].items() ])) def _write_unranked(self, line : tuple): # line = (termo, {doc_id : [index1, index2]}) return '{};{}'.format(line[0], ';'.join([ '{}:{}'.format(pmid, ','.join([ str(position) for position in positions ])) for pmid, positions in line[1].items() ])) def __init__(self, tokenizer : Tokenizer, index_folder : str, store_positions : bool = False, max_memory_usage = 20): self.__indexer = self.__InnerPositionableIndexer(tokenizer, index_folder, max_memory_usage = max_memory_usage) if store_positions else self.__InnerIndexer(tokenizer, index_folder, max_memory_usage = max_memory_usage) def __getattr__(self, key): return getattr(self.__indexer, key) # explicit declaration of special methods required (not "intercepted" by __getattr__) def __contains__(self, key): return self.__indexer.__contains__(key) def __getitem__(self, key): return self.__indexer.__getitem__(key) def __iter__(self): return self.__indexer.__iter__() def __len__(self): return self.__indexer.__len__()
43.289389
224
0.564287
eb531edb8adf408d15b621b9b85e3cc969089b47
8,794
py
Python
simscale_sdk/models/darcy_forchheimer_medium.py
slainesimscale/simscale-python-sdk
db483eeabe558e55d020f5f829a3bf13c9c287a7
[ "MIT" ]
8
2021-01-22T13:41:03.000Z
2022-01-03T09:00:10.000Z
simscale_sdk/models/darcy_forchheimer_medium.py
slainesimscale/simscale-python-sdk
db483eeabe558e55d020f5f829a3bf13c9c287a7
[ "MIT" ]
null
null
null
simscale_sdk/models/darcy_forchheimer_medium.py
slainesimscale/simscale-python-sdk
db483eeabe558e55d020f5f829a3bf13c9c287a7
[ "MIT" ]
3
2021-03-18T15:52:52.000Z
2022-01-03T08:59:30.000Z
# coding: utf-8 """ SimScale API The version of the OpenAPI document: 0.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from simscale_sdk.configuration import Configuration class DarcyForchheimerMedium(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'type': 'str', 'name': 'str', 'coefficient_d': 'DimensionalVectorReciprocalPermeability', 'coefficient_f': 'DimensionalVectorAbsorptivity', 'orientation': 'OneOfDarcyForchheimerMediumOrientation', 'topological_reference': 'TopologicalReference', 'geometry_primitive_uuids': 'list[str]' } attribute_map = { 'type': 'type', 'name': 'name', 'coefficient_d': 'coefficientD', 'coefficient_f': 'coefficientF', 'orientation': 'orientation', 'topological_reference': 'topologicalReference', 'geometry_primitive_uuids': 'geometryPrimitiveUuids' } def __init__(self, type='DARCY_FORCHHEIMER', name=None, coefficient_d=None, coefficient_f=None, orientation=None, topological_reference=None, geometry_primitive_uuids=None, local_vars_configuration=None): # noqa: E501 """DarcyForchheimerMedium - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._type = None self._name = None self._coefficient_d = None self._coefficient_f = None self._orientation = None self._topological_reference = None self._geometry_primitive_uuids = None self.discriminator = None self.type = type if name is not None: self.name = name if coefficient_d is not None: self.coefficient_d = coefficient_d if coefficient_f is not None: self.coefficient_f = coefficient_f if orientation is not None: self.orientation = orientation if topological_reference is not None: self.topological_reference = topological_reference if geometry_primitive_uuids is not None: self.geometry_primitive_uuids = geometry_primitive_uuids @property def type(self): """Gets the type of this DarcyForchheimerMedium. # noqa: E501 Schema name: DarcyForchheimerMedium # noqa: E501 :return: The type of this DarcyForchheimerMedium. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this DarcyForchheimerMedium. Schema name: DarcyForchheimerMedium # noqa: E501 :param type: The type of this DarcyForchheimerMedium. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and type is None: # noqa: E501 raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 self._type = type @property def name(self): """Gets the name of this DarcyForchheimerMedium. # noqa: E501 :return: The name of this DarcyForchheimerMedium. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this DarcyForchheimerMedium. :param name: The name of this DarcyForchheimerMedium. # noqa: E501 :type: str """ self._name = name @property def coefficient_d(self): """Gets the coefficient_d of this DarcyForchheimerMedium. # noqa: E501 :return: The coefficient_d of this DarcyForchheimerMedium. # noqa: E501 :rtype: DimensionalVectorReciprocalPermeability """ return self._coefficient_d @coefficient_d.setter def coefficient_d(self, coefficient_d): """Sets the coefficient_d of this DarcyForchheimerMedium. :param coefficient_d: The coefficient_d of this DarcyForchheimerMedium. # noqa: E501 :type: DimensionalVectorReciprocalPermeability """ self._coefficient_d = coefficient_d @property def coefficient_f(self): """Gets the coefficient_f of this DarcyForchheimerMedium. # noqa: E501 :return: The coefficient_f of this DarcyForchheimerMedium. # noqa: E501 :rtype: DimensionalVectorAbsorptivity """ return self._coefficient_f @coefficient_f.setter def coefficient_f(self, coefficient_f): """Sets the coefficient_f of this DarcyForchheimerMedium. :param coefficient_f: The coefficient_f of this DarcyForchheimerMedium. # noqa: E501 :type: DimensionalVectorAbsorptivity """ self._coefficient_f = coefficient_f @property def orientation(self): """Gets the orientation of this DarcyForchheimerMedium. # noqa: E501 :return: The orientation of this DarcyForchheimerMedium. # noqa: E501 :rtype: OneOfDarcyForchheimerMediumOrientation """ return self._orientation @orientation.setter def orientation(self, orientation): """Sets the orientation of this DarcyForchheimerMedium. :param orientation: The orientation of this DarcyForchheimerMedium. # noqa: E501 :type: OneOfDarcyForchheimerMediumOrientation """ self._orientation = orientation @property def topological_reference(self): """Gets the topological_reference of this DarcyForchheimerMedium. # noqa: E501 :return: The topological_reference of this DarcyForchheimerMedium. # noqa: E501 :rtype: TopologicalReference """ return self._topological_reference @topological_reference.setter def topological_reference(self, topological_reference): """Sets the topological_reference of this DarcyForchheimerMedium. :param topological_reference: The topological_reference of this DarcyForchheimerMedium. # noqa: E501 :type: TopologicalReference """ self._topological_reference = topological_reference @property def geometry_primitive_uuids(self): """Gets the geometry_primitive_uuids of this DarcyForchheimerMedium. # noqa: E501 :return: The geometry_primitive_uuids of this DarcyForchheimerMedium. # noqa: E501 :rtype: list[str] """ return self._geometry_primitive_uuids @geometry_primitive_uuids.setter def geometry_primitive_uuids(self, geometry_primitive_uuids): """Sets the geometry_primitive_uuids of this DarcyForchheimerMedium. :param geometry_primitive_uuids: The geometry_primitive_uuids of this DarcyForchheimerMedium. # noqa: E501 :type: list[str] """ self._geometry_primitive_uuids = geometry_primitive_uuids def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DarcyForchheimerMedium): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, DarcyForchheimerMedium): return True return self.to_dict() != other.to_dict()
31.633094
222
0.642029
40fd1066f5d91209e56e234327a83593a61ea0c6
4,683
py
Python
airquality/hyperband/defs_regression/keras_mlp.py
javiermas/BCNAirQualityDatathon
88e0d487046a3d4b76f7757c7def2350d86766ab
[ "MIT" ]
51
2019-02-01T19:43:37.000Z
2022-03-16T09:07:03.000Z
airquality/hyperband/defs_regression/keras_mlp.py
javiermas/BCNAirQualityDatathon
88e0d487046a3d4b76f7757c7def2350d86766ab
[ "MIT" ]
2
2019-02-23T18:54:22.000Z
2019-11-09T01:30:32.000Z
airquality/hyperband/defs_regression/keras_mlp.py
javiermas/BCNAirQualityDatathon
88e0d487046a3d4b76f7757c7def2350d86766ab
[ "MIT" ]
35
2019-02-08T02:00:31.000Z
2022-03-01T23:17:00.000Z
"function (and parameter space) definitions for hyperband" "regression with Keras (multilayer perceptron)" from common_defs import * # a dict with x_train, y_train, x_test, y_test from load_data_for_regression import data from keras.models import Sequential from keras.layers.core import Dense, Dropout from keras.layers.normalization import BatchNormalization as BatchNorm from keras.callbacks import EarlyStopping from keras.layers.advanced_activations import * from sklearn.preprocessing import StandardScaler, RobustScaler, MinMaxScaler, MaxAbsScaler # # TODO: advanced activations - 'leakyrelu', 'prelu', 'elu', 'thresholdedrelu', 'srelu' max_layers = 5 max_layer_size = 100 space = { 'scaler': hp.choice( 's', ( None, 'StandardScaler', 'RobustScaler', 'MinMaxScaler', 'MaxAbsScaler' )), 'n_layers': hp.quniform( 'ls', 1, max_layers, 1 ), #'layer_size': hp.quniform( 'ls', 5, 100, 1 ), #'activation': hp.choice( 'a', ( 'relu', 'sigmoid', 'tanh' )), 'init': hp.choice( 'i', ( 'uniform', 'normal', 'glorot_uniform', 'glorot_normal', 'he_uniform', 'he_normal' )), 'batch_size': hp.choice( 'bs', ( 16, 32, 64, 128, 256 )), 'shuffle': hp.choice( 'sh', ( False, True )), 'loss': hp.choice( 'l', ( 'mean_absolute_error', 'mean_squared_error' )), 'optimizer': hp.choice( 'o', ( 'rmsprop', 'adagrad', 'adadelta', 'adam', 'adamax' )) } # for each hidden layer, we choose size, activation and extras individually for i in range( 1, max_layers + 1 ): space[ 'layer_{}_size'.format( i )] = hp.quniform( 'ls{}'.format( i ), 2, max_layer_size, 1 ) space[ 'layer_{}_activation'.format( i )] = hp.choice( 'a{}'.format( i ), ( 'relu', 'sigmoid', 'tanh' )) space[ 'layer_{}_extras'.format( i )] = hp.choice( 'e{}'.format( i ), ( { 'name': 'dropout', 'rate': hp.uniform( 'd{}'.format( i ), 0.1, 0.5 )}, { 'name': 'batchnorm' }, { 'name': None } )) def get_params(): params = sample( space ) return handle_integers( params ) # # print hidden layers config in readable way def print_layers( params ): for i in range( 1, params['n_layers'] + 1 ): print "layer {} | size: {:>3} | activation: {:<7} | extras: {}".format( i, params['layer_{}_size'.format( i )], params['layer_{}_activation'.format( i )], params['layer_{}_extras'.format( i )]['name'] ), if params['layer_{}_extras'.format( i )]['name'] == 'dropout': print "- rate: {:.1%}".format( params['layer_{}_extras'.format( i )]['rate'] ), print def print_params( params ): pprint({ k: v for k, v in params.items() if not k.startswith( 'layer_' )}) print_layers( params ) print def try_params( n_iterations, params ): print "iterations:", n_iterations print_params( params ) y_train = data['y_train'] y_test = data['y_test'] if params['scaler']: scaler = eval( "{}()".format( params['scaler'] )) x_train_ = scaler.fit_transform( data['x_train'].astype( float )) x_test_ = scaler.transform( data['x_test'].astype( float )) else: x_train_ = data['x_train'] x_test_ = data['x_test'] input_dim = x_train_.shape[1] model = Sequential() model.add( Dense( params['layer_1_size'], init = params['init'], activation = params['layer_1_activation'], input_dim = input_dim )) for i in range( int( params['n_layers'] ) - 1 ): extras = 'layer_{}_extras'.format( i + 1 ) if params[extras]['name'] == 'dropout': model.add( Dropout( params[extras]['rate'] )) elif params[extras]['name'] == 'batchnorm': model.add( BatchNorm()) model.add( Dense( params['layer_{}_size'.format( i + 2 )], init = params['init'], activation = params['layer_{}_activation'.format( i + 2 )])) model.add( Dense( 1, init = params['init'], activation = 'linear' )) model.compile( optimizer = params['optimizer'], loss = params['loss'] ) #print model.summary() # validation_data = ( x_test_, y_test ) early_stopping = EarlyStopping( monitor = 'val_loss', patience = 5, verbose = 0 ) history = model.fit( x_train_, y_train, nb_epoch = int( round( n_iterations )), batch_size = params['batch_size'], shuffle = params['shuffle'], validation_data = validation_data, callbacks = [ early_stopping ]) # p = model.predict( x_train_, batch_size = params['batch_size'] ) mse = MSE( y_train, p ) rmse = sqrt( mse ) mae = MAE( y_train, p ) print "\n# training | RMSE: {:.4f}, MAE: {:.4f}".format( rmse, mae ) # p = model.predict( x_test_, batch_size = params['batch_size'] ) mse = MSE( y_test, p ) rmse = sqrt( mse ) mae = MAE( y_test, p ) print "# testing | RMSE: {:.4f}, MAE: {:.4f}".format( rmse, mae ) return { 'loss': rmse, 'rmse': rmse, 'mae': mae, 'early_stop': model.stop_training }
30.809211
90
0.645953
6d052aadd71d8dede700a9e0b91b25988b34f579
3,251
py
Python
scripts/old_gui.py
cognigraphtravis/cognigraph
cfed2a32a4b22b15687b13b40a52e54fdbed703a
[ "MIT" ]
null
null
null
scripts/old_gui.py
cognigraphtravis/cognigraph
cfed2a32a4b22b15687b13b40a52e54fdbed703a
[ "MIT" ]
null
null
null
scripts/old_gui.py
cognigraphtravis/cognigraph
cfed2a32a4b22b15687b13b40a52e54fdbed703a
[ "MIT" ]
null
null
null
import sys from pyqtgraph import QtCore, QtGui from cognigraph.pipeline import Pipeline from cognigraph.nodes import sources, processors, outputs from cognigraph import TIME_AXIS from cognigraph.gui.window import GUIWindow app = QtGui.QApplication(sys.argv) pipeline = Pipeline() # file_path = r"/home/dmalt/Code/python/real_eyes/Koleno.eeg" file_path = r"/home/dmalt/Data/cognigraph/data/Koleno.eeg" # vhdr_file_path = r"/home/dmalt/Code/python/real_eyes/Koleno.vhdr" # vhdr_file_path = r"/home/dmalt/Data/cognigraph/data/Koleno.vhdr" # vhdr_file_path = r"/home/dmalt/Data/cognigraph/data/Koleno.fif" fwd_path = r'/home/dmalt/mne_data/MNE-sample-data/MEG/sample/dmalt_custom-fwd.fif' source = sources.FileSource(file_path=file_path) pipeline.source = source # pipeline.source = sources.LSLStreamSource(stream_name='cognigraph-mock-stream') # Processors preprocessing = processors.Preprocessing(collect_for_x_seconds=120) pipeline.add_processor(preprocessing) linear_filter = processors.LinearFilter(lower_cutoff=8.0, upper_cutoff=12.0) pipeline.add_processor(linear_filter) inverse_model = processors.InverseModel(method='MNE', forward_model_path=fwd_path, snr=1.0) pipeline.add_processor(inverse_model) # beamformer = processors.Beamformer(forward_model_path=fwd_path, output_type='activation') # pipeline.add_processor(beamformer) envelope_extractor = processors.EnvelopeExtractor() pipeline.add_processor(envelope_extractor) # Outputs global_mode = outputs.ThreeDeeBrain.LIMITS_MODES.GLOBAL three_dee_brain = outputs.ThreeDeeBrain(limits_mode=global_mode, buffer_length=6) pipeline.add_output(three_dee_brain) pipeline.add_output(outputs.LSLStreamOutput()) # pipeline.initialize_all_nodes() signal_viewer = outputs.SignalViewer() pipeline.add_output(signal_viewer, input_node=linear_filter) window = GUIWindow(pipeline=pipeline) window.init_ui() window.setWindowFlags(QtCore.Qt.WindowStaysOnTopHint) window.show() base_controls = window._controls._base_controls source_controls = base_controls.source_controls processors_controls = base_controls.processors_controls outputs_controls = base_controls.outputs_controls source_controls.source_type_combo.setValue(source_controls.SOURCE_TYPE_PLACEHOLDER) linear_filter_controls = processors_controls.children()[0] envelope_controls = processors_controls.children()[2] # envelope_controls.disabled.setValue(True) three_dee_brain_controls = outputs_controls.children()[0] three_dee_brain_controls.limits_mode_combo.setValue('Global') three_dee_brain_controls.limits_mode_combo.setValue('Local') window.initialize() def run(): pipeline.update_all_nodes() # print(pipeline.source._samples_already_read / 500) timer = QtCore.QTimer() timer.timeout.connect(run) frequency = pipeline.frequency timer.setInterval(1000. / frequency * 10) source.loop_the_file = False source.MAX_SAMPLES_IN_CHUNK = 5 # envelope.disabled = True if __name__ == '__main__': import sys timer.start() timer.stop() # TODO: this runs when in iPython. It should not. # Start Qt event loop unless running in interactive mode or using pyside. # if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): # sys.exit(QtGui.QApplication.instance().exec_())
31.563107
91
0.809289
16226e18c3da377f4a682ac331457acddf34bd6a
3,156
py
Python
isi_sdk_8_2_1/isi_sdk_8_2_1/models/copy_errors.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_2_1/isi_sdk_8_2_1/models/copy_errors.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_2_1/isi_sdk_8_2_1/models/copy_errors.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 8 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from isi_sdk_8_2_1.models.copy_errors_copy_errors import CopyErrorsCopyErrors # noqa: F401,E501 class CopyErrors(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'copy_errors': 'list[CopyErrorsCopyErrors]' } attribute_map = { 'copy_errors': 'copy_errors' } def __init__(self, copy_errors=None): # noqa: E501 """CopyErrors - a model defined in Swagger""" # noqa: E501 self._copy_errors = None self.discriminator = None if copy_errors is not None: self.copy_errors = copy_errors @property def copy_errors(self): """Gets the copy_errors of this CopyErrors. # noqa: E501 :return: The copy_errors of this CopyErrors. # noqa: E501 :rtype: list[CopyErrorsCopyErrors] """ return self._copy_errors @copy_errors.setter def copy_errors(self, copy_errors): """Sets the copy_errors of this CopyErrors. :param copy_errors: The copy_errors of this CopyErrors. # noqa: E501 :type: list[CopyErrorsCopyErrors] """ self._copy_errors = copy_errors def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CopyErrors): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
27.443478
96
0.57858
bc549e81f966823a47b077a9c3318a0992119fea
196
py
Python
runnertracker/application/root/views.py
victormartinez/runnertracker
2a390eff7866d5b96ad2a3f34391dd855cf003a6
[ "MIT" ]
null
null
null
runnertracker/application/root/views.py
victormartinez/runnertracker
2a390eff7866d5b96ad2a3f34391dd855cf003a6
[ "MIT" ]
null
null
null
runnertracker/application/root/views.py
victormartinez/runnertracker
2a390eff7866d5b96ad2a3f34391dd855cf003a6
[ "MIT" ]
null
null
null
from http import HTTPStatus from aiohttp import web class RootView(web.View): async def get(self) -> web.Response: return web.json_response({"healthy": True}, status=HTTPStatus.OK)
21.777778
73
0.719388
43ff06639f6a5d4d503984c0f67f51065ba45f54
1,437
py
Python
cookielaw/test_project/wsgi.py
selectnull/django-cookie-law
5da5c54415e99d0d489eea2aa7e471c5e6bd08e6
[ "BSD-2-Clause" ]
182
2015-04-21T13:13:12.000Z
2022-03-12T14:20:54.000Z
cookielaw/test_project/wsgi.py
selectnull/django-cookie-law
5da5c54415e99d0d489eea2aa7e471c5e6bd08e6
[ "BSD-2-Clause" ]
74
2015-01-26T11:15:08.000Z
2021-12-17T05:29:07.000Z
cookielaw/test_project/wsgi.py
selectnull/django-cookie-law
5da5c54415e99d0d489eea2aa7e471c5e6bd08e6
[ "BSD-2-Clause" ]
81
2015-01-22T09:55:59.000Z
2022-03-23T04:53:05.000Z
""" WSGI config for test_project project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os # We defer to a DJANGO_SETTINGS_MODULE already in the environment. This breaks # if running multiple sites in the same mod_wsgi process. To fix this, use # mod_wsgi daemon mode with each site in its own daemon process, or use # os.environ["DJANGO_SETTINGS_MODULE"] = "test_project.settings" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "test_project.settings") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
43.545455
79
0.80515
c519986c5e35f71d300155869de556b3fcf70a6d
60,062
py
Python
src/sentry/south_migrations/0212_auto__add_fileblob__add_field_file_blob.py
apragacz/sf-sentry
2fdd6c1195c29a1d401d1cd538c22ea68556699a
[ "BSD-3-Clause" ]
1
2018-03-05T15:40:12.000Z
2018-03-05T15:40:12.000Z
src/sentry/south_migrations/0212_auto__add_fileblob__add_field_file_blob.py
pkaminski/sentry
27e948283e27d93ca5192ca7b580830e092c25c7
[ "BSD-3-Clause" ]
5
2020-07-17T11:20:41.000Z
2021-05-09T12:16:53.000Z
src/sentry/south_migrations/0212_auto__add_fileblob__add_field_file_blob.py
zaasmi/codeerrorhelp
1ab8d3e314386b9b2d58dad9df45355bf6014ac9
[ "BSD-3-Clause" ]
2
2021-01-26T09:53:39.000Z
2022-03-22T09:01:47.000Z
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'FileBlob' db.create_table( 'sentry_fileblob', ( ( 'id', self.gf('sentry.db.models.fields.bounded.BoundedBigAutoField')( primary_key=True ) ), ('storage', self.gf('django.db.models.fields.CharField')(max_length=128)), ('storage_options', self.gf('jsonfield.fields.JSONField')(default={})), ('path', self.gf('django.db.models.fields.TextField')(null=True)), ( 'size', self.gf('sentry.db.models.fields.bounded.BoundedPositiveIntegerField')( null=True ) ), ( 'checksum', self.gf('django.db.models.fields.CharField')(unique=True, max_length=40) ), ( 'timestamp', self.gf('django.db.models.fields.DateTimeField')( default=datetime.datetime.now, db_index=True ) ), ) ) db.send_create_signal('sentry', ['FileBlob']) # Adding field 'File.blob' db.add_column( 'sentry_file', 'blob', self.gf('sentry.db.models.fields.foreignkey.FlexibleForeignKey')( to=orm['sentry.FileBlob'], null=True ), keep_default=False ) def backwards(self, orm): # Deleting model 'FileBlob' db.delete_table('sentry_fileblob') # Deleting field 'File.blob' db.delete_column('sentry_file', 'blob_id') models = { 'sentry.activity': { 'Meta': { 'object_name': 'Activity' }, 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], { 'null': 'True' }), 'datetime': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'event': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Event']", 'null': 'True' } ), 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']", 'null': 'True' } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'ident': ('django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ), 'type': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'user': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.User']", 'null': 'True' } ) }, 'sentry.apikey': { 'Meta': { 'object_name': 'ApiKey' }, 'allowed_origins': ('django.db.models.fields.TextField', [], { 'null': 'True', 'blank': 'True' }), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'unique': 'True', 'max_length': '32' }), 'label': ( 'django.db.models.fields.CharField', [], { 'default': "'Default'", 'max_length': '64', 'blank': 'True' } ), 'organization': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'key_set'", 'to': "orm['sentry.Organization']" } ), 'scopes': ('django.db.models.fields.BigIntegerField', [], { 'default': 'None' }), 'status': ( 'sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0', 'db_index': 'True' } ) }, 'sentry.auditlogentry': { 'Meta': { 'object_name': 'AuditLogEntry' }, 'actor': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'blank': 'True', 'related_name': "'audit_actors'", 'null': 'True', 'to': "orm['sentry.User']" } ), 'actor_key': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.ApiKey']", 'null': 'True', 'blank': 'True' } ), 'actor_label': ( 'django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True', 'blank': 'True' } ), 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {}), 'datetime': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'event': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'ip_address': ( 'django.db.models.fields.GenericIPAddressField', [], { 'max_length': '39', 'null': 'True' } ), 'organization': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Organization']" } ), 'target_object': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'null': 'True' }), 'target_user': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'blank': 'True', 'related_name': "'audit_targets'", 'null': 'True', 'to': "orm['sentry.User']" } ) }, 'sentry.authidentity': { 'Meta': { 'unique_together': "(('auth_provider', 'ident'), ('auth_provider', 'user'))", 'object_name': 'AuthIdentity' }, 'auth_provider': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.AuthProvider']" } ), 'data': ('jsonfield.fields.JSONField', [], { 'default': '{}' }), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'ident': ('django.db.models.fields.CharField', [], { 'max_length': '128' }), 'last_synced': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'last_verified': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'user': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.User']" } ) }, 'sentry.authprovider': { 'Meta': { 'object_name': 'AuthProvider' }, 'config': ('jsonfield.fields.JSONField', [], { 'default': '{}' }), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'default_global_access': ('django.db.models.fields.BooleanField', [], { 'default': 'True' }), 'default_role': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '50' }), 'default_teams': ( 'django.db.models.fields.related.ManyToManyField', [], { 'to': "orm['sentry.Team']", 'symmetrical': 'False', 'blank': 'True' } ), 'flags': ('django.db.models.fields.BigIntegerField', [], { 'default': '0' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'last_sync': ('django.db.models.fields.DateTimeField', [], { 'null': 'True' }), 'organization': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Organization']", 'unique': 'True' } ), 'provider': ('django.db.models.fields.CharField', [], { 'max_length': '128' }), 'sync_time': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'null': 'True' }) }, 'sentry.broadcast': { 'Meta': { 'object_name': 'Broadcast' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'is_active': ('django.db.models.fields.BooleanField', [], { 'default': 'True', 'db_index': 'True' }), 'link': ( 'django.db.models.fields.URLField', [], { 'max_length': '200', 'null': 'True', 'blank': 'True' } ), 'message': ('django.db.models.fields.CharField', [], { 'max_length': '256' }), 'title': ('django.db.models.fields.CharField', [], { 'max_length': '32' }) }, 'sentry.broadcastseen': { 'Meta': { 'unique_together': "(('broadcast', 'user'),)", 'object_name': 'BroadcastSeen' }, 'broadcast': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Broadcast']" } ), 'date_seen': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'user': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.User']" } ) }, 'sentry.event': { 'Meta': { 'unique_together': "(('project', 'event_id'),)", 'object_name': 'Event', 'db_table': "'sentry_message'", 'index_together': "(('group', 'datetime'),)" }, 'data': ('sentry.db.models.fields.node.NodeField', [], { 'null': 'True', 'blank': 'True' }), 'datetime': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'db_index': 'True' } ), 'event_id': ( 'django.db.models.fields.CharField', [], { 'max_length': '32', 'null': 'True', 'db_column': "'message_id'" } ), 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'blank': 'True', 'related_name': "'event_set'", 'null': 'True', 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'message': ('django.db.models.fields.TextField', [], {}), 'num_comments': ( 'sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0', 'null': 'True' } ), 'platform': ('django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ), 'time_spent': ('sentry.db.models.fields.bounded.BoundedIntegerField', [], { 'null': 'True' }) }, 'sentry.eventmapping': { 'Meta': { 'unique_together': "(('project', 'event_id'),)", 'object_name': 'EventMapping' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'event_id': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ) }, 'sentry.eventuser': { 'Meta': { 'unique_together': "(('project', 'ident'), ('project', 'hash'))", 'object_name': 'EventUser', 'index_together': "(('project', 'email'), ('project', 'username'), ('project', 'ip_address'))" }, 'date_added': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'db_index': 'True' } ), 'email': ('django.db.models.fields.EmailField', [], { 'max_length': '75', 'null': 'True' }), 'hash': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'ident': ('django.db.models.fields.CharField', [], { 'max_length': '128', 'null': 'True' }), 'ip_address': ( 'django.db.models.fields.GenericIPAddressField', [], { 'max_length': '39', 'null': 'True' } ), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ), 'username': ('django.db.models.fields.CharField', [], { 'max_length': '128', 'null': 'True' }) }, 'sentry.file': { 'Meta': { 'object_name': 'File' }, 'blob': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.FileBlob']", 'null': 'True' } ), 'checksum': ('django.db.models.fields.CharField', [], { 'max_length': '40', 'null': 'True' }), 'headers': ('jsonfield.fields.JSONField', [], { 'default': '{}' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'name': ('django.db.models.fields.CharField', [], { 'max_length': '128' }), 'path': ('django.db.models.fields.TextField', [], { 'null': 'True' }), 'size': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'null': 'True' }), 'storage': ('django.db.models.fields.CharField', [], { 'max_length': '128', 'null': 'True' }), 'storage_options': ('jsonfield.fields.JSONField', [], { 'default': '{}' }), 'timestamp': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'db_index': 'True' } ), 'type': ('django.db.models.fields.CharField', [], { 'max_length': '64' }) }, 'sentry.fileblob': { 'Meta': { 'object_name': 'FileBlob' }, 'checksum': ('django.db.models.fields.CharField', [], { 'unique': 'True', 'max_length': '40' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'path': ('django.db.models.fields.TextField', [], { 'null': 'True' }), 'size': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'null': 'True' }), 'storage': ('django.db.models.fields.CharField', [], { 'max_length': '128' }), 'storage_options': ('jsonfield.fields.JSONField', [], { 'default': '{}' }), 'timestamp': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'db_index': 'True' } ) }, 'sentry.group': { 'Meta': { 'object_name': 'Group', 'db_table': "'sentry_groupedmessage'", 'index_together': "(('project', 'first_release'),)" }, 'active_at': ('django.db.models.fields.DateTimeField', [], { 'null': 'True', 'db_index': 'True' }), 'culprit': ( 'django.db.models.fields.CharField', [], { 'max_length': '200', 'null': 'True', 'db_column': "'view'", 'blank': 'True' } ), 'data': ( 'sentry.db.models.fields.gzippeddict.GzippedDictField', [], { 'null': 'True', 'blank': 'True' } ), 'first_release': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Release']", 'null': 'True' } ), 'first_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'db_index': 'True' } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'is_public': ( 'django.db.models.fields.NullBooleanField', [], { 'default': 'False', 'null': 'True', 'blank': 'True' } ), 'last_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'db_index': 'True' } ), 'level': ( 'sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '40', 'db_index': 'True', 'blank': 'True' } ), 'logger': ( 'django.db.models.fields.CharField', [], { 'default': "''", 'max_length': '64', 'db_index': 'True', 'blank': 'True' } ), 'message': ('django.db.models.fields.TextField', [], {}), 'num_comments': ( 'sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0', 'null': 'True' } ), 'platform': ('django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ), 'resolved_at': ('django.db.models.fields.DateTimeField', [], { 'null': 'True', 'db_index': 'True' }), 'score': ('sentry.db.models.fields.bounded.BoundedIntegerField', [], { 'default': '0' }), 'status': ( 'sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0', 'db_index': 'True' } ), 'time_spent_count': ('sentry.db.models.fields.bounded.BoundedIntegerField', [], { 'default': '0' }), 'time_spent_total': ('sentry.db.models.fields.bounded.BoundedIntegerField', [], { 'default': '0' }), 'times_seen': ( 'sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '1', 'db_index': 'True' } ) }, 'sentry.groupassignee': { 'Meta': { 'object_name': 'GroupAssignee', 'db_table': "'sentry_groupasignee'" }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'assignee_set'", 'unique': 'True', 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'assignee_set'", 'to': "orm['sentry.Project']" } ), 'user': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'sentry_assignee_set'", 'to': "orm['sentry.User']" } ) }, 'sentry.groupbookmark': { 'Meta': { 'unique_together': "(('project', 'user', 'group'),)", 'object_name': 'GroupBookmark' }, 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'bookmark_set'", 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'bookmark_set'", 'to': "orm['sentry.Project']" } ), 'user': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'sentry_bookmark_set'", 'to': "orm['sentry.User']" } ) }, 'sentry.groupemailthread': { 'Meta': { 'unique_together': "(('email', 'group'), ('email', 'msgid'))", 'object_name': 'GroupEmailThread' }, 'date': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'db_index': 'True' } ), 'email': ('django.db.models.fields.EmailField', [], { 'max_length': '75' }), 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'groupemail_set'", 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'msgid': ('django.db.models.fields.CharField', [], { 'max_length': '100' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'groupemail_set'", 'to': "orm['sentry.Project']" } ) }, 'sentry.grouphash': { 'Meta': { 'unique_together': "(('project', 'hash'),)", 'object_name': 'GroupHash' }, 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']", 'null': 'True' } ), 'hash': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ) }, 'sentry.groupmeta': { 'Meta': { 'unique_together': "(('group', 'key'),)", 'object_name': 'GroupMeta' }, 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'value': ('django.db.models.fields.TextField', [], {}) }, 'sentry.grouprulestatus': { 'Meta': { 'unique_together': "(('rule', 'group'),)", 'object_name': 'GroupRuleStatus' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'last_active': ('django.db.models.fields.DateTimeField', [], { 'null': 'True' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ), 'rule': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Rule']" } ), 'status': ('django.db.models.fields.PositiveSmallIntegerField', [], { 'default': '0' }) }, 'sentry.groupseen': { 'Meta': { 'unique_together': "(('user', 'group'),)", 'object_name': 'GroupSeen' }, 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'last_seen': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ), 'user': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.User']", 'db_index': 'False' } ) }, 'sentry.grouptagkey': { 'Meta': { 'unique_together': "(('project', 'group', 'key'),)", 'object_name': 'GroupTagKey' }, 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ), 'values_seen': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0' }) }, 'sentry.grouptagvalue': { 'Meta': { 'unique_together': "(('project', 'key', 'value', 'group'),)", 'object_name': 'GroupTagValue', 'db_table': "'sentry_messagefiltervalue'" }, 'first_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True' } ), 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'grouptag'", 'to': "orm['sentry.Group']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'last_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True' } ), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'grouptag'", 'null': 'True', 'to': "orm['sentry.Project']" } ), 'times_seen': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0' }), 'value': ('django.db.models.fields.CharField', [], { 'max_length': '200' }) }, 'sentry.helppage': { 'Meta': { 'object_name': 'HelpPage' }, 'content': ('django.db.models.fields.TextField', [], {}), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'is_visible': ('django.db.models.fields.BooleanField', [], { 'default': 'True' }), 'key': ( 'django.db.models.fields.CharField', [], { 'max_length': '64', 'unique': 'True', 'null': 'True' } ), 'priority': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '50' }), 'title': ('django.db.models.fields.CharField', [], { 'max_length': '64' }) }, 'sentry.lostpasswordhash': { 'Meta': { 'object_name': 'LostPasswordHash' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'hash': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'user': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.User']", 'unique': 'True' } ) }, 'sentry.option': { 'Meta': { 'object_name': 'Option' }, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'unique': 'True', 'max_length': '64' }), 'last_updated': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'value': ('sentry.db.models.fields.pickle.UnicodePickledObjectField', [], {}) }, 'sentry.organization': { 'Meta': { 'object_name': 'Organization' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'default_role': ('django.db.models.fields.CharField', [], { 'default': "'member'", 'max_length': '32' }), 'flags': ('django.db.models.fields.BigIntegerField', [], { 'default': '1' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'members': ( 'django.db.models.fields.related.ManyToManyField', [], { 'related_name': "'org_memberships'", 'symmetrical': 'False', 'through': "orm['sentry.OrganizationMember']", 'to': "orm['sentry.User']" } ), 'name': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'slug': ('django.db.models.fields.SlugField', [], { 'unique': 'True', 'max_length': '50' }), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0' }) }, 'sentry.organizationaccessrequest': { 'Meta': { 'unique_together': "(('team', 'member'),)", 'object_name': 'OrganizationAccessRequest' }, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'member': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.OrganizationMember']" } ), 'team': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Team']" } ) }, 'sentry.organizationmember': { 'Meta': { 'unique_together': "(('organization', 'user'), ('organization', 'email'))", 'object_name': 'OrganizationMember' }, 'counter': ( 'sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'null': 'True', 'blank': 'True' } ), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'email': ( 'django.db.models.fields.EmailField', [], { 'max_length': '75', 'null': 'True', 'blank': 'True' } ), 'flags': ('django.db.models.fields.BigIntegerField', [], { 'default': '0' }), 'has_global_access': ('django.db.models.fields.BooleanField', [], { 'default': 'True' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'organization': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'member_set'", 'to': "orm['sentry.Organization']" } ), 'role': ('django.db.models.fields.CharField', [], { 'default': "'member'", 'max_length': '32' }), 'teams': ( 'django.db.models.fields.related.ManyToManyField', [], { 'to': "orm['sentry.Team']", 'symmetrical': 'False', 'through': "orm['sentry.OrganizationMemberTeam']", 'blank': 'True' } ), 'type': ( 'sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '50', 'blank': 'True' } ), 'user': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'blank': 'True', 'related_name': "'sentry_orgmember_set'", 'null': 'True', 'to': "orm['sentry.User']" } ) }, 'sentry.organizationmemberteam': { 'Meta': { 'unique_together': "(('team', 'organizationmember'),)", 'object_name': 'OrganizationMemberTeam', 'db_table': "'sentry_organizationmember_teams'" }, 'id': ('sentry.db.models.fields.bounded.BoundedAutoField', [], { 'primary_key': 'True' }), 'is_active': ('django.db.models.fields.BooleanField', [], { 'default': 'True' }), 'organizationmember': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.OrganizationMember']" } ), 'team': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Team']" } ) }, 'sentry.project': { 'Meta': { 'unique_together': "(('team', 'slug'), ('organization', 'slug'))", 'object_name': 'Project' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'first_event': ('django.db.models.fields.DateTimeField', [], { 'null': 'True' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'name': ('django.db.models.fields.CharField', [], { 'max_length': '200' }), 'organization': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Organization']" } ), 'public': ('django.db.models.fields.BooleanField', [], { 'default': 'False' }), 'slug': ('django.db.models.fields.SlugField', [], { 'max_length': '50', 'null': 'True' }), 'status': ( 'sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0', 'db_index': 'True' } ), 'team': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Team']" } ) }, 'sentry.projectkey': { 'Meta': { 'object_name': 'ProjectKey' }, 'date_added': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True' } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'label': ( 'django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True', 'blank': 'True' } ), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'related_name': "'key_set'", 'to': "orm['sentry.Project']" } ), 'public_key': ( 'django.db.models.fields.CharField', [], { 'max_length': '32', 'unique': 'True', 'null': 'True' } ), 'roles': ('django.db.models.fields.BigIntegerField', [], { 'default': '1' }), 'secret_key': ( 'django.db.models.fields.CharField', [], { 'max_length': '32', 'unique': 'True', 'null': 'True' } ), 'status': ( 'sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0', 'db_index': 'True' } ) }, 'sentry.projectoption': { 'Meta': { 'unique_together': "(('project', 'key'),)", 'object_name': 'ProjectOption', 'db_table': "'sentry_projectoptions'" }, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ), 'value': ('sentry.db.models.fields.pickle.UnicodePickledObjectField', [], {}) }, 'sentry.release': { 'Meta': { 'unique_together': "(('project', 'version'),)", 'object_name': 'Release' }, 'data': ('jsonfield.fields.JSONField', [], { 'default': '{}' }), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'date_released': ('django.db.models.fields.DateTimeField', [], { 'null': 'True', 'blank': 'True' }), 'date_started': ('django.db.models.fields.DateTimeField', [], { 'null': 'True', 'blank': 'True' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'new_groups': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0' }), 'owner': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.User']", 'null': 'True', 'blank': 'True' } ), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ), 'ref': ( 'django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True', 'blank': 'True' } ), 'url': ( 'django.db.models.fields.URLField', [], { 'max_length': '200', 'null': 'True', 'blank': 'True' } ), 'version': ('django.db.models.fields.CharField', [], { 'max_length': '64' }) }, 'sentry.releasefile': { 'Meta': { 'unique_together': "(('release', 'ident'),)", 'object_name': 'ReleaseFile' }, 'file': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.File']" } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'ident': ('django.db.models.fields.CharField', [], { 'max_length': '40' }), 'name': ('django.db.models.fields.TextField', [], {}), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ), 'release': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Release']" } ) }, 'sentry.rule': { 'Meta': { 'object_name': 'Rule' }, 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {}), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'label': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ) }, 'sentry.savedsearch': { 'Meta': { 'unique_together': "(('project', 'name'),)", 'object_name': 'SavedSearch' }, 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'name': ('django.db.models.fields.CharField', [], { 'max_length': '128' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ), 'query': ('django.db.models.fields.TextField', [], {}) }, 'sentry.tagkey': { 'Meta': { 'unique_together': "(('project', 'key'),)", 'object_name': 'TagKey', 'db_table': "'sentry_filterkey'" }, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'label': ('django.db.models.fields.CharField', [], { 'max_length': '64', 'null': 'True' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0' }), 'values_seen': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0' }) }, 'sentry.tagvalue': { 'Meta': { 'unique_together': "(('project', 'key', 'value'),)", 'object_name': 'TagValue', 'db_table': "'sentry_filtervalue'" }, 'data': ( 'sentry.db.models.fields.gzippeddict.GzippedDictField', [], { 'null': 'True', 'blank': 'True' } ), 'first_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True' } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'last_seen': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True' } ), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ), 'times_seen': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0' }), 'value': ('django.db.models.fields.CharField', [], { 'max_length': '200' }) }, 'sentry.team': { 'Meta': { 'unique_together': "(('organization', 'slug'),)", 'object_name': 'Team' }, 'date_added': ( 'django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now', 'null': 'True' } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'name': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'organization': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Organization']" } ), 'slug': ('django.db.models.fields.SlugField', [], { 'max_length': '50' }), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], { 'default': '0' }) }, 'sentry.user': { 'Meta': { 'object_name': 'User', 'db_table': "'auth_user'" }, 'date_joined': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'email': ('django.db.models.fields.EmailField', [], { 'max_length': '75', 'blank': 'True' }), 'first_name': ('django.db.models.fields.CharField', [], { 'max_length': '30', 'blank': 'True' }), 'id': ('sentry.db.models.fields.bounded.BoundedAutoField', [], { 'primary_key': 'True' }), 'is_active': ('django.db.models.fields.BooleanField', [], { 'default': 'True' }), 'is_managed': ('django.db.models.fields.BooleanField', [], { 'default': 'False' }), 'is_staff': ('django.db.models.fields.BooleanField', [], { 'default': 'False' }), 'is_superuser': ('django.db.models.fields.BooleanField', [], { 'default': 'False' }), 'last_login': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'last_name': ('django.db.models.fields.CharField', [], { 'max_length': '30', 'blank': 'True' }), 'password': ('django.db.models.fields.CharField', [], { 'max_length': '128' }), 'username': ('django.db.models.fields.CharField', [], { 'unique': 'True', 'max_length': '128' }) }, 'sentry.useroption': { 'Meta': { 'unique_together': "(('user', 'project', 'key'),)", 'object_name': 'UserOption' }, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'key': ('django.db.models.fields.CharField', [], { 'max_length': '64' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']", 'null': 'True' } ), 'user': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.User']" } ), 'value': ('sentry.db.models.fields.pickle.UnicodePickledObjectField', [], {}) }, 'sentry.userreport': { 'Meta': { 'object_name': 'UserReport', 'index_together': "(('project', 'event_id'),)" }, 'comments': ('django.db.models.fields.TextField', [], {}), 'date_added': ('django.db.models.fields.DateTimeField', [], { 'default': 'datetime.datetime.now' }), 'email': ('django.db.models.fields.EmailField', [], { 'max_length': '75' }), 'event_id': ('django.db.models.fields.CharField', [], { 'max_length': '32' }), 'group': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Group']", 'null': 'True' } ), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], { 'primary_key': 'True' }), 'name': ('django.db.models.fields.CharField', [], { 'max_length': '128' }), 'project': ( 'sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], { 'to': "orm['sentry.Project']" } ) } } complete_apps = ['sentry']
36.269324
99
0.395375
d8e923eae84d83960ad58d4f24c21437d5ac7460
6,901
py
Python
index.py
Senarc-Studios/Semethon-API
e1c12deb1251012409d789a987d4c8df12e1b374
[ "BSD-3-Clause" ]
null
null
null
index.py
Senarc-Studios/Semethon-API
e1c12deb1251012409d789a987d4c8df12e1b374
[ "BSD-3-Clause" ]
null
null
null
index.py
Senarc-Studios/Semethon-API
e1c12deb1251012409d789a987d4c8df12e1b374
[ "BSD-3-Clause" ]
null
null
null
import os import json import string import random import asyncio from typing import Optional from cool_utils import get_data from pydantic import BaseModel from fastapi import FastAPI, WebSocket from fastapi.reponses import JSONResponse from local_cubacrypt import decypher, cypher from dotenv import find_dotenv, load_dotenv from pymongo import MongoClient load_dotenv(find_dotenv()) mongoclient = MongoClient(get_data("config", "MONGO")) mongoclient.drop_database('database') mongodb = mongoclient['database'] users = mongodb['users'] session = mongodb['sessions'] temp = mongodb['temp'] web = FastAPI() def validate_user( username, password, token = None ): query = { "username": username, "password": password } if token != None: query['token'] = token if users.count_documents(query) == 1: return True return False async def auto_purge_message(message_id): await asyncio.sleep(5) temp.delete_one({ "_id": message_id }) def generate_token(size=8, chars=string.ascii_uppercase + string.ascii_lowercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def generate_message_id(size=8, chars=string.digits): return ''.join(random.choice(chars) for _ in range(size)) def connected_users(token): for sessions in session.find({ "token": token }): return sessions["connected_users"] def add_user_to_session(token, username): query = { "token": token } payload = { "$addToSet": { "connected_users": username } } session.update_one(query, payload) def remove_user_from_session(token, username): query = { "token": token } payload = { "$pull": { "connected_users": username } } session.update_one(query, payload) def validate_username(username): if len(username) >= 20 or len(username) <= 3: return False else: return True def _create_session(username): if not validate_username(username): return json.dumps({ "complete": False, "reason": "Bad name", "code": "B01" }), 400 token = generate_token() token = f"{token}" payload = { "token": token, "username": username, "connected_users": [username] } session.insert_one(payload) return json.dumps({ "token": token }), 200, {'content-type': 'application/json'} def _join_session(username, token): if not validate_username(username): return json.dumps({ "complete": False, "reason": "Bad name", "code": "B01" }), 400 add_user_to_session(token, username) return json.dumps({ "complete": True }), 200, {'content-type': 'application/json'} def _validate_session(token): if session.count_documents({ "token": token }) == 0: return json.dumps({ "found": False }), 400, {'content-type': 'application/json'} else: return json.dumps({ "found": True }), 200, {'content-type': 'application/json'} def is_sent_before(username, password, token, message_id): if not validate_user(username, password, token): return json.dumps({ "complete": False, "reason": "Invalid Account Details." }), 401, {'content-type': 'application/json'} for data in temp.find({ "_id": message_id, "session": token }): if data["users"][username] == False: return False else: return True def process_message(data: dict): token = data['token'] username = data['username'] esm = data['esm'] query = { "token": token } if session.count_documents(query) == 0: return json.dumps({ "complete": False, "reason": "Invalid session token.", "code": "I01" }), 404, {'content-type': 'application/json'} if username in connected_users(token): message_id = generate_message_id() message_id = f"{message_id}" payload = { "_id": message_id, "session": token, "author": username, "esm": esm, "users": {} } for user in connected_users(token): template = { "_id": message_id, "users": { f"{user}": False } } payload.update(template) temp.insert_one(payload) return json.dumps({ "complete": True }), 200, {'content-type': 'application/json'} else: return json.dumps({ "complete": False, "reason": "User not in session.", "code": "I02" }), 400, {'content-type': 'application/json'} def send_new_messages(username, password, token): if not validate_user(username, password, token): return json.dumps({'complete': False, 'reason': "Incorrect Password"}), 401, {'content-type': 'application/json'} if username in connected_users(token): for message in temp.find({}): if temp.count_documents({ "session": token }) == 0: return "No new messages", 404 if message["session"] == token and is_sent_before(username, password, token, message["_id"]): query = { "_id": message["_id"], "session": token, "esm": message["esm"] } update_payload = { "$set": { "_id": message["_id"], "users": { f"{username}": True } } } temp.update_one(query, update_payload) payload = { "author": message["author"], "esm": message["esm"] } else: return "No new messages", 404 return json.dumps(payload), 200, {'content-type': 'application/json'} def _delete_session(token, username, password): if not validate_user(username, password, token): return json.dumps({'complete': False}), 401, {'content-type': 'application/json'} else: session_payload = { "token": token, "username": username } user_payload = { "username": username, "password": password } session.delete_one(session_payload) users.delete_one(user_payload) return json.dumps({'complete': True}), 200, {'content-type': 'application/json'} class CreateSession(BaseModel): username: str password: str class Session(BaseModel): username: str password: str token: Optional[str] class Message(BaseModel): token: str password: str esm: str username: str class User(BaseModel): token: str password: str username: str class EncryptedMessage(BaseModel): esm: str @web.create("/create-session") async def create_session(data: CreateSession): return _create_session(username=data["username"], password=data['password']) @web.post("/join-session") async def join_session(data: Session): return _join_session(data["username"], data['password'], data["token"]) @web.websocket("/message-sync") async def message_sync(websocket: WebSocket): await websocket.accept() while True: data = await websocket.receive_json() process_message(data) return send_new_messages(data['username'], data['password'], data['token']) @web.post("/decrypt") async def decypher_esm(data: EncryptedMessage): return json.dumps({ "message": decypher(data["esm"]) }), 200, {'content-type': 'application/json'} @web.post("/validate-session") async def validate_session(data: Session): return _validate_session(data["token"]) @web.delete("/delete-session") async def delete_session(data: Session): return _delete_session(data['token', data['username']], data['password']) web.run(host="127.0.0.1", port=8080, debug=True)
25.654275
136
0.691494
a94189534ce080a8cf3ffff26370b7f4f53abe8a
6,101
py
Python
code/examples/Q_Learning_examples/matchers.py
ekarais/RLFM
479679e39b4fdd230b5a67c2005dd2fb001e7169
[ "MIT" ]
7
2020-06-17T14:09:57.000Z
2022-03-15T05:20:42.000Z
rl_markets_code/matchers.py
asikist-ethz/market_rl
8a8f45d30a9cb2400107d92f4a13091addc3d6f8
[ "MIT" ]
null
null
null
rl_markets_code/matchers.py
asikist-ethz/market_rl
8a8f45d30a9cb2400107d92f4a13091addc3d6f8
[ "MIT" ]
2
2019-11-12T20:51:24.000Z
2020-06-17T14:28:58.000Z
__author__ = "Thomas Asikis" __credits__ = ["Copyright (c) 2019 Thomas Asikis"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "Thomas Asikis" import random import pandas as pd from abc import abstractmethod class Matcher: def __init__(self): """ Abstract matcher object. This object is used by the Market environment to match agent offers and also decide the deal price. """ pass @abstractmethod def match(self, current_actions: dict, offers: pd.DataFrame, env_time: int, agents: pd.DataFrame, matched: set, done: dict, deal_history: pd.DataFrame): """ The matching method, which relies on several data structures passed from the market object. :param current_actions: A dictionary of agent id and offer value :param offers: The dataframe containing the past offers from agents :param env_time: the current time step in the market :param agents: the dataframe containing the agent information :param matched: the set containing all the ids of matched agents in this round :param done: the dictionary with agent id as key and a boolean value to determine if an agent has terminated the episode :param deal_history: the dictionary containing all the successful deals till now :return: the dictionary containing the the agent id as keys and the rewards as values """ rewards: dict = None return rewards class RandomMatcher(Matcher): def __init__(self, reward_on_reference=False): """ A random matcher, which decides the deal price of a matched pair by sampling a uniform distribution bounded in [seller_ask, buyer_bid] range. The reward is calculated as the difference from cost or the difference to budget for sellers and buyers. :param reward_on_reference: The parameter to use a different reward calculation. If set to true the reward now becomes: offer - reservation price for, sellers and: reservation price - offer, for buyers. You may chose to use this reward scheme, but you have to justify why it is better than the old! """ super().__init__() self.reward_on_reference = reward_on_reference def match(self, current_actions: dict, offers: pd.DataFrame, env_time: int, agents: pd.DataFrame, matched: set, done: dict, deal_history: pd.DataFrame): """ The matching method, which relies on several data structures passed from the market object. :param current_actions: A dictionary of agent id and offer value :param offers: The dataframe containing the past offers from agents :param env_time: the current time step in the market :param agents: the dataframe containing the agent information :param matched: the set containing all the ids of matched agents in this round :param done: the dictionary with agent id as key and a boolean value to determine if an agent has terminated the episode :param deal_history: the dictionary containing all the successful deals till now :return: the dictionary containing the the agent id as keys and the rewards as values """ # update offers for agent_id, offer in current_actions.items(): if agent_id not in matched: offers.loc[offers['id'] == agent_id, ['offer', 'time']] = (offer, env_time) # keep buyer and seller offers with non-matched ids sorted: # descending by offer value for buyers # ascending by offer value for sellers # and do a second sorting on ascending time to break ties for both buyer_offers = offers[(offers['role'] == 'Buyer') & (~offers['id'].isin(matched))] \ .sort_values(['offer', 'time'], ascending=[False, True]) seller_offers = offers[(offers['role'] == 'Seller') & (~offers['id'].isin(matched))] \ .sort_values(['offer', 'time'], ascending=[True, True]) min_len = min(seller_offers.shape[0], buyer_offers.shape[0]) rewards = dict((aid, 0) for aid in agents['id'].tolist()) for i in range(min_len): considered_seller = seller_offers.iloc[i, :] considered_buyer = buyer_offers.iloc[i, :] if considered_buyer['offer'] >= considered_seller['offer']: # if seller price is lower or equal to buyer price # matching is performed matched.add(considered_buyer['id']) matched.add(considered_seller['id']) # keeping both done and matched is redundant done[considered_buyer['id']] = True done[considered_seller['id']] = True deal_price = random.uniform(considered_seller['offer'], considered_buyer[ 'offer']) if self.reward_on_reference: rewards[considered_buyer['id']] = considered_buyer['res_price'] -\ considered_buyer['offer'] rewards[considered_seller['id']] = considered_seller['offer'] - \ considered_seller['res_price'] else: rewards[considered_buyer['id']] = considered_buyer['offer'] - deal_price rewards[considered_seller['id']] = deal_price - considered_seller['offer'] matching = dict(Seller=considered_seller['id'], Buyer=considered_buyer['id'], time=env_time, deal_price=deal_price) deal_history.append(matching) else: # not possible that new matches can occur after this failure due to sorting. break return rewards
46.930769
100
0.609572
0359f9e0b4b36bcd839f7c8628cd7c5186e904e9
346
py
Python
bravepatcher/utils/firewall/AbstractFirewallHelper.py
maxisoft/BravePatcher
b745567297460eb6a7d8567eb3707cc14cc9d66f
[ "MIT" ]
3
2021-11-11T23:10:59.000Z
2022-02-05T09:14:15.000Z
bravepatcher/utils/firewall/AbstractFirewallHelper.py
maxisoft/BravePatcher
b745567297460eb6a7d8567eb3707cc14cc9d66f
[ "MIT" ]
3
2021-01-12T21:31:18.000Z
2021-11-11T23:12:02.000Z
bravepatcher/utils/firewall/AbstractFirewallHelper.py
maxisoft/BravePatcher
b745567297460eb6a7d8567eb3707cc14cc9d66f
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from pathlib import Path class AbstractFirewallHelper(ABC): @abstractmethod def allow_program(self, path: Path, name: str): pass @abstractmethod def block_program(self, path: Path, name: str): pass @abstractmethod def has_rule(self, name: str) -> bool: pass
20.352941
51
0.66763
0430a44ae46f08bfab2f0b45c05f08eb1f7cdbd7
21,466
py
Python
natsort/natsort.py
thethiny/natsort
36f0d6f553c02c5937af94541463d30656537615
[ "MIT" ]
null
null
null
natsort/natsort.py
thethiny/natsort
36f0d6f553c02c5937af94541463d30656537615
[ "MIT" ]
null
null
null
natsort/natsort.py
thethiny/natsort
36f0d6f553c02c5937af94541463d30656537615
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Along with ns_enum.py, this module contains all of the natsort public API. The majority of the "work" is defined in utils.py. """ import platform from functools import partial from operator import itemgetter from typing import Callable, Iterable, TypeVar from _typeshed import SupportsLessThan import natsort.compat.locale from natsort import utils from natsort.ns_enum import NS_DUMB, ns _T = TypeVar("_T") def decoder(encoding): """ Return a function that can be used to decode bytes to unicode. Parameters ---------- encoding : str The codec to use for decoding. This must be a valid unicode codec. Returns ------- decode_function A function that takes a single argument and attempts to decode it using the supplied codec. Any `UnicodeErrors` are raised. If the argument was not of `bytes` type, it is simply returned as-is. See Also -------- as_ascii as_utf8 Examples -------- >>> f = decoder('utf8') >>> f(b'bytes') == 'bytes' True >>> f(12345) == 12345 True >>> # On Python 3, without decoder this would return [b'a10', b'a2'] >>> natsorted([b'a10', b'a2'], key=decoder('utf8')) == [b'a2', b'a10'] True >>> # On Python 3, without decoder this would raise a TypeError. >>> natsorted([b'a10', 'a2'], key=decoder('utf8')) == ['a2', b'a10'] True """ return partial(utils.do_decoding, encoding=encoding) def as_ascii(s): """ Function to decode an input with the ASCII codec, or return as-is. Parameters ---------- s : object Returns ------- output If the input was of type `bytes`, the return value is a `str` decoded with the ASCII codec. Otherwise, the return value is identically the input. See Also -------- decoder """ return utils.do_decoding(s, "ascii") def as_utf8(s): """ Function to decode an input with the UTF-8 codec, or return as-is. Parameters ---------- s : object Returns ------- output If the input was of type `bytes`, the return value is a `str` decoded with the UTF-8 codec. Otherwise, the return value is identically the input. See Also -------- decoder """ return utils.do_decoding(s, "utf-8") def natsort_keygen(key=None, alg=ns.DEFAULT): """ Generate a key to sort strings and numbers naturally. This key is designed for use as the `key` argument to functions such as the `sorted` builtin. The user may customize the generated function with the arguments to `natsort_keygen`, including an optional `key` function. Parameters ---------- key : callable, optional A key used to manipulate the input value before parsing for numbers. It is **not** applied recursively. It should accept a single argument and return a single value. alg : ns enum, optional This option is used to control which algorithm `natsort` uses when sorting. For details into these options, please see the :class:`ns` class documentation. The default is `ns.INT`. Returns ------- out : function A function that parses input for natural sorting that is suitable for passing as the `key` argument to functions such as `sorted`. See Also -------- natsorted natsort_key Examples -------- `natsort_keygen` is a convenient way to create a custom key to sort lists in-place (for example).:: >>> a = ['num5.10', 'num-3', 'num5.3', 'num2'] >>> a.sort(key=natsort_keygen(alg=ns.REAL)) >>> a ['num-3', 'num2', 'num5.10', 'num5.3'] """ try: ns.DEFAULT | alg except TypeError: msg = "natsort_keygen: 'alg' argument must be from the enum 'ns'" raise ValueError(msg + ", got {}".format(str(alg))) # Add the NS_DUMB option if the locale library is broken. if alg & ns.LOCALEALPHA and natsort.compat.locale.dumb_sort(): alg |= NS_DUMB # Set some variables that will be passed to the factory functions if alg & ns.NUMAFTER: if alg & ns.LOCALEALPHA: sep = natsort.compat.locale.null_string_locale_max else: sep = natsort.compat.locale.null_string_max pre_sep = natsort.compat.locale.null_string_max else: if alg & ns.LOCALEALPHA: sep = natsort.compat.locale.null_string_locale else: sep = natsort.compat.locale.null_string pre_sep = natsort.compat.locale.null_string regex = utils.regex_chooser(alg) # Create the functions that will be used to split strings. input_transform = utils.input_string_transform_factory(alg) component_transform = utils.string_component_transform_factory(alg) final_transform = utils.final_data_transform_factory(alg, sep, pre_sep) # Create the high-level parsing functions for strings, bytes, and numbers. string_func = utils.parse_string_factory( alg, sep, regex.split, input_transform, component_transform, final_transform ) if alg & ns.PATH: string_func = utils.parse_path_factory(string_func) bytes_func = utils.parse_bytes_factory(alg) num_func = utils.parse_number_or_none_factory(alg, sep, pre_sep) # Return the natsort key with the parsing path pre-chosen. return partial( utils.natsort_key, key=key, string_func=string_func, bytes_func=bytes_func, num_func=num_func, ) # Exposed for simplicity if one needs the default natsort key. natsort_key = natsort_keygen() natsort_key.__doc__ = """\ natsort_key(val) The default natural sorting key. This is the output of :func:`natsort_keygen` with default values. See Also -------- natsort_keygen """ def natsorted(seq: Iterable[_T], key: Callable[[_T], SupportsLessThan]=None, reverse=False, alg=ns.DEFAULT): """ Sorts an iterable naturally. Parameters ---------- seq : iterable The input to sort. key : callable, optional A key used to determine how to sort each element of the iterable. It is **not** applied recursively. It should accept a single argument and return a single value. reverse : {{True, False}}, optional Return the list in reversed sorted order. The default is `False`. alg : ns enum, optional This option is used to control which algorithm `natsort` uses when sorting. For details into these options, please see the :class:`ns` class documentation. The default is `ns.INT`. Returns ------- out: list The sorted input. See Also -------- natsort_keygen : Generates the key that makes natural sorting possible. realsorted : A wrapper for ``natsorted(seq, alg=ns.REAL)``. humansorted : A wrapper for ``natsorted(seq, alg=ns.LOCALE)``. index_natsorted : Returns the sorted indexes from `natsorted`. os_sorted : Sort according to your operating system's rules. Examples -------- Use `natsorted` just like the builtin `sorted`:: >>> a = ['num3', 'num5', 'num2'] >>> natsorted(a) ['num2', 'num3', 'num5'] """ key = natsort_keygen(key, alg) return sorted(seq, reverse=reverse, key=key) def humansorted(seq, key=None, reverse=False, alg=ns.DEFAULT): """ Convenience function to properly sort non-numeric characters. This is a wrapper around ``natsorted(seq, alg=ns.LOCALE)``. Parameters ---------- seq : iterable The input to sort. key : callable, optional A key used to determine how to sort each element of the sequence. It is **not** applied recursively. It should accept a single argument and return a single value. reverse : {{True, False}}, optional Return the list in reversed sorted order. The default is `False`. alg : ns enum, optional This option is used to control which algorithm `natsort` uses when sorting. For details into these options, please see the :class:`ns` class documentation. The default is `ns.LOCALE`. Returns ------- out : list The sorted input. See Also -------- index_humansorted : Returns the sorted indexes from `humansorted`. Notes ----- Please read :ref:`locale_issues` before using `humansorted`. Examples -------- Use `humansorted` just like the builtin `sorted`:: >>> a = ['Apple', 'Banana', 'apple', 'banana'] >>> natsorted(a) ['Apple', 'Banana', 'apple', 'banana'] >>> humansorted(a) ['apple', 'Apple', 'banana', 'Banana'] """ return natsorted(seq, key, reverse, alg | ns.LOCALE) def realsorted(seq, key=None, reverse=False, alg=ns.DEFAULT): """ Convenience function to properly sort signed floats. A signed float in a string could be "a-5.7". This is a wrapper around ``natsorted(seq, alg=ns.REAL)``. The behavior of :func:`realsorted` for `natsort` version >= 4.0.0 was the default behavior of :func:`natsorted` for `natsort` version < 4.0.0. Parameters ---------- seq : iterable The input to sort. key : callable, optional A key used to determine how to sort each element of the sequence. It is **not** applied recursively. It should accept a single argument and return a single value. reverse : {{True, False}}, optional Return the list in reversed sorted order. The default is `False`. alg : ns enum, optional This option is used to control which algorithm `natsort` uses when sorting. For details into these options, please see the :class:`ns` class documentation. The default is `ns.REAL`. Returns ------- out : list The sorted input. See Also -------- index_realsorted : Returns the sorted indexes from `realsorted`. Examples -------- Use `realsorted` just like the builtin `sorted`:: >>> a = ['num5.10', 'num-3', 'num5.3', 'num2'] >>> natsorted(a) ['num2', 'num5.3', 'num5.10', 'num-3'] >>> realsorted(a) ['num-3', 'num2', 'num5.10', 'num5.3'] """ return natsorted(seq, key, reverse, alg | ns.REAL) def index_natsorted(seq, key=None, reverse=False, alg=ns.DEFAULT): """ Determine the list of the indexes used to sort the input sequence. Sorts a sequence naturally, but returns a list of sorted the indexes and not the sorted list itself. This list of indexes can be used to sort multiple lists by the sorted order of the given sequence. Parameters ---------- seq : iterable The input to sort. key : callable, optional A key used to determine how to sort each element of the sequence. It is **not** applied recursively. It should accept a single argument and return a single value. reverse : {{True, False}}, optional Return the list in reversed sorted order. The default is `False`. alg : ns enum, optional This option is used to control which algorithm `natsort` uses when sorting. For details into these options, please see the :class:`ns` class documentation. The default is `ns.INT`. Returns ------- out : tuple The ordered indexes of the input. See Also -------- natsorted order_by_index Examples -------- Use index_natsorted if you want to sort multiple lists by the sorted order of one list:: >>> a = ['num3', 'num5', 'num2'] >>> b = ['foo', 'bar', 'baz'] >>> index = index_natsorted(a) >>> index [2, 0, 1] >>> # Sort both lists by the sort order of a >>> order_by_index(a, index) ['num2', 'num3', 'num5'] >>> order_by_index(b, index) ['baz', 'foo', 'bar'] """ if key is None: newkey = itemgetter(1) else: def newkey(x): return key(itemgetter(1)(x)) # Pair the index and sequence together, then sort by element index_seq_pair = [(x, y) for x, y in enumerate(seq)] index_seq_pair.sort(reverse=reverse, key=natsort_keygen(newkey, alg)) return [x for x, _ in index_seq_pair] def index_humansorted(seq, key=None, reverse=False, alg=ns.DEFAULT): """ This is a wrapper around ``index_natsorted(seq, alg=ns.LOCALE)``. Parameters ---------- seq: iterable The input to sort. key: callable, optional A key used to determine how to sort each element of the sequence. It is **not** applied recursively. It should accept a single argument and return a single value. reverse : {{True, False}}, optional Return the list in reversed sorted order. The default is `False`. alg : ns enum, optional This option is used to control which algorithm `natsort` uses when sorting. For details into these options, please see the :class:`ns` class documentation. The default is `ns.LOCALE`. Returns ------- out : tuple The ordered indexes of the input. See Also -------- humansorted order_by_index Notes ----- Please read :ref:`locale_issues` before using `humansorted`. Examples -------- Use `index_humansorted` just like the builtin `sorted`:: >>> a = ['Apple', 'Banana', 'apple', 'banana'] >>> index_humansorted(a) [2, 0, 3, 1] """ return index_natsorted(seq, key, reverse, alg | ns.LOCALE) def index_realsorted(seq, key=None, reverse=False, alg=ns.DEFAULT): """ This is a wrapper around ``index_natsorted(seq, alg=ns.REAL)``. Parameters ---------- seq: iterable The input to sort. key: callable, optional A key used to determine how to sort each element of the sequence. It is **not** applied recursively. It should accept a single argument and return a single value. reverse : {{True, False}}, optional Return the list in reversed sorted order. The default is `False`. alg : ns enum, optional This option is used to control which algorithm `natsort` uses when sorting. For details into these options, please see the :class:`ns` class documentation. The default is `ns.REAL`. Returns ------- out : tuple The ordered indexes of the input. See Also -------- realsorted order_by_index Examples -------- Use `index_realsorted` just like the builtin `sorted`:: >>> a = ['num5.10', 'num-3', 'num5.3', 'num2'] >>> index_realsorted(a) [1, 3, 0, 2] """ return index_natsorted(seq, key, reverse, alg | ns.REAL) # noinspection PyShadowingBuiltins,PyUnresolvedReferences def order_by_index(seq, index, iter=False): """ Order a given sequence by an index sequence. The output of `index_natsorted` is a sequence of integers (index) that correspond to how its input sequence **would** be sorted. The idea is that this index can be used to reorder multiple sequences by the sorted order of the first sequence. This function is a convenient wrapper to apply this ordering to a sequence. Parameters ---------- seq : sequence The sequence to order. index : iterable The iterable that indicates how to order `seq`. It should be the same length as `seq` and consist of integers only. iter : {{True, False}}, optional If `True`, the ordered sequence is returned as a iterator; otherwise it is returned as a list. The default is `False`. Returns ------- out : {{list, iterator}} The sequence ordered by `index`, as a `list` or as an iterator (depending on the value of `iter`). See Also -------- index_natsorted index_humansorted index_realsorted Examples -------- `order_by_index` is a convenience function that helps you apply the result of `index_natsorted`:: >>> a = ['num3', 'num5', 'num2'] >>> b = ['foo', 'bar', 'baz'] >>> index = index_natsorted(a) >>> index [2, 0, 1] >>> # Sort both lists by the sort order of a >>> order_by_index(a, index) ['num2', 'num3', 'num5'] >>> order_by_index(b, index) ['baz', 'foo', 'bar'] """ return (seq[i] for i in index) if iter else [seq[i] for i in index] def numeric_regex_chooser(alg): """ Select an appropriate regex for the type of number of interest. Parameters ---------- alg : ns enum Used to indicate the regular expression to select. Returns ------- regex : str Regular expression string that matches the desired number type. """ # Remove the leading and trailing parens return utils.regex_chooser(alg).pattern[1:-1] def _split_apply(v, key=None): if key is not None: v = key(v) return utils.path_splitter(str(v)) # Choose the implementation based on the host OS if platform.system() == "Windows": from ctypes import wintypes, windll from functools import cmp_to_key _windows_sort_cmp = windll.Shlwapi.StrCmpLogicalW _windows_sort_cmp.argtypes = [wintypes.LPWSTR, wintypes.LPWSTR] _windows_sort_cmp.restype = wintypes.INT _winsort_key = cmp_to_key(_windows_sort_cmp) def os_sort_keygen(key=None): return lambda x: tuple(map(_winsort_key, _split_apply(x, key))) else: # For UNIX-based platforms, ICU performs MUCH better than locale # at replicating the file explorer's sort order. We will use # ICU's ability to do basic natural sorting as it also better # replicates than what natsort does by default. # # However, if the user does not have ICU installed then fall back # on natsort's default handling for paths with locale turned on # which will give good results in most cases (e.g. when there aren't # a bunch of special characters). try: import icu except ImportError: # No ICU installed def os_sort_keygen(key=None): return natsort_keygen(key=key, alg=ns.LOCALE | ns.PATH | ns.IGNORECASE) else: # ICU installed def os_sort_keygen(key=None): loc = natsort.compat.locale.get_icu_locale() collator = icu.Collator.createInstance(loc) collator.setAttribute( icu.UCollAttribute.NUMERIC_COLLATION, icu.UCollAttributeValue.ON ) return lambda x: tuple(map(collator.getSortKey, _split_apply(x, key))) os_sort_keygen.__doc__ = """ Generate a sorting key to replicate your file browser's sort order See :func:`os_sorted` for description and caveats. Returns ------- out : function A function that parses input for OS path sorting that is suitable for passing as the `key` argument to functions such as `sorted`. See Also -------- os_sort_key os_sorted Notes ----- On Windows, this will implicitly coerce all inputs to str before collating. """ os_sort_key = os_sort_keygen() os_sort_key.__doc__ = """ os_sort_key(val) The default key to replicate your file browser's sort order This is the output of :func:`os_sort_keygen` with default values. See Also -------- os_sort_keygen """ def os_sorted(seq, key=None, reverse=False): """ Sort elements in the same order as your operating system's file browser .. warning:: The resulting function will generate results that will be differnt depending on your platform. This is intentional. On Windows, this will sort with the same order as Windows Explorer. On MacOS/Linux, you will get different results depending on whether or not you have :mod:`pyicu` installed. - If you have :mod:`pyicu` installed, you will get results that are the same as (or very close to) the same order as your operating system's file browser. - If you do not have :mod:`pyicu` installed, then this will give the same results as if you used ``ns.LOCALE``, ``ns.PATH``, and ``ns.IGNORECASE`` with :func:`natsorted`. If you do not have special characters this will give correct results, but once special characters are added you should lower your expectations. It is *strongly* reccommended to have :mod:`pyicu` installed on MacOS/Linux if you want correct sort results. It does *not* take into account if a path is a directory or a file when sorting. Parameters ---------- seq : iterable The input to sort. Each element must be of type str. key : callable, optional A key used to determine how to sort each element of the sequence. It should accept a single argument and return a single value. reverse : {{True, False}}, optional Return the list in reversed sorted order. The default is `False`. Returns ------- out : list The sorted input. See Also -------- natsorted os_sort_keygen Notes ----- This will implicitly coerce all inputs to str before collating. """ return sorted(seq, key=os_sort_keygen(key), reverse=reverse)
28.133683
108
0.629321
b98b48519865e4c9bb60d049b0bed8b5c3a96f97
12,327
py
Python
server/views.py
aysiu/Crypt-Server
90ab865e392ece250d06b0c035961665deaca89a
[ "Apache-2.0" ]
null
null
null
server/views.py
aysiu/Crypt-Server
90ab865e392ece250d06b0c035961665deaca89a
[ "Apache-2.0" ]
null
null
null
server/views.py
aysiu/Crypt-Server
90ab865e392ece250d06b0c035961665deaca89a
[ "Apache-2.0" ]
null
null
null
from models import * from django.contrib.auth.decorators import login_required, permission_required from django.template import RequestContext, Template, Context import json from django.views.decorators.csrf import csrf_exempt, csrf_protect from django.http import HttpResponse, Http404, JsonResponse from django.contrib.auth.models import Permission, User from django.conf import settings from django.template.context_processors import csrf from django.shortcuts import render, get_object_or_404, redirect from datetime import datetime, timedelta from django.db.models import Q from forms import * from django.views.defaults import server_error from django.core.mail import send_mail from django.conf import settings from django.core.urlresolvers import reverse # Create your views here. ##clean up old requests def cleanup(): how_many_days = 7 the_requests = Request.objects.filter(date_approved__lte=datetime.now()-timedelta(days=how_many_days)).filter(current=True) for the_req in the_requests: the_req.current = False the_req.save() ##index view @login_required def index(request): cleanup() #show table with all the keys computers = Computer.objects.all() if hasattr(settings, 'ALL_APPROVE'): if settings.ALL_APPROVE == True: permissions = Permission.objects.all() permission = Permission.objects.get(codename='can_approve') if request.user.has_perm('server.can_approve') == False: request.user.user_permissions.add(permission) request.user.save() ##get the number of oustanding requests - approved equals null outstanding = Request.objects.filter(approved__isnull=True) if hasattr(settings, 'APPROVE_OWN'): if settings.APPROVE_OWN == False: outstanding = outstanding.filter(~Q(requesting_user=request.user)) c = {'user': request.user, 'computers':computers, 'outstanding':outstanding, } return render(request,'server/index.html', c) ##view to see computer info @login_required def computer_info(request, computer_id=None, serial=None): cleanup() if computer_id: computer = get_object_or_404(Computer, pk=computer_id) else: computer = get_object_or_404(Computer, serial=serial) can_request = None approved = None # Get the secrets, annotated with whethere there are approvals for them secrets = computer.secret_set.all().prefetch_related() for secret in secrets: secret.approved = Request.objects.filter(requesting_user=request.user).filter(approved=True).filter(current=True).filter(secret=secret) secret.pending = Request.objects.filter(requesting_user=request.user).filter(approved__isnull=True).filter(secret=secret) c = {'user': request.user, 'computer':computer, 'secrets':secrets } return render(request,'server/computer_info.html', c) @login_required def secret_info(request, secret_id): cleanup() secret = get_object_or_404(Secret, pk=secret_id) computer = secret.computer ##check if the user has outstanding request for this pending = secret.request_set.filter(requesting_user=request.user).filter(approved__isnull=True) if pending.count() == 0: can_request = True else: can_request = False ##if it's been approved, we'll show a link to retrieve the key approved = secret.request_set.filter(requesting_user=request.user).filter(approved=True).filter(current=True) requests = secret.request_set.all() c = {'user': request.user, 'computer':computer, 'can_request':can_request, 'approved':approved, 'secret':secret, 'requests':requests} if approved.count() != 0: return render(request,'server/secret_approved_button.html', c) else: return render(request,'server/secret_request_button.html', c) ##request key view @login_required def request(request, secret_id): ##we will auto approve this if the user has the right perms secret = get_object_or_404(Secret, pk=secret_id) approver = False if request.user.has_perm('server.can_approve'): approver = True if approver == True: if hasattr(settings, 'APPROVE_OWN'): if settings.APPROVE_OWN == False: approver = False c = {} c.update(csrf(request)) if request.method == 'POST': form = RequestForm(request.POST) if form.is_valid(): new_request = form.save(commit=False) new_request.requesting_user = request.user new_request.secret = secret new_request.save() if approver: new_request.auth_user = request.user new_request.approved = True new_request.date_approved = datetime.now() new_request.save() else: # User isn't an approver, send an email to all of the approvers perm = Permission.objects.get(codename='can_approve') users = User.objects.filter(Q(is_superuser=True) | Q(groups__permissions=perm) | Q(user_permissions=perm) ).distinct() if hasattr(settings, 'HOST_NAME'): server_name = settings.HOST_NAME.rstrip('/') else: server_name = 'http://crypt' if hasattr(settings, 'SEND_EMAIL'): if settings.SEND_EMAIL == True: for user in users: if user.email: email_message = """ There has been a new key request by %s. You can review this request at %s%s """ % (request.user.username, server_name, reverse('approve', args=[new_request.id])) email_sender = 'requests@%s' % request.META['SERVER_NAME'] send_mail('Crypt Key Request', email_message, email_sender, [user.email], fail_silently=True) ##if we're an approver, we'll redirect to the retrieve view if approver: return redirect('retrieve', new_request.id) else: return redirect('secret_info', secret.id) else: form = RequestForm() c = {'form': form, 'secret':secret, } return render(request,'server/request.html', c) ##retrieve key view @login_required def retrieve(request, request_id): cleanup() the_request = get_object_or_404(Request, pk=request_id) if the_request.approved == True and the_request.current==True: if hasattr(settings, 'ROTATE_VIEWED_SECRETS'): if settings.ROTATE_VIEWED_SECRETS: the_request.secret.rotation_required = True the_request.secret.save() c = {'user': request.user, 'the_request':the_request, } return render(request,'server/retrieve.html', c) else: raise Http404 ## approve key view @permission_required('server.can_approve', login_url='/login/') def approve(request, request_id): the_request = get_object_or_404(Request, pk=request_id) c = {} c.update(csrf(request)) if request.method == 'POST': form = ApproveForm(request.POST, instance=the_request) if form.is_valid(): new_request = form.save(commit=False) new_request.auth_user = request.user new_request.date_approved = datetime.now() new_request.save() # Send an email to the requester with a link to retrieve (or not) if hasattr(settings, 'HOST_NAME'): server_name = settings.HOST_NAME.rstrip('/') else: server_name = 'http://crypt' if new_request.approved == True: request_status = 'approved' elif new_request.approved == False: request_status = 'denied' if hasattr(settings, 'SEND_EMAIL'): if settings.SEND_EMAIL == True: if new_request.requesting_user.email: email_message = """ Your key request has been %s by %s. %s%s """ % (request_status, request.user.username, server_name, reverse('secret_info', args=[new_request.id])) email_sender = 'requests@%s' % request.META['SERVER_NAME'] send_mail('Crypt Key Request', email_message, email_sender, [new_request.requesting_user.email], fail_silently=True) return redirect('managerequests') else: form = ApproveForm(instance=the_request) c = {'form':form, 'user': request.user, 'the_request':the_request, } return render(request,'server/approve.html', c) ##manage requests @permission_required('server.can_approve', login_url='/login/') def managerequests(request): requests = Request.objects.filter(approved__isnull=True) if hasattr(settings, 'APPROVE_OWN'): if settings.APPROVE_OWN == False: requests = requests.filter(~Q(requesting_user=request.user)) c = {'user': request.user, 'requests':requests, } return render(request,'server/manage_requests.html', c) # Add new manual computer @login_required def new_computer(request): c = {} c.update(csrf(request)) if request.method == 'POST': form = ComputerForm(request.POST) if form.is_valid(): new_computer = form.save(commit=False) new_computer.save() form.save_m2m() return redirect('computer_info', new_computer.id) else: form = ComputerForm() c = {'form': form} return render(request, 'server/new_computer_form.html', c) @login_required def new_secret(request, computer_id): c = {} c.update(csrf(request)) computer = get_object_or_404(Computer, pk=computer_id) if request.method == 'POST': form = SecretForm(request.POST) if form.is_valid(): new_secret = form.save(commit=False) new_secret.computer = computer new_secret.date_escrowed = datetime.now() new_secret.save() #form.save_m2m() return redirect('computer_info', computer.id) else: form = SecretForm() c = {'form': form, 'computer': computer, } return render(request, 'server/new_secret_form.html', c) # Verify key escrow @csrf_exempt def verify(request, serial, secret_type): computer = get_object_or_404(Computer, serial=serial) try: secret = Secret.objects.filter(computer=computer, secret_type=secret_type).latest('date_escrowed') output = {'escrowed': True, 'date_escrowed':secret.date_escrowed} except Secret.DoesNotExist: output = {'escrowed': False} return JsonResponse(output) ##checkin view @csrf_exempt def checkin(request): try: serial_num = request.POST['serial'] except: return HttpResponse(status=500) try: recovery_pass = request.POST['recovery_password'] except: return HttpResponse(status=500) try: macname = request.POST['macname'] except: macname = serial_num try: user_name = request.POST['username'] except: return HttpResponse(status=500) try: secret_type = request.POST['secret_type'] except: secret_type = 'recovery_key' try: computer = Computer.objects.get(serial=serial_num) except Computer.DoesNotExist: computer = Computer(serial=serial_num) #computer = Computer(recovery_key=recovery_pass, serial=serial_num, last_checkin = datetime.now(), username=user_name, computername=macname) computer.last_checkin = datetime.now() computer.username=user_name computer.computername = macname computer.secret_type = secret_type computer.save() try: secret = Secret(computer=computer, secret=recovery_pass, secret_type=secret_type, date_escrowed=datetime.now()) secret.save() except ValidationError: pass latest_secret = Secret.objects.filter(secret_type=secret_type).latest('date_escrowed') rotation_required = latest_secret.rotation_required c = { 'serial':computer.serial, 'username':computer.username, 'rotation_required': rotation_required } return HttpResponse(json.dumps(c), content_type="application/json")
38.642633
144
0.655228
a80686019cfc6bf706615e552dafe3c839c36389
2,395
py
Python
ropy/models/mdl_panda.py
jhavl/ropy
38b12369530253a16c22ef1f5be0bcb75053ffd8
[ "MIT" ]
16
2020-02-20T10:28:01.000Z
2021-07-12T09:03:25.000Z
ropy/models/mdl_panda.py
jhavl/ropy
38b12369530253a16c22ef1f5be0bcb75053ffd8
[ "MIT" ]
2
2020-04-27T01:35:44.000Z
2020-04-27T23:19:53.000Z
ropy/models/mdl_panda.py
jhavl/ropy
38b12369530253a16c22ef1f5be0bcb75053ffd8
[ "MIT" ]
3
2020-04-07T03:00:02.000Z
2020-09-05T23:49:28.000Z
# #!/usr/bin/env python # import numpy as np # from ropy.robot.Revolute import Revolute # from ropy.robot.SerialLink import SerialLink # from ropy.tools.transform import transl, xyzrpy_to_trans # class Panda(SerialLink): # """ # A class representing the Franka Emika Panda robot arm. # DH Parameters taken from https://frankaemika.github.io/docs/control_parameters.html # Attributes: # -------- # name : string # Name of the robot # manufacturer : string # Manufacturer of the robot # links : List[n] # Series of links which define the robot # base : float np.ndarray(4,4) # Locaation of the base # tool : float np.ndarray(4,4) # Location of the tool # mdh : int # 1: Pnada is modified D&H # n : int # Number of joints in the robot # Examples # -------- # >>> panda = Panda() # See Also # -------- # ropy.robot.SerialLink : A superclass for arm type robots # """ # def __init__(self): # deg = np.pi/180 # mm = 1e-3 # flange = (107)*mm # d7 = (103)*mm # L1 = Revolute(a = 0.0, d = 0.333, alpha = 0.0, qlim = np.array([-2.8973, 2.8973]), mdh = 1) # L2 = Revolute(a = 0.0, d = 0.0, alpha = -np.pi/2, qlim = np.array([-1.7628, 1.7628]), mdh = 1) # L3 = Revolute(a = 0.0, d = 0.316, alpha = np.pi/2, qlim = np.array([-2.8973, 2.8973]), mdh = 1) # L4 = Revolute(a = 0.0825, d = 0.0, alpha = np.pi/2, qlim = np.array([-3.0718, -0.0698]), mdh = 1) # L5 = Revolute(a =-0.0825, d = 0.384, alpha = -np.pi/2, qlim = np.array([-2.8973, 2.8973]), mdh = 1) # L6 = Revolute(a = 0.0, d = 0.0, alpha = np.pi/2, qlim = np.array([-0.0175, 3.7525]), mdh = 1) # L7 = Revolute(a = 0.088, d =flange, alpha = np.pi/2, qlim = np.array([-2.8973, 2.8973]), mdh = 1) # L = [L1, L2, L3, L4, L5, L6, L7] # # super(Panda, self).__init__(L, name = 'Panda', manufacturer = 'Franka Emika', tool = transl(0, 0, d7)) # super(Panda, self).__init__(L, name = 'Panda', manufacturer = 'Franka Emika', tool = xyzrpy_to_trans(0, 0, d7, 0, 0, -np.pi/4)) # self.qz = np.array([0, 0, 0, 0, 0, 0, 0]) # self.qr = np.array([0, -90, -90, 90, 0, -90, 90]) * deg
36.846154
137
0.517745
34e2bb33253c0a8595ca30111a3d42ed9c194fe5
2,485
py
Python
src/org_setup/resources/accessanalyzer.py
gilyas/aws-control-tower-org-setup-sample
65c1a1a0c7b7bb362dff1924f38f63bd8c3a8e41
[ "MIT-0" ]
null
null
null
src/org_setup/resources/accessanalyzer.py
gilyas/aws-control-tower-org-setup-sample
65c1a1a0c7b7bb362dff1924f38f63bd8c3a8e41
[ "MIT-0" ]
null
null
null
src/org_setup/resources/accessanalyzer.py
gilyas/aws-control-tower-org-setup-sample
65c1a1a0c7b7bb362dff1924f38f63bd8c3a8e41
[ "MIT-0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: MIT-0 * * Permission is hereby granted, free of charge, to any person obtaining a copy of this * software and associated documentation files (the "Software"), to deal in the Software * without restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from aws_lambda_powertools import Logger import boto3 import botocore from .sts import STS from ..constants import ORGANIZATION_ANALYZER_NAME logger = Logger(child=True) __all__ = ["AccessAnalyzer"] class AccessAnalyzer: def __init__(self, session: boto3.Session) -> None: self.client = session.client("accessanalyzer") def create_analyzer(self, analyzer_name: str, analyzer_type: str) -> None: """ Create an IAM access analyzer """ try: self.client.create_analyzer(analyzerName=analyzer_name, type=analyzer_type) except botocore.exceptions.ClientError as error: if error.response["Error"]["Code"] != "ConflictException": logger.exception("Unable to create IAM access analyzer") raise error @classmethod def create_org_analyzer(cls, session: boto3.Session, account_id: str) -> None: """ Create an organization IAM access analyzer in the desired account """ assumed_role_session = STS(session).assume_role(account_id, "accessanalyzer") client = cls(assumed_role_session) logger.info( f"Creating organizational IAM access analyzer in account {account_id}" ) client.create_analyzer(ORGANIZATION_ANALYZER_NAME, "ORGANIZATION") logger.debug( f"Created organizational IAM access analyzer in account {account_id}" )
37.089552
87
0.709054
52cb1269eb216e15769828fd613ef1a43b4425aa
246
py
Python
example_crm/dev_patrick.py
pkimber/crm
835e8ff3161404316b7da35cf61e3851763b37b9
[ "Apache-2.0" ]
4
2015-02-22T07:22:03.000Z
2017-03-13T05:36:23.000Z
example_crm/dev_patrick.py
pkimber/old-crm-migrated-to-gitlab
835e8ff3161404316b7da35cf61e3851763b37b9
[ "Apache-2.0" ]
1
2015-07-03T23:52:37.000Z
2016-04-10T14:49:36.000Z
example_crm/dev_patrick.py
pkimber/old-crm-migrated-to-gitlab
835e8ff3161404316b7da35cf61e3851763b37b9
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- from .base import * DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'temp.db', 'USER': '', 'PASSWORD': '', 'HOST': '', 'PORT': '', } }
16.4
47
0.410569
ef737764319dde6f64dbe5b233ce3173f2916280
927
py
Python
tests/turing_machine/test_rule.py
kigawas/computation-py
4e1dc356c03b845cae1218a244ad2f2ce2b10132
[ "MIT" ]
24
2016-04-16T09:10:15.000Z
2022-03-14T08:44:48.000Z
tests/turing_machine/test_rule.py
kigawas/computation-py
4e1dc356c03b845cae1218a244ad2f2ce2b10132
[ "MIT" ]
10
2020-11-29T13:01:09.000Z
2022-01-22T13:14:32.000Z
tests/turing_machine/test_rule.py
kigawas/computation-py
4e1dc356c03b845cae1218a244ad2f2ce2b10132
[ "MIT" ]
2
2019-09-21T15:07:41.000Z
2021-03-14T13:38:10.000Z
from computation.turing_machine.rule import ( DTM, Direction, DTMRulebook, Tape, TMConfiguration, TMRule, ) # increment binary number rulebook rulebook = DTMRulebook( [ TMRule(1, "0", 2, "1", Direction.RIGHT), TMRule(1, "1", 1, "0", Direction.LEFT), TMRule(1, "_", 2, "1", Direction.RIGHT), TMRule(2, "0", 2, "0", Direction.RIGHT), TMRule(2, "1", 2, "1", Direction.RIGHT), TMRule(2, "_", 3, "_", Direction.LEFT), ] ) def test_rule(): dtm = DTM( TMConfiguration(1, Tape(["1", "0", "1"], "1", ["_"])), [3], rulebook, ) dtm.run() assert dtm.current_configuration.state == 3 assert dtm.current_configuration.tape == Tape(["1", "1", "0"], "0", ["_"]) dtm = DTM( TMConfiguration(1, Tape(["1", "2", "1"], "1", ["_"])), [3], rulebook, ) dtm.run() assert dtm.is_stuck
23.175
78
0.514563
6896e1102e9a82a0195bb2f7d1401ef7a706ebc7
45
py
Python
tests/CompileTests/Python_tests/test2011_013.py
maurizioabba/rose
7597292cf14da292bdb9a4ef573001b6c5b9b6c0
[ "BSD-3-Clause" ]
488
2015-01-09T08:54:48.000Z
2022-03-30T07:15:46.000Z
tests/CompileTests/Python_tests/test2011_013.py
sujankh/rose-matlab
7435d4fa1941826c784ba97296c0ec55fa7d7c7e
[ "BSD-3-Clause" ]
174
2015-01-28T18:41:32.000Z
2022-03-31T16:51:05.000Z
tests/CompileTests/Python_tests/test2011_013.py
sujankh/rose-matlab
7435d4fa1941826c784ba97296c0ec55fa7d7c7e
[ "BSD-3-Clause" ]
146
2015-04-27T02:48:34.000Z
2022-03-04T07:32:53.000Z
def foo(): return 1 def bar(): return 2
7.5
10
0.577778
e8c5c3df4df9ae14dce48dd709ec5b0d070cd5bd
186
py
Python
biothings/tests/hub/config/conf_deep.py
sirloon/biothings.api
8a981fa2151e368d0ca76aaf226eb565d794d4fb
[ "Apache-2.0" ]
null
null
null
biothings/tests/hub/config/conf_deep.py
sirloon/biothings.api
8a981fa2151e368d0ca76aaf226eb565d794d4fb
[ "Apache-2.0" ]
null
null
null
biothings/tests/hub/config/conf_deep.py
sirloon/biothings.api
8a981fa2151e368d0ca76aaf226eb565d794d4fb
[ "Apache-2.0" ]
null
null
null
from conf_base import * # redefine some params D_D = "d" # redefine description E = "heu" # redefine desc of read-only READ_ONLY = "written in titanium" #- readonly -# F = "Forged"
12.4
33
0.682796
0f506f3d17d3607fd974357621c1e2d8a3d9789b
12,049
py
Python
intersight/model/appliance_device_certificate_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
5
2021-12-16T15:13:32.000Z
2022-03-29T16:09:54.000Z
intersight/model/appliance_device_certificate_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
4
2022-01-25T19:05:51.000Z
2022-03-29T20:18:37.000Z
intersight/model/appliance_device_certificate_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
2
2020-07-07T15:01:08.000Z
2022-01-31T04:27:35.000Z
""" Cisco Intersight Cisco Intersight is a management platform delivered as a service with embedded analytics for your Cisco and 3rd party IT infrastructure. This platform offers an intelligent level of management that enables IT organizations to analyze, simplify, and automate their environments in more advanced ways than the prior generations of tools. Cisco Intersight provides an integrated and intuitive management experience for resources in the traditional data center as well as at the edge. With flexible deployment options to address complex security needs, getting started with Intersight is quick and easy. Cisco Intersight has deep integration with Cisco UCS and HyperFlex systems allowing for remote deployment, configuration, and ongoing maintenance. The model-based deployment works for a single system in a remote location or hundreds of systems in a data center and enables rapid, standardized configuration and deployment. It also streamlines maintaining those systems whether you are working with small or very large configurations. The Intersight OpenAPI document defines the complete set of properties that are returned in the HTTP response. From that perspective, a client can expect that no additional properties are returned, unless these properties are explicitly defined in the OpenAPI document. However, when a client uses an older version of the Intersight OpenAPI document, the server may send additional properties because the software is more recent than the client. In that case, the client may receive properties that it does not know about. Some generated SDKs perform a strict validation of the HTTP response body against the OpenAPI document. # noqa: E501 The version of the OpenAPI document: 1.0.9-4950 Contact: intersight@cisco.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from intersight.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from intersight.model.appliance_cert_renewal_phase import ApplianceCertRenewalPhase globals()['ApplianceCertRenewalPhase'] = ApplianceCertRenewalPhase class ApplianceDeviceCertificateAllOf(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('class_id',): { 'APPLIANCE.DEVICECERTIFICATE': "appliance.DeviceCertificate", }, ('object_type',): { 'APPLIANCE.DEVICECERTIFICATE': "appliance.DeviceCertificate", }, } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'class_id': (str,), # noqa: E501 'object_type': (str,), # noqa: E501 'ca_certificate': (str,), # noqa: E501 'ca_certificate_expiry_time': (datetime,), # noqa: E501 'certificate_renewal_expiry_time': (datetime,), # noqa: E501 'completed_phases': ([ApplianceCertRenewalPhase], none_type,), # noqa: E501 'configuration_mo_id': (str,), # noqa: E501 'current_phase': (ApplianceCertRenewalPhase,), # noqa: E501 'end_time': (datetime,), # noqa: E501 'last_success_poll_time': (datetime,), # noqa: E501 'messages': ([str], none_type,), # noqa: E501 'start_time': (datetime,), # noqa: E501 'status': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'class_id': 'ClassId', # noqa: E501 'object_type': 'ObjectType', # noqa: E501 'ca_certificate': 'CaCertificate', # noqa: E501 'ca_certificate_expiry_time': 'CaCertificateExpiryTime', # noqa: E501 'certificate_renewal_expiry_time': 'CertificateRenewalExpiryTime', # noqa: E501 'completed_phases': 'CompletedPhases', # noqa: E501 'configuration_mo_id': 'ConfigurationMoId', # noqa: E501 'current_phase': 'CurrentPhase', # noqa: E501 'end_time': 'EndTime', # noqa: E501 'last_success_poll_time': 'LastSuccessPollTime', # noqa: E501 'messages': 'Messages', # noqa: E501 'start_time': 'StartTime', # noqa: E501 'status': 'Status', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """ApplianceDeviceCertificateAllOf - a model defined in OpenAPI Args: Keyword Args: class_id (str): The fully-qualified name of the instantiated, concrete type. This property is used as a discriminator to identify the type of the payload when marshaling and unmarshaling data.. defaults to "appliance.DeviceCertificate", must be one of ["appliance.DeviceCertificate", ] # noqa: E501 object_type (str): The fully-qualified name of the instantiated, concrete type. The value should be the same as the 'ClassId' property.. defaults to "appliance.DeviceCertificate", must be one of ["appliance.DeviceCertificate", ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) ca_certificate (str): The base64 encoded certificate in PEM format.. [optional] # noqa: E501 ca_certificate_expiry_time (datetime): The expiry datetime of new ca certificate which need to be applied on device connector.. [optional] # noqa: E501 certificate_renewal_expiry_time (datetime): The date time allocated till cert renewal will be executed. This time used here will be based on cert renewal plan.. [optional] # noqa: E501 completed_phases ([ApplianceCertRenewalPhase], none_type): [optional] # noqa: E501 configuration_mo_id (str): The operation configuration MOId.. [optional] # noqa: E501 current_phase (ApplianceCertRenewalPhase): [optional] # noqa: E501 end_time (datetime): End date of the certificate renewal.. [optional] # noqa: E501 last_success_poll_time (datetime): The last poll time when data collection was successfull. This time is used to collect data after this time in next cycle.. [optional] # noqa: E501 messages ([str], none_type): [optional] # noqa: E501 start_time (datetime): Start date of the certificate renewal.. [optional] # noqa: E501 status (str): The status of ca certificate renewal.. [optional] # noqa: E501 """ class_id = kwargs.get('class_id', "appliance.DeviceCertificate") object_type = kwargs.get('object_type', "appliance.DeviceCertificate") _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.class_id = class_id self.object_type = object_type for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
54.520362
1,678
0.642875
2ff53c1389dce0053d576fefb065b93ae3831453
7,152
py
Python
test/performance/link_prediction/dgl/model.py
dedsec-9/AutoGL
487f2b2f798b9b1363ad5dc100fb410b12222e06
[ "MIT" ]
null
null
null
test/performance/link_prediction/dgl/model.py
dedsec-9/AutoGL
487f2b2f798b9b1363ad5dc100fb410b12222e06
[ "MIT" ]
null
null
null
test/performance/link_prediction/dgl/model.py
dedsec-9/AutoGL
487f2b2f798b9b1363ad5dc100fb410b12222e06
[ "MIT" ]
null
null
null
import dgl import torch import pickle import torch.nn as nn import torch.nn.functional as F import numpy as np import scipy.sparse as sp import dgl.function as fn import random from dgl.data import CoraGraphDataset, PubmedGraphDataset, CiteseerGraphDataset from autogl.module.model.dgl import AutoSAGE, AutoGCN, AutoGAT import dgl.data from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from tqdm import tqdm from helper import get_encoder_decoder_hp from sklearn.metrics import roc_auc_score parser = ArgumentParser( "auto link prediction", formatter_class=ArgumentDefaultsHelpFormatter ) parser.add_argument("--dataset", default="Cora", type=str, help="dataset to use", choices=["Cora", "CiteSeer", "PubMed"],) parser.add_argument("--model", default="sage", type=str,help="model to use", choices=["gcn","gat","sage"],) parser.add_argument("--seed", type=int, default=0, help="random seed") parser.add_argument('--repeat', type=int, default=10) parser.add_argument("--device", default=0, type=int, help="GPU device") args = parser.parse_args() args.device = torch.device('cuda:0') device = torch.device('cuda:0') if args.dataset == 'Cora': dataset = CoraGraphDataset() elif args.dataset == 'CiteSeer': dataset = CiteseerGraphDataset() elif args.dataset == 'PubMed': dataset = PubmedGraphDataset() else: assert False def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True np.random.seed(seed) random.seed(seed) def split_train_valid_test(g): u, v = g.edges() eids = np.arange(g.number_of_edges()) eids = np.random.permutation(eids) valid_size = int(len(eids) * 0.1) test_size = int(len(eids) * 0.1) train_size = g.number_of_edges() - test_size - valid_size test_pos_u, test_pos_v = u[eids[:test_size]], v[eids[:test_size]] valid_pos_u, valid_pos_v = u[eids[test_size:test_size+valid_size]], v[eids[test_size:test_size+valid_size]] train_pos_u, train_pos_v = u[eids[test_size+valid_size:]], v[eids[test_size+valid_size:]] # Find all negative edges and split them for training and testing adj = sp.coo_matrix((np.ones(len(u)), (u.numpy(), v.numpy()))) adj_neg = 1 - adj.todense() - np.eye(g.number_of_nodes()) neg_u, neg_v = np.where(adj_neg != 0) neg_eids = np.random.choice(len(neg_u), g.number_of_edges()) test_neg_u, test_neg_v = neg_u[neg_eids[:test_size]], neg_v[neg_eids[:test_size]] valid_neg_u, valid_neg_v = neg_u[neg_eids[test_size:test_size+valid_size]], neg_v[neg_eids[test_size:test_size+valid_size]] train_neg_u, train_neg_v = neg_u[neg_eids[test_size+valid_size:]], neg_v[neg_eids[test_size+valid_size:]] train_g = dgl.remove_edges(g, eids[:test_size+valid_size]) train_pos_g = dgl.graph((train_pos_u, train_pos_v), num_nodes=g.number_of_nodes()) train_neg_g = dgl.graph((train_neg_u, train_neg_v), num_nodes=g.number_of_nodes()) valid_pos_g = dgl.graph((valid_pos_u, valid_pos_v), num_nodes=g.number_of_nodes()) valid_neg_g = dgl.graph((valid_neg_u, valid_neg_v), num_nodes=g.number_of_nodes()) test_pos_g = dgl.graph((test_pos_u, test_pos_v), num_nodes=g.number_of_nodes()) test_neg_g = dgl.graph((test_neg_u, test_neg_v), num_nodes=g.number_of_nodes()) return train_g, train_pos_g, train_neg_g, valid_pos_g, valid_neg_g, test_pos_g, test_neg_g class DotPredictor(nn.Module): def forward(self, g, h): with g.local_scope(): g.ndata['h'] = h # Compute a new edge feature named 'score' by a dot-product between the # source node feature 'h' and destination node feature 'h'. g.apply_edges(fn.u_dot_v('h', 'h', 'score')) # u_dot_v returns a 1-element vector for each edge so you need to squeeze it. return g.edata['score'][:, 0] def compute_loss(pos_score, neg_score): scores = torch.cat([pos_score, neg_score]) labels = torch.cat([torch.ones(pos_score.shape[0]), torch.zeros(neg_score.shape[0])]) return F.binary_cross_entropy_with_logits(scores.cpu(), labels) def compute_auc(pos_score, neg_score): scores = torch.cat([pos_score, neg_score]).numpy() labels = torch.cat( [torch.ones(pos_score.shape[0]), torch.zeros(neg_score.shape[0])]).numpy() return roc_auc_score(labels, scores) def get_link_labels(pos_edge_index, neg_edge_index): E = pos_edge_index.size(1) + neg_edge_index.size(1) link_labels = torch.zeros(E, dtype=torch.float, device=device) link_labels[: pos_edge_index.size(1)] = 1.0 return link_labels @torch.no_grad() def evaluate(model, data, mask): model.eval() if mask == "val": offset = 3 else: offset = 5 z = model.lp_encode(data[0]) link_logits = model.lp_decode( z, torch.stack(data[offset].edges()), torch.stack(data[offset + 1].edges()) ) link_probs = link_logits.sigmoid() link_labels = get_link_labels( torch.stack(data[offset].edges()), torch.stack(data[offset + 1].edges()) ) result = roc_auc_score(link_labels.cpu().numpy(), link_probs.cpu().numpy()) return result res = [] model_hp, _ = get_encoder_decoder_hp(args.model, decoupled=False) for seed in tqdm(range(1234, 1234+args.repeat)): setup_seed(seed) g = dataset[0] splitted = list(split_train_valid_test(g)) if args.model == 'gcn' or args.model == 'gat': splitted[0] = dgl.add_self_loop(splitted[0]) splitted = [g.to(device) for g in splitted] if args.model == 'gcn': model = AutoGCN( input_dimension=splitted[0].ndata['feat'].shape[1], output_dimension=2, device=args.device, ).from_hyper_parameter(model_hp).model elif args.model == 'gat': model = AutoGAT( input_dimension=splitted[0].ndata['feat'].shape[1], output_dimension=2, device=args.device, ).from_hyper_parameter(model_hp).model elif args.model == 'sage': model = AutoSAGE( num_features=splitted[0].ndata['feat'].shape[1], num_classes=2, device=args.device ).from_hyper_parameter(model_hp).model optimizer = torch.optim.Adam(model.parameters(), lr=0.01) best_auc = 0. for epoch in range(100): model.train() optimizer.zero_grad() z = model.lp_encode(splitted[0]) link_logits = model.lp_decode( z, torch.stack(splitted[1].edges()), torch.stack(splitted[2].edges()) ) link_labels = get_link_labels( torch.stack(splitted[1].edges()), torch.stack(splitted[2].edges()) ) loss = F.binary_cross_entropy_with_logits(link_logits, link_labels) loss.backward() optimizer.step() auc_val = evaluate(model, splitted, "val") if auc_val > best_auc: best_auc = auc_val best_parameters = pickle.dumps(model.state_dict()) model.load_state_dict(pickle.loads(best_parameters)) res.append(evaluate(model, splitted, "test")) print("{:.2f} ~ {:.2f}".format(np.mean(res) * 100, np.std(res) * 100))
36.865979
127
0.680928
bf4ec80bfaa68d5b950ac516e8cd918166b42cc2
5,660
py
Python
mujoco/ppo_main.py
mrbermell/seed_rl
9562e178fb8c16d2551d9e5d59594a7f908655dd
[ "Apache-2.0" ]
733
2019-10-14T11:38:22.000Z
2022-03-24T14:55:50.000Z
mujoco/ppo_main.py
mrbermell/seed_rl
9562e178fb8c16d2551d9e5d59594a7f908655dd
[ "Apache-2.0" ]
76
2019-10-30T14:18:17.000Z
2021-12-10T11:52:15.000Z
mujoco/ppo_main.py
mrbermell/seed_rl
9562e178fb8c16d2551d9e5d59594a7f908655dd
[ "Apache-2.0" ]
141
2019-10-14T11:38:25.000Z
2022-02-27T10:36:56.000Z
# coding=utf-8 # Copyright 2019 The SEED Authors # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PPO learner for Mujoco.""" import os import tempfile from absl import app from absl import flags from absl import logging import gin import gin.tf.external_configurables from seed_rl.agents.policy_gradient import learner from seed_rl.agents.policy_gradient import learner_flags from seed_rl.agents.policy_gradient.modules import continuous_control_agent from seed_rl.agents.policy_gradient.modules import popart from seed_rl.common import actor from seed_rl.common import common_flags from seed_rl.common import parametric_distribution from seed_rl.common import utils from seed_rl.mujoco import env import tensorflow as tf gin.external_configurable(tf.keras.initializers.Orthogonal, name='Orthogonal', module='tf.keras.initializers') # Enable configuring parametric action distribution before Gin configs are read # and locked. continuous_action_config = gin.external_configurable( parametric_distribution.continuous_action_config) FLAGS = flags.FLAGS flags.DEFINE_float('learning_rate', 0.0003, 'Learning rate.') flags.DEFINE_float('lr_decay_multiplier', 0., 'Franction of original learning rate to decay to.') flags.DEFINE_string('env_name', 'HalfCheetah-v2', 'Name of the environment from OpenAI Gym.') flags.DEFINE_string('mujoco_model', None, 'Optional path to the xml mujoco model to use. It must be ' 'compatible with the environment class selected with ' '--env_name.') flags.DEFINE_string('gin_config', '', 'A path to a config file.') flags.DEFINE_multi_string('gin_bindings', [], 'Newline separated list of Gin parameter bindings.') gin.external_configurable(tf.exp, name='exp', module='tf') gin.external_configurable(tf.keras.layers.LayerNormalization, 'LayerNormalization', module='tf.keras.layers') gin.external_configurable(tf.keras.initializers.VarianceScaling) gin.external_configurable(tf.keras.initializers.GlorotUniform) gin.external_configurable(tf.keras.initializers.GlorotNormal) gin.external_configurable(tf.keras.initializers.lecun_normal, 'lecun_normal') gin.external_configurable(tf.keras.initializers.lecun_uniform, 'lecun_uniform') gin.external_configurable(tf.keras.initializers.he_normal, 'he_normal') gin.external_configurable(tf.keras.initializers.he_uniform, 'he_uniform') gin.external_configurable(tf.keras.initializers.TruncatedNormal) @gin.configurable def orthogonal_gain_sqrt2(): return tf.keras.initializers.Orthogonal(1.41421356237) @gin.configurable def orthogonal_gain_0dot01(): return tf.keras.initializers.Orthogonal(0.01) @gin.configurable def create_optimizer(final_iteration, optimizer_fn): learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay( FLAGS.learning_rate, final_iteration, FLAGS.lr_decay_multiplier * FLAGS.learning_rate) optimizer = optimizer_fn(learning_rate_fn) return optimizer, learning_rate_fn def create_agent(unused_action_space, unused_observation_space, parametric_action_distribution): return continuous_control_agent.ContinuousControlAgent( parametric_action_distribution=parametric_action_distribution) def main(unused_argv): # Save the string flags now as we modify them later. string_flags = FLAGS.flags_into_string() gin.parse_config_files_and_bindings( [FLAGS.gin_config] if FLAGS.gin_config else [], # Gin uses slashes to denote scopes but XM doesn't allow slashes in # parameter names so we use __ instead and convert it to slashes here. [s.replace('__', '/') for s in FLAGS.gin_bindings]) gym_kwargs = {} if FLAGS.mujoco_model: local_mujoco_model = tempfile.mkstemp( prefix='mujoco_model', suffix='.xml')[1] logging.info('Copying remote model %s to local file %s', FLAGS.mujoco_model, local_mujoco_model) tf.io.gfile.copy(FLAGS.mujoco_model, local_mujoco_model, overwrite=True) gym_kwargs['model_path'] = local_mujoco_model create_environment = lambda task, config: env.create_environment( env_name=config.env_name, discretization='none', n_actions_per_dim=11, action_ratio=30, gym_kwargs=gym_kwargs) if FLAGS.run_mode == 'actor': actor.actor_loop(create_environment) elif FLAGS.run_mode == 'learner': logdir = FLAGS.logdir settings = utils.init_learner_multi_host(FLAGS.num_training_tpus) learner.learner_loop( create_environment, create_agent, create_optimizer, learner_flags.training_config_from_flags(), settings, action_distribution_config=continuous_action_config()) with tf.io.gfile.GFile(os.path.join(logdir, 'learner_flags.txt'), 'w') as f: f.write(string_flags) with tf.io.gfile.GFile(os.path.join(logdir, 'learner.gin'), 'w') as f: f.write(gin.operative_config_str()) else: raise ValueError('Unsupported run mode {}'.format(FLAGS.run_mode)) if __name__ == '__main__': app.run(main)
38.767123
80
0.748057
be6d29424a1823b6f23173b26c2aa298ca7ab03e
369
py
Python
Intro-Bites/101.py
joaopalmeiro/pybites
54a70689c14149a8b927a004e70f1b07642ec766
[ "MIT" ]
null
null
null
Intro-Bites/101.py
joaopalmeiro/pybites
54a70689c14149a8b927a004e70f1b07642ec766
[ "MIT" ]
null
null
null
Intro-Bites/101.py
joaopalmeiro/pybites
54a70689c14149a8b927a004e70f1b07642ec766
[ "MIT" ]
null
null
null
MIN_DRIVING_AGE = 18 def allowed_driving(name, age): """Print '{name} is allowed to drive' or '{name} is not allowed to drive' checking the passed in age against the MIN_DRIVING_AGE constant""" not_str = " " if age >= MIN_DRIVING_AGE else " not " print(f"{name} is{not_str}allowed to drive") allowed_driving("tim", 17) allowed_driving("bob", 18)
28.384615
77
0.688347
0436d3a43fae5a4664ef8ae9aebe90b696f4d1fa
7,201
py
Python
HoundSploit/searcher/engine/version_comparator.py
nicolas-carolo/houndsplo
a44b02559588ec2ae44af3529cc8a58371fa15c8
[ "BSD-3-Clause" ]
85
2019-12-18T08:11:51.000Z
2022-02-25T05:45:48.000Z
HoundSploit/searcher/engine/version_comparator.py
juan157/houndsploit
12210481d8fa5880265e4b342f816a53d93e4637
[ "BSD-3-Clause" ]
2
2020-04-21T13:33:14.000Z
2020-04-30T12:39:50.000Z
HoundSploit/searcher/engine/version_comparator.py
juan157/houndsploit
12210481d8fa5880265e4b342f816a53d93e4637
[ "BSD-3-Clause" ]
11
2020-04-20T09:49:30.000Z
2022-02-01T15:29:17.000Z
import re from pkg_resources import parse_version def get_num_version(software_name, description): """ Get the number of the version of the software contained in a description of a vulnerability without '<' char. :param software_name: the name of the software we want to get the number of version. :param description: the description of the vulnerability from which we want to get the number of the version. :return: the number of version if it is possible to get it, None else. """ software_name = software_name.upper() description = description.upper() regex = re.search(software_name + r' \d+((\.\d+)+)?', description) try: software = regex.group(0) regex = re.search(r'\d+((\.\d+)+)?', software) try: return regex.group(0) except AttributeError: return except AttributeError: return def get_num_version_with_comparator(software_name, description): """ Get the number of the version of the software contained in a description of a vulnerability containing '<' char. :param software_name: the name of the software we want to get the number of version. :param description: the description of the vulnerability from which we want to get the number of the version. :return: the number of version if it is possible to get it, None else. """ software_name = software_name.upper() description = description.upper() regex = re.search(software_name + r' < \d+((\.\d+)+)?', description) try: software = regex.group(0) regex = re.search(r'\d+((\.\d+)+)?', software) try: return regex.group(0) except AttributeError: return except AttributeError: return def is_lte_with_comparator_x(num_version, software_name, description): """ Check if the vulnerability's description contains the number of version (with comparator and the x) of the software searched by the user. :param num_version: the number of version searched by the user. :param software_name: the name of the software searched by the user. :param description: the vulnerability's description to check. :return: True if the vulnerability's description contains the number of version of the software searched by the user, False else. """ software_name = software_name.upper() description = description.upper() regex = re.search(software_name + r' < \d+((\.\d+)+)?', description) try: software = regex.group(0) regex = re.search(r'\d+((\.\d+)+)?', software) try: num_to_compare = regex.group(0) version_precision = str(num_to_compare).count('.') except AttributeError: return False except AttributeError: return False try: regex = re.search(r'\d+(\.\d+){0,%d}' % version_precision, num_version) num_version = regex.group() except AttributeError: return False if parse_version(num_version) <= parse_version(num_to_compare): return True else: return False def is_in_version_range(num_version, software_name, description): """ Check if the number of version (without x) of the software searched by the user is contained in the range of version in the vulnerability's description. :param num_version: the number of version searched by the user. :param software_name: the name of the software searched by the user. :param description: the vulnerability's description in which to do the check. :return: True if the number of version (without x) of the software searched by the user is contained in the range of version in the vulnerability's description, False else. """ software_name = software_name.upper() description = description.upper() regex = re.search(software_name + r' \d+((\.\d+)+)? < \d+((\.\d+)+)?', description) try: software = regex.group(0) regex = re.search(r'(?P<from_version>\d+((\.\d+)+)?) < (?P<to_version>\d+((\.\d+)+)?)', software) if parse_version(num_version) >= parse_version(regex.group('from_version')) and parse_version( num_version) <= parse_version(regex.group('to_version')): return True else: return False except AttributeError: return False def is_in_version_range_with_x(num_version, software_name, description): """ Check if the number of version (with x) of the software searched by the user is contained in the range of version in the vulnerability's description. :param num_version: the number of version searched by the user. :param software_name: the name of the software searched by the user. :param description: the vulnerability's description in which to do the check. :return: True if the number of version (without x) of the software searched by the user is contained in the range of version in the vulnerability's description, False else. """ software_name = software_name.upper() description = description.upper() regex = re.search(software_name + r' \w+((\.\w+)+)?(\.x)? < \w+((\.\w+)+)?(\.x)?', description) try: software = regex.group(0) regex = re.search( r'(?P<from_version>\d+((\.\d+)+)?)(\.X)? < (?P<to_version>\d+((\.\d+)+)?(\.X)?)', software) from_version = regex.group('from_version') to_version = regex.group('to_version') regex = re.search(r'(?P<base>.+)\.(?P<least_digit>\d+)($|\.X)', to_version) if to_version.__contains__('X'): least_digit = int(regex.group('least_digit')) + 1 x_flag = True else: least_digit = int(regex.group('least_digit')) x_flag = False to_version = regex.group('base') + '.' + str(least_digit) if (parse_version(from_version) <= parse_version(num_version) <= parse_version(to_version) and x_flag is False)\ or (parse_version(from_version) <= parse_version(num_version) < parse_version(to_version) and x_flag is True): return True else: return False except AttributeError: return False def is_equal_with_x(num_version, num_to_compare): """ Check if the number of version searched by the user is equal to the number of version (with x) of the software contained in the vulnerability's description. :param num_version: the number of version searched by the user. :param num_to_compare: the number of version (containing the x) in the vulnerability's description. :return: True if the number of version searched by the user is equal to the number of version (with x) of the software contained in the vulnerability's description. """ version_precision = str(num_to_compare).count('.') try: regex = re.search(r'\d+(\.\d+){0,%d}' % version_precision, num_version) num_version = regex.group() except AttributeError: pass if parse_version(num_version) == parse_version(num_to_compare): return True else: return False
44.177914
120
0.653243
04a1821b1ce755bd4c7dcbb62c71a1f5261819f2
7,206
py
Python
Mac/Modules/res/ressupport.py
deadsnakes/python2.4
f493d5415b662e99a73d017bcafe2148c5bc8fb5
[ "PSF-2.0" ]
null
null
null
Mac/Modules/res/ressupport.py
deadsnakes/python2.4
f493d5415b662e99a73d017bcafe2148c5bc8fb5
[ "PSF-2.0" ]
null
null
null
Mac/Modules/res/ressupport.py
deadsnakes/python2.4
f493d5415b662e99a73d017bcafe2148c5bc8fb5
[ "PSF-2.0" ]
null
null
null
# This script will generate the Resources interface for Python. # It uses the "bgen" package to generate C code. # It execs the file resgen.py which contain the function definitions # (resgen.py was generated by resscan.py, scanning the <Resources.h> header file). from macsupport import * class ResMixIn: def checkit(self): if self.returntype.__class__ != OSErrType: OutLbrace() Output("OSErr _err = ResError();") Output("if (_err != noErr) return PyMac_Error(_err);") OutRbrace() FunctionGenerator.checkit(self) # XXX class ResFunction(ResMixIn, OSErrWeakLinkFunctionGenerator): pass class ResMethod(ResMixIn, OSErrWeakLinkMethodGenerator): pass RsrcChainLocation = Type("RsrcChainLocation", "h") FSCatalogInfoBitmap = FakeType("0") # Type("FSCatalogInfoBitmap", "l") FSCatalogInfo_ptr = FakeType("(FSCatalogInfo *)0") # includestuff etc. are imported from macsupport includestuff = includestuff + """ #include <Carbon/Carbon.h> #ifdef USE_TOOLBOX_OBJECT_GLUE extern PyObject *_ResObj_New(Handle); extern int _ResObj_Convert(PyObject *, Handle *); extern PyObject *_OptResObj_New(Handle); extern int _OptResObj_Convert(PyObject *, Handle *); #define ResObj_New _ResObj_New #define ResObj_Convert _ResObj_Convert #define OptResObj_New _OptResObj_New #define OptResObj_Convert _OptResObj_Convert #endif /* Function to dispose a resource, with a "normal" calling sequence */ static void PyMac_AutoDisposeHandle(Handle h) { DisposeHandle(h); } """ finalstuff = finalstuff + """ /* Alternative version of ResObj_New, which returns None for null argument */ PyObject *OptResObj_New(Handle itself) { if (itself == NULL) { Py_INCREF(Py_None); return Py_None; } return ResObj_New(itself); } int OptResObj_Convert(PyObject *v, Handle *p_itself) { PyObject *tmp; if ( v == Py_None ) { *p_itself = NULL; return 1; } if (ResObj_Check(v)) { *p_itself = ((ResourceObject *)v)->ob_itself; return 1; } /* If it isn't a resource yet see whether it is convertible */ if ( (tmp=PyObject_CallMethod(v, "as_Resource", "")) ) { *p_itself = ((ResourceObject *)tmp)->ob_itself; Py_DECREF(tmp); return 1; } PyErr_Clear(); PyErr_SetString(PyExc_TypeError, "Resource required"); return 0; } """ initstuff = initstuff + """ PyMac_INIT_TOOLBOX_OBJECT_NEW(Handle, ResObj_New); PyMac_INIT_TOOLBOX_OBJECT_CONVERT(Handle, ResObj_Convert); PyMac_INIT_TOOLBOX_OBJECT_NEW(Handle, OptResObj_New); PyMac_INIT_TOOLBOX_OBJECT_CONVERT(Handle, OptResObj_Convert); """ module = MacModule('_Res', 'Res', includestuff, finalstuff, initstuff) class ResDefinition(PEP253Mixin, GlobalObjectDefinition): getsetlist = [ ('data', """ PyObject *res; char state; state = HGetState(self->ob_itself); HLock(self->ob_itself); res = PyString_FromStringAndSize( *self->ob_itself, GetHandleSize(self->ob_itself)); HUnlock(self->ob_itself); HSetState(self->ob_itself, state); return res; """, """ char *data; long size; if ( v == NULL ) return -1; if ( !PyString_Check(v) ) return -1; size = PyString_Size(v); data = PyString_AsString(v); /* XXXX Do I need the GetState/SetState calls? */ SetHandleSize(self->ob_itself, size); if ( MemError()) return -1; HLock(self->ob_itself); memcpy((char *)*self->ob_itself, data, size); HUnlock(self->ob_itself); /* XXXX Should I do the Changed call immedeately? */ return 0; """, 'The resource data' ), ( 'size', 'return PyInt_FromLong(GetHandleSize(self->ob_itself));', None, 'The length of the resource data' )] def outputCheckNewArg(self): Output("if (itself == NULL) return PyMac_Error(resNotFound);") def outputCheckConvertArg(self): # if it isn't a resource we may be able to coerce it Output("if (!%s_Check(v))", self.prefix) OutLbrace() Output("PyObject *tmp;") Output('if ( (tmp=PyObject_CallMethod(v, "as_Resource", "")) )') OutLbrace() Output("*p_itself = ((ResourceObject *)tmp)->ob_itself;") Output("Py_DECREF(tmp);") Output("return 1;") OutRbrace() Output("PyErr_Clear();") OutRbrace() def outputStructMembers(self): GlobalObjectDefinition.outputStructMembers(self) Output("void (*ob_freeit)(%s ptr);", self.itselftype) def outputInitStructMembers(self): GlobalObjectDefinition.outputInitStructMembers(self) Output("it->ob_freeit = NULL;") def outputCleanupStructMembers(self): Output("if (self->ob_freeit && self->ob_itself)") OutLbrace() Output("self->ob_freeit(self->ob_itself);") OutRbrace() Output("self->ob_itself = NULL;") def output_tp_newBody(self): Output("PyObject *self;") Output Output("if ((self = type->tp_alloc(type, 0)) == NULL) return NULL;") Output("((%s *)self)->ob_itself = NULL;", self.objecttype) Output("((%s *)self)->ob_freeit = NULL;", self.objecttype) Output("return self;") def output_tp_initBody(self): Output("char *srcdata = NULL;") Output("int srclen = 0;") Output("%s itself;", self.itselftype); Output("char *kw[] = {\"itself\", 0};") Output() Output("if (PyArg_ParseTupleAndKeywords(args, kwds, \"O&\", kw, %s_Convert, &itself))", self.prefix); OutLbrace() Output("((%s *)self)->ob_itself = itself;", self.objecttype) Output("return 0;") OutRbrace() Output("PyErr_Clear();") Output("if (!PyArg_ParseTupleAndKeywords(args, kwds, \"|s#\", kw, &srcdata, &srclen)) return -1;") Output("if ((itself = NewHandle(srclen)) == NULL)") OutLbrace() Output("PyErr_NoMemory();") Output("return 0;") OutRbrace() Output("((%s *)self)->ob_itself = itself;", self.objecttype) # XXXX Output("((%s *)self)->ob_freeit = PyMac_AutoDisposeHandle;") Output("if (srclen && srcdata)") OutLbrace() Output("HLock(itself);") Output("memcpy(*itself, srcdata, srclen);") Output("HUnlock(itself);") OutRbrace() Output("return 0;") resobject = ResDefinition('Resource', 'ResObj', 'Handle') module.addobject(resobject) functions = [] resmethods = [] execfile('resgen.py') execfile('resedit.py') for f in functions: module.add(f) for f in resmethods: resobject.add(f) SetOutputFileName('_Resmodule.c') module.generate()
32.459459
106
0.594505
fe388dde68ec4f5245a1d09598f40caf18e35407
6,314
py
Python
gluon/contrib/login_methods/oauth10a_account.py
spiffytech/MobileBlur
f9d2469caa05f0fe5c05c2ec83d1480cf6b770d8
[ "BSD-3-Clause" ]
1
2019-05-16T17:25:57.000Z
2019-05-16T17:25:57.000Z
gluon/contrib/login_methods/oauth10a_account.py
spiffytech/MobileBlur
f9d2469caa05f0fe5c05c2ec83d1480cf6b770d8
[ "BSD-3-Clause" ]
null
null
null
gluon/contrib/login_methods/oauth10a_account.py
spiffytech/MobileBlur
f9d2469caa05f0fe5c05c2ec83d1480cf6b770d8
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Written by Michele Comitini <mcm@glisco.it> License: GPL v3 Adds support for OAuth1.0a authentication to web2py. Dependencies: - python-oauth2 (http://github.com/simplegeo/python-oauth2) """ import oauth2 as oauth import cgi from urllib2 import urlopen import urllib2 from urllib import urlencode class OAuthAccount(object): """ Login will be done via OAuth Framework, instead of web2py's login form. Include in your model (eg db.py):: # define the auth_table before call to auth.define_tables() auth_table = db.define_table( auth.settings.table_user_name, Field('first_name', length=128, default=""), Field('last_name', length=128, default=""), Field('username', length=128, default="", unique=True), Field('password', 'password', length=256, readable=False, label='Password'), Field('registration_key', length=128, default= "", writable=False, readable=False)) auth_table.username.requires = IS_NOT_IN_DB(db, auth_table.username) . . . auth.define_tables() . . . CLIENT_ID=\"<put your fb application id here>\" CLIENT_SECRET=\"<put your fb application secret here>\" AUTH_URL="..." TOKEN_URL="..." ACCESS_TOKEN_URL="..." from gluon.contrib.login_methods.oauth10a_account import OAuthAccount auth.settings.login_form=OAuthAccount(globals(),CLIENT_ID,CLIENT_SECRET, AUTH_URL, TOKEN_URL, ACCESS_TOKEN_URL) """ def __redirect_uri(self, next=None): """Build the uri used by the authenticating server to redirect the client back to the page originating the auth request. Appends the _next action to the generated url so the flows continues. """ r = self.request http_host=r.env.http_x_forwarded_for if not http_host: http_host=r.env.http_host url_scheme = r.env.wsgi_url_scheme if next: path_info = next else: path_info = r.env.path_info uri = '%s://%s%s' %(url_scheme, http_host, path_info) if r.get_vars and not next: uri += '?' + urlencode(r.get_vars) return uri def accessToken(self): """Return the access token generated by the authenticating server. If token is already in the session that one will be used. Otherwise the token is fetched from the auth server. """ if self.session.access_token: # return the token (TODO: does it expire?) return self.session.access_token if self.session.request_token: # Exchange the request token with an authorization token. token = self.session.request_token self.session.request_token = None # Build an authorized client # OAuth1.0a put the verifier! token.set_verifier(self.request.vars.oauth_verifier) client = oauth.Client(self.consumer, token) resp, content = client.request(self.access_token_url, "POST") if str(resp['status']) != '200': self.session.request_token = None self.globals['redirect'](self.globals['URL'](f='user',args='logout')) self.session.access_token = oauth.Token.from_string(content) return self.session.access_token self.session.access_token = None return None def __init__(self, g, client_id, client_secret, auth_url, token_url, access_token_url): self.globals = g self.client_id = client_id self.client_secret = client_secret self.code = None self.request = g['request'] self.session = g['session'] self.auth_url = auth_url self.token_url = token_url self.access_token_url = access_token_url # consumer init self.consumer = oauth.Consumer(self.client_id, self.client_secret) def login_url(self, next="/"): self.__oauth_login(next) return next def logout_url(self, next="/"): self.session.request_token = None self.session.access_token = None return next def get_user(self): '''Get user data. Since OAuth does not specify what a user is, this function must be implemented for the specific provider. ''' raise NotImplementedError, "Must override get_user()" def __oauth_login(self, next): '''This method redirects the user to the authenticating form on authentication server if the authentication code and the authentication token are not available to the application yet. Once the authentication code has been received this method is called to set the access token into the session by calling accessToken() ''' if not self.accessToken(): # setup the client client = oauth.Client(self.consumer, None) # Get a request token. # oauth_callback *is REQUIRED* for OAuth1.0a # putting it in the body seems to work. callback_url = self.__redirect_uri(next) data = urlencode(dict(oauth_callback=callback_url)) resp, content = client.request(self.token_url, "POST", body=data) if resp['status'] != '200': self.session.request_token = None self.globals['redirect'](self.globals['URL'](f='user',args='logout')) # Store the request token in session. request_token = self.session.request_token = oauth.Token.from_string(content) # Redirect the user to the authentication URL and pass the callback url. data = urlencode(dict(oauth_token=request_token.key, oauth_callback=callback_url)) auth_request_url = self.auth_url + '?' +data HTTP = self.globals['HTTP'] raise HTTP(307, "You are not authenticated: you are being redirected to the <a href='" + auth_request_url + "'> authentication server</a>", Location=auth_request_url) return None
33.057592
146
0.617041
e03dcb8ce21706c05fff84ea41ab08b8bc6175c3
571
py
Python
nlp/Lib/site-packages/spacy/tests/lang/ne/test_text.py
zacandcheese/nsfw-gang
bba0f208780019ca211d9300e76d405ce3882fc0
[ "MIT" ]
null
null
null
nlp/Lib/site-packages/spacy/tests/lang/ne/test_text.py
zacandcheese/nsfw-gang
bba0f208780019ca211d9300e76d405ce3882fc0
[ "MIT" ]
1
2022-02-14T21:09:15.000Z
2022-02-14T21:09:15.000Z
nlp/Lib/site-packages/spacy/tests/lang/ne/test_text.py
zacandcheese/nsfw-gang
bba0f208780019ca211d9300e76d405ce3882fc0
[ "MIT" ]
null
null
null
# coding: utf-8 from __future__ import unicode_literals import pytest def test_ne_tokenizer_handlers_long_text(ne_tokenizer): text = """मैले पाएको सर्टिफिकेटलाई म त बोक्रो सम्झन्छु र अभ्यास तब सुरु भयो, जब मैले कलेज पार गरेँ र जीवनको पढाइ सुरु गरेँ ।""" tokens = ne_tokenizer(text) assert len(tokens) == 24 @pytest.mark.parametrize( "text,length", [("समय जान कति पनि बेर लाग्दैन ।", 7), ("म ठूलो हुँदै थिएँ ।", 5)], ) def test_ne_tokenizer_handles_cnts(ne_tokenizer, text, length): tokens = ne_tokenizer(text) assert len(tokens) == length
30.052632
131
0.633975
e9eb869466d29aea929ed0ed51a6a7e734683777
4,744
py
Python
portfolio/Python/scrapy/sagemcom/curryscouk_sagemcom.py
0--key/lib
ba7a85dda2b208adc290508ca617bdc55a5ded22
[ "Apache-2.0" ]
null
null
null
portfolio/Python/scrapy/sagemcom/curryscouk_sagemcom.py
0--key/lib
ba7a85dda2b208adc290508ca617bdc55a5ded22
[ "Apache-2.0" ]
null
null
null
portfolio/Python/scrapy/sagemcom/curryscouk_sagemcom.py
0--key/lib
ba7a85dda2b208adc290508ca617bdc55a5ded22
[ "Apache-2.0" ]
5
2016-03-22T07:40:46.000Z
2021-05-30T16:12:21.000Z
__author__ = 'juraseg' from scrapy.spider import BaseSpider from scrapy.selector import HtmlXPathSelector from scrapy.http import Request, FormRequest from product_spiders.items import Product, ProductLoader import logging import re class CurrysCoUkSpiderSagemcom(BaseSpider): name = 'currys.co.uk_sagemcom' allowed_domains = ['currys.co.uk'] start_urls = ( 'http://www.currys.co.uk/', ) search_url = 'http://www.currys.co.uk/gbuk/s_action/search_keywords/index.html' keywords = ['Sagemcom'] products = [ 'http://www.currys.co.uk/gbuk/humax-hdr-fox-t2-freeview-hd-recorder-500gb-07289192-pdt.html', 'http://www.currys.co.uk/gbuk/humax-hdr-fox-t2-freeview-hd-recorder-1tb-11502291-pdt.html', 'http://www.currys.co.uk/gbuk/humax-foxsat-hdr-freesat-hd-recorder-500gb-09785361-pdt.html', 'http://www.currys.co.uk/gbuk/panasonic-dmr-hw100-freeview-hd-recorder-320gb-10112707-pdt.html', 'http://www.currys.co.uk/gbuk/samsung-smt-s7800-freesat-hd-recorder-500gb-09933610-pdt.html', 'http://www.currys.co.uk/gbuk/sagemcom-rti-90-320-freeview-hd-recorder-320gb-05326751-pdt.html', 'http://www.currys.co.uk/gbuk/humax-pvr-9300t-500-freeview-recorder-500-gb-12290868-pdt.html', 'http://www.currys.co.uk/gbuk/sony-svr-hdt500-freeview-hd-recorder-500gb-10209414-pdt.html', 'http://www.currys.co.uk/gbuk/philips-picopix-ppx2480-pico-projector-12127328-pdt.html', 'http://www.currys.co.uk/gbuk/philips-picopix-ppx2055-pico-projector-12127320-pdt.html', 'http://www.currys.co.uk/gbuk/microvision-showwx-hdmi-pico-projector-12041449-pdt.html', 'http://www.currys.co.uk/gbuk/sagemcom-rti-95-320-freeview-hd-recorder-320-gb-14134720-pdt.html', 'http://www.currys.co.uk/gbuk/sagemcom-rti95-500-freeview-hd-recorder-500-gb-13406864-pdt.html', 'http://www.currys.co.uk/gbuk/philips-hdtp-8530-freeview-hd-recorder-500-gb-13985229-pdt.html', ] def start_requests(self): for keyword in self.keywords: data = { 'subaction': 'keyword_search', 'search-field': keyword } url = self.search_url request = FormRequest(url, formdata=data, callback=self.parse_search) yield request for url in self.products: yield Request(url, callback=self.parse_product) def parse_product(self, response): hxs = HtmlXPathSelector(response) url = response.url name = hxs.select("//h1[@class='pageTitle']/span/text()").extract() if not name: logging.error("ERROR! NO NAME! %s" % url) return name = " ".join(name) name = re.sub("[\s]+", " ", name) price = hxs.select("//div[contains(@class, 'productDetail')]//span[contains(@class, 'currentPrice')]/text()").extract() if not price: logging.error("ERROR! NO PRICE! %s %s" % (url, name)) return price = price[0] l = ProductLoader(item=Product(), response=response) l.add_value('identifier', name) l.add_value('name', name) l.add_value('url', url) l.add_value('price', price) yield l.load_item() def parse_search(self, response): hxs = HtmlXPathSelector(response) # parse pages pages = hxs.select("//ul[@class='pagination']//a/@href").extract() for page in pages: if page != '#': request = Request(page, callback=self.parse_search) yield request # parse products items = hxs.select("//article[contains(@class, 'product')]/div[contains(@class, 'desc')]") for item in items: name = item.select(".//div/header[@class='productTitle']/a/text()").extract() if not name: continue name = name[0].strip() name = re.sub("[\s]+", " ", name) url = item.select(".//div/header[@class='productTitle']/a/@href").extract() if not url: logging.error("ERROR! NO URL! URL: %s. NAME: %s" % (response.url, name)) continue url = url[0] price = item.select(".//div//span[@class='currentPrice']/ins/text()").extract() if not price: logging.error("ERROR! NO PRICE! URL: %s. NAME: %s" % (response.url, name)) continue price = price[0].strip() l = ProductLoader(item=Product(), response=response) l.add_value('identifier', name) l.add_value('name', name) l.add_value('url', url) l.add_value('price', price) yield l.load_item()
41.982301
127
0.604553
cb2472aabe4b148f89fea5325a8d3fffbc0b6e23
5,968
py
Python
plugins/pglogical/plugins/pglogical/plugin.py
OmniDB/plugins
2c951f2f0100a551da86714cffde22d2baeef29a
[ "MIT" ]
6
2018-06-09T15:40:30.000Z
2020-03-28T14:41:14.000Z
plugins/pglogical/plugins/pglogical/plugin.py
OmniDB/plugins
2c951f2f0100a551da86714cffde22d2baeef29a
[ "MIT" ]
null
null
null
plugins/pglogical/plugins/pglogical/plugin.py
OmniDB/plugins
2c951f2f0100a551da86714cffde22d2baeef29a
[ "MIT" ]
8
2018-07-27T00:48:05.000Z
2021-07-04T05:48:42.000Z
from . import metadata as metadata def get_pglogical_version(p_database_object, p_data): return { 'pglogical_version': metadata.GetPglogicalVersion(p_database_object) } def get_pglogical_templates(p_database_object, p_data): return { 'pglogical_create_node': metadata.TemplatePglogicalCreateNode(p_database_object).v_text, 'pglogical_drop_node': metadata.TemplatePglogicalDropNode(p_database_object).v_text, 'pglogical_add_interface': metadata.TemplatePglogicalNodeAddInterface(p_database_object).v_text, 'pglogical_drop_interface': metadata.TemplatePglogicalNodeDropInterface(p_database_object).v_text, 'pglogical_create_repset': metadata.TemplatePglogicalCreateReplicationSet(p_database_object).v_text, 'pglogical_alter_repset': metadata.TemplatePglogicalAlterReplicationSet(p_database_object).v_text, 'pglogical_drop_repset': metadata.TemplatePglogicalDropReplicationSet(p_database_object).v_text, 'pglogical_repset_add_table': metadata.TemplatePglogicalReplicationSetAddTable(p_database_object).v_text, 'pglogical_repset_add_all_tables': metadata.TemplatePglogicalReplicationSetAddAllTables(p_database_object).v_text, 'pglogical_repset_remove_table': metadata.TemplatePglogicalReplicationSetRemoveTable(p_database_object).v_text, 'pglogical_repset_add_seq': metadata.TemplatePglogicalReplicationSetAddSequence(p_database_object).v_text, 'pglogical_repset_add_all_seqs': metadata.TemplatePglogicalReplicationSetAddAllSequences(p_database_object).v_text, 'pglogical_repset_remove_seq': metadata.TemplatePglogicalReplicationSetRemoveSequence(p_database_object).v_text, 'pglogical_create_sub': metadata.TemplatePglogicalCreateSubscription(p_database_object).v_text, 'pglogical_enable_sub': metadata.TemplatePglogicalEnableSubscription(p_database_object).v_text, 'pglogical_disable_sub': metadata.TemplatePglogicalDisableSubscription(p_database_object).v_text, 'pglogical_sync_sub': metadata.TemplatePglogicalSynchronizeSubscription(p_database_object).v_text, 'pglogical_drop_sub': metadata.TemplatePglogicalDropSubscription(p_database_object).v_text, 'pglogical_sub_add_repset': metadata.TemplatePglogicalSubscriptionAddReplicationSet(p_database_object).v_text, 'pglogical_sub_remove_repset': metadata.TemplatePglogicalSubscriptionRemoveReplicationSet(p_database_object).v_text, } def get_pglogical_nodes(p_database_object, p_data): try: v_list_nodes = [] v_nodes = metadata.QueryPglogicalNodes(p_database_object) for v_node in v_nodes.Rows: v_node_data = { 'v_name': v_node['node_name'] } v_list_nodes.append(v_node_data) return v_list_nodes except Exception as exc: raise exc def get_pglogical_interfaces(p_database_object, p_data): try: v_list_ifaces = [] v_ifaces = metadata.QueryPglogicalNodeInterfaces(p_database_object, p_data['p_node']) for v_iface in v_ifaces.Rows: v_iface_data = { 'v_name': v_iface['if_name'], 'v_dsn': v_iface['if_dsn'] } v_list_ifaces.append(v_iface_data) return v_list_ifaces except Exception as exc: raise exc def get_pglogical_replicationsets(p_database_object, p_data): try: v_list_repsets = [] v_repsets = metadata.QueryPglogicalReplicationSets(p_database_object) for v_repset in v_repsets.Rows: v_repset_data = { 'v_name': v_repset['set_name'], 'v_insert': v_repset['replicate_insert'], 'v_update': v_repset['replicate_update'], 'v_delete': v_repset['replicate_delete'], 'v_truncate': v_repset['replicate_truncate'] } v_list_repsets.append(v_repset_data) return v_list_repsets except Exception as exc: raise exc def get_pglogical_repset_tables(p_database_object, p_data): try: v_list_tables = [] v_tables = metadata.QueryPglogicalReplicationSetTables(p_database_object, p_data['p_repset']) for v_table in v_tables.Rows: v_table_data = { 'v_name': v_table['table_name'] } v_list_tables.append(v_table_data) return v_list_tables except Exception as exc: raise exc def get_pglogical_repset_seqs(p_database_object, p_data): try: v_list_seqs = [] v_seqs = metadata.QueryPglogicalReplicationSetSequences(p_database_object, p_data['p_repset']) for v_seq in v_seqs.Rows: v_seq_data = { 'v_name': v_seq['sequence_name'] } v_list_seqs.append(v_seq_data) return v_list_seqs except Exception as exc: raise exc def get_pglogical_subscriptions(p_database_object, p_data): try: v_list_subs = [] v_subs = metadata.QueryPglogicalSubscriptions(p_database_object) for v_sub in v_subs.Rows: v_sub_data = { 'v_name': v_sub['sub_name'], 'v_status': v_sub['sub_status'], 'v_origin': v_sub['sub_origin'], 'v_enabled': v_sub['sub_enabled'], 'v_delay': v_sub['sub_apply_delay'] } v_list_subs.append(v_sub_data) return v_list_subs except Exception as exc: raise exc def get_pglogical_subscription_repsets(p_database_object, p_data): try: v_list_repsets = [] v_repsets = metadata.QueryPglogicalSubscriptionReplicationSets(p_database_object, p_data['p_sub']) for v_repset in v_repsets.Rows: v_repset_data = { 'v_name': v_repset['set_name'] } v_list_repsets.append(v_repset_data) return v_list_repsets except Exception as exc: raise exc
46.263566
124
0.702245
d903683fd5d56ac5d7c8a036f7db2df0e592fc1f
839
py
Python
google/colab/_kernel.py
zbkruturaj/colabtools
73c8127fac51ce0509a4a6a994ec64ed5bb70422
[ "Apache-2.0" ]
5
2020-03-08T05:39:03.000Z
2021-10-29T22:40:43.000Z
google/colab/_kernel.py
zbkruturaj/colabtools
73c8127fac51ce0509a4a6a994ec64ed5bb70422
[ "Apache-2.0" ]
null
null
null
google/colab/_kernel.py
zbkruturaj/colabtools
73c8127fac51ce0509a4a6a994ec64ed5bb70422
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Colab-specific kernel customizations.""" from ipykernel import ipkernel from google.colab import _shell class Kernel(ipkernel.IPythonKernel): """Kernel with additional Colab-specific features.""" def _shell_class_default(self): return _shell.Shell
32.269231
74
0.765197
4e6ef8ebb4ca75246c1cd9f805d0384c9522069c
1,015
py
Python
pymote/utils/visualization.py
darbula/pymote
fd581cc12fcd10beec7e4d72e90bf6250ac17699
[ "BSD-3-Clause" ]
16
2015-01-22T11:52:48.000Z
2021-01-31T23:30:45.000Z
pymote/utils/visualization.py
nkitic/pymote
84d852c922b39afc64950e967b8309ccd8faf6a5
[ "BSD-3-Clause" ]
5
2015-10-30T10:45:04.000Z
2017-06-28T17:42:04.000Z
pymote/utils/visualization.py
nkitic/pymote
84d852c922b39afc64950e967b8309ccd8faf6a5
[ "BSD-3-Clause" ]
17
2015-06-14T08:53:55.000Z
2021-08-25T00:53:07.000Z
from pymote.utils.tree import get_root_node def show_mst(net, treeKey='mst'): """ Show tree representation of network. treeKey -- key in nodes memory (dictionary) where parent and children data is stored in format: {'parent': parent_node, 'children': [child_node1, child_node2 ...]} """ nodesToCheck = [(get_root_node(net, treeKey), 0)] edgelist = [] levels = [0]*len(net.nodes()) # level of node in tree, root is 0 while nodesToCheck: (node, level) = nodesToCheck.pop() edgelist += [(node, child) for child in node.memory[treeKey]['children']] levels[net.nodes().index(node)] = level nodesToCheck += [(child, level+1) for child in node.memory[treeKey]['children']] net.show(edgelist=edgelist, nodeColor=levels) from matplotlib.pyplot import gca gca().set_title('Minimum spanning tree in memory[\'%s\']' % treeKey)
39.038462
73
0.585222
a16af96e25978801c69ceda7070daff0fd9dd1e6
2,037
py
Python
day11.py
mmokko/aoc2017
0732ac440775f9e6bd4a8447c665c9b0e6969f74
[ "MIT" ]
null
null
null
day11.py
mmokko/aoc2017
0732ac440775f9e6bd4a8447c665c9b0e6969f74
[ "MIT" ]
null
null
null
day11.py
mmokko/aoc2017
0732ac440775f9e6bd4a8447c665c9b0e6969f74
[ "MIT" ]
null
null
null
from day11_input import INPUT class Coordinates(object): def __init__(self, x=0, y=0): self.x = x self.y = y def travel(self, direction): if direction == 'n': self.y += 1 elif direction == 'ne': self.y += 1 self.x += 1 elif direction == 'se': self.y -= 1 self.x += 1 elif direction == 's': self.y -= 1 elif direction == 'sw': self.y -= 1 self.x -= 1 elif direction == 'nw': self.y += 1 self.x -= 1 def at_origo(self): if self.x == 0 and self.y == 0: return True return False def direction_home(self): direction = '' # first find y-axel direction if self.y > 0: direction += 's' else: direction += 'n' # find x-axel direction if self.x > 0: direction += 'w' elif self.x < 0: direction += 'e' return direction class HexFinder(object): def __init__(self, route): self._route = route.split(',') self._coords = Coordinates() self.furthest_away = 0 def travel(self): for direction in self._route: self._coords.travel(direction) route = self._find_route_back() if self.furthest_away < len(route): self.furthest_away = len(route) def _find_route_back(self): route = list() coords = Coordinates(self._coords.x, self._coords.y) while not coords.at_origo(): dir_home = coords.direction_home() coords.travel(dir_home) route.append(dir_home) return route def steps_to_origo(self): route = self._find_route_back() return len(route) def main(): hex_finder = HexFinder(INPUT) hex_finder.travel() print(hex_finder.steps_to_origo()) print(hex_finder.furthest_away) if __name__=='__main__': main()
24.542169
60
0.517919
14ea378de01c7652a54a0280f040591066c23905
373
py
Python
core/migrations/0002_contato_data.py
capmayer/construameumaponte
2ef44dab8130597f1ff16b32bfbe35ac44761d48
[ "MIT" ]
null
null
null
core/migrations/0002_contato_data.py
capmayer/construameumaponte
2ef44dab8130597f1ff16b32bfbe35ac44761d48
[ "MIT" ]
null
null
null
core/migrations/0002_contato_data.py
capmayer/construameumaponte
2ef44dab8130597f1ff16b32bfbe35ac44761d48
[ "MIT" ]
null
null
null
# Generated by Django 2.1.2 on 2019-03-28 15:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.AddField( model_name='contato', name='data', field=models.DateTimeField(auto_now=True), ), ]
19.631579
54
0.58445
5e3ac032966703355ba975cf6e4230084de6fae8
980
py
Python
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/raw/GL/ATI/vertex_attrib_array_object.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/raw/GL/ATI/vertex_attrib_array_object.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/raw/GL/ATI/vertex_attrib_array_object.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GL import _types as _cs # End users want this... from OpenGL.raw.GL._types import * from OpenGL.raw.GL import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GL_ATI_vertex_attrib_array_object' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GL,'GL_ATI_vertex_attrib_array_object',error_checker=_errors._error_checker) @_f @_p.types(None,_cs.GLuint,_cs.GLenum,arrays.GLfloatArray) def glGetVertexAttribArrayObjectfvATI(index,pname,params):pass @_f @_p.types(None,_cs.GLuint,_cs.GLenum,arrays.GLintArray) def glGetVertexAttribArrayObjectivATI(index,pname,params):pass @_f @_p.types(None,_cs.GLuint,_cs.GLint,_cs.GLenum,_cs.GLboolean,_cs.GLsizei,_cs.GLuint,_cs.GLuint) def glVertexAttribArrayObjectATI(index,size,type,normalized,stride,buffer,offset):pass
40.833333
128
0.797959
12aeeb883bbb50b230023ccc79a424ef5c1c7157
9,490
py
Python
src/config/utils/provision_control.py
casek14/contrail-controller
18e2572635370b3cb6da2731af049cbeb934f2bb
[ "Apache-2.0" ]
1
2019-01-11T06:16:10.000Z
2019-01-11T06:16:10.000Z
src/config/utils/provision_control.py
casek14/contrail-controller
18e2572635370b3cb6da2731af049cbeb934f2bb
[ "Apache-2.0" ]
null
null
null
src/config/utils/provision_control.py
casek14/contrail-controller
18e2572635370b3cb6da2731af049cbeb934f2bb
[ "Apache-2.0" ]
1
2020-06-08T11:50:36.000Z
2020-06-08T11:50:36.000Z
#!/usr/bin/python # # Copyright (c) 2013 Juniper Networks, Inc. All rights reserved. # import sys import argparse import ConfigParser from provision_bgp import BgpProvisioner from vnc_api.vnc_api import * class ControlProvisioner(object): def __init__(self, args_str=None): self._args = None if not args_str: args_str = ' '.join(sys.argv[1:]) self._parse_args(args_str) if self._args.router_asn and not self._args.oper: self._vnc_lib = VncApi( self._args.admin_user, self._args.admin_password, self._args.admin_tenant_name, self._args.api_server_ip, self._args.api_server_port, '/', api_server_use_ssl=self._args.api_server_use_ssl) # Update global system config also with this ASN gsc_obj = self._vnc_lib.global_system_config_read( fq_name=['default-global-system-config']) gsc_obj.set_autonomous_system(self._args.router_asn) if self._args.ibgp_auto_mesh is not None: gsc_obj.set_ibgp_auto_mesh(self._args.ibgp_auto_mesh) if self._args.set_graceful_restart_parameters == True: gr_params = GracefulRestartParametersType() gr_params.set_restart_time( int(self._args.graceful_restart_time)) gr_params.set_long_lived_restart_time( int(self._args.long_lived_graceful_restart_time)) gr_params.set_end_of_rib_timeout( int(self._args.end_of_rib_timeout)) gr_params.set_enable(self._args.graceful_restart_enable) gr_params.set_bgp_helper_enable( self._args.graceful_restart_bgp_helper_enable) gr_params.set_xmpp_helper_enable( self._args.graceful_restart_xmpp_helper_enable) gsc_obj.set_graceful_restart_parameters(gr_params) self._vnc_lib.global_system_config_update(gsc_obj) return bp_obj = BgpProvisioner( self._args.admin_user, self._args.admin_password, self._args.admin_tenant_name, self._args.api_server_ip, self._args.api_server_port, api_server_use_ssl=self._args.api_server_use_ssl) if self._args.oper == 'add': bp_obj.add_bgp_router('control-node', self._args.host_name, self._args.host_ip, self._args.router_asn, self._args.address_families, self._args.md5) elif self._args.oper == 'del': bp_obj.del_bgp_router(self._args.host_name) else: print "Unknown operation %s. Only 'add' and 'del' supported"\ % (self._args.oper) # end __init__ def gr_time_type(self, value): time = int(value) if time < 0 or time > 4095: raise argparse.ArgumentTypeError("graceful_restart_time %s must be in range (0..4095)" % value) return time def llgr_time_type(self, value): time = int(value) if time < 0 or time > 16777215: raise argparse.ArgumentTypeError("long_lived_graceful_restart_time %s must be in range (0..16777215)" % value) return time def _parse_args(self, args_str): ''' Eg. python provision_control.py --host_name a3s30.contrail.juniper.net --host_ip 10.1.1.1 --router_asn 64512 --ibgp_auto_mesh|--no_ibgp_auto_mesh --api_server_ip 127.0.0.1 --api_server_port 8082 --api_server_use_ssl False --oper <add | del> --md5 <key value>|None(optional) --graceful_restart_time 100 --long_lived_graceful_restart_time 100 --end_of_rib_timeout 300 --set_graceful_restart_parameters False --graceful_restart_bgp_helper_enable False --graceful_restart_xmpp_helper_enable False --graceful_restart_enable False ''' # Source any specified config/ini file # Turn off help, so we print all options in response to -h conf_parser = argparse.ArgumentParser(add_help=False) conf_parser.add_argument("-c", "--conf_file", help="Specify config file", metavar="FILE") args, remaining_argv = conf_parser.parse_known_args(args_str.split()) defaults = { 'router_asn': '64512', 'ibgp_auto_mesh': None, 'api_server_ip': '127.0.0.1', 'api_server_port': '8082', 'api_server_use_ssl': False, 'oper': None, 'admin_user': None, 'admin_password': None, 'admin_tenant_name': None, 'md5' : None, 'graceful_restart_time': 60, 'long_lived_graceful_restart_time': 300, 'end_of_rib_timeout': 300, 'graceful_restart_bgp_helper_enable': False, 'graceful_restart_xmpp_helper_enable': False, 'graceful_restart_enable': False, 'set_graceful_restart_parameters': False, } if args.conf_file: config = ConfigParser.SafeConfigParser() config.read([args.conf_file]) defaults.update(dict(config.items("DEFAULTS"))) # Override with CLI options # Don't surpress add_help here so it will handle -h parser = argparse.ArgumentParser( # Inherit options from config_parser parents=[conf_parser], # print script description with -h/--help description=__doc__, # Don't mess with format of description formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.set_defaults(**defaults) parser.add_argument( "--host_name", help="hostname name of control-node") parser.add_argument("--host_ip", help="IP address of control-node") parser.add_argument( "--router_asn", help="AS Number the control-node is in", required=True) parser.add_argument( "--address_families", help="Address family list", choices=["route-target", "inet-vpn", "e-vpn", "erm-vpn", "inet6-vpn"], nargs="*", default=[]) parser.add_argument( "--md5", help="Md5 config for the node") parser.add_argument( "--ibgp_auto_mesh", help="Create iBGP mesh automatically", dest='ibgp_auto_mesh', action='store_true') parser.add_argument( "--no_ibgp_auto_mesh", help="Don't create iBGP mesh automatically", dest='ibgp_auto_mesh', action='store_false') parser.add_argument( "--api_server_ip", help="IP address of api server", required=True) parser.add_argument("--api_server_port", help="Port of api server", required=True) parser.add_argument("--api_server_use_ssl", help="Use SSL to connect with API server") parser.add_argument( "--oper", help="Provision operation to be done(add or del)") parser.add_argument( "--admin_user", help="Name of keystone admin user") parser.add_argument( "--admin_password", help="Password of keystone admin user") parser.add_argument( "--admin_tenant_name", help="Tenamt name for keystone admin user") parser.add_argument( "--graceful_restart_time", help="Graceful Restart Time in seconds (0..4095)", type=self.gr_time_type, default=60, required=False) parser.add_argument( "--long_lived_graceful_restart_time", help="Long Lived Graceful Restart Time in seconds (0..16777215)", type=self.llgr_time_type, default=300, required=False) parser.add_argument( "--end_of_rib_timeout", help="EndOfRib timeout value in seconds (0..4095)", type=self.gr_time_type, default=300, required=False) parser.add_argument("--graceful_restart_bgp_helper_enable", action='store_true', help="Enable helper mode for BGP graceful restart") parser.add_argument("--graceful_restart_xmpp_helper_enable", action='store_true', help="Enable helper mode for XMPP graceful restart") parser.add_argument("--graceful_restart_enable", action='store_true', help="Enable Graceful Restart") parser.add_argument("--set_graceful_restart_parameters", action='store_true', help="Set Graceful Restart Parameters") self._args = parser.parse_args(remaining_argv) # end _parse_args # end class ControlProvisioner def main(args_str=None): ControlProvisioner(args_str) # end main if __name__ == "__main__": main()
43.53211
124
0.577871
80ac95e83ab7f54b765cdaaed2771acc446cc54b
4,993
py
Python
chumpy/optimization.py
jeffhsu3/chumpy
00e83955ea45cd129d55a3017c08f89045842224
[ "MIT" ]
null
null
null
chumpy/optimization.py
jeffhsu3/chumpy
00e83955ea45cd129d55a3017c08f89045842224
[ "MIT" ]
null
null
null
chumpy/optimization.py
jeffhsu3/chumpy
00e83955ea45cd129d55a3017c08f89045842224
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Author(s): Matthew Loper See LICENCE.txt for licensing and contact information. """ __all__ = ['minimize'] import numpy as np from . import ch import scipy.sparse as sp import scipy.optimize from .optimization_internal import minimize_dogleg #from memory_profiler import profile, memory_usage # def disable_cache_for_single_parent_node(node): # if hasattr(node, '_parents') and len(node._parents.keys()) == 1: # node.want_cache = False # Nelder-Mead # Powell # CG # BFGS # Newton-CG # Anneal # L-BFGS-B # TNC # COBYLA # SLSQP # dogleg # trust-ncg def minimize(fun, x0, method='dogleg', bounds=None, constraints=(), tol=None, callback=None, options=None): if method == 'dogleg': if options is None: options = {} return minimize_dogleg(fun, free_variables=x0, on_step=callback, **options) if isinstance(fun, list) or isinstance(fun, tuple): fun = ch.concatenate([f.ravel() for f in fun]) if isinstance(fun, dict): fun = ch.concatenate([f.ravel() for f in fun.values()]) obj = fun free_variables = x0 from ch import SumOfSquares hessp = None hess = None if obj.size == 1: obj_scalar = obj else: obj_scalar = SumOfSquares(obj) def hessp(vs, p,obj, obj_scalar, free_variables): changevars(vs,obj,obj_scalar,free_variables) if not hasattr(hessp, 'vs'): hessp.vs = vs*0+1e16 if np.max(np.abs(vs-hessp.vs)) > 0: J = ns_jacfunc(vs,obj,obj_scalar,free_variables) hessp.J = J hessp.H = 2. * J.T.dot(J) hessp.vs = vs return np.array(hessp.H.dot(p)).ravel() #return 2*np.array(hessp.J.T.dot(hessp.J.dot(p))).ravel() if method.lower() != 'newton-cg': def hess(vs, obj, obj_scalar, free_variables): changevars(vs,obj,obj_scalar,free_variables) if not hasattr(hessp, 'vs'): hessp.vs = vs*0+1e16 if np.max(np.abs(vs-hessp.vs)) > 0: J = ns_jacfunc(vs,obj,obj_scalar,free_variables) hessp.H = 2. * J.T.dot(J) return hessp.H def changevars(vs, obj, obj_scalar, free_variables): cur = 0 changed = False for idx, freevar in enumerate(free_variables): sz = freevar.r.size newvals = vs[cur:cur+sz].copy().reshape(free_variables[idx].shape) if np.max(np.abs(newvals-free_variables[idx]).ravel()) > 0: free_variables[idx][:] = newvals changed = True cur += sz methods_without_callback = ('anneal', 'powell', 'cobyla', 'slsqp') if callback is not None and changed and method.lower() in methods_without_callback: callback(None) return changed def residuals(vs,obj, obj_scalar, free_variables): changevars(vs, obj, obj_scalar, free_variables) residuals = obj_scalar.r.ravel()[0] return residuals def scalar_jacfunc(vs,obj, obj_scalar, free_variables): if not hasattr(scalar_jacfunc, 'vs'): scalar_jacfunc.vs = vs*0+1e16 if np.max(np.abs(vs-scalar_jacfunc.vs)) == 0: return scalar_jacfunc.J changevars(vs, obj, obj_scalar, free_variables) if True: # faster, at least on some problems result = np.concatenate([np.array(obj_scalar.lop(wrt, np.array([[1]]))).ravel() for wrt in free_variables]) else: jacs = [obj_scalar.dr_wrt(wrt) for wrt in free_variables] for idx, jac in enumerate(jacs): if sp.issparse(jac): jacs[idx] = jacs[idx].todense() result = np.concatenate([jac.ravel() for jac in jacs]) scalar_jacfunc.J = result scalar_jacfunc.vs = vs return result.ravel() def ns_jacfunc(vs,obj, obj_scalar, free_variables): if not hasattr(ns_jacfunc, 'vs'): ns_jacfunc.vs = vs*0+1e16 if np.max(np.abs(vs-ns_jacfunc.vs)) == 0: return ns_jacfunc.J changevars(vs, obj, obj_scalar, free_variables) jacs = [obj.dr_wrt(wrt) for wrt in free_variables] result = hstack(jacs) ns_jacfunc.J = result ns_jacfunc.vs = vs return result x1 = scipy.optimize.minimize( method=method, fun=residuals, callback=callback, x0=np.concatenate([free_variable.r.ravel() for free_variable in free_variables]), jac=scalar_jacfunc, hessp=hessp, hess=hess, args=(obj, obj_scalar, free_variables), bounds=bounds, constraints=constraints, tol=tol, options=options).x changevars(x1, obj, obj_scalar, free_variables) return free_variables def main(): pass if __name__ == '__main__': main()
30.820988
131
0.589425
8c6af9efd2eeade0fe53ab90e047019362d26513
2,608
py
Python
ai_lab/modelloader.py
ZachisGit/MultidirectionalAutoencoders
49257d9912e3de056034bb8315b7b2574cfcb030
[ "Apache-2.0" ]
3
2018-03-29T22:49:37.000Z
2019-01-18T15:13:51.000Z
ai_lab/modelloader.py
ZachisGit/MultidirectionalAutoencoders
49257d9912e3de056034bb8315b7b2574cfcb030
[ "Apache-2.0" ]
null
null
null
ai_lab/modelloader.py
ZachisGit/MultidirectionalAutoencoders
49257d9912e3de056034bb8315b7b2574cfcb030
[ "Apache-2.0" ]
null
null
null
import numpy as numpy import imp from ai_lab import storagemanager as sm ''' load_model(path[string]) Description: Returns the loaded model class, based on the BaseModel (ModelBaseStructure). It should be abstracted from BaseModel, else NotImplemented- Error is raised. model(class): |_ class_name = model |_ abstracted from BaseModel ''' def load_model(model_path): model_path = sm.check_file_path(model_path) if model_path == None: return None #if model_path[-3:] == ".py": # model_path = model_path[:-3] model = imp.load_source("model",model_path).model(model_path) return model ''' BaseModel(class) Description: Container for ModelBaseStructure, holds base functionality (like abstract class) of the standard model. ''' class BaseModel: ''' Procedure: -__init__ -assign_dataset -set_hyper_params -init -get_... ''' # Model Parameters hyper_params = None hyper_param_dict = None dataset = None # Model Infos model_path = None model_name = None model_group = None model_compatibility = None # Assigns a dataset if dataset_loaded = True # else sets self.dataset to None # Ret: - # class-vars: dataset def assign_dataset(self, dataset): if dataset.dataset_loaded == True: self.dataset = dataset else: self.dataset = None ''' Set the hyper-parameters based on the hyper_param_dict if the dict is None raise NotImplementedError just igonre hyper_parameters not set in hyper_param_dict class-vars: hyper_params, hyper_param_dict Ret: - ''' def set_hyper_params(self, hyper_params): if self.hyper_param_dict == None: raise NotImplementedError() # Set all parameters defined in hyper_params, # for the rest use the predefined values in # self.hyper_param_dict. n_hyper_params = {} for key,value in self.hyper_param_dict.iteritems(): if key in hyper_params: n_hyper_params[key] = hyper_params[key] else: n_hyper_params[key] = value self.hyper_params = n_hyper_params # Ret: - # class-vars: model (tflearn model),etc def init(self): raise NotImplementedError() # Ret: ds.get_batch(batch_size,validation=validation) # class-vars: dataset def get_training_batch(self,validation=False): raise NotImplementedError() # Ret: test_data,test_labels,cell_counts # class-vars: dataset def get_evaluation_batch(self): raise NotImplementedError() # Ret: data,labels # class-vars: dataset def get_livedisplay_batch(self): raise NotImplementedError() # Ret: tflearn model # class-vars: model (tflearn model) def get_model(self): raise NotImplementedError()
20.864
62
0.732362
fde0df824f3f664297d7a9098986cb40c2a45740
6,273
py
Python
railrl/launchers/contextual_env_launcher_util.py
Asap7772/rail-rl-franka-eval
4bf99072376828193d05b53cf83c7e8f4efbd3ba
[ "MIT" ]
null
null
null
railrl/launchers/contextual_env_launcher_util.py
Asap7772/rail-rl-franka-eval
4bf99072376828193d05b53cf83c7e8f4efbd3ba
[ "MIT" ]
null
null
null
railrl/launchers/contextual_env_launcher_util.py
Asap7772/rail-rl-franka-eval
4bf99072376828193d05b53cf83c7e8f4efbd3ba
[ "MIT" ]
null
null
null
from functools import partial import numpy as np import railrl.samplers.rollout_functions as rf import railrl.torch.pytorch_util as ptu from railrl.data_management.contextual_replay_buffer import ( ContextualRelabelingReplayBuffer, SelectKeyFn, ) from railrl.envs.contextual import ContextualEnv from railrl.envs.contextual.goal_conditioned import ( GoalDistributionFromMultitaskEnv, ContextualRewardFnFromMultitaskEnv, ) from railrl.samplers.data_collector.contextual_path_collector import ( ContextualPathCollector ) from railrl.visualization.video import get_save_video_function from railrl.torch.networks import FlattenMlp from railrl.torch.sac.policies import MakeDeterministic from railrl.torch.sac.policies import TanhGaussianPolicy from railrl.torch.sac.sac import SACTrainer from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm def goal_conditioned_sac_experiment( max_path_length, qf_kwargs, sac_trainer_kwargs, replay_buffer_kwargs, policy_kwargs, algo_kwargs, env_id=None, env_class=None, env_kwargs=None, observation_key='state_observation', desired_goal_key='state_desired_goal', achieved_goal_key='state_achieved_goal', contextual_env_kwargs=None, evaluation_goal_sampling_mode=None, exploration_goal_sampling_mode=None, # Video parameters save_video=True, save_video_kwargs=None, ): if contextual_env_kwargs is None: contextual_env_kwargs = {} if not save_video_kwargs: save_video_kwargs = {} def contextual_env_distrib_and_reward( env_id, env_class, env_kwargs, goal_sampling_mode ): env = get_gym_env(env_id, env_class=env_class, env_kwargs=env_kwargs) env.goal_sampling_mode = goal_sampling_mode goal_distribution = GoalDistributionFromMultitaskEnv( env, desired_goal_key=desired_goal_key, ) reward_fn = ContextualRewardFnFromMultitaskEnv( env=env, desired_goal_key=desired_goal_key, achieved_goal_key=achieved_goal_key, ) env = ContextualEnv( env, context_distribution=goal_distribution, reward_fn=reward_fn, observation_key=observation_key, **contextual_env_kwargs, ) return env, goal_distribution, reward_fn expl_env, expl_context_distrib, expl_reward = contextual_env_distrib_and_reward( env_id, env_class, env_kwargs, exploration_goal_sampling_mode ) eval_env, eval_context_distrib, eval_reward = contextual_env_distrib_and_reward( env_id, env_class, env_kwargs, evaluation_goal_sampling_mode ) context_key = desired_goal_key obs_dim = ( expl_env.observation_space.spaces[observation_key].low.size + expl_env.observation_space.spaces[desired_goal_key].low.size ) action_dim = expl_env.action_space.low.size def create_qf(): return FlattenMlp( input_size=obs_dim + action_dim, output_size=1, **qf_kwargs ) qf1 = create_qf() qf2 = create_qf() target_qf1 = create_qf() target_qf2 = create_qf() policy = TanhGaussianPolicy( obs_dim=obs_dim, action_dim=action_dim, **policy_kwargs ) ob_keys_to_save = [ observation_key, desired_goal_key, achieved_goal_key, ] def concat_context_to_obs(batch): obs = batch['observations'] next_obs = batch['next_observations'] context = batch['contexts'] batch['observations'] = np.concatenate([obs, context], axis=1) batch['next_observations'] = np.concatenate([next_obs, context], axis=1) return batch replay_buffer = ContextualRelabelingReplayBuffer( env=eval_env, context_key=desired_goal_key, context_distribution=eval_context_distrib, sample_context_from_obs_dict_fn=SelectKeyFn(achieved_goal_key), ob_keys_to_save=ob_keys_to_save, reward_fn=eval_reward, post_process_batch_fn=concat_context_to_obs, **replay_buffer_kwargs ) trainer = SACTrainer( env=expl_env, policy=policy, qf1=qf1, qf2=qf2, target_qf1=target_qf1, target_qf2=target_qf2, **sac_trainer_kwargs ) eval_path_collector = ContextualPathCollector( eval_env, MakeDeterministic(policy), observation_key=observation_key, context_key=context_key, ) expl_path_collector = ContextualPathCollector( expl_env, policy, observation_key=observation_key, context_key=context_key, ) algorithm = TorchBatchRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, replay_buffer=replay_buffer, max_path_length=max_path_length, **algo_kwargs ) algorithm.to(ptu.device) if save_video: rollout_function = partial( rf.contextual_rollout, max_path_length=max_path_length, observation_key=observation_key, context_key=context_key, ) eval_video_func = get_save_video_function( rollout_function, eval_env, MakeDeterministic(policy), tag="eval", **save_video_kwargs ) train_video_func = get_save_video_function( rollout_function, expl_env, policy, tag="train", **save_video_kwargs ) algorithm.post_train_funcs.append(eval_video_func) algorithm.post_train_funcs.append(train_video_func) algorithm.train() def get_gym_env(env_id, env_class=None, env_kwargs=None): if env_kwargs is None: env_kwargs = {} assert env_id or env_class if env_id: import gym import multiworld multiworld.register_all_envs() env = gym.make(env_id) else: env = env_class(**env_kwargs) return env
30.75
84
0.676391
ee8ec999fa8b5c6a1d8c6e509ef788e5072983fd
3,445
py
Python
clients/oathkeeper/python/ory_oathkeeper_client/models/swagger_rule_response.py
russelg/sdk
2515b35981784319bd7d58fcf0b5ab85b501b62f
[ "Apache-2.0" ]
77
2020-02-14T17:27:36.000Z
2022-03-25T08:44:52.000Z
clients/oathkeeper/python/ory_oathkeeper_client/models/swagger_rule_response.py
russelg/sdk
2515b35981784319bd7d58fcf0b5ab85b501b62f
[ "Apache-2.0" ]
125
2020-02-07T21:45:52.000Z
2022-03-31T12:54:24.000Z
clients/oathkeeper/python/ory_oathkeeper_client/models/swagger_rule_response.py
russelg/sdk
2515b35981784319bd7d58fcf0b5ab85b501b62f
[ "Apache-2.0" ]
44
2020-01-31T22:05:47.000Z
2022-03-09T14:41:22.000Z
# coding: utf-8 """ ORY Oathkeeper ORY Oathkeeper is a reverse proxy that checks the HTTP Authorization for validity against a set of rules. This service uses Hydra to validate access tokens and policies. # noqa: E501 The version of the OpenAPI document: v0.0.0-alpha.37 Contact: hi@ory.am Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from ory_oathkeeper_client.configuration import Configuration class SwaggerRuleResponse(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'body': 'SwaggerRule' } attribute_map = { 'body': 'Body' } def __init__(self, body=None, local_vars_configuration=None): # noqa: E501 """SwaggerRuleResponse - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._body = None self.discriminator = None if body is not None: self.body = body @property def body(self): """Gets the body of this SwaggerRuleResponse. # noqa: E501 :return: The body of this SwaggerRuleResponse. # noqa: E501 :rtype: SwaggerRule """ return self._body @body.setter def body(self, body): """Sets the body of this SwaggerRuleResponse. :param body: The body of this SwaggerRuleResponse. # noqa: E501 :type: SwaggerRule """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SwaggerRuleResponse): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, SwaggerRuleResponse): return True return self.to_dict() != other.to_dict()
28.237705
187
0.583454
fe413fdae7533f0c9f9626347e191dacc0c4e485
28,271
py
Python
Text To Speech/strange_sound.py
poly451/Tutorials
8b6746394a8b651c9b746adae11e768bb9c74a38
[ "MIT" ]
10
2020-10-17T18:40:05.000Z
2022-02-21T17:42:44.000Z
Text To Speech/strange_sound.py
Mimsadi/Tutorials
ffd3b6eba3cecc4c30984cd1b33d7944bb4e0317
[ "MIT" ]
null
null
null
Text To Speech/strange_sound.py
Mimsadi/Tutorials
ffd3b6eba3cecc4c30984cd1b33d7944bb4e0317
[ "MIT" ]
18
2020-10-22T09:00:33.000Z
2022-03-29T17:52:14.000Z
import pyttsx3 import os, sys import utils """ rate — Integer speech rate in words per minute. The base value is 200. voice — String identifier of the active voice volume — Floating point volume in the range of 0.0 to 1.0 inclusive voices — List of pyttsx3.voice.Voice descriptor objects """ # ---------------------------------------------------------- # class Voices # ---------------------------------------------------------- class Voice: def __init__(self, mydict): # print(mydict) self.name = mydict["name"] self.id = mydict["id"] self.languages = mydict["voice languages"] self.gender = mydict["voice gender"] self.age = mydict["voice age"] # ---------------------------------------------------------- # class Voices # ---------------------------------------------------------- class Voices: def __init__(self): self.inner = [] # ---- filepath = os.path.join("data", "voices.txt") with open(filepath, "r") as f: mylines = f.readlines() mylines = [i.strip() for i in mylines if len(i.strip()) > 0] for i in range(0, len(mylines), 5): mydict = {} for j in range(5): # print(mylines[i+j]) mydict = utils.strip_value(mylines[i+j], mydict) new_voice = Voice(mydict) self.inner.append(new_voice) # ----------------------------------------------- def get_voice_by_name(self, name): name = name.strip() for elem in self.inner: # print("elem.name: {}, name: {}".format(elem.name, name)) if elem.name == name: return elem return None def get_voices_by_language(self, language): language = language.lower().strip() mylist = [] for elem in self.inner: if elem.languages == language: mylist.append(elem) return mylist def get_voices_by_gender(self, gender): # ['voicegendermale', 'voicegenderneuter', 'voicegenderfemale'] this_gender = "" gender = gender.lower().strip() if gender in ["female", "f", "voicegenderfemale"]: this_gender = 'voicegenderfemale' elif gender in ["male", "m", "voicegendermale"]: this_gender = 'voicegendermale' elif gender in ["neuter", "n", "voicegenderneuter"]: this_gender = 'voicegenderneuter' else: s = "I don't recognize this: {} ({})".format(gender, type(gender)) raise ValueError(s) # ---- mylist = [] for elem in self.inner: if elem.gender == this_gender: mylist.append(elem) return mylist def get_voices_by_age(self, age): mylist = [] for elem in self.inner: # print("age: {} ({}) == {} ({})".format(elem.age, type(elem.age), age, type(age))) if elem.age == age: mylist.append(elem) return mylist def filter_voices(self, age, gender, langauge): ages_filtered = self.get_voices_by_age(age) genders_filtered = self.get_voices_by_gender(gender) langages_filtered = self.get_voices_by_language(langauge) intersection = list(set(ages_filtered + genders_filtered)) intersection = list(set(intersection + langages_filtered)) if len(intersection) == 0: raise ValueError("Error!") return intersection # ----------------------------------------------- def get_names(self): mylist = [] for elem in self.inner: mylist.append(elem.name) return mylist def get_ids(self): mylist = [] for elem in self.inner: mylist.append(elem.id) return mylist def get_languages(self): mylist = [] for elem in self.inner: mylist.append(elem.languages) return list(set(mylist)) def get_genders(self): mylist = [] for elem in self.inner: mylist.append(elem.gender) return list(set(mylist)) def get_gender(self): mylist = [] for elem in self.inner: mylist.append(elem.gender) return list(set(mylist)) def get_ages(self): mylist = [] for elem in self.inner: mylist.append(elem.age) return list(set(mylist)) def update_init_file(self, this_voice, init_filepath): name = "name: {}\n".format(this_voice.name) id = "id: {}\n".format(this_voice.id) languages = "langauges: {}\n".format(this_voice.languages) gender = "gender: {}\n".format(this_voice.gender) age = "age: {}\n".format(this_voice.age) with open(init_filepath, "w") as f: f.write(name) f.write(id) f.write(languages) f.write(gender) f.write(age) # ---------------------------------------------------------- # class PySound # ---------------------------------------------------------- class StrangeSound: def __init__(self): self.engine = pyttsx3.init() self.keep_looping = True # ------------------------ self.load_initialization_file() def load_initialization_file(self): with open(os.path.join("data", "init.txt"), "r") as f: mylines = f.readlines() mylines = [i.strip() for i in mylines if len(i.strip()) > 0] mydict = {} for i in range(5): mydict = utils.strip_value(mylines[i], mydict) self.engine.setProperty("voice", mydict["id"]) def change_voice_by_name(self): print("Here are names of the voices I know. Which one would you like?\n") voices = Voices() names = voices.get_names() utils.print_elements(names, 8) user_input = "" while not user_input in names: user_input = input("> ").strip() if user_input == "quit": return False this_voice = voices.get_voice_by_name(user_input) filepath = os.path.join("data", "init.txt") self.engine.setProperty("voice", this_voice.id) voices.update_init_file(this_voice, filepath) self.speak("Hi! My name is {}.".format(this_voice.name)) def change_volume(self): print("The defaut for 'volume' is 1. What would you like to change it to? (0 to 3)") user_input = "" while not user_input in ["0", "1", "2", "3"]: user_input = input("> ").lower().strip() user_input = int(user_input) self.set_sound_property("volume", user_input) self.speak("The volume has been chnaged") def play_script(self): line_length = 60 indy = "com.apple.speech.synthesis.voice.daniel.premium" satipo = "com.apple.speech.synthesis.voice.Alex" serena = "com.apple.speech.synthesis.voice.moira.premium" # ------------------------------------------ text = "Indy and Satipo fan out to fight their way through the entwined " text += "trees that guard the temple. Visibility is cut to five feet " text += "in the heavy mist. Satipo extracts a short, native dart from " text += "a tree and examines the point gingerly. ... As Satipo shows Indy the dart, he says," text_list = utils.separate_text_into_lines(text, line_length) [print(i) for i in text_list] print("") self.engine.setProperty("voice", serena) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 200) self.speak(text) # ----- text = "The Hovitos are near. The poison is still fresh...three days. " text += "I tell you, they’re following us." text_list = utils.separate_text_into_lines(text, line_length) [print(i) for i in text_list] print("") self.engine.setProperty("voice", satipo) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 400) self.speak(text) # ----- text = "If they knew we were here, they would have killed us already." text_list = utils.separate_text_into_lines(text, line_length) [print(i) for i in text_list] print("") self.engine.setProperty("voice", indy) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 200) self.speak(text) # ----- text = "In the undergrowth, there is a slithering movement. Their eyes " text += "are drawn to one of the trees that surround them. There is something ..." text += "A dessicated corpse is attached to the trunk of the tree with arrows. Sapito screams." text += "Indy examins the corpse." text_list = utils.separate_text_into_lines(text, line_length) [print(i) for i in text_list] print("") self.engine.setProperty("voice", serena) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 200) self.speak(text) # ----- text = "So this is where Forestal cashed in." text_list = utils.separate_text_into_lines(text, line_length) [print(i) for i in text_list] self.engine.setProperty("voice", indy) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 200) self.speak(text) # ----- text = "A friend of yours?" print(text) print("") self.engine.setProperty("voice", satipo) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 400) self.speak(text) # ----- text = "Competitor. He was good, very good." print(text) print("") self.engine.setProperty("voice", indy) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 200) self.speak(text) # ----- text = "No one has ever come out of there alive. Why should we put our faith in you?" text_list = utils.separate_text_into_lines(text, line_length) [print(i) for i in text_list] print("") self.engine.setProperty("voice", satipo) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 400) self.speak(text) # ----- text = "Indy shows Satipo his map. Satipo looks at it with naked greed. " text += "Indy spreads out the map on the grass. Minutes go by as the men study it. " text += "Satipo leans closer. He says," text_list = utils.separate_text_into_lines(text, line_length) [print(i) for i in text_list] print("") self.engine.setProperty("voice", serena) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 200) self.speak(text) # ----- text = "It's the floor plan of the temple! It has to be!" text_list = utils.separate_text_into_lines(text, line_length) [print(i) for i in text_list] print("") self.engine.setProperty("voice", satipo) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 400) self.speak(text) # ----- text = "Indy nodded." text_list = utils.separate_text_into_lines(text, line_length) [print(i) for i in text_list] print("") self.engine.setProperty("voice", serena) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 200) self.speak(text) # ----- text = "That's how I figure it." text_list = utils.separate_text_into_lines(text, line_length) [print(i) for i in text_list] self.engine.setProperty("voice", indy) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 200) self.speak(text) # ----- text = "No one else had this ... Only us." print(text) self.engine.setProperty("voice", satipo) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 400) self.speak(text) # ----- text = "Will Indy survive the dangers that await him in the tunnel, " text += "or will he die an agonizing death like all those before him?" print(text) self.engine.setProperty("voice", serena) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 200) self.speak(text) # ----- text = "The end." print(text) self.engine.setProperty("voice", serena) self.engine.setProperty("volume", 1) self.engine.setProperty("rate", 200) self.speak(text) def print_out_properties(self): print("rate: ", self.engine.getProperty('rate')) print("volume: ", self.engine.getProperty('volume')) def print_out_all_voices(self): voices = self.engine.getProperty('voices') for voice in voices: print("Voice name: {}".format(voice.name)) print("Voice ID: {}".format(voice.id)) print("Voice Languages: {}".format(voice.languages)) print("Voice Gender: {}".format(voice.gender)) print("Voice Age: {}".format(voice.age)) print("-" * 40) def write_voices_to_file(self): filepath = os.path.join("data", "voices_text.txt") voices = self.engine.getProperty('voices') mylist = [] for voice in voices: language = ''.join(voice.languages).strip() s = "name: {}\n".format(voice.name) s += "ID: {}\n".format(voice.id) s += "Voice Languages: {}\n".format(language) s += "Voice Gender: {}\n".format(voice.gender) s += "Voice Age: {}\n".format(voice.age) s += "\n" mylist.append(s) # [print(i) for i in mylist] with open(filepath, "w") as f: for elem in mylist: f.write(elem) def set_properties(self): self.engine.setProperty('volume', 1) self.engine.setProperty('rate', 200) voices = self.engine.getProperty('voices') # self.engine.setProperty("voice", voices[1].id) id = "com.apple.speech.synthesis.voice.BadNews" id = "com.apple.speech.synthesis.voice.Bahh" id = "com.apple.speech.synthesis.voice.diego" id = "com.apple.speech.synthesis.voice.daniel.premium" id = "com.apple.speech.synthesis.voice.carmit" id = "com.apple.speech.synthesis.voice.GoodNews" self.engine.setProperty("voice", id) # self.engine.setProperty('age', 300) def test(self): self.speak() self.set_properties() self.print_out_properties() self.speak() self.print_out_properties() def print_voices_to_file(self): self.write_voices_to_file() # ************************************************ def speak(self, text=""): # this_text = "Though I speak with the tongues of men and of angels, and have not charity, I am become as sounding brass, or a tinkling cymbal." this_text = "The cat is on the mat." if len(text) == 0: self.engine.say(this_text) else: self.engine.say(text) self.engine.runAndWait() # file_to_save = os.path.join("data", "exp_my_exp") # engine.save_to_file('the text I want to save as audio', file_to_save) def cycle_through_voices(self): myvoices = Voices() ids = myvoices.get_ids() for id in ids: print("playing {} ...".format(id)) self.engine.setProperty("voice", id) self.speak() print("-" * 40) def speak_some_text(self): def is_valid(mystring, mylist): if not utils.is_int(mystring): return False myint = int(mystring) for i in range(len(mylist)): if myint - 1 == i: return True return False # ----------------------------------------- first_choice = "enter the text you would like me to speak" second_choice = "Enter the filename you would like me to read" choices = [first_choice, second_choice, "quit"] text = "" default_text = """Though I speak with the tongues of men and of angels, and have not charity, I am become as sounding brass, or a tinkling cymbal.""" # ----------------------------------------- for count, elem in enumerate(choices): print("{}) {}".format(count + 1, elem)) user_input = input("> ").lower().strip() while not is_valid(user_input, choices): user_input = input("> ").lower().strip() if user_input == "quit": return False user_input = int(user_input) user_choice = choices[user_input - 1].lower().strip() # ----------------------------------------- if user_choice == first_choice: print("Enter the text you would like me to speak:") user_input = input("> ").lower().strip() while len(user_input) == 0: user_input = input("> ").lower().strip() if user_input == "quit": sys.exit() self.engine.say(user_input) self.engine.runAndWait() print("Finished speaking.") elif user_choice == second_choice: print("Entering the filename you would like me to read :..") filepath = os.path.join("data", "text_files") files = os.listdir(filepath) for count, file in enumerate(files): print("{}) {}".format(count + 1, file)) user_input = input("> ").lower().strip() while not utils.is_int(user_input): user_input = input("> ").lower().strip() if user_input == "quit": sys.exit() filename = files[int(user_input)-1] print("Reading file: ", filename) filepath = os.path.join("data", "text_files", filename) mytext = "" with open(filepath, "r") as f: mytext = f.read() # ----------------------------------------- self.engine.say(mytext) self.engine.runAndWait() print("Finished speaking.") elif user_choice == "quit": pass else: raise ValueError("I don't recognize that: {}".format(user_choice)) def choose_by_age(self): def is_valid(mystring, name_list): if not mystring in name_list: return False return True myvoices = Voices() age_list = myvoices.get_ages() utils.print_elements(age_list, 6) # ---- print("What age would you like to choose?") age = input("> ").lower().strip() while len(age) == 0: age = input("> ").lower().strip() age = int(age) voices_found = myvoices.get_voices_by_age(age) if len(voices_found) == 0: raise ValueError("Error!") [print(i.name) for i in voices_found] # ---- print("What name would you like to choose?") the_name = input("> ").strip() while not is_valid(the_name, myvoices.get_names()): the_name = input("> ").strip() this_voice = myvoices.get_voice_by_name(the_name) # print("This is the voice id: {}".format(this_voice.id)) # ---- self.engine.setProperty("voice", this_voice.id) self.speak() def set_sound_property(self, property, value): def is_valid_volume(mystring): if not utils.is_int(mystring): return False myint = int(mystring) if myint >= 0 and myint <= 2: return True return False # ------------------------------------ if not property in ["volume", "rate"]: raise ValueError("Error!") if value < 0: raise ValueError("Error!") # --------------------------------------- if property == "volume": if not is_valid_volume(value): raise ValueError("Error") self.engine.setProperty('volume', value) elif property == "rate": if not (value <= 400 and value >= 0): raise ValueError("Error") self.engine.setProperty('rate', value) else: raise ValueError("Error") def select_voice(self): def is_valid(mystring, thelist): # print("the name: {}".format(mystring)) # print("the list: {}".format(thelist)) if len(mystring) == 0: return False if not mystring in thelist: return False return True # ---- print("Select by 1) Name, 2) Language, 3) Gender, 4) Age") user_input = input("> ").strip() while not user_input in ["1", "2", "3", "4", "5"]: user_input = input("> ").strip() if user_input == "quit": return False user_input = int(user_input) # ----------------------------------------- if user_input == 1: # Name myvoices = Voices() name_list = myvoices.get_names() utils.print_elements(name_list, 6) # ---- print("What name would you like to choose?") the_name = input("> ").strip() while not is_valid(the_name, name_list): the_name = input("> ").strip() if the_name == "quit": sys.exit() this_voice = myvoices.get_voice_by_name(the_name) # this_voice_id = utils.format_voice_id(this_voice.name) self.engine.setProperty("voice", this_voice.id) # self.engine.setProperty("voice", "com.apple.speech.synthesis.voice.Hysterical") self.speak() elif user_input == 2: # language myvoices = Voices() languages_list = myvoices.get_languages() utils.print_elements(languages_list, 6) # ---- print("What language would you like to choose?") langauge = input("> ").lower().strip() while len(langauge) == 0: langauge = input("> ").lower().strip() voices_found = myvoices.get_voices_by_language(langauge) if len(voices_found) == 0: raise ValueError("Error!") [print(i.name) for i in voices_found] # ---- print("What name would you like to choose?") the_name = input("> ").lower().strip() while len(the_name) == 0: the_name = input("> ").lower().strip() this_voice = myvoices.get_voice_by_name(the_name) # ---- self.engine.setProperty("voice", utils.format_voice_id(this_voice.name)) self.speak() elif user_input == 3: # gender # ['voicegendermale', 'voicegenderneuter', 'voicegenderfemale'] myvoices = Voices() gender_list = myvoices.get_genders() utils.print_elements(gender_list, 6) # ---- print("What gender would you like to choose?") gender = input("> ").lower().strip() while len(gender) == 0: gender = input("> ").lower().strip() voices_found = myvoices.get_voices_by_gender(gender) if len(voices_found) == 0: raise ValueError("Error!") [print(i.name) for i in voices_found] # ---- print("What name would you like to choose?") the_name = input("> ").lower().strip() while len(the_name) == 0: the_name = input("> ").lower().strip() this_voice = myvoices.get_voice_by_name(the_name) print("This is the voice id: {}".format(this_voice.id)) print("This is the new id: {}".format(utils.format_voice_id(this_voice.name))) # ---- self.engine.setProperty("voice", utils.format_voice_id(this_voice.name)) self.speak() elif user_input == 4: # age self.choose_by_age() else: raise ValueError("Error!") def change_program_properties(self): def is_valid(mystring, mybeg, myend): if not utils.is_int(mystring): return False myint = int(mystring) while not (myint >= mybeg and myint <= myend): return False return True # ----------------------------------------- print("Entering procedure change_program_properties") voice_properties = ["change rate", "change volume", "change voice", "quit"] for count, elem in enumerate(voice_properties): print("{}) {}".format(count + 1, elem)) user_input = input("> ").lower().strip() while not utils.is_valid(user_input, voice_properties): user_input = input("> ").lower().strip() if user_input == "quit": sys.exit() print("You chose: {}".format(user_input)) user_input = int(user_input) user_choice = voice_properties[user_input-1] print(user_choice) # ----------------------------------------- if user_choice == "change rate": print("The defaut for 'rate' is 200. What would you like to change it to? (1 to 400)") user_input = input("> ").lower().strip() while not is_valid(user_input, mybeg=1,myend=400): user_input = input("> ").lower().strip() self.engine.setProperty('rate', user_input) self.speak() elif user_choice == "change volume": print("The defaut for 'volume' is 1. What would you like to change it to? (0 to 3)") user_input = input("> ").lower().strip() while not is_valid(user_input, 0, 3): user_input = input("> ").lower().strip() self.engine.setProperty('volume', user_input) self.speak() elif user_choice == "change voice": print("You are about to change the voice.") # print("Would you like more information about the available voices? (y/n)") # user_input = "" # while not user_input in ["y", "yes", "n", "no"]: # user_input = input("> ").lower().strip() # if user_input in ["y", "yes"]: self.select_voice() elif user_choice == "quit": raise NotImplemented else: raise ValueError("Error!") def main(self): choices = ["Speak some text"] choices += ["cycle through voices"] choices += ["Settings: Change one or more program properties"] choices += ["quit"] while self.keep_looping: print("What would you like to do?") for count, elem in enumerate(choices): print("{}) {}".format(count + 1, elem)) user_input = "" while not user_input in ["1", "2", "3", "4"]: user_input = input("Main menu > ").lower().strip() if user_input == "quit": return False user_input = choices[int(user_input) - 1] # ----------------------------------------- if user_input == "Speak some text": self.speak_some_text() elif user_input == "Settings: Change one or more program properties": print("In main menu: Calling change_program_properites") self.change_program_properties() elif user_input == "cycle through voices": self.cycle_through_voices() elif user_input == "quit": print("Quitting ...") self.keep_looping = False else: raise ValueError("I don't recognize this: {}".format(user_input)) print("Goodtype! Have a great day! 😀😸") # ****************************************************** if __name__ == "__main__": # voices = Voices() mysound = StrangeSound() # mysound.main() mysound.play_script()
40.795094
152
0.538113
21ee60fdb68489d8e9e72fc3dfa5d7f95ff73a3a
305
py
Python
.history/ClassFiles/Functions/Functions_20210101230056.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
.history/ClassFiles/Functions/Functions_20210101230056.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
.history/ClassFiles/Functions/Functions_20210101230056.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
''' FUNCTIONS Functions are pieces(block) of code that does something. They are reusable. They execute or run when called by thier name. They can have parameters(variables) and arguments(values) They can return data as a result. def function_name(): print("Hello World!") ''' def sum(x,y)
20.333333
57
0.721311
62bfd5b4af628fc92590900f81738e4c5f75056e
1,373
py
Python
tests/test_arithmetic.py
thomasmatecki/parsley
0c51e9c37759fbc1c723519619952248c83e4642
[ "MIT" ]
null
null
null
tests/test_arithmetic.py
thomasmatecki/parsley
0c51e9c37759fbc1c723519619952248c83e4642
[ "MIT" ]
2
2020-03-24T18:30:15.000Z
2020-03-31T10:57:37.000Z
tests/test_arithmetic.py
thomasmatecki/parsley
0c51e9c37759fbc1c723519619952248c83e4642
[ "MIT" ]
null
null
null
from examples.arithmetic import * import pytest @pytest.mark.parametrize( "input_expression,expected_parsed", [("+", ("+",)), ("-", ("-",)), ("*", ("*",)), ("/", ("/",)),], ) def test_operator(input_expression, expected_parsed): parsed, remaining = OPERATOR.match(input_expression) assert parsed == expected_parsed assert remaining == "" @pytest.mark.parametrize( "input_expression,expected_parsed", [("+2", ("+", 2)), ("-2", ("-", 2)), ("*2", ("*", 2)), ("/2", ("/", 2))], ) def test_applied_operator(input_expression, expected_parsed): parsed, remaining = APPLIED_OPERATOR_EXPR.match(input_expression) assert parsed == expected_parsed assert remaining == "" @pytest.mark.parametrize( "input_expression,expected_parsed", [ ("1+2", (1, "+", 2)), ("1 + 2", (1, "+", 2)), ("1+2 + 3", (1, "+", 2, "+", 3)), ("1", (1, )), ], ) def test_binary_operation_expr(input_expression, expected_parsed): parsed, remaining = BINARY_OPERATION_EXPR.match(input_expression) assert parsed == expected_parsed assert remaining == "" @pytest.mark.parametrize( "input_expression", [ "1+2", "1 + 2", "1+2 + 3", "1", ], ) def test_binary_operation(input_expression): parsed, remaining = BINARY_OPERATION.match(input_expression) print(parsed)
26.403846
77
0.592862
e37704948b7de91929eecc0139ec204049041653
1,756
py
Python
ci/models/cpu-example/model.py
emattia/sigopt-python
e6b4e5240261ddbdc84a3b4061b8935873612c23
[ "MIT" ]
213
2015-02-24T22:26:46.000Z
2021-11-29T14:17:52.000Z
ci/models/cpu-example/model.py
emattia/sigopt-python
e6b4e5240261ddbdc84a3b4061b8935873612c23
[ "MIT" ]
150
2015-10-22T21:59:37.000Z
2022-03-10T00:55:19.000Z
ci/models/cpu-example/model.py
emattia/sigopt-python
e6b4e5240261ddbdc84a3b4061b8935873612c23
[ "MIT" ]
66
2016-01-01T18:25:11.000Z
2020-10-27T03:07:07.000Z
import sigopt from data_and_model_setup import LoadTransformData, log_inference_metrics import time import platform from xgboost.sklearn import XGBClassifier def train_xgboost_model(dataset, random_state=1): print("loading and transforming data") load_transform_data = LoadTransformData() trainX, testX, trainY, testY = load_transform_data.load_split_dataset(dataset) # model architecture sigopt.log_model("XGBClassifier") # model_keras.__class__ sigopt.log_dataset('Unscaled') sigopt.log_metadata('Training Records', len(trainX)) sigopt.log_metadata('Testing Reccords', len(testX)) sigopt.log_metadata("Platform", platform.uname()) parameters = { 'objective': 'binary:logistic', 'learning_rate': sigopt.get_parameter('learning_rate', default=0.3), 'n_estimators': sigopt.get_parameter('n_estimators', default=20), 'max_depth': sigopt.get_parameter('max_depth', default=5), 'gamma': sigopt.get_parameter('gamma', default=0), 'min_child_weight': sigopt.get_parameter('min_child_weight', default=1), 'random_state': random_state, 'importance_type': 'gain', 'missing': None, 'verbosity': 2} model = XGBClassifier(**parameters) modelfit = model.fit(trainX, trainY) # Collect model metrics start = time.perf_counter() prediction = modelfit.predict(testX) sigopt.log_metric("Inference Time", time.perf_counter() - start) probability = modelfit.predict_proba(testX)[:, 1] log_inference_metrics(prediction, probability, testY, testX) if __name__ == "__main__": dataset_file = 'https://www.dropbox.com/s/437qdt4yjj64sxd/Fraud_Detection_SigOpt_dataset.csv?dl=1' train_xgboost_model(dataset_file)
37.361702
102
0.722665
1f049b7ebb0287bf39be52c4c98671cba7b766c8
15,982
py
Python
Plugins/Classes/Weapons.py
bvbohnen/X4_Customizer
6f865008690916a66a44c97331d9a2692baedb35
[ "MIT" ]
25
2018-12-10T12:52:11.000Z
2022-01-29T14:42:57.000Z
Plugins/Classes/Weapons.py
bvbohnen/X4_Customizer
6f865008690916a66a44c97331d9a2692baedb35
[ "MIT" ]
4
2019-08-01T19:09:11.000Z
2022-01-02T01:47:42.000Z
Plugins/Classes/Weapons.py
bvbohnen/X4_Customizer
6f865008690916a66a44c97331d9a2692baedb35
[ "MIT" ]
6
2019-02-16T08:39:04.000Z
2021-12-21T06:11:58.000Z
from .Macro import Macro from .Connection import Connection from .Component import Component from Framework import File_System from .Shared import Physics_Properties __all__ = [ 'Weapon_System', 'Bullet', 'Missile', 'Bomb', 'Mine', ] class Weapon_System(Macro): ''' Weapon system, linking to a bullet. Defines model, rotation speed, etc. Most weapon properties are part of the bullet. * class_name - String, one of: bomblauncher, missilelauncher, missileturret, turret, weapon. ''' def __init__(self, xml_node, *args, **kwargs): super().__init__(xml_node, *args, **kwargs) # Every weapon links to a bullet (laser or missile) that has most # of the interesting info. self.bullet_macro_name = self.Get('./properties/bullet', 'class') return def Get_Bullet(self): ''' Returns the bullet macro. ''' if not hasattr(self, '_bullet_macro'): self._bullet_macro = self.database.Get_Macro(self.bullet_macro_name) return self._bullet_macro # TODO: fields of interest. class Generic_Bullet(Macro): ''' Parent class for bullet, missile, bomb. ''' def Get_Ammo_Reload_Time(self): value = self.Get('./properties/ammunition','reload') return float(value) if value else None def Get_Ammo_Rounds(self): value = self.Get('./properties/ammunition','value') return float(value) if value else None def Get_Reload_Time(self): value = self.Get('./properties/reload','time') return float(value) if value else None def Get_Reload_Rate(self): value = self.Get('./properties/reload','rate') return float(value) if value else None def Set_Ammo_Reload_Time(self, value): self.Set('./properties/ammunition','reload', f'{value:.3f}') def Set_Reload_Time(self, value): self.Set('./properties/reload','time', f'{value:.3f}') def Set_Reload_Rate(self, value): self.Set('./properties/reload','rate', f'{value:.3f}') def Get_Rate_Of_Fire(self): ''' Returns the rate of fire, in shots per second. ''' ammo_reload_time = self.Get_Ammo_Reload_Time() ammo_rounds = self.Get_Ammo_Rounds() reload_time = self.Get_Reload_Time() reload_rate = self.Get_Reload_Rate() # Reload rate and time seem to be alternatives to each other. # Standardize to rate. if reload_time and not reload_rate: reload_rate = 1 / reload_time # If not an ammo weapon, use the above. if not ammo_reload_time: return reload_rate # If this is set up for bursting but only 1 shot per burst, # it may not have a reload_rate; default reload_rate to 1 # in this case so something can be computed easily below. if ammo_rounds == 1 and not reload_rate: reload_rate = 1 # If reload_rate and ammo_reload_time available, mix them # for a burst weapon. if (reload_rate and ammo_reload_time and ammo_rounds): # Note: game calculates this wrongly as of ~1.5, multiplying # the ammo_rounds-1 by reload_rate instead of 1/reload_rate. # This will do it correctly (hopefully). # Update: in 3.0 game computes ammo_rounds/reload_rate instead of # subtracting one round, again incorrect. # Test: 1 round burst, 1 reload_rate, 1 reload_time => 1 round/sec, enc says 1. # Test: 2 round burst, 1 reload_rate, 2 reload_time => 2 round/3 sec, enc says 0.5 # So, this calc is correct, enc is wrong (in latter case). burst_time = 1/reload_rate * (ammo_rounds -1) time = ammo_reload_time + burst_time return ammo_rounds / time raise Exception() def Set_Rate_Of_Fire(self, new_rof): ''' Set the rate of fire, in shots per second. ''' old_rof = self.Get_Rate_Of_Fire() multiplier = new_rof / old_rof # See notes above on rate of fire calculation. # In short, need to edit the 'reload rate', 'reload time', # and 'ammunition reload' fields to cover both normal weapons # and burst weapons (where bursting rate is a combination of # ammo reload and reload rate). ammo_reload_time = self.Get_Ammo_Reload_Time() reload_time = self.Get_Reload_Time() reload_rate = self.Get_Reload_Rate() if ammo_reload_time: # Invert the multiplier to reduce reload time. self.Set_Ammo_Reload_Time(ammo_reload_time / multiplier) if reload_time: # Invert the multiplier to reduce reload time. self.Set_Reload_Time(reload_time / multiplier) if reload_rate: # Keep multiplier as-is. self.Set_Reload_Rate(reload_rate * multiplier) return # TODO: should this method be split for bullets/missiles? # May lead to redundancy between missiles/bombs/mines, unless broken # out into a separate shared class. def Adjust_Damage(self, multiplier): 'Adjust all types of bullet damage.' # Bullet fields. Missiles won't use these. for field in ['value', 'shield', 'hull', 'repair']: value = self.Get('./properties/damage', field) if not value: continue value = float(value) new_value = value * multiplier self.Set('./properties/damage', field, f'{new_value:.3f}') # Missile fields. Also for bombs/mines. # Possible bullets might use these? Unknown. for field in ['value', 'shield', 'hull']: value = self.Get('./properties/explosiondamage', field) if not value: continue value = float(value) new_value = value * multiplier self.Set('./properties/explosiondamage', field, f'{new_value:.3f}') return # TODO: should this method be only for bullets? def Adjust_Heat(self, multiplier): 'Adjust heat produced.' value = self.Get('./properties/heat', 'value') if not value: return value = float(value) new_value = value * multiplier self.Set('./properties/heat', 'value', f'{new_value:.3f}') def Adjust_Range(self, multiplier): 'Change weapon range.' # Note: range works somewhat differently for different bullet # types. # - Beams have range, lifetime, and speed; edit just speed. # - Missiles have range and lifetime; edit lifetime? # - Others have lifetime and speed; edit speed and adjust lifetime. for tag in ['bullet','missile']: range = self.Get(f'./properties/{tag}', 'range') lifetime = self.Get(f'./properties/{tag}', 'lifetime') # If it has range, edit that. if range: value = float(range) new_value = value * multiplier self.Set(f'./properties/{tag}', 'range', f'{new_value:.3f}') # Otherwise, edit lifetime. elif lifetime: value = float(lifetime) new_value = value * multiplier self.Set(f'./properties/{tag}', 'lifetime', f'{new_value:.3f}') return class Bullet(Generic_Bullet): ''' Bullet macro, such as shot from a laser. Not a missle/bomb. ''' def Adjust_Speed(self, multiplier): 'Change bullet speed.' #range = self.Get('./properties/bullet', 'range') lifetime = self.Get('./properties/bullet', 'lifetime') # Note: missiles are more complex, with a thrust and such; TODO speed = self.Get('./properties/bullet', 'speed') # Check for speed and lifetime, indicating a beam. if speed and lifetime: speed = float(speed) lifetime = float(lifetime) # Bump speed, decrease lifetime, beam shoots out faster # but for same range. self.Set(f'./properties/bullet', 'speed', f'{speed * multiplier:.3f}') self.Set(f'./properties/bullet', 'lifetime', f'{lifetime / multiplier:.3f}') elif speed: speed = float(speed) # Edit just speed. self.Set(f'./properties/bullet', 'speed', f'{speed * multiplier:.3f}') else: assert False class Missile(Generic_Bullet, Physics_Properties): ''' Missile macro. ''' # Speed adjustment comes from physics properties. class Bomb(Generic_Bullet, Physics_Properties): ''' Bomb macro. Only used by spacesuit bombs. ''' class Mine(Macro, Physics_Properties): ''' Mine macro. TODO: add engines/etc. ''' # Tracker mines have physics, though others don't. def Adjust_Speed(self, multiplier): # Skip if no physics, else use physics method. if not self.xml_node.xpath('./properties/physics'): return Physics_Properties.Adjust_Speed(self, multiplier) ''' Fields of interest (copied from live editor): weapon_item_macros = [ E('rotation_speed' , './/rotationspeed' , 'max' , 'Rot. Speed', ''), E('rotation_acceleration', './/rotationacceleration' , 'max' , 'Rot. Accel.', ''), E('heat_overheat' , './/heat' , 'overheat' , 'Overheat', 'Max heat before firing stops'), E('heat_cool_delay' , './/heat' , 'cooldelay' , 'Cool Delay', ''), E('heat_cool_rate' , './/heat' , 'coolrate' , 'Cool Rate', ''), E('heat_reenable' , './/heat' , 'reenable' , 'Reenable', 'Time to start firing again after overheating'), E('reload_rate' , './/reload' , 'rate' , 'Reload Rate', ''), E('reload_time' , './/reload' , 'time' , 'Reload Time', ''), E('hull' , './/hull' , 'max' , 'Hull', ''), E('ammunition_tags' , './/ammunition' , 'tags' , 'Ammo Tags', ''), E('storage_capacity' , './/storage' , 'capacity' , 'Storage', ''), E('bullet_codename' , './/bullet' , 'class' , 'Bullet Codename (ref)', '', is_reference = True), ] # Shared item types between bullets and missiles. reload_macros = [ D('fire_rate' , Display_Update_RoF , 'Rate of Fire', ''), E('reload_rate' , './/reload' , 'rate' , 'Reload Rate', 'For burst weapons, inverse of time between shots in the burst'), E('reload_time' , './/reload' , 'time' , 'Reload Time', 'For non-burst weapons, time between shots'), E('ammunition_rounds' , './/ammunition' , 'value' , 'Burst Rounds', 'For burst weapons, number of shots per burst.'), E('ammunition_reload_time' , './/ammunition' , 'reload' , 'Interburst Time', 'For burst weapons, time from the end of a burst to the start of the next.'), ] bullet_item_macros = [ D('dps_base' , Display_Update_Bullet_Burst_DPS , 'DPS', ''), D('dps_shield' , Display_Update_Bullet_Burst_DPS_Shield, '+Shield', ''), D('dps_hull' , Display_Update_Bullet_Burst_DPS_Hull , '+Hull', ''), D('repair_rate' , Display_Update_Bullet_Repair_Rate , 'Repair Rate', ''), D('range' , Display_Update_Bullet_Range , 'Range', ''), *reload_macros, E('damage' , './/damage' , 'value' , 'Damage', ''), E('damage_shield' , './/damage' , 'shield' , '+Shield', ''), E('damage_hull' , './/damage' , 'hull' , '+Hull', ''), E('damage_repair' , './/damage' , 'repair' , 'Repair', 'Set to 1 to flip to repairing.'), E('bullet_speed' , './/bullet' , 'speed' , 'Bullet Speed', ''), E('bullet_lifetime' , './/bullet' , 'lifetime' , 'Bullet Lifetime', ''), E('bullet_range' , './/bullet' , 'range' , 'Bullet Range', ''), E('bullet_amount' , './/bullet' , 'amount' , 'Bullet Amount', ''), E('barrel_amount' , './/bullet' , 'barrelamount' , 'Bullet Barrel Amount', ''), E('bullet_timediff' , './/bullet' , 'timediff' , 'Bullet Time Diff', ''), E('bullet_angle' , './/bullet' , 'angle' , 'Bullet Angle', ''), E('bullet_max_hits' , './/bullet' , 'maxhits' , 'Bullet Max Hits', ''), E('bullet_ricochet' , './/bullet' , 'ricochet' , 'Bullet Ricochet', ''), E('bullet_scale' , './/bullet' , 'scale' , 'Bullet Scale', ''), E('bullet_attach' , './/bullet' , 'attach' , 'Bullet Attach', ''), E('bullet_sticktime' , './/bullet' , 'sticktime' , 'Bullet Stick Time', ''), E('heat' , './/heat' , 'value' , '+Heat', 'Heat added per bullet (or burst of bullets)'), ] missile_item_macros = [ # No heat on these, so don't bother with burst dps for now. D('dps_base' , Display_Update_Missile_DPS , 'DPS', ''), D('dps_shield' , Display_Update_Missile_DPS_Shield , '+Shield', ''), D('dps_hull' , Display_Update_Missile_DPS_Hull , '+Hull', ''), D('speed' , Display_Update_Missile_Speed , 'Speed', ''), D('effective_range' , Display_Update_Missile_Range , 'Effective Range', ''), *reload_macros, E('weapon_system' , './/weapon' , 'system' , 'Weapon System' , ''), E('explosion_damage' , './/explosiondamage' , 'value' , 'Explosion Damage' , ''), E('explosion_damage_shield' , './/explosiondamage' , 'shield' , 'Explosion +Shield' , ''), E('explosion_damage_hull' , './/explosiondamage' , 'hull' , 'Explosion +Hull' , ''), E('missile_amount' , './/missile' , 'amount' , 'Amount' , ''), E('missile_barrel_amount' , './/missile' , 'barrelamount' , 'Barrel Amount' , ''), E('missile_lifetime' , './/missile' , 'lifetime' , 'Lifetime' , ''), E('missile_range' , './/missile' , 'range' , 'Range' , ''), E('missile_guided' , './/missile' , 'guided' , 'Guided' , ''), E('missile_retarget' , './/missile' , 'retarget' , 'Retarget' , ''), E('missile_hull' , './/hull' , 'max' , 'Hull' , ''), E('lock_time' , './/lock' , 'time' , 'Lock Time' , ''), E('lock_range' , './/lock' , 'range' , 'Lock Range' , ''), E('lock_angle' , './/lock' , 'angle' , 'Lock Angle' , ''), E('counter_resilience' , './/countermeasure' , 'resilience' , 'Counter Resiliance' , 'Missile resiliance against countermeasures'), E('longrangescan' , './/longrangescan' , 'minlevel' , 'Long Range Scan' , ''), *physics_item_macros, *connection_item_macros, ] '''
45.403409
172
0.534539
c384fde523727d27ee366ee013f08c97e6065bc3
9,685
py
Python
stream_alert/apps/_apps/onelogin.py
opsbay/streamalert
557fb3f604661cdd9bd36486cccc8ce3a34bd1f1
[ "Apache-2.0" ]
7
2018-12-26T14:38:08.000Z
2022-03-09T13:21:00.000Z
stream_alert/apps/_apps/onelogin.py
opsbay/streamalert
557fb3f604661cdd9bd36486cccc8ce3a34bd1f1
[ "Apache-2.0" ]
14
2018-05-09T19:18:15.000Z
2021-06-02T02:34:09.000Z
stream_alert/apps/_apps/onelogin.py
opsbay/streamalert
557fb3f604661cdd9bd36486cccc8ce3a34bd1f1
[ "Apache-2.0" ]
1
2018-12-06T20:51:58.000Z
2018-12-06T20:51:58.000Z
""" Copyright 2017-present, Airbnb Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import re from . import AppIntegration, StreamAlertApp, get_logger LOGGER = get_logger(__name__) @StreamAlertApp class OneLoginApp(AppIntegration): """OneLogin StreamAlert App""" _ONELOGIN_EVENTS_URL = 'https://api.{}.onelogin.com/api/1/events' _ONELOGIN_TOKEN_URL = 'https://api.{}.onelogin.com/auth/oauth2/v2/token' _ONELOGIN_RATE_LIMIT_URL = 'https://api.{}.onelogin.com/auth/rate_limit' # OneLogin API returns 50 events per page _MAX_EVENTS_LIMIT = 50 # Define our authorization headers variable def __init__(self, event, config): super(OneLoginApp, self).__init__(event, config) self._auth_headers = None self._next_page_url = None self._rate_limit_sleep = 0 @classmethod def _type(cls): return 'events' @classmethod def service(cls): return 'onelogin' @classmethod def date_formatter(cls): """OneLogin API expects the ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ""" return '%Y-%m-%dT%H:%M:%SZ' def _token_endpoint(self): """Get the endpoint URL to retrieve tokens Returns: str: Full URL to generate tokens for the OneLogin API """ return self._ONELOGIN_TOKEN_URL.format(self._config.auth['region']) def _events_endpoint(self): """Get the endpoint URL to retrieve events Returns: str: Full URL to retrieve events in the OneLogin API """ return self._ONELOGIN_EVENTS_URL.format(self._config.auth['region']) def _rate_limit_endpoint(self): """Get the endpoint URL to retrieve rate limit details Returns: str: Full URL to retrieve rate limit details in the OneLogin API """ return self._ONELOGIN_RATE_LIMIT_URL.format(self._config.auth['region']) def _generate_headers(self): """Each request will request a new token to call the resources APIs. More details to be found here: https://developers.onelogin.com/api-docs/1/oauth20-tokens/generate-tokens-2 Returns: str: Bearer token to be used to call the OneLogin resource APIs """ if self._auth_headers: return True authorization = 'client_id: {}, client_secret: {}'.format( self._config.auth['client_id'], self._config.auth['client_secret']) headers_token = {'Authorization': authorization, 'Content-Type': 'application/json'} result, response = self._make_post_request(self._token_endpoint(), headers_token, {'grant_type':'client_credentials'}) if not result: return False if not response: LOGGER.error('[%s] Response invalid, could not generate headers', self) return False bearer = 'bearer:{}'.format(response.get('access_token')) self._auth_headers = {'Authorization': bearer} return True def _gather_logs(self): """Gather the authentication log events.""" if not self._generate_headers(): return False return self._get_onelogin_events() def _set_rate_limit_sleep(self): """Get the number of seconds we need to sleep until we are clear to continue""" # Make sure we have authentication headers if not self._auth_headers: self._rate_limit_sleep = 0 LOGGER.error('[%s] No authentication headers set', self) return result, response = self._make_get_request(self._rate_limit_endpoint(), self._auth_headers) if not result: self._rate_limit_sleep = 0 return # Making sure we have a valid response if not response: LOGGER.error('[%s] Response invalid, could not get rate limit info', self) self._rate_limit_sleep = 0 return self._rate_limit_sleep = response.get('data')['X-RateLimit-Reset'] LOGGER.info('[%s] Rate limit sleep set: %d', self, self._rate_limit_sleep) def _get_onelogin_events(self): """Get all events from the endpoint for this timeframe Returns: [ { 'id': <int:id>, 'created_at': <str:created_at>, 'account_id': <int:account_id>, 'user_id': <int:user_id>, 'event_type_id': <int:event_type_id>, 'notes': <str:notes>, 'ipaddr': <str:ipaddr>, 'actor_user_id': <int:actor_user_id>, 'assuming_acting_user_id': null, 'role_id': <int:role_id>, 'app_id': <int:app_id>, 'group_id': <int:group_id>, 'otp_device_id': <int:otp_device_id>, 'policy_id': <int:policy_id>, 'actor_system': <str:actor_system>, 'custom_message': <str:custom_message>, 'role_name': <str:role_name>, 'app_name': <str:app_name>, 'group_name': <str:group_name>, 'actor_user_name': <str:actor_user_name>, 'user_name': <str:user_name>, 'policy_name': <str:policy_name>, 'otp_device_name': <str:otp_device_name>, 'operation_name': <str:operation_name>, 'directory_sync_run_id': <int:directory_sync_run_id>, 'directory_id': <int:directory_id>, 'resolution': <str:resolution>, 'client_id': <int:client_id>, 'resource_type_id': <int:resource_type_id>, 'error_description': <str:error_description> } ] """ # Make sure we have authentication headers if not self._auth_headers: LOGGER.error('[%s] No authentication headers set', self) return False # Are we just getting events or getting paginated events? if self._next_page_url: params = None request_url = self._next_page_url else: params = {'since': self._last_timestamp} request_url = self._events_endpoint() result, response = self._make_get_request(request_url, self._auth_headers, params) if not result: # If we hit the rate limit, update the sleep time if response and response.get('status'): r_status = response.get('status') if r_status['code'] == 400 and r_status['message'] == 'rate_limit_exceeded': self._set_rate_limit_sleep() return False # Fail if response is invalid if not response: LOGGER.error('[%s] Received invalid response', self) return False # Set pagination link, if there is any self._next_page_url = response['pagination']['next_link'] self._more_to_poll = bool(self._next_page_url) # Adjust the last seen event, if the events list is not empty if not response['data']: LOGGER.info('[%s] Received empty list of events', self) return False self._last_timestamp = response['data'][-1]['created_at'] # Return the list of events to the caller so they can be send to the batcher return response['data'] @classmethod def _required_auth_info(cls): return { 'region': { 'description': ('the region for the OneLogin API. This should be' 'just "en" or "us".'), 'format': re.compile(r'^(en|us)$') }, 'client_secret': { 'description': ('the client secret for the OneLogin API. This ' 'should be a string of 64 alphanumeric characters'), 'format': re.compile(r'^[a-z0-9]{64}$') }, 'client_id': { 'description': ('the client id for the OneLogin API. This ' 'should be a string of 64 alphanumeric characters'), 'format': re.compile(r'^[a-z0-9]{64}$') } } def _sleep_seconds(self): """Return the number of seconds this polling function should sleep for between requests to avoid failed requests. OneLogin tokens allows for 5000 requests every hour, but if the rate limit is reached, we can retrieve how long until we are clear. More information about this here: https://developers.onelogin.com/api-docs/1/oauth20-tokens/get-rate-limit Returns: int: Number of seconds that this function should sleep for between requests """ return self._rate_limit_sleep
37.393822
98
0.575736
6cd5b0f835680a60264aa58f86885e84821beac8
5,583
py
Python
metrics/perplexity/perplexity.py
MitchellTesla/datasets
bf08ea3f95e8209a7afd2b50410ad5db51409d11
[ "Apache-2.0" ]
1
2022-03-22T16:49:47.000Z
2022-03-22T16:49:47.000Z
metrics/perplexity/perplexity.py
MitchellTesla/datasets
bf08ea3f95e8209a7afd2b50410ad5db51409d11
[ "Apache-2.0" ]
null
null
null
metrics/perplexity/perplexity.py
MitchellTesla/datasets
bf08ea3f95e8209a7afd2b50410ad5db51409d11
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Perplexity Metric.""" import torch from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _CITATION = """\ """ _DESCRIPTION = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _KWARGS_DESCRIPTION = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. Perplexity returned will be an average of the perplexity for each list entry. stride (int): stride size, defaults to 512 device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the average perplexity score for the text in the input list. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts, ... stride=1) >>> round(results["perplexity"], 1) 78.2 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:10] # doctest:+ELLIPSIS [...] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts, ... stride=256) >>> round(results["perplexity"], 1) 117.9 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Perplexity(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "input_texts": datasets.Value("string"), } ), reference_urls=["https://huggingface.co/docs/transformers/perplexity"], ) def _compute(self, input_texts, model_id, stride=512, device=None): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": device = "cuda" else: device = "cuda" if torch.cuda.is_available() else "cpu" model = AutoModelForCausalLM.from_pretrained(model_id) model = model.to(device) tokenizer = AutoTokenizer.from_pretrained(model_id, pad_token="<PAD>") encodings = tokenizer(input_texts, padding=True, return_tensors="pt", return_special_tokens_mask=True).to( device ) encoded_texts = encodings["input_ids"] special_tokens_masks = encodings["special_tokens_mask"] max_model_length = model.config.n_positions ppls = [] for text_index in logging.tqdm(range(0, len(encoded_texts))): encoded_text = encoded_texts[text_index] special_tokens_mask = special_tokens_masks[text_index] encoded_text_length = len(encoded_text) - special_tokens_mask.sum() nlls = [] target_index = max(1, min(stride - 1, encoded_text_length - 1)) while target_index < encoded_text_length: start_index = max(0, target_index - (max_model_length - 1)) input_ids = encoded_text[start_index : target_index + 1] target_ids = input_ids.clone() target_ids[:-1] = -100 attn_mask = torch.ones(len(input_ids)).to(device) attn_mask[-1] = 0 with torch.no_grad(): outputs = model(input_ids, labels=target_ids, attention_mask=attn_mask) neg_log_likelihood = outputs[0] nlls.append(neg_log_likelihood) target_index += stride if len(nlls) > 0: ppls.append(torch.exp2(torch.mean(torch.stack(nlls)))) ppl = torch.mean(torch.stack(ppls)) return {"perplexity": float(ppl)}
36.97351
121
0.617589
ce6d666b6e78b5a16bc11f4ea1e9d2aa076e5151
10,753
py
Python
TrainingHelper.py
meet-minimalist/Learn-pytorch-in-one-example
6a5093b964a5ad756bba5bbc5b6d7613fb8c41e6
[ "MIT" ]
null
null
null
TrainingHelper.py
meet-minimalist/Learn-pytorch-in-one-example
6a5093b964a5ad756bba5bbc5b6d7613fb8c41e6
[ "MIT" ]
null
null
null
TrainingHelper.py
meet-minimalist/Learn-pytorch-in-one-example
6a5093b964a5ad756bba5bbc5b6d7613fb8c41e6
[ "MIT" ]
null
null
null
import os import time import torch import datetime import numpy as np from tqdm import tqdm import torch.nn as nn import torch.nn.functional as F from torchsummary import summary import config from LRHelper import LRHelper from DatasetHelper import get_train_loader, get_test_loader from utils.Logger import Logger from utils.CheckpointHandler import CheckpointHandler from utils.SummaryHelper import SummaryHelper from utils.misc import init_training, np_cpu, LossAverager cuda = torch.device('cuda:0') cpu = torch.device("cpu:0") class TrainingHelper: def __init__(self): self.log, self.exp_path = init_training() self.lr_helper = LRHelper() ckpt_folder = self.exp_path + "/ckpt/" os.makedirs(ckpt_folder, exist_ok=True) ckpt_path = ckpt_folder + "model.pth" self.ckpt_handler = CheckpointHandler(ckpt_path, max_to_keep=3) def get_loss_and_accuracy(self, labels, logits, model, ce_loss_fn): # labels : [N] dims tensor # logits : [N x C] dims tensor loss_reg = torch.tensor(0, dtype=torch.float32, device=cuda, requires_grad=False) for layer in model.modules(): if isinstance(layer,torch.nn.Conv2d): for p in layer.named_parameters(): if 'weight' in p[0]: loss_reg += torch.sum((torch.square(p[1]) / 2)) loss_reg *= config.l2_weight_decay loss_cls = ce_loss_fn(logits, labels) loss_total = loss_cls + loss_reg sm_outputs = F.softmax(logits.detach(), dim=-1) accuracy = (torch.argmax(sm_outputs, dim=1) == labels).sum() * 100 / labels.size(0) return loss_total, loss_cls, loss_reg, accuracy def get_model(self): if config.model_type == 'simplecnn': from models.SimpleCNN import ConvModel model = ConvModel(num_classes=config.num_classes).to(cuda, non_blocking=True) elif config.model_type == 'resnet18': from models.ResNetModel import ResNetModel model = ResNetModel(num_classes=config.num_classes, freeze_backend=config.freeze_backend).to(cuda, non_blocking=True) else: print("Unsupported model type.") exit() return model def train(self, resume=False, resume_ckpt=None, pretrained_ckpt=None): model = self.get_model() model_stats = summary(model, (3, config.input_size[0], config.input_size[1])) for line in str(model_stats).split('\n'): self.log(line) ce_loss_fn = nn.CrossEntropyLoss() # Why opt for nn.CrossEntropyLoss over nn.functional.cross_entropy # Ref : https://discuss.pytorch.org/t/f-cross-entropy-vs-torch-nn-cross-entropy-loss/25505/2 opt = torch.optim.Adam(model.parameters(), lr=0.0, weight_decay=0.0) # Setting lr equal to 0.0 here so that it wont work as per this line. # But we will explicitly set lr for each weights dynamically, at every step. # Same is case for weight_decay, We will calculate L2_regularization_loss on our own separately. scaler = torch.cuda.amp.GradScaler(enabled=config.use_amp) if resume: checkpoint = torch.load(resume_ckpt) model.load_state_dict(checkpoint['model']) opt.load_state_dict(checkpoint['optimizer']) scaler.load_state_dict(checkpoint['scalar']) resume_g_step = checkpoint['global_step'] resume_eps = checkpoint['epoch'] self.log("Resuming training from {} epochs.".format(resume_eps)) elif pretrained_ckpt is not None and config.model_type == 'resnet18': self.log("Using pre-trained checkpoint from :".format(pretrained_ckpt)) checkpoint = torch.load(pretrained_ckpt) filtered_checkpoint = {} self.log("\nFollowing variables will be restored:") for var_name, var_value in checkpoint.items(): if var_name == 'fc.weight' or var_name == 'fc.bias': # As these layers change due to change in num classes continue new_var_name = 'resnet_feat.' + var_name # why this prefix? This comes as the model that we created contains a variable resnet_feat # which is sequential group of layers containing resnet layers. So all the layers and parameters # within it are prefixed with resnet_feat and for restoring resnet pretrained weights # we need to update the statedict according to the model architectural definition. self.log(f"{new_var_name} : {list(var_value.size())}") filtered_checkpoint[new_var_name] = var_value self.log("\n\nFollowing variables will be initialized:") remaining_vars = model.load_state_dict(filtered_checkpoint, strict=False) for var_name in remaining_vars.missing_keys: self.log(var_name) resume_g_step = 0 resume_eps = 0 else: resume_g_step = 0 resume_eps = 0 train_writer = SummaryHelper(self.exp_path + "/train/") test_writer = SummaryHelper(self.exp_path + "/test/") input_x = torch.randn((1,3, config.input_size[0], config.input_size[1])).to(cuda, non_blocking=True) train_writer.add_graph(model, input_x) g_step = max(0, resume_g_step) for eps in range(resume_eps, config.epochs): # I hope you noticed one particular statement in the code, to which I assigned a comment “What is this?!?” — model.train(). # In PyTorch, models have a train() method which, somewhat disappointingly, does NOT perform a training step. # Its only purpose is to set the model to training mode. Why is this important? Some models may use mechanisms like Dropout, # for instance, which have distinct behaviors in training and evaluation phases. # Ref: https://towardsdatascience.com/understanding-pytorch-with-an-example-a-step-by-step-tutorial-81fc5f8c4e8e model.train() train_loader = get_train_loader() train_iter = iter(train_loader) # This is creating issues sometimes. Check required. self.log("Epoch: {} Started".format(eps+1)) for batch_num in tqdm(range(config.train_steps)): start = time.time() batch = next(train_iter) opt.zero_grad() # Zeroing out gradients before backprop # We cab avoid to zero out if we want accumulate gradients for # Multiple forward pass and single backward pass. with torch.cuda.amp.autocast(enabled=config.use_amp): logits = model(batch['image'].to(cuda, non_blocking=True)) loss_total, loss_cls, loss_reg, accuracy = self.get_loss_and_accuracy(batch['label'].to(cuda, non_blocking=True), logits, model, ce_loss_fn) #loss_total.backward() # Used for normal training without AMP scaler.scale(loss_total).backward() # Used when AMP is applied. The enabled flag will trigger normal FP32 behaviour or Mixed precision behaviour scaler.step(opt) scaler.update() lr = self.lr_helper.step(g_step, opt) opt.step() delta = (time.time() - start) * 1000 # in milliseconds print("Time: {:.2f} ms".format(delta)) if (batch_num+1) % config.loss_logging_frequency == 0: self.log("Epoch: {}/{}, Batch No.: {}/{}, Total Loss: {:.4f}, Loss Cls: {:.4f}, Loss Reg: {:.4f}, Accuracy: {:.2f}".format(\ eps+1, config.epochs, batch_num+1, config.train_steps, np_cpu(loss_total), \ np_cpu(loss_cls), np_cpu(loss_reg), np_cpu(accuracy))) train_writer.add_summary({'total_loss' : np_cpu(loss_total), 'loss_cls' : np_cpu(loss_cls), 'loss_reg' : np_cpu(loss_reg), 'accuracy' : np_cpu(accuracy), 'lr' : lr}, g_step) g_step += 1 model.eval() # Putting model in eval mode so that batch normalization and dropout will work in inference mode. test_loader = get_test_loader() test_iter = iter(test_loader) test_losses = LossAverager(num_elements=4) with torch.no_grad(): # Disabling the gradient calculations will reduce the calculation overhead. for batch_num in tqdm(range(config.test_steps)): batch = next(test_iter) logits = model(batch['image'].to(cuda)) loss_total, loss_cls, loss_reg, accuracy = self.get_loss_and_accuracy(batch['label'].to(cuda, non_blocking=True), logits, model, ce_loss_fn) test_losses([np_cpu(loss_total), np_cpu(loss_cls), np_cpu(loss_reg), np_cpu(accuracy)]) self.log("Epoch: {}/{} Completed, Test Total Loss: {:.4f}, Loss Cls: {:.4f}, Loss Reg: {:.4f}, Accuracy: {:.2f}".format(\ eps+1, config.epochs, test_losses.avg[0], test_losses.avg[1], test_losses.avg[2], test_losses.avg[3])) test_writer.add_summary({'total_loss' : test_losses.avg[0], 'loss_cls' : test_losses.avg[1], 'loss_reg' : test_losses.avg[2], 'accuracy' : test_losses.avg[3]}, g_step) checkpoint = { 'epoch': eps + 1, 'global_step': g_step, 'test_loss': test_losses.avg[0], 'model': model.state_dict(), 'optimizer': opt.state_dict(), 'scalar': scaler.state_dict() } # Above code taken from : https://towardsdatascience.com/how-to-save-and-load-a-model-in-pytorch-with-a-complete-example-c2920e617dee self.ckpt_handler.save(checkpoint) self.log("Epoch {} completed. Checkpoint saved.".format(eps+1)) print("Training Completed.") train_writer.close() test_writer.close()
47.791111
161
0.588208
2bbb57c65f3322b61809286a9b09a44b212118cb
2,711
py
Python
formatBibTeXidentifiers.py
LWollatz/mendeley2bibtex
eadda877fc08c51e4572bb7498021fa2e324c050
[ "Apache-2.0" ]
null
null
null
formatBibTeXidentifiers.py
LWollatz/mendeley2bibtex
eadda877fc08c51e4572bb7498021fa2e324c050
[ "Apache-2.0" ]
null
null
null
formatBibTeXidentifiers.py
LWollatz/mendeley2bibtex
eadda877fc08c51e4572bb7498021fa2e324c050
[ "Apache-2.0" ]
null
null
null
def _idgroup(number): first_digit = int(number[0]) if first_digit <= 5 or first_digit == 7: group = number[0] elif first_digit == 6: group = number[:3] elif first_digit == 8: group = number[:2] elif int(number[:3]) == 999: group = number[:5] elif int(number[:2]) == 99: group = number[:4] else: if int(number[1]) <= 4: group = number[:2] else: group = number[:3] return group def _idpublisher(number): if int(number[:2]) < 20: publisher = number[0:2] elif int(number[:3]) < 700: publisher = number[:3] elif int(number[:4]) < 8500: publisher = number[:4] elif int(number[:5]) < 90000: publisher = number[:5] elif int(number[:6]) < 950000: publisher = number[:6] else: publisher = number[:7] return publisher def formatISBN10(ISBNt): #print "ISBN10" IDG = _idgroup(ISBNt) ISBNt = ISBNt[len(IDG):] IDP = _idpublisher(ISBNt) ISBNt = ISBNt[len(IDP):] ISBNout = IDG+"-"+IDP+"-"+ISBNt[:-1]+"-"+ISBNt[-1] return ISBNout def formatISBN13(ISBNt): #print "ISBN13" if ISBNt[:3] == "978": IDE = "978" elif ISBNt[:3] == "979": IDE = "979" else: print "WARNING strange ISBN13",str(ISBN).replace("-","") IDE = ISBNt[:3] ISBNt = ISBNt[len(IDE):] IDG = _idgroup(ISBNt) ISBNt = ISBNt[len(IDG):] IDP = _idpublisher(ISBNt) ISBNt = ISBNt[len(IDP):] ISBNout = IDE+"-"+IDG+"-"+IDP+"-"+ISBNt[:-1]+"-"+ISBNt[-1] return ISBNout def formatISBN(ISBN): """takes an ISBN and returns a string that splits the ISBN correctly""" ISBNt = str(ISBN) ISBNt = ISBNt.replace("ISBN","") ISBNt = ISBNt.replace(":","") ISBNt = ISBNt.replace(" ","") if(ISBNt.find("-") >= 0): return ISBNt ISBNt = ISBNt.replace("-","") if len(ISBNt) == 10: ISBN = formatISBN10(ISBNt) elif len(ISBNt) == 13: ISBN = formatISBN13(ISBNt) else: raise Exception("ISBN %s is of wrong length (%d), expected 10 or 13" % (ISBNt,len(ISBNt))) return str(ISBN) def formatURL(url): url = url.replace("{\\_}","\\_").replace("{\\&}","\\&").replace("{\\#}","\\#") urls = url.split(" ") url = urls[0] return url def formatDOI(doi): doi = str(doi) doi = doi.replace("http://","") doi = doi.replace("https://","") doi = doi.replace("dx.doi.org/","") doi = doi.replace("dx.doi.org","") doi = doi.replace("org","") doi = doi.replace("doi:","") doi = doi.replace("doi","") doi = doi.replace(" ","") doi = doi.lstrip(".") doi = doi.lstrip("/") return doi
27.948454
98
0.533383
7e9a490a8b8446ab33a58c78483e8895717b5867
13,080
py
Python
falkon/kernels/distance_kernel.py
mathurinm/falkon
bb2b3a0f17a3fa5968212d3c1fefb5e1f66257b5
[ "MIT" ]
null
null
null
falkon/kernels/distance_kernel.py
mathurinm/falkon
bb2b3a0f17a3fa5968212d3c1fefb5e1f66257b5
[ "MIT" ]
null
null
null
falkon/kernels/distance_kernel.py
mathurinm/falkon
bb2b3a0f17a3fa5968212d3c1fefb5e1f66257b5
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 24 21:49:21 2017 @author: alessandro """ import collections import functools import math from abc import ABC, abstractmethod from typing import Optional, Union import torch from falkon.options import BaseOptions, FalkonOptions from falkon.sparse import sparse_ops from falkon.sparse.sparse_tensor import SparseTensor from falkon.kernels import Kernel, KeopsKernelMixin DistKerContainer = collections.namedtuple('DistKerContainer', ['sq1', 'sq2']) class L2DistanceKernel(Kernel, ABC): """Base class for L2-based kernels Such kernels are characterized by the squared norm of the difference between each input sample. This involves computing the squared norm in `_prepare`, and a simple matrix multiplication in `_apply`. In `_finalize` the squared norm and matrix multiplication are added together to form the kernel matrix. Subclasses should implement the `_transform` method which applies additional elementwise transformations to the kernel matrix. `_transform` is called after `_finalize`. This class supports sparse data. Parameters ---------- name : str Descriptive name of the specialized kernel opt : CompOpt or dict or None Options which will be passed to the kernel operations Notes ------ To efficiently compute kernels of the form k(x, x') = ||x - x'||^2 between two matrices of data-points we decompose the squared norm of the difference into 3 terms: ||X||^2 and -2*XX'^T and ||X'||^2 The first and third term are calculated in the `_prepare` method while the second is calculated in the `_apply` method. Finally the three terms are combined in the `_finalize` method. """ kernel_type = "l2distance" def __init__(self, name, opt: Optional[FalkonOptions] = None): super().__init__(name, self.kernel_type, opt) def _prepare(self, X1: torch.Tensor, X2: torch.Tensor) -> DistKerContainer: return DistKerContainer( sq1=torch.norm(X1, p=2, dim=1, keepdim=True).pow_(2), sq2=torch.norm(X2, p=2, dim=1, keepdim=True).pow_(2) ) def _prepare_sparse(self, X1: SparseTensor, X2: SparseTensor) -> DistKerContainer: sq1 = torch.empty(X1.size(0), dtype=X1.dtype, device=X1.device) sparse_ops.sparse_square_norm(X1, sq1) sq2 = torch.empty(X2.size(0), dtype=X1.dtype, device=X1.device) sparse_ops.sparse_square_norm(X2, sq2) return DistKerContainer( sq1=sq1.reshape(-1, 1), sq2=sq2.reshape(-1, 1) ) def _apply(self, X1: torch.Tensor, X2: torch.Tensor, out: torch.Tensor) -> None: out.addmm_(X1, X2) def _apply_sparse(self, X1: SparseTensor, X2: SparseTensor, out: torch.Tensor) -> torch.Tensor: return sparse_ops.sparse_matmul(X1, X2, out) def _finalize(self, A: torch.Tensor, d: DistKerContainer) -> torch.Tensor: A.mul_(-2.0) A.add_(d.sq1.to(A)) A.add_(d.sq2.to(A).t()) A.clamp_min_(0) return self._transform(A) @abstractmethod def _transform(self, A: torch.Tensor): pass class GaussianKernel(L2DistanceKernel, KeopsKernelMixin): """Class for computing the Gaussian kernel and related kernel-vector products The Gaussian kernel is one of the most common and effective kernel embeddings since it is infinite dimensional, and governed by a single parameter. The kernel length-scale determines the width of the Gaussian distribution which is placed on top of each point. A larger sigma corresponds to a wide Gaussian, so that the relative influence of far away points will be high for computing the kernel at a given datum. On the opposite side of the spectrum, a small sigma means that only nearby points will influence the kernel. Parameters ----------- sigma The length-scale of the kernel. This can be a scalar, and then it corresponds to the standard deviation of Gaussian distribution from which the kernel is derived. It can also be a vector of size `d` or a matrix of size `d*d` where `d` is the dimensionality of the data which will be used with the kernel. In this case sigma will be the inverse square of the standard deviation, so for example converting from the vectorial sigma to the scalar sigma can be done by `vec_sigma = -1/(sigma**2)` opt Additional options to be forwarded to the matrix-vector multiplication routines. Examples -------- Creating a Gaussian kernel with a single length-scale. Operations on this kernel will not use KeOps. >>> K = GaussianKernel(sigma=3.0, opt=FalkonOptions(no_keops=True)) Creating a Gaussian kernel with a different length-scale per dimension >>> K = GaussianKernel(sigma=torch.tensor([1.0, 3.5, 7.0])) Creating a Gaussian kernel object with full covariance matrix (randomly chosen) >>> mat = torch.randn(3, 3, dtype=torch.float64) >>> sym_mat = mat @ mat.T >>> K = GaussianKernel(sigma=sym_mat) >>> K GaussianKernel(sigma=tensor([[ 2.0909, 0.0253, -0.2490], [ 0.0253, 0.3399, -0.5158], [-0.2490, -0.5158, 4.4922]], dtype=torch.float64)) #random Notes ----- The Gaussian kernel with a single length-scale follows .. math:: k(x, x') = \\exp{-\\dfrac{\\lVert x - x' \\rVert^2}{2\\sigma^2}} When the length-scales are specified as a matrix, the RBF kernel is determined by .. math:: k(x, x') = \\exp{-\\dfrac{1}{2}x\\Sigma^{-1}x'} In both cases, the actual computation follows a different path, working on the expanded norm. The KeOps implementation is fully contained in the :meth:`_keops_mmv_impl` method, while our implementation uses methods :meth:`_prepare`, :meth:`_apply`, and :meth:`_transform` and is driven by the functions in :mod:`falkon.mmv_ops`. """ kernel_name = "gaussian" def __init__(self, sigma: Union[float, torch.Tensor], opt: Optional[FalkonOptions] = None): super().__init__(self.kernel_name, opt) self.sigma, self.gaussian_type = self._get_sigma_kt(sigma) if self.gaussian_type == 'single': self.gamma = torch.tensor( -0.5 / (self.sigma.item() ** 2), dtype=torch.float64).item() else: self.gamma = torch.cholesky(self.sigma, upper=False) self.kernel_type = "l2-multi-distance" @staticmethod def _get_sigma_kt(sigma): if isinstance(sigma, torch.Tensor): try: # tensor.item() works if tensor is a scalar, otherwise it throws # a value error. sigma.item() return sigma, "single" except ValueError: pass if sigma.dim() == 1 or sigma.size(1) == 1: return torch.diagflat(sigma), "multi" if sigma.dim() != 2: raise TypeError("Sigma can be specified as a 1D or a 2D tensor. " "Found %dD tensor" % (sigma.dim())) if sigma.size(0) != sigma.size(1): raise TypeError("Sigma passed as a 2D matrix must be square. " "Found dimensions %s" % (sigma.size())) return sigma, "multi" else: try: sigma = float(sigma) return torch.tensor(sigma, dtype=torch.float64), "single" except TypeError: raise TypeError("Sigma must be a scalar or a tensor.") def _keops_mmv_impl(self, X1, X2, v, kernel, out, opt: FalkonOptions): if self.gaussian_type == 'single': formula = 'Exp(g * SqDist(x1, x2)) * v' aliases = [ 'x1 = Vi(%d)' % (X1.shape[1]), 'x2 = Vj(%d)' % (X2.shape[1]), 'v = Vj(%d)' % (v.shape[1]), 'g = Pm(1)' ] other_vars = [torch.tensor([self.gamma]).to(dtype=X1.dtype)] else: dim = self.gamma.shape[0] formula = ( 'Exp( -IntInv(2) * SqDist(' f'TensorDot(x1, g, Ind({dim}), Ind({dim}, {dim}), Ind(0), Ind(0)), ' f'TensorDot(x2, g, Ind({dim}), Ind({dim}, {dim}), Ind(0), Ind(0)))) * v' ) aliases = [ 'x1 = Vi(%d)' % (X1.shape[1]), 'x2 = Vj(%d)' % (X2.shape[1]), 'v = Vj(%d)' % (v.shape[1]), 'g = Pm(%d)' % (dim ** 2) ] other_vars = [self.gamma.reshape(-1).to(dtype=X1.dtype)] return self.keops_mmv(X1, X2, v, out, formula, aliases, other_vars, opt) def _decide_mmv_impl(self, X1, X2, v, opt: FalkonOptions): if self.keops_can_handle_mmv(X1, X2, v, opt): return self._keops_mmv_impl else: return super()._decide_mmv_impl(X1, X2, v, opt) def _decide_dmmv_impl(self, X1, X2, v, w, opt: FalkonOptions): if self.keops_can_handle_dmmv(X1, X2, v, w, opt): return functools.partial(self.keops_dmmv_helper, mmv_fn=self._keops_mmv_impl) else: return super()._decide_dmmv_impl(X1, X2, v, w, opt) def _prepare(self, X1, X2): if self.gaussian_type == "single": return super()._prepare(X1, X2) else: return self.prepare_multisigma(X1, X2) def _prepare_sparse(self, X1: SparseTensor, X2: SparseTensor): if self.gaussian_type != "single": raise NotImplementedError( "Sparse Gaussian kernel only implemented with scalar sigma.") return super()._prepare_sparse(X1, X2) def _apply(self, X1, X2, out): if self.gaussian_type == "single": return super()._apply(X1, X2, out) else: return self.apply_multisigma(X1, X2, out) def _apply_sparse(self, X1: SparseTensor, X2: SparseTensor, out: torch.Tensor): if self.gaussian_type != "single": raise NotImplementedError( "Sparse Gaussian kernel only implemented with scalar sigma.") return super()._apply_sparse(X1, X2, out) def _transform(self, A) -> torch.Tensor: if self.gaussian_type == "single": return self.transform_singlesigma(A) else: return self.transform_multisigma(A) def prepare_multisigma(self, X1, X2): chol = self.gamma.to(X1) return DistKerContainer( sq1=torch.norm(X1 @ chol, p=2, dim=1, keepdim=True).pow_(2), sq2=torch.norm(X2 @ chol, p=2, dim=1, keepdim=True).pow_(2) ) def apply_multisigma(self, X1, X2, out): sigma = self.sigma.to(X1) out.addmm_(X1 @ sigma, X2) # noinspection PyMethodMayBeStatic def transform_multisigma(self, A: torch.Tensor) -> torch.Tensor: A.mul_(-0.5) A.exp_() return A def transform_singlesigma(self, A: torch.Tensor) -> torch.Tensor: A.mul_(self.gamma) A.exp_() return A def __repr__(self): return f"GaussianKernel(sigma={self.sigma})" def __str__(self): return f"Gaussian kernel<{self.sigma}>" class LaplacianKernel(GaussianKernel): """Class for computing the Laplacian kernel, and related kernel-vector products. The Laplacian kernel is similar to the Gaussian kernel, but less sensitive to changes in the parameter `sigma`. Parameters ---------- sigma The length-scale of the Laplacian kernel Notes ----- The Laplacian kernel is determined by the following formula .. math:: k(x, x') = \\exp{-\\frac{\\lVert x - x' \\rVert}{\\sigma}} """ def __init__(self, sigma: float, opt: Optional[BaseOptions] = None): # With respect to the Gaussian kernel we need to change the value of gamma, # and from squared norm to norm. The latter change requires a different impl. of # the `_prepare` methods, and of the keops formula. self.kernel_name = "laplacian" super().__init__(sigma, opt) self.gaussian_type = 'single' self.gamma = torch.tensor( -1 / self.sigma.item(), dtype=torch.float64).item() def _keops_mmv_impl(self, X1, X2, v, kernel, out, opt: FalkonOptions): formula = 'Exp(g * Sqrt(SqDist(x1, x2))) * v' aliases = [ 'x1 = Vi(%d)' % (X1.shape[1]), 'x2 = Vj(%d)' % (X2.shape[1]), 'v = Vj(%d)' % (v.shape[1]), 'g = Pm(1)' ] other_vars = [torch.tensor([self.gamma]).to(dtype=X1.dtype)] return self.keops_mmv(X1, X2, v, out, formula, aliases, other_vars, opt) def _finalize(self, A: torch.Tensor, d: DistKerContainer) -> torch.Tensor: A.mul_(-2.0) A.add_(d.sq1.to(A)) A.add_(d.sq2.to(A).t()) A.clamp_min_(0) A.sqrt_() return self._transform(A) def __repr__(self): return f"LaplacianKernel(sigma={self.sigma})"
37.053824
99
0.610168
ff6fc7f51343b624f7f43dd1540b445f30178f44
7,099
py
Python
main.py
JamesK2754/DnD-Tool
6603ce9ceee4c05acce0969ce18ae2830a4ea23e
[ "MIT" ]
null
null
null
main.py
JamesK2754/DnD-Tool
6603ce9ceee4c05acce0969ce18ae2830a4ea23e
[ "MIT" ]
null
null
null
main.py
JamesK2754/DnD-Tool
6603ce9ceee4c05acce0969ce18ae2830a4ea23e
[ "MIT" ]
null
null
null
import random import time import os playerls = [] clear = lambda: os.system('clear') print(''' ================= | DnD Dice Tool | | by James King | | MIT Licence | | V2.0 | =================''') time.sleep(2) clear() v = '2.0' vint = int(2) def mainrun(): def set_players(): clear() set_p = True print("Exit code is !x") while set_p: input_name = input("Name: ") if input_name == "!x": set_p = False menu() playerls.append(input_name) def config_wiz(): clear() print("Welcome to the Config Wizard.\nPlease select from one of the following options:\n1) Load Config\n2) Create config from current settings\n3) Create new config\n4) Exit config") config_command = () while config_command not in range(1,5): config_command = int(input("DnD> ")) if config_command == 1: print("To allow the tool to find and load the config, move to config text file into the same directory as this tool. Then, enter the name of the file - without the .dndtoolconf.txt extention.") file_name = input("configwiz> ") print("Searching...") try: config_file = open(f"./{file_name}.dndtoolconf.txt") print("Reading...") config_conts = config_file.read() config_file.close() config_conts = config_conts.replace("=", "\n") config_ls = config_conts.split("\n") config_ls.pop(0) wplayersls = config_ls[5].split("~") print("Players located!") versionconf = config_ls[1].split(".") print(versionconf) input() if versionconf[0] == "β": print("!Warning! This config was generated by a beta version of this tool - some features may not work.") nversionconf = int(versionconf[1]) else: nversionconf = int(versionconf[0]) if nversionconf > vint: print("!Warning! This config was made by a newer version of this tool than the one you are running. It is reccomended that you update your tool to avoid issues.") if nversionconf < vint: print("!Warning! This config was made by an older version of this tool than the one you are running, some features may not work. It is reccomended that you regenerate the config to avoid issues.") for x in range(len(wplayersls)): print(wplayersls[x]) confirm = '' while confirm not in ('y', 'Y', 'n', 'N'): confirm = input("Is that correct (y/n)? ") if confirm in ('y', 'Y'): for x in range(len(wplayersls)): playerls.append(wplayersls[x]) else: clear() menu() except: input("Something went wrong...") menu() if config_command == 2: filename = input("What should we call the file? ") groupname = input("And what is the name of the group? ") configfile = open(f"./{filename}.dndtoolconf.txt", "w") joinchar = "~" playerstring = joinchar.join(playerls) configfile.write(f'''!! This is a config file generated by DnD Dice Tools. To use, move to the same directory as the tool file then navigate to the Config Wizard and select option 1 v={v} name={groupname} players={playerstring}''') configfile.close() input("File made!") menu() if config_command == 3: tplayerls = [] filename = input("What should we call the file? ") groupname = input("And what is the name of the group? ") configfile = open(f"./{filename}.dndtoolconf.txt", "w") joinchar = "~" set_p = True print("Enter the names of the players\nThe exit code is !x") while set_p: input_name = input("Name: ") if input_name == "!x": set_p = False break tplayerls.append(input_name) playerstring = joinchar.join(tplayerls) configfile.write(f'''!! This is a config file generated by DnD Dice Tools. To use, move to the same directory as the tool file then navigate to the Config Wizard and select option 1 v={v} name={groupname} players={playerstring}''') configfile.close() input("File made!") menu() if config_command == 4: clear() menu() def menu(): if len(playerls) == 0: print("!! No players have been added yet. Please run option run before rolling any group dice to avoid errors. !!") print("DnD Dice Tool\nPlease select from one of the following options:\n1) Set players\n2) Run D20 for all\n3) Run D20 for one\n4) Run Dx for all\n5) Run Dx for one\n6) Print players\n7) Clear terminal\n8) Config Wizard\n9) About\n0) Exit") menu_option = () while menu_option not in range(1,10): menu_option = int(input("DnD> ")) if menu_option == 1: set_players() if menu_option == 2: for x in range(len(playerls)): num = random.randint(1,20) print(f"{playerls[x]} {num}") input() menu() if menu_option == 3: print(random.randint(1,20)) input() menu() if menu_option == 4: d = int(input("roll a d")) for x in range(len(playerls)): num = random.randint(1,d) print(f"{playerls[x]} {num}") input() menu() if menu_option == 5: d = int(input("roll a d")) print(random.randint(1, d)) input() menu() if menu_option == 6: if len(playerls) > 0: print("players are...") for x in range(len(playerls)): print(playerls[x]) else: print("No players were found in list.") input() menu() if menu_option == 7: clear() menu() if menu_option == 8: clear() config_wiz() menu() if menu_option == 9: print(f''' *=======================================================* | DnDTool by James King | | Version {v} | | Provided under the MIT licence, distributed on GitHub | | www.JamesDev.co.gg | *=======================================================* ''') input() clear() menu() if menu_option == 0: exit() menu() mainrun()
39.659218
248
0.498098
ad2dfacc4019673d83ddc70bbfbec8409e4ac883
21,799
py
Python
pysoa/test/plugins/pytest/plans.py
viniciusfeitosa/pysoa
925ca0c662f2e2f2943f33f1f30f9aae3742334f
[ "Apache-2.0" ]
null
null
null
pysoa/test/plugins/pytest/plans.py
viniciusfeitosa/pysoa
925ca0c662f2e2f2943f33f1f30f9aae3742334f
[ "Apache-2.0" ]
null
null
null
pysoa/test/plugins/pytest/plans.py
viniciusfeitosa/pysoa
925ca0c662f2e2f2943f33f1f30f9aae3742334f
[ "Apache-2.0" ]
null
null
null
from __future__ import ( absolute_import, unicode_literals, ) from functools import wraps import re import sys from unittest import SkipTest from _pytest._code.code import TracebackEntry from _pytest._code.source import Source from _pytest.mark import MARK_GEN from _pytest.unittest import ( TestCaseFunction, UnitTestCase, ) import py import six try: import pyparsing TEST_PLANS_ENABLED = True except ImportError: pyparsing = None TEST_PLANS_ENABLED = False __test_plan_prune_traceback = True # ensure code in this file is not included in failure stack traces def _get_unpacked_marks(obj): """ Copied/modified from _pytest.mark.structures, which is not available on all platforms """ # noinspection SpellCheckingInspection mark_list = getattr(obj, 'pytestmark', []) if not isinstance(mark_list, list): mark_list = [mark_list] return (getattr(mark, 'mark', mark) for mark in mark_list) PLUGIN_STATISTICS = { 'fixture_tests_collected': 0, 'fixture_tests_executed': 0, 'fixture_tests_skipped': 0, } def pytest_addoption(parser): """ A hook called by the PyTest plugin system to add configuration options before the command line arguments are parsed We use this to add all of the ``--pysoa-*`` command line options. :param parser: The PyTest wrapper around the ``argparse`` library parser """ if not TEST_PLANS_ENABLED: return group = parser.getgroup('pysoa', 'pysoa test plans') group.addoption( '--pysoa-fixture', action='append', dest='pysoa_fixture', metavar='fixture', default=[], help='Only run tests in this fixture filename (multiple uses allowed)', ) group.addoption( '--pysoa-test-case', action='append', dest='pysoa_test_case', metavar='plan', default=[], help='Only run the test case or cases with this name or description (multiple uses allowed); matches tests in ' 'any fixture (unless --pysoa-fixture); mutually exclusive with --pysoa-test-case-regex', ) group.addoption( '--pysoa-test-case-regex', action='append', dest='pysoa_test_case_regex', metavar='pattern', default=None, type=lambda pattern: None if not pattern else re.compile('^{}'.format(pattern)), help='Only run the test case or cases whose name or description matches this pattern (multiple uses allowed); ' 'matches tests in any fixture (unless --pysoa-fixture); mutually exclusive with --pysoa-test-case', ) group.addoption( '--pysoa-disable-tb-prune', action='store_true', dest='pysoa_disable_tb_prune', default=False, help='By default, traceback frames containing PySOA test plan parsing and execution code are pruned from the ' 'error report before display, giving you a less cluttered view when errors occur. This behavior can make ' 'it difficult to track down bugs in the PySOA test plan code itself. Setting this option disables this ' 'pruning, giving you the full stacktrace.', ) # noinspection PyProtectedMember parser_class = type(parser._getparser()) original_parse_args = parser_class.parse_args @wraps(parser_class.parse_args) def parse_args(self, args=None, namespace=None): # Parse wrapper to raise error for mutually-exclusive arguments at the correct time args = original_parse_args(self, args=args, namespace=namespace) if args.pysoa_test_case and args.pysoa_test_case_regex: self.error('use of mutually exclusive arguments: --pysoa-test-case, --pysoa-test-case-regex') return args parser_class.parse_args = parse_args # noinspection SpellCheckingInspection def pytest_pycollect_makeitem(collector, name, obj): """ A hook called by the PyTest main collector when collecting test plans. We use this to find all classes extending ``ServicePlanTestCase`` and return new, custom collector objects for them. :param collector: The main collector, which must be the parent of any collector object returned :type collector: PyCollector :param name: The name of the item to potentially be collected :type name: str :param obj: The item to potentially be collected :return: A new collector object, or ``None`` if this plugin does not recognize the item type, in which case the collector system will call the next available plugin or hook to do the same. :rtype: PyCollector """ if not TEST_PLANS_ENABLED: return # Lazy importing ensures that pytest-cov loads up coverage before this plugin loads other classes in PySOA from pysoa.test.plan import ServicePlanTestCase try: if not issubclass(obj, ServicePlanTestCase): return if obj == ServicePlanTestCase: # Don't collect the parent class return except TypeError: return return ServicePlanTestCaseCollector(name, parent=collector) class ServicePlanTestCaseCollector(UnitTestCase): """ A specialized collector for collecting PySOA test plans and all of their fixtures and test cases. It yields all of the test cases that its parent collects (normal ``test_`` methods in ``unittest`` fashion), and then yields all of test fixture tests defined by the class extending ``ServicePlanTestCase``. """ def collect(self): """ Responsible for collecting all the items (tests, in this case traditional test methods and fixture test cases) in this item (a ``ServicePlanTestCase`` class). :return: """ if not getattr(self.obj, '__test__', True): # Super performs this check, too, but if we yield that return, things get screwy, so we have to duplicate # the check first to be sure. return for item in super(ServicePlanTestCaseCollector, self).collect(): # We let super collect normal (``unittest``) test methods, and yield each of those as it collects them, # just as super does. After this, we can collect the fixtures and fixture tests. yield item for test_data in self.obj.get_fixture_test_information(): # Now we collect and field the fixture tests. yield ServicePlanTestCaseTestFunction(parent=self, fixture_test_case_data=test_data) PLUGIN_STATISTICS['fixture_tests_collected'] += 1 class ServicePlanTestCaseTestFunction(TestCaseFunction): """ A test item that PyTest executes. Largely behaves like a traditional ``unittest` test method, but overrides some behavior to ensure the following: - That the specialized testing code is run, and that the test fixture name and path are included in result output - That test skips are handled properly - That unhelpful stacktrace elements from this test plan code are pruned from result output - That helpful information is displayed with test failures """ def __init__(self, parent, fixture_test_case_data): """ Construct a test item. :param parent: The parent collector :type parent: ServicePlanTestCaseCollector :param fixture_test_case_data: The test case data :type fixture_test_case_data: FixtureTestCaseData """ test_name = 'test__{fixture}__{test}'.format( fixture=fixture_test_case_data.fixture_name, test=fixture_test_case_data.name, ) # First, we have to give the test plan test case class a method with this name, otherwise the TestCase class # cannot be instantiated. However, this should never be called, because the plugin overrides it. def fake_test(*_, **__): raise TypeError('The incorrect test method was called') fake_test.__doc__ = fixture_test_case_data.description if hasattr(parent.obj, test_name): # Lazy importing ensures that pytest-cov loads up coverage before this plugin loads other classes in PySOA from pysoa.test.plan.errors import StatusError raise StatusError('Duplicate test name "{name}" in fixture "{fixture}"'.format( name=fixture_test_case_data.name, fixture=fixture_test_case_data.fixture_file), ) setattr(parent.obj, test_name, fake_test) # Next we call super super(ServicePlanTestCaseTestFunction, self).__init__(name=test_name, parent=parent) # Finally, we do some magic to trick PyTest into accepting and displaying the actual location of the test (the # fixture file and the line in that file) instead of the PySOA test plan parsing code. self._location = ( self.session.fspath.bestrelpath(py.path.local(fixture_test_case_data.fixture_file)), fixture_test_case_data.line_number, self.location[2], ) self.fspath = py.path.local(fixture_test_case_data.fixture_file) self._nodeid = '::'.join( self.nodeid.split('::', 2)[:2] + [fixture_test_case_data.fixture_name, fixture_test_case_data.name], ) self.fixture_test_case_data = fixture_test_case_data # Copy any class-level PyTest markers from the ServicePlanTestCase class to each fixture test case # This allows things like pytest.mark.skip[if], pytest.mark.django_db, etc. to work for mark in _get_unpacked_marks(parent.obj): mark_copy = getattr(MARK_GEN, mark.name)(*mark.args, **mark.kwargs) self.add_marker(mark_copy) if mark.name == 'skip' or (mark.name == 'skipif' and mark.args and mark.args[0]): PLUGIN_STATISTICS['fixture_tests_skipped'] += 1 # noinspection SpellCheckingInspection def runtest(self): """ PyTest calls this to actually run the test. """ if self.config.pluginmanager.get_plugin('pdbinvoke') is None: self._run(result=self) else: self._debug() def _handle_skip(self): """ Implements the skipping machinery (see super). It's a modified version of super and ``unittest:TestCase.run`` that makes the following changes: - Handles test fixture skip directives - Properly handles class-level ``pytest.mark.skip[if]`` markers to make them apply to all fixture test cases - Properly handles the changing signature of ``_addSkip`` (super incorrectly analyzes the Python version) :return: ``True`` if this test is to be skipped, ``False`` if it is to be run. :rtype: bool """ # implements the skipping machinery (see super); analog to pythons Lib/unittest/case.py:run cls = self._testcase.__class__ skipped = False skipped_why = 'unknown' if getattr(cls, '__unittest_skip__', False): skipped = True skipped_why = getattr(cls, '__unittest_skip_why__', '') elif self.fixture_test_case_data.skip: skipped = True skipped_why = self.fixture_test_case_data.skip if skipped: # If the class or fixture or fixture test case was skipped try: # noinspection PyProtectedMember # This is the signature on Python 3.4+ or unittest2 on Python 3.3- self._testcase._addSkip(self, self._testcase, skipped_why) except TypeError: if sys.version_info >= (3, 4): # If we got this error >= Python 3.4, something is wrong, so re-raise it raise # noinspection PyProtectedMember self._testcase._addSkip(self, skipped_why) PLUGIN_STATISTICS['fixture_tests_skipped'] += 1 return True return False # noinspection PyProtectedMember def _debug(self): """ Runs the test in debug mode, which starts a debugger as soon as an error happens. Does not run ``setUp`` or ``tearDown`` since the code in ``ServicePlanTestCase`` takes care of this. See ``unittest:TestCase.debug``. """ # see unittest.TestCase.debug if self._handle_skip(): return self.fixture_test_case_data.callable(self._testcase) while self._testcase._cleanups: func, args, kwargs = self._testcase._cleanups.pop(-1) func(*args, **kwargs) # noinspection PyProtectedMember def _run(self, result=None): """ Runs the test in normal mode, which adds failures and errors to the result. Does not run ``setUp`` or ``tearDown`` since the code in ``ServicePlanTestCase`` takes care of this. See ``unittest:TestCase.run``. :param result: The test result so far """ orig_result = result if result is None: result = self._testcase.defaultTestResult() start_test_run = getattr(result, 'startTestRun', None) if start_test_run is not None: start_test_run() self._testcase._resultForDoCleanups = result result.startTest(self._testcase) if self._handle_skip(): result.stopTest(self._testcase) return PLUGIN_STATISTICS['fixture_tests_executed'] += 1 try: success = False # noinspection PyBroadException try: self.fixture_test_case_data.callable(self._testcase) except KeyboardInterrupt: raise except self._testcase.failureException: result.addFailure(self._testcase, sys.exc_info()) except SkipTest as e: self._testcase._addSkip(result, str(e)) except: # noqa E722 result.addError(self._testcase, sys.exc_info()) else: success = True success = success and self._testcase.doCleanups() if success: result.addSuccess(self._testcase) finally: result.stopTest(self._testcase) if orig_result is None: stop_test_run = getattr(result, 'stopTestRun', None) if stop_test_run is not None: stop_test_run() # noinspection SpellCheckingInspection def _prunetraceback(self, exception_info): """ Prunes unhelpful information from the traceback so that test failure report output isn't overwwhelming and still contains useful information. Also appends the specialized fixture test case traceback entry to the end of the traceback. :param exception_info: The PyTest wrapper around the failure exception info object """ # Before any pruning, get the frame containing _run_test_case so that we can use its locals lowest_test_case_frame = next( ( tb for tb in reversed(exception_info.traceback) if tb.locals.get('_test_function_frame', False) or tb.locals.get('_run_test_case_frame', False) ), None, ) super(ServicePlanTestCaseTestFunction, self)._prunetraceback(exception_info) if not lowest_test_case_frame: return if self.config.getoption('pysoa_disable_tb_prune') is not True: exception_info.traceback = exception_info.traceback.filter( lambda x: not x.frame.f_globals.get('__test_plan_prune_traceback') ) test_case = lowest_test_case_frame.locals['test_case'] locals_to_copy = {'job_response', 'action_results', 'action_case'} if lowest_test_case_frame.locals.get('_test_function_frame', False): locals_to_copy = {'test_fixture_results', 'test_case'} # noinspection PyProtectedMember extra_entry = ServicePlanFixtureTestTracebackEntry( name='{cls}::{fixture}::{test}'.format( cls=lowest_test_case_frame.locals['self'].__class__.__name__, fixture=test_case['fixture_name'], test=test_case['name'], ), line_number=test_case['line_number'], path=py.path.local(test_case['fixture_file_name']), local_variables={ k: v for k, v in six.iteritems(lowest_test_case_frame.locals) if k in locals_to_copy }, fixture_source=test_case['fixture_source'], test_source=test_case['source'], raw_entry=lowest_test_case_frame._rawentry, ) exception_info.traceback.append(extra_entry) # noinspection SpellCheckingInspection class ServicePlanFixtureTestTracebackEntry(TracebackEntry): """ A special traceback entry for displaying the relevant test fixture file contents instead of Python code when a fixture test case fails. """ class Faker(object): pass def __init__( self, name, line_number, path, local_variables, fixture_source, test_source, raw_entry, ): super(ServicePlanFixtureTestTracebackEntry, self).__init__(raw_entry) self._name = name self.lineno = line_number - 1 self._path = path self._locals = local_variables self._fixture_source = Source(fixture_source) self._test_source = test_source self._frame = self.Faker() self._frame.statement = self.statement self._frame.getargs = lambda *_, **__: list(six.iteritems(local_variables)) self._frame.f_locals = local_variables self._frame.code = self.Faker() self._frame.code.path = path self._frame.code.raw = self.Faker() self._frame.code.raw.co_filename = str(path) @property def frame(self): return self._frame @property def relline(self): return self.lineno - self.getfirstlinesource() @property def statement(self): return self._fixture_source[self.lineno] @property def path(self): return self._path def getlocals(self): return self._locals locals = property(getlocals, None, None, str('locals of underlying frame')) def getfirstlinesource(self): return max(self.lineno - 3, 0) def getsource(self, astcache=None): start = self.getfirstlinesource() end = start + len(self._test_source) + 5 return self._fixture_source[start:end] source = property(getsource, None, None, str('source code of failing test')) def ishidden(self): return False def name(self): return self._name name = property(name, None, None, str('name of underlaying code')) def __str__(self): return ' File {path} line {line_number} (approximate) in {test}\n {source}\n'.format( path=self.path, line_number=self.lineno + 1, test=self.name, source=self._test_source, ) def __repr__(self): return '<TracebackEntry {}:{}>'.format(self.path, self.lineno + 1) def pytest_collection_modifyitems(config, items): """ A hook called by the PyTest main collector immediately after collecting test plans. We use this to "deselect" test cases that do not match the supplied ``--pysoa-*`` filter command line arguments. :param config: The PyTest config object :param items: The list of collected test items, which includes all tests (regular tests collected by PyTest and other plugins as well as fixture test cases). Any modifications must happen against this argument directly (a new array can't be created and returned). """ if not TEST_PLANS_ENABLED: return reporter = None # noinspection PyBroadException try: reporter = config.pluginmanager.get_plugin('terminalreporter') except Exception: pass soa_test_case = config.getoption('pysoa_test_case') soa_test_case_regex = config.getoption('pysoa_test_case_regex') soa_fixture = config.getoption('pysoa_fixture') deselected = [] remaining = [] for test in items: if soa_test_case or soa_test_case_regex or soa_fixture: if not isinstance(test, ServicePlanTestCaseTestFunction): # At least one of the plugin filtering arguments were specified, but this is not a service plan test deselected.append(test) else: test_data = test.fixture_test_case_data if ( # The fixture argument(s) was specified, but the fixture name does not match the argument(s) (soa_fixture and test_data.fixture_name not in soa_fixture) or # The test case argument(s) was specified, but the test name does not match the argument(s) ( soa_test_case and test_data.name not in soa_test_case and test_data.description not in soa_test_case ) or # The test regex argument(s) was specified, but the test name does not match the argument pattern(s) (soa_test_case_regex and not any( p.match(test_data.name) or p.match(test_data.description) for p in soa_test_case_regex )) ): deselected.append(test) else: remaining.append(test) if deselected: config.hook.pytest_deselected(items=deselected) if reporter: reporter.report_collect() items[:] = remaining
39.277477
120
0.647736
55008bea7669fd69649742455c1030199ef14341
4,712
py
Python
mask_word.py
ajitrajasekharan/bert_mask
33c7067134f2696b849fdb273443306026c5527d
[ "MIT" ]
24
2019-12-21T15:08:29.000Z
2022-01-18T16:41:41.000Z
mask_word.py
ajitrajasekharan/bert_mask
33c7067134f2696b849fdb273443306026c5527d
[ "MIT" ]
1
2021-09-06T08:57:35.000Z
2021-09-06T09:52:52.000Z
mask_word.py
ajitrajasekharan/bert_mask
33c7067134f2696b849fdb273443306026c5527d
[ "MIT" ]
7
2019-12-17T17:10:59.000Z
2022-03-02T20:19:05.000Z
import torch from transformers import * import pdb import operator from collections import OrderedDict import sys import traceback import argparse import string import logging DEFAULT_MODEL_PATH='bert-large-cased' DEFAULT_TO_LOWER=False DEFAULT_TOP_K = 20 ACCRUE_THRESHOLD = 1 def init_model(model_path,to_lower): logging.basicConfig(level=logging.INFO) tokenizer = BertTokenizer.from_pretrained(model_path,do_lower_case=to_lower) model = BertForMaskedLM.from_pretrained(model_path) #tokenizer = RobertaTokenizer.from_pretrained(model_path,do_lower_case=to_lower) #model = RobertaForMaskedLM.from_pretrained(model_path) model.eval() return model,tokenizer def get_sent(): print("Enter sentence. Type q to quit") sent = input() if (sent == 'q'): return sent else: #return '[CLS] ' + sent + '[SEP]' return sent def read_descs(file_name): ret_dict = {} with open(file_name) as fp: line = fp.readline().rstrip("\n") if (len(line) >= 1): ret_dict[line] = 1 while line: line = fp.readline().rstrip("\n") if (len(line) >= 1): ret_dict[line] = 1 return ret_dict def get_mask_index(limit): masked_index = 0 while (True): try: print("Enter mask index value in range 0 -",limit-1) masked_index = int(input()) if (masked_index < limit and masked_index >= 0): break except: print("Enter Numeric value:") return masked_index def perform_task(model,tokenizer,top_k,accrue_threshold,text): text = '[CLS]' + text + '[SEP]' tokenized_text = tokenizer.tokenize(text) indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) # Create the segments tensors. segments_ids = [0] * len(tokenized_text) masked_index = 0 for i in range(len(tokenized_text)): if (tokenized_text[i] == "entity"): masked_index = i break if (masked_index == 0): dstr = "" for i in range(len(tokenized_text)): dstr += " " + str(i) + ":"+tokenized_text[i] print(dstr) masked_index = get_mask_index(len(tokenized_text)) tokenized_text[masked_index] = "[MASK]" indexed_tokens[masked_index] = 103 print(tokenized_text) print(masked_index) results_dict = {} # Convert inputs to PyTorch tensors tokens_tensor = torch.tensor([indexed_tokens]) segments_tensors = torch.tensor([segments_ids]) with torch.no_grad(): predictions = model(tokens_tensor, segments_tensors) for i in range(len(predictions[0][0,masked_index])): if (float(predictions[0][0,masked_index][i].tolist()) > accrue_threshold): tok = tokenizer.convert_ids_to_tokens([i])[0] results_dict[tok] = float(predictions[0][0,masked_index][i].tolist()) k = 0 sorted_d = OrderedDict(sorted(results_dict.items(), key=lambda kv: kv[1], reverse=True)) for i in sorted_d: if (i in string.punctuation or i.startswith('##') or len(i) == 1 or i.startswith('.') or i.startswith('[')): continue print(i,sorted_d[i]) k += 1 if (k > top_k): break if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predicting neighbors to a word in sentence using BERTMaskedLM. Neighbors are from BERT vocab (which includes subwords and full words). Type in a sentence and then choose a position to mask or type in a sentence with the word entity in the location to apply a mask ',formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-model', action="store", dest="model", default=DEFAULT_MODEL_PATH,help='BERT pretrained models, or custom model path') parser.add_argument('-topk', action="store", dest="topk", default=DEFAULT_TOP_K,type=int,help='Number of neighbors to display') parser.add_argument('-tolower', action="store", dest="tolower", default=DEFAULT_TO_LOWER,help='Convert tokens to lowercase. Set to True only for uncased models') parser.add_argument('-threshold', action="store", dest="threshold", default=ACCRUE_THRESHOLD,type=float,help='threshold of results to pick') results = parser.parse_args() try: model,tokenizer = init_model(results.model,results.tolower) while (True): text = get_sent() if (text == "q"): print("Quitting") break perform_task(model,tokenizer,results.topk,results.threshold,text) except: print("Unexpected error:", sys.exc_info()[0]) traceback.print_exc(file=sys.stdout)
36.246154
371
0.65556
58499abba87c2f1a393c1dfd59e8bac14fe65ef1
228
py
Python
nautobot/core/__init__.py
jfach/nautobot
8965c30ffb0c1ea64f9710eada7fb49a6f2a4b62
[ "Apache-2.0" ]
2
2021-11-01T10:17:02.000Z
2021-11-08T08:35:44.000Z
nautobot/core/__init__.py
jfach/nautobot
8965c30ffb0c1ea64f9710eada7fb49a6f2a4b62
[ "Apache-2.0" ]
null
null
null
nautobot/core/__init__.py
jfach/nautobot
8965c30ffb0c1ea64f9710eada7fb49a6f2a4b62
[ "Apache-2.0" ]
1
2021-02-24T23:02:28.000Z
2021-02-24T23:02:28.000Z
from nautobot.core import checks # This will make sure the celery app is always imported when # Django starts so that shared_task will use this app. from nautobot.core.celery import app as celery_app __all__ = ("celery_app",)
28.5
60
0.785088
5ebd0788482ce9fc7b50c59d3938e84fd63d42fc
210,341
py
Python
scipy/stats/tests/test_stats.py
smola/scipy
ff8b9d9e87a585a820846d7f459d6156ba621c4d
[ "BSD-3-Clause" ]
1
2020-02-26T12:15:51.000Z
2020-02-26T12:15:51.000Z
scipy/stats/tests/test_stats.py
smola/scipy
ff8b9d9e87a585a820846d7f459d6156ba621c4d
[ "BSD-3-Clause" ]
null
null
null
scipy/stats/tests/test_stats.py
smola/scipy
ff8b9d9e87a585a820846d7f459d6156ba621c4d
[ "BSD-3-Clause" ]
null
null
null
""" Test functions for stats module WRITTEN BY LOUIS LUANGKESORN <lluang@yahoo.com> FOR THE STATS MODULE BASED ON WILKINSON'S STATISTICS QUIZ https://www.stanford.edu/~clint/bench/wilk.txt Additional tests by a host of SciPy developers. """ from __future__ import division, print_function, absolute_import import os import sys import warnings from collections import namedtuple import multiprocessing from numpy.testing import (dec, assert_, assert_equal, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_approx_equal, assert_allclose, assert_warns, suppress_warnings) import pytest from pytest import raises as assert_raises import numpy.ma.testutils as mat from numpy import array, arange, float32, float64, power import numpy as np import scipy.stats as stats import scipy.stats.mstats as mstats import scipy.stats.mstats_basic as mstats_basic from .common_tests import check_named_results from scipy.special import kv from scipy.sparse.sputils import matrix from scipy.integrate import quad """ Numbers in docstrings beginning with 'W' refer to the section numbers and headings found in the STATISTICS QUIZ of Leland Wilkinson. These are considered to be essential functionality. True testing and evaluation of a statistics package requires use of the NIST Statistical test data. See McCoullough(1999) Assessing The Reliability of Statistical Software for a test methodology and its implementation in testing SAS, SPSS, and S-Plus """ # Datasets # These data sets are from the nasty.dat sets used by Wilkinson # For completeness, I should write the relevant tests and count them as failures # Somewhat acceptable, since this is still beta software. It would count as a # good target for 1.0 status X = array([1,2,3,4,5,6,7,8,9], float) ZERO = array([0,0,0,0,0,0,0,0,0], float) BIG = array([99999991,99999992,99999993,99999994,99999995,99999996,99999997, 99999998,99999999], float) LITTLE = array([0.99999991,0.99999992,0.99999993,0.99999994,0.99999995,0.99999996, 0.99999997,0.99999998,0.99999999], float) HUGE = array([1e+12,2e+12,3e+12,4e+12,5e+12,6e+12,7e+12,8e+12,9e+12], float) TINY = array([1e-12,2e-12,3e-12,4e-12,5e-12,6e-12,7e-12,8e-12,9e-12], float) ROUND = array([0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5], float) class TestTrimmedStats(object): # TODO: write these tests to handle missing values properly dprec = np.finfo(np.float64).precision def test_tmean(self): y = stats.tmean(X, (2, 8), (True, True)) assert_approx_equal(y, 5.0, significant=self.dprec) y1 = stats.tmean(X, limits=(2, 8), inclusive=(False, False)) y2 = stats.tmean(X, limits=None) assert_approx_equal(y1, y2, significant=self.dprec) def test_tvar(self): y = stats.tvar(X, limits=(2, 8), inclusive=(True, True)) assert_approx_equal(y, 4.6666666666666661, significant=self.dprec) y = stats.tvar(X, limits=None) assert_approx_equal(y, X.var(ddof=1), significant=self.dprec) x_2d = arange(63, dtype=float64).reshape((9, 7)) y = stats.tvar(x_2d, axis=None) assert_approx_equal(y, x_2d.var(ddof=1), significant=self.dprec) y = stats.tvar(x_2d, axis=0) assert_array_almost_equal(y[0], np.full((1, 7), 367.50000000), decimal=8) y = stats.tvar(x_2d, axis=1) assert_array_almost_equal(y[0], np.full((1, 9), 4.66666667), decimal=8) y = stats.tvar(x_2d[3, :]) assert_approx_equal(y, 4.666666666666667, significant=self.dprec) with suppress_warnings() as sup: r = sup.record(RuntimeWarning, "Degrees of freedom <= 0 for slice.") # Limiting some values along one axis y = stats.tvar(x_2d, limits=(1, 5), axis=1, inclusive=(True, True)) assert_approx_equal(y[0], 2.5, significant=self.dprec) # Limiting all values along one axis y = stats.tvar(x_2d, limits=(0, 6), axis=1, inclusive=(True, True)) assert_approx_equal(y[0], 4.666666666666667, significant=self.dprec) assert_equal(y[1], np.nan) def test_tstd(self): y = stats.tstd(X, (2, 8), (True, True)) assert_approx_equal(y, 2.1602468994692865, significant=self.dprec) y = stats.tstd(X, limits=None) assert_approx_equal(y, X.std(ddof=1), significant=self.dprec) def test_tmin(self): assert_equal(stats.tmin(4), 4) x = np.arange(10) assert_equal(stats.tmin(x), 0) assert_equal(stats.tmin(x, lowerlimit=0), 0) assert_equal(stats.tmin(x, lowerlimit=0, inclusive=False), 1) x = x.reshape((5, 2)) assert_equal(stats.tmin(x, lowerlimit=0, inclusive=False), [2, 1]) assert_equal(stats.tmin(x, axis=1), [0, 2, 4, 6, 8]) assert_equal(stats.tmin(x, axis=None), 0) x = np.arange(10.) x[9] = np.nan with suppress_warnings() as sup: r = sup.record(RuntimeWarning, "invalid value*") assert_equal(stats.tmin(x), np.nan) assert_equal(stats.tmin(x, nan_policy='omit'), 0.) assert_raises(ValueError, stats.tmin, x, nan_policy='raise') assert_raises(ValueError, stats.tmin, x, nan_policy='foobar') msg = "'propagate', 'raise', 'omit'" with assert_raises(ValueError, match=msg): stats.tmin(x, nan_policy='foo') def test_tmax(self): assert_equal(stats.tmax(4), 4) x = np.arange(10) assert_equal(stats.tmax(x), 9) assert_equal(stats.tmax(x, upperlimit=9), 9) assert_equal(stats.tmax(x, upperlimit=9, inclusive=False), 8) x = x.reshape((5, 2)) assert_equal(stats.tmax(x, upperlimit=9, inclusive=False), [8, 7]) assert_equal(stats.tmax(x, axis=1), [1, 3, 5, 7, 9]) assert_equal(stats.tmax(x, axis=None), 9) x = np.arange(10.) x[6] = np.nan with suppress_warnings() as sup: r = sup.record(RuntimeWarning, "invalid value*") assert_equal(stats.tmax(x), np.nan) assert_equal(stats.tmax(x, nan_policy='omit'), 9.) assert_raises(ValueError, stats.tmax, x, nan_policy='raise') assert_raises(ValueError, stats.tmax, x, nan_policy='foobar') def test_tsem(self): y = stats.tsem(X, limits=(3, 8), inclusive=(False, True)) y_ref = np.array([4, 5, 6, 7, 8]) assert_approx_equal(y, y_ref.std(ddof=1) / np.sqrt(y_ref.size), significant=self.dprec) assert_approx_equal(stats.tsem(X, limits=[-1, 10]), stats.tsem(X, limits=None), significant=self.dprec) class TestCorrPearsonr(object): """ W.II.D. Compute a correlation matrix on all the variables. All the correlations, except for ZERO and MISS, should be exactly 1. ZERO and MISS should have undefined or missing correlations with the other variables. The same should go for SPEARMAN correlations, if your program has them. """ def test_pXX(self): y = stats.pearsonr(X,X) r = y[0] assert_approx_equal(r,1.0) def test_pXBIG(self): y = stats.pearsonr(X,BIG) r = y[0] assert_approx_equal(r,1.0) def test_pXLITTLE(self): y = stats.pearsonr(X,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_pXHUGE(self): y = stats.pearsonr(X,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_pXTINY(self): y = stats.pearsonr(X,TINY) r = y[0] assert_approx_equal(r,1.0) def test_pXROUND(self): y = stats.pearsonr(X,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_pBIGBIG(self): y = stats.pearsonr(BIG,BIG) r = y[0] assert_approx_equal(r,1.0) def test_pBIGLITTLE(self): y = stats.pearsonr(BIG,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_pBIGHUGE(self): y = stats.pearsonr(BIG,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_pBIGTINY(self): y = stats.pearsonr(BIG,TINY) r = y[0] assert_approx_equal(r,1.0) def test_pBIGROUND(self): y = stats.pearsonr(BIG,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_pLITTLELITTLE(self): y = stats.pearsonr(LITTLE,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_pLITTLEHUGE(self): y = stats.pearsonr(LITTLE,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_pLITTLETINY(self): y = stats.pearsonr(LITTLE,TINY) r = y[0] assert_approx_equal(r,1.0) def test_pLITTLEROUND(self): y = stats.pearsonr(LITTLE,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_pHUGEHUGE(self): y = stats.pearsonr(HUGE,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_pHUGETINY(self): y = stats.pearsonr(HUGE,TINY) r = y[0] assert_approx_equal(r,1.0) def test_pHUGEROUND(self): y = stats.pearsonr(HUGE,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_pTINYTINY(self): y = stats.pearsonr(TINY,TINY) r = y[0] assert_approx_equal(r,1.0) def test_pTINYROUND(self): y = stats.pearsonr(TINY,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_pROUNDROUND(self): y = stats.pearsonr(ROUND,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_r_almost_exactly_pos1(self): a = arange(3.0) r, prob = stats.pearsonr(a, a) assert_allclose(r, 1.0, atol=1e-15) # With n = len(a) = 3, the error in prob grows like the # square root of the error in r. assert_allclose(prob, 0.0, atol=np.sqrt(2*np.spacing(1.0))) def test_r_almost_exactly_neg1(self): a = arange(3.0) r, prob = stats.pearsonr(a, -a) assert_allclose(r, -1.0, atol=1e-15) # With n = len(a) = 3, the error in prob grows like the # square root of the error in r. assert_allclose(prob, 0.0, atol=np.sqrt(2*np.spacing(1.0))) def test_basic(self): # A basic test, with a correlation coefficient # that is not 1 or -1. a = array([-1, 0, 1]) b = array([0, 0, 3]) r, prob = stats.pearsonr(a, b) assert_approx_equal(r, np.sqrt(3)/2) assert_approx_equal(prob, 1/3) def test_constant_input(self): # Zero variance input # See https://github.com/scipy/scipy/issues/3728 with assert_warns(stats.PearsonRConstantInputWarning): r, p = stats.pearsonr([0.667, 0.667, 0.667], [0.123, 0.456, 0.789]) assert_equal(r, np.nan) assert_equal(p, np.nan) def test_near_constant_input(self): # Near constant input (but not constant): x = [2, 2, 2 + np.spacing(2)] y = [3, 3, 3 + 6*np.spacing(3)] with assert_warns(stats.PearsonRNearConstantInputWarning): # r and p are garbage, so don't bother checking them in this case. # (The exact value of r would be 1.) r, p = stats.pearsonr(x, y) def test_very_small_input_values(self): # Very small values in an input. A naive implementation will # suffer from underflow. # See https://github.com/scipy/scipy/issues/9353 x = [0.004434375, 0.004756007, 0.003911996, 0.0038005, 0.003409971] y = [2.48e-188, 7.41e-181, 4.09e-208, 2.08e-223, 2.66e-245] r, p = stats.pearsonr(x,y) # The expected values were computed using mpmath with 80 digits # of precision. assert_allclose(r, 0.7272930540750450) assert_allclose(p, 0.1637805429533202) def test_very_large_input_values(self): # Very large values in an input. A naive implementation will # suffer from overflow. # See https://github.com/scipy/scipy/issues/8980 x = 1e90*np.array([0, 0, 0, 1, 1, 1, 1]) y = 1e90*np.arange(7) r, p = stats.pearsonr(x, y) # The expected values were computed using mpmath with 80 digits # of precision. assert_allclose(r, 0.8660254037844386) assert_allclose(p, 0.011724811003954638) def test_extremely_large_input_values(self): # Extremely large values in x and y. These values would cause the # product sigma_x * sigma_y to overflow if the two factors were # computed independently. x = np.array([2.3e200, 4.5e200, 6.7e200, 8e200]) y = np.array([1.2e199, 5.5e200, 3.3e201, 1.0e200]) r, p = stats.pearsonr(x, y) # The expected values were computed using mpmath with 80 digits # of precision. assert_allclose(r, 0.351312332103289) assert_allclose(p, 0.648687667896711) def test_length_two_pos1(self): # Inputs with length 2. # See https://github.com/scipy/scipy/issues/7730 r, p = stats.pearsonr([1, 2], [3, 5]) assert_equal(r, 1) assert_equal(p, 1) def test_length_two_neg2(self): # Inputs with length 2. # See https://github.com/scipy/scipy/issues/7730 r, p = stats.pearsonr([2, 1], [3, 5]) assert_equal(r, -1) assert_equal(p, 1) def test_more_basic_examples(self): x = [1, 2, 3, 4] y = [0, 1, 0.5, 1] r, p = stats.pearsonr(x, y) # The expected values were computed using mpmath with 80 digits # of precision. assert_allclose(r, 0.674199862463242) assert_allclose(p, 0.325800137536758) x = [1, 2, 3] y = [5, -4, -13] r, p = stats.pearsonr(x, y) # The expected r and p are exact. assert_allclose(r, -1.0) assert_allclose(p, 0.0, atol=1e-7) def test_unequal_lengths(self): x = [1, 2, 3] y = [4, 5] assert_raises(ValueError, stats.pearsonr, x, y) def test_len1(self): x = [1] y = [2] assert_raises(ValueError, stats.pearsonr, x, y) class TestFisherExact(object): """Some tests to show that fisher_exact() works correctly. Note that in SciPy 0.9.0 this was not working well for large numbers due to inaccuracy of the hypergeom distribution (see #1218). Fixed now. Also note that R and SciPy have different argument formats for their hypergeometric distribution functions. R: > phyper(18999, 99000, 110000, 39000, lower.tail = FALSE) [1] 1.701815e-09 """ def test_basic(self): fisher_exact = stats.fisher_exact res = fisher_exact([[14500, 20000], [30000, 40000]])[1] assert_approx_equal(res, 0.01106, significant=4) res = fisher_exact([[100, 2], [1000, 5]])[1] assert_approx_equal(res, 0.1301, significant=4) res = fisher_exact([[2, 7], [8, 2]])[1] assert_approx_equal(res, 0.0230141, significant=6) res = fisher_exact([[5, 1], [10, 10]])[1] assert_approx_equal(res, 0.1973244, significant=6) res = fisher_exact([[5, 15], [20, 20]])[1] assert_approx_equal(res, 0.0958044, significant=6) res = fisher_exact([[5, 16], [20, 25]])[1] assert_approx_equal(res, 0.1725862, significant=6) res = fisher_exact([[10, 5], [10, 1]])[1] assert_approx_equal(res, 0.1973244, significant=6) res = fisher_exact([[5, 0], [1, 4]])[1] assert_approx_equal(res, 0.04761904, significant=6) res = fisher_exact([[0, 1], [3, 2]])[1] assert_approx_equal(res, 1.0) res = fisher_exact([[0, 2], [6, 4]])[1] assert_approx_equal(res, 0.4545454545) res = fisher_exact([[2, 7], [8, 2]]) assert_approx_equal(res[1], 0.0230141, significant=6) assert_approx_equal(res[0], 4.0 / 56) def test_precise(self): # results from R # # R defines oddsratio differently (see Notes section of fisher_exact # docstring), so those will not match. We leave them in anyway, in # case they will be useful later on. We test only the p-value. tablist = [ ([[100, 2], [1000, 5]], (2.505583993422285e-001, 1.300759363430016e-001)), ([[2, 7], [8, 2]], (8.586235135736206e-002, 2.301413756522114e-002)), ([[5, 1], [10, 10]], (4.725646047336584e+000, 1.973244147157190e-001)), ([[5, 15], [20, 20]], (3.394396617440852e-001, 9.580440012477637e-002)), ([[5, 16], [20, 25]], (3.960558326183334e-001, 1.725864953812994e-001)), ([[10, 5], [10, 1]], (2.116112781158483e-001, 1.973244147157190e-001)), ([[10, 5], [10, 0]], (0.000000000000000e+000, 6.126482213438734e-002)), ([[5, 0], [1, 4]], (np.inf, 4.761904761904762e-002)), ([[0, 5], [1, 4]], (0.000000000000000e+000, 1.000000000000000e+000)), ([[5, 1], [0, 4]], (np.inf, 4.761904761904758e-002)), ([[0, 1], [3, 2]], (0.000000000000000e+000, 1.000000000000000e+000)) ] for table, res_r in tablist: res = stats.fisher_exact(np.asarray(table)) np.testing.assert_almost_equal(res[1], res_r[1], decimal=11, verbose=True) @pytest.mark.slow def test_large_numbers(self): # Test with some large numbers. Regression test for #1401 pvals = [5.56e-11, 2.666e-11, 1.363e-11] # from R for pval, num in zip(pvals, [75, 76, 77]): res = stats.fisher_exact([[17704, 496], [1065, num]])[1] assert_approx_equal(res, pval, significant=4) res = stats.fisher_exact([[18000, 80000], [20000, 90000]])[1] assert_approx_equal(res, 0.2751, significant=4) def test_raises(self): # test we raise an error for wrong shape of input. assert_raises(ValueError, stats.fisher_exact, np.arange(6).reshape(2, 3)) def test_row_or_col_zero(self): tables = ([[0, 0], [5, 10]], [[5, 10], [0, 0]], [[0, 5], [0, 10]], [[5, 0], [10, 0]]) for table in tables: oddsratio, pval = stats.fisher_exact(table) assert_equal(pval, 1.0) assert_equal(oddsratio, np.nan) def test_less_greater(self): tables = ( # Some tables to compare with R: [[2, 7], [8, 2]], [[200, 7], [8, 300]], [[28, 21], [6, 1957]], [[190, 800], [200, 900]], # Some tables with simple exact values # (includes regression test for ticket #1568): [[0, 2], [3, 0]], [[1, 1], [2, 1]], [[2, 0], [1, 2]], [[0, 1], [2, 3]], [[1, 0], [1, 4]], ) pvals = ( # from R: [0.018521725952066501, 0.9990149169715733], [1.0, 2.0056578803889148e-122], [1.0, 5.7284374608319831e-44], [0.7416227, 0.2959826], # Exact: [0.1, 1.0], [0.7, 0.9], [1.0, 0.3], [2./3, 1.0], [1.0, 1./3], ) for table, pval in zip(tables, pvals): res = [] res.append(stats.fisher_exact(table, alternative="less")[1]) res.append(stats.fisher_exact(table, alternative="greater")[1]) assert_allclose(res, pval, atol=0, rtol=1e-7) def test_gh3014(self): # check if issue #3014 has been fixed. # before, this would have risen a ValueError odds, pvalue = stats.fisher_exact([[1, 2], [9, 84419233]]) class TestCorrSpearmanr(object): """ W.II.D. Compute a correlation matrix on all the variables. All the correlations, except for ZERO and MISS, should be exactly 1. ZERO and MISS should have undefined or missing correlations with the other variables. The same should go for SPEARMAN corelations, if your program has them. """ def test_scalar(self): y = stats.spearmanr(4., 2.) assert_(np.isnan(y).all()) def test_uneven_lengths(self): assert_raises(ValueError, stats.spearmanr, [1, 2, 1], [8, 9]) assert_raises(ValueError, stats.spearmanr, [1, 2, 1], 8) def test_uneven_2d_shapes(self): # Different number of columns should work - those just get concatenated. np.random.seed(232324) x = np.random.randn(4, 3) y = np.random.randn(4, 2) assert stats.spearmanr(x, y).correlation.shape == (5, 5) assert stats.spearmanr(x.T, y.T, axis=1).pvalue.shape == (5, 5) assert_raises(ValueError, stats.spearmanr, x, y, axis=1) assert_raises(ValueError, stats.spearmanr, x.T, y.T) def test_ndim_too_high(self): np.random.seed(232324) x = np.random.randn(4, 3, 2) assert_raises(ValueError, stats.spearmanr, x) assert_raises(ValueError, stats.spearmanr, x, x) assert_raises(ValueError, stats.spearmanr, x, None, None) # But should work with axis=None (raveling axes) for two input arrays assert_allclose(stats.spearmanr(x, x, axis=None), stats.spearmanr(x.flatten(), x.flatten(), axis=0)) def test_nan_policy(self): x = np.arange(10.) x[9] = np.nan assert_array_equal(stats.spearmanr(x, x), (np.nan, np.nan)) assert_array_equal(stats.spearmanr(x, x, nan_policy='omit'), (1.0, 0.0)) assert_raises(ValueError, stats.spearmanr, x, x, nan_policy='raise') assert_raises(ValueError, stats.spearmanr, x, x, nan_policy='foobar') def test_sXX(self): y = stats.spearmanr(X,X) r = y[0] assert_approx_equal(r,1.0) def test_sXBIG(self): y = stats.spearmanr(X,BIG) r = y[0] assert_approx_equal(r,1.0) def test_sXLITTLE(self): y = stats.spearmanr(X,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_sXHUGE(self): y = stats.spearmanr(X,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_sXTINY(self): y = stats.spearmanr(X,TINY) r = y[0] assert_approx_equal(r,1.0) def test_sXROUND(self): y = stats.spearmanr(X,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_sBIGBIG(self): y = stats.spearmanr(BIG,BIG) r = y[0] assert_approx_equal(r,1.0) def test_sBIGLITTLE(self): y = stats.spearmanr(BIG,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_sBIGHUGE(self): y = stats.spearmanr(BIG,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_sBIGTINY(self): y = stats.spearmanr(BIG,TINY) r = y[0] assert_approx_equal(r,1.0) def test_sBIGROUND(self): y = stats.spearmanr(BIG,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_sLITTLELITTLE(self): y = stats.spearmanr(LITTLE,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_sLITTLEHUGE(self): y = stats.spearmanr(LITTLE,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_sLITTLETINY(self): y = stats.spearmanr(LITTLE,TINY) r = y[0] assert_approx_equal(r,1.0) def test_sLITTLEROUND(self): y = stats.spearmanr(LITTLE,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_sHUGEHUGE(self): y = stats.spearmanr(HUGE,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_sHUGETINY(self): y = stats.spearmanr(HUGE,TINY) r = y[0] assert_approx_equal(r,1.0) def test_sHUGEROUND(self): y = stats.spearmanr(HUGE,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_sTINYTINY(self): y = stats.spearmanr(TINY,TINY) r = y[0] assert_approx_equal(r,1.0) def test_sTINYROUND(self): y = stats.spearmanr(TINY,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_sROUNDROUND(self): y = stats.spearmanr(ROUND,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_spearmanr_result_attributes(self): res = stats.spearmanr(X, X) attributes = ('correlation', 'pvalue') check_named_results(res, attributes) def test_1d_vs_2d(self): x1 = [1, 2, 3, 4, 5, 6] x2 = [1, 2, 3, 4, 6, 5] res1 = stats.spearmanr(x1, x2) res2 = stats.spearmanr(np.asarray([x1, x2]).T) assert_allclose(res1, res2) def test_1d_vs_2d_nans(self): # Now the same with NaNs present. Regression test for gh-9103. for nan_policy in ['propagate', 'omit']: x1 = [1, np.nan, 3, 4, 5, 6] x2 = [1, 2, 3, 4, 6, np.nan] res1 = stats.spearmanr(x1, x2, nan_policy=nan_policy) res2 = stats.spearmanr(np.asarray([x1, x2]).T, nan_policy=nan_policy) assert_allclose(res1, res2) def test_3cols(self): x1 = np.arange(6) x2 = -x1 x3 = np.array([0, 1, 2, 3, 5, 4]) x = np.asarray([x1, x2, x3]).T actual = stats.spearmanr(x) expected_corr = np.array([[1, -1, 0.94285714], [-1, 1, -0.94285714], [0.94285714, -0.94285714, 1]]) expected_pvalue = np.zeros((3, 3), dtype=float) expected_pvalue[2, 0:2] = 0.00480466472 expected_pvalue[0:2, 2] = 0.00480466472 assert_allclose(actual.correlation, expected_corr) assert_allclose(actual.pvalue, expected_pvalue) def test_gh_9103(self): # Regression test for gh-9103. x = np.array([[np.nan, 3.0, 4.0, 5.0, 5.1, 6.0, 9.2], [5.0, np.nan, 4.1, 4.8, 4.9, 5.0, 4.1], [0.5, 4.0, 7.1, 3.8, 8.0, 5.1, 7.6]]).T corr = np.array([[np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 1.]]) assert_allclose(stats.spearmanr(x, nan_policy='propagate').correlation, corr) res = stats.spearmanr(x, nan_policy='omit').correlation assert_allclose((res[0][1], res[0][2], res[1][2]), (0.2051957, 0.4857143, -0.4707919), rtol=1e-6) def test_gh_8111(self): # Regression test for gh-8111 (different result for float/int/bool). n = 100 np.random.seed(234568) x = np.random.rand(n) m = np.random.rand(n) > 0.7 # bool against float, no nans a = (x > .5) b = np.array(x) res1 = stats.spearmanr(a, b, nan_policy='omit').correlation # bool against float with NaNs b[m] = np.nan res2 = stats.spearmanr(a, b, nan_policy='omit').correlation # int against float with NaNs a = a.astype(np.int32) res3 = stats.spearmanr(a, b, nan_policy='omit').correlation expected = [0.865895477, 0.866100381, 0.866100381] assert_allclose([res1, res2, res3], expected) class TestCorrSpearmanr2(object): """Some further tests of the spearmanr function.""" def test_spearmanr_vs_r(self): # Cross-check with R: # cor.test(c(1,2,3,4,5),c(5,6,7,8,7),method="spearmanr") x1 = [1, 2, 3, 4, 5] x2 = [5, 6, 7, 8, 7] expected = (0.82078268166812329, 0.088587005313543798) res = stats.spearmanr(x1, x2) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) def test_empty_arrays(self): assert_equal(stats.spearmanr([], []), (np.nan, np.nan)) def test_normal_draws(self): np.random.seed(7546) x = np.array([np.random.normal(loc=1, scale=1, size=500), np.random.normal(loc=1, scale=1, size=500)]) corr = [[1.0, 0.3], [0.3, 1.0]] x = np.dot(np.linalg.cholesky(corr), x) expected = (0.28659685838743354, 6.579862219051161e-11) res = stats.spearmanr(x[0], x[1]) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) def test_corr_1(self): assert_approx_equal(stats.spearmanr([1, 1, 2], [1, 1, 2])[0], 1.0) def test_nan_policies(self): x = np.arange(10.) x[9] = np.nan assert_array_equal(stats.spearmanr(x, x), (np.nan, np.nan)) assert_allclose(stats.spearmanr(x, x, nan_policy='omit'), (1.0, 0)) assert_raises(ValueError, stats.spearmanr, x, x, nan_policy='raise') assert_raises(ValueError, stats.spearmanr, x, x, nan_policy='foobar') def test_unequal_lengths(self): x = np.arange(10.) y = np.arange(20.) assert_raises(ValueError, stats.spearmanr, x, y) def test_omit_paired_value(self): x1 = [1, 2, 3, 4] x2 = [8, 7, 6, np.nan] res1 = stats.spearmanr(x1, x2, nan_policy='omit') res2 = stats.spearmanr(x1[:3], x2[:3], nan_policy='omit') assert_equal(res1, res2) def test_gh_issue_6061_windows_overflow(self): x = list(range(2000)) y = list(range(2000)) y[0], y[9] = y[9], y[0] y[10], y[434] = y[434], y[10] y[435], y[1509] = y[1509], y[435] # rho = 1 - 6 * (2 * (9^2 + 424^2 + 1074^2))/(2000 * (2000^2 - 1)) # = 1 - (1 / 500) # = 0.998 x.append(np.nan) y.append(3.0) assert_almost_equal(stats.spearmanr(x, y, nan_policy='omit')[0], 0.998) def test_tie0(self): # with only ties in one or both inputs with assert_warns(stats.SpearmanRConstantInputWarning): r, p = stats.spearmanr([2, 2, 2], [2, 2, 2]) assert_equal(r, np.nan) assert_equal(p, np.nan) r, p = stats.spearmanr([2, 0, 2], [2, 2, 2]) assert_equal(r, np.nan) assert_equal(p, np.nan) r, p = stats.spearmanr([2, 2, 2], [2, 0, 2]) assert_equal(r, np.nan) assert_equal(p, np.nan) def test_tie1(self): # Data x = [1.0, 2.0, 3.0, 4.0] y = [1.0, 2.0, 2.0, 3.0] # Ranks of the data, with tie-handling. xr = [1.0, 2.0, 3.0, 4.0] yr = [1.0, 2.5, 2.5, 4.0] # Result of spearmanr should be the same as applying # pearsonr to the ranks. sr = stats.spearmanr(x, y) pr = stats.pearsonr(xr, yr) assert_almost_equal(sr, pr) def test_tie2(self): # Test tie-handling if inputs contain nan's # Data without nan's x1 = [1, 2, 2.5, 2] y1 = [1, 3, 2.5, 4] # Same data with nan's x2 = [1, 2, 2.5, 2, np.nan] y2 = [1, 3, 2.5, 4, np.nan] # Results for two data sets should be the same if nan's are ignored sr1 = stats.spearmanr(x1, y1) sr2 = stats.spearmanr(x2, y2, nan_policy='omit') assert_almost_equal(sr1, sr2) def test_ties_axis_1(self): z1 = np.array([[1, 1, 1, 1], [1, 2, 3, 4]]) z2 = np.array([[1, 2, 3, 4], [1, 1, 1, 1]]) z3 = np.array([[1, 1, 1, 1], [1, 1, 1, 1]]) with assert_warns(stats.SpearmanRConstantInputWarning): r, p = stats.spearmanr(z1, axis=1) assert_equal(r, np.nan) assert_equal(p, np.nan) r, p = stats.spearmanr(z2, axis=1) assert_equal(r, np.nan) assert_equal(p, np.nan) r, p = stats.spearmanr(z3, axis=1) assert_equal(r, np.nan) assert_equal(p, np.nan) def test_gh_11111(self): x = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) y = np.array([0, 0.009783728115345005, 0, 0, 0.0019759230121848587, 0.0007535430349118562, 0.0002661781514710257, 0, 0, 0.0007835762419683435]) with assert_warns(stats.SpearmanRConstantInputWarning): r, p = stats.spearmanr(x, y) assert_equal(r, np.nan) assert_equal(p, np.nan) def test_index_error(self): x = np.array([1.0, 7.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) y = np.array([0, 0.009783728115345005, 0, 0, 0.0019759230121848587, 0.0007535430349118562, 0.0002661781514710257, 0, 0, 0.0007835762419683435]) assert_raises(ValueError, stats.spearmanr, x, y, axis=2) # W.II.E. Tabulate X against X, using BIG as a case weight. The values # should appear on the diagonal and the total should be 899999955. # If the table cannot hold these values, forget about working with # census data. You can also tabulate HUGE against TINY. There is no # reason a tabulation program should not be able to distinguish # different values regardless of their magnitude. # I need to figure out how to do this one. def test_kendalltau(): # case without ties, con-dis equal zero x = [5, 2, 1, 3, 6, 4, 7, 8] y = [5, 2, 6, 3, 1, 8, 7, 4] # Cross-check with exact result from R: # cor.test(x,y,method="kendall",exact=1) expected = (0.0, 1.0) res = stats.kendalltau(x, y) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # case without ties, con-dis equal zero x = [0, 5, 2, 1, 3, 6, 4, 7, 8] y = [5, 2, 0, 6, 3, 1, 8, 7, 4] # Cross-check with exact result from R: # cor.test(x,y,method="kendall",exact=1) expected = (0.0, 1.0) res = stats.kendalltau(x, y) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # case without ties, con-dis close to zero x = [5, 2, 1, 3, 6, 4, 7] y = [5, 2, 6, 3, 1, 7, 4] # Cross-check with exact result from R: # cor.test(x,y,method="kendall",exact=1) expected = (-0.14285714286, 0.77261904762) res = stats.kendalltau(x, y) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # case without ties, con-dis close to zero x = [2, 1, 3, 6, 4, 7, 8] y = [2, 6, 3, 1, 8, 7, 4] # Cross-check with exact result from R: # cor.test(x,y,method="kendall",exact=1) expected = (0.047619047619, 1.0) res = stats.kendalltau(x, y) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # simple case without ties x = np.arange(10) y = np.arange(10) # Cross-check with exact result from R: # cor.test(x,y,method="kendall",exact=1) expected = (1.0, 5.511463844797e-07) res = stats.kendalltau(x, y) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # swap a couple of values b = y[1] y[1] = y[2] y[2] = b # Cross-check with exact result from R: # cor.test(x,y,method="kendall",exact=1) expected = (0.9555555555555556, 5.511463844797e-06) res = stats.kendalltau(x, y) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # swap a couple more b = y[5] y[5] = y[6] y[6] = b # Cross-check with exact result from R: # cor.test(x,y,method="kendall",exact=1) expected = (0.9111111111111111, 2.976190476190e-05) res = stats.kendalltau(x, y) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # same in opposite direction x = np.arange(10) y = np.arange(10)[::-1] # Cross-check with exact result from R: # cor.test(x,y,method="kendall",exact=1) expected = (-1.0, 5.511463844797e-07) res = stats.kendalltau(x, y) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # swap a couple of values b = y[1] y[1] = y[2] y[2] = b # Cross-check with exact result from R: # cor.test(x,y,method="kendall",exact=1) expected = (-0.9555555555555556, 5.511463844797e-06) res = stats.kendalltau(x, y) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # swap a couple more b = y[5] y[5] = y[6] y[6] = b # Cross-check with exact result from R: # cor.test(x,y,method="kendall",exact=1) expected = (-0.9111111111111111, 2.976190476190e-05) res = stats.kendalltau(x, y) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # check exception in case of ties y[2] = y[1] assert_raises(ValueError, stats.kendalltau, x, y, method='exact') # check exception in case of invalid method keyword assert_raises(ValueError, stats.kendalltau, x, y, method='banana') # with some ties # Cross-check with R: # cor.test(c(12,2,1,12,2),c(1,4,7,1,0),method="kendall",exact=FALSE) x1 = [12, 2, 1, 12, 2] x2 = [1, 4, 7, 1, 0] expected = (-0.47140452079103173, 0.28274545993277478) res = stats.kendalltau(x1, x2) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # test for namedtuple attribute results attributes = ('correlation', 'pvalue') res = stats.kendalltau(x1, x2) check_named_results(res, attributes) # with only ties in one or both inputs assert_equal(stats.kendalltau([2,2,2], [2,2,2]), (np.nan, np.nan)) assert_equal(stats.kendalltau([2,0,2], [2,2,2]), (np.nan, np.nan)) assert_equal(stats.kendalltau([2,2,2], [2,0,2]), (np.nan, np.nan)) # empty arrays provided as input assert_equal(stats.kendalltau([], []), (np.nan, np.nan)) # check with larger arrays np.random.seed(7546) x = np.array([np.random.normal(loc=1, scale=1, size=500), np.random.normal(loc=1, scale=1, size=500)]) corr = [[1.0, 0.3], [0.3, 1.0]] x = np.dot(np.linalg.cholesky(corr), x) expected = (0.19291382765531062, 1.1337095377742629e-10) res = stats.kendalltau(x[0], x[1]) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # and do we get a tau of 1 for identical inputs? assert_approx_equal(stats.kendalltau([1,1,2], [1,1,2])[0], 1.0) # test nan_policy x = np.arange(10.) x[9] = np.nan assert_array_equal(stats.kendalltau(x, x), (np.nan, np.nan)) assert_allclose(stats.kendalltau(x, x, nan_policy='omit'), (1.0, 5.5114638e-6), rtol=1e-06) assert_allclose(stats.kendalltau(x, x, nan_policy='omit', method='asymptotic'), (1.0, 0.00017455009626808976), rtol=1e-06) assert_raises(ValueError, stats.kendalltau, x, x, nan_policy='raise') assert_raises(ValueError, stats.kendalltau, x, x, nan_policy='foobar') # test unequal length inputs x = np.arange(10.) y = np.arange(20.) assert_raises(ValueError, stats.kendalltau, x, y) # test all ties tau, p_value = stats.kendalltau([], []) assert_equal(np.nan, tau) assert_equal(np.nan, p_value) tau, p_value = stats.kendalltau([0], [0]) assert_equal(np.nan, tau) assert_equal(np.nan, p_value) # Regression test for GitHub issue #6061 - Overflow on Windows x = np.arange(2000, dtype=float) x = np.ma.masked_greater(x, 1995) y = np.arange(2000, dtype=float) y = np.concatenate((y[1000:], y[:1000])) assert_(np.isfinite(stats.kendalltau(x,y)[1])) def test_kendalltau_vs_mstats_basic(): np.random.seed(42) for s in range(2,10): a = [] # Generate rankings with ties for i in range(s): a += [i]*i b = list(a) np.random.shuffle(a) np.random.shuffle(b) expected = mstats_basic.kendalltau(a, b) actual = stats.kendalltau(a, b) assert_approx_equal(actual[0], expected[0]) assert_approx_equal(actual[1], expected[1]) def test_kendalltau_nan_2nd_arg(): # regression test for gh-6134: nans in the second arg were not handled x = [1., 2., 3., 4.] y = [np.nan, 2.4, 3.4, 3.4] r1 = stats.kendalltau(x, y, nan_policy='omit') r2 = stats.kendalltau(x[1:], y[1:]) assert_allclose(r1.correlation, r2.correlation, atol=1e-15) def test_weightedtau(): x = [12, 2, 1, 12, 2] y = [1, 4, 7, 1, 0] tau, p_value = stats.weightedtau(x, y) assert_approx_equal(tau, -0.56694968153682723) assert_equal(np.nan, p_value) tau, p_value = stats.weightedtau(x, y, additive=False) assert_approx_equal(tau, -0.62205716951801038) assert_equal(np.nan, p_value) # This must be exactly Kendall's tau tau, p_value = stats.weightedtau(x, y, weigher=lambda x: 1) assert_approx_equal(tau, -0.47140452079103173) assert_equal(np.nan, p_value) # Asymmetric, ranked version tau, p_value = stats.weightedtau(x, y, rank=None) assert_approx_equal(tau, -0.4157652301037516) assert_equal(np.nan, p_value) tau, p_value = stats.weightedtau(y, x, rank=None) assert_approx_equal(tau, -0.7181341329699029) assert_equal(np.nan, p_value) tau, p_value = stats.weightedtau(x, y, rank=None, additive=False) assert_approx_equal(tau, -0.40644850966246893) assert_equal(np.nan, p_value) tau, p_value = stats.weightedtau(y, x, rank=None, additive=False) assert_approx_equal(tau, -0.83766582937355172) assert_equal(np.nan, p_value) tau, p_value = stats.weightedtau(x, y, rank=False) assert_approx_equal(tau, -0.51604397940261848) assert_equal(np.nan, p_value) # This must be exactly Kendall's tau tau, p_value = stats.weightedtau(x, y, rank=True, weigher=lambda x: 1) assert_approx_equal(tau, -0.47140452079103173) assert_equal(np.nan, p_value) tau, p_value = stats.weightedtau(y, x, rank=True, weigher=lambda x: 1) assert_approx_equal(tau, -0.47140452079103173) assert_equal(np.nan, p_value) # Test argument conversion tau, p_value = stats.weightedtau(np.asarray(x, dtype=np.float64), y) assert_approx_equal(tau, -0.56694968153682723) tau, p_value = stats.weightedtau(np.asarray(x, dtype=np.int16), y) assert_approx_equal(tau, -0.56694968153682723) tau, p_value = stats.weightedtau(np.asarray(x, dtype=np.float64), np.asarray(y, dtype=np.float64)) assert_approx_equal(tau, -0.56694968153682723) # All ties tau, p_value = stats.weightedtau([], []) assert_equal(np.nan, tau) assert_equal(np.nan, p_value) tau, p_value = stats.weightedtau([0], [0]) assert_equal(np.nan, tau) assert_equal(np.nan, p_value) # Size mismatches assert_raises(ValueError, stats.weightedtau, [0, 1], [0, 1, 2]) assert_raises(ValueError, stats.weightedtau, [0, 1], [0, 1], [0]) # NaNs x = [12, 2, 1, 12, 2] y = [1, 4, 7, 1, np.nan] tau, p_value = stats.weightedtau(x, y) assert_approx_equal(tau, -0.56694968153682723) x = [12, 2, np.nan, 12, 2] tau, p_value = stats.weightedtau(x, y) assert_approx_equal(tau, -0.56694968153682723) def test_kendall_tau_large(): n = 172. x = np.arange(n) y = np.arange(n) _, pval = stats.kendalltau(x, y, method='exact') assert_equal(pval, 0.0) y[-1], y[-2] = y[-2], y[-1] _, pval = stats.kendalltau(x, y, method='exact') assert_equal(pval, 0.0) y[-3], y[-4] = y[-4], y[-3] _, pval = stats.kendalltau(x, y, method='exact') assert_equal(pval, 0.0) def test_weightedtau_vs_quadratic(): # Trivial quadratic implementation, all parameters mandatory def wkq(x, y, rank, weigher, add): tot = conc = disc = u = v = 0 for i in range(len(x)): for j in range(len(x)): w = weigher(rank[i]) + weigher(rank[j]) if add else weigher(rank[i]) * weigher(rank[j]) tot += w if x[i] == x[j]: u += w if y[i] == y[j]: v += w if x[i] < x[j] and y[i] < y[j] or x[i] > x[j] and y[i] > y[j]: conc += w elif x[i] < x[j] and y[i] > y[j] or x[i] > x[j] and y[i] < y[j]: disc += w return (conc - disc) / np.sqrt(tot - u) / np.sqrt(tot - v) np.random.seed(42) for s in range(3,10): a = [] # Generate rankings with ties for i in range(s): a += [i]*i b = list(a) np.random.shuffle(a) np.random.shuffle(b) # First pass: use element indices as ranks rank = np.arange(len(a), dtype=np.intp) for _ in range(2): for add in [True, False]: expected = wkq(a, b, rank, lambda x: 1./(x+1), add) actual = stats.weightedtau(a, b, rank, lambda x: 1./(x+1), add).correlation assert_approx_equal(expected, actual) # Second pass: use a random rank np.random.shuffle(rank) class TestFindRepeats(object): def test_basic(self): a = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 5] res, nums = stats.find_repeats(a) assert_array_equal(res, [1, 2, 3, 4]) assert_array_equal(nums, [3, 3, 2, 2]) def test_empty_result(self): # Check that empty arrays are returned when there are no repeats. for a in [[10, 20, 50, 30, 40], []]: repeated, counts = stats.find_repeats(a) assert_array_equal(repeated, []) assert_array_equal(counts, []) class TestRegression(object): def test_linregressBIGX(self): # W.II.F. Regress BIG on X. # The constant should be 99999990 and the regression coefficient should be 1. y = stats.linregress(X,BIG) intercept = y[1] r = y[2] assert_almost_equal(intercept,99999990) assert_almost_equal(r,1.0) def test_regressXX(self): # W.IV.B. Regress X on X. # The constant should be exactly 0 and the regression coefficient should be 1. # This is a perfectly valid regression. The program should not complain. y = stats.linregress(X,X) intercept = y[1] r = y[2] assert_almost_equal(intercept,0.0) assert_almost_equal(r,1.0) # W.IV.C. Regress X on BIG and LITTLE (two predictors). The program # should tell you that this model is "singular" because BIG and # LITTLE are linear combinations of each other. Cryptic error # messages are unacceptable here. Singularity is the most # fundamental regression error. # Need to figure out how to handle multiple linear regression. Not obvious def test_regressZEROX(self): # W.IV.D. Regress ZERO on X. # The program should inform you that ZERO has no variance or it should # go ahead and compute the regression and report a correlation and # total sum of squares of exactly 0. y = stats.linregress(X,ZERO) intercept = y[1] r = y[2] assert_almost_equal(intercept,0.0) assert_almost_equal(r,0.0) def test_regress_simple(self): # Regress a line with sinusoidal noise. x = np.linspace(0, 100, 100) y = 0.2 * np.linspace(0, 100, 100) + 10 y += np.sin(np.linspace(0, 20, 100)) res = stats.linregress(x, y) assert_almost_equal(res[4], 2.3957814497838803e-3) def test_regress_simple_onearg_rows(self): # Regress a line w sinusoidal noise, with a single input of shape (2, N). x = np.linspace(0, 100, 100) y = 0.2 * np.linspace(0, 100, 100) + 10 y += np.sin(np.linspace(0, 20, 100)) rows = np.vstack((x, y)) res = stats.linregress(rows) assert_almost_equal(res[4], 2.3957814497838803e-3) def test_regress_simple_onearg_cols(self): x = np.linspace(0, 100, 100) y = 0.2 * np.linspace(0, 100, 100) + 10 y += np.sin(np.linspace(0, 20, 100)) cols = np.hstack((np.expand_dims(x, 1), np.expand_dims(y, 1))) res = stats.linregress(cols) assert_almost_equal(res[4], 2.3957814497838803e-3) def test_regress_shape_error(self): # Check that a single input argument to linregress with wrong shape # results in a ValueError. assert_raises(ValueError, stats.linregress, np.ones((3, 3))) def test_linregress(self): # compared with multivariate ols with pinv x = np.arange(11) y = np.arange(5,16) y[[(1),(-2)]] -= 1 y[[(0),(-1)]] += 1 res = (1.0, 5.0, 0.98229948625750, 7.45259691e-008, 0.063564172616372733) assert_array_almost_equal(stats.linregress(x,y),res,decimal=14) def test_regress_simple_negative_cor(self): # If the slope of the regression is negative the factor R tend to -1 not 1. # Sometimes rounding errors makes it < -1 leading to stderr being NaN a, n = 1e-71, 100000 x = np.linspace(a, 2 * a, n) y = np.linspace(2 * a, a, n) stats.linregress(x, y) res = stats.linregress(x, y) assert_(res[2] >= -1) # propagated numerical errors were not corrected assert_almost_equal(res[2], -1) # perfect negative correlation case assert_(not np.isnan(res[4])) # stderr should stay finite def test_linregress_result_attributes(self): # Regress a line with sinusoidal noise. x = np.linspace(0, 100, 100) y = 0.2 * np.linspace(0, 100, 100) + 10 y += np.sin(np.linspace(0, 20, 100)) res = stats.linregress(x, y) attributes = ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr') check_named_results(res, attributes) def test_regress_two_inputs(self): # Regress a simple line formed by two points. x = np.arange(2) y = np.arange(3, 5) res = stats.linregress(x, y) assert_almost_equal(res[3], 0.0) # non-horizontal line assert_almost_equal(res[4], 0.0) # zero stderr def test_regress_two_inputs_horizontal_line(self): # Regress a horizontal line formed by two points. x = np.arange(2) y = np.ones(2) res = stats.linregress(x, y) assert_almost_equal(res[3], 1.0) # horizontal line assert_almost_equal(res[4], 0.0) # zero stderr def test_nist_norris(self): x = [0.2, 337.4, 118.2, 884.6, 10.1, 226.5, 666.3, 996.3, 448.6, 777.0, 558.2, 0.4, 0.6, 775.5, 666.9, 338.0, 447.5, 11.6, 556.0, 228.1, 995.8, 887.6, 120.2, 0.3, 0.3, 556.8, 339.1, 887.2, 999.0, 779.0, 11.1, 118.3, 229.2, 669.1, 448.9, 0.5] y = [0.1, 338.8, 118.1, 888.0, 9.2, 228.1, 668.5, 998.5, 449.1, 778.9, 559.2, 0.3, 0.1, 778.1, 668.8, 339.3, 448.9, 10.8, 557.7, 228.3, 998.0, 888.8, 119.6, 0.3, 0.6, 557.6, 339.3, 888.0, 998.5, 778.9, 10.2, 117.6, 228.9, 668.4, 449.2, 0.2] # Expected values exp_slope = 1.00211681802045 exp_intercept = -0.262323073774029 exp_rsquared = 0.999993745883712 actual = stats.linregress(x, y) assert_almost_equal(actual.slope, exp_slope) assert_almost_equal(actual.intercept, exp_intercept) assert_almost_equal(actual.rvalue**2, exp_rsquared) def test_empty_input(self): assert_raises(ValueError, stats.linregress, [], []) def test_nan_input(self): x = np.arange(10.) x[9] = np.nan with np.errstate(invalid="ignore"): assert_array_equal(stats.linregress(x, x), (np.nan, np.nan, np.nan, np.nan, np.nan)) def test_theilslopes(): # Basic slope test. slope, intercept, lower, upper = stats.theilslopes([0,1,1]) assert_almost_equal(slope, 0.5) assert_almost_equal(intercept, 0.5) # Test of confidence intervals. x = [1, 2, 3, 4, 10, 12, 18] y = [9, 15, 19, 20, 45, 55, 78] slope, intercept, lower, upper = stats.theilslopes(y, x, 0.07) assert_almost_equal(slope, 4) assert_almost_equal(upper, 4.38, decimal=2) assert_almost_equal(lower, 3.71, decimal=2) def test_cumfreq(): x = [1, 4, 2, 1, 3, 1] cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4) assert_array_almost_equal(cumfreqs, np.array([3., 4., 5., 6.])) cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5)) assert_(extrapoints == 3) # test for namedtuple attribute results attributes = ('cumcount', 'lowerlimit', 'binsize', 'extrapoints') res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5)) check_named_results(res, attributes) def test_relfreq(): a = np.array([1, 4, 2, 1, 3, 1]) relfreqs, lowlim, binsize, extrapoints = stats.relfreq(a, numbins=4) assert_array_almost_equal(relfreqs, array([0.5, 0.16666667, 0.16666667, 0.16666667])) # test for namedtuple attribute results attributes = ('frequency', 'lowerlimit', 'binsize', 'extrapoints') res = stats.relfreq(a, numbins=4) check_named_results(res, attributes) # check array_like input is accepted relfreqs2, lowlim, binsize, extrapoints = stats.relfreq([1, 4, 2, 1, 3, 1], numbins=4) assert_array_almost_equal(relfreqs, relfreqs2) class TestScoreatpercentile(object): def setup_method(self): self.a1 = [3, 4, 5, 10, -3, -5, 6] self.a2 = [3, -6, -2, 8, 7, 4, 2, 1] self.a3 = [3., 4, 5, 10, -3, -5, -6, 7.0] def test_basic(self): x = arange(8) * 0.5 assert_equal(stats.scoreatpercentile(x, 0), 0.) assert_equal(stats.scoreatpercentile(x, 100), 3.5) assert_equal(stats.scoreatpercentile(x, 50), 1.75) def test_fraction(self): scoreatperc = stats.scoreatpercentile # Test defaults assert_equal(scoreatperc(list(range(10)), 50), 4.5) assert_equal(scoreatperc(list(range(10)), 50, (2,7)), 4.5) assert_equal(scoreatperc(list(range(100)), 50, limit=(1, 8)), 4.5) assert_equal(scoreatperc(np.array([1, 10,100]), 50, (10,100)), 55) assert_equal(scoreatperc(np.array([1, 10,100]), 50, (1,10)), 5.5) # explicitly specify interpolation_method 'fraction' (the default) assert_equal(scoreatperc(list(range(10)), 50, interpolation_method='fraction'), 4.5) assert_equal(scoreatperc(list(range(10)), 50, limit=(2, 7), interpolation_method='fraction'), 4.5) assert_equal(scoreatperc(list(range(100)), 50, limit=(1, 8), interpolation_method='fraction'), 4.5) assert_equal(scoreatperc(np.array([1, 10,100]), 50, (10, 100), interpolation_method='fraction'), 55) assert_equal(scoreatperc(np.array([1, 10,100]), 50, (1,10), interpolation_method='fraction'), 5.5) def test_lower_higher(self): scoreatperc = stats.scoreatpercentile # interpolation_method 'lower'/'higher' assert_equal(scoreatperc(list(range(10)), 50, interpolation_method='lower'), 4) assert_equal(scoreatperc(list(range(10)), 50, interpolation_method='higher'), 5) assert_equal(scoreatperc(list(range(10)), 50, (2,7), interpolation_method='lower'), 4) assert_equal(scoreatperc(list(range(10)), 50, limit=(2,7), interpolation_method='higher'), 5) assert_equal(scoreatperc(list(range(100)), 50, (1,8), interpolation_method='lower'), 4) assert_equal(scoreatperc(list(range(100)), 50, (1,8), interpolation_method='higher'), 5) assert_equal(scoreatperc(np.array([1, 10, 100]), 50, (10, 100), interpolation_method='lower'), 10) assert_equal(scoreatperc(np.array([1, 10, 100]), 50, limit=(10, 100), interpolation_method='higher'), 100) assert_equal(scoreatperc(np.array([1, 10, 100]), 50, (1, 10), interpolation_method='lower'), 1) assert_equal(scoreatperc(np.array([1, 10, 100]), 50, limit=(1, 10), interpolation_method='higher'), 10) def test_sequence_per(self): x = arange(8) * 0.5 expected = np.array([0, 3.5, 1.75]) res = stats.scoreatpercentile(x, [0, 100, 50]) assert_allclose(res, expected) assert_(isinstance(res, np.ndarray)) # Test with ndarray. Regression test for gh-2861 assert_allclose(stats.scoreatpercentile(x, np.array([0, 100, 50])), expected) # Also test combination of 2-D array, axis not None and array-like per res2 = stats.scoreatpercentile(np.arange(12).reshape((3,4)), np.array([0, 1, 100, 100]), axis=1) expected2 = array([[0, 4, 8], [0.03, 4.03, 8.03], [3, 7, 11], [3, 7, 11]]) assert_allclose(res2, expected2) def test_axis(self): scoreatperc = stats.scoreatpercentile x = arange(12).reshape(3, 4) assert_equal(scoreatperc(x, (25, 50, 100)), [2.75, 5.5, 11.0]) r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]] assert_equal(scoreatperc(x, (25, 50, 100), axis=0), r0) r1 = [[0.75, 4.75, 8.75], [1.5, 5.5, 9.5], [3, 7, 11]] assert_equal(scoreatperc(x, (25, 50, 100), axis=1), r1) x = array([[1, 1, 1], [1, 1, 1], [4, 4, 3], [1, 1, 1], [1, 1, 1]]) score = stats.scoreatpercentile(x, 50) assert_equal(score.shape, ()) assert_equal(score, 1.0) score = stats.scoreatpercentile(x, 50, axis=0) assert_equal(score.shape, (3,)) assert_equal(score, [1, 1, 1]) def test_exception(self): assert_raises(ValueError, stats.scoreatpercentile, [1, 2], 56, interpolation_method='foobar') assert_raises(ValueError, stats.scoreatpercentile, [1], 101) assert_raises(ValueError, stats.scoreatpercentile, [1], -1) def test_empty(self): assert_equal(stats.scoreatpercentile([], 50), np.nan) assert_equal(stats.scoreatpercentile(np.array([[], []]), 50), np.nan) assert_equal(stats.scoreatpercentile([], [50, 99]), [np.nan, np.nan]) class TestItemfreq(object): a = [5, 7, 1, 2, 1, 5, 7] * 10 b = [1, 2, 5, 7] def test_numeric_types(self): # Check itemfreq works for all dtypes (adapted from np.unique tests) def _check_itemfreq(dt): a = np.array(self.a, dt) with suppress_warnings() as sup: sup.filter(DeprecationWarning) v = stats.itemfreq(a) assert_array_equal(v[:, 0], [1, 2, 5, 7]) assert_array_equal(v[:, 1], np.array([20, 10, 20, 20], dtype=dt)) dtypes = [np.int32, np.int64, np.float32, np.float64, np.complex64, np.complex128] for dt in dtypes: _check_itemfreq(dt) def test_object_arrays(self): a, b = self.a, self.b dt = 'O' aa = np.empty(len(a), dt) aa[:] = a bb = np.empty(len(b), dt) bb[:] = b with suppress_warnings() as sup: sup.filter(DeprecationWarning) v = stats.itemfreq(aa) assert_array_equal(v[:, 0], bb) def test_structured_arrays(self): a, b = self.a, self.b dt = [('', 'i'), ('', 'i')] aa = np.array(list(zip(a, a)), dt) bb = np.array(list(zip(b, b)), dt) with suppress_warnings() as sup: sup.filter(DeprecationWarning) v = stats.itemfreq(aa) # Arrays don't compare equal because v[:,0] is object array assert_equal(tuple(v[2, 0]), tuple(bb[2])) class TestMode(object): def test_empty(self): vals, counts = stats.mode([]) assert_equal(vals, np.array([])) assert_equal(counts, np.array([])) def test_scalar(self): vals, counts = stats.mode(4.) assert_equal(vals, np.array([4.])) assert_equal(counts, np.array([1])) def test_basic(self): data1 = [3, 5, 1, 10, 23, 3, 2, 6, 8, 6, 10, 6] vals = stats.mode(data1) assert_equal(vals[0][0], 6) assert_equal(vals[1][0], 3) def test_axes(self): data1 = [10, 10, 30, 40] data2 = [10, 10, 10, 10] data3 = [20, 10, 20, 20] data4 = [30, 30, 30, 30] data5 = [40, 30, 30, 30] arr = np.array([data1, data2, data3, data4, data5]) vals = stats.mode(arr, axis=None) assert_equal(vals[0], np.array([30])) assert_equal(vals[1], np.array([8])) vals = stats.mode(arr, axis=0) assert_equal(vals[0], np.array([[10, 10, 30, 30]])) assert_equal(vals[1], np.array([[2, 3, 3, 2]])) vals = stats.mode(arr, axis=1) assert_equal(vals[0], np.array([[10], [10], [20], [30], [30]])) assert_equal(vals[1], np.array([[2], [4], [3], [4], [3]])) def test_strings(self): data1 = ['rain', 'showers', 'showers'] vals = stats.mode(data1) assert_equal(vals[0][0], 'showers') assert_equal(vals[1][0], 2) def test_mixed_objects(self): objects = [10, True, np.nan, 'hello', 10] arr = np.empty((5,), dtype=object) arr[:] = objects vals = stats.mode(arr) assert_equal(vals[0][0], 10) assert_equal(vals[1][0], 2) def test_objects(self): # Python objects must be sortable (le + eq) and have ne defined # for np.unique to work. hash is for set. class Point(object): def __init__(self, x): self.x = x def __eq__(self, other): return self.x == other.x def __ne__(self, other): return self.x != other.x def __lt__(self, other): return self.x < other.x def __hash__(self): return hash(self.x) points = [Point(x) for x in [1, 2, 3, 4, 3, 2, 2, 2]] arr = np.empty((8,), dtype=object) arr[:] = points assert_(len(set(points)) == 4) assert_equal(np.unique(arr).shape, (4,)) vals = stats.mode(arr) assert_equal(vals[0][0], Point(2)) assert_equal(vals[1][0], 4) def test_mode_result_attributes(self): data1 = [3, 5, 1, 10, 23, 3, 2, 6, 8, 6, 10, 6] data2 = [] actual = stats.mode(data1) attributes = ('mode', 'count') check_named_results(actual, attributes) actual2 = stats.mode(data2) check_named_results(actual2, attributes) def test_mode_nan(self): data1 = [3, np.nan, 5, 1, 10, 23, 3, 2, 6, 8, 6, 10, 6] actual = stats.mode(data1) assert_equal(actual, (6, 3)) actual = stats.mode(data1, nan_policy='omit') assert_equal(actual, (6, 3)) assert_raises(ValueError, stats.mode, data1, nan_policy='raise') assert_raises(ValueError, stats.mode, data1, nan_policy='foobar') @pytest.mark.parametrize("data", [ [3, 5, 1, 1, 3], [3, np.nan, 5, 1, 1, 3], [3, 5, 1], [3, np.nan, 5, 1], ]) def test_smallest_equal(self, data): result = stats.mode(data, nan_policy='omit') assert_equal(result[0][0], 1) def test_obj_arrays_ndim(self): # regression test for gh-9645: `mode` fails for object arrays w/ndim > 1 data = [['Oxidation'], ['Oxidation'], ['Polymerization'], ['Reduction']] ar = np.array(data, dtype=object) m = stats.mode(ar, axis=0) assert np.all(m.mode == 'Oxidation') and m.mode.shape == (1, 1) assert np.all(m.count == 2) and m.count.shape == (1, 1) data1 = data + [[np.nan]] ar1 = np.array(data1, dtype=object) m = stats.mode(ar1, axis=0) assert np.all(m.mode == 'Oxidation') and m.mode.shape == (1, 1) assert np.all(m.count == 2) and m.count.shape == (1, 1) class TestVariability(object): testcase = [1,2,3,4] scalar_testcase = 4. def test_sem(self): # This is not in R, so used: # sqrt(var(testcase)*3/4)/sqrt(3) # y = stats.sem(self.shoes[0]) # assert_approx_equal(y,0.775177399) with suppress_warnings() as sup, np.errstate(invalid="ignore"): sup.filter(RuntimeWarning, "Degrees of freedom <= 0 for slice") y = stats.sem(self.scalar_testcase) assert_(np.isnan(y)) y = stats.sem(self.testcase) assert_approx_equal(y, 0.6454972244) n = len(self.testcase) assert_allclose(stats.sem(self.testcase, ddof=0) * np.sqrt(n/(n-2)), stats.sem(self.testcase, ddof=2)) x = np.arange(10.) x[9] = np.nan assert_equal(stats.sem(x), np.nan) assert_equal(stats.sem(x, nan_policy='omit'), 0.9128709291752769) assert_raises(ValueError, stats.sem, x, nan_policy='raise') assert_raises(ValueError, stats.sem, x, nan_policy='foobar') def test_zmap(self): # not in R, so tested by using: # (testcase[i] - mean(testcase, axis=0)) / sqrt(var(testcase) * 3/4) y = stats.zmap(self.testcase,self.testcase) desired = ([-1.3416407864999, -0.44721359549996, 0.44721359549996, 1.3416407864999]) assert_array_almost_equal(desired,y,decimal=12) def test_zmap_axis(self): # Test use of 'axis' keyword in zmap. x = np.array([[0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 1.0, 2.0], [2.0, 0.0, 2.0, 0.0]]) t1 = 1.0/np.sqrt(2.0/3) t2 = np.sqrt(3.)/3 t3 = np.sqrt(2.) z0 = stats.zmap(x, x, axis=0) z1 = stats.zmap(x, x, axis=1) z0_expected = [[-t1, -t3/2, -t3/2, 0.0], [0.0, t3, -t3/2, t1], [t1, -t3/2, t3, -t1]] z1_expected = [[-1.0, -1.0, 1.0, 1.0], [-t2, -t2, -t2, np.sqrt(3.)], [1.0, -1.0, 1.0, -1.0]] assert_array_almost_equal(z0, z0_expected) assert_array_almost_equal(z1, z1_expected) def test_zmap_ddof(self): # Test use of 'ddof' keyword in zmap. x = np.array([[0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 2.0, 3.0]]) z = stats.zmap(x, x, axis=1, ddof=1) z0_expected = np.array([-0.5, -0.5, 0.5, 0.5])/(1.0/np.sqrt(3)) z1_expected = np.array([-1.5, -0.5, 0.5, 1.5])/(np.sqrt(5./3)) assert_array_almost_equal(z[0], z0_expected) assert_array_almost_equal(z[1], z1_expected) def test_zscore(self): # not in R, so tested by using: # (testcase[i] - mean(testcase, axis=0)) / sqrt(var(testcase) * 3/4) y = stats.zscore(self.testcase) desired = ([-1.3416407864999, -0.44721359549996, 0.44721359549996, 1.3416407864999]) assert_array_almost_equal(desired,y,decimal=12) def test_zscore_axis(self): # Test use of 'axis' keyword in zscore. x = np.array([[0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 1.0, 2.0], [2.0, 0.0, 2.0, 0.0]]) t1 = 1.0/np.sqrt(2.0/3) t2 = np.sqrt(3.)/3 t3 = np.sqrt(2.) z0 = stats.zscore(x, axis=0) z1 = stats.zscore(x, axis=1) z0_expected = [[-t1, -t3/2, -t3/2, 0.0], [0.0, t3, -t3/2, t1], [t1, -t3/2, t3, -t1]] z1_expected = [[-1.0, -1.0, 1.0, 1.0], [-t2, -t2, -t2, np.sqrt(3.)], [1.0, -1.0, 1.0, -1.0]] assert_array_almost_equal(z0, z0_expected) assert_array_almost_equal(z1, z1_expected) def test_zscore_ddof(self): # Test use of 'ddof' keyword in zscore. x = np.array([[0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 2.0, 3.0]]) z = stats.zscore(x, axis=1, ddof=1) z0_expected = np.array([-0.5, -0.5, 0.5, 0.5])/(1.0/np.sqrt(3)) z1_expected = np.array([-1.5, -0.5, 0.5, 1.5])/(np.sqrt(5./3)) assert_array_almost_equal(z[0], z0_expected) assert_array_almost_equal(z[1], z1_expected) def test_zscore_nan_propagate(self): x = np.array([1, 2, np.nan, 4, 5]) z = stats.zscore(x, nan_policy='propagate') assert all(np.isnan(z)) def test_zscore_nan_omit(self): x = np.array([1, 2, np.nan, 4, 5]) z = stats.zscore(x, nan_policy='omit') expected = np.array([-1.2649110640673518, -0.6324555320336759, np.nan, 0.6324555320336759, 1.2649110640673518 ]) assert_array_almost_equal(z, expected) def test_zscore_nan_raise(self): x = np.array([1, 2, np.nan, 4, 5]) assert_raises(ValueError, stats.zscore, x, nan_policy='raise') def test_mad(self): dat = np.array([2.20, 2.20, 2.4, 2.4, 2.5, 2.7, 2.8, 2.9, 3.03, 3.03, 3.10, 3.37, 3.4, 3.4, 3.4, 3.5, 3.6, 3.7, 3.7, 3.7, 3.7,3.77, 5.28, 28.95]) assert_almost_equal(stats.median_absolute_deviation(dat, axis=None), 0.526323) dat = dat.reshape(6, 4) mad = stats.median_absolute_deviation(dat, axis=0) mad_expected = np.asarray([0.644931, 0.7413, 0.66717, 0.59304]) assert_array_almost_equal(mad, mad_expected) def test_mad_empty(self): dat = [] mad = stats.median_absolute_deviation(dat) assert_equal(mad, np.nan) def test_mad_nan_propagate(self): dat = np.array([2.20, 2.20, 2.4, 2.4, 2.5, 2.7, 2.8, 2.9, 3.03, 3.03, 3.10, 3.37, 3.4, 3.4, 3.4, 3.5, 3.6, 3.7, 3.7, 3.7, 3.7,3.77, 5.28, np.nan]) mad = stats.median_absolute_deviation(dat, nan_policy='propagate') assert_equal(mad, np.nan) def test_mad_nan_raise(self): dat = np.array([2.20, 2.20, 2.4, 2.4, 2.5, 2.7, 2.8, 2.9, 3.03, 3.03, 3.10, 3.37, 3.4, 3.4, 3.4, 3.5, 3.6, 3.7, 3.7, 3.7, 3.7,3.77, 5.28, np.nan]) with assert_raises(ValueError): stats.median_absolute_deviation(dat, nan_policy='raise') def test_mad_nan_omit(self): dat = np.array([2.20, 2.20, 2.4, 2.4, 2.5, 2.7, 2.8, 2.9, 3.03, 3.03, 3.10, 3.37, 3.4, 3.4, 3.4, 3.5, 3.6, 3.7, 3.7, 3.7, 3.7,3.77, 5.28, np.nan]) mad = stats.median_absolute_deviation(dat, nan_policy='omit') assert_almost_equal(mad, 0.504084) def _check_warnings(warn_list, expected_type, expected_len): """ Checks that all of the warnings from a list returned by `warnings.catch_all(record=True)` are of the required type and that the list contains expected number of warnings. """ assert_equal(len(warn_list), expected_len, "number of warnings") for warn_ in warn_list: assert_(warn_.category is expected_type) class TestIQR(object): def test_basic(self): x = np.arange(8) * 0.5 np.random.shuffle(x) assert_equal(stats.iqr(x), 1.75) def test_api(self): d = np.ones((5, 5)) stats.iqr(d) stats.iqr(d, None) stats.iqr(d, 1) stats.iqr(d, (0, 1)) stats.iqr(d, None, (10, 90)) stats.iqr(d, None, (30, 20), 'raw') stats.iqr(d, None, (25, 75), 1.5, 'propagate') stats.iqr(d, None, (50, 50), 'normal', 'raise', 'linear') stats.iqr(d, None, (25, 75), -0.4, 'omit', 'lower', True) def test_empty(self): assert_equal(stats.iqr([]), np.nan) assert_equal(stats.iqr(np.arange(0)), np.nan) def test_constant(self): # Constant array always gives 0 x = np.ones((7, 4)) assert_equal(stats.iqr(x), 0.0) assert_array_equal(stats.iqr(x, axis=0), np.zeros(4)) assert_array_equal(stats.iqr(x, axis=1), np.zeros(7)) assert_equal(stats.iqr(x, interpolation='linear'), 0.0) assert_equal(stats.iqr(x, interpolation='midpoint'), 0.0) assert_equal(stats.iqr(x, interpolation='nearest'), 0.0) assert_equal(stats.iqr(x, interpolation='lower'), 0.0) assert_equal(stats.iqr(x, interpolation='higher'), 0.0) # 0 only along constant dimensions # This also tests much of `axis` y = np.ones((4, 5, 6)) * np.arange(6) assert_array_equal(stats.iqr(y, axis=0), np.zeros((5, 6))) assert_array_equal(stats.iqr(y, axis=1), np.zeros((4, 6))) assert_array_equal(stats.iqr(y, axis=2), np.full((4, 5), 2.5)) assert_array_equal(stats.iqr(y, axis=(0, 1)), np.zeros(6)) assert_array_equal(stats.iqr(y, axis=(0, 2)), np.full(5, 3.)) assert_array_equal(stats.iqr(y, axis=(1, 2)), np.full(4, 3.)) def test_scalarlike(self): x = np.arange(1) + 7.0 assert_equal(stats.iqr(x[0]), 0.0) assert_equal(stats.iqr(x), 0.0) assert_array_equal(stats.iqr(x, keepdims=True), [0.0]) def test_2D(self): x = np.arange(15).reshape((3, 5)) assert_equal(stats.iqr(x), 7.0) assert_array_equal(stats.iqr(x, axis=0), np.full(5, 5.)) assert_array_equal(stats.iqr(x, axis=1), np.full(3, 2.)) assert_array_equal(stats.iqr(x, axis=(0, 1)), 7.0) assert_array_equal(stats.iqr(x, axis=(1, 0)), 7.0) def test_axis(self): # The `axis` keyword is also put through its paces in `test_keepdims`. o = np.random.normal(size=(71, 23)) x = np.dstack([o] * 10) # x.shape = (71, 23, 10) q = stats.iqr(o) assert_equal(stats.iqr(x, axis=(0, 1)), q) x = np.rollaxis(x, -1, 0) # x.shape = (10, 71, 23) assert_equal(stats.iqr(x, axis=(2, 1)), q) x = x.swapaxes(0, 1) # x.shape = (71, 10, 23) assert_equal(stats.iqr(x, axis=(0, 2)), q) x = x.swapaxes(0, 1) # x.shape = (10, 71, 23) assert_equal(stats.iqr(x, axis=(0, 1, 2)), stats.iqr(x, axis=None)) assert_equal(stats.iqr(x, axis=(0,)), stats.iqr(x, axis=0)) d = np.arange(3 * 5 * 7 * 11) # Older versions of numpy only shuffle along axis=0. # Not sure about newer, don't care. np.random.shuffle(d) d = d.reshape((3, 5, 7, 11)) assert_equal(stats.iqr(d, axis=(0, 1, 2))[0], stats.iqr(d[:,:,:, 0].ravel())) assert_equal(stats.iqr(d, axis=(0, 1, 3))[1], stats.iqr(d[:,:, 1,:].ravel())) assert_equal(stats.iqr(d, axis=(3, 1, -4))[2], stats.iqr(d[:,:, 2,:].ravel())) assert_equal(stats.iqr(d, axis=(3, 1, 2))[2], stats.iqr(d[2,:,:,:].ravel())) assert_equal(stats.iqr(d, axis=(3, 2))[2, 1], stats.iqr(d[2, 1,:,:].ravel())) assert_equal(stats.iqr(d, axis=(1, -2))[2, 1], stats.iqr(d[2, :, :, 1].ravel())) assert_equal(stats.iqr(d, axis=(1, 3))[2, 2], stats.iqr(d[2, :, 2,:].ravel())) assert_raises(IndexError, stats.iqr, d, axis=4) assert_raises(ValueError, stats.iqr, d, axis=(0, 0)) def test_rng(self): x = np.arange(5) assert_equal(stats.iqr(x), 2) assert_equal(stats.iqr(x, rng=(25, 87.5)), 2.5) assert_equal(stats.iqr(x, rng=(12.5, 75)), 2.5) assert_almost_equal(stats.iqr(x, rng=(10, 50)), 1.6) # 3-1.4 assert_raises(ValueError, stats.iqr, x, rng=(0, 101)) assert_raises(ValueError, stats.iqr, x, rng=(np.nan, 25)) assert_raises(TypeError, stats.iqr, x, rng=(0, 50, 60)) def test_interpolation(self): x = np.arange(5) y = np.arange(4) # Default assert_equal(stats.iqr(x), 2) assert_equal(stats.iqr(y), 1.5) # Linear assert_equal(stats.iqr(x, interpolation='linear'), 2) assert_equal(stats.iqr(y, interpolation='linear'), 1.5) # Higher assert_equal(stats.iqr(x, interpolation='higher'), 2) assert_equal(stats.iqr(x, rng=(25, 80), interpolation='higher'), 3) assert_equal(stats.iqr(y, interpolation='higher'), 2) # Lower (will generally, but not always be the same as higher) assert_equal(stats.iqr(x, interpolation='lower'), 2) assert_equal(stats.iqr(x, rng=(25, 80), interpolation='lower'), 2) assert_equal(stats.iqr(y, interpolation='lower'), 2) # Nearest assert_equal(stats.iqr(x, interpolation='nearest'), 2) assert_equal(stats.iqr(y, interpolation='nearest'), 1) # Midpoint assert_equal(stats.iqr(x, interpolation='midpoint'), 2) assert_equal(stats.iqr(x, rng=(25, 80), interpolation='midpoint'), 2.5) assert_equal(stats.iqr(y, interpolation='midpoint'), 2) assert_raises(ValueError, stats.iqr, x, interpolation='foobar') def test_keepdims(self): # Also tests most of `axis` x = np.ones((3, 5, 7, 11)) assert_equal(stats.iqr(x, axis=None, keepdims=False).shape, ()) assert_equal(stats.iqr(x, axis=2, keepdims=False).shape, (3, 5, 11)) assert_equal(stats.iqr(x, axis=(0, 1), keepdims=False).shape, (7, 11)) assert_equal(stats.iqr(x, axis=(0, 3), keepdims=False).shape, (5, 7)) assert_equal(stats.iqr(x, axis=(1,), keepdims=False).shape, (3, 7, 11)) assert_equal(stats.iqr(x, (0, 1, 2, 3), keepdims=False).shape, ()) assert_equal(stats.iqr(x, axis=(0, 1, 3), keepdims=False).shape, (7,)) assert_equal(stats.iqr(x, axis=None, keepdims=True).shape, (1, 1, 1, 1)) assert_equal(stats.iqr(x, axis=2, keepdims=True).shape, (3, 5, 1, 11)) assert_equal(stats.iqr(x, axis=(0, 1), keepdims=True).shape, (1, 1, 7, 11)) assert_equal(stats.iqr(x, axis=(0, 3), keepdims=True).shape, (1, 5, 7, 1)) assert_equal(stats.iqr(x, axis=(1,), keepdims=True).shape, (3, 1, 7, 11)) assert_equal(stats.iqr(x, (0, 1, 2, 3), keepdims=True).shape, (1, 1, 1, 1)) assert_equal(stats.iqr(x, axis=(0, 1, 3), keepdims=True).shape, (1, 1, 7, 1)) def test_nanpolicy(self): x = np.arange(15.0).reshape((3, 5)) # No NaNs assert_equal(stats.iqr(x, nan_policy='propagate'), 7) assert_equal(stats.iqr(x, nan_policy='omit'), 7) assert_equal(stats.iqr(x, nan_policy='raise'), 7) # Yes NaNs x[1, 2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") assert_equal(stats.iqr(x, nan_policy='propagate'), np.nan) assert_equal(stats.iqr(x, axis=0, nan_policy='propagate'), [5, 5, np.nan, 5, 5]) assert_equal(stats.iqr(x, axis=1, nan_policy='propagate'), [2, np.nan, 2]) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") assert_equal(stats.iqr(x, nan_policy='omit'), 7.5) assert_equal(stats.iqr(x, axis=0, nan_policy='omit'), np.full(5, 5)) assert_equal(stats.iqr(x, axis=1, nan_policy='omit'), [2, 2.5, 2]) assert_raises(ValueError, stats.iqr, x, nan_policy='raise') assert_raises(ValueError, stats.iqr, x, axis=0, nan_policy='raise') assert_raises(ValueError, stats.iqr, x, axis=1, nan_policy='raise') # Bad policy assert_raises(ValueError, stats.iqr, x, nan_policy='barfood') def test_scale(self): x = np.arange(15.0).reshape((3, 5)) # No NaNs assert_equal(stats.iqr(x, scale='raw'), 7) assert_almost_equal(stats.iqr(x, scale='normal'), 7 / 1.3489795) assert_equal(stats.iqr(x, scale=2.0), 3.5) # Yes NaNs x[1, 2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") assert_equal(stats.iqr(x, scale='raw', nan_policy='propagate'), np.nan) assert_equal(stats.iqr(x, scale='normal', nan_policy='propagate'), np.nan) assert_equal(stats.iqr(x, scale=2.0, nan_policy='propagate'), np.nan) # axis=1 chosen to show behavior with both nans and without assert_equal(stats.iqr(x, axis=1, scale='raw', nan_policy='propagate'), [2, np.nan, 2]) assert_almost_equal(stats.iqr(x, axis=1, scale='normal', nan_policy='propagate'), np.array([2, np.nan, 2]) / 1.3489795) assert_equal(stats.iqr(x, axis=1, scale=2.0, nan_policy='propagate'), [1, np.nan, 1]) # Since NumPy 1.17.0.dev, warnings are no longer emitted by # np.percentile with nans, so we don't check the number of # warnings here. See https://github.com/numpy/numpy/pull/12679. assert_equal(stats.iqr(x, scale='raw', nan_policy='omit'), 7.5) assert_almost_equal(stats.iqr(x, scale='normal', nan_policy='omit'), 7.5 / 1.3489795) assert_equal(stats.iqr(x, scale=2.0, nan_policy='omit'), 3.75) # Bad scale assert_raises(ValueError, stats.iqr, x, scale='foobar') class TestMoments(object): """ Comparison numbers are found using R v.1.5.1 note that length(testcase) = 4 testmathworks comes from documentation for the Statistics Toolbox for Matlab and can be found at both https://www.mathworks.com/help/stats/kurtosis.html https://www.mathworks.com/help/stats/skewness.html Note that both test cases came from here. """ testcase = [1,2,3,4] scalar_testcase = 4. np.random.seed(1234) testcase_moment_accuracy = np.random.rand(42) testmathworks = [1.165, 0.6268, 0.0751, 0.3516, -0.6965] def test_moment(self): # mean((testcase-mean(testcase))**power,axis=0),axis=0))**power)) y = stats.moment(self.scalar_testcase) assert_approx_equal(y, 0.0) y = stats.moment(self.testcase, 0) assert_approx_equal(y, 1.0) y = stats.moment(self.testcase, 1) assert_approx_equal(y, 0.0, 10) y = stats.moment(self.testcase, 2) assert_approx_equal(y, 1.25) y = stats.moment(self.testcase, 3) assert_approx_equal(y, 0.0) y = stats.moment(self.testcase, 4) assert_approx_equal(y, 2.5625) # check array_like input for moment y = stats.moment(self.testcase, [1, 2, 3, 4]) assert_allclose(y, [0, 1.25, 0, 2.5625]) # check moment input consists only of integers y = stats.moment(self.testcase, 0.0) assert_approx_equal(y, 1.0) assert_raises(ValueError, stats.moment, self.testcase, 1.2) y = stats.moment(self.testcase, [1.0, 2, 3, 4.0]) assert_allclose(y, [0, 1.25, 0, 2.5625]) # test empty input y = stats.moment([]) assert_equal(y, np.nan) x = np.arange(10.) x[9] = np.nan assert_equal(stats.moment(x, 2), np.nan) assert_almost_equal(stats.moment(x, nan_policy='omit'), 0.0) assert_raises(ValueError, stats.moment, x, nan_policy='raise') assert_raises(ValueError, stats.moment, x, nan_policy='foobar') def test_moment_propagate_nan(self): # Check that the shape of the result is the same for inputs # with and without nans, cf gh-5817 a = np.arange(8).reshape(2, -1).astype(float) a[1, 0] = np.nan mm = stats.moment(a, 2, axis=1, nan_policy="propagate") np.testing.assert_allclose(mm, [1.25, np.nan], atol=1e-15) def test_variation(self): # variation = samplestd / mean y = stats.variation(self.scalar_testcase) assert_approx_equal(y, 0.0) y = stats.variation(self.testcase) assert_approx_equal(y, 0.44721359549996, 10) x = np.arange(10.) x[9] = np.nan assert_equal(stats.variation(x), np.nan) assert_almost_equal(stats.variation(x, nan_policy='omit'), 0.6454972243679028) assert_raises(ValueError, stats.variation, x, nan_policy='raise') assert_raises(ValueError, stats.variation, x, nan_policy='foobar') def test_variation_propagate_nan(self): # Check that the shape of the result is the same for inputs # with and without nans, cf gh-5817 a = np.arange(8).reshape(2, -1).astype(float) a[1, 0] = np.nan vv = stats.variation(a, axis=1, nan_policy="propagate") np.testing.assert_allclose(vv, [0.7453559924999299, np.nan], atol=1e-15) def test_skewness(self): # Scalar test case y = stats.skew(self.scalar_testcase) assert_approx_equal(y, 0.0) # sum((testmathworks-mean(testmathworks,axis=0))**3,axis=0) / # ((sqrt(var(testmathworks)*4/5))**3)/5 y = stats.skew(self.testmathworks) assert_approx_equal(y, -0.29322304336607, 10) y = stats.skew(self.testmathworks, bias=0) assert_approx_equal(y, -0.437111105023940, 10) y = stats.skew(self.testcase) assert_approx_equal(y, 0.0, 10) x = np.arange(10.) x[9] = np.nan with np.errstate(invalid='ignore'): assert_equal(stats.skew(x), np.nan) assert_equal(stats.skew(x, nan_policy='omit'), 0.) assert_raises(ValueError, stats.skew, x, nan_policy='raise') assert_raises(ValueError, stats.skew, x, nan_policy='foobar') def test_skewness_scalar(self): # `skew` must return a scalar for 1-dim input assert_equal(stats.skew(arange(10)), 0.0) def test_skew_propagate_nan(self): # Check that the shape of the result is the same for inputs # with and without nans, cf gh-5817 a = np.arange(8).reshape(2, -1).astype(float) a[1, 0] = np.nan with np.errstate(invalid='ignore'): s = stats.skew(a, axis=1, nan_policy="propagate") np.testing.assert_allclose(s, [0, np.nan], atol=1e-15) def test_kurtosis(self): # Scalar test case y = stats.kurtosis(self.scalar_testcase) assert_approx_equal(y, -3.0) # sum((testcase-mean(testcase,axis=0))**4,axis=0)/((sqrt(var(testcase)*3/4))**4)/4 # sum((test2-mean(testmathworks,axis=0))**4,axis=0)/((sqrt(var(testmathworks)*4/5))**4)/5 # Set flags for axis = 0 and # fisher=0 (Pearson's defn of kurtosis for compatibility with Matlab) y = stats.kurtosis(self.testmathworks, 0, fisher=0, bias=1) assert_approx_equal(y, 2.1658856802973, 10) # Note that MATLAB has confusing docs for the following case # kurtosis(x,0) gives an unbiased estimate of Pearson's skewness # kurtosis(x) gives a biased estimate of Fisher's skewness (Pearson-3) # The MATLAB docs imply that both should give Fisher's y = stats.kurtosis(self.testmathworks, fisher=0, bias=0) assert_approx_equal(y, 3.663542721189047, 10) y = stats.kurtosis(self.testcase, 0, 0) assert_approx_equal(y, 1.64) x = np.arange(10.) x[9] = np.nan assert_equal(stats.kurtosis(x), np.nan) assert_almost_equal(stats.kurtosis(x, nan_policy='omit'), -1.230000) assert_raises(ValueError, stats.kurtosis, x, nan_policy='raise') assert_raises(ValueError, stats.kurtosis, x, nan_policy='foobar') def test_kurtosis_array_scalar(self): assert_equal(type(stats.kurtosis([1,2,3])), float) def test_kurtosis_propagate_nan(self): # Check that the shape of the result is the same for inputs # with and without nans, cf gh-5817 a = np.arange(8).reshape(2, -1).astype(float) a[1, 0] = np.nan k = stats.kurtosis(a, axis=1, nan_policy="propagate") np.testing.assert_allclose(k, [-1.36, np.nan], atol=1e-15) def test_moment_accuracy(self): # 'moment' must have a small enough error compared to the slower # but very accurate numpy.power() implementation. tc_no_mean = self.testcase_moment_accuracy - \ np.mean(self.testcase_moment_accuracy) assert_allclose(np.power(tc_no_mean, 42).mean(), stats.moment(self.testcase_moment_accuracy, 42)) class TestStudentTest(object): X1 = np.array([-1, 0, 1]) X2 = np.array([0, 1, 2]) T1_0 = 0 P1_0 = 1 T1_1 = -1.732051 P1_1 = 0.2254033 T1_2 = -3.464102 P1_2 = 0.0741799 T2_0 = 1.732051 P2_0 = 0.2254033 def test_onesample(self): with suppress_warnings() as sup, np.errstate(invalid="ignore"): sup.filter(RuntimeWarning, "Degrees of freedom <= 0 for slice") t, p = stats.ttest_1samp(4., 3.) assert_(np.isnan(t)) assert_(np.isnan(p)) t, p = stats.ttest_1samp(self.X1, 0) assert_array_almost_equal(t, self.T1_0) assert_array_almost_equal(p, self.P1_0) res = stats.ttest_1samp(self.X1, 0) attributes = ('statistic', 'pvalue') check_named_results(res, attributes) t, p = stats.ttest_1samp(self.X2, 0) assert_array_almost_equal(t, self.T2_0) assert_array_almost_equal(p, self.P2_0) t, p = stats.ttest_1samp(self.X1, 1) assert_array_almost_equal(t, self.T1_1) assert_array_almost_equal(p, self.P1_1) t, p = stats.ttest_1samp(self.X1, 2) assert_array_almost_equal(t, self.T1_2) assert_array_almost_equal(p, self.P1_2) # check nan policy np.random.seed(7654567) x = stats.norm.rvs(loc=5, scale=10, size=51) x[50] = np.nan with np.errstate(invalid="ignore"): assert_array_equal(stats.ttest_1samp(x, 5.0), (np.nan, np.nan)) assert_array_almost_equal(stats.ttest_1samp(x, 5.0, nan_policy='omit'), (-1.6412624074367159, 0.107147027334048005)) assert_raises(ValueError, stats.ttest_1samp, x, 5.0, nan_policy='raise') assert_raises(ValueError, stats.ttest_1samp, x, 5.0, nan_policy='foobar') def test_percentileofscore(): pcos = stats.percentileofscore assert_equal(pcos([1,2,3,4,5,6,7,8,9,10],4), 40.0) for (kind, result) in [('mean', 35.0), ('strict', 30.0), ('weak', 40.0)]: assert_equal(pcos(np.arange(10) + 1, 4, kind=kind), result) # multiple - 2 for (kind, result) in [('rank', 45.0), ('strict', 30.0), ('weak', 50.0), ('mean', 40.0)]: assert_equal(pcos([1,2,3,4,4,5,6,7,8,9], 4, kind=kind), result) # multiple - 3 assert_equal(pcos([1,2,3,4,4,4,5,6,7,8], 4), 50.0) for (kind, result) in [('rank', 50.0), ('mean', 45.0), ('strict', 30.0), ('weak', 60.0)]: assert_equal(pcos([1,2,3,4,4,4,5,6,7,8], 4, kind=kind), result) # missing for kind in ('rank', 'mean', 'strict', 'weak'): assert_equal(pcos([1,2,3,5,6,7,8,9,10,11], 4, kind=kind), 30) # larger numbers for (kind, result) in [('mean', 35.0), ('strict', 30.0), ('weak', 40.0)]: assert_equal( pcos([10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 40, kind=kind), result) for (kind, result) in [('mean', 45.0), ('strict', 30.0), ('weak', 60.0)]: assert_equal( pcos([10, 20, 30, 40, 40, 40, 50, 60, 70, 80], 40, kind=kind), result) for kind in ('rank', 'mean', 'strict', 'weak'): assert_equal( pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110], 40, kind=kind), 30.0) # boundaries for (kind, result) in [('rank', 10.0), ('mean', 5.0), ('strict', 0.0), ('weak', 10.0)]: assert_equal( pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110], 10, kind=kind), result) for (kind, result) in [('rank', 100.0), ('mean', 95.0), ('strict', 90.0), ('weak', 100.0)]: assert_equal( pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110], 110, kind=kind), result) # out of bounds for (kind, score, result) in [('rank', 200, 100.0), ('mean', 200, 100.0), ('mean', 0, 0.0)]: assert_equal( pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110], score, kind=kind), result) assert_raises(ValueError, pcos, [1, 2, 3, 3, 4], 3, kind='unrecognized') PowerDivCase = namedtuple('Case', ['f_obs', 'f_exp', 'ddof', 'axis', 'chi2', # Pearson's 'log', # G-test (log-likelihood) 'mod_log', # Modified log-likelihood 'cr', # Cressie-Read (lambda=2/3) ]) # The details of the first two elements in power_div_1d_cases are used # in a test in TestPowerDivergence. Check that code before making # any changes here. power_div_1d_cases = [ # Use the default f_exp. PowerDivCase(f_obs=[4, 8, 12, 8], f_exp=None, ddof=0, axis=None, chi2=4, log=2*(4*np.log(4/8) + 12*np.log(12/8)), mod_log=2*(8*np.log(8/4) + 8*np.log(8/12)), cr=(4*((4/8)**(2/3) - 1) + 12*((12/8)**(2/3) - 1))/(5/9)), # Give a non-uniform f_exp. PowerDivCase(f_obs=[4, 8, 12, 8], f_exp=[2, 16, 12, 2], ddof=0, axis=None, chi2=24, log=2*(4*np.log(4/2) + 8*np.log(8/16) + 8*np.log(8/2)), mod_log=2*(2*np.log(2/4) + 16*np.log(16/8) + 2*np.log(2/8)), cr=(4*((4/2)**(2/3) - 1) + 8*((8/16)**(2/3) - 1) + 8*((8/2)**(2/3) - 1))/(5/9)), # f_exp is a scalar. PowerDivCase(f_obs=[4, 8, 12, 8], f_exp=8, ddof=0, axis=None, chi2=4, log=2*(4*np.log(4/8) + 12*np.log(12/8)), mod_log=2*(8*np.log(8/4) + 8*np.log(8/12)), cr=(4*((4/8)**(2/3) - 1) + 12*((12/8)**(2/3) - 1))/(5/9)), # f_exp equal to f_obs. PowerDivCase(f_obs=[3, 5, 7, 9], f_exp=[3, 5, 7, 9], ddof=0, axis=0, chi2=0, log=0, mod_log=0, cr=0), ] power_div_empty_cases = [ # Shape is (0,)--a data set with length 0. The computed # test statistic should be 0. PowerDivCase(f_obs=[], f_exp=None, ddof=0, axis=0, chi2=0, log=0, mod_log=0, cr=0), # Shape is (0, 3). This is 3 data sets, but each data set has # length 0, so the computed test statistic should be [0, 0, 0]. PowerDivCase(f_obs=np.array([[],[],[]]).T, f_exp=None, ddof=0, axis=0, chi2=[0, 0, 0], log=[0, 0, 0], mod_log=[0, 0, 0], cr=[0, 0, 0]), # Shape is (3, 0). This represents an empty collection of # data sets in which each data set has length 3. The test # statistic should be an empty array. PowerDivCase(f_obs=np.array([[],[],[]]), f_exp=None, ddof=0, axis=0, chi2=[], log=[], mod_log=[], cr=[]), ] class TestPowerDivergence(object): def check_power_divergence(self, f_obs, f_exp, ddof, axis, lambda_, expected_stat): f_obs = np.asarray(f_obs) if axis is None: num_obs = f_obs.size else: b = np.broadcast(f_obs, f_exp) num_obs = b.shape[axis] with suppress_warnings() as sup: sup.filter(RuntimeWarning, "Mean of empty slice") stat, p = stats.power_divergence( f_obs=f_obs, f_exp=f_exp, ddof=ddof, axis=axis, lambda_=lambda_) assert_allclose(stat, expected_stat) if lambda_ == 1 or lambda_ == "pearson": # Also test stats.chisquare. stat, p = stats.chisquare(f_obs=f_obs, f_exp=f_exp, ddof=ddof, axis=axis) assert_allclose(stat, expected_stat) ddof = np.asarray(ddof) expected_p = stats.distributions.chi2.sf(expected_stat, num_obs - 1 - ddof) assert_allclose(p, expected_p) def test_basic(self): for case in power_div_1d_cases: self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, None, case.chi2) self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, "pearson", case.chi2) self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, 1, case.chi2) self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, "log-likelihood", case.log) self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, "mod-log-likelihood", case.mod_log) self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, "cressie-read", case.cr) self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, 2/3, case.cr) def test_basic_masked(self): for case in power_div_1d_cases: mobs = np.ma.array(case.f_obs) self.check_power_divergence( mobs, case.f_exp, case.ddof, case.axis, None, case.chi2) self.check_power_divergence( mobs, case.f_exp, case.ddof, case.axis, "pearson", case.chi2) self.check_power_divergence( mobs, case.f_exp, case.ddof, case.axis, 1, case.chi2) self.check_power_divergence( mobs, case.f_exp, case.ddof, case.axis, "log-likelihood", case.log) self.check_power_divergence( mobs, case.f_exp, case.ddof, case.axis, "mod-log-likelihood", case.mod_log) self.check_power_divergence( mobs, case.f_exp, case.ddof, case.axis, "cressie-read", case.cr) self.check_power_divergence( mobs, case.f_exp, case.ddof, case.axis, 2/3, case.cr) def test_axis(self): case0 = power_div_1d_cases[0] case1 = power_div_1d_cases[1] f_obs = np.vstack((case0.f_obs, case1.f_obs)) f_exp = np.vstack((np.ones_like(case0.f_obs)*np.mean(case0.f_obs), case1.f_exp)) # Check the four computational code paths in power_divergence # using a 2D array with axis=1. self.check_power_divergence( f_obs, f_exp, 0, 1, "pearson", [case0.chi2, case1.chi2]) self.check_power_divergence( f_obs, f_exp, 0, 1, "log-likelihood", [case0.log, case1.log]) self.check_power_divergence( f_obs, f_exp, 0, 1, "mod-log-likelihood", [case0.mod_log, case1.mod_log]) self.check_power_divergence( f_obs, f_exp, 0, 1, "cressie-read", [case0.cr, case1.cr]) # Reshape case0.f_obs to shape (2,2), and use axis=None. # The result should be the same. self.check_power_divergence( np.array(case0.f_obs).reshape(2, 2), None, 0, None, "pearson", case0.chi2) def test_ddof_broadcasting(self): # Test that ddof broadcasts correctly. # ddof does not affect the test statistic. It is broadcast # with the computed test statistic for the computation of # the p value. case0 = power_div_1d_cases[0] case1 = power_div_1d_cases[1] # Create 4x2 arrays of observed and expected frequencies. f_obs = np.vstack((case0.f_obs, case1.f_obs)).T f_exp = np.vstack((np.ones_like(case0.f_obs)*np.mean(case0.f_obs), case1.f_exp)).T expected_chi2 = [case0.chi2, case1.chi2] # ddof has shape (2, 1). This is broadcast with the computed # statistic, so p will have shape (2,2). ddof = np.array([[0], [1]]) stat, p = stats.power_divergence(f_obs, f_exp, ddof=ddof) assert_allclose(stat, expected_chi2) # Compute the p values separately, passing in scalars for ddof. stat0, p0 = stats.power_divergence(f_obs, f_exp, ddof=ddof[0,0]) stat1, p1 = stats.power_divergence(f_obs, f_exp, ddof=ddof[1,0]) assert_array_equal(p, np.vstack((p0, p1))) def test_empty_cases(self): with warnings.catch_warnings(): for case in power_div_empty_cases: self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, "pearson", case.chi2) self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, "log-likelihood", case.log) self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, "mod-log-likelihood", case.mod_log) self.check_power_divergence( case.f_obs, case.f_exp, case.ddof, case.axis, "cressie-read", case.cr) def test_power_divergence_result_attributes(self): f_obs = power_div_1d_cases[0].f_obs f_exp = power_div_1d_cases[0].f_exp ddof = power_div_1d_cases[0].ddof axis = power_div_1d_cases[0].axis res = stats.power_divergence(f_obs=f_obs, f_exp=f_exp, ddof=ddof, axis=axis, lambda_="pearson") attributes = ('statistic', 'pvalue') check_named_results(res, attributes) @pytest.mark.parametrize("n, dtype", [(200, np.uint8), (1000000, np.int32)]) def test_chiquare_data_types(n, dtype): # Regression test for gh-10159. obs = np.array([n, 0], dtype=dtype) exp = np.array([n // 2, n // 2], dtype=dtype) stat, p = stats.chisquare(obs, exp) assert_allclose(stat, n, rtol=1e-13) def test_chisquare_masked_arrays(): # Test masked arrays. obs = np.array([[8, 8, 16, 32, -1], [-1, -1, 3, 4, 5]]).T mask = np.array([[0, 0, 0, 0, 1], [1, 1, 0, 0, 0]]).T mobs = np.ma.masked_array(obs, mask) expected_chisq = np.array([24.0, 0.5]) expected_g = np.array([2*(2*8*np.log(0.5) + 32*np.log(2.0)), 2*(3*np.log(0.75) + 5*np.log(1.25))]) chi2 = stats.distributions.chi2 chisq, p = stats.chisquare(mobs) mat.assert_array_equal(chisq, expected_chisq) mat.assert_array_almost_equal(p, chi2.sf(expected_chisq, mobs.count(axis=0) - 1)) g, p = stats.power_divergence(mobs, lambda_='log-likelihood') mat.assert_array_almost_equal(g, expected_g, decimal=15) mat.assert_array_almost_equal(p, chi2.sf(expected_g, mobs.count(axis=0) - 1)) chisq, p = stats.chisquare(mobs.T, axis=1) mat.assert_array_equal(chisq, expected_chisq) mat.assert_array_almost_equal(p, chi2.sf(expected_chisq, mobs.T.count(axis=1) - 1)) g, p = stats.power_divergence(mobs.T, axis=1, lambda_="log-likelihood") mat.assert_array_almost_equal(g, expected_g, decimal=15) mat.assert_array_almost_equal(p, chi2.sf(expected_g, mobs.count(axis=0) - 1)) obs1 = np.ma.array([3, 5, 6, 99, 10], mask=[0, 0, 0, 1, 0]) exp1 = np.ma.array([2, 4, 8, 10, 99], mask=[0, 0, 0, 0, 1]) chi2, p = stats.chisquare(obs1, f_exp=exp1) # Because of the mask at index 3 of obs1 and at index 4 of exp1, # only the first three elements are included in the calculation # of the statistic. mat.assert_array_equal(chi2, 1/2 + 1/4 + 4/8) # When axis=None, the two values should have type np.float64. chisq, p = stats.chisquare(np.ma.array([1,2,3]), axis=None) assert_(isinstance(chisq, np.float64)) assert_(isinstance(p, np.float64)) assert_equal(chisq, 1.0) assert_almost_equal(p, stats.distributions.chi2.sf(1.0, 2)) # Empty arrays: # A data set with length 0 returns a masked scalar. with np.errstate(invalid='ignore'): with suppress_warnings() as sup: sup.filter(RuntimeWarning, "Mean of empty slice") chisq, p = stats.chisquare(np.ma.array([])) assert_(isinstance(chisq, np.ma.MaskedArray)) assert_equal(chisq.shape, ()) assert_(chisq.mask) empty3 = np.ma.array([[],[],[]]) # empty3 is a collection of 0 data sets (whose lengths would be 3, if # there were any), so the return value is an array with length 0. chisq, p = stats.chisquare(empty3) assert_(isinstance(chisq, np.ma.MaskedArray)) mat.assert_array_equal(chisq, []) # empty3.T is an array containing 3 data sets, each with length 0, # so an array of size (3,) is returned, with all values masked. with np.errstate(invalid='ignore'): with suppress_warnings() as sup: sup.filter(RuntimeWarning, "Mean of empty slice") chisq, p = stats.chisquare(empty3.T) assert_(isinstance(chisq, np.ma.MaskedArray)) assert_equal(chisq.shape, (3,)) assert_(np.all(chisq.mask)) def test_power_divergence_against_cressie_read_data(): # Test stats.power_divergence against tables 4 and 5 from # Cressie and Read, "Multimonial Goodness-of-Fit Tests", # J. R. Statist. Soc. B (1984), Vol 46, No. 3, pp. 440-464. # This tests the calculation for several values of lambda. # `table4` holds just the second and third columns from Table 4. table4 = np.array([ # observed, expected, 15, 15.171, 11, 13.952, 14, 12.831, 17, 11.800, 5, 10.852, 11, 9.9796, 10, 9.1777, 4, 8.4402, 8, 7.7620, 10, 7.1383, 7, 6.5647, 9, 6.0371, 11, 5.5520, 3, 5.1059, 6, 4.6956, 1, 4.3183, 1, 3.9713, 4, 3.6522, ]).reshape(-1, 2) table5 = np.array([ # lambda, statistic -10.0, 72.2e3, -5.0, 28.9e1, -3.0, 65.6, -2.0, 40.6, -1.5, 34.0, -1.0, 29.5, -0.5, 26.5, 0.0, 24.6, 0.5, 23.4, 0.67, 23.1, 1.0, 22.7, 1.5, 22.6, 2.0, 22.9, 3.0, 24.8, 5.0, 35.5, 10.0, 21.4e1, ]).reshape(-1, 2) for lambda_, expected_stat in table5: stat, p = stats.power_divergence(table4[:,0], table4[:,1], lambda_=lambda_) assert_allclose(stat, expected_stat, rtol=5e-3) def test_friedmanchisquare(): # see ticket:113 # verified with matlab and R # From Demsar "Statistical Comparisons of Classifiers over Multiple Data Sets" # 2006, Xf=9.28 (no tie handling, tie corrected Xf >=9.28) x1 = [array([0.763, 0.599, 0.954, 0.628, 0.882, 0.936, 0.661, 0.583, 0.775, 1.0, 0.94, 0.619, 0.972, 0.957]), array([0.768, 0.591, 0.971, 0.661, 0.888, 0.931, 0.668, 0.583, 0.838, 1.0, 0.962, 0.666, 0.981, 0.978]), array([0.771, 0.590, 0.968, 0.654, 0.886, 0.916, 0.609, 0.563, 0.866, 1.0, 0.965, 0.614, 0.9751, 0.946]), array([0.798, 0.569, 0.967, 0.657, 0.898, 0.931, 0.685, 0.625, 0.875, 1.0, 0.962, 0.669, 0.975, 0.970])] # From "Bioestadistica para las ciencias de la salud" Xf=18.95 p<0.001: x2 = [array([4,3,5,3,5,3,2,5,4,4,4,3]), array([2,2,1,2,3,1,2,3,2,1,1,3]), array([2,4,3,3,4,3,3,4,4,1,2,1]), array([3,5,4,3,4,4,3,3,3,4,4,4])] # From Jerrorl H. Zar, "Biostatistical Analysis"(example 12.6), Xf=10.68, 0.005 < p < 0.01: # Probability from this example is inexact using Chisquare approximation of Friedman Chisquare. x3 = [array([7.0,9.9,8.5,5.1,10.3]), array([5.3,5.7,4.7,3.5,7.7]), array([4.9,7.6,5.5,2.8,8.4]), array([8.8,8.9,8.1,3.3,9.1])] assert_array_almost_equal(stats.friedmanchisquare(x1[0],x1[1],x1[2],x1[3]), (10.2283464566929, 0.0167215803284414)) assert_array_almost_equal(stats.friedmanchisquare(x2[0],x2[1],x2[2],x2[3]), (18.9428571428571, 0.000280938375189499)) assert_array_almost_equal(stats.friedmanchisquare(x3[0],x3[1],x3[2],x3[3]), (10.68, 0.0135882729582176)) assert_raises(ValueError, stats.friedmanchisquare,x3[0],x3[1]) # test for namedtuple attribute results attributes = ('statistic', 'pvalue') res = stats.friedmanchisquare(*x1) check_named_results(res, attributes) # test using mstats assert_array_almost_equal(mstats.friedmanchisquare(x1[0], x1[1], x1[2], x1[3]), (10.2283464566929, 0.0167215803284414)) # the following fails # assert_array_almost_equal(mstats.friedmanchisquare(x2[0],x2[1],x2[2],x2[3]), # (18.9428571428571, 0.000280938375189499)) assert_array_almost_equal(mstats.friedmanchisquare(x3[0], x3[1], x3[2], x3[3]), (10.68, 0.0135882729582176)) assert_raises(ValueError, mstats.friedmanchisquare,x3[0],x3[1]) def test_kstest(): # comparing with values from R x = np.linspace(-1,1,9) D,p = stats.kstest(x,'norm') assert_almost_equal(D, 0.15865525393145705, 12) assert_almost_equal(p, 0.95164069201518386, 1) x = np.linspace(-15,15,9) D,p = stats.kstest(x,'norm') assert_almost_equal(D, 0.44435602715924361, 15) assert_almost_equal(p, 0.038850140086788665, 8) # test for namedtuple attribute results attributes = ('statistic', 'pvalue') res = stats.kstest(x, 'norm') check_named_results(res, attributes) # the following tests rely on deterministicaly replicated rvs np.random.seed(987654321) x = stats.norm.rvs(loc=0.2, size=100) D,p = stats.kstest(x, 'norm', mode='asymp') assert_almost_equal(D, 0.12464329735846891, 15) assert_almost_equal(p, 0.089444888711820769, 15) assert_almost_equal(np.array(stats.kstest(x, 'norm', mode='asymp')), np.array((0.12464329735846891, 0.089444888711820769)), 15) assert_almost_equal(np.array(stats.kstest(x,'norm', alternative='less')), np.array((0.12464329735846891, 0.040989164077641749)), 15) # this 'greater' test fails with precision of decimal=14 assert_almost_equal(np.array(stats.kstest(x,'norm', alternative='greater')), np.array((0.0072115233216310994, 0.98531158590396228)), 12) # missing: no test that uses *args class TestKSTwoSamples(object): def _testOne(self, x1, x2, alternative, expected_statistic, expected_prob, mode='auto'): result = stats.ks_2samp(x1, x2, alternative, mode=mode) expected = np.array([expected_statistic, expected_prob]) assert_array_almost_equal(np.array(result), expected) def testSmall(self): self._testOne([0], [1], 'two-sided', 1.0/1, 1.0) self._testOne([0], [1], 'greater', 1.0/1, 0.5) self._testOne([0], [1], 'less', 0.0/1, 1.0) self._testOne([1], [0], 'two-sided', 1.0/1, 1.0) self._testOne([1], [0], 'greater', 0.0/1, 1.0) self._testOne([1], [0], 'less', 1.0/1, 0.5) def testTwoVsThree(self): data1 = np.array([1.0, 2.0]) data1p = data1 + 0.01 data1m = data1 - 0.01 data2 = np.array([1.0, 2.0, 3.0]) self._testOne(data1p, data2, 'two-sided', 1.0 / 3, 1.0) self._testOne(data1p, data2, 'greater', 1.0 / 3, 0.7) self._testOne(data1p, data2, 'less', 1.0 / 3, 0.7) self._testOne(data1m, data2, 'two-sided', 2.0 / 3, 0.6) self._testOne(data1m, data2, 'greater', 2.0 / 3, 0.3) self._testOne(data1m, data2, 'less', 0, 1.0) def testTwoVsFour(self): data1 = np.array([1.0, 2.0]) data1p = data1 + 0.01 data1m = data1 - 0.01 data2 = np.array([1.0, 2.0, 3.0, 4.0]) self._testOne(data1p, data2, 'two-sided', 2.0 / 4, 14.0/15) self._testOne(data1p, data2, 'greater', 2.0 / 4, 8.0/15) self._testOne(data1p, data2, 'less', 1.0 / 4, 12.0/15) self._testOne(data1m, data2, 'two-sided', 3.0 / 4, 6.0/15) self._testOne(data1m, data2, 'greater', 3.0 / 4, 3.0/15) self._testOne(data1m, data2, 'less', 0, 1.0) def test100_100(self): x100 = np.linspace(1, 100, 100) x100_2_p1 = x100 + 2 + 0.1 x100_2_m1 = x100 + 2 - 0.1 self._testOne(x100, x100_2_p1, 'two-sided', 3.0 / 100, 0.9999999999962055) self._testOne(x100, x100_2_p1, 'greater', 3.0 / 100, 0.9143290114276248) self._testOne(x100, x100_2_p1, 'less', 0, 1.0) self._testOne(x100, x100_2_m1, 'two-sided', 2.0 / 100, 1.0) self._testOne(x100, x100_2_m1, 'greater', 2.0 / 100, 0.960978450786184) self._testOne(x100, x100_2_m1, 'less', 0, 1.0) def test100_110(self): x100 = np.linspace(1, 100, 100) x110 = np.linspace(1, 100, 110) x110_20_p1 = x110 + 20 + 0.1 x110_20_m1 = x110 + 20 - 0.1 # 100, 110 self._testOne(x100, x110_20_p1, 'two-sided', 232.0 / 1100, 0.015739183865607353) self._testOne(x100, x110_20_p1, 'greater', 232.0 / 1100, 0.007869594319053203) self._testOne(x100, x110_20_p1, 'less', 0, 1) self._testOne(x100, x110_20_m1, 'two-sided', 229.0 / 1100, 0.017803803861026313) self._testOne(x100, x110_20_m1, 'greater', 229.0 / 1100, 0.008901905958245056) self._testOne(x100, x110_20_m1, 'less', 0.0, 1.0) def testRepeatedValues(self): x2233 = np.array([2] * 3 + [3] * 4 + [5] * 5 + [6] * 4, dtype=int) x3344 = x2233 + 1 x2356 = np.array([2] * 3 + [3] * 4 + [5] * 10 + [6] * 4, dtype=int) x3467 = np.array([3] * 10 + [4] * 2 + [6] * 10 + [7] * 4, dtype=int) self._testOne(x2233, x3344, 'two-sided', 5.0/16, 0.4262934613454952) self._testOne(x2233, x3344, 'greater', 5.0/16, 0.21465428276573786) self._testOne(x2233, x3344, 'less', 0.0/16, 1.0) self._testOne(x2356, x3467, 'two-sided', 190.0/21/26, 0.0919245790168125) self._testOne(x2356, x3467, 'greater', 190.0/21/26, 0.0459633806858544) self._testOne(x2356, x3467, 'less', 70.0/21/26, 0.6121593130022775) def testEqualSizes(self): data2 = np.array([1.0, 2.0, 3.0]) self._testOne(data2, data2+1, 'two-sided', 1.0/3, 1.0) self._testOne(data2, data2+1, 'greater', 1.0/3, 0.75) self._testOne(data2, data2+1, 'less', 0.0/3, 1.) self._testOne(data2, data2+0.5, 'two-sided', 1.0/3, 1.0) self._testOne(data2, data2+0.5, 'greater', 1.0/3, 0.75) self._testOne(data2, data2+0.5, 'less', 0.0/3, 1.) self._testOne(data2, data2-0.5, 'two-sided', 1.0/3, 1.0) self._testOne(data2, data2-0.5, 'greater', 0.0/3, 1.0) self._testOne(data2, data2-0.5, 'less', 1.0/3, 0.75) def testMiddlingBoth(self): # 500, 600 n1, n2 = 500, 600 delta = 1.0/n1/n2/2/2 x = np.linspace(1, 200, n1) - delta y = np.linspace(2, 200, n2) self._testOne(x, y, 'two-sided', 2000.0 / n1 / n2, 1.0, mode='auto') self._testOne(x, y, 'two-sided', 2000.0 / n1 / n2, 1.0, mode='asymp') self._testOne(x, y, 'greater', 2000.0 / n1 / n2, 0.9697596024683929, mode='asymp') self._testOne(x, y, 'less', 500.0 / n1 / n2, 0.9968735843165021, mode='asymp') with suppress_warnings() as sup: sup.filter(RuntimeWarning, "ks_2samp: Exact calculation overflowed. Switching to mode=asymp") self._testOne(x, y, 'greater', 2000.0 / n1 / n2, 0.9697596024683929, mode='exact') self._testOne(x, y, 'less', 500.0 / n1 / n2, 0.9968735843165021, mode='exact') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") self._testOne(x, y, 'less', 500.0 / n1 / n2, 0.9968735843165021, mode='exact') _check_warnings(w, RuntimeWarning, 1) def testMediumBoth(self): # 1000, 1100 n1, n2 = 1000, 1100 delta = 1.0/n1/n2/2/2 x = np.linspace(1, 200, n1) - delta y = np.linspace(2, 200, n2) self._testOne(x, y, 'two-sided', 6600.0 / n1 / n2, 1.0, mode='asymp') self._testOne(x, y, 'two-sided', 6600.0 / n1 / n2, 1.0, mode='auto') self._testOne(x, y, 'greater', 6600.0 / n1 / n2, 0.9573185808092622, mode='asymp') self._testOne(x, y, 'less', 1000.0 / n1 / n2, 0.9982410869433984, mode='asymp') with suppress_warnings() as sup: sup.filter(RuntimeWarning, "ks_2samp: Exact calculation overflowed. Switching to mode=asymp") self._testOne(x, y, 'greater', 6600.0 / n1 / n2, 0.9573185808092622, mode='exact') self._testOne(x, y, 'less', 1000.0 / n1 / n2, 0.9982410869433984, mode='exact') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") self._testOne(x, y, 'less', 1000.0 / n1 / n2, 0.9982410869433984, mode='exact') _check_warnings(w, RuntimeWarning, 1) def testLarge(self): # 10000, 110 n1, n2 = 10000, 110 lcm = n1*11.0 delta = 1.0/n1/n2/2/2 x = np.linspace(1, 200, n1) - delta y = np.linspace(2, 100, n2) self._testOne(x, y, 'two-sided', 55275.0 / lcm, 4.2188474935755949e-15) self._testOne(x, y, 'greater', 561.0 / lcm, 0.99115454582047591) self._testOne(x, y, 'less', 55275.0 / lcm, 3.1317328311518713e-26) def test_gh11184(self): # 3000, 3001, exact two-sided np.random.seed(123456) x = np.random.normal(size=3000) y = np.random.normal(size=3001) * 1.5 print(x[0], x[-1], y[0], y[-1]) self._testOne(x, y, 'two-sided', 0.11292880151060758, 2.7755575615628914e-15, mode='asymp') self._testOne(x, y, 'two-sided', 0.11292880151060758, 2.7755575615628914e-15, mode='exact') def test_gh11184_bigger(self): # 10000, 10001, exact two-sided np.random.seed(123456) x = np.random.normal(size=10000) y = np.random.normal(size=10001) * 1.5 print(x[0], x[-1], y[0], y[-1]) self._testOne(x, y, 'two-sided', 0.10597913208679133, 3.3149311398483503e-49, mode='asymp') self._testOne(x, y, 'two-sided', 0.10597913208679133, 2.7755575615628914e-15, mode='exact') self._testOne(x, y, 'greater', 0.10597913208679133, 2.7947433906389253e-41, mode='asymp') self._testOne(x, y, 'less', 0.09658002199780022, 2.7947433906389253e-41, mode='asymp') @pytest.mark.slow def testLargeBoth(self): # 10000, 11000 n1, n2 = 10000, 11000 lcm = n1*11.0 delta = 1.0/n1/n2/2/2 x = np.linspace(1, 200, n1) - delta y = np.linspace(2, 200, n2) self._testOne(x, y, 'two-sided', 563.0 / lcm, 0.99915729949018561, mode='asymp') self._testOne(x, y, 'two-sided', 563.0 / lcm, 0.9990456491488628, mode='exact') self._testOne(x, y, 'two-sided', 563.0 / lcm, 0.99915729949018561, mode='auto') self._testOne(x, y, 'greater', 563.0 / lcm, 0.7561851877420673) self._testOne(x, y, 'less', 10.0 / lcm, 0.9998239693191724) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "ks_2samp: Exact calculation overflowed. Switching to mode=asymp") self._testOne(x, y, 'greater', 563.0 / lcm, 0.7561851877420673, mode='exact') self._testOne(x, y, 'less', 10.0 / lcm, 0.9998239693191724, mode='exact') def testNamedAttributes(self): # test for namedtuple attribute results attributes = ('statistic', 'pvalue') res = stats.ks_2samp([1, 2], [3]) check_named_results(res, attributes) def test_some_code_paths(self): # Check that some code paths are executed from scipy.stats.stats import _count_paths_outside_method, _compute_prob_inside_method _compute_prob_inside_method(1, 1, 1, 1) _count_paths_outside_method(1000, 1, 1, 1001) assert_raises(FloatingPointError, _count_paths_outside_method, 1100, 1099, 1, 1) assert_raises(FloatingPointError, _count_paths_outside_method, 2000, 1000, 1, 1) def test_argument_checking(self): # Check that an empty array causes a ValueError assert_raises(ValueError, stats.ks_2samp, [], [1]) assert_raises(ValueError, stats.ks_2samp, [1], []) assert_raises(ValueError, stats.ks_2samp, [], []) def test_ttest_rel(): # regression test tr,pr = 0.81248591389165692, 0.41846234511362157 tpr = ([tr,-tr],[pr,pr]) rvs1 = np.linspace(1,100,100) rvs2 = np.linspace(1.01,99.989,100) rvs1_2D = np.array([np.linspace(1,100,100), np.linspace(1.01,99.989,100)]) rvs2_2D = np.array([np.linspace(1.01,99.989,100), np.linspace(1,100,100)]) t,p = stats.ttest_rel(rvs1, rvs2, axis=0) assert_array_almost_equal([t,p],(tr,pr)) t,p = stats.ttest_rel(rvs1_2D.T, rvs2_2D.T, axis=0) assert_array_almost_equal([t,p],tpr) t,p = stats.ttest_rel(rvs1_2D, rvs2_2D, axis=1) assert_array_almost_equal([t,p],tpr) # test scalars with suppress_warnings() as sup, np.errstate(invalid="ignore"): sup.filter(RuntimeWarning, "Degrees of freedom <= 0 for slice") t, p = stats.ttest_rel(4., 3.) assert_(np.isnan(t)) assert_(np.isnan(p)) # test for namedtuple attribute results attributes = ('statistic', 'pvalue') res = stats.ttest_rel(rvs1, rvs2, axis=0) check_named_results(res, attributes) # test on 3 dimensions rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D]) rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D]) t,p = stats.ttest_rel(rvs1_3D, rvs2_3D, axis=1) assert_array_almost_equal(np.abs(t), tr) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (2, 3)) t,p = stats.ttest_rel(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2) assert_array_almost_equal(np.abs(t), tr) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (3, 2)) # check nan policy np.random.seed(12345678) x = stats.norm.rvs(loc=5, scale=10, size=501) x[500] = np.nan y = (stats.norm.rvs(loc=5, scale=10, size=501) + stats.norm.rvs(scale=0.2, size=501)) y[500] = np.nan with np.errstate(invalid="ignore"): assert_array_equal(stats.ttest_rel(x, x), (np.nan, np.nan)) assert_array_almost_equal(stats.ttest_rel(x, y, nan_policy='omit'), (0.25299925303978066, 0.8003729814201519)) assert_raises(ValueError, stats.ttest_rel, x, y, nan_policy='raise') assert_raises(ValueError, stats.ttest_rel, x, y, nan_policy='foobar') # test zero division problem t, p = stats.ttest_rel([0, 0, 0], [1, 1, 1]) assert_equal((np.abs(t), p), (np.inf, 0)) with np.errstate(invalid="ignore"): assert_equal(stats.ttest_rel([0, 0, 0], [0, 0, 0]), (np.nan, np.nan)) # check that nan in input array result in nan output anan = np.array([[1, np.nan], [-1, 1]]) assert_equal(stats.ttest_rel(anan, np.zeros((2, 2))), ([0, np.nan], [1, np.nan])) # test incorrect input shape raise an error x = np.arange(24) assert_raises(ValueError, stats.ttest_rel, x.reshape((8, 3)), x.reshape((2, 3, 4))) def test_ttest_rel_nan_2nd_arg(): # regression test for gh-6134: nans in the second arg were not handled x = [np.nan, 2.0, 3.0, 4.0] y = [1.0, 2.0, 1.0, 2.0] r1 = stats.ttest_rel(x, y, nan_policy='omit') r2 = stats.ttest_rel(y, x, nan_policy='omit') assert_allclose(r2.statistic, -r1.statistic, atol=1e-15) assert_allclose(r2.pvalue, r1.pvalue, atol=1e-15) # NB: arguments are paired when NaNs are dropped r3 = stats.ttest_rel(y[1:], x[1:]) assert_allclose(r2, r3, atol=1e-15) # .. and this is consistent with R. R code: # x = c(NA, 2.0, 3.0, 4.0) # y = c(1.0, 2.0, 1.0, 2.0) # t.test(x, y, paired=TRUE) assert_allclose(r2, (-2, 0.1835), atol=1e-4) def _desc_stats(x1, x2, axis=0): def _stats(x, axis=0): x = np.asarray(x) mu = np.mean(x, axis=axis) std = np.std(x, axis=axis, ddof=1) nobs = x.shape[axis] return mu, std, nobs return _stats(x1, axis) + _stats(x2, axis) def test_ttest_ind(): # regression test tr = 1.0912746897927283 pr = 0.27647818616351882 tpr = ([tr,-tr],[pr,pr]) rvs2 = np.linspace(1,100,100) rvs1 = np.linspace(5,105,100) rvs1_2D = np.array([rvs1, rvs2]) rvs2_2D = np.array([rvs2, rvs1]) t,p = stats.ttest_ind(rvs1, rvs2, axis=0) assert_array_almost_equal([t,p],(tr,pr)) # test from_stats API assert_array_almost_equal(stats.ttest_ind_from_stats(*_desc_stats(rvs1, rvs2)), [t, p]) t,p = stats.ttest_ind(rvs1_2D.T, rvs2_2D.T, axis=0) assert_array_almost_equal([t,p],tpr) args = _desc_stats(rvs1_2D.T, rvs2_2D.T) assert_array_almost_equal(stats.ttest_ind_from_stats(*args), [t, p]) t,p = stats.ttest_ind(rvs1_2D, rvs2_2D, axis=1) assert_array_almost_equal([t,p],tpr) args = _desc_stats(rvs1_2D, rvs2_2D, axis=1) assert_array_almost_equal(stats.ttest_ind_from_stats(*args), [t, p]) # test scalars with suppress_warnings() as sup, np.errstate(invalid="ignore"): sup.filter(RuntimeWarning, "Degrees of freedom <= 0 for slice") t, p = stats.ttest_ind(4., 3.) assert_(np.isnan(t)) assert_(np.isnan(p)) # test on 3 dimensions rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D]) rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D]) t,p = stats.ttest_ind(rvs1_3D, rvs2_3D, axis=1) assert_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (2, 3)) t,p = stats.ttest_ind(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2) assert_array_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (3, 2)) # check nan policy np.random.seed(12345678) x = stats.norm.rvs(loc=5, scale=10, size=501) x[500] = np.nan y = stats.norm.rvs(loc=5, scale=10, size=500) with np.errstate(invalid="ignore"): assert_array_equal(stats.ttest_ind(x, y), (np.nan, np.nan)) assert_array_almost_equal(stats.ttest_ind(x, y, nan_policy='omit'), (0.24779670949091914, 0.80434267337517906)) assert_raises(ValueError, stats.ttest_ind, x, y, nan_policy='raise') assert_raises(ValueError, stats.ttest_ind, x, y, nan_policy='foobar') # test zero division problem t, p = stats.ttest_ind([0, 0, 0], [1, 1, 1]) assert_equal((np.abs(t), p), (np.inf, 0)) with np.errstate(invalid="ignore"): assert_equal(stats.ttest_ind([0, 0, 0], [0, 0, 0]), (np.nan, np.nan)) # check that nan in input array result in nan output anan = np.array([[1, np.nan], [-1, 1]]) assert_equal(stats.ttest_ind(anan, np.zeros((2, 2))), ([0, np.nan], [1, np.nan])) def test_ttest_ind_with_uneq_var(): # check vs. R a = (1, 2, 3) b = (1.1, 2.9, 4.2) pr = 0.53619490753126731 tr = -0.68649512735572582 t, p = stats.ttest_ind(a, b, equal_var=False) assert_array_almost_equal([t,p], [tr, pr]) # test from desc stats API assert_array_almost_equal(stats.ttest_ind_from_stats(*_desc_stats(a, b), equal_var=False), [t, p]) a = (1, 2, 3, 4) pr = 0.84354139131608286 tr = -0.2108663315950719 t, p = stats.ttest_ind(a, b, equal_var=False) assert_array_almost_equal([t,p], [tr, pr]) assert_array_almost_equal(stats.ttest_ind_from_stats(*_desc_stats(a, b), equal_var=False), [t, p]) # regression test tr = 1.0912746897927283 tr_uneq_n = 0.66745638708050492 pr = 0.27647831993021388 pr_uneq_n = 0.50873585065616544 tpr = ([tr,-tr],[pr,pr]) rvs3 = np.linspace(1,100, 25) rvs2 = np.linspace(1,100,100) rvs1 = np.linspace(5,105,100) rvs1_2D = np.array([rvs1, rvs2]) rvs2_2D = np.array([rvs2, rvs1]) t,p = stats.ttest_ind(rvs1, rvs2, axis=0, equal_var=False) assert_array_almost_equal([t,p],(tr,pr)) assert_array_almost_equal(stats.ttest_ind_from_stats(*_desc_stats(rvs1, rvs2), equal_var=False), (t, p)) t,p = stats.ttest_ind(rvs1, rvs3, axis=0, equal_var=False) assert_array_almost_equal([t,p], (tr_uneq_n, pr_uneq_n)) assert_array_almost_equal(stats.ttest_ind_from_stats(*_desc_stats(rvs1, rvs3), equal_var=False), (t, p)) t,p = stats.ttest_ind(rvs1_2D.T, rvs2_2D.T, axis=0, equal_var=False) assert_array_almost_equal([t,p],tpr) args = _desc_stats(rvs1_2D.T, rvs2_2D.T) assert_array_almost_equal(stats.ttest_ind_from_stats(*args, equal_var=False), (t, p)) t,p = stats.ttest_ind(rvs1_2D, rvs2_2D, axis=1, equal_var=False) assert_array_almost_equal([t,p],tpr) args = _desc_stats(rvs1_2D, rvs2_2D, axis=1) assert_array_almost_equal(stats.ttest_ind_from_stats(*args, equal_var=False), (t, p)) # test for namedtuple attribute results attributes = ('statistic', 'pvalue') res = stats.ttest_ind(rvs1, rvs2, axis=0, equal_var=False) check_named_results(res, attributes) # test on 3 dimensions rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D]) rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D]) t,p = stats.ttest_ind(rvs1_3D, rvs2_3D, axis=1, equal_var=False) assert_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (2, 3)) args = _desc_stats(rvs1_3D, rvs2_3D, axis=1) t, p = stats.ttest_ind_from_stats(*args, equal_var=False) assert_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (2, 3)) t,p = stats.ttest_ind(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2, equal_var=False) assert_array_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (3, 2)) args = _desc_stats(np.rollaxis(rvs1_3D, 2), np.rollaxis(rvs2_3D, 2), axis=2) t, p = stats.ttest_ind_from_stats(*args, equal_var=False) assert_array_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (3, 2)) # test zero division problem t, p = stats.ttest_ind([0, 0, 0], [1, 1, 1], equal_var=False) assert_equal((np.abs(t), p), (np.inf, 0)) with np.errstate(all='ignore'): assert_equal(stats.ttest_ind([0, 0, 0], [0, 0, 0], equal_var=False), (np.nan, np.nan)) # check that nan in input array result in nan output anan = np.array([[1, np.nan], [-1, 1]]) assert_equal(stats.ttest_ind(anan, np.zeros((2, 2)), equal_var=False), ([0, np.nan], [1, np.nan])) def test_ttest_ind_nan_2nd_arg(): # regression test for gh-6134: nans in the second arg were not handled x = [np.nan, 2.0, 3.0, 4.0] y = [1.0, 2.0, 1.0, 2.0] r1 = stats.ttest_ind(x, y, nan_policy='omit') r2 = stats.ttest_ind(y, x, nan_policy='omit') assert_allclose(r2.statistic, -r1.statistic, atol=1e-15) assert_allclose(r2.pvalue, r1.pvalue, atol=1e-15) # NB: arguments are not paired when NaNs are dropped r3 = stats.ttest_ind(y, x[1:]) assert_allclose(r2, r3, atol=1e-15) # .. and this is consistent with R. R code: # x = c(NA, 2.0, 3.0, 4.0) # y = c(1.0, 2.0, 1.0, 2.0) # t.test(x, y, var.equal=TRUE) assert_allclose(r2, (-2.5354627641855498, 0.052181400457057901), atol=1e-15) def test_gh5686(): mean1, mean2 = np.array([1, 2]), np.array([3, 4]) std1, std2 = np.array([5, 3]), np.array([4, 5]) nobs1, nobs2 = np.array([130, 140]), np.array([100, 150]) # This will raise a TypeError unless gh-5686 is fixed. stats.ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2) def test_ttest_1samp_new(): n1, n2, n3 = (10,15,20) rvn1 = stats.norm.rvs(loc=5,scale=10,size=(n1,n2,n3)) # check multidimensional array and correct axis handling # deterministic rvn1 and rvn2 would be better as in test_ttest_rel t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n2,n3)),axis=0) t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=0) t3,p3 = stats.ttest_1samp(rvn1[:,0,0], 1) assert_array_almost_equal(t1,t2, decimal=14) assert_almost_equal(t1[0,0],t3, decimal=14) assert_equal(t1.shape, (n2,n3)) t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n3)),axis=1) t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=1) t3,p3 = stats.ttest_1samp(rvn1[0,:,0], 1) assert_array_almost_equal(t1,t2, decimal=14) assert_almost_equal(t1[0,0],t3, decimal=14) assert_equal(t1.shape, (n1,n3)) t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n2)),axis=2) t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=2) t3,p3 = stats.ttest_1samp(rvn1[0,0,:], 1) assert_array_almost_equal(t1,t2, decimal=14) assert_almost_equal(t1[0,0],t3, decimal=14) assert_equal(t1.shape, (n1,n2)) # test zero division problem t, p = stats.ttest_1samp([0, 0, 0], 1) assert_equal((np.abs(t), p), (np.inf, 0)) with np.errstate(all='ignore'): assert_equal(stats.ttest_1samp([0, 0, 0], 0), (np.nan, np.nan)) # check that nan in input array result in nan output anan = np.array([[1, np.nan],[-1, 1]]) assert_equal(stats.ttest_1samp(anan, 0), ([0, np.nan], [1, np.nan])) class TestDescribe(object): def test_describe_scalar(self): with suppress_warnings() as sup, np.errstate(invalid="ignore"): sup.filter(RuntimeWarning, "Degrees of freedom <= 0 for slice") n, mm, m, v, sk, kurt = stats.describe(4.) assert_equal(n, 1) assert_equal(mm, (4.0, 4.0)) assert_equal(m, 4.0) assert_(np.isnan(v)) assert_array_almost_equal(sk, 0.0, decimal=13) assert_array_almost_equal(kurt, -3.0, decimal=13) def test_describe_numbers(self): x = np.vstack((np.ones((3,4)), np.full((2, 4), 2))) nc, mmc = (5, ([1., 1., 1., 1.], [2., 2., 2., 2.])) mc = np.array([1.4, 1.4, 1.4, 1.4]) vc = np.array([0.3, 0.3, 0.3, 0.3]) skc = [0.40824829046386357] * 4 kurtc = [-1.833333333333333] * 4 n, mm, m, v, sk, kurt = stats.describe(x) assert_equal(n, nc) assert_equal(mm, mmc) assert_equal(m, mc) assert_equal(v, vc) assert_array_almost_equal(sk, skc, decimal=13) assert_array_almost_equal(kurt, kurtc, decimal=13) n, mm, m, v, sk, kurt = stats.describe(x.T, axis=1) assert_equal(n, nc) assert_equal(mm, mmc) assert_equal(m, mc) assert_equal(v, vc) assert_array_almost_equal(sk, skc, decimal=13) assert_array_almost_equal(kurt, kurtc, decimal=13) x = np.arange(10.) x[9] = np.nan nc, mmc = (9, (0.0, 8.0)) mc = 4.0 vc = 7.5 skc = 0.0 kurtc = -1.2300000000000002 n, mm, m, v, sk, kurt = stats.describe(x, nan_policy='omit') assert_equal(n, nc) assert_equal(mm, mmc) assert_equal(m, mc) assert_equal(v, vc) assert_array_almost_equal(sk, skc) assert_array_almost_equal(kurt, kurtc, decimal=13) assert_raises(ValueError, stats.describe, x, nan_policy='raise') assert_raises(ValueError, stats.describe, x, nan_policy='foobar') def test_describe_result_attributes(self): actual = stats.describe(np.arange(5)) attributes = ('nobs', 'minmax', 'mean', 'variance', 'skewness', 'kurtosis') check_named_results(actual, attributes) def test_describe_ddof(self): x = np.vstack((np.ones((3, 4)), np.full((2, 4), 2))) nc, mmc = (5, ([1., 1., 1., 1.], [2., 2., 2., 2.])) mc = np.array([1.4, 1.4, 1.4, 1.4]) vc = np.array([0.24, 0.24, 0.24, 0.24]) skc = [0.40824829046386357] * 4 kurtc = [-1.833333333333333] * 4 n, mm, m, v, sk, kurt = stats.describe(x, ddof=0) assert_equal(n, nc) assert_allclose(mm, mmc, rtol=1e-15) assert_allclose(m, mc, rtol=1e-15) assert_allclose(v, vc, rtol=1e-15) assert_array_almost_equal(sk, skc, decimal=13) assert_array_almost_equal(kurt, kurtc, decimal=13) def test_describe_axis_none(self): x = np.vstack((np.ones((3, 4)), np.full((2, 4), 2))) # expected values e_nobs, e_minmax = (20, (1.0, 2.0)) e_mean = 1.3999999999999999 e_var = 0.25263157894736848 e_skew = 0.4082482904638634 e_kurt = -1.8333333333333333 # actual values a = stats.describe(x, axis=None) assert_equal(a.nobs, e_nobs) assert_almost_equal(a.minmax, e_minmax) assert_almost_equal(a.mean, e_mean) assert_almost_equal(a.variance, e_var) assert_array_almost_equal(a.skewness, e_skew, decimal=13) assert_array_almost_equal(a.kurtosis, e_kurt, decimal=13) def test_describe_empty(self): assert_raises(ValueError, stats.describe, []) def test_normalitytests(): assert_raises(ValueError, stats.skewtest, 4.) assert_raises(ValueError, stats.kurtosistest, 4.) assert_raises(ValueError, stats.normaltest, 4.) # numbers verified with R: dagoTest in package fBasics st_normal, st_skew, st_kurt = (3.92371918, 1.98078826, -0.01403734) pv_normal, pv_skew, pv_kurt = (0.14059673, 0.04761502, 0.98880019) x = np.array((-2, -1, 0, 1, 2, 3)*4)**2 attributes = ('statistic', 'pvalue') assert_array_almost_equal(stats.normaltest(x), (st_normal, pv_normal)) check_named_results(stats.normaltest(x), attributes) assert_array_almost_equal(stats.skewtest(x), (st_skew, pv_skew)) check_named_results(stats.skewtest(x), attributes) assert_array_almost_equal(stats.kurtosistest(x), (st_kurt, pv_kurt)) check_named_results(stats.kurtosistest(x), attributes) # Test axis=None (equal to axis=0 for 1-D input) assert_array_almost_equal(stats.normaltest(x, axis=None), (st_normal, pv_normal)) assert_array_almost_equal(stats.skewtest(x, axis=None), (st_skew, pv_skew)) assert_array_almost_equal(stats.kurtosistest(x, axis=None), (st_kurt, pv_kurt)) x = np.arange(10.) x[9] = np.nan with np.errstate(invalid="ignore"): assert_array_equal(stats.skewtest(x), (np.nan, np.nan)) expected = (1.0184643553962129, 0.30845733195153502) assert_array_almost_equal(stats.skewtest(x, nan_policy='omit'), expected) with np.errstate(all='ignore'): assert_raises(ValueError, stats.skewtest, x, nan_policy='raise') assert_raises(ValueError, stats.skewtest, x, nan_policy='foobar') x = np.arange(30.) x[29] = np.nan with np.errstate(all='ignore'): assert_array_equal(stats.kurtosistest(x), (np.nan, np.nan)) expected = (-2.2683547379505273, 0.023307594135872967) assert_array_almost_equal(stats.kurtosistest(x, nan_policy='omit'), expected) assert_raises(ValueError, stats.kurtosistest, x, nan_policy='raise') assert_raises(ValueError, stats.kurtosistest, x, nan_policy='foobar') with np.errstate(all='ignore'): assert_array_equal(stats.normaltest(x), (np.nan, np.nan)) expected = (6.2260409514287449, 0.04446644248650191) assert_array_almost_equal(stats.normaltest(x, nan_policy='omit'), expected) assert_raises(ValueError, stats.normaltest, x, nan_policy='raise') assert_raises(ValueError, stats.normaltest, x, nan_policy='foobar') # regression test for issue gh-9033: x cleary non-normal but power of # negtative denom needs to be handled correctly to reject normality counts = [128, 0, 58, 7, 0, 41, 16, 0, 0, 167] x = np.hstack([np.full(c, i) for i, c in enumerate(counts)]) assert_equal(stats.kurtosistest(x)[1] < 0.01, True) class TestRankSums(object): def test_ranksums_result_attributes(self): res = stats.ranksums(np.arange(5), np.arange(25)) attributes = ('statistic', 'pvalue') check_named_results(res, attributes) class TestJarqueBera(object): def test_jarque_bera_stats(self): np.random.seed(987654321) x = np.random.normal(0, 1, 100000) y = np.random.chisquare(10000, 100000) z = np.random.rayleigh(1, 100000) assert_(stats.jarque_bera(x)[1] > stats.jarque_bera(y)[1]) assert_(stats.jarque_bera(x)[1] > stats.jarque_bera(z)[1]) assert_(stats.jarque_bera(y)[1] > stats.jarque_bera(z)[1]) def test_jarque_bera_array_like(self): np.random.seed(987654321) x = np.random.normal(0, 1, 100000) JB1, p1 = stats.jarque_bera(list(x)) JB2, p2 = stats.jarque_bera(tuple(x)) JB3, p3 = stats.jarque_bera(x.reshape(2, 50000)) assert_(JB1 == JB2 == JB3) assert_(p1 == p2 == p3) def test_jarque_bera_size(self): assert_raises(ValueError, stats.jarque_bera, []) def test_skewtest_too_few_samples(): # Regression test for ticket #1492. # skewtest requires at least 8 samples; 7 should raise a ValueError. x = np.arange(7.0) assert_raises(ValueError, stats.skewtest, x) def test_kurtosistest_too_few_samples(): # Regression test for ticket #1425. # kurtosistest requires at least 5 samples; 4 should raise a ValueError. x = np.arange(4.0) assert_raises(ValueError, stats.kurtosistest, x) class TestMannWhitneyU(object): X = [19.8958398126694, 19.5452691647182, 19.0577309166425, 21.716543054589, 20.3269502208702, 20.0009273294025, 19.3440043632957, 20.4216806548105, 19.0649894736528, 18.7808043120398, 19.3680942943298, 19.4848044069953, 20.7514611265663, 19.0894948874598, 19.4975522356628, 18.9971170734274, 20.3239606288208, 20.6921298083835, 19.0724259532507, 18.9825187935021, 19.5144462609601, 19.8256857844223, 20.5174677102032, 21.1122407995892, 17.9490854922535, 18.2847521114727, 20.1072217648826, 18.6439891962179, 20.4970638083542, 19.5567594734914] Y = [19.2790668029091, 16.993808441865, 18.5416338448258, 17.2634018833575, 19.1577183624616, 18.5119655377495, 18.6068455037221, 18.8358343362655, 19.0366413269742, 18.1135025515417, 19.2201873866958, 17.8344909022841, 18.2894380745856, 18.6661374133922, 19.9688601693252, 16.0672254617636, 19.00596360572, 19.201561539032, 19.0487501090183, 19.0847908674356] significant = 14 def test_mannwhitneyu_one_sided(self): u1, p1 = stats.mannwhitneyu(self.X, self.Y, alternative='less') u2, p2 = stats.mannwhitneyu(self.Y, self.X, alternative='greater') u3, p3 = stats.mannwhitneyu(self.X, self.Y, alternative='greater') u4, p4 = stats.mannwhitneyu(self.Y, self.X, alternative='less') assert_equal(p1, p2) assert_equal(p3, p4) assert_(p1 != p3) assert_equal(u1, 498) assert_equal(u2, 102) assert_equal(u3, 498) assert_equal(u4, 102) assert_approx_equal(p1, 0.999957683256589, significant=self.significant) assert_approx_equal(p3, 4.5941632666275e-05, significant=self.significant) def test_mannwhitneyu_two_sided(self): u1, p1 = stats.mannwhitneyu(self.X, self.Y, alternative='two-sided') u2, p2 = stats.mannwhitneyu(self.Y, self.X, alternative='two-sided') assert_equal(p1, p2) assert_equal(u1, 498) assert_equal(u2, 102) assert_approx_equal(p1, 9.188326533255e-05, significant=self.significant) def test_mannwhitneyu_default(self): # The default value for alternative is None with suppress_warnings() as sup: sup.filter(DeprecationWarning, "Calling `mannwhitneyu` without .*`alternative`") u1, p1 = stats.mannwhitneyu(self.X, self.Y) u2, p2 = stats.mannwhitneyu(self.Y, self.X) u3, p3 = stats.mannwhitneyu(self.X, self.Y, alternative=None) assert_equal(p1, p2) assert_equal(p1, p3) assert_equal(u1, 102) assert_equal(u2, 102) assert_equal(u3, 102) assert_approx_equal(p1, 4.5941632666275e-05, significant=self.significant) def test_mannwhitneyu_no_correct_one_sided(self): u1, p1 = stats.mannwhitneyu(self.X, self.Y, False, alternative='less') u2, p2 = stats.mannwhitneyu(self.Y, self.X, False, alternative='greater') u3, p3 = stats.mannwhitneyu(self.X, self.Y, False, alternative='greater') u4, p4 = stats.mannwhitneyu(self.Y, self.X, False, alternative='less') assert_equal(p1, p2) assert_equal(p3, p4) assert_(p1 != p3) assert_equal(u1, 498) assert_equal(u2, 102) assert_equal(u3, 498) assert_equal(u4, 102) assert_approx_equal(p1, 0.999955905990004, significant=self.significant) assert_approx_equal(p3, 4.40940099958089e-05, significant=self.significant) def test_mannwhitneyu_no_correct_two_sided(self): u1, p1 = stats.mannwhitneyu(self.X, self.Y, False, alternative='two-sided') u2, p2 = stats.mannwhitneyu(self.Y, self.X, False, alternative='two-sided') assert_equal(p1, p2) assert_equal(u1, 498) assert_equal(u2, 102) assert_approx_equal(p1, 8.81880199916178e-05, significant=self.significant) def test_mannwhitneyu_no_correct_default(self): # The default value for alternative is None with suppress_warnings() as sup: sup.filter(DeprecationWarning, "Calling `mannwhitneyu` without .*`alternative`") u1, p1 = stats.mannwhitneyu(self.X, self.Y, False) u2, p2 = stats.mannwhitneyu(self.Y, self.X, False) u3, p3 = stats.mannwhitneyu(self.X, self.Y, False, alternative=None) assert_equal(p1, p2) assert_equal(p1, p3) assert_equal(u1, 102) assert_equal(u2, 102) assert_equal(u3, 102) assert_approx_equal(p1, 4.40940099958089e-05, significant=self.significant) def test_mannwhitneyu_ones(self): x = np.array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 2., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 3., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) y = np.array([1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1., 1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 1., 1., 3., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 1., 1., 2., 1., 1., 2., 1., 2., 1., 1., 1., 1., 2., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1.]) # p-value verified with matlab and R to 5 significant digits assert_array_almost_equal(stats.stats.mannwhitneyu(x, y, alternative='less'), (16980.5, 2.8214327656317373e-005), decimal=12) def test_mannwhitneyu_result_attributes(self): # test for namedtuple attribute results attributes = ('statistic', 'pvalue') res = stats.mannwhitneyu(self.X, self.Y, alternative="less") check_named_results(res, attributes) def test_pointbiserial(): # same as mstats test except for the nan # Test data: https://web.archive.org/web/20060504220742/https://support.sas.com/ctx/samples/index.jsp?sid=490&tab=output x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,1] y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0, 2.8,2.8,2.5,2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1, 0.8,0.7,0.6,0.5,0.2,0.2,0.1] assert_almost_equal(stats.pointbiserialr(x, y)[0], 0.36149, 5) # test for namedtuple attribute results attributes = ('correlation', 'pvalue') res = stats.pointbiserialr(x, y) check_named_results(res, attributes) def test_obrientransform(): # A couple tests calculated by hand. x1 = np.array([0, 2, 4]) t1 = stats.obrientransform(x1) expected = [7, -2, 7] assert_allclose(t1[0], expected) x2 = np.array([0, 3, 6, 9]) t2 = stats.obrientransform(x2) expected = np.array([30, 0, 0, 30]) assert_allclose(t2[0], expected) # Test two arguments. a, b = stats.obrientransform(x1, x2) assert_equal(a, t1[0]) assert_equal(b, t2[0]) # Test three arguments. a, b, c = stats.obrientransform(x1, x2, x1) assert_equal(a, t1[0]) assert_equal(b, t2[0]) assert_equal(c, t1[0]) # This is a regression test to check np.var replacement. # The author of this test didn't separately verify the numbers. x1 = np.arange(5) result = np.array( [[5.41666667, 1.04166667, -0.41666667, 1.04166667, 5.41666667], [21.66666667, 4.16666667, -1.66666667, 4.16666667, 21.66666667]]) assert_array_almost_equal(stats.obrientransform(x1, 2*x1), result, decimal=8) # Example from "O'Brien Test for Homogeneity of Variance" # by Herve Abdi. values = range(5, 11) reps = np.array([5, 11, 9, 3, 2, 2]) data = np.repeat(values, reps) transformed_values = np.array([3.1828, 0.5591, 0.0344, 1.6086, 5.2817, 11.0538]) expected = np.repeat(transformed_values, reps) result = stats.obrientransform(data) assert_array_almost_equal(result[0], expected, decimal=4) def check_equal_gmean(array_like, desired, axis=None, dtype=None, rtol=1e-7): # Note this doesn't test when axis is not specified x = stats.gmean(array_like, axis=axis, dtype=dtype) assert_allclose(x, desired, rtol=rtol) assert_equal(x.dtype, dtype) def check_equal_hmean(array_like, desired, axis=None, dtype=None, rtol=1e-7): x = stats.hmean(array_like, axis=axis, dtype=dtype) assert_allclose(x, desired, rtol=rtol) assert_equal(x.dtype, dtype) class TestHarMean(object): def test_1d_list(self): # Test a 1d list a = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] desired = 34.1417152147 check_equal_hmean(a, desired) a = [1, 2, 3, 4] desired = 4. / (1. / 1 + 1. / 2 + 1. / 3 + 1. / 4) check_equal_hmean(a, desired) def test_1d_array(self): # Test a 1d array a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) desired = 34.1417152147 check_equal_hmean(a, desired) def test_1d_array_with_zero(self): a = np.array([1, 0]) desired = 0.0 assert_equal(stats.hmean(a), desired) def test_1d_array_with_negative_value(self): a = np.array([1, 0, -1]) assert_raises(ValueError, stats.hmean, a) # Note the next tests use axis=None as default, not axis=0 def test_2d_list(self): # Test a 2d list a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = 38.6696271841 check_equal_hmean(a, desired) def test_2d_array(self): # Test a 2d array a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = 38.6696271841 check_equal_hmean(np.array(a), desired) def test_2d_axis0(self): # Test a 2d list with axis=0 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = np.array([22.88135593, 39.13043478, 52.90076336, 65.45454545]) check_equal_hmean(a, desired, axis=0) def test_2d_axis0_with_zero(self): a = [[10, 0, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = np.array([22.88135593, 0.0, 52.90076336, 65.45454545]) assert_allclose(stats.hmean(a, axis=0), desired) def test_2d_axis1(self): # Test a 2d list with axis=1 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = np.array([19.2, 63.03939962, 103.80078637]) check_equal_hmean(a, desired, axis=1) def test_2d_axis1_with_zero(self): a = [[10, 0, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = np.array([0.0, 63.03939962, 103.80078637]) assert_allclose(stats.hmean(a, axis=1), desired) def test_2d_matrix_axis0(self): # Test a 2d list with axis=0 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = matrix([[22.88135593, 39.13043478, 52.90076336, 65.45454545]]) check_equal_hmean(matrix(a), desired, axis=0) def test_2d_matrix_axis1(self): # Test a 2d list with axis=1 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = matrix([[19.2, 63.03939962, 103.80078637]]).T check_equal_hmean(matrix(a), desired, axis=1) class TestGeoMean(object): def test_1d_list(self): # Test a 1d list a = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] desired = 45.2872868812 check_equal_gmean(a, desired) a = [1, 2, 3, 4] desired = power(1 * 2 * 3 * 4, 1. / 4.) check_equal_gmean(a, desired, rtol=1e-14) def test_1d_array(self): # Test a 1d array a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) desired = 45.2872868812 check_equal_gmean(a, desired) a = array([1, 2, 3, 4], float32) desired = power(1 * 2 * 3 * 4, 1. / 4.) check_equal_gmean(a, desired, dtype=float32) # Note the next tests use axis=None as default, not axis=0 def test_2d_list(self): # Test a 2d list a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = 52.8885199 check_equal_gmean(a, desired) def test_2d_array(self): # Test a 2d array a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = 52.8885199 check_equal_gmean(array(a), desired) def test_2d_axis0(self): # Test a 2d list with axis=0 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = np.array([35.56893304, 49.32424149, 61.3579244, 72.68482371]) check_equal_gmean(a, desired, axis=0) a = array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) desired = array([1, 2, 3, 4]) check_equal_gmean(a, desired, axis=0, rtol=1e-14) def test_2d_axis1(self): # Test a 2d list with axis=1 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = np.array([22.13363839, 64.02171746, 104.40086817]) check_equal_gmean(a, desired, axis=1) a = array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) v = power(1 * 2 * 3 * 4, 1. / 4.) desired = array([v, v, v]) check_equal_gmean(a, desired, axis=1, rtol=1e-14) def test_2d_matrix_axis0(self): # Test a 2d list with axis=0 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = matrix([[35.56893304, 49.32424149, 61.3579244, 72.68482371]]) check_equal_gmean(matrix(a), desired, axis=0) a = array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) desired = matrix([1, 2, 3, 4]) check_equal_gmean(matrix(a), desired, axis=0, rtol=1e-14) a = array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) desired = matrix(stats.gmean(a, axis=0)) check_equal_gmean(matrix(a), desired, axis=0, rtol=1e-14) def test_2d_matrix_axis1(self): # Test a 2d list with axis=1 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] desired = matrix([[22.13363839, 64.02171746, 104.40086817]]).T check_equal_gmean(matrix(a), desired, axis=1) a = array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) v = power(1 * 2 * 3 * 4, 1. / 4.) desired = matrix([[v], [v], [v]]) check_equal_gmean(matrix(a), desired, axis=1, rtol=1e-14) def test_large_values(self): a = array([1e100, 1e200, 1e300]) desired = 1e200 check_equal_gmean(a, desired, rtol=1e-13) def test_1d_list0(self): # Test a 1d list with zero element a = [10, 20, 30, 40, 50, 60, 70, 80, 90, 0] desired = 0.0 # due to exp(-inf)=0 olderr = np.seterr(all='ignore') try: check_equal_gmean(a, desired) finally: np.seterr(**olderr) def test_1d_array0(self): # Test a 1d array with zero element a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 0]) desired = 0.0 # due to exp(-inf)=0 olderr = np.seterr(all='ignore') try: check_equal_gmean(a, desired) finally: np.seterr(**olderr) class TestGeometricStandardDeviation(object): # must add 1 as `gstd` is only defined for positive values array_1d = np.arange(2 * 3 * 4) + 1 gstd_array_1d = 2.294407613602 array_3d = array_1d.reshape(2, 3, 4) def test_1d_array(self): gstd_actual = stats.gstd(self.array_1d) assert_allclose(gstd_actual, self.gstd_array_1d) def test_1d_numeric_array_like_input(self): gstd_actual = stats.gstd(tuple(self.array_1d)) assert_allclose(gstd_actual, self.gstd_array_1d) def test_raises_value_error_non_array_like_input(self): with pytest.raises(ValueError, match='Invalid array input'): stats.gstd('This should fail as it can not be cast to an array.') def test_raises_value_error_zero_entry(self): with pytest.raises(ValueError, match='Non positive value'): stats.gstd(np.append(self.array_1d, [0])) def test_raises_value_error_negative_entry(self): with pytest.raises(ValueError, match='Non positive value'): stats.gstd(np.append(self.array_1d, [-1])) def test_raises_value_error_inf_entry(self): with pytest.raises(ValueError, match='Infinite value'): stats.gstd(np.append(self.array_1d, [np.inf])) def test_propagates_nan_values(self): a = array([[1, 1, 1, 16], [np.nan, 1, 2, 3]]) gstd_actual = stats.gstd(a, axis=1) assert_allclose(gstd_actual, np.array([4, np.nan])) def test_ddof_equal_to_number_of_observations(self): with pytest.raises(ValueError, match='Degrees of freedom <= 0'): stats.gstd(self.array_1d, ddof=self.array_1d.size) def test_3d_array(self): gstd_actual = stats.gstd(self.array_3d, axis=None) assert_allclose(gstd_actual, self.gstd_array_1d) def test_3d_array_axis_type_tuple(self): gstd_actual = stats.gstd(self.array_3d, axis=(1,2)) assert_allclose(gstd_actual, [2.12939215, 1.22120169]) def test_3d_array_axis_0(self): gstd_actual = stats.gstd(self.array_3d, axis=0) gstd_desired = np.array([ [6.1330555493918, 3.958900210120, 3.1206598248344, 2.6651441426902], [2.3758135028411, 2.174581428192, 2.0260062829505, 1.9115518327308], [1.8205343606803, 1.746342404566, 1.6846557065742, 1.6325269194382] ]) assert_allclose(gstd_actual, gstd_desired) def test_3d_array_axis_1(self): gstd_actual = stats.gstd(self.array_3d, axis=1) gstd_desired = np.array([ [3.118993630946, 2.275985934063, 1.933995977619, 1.742896469724], [1.271693593916, 1.254158641801, 1.238774141609, 1.225164057869] ]) assert_allclose(gstd_actual, gstd_desired) def test_3d_array_axis_2(self): gstd_actual = stats.gstd(self.array_3d, axis=2) gstd_desired = np.array([ [1.8242475707664, 1.2243686572447, 1.1318311657788], [1.0934830582351, 1.0724479791887, 1.0591498540749] ]) assert_allclose(gstd_actual, gstd_desired) def test_masked_3d_array(self): ma = np.ma.masked_where(self.array_3d > 16, self.array_3d) gstd_actual = stats.gstd(ma, axis=2) gstd_desired = stats.gstd(self.array_3d, axis=2) mask = [[0, 0, 0], [0, 1, 1]] assert_allclose(gstd_actual, gstd_desired) assert_equal(gstd_actual.mask, mask) def test_binomtest(): # precision tests compared to R for ticket:986 pp = np.concatenate((np.linspace(0.1,0.2,5), np.linspace(0.45,0.65,5), np.linspace(0.85,0.95,5))) n = 501 x = 450 results = [0.0, 0.0, 1.0159969301994141e-304, 2.9752418572150531e-275, 7.7668382922535275e-250, 2.3381250925167094e-099, 7.8284591587323951e-081, 9.9155947819961383e-065, 2.8729390725176308e-050, 1.7175066298388421e-037, 0.0021070691951093692, 0.12044570587262322, 0.88154763174802508, 0.027120993063129286, 2.6102587134694721e-006] for p, res in zip(pp,results): assert_approx_equal(stats.binom_test(x, n, p), res, significant=12, err_msg='fail forp=%f' % p) assert_approx_equal(stats.binom_test(50,100,0.1), 5.8320387857343647e-024, significant=12, err_msg='fail forp=%f' % p) def test_binomtest2(): # test added for issue #2384 res2 = [ [1.0, 1.0], [0.5,1.0,0.5], [0.25,1.00,1.00,0.25], [0.125,0.625,1.000,0.625,0.125], [0.0625,0.3750,1.0000,1.0000,0.3750,0.0625], [0.03125,0.21875,0.68750,1.00000,0.68750,0.21875,0.03125], [0.015625,0.125000,0.453125,1.000000,1.000000,0.453125,0.125000,0.015625], [0.0078125,0.0703125,0.2890625,0.7265625,1.0000000,0.7265625,0.2890625, 0.0703125,0.0078125], [0.00390625,0.03906250,0.17968750,0.50781250,1.00000000,1.00000000, 0.50781250,0.17968750,0.03906250,0.00390625], [0.001953125,0.021484375,0.109375000,0.343750000,0.753906250,1.000000000, 0.753906250,0.343750000,0.109375000,0.021484375,0.001953125] ] for k in range(1, 11): res1 = [stats.binom_test(v, k, 0.5) for v in range(k + 1)] assert_almost_equal(res1, res2[k-1], decimal=10) def test_binomtest3(): # test added for issue #2384 # test when x == n*p and neighbors res3 = [stats.binom_test(v, v*k, 1./k) for v in range(1, 11) for k in range(2, 11)] assert_equal(res3, np.ones(len(res3), int)) #> bt=c() #> for(i in as.single(1:10)){for(k in as.single(2:10)){bt = c(bt, binom.test(i-1, k*i,(1/k))$p.value); print(c(i+1, k*i,(1/k)))}} binom_testm1 = np.array([ 0.5, 0.5555555555555556, 0.578125, 0.5904000000000003, 0.5981224279835393, 0.603430543396034, 0.607304096221924, 0.610255656871054, 0.612579511000001, 0.625, 0.670781893004115, 0.68853759765625, 0.6980101120000006, 0.703906431368616, 0.70793209416498, 0.7108561134173507, 0.713076544331419, 0.714820192935702, 0.6875, 0.7268709038256367, 0.7418963909149174, 0.74986110468096, 0.7548015520398076, 0.7581671424768577, 0.760607984787832, 0.762459425024199, 0.7639120677676575, 0.7265625, 0.761553963657302, 0.774800934828818, 0.7818005980538996, 0.78613491480358, 0.789084353140195, 0.7912217659828884, 0.79284214559524, 0.794112956558801, 0.75390625, 0.7856929451142176, 0.7976688481430754, 0.8039848974727624, 0.807891868948366, 0.8105487660137676, 0.812473307174702, 0.8139318233591120, 0.815075399104785, 0.7744140625, 0.8037322594985427, 0.814742863657656, 0.8205425178645808, 0.8241275984172285, 0.8265645374416, 0.8283292196088257, 0.829666291102775, 0.8307144686362666, 0.7905273437499996, 0.8178712053954738, 0.828116983756619, 0.833508948940494, 0.8368403871552892, 0.839104213210105, 0.840743186196171, 0.84198481438049, 0.8429580531563676, 0.803619384765625, 0.829338573944648, 0.8389591907548646, 0.84401876783902, 0.84714369697889, 0.8492667010581667, 0.850803474598719, 0.851967542858308, 0.8528799045949524, 0.8145294189453126, 0.838881732845347, 0.847979024541911, 0.852760894015685, 0.8557134656773457, 0.8577190131799202, 0.85917058278431, 0.860270010472127, 0.861131648404582, 0.823802947998047, 0.846984756807511, 0.855635653643743, 0.860180994825685, 0.86298688573253, 0.864892525675245, 0.866271647085603, 0.867316125625004, 0.8681346531755114 ]) # > bt=c() # > for(i in as.single(1:10)){for(k in as.single(2:10)){bt = c(bt, binom.test(i+1, k*i,(1/k))$p.value); print(c(i+1, k*i,(1/k)))}} binom_testp1 = np.array([ 0.5, 0.259259259259259, 0.26171875, 0.26272, 0.2632244513031551, 0.2635138663069203, 0.2636951804161073, 0.2638162407564354, 0.2639010709000002, 0.625, 0.4074074074074074, 0.42156982421875, 0.4295746560000003, 0.43473045988554, 0.4383309503172684, 0.4409884859402103, 0.4430309389962837, 0.444649849401104, 0.6875, 0.4927602499618962, 0.5096031427383425, 0.5189636628480, 0.5249280070771274, 0.5290623300865124, 0.5320974248125793, 0.5344204730474308, 0.536255847400756, 0.7265625, 0.5496019313526808, 0.5669248746708034, 0.576436455045805, 0.5824538812831795, 0.5866053321547824, 0.589642781414643, 0.5919618019300193, 0.593790427805202, 0.75390625, 0.590868349763505, 0.607983393277209, 0.617303847446822, 0.623172512167948, 0.627208862156123, 0.6301556891501057, 0.632401894928977, 0.6341708982290303, 0.7744140625, 0.622562037497196, 0.639236102912278, 0.648263335014579, 0.65392850011132, 0.657816519817211, 0.660650782947676, 0.662808780346311, 0.6645068560246006, 0.7905273437499996, 0.6478843304312477, 0.6640468318879372, 0.6727589686071775, 0.6782129857784873, 0.681950188903695, 0.684671508668418, 0.686741824999918, 0.688369886732168, 0.803619384765625, 0.668716055304315, 0.684360013879534, 0.6927642396829181, 0.6980155964704895, 0.701609591890657, 0.7042244320992127, 0.7062125081341817, 0.707775152962577, 0.8145294189453126, 0.686243374488305, 0.7013873696358975, 0.709501223328243, 0.714563595144314, 0.718024953392931, 0.7205416252126137, 0.722454130389843, 0.723956813292035, 0.823802947998047, 0.701255953767043, 0.715928221686075, 0.723772209289768, 0.7286603031173616, 0.7319999279787631, 0.7344267920995765, 0.736270323773157, 0.737718376096348 ]) res4_p1 = [stats.binom_test(v+1, v*k, 1./k) for v in range(1, 11) for k in range(2, 11)] res4_m1 = [stats.binom_test(v-1, v*k, 1./k) for v in range(1, 11) for k in range(2, 11)] assert_almost_equal(res4_p1, binom_testp1, decimal=13) assert_almost_equal(res4_m1, binom_testm1, decimal=13) class TestTrim(object): # test trim functions def test_trim1(self): a = np.arange(11) assert_equal(np.sort(stats.trim1(a, 0.1)), np.arange(10)) assert_equal(np.sort(stats.trim1(a, 0.2)), np.arange(9)) assert_equal(np.sort(stats.trim1(a, 0.2, tail='left')), np.arange(2, 11)) assert_equal(np.sort(stats.trim1(a, 3/11., tail='left')), np.arange(3, 11)) assert_equal(stats.trim1(a, 1.0), []) assert_equal(stats.trim1(a, 1.0, tail='left'), []) # empty input assert_equal(stats.trim1([], 0.1), []) assert_equal(stats.trim1([], 3/11., tail='left'), []) assert_equal(stats.trim1([], 4/6.), []) def test_trimboth(self): a = np.arange(11) assert_equal(np.sort(stats.trimboth(a, 3/11.)), np.arange(3, 8)) assert_equal(np.sort(stats.trimboth(a, 0.2)), np.array([2, 3, 4, 5, 6, 7, 8])) assert_equal(np.sort(stats.trimboth(np.arange(24).reshape(6, 4), 0.2)), np.arange(4, 20).reshape(4, 4)) assert_equal(np.sort(stats.trimboth(np.arange(24).reshape(4, 6).T, 2/6.)), np.array([[2, 8, 14, 20], [3, 9, 15, 21]])) assert_raises(ValueError, stats.trimboth, np.arange(24).reshape(4, 6).T, 4/6.) # empty input assert_equal(stats.trimboth([], 0.1), []) assert_equal(stats.trimboth([], 3/11.), []) assert_equal(stats.trimboth([], 4/6.), []) def test_trim_mean(self): # don't use pre-sorted arrays a = np.array([4, 8, 2, 0, 9, 5, 10, 1, 7, 3, 6]) idx = np.array([3, 5, 0, 1, 2, 4]) a2 = np.arange(24).reshape(6, 4)[idx, :] a3 = np.arange(24).reshape(6, 4, order='F')[idx, :] assert_equal(stats.trim_mean(a3, 2/6.), np.array([2.5, 8.5, 14.5, 20.5])) assert_equal(stats.trim_mean(a2, 2/6.), np.array([10., 11., 12., 13.])) idx4 = np.array([1, 0, 3, 2]) a4 = np.arange(24).reshape(4, 6)[idx4, :] assert_equal(stats.trim_mean(a4, 2/6.), np.array([9., 10., 11., 12., 13., 14.])) # shuffled arange(24) as array_like a = [7, 11, 12, 21, 16, 6, 22, 1, 5, 0, 18, 10, 17, 9, 19, 15, 23, 20, 2, 14, 4, 13, 8, 3] assert_equal(stats.trim_mean(a, 2/6.), 11.5) assert_equal(stats.trim_mean([5,4,3,1,2,0], 2/6.), 2.5) # check axis argument np.random.seed(1234) a = np.random.randint(20, size=(5, 6, 4, 7)) for axis in [0, 1, 2, 3, -1]: res1 = stats.trim_mean(a, 2/6., axis=axis) res2 = stats.trim_mean(np.rollaxis(a, axis), 2/6.) assert_equal(res1, res2) res1 = stats.trim_mean(a, 2/6., axis=None) res2 = stats.trim_mean(a.ravel(), 2/6.) assert_equal(res1, res2) assert_raises(ValueError, stats.trim_mean, a, 0.6) # empty input assert_equal(stats.trim_mean([], 0.0), np.nan) assert_equal(stats.trim_mean([], 0.6), np.nan) class TestSigmaClip(object): def test_sigmaclip1(self): a = np.concatenate((np.linspace(9.5, 10.5, 31), np.linspace(0, 20, 5))) fact = 4 # default c, low, upp = stats.sigmaclip(a) assert_(c.min() > low) assert_(c.max() < upp) assert_equal(low, c.mean() - fact*c.std()) assert_equal(upp, c.mean() + fact*c.std()) assert_equal(c.size, a.size) def test_sigmaclip2(self): a = np.concatenate((np.linspace(9.5, 10.5, 31), np.linspace(0, 20, 5))) fact = 1.5 c, low, upp = stats.sigmaclip(a, fact, fact) assert_(c.min() > low) assert_(c.max() < upp) assert_equal(low, c.mean() - fact*c.std()) assert_equal(upp, c.mean() + fact*c.std()) assert_equal(c.size, 4) assert_equal(a.size, 36) # check original array unchanged def test_sigmaclip3(self): a = np.concatenate((np.linspace(9.5, 10.5, 11), np.linspace(-100, -50, 3))) fact = 1.8 c, low, upp = stats.sigmaclip(a, fact, fact) assert_(c.min() > low) assert_(c.max() < upp) assert_equal(low, c.mean() - fact*c.std()) assert_equal(upp, c.mean() + fact*c.std()) assert_equal(c, np.linspace(9.5, 10.5, 11)) def test_sigmaclip_result_attributes(self): a = np.concatenate((np.linspace(9.5, 10.5, 11), np.linspace(-100, -50, 3))) fact = 1.8 res = stats.sigmaclip(a, fact, fact) attributes = ('clipped', 'lower', 'upper') check_named_results(res, attributes) def test_std_zero(self): # regression test #8632 x = np.ones(10) assert_equal(stats.sigmaclip(x)[0], x) class TestFOneWay(object): def test_trivial(self): # A trivial test of stats.f_oneway, with F=0. F, p = stats.f_oneway([0,2], [0,2]) assert_equal(F, 0.0) def test_basic(self): # Despite being a floating point calculation, this data should # result in F being exactly 2.0. F, p = stats.f_oneway([0,2], [2,4]) assert_equal(F, 2.0) def test_large_integer_array(self): a = np.array([655, 788], dtype=np.uint16) b = np.array([789, 772], dtype=np.uint16) F, p = stats.f_oneway(a, b) assert_almost_equal(F, 0.77450216931805538) def test_result_attributes(self): a = np.array([655, 788], dtype=np.uint16) b = np.array([789, 772], dtype=np.uint16) res = stats.f_oneway(a, b) attributes = ('statistic', 'pvalue') check_named_results(res, attributes) def test_nist(self): # These are the nist ANOVA files. They can be found at: # https://www.itl.nist.gov/div898/strd/anova/anova.html filenames = ['SiRstv.dat', 'SmLs01.dat', 'SmLs02.dat', 'SmLs03.dat', 'AtmWtAg.dat', 'SmLs04.dat', 'SmLs05.dat', 'SmLs06.dat', 'SmLs07.dat', 'SmLs08.dat', 'SmLs09.dat'] for test_case in filenames: rtol = 1e-7 fname = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data/nist_anova', test_case)) with open(fname, 'r') as f: content = f.read().split('\n') certified = [line.split() for line in content[40:48] if line.strip()] dataf = np.loadtxt(fname, skiprows=60) y, x = dataf.T y = y.astype(int) caty = np.unique(y) f = float(certified[0][-1]) xlist = [x[y == i] for i in caty] res = stats.f_oneway(*xlist) # With the hard test cases we relax the tolerance a bit. hard_tc = ('SmLs07.dat', 'SmLs08.dat', 'SmLs09.dat') if test_case in hard_tc: rtol = 1e-4 assert_allclose(res[0], f, rtol=rtol, err_msg='Failing testcase: %s' % test_case) class TestKruskal(object): def test_simple(self): x = [1] y = [2] h, p = stats.kruskal(x, y) assert_equal(h, 1.0) assert_approx_equal(p, stats.distributions.chi2.sf(h, 1)) h, p = stats.kruskal(np.array(x), np.array(y)) assert_equal(h, 1.0) assert_approx_equal(p, stats.distributions.chi2.sf(h, 1)) def test_basic(self): x = [1, 3, 5, 7, 9] y = [2, 4, 6, 8, 10] h, p = stats.kruskal(x, y) assert_approx_equal(h, 3./11, significant=10) assert_approx_equal(p, stats.distributions.chi2.sf(3./11, 1)) h, p = stats.kruskal(np.array(x), np.array(y)) assert_approx_equal(h, 3./11, significant=10) assert_approx_equal(p, stats.distributions.chi2.sf(3./11, 1)) def test_simple_tie(self): x = [1] y = [1, 2] h_uncorr = 1.5**2 + 2*2.25**2 - 12 corr = 0.75 expected = h_uncorr / corr # 0.5 h, p = stats.kruskal(x, y) # Since the expression is simple and the exact answer is 0.5, it # should be safe to use assert_equal(). assert_equal(h, expected) def test_another_tie(self): x = [1, 1, 1, 2] y = [2, 2, 2, 2] h_uncorr = (12. / 8. / 9.) * 4 * (3**2 + 6**2) - 3 * 9 corr = 1 - float(3**3 - 3 + 5**3 - 5) / (8**3 - 8) expected = h_uncorr / corr h, p = stats.kruskal(x, y) assert_approx_equal(h, expected) def test_three_groups(self): # A test of stats.kruskal with three groups, with ties. x = [1, 1, 1] y = [2, 2, 2] z = [2, 2] h_uncorr = (12. / 8. / 9.) * (3*2**2 + 3*6**2 + 2*6**2) - 3 * 9 # 5.0 corr = 1 - float(3**3 - 3 + 5**3 - 5) / (8**3 - 8) expected = h_uncorr / corr # 7.0 h, p = stats.kruskal(x, y, z) assert_approx_equal(h, expected) assert_approx_equal(p, stats.distributions.chi2.sf(h, 2)) def test_empty(self): # A test of stats.kruskal with three groups, with ties. x = [1, 1, 1] y = [2, 2, 2] z = [] assert_equal(stats.kruskal(x, y, z), (np.nan, np.nan)) def test_kruskal_result_attributes(self): x = [1, 3, 5, 7, 9] y = [2, 4, 6, 8, 10] res = stats.kruskal(x, y) attributes = ('statistic', 'pvalue') check_named_results(res, attributes) def test_nan_policy(self): x = np.arange(10.) x[9] = np.nan assert_equal(stats.kruskal(x, x), (np.nan, np.nan)) assert_almost_equal(stats.kruskal(x, x, nan_policy='omit'), (0.0, 1.0)) assert_raises(ValueError, stats.kruskal, x, x, nan_policy='raise') assert_raises(ValueError, stats.kruskal, x, x, nan_policy='foobar') def test_large_no_samples(self): # Test to see if large samples are handled correctly. n = 50000 x = np.random.randn(n) y = np.random.randn(n) + 50 h, p = stats.kruskal(x, y) expected = 0 assert_approx_equal(p, expected) class TestCombinePvalues(object): def test_fisher(self): # Example taken from https://en.wikipedia.org/wiki/Fisher%27s_exact_test#Example xsq, p = stats.combine_pvalues([.01, .2, .3], method='fisher') assert_approx_equal(p, 0.02156, significant=4) def test_stouffer(self): Z, p = stats.combine_pvalues([.01, .2, .3], method='stouffer') assert_approx_equal(p, 0.01651, significant=4) def test_stouffer2(self): Z, p = stats.combine_pvalues([.5, .5, .5], method='stouffer') assert_approx_equal(p, 0.5, significant=4) def test_weighted_stouffer(self): Z, p = stats.combine_pvalues([.01, .2, .3], method='stouffer', weights=np.ones(3)) assert_approx_equal(p, 0.01651, significant=4) def test_weighted_stouffer2(self): Z, p = stats.combine_pvalues([.01, .2, .3], method='stouffer', weights=np.array((1, 4, 9))) assert_approx_equal(p, 0.1464, significant=4) def test_pearson(self): Z, p = stats.combine_pvalues([.01, .2, .3], method='pearson') assert_approx_equal(p, 0.97787, significant=4) def test_tippett(self): Z, p = stats.combine_pvalues([.01, .2, .3], method='tippett') assert_approx_equal(p, 0.970299, significant=4) def test_mudholkar_george(self): Z, p = stats.combine_pvalues([.01, .2, .3], method='mudholkar_george') assert_approx_equal(p, 3.7191571041915e-07, significant=4) def test_mudholkar_george_equal_fisher_minus_pearson(self): Z, p = stats.combine_pvalues([.01, .2, .3], method='mudholkar_george') Z_f, p_f = stats.combine_pvalues([.01, .2, .3], method='fisher') Z_p, p_p = stats.combine_pvalues([.01, .2, .3], method='pearson') # 0.5 here is because logistic = log(u) - log(1-u), i.e. no 2 factors assert_approx_equal(0.5 * (Z_f-Z_p), Z, significant=4) class TestCdfDistanceValidation(object): """ Test that _cdf_distance() (via wasserstein_distance()) raises ValueErrors for bad inputs. """ def test_distinct_value_and_weight_lengths(self): # When the number of weights does not match the number of values, # a ValueError should be raised. assert_raises(ValueError, stats.wasserstein_distance, [1], [2], [4], [3, 1]) assert_raises(ValueError, stats.wasserstein_distance, [1], [2], [1, 0]) def test_zero_weight(self): # When a distribution is given zero weight, a ValueError should be # raised. assert_raises(ValueError, stats.wasserstein_distance, [0, 1], [2], [0, 0]) assert_raises(ValueError, stats.wasserstein_distance, [0, 1], [2], [3, 1], [0]) def test_negative_weights(self): # A ValueError should be raised if there are any negative weights. assert_raises(ValueError, stats.wasserstein_distance, [0, 1], [2, 2], [1, 1], [3, -1]) def test_empty_distribution(self): # A ValueError should be raised when trying to measure the distance # between something and nothing. assert_raises(ValueError, stats.wasserstein_distance, [], [2, 2]) assert_raises(ValueError, stats.wasserstein_distance, [1], []) def test_inf_weight(self): # An inf weight is not valid. assert_raises(ValueError, stats.wasserstein_distance, [1, 2, 1], [1, 1], [1, np.inf, 1], [1, 1]) class TestWassersteinDistance(object): """ Tests for wasserstein_distance() output values. """ def test_simple(self): # For basic distributions, the value of the Wasserstein distance is # straightforward. assert_almost_equal( stats.wasserstein_distance([0, 1], [0], [1, 1], [1]), .5) assert_almost_equal(stats.wasserstein_distance( [0, 1], [0], [3, 1], [1]), .25) assert_almost_equal(stats.wasserstein_distance( [0, 2], [0], [1, 1], [1]), 1) assert_almost_equal(stats.wasserstein_distance( [0, 1, 2], [1, 2, 3]), 1) def test_same_distribution(self): # Any distribution moved to itself should have a Wasserstein distance of # zero. assert_equal(stats.wasserstein_distance([1, 2, 3], [2, 1, 3]), 0) assert_equal( stats.wasserstein_distance([1, 1, 1, 4], [4, 1], [1, 1, 1, 1], [1, 3]), 0) def test_shift(self): # If the whole distribution is shifted by x, then the Wasserstein # distance should be x. assert_almost_equal(stats.wasserstein_distance([0], [1]), 1) assert_almost_equal(stats.wasserstein_distance([-5], [5]), 10) assert_almost_equal( stats.wasserstein_distance([1, 2, 3, 4, 5], [11, 12, 13, 14, 15]), 10) assert_almost_equal( stats.wasserstein_distance([4.5, 6.7, 2.1], [4.6, 7, 9.2], [3, 1, 1], [1, 3, 1]), 2.5) def test_combine_weights(self): # Assigning a weight w to a value is equivalent to including that value # w times in the value array with weight of 1. assert_almost_equal( stats.wasserstein_distance( [0, 0, 1, 1, 1, 1, 5], [0, 3, 3, 3, 3, 4, 4], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]), stats.wasserstein_distance([5, 0, 1], [0, 4, 3], [1, 2, 4], [1, 2, 4])) def test_collapse(self): # Collapsing a distribution to a point distribution at zero is # equivalent to taking the average of the absolute values of the values. u = np.arange(-10, 30, 0.3) v = np.zeros_like(u) assert_almost_equal( stats.wasserstein_distance(u, v), np.mean(np.abs(u))) u_weights = np.arange(len(u)) v_weights = u_weights[::-1] assert_almost_equal( stats.wasserstein_distance(u, v, u_weights, v_weights), np.average(np.abs(u), weights=u_weights)) def test_zero_weight(self): # Values with zero weight have no impact on the Wasserstein distance. assert_almost_equal( stats.wasserstein_distance([1, 2, 100000], [1, 1], [1, 1, 0], [1, 1]), stats.wasserstein_distance([1, 2], [1, 1], [1, 1], [1, 1])) def test_inf_values(self): # Inf values can lead to an inf distance or trigger a RuntimeWarning # (and return NaN) if the distance is undefined. assert_equal( stats.wasserstein_distance([1, 2, np.inf], [1, 1]), np.inf) assert_equal( stats.wasserstein_distance([1, 2, np.inf], [-np.inf, 1]), np.inf) assert_equal( stats.wasserstein_distance([1, -np.inf, np.inf], [1, 1]), np.inf) with suppress_warnings() as sup: r = sup.record(RuntimeWarning, "invalid value*") assert_equal( stats.wasserstein_distance([1, 2, np.inf], [np.inf, 1]), np.nan) class TestEnergyDistance(object): """ Tests for energy_distance() output values. """ def test_simple(self): # For basic distributions, the value of the energy distance is # straightforward. assert_almost_equal( stats.energy_distance([0, 1], [0], [1, 1], [1]), np.sqrt(2) * .5) assert_almost_equal(stats.energy_distance( [0, 1], [0], [3, 1], [1]), np.sqrt(2) * .25) assert_almost_equal(stats.energy_distance( [0, 2], [0], [1, 1], [1]), 2 * .5) assert_almost_equal( stats.energy_distance([0, 1, 2], [1, 2, 3]), np.sqrt(2) * (3*(1./3**2))**.5) def test_same_distribution(self): # Any distribution moved to itself should have a energy distance of # zero. assert_equal(stats.energy_distance([1, 2, 3], [2, 1, 3]), 0) assert_equal( stats.energy_distance([1, 1, 1, 4], [4, 1], [1, 1, 1, 1], [1, 3]), 0) def test_shift(self): # If a single-point distribution is shifted by x, then the energy # distance should be sqrt(2) * sqrt(x). assert_almost_equal(stats.energy_distance([0], [1]), np.sqrt(2)) assert_almost_equal( stats.energy_distance([-5], [5]), np.sqrt(2) * 10**.5) def test_combine_weights(self): # Assigning a weight w to a value is equivalent to including that value # w times in the value array with weight of 1. assert_almost_equal( stats.energy_distance([0, 0, 1, 1, 1, 1, 5], [0, 3, 3, 3, 3, 4, 4], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]), stats.energy_distance([5, 0, 1], [0, 4, 3], [1, 2, 4], [1, 2, 4])) def test_zero_weight(self): # Values with zero weight have no impact on the energy distance. assert_almost_equal( stats.energy_distance([1, 2, 100000], [1, 1], [1, 1, 0], [1, 1]), stats.energy_distance([1, 2], [1, 1], [1, 1], [1, 1])) def test_inf_values(self): # Inf values can lead to an inf distance or trigger a RuntimeWarning # (and return NaN) if the distance is undefined. assert_equal(stats.energy_distance([1, 2, np.inf], [1, 1]), np.inf) assert_equal( stats.energy_distance([1, 2, np.inf], [-np.inf, 1]), np.inf) assert_equal( stats.energy_distance([1, -np.inf, np.inf], [1, 1]), np.inf) with suppress_warnings() as sup: r = sup.record(RuntimeWarning, "invalid value*") assert_equal( stats.energy_distance([1, 2, np.inf], [np.inf, 1]), np.nan) class TestBrunnerMunzel(object): # Data from (Lumley, 1996) X = [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1] Y = [3, 3, 4, 3, 1, 2, 3, 1, 1, 5, 4] significant = 13 def test_brunnermunzel_one_sided(self): # Results are compared with R's lawstat package. u1, p1 = stats.brunnermunzel(self.X, self.Y, alternative='less') u2, p2 = stats.brunnermunzel(self.Y, self.X, alternative='greater') u3, p3 = stats.brunnermunzel(self.X, self.Y, alternative='greater') u4, p4 = stats.brunnermunzel(self.Y, self.X, alternative='less') assert_approx_equal(p1, p2, significant=self.significant) assert_approx_equal(p3, p4, significant=self.significant) assert_(p1 != p3) assert_approx_equal(u1, 3.1374674823029505, significant=self.significant) assert_approx_equal(u2, -3.1374674823029505, significant=self.significant) assert_approx_equal(u3, 3.1374674823029505, significant=self.significant) assert_approx_equal(u4, -3.1374674823029505, significant=self.significant) assert_approx_equal(p1, 0.0028931043330757342, significant=self.significant) assert_approx_equal(p3, 0.99710689566692423, significant=self.significant) def test_brunnermunzel_two_sided(self): # Results are compared with R's lawstat package. u1, p1 = stats.brunnermunzel(self.X, self.Y, alternative='two-sided') u2, p2 = stats.brunnermunzel(self.Y, self.X, alternative='two-sided') assert_approx_equal(p1, p2, significant=self.significant) assert_approx_equal(u1, 3.1374674823029505, significant=self.significant) assert_approx_equal(u2, -3.1374674823029505, significant=self.significant) assert_approx_equal(p1, 0.0057862086661515377, significant=self.significant) def test_brunnermunzel_default(self): # The default value for alternative is two-sided u1, p1 = stats.brunnermunzel(self.X, self.Y) u2, p2 = stats.brunnermunzel(self.Y, self.X) assert_approx_equal(p1, p2, significant=self.significant) assert_approx_equal(u1, 3.1374674823029505, significant=self.significant) assert_approx_equal(u2, -3.1374674823029505, significant=self.significant) assert_approx_equal(p1, 0.0057862086661515377, significant=self.significant) def test_brunnermunzel_alternative_error(self): alternative = "error" distribution = "t" nan_policy = "propagate" assert_(alternative not in ["two-sided", "greater", "less"]) assert_raises(ValueError, stats.brunnermunzel, self.X, self.Y, alternative, distribution, nan_policy) def test_brunnermunzel_distribution_norm(self): u1, p1 = stats.brunnermunzel(self.X, self.Y, distribution="normal") u2, p2 = stats.brunnermunzel(self.Y, self.X, distribution="normal") assert_approx_equal(p1, p2, significant=self.significant) assert_approx_equal(u1, 3.1374674823029505, significant=self.significant) assert_approx_equal(u2, -3.1374674823029505, significant=self.significant) assert_approx_equal(p1, 0.0017041417600383024, significant=self.significant) def test_brunnermunzel_distribution_error(self): alternative = "two-sided" distribution = "error" nan_policy = "propagate" assert_(alternative not in ["t", "normal"]) assert_raises(ValueError, stats.brunnermunzel, self.X, self.Y, alternative, distribution, nan_policy) def test_brunnermunzel_empty_imput(self): u1, p1 = stats.brunnermunzel(self.X, []) u2, p2 = stats.brunnermunzel([], self.Y) u3, p3 = stats.brunnermunzel([], []) assert_equal(u1, np.nan) assert_equal(p1, np.nan) assert_equal(u2, np.nan) assert_equal(p2, np.nan) assert_equal(u3, np.nan) assert_equal(p3, np.nan) def test_brunnermunzel_nan_input_propagate(self): X = [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, np.nan] Y = [3, 3, 4, 3, 1, 2, 3, 1, 1, 5, 4] u1, p1 = stats.brunnermunzel(X, Y, nan_policy="propagate") u2, p2 = stats.brunnermunzel(Y, X, nan_policy="propagate") assert_equal(u1, np.nan) assert_equal(p1, np.nan) assert_equal(u2, np.nan) assert_equal(p2, np.nan) def test_brunnermunzel_nan_input_raise(self): X = [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, np.nan] Y = [3, 3, 4, 3, 1, 2, 3, 1, 1, 5, 4] alternative = "two-sided" distribution = "t" nan_policy = "raise" assert_raises(ValueError, stats.brunnermunzel, X, Y, alternative, distribution, nan_policy) assert_raises(ValueError, stats.brunnermunzel, Y, X, alternative, distribution, nan_policy) def test_brunnermunzel_nan_input_omit(self): X = [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, np.nan] Y = [3, 3, 4, 3, 1, 2, 3, 1, 1, 5, 4] u1, p1 = stats.brunnermunzel(X, Y, nan_policy="omit") u2, p2 = stats.brunnermunzel(Y, X, nan_policy="omit") assert_approx_equal(p1, p2, significant=self.significant) assert_approx_equal(u1, 3.1374674823029505, significant=self.significant) assert_approx_equal(u2, -3.1374674823029505, significant=self.significant) assert_approx_equal(p1, 0.0057862086661515377, significant=self.significant) class TestRatioUniforms(object): """ Tests for rvs_ratio_uniforms. """ def test_rv_generation(self): # use KS test to check distribution of rvs # normal distribution f = stats.norm.pdf v_bound = np.sqrt(f(np.sqrt(2))) * np.sqrt(2) umax, vmin, vmax = np.sqrt(f(0)), -v_bound, v_bound rvs = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=2500, random_state=12345) assert_equal(stats.kstest(rvs, 'norm')[1] > 0.25, True) # exponential distribution rvs = stats.rvs_ratio_uniforms(lambda x: np.exp(-x), umax=1, vmin=0, vmax=2*np.exp(-1), size=1000, random_state=12345) assert_equal(stats.kstest(rvs, 'expon')[1] > 0.25, True) def test_shape(self): # test shape of return value depending on size parameter f = stats.norm.pdf v_bound = np.sqrt(f(np.sqrt(2))) * np.sqrt(2) umax, vmin, vmax = np.sqrt(f(0)), -v_bound, v_bound r1 = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=3, random_state=1234) r2 = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=(3,), random_state=1234) r3 = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=(3, 1), random_state=1234) assert_equal(r1, r2) assert_equal(r2, r3.flatten()) assert_equal(r1.shape, (3,)) assert_equal(r3.shape, (3, 1)) r4 = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=(3, 3, 3), random_state=12) r5 = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=27, random_state=12) assert_equal(r4.flatten(), r5) assert_equal(r4.shape, (3, 3, 3)) r6 = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, random_state=1234) r7 = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=1, random_state=1234) r8 = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=(1, ), random_state=1234) assert_equal(r6, r7) assert_equal(r7, r8) def test_random_state(self): f = stats.norm.pdf v_bound = np.sqrt(f(np.sqrt(2))) * np.sqrt(2) umax, vmin, vmax = np.sqrt(f(0)), -v_bound, v_bound np.random.seed(1234) r1 = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=(3, 4)) r2 = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=(3, 4), random_state=1234) assert_equal(r1, r2) def test_exceptions(self): f = stats.norm.pdf # need vmin < vmax assert_raises(ValueError, stats.rvs_ratio_uniforms, pdf=f, umax=1, vmin=3, vmax=1) assert_raises(ValueError, stats.rvs_ratio_uniforms, pdf=f, umax=1, vmin=1, vmax=1) # need umax > 0 assert_raises(ValueError, stats.rvs_ratio_uniforms, pdf=f, umax=-1, vmin=1, vmax=1) assert_raises(ValueError, stats.rvs_ratio_uniforms, pdf=f, umax=0, vmin=1, vmax=1) class TestEppsSingleton(object): def test_statistic_1(self): # first example in Goerg & Kaiser, also in original paper of # Epps & Singleton. Note: values do not match exactly, the # value of the interquartile range varies depending on how # quantiles are computed x = np.array([-0.35, 2.55, 1.73, 0.73, 0.35, 2.69, 0.46, -0.94, -0.37, 12.07]) y = np.array([-1.15, -0.15, 2.48, 3.25, 3.71, 4.29, 5.00, 7.74, 8.38, 8.60]) w, p = stats.epps_singleton_2samp(x, y) assert_almost_equal(w, 15.14, decimal=1) assert_almost_equal(p, 0.00442, decimal=3) def test_statistic_2(self): # second example in Goerg & Kaiser, again not a perfect match x = np.array((0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 10, 10, 10, 10)) y = np.array((10, 4, 0, 5, 10, 10, 0, 5, 6, 7, 10, 3, 1, 7, 0, 8, 1, 5, 8, 10)) w, p = stats.epps_singleton_2samp(x, y) assert_allclose(w, 8.900, atol=0.001) assert_almost_equal(p, 0.06364, decimal=3) def test_epps_singleton_array_like(self): np.random.seed(1234) x, y = np.arange(30), np.arange(28) w1, p1 = stats.epps_singleton_2samp(list(x), list(y)) w2, p2 = stats.epps_singleton_2samp(tuple(x), tuple(y)) w3, p3 = stats.epps_singleton_2samp(x, y) assert_(w1 == w2 == w3) assert_(p1 == p2 == p3) def test_epps_singleton_size(self): # raise error if less than 5 elements x, y = (1, 2, 3, 4), np.arange(10) assert_raises(ValueError, stats.epps_singleton_2samp, x, y) def test_epps_singleton_nonfinite(self): # raise error if there are non-finite values x, y = (1, 2, 3, 4, 5, np.inf), np.arange(10) assert_raises(ValueError, stats.epps_singleton_2samp, x, y) x, y = np.arange(10), (1, 2, 3, 4, 5, np.nan) assert_raises(ValueError, stats.epps_singleton_2samp, x, y) def test_epps_singleton_1d_input(self): x = np.arange(100).reshape(-1, 1) assert_raises(ValueError, stats.epps_singleton_2samp, x, x) def test_names(self): x, y = np.arange(20), np.arange(30) res = stats.epps_singleton_2samp(x, y) attributes = ('statistic', 'pvalue') check_named_results(res, attributes) class TestMGCErrorWarnings(object): """ Tests errors and warnings derived from MGC. """ def test_error_notndarray(self): # raises error if x or y is not a ndarray x = np.arange(20) y = [5] * 20 assert_raises(ValueError, stats.multiscale_graphcorr, x, y) assert_raises(ValueError, stats.multiscale_graphcorr, y, x) def test_error_shape(self): # raises error if number of samples different (n) x = np.arange(100).reshape(25, 4) y = x.reshape(10, 10) assert_raises(ValueError, stats.multiscale_graphcorr, x, y) def test_error_lowsamples(self): # raises error if samples are low (< 3) x = np.arange(3) y = np.arange(3) assert_raises(ValueError, stats.multiscale_graphcorr, x, y) def test_error_nans(self): # raises error if inputs contain NaNs x = np.arange(20, dtype=float) x[0] = np.nan assert_raises(ValueError, stats.multiscale_graphcorr, x, x) y = np.arange(20) assert_raises(ValueError, stats.multiscale_graphcorr, x, y) def test_error_wrongdisttype(self): # raises error if compute_distance is not a function x = np.arange(20) compute_distance = 0 assert_raises(ValueError, stats.multiscale_graphcorr, x, x, compute_distance=compute_distance) @pytest.mark.parametrize("reps", [ -1, # reps is negative '1', # reps is not integer ]) def test_error_reps(self, reps): # raises error if reps is negative x = np.arange(20) assert_raises(ValueError, stats.multiscale_graphcorr, x, x, reps=reps) def test_warns_reps(self): # raises warning when reps is less than 1000 x = np.arange(20) reps = 100 assert_warns(RuntimeWarning, stats.multiscale_graphcorr, x, x, reps=reps) def test_error_infty(self): # raises error if input contains infinities x = np.arange(20) y = np.ones(20) * np.inf assert_raises(ValueError, stats.multiscale_graphcorr, x, y) class TestMGCStat(object): """ Test validity of MGC test statistic """ def _simulations(self, samps=100, dims=1, sim_type=""): # linear simulation if sim_type == "linear": x = np.random.uniform(-1, 1, size=(samps, 1)) y = x + 0.3 * np.random.random_sample(size=(x.size, 1)) # spiral simulation elif sim_type == "nonlinear": unif = np.array(np.random.uniform(0, 5, size=(samps, 1))) x = unif * np.cos(np.pi * unif) y = unif * np.sin(np.pi * unif) + (0.4 * np.random.random_sample(size=(x.size, 1))) # independence (tests type I simulation) elif sim_type == "independence": u = np.random.normal(0, 1, size=(samps, 1)) v = np.random.normal(0, 1, size=(samps, 1)) u_2 = np.random.binomial(1, p=0.5, size=(samps, 1)) v_2 = np.random.binomial(1, p=0.5, size=(samps, 1)) x = u/3 + 2*u_2 - 1 y = v/3 + 2*v_2 - 1 # raises error if not approved sim_type else: raise ValueError("sim_type must be linear, nonlinear, or " "independence") # add dimensions of noise for higher dimensions if dims > 1: dims_noise = np.random.normal(0, 1, size=(samps, dims-1)) x = np.concatenate((x, dims_noise), axis=1) return x, y @dec.slow @pytest.mark.parametrize("sim_type, obs_stat, obs_pvalue", [ ("linear", 0.97, 1/1000), # test linear simulation ("nonlinear", 0.163, 1/1000), # test spiral simulation ("independence", -0.0094, 0.78) # test independence simulation ]) def test_oned(self, sim_type, obs_stat, obs_pvalue): np.random.seed(12345678) # generate x and y x, y = self._simulations(samps=100, dims=1, sim_type=sim_type) # test stat and pvalue stat, pvalue, _ = stats.multiscale_graphcorr(x, y) assert_approx_equal(stat, obs_stat, significant=1) assert_approx_equal(pvalue, obs_pvalue, significant=1) @dec.slow @pytest.mark.parametrize("sim_type, obs_stat, obs_pvalue", [ ("linear", 0.184, 1/1000), # test linear simulation ("nonlinear", 0.0190, 0.117), # test spiral simulation ]) def test_fived(self, sim_type, obs_stat, obs_pvalue): np.random.seed(12345678) # generate x and y x, y = self._simulations(samps=100, dims=5, sim_type=sim_type) # test stat and pvalue stat, pvalue, _ = stats.multiscale_graphcorr(x, y) assert_approx_equal(stat, obs_stat, significant=1) assert_approx_equal(pvalue, obs_pvalue, significant=1) @dec.slow def test_twosamp(self): np.random.seed(12345678) # generate x and y x = np.random.binomial(100, 0.5, size=(100, 5)) y = np.random.normal(0, 1, size=(80, 5)) # test stat and pvalue stat, pvalue, _ = stats.multiscale_graphcorr(x, y) assert_approx_equal(stat, 1.0, significant=1) assert_approx_equal(pvalue, 0.001, significant=1) # generate x and y y = np.random.normal(0, 1, size=(100, 5)) # test stat and pvalue stat, pvalue, _ = stats.multiscale_graphcorr(x, y, is_twosamp=True) assert_approx_equal(stat, 1.0, significant=1) assert_approx_equal(pvalue, 0.001, significant=1) @pytest.mark.skipif(multiprocessing.get_start_method() != 'fork', reason=('multiprocessing with spawn method is not' ' compatible with pytest.')) def test_workers(self): np.random.seed(12345678) # generate x and y x, y = self._simulations(samps=100, dims=1, sim_type="linear") # test stat and pvalue stat, pvalue, _ = stats.multiscale_graphcorr(x, y, workers=2) assert_approx_equal(stat, 0.97, significant=1) assert_approx_equal(pvalue, 0.001, significant=1) def test_random_state(self): # generate x and y x, y = self._simulations(samps=100, dims=1, sim_type="linear") # test stat and pvalue stat, pvalue, _ = stats.multiscale_graphcorr(x, y, random_state=1) assert_approx_equal(stat, 0.97, significant=1) assert_approx_equal(pvalue, 0.001, significant=1)
40.110793
134
0.575689
e392825d4e8f145ba60f68c71fa81c45971c3b80
13,702
py
Python
tensorflow_federated/python/learning/templates/client_works.py
zhihansh/federated-oss
38cfcb05702ff7297db76d3ccb5f5afef53ca09b
[ "Apache-2.0" ]
null
null
null
tensorflow_federated/python/learning/templates/client_works.py
zhihansh/federated-oss
38cfcb05702ff7297db76d3ccb5f5afef53ca09b
[ "Apache-2.0" ]
null
null
null
tensorflow_federated/python/learning/templates/client_works.py
zhihansh/federated-oss
38cfcb05702ff7297db76d3ccb5f5afef53ca09b
[ "Apache-2.0" ]
null
null
null
# Copyright 2021, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file # This modules disables the Pytype analyzer, see # https://github.com/tensorflow/federated/blob/main/docs/pytype.md for more # information. """Abstractions for client work in learning algorithms.""" from typing import Callable import attr import tensorflow as tf from tensorflow_federated.python.common_libs import py_typecheck from tensorflow_federated.python.common_libs import structure from tensorflow_federated.python.core.api import computations from tensorflow_federated.python.core.impl.federated_context import intrinsics from tensorflow_federated.python.core.impl.types import computation_types from tensorflow_federated.python.core.impl.types import placements from tensorflow_federated.python.core.impl.types import type_conversions from tensorflow_federated.python.core.templates import errors from tensorflow_federated.python.core.templates import measured_process from tensorflow_federated.python.learning import model as model_lib from tensorflow_federated.python.learning import model_utils from tensorflow_federated.python.learning.optimizers import optimizer as optimizer_base @attr.s(frozen=True) class ClientResult(): """A structure containing the result of `ClientWorkProcess.next` computation. Attributes: update: The local update to model weights produced by clients. update_weight: A weight for weighted aggregation of the `update`. """ update = attr.ib() update_weight = attr.ib() class ModelWeightsTypeError(TypeError): """`TypeError` for incorrect container of model weights.""" class ClientDataTypeError(TypeError): """`TypeError` for incorrect type of client data.""" class ClientResultTypeError(TypeError): """`TypeError` for incorrect structure of result of client work.""" class ClientWorkProcess(measured_process.MeasuredProcess): """A stateful process capturing work at clients during learning. Client work encapsulates the main work performed by clinets as part of a federated learning algorithm, such as several steps of gradient descent based on the client data, and returning a update to the initial model weights. A `ClientWorkProcess` is a `tff.templates.MeasuredProcess` that formalizes the type signature of `initialize_fn` and `next_fn` for the core work performed by clients in a learning process. The `initialize_fn` and `next_fn` must have the following type signatures: ``` - initialize_fn: ( -> S@SERVER) - next_fn: (<S@SERVER, ModelWeights(TRAINABLE, NON_TRAINABLE)@CLIENTS, DATA@CLIENTS> -> <state=S@SERVER, result=ClientResult(TRAINABLE, W)@CLIENTS, measurements=M@SERVER>) ``` with `W` and `M` being arbitrary types not dependent on other types here. `ClientWorkProcess` requires `next_fn` with a second and a third input argument, which are both values placed at `CLIENTS`. The second argument is initial model weights to be used for the work to be performed by clients. It must be of a type matching `tff.learning.ModelWeights`, for these to be assignable to the weights of a `tff.learning.Model`. The third argument must be a `tff.SequenceType` representing the data available at clients. The `result` field of the returned `tff.templates.MeasuredProcessOutput` must be placed at `CLIENTS`, and be of type matching `ClientResult`, of which the `update` field represents the update to the trainable model weights, and `update_weight` represents the weight to be used for weighted aggregation of the updates. The `measurements` field of the returned `tff.templates.MeasuredProcessOutput` must be placed at `SERVER`. Thus, implementation of this process must include aggregation of any metrics computed during training. TODO(b/190334722): Confirm this aspect, or change it. """ def __init__(self, initialize_fn, next_fn): super().__init__(initialize_fn, next_fn, next_is_multi_arg=True) if not initialize_fn.type_signature.result.is_federated(): raise errors.TemplateNotFederatedError( f'Provided `initialize_fn` must return a federated type, but found ' f'return type:\n{initialize_fn.type_signature.result}\nTip: If you ' f'see a collection of federated types, try wrapping the returned ' f'value in `tff.federated_zip` before returning.') next_types = ( structure.flatten(next_fn.type_signature.parameter) + structure.flatten(next_fn.type_signature.result)) if not all([t.is_federated() for t in next_types]): offending_types = '\n- '.join( [t for t in next_types if not t.is_federated()]) raise errors.TemplateNotFederatedError( f'Provided `next_fn` must be a *federated* computation, that is, ' f'operate on `tff.FederatedType`s, but found\n' f'next_fn with type signature:\n{next_fn.type_signature}\n' f'The non-federated types are:\n {offending_types}.') if initialize_fn.type_signature.result.placement != placements.SERVER: raise errors.TemplatePlacementError( f'The state controlled by a `ClientWorkProcess` must be placed at ' f'the SERVER, but found type: {initialize_fn.type_signature.result}.') # Note that state of next_fn being placed at SERVER is now ensured by the # assertions in base class which would otherwise raise # TemplateStateNotAssignableError. next_fn_param = next_fn.type_signature.parameter if not next_fn_param.is_struct(): raise errors.TemplateNextFnNumArgsError( f'The `next_fn` must have exactly three input arguments, but found ' f'the following input type which is not a Struct: {next_fn_param}.') if len(next_fn_param) != 3: next_param_str = '\n- '.join([str(t) for t in next_fn_param]) raise errors.TemplateNextFnNumArgsError( f'The `next_fn` must have exactly three input arguments, but found ' f'{len(next_fn_param)} input arguments:\n{next_param_str}') model_weights_param = next_fn_param[1] client_data_param = next_fn_param[2] if model_weights_param.placement != placements.CLIENTS: raise errors.TemplatePlacementError( f'The second input argument of `next_fn` must be placed at CLIENTS ' f'but found {model_weights_param}.') if (not model_weights_param.member.is_struct_with_python() or model_weights_param.member.python_container is not model_utils.ModelWeights): raise ModelWeightsTypeError( f'The second input argument of `next_fn` must have the ' f'`tff.learning.ModelWeights` container but found ' f'{model_weights_param}') if client_data_param.placement != placements.CLIENTS: raise errors.TemplatePlacementError( f'The third input argument of `next_fn` must be placed at CLIENTS ' f'but found {client_data_param}.') if not client_data_param.member.is_sequence(): raise ClientDataTypeError( f'The third input argument of `next_fn` must be a sequence but found ' f'{client_data_param}.') next_fn_result = next_fn.type_signature.result if (not next_fn_result.result.is_federated() or next_fn_result.result.placement != placements.CLIENTS): raise errors.TemplatePlacementError( f'The "result" attribute of the return type of `next_fn` must be ' f'placed at CLIENTS, but found {next_fn_result.result}.') if (not next_fn_result.result.member.is_struct_with_python() or next_fn_result.result.member.python_container is not ClientResult): raise ClientResultTypeError( f'The "result" attribute of the return type of `next_fn` must have ' f'the `ClientResult` container, but found {next_fn_result.result}.') if not model_weights_param.member.trainable.is_assignable_from( next_fn_result.result.member.update): raise ClientResultTypeError( f'The "update" attribute of returned `ClientResult` must match ' f'the "trainable" attribute of the `tff.learning.ModelWeights` ' f'expected as second input argument of the `next_fn`. Found:\n' f'Second input argument: {model_weights_param.member.trainable}\n' f'Update attribute of result: {next_fn_result.result.member.update}.') if next_fn_result.measurements.placement != placements.SERVER: raise errors.TemplatePlacementError( f'The "measurements" attribute of return type of `next_fn` must be ' f'placed at SERVER, but found {next_fn_result.measurements}.') # TODO(b/190334722): Add model metric handling and aggregation and report it in # the measurement field of the output. def build_model_delta_client_work(model_fn: Callable[[], model_lib.Model], optimizer: optimizer_base.Optimizer): """Builds `ClientWorkProcess` returning change to the trained model weights. The created `ClientWorkProcess` expects model weights that can be assigned to the model created by `model_fn`, and will apply `optimizer` to optimize the model using the client data. The returned `ClientResult` will contain the difference between the trained and initial trainable model weights (aka "model delta") as update, and the update_weight will be the number of examples used in training. The type signature for client data is derived from the input spec of the model. This method is the recommended starting point for forking a custom implementation of the `ClientWorkProcess`. Args: model_fn: A no-arg function that returns a `tff.learning.Model`. optimizer: A `tff.learning.optimizers.Optimizer`. Returns: A `ClientWorkProcess`. """ py_typecheck.check_callable(model_fn) # TODO(b/190334722): Include support for Keras optimizers via # tff.learning.optimizers.KerasOptimizer when ready. py_typecheck.check_type(optimizer, optimizer_base.Optimizer) weights_type, data_type = _weights_and_data_type_from_model_fn(model_fn) # TODO(b/161529310): We flatten and convert the trainable specs to tuple, as # "for batch in data:" pattern would try to stack the tensors in a list. optimizer_tensor_specs = _flat_tuple( type_conversions.type_to_tf_tensor_specs(weights_type.trainable)) @computations.tf_computation(weights_type, data_type) @tf.function def local_update(initial_weights, data): # TODO(b/190334722): Restructure so that model_fn only needs to be invoked # once. with tf.init_scope(): model = model_fn() model_weights = model_utils.ModelWeights.from_model(model) tf.nest.map_structure(lambda weight, value: weight.assign(value), model_weights, initial_weights) num_examples = tf.constant(0, tf.int32) optimizer_state = optimizer.initialize(optimizer_tensor_specs) # TODO(b/161529310): Different from creating an iterator using iter(data). for batch in data: with tf.GradientTape() as tape: outputs = model.forward_pass(batch) gradients = tape.gradient(outputs.loss, model_weights.trainable) num_examples += tf.shape(outputs.predictions)[0] optimizer_state, updated_weights = optimizer.next( optimizer_state, _flat_tuple(model_weights.trainable), _flat_tuple(gradients)) updated_weights = tf.nest.pack_sequence_as(model_weights.trainable, updated_weights) tf.nest.map_structure(lambda weight, value: weight.assign(value), model_weights.trainable, updated_weights) model_delta = tf.nest.map_structure(lambda x, y: x - y, initial_weights.trainable, model_weights.trainable) return ClientResult( update=model_delta, update_weight=tf.cast(num_examples, tf.float32)) @computations.federated_computation def init_fn(): return intrinsics.federated_value((), placements.SERVER) @computations.federated_computation( init_fn.type_signature.result, computation_types.at_clients(weights_type), computation_types.at_clients(data_type)) def next_fn(state, weights, client_data): client_result = intrinsics.federated_map(local_update, (weights, client_data)) empty_measurements = intrinsics.federated_value((), placements.SERVER) return measured_process.MeasuredProcessOutput(state, client_result, empty_measurements) return ClientWorkProcess(init_fn, next_fn) def _weights_and_data_type_from_model_fn(model_fn): with tf.Graph().as_default(): # Wrap model construction in a graph to avoid polluting the global context # with variables created for this model. model = model_fn() data_type = computation_types.SequenceType(model.input_spec) model_weights_type = model_utils.weights_type_from_model(model) return model_weights_type, data_type def _flat_tuple(struct): return tuple(tf.nest.flatten(struct))
47.248276
87
0.728945
2bcf1ca1dd80c97589d82f7f98dbe0f54e5fed39
1,758
py
Python
package/awesome_panel/application/models/theme.py
Jhsmit/awesome-panel
53f7754f7c505a2666f6724df26c851ae942ec40
[ "Apache-2.0" ]
null
null
null
package/awesome_panel/application/models/theme.py
Jhsmit/awesome-panel
53f7754f7c505a2666f6724df26c851ae942ec40
[ "Apache-2.0" ]
null
null
null
package/awesome_panel/application/models/theme.py
Jhsmit/awesome-panel
53f7754f7c505a2666f6724df26c851ae942ec40
[ "Apache-2.0" ]
null
null
null
"""In this module we implement the Theme Model Use the Theme model to - Provide theming to your Template and Application - implements a custom subclass Theme """ import holoviews as hv import param from bokeh.themes.theme import Theme as BokehTheme from holoviews import Cycle from awesome_panel.application import assets hv.extension("bokeh") _COLOR_CYCLE = tuple(Cycle.default_cycles["Category20"]) class Theme(param.Parameterized): """The Theme model provides parameters and functionality like links to spinner images and css. - Provide theming to your Template and Application - implement a custom subclass Theme """ spinner_static_url = param.String(assets.SPINNER_PANEL_STATIC_LIGHT_400_340) spinner_url = param.String(assets.SPINNER_PANEL_BREATH_LIGHT_400_340) css = param.String() color_cycle = param.Tuple(_COLOR_CYCLE) bokeh_disable_logo = param.Boolean(True) bokeh_theme_json = param.Dict() @property def holoviews_color_cycle(self) -> Cycle: """Returns the HoloViews color Cycle to be used when plotting with the Theme as the active Theme. Returns: Cycle: A HoloViews color Cyle. """ if self.color_cycle: color_cycle = self.color_cycle else: color_cycle = _COLOR_CYCLE return Cycle(list(color_cycle)) @property def bokeh_theme(self) -> BokehTheme: """Returns the Bokeh Theme to be used when plotting with the Theme as the active Theme. Returns: BokehTheme: A Bokeh Theme """ if self.bokeh_theme_json: return BokehTheme(json=self.bokeh_theme_json) return BokehTheme(json={})
29.79661
99
0.680887
7a768f762c57490b01c8ae32d7ce418b5cb8bb7b
8,174
py
Python
python/GafferUI/ScriptWindow.py
Tuftux/gaffer
5acaf7cbfadbae841dc06854121ca85dcc5c338c
[ "BSD-3-Clause" ]
31
2017-07-10T10:02:07.000Z
2022-02-08T13:54:14.000Z
python/GafferUI/ScriptWindow.py
Tuftux/gaffer
5acaf7cbfadbae841dc06854121ca85dcc5c338c
[ "BSD-3-Clause" ]
null
null
null
python/GafferUI/ScriptWindow.py
Tuftux/gaffer
5acaf7cbfadbae841dc06854121ca85dcc5c338c
[ "BSD-3-Clause" ]
3
2017-11-04T15:30:11.000Z
2018-09-25T18:36:11.000Z
########################################################################## # # Copyright (c) 2011-2012, John Haddon. All rights reserved. # Copyright (c) 2011-2012, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import weakref import IECore import Gaffer import GafferUI class ScriptWindow( GafferUI.Window ) : def __init__( self, script, **kw ) : self.__titleChangedSignal = GafferUI.WidgetEventSignal() GafferUI.Window.__init__( self, **kw ) self.__script = script self.__titleBehaviour = _WindowTitleBehaviour( self, script ) self.__listContainer = GafferUI.ListContainer( GafferUI.ListContainer.Orientation.Vertical, spacing = 0 ) menuDefinition = self.menuDefinition( script.applicationRoot() ) if script.applicationRoot() else IECore.MenuDefinition() self.__listContainer.append( GafferUI.MenuBar( menuDefinition ) ) applicationRoot = self.__script.ancestor( Gaffer.ApplicationRoot ) layouts = GafferUI.Layouts.acquire( applicationRoot ) if applicationRoot is not None else None if layouts is not None : self.setLayout( layouts.createDefault( script ) ) else : self.setLayout( GafferUI.CompoundEditor( script ) ) self.setChild( self.__listContainer ) self.closedSignal().connect( Gaffer.WeakMethod( self.__closed ), scoped = False ) ScriptWindow.__instances.append( weakref.ref( self ) ) def menuBar( self ) : return self.__listContainer[0] def scriptNode( self ) : return self.__script def setLayout( self, compoundEditor ) : if len( self.__listContainer ) > 1 : del self.__listContainer[1] assert( compoundEditor.scriptNode().isSame( self.scriptNode() ) ) self.__listContainer.append( compoundEditor, expand=True ) def getLayout( self ) : return self.__listContainer[1] # Calling this will disable automatic title updates when the script state # changes name/dirty state. def setTitle( self, title ) : self.__titleBehaviour = None self._setTitle( title ) def _setTitle( self, title ) : GafferUI.Window.setTitle( self, title ) self.__titleChangedSignal( self, title ) def titleChangedSignal( self ) : return self.__titleChangedSignal def _acceptsClose( self ) : if not self.__script["unsavedChanges"].getValue() : return True f = self.__script["fileName"].getValue() f = f.rpartition( "/" )[2] if f else "untitled" dialogue = GafferUI.ConfirmationDialogue( "Discard Unsaved Changes?", "The file %s has unsaved changes. Do you want to discard them?" % f, confirmLabel = "Discard" ) return dialogue.waitForConfirmation( parentWindow=self ) def __closed( self, widget ) : scriptParent = self.__script.parent() if scriptParent is not None : scriptParent.removeChild( self.__script ) __instances = [] # weak references to all instances - used by acquire() ## Returns the ScriptWindow for the specified script, creating one # if necessary. @staticmethod def acquire( script, createIfNecessary=True ) : for w in ScriptWindow.__instances : scriptWindow = w() if scriptWindow is not None and scriptWindow.scriptNode().isSame( script ) : return scriptWindow return ScriptWindow( script ) if createIfNecessary else None ## Returns an IECore.MenuDefinition which is used to define the menu bars for all ScriptWindows # created as part of the specified application. This can be edited at any time to modify subsequently # created ScriptWindows - typically editing would be done as part of gaffer startup. @staticmethod def menuDefinition( applicationOrApplicationRoot ) : if isinstance( applicationOrApplicationRoot, Gaffer.Application ) : applicationRoot = applicationOrApplicationRoot.root() else : assert( isinstance( applicationOrApplicationRoot, Gaffer.ApplicationRoot ) ) applicationRoot = applicationOrApplicationRoot menuDefinition = getattr( applicationRoot, "_scriptWindowMenuDefinition", None ) if menuDefinition : return menuDefinition menuDefinition = IECore.MenuDefinition() applicationRoot._scriptWindowMenuDefinition = menuDefinition return menuDefinition ## This function provides the top level functionality for instantiating # the UI. Once called, new ScriptWindows will be instantiated for each # script added to the application, and EventLoop.mainEventLoop().stop() will # be called when the last script is removed. @classmethod def connect( cls, applicationRoot ) : applicationRoot["scripts"].childAddedSignal().connect( 0, ScriptWindow.__scriptAdded, scoped = False ) applicationRoot["scripts"].childRemovedSignal().connect( ScriptWindow.__staticScriptRemoved, scoped = False ) __automaticallyCreatedInstances = [] # strong references to instances made by __scriptAdded() @staticmethod def __scriptAdded( scriptContainer, script ) : w = ScriptWindow( script ) w.setVisible( True ) w.getLayout().restoreWindowState() ScriptWindow.__automaticallyCreatedInstances.append( w ) @staticmethod def __staticScriptRemoved( scriptContainer, script ) : for w in ScriptWindow.__automaticallyCreatedInstances : if w.scriptNode().isSame( script ) : ScriptWindow.__automaticallyCreatedInstances.remove( w ) if not len( scriptContainer.children() ) and GafferUI.EventLoop.mainEventLoop().running() : GafferUI.EventLoop.mainEventLoop().stop() class _WindowTitleBehaviour : def __init__( self, window, script ) : self.__window = weakref.ref( window ) self.__script = weakref.ref( script ) self.__scriptPlugSetConnection = script.plugSetSignal().connect( Gaffer.WeakMethod( self.__scriptPlugChanged ) ) self.__metadataChangedConnection = Gaffer.Metadata.nodeValueChangedSignal().connect( Gaffer.WeakMethod( self.__metadataChanged ) ) self.__updateTitle() def __updateTitle( self ) : w = self.__window() if not w : return f = self.__script()["fileName"].getValue() if not f : f = "untitled" d = "" else : d, n, f = f.rpartition( "/" ) d = " - " + d u = " *" if self.__script()["unsavedChanges"].getValue() else "" ro = " (read only) " if Gaffer.MetadataAlgo.readOnly( self.__script() ) else "" w._setTitle( "Gaffer %s : %s%s%s%s" % ( Gaffer.About.versionString(), f, ro, u, d ) ) def __scriptPlugChanged( self, plug ) : if plug.isSame( self.__script()["fileName"] ) or plug.isSame( self.__script()["unsavedChanges"] ) : self.__updateTitle() def __metadataChanged( self, nodeTypeId, key, node ) : if Gaffer.MetadataAlgo.readOnlyAffectedByChange( self.__script(), nodeTypeId, key, node ) : self.__updateTitle()
34.489451
132
0.729019
7cd8a19e5931c2c6ec4697f9e35b8b07916322f9
9,362
py
Python
python-examples/gui/line-balancing/backend/engine/interface/custom_class_view.py
ggsdc/cornflow-examples
05b4a87eb4dc2389f00f8a9d7f766aef942b9da8
[ "MIT" ]
null
null
null
python-examples/gui/line-balancing/backend/engine/interface/custom_class_view.py
ggsdc/cornflow-examples
05b4a87eb4dc2389f00f8a9d7f766aef942b9da8
[ "MIT" ]
2
2020-10-05T15:08:09.000Z
2021-03-19T23:03:36.000Z
python-examples/gui/line-balancing/backend/engine/interface/custom_class_view.py
ggsdc/cornflow-examples
05b4a87eb4dc2389f00f8a9d7f766aef942b9da8
[ "MIT" ]
1
2020-10-03T20:08:14.000Z
2020-10-03T20:08:14.000Z
from typing import List from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from rest_framework import status from rest_framework.parsers import JSONParser from rest_framework.response import Response from rest_framework.views import APIView class CustomApiView(APIView): """ Class to handle the API endpoints """ def get_list(self, request, queryset, model_serializer): """ Function that gives back all the results that match the queryset :param request: the request done to the API, needed to check the auth. :param queryset: the queryset object that performs the query. :param model_serializer: the serializer to serialize the json result file. :return: a response to the request with the results. """ data = queryset if data.count() > 0: serializer = model_serializer(data, many=True) return Response(serializer.data, status=status.HTTP_200_OK) else: return Response({'message': 'No available data'}, status=status.HTTP_204_NO_CONTENT) def get_detail(self, request, model, model_serializer, key, value): """ Function that gives back the result of a single row on the database identified by the primary key value. :param request: the request done to the API, needed to check the auth. :param model: the database model that is going to be searched. :param model_serializer: the serializer to serialize the json result file. :param key: the primary key column in the database table. :param value: the value for the primary key that has to be searched. :return: a response to the request with the results. """ try: instance = getattr(model.objects, 'get')([key, value]) except model.DoesNotExist: return Response({'message': 'No available data'}, status=status.HTTP_204_NO_CONTENT) serializer = model_serializer(instance) return Response(serializer.data, status=status.HTTP_200_OK) def post_list(self, request, queryset, model_serializer, date_fields: List[str] = None): """ Function that allows to POST new data to the database. :param request: the request done to the API, needed to check the auth. :param queryset: the queryset object that performs the query and gives back the data again. :param model_serializer: the serializer to serialize the json result file. :param date_fields: list with the names of the fields that are dates that come from the frontend. :return: a response to the request with the results. """ data = JSONParser().parse(request) serializer = model_serializer(data=data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def put_list(self, request, model, queryset, model_serializer, key: str = 'id', date_fields: List[str] = None): """ Function that allows to perform a PUT to an endpoint without telling the pk value to the API. :param request: the request done to the API, needed to check the auth. :param model: the database model that is going to be searched. :param queryset: the queryset object that performs the query and gives back the data again. :param model_serializer: the serializer to serialize the json result file. :param key: the column name for the primary key. :param date_fields: list with the names of the fields that are dates that come from the frontend. :return: a response to the request with the results. """ data = JSONParser().parse(request) try: instance = getattr(model.objects, 'get')([key, data[key]]) except model.DoesNotExist: return Response({'message': 'No available data'}, status=status.HTTP_204_NO_CONTENT) serializer = model_serializer(instance, data) if serializer.is_valid(): serializer.update(instance, serializer.validated_data) return Response(serializer.data, status=status.HTTP_200_OK) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def put_detail(self, request, model, queryset, model_serializer, key, value, date_fields: List[str] = None): """ Function that allows to perform a PUT given a primary key value. :param request: the request done to the API, needed to check the auth. :param model: the database model that is going to be searched. :param queryset: the queryset object that performs the query and gives back the data again. :param model_serializer: the serializer to serialize the json result file. :param key: the column name for the primary key. :param value: the value for the primary key that has to be searched. :param date_fields: list with the names of the fields that are dates that come from the frontend. :return: a response to the request with the results. """ data = JSONParser().parse(request) try: instance = getattr(model.objects, 'get')([key, value]) except model.DoesNotExist: return Response({'message': 'No available data'}, status=status.HTTP_204_NO_CONTENT) serializer = model_serializer(instance, data=data) if serializer.is_valid(): serializer.update(instance, serializer.validated_data) return Response(serializer.data, status=status.HTTP_200_OK) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete_detail(self, request, model, key, value): """ Function to perform a DELETE given a primary key value :param request: the request done to the API, needed to check the auth. :param model: the database model that is going to be searched. :param key: the column name for the primary key. :param value: the value for the primary key that has to be searched. :return: """ try: instance = getattr(model.objects, 'get')([key, value]) except model.DoesNotExist: return Response({'message': 'No available data'}, status=status.HTTP_204_NO_CONTENT) if instance is None: return Response({'message': 'No available data'}, status=status.HTTP_204_NO_CONTENT) instance.delete() return Response({'message': 'Data has been deleted'}, status=status.HTTP_200_OK) @staticmethod def get_page(queryset, page, num): """ Function to get the objects in each page given a query, a page number and a number of elements per page :param queryset: the queryset object that performs the query and gives back the data again. :param page: the page number that has to be given back. :param num: the number of elements per page. :return: the objects read and an error code """ error = None try: n_rows = queryset.count() except Exception as e: print("It is a raw query: ", e) n_rows = len(queryset) if num > n_rows or num <= 0: num = n_rows try: paginator = Paginator(queryset, num, allow_empty_first_page=True) except Exception as e: print("It is a raw query: ", e) paginator = Paginator(queryset, 10, allow_empty_first_page=True) try: queryset_page = paginator.page(page) except PageNotAnInteger: queryset_page = paginator.page(1) except EmptyPage: queryset_page = paginator.page(paginator.num_pages) except ZeroDivisionError: queryset_page = queryset error = -1 return queryset_page, error def get_list_page(self, request, queryset, model_serializer, page, num): """ Function to return the results in pages given a page number and a number of elements per page :param request: the request done to the API, needed to check the auth. :param queryset: the queryset object that performs the query and gives back the data again. :param model_serializer: the serializer to serialize the json result file. :param page: the number of the page that needs to be given back. :param num: the number of elements in each page. :return: a response to the request with the results. """ queryset_page, error = self.get_page(queryset, page, num) if error == -1: return Response({'message': 'No available data'}, status=status.HTTP_204_NO_CONTENT) data = queryset_page.object_list try: n_rows = data.count() except Exception as e: print("It is a raw query: ", e) n_rows = len(data) if n_rows > 0: serializer = model_serializer(data, many=True) return Response(serializer.data, status=status.HTTP_200_OK) else: return Response({'message': 'No available data'}, status=status.HTTP_204_NO_CONTENT)
44.794258
116
0.657872
dadafacd275a9258feac5beee573c0ce70c0c278
2,066
py
Python
vaccine.py
erik06/CVS-covid-vaccine-checker
d13deabbf47bfc690d530e6d7d14026ca473c6b0
[ "Apache-2.0" ]
null
null
null
vaccine.py
erik06/CVS-covid-vaccine-checker
d13deabbf47bfc690d530e6d7d14026ca473c6b0
[ "Apache-2.0" ]
null
null
null
vaccine.py
erik06/CVS-covid-vaccine-checker
d13deabbf47bfc690d530e6d7d14026ca473c6b0
[ "Apache-2.0" ]
null
null
null
""" This is a python script that requires you have python installed, or in a cloud environment. This script scrapes the CVS website looking for vaccine appointments in the cities you list. To update for your area, update the locations marked with ### below. If you receive an error that says something is not install, type pip install beepy in your terminal. Source: https://python.plainenglish.io/how-i-built-a-cvs-vaccine-appointment-availability-checker-in-python-6beb379549e4 """ import requests import time import beepy import subprocess def findAVaccine(): hours_to_run = 24 # Update this to set the number of hours you want the script to run. max_time = time.time() + hours_to_run * 60 * 60 while time.time() < max_time: state = "IL" ###Update with your state abbreviation. Be sure to use all CAPS, e.g. RI url = "https://www.cvs.com/immunizations/covid-19-vaccine" response = requests.get( "https://www.cvs.com/immunizations/covid-19-vaccine.vaccine-status.{}.json?vaccineinfo".format( state.lower() ), headers={"Referer": url}, ) payload = response.json() mappings = {} for item in payload["responsePayloadData"]["data"][state]: mappings[item.get("city")] = item.get("status") print(time.ctime()) cities = ["CHICAGO"] ###Update with your cities nearby for city in cities: print(city, mappings[city]) for key in mappings.keys(): if (key in cities) and (mappings[key] != "Fully Booked"): subprocess.Popen(["open", url]) for _ in range(20): # repeat sound 20 times beepy.beep(sound="coin") break else: pass time.sleep(60) # This runs every 60 seconds. Update here if you'd like it to go every 5min (300sec) print("\n") findAVaccine() ###this final line runs the function. Your terminal will output the cities every 60seconds
30.835821
112
0.626331
4dd923657434f5419bf8f2722f0dc5f5fb100c42
21,885
py
Python
demo.py
kevincao91/kevin.ai.vehicle_detection
fccf0ebb778ff408bc5990ab29b90ee7cb9d97ad
[ "MIT" ]
2
2019-04-24T18:47:45.000Z
2020-07-16T08:08:57.000Z
demo.py
kevincao91/kevin.ai.vehicle_detection
fccf0ebb778ff408bc5990ab29b90ee7cb9d97ad
[ "MIT" ]
null
null
null
demo.py
kevincao91/kevin.ai.vehicle_detection
fccf0ebb778ff408bc5990ab29b90ee7cb9d97ad
[ "MIT" ]
null
null
null
# -------------------------------------------------------- # PyTorch Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Kevin Cao, based on code from Jianwei Yang # -------------------------------------------------------- import _init_paths import os import sys import numpy as np import argparse import pprint import pdb import time import cv2 import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim from scipy.misc import imread from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from model.rpn.bbox_transform import clip_boxes # from model.nms.nms_wrapper import nms from model.roi_layers import nms from model.rpn.bbox_transform import bbox_transform_inv from model.utils.blob import im_list_to_blob from model.faster_rcnn.vgg16 import vgg16 from model.faster_rcnn.resnet import resnet import pdb import pynvml from custom_operations.custom_check import CustomChecker from custom_operations.custom_show import vis_text_beautiful, vis_detections_beautiful import glob def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--dataset', dest='dataset', help='training dataset', default='voc_car_2010', type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='cfgs/res18.yml', type=str) parser.add_argument('--net', dest='net', help='vgg16, res50, res101, res152', default='res18', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) parser.add_argument('--load_dir', dest='load_dir', help='directory to load models', default="models") parser.add_argument('--image_dir', dest='image_dir', help='directory to load images for demo', default="images") parser.add_argument('--cuda', dest='cuda', help='whether use CUDA', action='store_true') parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', action='store_true') parser.add_argument('--cag', dest='class_agnostic', help='whether perform class_agnostic bbox regression', action='store_true') parser.add_argument('--parallel_type', dest='parallel_type', help='which part of model to parallel, 0: all, 1: model before roi pooling', default=0, type=int) parser.add_argument('--checksession', dest='checksession', help='checksession to load model', default=1, type=int) parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load network', default=6, type=int) parser.add_argument('--checkpoint', dest='checkpoint', help='checkpoint to load network', default=257, type=int) parser.add_argument('--bs', dest='batch_size', help='batch_size', default=1, type=int) parser.add_argument('--vis', dest='vis', help='visualization mode', action='store_true') parser.add_argument('--webcam_num', dest='webcam_num', help='webcam ID number', default=-1, type=int) parser.add_argument('--gpu_id', dest='gpu_id', help='which gpu is used', default=0, type=int) # refine parser.add_argument('--refine', dest='refine', help='whether use refine anchor', action='store_true') args = parser.parse_args() return args lr = cfg.TRAIN.LEARNING_RATE momentum = cfg.TRAIN.MOMENTUM weight_decay = cfg.TRAIN.WEIGHT_DECAY def _get_avg(num_list, long=48): """average number input. Arguments: num_list (list): a list of number input Returns: num_avg (float): a float average number of input """ if not num_list: return 0 if len(num_list) >= long: num_avg = sum(num_list[-10:]) / 10 else: num_avg = sum(num_list) / len(num_list) return num_avg def _get_image_blob(im): """Converts an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale_factors (list): list of image scales (relative to im) used in the image pyramid """ im_orig = im.astype(np.float32, copy=True) # changed to use pytorch models im_orig /= 255. # Convert range to [0,1] pixel_means = [0.485, 0.456, 0.406] im_orig -= pixel_means # Minus mean pixel_stdens = [0.229, 0.224, 0.225] im_orig /= pixel_stdens # divide by stddev im_shape = im_orig.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) processed_ims = [] im_scale_factors = [] # for target_size in cfg.TEST.SCALES: # im_scale = float(target_size) / float(im_size_min) # # Prevent the biggest axis from being more than MAX_SIZE # if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE: # im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max) # im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, # interpolation=cv2.INTER_LINEAR) # im_scale_factors.append(im_scale) # processed_ims.append(im) # no need to change size im_scale_factors.append(1.0) processed_ims.append(im_orig) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, np.array(im_scale_factors) if __name__ == '__main__': # 获取指令参数 args = parse_args() # 显卡信息获取 # 这里的0是用的GPU id gpu_id = args.gpu_id pynvml.nvmlInit() print("============= Driver Information =============") driver_version = pynvml.nvmlSystemGetDriverVersion() driver_version = str(driver_version, encoding='utf-8') print("Driver Version:", driver_version) # 显卡驱动版本 device_Count = pynvml.nvmlDeviceGetCount() # 几块显卡 print("GPU Count:", device_Count) gpu_info_list = [] for i in range(device_Count): handle = pynvml.nvmlDeviceGetHandleByIndex(i) gpu_name = pynvml.nvmlDeviceGetName(handle) # name gpu_name = str(gpu_name, encoding='utf-8') meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) mem_total = meminfo.total / (1024 * 1024 * 1024) # bit --> G mem_used = meminfo.used / (1024 * 1024 * 1024) # bit --> G gpu_info_list.append([i, gpu_name, mem_used, mem_total]) print("Device %d : %s %.6f G / %.6f G" % (i, gpu_name, mem_used, mem_total)) # 具体是什么显卡 print("==============================================") print('Called with args:') print(args) print(torch.cuda.is_available()) if torch.cuda.is_available() and not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") np.random.seed(cfg.RNG_SEED) if args.dataset == "pascal_voc": pascal_classes = np.asarray(['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']) else: pascal_classes = np.asarray(['__background__', 'car']) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.dataset: if args.refine: print('refine') cfg_file_name = 'cfgs/{}_refine.yml'.format(args.dataset) cfg_from_file(cfg_file_name) else: cfg_file_name = 'cfgs/{}.yml'.format(args.dataset) cfg_from_file(cfg_file_name) cfg.USE_GPU_NMS = args.cuda print('Using config:') pprint.pprint(cfg) np.random.seed(cfg.RNG_SEED) # train set # -- Note: Use validation set and disable the flipped to enable faster loading. input_dir = args.load_dir + "/" + args.net + "/" + args.dataset if not os.path.exists(input_dir): raise Exception('There is no input directory for loading network from ' + input_dir) load_name = os.path.join(input_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) # initilize the network here. if args.net == 'res101': fasterRCNN = resnet(pascal_classes, 101, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res18': fasterRCNN = resnet(pascal_classes, 18, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res34': fasterRCNN = resnet(pascal_classes, 34, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res50': fasterRCNN = resnet(pascal_classes, 50, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res152': fasterRCNN = resnet(pascal_classes, 152, pretrained=False, class_agnostic=args.class_agnostic) else: print("network is not defined") pdb.set_trace() fasterRCNN.create_architecture() print("load checkpoint %s" % load_name) if args.cuda > 0: checkpoint = torch.load(load_name) else: checkpoint = torch.load(load_name, map_location=(lambda storage, loc: storage)) fasterRCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print('load model successfully!') # 显示显存 handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id) meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) print('GPU meme used: %.10f G' % (meminfo.used / (1024 * 1024 * 1024)), 'after load the weight') # pdb.set_trace() print('load image') # initilize the tensor holder here. im_data = torch.FloatTensor(1) im_info = torch.FloatTensor(1) num_boxes = torch.LongTensor(1) gt_boxes = torch.FloatTensor(1) # ship to cuda if args.cuda > 0: im_data = im_data.cuda() im_info = im_info.cuda() num_boxes = num_boxes.cuda() gt_boxes = gt_boxes.cuda() # make variable with torch.no_grad(): im_data = Variable(im_data) im_info = Variable(im_info) num_boxes = Variable(num_boxes) gt_boxes = Variable(gt_boxes) if args.cuda > 0: cfg.CUDA = True if args.cuda > 0: fasterRCNN.cuda() fasterRCNN.eval() start = time.time() max_per_image = 100 thresh = 0.05 vis = False webcam_num = args.webcam_num # Set up webcam or get image directories if webcam_num >= 0: cap = cv2.VideoCapture(webcam_num) num_frame = 100000 num_images = num_frame else: imglist = os.listdir(args.image_dir) # print(imglist) load_file_path_list = [] for file_name in imglist: load_file_path_list.append([int(file_name.split('.')[0]), file_name]) # sort load_file_path_list.sort() imglist_sorted = [file_name for idx, file_name in load_file_path_list] print(imglist_sorted) imglist = imglist_sorted num_frame = len(imglist) num_images = num_frame print('Loaded Photo: {} images.'.format(num_images)) # 清理显卡缓存 torch.cuda.empty_cache() # 显示显存 handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id) meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) print('GPU meme used: %.10f G' % (meminfo.used / (1024 * 1024 * 1024)), 'before img itr') # pynvml.nvmlShutdown() # 区域检测器 custom_checker = CustomChecker('./cfgs/img_defult.txt') total_time_list = [] # 预设的空值 detect_time_list = [] # 预设空值 nms_time_list = [] # 预设空值 while num_images > 0: total_tic = time.time() if webcam_num == -1: num_images -= 1 # Get image from the webcam if webcam_num >= 0: if not cap.isOpened(): raise RuntimeError("Webcam could not open. Please check connection.") ret, frame_bgr = cap.read() im_bgr = np.array(frame_bgr) # bgr -> rgb im_rgb = im_bgr[:, :, ::-1] # Load the demo image else: image_idx = num_frame - num_images -1 # print('image load: ', imglist[image_idx]) im_file = os.path.join(args.image_dir, imglist[image_idx]) # im = cv2.imread(im_file) im_rgb = np.array(imread(im_file)) # rgb -> bgr im_bgr = im_rgb[:, :, ::-1] if len(im_rgb.shape) == 2: im_rgb = im_rgb[:, :, np.newaxis] im_rgb = np.concatenate((im_rgb, im_rgb, im_rgb), axis=2) # in image is rgb im_in = im_rgb blobs, im_scales = _get_image_blob(im_in) assert len(im_scales) == 1, "Only single-image batch implemented" im_blob = blobs im_info_np = np.array([[im_blob.shape[1], im_blob.shape[2], im_scales[0]]], dtype=np.float32) im_data_pt = torch.from_numpy(im_blob) im_data_pt = im_data_pt.permute(0, 3, 1, 2) im_info_pt = torch.from_numpy(im_info_np) im_data.resize_(im_data_pt.size()).copy_(im_data_pt) im_info.resize_(im_info_pt.size()).copy_(im_info_pt) gt_boxes.resize_(1, 1, 5).zero_() num_boxes.resize_(1).zero_() # 显示显存 # handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id) # meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) # print('GPU meme used: %.10f G' % (meminfo.used / (1024 * 1024 * 1024)), 'befor go in net', num_images+1) # pdb.set_trace() # 开始推理 det_tic = time.time() with torch.no_grad(): rois, cls_prob, bbox_pred, rpn_loss_cls, rpn_loss_box, RCNN_loss_cls, RCNN_loss_bbox, rois_label = \ fasterRCNN(im_data, im_info, gt_boxes, num_boxes) # 显示显存 # handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id) # meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) # print('GPU meme used: %.10f G' % (meminfo.used / (1024 * 1024 * 1024)), 'after go in net', num_images+1) scores = cls_prob.data boxes = rois.data[:, :, 1:5] if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred.data if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev if args.class_agnostic: if args.cuda > 0: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() else: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS) \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS) box_deltas = box_deltas.view(1, -1, 4) else: if args.cuda > 0: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() else: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS) \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS) box_deltas = box_deltas.view(1, -1, 4 * len(pascal_classes)) pred_boxes = bbox_transform_inv(boxes, box_deltas, 1) pred_boxes = clip_boxes(pred_boxes, im_info.data, 1) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) pred_boxes /= im_scales[0] scores = scores.squeeze() pred_boxes = pred_boxes.squeeze() det_toc = time.time() detect_time = det_toc - det_tic detect_time_list.append(detect_time) # 开始nms nms_tic = time.time() # test # im2show = constraint_check(im_bgr, pascal_classes, scores, pred_boxes, thresh, # class_agnostic=args.class_agnostic) all_cls_dets = [] for j in range(1, len(pascal_classes)): inds = torch.nonzero(scores[:, j] > thresh).view(-1) # if there is det if inds.numel() > 0: cls_scores = scores[:, j][inds] _, order = torch.sort(cls_scores, 0, True) if args.class_agnostic: cls_boxes = pred_boxes[inds, :] else: cls_boxes = pred_boxes[inds][:, j * 4:(j + 1) * 4] cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1) # cls_dets = torch.cat((cls_boxes, cls_scores), 1) cls_dets = cls_dets[order] # keep = nms(cls_dets, cfg.TEST.NMS, force_cpu=not cfg.USE_GPU_NMS) keep = nms(cls_boxes[order, :], cls_scores[order], cfg.TEST.NMS) cls_dets = cls_dets[keep.view(-1).long()] # all_cls_dets.append(cls_dets.cpu().numpy()) else: all_cls_dets.append([]) nms_toc = time.time() nms_time = nms_toc - nms_tic nms_time_list.append(nms_time) # 绘制图形与文字 # plot box and label im2show = np.copy(im_bgr) # thresh check // regional check // identify check // path predict all_cls_dets = custom_checker.thresh_check(all_cls_dets, thresh=0.95) im2show, all_cls_dets = custom_checker.regional_check(im2show, all_cls_dets) im2show, all_cls_dets, all_cls_labels, all_cls_speeds = custom_checker.identify_check(im2show, all_cls_dets) im2show = custom_checker.path_predict(im2show) im2show = custom_checker.count_check(im2show) # plot box and label for j in range(1, len(pascal_classes)): if len(all_cls_dets[j-1]): # no value check cls_dets = all_cls_dets[j-1] cls_labels = all_cls_labels[j-1] cls_speeds = all_cls_speeds[j-1] im2show = vis_detections_beautiful(im2show, pascal_classes[j], cls_dets, cls_labels=cls_labels, cls_speeds=cls_speeds) # plot string # model info model_name = args.net file_name = load_name # gpu info handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id) meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) mem_used = meminfo.used / (1024 * 1024 * 1024) # bit --> G # average calculate detect_time_avg = _get_avg(detect_time_list) nms_time_avg = _get_avg(nms_time_list) if total_time_list: total_time = total_time_list[-1] # 取上一帧的总时间,这帧显示,如果是第一张就是预设时间 total_time_avg = _get_avg(total_time_list) else: total_time = 0.888 # any no-zero value total_time_avg = 0.888 # fps calculate frame_rate = 1 / total_time frame_rate_avg = 1 / total_time_avg # need time calculate need_time = num_images / frame_rate need_time_avg = num_images / frame_rate_avg im2show = vis_text_beautiful(im2show, [gpu_name, mem_used, mem_total, model_name, file_name, detect_time_avg, nms_time_avg, total_time_avg, frame_rate_avg]) if webcam_num >= 0: cv2.imshow('frame', cv2.resize(im2show, None, fx=1.0, fy=1.0)) if cv2.waitKey(10) & 0xFF == ord('q'): break else: if vis: cv2.imshow('frame', cv2.resize(im2show, None, fx=1.0, fy=1.0)) if cv2.waitKey(10) & 0xFF == ord('q'): break result_path = os.path.join(args.image_dir, imglist[image_idx][:-4] + "_det.jpg") cv2.imwrite(result_path, im2show) # print sys sys.stdout.write('im_detect: {:d}/{:d} {:.3f}s {:.3f}s {:.3f}s fps: {:.3f} Hz need_time: {:.3f}s \r' .format(num_images + 1, num_frame, detect_time_avg, nms_time_avg, total_time_avg, frame_rate_avg, need_time_avg)) sys.stdout.flush() total_toc = time.time() total_time = total_toc - total_tic total_time_list.append(total_time) # 清理显卡缓存 torch.cuda.empty_cache() # 显示显存 # handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id) # meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) # print('GPU meme used: %.10f G' % (meminfo.used / (1024 * 1024 * 1024)), 'after empty cache') # clean worksapce pynvml.nvmlShutdown() if webcam_num >= 0: cap.release() cv2.destroyAllWindows() print('All Have Done !')
39.150268
134
0.588714
93282111364942e2989191edf942adc0379d49a4
5,200
py
Python
libp2p/crypto/pb/crypto_pb2.py
g-r-a-n-t/py-libp2p
36a4a9150dcc53b42315b5c6868fccde5083963b
[ "Apache-2.0", "MIT" ]
315
2019-02-13T01:29:09.000Z
2022-03-28T13:44:07.000Z
libp2p/crypto/pb/crypto_pb2.py
pipermerriam/py-libp2p
379a157d6b67e86a616b2458af519bbe5fb26a51
[ "Apache-2.0", "MIT" ]
249
2019-02-22T05:00:07.000Z
2022-03-29T16:30:46.000Z
libp2p/crypto/pb/crypto_pb2.py
ralexstokes/py-libp2p
5144ab82894623969cb17baf0d4c64bd0a274068
[ "Apache-2.0", "MIT" ]
77
2019-02-24T19:45:17.000Z
2022-03-30T03:20:09.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: libp2p/crypto/pb/crypto.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='libp2p/crypto/pb/crypto.proto', package='crypto.pb', syntax='proto2', serialized_options=None, serialized_pb=_b('\n\x1dlibp2p/crypto/pb/crypto.proto\x12\tcrypto.pb\"?\n\tPublicKey\x12$\n\x08key_type\x18\x01 \x02(\x0e\x32\x12.crypto.pb.KeyType\x12\x0c\n\x04\x64\x61ta\x18\x02 \x02(\x0c\"@\n\nPrivateKey\x12$\n\x08key_type\x18\x01 \x02(\x0e\x32\x12.crypto.pb.KeyType\x12\x0c\n\x04\x64\x61ta\x18\x02 \x02(\x0c*9\n\x07KeyType\x12\x07\n\x03RSA\x10\x00\x12\x0b\n\x07\x45\x64\x32\x35\x35\x31\x39\x10\x01\x12\r\n\tSecp256k1\x10\x02\x12\t\n\x05\x45\x43\x44SA\x10\x03') ) _KEYTYPE = _descriptor.EnumDescriptor( name='KeyType', full_name='crypto.pb.KeyType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='RSA', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Ed25519', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='Secp256k1', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ECDSA', index=3, number=3, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=175, serialized_end=232, ) _sym_db.RegisterEnumDescriptor(_KEYTYPE) KeyType = enum_type_wrapper.EnumTypeWrapper(_KEYTYPE) RSA = 0 Ed25519 = 1 Secp256k1 = 2 ECDSA = 3 _PUBLICKEY = _descriptor.Descriptor( name='PublicKey', full_name='crypto.pb.PublicKey', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key_type', full_name='crypto.pb.PublicKey.key_type', index=0, number=1, type=14, cpp_type=8, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='crypto.pb.PublicKey.data', index=1, number=2, type=12, cpp_type=9, label=2, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=44, serialized_end=107, ) _PRIVATEKEY = _descriptor.Descriptor( name='PrivateKey', full_name='crypto.pb.PrivateKey', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key_type', full_name='crypto.pb.PrivateKey.key_type', index=0, number=1, type=14, cpp_type=8, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='crypto.pb.PrivateKey.data', index=1, number=2, type=12, cpp_type=9, label=2, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=109, serialized_end=173, ) _PUBLICKEY.fields_by_name['key_type'].enum_type = _KEYTYPE _PRIVATEKEY.fields_by_name['key_type'].enum_type = _KEYTYPE DESCRIPTOR.message_types_by_name['PublicKey'] = _PUBLICKEY DESCRIPTOR.message_types_by_name['PrivateKey'] = _PRIVATEKEY DESCRIPTOR.enum_types_by_name['KeyType'] = _KEYTYPE _sym_db.RegisterFileDescriptor(DESCRIPTOR) PublicKey = _reflection.GeneratedProtocolMessageType('PublicKey', (_message.Message,), { 'DESCRIPTOR' : _PUBLICKEY, '__module__' : 'libp2p.crypto.pb.crypto_pb2' # @@protoc_insertion_point(class_scope:crypto.pb.PublicKey) }) _sym_db.RegisterMessage(PublicKey) PrivateKey = _reflection.GeneratedProtocolMessageType('PrivateKey', (_message.Message,), { 'DESCRIPTOR' : _PRIVATEKEY, '__module__' : 'libp2p.crypto.pb.crypto_pb2' # @@protoc_insertion_point(class_scope:crypto.pb.PrivateKey) }) _sym_db.RegisterMessage(PrivateKey) # @@protoc_insertion_point(module_scope)
31.90184
466
0.736538
a20721822c56f15892aa3418261f0c2a69b1e0f5
7,880
py
Python
formal_solver.py
Goobley/Lightspinner
6214e9a3027f8a5aea01038a1524ebff13563258
[ "MIT" ]
6
2020-02-13T11:20:38.000Z
2022-03-01T08:23:44.000Z
formal_solver.py
Goobley/Lightspinner
6214e9a3027f8a5aea01038a1524ebff13563258
[ "MIT" ]
null
null
null
formal_solver.py
Goobley/Lightspinner
6214e9a3027f8a5aea01038a1524ebff13563258
[ "MIT" ]
2
2020-04-10T02:09:59.000Z
2021-11-23T06:52:33.000Z
import numpy as np from numba import njit from dataclasses import dataclass from utils import planck @dataclass class IPsi: """Holder for the I and PsiStar arrays in a single object. """ I: np.ndarray PsiStar: np.ndarray @njit def w2(dtau): """Compute the analytic integration factors w0, w1 for the piecewise linear short characteristics method. Parameters ---------- dtau : float Delta tau over the region for which the integration factors are needed. Returns ------- w : np.ndarray A 2 element array containing w0 and w1 -- these are calculated using a Taylor series for small dtau, and set to constant values for large dtau. """ w = np.empty(2) if dtau < 5e-4: w[0] = dtau * (1.0 - 0.5*dtau) w[1] = dtau**2 * (0.5 - dtau / 3.0) elif dtau > 50.0: w[0] = 1.0 w[1] = 1.0 else: expdt = np.exp(-dtau) w[0] = 1.0 - expdt w[1] = w[0] - dtau * expdt return w @njit def piecewise_1d_impl(muz, toFrom, Istart, z, chi, S): """Formal solver core integration function. Compute the one-dimensional (plane parallel) formal solution and approximate Psi operator (diagonal) for the specified parameters up or down one ray for the source function and opacity at a given frequency. This function uses the piecewise linear short characteristics method -- see [HM pp. 404-408], Auer & Paletou (1994) A&A, 285, 675-686, and Kunasz & Auer (1988) JQSRT, 39, 67-79. For the approximate operator see [HM pp. 436-440] and [RH91/92]. Also see the notes attached to this code. The piecewise linear method is somewhat crude, and requires a densely grid in tau. Due to the nature of assuming piecewise linear variations of the source function between the points this method can overestimate substantially in regions where the source function has upwards curvature and underestimate similarly in regions where the curvature is downwards. This is however the simplest formal solver to implement, and performs well enough for many problems. Parameters ---------- muz : float The cosine of the ray to the normal of the atmospheric slabs. toFrom : bool Whether the ray is upgoing (towards the observer), or downgoing (True/False respectively). Istart : float The incoming intensity at the boundary where the integration starts. z : np.ndarray The height grid (1D array). chi : np.ndarray The total opacity grid (1D array). S : np.ndarray The total source function grid (1D array). Returns ------- I : np.ndarray The intensity at each point on the grid (1D array). PsiStar : np.ndarray The approximate Psi operator (diagonal of the Lambda operator) at each point on the grid (1D array). """ Nspace = chi.shape[0] # NOTE(cmo): Since a smaller mu "increases" the perceived thickness of the slab, the factor we need to use if 1/mu zmu = 1.0 / muz # NOTE(cmo): It is simplest to set up the looping criterea separately, with dk being the loop step if toFrom: # NOTE(cmo): Upgoing ray / to observer dk = -1 kStart = Nspace - 1 kEnd = 0 else: # NOTE(cmo): Downgoing ray / away from observer dk = 1 kStart = 0 kEnd = Nspace - 1 # dtau_uw = average opacity * slab thickness dtau_uw = 0.5 * (chi[kStart] + chi[kStart + dk]) * zmu * np.abs(z[kStart] - z[kStart + dk]) # NOTE(cmo): dS_uw = dS / dtau i.e. c_1 on slides. Direction is opposite to # forward derivative in z as "increases" away from the point at which we're # solving -- in all directions. dS_uw = (S[kStart] - S[kStart + dk]) / dtau_uw Iupw = Istart I = np.zeros(Nspace) LambdaStar = np.zeros(Nspace) # NOTE(cmo): Initial point is equation to boundary condition I[kStart] = Iupw LambdaStar[kStart] = 0.0 for k in range(kStart + dk, kEnd, dk): # NOTE(cmo): Get analytic integration terms w = w2(dtau_uw) # NOTE(cmo): Compute I and LambdaStar # (1.0 - w[0]) = exp(-dtau) as w[0] as w[0] = 1 - exp(-dtau) and this saves us recomputing the exp I[k] = Iupw * (1.0 - w[0]) + w[0] * S[k] + w[1] * dS_uw LambdaStar[k] = w[0] - w[1] / dtau_uw # NOTE(cmo): dtau_dw and dS_dw like uw for next iteration dtau_dw = 0.5 * (chi[k] + chi[k+dk]) * zmu * np.abs(z[k] - z[k+dk]) dS_dw = (S[k] - S[k+dk]) / dtau_dw # NOTE(cmo): Set values (Iupw, dS_uw, dtau_uw) for next iteration Iupw = I[k] dS_uw = dS_dw dtau_uw = dtau_dw # NOTE(cmo): Do final point (exactly the same in this linear scheme) I[kEnd] = (1.0 - w[0]) * Iupw + w[0] * S[k] + w[1] * dS_uw LambdaStar[kEnd] = w[0] - w[1] / dtau_uw # NOTE(cmo): Correctly make PsiStar by dividing LambdaStar by chi return I, LambdaStar / chi def piecewise_linear_1d(atmos, mu, toFrom, wav, chi, S): """One-dimensional Piecewise linear formal solver Compute the one-dimensional (plane parallel) formal solution and approximate Psi operator (diagonal) for the given atmosphere up or down one ray for the source function and opacity at a given frequency. The radiation boundary conditions assume that the lower boundary is thermalised and the upper has no incident radiation. This function uses the piecewise linear short characteristics method -- see [HM pp. 404-408], Auer & Paletou (1994) A&A, 285, 675-686, and Kunasz & Auer (1988) JQSRT, 39, 67-79. For the approximate operator see [HM pp. 436-440] and [RH91/92]. Also see the notes attached to this code. The piecewise linear method is somewhat crude, and requires a densely grid in tau. Due to the nature of assuming piecewise linear variations of the source function between the points this method can overestimate substantially in regions where the source function has upwards curvature and underestimate similarly in regions where the curvature is downwards. This is however the simplest formal solver to implement, and performs well enough for many problems. Parameters ---------- atmos : Atmosphere The atmosphere object containing the stratification to compute the formal solution through. mu : int The index of the ray to compute the formal solution for in atmos.muz. toFrom : bool Whether the ray is upgoing (towards the observer), or downgoing (True/False respectively). wav : float The wavelength at which the formal solution is being computed (needed for boundary conditions). chi : np.ndarray The total opacity for each depth point in the stratified atmosphere(1D array). S : np.ndarray The total source function grid for each depth point in the stratified atmosphere (1D array). Returns ------- IPsi A dataclass containing the intensity approximate Psi operator at each point in the atmosphere. """ zmu = 1.0 / atmos.muz[mu] z = atmos.height if toFrom: dk = -1 kStart = atmos.Nspace - 1 kEnd = 0 else: dk = 1 kStart = 0 kEnd = atmos.Nspace - 1 # NOTE(cmo): Set up supper simple boundary conditions -- thermalised for upgoing and zero for downgoing if toFrom: dtau_uw = zmu * (chi[kStart] + chi[kStart + dk]) * 0.5 * np.abs(z[kStart] - z[kStart + dk]) Bnu = planck(atmos.temperature[-2:], wav) Iupw = Bnu[1] - (Bnu[0] - Bnu[1]) / dtau_uw else: Iupw = 0.0 I, PsiStar = piecewise_1d_impl(atmos.muz[mu], toFrom, Iupw, z, chi, S) return IPsi(I, PsiStar)
37.169811
118
0.637056
5b0eb627151373b21a3cf00c4a576ddc7f7f7ea0
702
py
Python
parkings/tests/test_models.py
mingfeng/parkkihubi
c817f8e852c1caee969c4ad59f686bf7c1e94526
[ "MIT" ]
1
2021-05-20T13:07:29.000Z
2021-05-20T13:07:29.000Z
parkings/tests/test_models.py
mingfeng/parkkihubi
c817f8e852c1caee969c4ad59f686bf7c1e94526
[ "MIT" ]
null
null
null
parkings/tests/test_models.py
mingfeng/parkkihubi
c817f8e852c1caee969c4ad59f686bf7c1e94526
[ "MIT" ]
null
null
null
import datetime from django.contrib.gis.geos import Point from django.utils.timezone import now from parkings.models import Address, Operator, Parking def test_address_instance_creation(): Address(city="city", postal_code="12345", street="street") def test_operator_instance_creation(): Operator(name="name", user_id=1) def test_parking_instance_creation(): Parking( device_identifier="device_identifier", location=Point(60.193609, 24.951394), operator_id=1, registration_number="ABC-123", resident_code="A", special_code="SPECIAL", time_end=now() + datetime.timedelta(days=1), time_start=now(), zone=3, )
24.206897
62
0.690883
f35e7d39d5995d100fb80b1aea5e5ce012a854a6
799
py
Python
account/migrations/0009_auto_20211023_1816.py
codingwithahmad/tw-clone
9cf4197f40855216a59fbe9d974d5ee9a4863f7f
[ "MIT" ]
null
null
null
account/migrations/0009_auto_20211023_1816.py
codingwithahmad/tw-clone
9cf4197f40855216a59fbe9d974d5ee9a4863f7f
[ "MIT" ]
null
null
null
account/migrations/0009_auto_20211023_1816.py
codingwithahmad/tw-clone
9cf4197f40855216a59fbe9d974d5ee9a4863f7f
[ "MIT" ]
null
null
null
# Generated by Django 3.2.7 on 2021-10-23 14:46 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('account', '0008_alter_user_bio'), ] operations = [ migrations.AlterField( model_name='userfollowing', name='following_user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='following', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='userfollowing', name='user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='followers', to=settings.AUTH_USER_MODEL), ), ]
30.730769
136
0.667084
50260a5de0aed1764a9e13c9f514a08e0e8e5193
9,193
py
Python
medexbot/spiders/med_spider.py
ahmedshahriar/bd-medicine-scraper
ea97d929fc9cdcbdde2602827cdc3d12709e2ca9
[ "Apache-2.0" ]
1
2022-03-17T03:02:49.000Z
2022-03-17T03:02:49.000Z
medexbot/spiders/med_spider.py
ahmedshahriar/bd-medicine-scraper
ea97d929fc9cdcbdde2602827cdc3d12709e2ca9
[ "Apache-2.0" ]
null
null
null
medexbot/spiders/med_spider.py
ahmedshahriar/bd-medicine-scraper
ea97d929fc9cdcbdde2602827cdc3d12709e2ca9
[ "Apache-2.0" ]
null
null
null
import logging import re import time import scrapy from django.db import IntegrityError from django.utils.text import slugify from crawler.models import Generic, Manufacturer from medexbot.items import MedItem, GenericItem class MedSpider(scrapy.Spider): name = "med" allowed_domains = ['medex.com.bd'] start_urls = ['https://medex.com.bd/brands?page=1', 'https://medex.com.bd/brands?herbal=1&page=1'] def clean_text(self, raw_html): """ :param raw_html: this will take raw html code :return: text without html tags """ cleaner = re.compile('<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});') return re.sub(cleaner, '', raw_html) def parse(self, response, **kwargs): for med_info in response.css('a.hoverable-block'): med_page_links = med_info.css('a.hoverable-block ::attr("href") ') yield from response.follow_all(med_page_links, self.parse_med) pagination_links = response.css('a.page-link[rel="next"] ::attr("href") ') yield from response.follow_all(pagination_links, self.parse) def parse_generic(self, response): item = GenericItem() item['generic_id'] = re.findall("generics/(\S*)/", response.url)[0] item['generic_name']= response.css('h1.page-heading-1-l ::text').get().strip() item['monograph_link'] = response.css('span.hidden-sm a ::attr(href)').get() """ medicine description """ # indications # generic_details['indications'] = response.css('div#indications h4 ::text').get().strip() item['indication_description'] = response.xpath( '//div[@id="indications"]/following-sibling::node()[2]').get().strip() # ###Therapeutic Class # therapeutic_class = extract_with_css('div#drug_classes h4 ::text') item['therapeutic_class_description'] = response.xpath( '//div[@id="drug_classes"]/following-sibling::node()[2]').get() # ###Pharmacology # pharmacology = extract_with_css('div#mode_of_action h4 ::text') item['pharmacology_description'] = response.xpath( '//div[@id="mode_of_action"]/following-sibling::node()[2]').get() # ##Dosage # dosage = extract_with_css('div#dosage h4 ::text') item['dosage_description'] = response.xpath('//div[@id="dosage"]/following-sibling::node()[2]').get() # ##Administration # administration = extract_with_css('div#administration h4 ::text') item['administration_description'] = response.xpath( '//div[@id="administration"]/following-sibling::node()[2]').get() # ##Interaction # interaction = extract_with_css('div#interaction h4 ::text') item['interaction_description'] = response.xpath( '//div[@id="interaction"]/following-sibling::node()[2]').get() # ##Contraindications # contraindications = extract_with_css('div#contraindications h4 ::text') item['contraindications_description'] = response.xpath( '//div[@id="contraindications"]/following-sibling::node()[2]').get() # ##Side Effects # side_effects = extract_with_css('div#side_effects h4 ::text') item['side_effects_description'] = response.xpath( '//div[@id="side_effects"]/following-sibling::node()[2]').get() # ##Pregnancy & Lactation # pregnancy_and_lactation = extract_with_css('div#pregnancy_cat h4 ::text') item['pregnancy_and_lactation_description'] = response.xpath( '//div[@id="pregnancy_cat"]/following-sibling::node()[2]').get() # ## Precautions # precautions = extract_with_css('div#precautions h4 ::text') item['precautions_description'] = response.xpath( '//div[@id="precautions"]/following-sibling::node()[2]').get() # ## Use in Special Populations # pediatric_usage = extract_with_css('div#pediatric_uses h4 ::text') item['pediatric_usage_description'] = response.xpath( '//div[@id="pediatric_uses"]/following-sibling::node()[2]').get() # ##Overdose Effects # overdose_effects = extract_with_css('div#overdose_effects h4 ::text') item['overdose_effects_description'] = response.xpath( '//div[@id="overdose_effects"]/following-sibling::node()[2]').get() # ##Duration of treatment # duration_of_treatment = extract_with_css('div#duration_of_treatment h4 ::text') item['duration_of_treatment_description'] = response.xpath( '//div[@id="duration_of_treatment"]/following-sibling::node()[2]').get() # ##Reconstitution # reconstitution = extract_with_css('div#reconstitution h4 ::text') item['reconstitution_description'] = response.xpath( '//div[@id="reconstitution"]/following-sibling::node()[2]').get() # ##Storage Conditions # storage_conditions = extract_with_css('div#storage_conditions h4 ::text') item['storage_conditions_description'] = response.xpath( '//div[@id="storage_conditions"]/following-sibling::node()[2]').get() item['slug'] = slugify(item['generic_name'] + '-' + item['generic_id'], allow_unicode=True) yield item def parse_med(self, response): def extract_with_css(query): return response.css(query).get(default='').strip() item = MedItem() item['brand_id'] = re.findall(r"brands/(\S*)/", response.url)[0] item['brand_name'] = response.css('h1.page-heading-1-l span ::text').getall()[0].strip() item['type'] = 'herbal' if response.css( 'h1.page-heading-1-l img ::attr(alt)').get().strip() == 'Herbal' else 'allopathic' item['dosage_form'] = extract_with_css('small.h1-subtitle ::text') # generic_name = extract_with_css('div[title="Generic Name"] a ::text') item['strength'] = extract_with_css('div[title="Strength"] ::text') # manufacturer extraction manufacturer_link = extract_with_css('div[title ="Manufactured by"] a ::attr(href)') manufacturer_id = re.findall(r"companies/(\d+)/", manufacturer_link)[0] manufacturer_name = extract_with_css('div[title ="Manufactured by"] a ::text') try: item['manufacturer'] = Manufacturer.objects.get(manufacturer_id=manufacturer_id) except Manufacturer.DoesNotExist as me: logging.info(me) item['manufacturer'] = Manufacturer.objects.create(manufacturer_id=manufacturer_id, manufacturer_name=manufacturer_name, slug=slugify(manufacturer_name + '-' + manufacturer_id, allow_unicode=True)) except IntegrityError as ie: logging.info(ie) item['manufacturer'] = None # med_details['package_container'] = [self.clean_text(spec_value).strip() for spec_value in response.css( # 'div.package-container').getall()] # todo : debug package container # https://medex.com.bd/brands/7701/3rd-cef-100mg # https://medex.com.bd/brands/9538/3-f-500mg # check all the dosage forms and add exceptions https://medex.com.bd/dosage-forms # todo : debug veterinary # https://medex.com.bd/brands/31317/a-mectin-vet-10mg # item['package_container'] = ' '.join(extract_with_css('div.package-container ::text').split()) # item['pack_size_info'] = ' '.join(extract_with_css('span.pack-size-info ::text').split()) # todo : remove overlapping pack size info package_container = ','.join( [re.sub(r'\s+', ' ', i).strip() for i in response.css('div.package-container ::text').getall()]) pack_size_info = ','.join( [re.sub(r'\s+', ' ', i).strip() for i in response.css('span.pack-size-info ::text').getall() if i.strip() is not '']) item['package_container'] = package_container item['pack_size_info'] = pack_size_info item['slug'] = slugify(item['brand_name'] + item['dosage_form'] + item['strength'], allow_unicode=True) # generic extraction generic_link = extract_with_css('div[title="Generic Name"] a ::attr(href)') generic_id = re.findall(r"generics/(\S*)/", generic_link)[0] try: item['generic'] = Generic.objects.get(generic_id=generic_id) except Generic.DoesNotExist as ge: logging.info(ge) """ save the generics id with medicines id to map them later """ with open('generic_id.txt', 'a') as f: f.write(item['brand_id']+','+generic_id + '\n') yield response.follow(generic_link, self.parse_generic) item['generic'] = None except IntegrityError as ie: logging.info(ie) item['generic'] = None yield item
46.903061
113
0.602306
33f4e44f2ba5f4498348527cfad8e0562526616d
401
py
Python
work/Aufgabe10_moc/run_all.py
hobler/miniTopSim
6ead4c5ed9cc1459f019af4bfa899c46c0d2fb22
[ "MIT" ]
16
2016-11-21T13:24:52.000Z
2022-03-24T11:54:50.000Z
work/Aufgabe10_moc/run_all.py
hobler/miniTopSim
6ead4c5ed9cc1459f019af4bfa899c46c0d2fb22
[ "MIT" ]
1
2016-11-29T14:08:33.000Z
2016-11-29T19:12:35.000Z
work/Aufgabe10_moc/run_all.py
hobler/miniTopSim
6ead4c5ed9cc1459f019af4bfa899c46c0d2fb22
[ "MIT" ]
11
2015-11-19T14:29:34.000Z
2021-01-02T14:24:04.000Z
""" Script to run all necessary simulations consecutively """ from mini_topsim.main import mini_topsim mini_topsim('cosine_norm_noredep.cfg') mini_topsim('cosine_moc_noredep.cfg') mini_topsim('cosine_norm_redep.cfg') mini_topsim('cosine_moc_redep.cfg') mini_topsim('gauss_norm_noredep.cfg') mini_topsim('gauss_moc_noredep.cfg') mini_topsim('gauss_norm_redep.cfg') mini_topsim('gauss_moc_redep.cfg')
26.733333
53
0.825436
403eafc96194607b48d78cb014f0430ccdc13743
4,584
py
Python
mcts.py
polySML/multiobj-rationale
64da1e55120f6224b2b9e9f466c8b2953494446f
[ "MIT" ]
80
2020-07-03T04:30:00.000Z
2022-03-14T10:50:35.000Z
mcts.py
polySML/multiobj-rationale
64da1e55120f6224b2b9e9f466c8b2953494446f
[ "MIT" ]
9
2020-07-08T16:39:56.000Z
2021-11-29T03:40:59.000Z
mcts.py
wengong-jin/multiobj-rationale
7d32f3f7edff69c877fc29d2e469b341aa026005
[ "MIT" ]
24
2020-07-11T17:29:25.000Z
2022-02-03T22:54:06.000Z
import sys import argparse import math from rdkit import Chem from functools import partial from multiprocessing import Pool from fuseprop import find_clusters, extract_subgraph from properties import get_scoring_function MIN_ATOMS = 15 C_PUCT = 10 class MCTSNode(): def __init__(self, smiles, atoms, W=0, N=0, P=0): self.smiles = smiles self.atoms = set(atoms) self.children = [] self.W = W self.N = N self.P = P def Q(self): return self.W / self.N if self.N > 0 else 0 def U(self, n): return C_PUCT * self.P * math.sqrt(n) / (1 + self.N) def mcts_rollout(node, state_map, orig_smiles, clusters, atom_cls, nei_cls, scoring_function): #print('cur_node', node.smiles, node.P, node.N, node.W) cur_atoms = node.atoms if len(cur_atoms) <= MIN_ATOMS: return node.P # Expand if this node has never been visited if len(node.children) == 0: cur_cls = set( [i for i,x in enumerate(clusters) if x <= cur_atoms] ) for i in cur_cls: leaf_atoms = [a for a in clusters[i] if len(atom_cls[a] & cur_cls) == 1] if len(nei_cls[i] & cur_cls) == 1 or len(clusters[i]) == 2 and len(leaf_atoms) == 1: new_atoms = cur_atoms - set(leaf_atoms) new_smiles, _ = extract_subgraph(orig_smiles, new_atoms) #print('new_smiles', node.smiles, '->', new_smiles) if new_smiles in state_map: new_node = state_map[new_smiles] # merge identical states else: new_node = MCTSNode(new_smiles, new_atoms) if new_smiles: node.children.append(new_node) state_map[node.smiles] = node if len(node.children) == 0: return node.P # cannot find leaves scores = scoring_function([x.smiles for x in node.children]) for child, score in zip(node.children, scores): child.P = score sum_count = sum([c.N for c in node.children]) selected_node = max(node.children, key=lambda x : x.Q() + x.U(sum_count)) v = mcts_rollout(selected_node, state_map, orig_smiles, clusters, atom_cls, nei_cls, scoring_function) selected_node.W += v selected_node.N += 1 return v def mcts(smiles, scoring_function, n_rollout, max_atoms, prop_delta): mol = Chem.MolFromSmiles(smiles) clusters, atom_cls = find_clusters(mol) nei_cls = [0] * len(clusters) for i,cls in enumerate(clusters): nei_cls[i] = [nei for atom in cls for nei in atom_cls[atom]] nei_cls[i] = set(nei_cls[i]) - set([i]) clusters[i] = set(list(cls)) for a in range(len(atom_cls)): atom_cls[a] = set(atom_cls[a]) root = MCTSNode( smiles, set(range(mol.GetNumAtoms())) ) state_map = {smiles : root} for _ in range(n_rollout): mcts_rollout(root, state_map, smiles, clusters, atom_cls, nei_cls, scoring_function) rationales = [node for _,node in state_map.items() if len(node.atoms) <= max_atoms and node.P >= prop_delta] return smiles, rationales if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--data', required=True) parser.add_argument('--prop', required=True) parser.add_argument('--rollout', type=int, default=20) parser.add_argument('--c_puct', type=float, default=10) parser.add_argument('--max_atoms', type=int, default=20) parser.add_argument('--min_atoms', type=int, default=15) parser.add_argument('--prop_delta', type=float, default=0.5) parser.add_argument('--ncand', type=int, default=2) parser.add_argument('--ncpu', type=int, default=15) args = parser.parse_args() scoring_function = get_scoring_function(args.prop) scoring_function.clf.n_jobs = 1 C_PUCT = args.c_puct MIN_ATOMS = args.min_atoms with open(args.data) as f: next(f) data = [line.split(',')[0] for line in f] work_func = partial(mcts, scoring_function=scoring_function, n_rollout=args.rollout, max_atoms=args.max_atoms, prop_delta=args.prop_delta) pool = Pool(args.ncpu) results = pool.map(work_func, data) rset = set() for orig_smiles, rationales in results: rationales = sorted(rationales, key=lambda x:len(x.atoms)) for x in rationales[:args.ncand]: if x.smiles not in rset: print(orig_smiles, x.smiles, len(x.atoms), x.P) rset.add(x.smiles)
36.672
112
0.624782
ff6482511d76456e602c08136ad0fadac26bd2e3
440
py
Python
metaci/plan/migrations/0016_plan_test_dashboard.py
abhishekalgo/metaci
cd62473b3fb85fb0f39623f9fb2850993ff708a5
[ "BSD-3-Clause" ]
48
2018-10-24T14:52:06.000Z
2022-03-25T21:14:50.000Z
metaci/plan/migrations/0016_plan_test_dashboard.py
abhishekalgo/metaci
cd62473b3fb85fb0f39623f9fb2850993ff708a5
[ "BSD-3-Clause" ]
2,034
2018-10-31T20:59:16.000Z
2022-03-22T21:38:03.000Z
metaci/plan/migrations/0016_plan_test_dashboard.py
abhishekalgo/metaci
cd62473b3fb85fb0f39623f9fb2850993ff708a5
[ "BSD-3-Clause" ]
27
2018-12-24T18:16:23.000Z
2021-12-15T17:57:27.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-07-23 22:13 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("plan", "0015_auto_20180314_2252")] operations = [ migrations.AddField( model_name="plan", name="test_dashboard", field=models.BooleanField(default=False), ) ]
23.157895
56
0.643182
531d961fe2ba1b320a7ab251bf77e7e5c81f7fc8
1,999
py
Python
pylint/plugins/hass_logger.py
elahd/ha-nyc311
c7555a8af316fc7e44f9a5d794a0872eb534bbe1
[ "MIT" ]
1
2022-02-03T02:12:27.000Z
2022-02-03T02:12:27.000Z
pylint/plugins/hass_logger.py
elahd/ha-nyc311
c7555a8af316fc7e44f9a5d794a0872eb534bbe1
[ "MIT" ]
3
2022-02-04T04:29:34.000Z
2022-02-24T22:23:06.000Z
pylint/plugins/hass_logger.py
elahd/ha-nyc311
c7555a8af316fc7e44f9a5d794a0872eb534bbe1
[ "MIT" ]
null
null
null
"""Plugin for logger invocations.""" import astroid from pylint.checkers import BaseChecker from pylint.interfaces import IAstroidChecker from pylint.lint import PyLinter LOGGER_NAMES = ("LOGGER", "log") LOG_LEVEL_ALLOWED_LOWER_START = ("debug",) class HassLoggerFormatChecker(BaseChecker): # type: ignore[misc] """Checker for logger invocations.""" __implements__ = IAstroidChecker name = "hasslog" priority = -1 msgs = { "W0001": ( "User visible logger messages must not end with a period", "hass-logger-period", "Periods are not permitted at the end of logger messages", ), "W0002": ( "User visible logger messages must start with a capital letter or downgrade to debug", "hass-logger-capital", "All logger messages must start with a capital letter", ), } options = () def visit_call(self, node: astroid.Call) -> None: """Called when a Call node is visited.""" if not isinstance(node.func, astroid.Attribute) or not isinstance( node.func.expr, astroid.Name ): return if not node.func.expr.name in LOGGER_NAMES: return if not node.args: return first_arg = node.args[0] if not isinstance(first_arg, astroid.Const) or not first_arg.value: return log_message = first_arg.value if len(log_message) < 1: return if log_message[-1] == ".": self.add_message("hass-logger-period", node=node) if ( isinstance(node.func.attrname, str) and node.func.attrname not in LOG_LEVEL_ALLOWED_LOWER_START and log_message[0].upper() != log_message[0] ): self.add_message("hass-logger-capital", node=node) def register(linter: PyLinter) -> None: """Register the checker.""" linter.register_checker(HassLoggerFormatChecker(linter))
28.971014
98
0.614307
f5ee537fbbf5d97712abe290f36d2d13dd360b6d
3,983
py
Python
tests/func/params/test_diff.py
nickdelgrosso/dvc
8d9435e8ee99b9899cd8d3277ea8cae8cc281154
[ "Apache-2.0" ]
null
null
null
tests/func/params/test_diff.py
nickdelgrosso/dvc
8d9435e8ee99b9899cd8d3277ea8cae8cc281154
[ "Apache-2.0" ]
null
null
null
tests/func/params/test_diff.py
nickdelgrosso/dvc
8d9435e8ee99b9899cd8d3277ea8cae8cc281154
[ "Apache-2.0" ]
null
null
null
def test_diff_no_params(tmp_dir, scm, dvc): assert dvc.params.diff() == {} def test_diff_no_changes(tmp_dir, scm, dvc): tmp_dir.gen("params.yaml", "foo: bar") dvc.run(cmd="echo params.yaml", params=["foo"], single_stage=True) scm.add(["params.yaml", "Dvcfile"]) scm.commit("bar") assert dvc.params.diff() == {} def test_diff(tmp_dir, scm, dvc): tmp_dir.gen("params.yaml", "foo: bar") dvc.run(cmd="echo params.yaml", params=["foo"], single_stage=True) scm.add(["params.yaml", "Dvcfile"]) scm.commit("bar") tmp_dir.scm_gen("params.yaml", "foo: baz", commit="baz") tmp_dir.scm_gen("params.yaml", "foo: qux", commit="qux") assert dvc.params.diff(a_rev="HEAD~2") == { "params.yaml": {"foo": {"old": "bar", "new": "qux"}} } def test_diff_new(tmp_dir, scm, dvc): tmp_dir.gen("params.yaml", "foo: bar") dvc.run(cmd="echo params.yaml", params=["foo"], single_stage=True) assert dvc.params.diff() == { "params.yaml": {"foo": {"old": None, "new": "bar"}} } def test_diff_deleted(tmp_dir, scm, dvc): tmp_dir.gen("params.yaml", "foo: bar") dvc.run(cmd="echo params.yaml", params=["foo"], single_stage=True) scm.add(["params.yaml", "Dvcfile"]) scm.commit("bar") (tmp_dir / "params.yaml").unlink() assert dvc.params.diff() == { "params.yaml": {"foo": {"old": "bar", "new": None}} } def test_diff_deleted_config(tmp_dir, scm, dvc): tmp_dir.gen("params.yaml", "foo: bar") dvc.run(cmd="echo params.yaml", params=["foo"], single_stage=True) scm.add(["params.yaml", "Dvcfile"]) scm.commit("bar") (tmp_dir / "params.yaml").unlink() assert dvc.params.diff() == { "params.yaml": {"foo": {"old": "bar", "new": None}} } def test_diff_list(tmp_dir, scm, dvc): tmp_dir.gen("params.yaml", "foo:\n- bar\n- baz") dvc.run(cmd="echo params.yaml", params=["foo"], single_stage=True) scm.add(["params.yaml", "Dvcfile"]) scm.commit("foo") tmp_dir.gen("params.yaml", "foo:\n- bar\n- baz\n- qux") assert dvc.params.diff() == { "params.yaml": { "foo": {"old": "['bar', 'baz']", "new": "['bar', 'baz', 'qux']"} } } def test_diff_dict(tmp_dir, scm, dvc): tmp_dir.gen("params.yaml", "foo:\n bar: baz") dvc.run(cmd="echo params.yaml", params=["foo"], single_stage=True) scm.add(["params.yaml", "Dvcfile"]) scm.commit("foo") tmp_dir.gen("params.yaml", "foo:\n bar: qux") assert dvc.params.diff() == { "params.yaml": {"foo.bar": {"old": "baz", "new": "qux"}} } def test_diff_with_unchanged(tmp_dir, scm, dvc): tmp_dir.gen("params.yaml", "foo: bar\nxyz: val") dvc.run(cmd="echo params.yaml", params=["foo,xyz"], single_stage=True) scm.add(["params.yaml", "Dvcfile"]) scm.commit("bar") tmp_dir.scm_gen("params.yaml", "foo: baz\nxyz: val", commit="baz") tmp_dir.scm_gen("params.yaml", "foo: qux\nxyz: val", commit="qux") assert dvc.params.diff(a_rev="HEAD~2", all=True) == { "params.yaml": { "foo": {"old": "bar", "new": "qux"}, "xyz": {"old": "val", "new": "val"}, } } def test_pipeline_tracked_params(tmp_dir, scm, dvc, run_copy): from dvc.dvcfile import PIPELINE_FILE tmp_dir.gen({"foo": "foo", "params.yaml": "foo: bar\nxyz: val"}) run_copy("foo", "bar", name="copy-foo-bar", params=["foo,xyz"]) scm.add(["params.yaml", PIPELINE_FILE]) scm.commit("add stage") tmp_dir.scm_gen("params.yaml", "foo: baz\nxyz: val", commit="baz") tmp_dir.scm_gen("params.yaml", "foo: qux\nxyz: val", commit="qux") assert dvc.params.diff(a_rev="HEAD~2") == { "params.yaml": {"foo": {"old": "bar", "new": "qux"}} } def test_no_commits(tmp_dir): from dvc.repo import Repo from dvc.scm.git import Git from tests.dir_helpers import git_init git_init(".") assert Git().no_commits assert Repo.init().params.diff() == {}
29.947368
76
0.589254
8f8aff94a598a52320679c7051f303b58a09a785
4,033
py
Python
redash/query_runner/impala_ds.py
louis-xy/redash
36c93ce2120e15d63aff4047bb464cdc41052e19
[ "BSD-2-Clause" ]
6
2017-04-14T14:06:37.000Z
2018-09-07T06:29:27.000Z
redash/query_runner/impala_ds.py
louis-xy/redash
36c93ce2120e15d63aff4047bb464cdc41052e19
[ "BSD-2-Clause" ]
1
2021-02-24T04:38:42.000Z
2021-02-24T04:38:42.000Z
redash/query_runner/impala_ds.py
louis-xy/redash
36c93ce2120e15d63aff4047bb464cdc41052e19
[ "BSD-2-Clause" ]
2
2017-04-02T08:28:53.000Z
2021-01-26T09:50:03.000Z
import json import logging import sys from redash.query_runner import * from redash.utils import JSONEncoder logger = logging.getLogger(__name__) try: from impala.dbapi import connect from impala.error import DatabaseError, RPCError enabled = True except ImportError, e: enabled = False COLUMN_NAME = 0 COLUMN_TYPE = 1 types_map = { 'BIGINT': TYPE_INTEGER, 'TINYINT': TYPE_INTEGER, 'SMALLINT': TYPE_INTEGER, 'INT': TYPE_INTEGER, 'DOUBLE': TYPE_FLOAT, 'DECIMAL': TYPE_FLOAT, 'FLOAT': TYPE_FLOAT, 'REAL': TYPE_FLOAT, 'BOOLEAN': TYPE_BOOLEAN, 'TIMESTAMP': TYPE_DATETIME, 'CHAR': TYPE_STRING, 'STRING': TYPE_STRING, 'VARCHAR': TYPE_STRING } class Impala(BaseSQLQueryRunner): noop_query = "show schemas" @classmethod def configuration_schema(cls): return { "type": "object", "properties": { "host": { "type": "string" }, "port": { "type": "number" }, "protocol": { "type": "string", "title": "Please specify beeswax or hiveserver2" }, "database": { "type": "string" }, "use_ldap": { "type": "boolean" }, "ldap_user": { "type": "string" }, "ldap_password": { "type": "string" }, "timeout": { "type": "number" } }, "required": ["host"], "secret": ["ldap_password"] } @classmethod def type(cls): return "impala" def __init__(self, configuration): super(Impala, self).__init__(configuration) def _get_tables(self, schema_dict): schemas_query = "show schemas;" tables_query = "show tables in %s;" columns_query = "show column stats %s.%s;" for schema_name in map(lambda a: unicode(a['name']), self._run_query_internal(schemas_query)): for table_name in map(lambda a: unicode(a['name']), self._run_query_internal(tables_query % schema_name)): columns = map(lambda a: unicode(a['Column']), self._run_query_internal(columns_query % (schema_name, table_name))) if schema_name != 'default': table_name = '{}.{}'.format(schema_name, table_name) schema_dict[table_name] = {'name': table_name, 'columns': columns} return schema_dict.values() def run_query(self, query, user): connection = None try: connection = connect(**self.configuration.to_dict()) cursor = connection.cursor() cursor.execute(query) column_names = [] columns = [] for column in cursor.description: column_name = column[COLUMN_NAME] column_names.append(column_name) columns.append({ 'name': column_name, 'friendly_name': column_name, 'type': types_map.get(column[COLUMN_TYPE], None) }) rows = [dict(zip(column_names, row)) for row in cursor] data = {'columns': columns, 'rows': rows} json_data = json.dumps(data, cls=JSONEncoder) error = None cursor.close() except DatabaseError as e: json_data = None error = e.message except RPCError as e: json_data = None error = "Metastore Error [%s]" % e.message except KeyboardInterrupt: connection.cancel() error = "Query cancelled by user." json_data = None finally: if connection: connection.close() return json_data, error register(Impala)
28.006944
130
0.517233