hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
9304009ae75f30470c311ee470ff6e1eeb87fdbd
10,110
py
Python
lib/bridgedb/parse/networkstatus.py
wfn/bridgedb
f266f32c365eb7a16cf156cc02f7e492266a7b51
[ "BSD-3-Clause-Clear" ]
1
2016-09-21T12:55:21.000Z
2016-09-21T12:55:21.000Z
lib/bridgedb/parse/networkstatus.py
wfn/bridgedb
f266f32c365eb7a16cf156cc02f7e492266a7b51
[ "BSD-3-Clause-Clear" ]
null
null
null
lib/bridgedb/parse/networkstatus.py
wfn/bridgedb
f266f32c365eb7a16cf156cc02f7e492266a7b51
[ "BSD-3-Clause-Clear" ]
null
null
null
# -*- coding: utf-8 -*- # # This file is part of BridgeDB, a Tor bridge distribution system. # # :authors: Isis Lovecruft 0xA3ADB67A2CDB8B35 <isis@torproject.org> # please also see AUTHORS file # :copyright: (c) 2013 Isis Lovecruft # (c) 2007-2013, The Tor Project, Inc. # (c) 2007-2013, all entities within the AUTHORS file # :license: 3-clause BSD, see included LICENSE for information """Parsers for ``@type bridge-network-status 1.0`` descriptors. .. _descriptors: https://metrics.torproject.org/formats.html#descriptortypes **Module Overview:** .. parse \_networkstatus |_ isValidRouterNickname - Determine if a nickname is according to spec |_ parseRLine - Parse an 'r'-line from a networkstatus document |_ parseALine - Parse an 'a'-line from a networkstatus document \_ parseSLine - Parse an 's'-line from a networkstatus document """ import binascii import logging import string import time import warnings from twisted.python.log import showwarning from bridgedb.parse import addr from bridgedb.parse import parseUnpaddedBase64 from bridgedb.parse import InvalidBase64 class NetworkstatusParsingError(Exception): """Unable to parse networkstatus document line.""" class InvalidNetworkstatusRouterIdentity(ValueError): """The ID field of a networkstatus document 'r'-line is invalid.""" class InvalidRouterNickname(ValueError): """Router nickname doesn't follow tor-spec.""" def isValidRouterNickname(nickname): """Determine if a router's given nickname meets the specification. :param string nickname: An OR's nickname. """ ALPHANUMERIC = string.letters + string.digits if not (1 <= len(nickname) <= 19): raise InvalidRouterNickname( "Nicknames must be between 1 and 19 characters: %r" % nickname) for letter in nickname: if not letter in ALPHANUMERIC: raise InvalidRouterNickname( "Nicknames must only use [A-Za-z0-9]: %r" % nickname) return True def parseRLine(line): """Parse an 'r'-line from a networkstatus document. From torspec.git/dir-spec.txt, commit 36761c7d553d L1499-1512: | |"r" SP nickname SP identity SP digest SP publication SP IP SP ORPort | SP DirPort NL | | [At start, exactly once.] | | "Nickname" is the OR's nickname. "Identity" is a hash of its | identity key, encoded in base64, with trailing equals sign(s) | removed. "Digest" is a hash of its most recent descriptor as | signed (that is, not including the signature), encoded in base64. | "Publication" is the | publication time of its most recent descriptor, in the form | YYYY-MM-DD HH:MM:SS, in UTC. "IP" is its current IP address; | ORPort is its current OR port, "DirPort" is its current directory | port, or "0" for "none". | :param string line: An 'r'-line from an bridge-network-status descriptor. """ (nickname, ID, descDigest, timestamp, ORaddr, ORport, dirport) = (None for x in xrange(7)) try: if not line.startswith('r '): raise NetworkstatusParsingError( "Networkstatus parser received non 'r'-line: %r" % line) line = line[2:] # Chop off the 'r ' fields = line.split() if len(fields) != 8: raise NetworkstatusParsingError( "Wrong number of fields in networkstatus 'r'-line: %r" % line) nickname, ID = fields[:2] try: ID = parseUnpaddedBase64(ID) except InvalidBase64 as error: raise InvalidNetworkstatusRouterIdentity(error) # Check the nickname validity after parsing the ID, otherwise, if the # nickname is invalid, we end up with the nickname being ``None`` and # the ID being unparsed, unpadded (meaning it is technically invalid) # base64. isValidRouterNickname(nickname) except NetworkstatusParsingError as error: logging.error(error) nickname, ID = None, None except InvalidRouterNickname as error: logging.error(error) # Assume that we mostly care about obtaining the OR's ID, then it # should be okay to set the nickname to ``None``, if it was invalid. nickname = None except InvalidNetworkstatusRouterIdentity as error: logging.error(error) ID = None else: try: descDigest = parseUnpaddedBase64(fields[2]) timestamp = time.mktime(time.strptime(" ".join(fields[3:5]), "%Y-%m-%d %H:%M:%S")) ORaddr = fields[5] ORport = int(fields[6]) dirport = fields[7] except InvalidBase64 as error: logging.error(error) descDigest = None except (AttributeError, ValueError, IndexError) as error: logging.error(error) timestamp = None finally: return (nickname, ID, descDigest, timestamp, ORaddr, ORport, dirport) def parseALine(line, fingerprint=None): """Parse an 'a'-line of a bridge networkstatus document. From torspec.git/dir-spec.txt, commit 36761c7d553d L1499-1512: | | "a" SP address ":" port NL | | [Any number.] | | Present only if the OR has at least one IPv6 address. | | Address and portlist are as for "or-address" as specified in | 2.1. | | (Only included when the vote or consensus is generated with | consensus-method 14 or later.) :param string line: An 'a'-line from an bridge-network-status descriptor. :type fingerprint: string or None :param fingerprint: A string which identifies which OR the descriptor we're parsing came from (since the 'a'-line doesn't tell us, this can help make the log messages clearer). :raises: :exc:`NetworkstatusParsingError` :rtype: tuple :returns: A 2-tuple of a string respresenting the IP address and a :class:`bridgedb.parse.addr.PortList`. """ ip = None portlist = None if line.startswith('a '): line = line[2:] # Chop off the 'a ' else: logging.warn("Networkstatus parser received non 'a'-line for %r:"\ " %r" % (fingerprint or 'Unknown', line)) try: ip, portlist = line.rsplit(':', 1) except ValueError as error: logging.error("Bad separator in networkstatus 'a'-line: %r" % line) return (None, None) if ip.startswith('[') and ip.endswith(']'): ip = ip.strip('[]') try: if not addr.isIPAddress(ip): raise NetworkstatusParsingError( "Got invalid IP Address in networkstatus 'a'-line for %r: %r" % (fingerprint or 'Unknown', line)) if addr.isIPv4(ip): warnings.warn(FutureWarning( "Got IPv4 address in networkstatus 'a'-line! "\ "Networkstatus document format may have changed!")) except NetworkstatusParsingError as error: logging.error(error) ip, portlist = None, None try: portlist = addr.PortList(portlist) if not portlist: raise NetworkstatusParsingError( "Got invalid portlist in 'a'-line for %r!\n Line: %r" % (fingerprint or 'Unknown', line)) except (addr.InvalidPort, NetworkstatusParsingError) as error: logging.error(error) portlist = None else: logging.debug("Parsed networkstatus ORAddress line for %r:"\ "\n Address: %s \tPorts: %s" % (fingerprint or 'Unknown', ip, portlist)) finally: return (ip, portlist) def parseSLine(line): """Parse an 's'-line from a bridge networkstatus document. The 's'-line contains all flags assigned to a bridge. The flags which may be assigned to a bridge are as follows: From torspec.git/dir-spec.txt, commit 36761c7d553d L1526-1554: | | "s" SP Flags NL | | [Exactly once.] | | A series of space-separated status flags, in lexical order (as ASCII | byte strings). Currently documented flags are: | | "BadDirectory" if the router is believed to be useless as a | directory cache (because its directory port isn't working, | its bandwidth is always throttled, or for some similar | reason). | "Fast" if the router is suitable for high-bandwidth circuits. | "Guard" if the router is suitable for use as an entry guard. | "HSDir" if the router is considered a v2 hidden service directory. | "Named" if the router's identity-nickname mapping is canonical, | and this authority binds names. | "Stable" if the router is suitable for long-lived circuits. | "Running" if the router is currently usable. | "Valid" if the router has been 'validated'. | "V2Dir" if the router implements the v2 directory protocol. :param string line: An 's'-line from an bridge-network-status descriptor. :rtype: tuple :returns: A 2-tuple of booleans, the first is True if the bridge has the "Running" flag, and the second is True if it has the "Stable" flag. """ line = line[2:] flags = [x.capitalize() for x in line.split()] fast = 'Fast' in flags running = 'Running' in flags stable = 'Stable' in flags guard = 'Guard' in flags valid = 'Valid' in flags if (fast or running or stable or guard or valid): logging.debug("Parsed Flags: %s%s%s%s%s" % ('Fast ' if fast else '', 'Running ' if running else '', 'Stable ' if stable else '', 'Guard ' if guard else '', 'Valid ' if valid else '')) # Right now, we only care about 'Running' and 'Stable' return running, stable
36.89781
79
0.614639
bbf1e13c10521e0b31a77a9bd282c88ea408bf29
6,656
py
Python
kubernetes/client/models/v1beta1_certificate_signing_request_condition.py
palnabarun/Python
6b01c95e1673c0787d3d688b361bfd995d62dd98
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1beta1_certificate_signing_request_condition.py
palnabarun/Python
6b01c95e1673c0787d3d688b361bfd995d62dd98
[ "Apache-2.0" ]
7
2020-11-07T10:35:21.000Z
2022-02-07T03:06:25.000Z
kubernetes/client/models/v1beta1_certificate_signing_request_condition.py
palnabarun/python
6b01c95e1673c0787d3d688b361bfd995d62dd98
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.18 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class V1beta1CertificateSigningRequestCondition(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'last_update_time': 'datetime', 'message': 'str', 'reason': 'str', 'type': 'str' } attribute_map = { 'last_update_time': 'lastUpdateTime', 'message': 'message', 'reason': 'reason', 'type': 'type' } def __init__(self, last_update_time=None, message=None, reason=None, type=None, local_vars_configuration=None): # noqa: E501 """V1beta1CertificateSigningRequestCondition - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._last_update_time = None self._message = None self._reason = None self._type = None self.discriminator = None if last_update_time is not None: self.last_update_time = last_update_time if message is not None: self.message = message if reason is not None: self.reason = reason self.type = type @property def last_update_time(self): """Gets the last_update_time of this V1beta1CertificateSigningRequestCondition. # noqa: E501 timestamp for the last update to this condition # noqa: E501 :return: The last_update_time of this V1beta1CertificateSigningRequestCondition. # noqa: E501 :rtype: datetime """ return self._last_update_time @last_update_time.setter def last_update_time(self, last_update_time): """Sets the last_update_time of this V1beta1CertificateSigningRequestCondition. timestamp for the last update to this condition # noqa: E501 :param last_update_time: The last_update_time of this V1beta1CertificateSigningRequestCondition. # noqa: E501 :type: datetime """ self._last_update_time = last_update_time @property def message(self): """Gets the message of this V1beta1CertificateSigningRequestCondition. # noqa: E501 human readable message with details about the request state # noqa: E501 :return: The message of this V1beta1CertificateSigningRequestCondition. # noqa: E501 :rtype: str """ return self._message @message.setter def message(self, message): """Sets the message of this V1beta1CertificateSigningRequestCondition. human readable message with details about the request state # noqa: E501 :param message: The message of this V1beta1CertificateSigningRequestCondition. # noqa: E501 :type: str """ self._message = message @property def reason(self): """Gets the reason of this V1beta1CertificateSigningRequestCondition. # noqa: E501 brief reason for the request state # noqa: E501 :return: The reason of this V1beta1CertificateSigningRequestCondition. # noqa: E501 :rtype: str """ return self._reason @reason.setter def reason(self, reason): """Sets the reason of this V1beta1CertificateSigningRequestCondition. brief reason for the request state # noqa: E501 :param reason: The reason of this V1beta1CertificateSigningRequestCondition. # noqa: E501 :type: str """ self._reason = reason @property def type(self): """Gets the type of this V1beta1CertificateSigningRequestCondition. # noqa: E501 request approval state, currently Approved or Denied. # noqa: E501 :return: The type of this V1beta1CertificateSigningRequestCondition. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this V1beta1CertificateSigningRequestCondition. request approval state, currently Approved or Denied. # noqa: E501 :param type: The type of this V1beta1CertificateSigningRequestCondition. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and type is None: # noqa: E501 raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 self._type = type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1beta1CertificateSigningRequestCondition): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1beta1CertificateSigningRequestCondition): return True return self.to_dict() != other.to_dict()
32
129
0.629207
3cb3aab2972ddef7e033e503b54c9982069abff2
5,135
py
Python
samcli/lib/bootstrap/companion_stack/data_types.py
torresxb1/aws-sam-cli
d307f2eb6e1a91a476a5e2ca6070f974b0c913f1
[ "BSD-2-Clause", "Apache-2.0" ]
859
2020-08-25T03:53:17.000Z
2022-03-31T12:33:07.000Z
samcli/lib/bootstrap/companion_stack/data_types.py
torresxb1/aws-sam-cli
d307f2eb6e1a91a476a5e2ca6070f974b0c913f1
[ "BSD-2-Clause", "Apache-2.0" ]
1,369
2020-08-25T10:57:03.000Z
2022-03-31T23:00:25.000Z
samcli/lib/bootstrap/companion_stack/data_types.py
torresxb1/aws-sam-cli
d307f2eb6e1a91a476a5e2ca6070f974b0c913f1
[ "BSD-2-Clause", "Apache-2.0" ]
275
2020-08-25T19:33:50.000Z
2022-03-26T08:32:52.000Z
""" Date type classes for companion stacks """ import re from typing import Optional from samcli.lib.utils.hash import str_checksum class CompanionStack: """ Abstraction class for the companion stack Companion stack name will be generated by this class. """ _parent_stack_name: str _escaped_parent_stack_name: str _parent_stack_hash: str _stack_name: str def __init__(self, parent_stack_name: str) -> None: self._parent_stack_name = parent_stack_name self._escaped_parent_stack_name = re.sub(r"[^a-z0-9]", "", self._parent_stack_name.lower()) self._parent_stack_hash = str_checksum(self._parent_stack_name) # There is max 128 characters limit on the length of stack name. # Using MD5 to avoid collision after truncating # 104 + 1 + 8 + 15 = 128 max char self._stack_name = f"{self._parent_stack_name[:104]}-{self._parent_stack_hash[:8]}-CompanionStack" @property def parent_stack_name(self) -> str: """ Parent stack name """ return self._parent_stack_name @property def escaped_parent_stack_name(self) -> str: """ Parent stack name with only alphanumeric characters """ return self._escaped_parent_stack_name @property def parent_stack_hash(self) -> str: """ MD5 hash of parent stack name """ return self._parent_stack_hash @property def stack_name(self) -> str: """ Companion stack stack name """ return self._stack_name class ECRRepo: """ Abstraction class for ECR repos in companion stacks Logical ID, Physical ID, and Repo URI will be generated with this class. """ _function_logical_id: Optional[str] _escaped_function_logical_id: Optional[str] _function_md5: Optional[str] _companion_stack: Optional[CompanionStack] _logical_id: Optional[str] _physical_id: Optional[str] _output_logical_id: Optional[str] def __init__( self, companion_stack: Optional[CompanionStack] = None, function_logical_id: Optional[str] = None, logical_id: Optional[str] = None, physical_id: Optional[str] = None, output_logical_id: Optional[str] = None, ): """ Must be specified either with companion_stack and function_logical_id or logical_id, physical_id, and output_logical_id """ self._function_logical_id = function_logical_id self._escaped_function_logical_id = ( re.sub(r"[^a-z0-9]", "", self._function_logical_id.lower()) if self._function_logical_id is not None else None ) self._function_md5 = str_checksum(self._function_logical_id) if self._function_logical_id is not None else None self._companion_stack = companion_stack self._logical_id = logical_id self._physical_id = physical_id self._output_logical_id = output_logical_id @property def logical_id(self) -> Optional[str]: if self._logical_id is None and self._function_logical_id and self._function_md5: # MD5 is used to avoid two having the same escaped name with different Lambda Functions # For example: Helloworld and HELLO-WORLD # 52 + 8 + 4 = 64 max char self._logical_id = self._function_logical_id[:52] + self._function_md5[:8] + "Repo" return self._logical_id @property def physical_id(self) -> Optional[str]: if ( self._physical_id is None and self._companion_stack and self._function_md5 and self._escaped_function_logical_id ): # The physical ID is constructed with escaped_stack_name + stack_md5[:8] as prefix/path and # followed by escaped_lambda_logical_id + function_md5[:8] + "repo" to show # the linkage between the function and the repo # 128 + 8 + 1 + 64 + 8 + 4 = 213 max char self._physical_id = ( self._companion_stack.escaped_parent_stack_name + self._companion_stack.parent_stack_hash[:8] + "/" + self._escaped_function_logical_id + self._function_md5[:8] + "repo" ) return self._physical_id @property def output_logical_id(self) -> Optional[str]: if self._output_logical_id is None and self._function_logical_id and self._function_md5: self._output_logical_id = self._function_logical_id[:52] + self._function_md5[:8] + "Out" return self._output_logical_id @staticmethod def get_domain(region: str) -> str: # https://docs.amazonaws.cn/en_us/aws/latest/userguide/endpoints-Beijing.html if region.startswith("cn-"): return "amazonaws.com.cn" return "amazonaws.com" def get_repo_uri(self, account_id, region) -> str: domain = ECRRepo.get_domain(region) return f"{account_id}.dkr.ecr.{region}.{domain}/{self.physical_id}"
35.171233
119
0.644985
63fbc922e2b1281f3ec90ecb4a7716e123760904
12,922
py
Python
frappe/utils/file_manager.py
AWDGroup/frappe
9687384328012bf82a2784ab950c4f74a69b4ebe
[ "MIT" ]
1
2019-05-21T04:55:01.000Z
2019-05-21T04:55:01.000Z
frappe/utils/file_manager.py
AWDGroup/frappe
9687384328012bf82a2784ab950c4f74a69b4ebe
[ "MIT" ]
null
null
null
frappe/utils/file_manager.py
AWDGroup/frappe
9687384328012bf82a2784ab950c4f74a69b4ebe
[ "MIT" ]
null
null
null
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe import os, base64, re import hashlib import mimetypes import io from frappe.utils import get_hook_method, get_files_path, random_string, encode, cstr, call_hook_method, cint from frappe import _ from frappe import conf from copy import copy from six.moves.urllib.parse import unquote from six import text_type, PY2 class MaxFileSizeReachedError(frappe.ValidationError): pass def get_file_url(file_data_name): data = frappe.db.get_value("File", file_data_name, ["file_name", "file_url"], as_dict=True) return data.file_url or data.file_name def upload(): # get record details dt = frappe.form_dict.doctype dn = frappe.form_dict.docname df = frappe.form_dict.docfield file_url = frappe.form_dict.file_url filename = frappe.form_dict.filename frappe.form_dict.is_private = cint(frappe.form_dict.is_private) if not filename and not file_url: frappe.msgprint(_("Please select a file or url"), raise_exception=True) file_doc = get_file_doc() comment = {} if dt and dn: comment = frappe.get_doc(dt, dn).add_comment("Attachment", _("added {0}").format("<a href='{file_url}' target='_blank'>{file_name}</a>{icon}".format(**{ "icon": ' <i class="fa fa-lock text-warning"></i>' \ if file_doc.is_private else "", "file_url": file_doc.file_url.replace("#", "%23") \ if file_doc.file_name else file_doc.file_url, "file_name": file_doc.file_name or file_doc.file_url }))) return { "name": file_doc.name, "file_name": file_doc.file_name, "file_url": file_doc.file_url, "is_private": file_doc.is_private, "comment": comment.as_dict() if comment else {} } def get_file_doc(dt=None, dn=None, folder=None, is_private=None, df=None): '''returns File object (Document) from given parameters or form_dict''' r = frappe.form_dict if dt is None: dt = r.doctype if dn is None: dn = r.docname if df is None: df = r.docfield if folder is None: folder = r.folder if is_private is None: is_private = r.is_private if r.filedata: file_doc = save_uploaded(dt, dn, folder, is_private, df) elif r.file_url: file_doc = save_url(r.file_url, r.filename, dt, dn, folder, is_private, df) return file_doc def save_uploaded(dt, dn, folder, is_private, df=None): fname, content = get_uploaded_content() if content: return save_file(fname, content, dt, dn, folder, is_private=is_private, df=df); else: raise Exception def save_url(file_url, filename, dt, dn, folder, is_private, df=None): # if not (file_url.startswith("http://") or file_url.startswith("https://")): # frappe.msgprint("URL must start with 'http://' or 'https://'") # return None, None file_url = unquote(file_url) file_size = frappe.form_dict.file_size f = frappe.get_doc({ "doctype": "File", "file_url": file_url, "file_name": filename, "attached_to_doctype": dt, "attached_to_name": dn, "attached_to_field": df, "folder": folder, "file_size": file_size, "is_private": is_private }) f.flags.ignore_permissions = True try: f.insert() except frappe.DuplicateEntryError: return frappe.get_doc("File", f.duplicate_entry) return f def get_uploaded_content(): # should not be unicode when reading a file, hence using frappe.form if 'filedata' in frappe.form_dict: if "," in frappe.form_dict.filedata: frappe.form_dict.filedata = frappe.form_dict.filedata.rsplit(",", 1)[1] frappe.uploaded_content = base64.b64decode(frappe.form_dict.filedata) frappe.uploaded_filename = frappe.form_dict.filename return frappe.uploaded_filename, frappe.uploaded_content else: frappe.msgprint(_('No file attached')) return None, None def save_file(fname, content, dt, dn, folder=None, decode=False, is_private=0, df=None): if decode: if isinstance(content, text_type): content = content.encode("utf-8") if b"," in content: content = content.split(b",")[1] content = base64.b64decode(content) file_size = check_max_file_size(content) content_hash = get_content_hash(content) content_type = mimetypes.guess_type(fname)[0] fname = get_file_name(fname, content_hash[-6:]) file_data = get_file_data_from_hash(content_hash, is_private=is_private) if not file_data: call_hook_method("before_write_file", file_size=file_size) write_file_method = get_hook_method('write_file', fallback=save_file_on_filesystem) file_data = write_file_method(fname, content, content_type=content_type, is_private=is_private) file_data = copy(file_data) file_data.update({ "doctype": "File", "attached_to_doctype": dt, "attached_to_name": dn, "attached_to_field": df, "folder": folder, "file_size": file_size, "content_hash": content_hash, "is_private": is_private }) f = frappe.get_doc(file_data) f.flags.ignore_permissions = True try: f.insert() except frappe.DuplicateEntryError: return frappe.get_doc("File", f.duplicate_entry) return f def get_file_data_from_hash(content_hash, is_private=0): for name in frappe.db.sql_list("select name from `tabFile` where content_hash=%s and is_private=%s", (content_hash, is_private)): b = frappe.get_doc('File', name) return {k: b.get(k) for k in frappe.get_hooks()['write_file_keys']} return False def save_file_on_filesystem(fname, content, content_type=None, is_private=0): fpath = write_file(content, fname, is_private) if is_private: file_url = "/private/files/{0}".format(fname) else: file_url = "/files/{0}".format(fname) return { 'file_name': os.path.basename(fpath), 'file_url': file_url } def get_max_file_size(): return conf.get('max_file_size') or 10485760 def check_max_file_size(content): max_file_size = get_max_file_size() file_size = len(content) if file_size > max_file_size: frappe.msgprint(_("File size exceeded the maximum allowed size of {0} MB").format( max_file_size / 1048576), raise_exception=MaxFileSizeReachedError) return file_size def write_file(content, fname, is_private=0): """write file to disk with a random name (to compare)""" file_path = get_files_path(is_private=is_private) # create directory (if not exists) frappe.create_folder(file_path) # write the file if isinstance(content, text_type): content = content.encode() with open(os.path.join(file_path.encode('utf-8'), fname.encode('utf-8')), 'wb+') as f: f.write(content) return get_files_path(fname, is_private=is_private) def remove_all(dt, dn, from_delete=False): """remove all files in a transaction""" try: for fid in frappe.db.sql_list("""select name from `tabFile` where attached_to_doctype=%s and attached_to_name=%s""", (dt, dn)): remove_file(fid, dt, dn, from_delete) except Exception as e: if e.args[0]!=1054: raise # (temp till for patched) def remove_file_by_url(file_url, doctype=None, name=None): if doctype and name: fid = frappe.db.get_value("File", {"file_url": file_url, "attached_to_doctype": doctype, "attached_to_name": name}) else: fid = frappe.db.get_value("File", {"file_url": file_url}) if fid: return remove_file(fid) def remove_file(fid, attached_to_doctype=None, attached_to_name=None, from_delete=False): """Remove file and File entry""" file_name = None if not (attached_to_doctype and attached_to_name): attached = frappe.db.get_value("File", fid, ["attached_to_doctype", "attached_to_name", "file_name"]) if attached: attached_to_doctype, attached_to_name, file_name = attached ignore_permissions, comment = False, None if attached_to_doctype and attached_to_name and not from_delete: doc = frappe.get_doc(attached_to_doctype, attached_to_name) ignore_permissions = doc.has_permission("write") or False if frappe.flags.in_web_form: ignore_permissions = True if not file_name: file_name = frappe.db.get_value("File", fid, "file_name") comment = doc.add_comment("Attachment Removed", _("Removed {0}").format(file_name)) frappe.delete_doc("File", fid, ignore_permissions=ignore_permissions) return comment def delete_file_data_content(doc, only_thumbnail=False): method = get_hook_method('delete_file_data_content', fallback=delete_file_from_filesystem) method(doc, only_thumbnail=only_thumbnail) def delete_file_from_filesystem(doc, only_thumbnail=False): """Delete file, thumbnail from File document""" if only_thumbnail: delete_file(doc.thumbnail_url) else: delete_file(doc.file_url) delete_file(doc.thumbnail_url) def delete_file(path): """Delete file from `public folder`""" if path: if ".." in path.split("/"): frappe.msgprint(_("It is risky to delete this file: {0}. Please contact your System Manager.").format(path)) parts = os.path.split(path.strip("/")) if parts[0]=="files": path = frappe.utils.get_site_path("public", "files", parts[-1]) else: path = frappe.utils.get_site_path("private", "files", parts[-1]) path = encode(path) if os.path.exists(path): os.remove(path) def get_file(fname): """Returns [`file_name`, `content`] for given file name `fname`""" file_path = get_file_path(fname) # read the file if PY2: with open(encode(file_path)) as f: content = f.read() else: with io.open(encode(file_path), mode='rb') as f: content = f.read() try: # for plain text files content = content.decode() except UnicodeDecodeError: # for .png, .jpg, etc pass return [file_path.rsplit("/", 1)[-1], content] def get_file_path(file_name): """Returns file path from given file name""" f = frappe.db.sql("""select file_url from `tabFile` where name=%s or file_name=%s""", (file_name, file_name)) if f: file_name = f[0][0] file_path = file_name if "/" not in file_path: file_path = "/files/" + file_path if file_path.startswith("/private/files/"): file_path = get_files_path(*file_path.split("/private/files/", 1)[1].split("/"), is_private=1) elif file_path.startswith("/files/"): file_path = get_files_path(*file_path.split("/files/", 1)[1].split("/")) else: frappe.throw(_("There is some problem with the file url: {0}").format(file_path)) return file_path def get_content_hash(content): if isinstance(content, text_type): content = content.encode() return hashlib.md5(content).hexdigest() def get_file_name(fname, optional_suffix): # convert to unicode fname = cstr(fname) n_records = frappe.db.sql("select name from `tabFile` where file_name=%s", fname) if len(n_records) > 0 or os.path.exists(encode(get_files_path(fname))): f = fname.rsplit('.', 1) if len(f) == 1: partial, extn = f[0], "" else: partial, extn = f[0], "." + f[1] return '{partial}{suffix}{extn}'.format(partial=partial, extn=extn, suffix=optional_suffix) return fname @frappe.whitelist() def download_file(file_url): """ Download file using token and REST API. Valid session or token is required to download private files. Method : GET Endpoint : frappe.utils.file_manager.download_file URL Params : file_name = /path/to/file relative to site path """ file_doc = frappe.get_doc("File", {"file_url":file_url}) file_doc.check_permission("read") with open(getattr(frappe.local, "site_path", None) + file_url, "rb") as fileobj: filedata = fileobj.read() frappe.local.response.filename = file_url[file_url.rfind("/")+1:] frappe.local.response.filecontent = filedata frappe.local.response.type = "download" def extract_images_from_doc(doc, fieldname): content = doc.get(fieldname) content = extract_images_from_html(doc, content) if frappe.flags.has_dataurl: doc.set(fieldname, content) def extract_images_from_html(doc, content): frappe.flags.has_dataurl = False def _save_file(match): data = match.group(1) data = data.split("data:")[1] headers, content = data.split(",") if "filename=" in headers: filename = headers.split("filename=")[-1] # decode filename if not isinstance(filename, text_type): filename = text_type(filename, 'utf-8') else: mtype = headers.split(";")[0] filename = get_random_filename(content_type=mtype) doctype = doc.parenttype if doc.parent else doc.doctype name = doc.parent or doc.name # TODO fix this file_url = save_file(filename, content, doctype, name, decode=True).get("file_url") if not frappe.flags.has_dataurl: frappe.flags.has_dataurl = True return '<img src="{file_url}"'.format(file_url=file_url) if content: content = re.sub('<img[^>]*src\s*=\s*["\'](?=data:)(.*?)["\']', _save_file, content) return content def get_random_filename(extn=None, content_type=None): if extn: if not extn.startswith("."): extn = "." + extn elif content_type: extn = mimetypes.guess_extension(content_type) return random_string(7) + (extn or "") @frappe.whitelist() def validate_filename(filename): from frappe.utils import now_datetime timestamp = now_datetime().strftime(" %Y-%m-%d %H:%M:%S") fname = get_file_name(filename, timestamp) return fname
29.43508
130
0.726203
72a4621d5ed7c20157581b4aa02cf3c07f951f79
2,271
py
Python
tensortrade/orders/order_spec.py
owodunni/tensortrade
d6d7fb12f926b3c451d7e200cb693d750a35f95a
[ "Apache-2.0" ]
1
2020-04-05T05:15:36.000Z
2020-04-05T05:15:36.000Z
tensortrade/orders/order_spec.py
owodunni/tensortrade
d6d7fb12f926b3c451d7e200cb693d750a35f95a
[ "Apache-2.0" ]
null
null
null
tensortrade/orders/order_spec.py
owodunni/tensortrade
d6d7fb12f926b3c451d7e200cb693d750a35f95a
[ "Apache-2.0" ]
2
2020-12-31T02:57:22.000Z
2021-06-21T16:12:24.000Z
# Copyright 2019 The TensorTrade Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from typing import Callable from tensortrade.base import Identifiable from tensortrade.orders import Order, TradeSide, TradeType class OrderSpec(Identifiable): def __init__(self, side: TradeSide, trade_type: TradeType, pair: 'TradingPair', criteria: Callable[['Order', 'Exchange'], bool] = None): self.side = side self.type = trade_type self.pair = pair self.criteria = criteria def create_order(self, order: 'Order', exchange: 'Exchange') -> 'Order': wallet_instrument = self.side.instrument(self.pair) wallet = order.portfolio.get_wallet(exchange.id, instrument=wallet_instrument) quantity = wallet.locked.get(order.path_id, 0) return Order(step=exchange.clock.step, exchange_name=order.exchange_name, side=self.side, trade_type=self.type, pair=self.pair, quantity=quantity, portfolio=order.portfolio, price=order.price, criteria=self.criteria, start=order.start, end=order.end, path_id=order.path_id) def to_dict(self): return { "id": self.id, "type": self.type, "pair": self.pair, "criteria": self.criteria } def __str__(self): data = ['{}={}'.format(k, v) for k, v in self.to_dict().items()] return '<{}: {}>'.format(self.__class__.__name__, ', '.join(data)) def __repr__(self): return str(self)
33.895522
86
0.597974
af5f5d42ea6717872a77c8e365e3e6bef104cf9d
415
py
Python
venv/Scripts/pip3-script.py
baniraz/selenium_
e07362659fcc79b048cd88ea30429b0f6123a4d1
[ "Apache-2.0" ]
null
null
null
venv/Scripts/pip3-script.py
baniraz/selenium_
e07362659fcc79b048cd88ea30429b0f6123a4d1
[ "Apache-2.0" ]
null
null
null
venv/Scripts/pip3-script.py
baniraz/selenium_
e07362659fcc79b048cd88ea30429b0f6123a4d1
[ "Apache-2.0" ]
null
null
null
#!C:\Users\User\Documents\GitHub\selenium_\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3')() )
31.923077
69
0.66988
0a94c33594634aa098314c06ddcd857e45827fda
7,862
py
Python
mmtbx/conformation_dependent_library/metal_coordination_library.py
indu-in/cctbx_project1
e09447ddc2ba3aa9d91b21008b0162ab290b0c30
[ "BSD-3-Clause-LBNL" ]
2
2021-03-18T12:31:57.000Z
2022-03-14T06:27:06.000Z
mmtbx/conformation_dependent_library/metal_coordination_library.py
indu-in/cctbx_project1
e09447ddc2ba3aa9d91b21008b0162ab290b0c30
[ "BSD-3-Clause-LBNL" ]
null
null
null
mmtbx/conformation_dependent_library/metal_coordination_library.py
indu-in/cctbx_project1
e09447ddc2ba3aa9d91b21008b0162ab290b0c30
[ "BSD-3-Clause-LBNL" ]
null
null
null
from __future__ import division import sys from cctbx import geometry_restraints from cctbx.geometry_restraints import linking_class origin_ids = linking_class.linking_class() headers = ['Zn-SG (A)', 'SG-Zn-SG (degrees)', 'Zn-N (A)', 'N-Zn-N (degrees)', 'ZnCysxHisy', ] database = {'Zn2+ tetrahedral': { (4,0) : { ('ZN', 'SG') : (2.330, 0.029, 1033), ('SG', 'ZN', 'SG') : (109.45, 5.46, 1553), }, # n/a n/a Cys4 (3,1) : { ('ZN', 'SG') : (2.318, 0.027, 912), ('SG', 'ZN', 'SG') : (112.15, 3.96, 912), ('ZN', 'ND1') : (2.074, 0.056, 303), }, #n/a Cys3His1 (2,2) : { ('ZN', 'SG') : (2.306, 0.029, 76), ('SG', 'ZN', 'SG') : (116.23, 4.58, 38), ('ZN', 'ND1') : (2.040, 0.050, 65), ('ND1', 'ZN', 'ND1') : (102.38, 5.44, 38), }, # Cys2His2 (1,3) : { ('ZN', 'SG') : (2.298, 0.017, 12), ('ZN', 'ND1') : (2.002, 0.045, 36), ('ND1', 'ZN', 'ND1') : (107.23, 4.78, 36), }, # Cys1His3 (0,4) : { }, #n/a n/a Insufficient data Insufficient data His4 } } database['ZN'] = database['Zn2+ tetrahedral'] for nums, restraints in database['Zn2+ tetrahedral'].items(): for atoms, values in list(restraints.items()): if 'ND1' in atoms: key = list(atoms) for i, atom in enumerate(key): if atom=='ND1': key[i]='NE2' restraints[tuple(key)]=values def print_restraints(db): print('-'*80) for coordination, library in sorted(db.items()): print(coordination) for nums, restraints in sorted(library.items()): print(' %s' % str(nums)) for atoms, values in sorted(restraints.items()): print(' ',atoms, values) def check_other_in_database(metal, other): sub = database.get(metal.name.strip(), None) if sub is None: return False for key, item in sub.items(): for atoms in item: if other.name.strip() in atoms: return True return False def get_metal_coordination_proxies(pdb_hierarchy, nonbonded_proxies, prefix=None, params=None, log=sys.stdout, add_segid=None, verbose=False): def is_residue_already_linked_to_metal(linked, atom): for link in linked: if link.parent().id_str()==atom.parent().id_str(): break else: return False return True hbond_distance_cutoff = 3 if params is not None: hbond_distance_cutoff = params.hbond_distance_cutoff mbonds = {} atoms = pdb_hierarchy.atoms() sites_cart = atoms.extract_xyz() get_sorted_result = nonbonded_proxies.get_sorted( by_value="delta", sites_cart=sites_cart) if get_sorted_result is None: return mbonds sorted_nonb, n_not_shown = get_sorted_result n_nonb = len(sorted_nonb) i = 0 while i < n_nonb and sorted_nonb[i][3] < hbond_distance_cutoff: (labels, i_seq, j_seq, dist, vdw_distance, sym_op_j, rt_mx) = sorted_nonb[i] a1 = atoms[i_seq] ag1 = a1.parent() a2 = atoms[j_seq] ag2 = a2.parent() metal = None for metal_element in database: if a1.name.strip()==metal_element: metal = a1 other = a2 elif a2.name.strip()==metal_element: metal = a2 other = a1 if metal: if not check_other_in_database(metal, other): continue mbonds.setdefault(metal.i_seq, {}) mbonds[metal.i_seq]['metal'] = metal mbonds[metal.i_seq].setdefault('others', []) if not is_residue_already_linked_to_metal(mbonds[metal.i_seq]['others'], other, ): mbonds[metal.i_seq]['others'].append(other) i += 1 pairs = [] if verbose: for key, item in mbonds.items(): for label, l in item.items(): if type(l)==type([]): for atom in l: print(' ',atom.quote()) else: print(l.quote()) return mbonds def get_proxies(coordination): # # TODO # - check that only one link is made to each resiude # e.g. 1a6y "2080 ZN ZN B 451 .*." "1874 CB CYS B 153 .*." # def _bond_generator(atoms): for atom in atoms['others']: yield atoms['metal'], atom def _angle_generator(atoms): for i, a1 in enumerate(atoms['others']): for j, a2 in enumerate(atoms['others']): if i==j: break yield a1, atoms['metal'], a2 def _default_bonds(atoms): tmp = [] for a1, a2 in _bond_generator(atoms): p = geometry_restraints.bond_simple_proxy( i_seqs=[a1.i_seq, a2.i_seq], distance_ideal=2.3, weight=1.0/0.03**2, slack=0, top_out=False, limit=1, origin_id=origin_ids.get_origin_id('metal coordination')) tmp.append(p) return tmp bonds = [] angles = [] if coordination is None: return bonds, angles atoms = None for metal_i_seq, atoms in coordination.items(): if len(atoms['others'])<4: bonds += _default_bonds(atoms) continue cyss = [] hiss = [] for atom in atoms['others']: if atom.parent().resname=='CYS': cyss.append(atom) elif atom.parent().resname=='HIS': hiss.append(atom) key = (len(cyss), len(hiss)) metal_name = atoms['metal'].name.strip() # if key not in database[metal_name]: continue ideals = database[metal_name][key] if not atoms: continue #return None, None for a1, a2 in _bond_generator(atoms): key = (a1.name.strip(), a2.name.strip()) if key not in ideals: continue t = ideals[key] p = geometry_restraints.bond_simple_proxy( i_seqs=[a1.i_seq, a2.i_seq], distance_ideal=t[0], weight=1.0/t[1]**2, slack=0, top_out=False, limit=1, origin_id=origin_ids.get_origin_id('metal coordination')) bonds.append(p) for a1, a2, a3 in _angle_generator(atoms): key = (a1.name.strip(), a2.name.strip(), a3.name.strip()) if key not in ideals: continue t = ideals[key] p = geometry_restraints.angle_proxy( i_seqs=[a1.i_seq, a2.i_seq, a3.i_seq], angle_ideal=t[0], weight=1.0/t[1]**2, origin_id=origin_ids.get_origin_id('metal coordination')) angles.append(p) return bonds, angles def run(model_filename=None): import mmtbx.monomer_library.pdb_interpretation as pdb_inter #print_restraints(database) if model_filename is not None: from iotbx import pdb pdb_inp = pdb.input(model_filename) pdb_hierarchy = pdb_inp.construct_hierarchy() #pdb_hierarchy.show() pdb_processed_file = pdb_inter.run( args=[model_filename], assume_hydrogens_all_missing=False, hard_minimum_nonbonded_distance=0.0, nonbonded_distance_threshold=None, substitute_non_crystallographic_unit_cell_if_necessary=True, ) grm = pdb_processed_file.geometry_restraints_manager() xrs = pdb_processed_file.xray_structure() sites_cart = xrs.sites_cart() site_labels = xrs.scatterers().extract_labels() pair_proxies=grm.pair_proxies(sites_cart=sites_cart,site_labels=site_labels) proxies_info_nonbonded = pair_proxies.nonbonded_proxies.get_sorted( by_value="delta", sites_cart=sites_cart, site_labels=site_labels) rc = get_metal_coordination_proxies(pdb_hierarchy, pair_proxies.nonbonded_proxies, ) bonds, angles = get_proxies(rc) print('\n\tbonds, angles : %d, %d\n\n' % (len(bonds), len(angles))) if __name__=="__main__": args = sys.argv[1:] del sys.argv[1:] run(*tuple(args))
33.313559
80
0.585729
f0ccb633264d7faba7c7fdfec32e834078072c65
23,292
py
Python
scripts/deploy/deploy_badger.py
lookfirst/badger-system
8362bcbf00abf51d24e0ba67b1b30c301ca34e40
[ "MIT" ]
null
null
null
scripts/deploy/deploy_badger.py
lookfirst/badger-system
8362bcbf00abf51d24e0ba67b1b30c301ca34e40
[ "MIT" ]
null
null
null
scripts/deploy/deploy_badger.py
lookfirst/badger-system
8362bcbf00abf51d24e0ba67b1b30c301ca34e40
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import json from brownie import * from config.badger_config import badger_config, badger_total_supply from helpers.constants import APPROVED_STAKER_ROLE from helpers.registry import registry from rich.console import Console from scripts.systems.badger_system import BadgerSystem, print_to_file from tests.helpers import distribute_from_whales console = Console() def test_deploy(test=False, uniswap=True): # Badger Deployer deployer = "" keeper = "" guardian = "" accounts.at( web3.toChecksumAddress("0xDA25ee226E534d868f0Dd8a459536b03fEE9079b"), force=True, ) accounts.at( web3.toChecksumAddress("0x872213E29C85d7e30F1C8202FC47eD1Ec124BB1D"), force=True, ) accounts.at( web3.toChecksumAddress("0x29F7F8896Fb913CF7f9949C623F896a154727919"), force=True, ) if test: accounts.at( web3.toChecksumAddress("0xDA25ee226E534d868f0Dd8a459536b03fEE9079b"), force=True, ) else: # Load accounts from keystore deployer = accounts.load("badger_deployer") keeper = accounts.load("badger_keeper") guardian = accounts.load("badger_guardian") # Ganache Accounts if test: accounts.at("0x90F8bf6A479f320ead074411a4B0e7944Ea8c9C1", force=True) accounts.at("0xFFcf8FDEE72ac11b5c542428B35EEF5769C409f0", force=True) accounts.at("0x22d491Bde2303f2f43325b2108D26f1eAbA1e32b", force=True) accounts.at("0xE11BA2b4D45Eaed5996Cd0823791E0C93114882d", force=True) accounts.at("0xd03ea8624C8C5987235048901fB614fDcA89b117", force=True) accounts.at("0x95cED938F7991cd0dFcb48F0a06a40FA1aF46EBC", force=True) accounts.at("0x3E5e9111Ae8eB78Fe1CC3bb8915d5D461F3Ef9A9", force=True) accounts.at("0x28a8746e75304c0780E011BEd21C72cD78cd535E", force=True) accounts.at("0xACa94ef8bD5ffEE41947b4585a84BdA5a3d3DA6E", force=True) accounts.at("0x1dF62f291b2E969fB0849d99D9Ce41e2F137006e", force=True) # Unlocked Accounts if test: accounts.at( web3.toChecksumAddress("0x193991827e291599a262e7fa7d212ff1ae31d110"), force=True, ) accounts.at( web3.toChecksumAddress("0x97ca371d59bbfefdb391aa6dcbdf4455fec361f2"), force=True, ) accounts.at( web3.toChecksumAddress("0x3d24d77bec08549d7ea86c4e9937204c11e153f1"), force=True, ) accounts.at( web3.toChecksumAddress("0xcD9e6Df80169b6a2CFfDaE613fAbC3F7C3647B14"), force=True, ) accounts.at( web3.toChecksumAddress("0xaf379f0228ad0d46bb7b4f38f9dc9bcc1ad0360c"), force=True, ) accounts.at( web3.toChecksumAddress("0xc25099792e9349c7dd09759744ea681c7de2cb66"), force=True, ) accounts.at( web3.toChecksumAddress("0xb1f2cdec61db658f091671f5f199635aef202cac"), force=True, ) accounts.at( web3.toChecksumAddress("0x2bf792ffe8803585f74e06907900c2dc2c29adcb"), force=True, ) # Test Accounts accounts.at( web3.toChecksumAddress("0xe7bab002A39f9672a1bD0E949d3128eeBd883575"), force=True, ) accounts.at( web3.toChecksumAddress("0x482c741b0711624d1f462E56EE5D8f776d5970dC"), force=True, ) deployer = accounts.at( web3.toChecksumAddress(("0xDA25ee226E534d868f0Dd8a459536b03fEE9079b")) ) keeper = accounts.at( web3.toChecksumAddress(("0xDA25ee226E534d868f0Dd8a459536b03fEE9079b")) ) guardian = accounts.at( web3.toChecksumAddress(("0xDA25ee226E534d868f0Dd8a459536b03fEE9079b")) ) print( "Initialize Badger System", {"deployer": deployer, "keeper": keeper, "guardian": guardian}, ) print(deployer.balance()) # ClaimEncoder.deploy({'from': deployer}) # assert False badger = BadgerSystem(badger_config, None, deployer, keeper, guardian, deploy=False) badger.test = test badger_deploy_file = "deploy-final.json" print("Connecting to deploy at " + badger_deploy_file) with open(badger_deploy_file) as f: badger_deploy = json.load(f) print("Connect Logic Contracts") badger.connect_logic(badger_deploy["logic"]) print("Create / Connect Badger<>wBTC LP Pair") # pair = create_uniswap_pair(badger.token.address, registry.tokens.wbtc, deployer) factory = interface.IUniswapV2Factory( web3.toChecksumAddress(registry.uniswap.factoryV2) ) # tx = factory.createPair(badger.token.address, registry.tokens.wbtc, {"from": deployer}) pairAddress = factory.getPair(badger.token.address, registry.tokens.wbtc) pair = interface.IUniswapV2Pair(pairAddress) badger.pair = pair if uniswap: print("Test: Distribute assets to deployer") accounts.at(badger_config.dao.initialOwner, force=True) badger.token.transfer( deployer, badger_total_supply, {"from": badger_config.dao.initialOwner} ) console.log( "after initial token transfer", badger.token.balanceOf(deployer) / 1e18, badger_total_supply, ) assert badger.token.balanceOf(deployer) == badger_total_supply distribute_from_whales(badger, deployer) console.log("after whale funding", badger.token.balanceOf(deployer) / 1e18) print("Test: Add Badger<>wBTC Liquidity") wbtc = interface.IERC20(registry.tokens.wbtc) # In test mode, add liqudity to uniswap badger.uniswap.addMaxLiquidity(badger.token, wbtc, deployer) # print("Deploy core logic") # badger.deploy_core_logic() # print("Deploy Sett core logic") # badger.deploy_sett_core_logic() # badger.deploy_sett_strategy_logic() console.log("before deploys", badger.token.balanceOf(deployer) / 1e18) print("Deploy rewards & vesting infrastructure") # badger.deploy_rewards_escrow() # badger.deploy_badger_tree() # badger.deploy_dao_badger_timelock() # badger.deploy_team_vesting() # badger.deploy_badger_hunt() # print("Connect Rewards and Vesting Infrastructure") badger.connect_rewards_escrow(badger_deploy["rewardsEscrow"]) badger.connect_badger_tree(badger_deploy["badgerTree"]) badger.connect_dao_badger_timelock(badger_deploy["daoBadgerTimelock"]) badger.connect_team_vesting(badger_deploy["teamVesting"]) badger.connect_badger_hunt(badger_deploy["badgerHunt"]) console.log("after reward infra deploys", badger.token.balanceOf(deployer) / 1e18) print("Deploy Sett controllers") # badger.add_controller("native") # badger.add_controller("harvest") badger.connect_controller( "native", badger_deploy["sett_system"]["controllers"]["native"] ) badger.connect_controller( "harvest", badger_deploy["sett_system"]["controllers"]["harvest"] ) print("Deploy native Sett vaults") controller = badger.getController("native") # badger.deploy_sett("native.badger", badger.token, controller) # badger.deploy_sett("native.renCrv", registry.curve.pools.renCrv.token, controller) # badger.deploy_sett("native.sbtcCrv", registry.curve.pools.sbtcCrv.token, controller) # badger.deploy_sett("native.tbtcCrv", registry.curve.pools.tbtcCrv.token, controller) # badger.deploy_sett("native.uniBadgerWbtc", badger.pair.address, controller) settSystem = badger_deploy["sett_system"] badger.connect_sett("native.badger", settSystem["vaults"]["native.badger"]) badger.connect_sett("native.renCrv", settSystem["vaults"]["native.renCrv"]) badger.connect_sett( "native.sbtcCrv", badger_deploy["sett_system"]["vaults"]["native.sbtcCrv"] ) badger.connect_sett( "native.tbtcCrv", badger_deploy["sett_system"]["vaults"]["native.tbtcCrv"] ) badger.connect_sett( "native.uniBadgerWbtc", badger_deploy["sett_system"]["vaults"]["native.uniBadgerWbtc"], ) print("Deploy & configure native Sett strategies") print("Deploy vault-specific staking rewards") # badger.deploy_sett_staking_rewards("native.badger", badger.token, badger.token) # badger.deploy_sett_staking_rewards( # "native.uniBadgerWbtc", pair.address, badger.token # ) badger.connect_sett_staking_rewards( "native.badger", settSystem["rewards"]["native.badger"] ) badger.connect_sett_staking_rewards( "native.uniBadgerWbtc", settSystem["rewards"]["native.uniBadgerWbtc"] ) print("Strategy: Native Badger") # badger.deploy_strategy_native_badger() badger.connect_strategy( "native.badger", settSystem["strategies"]["native.badger"], "StrategyBadgerRewards", ) print("Strategy: Native RenCrv") # badger.deploy_strategy_native_rencrv() badger.connect_strategy( "native.renCrv", settSystem["strategies"]["native.renCrv"], "StrategyCurveGaugeRenBtcCrv", ) print("Strategy: Native sBtcCrv") # badger.deploy_strategy_native_sbtccrv() badger.connect_strategy( "native.sbtcCrv", settSystem["strategies"]["native.sbtcCrv"], "StrategyCurveGaugeSbtcCrv", ) print("Strategy: Native tBtcCrv") # badger.deploy_strategy_native_tbtccrv() badger.connect_strategy( "native.tbtCcrv", settSystem["strategies"]["native.tbtcCrv"], "StrategyCurveGaugeTbtcCrv", ) print("Strategy: Native uniBadgerWbtc") # badger.deploy_strategy_native_uniBadgerWbtc() badger.connect_strategy( "native.uniBadgerWbtc", settSystem["strategies"]["native.uniBadgerWbtc"], "StrategyBadgerLpMetaFarm", ) print("Deploy harvest Sett vaults") controller = badger.getController("harvest") # badger.deploy_sett( # "harvest.renCrv", # registry.curve.pools.renCrv.token, # controller, # namePrefixOverride=True, # namePrefix="Badger SuperSett (Harvest) ", # symbolPrefix="bSuper", # ) badger.connect_sett("harvest.renCrv", settSystem["vaults"]["harvest.renCrv"]) print("Deploy & configure harvest Sett strategies") # badger.deploy_strategy_harvest_rencrv() badger.connect_strategy( "harvest.renCrv", settSystem["strategies"]["harvest.renCrv"], "StrategyHarvestMetaFarm", ) # print("Deploy reward geysers") # badger.deploy_geyser(badger.getSett("native.badger"), "native.badger") # badger.deploy_geyser(badger.getSett("native.renCrv"), "native.renCrv") # badger.deploy_geyser(badger.getSett("native.sbtcCrv"), "native.sbtcCrv") # badger.deploy_geyser(badger.getSett("native.tbtcCrv"), "native.tbtcCrv") # badger.deploy_geyser(badger.getSett("native.uniBadgerWbtc"), "native.uniBadgerWbtc") # badger.deploy_geyser(badger.getSett("harvest.renCrv"), "harvest.renCrv") print("Connect reward geysers") badger.connect_geyser("native.badger", badger_deploy["geysers"]["native.badger"]) badger.connect_geyser("native.renCrv", badger_deploy["geysers"]["native.renCrv"]) badger.connect_geyser("native.sbtcCrv", badger_deploy["geysers"]["native.sbtcCrv"]) badger.connect_geyser("native.tbtcCrv", badger_deploy["geysers"]["native.tbtcCrv"]) badger.connect_geyser( "native.uniBadgerWbtc", badger_deploy["geysers"]["native.uniBadgerWbtc"] ) badger.connect_geyser("harvest.renCrv", badger_deploy["geysers"]["harvest.renCrv"]) # Transfer ownership of all sett Rewards contracts to multisig # Transfer proxyAdmin to multisig console.log("after deploys", badger.token.balanceOf(deployer) / 1e18) return badger def post_deploy_config(badger: BadgerSystem): deployer = badger.deployer """ Set initial conditions on immediate post-deploy Badger Transfer tokens to thier initial locations - Rewards Escrow (40%, minus tokens initially distributed via Sett Special StakingRewards) - Badger Hunt (15%) - DAO Timelock (35%) - Founder Rewards (10%) """ # Approve BadgerTree to recieve rewards tokens print(deployer) print(badger.rewardsEscrow.owner()) # badger.rewardsEscrow.approveRecipient(badger.badgerTree, {"from": deployer}) # badger.rewardsEscrow.approveRecipient( # badger.getGeyser("native.badger"), {"from": deployer} # ) # badger.rewardsEscrow.approveRecipient( # badger.getGeyser("native.uniBadgerWbtc"), {"from": deployer} # ) # badger.rewardsEscrow.approveRecipient( # badger.getGeyser("native.renCrv"), {"from": deployer} # ) # badger.rewardsEscrow.approveRecipient( # badger.getGeyser("native.sbtcCrv"), {"from": deployer} # ) # badger.rewardsEscrow.approveRecipient( # badger.getGeyser("native.tbtcCrv"), {"from": deployer} # ) # badger.rewardsEscrow.approveRecipient( # badger.getGeyser("harvest.renCrv"), {"from": deployer} # ) # console.log("before signal locks", badger.token.balanceOf(deployer) / 1e18) # # Geyser Signals # """ # These signals are used to calculate the rewards distributions distributed via BadgerTree. The tokens are actually held in the RewardsEscrow and sent to the BadgerTree as needed. # The escrow will only send a few days worth of rewards initially at a time to the RewardsTree as another failsafe mechanism. # renbtcCRV — 76750 $BADGER # sbtcCRV — 76,750 $BADGER # tbtcCRV — 76,750 $BADGER # Badger — 90,000 $BADGER / 2 # - 45000 in Sett StakingRewards # - 45000 in Geyser # Badger <>wBTC Uniswap LP — 130,000 $BADGER / 2 # - 65000 in Sett StakingRewards # - 65000 in Geyser # Super Sett # Pickle renbtcCRV — 76,750 $BADGER # Harvest renbtc CRV — 76,750 $BADGER # """ # badger.signal_token_lock( # "native.badger", badger_config.geyserParams.unlockSchedules.badger[0] # ) # badger.signal_token_lock( # "native.uniBadgerWbtc", # badger_config.geyserParams.unlockSchedules.uniBadgerWbtc[0], # ) # badger.signal_token_lock( # "native.renCrv", badger_config.geyserParams.unlockSchedules.bRenCrv[0] # ) # badger.signal_token_lock( # "native.sbtcCrv", badger_config.geyserParams.unlockSchedules.bSbtcCrv[0] # ) # badger.signal_token_lock( # "native.tbtcCrv", badger_config.geyserParams.unlockSchedules.bTbtcCrv[0] # ) # badger.signal_token_lock( # "harvest.renCrv", # badger_config.geyserParams.unlockSchedules.bSuperRenCrvHarvest[0], # ) # console.log( # "before initial token distribution", badger.token.balanceOf(deployer) / 1e18 # ) # ===== Initial Token Distribution ===== # == Native Badger == rewards = badger.getSettRewards("native.badger") strategy = badger.getStrategy("native.badger") badger.distribute_staking_rewards( "native.badger", badger_config.geyserParams.unlockSchedules.badger[0].amount, notify=False, ) rewards.grantRole(APPROVED_STAKER_ROLE, strategy, {"from": deployer}) # == Uni LP == rewards = badger.getSettRewards("native.uniBadgerWbtc") strategy = badger.getStrategy("native.uniBadgerWbtc") badger.distribute_staking_rewards( "native.uniBadgerWbtc", badger_config.geyserParams.unlockSchedules.uniBadgerWbtc[0].amount, notify=False, ) rewards.grantRole(APPROVED_STAKER_ROLE, strategy, {"from": deployer}) console.log( "remaining after special pool distributions", badger.token.balanceOf(deployer) / 1e18, ) distributedToPools = ( badger_config.geyserParams.unlockSchedules.badger[0].amount + badger_config.geyserParams.unlockSchedules.uniBadgerWbtc[0].amount ) # print( # badger_config.geyserParams.unlockSchedules.badger[0], # badger_config.geyserParams.unlockSchedules.uniBadgerWbtc[0], # badger_config.geyserParams.unlockSchedules.bRenCrv[0], # badger_config.geyserParams.unlockSchedules.bSbtcCrv[0], # badger_config.geyserParams.unlockSchedules.bTbtcCrv[0], # badger_config.geyserParams.unlockSchedules.bSuperRenCrvHarvest[0] # ) supplyForWeek1Rewards = ( badger_config.geyserParams.unlockSchedules.badger[0].amount + badger_config.geyserParams.unlockSchedules.uniBadgerWbtc[0].amount + badger_config.geyserParams.unlockSchedules.bRenCrv[0].amount + badger_config.geyserParams.unlockSchedules.bSbtcCrv[0].amount + badger_config.geyserParams.unlockSchedules.bTbtcCrv[0].amount + badger_config.geyserParams.unlockSchedules.bSuperRenCrvHarvest[0].amount ) toEscrow = ( badger_config.rewardsEscrowBadgerAmount - distributedToPools - supplyForWeek1Rewards ) badger.initialRewardsEscrowBalance = toEscrow badger.initialBadgerTreeBalance = supplyForWeek1Rewards console.log(locals(), badger_config.rewardsEscrowBadgerAmount) # == Badger Hunt == badger.token.transfer( badger.badgerHunt, badger_config.huntParams.badgerAmount, {"from": deployer}, ) # == Badger Tree == badger.token.transfer( badger.badgerTree, supplyForWeek1Rewards, {"from": deployer}, ) # == Rewards Escrow == badger.token.transfer( badger.rewardsEscrow, toEscrow, {"from": deployer}, ) # == DAO Timelock == badger.token.transfer( badger.daoBadgerTimelock, badger_config.tokenLockParams.badgerLockAmount, {"from": deployer}, ) console.log("after daoBadgerTimelock", badger.token.balanceOf(deployer) / 1e18) # == Team Vesting == badger.token.transfer( badger.teamVesting, badger_config.founderRewardsAmount, {"from": deployer} ) tokenDistributionTargets = { "deployer": 0, "rewardsEscrow": toEscrow, "native.badger Pool": badger_config.geyserParams.unlockSchedules.badger[ 0 ].amount, "native.uniBadgerWbtc Pool": badger_config.geyserParams.unlockSchedules.uniBadgerWbtc[ 0 ].amount, "native.badger geyser": badger_config.geyserParams.unlockSchedules.badger[ 0 ].amount, "native.uniBadgerWbtc geyser": badger_config.geyserParams.unlockSchedules.uniBadgerWbtc[ 0 ].amount, "native.renCrv geyser": badger_config.geyserParams.unlockSchedules.bRenCrv[ 0 ].amount, "native.sbtcCrv geyser": badger_config.geyserParams.unlockSchedules.bSbtcCrv[ 0 ].amount, "native.tbtcCrv geyser": badger_config.geyserParams.unlockSchedules.bTbtcCrv[ 0 ].amount, "harvest.renCrv geyser": badger_config.geyserParams.unlockSchedules.bSuperRenCrvHarvest[ 0 ].amount, "daoBadgerTimelock": badger_config.tokenLockParams.badgerLockAmount, "teamVesting": badger_config.founderRewardsAmount, "badgerHunt": badger_config.huntParams.badgerAmount, "badgerTree": 0, } tokenDistributionBalances = { "deployer": badger.token.balanceOf(deployer), "rewardsEscrow": badger.token.balanceOf(badger.rewardsEscrow), "native.badger Pool": badger.token.balanceOf( badger.getSettRewards("native.badger") ), "native.uniBadgerWbtc Pool": badger.token.balanceOf( badger.getSettRewards("native.uniBadgerWbtc") ), "native.badger geyser": badger.token.balanceOf( badger.getGeyser("native.badger") ), "native.uniBadgerWbtc geyser": badger.token.balanceOf( badger.getGeyser("native.uniBadgerWbtc") ), "native.renCrv geyser": badger.token.balanceOf( badger.getGeyser("native.renCrv") ), "native.sbtcCrv geyser": badger.token.balanceOf( badger.getGeyser("native.sbtcCrv") ), "native.tbtcCrv geyser": badger.token.balanceOf( badger.getGeyser("native.tbtcCrv") ), "harvest.renCrv geyser": badger.token.balanceOf( badger.getGeyser("harvest.renCrv") ), "daoBadgerTimelock": badger.token.balanceOf(badger.daoBadgerTimelock), "teamVesting": badger.token.balanceOf(badger.teamVesting), "badgerHunt": badger.token.balanceOf(badger.badgerHunt), "badgerTree": badger.initialBadgerTreeBalance, } if not badger.test: expectedSum = 0 actualSum = 0 for key, value in tokenDistributionTargets.items(): print("expected", key, value / 1e18) print("actual", key, tokenDistributionBalances[key] / 1e18) expectedSum += value actualSum += tokenDistributionBalances[key] print("expectedSum", expectedSum / 1e18) print("actualSum", actualSum / 1e18) # assert expectedSum == badger_total_supply # assert actualSum == badger_total_supply console.log("after teamVesting", badger.token.balanceOf(deployer) / 1e18) """ ===== Transfer Ownership ===== - proxyAdmin should be owned by multisig - All contract owner / admin rights should be given to multisig """ badger.rewardsEscrow.transferOwnership(badger.devMultisig, {"from": deployer}) def start_staking_rewards(badger: BadgerSystem): """ StakingRewards contracts start immediately when the first tokens are locked """ # == Badger == deployer = badger.deployer rewards = badger.getSettRewards("native.badger") assert ( badger.token.balanceOf(rewards) >= badger_config.geyserParams.unlockSchedules.badger[0].amount ) assert rewards.stakingToken() == badger.token assert rewards.rewardsToken() == badger.token rewards.notifyRewardAmount( badger_config.geyserParams.unlockSchedules.badger[0].amount, {"from": deployer} ) # == Uni LP == rewards = badger.getSettRewards("native.uniBadgerWbtc") assert ( badger.token.balanceOf(rewards) >= badger_config.geyserParams.unlockSchedules.uniBadgerWbtc[0].amount ) assert rewards.stakingToken() == badger.pair assert rewards.rewardsToken() == badger.token rewards.notifyRewardAmount( badger_config.geyserParams.unlockSchedules.uniBadgerWbtc[0].amount, {"from": deployer}, ) def deploy_flow(test=False, outputToFile=True, uniswap=False): badger = test_deploy(test=test, uniswap=uniswap) print("Test: Badger System Deployed") if outputToFile: fileName = "deploy-" + str(chain.id) + "final" + ".json" print("Printing contract addresses to ", fileName) print_to_file(badger, fileName) if not test: post_deploy_config(badger) start_staking_rewards(badger) print("Test: Badger System Setup Complete") return badger def main(): return deploy_flow(test=True, outputToFile=False)
35.398176
187
0.675897
24255c3e007c7c3896f7418e8236a8238d23de87
1,420
py
Python
RNAStructure_processing_example.py
wenjingk/MapToCleave
53bb73525eabf8d1f7f11781864813d8c7f800f6
[ "MIT" ]
null
null
null
RNAStructure_processing_example.py
wenjingk/MapToCleave
53bb73525eabf8d1f7f11781864813d8c7f800f6
[ "MIT" ]
null
null
null
RNAStructure_processing_example.py
wenjingk/MapToCleave
53bb73525eabf8d1f7f11781864813d8c7f800f6
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import sys from scripts.RNAStructure import RNAStructure # input vienna=sys.argv[1] rna = RNAStructure(vienna) # ### MapToCleave hairpin information # In[2]: print('# MapToCleave hairpin identity') print(rna.name) # In[3]: print('# MapToCleave hairpin sequence (118nt)') print(rna.sequence_with_U) # In[4]: print('# MapToCleave hairpin secondary structure in dotbracket format') print(rna.dotbracket) # In[5]: print('# MapToCleave hairpin secondary structure in text format') for i in rna.structure: print(i) # In[6]: print('# reference hairpin, mature and star information based on miRBase v21') print(rna.refhairpin) print(rna.refmirna) # In[7]: print('# start site of 5p and/or 3p arm identified based on the reads pooled from HEK-293T, NIH-3T3 and MEF transfection samples') print('# the R means reference start site; D means dominant start site; A means alternative start site. The D and A sites are generated based on the mapping profile') print('# the text in bracket means sample;position;read abundance') print(rna.refhairpin) print(rna.refmirna) for i in rna.cutposition: print(i) # In[8]: for i in rna.mappingprofile_print: print(i) # In[9]: print('# information obtained from the mapping profile') print('# D means mature arm and M means start arm identified based on the mapping profile') for i in rna.mappingprofile_statistics: print(i)
20
166
0.734507
9326ac6e5ab9423ac6e813d971f295fe5745181a
14,918
py
Python
superset/security.py
zuxqoj/incubator-superset
de5972610998d8faf1dfe2036aee07a2ffbc4509
[ "Apache-2.0" ]
null
null
null
superset/security.py
zuxqoj/incubator-superset
de5972610998d8faf1dfe2036aee07a2ffbc4509
[ "Apache-2.0" ]
null
null
null
superset/security.py
zuxqoj/incubator-superset
de5972610998d8faf1dfe2036aee07a2ffbc4509
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # pylint: disable=C,R,W """A set of constants and methods to manage permissions and security""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging from flask import g from flask_appbuilder.security.sqla import models as ab_models from flask_appbuilder.security.sqla.manager import SecurityManager from sqlalchemy import or_ from superset import sql_parse from superset.connectors.connector_registry import ConnectorRegistry READ_ONLY_MODEL_VIEWS = { 'DatabaseAsync', 'DatabaseView', 'DruidClusterModelView', } GAMMA_READ_ONLY_MODEL_VIEWS = { 'SqlMetricInlineView', 'TableColumnInlineView', 'TableModelView', 'DruidColumnInlineView', 'DruidDatasourceModelView', 'DruidMetricInlineView', } | READ_ONLY_MODEL_VIEWS ADMIN_ONLY_VIEW_MENUS = { 'AccessRequestsModelView', 'Manage', 'SQL Lab', 'Queries', 'Refresh Druid Metadata', 'ResetPasswordView', 'RoleModelView', 'Security', 'UserDBModelView', 'UserLDAPModelView', 'UserOAuthModelView', 'UserOIDModelView', 'UserRemoteUserModelView', } ALPHA_ONLY_VIEW_MENUS = { 'Upload a CSV', } ADMIN_ONLY_PERMISSIONS = { 'all_database_access', 'can_sql_json', # TODO: move can_sql_json to sql_lab role 'can_override_role_permissions', 'can_sync_druid_source', 'can_override_role_permissions', 'can_approve', 'can_update_role', } READ_ONLY_PERMISSION = { 'can_show', 'can_list', } ALPHA_ONLY_PERMISSIONS = set([ 'muldelete', 'all_datasource_access', ]) OBJECT_SPEC_PERMISSIONS = set([ 'database_access', 'schema_access', 'datasource_access', 'metric_access', ]) class SupersetSecurityManager(SecurityManager): def get_schema_perm(self, database, schema): if schema: return '[{}].[{}]'.format(database, schema) def can_access(self, permission_name, view_name, user=None): """Protecting from has_access failing from missing perms/view""" if not user: user = g.user if user.is_anonymous(): return self.is_item_public(permission_name, view_name) return self._has_view_access(user, permission_name, view_name) def all_datasource_access(self, user=None): return self.can_access( 'all_datasource_access', 'all_datasource_access', user=user) def database_access(self, database, user=None): return ( self.can_access( 'all_database_access', 'all_database_access', user=user) or self.can_access('database_access', database.perm, user=user) ) def schema_access(self, datasource, user=None): return ( self.database_access(datasource.database, user=user) or self.all_datasource_access(user=user) or self.can_access('schema_access', datasource.schema_perm, user=user) ) def datasource_access(self, datasource, user=None): return ( self.schema_access(datasource, user=user) or self.can_access('datasource_access', datasource.perm, user=user) ) def get_datasource_access_error_msg(self, datasource): return """This endpoint requires the datasource {}, database or `all_datasource_access` permission""".format(datasource.name) def get_datasource_access_link(self, datasource): from superset import conf return conf.get('PERMISSION_INSTRUCTIONS_LINK') def get_table_access_error_msg(self, table_name): return """You need access to the following tables: {}, all database access or `all_datasource_access` permission""".format(table_name) def get_table_access_link(self, tables): from superset import conf return conf.get('PERMISSION_INSTRUCTIONS_LINK') def datasource_access_by_name( self, database, datasource_name, schema=None): from superset import db if self.database_access(database) or self.all_datasource_access(): return True schema_perm = self.get_schema_perm(database, schema) if schema and self.can_access('schema_access', schema_perm): return True datasources = ConnectorRegistry.query_datasources_by_name( db.session, database, datasource_name, schema=schema) for datasource in datasources: if self.can_access('datasource_access', datasource.perm): return True return False def get_schema_and_table(self, table_in_query, schema): table_name_pieces = table_in_query.split('.') if len(table_name_pieces) == 2: table_schema = table_name_pieces[0] table_name = table_name_pieces[1] else: table_schema = schema table_name = table_name_pieces[0] return (table_schema, table_name) def datasource_access_by_fullname( self, database, table_in_query, schema): table_schema, table_name = self.get_schema_and_table(table_in_query, schema) return self.datasource_access_by_name( database, table_name, schema=table_schema) def rejected_datasources(self, sql, database, schema): superset_query = sql_parse.SupersetQuery(sql) return [ t for t in superset_query.tables if not self.datasource_access_by_fullname(database, t, schema)] def user_datasource_perms(self): datasource_perms = set() for r in g.user.roles: for perm in r.permissions: if ( perm.permission and 'datasource_access' == perm.permission.name): datasource_perms.add(perm.view_menu.name) return datasource_perms def schemas_accessible_by_user(self, database, schemas): from superset import db from superset.connectors.sqla.models import SqlaTable if self.database_access(database) or self.all_datasource_access(): return schemas subset = set() for schema in schemas: schema_perm = self.get_schema_perm(database, schema) if self.can_access('schema_access', schema_perm): subset.add(schema) perms = self.user_datasource_perms() if perms: tables = ( db.session.query(SqlaTable) .filter( SqlaTable.perm.in_(perms), SqlaTable.database_id == database.id, ) .all() ) for t in tables: if t.schema: subset.add(t.schema) return sorted(list(subset)) def accessible_by_user(self, database, datasource_names, schema=None): from superset import db if self.database_access(database) or self.all_datasource_access(): return datasource_names if schema: schema_perm = self.get_schema_perm(database, schema) if self.can_access('schema_access', schema_perm): return datasource_names user_perms = self.user_datasource_perms() user_datasources = ConnectorRegistry.query_datasources_by_permissions( db.session, database, user_perms) if schema: names = { d.table_name for d in user_datasources if d.schema == schema} return [d for d in datasource_names if d in names] else: full_names = {d.full_name for d in user_datasources} return [d for d in datasource_names if d in full_names] def merge_perm(self, permission_name, view_menu_name): # Implementation copied from sm.find_permission_view_menu. # TODO: use sm.find_permission_view_menu once issue # https://github.com/airbnb/superset/issues/1944 is resolved. permission = self.find_permission(permission_name) view_menu = self.find_view_menu(view_menu_name) pv = None if permission and view_menu: pv = self.get_session.query(self.permissionview_model).filter_by( permission=permission, view_menu=view_menu).first() if not pv and permission_name and view_menu_name: self.add_permission_view_menu(permission_name, view_menu_name) def is_user_defined_permission(self, perm): return perm.permission.name in OBJECT_SPEC_PERMISSIONS def create_custom_permissions(self): # Global perms self.merge_perm('all_datasource_access', 'all_datasource_access') self.merge_perm('all_database_access', 'all_database_access') def create_missing_perms(self): """Creates missing perms for datasources, schemas and metrics""" from superset import db from superset.models import core as models logging.info( 'Fetching a set of all perms to lookup which ones are missing') all_pvs = set() for pv in self.get_session.query(self.permissionview_model).all(): if pv.permission and pv.view_menu: all_pvs.add((pv.permission.name, pv.view_menu.name)) def merge_pv(view_menu, perm): """Create permission view menu only if it doesn't exist""" if view_menu and perm and (view_menu, perm) not in all_pvs: self.merge_perm(view_menu, perm) logging.info('Creating missing datasource permissions.') datasources = ConnectorRegistry.get_all_datasources(db.session) for datasource in datasources: merge_pv('datasource_access', datasource.get_perm()) merge_pv('schema_access', datasource.schema_perm) logging.info('Creating missing database permissions.') databases = db.session.query(models.Database).all() for database in databases: merge_pv('database_access', database.perm) logging.info('Creating missing metrics permissions') metrics = [] for datasource_class in ConnectorRegistry.sources.values(): metrics += list(db.session.query(datasource_class.metric_class).all()) for metric in metrics: if metric.is_restricted: merge_pv('metric_access', metric.perm) def clean_perms(self): """FAB leaves faulty permissions that need to be cleaned up""" logging.info('Cleaning faulty perms') sesh = self.get_session pvms = ( sesh.query(ab_models.PermissionView) .filter(or_( ab_models.PermissionView.permission == None, # NOQA ab_models.PermissionView.view_menu == None, # NOQA )) ) deleted_count = pvms.delete() sesh.commit() if deleted_count: logging.info('Deleted {} faulty permissions'.format(deleted_count)) def sync_role_definitions(self): """Inits the Superset application with security roles and such""" from superset import conf logging.info('Syncing role definition') self.create_custom_permissions() # Creating default roles self.set_role('Admin', self.is_admin_pvm) self.set_role('Alpha', self.is_alpha_pvm) self.set_role('Gamma', self.is_gamma_pvm) self.set_role('granter', self.is_granter_pvm) self.set_role('sql_lab', self.is_sql_lab_pvm) self.set_role('Dashboard_Viewer', self.is_dashboard_viewer_pvm) if conf.get('PUBLIC_ROLE_LIKE_GAMMA', False): self.set_role('Public', self.is_gamma_pvm) self.create_missing_perms() # commit role and view menu updates self.get_session.commit() self.clean_perms() def set_role(self, role_name, pvm_check): logging.info('Syncing {} perms'.format(role_name)) sesh = self.get_session pvms = sesh.query(ab_models.PermissionView).all() pvms = [p for p in pvms if p.permission and p.view_menu] role = self.add_role(role_name) role_pvms = [p for p in pvms if pvm_check(p)] role.permissions = role_pvms sesh.merge(role) sesh.commit() def is_admin_only(self, pvm): # not readonly operations on read only model views allowed only for admins if (pvm.view_menu.name in READ_ONLY_MODEL_VIEWS and pvm.permission.name not in READ_ONLY_PERMISSION): return True return ( pvm.view_menu.name in ADMIN_ONLY_VIEW_MENUS or pvm.permission.name in ADMIN_ONLY_PERMISSIONS ) def is_alpha_only(self, pvm): if (pvm.view_menu.name in GAMMA_READ_ONLY_MODEL_VIEWS and pvm.permission.name not in READ_ONLY_PERMISSION): return True return ( pvm.view_menu.name in ALPHA_ONLY_VIEW_MENUS or pvm.permission.name in ALPHA_ONLY_PERMISSIONS ) def is_admin_pvm(self, pvm): return not self.is_user_defined_permission(pvm) def is_alpha_pvm(self, pvm): return not (self.is_user_defined_permission(pvm) or self.is_admin_only(pvm)) def is_gamma_pvm(self, pvm): return not (self.is_user_defined_permission(pvm) or self.is_admin_only(pvm) or self.is_alpha_only(pvm)) def is_sql_lab_pvm(self, pvm): return ( pvm.view_menu.name in { 'SQL Lab', 'SQL Editor', 'Query Search', 'Saved Queries', } or pvm.permission.name in { 'can_sql_json', 'can_csv', 'can_search_queries', 'can_sqllab_viz', 'can_sqllab', }) def is_dashboard_viewer_pvm(self, pvm): return ( self.is_base_view_pvm(pvm) or self.is_base_security_pvm(pvm) or pvm.permission.name in { 'can_dashboard', 'can_explore_json', } or (pvm.permission.name in {'can_list'} and pvm.view_menu.name in {'CssTemplateAsyncModelView', 'DashboardModelViewAsync' }) ) def is_base_view_pvm(self, pvm): return ( pvm.permission.name in { 'can_fave_slices', 'can_fave_dashboards', 'can_recent_activity', }) def is_base_security_pvm(self, pvm): return ( pvm.permission.name in { 'can_userinfo' , 'resetmypassword' , 'can_this_form_get' , 'can_this_form_post' } and pvm.view_menu.name in { 'UserDBModelView', 'ResetMyPasswordView' } # above code will allow some options which are not in PVM # but i am shortcircuiting thsi for now as those permission will be not added to role ) def is_granter_pvm(self, pvm): return pvm.permission.name in { 'can_override_role_permissions', 'can_approve', }
36.474328
138
0.648545
2a84e2a4ceadb8570c7abe4b43cfbd7b699b7f9c
4,436
py
Python
cold_posterior_bnn/core/frn.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-01-19T23:35:59.000Z
2022-01-19T23:35:59.000Z
cold_posterior_bnn/core/frn.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
null
null
null
cold_posterior_bnn/core/frn.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-03-30T07:20:29.000Z
2022-03-30T07:20:29.000Z
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Filter Response Normalization (FRN) layer for Keras. Filter Response Normalization is a recently published method that serves as a drop-in replacement for batch normalization in convolutional neural networks. The paper is due to Singh and Krishnan, https://arxiv.org/pdf/1911.09737.pdf """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import import tensorflow.keras.regularizers as regularizers # pylint: disable=g-explicit-tensorflow-version-import # FRN from https://arxiv.org/pdf/1911.09737.pdf class FRN(tf.keras.layers.Layer): """Filter Response Normalization (FRN) layer.""" def __init__(self, reg_epsilon=1.0e-6, tau_regularizer=None, beta_regularizer=None, gamma_regularizer=None, **kwargs): """Initialize the FRN layer. Args: reg_epsilon: float, the regularization parameter preventing a division by zero. tau_regularizer: tf.keras.regularizer for tau. beta_regularizer: tf.keras.regularizer for beta. gamma_regularizer: tf.keras.regularizer for gamma. **kwargs: keyword arguments passed to the Keras layer base class. """ self.reg_epsilon = reg_epsilon self.tau_regularizer = regularizers.get(tau_regularizer) self.beta_regularizer = regularizers.get(beta_regularizer) self.gamma_regularizer = regularizers.get(gamma_regularizer) super(FRN, self).__init__(**kwargs) def build(self, input_shape): par_shape = (1, 1, 1, input_shape[-1]) # [1,1,1,C] self.tau = self.add_weight('tau', shape=par_shape, initializer='zeros', regularizer=self.tau_regularizer, trainable=True) self.beta = self.add_weight('beta', shape=par_shape, initializer='zeros', regularizer=self.beta_regularizer, trainable=True) self.gamma = self.add_weight('gamma', shape=par_shape, initializer='ones', regularizer=self.gamma_regularizer, trainable=True) def call(self, x): nu2 = tf.reduce_mean(tf.math.square(x), axis=[1, 2], keepdims=True) x = x * tf.math.rsqrt(nu2 + self.reg_epsilon) y = self.gamma*x + self.beta z = tf.maximum(y, self.tau) return z def get_config(self): config = super(FRN, self).get_config() config.update({ 'reg_epsilon': self.reg_epsilon, 'tau_regularizer': regularizers.serialize(self.tau_regularizer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), }) return config class TLU(tf.keras.layers.Layer): """Thresholded linear unit (TLU) layer.""" def __init__(self, tau_regularizer=None, **kwargs): """Initialize the TLU layer. Args: tau_regularizer: tf.keras.regularizer for tau. **kwargs: keyword arguments passed to the Keras layer base class. """ self.tau_regularizer = regularizers.get(tau_regularizer) super(TLU, self).__init__(**kwargs) def build(self, input_shape): par_shape = (1, 1, 1, input_shape[-1]) # [1,1,1,C] self.tau = self.add_weight('tau', shape=par_shape, initializer='zeros', regularizer=self.tau_regularizer, trainable=True) def call(self, x): return tf.maximum(x, self.tau) def get_config(self): config = super(TLU, self).get_config() config.update({ 'tau_regularizer': regularizers.serialize(self.tau_regularizer), }) return config
36.966667
109
0.669973
67162283d0c1692fd44b60011c31d3121559f7d8
899
py
Python
setup.py
DasIch/argvard
2603e323a995e0915ce41fcf49e2a82519556195
[ "Apache-2.0" ]
3
2015-02-09T02:28:30.000Z
2020-04-26T00:31:40.000Z
setup.py
DasIch/argvard
2603e323a995e0915ce41fcf49e2a82519556195
[ "Apache-2.0" ]
null
null
null
setup.py
DasIch/argvard
2603e323a995e0915ce41fcf49e2a82519556195
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import os from setuptools import setup from argvard import __version__ PROJECT_DIR = os.path.abspath(os.path.dirname(__file__)) setup( name='Argvard', version=__version__, url='https://github.com/DasIch/argvard', author='Daniel Neuhäuser', author_email='ich@danielneuhaeuser.de', license='Apache License, Version 2.0', description='Framework for command line applications', long_description=open(os.path.join(PROJECT_DIR, 'README.rst')).read(), classifiers=[ 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ], packages=['argvard'] )
29
74
0.665184
dfe6bab08ec9d355967edcf055241e10da8379f1
2,580
py
Python
urlfetch/urlfetch.py
sourcery-ai-bot/aikaterna-cogs
75c84f53d5a3a1aa91564fef87cc8d5e67887707
[ "Apache-2.0" ]
null
null
null
urlfetch/urlfetch.py
sourcery-ai-bot/aikaterna-cogs
75c84f53d5a3a1aa91564fef87cc8d5e67887707
[ "Apache-2.0" ]
null
null
null
urlfetch/urlfetch.py
sourcery-ai-bot/aikaterna-cogs
75c84f53d5a3a1aa91564fef87cc8d5e67887707
[ "Apache-2.0" ]
null
null
null
import asyncio import aiohttp import logging from urllib.parse import urlparse from redbot.core import checks, commands from redbot.core.utils.chat_formatting import box, pagify from redbot.core.utils.menus import menu, DEFAULT_CONTROLS log = logging.getLogger("red.aikaterna.urlfetch") __version__ = "1.1.0" class UrlFetch(commands.Cog): """Grab stuff from a text API.""" def __init__(self, bot): self.bot = bot self._headers = {'User-Agent': 'Python/3.8'} @commands.command() async def urlfetch(self, ctx, url: str): """ Input a URL to read. """ async with ctx.typing(): valid_url = await self._valid_url(ctx, url) if not valid_url: return text = await self._get_url_content(url) if text: page_list = [] for page in pagify(text, delims=["\n"], page_length=1800): page_list.append(box(page)) if len(page_list) == 1: await ctx.send(box(page)) else: await menu(ctx, page_list, DEFAULT_CONTROLS) async def _get_url_content(self, url: str): try: timeout = aiohttp.ClientTimeout(total=20) async with aiohttp.ClientSession(headers=self._headers, timeout=timeout) as session: async with session.get(url) as resp: text = await resp.text() return text except aiohttp.client_exceptions.ClientConnectorError: log.error(f"aiohttp failure accessing site at url:\n\t{url}", exc_info=True) return None except asyncio.exceptions.TimeoutError: log.error(f"asyncio timeout while accessing feed at url:\n\t{url}") return None except Exception: log.error(f"General failure accessing site at url:\n\t{url}", exc_info=True) return None async def _valid_url(self, ctx, url: str): try: result = urlparse(url) except Exception as e: log.exception(e, exc_info=e) await ctx.send("There was an issue trying to fetch that site. Please check your console for the error.") return None if all([result.scheme, result.netloc]): text = await self._get_url_content(url) if text: return text await ctx.send("No text present at the given url.") else: await ctx.send(f"That url seems to be incomplete.") return None
33.076923
116
0.587597
f58b16638322bc508a91c9ba75736ca783520dc7
2,712
py
Python
parkingmotel.ie/parkingmotel/parkingmotel/settings.py
ProfessionalIT/customers
3dbc1989bb3494fb6de7edad67dc59b7b0385ac3
[ "MIT" ]
null
null
null
parkingmotel.ie/parkingmotel/parkingmotel/settings.py
ProfessionalIT/customers
3dbc1989bb3494fb6de7edad67dc59b7b0385ac3
[ "MIT" ]
1
2015-11-08T11:49:35.000Z
2015-11-08T11:49:43.000Z
parkingmotel.ie/parkingmotel/parkingmotel/settings.py
ProfessionalIT/customers
3dbc1989bb3494fb6de7edad67dc59b7b0385ac3
[ "MIT" ]
null
null
null
""" Django settings for parkingmotel project. Generated by 'django-admin startproject' using Django 1.8.2. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'yj1h$xsbl96t9pm$d+^y28kr!x6_+75omttl@0bmf_0&$+-%82' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'parkingmotel.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'parkingmotel.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' try: from local_settings import * except: pass
25.111111
71
0.702434
9bcfdb9a82d86b08c32ffff33162f99b3052ba6b
6,139
py
Python
restservice/migrations/0001_initial.py
Ecotrust/formhub
05033bb5aa152cc2cbcd7382c2c999d82b2c3276
[ "BSD-2-Clause" ]
123
2015-01-08T09:21:05.000Z
2021-11-14T19:45:23.000Z
restservice/migrations/0001_initial.py
Ecotrust/formhub
05033bb5aa152cc2cbcd7382c2c999d82b2c3276
[ "BSD-2-Clause" ]
16
2015-02-13T16:56:42.000Z
2021-02-20T23:58:43.000Z
restservice/migrations/0001_initial.py
Ecotrust/formhub
05033bb5aa152cc2cbcd7382c2c999d82b2c3276
[ "BSD-2-Clause" ]
110
2015-01-19T14:34:06.000Z
2021-02-01T14:55:11.000Z
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'RestService' db.create_table('restservice_restservice', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('service_url', self.gf('django.db.models.fields.URLField')(max_length=200)), ('xform', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['odk_logger.XForm'])), ('name', self.gf('django.db.models.fields.CharField')(max_length=50)), )) db.send_create_signal('restservice', ['RestService']) def backwards(self, orm): # Deleting model 'RestService' db.delete_table('restservice_restservice') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'odk_logger.xform': { 'Meta': {'ordering': "('id_string',)", 'unique_together': "(('user', 'id_string'),)", 'object_name': 'XForm'}, 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'default': "u''", 'null': 'True'}), 'downloadable': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'has_start_time': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'id_string': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}), 'json': ('django.db.models.fields.TextField', [], {'default': "u''"}), 'shared': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'shared_data': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'xforms'", 'null': 'True', 'to': "orm['auth.User']"}), 'uuid': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '32'}), 'xls': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True'}), 'xml': ('django.db.models.fields.TextField', [], {}) }, 'restservice.restservice': { 'Meta': {'object_name': 'RestService'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'service_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'xform': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['odk_logger.XForm']"}) } } complete_apps = ['restservice']
66.728261
182
0.566705
e501ecffb31bd049350296fc92c96929e1767b9c
9,307
py
Python
configs/ruby/DSI.py
Aayush-Ankit/ece666-parallelArch-gem5
3c20f5852a4b4f7ae59b69a46f483cfee06ad20f
[ "BSD-3-Clause" ]
1
2021-04-29T03:26:29.000Z
2021-04-29T03:26:29.000Z
configs/ruby/DSI.py
Aayush-Ankit/ece666-parallelArch-gem5
3c20f5852a4b4f7ae59b69a46f483cfee06ad20f
[ "BSD-3-Clause" ]
null
null
null
configs/ruby/DSI.py
Aayush-Ankit/ece666-parallelArch-gem5
3c20f5852a4b4f7ae59b69a46f483cfee06ad20f
[ "BSD-3-Clause" ]
1
2019-11-13T00:40:44.000Z
2019-11-13T00:40:44.000Z
# Copyright (c) 2006-2007 The Regents of The University of Michigan # Copyright (c) 2009 Advanced Micro Devices, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Brad Beckmann import math import m5 from m5.objects import * from m5.defines import buildEnv from Ruby import create_topology, create_directories from Ruby import send_evicts # # Declare caches used by the protocol # class L1Cache(RubyCache): pass def define_options(parser): return def create_system(options, full_system, system, dma_ports, bootmem, ruby_system): if buildEnv['PROTOCOL'] != 'DSI': panic("This script requires the DSI protocol to be built.") cpu_sequencers = [] # # The ruby network creation expects the list of nodes in the system to be # consistent with the NetDest list. Therefore the l1 controller nodes must be # listed before the directory nodes and directory nodes before dma nodes, etc. # l1_cntrl_nodes = [] dma_cntrl_nodes = [] # # Must create the individual controllers before the network to ensure the # controller constructors are called before the network constructor # block_size_bits = int(math.log(options.cacheline_size, 2)) for i in range(options.num_cpus): # # First create the Ruby objects associated with this cpu # Only one cache exists for this protocol, so by default use the L1D # config parameters. # cache = L1Cache(size = options.l1d_size, assoc = options.l1d_assoc, start_index_bit = block_size_bits, dsiFIFO_size = options.l1d_dsiFIFO_size) # the ruby random tester reuses num_cpus to specify the # number of cpu ports connected to the tester object, which # is stored in system.cpu. because there is only ever one # tester object, num_cpus is not necessarily equal to the # size of system.cpu; therefore if len(system.cpu) == 1 # we use system.cpu[0] to set the clk_domain, thereby ensuring # we don't index off the end of the cpu list. if len(system.cpu) == 1: clk_domain = system.cpu[0].clk_domain else: clk_domain = system.cpu[i].clk_domain # Only one unified L1 cache exists. Can cache instructions and data. l1_cntrl = L1Cache_Controller(version=i, cacheMemory=cache, send_evictions=send_evicts(options), transitions_per_cycle=options.ports, clk_domain=clk_domain, ruby_system=ruby_system) cpu_seq = RubySequencer(version=i, icache=cache, dcache=cache, clk_domain=clk_domain, ruby_system=ruby_system) l1_cntrl.sequencer = cpu_seq exec("ruby_system.l1_cntrl%d = l1_cntrl" % i) # Add controllers and sequencers to the appropriate lists cpu_sequencers.append(cpu_seq) l1_cntrl_nodes.append(l1_cntrl) # Connect the L1 controllers and the network l1_cntrl.mandatoryQueue = MessageBuffer() l1_cntrl.requestFromCache = MessageBuffer(ordered = True) l1_cntrl.requestFromCache.master = ruby_system.network.slave l1_cntrl.responseFromCache = MessageBuffer(ordered = True) l1_cntrl.responseFromCache.master = ruby_system.network.slave l1_cntrl.forwardToCache = MessageBuffer(ordered = True) l1_cntrl.forwardToCache.slave = ruby_system.network.master l1_cntrl.responseToCache = MessageBuffer(ordered = True) l1_cntrl.responseToCache.slave = ruby_system.network.master # If Running in DSI_MODE l1_cntrl.DSI_MODE = bool(options.DSI_MODE); print ("DSI_MODE: ") print(l1_cntrl.DSI_MODE) phys_mem_size = sum(map(lambda r: r.size(), system.mem_ranges)) assert(phys_mem_size % options.num_dirs == 0) mem_module_size = phys_mem_size / options.num_dirs # Run each of the ruby memory controllers at a ratio of the frequency of # the ruby system. # clk_divider value is a fix to pass regression. ruby_system.memctrl_clk_domain = DerivedClockDomain( clk_domain=ruby_system.clk_domain, clk_divider=3) mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories( options, bootmem, ruby_system, system) dir_cntrl_nodes = mem_dir_cntrl_nodes[:] if rom_dir_cntrl_node is not None: dir_cntrl_nodes.append(rom_dir_cntrl_node) for dir_cntrl in dir_cntrl_nodes: # Connect the directory controllers and the network dir_cntrl.requestToDir = MessageBuffer(ordered = True) dir_cntrl.requestToDir.slave = ruby_system.network.master dir_cntrl.dmaRequestToDir = MessageBuffer(ordered = True) dir_cntrl.dmaRequestToDir.slave = ruby_system.network.master dir_cntrl.responseToDir = MessageBuffer(ordered = True) dir_cntrl.responseToDir.slave = ruby_system.network.master dir_cntrl.responseFromDir = MessageBuffer() dir_cntrl.responseFromDir.master = ruby_system.network.slave dir_cntrl.dmaResponseFromDir = MessageBuffer(ordered = True) dir_cntrl.dmaResponseFromDir.master = ruby_system.network.slave dir_cntrl.forwardFromDir = MessageBuffer() dir_cntrl.forwardFromDir.master = ruby_system.network.slave dir_cntrl.responseFromMemory = MessageBuffer() dir_cntrl.directory.version_bits = options.dsi_version_bits for i, dma_port in enumerate(dma_ports): # Added -check that DMA ports aren't created assert 1==0, "Aayush: DMA port is created" # # Create the Ruby objects associated with the dma controller # dma_seq = DMASequencer(version = i, ruby_system = ruby_system) dma_cntrl = DMA_Controller(version = i, dma_sequencer = dma_seq, transitions_per_cycle = options.ports, ruby_system = ruby_system) exec("ruby_system.dma_cntrl%d = dma_cntrl" % i) exec("ruby_system.dma_cntrl%d.dma_sequencer.slave = dma_port" % i) dma_cntrl_nodes.append(dma_cntrl) # Connect the directory controllers and the network dma_cntrl.mandatoryQueue = MessageBuffer() dma_cntrl.requestToDir = MessageBuffer() dma_cntrl.requestToDir.master = ruby_system.network.slave dma_cntrl.responseFromDir = MessageBuffer(ordered = True) dma_cntrl.responseFromDir.slave = ruby_system.network.master all_cntrls = l1_cntrl_nodes + dir_cntrl_nodes + dma_cntrl_nodes # Create the io controller and the sequencer if full_system: io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system) ruby_system._io_port = io_seq io_controller = DMA_Controller(version = len(dma_ports), dma_sequencer = io_seq, ruby_system = ruby_system) ruby_system.io_controller = io_controller # Connect the dma controller to the network io_controller.mandatoryQueue = MessageBuffer() io_controller.requestToDir = MessageBuffer() io_controller.requestToDir.master = ruby_system.network.slave io_controller.responseFromDir = MessageBuffer(ordered = True) io_controller.responseFromDir.slave = ruby_system.network.master all_cntrls = all_cntrls + [io_controller] ruby_system.network.number_of_virtual_networks = 5 topology = create_topology(all_cntrls, options) return (cpu_sequencers, mem_dir_cntrl_nodes, topology)
44.5311
82
0.686365
41eaefb54fa6103f6dbbd40ded4b35c8d5896ff7
6,171
py
Python
4-Object_Detection/RPN/demo.py
Jack19960208/TensorFlow2.0-Examples
f0ec3fbd27af90f0d040cd70ec1fd3ad408c3a6d
[ "MIT" ]
1
2019-10-21T11:39:03.000Z
2019-10-21T11:39:03.000Z
4-Object_Detection/RPN/demo.py
Jack19960208/TensorFlow2.0-Examples
f0ec3fbd27af90f0d040cd70ec1fd3ad408c3a6d
[ "MIT" ]
null
null
null
4-Object_Detection/RPN/demo.py
Jack19960208/TensorFlow2.0-Examples
f0ec3fbd27af90f0d040cd70ec1fd3ad408c3a6d
[ "MIT" ]
null
null
null
#! /usr/bin/env python # coding=utf-8 #================================================================ # Copyright (C) 2019 * Ltd. All rights reserved. # # Editor : VIM # File name : demo.py # Author : YunYang1994 # Created date: 2019-10-20 15:06:46 # Description : # #================================================================ import cv2 import numpy as np import tensorflow as tf from PIL import Image from rpn import RPNplus from utils import compute_iou, plot_boxes_on_image, wandhG, load_gt_boxes, compute_regression, decode_output pos_thresh = 0.5 neg_thresh = 0.1 iou_thresh = 0.5 grid_width = 16 grid_height = 16 image_height = 720 image_width = 960 wandhG = np.array(wandhG, dtype=np.float32) image_path = "/home/yang/dataset/synthetic_dataset/image/1.jpg" gt_boxes = load_gt_boxes("/home/yang/dataset/synthetic_dataset/imageAno/1.txt") raw_image = cv2.imread(image_path) image_with_gt_boxes = np.copy(raw_image) plot_boxes_on_image(image_with_gt_boxes, gt_boxes) Image.fromarray(image_with_gt_boxes).show() encoded_image = np.copy(raw_image) target_scores = np.zeros(shape=[45, 60, 9, 2]) # 0: background, 1: foreground, , target_bboxes = np.zeros(shape=[45, 60, 9, 4]) # t_x, t_y, t_w, t_h target_masks = np.zeros(shape=[45, 60, 9]) # negative_samples: -1, positive_samples: 1 ################################### ENCODE INPUT ################################# for i in range(45): for j in range(60): for k in range(9): center_x = j * grid_width + grid_width * 0.5 center_y = i * grid_height + grid_height * 0.5 xmin = center_x - wandhG[k][0] * 0.5 ymin = center_y - wandhG[k][1] * 0.5 xmax = center_x + wandhG[k][0] * 0.5 ymax = center_y + wandhG[k][1] * 0.5 # ignore cross-boundary anchors if (xmin > -5) & (ymin > -5) & (xmax < (image_width+5)) & (ymax < (image_height+5)): anchor_boxes = np.array([xmin, ymin, xmax, ymax]) anchor_boxes = np.expand_dims(anchor_boxes, axis=0) # compute iou between this anchor and all ground-truth boxes in image. ious = compute_iou(anchor_boxes, gt_boxes) positive_masks = ious > pos_thresh negative_masks = ious < neg_thresh if np.any(positive_masks): plot_boxes_on_image(encoded_image, anchor_boxes, thickness=1) print("=> Encoding positive sample: %d, %d, %d" %(i, j, k)) cv2.circle(encoded_image, center=(int(0.5*(xmin+xmax)), int(0.5*(ymin+ymax))), radius=1, color=[255,0,0], thickness=4) target_scores[i, j, k, 1] = 1. target_masks[i, j, k] = 1 # labeled as a positive sample # find out which ground-truth box matches this anchor max_iou_idx = np.argmax(ious) selected_gt_boxes = gt_boxes[max_iou_idx] target_bboxes[i, j, k] = compute_regression(selected_gt_boxes, anchor_boxes[0]) if np.all(negative_masks): target_scores[i, j, k, 0] = 1. target_masks[i, j, k] = -1 # labeled as a negative sample cv2.circle(encoded_image, center=(int(0.5*(xmin+xmax)), int(0.5*(ymin+ymax))), radius=1, color=[0,0,0], thickness=4) Image.fromarray(encoded_image).show() ################################### DECODE OUTPUT ################################# decode_image = np.copy(raw_image) pred_boxes = [] pred_score = [] for i in range(45): for j in range(60): for k in range(9): # 预测的 pred boxes 坐标 center_x = j * grid_width + 0.5 * grid_width center_y = i * grid_height + 0.5 * grid_height anchor_xmin = center_x - 0.5 * wandhG[k, 0] anchor_ymin = center_y - 0.5 * wandhG[k, 1] xmin = target_bboxes[i, j, k, 0] * wandhG[k, 0] + anchor_xmin ymin = target_bboxes[i, j, k, 1] * wandhG[k, 1] + anchor_ymin xmax = tf.exp(target_bboxes[i, j, k, 2]) * wandhG[k, 0] + xmin ymax = tf.exp(target_bboxes[i, j, k, 3]) * wandhG[k, 1] + ymin if target_scores[i, j, k, 1] > 0: # it is a positive sample print("=> Decoding positive sample: %d, %d, %d" %(i, j, k)) cv2.circle(decode_image, center=(int(0.5*(xmin+xmax)), int(0.5*(ymin+ymax))), radius=1, color=[255,0,0], thickness=4) pred_boxes.append(np.array([xmin, ymin, xmax, ymax])) pred_score.append(target_scores[i, j, k, 1]) pred_boxes = np.array(pred_boxes) plot_boxes_on_image(decode_image, pred_boxes, color=[0, 255, 0]) Image.fromarray(np.uint8(decode_image)).show() ############################## FASTER DECODE OUTPUT ############################### faster_decode_image = np.copy(raw_image) # pred_bboxes = target_bboxes # pred_scores = target_scores.astype(np.float32) pred_bboxes = np.expand_dims(target_bboxes, 0).astype(np.float32) pred_scores = np.expand_dims(target_scores, 0).astype(np.float32) pred_scores, pred_bboxes = decode_output(pred_bboxes, pred_scores) plot_boxes_on_image(faster_decode_image, pred_bboxes, color=[255, 0, 0]) # red boundig box Image.fromarray(np.uint8(faster_decode_image)).show() ## bboxes # grid_x, grid_y = tf.range(60, dtype=tf.int32), tf.range(45, dtype=tf.int32) # grid_x, grid_y = tf.meshgrid(grid_x, grid_y) # grid_x, grid_y = tf.expand_dims(grid_x, -1), tf.expand_dims(grid_y, -1) # grid_xy = tf.stack([grid_x, grid_y], axis=-1) # center_xy = grid_xy * 16 + 8 # center_xy = tf.cast(center_xy, tf.float32) # anchor_xymin = center_xy - 0.5 * wandhG # xy_min = pred_bboxes[..., 0:2] * wandhG[:, 0:2] + anchor_xymin # xy_max = tf.exp(pred_bboxes[..., 2:4]) * wandhG[:, 0:2] + xy_min # pred_bboxes = tf.concat([xy_min, xy_max], axis=-1) # score_mask = pred_scores > 0. # pred_bboxes = tf.reshape(pred_bboxes[score_mask], shape=[-1,4]).numpy() # pred_scores = tf.reshape(pred_scores[score_mask], shape=[-1,]).numpy()
41.695946
108
0.583536
c0d9d58c31a819cf0e4a15f14530756be98c5d6e
1,081
py
Python
J_linked_list/problems/I_pairwise_swap_nodes_of_linked_list.py
Princeton21/DSA
0f2321b284fc54f4ddf73733cc1a8d05e549aeea
[ "MIT" ]
58
2021-01-06T10:05:51.000Z
2022-02-10T05:15:19.000Z
J_linked_list/problems/I_pairwise_swap_nodes_of_linked_list.py
Princeton21/DSA
0f2321b284fc54f4ddf73733cc1a8d05e549aeea
[ "MIT" ]
5
2021-02-22T04:14:24.000Z
2021-12-26T09:19:17.000Z
J_linked_list/problems/I_pairwise_swap_nodes_of_linked_list.py
Princeton21/DSA
0f2321b284fc54f4ddf73733cc1a8d05e549aeea
[ "MIT" ]
27
2021-02-09T13:58:33.000Z
2022-03-06T03:48:08.000Z
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def pairwiseSwap(self): temp = self.head if temp is None: return while temp is not None and temp.next is not None: if temp.data == temp.next.data: temp = temp.next.next else: temp.data, temp.next.data = temp.next.data, temp.data temp = temp.next.next def push(self, new_data): new_node = Node(new_data) new_node.next = self.head self.head = new_node def printList(self): temp = self.head while temp: print(temp.data) temp = temp.next if __name__ == "__main__": """ from timeit import timeit llist = LinkedList() llist.push(5) llist.push(4) llist.push(3) llist.push(2) llist.push(1) llist.pairwiseSwap() print(timeit(lambda: llist.printList(), number=10000)) # 0.27164168400122435 """
22.520833
81
0.553191
9fd22edfa5eceb96f9723497e0ac8f9561721dae
2,058
py
Python
src/rejection-sampling.py
waidotto/ridgelet-transform-numerial-experiment
2af1dc969347031c64e168cf071eb13d9ac1824c
[ "MIT" ]
4
2018-09-01T11:13:27.000Z
2020-10-12T02:37:44.000Z
src/rejection-sampling.py
waidotto/ridgelet-transform-numerial-experiment
2af1dc969347031c64e168cf071eb13d9ac1824c
[ "MIT" ]
null
null
null
src/rejection-sampling.py
waidotto/ridgelet-transform-numerial-experiment
2af1dc969347031c64e168cf071eb13d9ac1824c
[ "MIT" ]
null
null
null
#!/usr/bin/env python #棄却法でオラクル分布から重みを生成する import numpy as np import numpy.matlib import random #活性化関数 def eta(x): return np.exp(-np.square(x) / 2.0) #Gauss関数(正規分布) with open('./temp/setting.py') as f: exec(f.read()) #ファイル読み込み dist = np.loadtxt('./output/numerical-ridgelet.txt', usecols = range(J)) Max = np.max(np.abs(dist)) Min = np.min(np.abs(dist)) j = 0 tries = 0 a = np.zeros(number_of_hidden_nodes) #a_j b = np.zeros(number_of_hidden_nodes) #b_j c = np.zeros(number_of_hidden_nodes) #c_j #棄却法で(a_j, b_j)を生成する print('oracle sampling...') while(True): tries += 1 ra = random.randint(0, I - 1) rb = random.randint(0, J - 1) r = random.uniform(Min, Max) if(r <= abs(dist[ra][rb])): a[j] = -30 + ra * Delta_a b[j] = -30 + rb * Delta_b j += 1 if(j >= number_of_hidden_nodes): print("done. ({0} times tried)".format(tries)) break #最小二乗法でc_jを求める x = np.linspace(-1, 1, N, dtype = np.float32) xs3d = np.kron(np.ones([number_of_hidden_nodes, number_of_hidden_nodes, 1]), x) #(x_s)_ijs ai3d = np.kron(np.ones([1, number_of_hidden_nodes, N]), a.reshape(number_of_hidden_nodes, 1, 1)) #(a_i)_ijs bi3d = np.kron(np.ones([1, number_of_hidden_nodes, N]), b.reshape(number_of_hidden_nodes, 1, 1)) #(b_i)_ijs aj3d = np.kron(np.ones([number_of_hidden_nodes, 1, N]), a.reshape(1, number_of_hidden_nodes, 1)) #(a_j)_ijs bj3d = np.kron(np.ones([number_of_hidden_nodes, 1, N]), b.reshape(1, number_of_hidden_nodes, 1)) #(b_j)_ijs A = np.sum(eta(ai3d * xs3d - bi3d) * eta(aj3d * xs3d - bj3d), axis = 2) #s軸で総和を取る xs2d = np.matlib.repmat(x, number_of_hidden_nodes, 1) #(x_s)_is ai2d = np.matlib.repmat(a, N, 1).transpose() #(a_i)_is bi2d = np.matlib.repmat(b, N, 1).transpose() #(b_i)_is vec_b = np.sum(f(xs2d) * eta(ai2d * xs2d - bi2d), axis = 1) #s軸で総和を取る c = np.linalg.inv(A).dot(vec_b) #連立一次方程式を解く print('writing to ./output/oracle-sampled-weight.txt') with open("./output/oracle-sampled-weight.txt", mode = 'w') as f: for j in range(number_of_hidden_nodes): f.write("{0:.6f} {1:.6f} {2:.6f}\n".format(a[j], b[j], c[j])) print('done.')
31.181818
107
0.675413
c838d8900a25a261d655879ddfcf5e52b6ce5867
12,196
py
Python
DB-CNN/Mars_experiments/model.py
bitzj2015/DB-CNN
36a173daa37d22448c1d4f3a76b7953927b7d75e
[ "MIT" ]
5
2019-01-08T11:35:38.000Z
2021-12-01T05:30:10.000Z
DB-CNN/Mars_experiments/model.py
bitzj2015/DB-CNN
36a173daa37d22448c1d4f3a76b7953927b7d75e
[ "MIT" ]
null
null
null
DB-CNN/Mars_experiments/model.py
bitzj2015/DB-CNN
36a173daa37d22448c1d4f3a76b7953927b7d75e
[ "MIT" ]
null
null
null
import numpy as np import tensorflow as tf from utils import conv2d_flipkernel, conv2d_flipkernel_d def VIN(X, S1, S2, config, length): keep_drop = 0.5 k = config.k # Number of value iterations performed ch_i = config.ch_i # Channels in input layer ch_h = config.ch_h # Channels in initial hidden layer ch_q = config.ch_q # Channels in q layer (~actions) state_batch_size = length # k+1 state inputs for each channel w11 = tf.Variable(np.random.randn(5, 5, 2, 6) * 0.01, dtype=tf.float32) w22 = tf.Variable(np.random.randn(4, 4, 6, 12) * 0.01, dtype=tf.float32) bias = tf.Variable(np.random.randn(1, 1, 1, ch_h) * 0.01, dtype=tf.float32) w0 = tf.Variable(np.random.randn(3, 3, 13, ch_h) * 0.01, dtype=tf.float32) w1 = tf.Variable(np.random.randn(1, 1, ch_h, 1) * 0.01, dtype=tf.float32) w = tf.Variable(np.random.randn(3, 3, 1, ch_q) * 0.01, dtype=tf.float32) w_fb = tf.Variable(np.random.randn(3, 3, 1, ch_q) * 0.01, dtype=tf.float32) w_o = tf.Variable(np.random.randn(ch_q, 8) * 0.01, dtype=tf.float32) h1 = conv2d_flipkernel(X[:, :, :, 0:2], w11, name="h1") pool0 = tf.nn.max_pool(h1, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') h2 = conv2d_flipkernel(pool0, w22, name="h2") pool1 = tf.nn.max_pool(h2, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') pool00 = tf.nn.max_pool(X[:, :, :, 2:3], [1, 4, 4, 1], [ 1, 4, 4, 1], padding='SAME') r0 = tf.concat([pool1, pool00], axis=-1) h = conv2d_flipkernel(r0, w0, name="h0") + bias r = conv2d_flipkernel(h, w1, name="r") q = conv2d_flipkernel(r, w, name="q") v = tf.reduce_max(q, axis=3, keep_dims=True, name="v") for i in range(0, k - 1): rv = tf.concat([r, v], 3) # connect two matrix wwfb = tf.concat([w, w_fb], 2) q = conv2d_flipkernel(rv, wwfb, name="q") v = tf.reduce_max(q, axis=3, keep_dims=True, name="v") # do one last convolution q = conv2d_flipkernel(tf.concat([r, v], 3), tf.concat([w, w_fb], 2), name="q") # CHANGE TO THEANO ORDERING # Since we are selecting over channels, it becomes easier to work with # the tensor when it is in NCHW format vs NHWC v = tf.reduce_max(q, axis=3, keep_dims=True, name="v") q = tf.transpose(q, perm=[0, 3, 1, 2]) # Select the conv-net channels at the state position (S1,S2). # This intuitively corresponds to each channel representing an action, and the convnet the Q function. # The tricky thing is we want to select the same (S1,S2) position *for each* channel and for each sample # TODO: performance can be improved here by substituting expensive # transpose calls with better indexing for gather_nd bs = tf.shape(q)[0] rprn = tf.reshape( tf.tile(tf.reshape(tf.range(bs), [-1, 1]), [1, state_batch_size]), [-1]) ins1 = tf.cast(tf.reshape(S1, [-1]), tf.int32) ins2 = tf.cast(tf.reshape(S2, [-1]), tf.int32) idx_in = tf.transpose(tf.stack([ins1, ins2, rprn]), [1, 0]) q_out = tf.gather_nd(tf.transpose(q, [2, 3, 0, 1]), idx_in, name="q_out") logits = tf.matmul(q_out, w_o) output = tf.nn.softmax(logits, name="output") return logits, output, v, v def DB_CNN(X, S1, S2, config, keep_drop, length): k = config.k # Number of value iterations performed ch_i = config.ch_i # Channels in input layer ch_h = config.ch_h # Channels in initial hidden layer ch_q = config.ch_q # Channels in q layer (~actions) state_batch_size = length # k+1 state inputs for each channel N = 20 M = 20 bias = tf.Variable(tf.truncated_normal( [1, 1, 1, N], dtype=tf.float32, stddev=0.001)) w11 = tf.Variable(np.random.randn(5, 5, 2, 6) * 0.001, dtype=tf.float32) w22 = tf.Variable(np.random.randn(4, 4, 6, 12) * 0.001, dtype=tf.float32) w0 = tf.Variable(tf.truncated_normal( [3, 3, 13, N], dtype=tf.float32, stddev=0.001)) w1 = tf.Variable(tf.truncated_normal( [3, 3, N, N], dtype=tf.float32, stddev=0.001)) w2 = tf.Variable(tf.truncated_normal( [3, 3, N, N], dtype=tf.float32, stddev=0.001)) w3 = tf.Variable(tf.truncated_normal( [3, 3, N, N], dtype=tf.float32, stddev=0.001)) w4 = tf.Variable(tf.truncated_normal( [3, 3, N, N], dtype=tf.float32, stddev=0.001)) w5 = tf.Variable(tf.truncated_normal( [3, 3, N, N], dtype=tf.float32, stddev=0.001)) w6 = tf.Variable(tf.truncated_normal( [3, 3, N, N], dtype=tf.float32, stddev=0.001)) w = tf.Variable(tf.truncated_normal( [3, 3, N, ch_q], dtype=tf.float32, stddev=0.001)) w_o = tf.Variable(tf.truncated_normal( [ch_q * 1, 8], dtype=tf.float32, stddev=0.001)) h1 = tf.nn.relu(conv2d_flipkernel(X[:, :, :, 0:2] * 100, w11, name="h1")) pool0 = tf.nn.max_pool(h1, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') h2 = tf.nn.relu(conv2d_flipkernel(pool0, w22, name="h2")) pool1 = tf.nn.max_pool(h2, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') #h3 = conv2d_flipkernel(pool1, w33, name="h2") pool00 = tf.nn.max_pool(X[:, :, :, 2:3] * 10, [1, 4, 4, 1], [1, 4, 4, 1], padding='SAME') r0 = tf.concat([pool1, pool00], axis=-1) h = tf.nn.relu(conv2d_flipkernel(r0, w0, name="h") + bias) r = tf.nn.relu(conv2d_flipkernel(h, w1, name="r")) r1 = tf.nn.relu(conv2d_flipkernel(r, w1, name="r1")) r2 = tf.nn.relu(conv2d_flipkernel(r1, w2, name="r2")) r3 = tf.nn.relu(conv2d_flipkernel(r2, w2, name="r3")) r4 = tf.nn.relu(conv2d_flipkernel(r3, w3, name="r4")) r5 = tf.nn.relu(conv2d_flipkernel(r4, w3, name="r5")) r6 = tf.nn.relu(conv2d_flipkernel(r5, w4, name="r6")) r7 = tf.nn.relu(conv2d_flipkernel(r6, w4, name="r7")) r8 = tf.nn.relu(conv2d_flipkernel(r7, w5, name="r6")) r9 = tf.nn.relu(conv2d_flipkernel(r8, w5, name="r7")) q = conv2d_flipkernel(r9, w, name="q") bs = tf.shape(q)[0] rprn = tf.reshape( tf.tile(tf.reshape(tf.range(bs), [-1, 1]), [1, state_batch_size]), [-1]) ins1 = tf.cast(tf.reshape(S1, [-1]), tf.int32) ins2 = tf.cast(tf.reshape(S2, [-1]), tf.int32) idx_in = tf.transpose(tf.stack([ins1, ins2, rprn]), [1, 0]) q_out = tf.gather_nd(tf.transpose(q, [1, 2, 0, 3]), idx_in, name="q_out") w20 = tf.Variable(tf.truncated_normal( [5, 5, 13, M], dtype=tf.float32, stddev=0.001)) kernel20 = tf.nn.relu(tf.nn.conv2d(r0, w20, [1, 1, 1, 1], padding='SAME')) bias20 = tf.Variable(tf.constant(0.0, shape=[M], dtype=tf.float32)) conv20 = tf.nn.relu(tf.nn.bias_add(kernel20, bias20)) pool20 = tf.nn.max_pool(conv20, [1, 3, 3, 1], [1, 2, 2, 1], padding='SAME') w21 = tf.Variable(tf.truncated_normal( [3, 3, M, M], dtype=tf.float32, stddev=0.001)) k211 = tf.nn.relu(conv2d_flipkernel(pool20, w21, name="k211")) #k212 = tf.nn.relu(conv2d_flipkernel(k211, w21, name="k212")) k213 = tf.nn.relu(conv2d_flipkernel(k211, w21, name="k213") + pool20) pool21 = tf.nn.max_pool(k213, [1, 3, 3, 1], [1, 2, 2, 1], padding='SAME') w22 = tf.Variable(tf.truncated_normal( [3, 3, M, M], dtype=tf.float32, stddev=0.001)) k221 = tf.nn.relu(conv2d_flipkernel(pool21, w22, name="k221")) #k222 = tf.nn.relu(conv2d_flipkernel(k221, w22, name="k222")) k223 = tf.nn.relu(conv2d_flipkernel(k221, w22, name="k222") + pool21) pool22 = tf.nn.max_pool(k223, [1, 3, 3, 1], [1, 1, 1, 1], padding='SAME') w23 = tf.Variable(tf.truncated_normal( [3, 3, M, M], dtype=tf.float32, stddev=0.01)) k231 = tf.nn.relu(conv2d_flipkernel(pool22, w23, name="k231")) k232 = tf.nn.relu(conv2d_flipkernel(k231, w23, name="k232") + pool22) pool23 = tf.nn.max_pool(k232, [1, 3, 3, 1], [1, 1, 1, 1], padding='SAME') a, b, c, d = np.shape(pool23) reshape = tf.reshape(pool23, [config.batchsize, b * c * d]) reshape_drop = tf.nn.dropout(reshape, keep_drop) dim = reshape.get_shape()[1].value w24 = tf.Variable(tf.truncated_normal([dim, 192], stddev=0.001)) bias24 = tf.Variable(tf.constant(0.0, shape=[192], dtype=tf.float32)) local24 = tf.nn.relu(tf.matmul(reshape_drop, w24) + bias24) local24_drop = tf.nn.dropout(local24, keep_drop) w25 = tf.Variable(tf.truncated_normal([192, ch_q], stddev=0.001)) bias25 = tf.Variable(tf.constant(0.0, shape=[ch_q], dtype=tf.float32)) local25 = tf.nn.relu(tf.matmul(local24_drop, w25) + bias25) local = tf.tile(local25, [1, state_batch_size]) local = tf.reshape(local, [config.batchsize * state_batch_size, ch_q]) local_a = tf.tile(local25, [1, 32 * 32]) local_a = tf.reshape(local_a, [bs, 32, 32, ch_q]) wo = tf.tile(tf.reshape(w_o, [1, 1, ch_q * 1, 8]), [bs, 32, 1, 1]) Q = tf.nn.relu(tf.matmul(tf.concat([q, local_a], axis=3), wo)) v = tf.reduce_max(Q, axis=3, keep_dims=True, name="v") * 255 V = tf.reduce_max(q, axis=3, keep_dims=True, name="v") * 255 logits = tf.nn.relu(tf.matmul(q_out, w_o)) output = tf.nn.softmax(logits, name="output") l2_loss = tf.nn.l2_loss(w0) + tf.nn.l2_loss(w1) + tf.nn.l2_loss(w2) + tf.nn.l2_loss(w3) + tf.nn.l2_loss(w4) + tf.nn.l2_loss(w5) + tf.nn.l2_loss( return logits, output, l2_loss, v, V def DCNN(X, S1, S2, config, keep_drop, length): keep_drop = 0.5 k = config.k # Number of value iterations performed ch_i = config.ch_i # Channels in input layer ch_h = config.ch_h # Channels in initial hidden layer ch_q = config.ch_q # Channels in q layer (~actions) state_batch_size = length # k+1 state inputs for each channel w11 = tf.Variable(np.random.randn(5, 5, 2, 6) * 0.01, dtype=tf.float32) w22 = tf.Variable(np.random.randn(4, 4, 6, 12) * 0.01, dtype=tf.float32) bias = tf.Variable(np.random.randn(1, 1, 1, ch_h) * 0.01, dtype=tf.float32) # weights from inputs to q layer (~reward in Bellman equation) w0 = tf.Variable(np.random.randn(5, 5, 13, ch_h) * 0.01, dtype=tf.float32) w1 = tf.Variable(np.random.randn(3, 3, ch_h, 100) * 0.01, dtype=tf.float32) w2 = tf.Variable(np.random.randn(3, 3, 100, 100) * 0.01, dtype=tf.float32) w3 = tf.Variable(np.random.randn(3, 3, 100, 100) * 0.01, dtype=tf.float32) w4 = tf.Variable(np.random.randn(3, 3, 100, 50) * 0.01, dtype=tf.float32) w5 = tf.Variable(np.random.randn(3, 3, 50, 50) * 0.01, dtype=tf.float32) w6 = tf.Variable(np.random.randn(3, 3, 50, 50) * 0.01, dtype=tf.float32) w = tf.Variable(np.random.randn(3, 3, 50, ch_q) * 0.01, dtype=tf.float32) w_o = tf.Variable(np.random.randn(ch_q, 8) * 0.01, dtype=tf.float32) # initial conv layer over image+reward prior h1 = tf.nn.relu(conv2d_flipkernel(X[:, :, :, 0:2], w11, name="h1")) pool0 = tf.nn.max_pool(h1, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') h2 = tf.nn.relu(conv2d_flipkernel(pool0, w22, name="h2")) pool1 = tf.nn.max_pool(h2, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') pool00 = tf.nn.max_pool(X[:, :, :, 2:3], [1, 4, 4, 1], [ 1, 4, 4, 1], padding='SAME') r0 = tf.concat([pool1, pool00], axis=-1) h = tf.nn.relu(conv2d_flipkernel(r0, w0, name="h0") + bias) r = tf.nn.relu(conv2d_flipkernel(h, w1, name="r")) r1 = tf.nn.relu(conv2d_flipkernel(r, w2, name="r1")) r2 = tf.nn.relu(conv2d_flipkernel(r1, w3, name="r2")) r3 = tf.nn.relu(conv2d_flipkernel(r2, w4, name="r3")) r4 = tf.nn.relu(conv2d_flipkernel(r3, w5, name="r4")) r5 = tf.nn.relu(conv2d_flipkernel(r4, w6, name="r5")) #r6 = tf.nn.relu(conv2d_flipkernel(r5, w7, name="r6")) #r7 = tf.nn.relu(conv2d_flipkernel(r6, w8, name="r7")) q = tf.nn.relu(conv2d_flipkernel(r5, w, name="q")) q = tf.transpose(q, perm=[0, 3, 1, 2]) bs = tf.shape(q)[0] rprn = tf.reshape( tf.tile(tf.reshape(tf.range(bs), [-1, 1]), [1, state_batch_size]), [-1]) ins1 = tf.cast(tf.reshape(S1, [-1]), tf.int32) ins2 = tf.cast(tf.reshape(S2, [-1]), tf.int32) idx_in = tf.transpose(tf.stack([ins1, ins2, rprn]), [1, 0]) q_out = tf.gather_nd(tf.transpose(q, [2, 3, 0, 1]), idx_in, name="q_out") logits = tf.matmul(q_out, w_o) output = tf.nn.softmax(logits, name="output") return logits, output
49.577236
148
0.613726
094e4b7e0a3406fe3c96e42e237dfb23512df2aa
7,084
py
Python
neutron/plugins/ml2/drivers/mech_sriov/mech_driver/mech_driver.py
kklimonda/neutron
ccdddad358a4bf802d59b3fbbfe88a1e9881c96c
[ "Apache-2.0" ]
null
null
null
neutron/plugins/ml2/drivers/mech_sriov/mech_driver/mech_driver.py
kklimonda/neutron
ccdddad358a4bf802d59b3fbbfe88a1e9881c96c
[ "Apache-2.0" ]
null
null
null
neutron/plugins/ml2/drivers/mech_sriov/mech_driver/mech_driver.py
kklimonda/neutron
ccdddad358a4bf802d59b3fbbfe88a1e9881c96c
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Mellanox Technologies, Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from neutron_lib.api.definitions import portbindings from neutron_lib import constants from neutron_lib.plugins.ml2 import api from oslo_log import log from neutron.plugins.common import constants as p_const from neutron.plugins.ml2.drivers import mech_agent from neutron.plugins.ml2.drivers.mech_sriov.mech_driver \ import exceptions as exc from neutron.services.qos.drivers.sriov import driver as sriov_qos_driver LOG = log.getLogger(__name__) FLAT_VLAN = 0 class SriovNicSwitchMechanismDriver(mech_agent.SimpleAgentMechanismDriverBase): """Mechanism Driver for SR-IOV capable NIC based switching. The SriovNicSwitchMechanismDriver integrates the ml2 plugin with the sriovNicSwitch L2 agent depending on configuration option. Port binding with this driver may require the sriovNicSwitch agent to be running on the port's host, and that agent to have connectivity to at least one segment of the port's network. L2 agent is not essential for port binding; port binding is handled by VIF Driver via libvirt domain XML. L2 Agent presents in order to manage port update events. """ def __init__(self, agent_type=constants.AGENT_TYPE_NIC_SWITCH, vif_details={portbindings.CAP_PORT_FILTER: False}, supported_vnic_types=[portbindings.VNIC_DIRECT, portbindings.VNIC_MACVTAP, portbindings.VNIC_DIRECT_PHYSICAL]): """Initialize base class for SriovNicSwitch L2 agent type. :param agent_type: Constant identifying agent type in agents_db :param vif_details: Dictionary with details for VIF driver when bound :param supported_vnic_types: The binding:vnic_type values we can bind """ self.agent_type = agent_type self.supported_vnic_types = supported_vnic_types # NOTE(ndipanov): PF passthrough requires a different vif type self.vnic_type_for_vif_type = ( {vtype: portbindings.VIF_TYPE_HOSTDEV_PHY if vtype == portbindings.VNIC_DIRECT_PHYSICAL else portbindings.VIF_TYPE_HW_VEB for vtype in self.supported_vnic_types}) self.vif_details = vif_details sriov_qos_driver.register() def get_allowed_network_types(self, agent): return (p_const.TYPE_FLAT, p_const.TYPE_VLAN) def get_mappings(self, agent): return agent['configurations'].get('device_mappings', {}) def bind_port(self, context): LOG.debug("Attempting to bind port %(port)s on " "network %(network)s", {'port': context.current['id'], 'network': context.network.current['id']}) vnic_type = context.current.get(portbindings.VNIC_TYPE, portbindings.VNIC_NORMAL) if vnic_type not in self.supported_vnic_types: LOG.debug("Refusing to bind due to unsupported vnic_type: %s", vnic_type) return if vnic_type == portbindings.VNIC_DIRECT_PHYSICAL: # Physical functions don't support things like QoS properties, # spoof checking, etc. so we might as well side-step the agent # for now. The agent also doesn't currently recognize non-VF # PCI devices so we won't get port status change updates # either. This should be changed in the future so physical # functions can use device mapping checks and the plugin can # get port status updates. for segment in context.segments_to_bind: if self.try_to_bind_segment_for_agent(context, segment, agent=None): break return for agent in context.host_agents(self.agent_type): LOG.debug("Checking agent: %s", agent) if agent['alive']: for segment in context.segments_to_bind: if self.try_to_bind_segment_for_agent(context, segment, agent): return else: LOG.warning("Attempting to bind with dead agent: %s", agent) def try_to_bind_segment_for_agent(self, context, segment, agent): vnic_type = context.current.get(portbindings.VNIC_TYPE, portbindings.VNIC_DIRECT) vif_type = self.vnic_type_for_vif_type.get( vnic_type, portbindings.VIF_TYPE_HW_VEB) if not self.check_segment_for_agent(segment, agent): return False port_status = (constants.PORT_STATUS_ACTIVE if agent is None else constants.PORT_STATUS_DOWN) context.set_binding(segment[api.ID], vif_type, self._get_vif_details(segment), port_status) LOG.debug("Bound using segment: %s", segment) return True def check_segment_for_agent(self, segment, agent=None): """Check if segment can be bound. :param segment: segment dictionary describing segment to bind :param agent: agents_db entry describing agent to bind or None :returns: True if segment can be bound for agent """ network_type = segment[api.NETWORK_TYPE] if network_type in self.get_allowed_network_types(agent): if agent: mappings = self.get_mappings(agent) LOG.debug("Checking segment: %(segment)s " "for mappings: %(mappings)s ", {'segment': segment, 'mappings': mappings}) return segment[api.PHYSICAL_NETWORK] in mappings return True return False def check_vlan_transparency(self, context): """SR-IOV driver vlan transparency support.""" return True def _get_vif_details(self, segment): network_type = segment[api.NETWORK_TYPE] if network_type == p_const.TYPE_FLAT: vlan_id = FLAT_VLAN elif network_type == p_const.TYPE_VLAN: vlan_id = segment[api.SEGMENTATION_ID] else: raise exc.SriovUnsupportedNetworkType(net_type=network_type) vif_details = self.vif_details.copy() vif_details[portbindings.VIF_DETAILS_VLAN] = str(vlan_id) return vif_details
44.275
79
0.643139
f60cb9d1817a748eca8fa4b430e8ac5f69448329
1,047
py
Python
pestudio_extractor.py
team-missing-one/malware-predictor
5dbe6a04f57469527818e06dc3c03ff92cd982bb
[ "MIT" ]
null
null
null
pestudio_extractor.py
team-missing-one/malware-predictor
5dbe6a04f57469527818e06dc3c03ff92cd982bb
[ "MIT" ]
10
2021-12-11T14:58:45.000Z
2021-12-16T14:59:14.000Z
pestudio_extractor.py
team-missing-one/malware-predictor
5dbe6a04f57469527818e06dc3c03ff92cd982bb
[ "MIT" ]
null
null
null
import numpy as np import glob import copy import data_processor from scipy import stats def guess_imputation_vector(): ret = [] pathes = [ data_processor.get_train_path("PESTUDIO"), data_processor.get_valid_path("PESTUDIO") ] for i in pathes: for fname in glob.glob(i + '*'): key = fname[:-5].split('/')[-1] # print(key) ret.append(copy.deepcopy(data_processor.PestudioParser(fname).process_report())) ret = np.array(ret) # return np.mean(ret, axis=0) return stats.mode(ret)[0].tolist()[0] def write_imputation_vector(val: list): f = open("util_pestudio/imputation.txt", 'w') for i in val: f.write(str(i) + '\n') f.close() def read_imputation_vector(): ret = [] f = open("util_pestudio/imputation.txt", 'r') txt = f.readlines() for line in txt: ret.append(float(line.rstrip())) return ret if __name__ == "__main__": res = guess_imputation_vector() print(res) write_imputation_vector(res)
22.76087
92
0.620821
560b0af5a907f6052d2fb9aa63be7d7efd66dd4e
702
py
Python
tests/test_precount.py
akiomik/precountify
521aac23bb0a92b0de961c46d9cc2a4d0a99b24e
[ "Apache-2.0" ]
null
null
null
tests/test_precount.py
akiomik/precountify
521aac23bb0a92b0de961c46d9cc2a4d0a99b24e
[ "Apache-2.0" ]
8
2020-03-24T18:09:15.000Z
2020-12-17T02:36:28.000Z
tests/test_precount.py
akiomik/precountify
521aac23bb0a92b0de961c46d9cc2a4d0a99b24e
[ "Apache-2.0" ]
null
null
null
import os from precountify.click import Click from precountify.precount import Precount def test_prepend(): # TODO pass def test_from_click(): filename = os.path.join(os.path.dirname(__file__), 'fixtures/click.wav') click = Click(filename, 44100, 120, False) precount = Precount.from_click(click, 4, 2, 0) expected_shape = ( click.audio.data.shape[0], click.audio.data.shape[1] * Precount.n_beats(4, 2, 0) ) assert precount.audio.data.shape == expected_shape def test_n_beats(): assert Precount.n_beats(4, 2, 0) == 8 assert Precount.n_beats(3, 2, 0) == 6 assert Precount.n_beats(4, 1, 0) == 4 assert Precount.n_beats(4, 2, 1) == 7
25.071429
76
0.663818
b615a82a80cd41e6f0872638a603951f768e41ca
6,962
py
Python
ignite/engine/__init__.py
nzare/ignite
002b595daa8a8345286c5e096c33e278948686a7
[ "BSD-3-Clause" ]
1
2020-08-29T16:49:36.000Z
2020-08-29T16:49:36.000Z
ignite/engine/__init__.py
alxlampe/ignite
b53c6aeef87754b3cd3638c91172b386dc73af12
[ "BSD-3-Clause" ]
5
2020-08-29T16:49:48.000Z
2020-08-29T17:05:54.000Z
ignite/engine/__init__.py
alxlampe/ignite
b53c6aeef87754b3cd3638c91172b386dc73af12
[ "BSD-3-Clause" ]
1
2020-10-15T06:21:01.000Z
2020-10-15T06:21:01.000Z
from typing import Any, Callable, Dict, Optional, Sequence, Tuple, Union import torch import ignite.distributed as idist from ignite.engine.deterministic import DeterministicEngine from ignite.engine.engine import Engine from ignite.engine.events import CallableEventWithFilter, EventEnum, Events, State from ignite.metrics import Metric from ignite.utils import convert_tensor if idist.has_xla_support: import torch_xla.core.xla_model as xm __all__ = [ "State", "create_supervised_trainer", "create_supervised_evaluator", "Engine", "DeterministicEngine", "Events", "EventEnum", "CallableEventWithFilter", ] def _prepare_batch( batch: Sequence[torch.Tensor], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False ): """Prepare batch for training: pass to a device with options. """ x, y = batch return ( convert_tensor(x, device=device, non_blocking=non_blocking), convert_tensor(y, device=device, non_blocking=non_blocking), ) def create_supervised_trainer( model: torch.nn.Module, optimizer: torch.optim.Optimizer, loss_fn: Union[Callable, torch.nn.Module], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, output_transform: Callable = lambda x, y, y_pred, loss: loss.item(), deterministic: bool = False, ) -> Engine: """Factory function for creating a trainer for supervised models. Args: model (`torch.nn.Module`): the model to train. optimizer (`torch.optim.Optimizer`): the optimizer to use. loss_fn (torch.nn loss function): the loss function to use. device (str, optional): device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. Device can be CPU, GPU or TPU. non_blocking (bool, optional): if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch (callable, optional): function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. output_transform (callable, optional): function that receives 'x', 'y', 'y_pred', 'loss' and returns value to be assigned to engine's state.output after each iteration. Default is returning `loss.item()`. deterministic (bool, optional): if True, returns deterministic engine of type :class:`~ignite.engine.deterministic.DeterministicEngine`, otherwise :class:`~ignite.engine.engine.Engine` (default: False). Note: `engine.state.output` for this engine is defined by `output_transform` parameter and is the loss of the processed batch by default. .. warning:: The internal use of `device` has changed. `device` will now *only* be used to move the input data to the correct device. The `model` should be moved by the user before creating an optimizer. For more information see: - `PyTorch Documentation <https://pytorch.org/docs/stable/optim.html#constructing-it>`_ - `PyTorch's Explanation <https://github.com/pytorch/pytorch/issues/7844#issuecomment-503713840>`_ Returns: Engine: a trainer engine with supervised update function. """ device_type = device.type if isinstance(device, torch.device) else device on_tpu = "xla" in device_type if device_type is not None else False if on_tpu and not idist.has_xla_support: raise RuntimeError("In order to run on TPU, please install PyTorch XLA") def _update(engine: Engine, batch: Sequence[torch.Tensor]) -> Union[Any, Tuple[torch.Tensor]]: model.train() optimizer.zero_grad() x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) y_pred = model(x) loss = loss_fn(y_pred, y) loss.backward() if on_tpu: xm.optimizer_step(optimizer, barrier=True) else: optimizer.step() return output_transform(x, y, y_pred, loss) trainer = Engine(_update) if not deterministic else DeterministicEngine(_update) return trainer def create_supervised_evaluator( model: torch.nn.Module, metrics: Optional[Dict[str, Metric]] = None, device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, output_transform: Callable = lambda x, y, y_pred: (y_pred, y), ) -> Engine: """ Factory function for creating an evaluator for supervised models. Args: model (`torch.nn.Module`): the model to train. metrics (dict of str - :class:`~ignite.metrics.Metric`): a map of metric names to Metrics. device (str, optional): device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. non_blocking (bool, optional): if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch (callable, optional): function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. output_transform (callable, optional): function that receives 'x', 'y', 'y_pred' and returns value to be assigned to engine's state.output after each iteration. Default is returning `(y_pred, y,)` which fits output expected by metrics. If you change it you should use `output_transform` in metrics. Note: `engine.state.output` for this engine is defind by `output_transform` parameter and is a tuple of `(batch_pred, batch_y)` by default. .. warning:: The internal use of `device` has changed. `device` will now *only* be used to move the input data to the correct device. The `model` should be moved by the user before creating an optimizer. For more information see: - `PyTorch Documentation <https://pytorch.org/docs/stable/optim.html#constructing-it>`_ - `PyTorch's Explanation <https://github.com/pytorch/pytorch/issues/7844#issuecomment-503713840>`_ Returns: Engine: an evaluator engine with supervised inference function. """ metrics = metrics or {} def _inference(engine: Engine, batch: Sequence[torch.Tensor]) -> Union[Any, Tuple[torch.Tensor]]: model.eval() with torch.no_grad(): x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) y_pred = model(x) return output_transform(x, y, y_pred) evaluator = Engine(_inference) for name, metric in metrics.items(): metric.attach(evaluator, name) return evaluator
40.242775
120
0.683424
b1299386bbce2a6b69206a6576a63e6cff3a39dc
4,385
py
Python
aalh_iit_celebrations_001/populate-format-extent-columns.py
johndewees/iitmigration
4dadfbecda719d6e7d60af076a231aedec3c862f
[ "Unlicense" ]
null
null
null
aalh_iit_celebrations_001/populate-format-extent-columns.py
johndewees/iitmigration
4dadfbecda719d6e7d60af076a231aedec3c862f
[ "Unlicense" ]
null
null
null
aalh_iit_celebrations_001/populate-format-extent-columns.py
johndewees/iitmigration
4dadfbecda719d6e7d60af076a231aedec3c862f
[ "Unlicense" ]
null
null
null
from openpyxl import load_workbook filename = 'aalh_iit_celebrations_001.xlsx' wb = load_workbook(filename) ws = wb['Metadata Template'] minimumcol = 47 maximumcol = 47 minimumrow = 7 maximumrow = 206 iterationrow = 7 targetcol = 47 formatcol = 33 extentcol = 34 for row in ws.iter_rows(min_row=minimumrow, min_col=minimumcol, max_row=maximumrow, max_col=maximumcol): for cell in row: print(iterationrow) formatvar = ws.cell(row=iterationrow, column=targetcol).value print(formatvar) if formatvar == None: print('FIELD = NONE') elif formatvar.find('Negative') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Negatives' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('negative') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Negatives' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('Slide') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Slides' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('slide') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Slides' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('Post') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Postcard' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('post') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Postcard' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('Draw') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Drawings' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('draw') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Drawings' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('Black') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Black and white photograph' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('black') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Black and white photograph' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('b&w') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Black and white photograph' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('B&W') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Black and white photograph' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('Color') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Color photograph' print(ws.cell(row=iterationrow, column=formatcol).value) elif formatvar.find('color') != -1: ws.cell(row=iterationrow, column=formatcol).value = 'Picture; Color photograph' print(ws.cell(row=iterationrow, column=formatcol).value) else : ws.cell(row=iterationrow, column=formatcol).value = 'Picture' print(ws.cell(row=iterationrow, column=formatcol).value) for cell in row: extentvar = ws.cell(row=iterationrow, column=targetcol).value if extentvar == None: print('FIELD = NONE') elif extentvar != None: extentvar1 = extentvar.split(';') for item in extentvar1: if item.find('Ex') != -1: extentvar2 = item extentvar3 = extentvar2.replace('Extent: ','') extentvar4 = extentvar3.strip() ws.cell(row=iterationrow, column=extentcol).value = extentvar4 print(extentvar4) else : print('EXTENT = CONFUSING') iterationrow = iterationrow + 1 wb.save('aalh_iit_celebrations_001.xlsx')
51.588235
105
0.619384
5b068ced582d0aac2ed2517fce300a21bc904140
93,430
py
Python
qa/rpc-tests/p2p-segwit.py
litecoineco/litecoineco
a0b3c09215ef798abdd0738571a3a36dbfbb6d2d
[ "MIT" ]
1
2021-03-12T16:25:16.000Z
2021-03-12T16:25:16.000Z
qa/rpc-tests/p2p-segwit.py
litecoineco/litecoineco
a0b3c09215ef798abdd0738571a3a36dbfbb6d2d
[ "MIT" ]
null
null
null
qa/rpc-tests/p2p-segwit.py
litecoineco/litecoineco
a0b3c09215ef798abdd0738571a3a36dbfbb6d2d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.script import * from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment, WITNESS_COMMITMENT_HEADER from test_framework.key import CECKey, CPubKey import time import random from binascii import hexlify # The versionbit bit used to signal activation of SegWit VB_WITNESS_BIT = 1 VB_PERIOD = 144 VB_ACTIVATION_THRESHOLD = 108 VB_TOP_BITS = 0x20000000 MAX_SIGOP_COST = 80000 ''' SegWit p2p test. ''' # Calculate the virtual size of a witness block: # (base + witness/4) def get_virtual_size(witness_block): base_size = len(witness_block.serialize()) total_size = len(witness_block.serialize(with_witness=True)) # the "+3" is so we round up vsize = int((3*base_size + total_size + 3)/4) return vsize # Note: we can reduce code by using SingleNodeConnCB (in master, not 0.12) class TestNode(NodeConnCB): def __init__(self): NodeConnCB.__init__(self) self.connection = None self.ping_counter = 1 self.last_pong = msg_pong(0) self.sleep_time = 0.05 self.getdataset = set() self.last_reject = None def add_connection(self, conn): self.connection = conn # Wrapper for the NodeConn's send_message function def send_message(self, message): self.connection.send_message(message) def on_inv(self, conn, message): self.last_inv = message def on_block(self, conn, message): self.last_block = message.block self.last_block.calc_sha256() def on_getdata(self, conn, message): for inv in message.inv: self.getdataset.add(inv.hash) self.last_getdata = message def on_getheaders(self, conn, message): self.last_getheaders = message def on_pong(self, conn, message): self.last_pong = message def on_reject(self, conn, message): self.last_reject = message #print (message) # Syncing helpers def sync(self, test_function, timeout=60): while timeout > 0: with mininode_lock: if test_function(): return time.sleep(self.sleep_time) timeout -= self.sleep_time raise AssertionError("Sync failed to complete") def sync_with_ping(self, timeout=60): self.send_message(msg_ping(nonce=self.ping_counter)) test_function = lambda: self.last_pong.nonce == self.ping_counter self.sync(test_function, timeout) self.ping_counter += 1 return def wait_for_block(self, blockhash, timeout=60): test_function = lambda: self.last_block != None and self.last_block.sha256 == blockhash self.sync(test_function, timeout) return def wait_for_getdata(self, timeout=60): test_function = lambda: self.last_getdata != None self.sync(test_function, timeout) def wait_for_getheaders(self, timeout=60): test_function = lambda: self.last_getheaders != None self.sync(test_function, timeout) def wait_for_inv(self, expected_inv, timeout=60): test_function = lambda: self.last_inv != expected_inv self.sync(test_function, timeout) def announce_tx_and_wait_for_getdata(self, tx, timeout=60): with mininode_lock: self.last_getdata = None self.send_message(msg_inv(inv=[CInv(1, tx.sha256)])) self.wait_for_getdata(timeout) return def announce_block_and_wait_for_getdata(self, block, use_header, timeout=60): with mininode_lock: self.last_getdata = None self.last_getheaders = None msg = msg_headers() msg.headers = [ CBlockHeader(block) ] if use_header: self.send_message(msg) else: self.send_message(msg_inv(inv=[CInv(2, block.sha256)])) self.wait_for_getheaders() self.send_message(msg) self.wait_for_getdata() return def announce_block(self, block, use_header): with mininode_lock: self.last_getdata = None if use_header: msg = msg_headers() msg.headers = [ CBlockHeader(block) ] self.send_message(msg) else: self.send_message(msg_inv(inv=[CInv(2, block.sha256)])) def request_block(self, blockhash, inv_type, timeout=60): with mininode_lock: self.last_block = None self.send_message(msg_getdata(inv=[CInv(inv_type, blockhash)])) self.wait_for_block(blockhash, timeout) return self.last_block def test_transaction_acceptance(self, tx, with_witness, accepted, reason=None): tx_message = msg_tx(tx) if with_witness: tx_message = msg_witness_tx(tx) self.send_message(tx_message) self.sync_with_ping() assert_equal(tx.hash in self.connection.rpc.getrawmempool(), accepted) if (reason != None and not accepted): # Check the rejection reason as well. with mininode_lock: assert_equal(self.last_reject.reason, reason) # Test whether a witness block had the correct effect on the tip def test_witness_block(self, block, accepted, with_witness=True): if with_witness: self.send_message(msg_witness_block(block)) else: self.send_message(msg_block(block)) self.sync_with_ping() assert_equal(self.connection.rpc.getbestblockhash() == block.hash, accepted) # Used to keep track of anyone-can-spend outputs that we can use in the tests class UTXO(object): def __init__(self, sha256, n, nValue): self.sha256 = sha256 self.n = n self.nValue = nValue # Helper for getting the script associated with a P2PKH def GetP2PKHScript(pubkeyhash): return CScript([CScriptOp(OP_DUP), CScriptOp(OP_HASH160), pubkeyhash, CScriptOp(OP_EQUALVERIFY), CScriptOp(OP_CHECKSIG)]) # Add signature for a P2PK witness program. def sign_P2PK_witness_input(script, txTo, inIdx, hashtype, value, key): tx_hash = SegwitVersion1SignatureHash(script, txTo, inIdx, hashtype, value) signature = key.sign(tx_hash) + chr(hashtype).encode('latin-1') txTo.wit.vtxinwit[inIdx].scriptWitness.stack = [signature, script] txTo.rehash() class SegWitTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 3 def setup_network(self): self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-logtimemicros=1", "-whitelist=127.0.0.1"])) # Start a node for testing IsStandard rules. self.nodes.append(start_node(1, self.options.tmpdir, ["-debug", "-logtimemicros=1", "-whitelist=127.0.0.1", "-acceptnonstdtxn=0"])) connect_nodes(self.nodes[0], 1) # Disable segwit's bip9 parameter to simulate upgrading after activation. self.nodes.append(start_node(2, self.options.tmpdir, ["-debug", "-whitelist=127.0.0.1", "-bip9params=segwit:0:0"])) connect_nodes(self.nodes[0], 2) ''' Helpers ''' # Build a block on top of node0's tip. def build_next_block(self, nVersion=VB_TOP_BITS): tip = self.nodes[0].getbestblockhash() height = self.nodes[0].getblockcount() + 1 block_time = self.nodes[0].getblockheader(tip)["mediantime"] + 1 block = create_block(int(tip, 16), create_coinbase(height), block_time) block.nVersion = nVersion block.rehash() return block # Adds list of transactions to block, adds witness commitment, then solves. def update_witness_block_with_transactions(self, block, tx_list, nonce=0): block.vtx.extend(tx_list) add_witness_commitment(block, nonce) block.solve() return ''' Individual tests ''' def test_witness_services(self): print("\tVerifying NODE_WITNESS service bit") assert((self.test_node.connection.nServices & NODE_WITNESS) != 0) # See if sending a regular transaction works, and create a utxo # to use in later tests. def test_non_witness_transaction(self): # Mine a block with an anyone-can-spend coinbase, # let it mature, then try to spend it. print("\tTesting non-witness transaction") block = self.build_next_block(nVersion=1) block.solve() self.test_node.send_message(msg_block(block)) self.test_node.sync_with_ping() # make sure the block was processed txid = block.vtx[0].sha256 self.nodes[0].generate(99) # let the block mature # Create a transaction that spends the coinbase tx = CTransaction() tx.vin.append(CTxIn(COutPoint(txid, 0), b"")) tx.vout.append(CTxOut(49*100000000, CScript([OP_TRUE]))) tx.calc_sha256() # Check that serializing it with or without witness is the same # This is a sanity check of our testing framework. assert_equal(msg_tx(tx).serialize(), msg_witness_tx(tx).serialize()) self.test_node.send_message(msg_witness_tx(tx)) self.test_node.sync_with_ping() # make sure the tx was processed assert(tx.hash in self.nodes[0].getrawmempool()) # Save this transaction for later self.utxo.append(UTXO(tx.sha256, 0, 49*100000000)) self.nodes[0].generate(1) # Verify that blocks with witnesses are rejected before activation. def test_unnecessary_witness_before_segwit_activation(self): print("\tTesting behavior of unnecessary witnesses") # For now, rely on earlier tests to have created at least one utxo for # us to use assert(len(self.utxo) > 0) assert(get_bip9_status(self.nodes[0], 'segwit')['status'] != 'active') tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)])] # Verify the hash with witness differs from the txid # (otherwise our testing framework must be broken!) tx.rehash() assert(tx.sha256 != tx.calc_sha256(with_witness=True)) # Construct a segwit-signaling block that includes the transaction. block = self.build_next_block(nVersion=(VB_TOP_BITS|(1 << VB_WITNESS_BIT))) self.update_witness_block_with_transactions(block, [tx]) # Sending witness data before activation is not allowed (anti-spam # rule). self.test_node.test_witness_block(block, accepted=False) # TODO: fix synchronization so we can test reject reason # Right now, bitcoind delays sending reject messages for blocks # until the future, making synchronization here difficult. #assert_equal(self.test_node.last_reject.reason, "unexpected-witness") # But it should not be permanently marked bad... # Resend without witness information. self.test_node.send_message(msg_block(block)) self.test_node.sync_with_ping() assert_equal(self.nodes[0].getbestblockhash(), block.hash) sync_blocks(self.nodes) # Create a p2sh output -- this is so we can pass the standardness # rules (an anyone-can-spend OP_TRUE would be rejected, if not wrapped # in P2SH). p2sh_program = CScript([OP_TRUE]) p2sh_pubkey = hash160(p2sh_program) scriptPubKey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) # Now check that unnecessary witnesses can't be used to blind a node # to a transaction, eg by violating standardness checks. tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-100000, scriptPubKey)) tx2.rehash() self.test_node.test_transaction_acceptance(tx2, False, True) self.nodes[0].generate(1) sync_blocks(self.nodes) # We'll add an unnecessary witness to this transaction that would cause # it to be non-standard, to test that violating policy with a witness before # segwit activation doesn't blind a node to a transaction. Transactions # rejected for having a witness before segwit activation shouldn't be added # to the rejection cache. tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), CScript([p2sh_program]))) tx3.vout.append(CTxOut(tx2.vout[0].nValue-100000, scriptPubKey)) tx3.wit.vtxinwit.append(CTxInWitness()) tx3.wit.vtxinwit[0].scriptWitness.stack = [b'a'*400000] tx3.rehash() # Note that this should be rejected for the premature witness reason, # rather than a policy check, since segwit hasn't activated yet. self.std_node.test_transaction_acceptance(tx3, True, False, b'no-witness-yet') # If we send without witness, it should be accepted. self.std_node.test_transaction_acceptance(tx3, False, True) # Now create a new anyone-can-spend utxo for the next test. tx4 = CTransaction() tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), CScript([p2sh_program]))) tx4.vout.append(CTxOut(tx3.vout[0].nValue-100000, CScript([OP_TRUE]))) tx4.rehash() self.test_node.test_transaction_acceptance(tx3, False, True) self.test_node.test_transaction_acceptance(tx4, False, True) self.nodes[0].generate(1) sync_blocks(self.nodes) # Update our utxo list; we spent the first entry. self.utxo.pop(0) self.utxo.append(UTXO(tx4.sha256, 0, tx4.vout[0].nValue)) # Mine enough blocks for segwit's vb state to be 'started'. def advance_to_segwit_started(self): height = self.nodes[0].getblockcount() # Will need to rewrite the tests here if we are past the first period assert(height < VB_PERIOD - 1) # Genesis block is 'defined'. assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'defined') # Advance to end of period, status should now be 'started' self.nodes[0].generate(VB_PERIOD-height-1) assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') # Mine enough blocks to lock in segwit, but don't activate. # TODO: we could verify that lockin only happens at the right threshold of # signalling blocks, rather than just at the right period boundary. def advance_to_segwit_lockin(self): height = self.nodes[0].getblockcount() assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') # Advance to end of period, and verify lock-in happens at the end self.nodes[0].generate(VB_PERIOD-1) height = self.nodes[0].getblockcount() assert((height % VB_PERIOD) == VB_PERIOD - 2) assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started') self.nodes[0].generate(1) assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') # Mine enough blocks to activate segwit. # TODO: we could verify that activation only happens at the right threshold # of signalling blocks, rather than just at the right period boundary. def advance_to_segwit_active(self): assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') height = self.nodes[0].getblockcount() self.nodes[0].generate(VB_PERIOD - (height%VB_PERIOD) - 2) assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in') self.nodes[0].generate(1) assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'active') # This test can only be run after segwit has activated def test_witness_commitments(self): print("\tTesting witness commitments") # First try a correct witness commitment. block = self.build_next_block() add_witness_commitment(block) block.solve() # Test the test -- witness serialization should be different assert(msg_witness_block(block).serialize() != msg_block(block).serialize()) # This empty block should be valid. self.test_node.test_witness_block(block, accepted=True) # Try to tweak the nonce block_2 = self.build_next_block() add_witness_commitment(block_2, nonce=28) block_2.solve() # The commitment should have changed! assert(block_2.vtx[0].vout[-1] != block.vtx[0].vout[-1]) # This should also be valid. self.test_node.test_witness_block(block_2, accepted=True) # Now test commitments with actual transactions assert (len(self.utxo) > 0) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) # Let's construct a witness program witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey)) tx.rehash() # tx2 will spend tx1, and send back to a regular anyone-can-spend address tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program)) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx2.rehash() block_3 = self.build_next_block() self.update_witness_block_with_transactions(block_3, [tx, tx2], nonce=1) # Add an extra OP_RETURN output that matches the witness commitment template, # even though it has extra data after the incorrect commitment. # This block should fail. block_3.vtx[0].vout.append(CTxOut(0, CScript([OP_RETURN, WITNESS_COMMITMENT_HEADER + ser_uint256(2), 10]))) block_3.vtx[0].rehash() block_3.hashMerkleRoot = block_3.calc_merkle_root() block_3.rehash() block_3.solve() self.test_node.test_witness_block(block_3, accepted=False) # Add a different commitment with different nonce, but in the # right location, and with some funds burned(!). # This should succeed (nValue shouldn't affect finding the # witness commitment). add_witness_commitment(block_3, nonce=0) block_3.vtx[0].vout[0].nValue -= 1 block_3.vtx[0].vout[-1].nValue += 1 block_3.vtx[0].rehash() block_3.hashMerkleRoot = block_3.calc_merkle_root() block_3.rehash() assert(len(block_3.vtx[0].vout) == 4) # 3 OP_returns block_3.solve() self.test_node.test_witness_block(block_3, accepted=True) # Finally test that a block with no witness transactions can # omit the commitment. block_4 = self.build_next_block() tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program)) tx3.rehash() block_4.vtx.append(tx3) block_4.hashMerkleRoot = block_4.calc_merkle_root() block_4.solve() self.test_node.test_witness_block(block_4, with_witness=False, accepted=True) # Update available utxo's for use in later test. self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) def test_block_malleability(self): print("\tTesting witness block malleability") # Make sure that a block that has too big a virtual size # because of a too-large coinbase witness is not permanently # marked bad. block = self.build_next_block() add_witness_commitment(block) block.solve() block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.append(b'a'*5000000) assert(get_virtual_size(block) > MAX_BLOCK_BASE_SIZE) # We can't send over the p2p network, because this is too big to relay # TODO: repeat this test with a block that can be relayed self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) assert(self.nodes[0].getbestblockhash() != block.hash) block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.pop() assert(get_virtual_size(block) < MAX_BLOCK_BASE_SIZE) self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) assert(self.nodes[0].getbestblockhash() == block.hash) # Now make sure that malleating the witness nonce doesn't # result in a block permanently marked bad. block = self.build_next_block() add_witness_commitment(block) block.solve() # Change the nonce -- should not cause the block to be permanently # failed block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(1) ] self.test_node.test_witness_block(block, accepted=False) # Changing the witness nonce doesn't change the block hash block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(0) ] self.test_node.test_witness_block(block, accepted=True) def test_witness_block_size(self): print("\tTesting witness block size limit") # TODO: Test that non-witness carrying blocks can't exceed 1MB # Skipping this test for now; this is covered in p2p-fullblocktest.py # Test that witness-bearing blocks are limited at ceil(base + wit/4) <= 1MB. block = self.build_next_block() assert(len(self.utxo) > 0) # Create a P2WSH transaction. # The witness program will be a bunch of OP_2DROP's, followed by OP_TRUE. # This should give us plenty of room to tweak the spending tx's # virtual size. NUM_DROPS = 200 # 201 max ops per script! NUM_OUTPUTS = 50 witness_program = CScript([OP_2DROP]*NUM_DROPS + [OP_TRUE]) witness_hash = uint256_from_str(sha256(witness_program)) scriptPubKey = CScript([OP_0, ser_uint256(witness_hash)]) prevout = COutPoint(self.utxo[0].sha256, self.utxo[0].n) value = self.utxo[0].nValue parent_tx = CTransaction() parent_tx.vin.append(CTxIn(prevout, b"")) child_value = int(value/NUM_OUTPUTS) for i in range(NUM_OUTPUTS): parent_tx.vout.append(CTxOut(child_value, scriptPubKey)) parent_tx.vout[0].nValue -= 50000 assert(parent_tx.vout[0].nValue > 0) parent_tx.rehash() child_tx = CTransaction() for i in range(NUM_OUTPUTS): child_tx.vin.append(CTxIn(COutPoint(parent_tx.sha256, i), b"")) child_tx.vout = [CTxOut(value - 100000, CScript([OP_TRUE]))] for i in range(NUM_OUTPUTS): child_tx.wit.vtxinwit.append(CTxInWitness()) child_tx.wit.vtxinwit[-1].scriptWitness.stack = [b'a'*195]*(2*NUM_DROPS) + [witness_program] child_tx.rehash() self.update_witness_block_with_transactions(block, [parent_tx, child_tx]) vsize = get_virtual_size(block) additional_bytes = (MAX_BLOCK_BASE_SIZE - vsize)*4 i = 0 while additional_bytes > 0: # Add some more bytes to each input until we hit MAX_BLOCK_BASE_SIZE+1 extra_bytes = min(additional_bytes+1, 55) block.vtx[-1].wit.vtxinwit[int(i/(2*NUM_DROPS))].scriptWitness.stack[i%(2*NUM_DROPS)] = b'a'*(195+extra_bytes) additional_bytes -= extra_bytes i += 1 block.vtx[0].vout.pop() # Remove old commitment add_witness_commitment(block) block.solve() vsize = get_virtual_size(block) assert_equal(vsize, MAX_BLOCK_BASE_SIZE + 1) # Make sure that our test case would exceed the old max-network-message # limit assert(len(block.serialize(True)) > 2*1024*1024) self.test_node.test_witness_block(block, accepted=False) # Now resize the second transaction to make the block fit. cur_length = len(block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0]) block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(cur_length-1) block.vtx[0].vout.pop() add_witness_commitment(block) block.solve() assert(get_virtual_size(block) == MAX_BLOCK_BASE_SIZE) self.test_node.test_witness_block(block, accepted=True) # Update available utxo's self.utxo.pop(0) self.utxo.append(UTXO(block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue)) # submitblock will try to add the nonce automatically, so that mining # software doesn't need to worry about doing so itself. def test_submit_block(self): block = self.build_next_block() # Try using a custom nonce and then don't supply it. # This shouldn't possibly work. add_witness_commitment(block, nonce=1) block.vtx[0].wit = CTxWitness() # drop the nonce block.solve() self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) assert(self.nodes[0].getbestblockhash() != block.hash) # Now redo commitment with the standard nonce, but let bitcoind fill it in. add_witness_commitment(block, nonce=0) block.vtx[0].wit = CTxWitness() block.solve() self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) assert_equal(self.nodes[0].getbestblockhash(), block.hash) # This time, add a tx with non-empty witness, but don't supply # the commitment. block_2 = self.build_next_block() add_witness_commitment(block_2) block_2.solve() # Drop commitment and nonce -- submitblock should not fill in. block_2.vtx[0].vout.pop() block_2.vtx[0].wit = CTxWitness() self.nodes[0].submitblock(bytes_to_hex_str(block_2.serialize(True))) # Tip should not advance! assert(self.nodes[0].getbestblockhash() != block_2.hash) # Consensus tests of extra witness data in a transaction. def test_extra_witness_data(self): print("\tTesting extra witness data in tx") assert(len(self.utxo) > 0) block = self.build_next_block() witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) # First try extra witness data on a tx that doesn't require a witness tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-200000, scriptPubKey)) tx.vout.append(CTxOut(1000, CScript([OP_TRUE]))) # non-witness output tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([])] tx.rehash() self.update_witness_block_with_transactions(block, [tx]) # Extra witness data should not be allowed. self.test_node.test_witness_block(block, accepted=False) # Try extra signature data. Ok if we're not spending a witness output. block.vtx[1].wit.vtxinwit = [] block.vtx[1].vin[0].scriptSig = CScript([OP_0]) block.vtx[1].rehash() add_witness_commitment(block) block.solve() self.test_node.test_witness_block(block, accepted=True) # Now try extra witness/signature data on an input that DOES require a # witness tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) # witness output tx2.vin.append(CTxIn(COutPoint(tx.sha256, 1), b"")) # non-witness tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) tx2.wit.vtxinwit.extend([CTxInWitness(), CTxInWitness()]) tx2.wit.vtxinwit[0].scriptWitness.stack = [ CScript([CScriptNum(1)]), CScript([CScriptNum(1)]), witness_program ] tx2.wit.vtxinwit[1].scriptWitness.stack = [ CScript([OP_TRUE]) ] block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) # This has extra witness data, so it should fail. self.test_node.test_witness_block(block, accepted=False) # Now get rid of the extra witness, but add extra scriptSig data tx2.vin[0].scriptSig = CScript([OP_TRUE]) tx2.vin[1].scriptSig = CScript([OP_TRUE]) tx2.wit.vtxinwit[0].scriptWitness.stack.pop(0) tx2.wit.vtxinwit[1].scriptWitness.stack = [] tx2.rehash() add_witness_commitment(block) block.solve() # This has extra signature data for a witness input, so it should fail. self.test_node.test_witness_block(block, accepted=False) # Now get rid of the extra scriptsig on the witness input, and verify # success (even with extra scriptsig data in the non-witness input) tx2.vin[0].scriptSig = b"" tx2.rehash() add_witness_commitment(block) block.solve() self.test_node.test_witness_block(block, accepted=True) # Update utxo for later tests self.utxo.pop(0) self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) def test_max_witness_push_length(self): ''' Should only allow up to 520 byte pushes in witness stack ''' print("\tTesting maximum witness push size") MAX_SCRIPT_ELEMENT_SIZE = 520 assert(len(self.utxo)) block = self.build_next_block() witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-100000, scriptPubKey)) tx.rehash() tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-100000, CScript([OP_TRUE]))) tx2.wit.vtxinwit.append(CTxInWitness()) # First try a 521-byte stack element tx2.wit.vtxinwit[0].scriptWitness.stack = [ b'a'*(MAX_SCRIPT_ELEMENT_SIZE+1), witness_program ] tx2.rehash() self.update_witness_block_with_transactions(block, [tx, tx2]) self.test_node.test_witness_block(block, accepted=False) # Now reduce the length of the stack element tx2.wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(MAX_SCRIPT_ELEMENT_SIZE) add_witness_commitment(block) block.solve() self.test_node.test_witness_block(block, accepted=True) # Update the utxo for later tests self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) def test_max_witness_program_length(self): # Can create witness outputs that are long, but can't be greater than # 10k bytes to successfully spend print("\tTesting maximum witness program length") assert(len(self.utxo)) MAX_PROGRAM_LENGTH = 10000 # This program is 19 max pushes (9937 bytes), then 64 more opcode-bytes. long_witness_program = CScript([b'a'*520]*19 + [OP_DROP]*63 + [OP_TRUE]) assert(len(long_witness_program) == MAX_PROGRAM_LENGTH+1) long_witness_hash = sha256(long_witness_program) long_scriptPubKey = CScript([OP_0, long_witness_hash]) block = self.build_next_block() tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-100000, long_scriptPubKey)) tx.rehash() tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-100000, CScript([OP_TRUE]))) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*44 + [long_witness_program] tx2.rehash() self.update_witness_block_with_transactions(block, [tx, tx2]) self.test_node.test_witness_block(block, accepted=False) # Try again with one less byte in the witness program witness_program = CScript([b'a'*520]*19 + [OP_DROP]*62 + [OP_TRUE]) assert(len(witness_program) == MAX_PROGRAM_LENGTH) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) tx.vout[0] = CTxOut(tx.vout[0].nValue, scriptPubKey) tx.rehash() tx2.vin[0].prevout.hash = tx.sha256 tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*43 + [witness_program] tx2.rehash() block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx, tx2]) self.test_node.test_witness_block(block, accepted=True) self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) def test_witness_input_length(self): ''' Ensure that vin length must match vtxinwit length ''' print("\tTesting witness input length") assert(len(self.utxo)) witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) # Create a transaction that splits our utxo into many outputs tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) nValue = self.utxo[0].nValue for i in range(10): tx.vout.append(CTxOut(int(nValue/10), scriptPubKey)) tx.vout[0].nValue -= 1000 assert(tx.vout[0].nValue >= 0) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) # Try various ways to spend tx that should all break. # This "broken" transaction serializer will not normalize # the length of vtxinwit. class BrokenCTransaction(CTransaction): def serialize_with_witness(self): flags = 0 if not self.wit.is_null(): flags |= 1 r = b"" r += struct.pack("<i", self.nVersion) if flags: dummy = [] r += ser_vector(dummy) r += struct.pack("<B", flags) r += ser_vector(self.vin) r += ser_vector(self.vout) if flags & 1: r += self.wit.serialize() r += struct.pack("<I", self.nLockTime) return r tx2 = BrokenCTransaction() for i in range(10): tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) tx2.vout.append(CTxOut(nValue-3000, CScript([OP_TRUE]))) # First try using a too long vtxinwit for i in range(11): tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[i].scriptWitness.stack = [b'a', witness_program] block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) self.test_node.test_witness_block(block, accepted=False) # Now try using a too short vtxinwit tx2.wit.vtxinwit.pop() tx2.wit.vtxinwit.pop() block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx2]) self.test_node.test_witness_block(block, accepted=False) # Now make one of the intermediate witnesses be incorrect tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [b'a', witness_program] tx2.wit.vtxinwit[5].scriptWitness.stack = [ witness_program ] block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx2]) self.test_node.test_witness_block(block, accepted=False) # Fix the broken witness and the block should be accepted. tx2.wit.vtxinwit[5].scriptWitness.stack = [b'a', witness_program] block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx2]) self.test_node.test_witness_block(block, accepted=True) self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) def test_witness_tx_relay_before_segwit_activation(self): print("\tTesting relay of witness transactions") # Generate a transaction that doesn't require a witness, but send it # with a witness. Should be rejected for premature-witness, but should # not be added to recently rejected list. assert(len(self.utxo)) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-100000, CScript([OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ] tx.rehash() tx_hash = tx.sha256 tx_value = tx.vout[0].nValue # Verify that if a peer doesn't set nServices to include NODE_WITNESS, # the getdata is just for the non-witness portion. self.old_node.announce_tx_and_wait_for_getdata(tx) assert(self.old_node.last_getdata.inv[0].type == 1) # Since we haven't delivered the tx yet, inv'ing the same tx from # a witness transaction ought not result in a getdata. try: self.test_node.announce_tx_and_wait_for_getdata(tx, timeout=2) print("Error: duplicate tx getdata!") assert(False) except AssertionError as e: pass # Delivering this transaction with witness should fail (no matter who # its from) assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(len(self.nodes[1].getrawmempool()), 0) self.old_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) # But eliminating the witness should fix it self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) # Cleanup: mine the first transaction and update utxo self.nodes[0].generate(1) assert_equal(len(self.nodes[0].getrawmempool()), 0) self.utxo.pop(0) self.utxo.append(UTXO(tx_hash, 0, tx_value)) # After segwit activates, verify that mempool: # - rejects transactions with unnecessary/extra witnesses # - accepts transactions with valid witnesses # and that witness transactions are relayed to non-upgraded peers. def test_tx_relay_after_segwit_activation(self): print("\tTesting relay of witness transactions") # Generate a transaction that doesn't require a witness, but send it # with a witness. Should be rejected because we can't use a witness # when spending a non-witness output. assert(len(self.utxo)) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-100000, CScript([OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ] tx.rehash() tx_hash = tx.sha256 # Verify that unnecessary witnesses are rejected. self.test_node.announce_tx_and_wait_for_getdata(tx) assert_equal(len(self.nodes[0].getrawmempool()), 0) self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) # Verify that removing the witness succeeds. self.test_node.announce_tx_and_wait_for_getdata(tx) self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) # Now try to add extra witness data to a valid witness tx. witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx_hash, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-100000, scriptPubKey)) tx2.rehash() tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.wit.vtxinwit.append(CTxInWitness()) # Add too-large for IsStandard witness and check that it does not enter reject filter p2sh_program = CScript([OP_TRUE]) p2sh_pubkey = hash160(p2sh_program) witness_program2 = CScript([b'a'*400000]) tx3.vout.append(CTxOut(tx2.vout[0].nValue-100000, CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]))) tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program2] tx3.rehash() # Node will not be blinded to the transaction self.std_node.announce_tx_and_wait_for_getdata(tx3) self.std_node.test_transaction_acceptance(tx3, True, False, b'tx-size') self.std_node.announce_tx_and_wait_for_getdata(tx3) self.std_node.test_transaction_acceptance(tx3, True, False, b'tx-size') # Remove witness stuffing, instead add extra witness push on stack tx3.vout[0] = CTxOut(tx2.vout[0].nValue-100000, CScript([OP_TRUE])) tx3.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)]), witness_program ] tx3.rehash() self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True) self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False) # Get rid of the extra witness, and verify acceptance. tx3.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] # Also check that old_node gets a tx announcement, even though this is # a witness transaction. self.old_node.wait_for_inv(CInv(1, tx2.sha256)) # wait until tx2 was inv'ed self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True) self.old_node.wait_for_inv(CInv(1, tx3.sha256)) # Test that getrawtransaction returns correct witness information # hash, size, vsize raw_tx = self.nodes[0].getrawtransaction(tx3.hash, 1) assert_equal(int(raw_tx["hash"], 16), tx3.calc_sha256(True)) assert_equal(raw_tx["size"], len(tx3.serialize_with_witness())) vsize = (len(tx3.serialize_with_witness()) + 3*len(tx3.serialize_without_witness()) + 3) / 4 assert_equal(raw_tx["vsize"], vsize) assert_equal(len(raw_tx["vin"][0]["txinwitness"]), 1) assert_equal(raw_tx["vin"][0]["txinwitness"][0], hexlify(witness_program).decode('ascii')) assert(vsize != raw_tx["size"]) # Cleanup: mine the transactions and update utxo for next test self.nodes[0].generate(1) assert_equal(len(self.nodes[0].getrawmempool()), 0) self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) # Test that block requests to NODE_WITNESS peer are with MSG_WITNESS_FLAG # This is true regardless of segwit activation. # Also test that we don't ask for blocks from unupgraded peers def test_block_relay(self, segwit_activated): print("\tTesting block relay") blocktype = 2|MSG_WITNESS_FLAG # test_node has set NODE_WITNESS, so all getdata requests should be for # witness blocks. # Test announcing a block via inv results in a getdata, and that # announcing a version 4 or random VB block with a header results in a getdata block1 = self.build_next_block() block1.solve() self.test_node.announce_block_and_wait_for_getdata(block1, use_header=False) assert(self.test_node.last_getdata.inv[0].type == blocktype) self.test_node.test_witness_block(block1, True) # LitecoinEco: Blocks with nVersion < VB_TOP_BITS are rejected # block2 = self.build_next_block(nVersion=4) # block2.solve() # self.test_node.announce_block_and_wait_for_getdata(block2, use_header=True) # assert(self.test_node.last_getdata.inv[0].type == blocktype) # self.test_node.test_witness_block(block2, True) block3 = self.build_next_block(nVersion=(VB_TOP_BITS | (1<<15))) block3.solve() self.test_node.announce_block_and_wait_for_getdata(block3, use_header=True) assert(self.test_node.last_getdata.inv[0].type == blocktype) self.test_node.test_witness_block(block3, True) # Check that we can getdata for witness blocks or regular blocks, # and the right thing happens. if segwit_activated == False: # Before activation, we should be able to request old blocks with # or without witness, and they should be the same. chain_height = self.nodes[0].getblockcount() # Pick 10 random blocks on main chain, and verify that getdata's # for MSG_BLOCK, MSG_WITNESS_BLOCK, and rpc getblock() are equal. all_heights = list(range(chain_height+1)) random.shuffle(all_heights) all_heights = all_heights[0:10] for height in all_heights: block_hash = self.nodes[0].getblockhash(height) rpc_block = self.nodes[0].getblock(block_hash, False) block_hash = int(block_hash, 16) block = self.test_node.request_block(block_hash, 2) wit_block = self.test_node.request_block(block_hash, 2|MSG_WITNESS_FLAG) assert_equal(block.serialize(True), wit_block.serialize(True)) assert_equal(block.serialize(), hex_str_to_bytes(rpc_block)) else: # After activation, witness blocks and non-witness blocks should # be different. Verify rpc getblock() returns witness blocks, while # getdata respects the requested type. block = self.build_next_block() self.update_witness_block_with_transactions(block, []) # This gives us a witness commitment. assert(len(block.vtx[0].wit.vtxinwit) == 1) assert(len(block.vtx[0].wit.vtxinwit[0].scriptWitness.stack) == 1) self.test_node.test_witness_block(block, accepted=True) # Now try to retrieve it... rpc_block = self.nodes[0].getblock(block.hash, False) non_wit_block = self.test_node.request_block(block.sha256, 2) wit_block = self.test_node.request_block(block.sha256, 2|MSG_WITNESS_FLAG) assert_equal(wit_block.serialize(True), hex_str_to_bytes(rpc_block)) assert_equal(wit_block.serialize(False), non_wit_block.serialize()) assert_equal(wit_block.serialize(True), block.serialize(True)) # Test size, vsize, weight rpc_details = self.nodes[0].getblock(block.hash, True) assert_equal(rpc_details["size"], len(block.serialize(True))) assert_equal(rpc_details["strippedsize"], len(block.serialize(False))) weight = 3*len(block.serialize(False)) + len(block.serialize(True)) assert_equal(rpc_details["weight"], weight) # Upgraded node should not ask for blocks from unupgraded # LitecoinEco: Blocks with nVersion < VB_TOP_BITS are rejected block4 = self.build_next_block(nVersion=(VB_TOP_BITS | (1<<15))) block4.solve() self.old_node.getdataset = set() # Blocks can be requested via direct-fetch (immediately upon processing the announcement) # or via parallel download (with an indeterminate delay from processing the announcement) # so to test that a block is NOT requested, we could guess a time period to sleep for, # and then check. We can avoid the sleep() by taking advantage of transaction getdata's # being processed after block getdata's, and announce a transaction as well, # and then check to see if that particular getdata has been received. self.old_node.announce_block(block4, use_header=False) self.old_node.announce_tx_and_wait_for_getdata(block4.vtx[0]) assert(block4.sha256 not in self.old_node.getdataset) # V0 segwit outputs should be standard after activation, but not before. def test_standardness_v0(self, segwit_activated): print("\tTesting standardness of v0 outputs (%s activation)" % ("after" if segwit_activated else "before")) assert(len(self.utxo)) witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) p2sh_pubkey = hash160(witness_program) p2sh_scriptPubKey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) # First prepare a p2sh output (so that spending it will pass standardness) p2sh_tx = CTransaction() p2sh_tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")] p2sh_tx.vout = [CTxOut(self.utxo[0].nValue-100000, p2sh_scriptPubKey)] p2sh_tx.rehash() # Mine it on test_node to create the confirmed output. self.test_node.test_transaction_acceptance(p2sh_tx, with_witness=True, accepted=True) self.nodes[0].generate(1) sync_blocks(self.nodes) # Now test standardness of v0 P2WSH outputs. # Start by creating a transaction with two outputs. tx = CTransaction() tx.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))] tx.vout = [CTxOut(p2sh_tx.vout[0].nValue-1000000, scriptPubKey)] tx.vout.append(CTxOut(800000, scriptPubKey)) # Might burn this later tx.rehash() self.std_node.test_transaction_acceptance(tx, with_witness=True, accepted=segwit_activated) # Now create something that looks like a P2PKH output. This won't be spendable. scriptPubKey = CScript([OP_0, hash160(witness_hash)]) tx2 = CTransaction() if segwit_activated: # if tx was accepted, then we spend the second output. tx2.vin = [CTxIn(COutPoint(tx.sha256, 1), b"")] tx2.vout = [CTxOut(700000, scriptPubKey)] tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] else: # if tx wasn't accepted, we just re-spend the p2sh output we started with. tx2.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))] tx2.vout = [CTxOut(p2sh_tx.vout[0].nValue-100000, scriptPubKey)] tx2.rehash() self.std_node.test_transaction_acceptance(tx2, with_witness=True, accepted=segwit_activated) # Now update self.utxo for later tests. tx3 = CTransaction() if segwit_activated: # tx and tx2 were both accepted. Don't bother trying to reclaim the # P2PKH output; just send tx's first output back to an anyone-can-spend. sync_mempools([self.nodes[0], self.nodes[1]]) tx3.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")] tx3.vout = [CTxOut(tx.vout[0].nValue-100000, CScript([OP_TRUE]))] tx3.wit.vtxinwit.append(CTxInWitness()) tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx3.rehash() self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True) else: # tx and tx2 didn't go anywhere; just clean up the p2sh_tx output. tx3.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))] tx3.vout = [CTxOut(p2sh_tx.vout[0].nValue-100000, witness_program)] tx3.rehash() self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True) self.nodes[0].generate(1) sync_blocks(self.nodes) self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) assert_equal(len(self.nodes[1].getrawmempool()), 0) # Verify that future segwit upgraded transactions are non-standard, # but valid in blocks. Can run this before and after segwit activation. def test_segwit_versions(self): print("\tTesting standardness/consensus for segwit versions (0-16)") assert(len(self.utxo)) NUM_TESTS = 17 # will test OP_0, OP1, ..., OP_16 if (len(self.utxo) < NUM_TESTS): tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) split_value = (self.utxo[0].nValue - 400000) // NUM_TESTS for i in range(NUM_TESTS): tx.vout.append(CTxOut(split_value, CScript([OP_TRUE]))) tx.rehash() block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) self.utxo.pop(0) for i in range(NUM_TESTS): self.utxo.append(UTXO(tx.sha256, i, split_value)) sync_blocks(self.nodes) temp_utxo = [] tx = CTransaction() count = 0 witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) assert_equal(len(self.nodes[1].getrawmempool()), 0) for version in list(range(OP_1, OP_16+1)) + [OP_0]: count += 1 # First try to spend to a future version segwit scriptPubKey. scriptPubKey = CScript([CScriptOp(version), witness_hash]) tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")] tx.vout = [CTxOut(self.utxo[0].nValue-100000, scriptPubKey)] tx.rehash() self.std_node.test_transaction_acceptance(tx, with_witness=True, accepted=False) self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True) self.utxo.pop(0) temp_utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue)) self.nodes[0].generate(1) # Mine all the transactions sync_blocks(self.nodes) assert(len(self.nodes[0].getrawmempool()) == 0) # Finally, verify that version 0 -> version 1 transactions # are non-standard scriptPubKey = CScript([CScriptOp(OP_1), witness_hash]) tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")] tx2.vout = [CTxOut(tx.vout[0].nValue-100000, scriptPubKey)] tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] tx2.rehash() # Gets accepted to test_node, because standardness of outputs isn't # checked with fRequireStandard self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True) self.std_node.test_transaction_acceptance(tx2, with_witness=True, accepted=False) temp_utxo.pop() # last entry in temp_utxo was the output we just spent temp_utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) # Spend everything in temp_utxo back to an OP_TRUE output. tx3 = CTransaction() total_value = 0 for i in temp_utxo: tx3.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) tx3.wit.vtxinwit.append(CTxInWitness()) total_value += i.nValue tx3.wit.vtxinwit[-1].scriptWitness.stack = [witness_program] tx3.vout.append(CTxOut(total_value - 100000, CScript([OP_TRUE]))) tx3.rehash() # Spending a higher version witness output is not allowed by policy, # even with fRequireStandard=false. self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False) self.test_node.sync_with_ping() with mininode_lock: assert(b"reserved for soft-fork upgrades" in self.test_node.last_reject.reason) # Building a block with the transaction must be valid, however. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2, tx3]) self.test_node.test_witness_block(block, accepted=True) sync_blocks(self.nodes) # Add utxo to our list self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) def test_premature_coinbase_witness_spend(self): print("\tTesting premature coinbase witness spend") block = self.build_next_block() # Change the output of the block to be a witness output. witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) block.vtx[0].vout[0].scriptPubKey = scriptPubKey # This next line will rehash the coinbase and update the merkle # root, and solve. self.update_witness_block_with_transactions(block, []) self.test_node.test_witness_block(block, accepted=True) spend_tx = CTransaction() spend_tx.vin = [CTxIn(COutPoint(block.vtx[0].sha256, 0), b"")] spend_tx.vout = [CTxOut(block.vtx[0].vout[0].nValue, witness_program)] spend_tx.wit.vtxinwit.append(CTxInWitness()) spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ] spend_tx.rehash() # Now test a premature spend. self.nodes[0].generate(98) sync_blocks(self.nodes) block2 = self.build_next_block() self.update_witness_block_with_transactions(block2, [spend_tx]) self.test_node.test_witness_block(block2, accepted=False) # Advancing one more block should allow the spend. self.nodes[0].generate(1) block2 = self.build_next_block() self.update_witness_block_with_transactions(block2, [spend_tx]) self.test_node.test_witness_block(block2, accepted=True) sync_blocks(self.nodes) def test_signature_version_1(self): print("\tTesting segwit signature hash version 1") key = CECKey() key.set_secretbytes(b"9") pubkey = CPubKey(key.get_pubkey()) witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) # First create a witness output for use in the tests. assert(len(self.utxo)) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-100000, scriptPubKey)) tx.rehash() self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True) # Mine this transaction in preparation for following tests. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) sync_blocks(self.nodes) self.utxo.pop(0) # Test each hashtype prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) for sigflag in [ 0, SIGHASH_ANYONECANPAY ]: for hashtype in [SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE]: hashtype |= sigflag block = self.build_next_block() tx = CTransaction() tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) tx.vout.append(CTxOut(prev_utxo.nValue - 100000, scriptPubKey)) tx.wit.vtxinwit.append(CTxInWitness()) # Too-large input value sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue+1, key) self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=False) # Too-small input value sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue-1, key) block.vtx.pop() # remove last tx self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=False) # Now try correct value sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue, key) block.vtx.pop() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) # Test combinations of signature hashes. # Split the utxo into a lot of outputs. # Randomly choose up to 10 to spend, sign with different hashtypes, and # output to a random number of outputs. Repeat NUM_TESTS times. # Ensure that we've tested a situation where we use SIGHASH_SINGLE with # an input index > number of outputs. NUM_TESTS = 500 temp_utxos = [] tx = CTransaction() tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) split_value = prev_utxo.nValue // NUM_TESTS for i in range(NUM_TESTS): tx.vout.append(CTxOut(split_value, scriptPubKey)) tx.wit.vtxinwit.append(CTxInWitness()) sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, prev_utxo.nValue, key) for i in range(NUM_TESTS): temp_utxos.append(UTXO(tx.sha256, i, split_value)) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) block = self.build_next_block() used_sighash_single_out_of_bounds = False for i in range(NUM_TESTS): # Ping regularly to keep the connection alive if (not i % 100): self.test_node.sync_with_ping() # Choose random number of inputs to use. num_inputs = random.randint(1, 10) # Create a slight bias for producing more utxos num_outputs = random.randint(1, 11) random.shuffle(temp_utxos) assert(len(temp_utxos) > num_inputs) tx = CTransaction() total_value = 0 for i in range(num_inputs): tx.vin.append(CTxIn(COutPoint(temp_utxos[i].sha256, temp_utxos[i].n), b"")) tx.wit.vtxinwit.append(CTxInWitness()) total_value += temp_utxos[i].nValue split_value = total_value // num_outputs for i in range(num_outputs): tx.vout.append(CTxOut(split_value, scriptPubKey)) for i in range(num_inputs): # Now try to sign each input, using a random hashtype. anyonecanpay = 0 if random.randint(0, 1): anyonecanpay = SIGHASH_ANYONECANPAY hashtype = random.randint(1, 3) | anyonecanpay sign_P2PK_witness_input(witness_program, tx, i, hashtype, temp_utxos[i].nValue, key) if (hashtype == SIGHASH_SINGLE and i >= num_outputs): used_sighash_single_out_of_bounds = True tx.rehash() for i in range(num_outputs): temp_utxos.append(UTXO(tx.sha256, i, split_value)) temp_utxos = temp_utxos[num_inputs:] block.vtx.append(tx) # Test the block periodically, if we're close to maxblocksize if (get_virtual_size(block) > MAX_BLOCK_BASE_SIZE - 1000): self.update_witness_block_with_transactions(block, []) self.test_node.test_witness_block(block, accepted=True) block = self.build_next_block() if (not used_sighash_single_out_of_bounds): print("WARNING: this test run didn't attempt SIGHASH_SINGLE with out-of-bounds index value") # Test the transactions we've added to the block if (len(block.vtx) > 1): self.update_witness_block_with_transactions(block, []) self.test_node.test_witness_block(block, accepted=True) # Now test witness version 0 P2PKH transactions pubkeyhash = hash160(pubkey) scriptPKH = CScript([OP_0, pubkeyhash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(temp_utxos[0].sha256, temp_utxos[0].n), b"")) tx.vout.append(CTxOut(temp_utxos[0].nValue, scriptPKH)) tx.wit.vtxinwit.append(CTxInWitness()) sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, temp_utxos[0].nValue, key) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) script = GetP2PKHScript(pubkeyhash) sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL # Check that we can't have a scriptSig tx2.vin[0].scriptSig = CScript([signature, pubkey]) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx, tx2]) self.test_node.test_witness_block(block, accepted=False) # Move the signature to the witness. block.vtx.pop() tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey] tx2.vin[0].scriptSig = b"" tx2.rehash() self.update_witness_block_with_transactions(block, [tx2]) self.test_node.test_witness_block(block, accepted=True) temp_utxos.pop(0) # Update self.utxos for later tests. Just spend everything in # temp_utxos to a corresponding entry in self.utxos tx = CTransaction() index = 0 for i in temp_utxos: # Just spend to our usual anyone-can-spend output # Use SIGHASH_SINGLE|SIGHASH_ANYONECANPAY so we can build up # the signatures as we go. tx.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) tx.vout.append(CTxOut(i.nValue, CScript([OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) sign_P2PK_witness_input(witness_program, tx, index, SIGHASH_SINGLE|SIGHASH_ANYONECANPAY, i.nValue, key) index += 1 block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) for i in range(len(tx.vout)): self.utxo.append(UTXO(tx.sha256, i, tx.vout[i].nValue)) # Test P2SH wrapped witness programs. def test_p2sh_witness(self, segwit_activated): print("\tTesting P2SH witness transactions") assert(len(self.utxo)) # Prepare the p2sh-wrapped witness output witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) p2wsh_pubkey = CScript([OP_0, witness_hash]) p2sh_witness_hash = hash160(p2wsh_pubkey) scriptPubKey = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) scriptSig = CScript([p2wsh_pubkey]) # a push of the redeem script # Fund the P2SH output tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue-100000, scriptPubKey)) tx.rehash() # Verify mempool acceptance and block validity self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True, with_witness=segwit_activated) sync_blocks(self.nodes) # Now test attempts to spend the output. spend_tx = CTransaction() spend_tx.vin.append(CTxIn(COutPoint(tx.sha256, 0), scriptSig)) spend_tx.vout.append(CTxOut(tx.vout[0].nValue-100000, CScript([OP_TRUE]))) spend_tx.rehash() # This transaction should not be accepted into the mempool pre- or # post-segwit. Mempool acceptance will use SCRIPT_VERIFY_WITNESS which # will require a witness to spend a witness program regardless of # segwit activation. Note that older bitcoind's that are not # segwit-aware would also reject this for failing CLEANSTACK. self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False) # Try to put the witness script in the scriptSig, should also fail. spend_tx.vin[0].scriptSig = CScript([p2wsh_pubkey, b'a']) spend_tx.rehash() self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False) # Now put the witness script in the witness, should succeed after # segwit activates. spend_tx.vin[0].scriptSig = scriptSig spend_tx.rehash() spend_tx.wit.vtxinwit.append(CTxInWitness()) spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a', witness_program ] # Verify mempool acceptance self.test_node.test_transaction_acceptance(spend_tx, with_witness=True, accepted=segwit_activated) block = self.build_next_block() self.update_witness_block_with_transactions(block, [spend_tx]) # If we're before activation, then sending this without witnesses # should be valid. If we're after activation, then sending this with # witnesses should be valid. if segwit_activated: self.test_node.test_witness_block(block, accepted=True) else: self.test_node.test_witness_block(block, accepted=True, with_witness=False) # Update self.utxo self.utxo.pop(0) self.utxo.append(UTXO(spend_tx.sha256, 0, spend_tx.vout[0].nValue)) # Test the behavior of starting up a segwit-aware node after the softfork # has activated. As segwit requires different block data than pre-segwit # nodes would have stored, this requires special handling. # To enable this test, pass --oldbinary=<path-to-pre-segwit-bitcoind> to # the test. def test_upgrade_after_activation(self, node, node_id): print("\tTesting software upgrade after softfork activation") assert(node_id != 0) # node0 is assumed to be a segwit-active bitcoind # Make sure the nodes are all up sync_blocks(self.nodes) # Restart with the new binary stop_node(node, node_id) self.nodes[node_id] = start_node(node_id, self.options.tmpdir, ["-debug"]) connect_nodes(self.nodes[0], node_id) sync_blocks(self.nodes) # Make sure that this peer thinks segwit has activated. assert(get_bip9_status(node, 'segwit')['status'] == "active") # Make sure this peers blocks match those of node0. height = node.getblockcount() while height >= 0: block_hash = node.getblockhash(height) assert_equal(block_hash, self.nodes[0].getblockhash(height)) assert_equal(self.nodes[0].getblock(block_hash), node.getblock(block_hash)) height -= 1 def test_witness_sigops(self): '''Ensure sigop counting is correct inside witnesses.''' print("\tTesting sigops limit") assert(len(self.utxo)) # Keep this under MAX_OPS_PER_SCRIPT (201) witness_program = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKMULTISIG]*5 + [OP_CHECKSIG]*193 + [OP_ENDIF]) witness_hash = sha256(witness_program) scriptPubKey = CScript([OP_0, witness_hash]) sigops_per_script = 20*5 + 193*1 # We'll produce 2 extra outputs, one with a program that would take us # over max sig ops, and one with a program that would exactly reach max # sig ops outputs = (MAX_SIGOP_COST // sigops_per_script) + 2 extra_sigops_available = MAX_SIGOP_COST % sigops_per_script # We chose the number of checkmultisigs/checksigs to make this work: assert(extra_sigops_available < 100) # steer clear of MAX_OPS_PER_SCRIPT # This script, when spent with the first # N(=MAX_SIGOP_COST//sigops_per_script) outputs of our transaction, # would push us just over the block sigop limit. witness_program_toomany = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available + 1) + [OP_ENDIF]) witness_hash_toomany = sha256(witness_program_toomany) scriptPubKey_toomany = CScript([OP_0, witness_hash_toomany]) # If we spend this script instead, we would exactly reach our sigop # limit (for witness sigops). witness_program_justright = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available) + [OP_ENDIF]) witness_hash_justright = sha256(witness_program_justright) scriptPubKey_justright = CScript([OP_0, witness_hash_justright]) # First split our available utxo into a bunch of outputs split_value = self.utxo[0].nValue // outputs tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) for i in range(outputs): tx.vout.append(CTxOut(split_value, scriptPubKey)) tx.vout[-2].scriptPubKey = scriptPubKey_toomany tx.vout[-1].scriptPubKey = scriptPubKey_justright tx.rehash() block_1 = self.build_next_block() self.update_witness_block_with_transactions(block_1, [tx]) self.test_node.test_witness_block(block_1, accepted=True) tx2 = CTransaction() # If we try to spend the first n-1 outputs from tx, that should be # too many sigops. total_value = 0 for i in range(outputs-1): tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program ] total_value += tx.vout[i].nValue tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_toomany ] tx2.vout.append(CTxOut(total_value, CScript([OP_TRUE]))) tx2.rehash() block_2 = self.build_next_block() self.update_witness_block_with_transactions(block_2, [tx2]) self.test_node.test_witness_block(block_2, accepted=False) # Try dropping the last input in tx2, and add an output that has # too many sigops (contributing to legacy sigop count). checksig_count = (extra_sigops_available // 4) + 1 scriptPubKey_checksigs = CScript([OP_CHECKSIG]*checksig_count) tx2.vout.append(CTxOut(0, scriptPubKey_checksigs)) tx2.vin.pop() tx2.wit.vtxinwit.pop() tx2.vout[0].nValue -= tx.vout[-2].nValue tx2.rehash() block_3 = self.build_next_block() self.update_witness_block_with_transactions(block_3, [tx2]) self.test_node.test_witness_block(block_3, accepted=False) # If we drop the last checksig in this output, the tx should succeed. block_4 = self.build_next_block() tx2.vout[-1].scriptPubKey = CScript([OP_CHECKSIG]*(checksig_count-1)) tx2.rehash() self.update_witness_block_with_transactions(block_4, [tx2]) self.test_node.test_witness_block(block_4, accepted=True) # Reset the tip back down for the next test sync_blocks(self.nodes) for x in self.nodes: x.invalidateblock(block_4.hash) # Try replacing the last input of tx2 to be spending the last # output of tx block_5 = self.build_next_block() tx2.vout.pop() tx2.vin.append(CTxIn(COutPoint(tx.sha256, outputs-1), b"")) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_justright ] tx2.rehash() self.update_witness_block_with_transactions(block_5, [tx2]) self.test_node.test_witness_block(block_5, accepted=True) # TODO: test p2sh sigop counting def test_getblocktemplate_before_lockin(self): print("\tTesting getblocktemplate setting of segwit versionbit (before lockin)") # Node0 is segwit aware, node2 is not. for node in [self.nodes[0], self.nodes[2]]: gbt_results = node.getblocktemplate() block_version = gbt_results['version'] # If we're not indicating segwit support, we will still be # signalling for segwit activation. assert_equal((block_version & (1 << VB_WITNESS_BIT) != 0), node == self.nodes[0]) # If we don't specify the segwit rule, then we won't get a default # commitment. assert('default_witness_commitment' not in gbt_results) # Workaround: # Can either change the tip, or change the mempool and wait 5 seconds # to trigger a recomputation of getblocktemplate. txid = int(self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1), 16) # Using mocktime lets us avoid sleep() sync_mempools(self.nodes) self.nodes[0].setmocktime(int(time.time())+10) self.nodes[2].setmocktime(int(time.time())+10) for node in [self.nodes[0], self.nodes[2]]: gbt_results = node.getblocktemplate({"rules" : ["segwit"]}) block_version = gbt_results['version'] if node == self.nodes[2]: # If this is a non-segwit node, we should still not get a witness # commitment, nor a version bit signalling segwit. assert_equal(block_version & (1 << VB_WITNESS_BIT), 0) assert('default_witness_commitment' not in gbt_results) else: # For segwit-aware nodes, check the version bit and the witness # commitment are correct. assert(block_version & (1 << VB_WITNESS_BIT) != 0) assert('default_witness_commitment' in gbt_results) witness_commitment = gbt_results['default_witness_commitment'] # TODO: this duplicates some code from blocktools.py, would be nice # to refactor. # Check that default_witness_commitment is present. block = CBlock() witness_root = block.get_merkle_root([ser_uint256(0), ser_uint256(txid)]) check_commitment = uint256_from_str(hash256(ser_uint256(witness_root)+ser_uint256(0))) from test_framework.blocktools import WITNESS_COMMITMENT_HEADER output_data = WITNESS_COMMITMENT_HEADER + ser_uint256(check_commitment) script = CScript([OP_RETURN, output_data]) assert_equal(witness_commitment, bytes_to_hex_str(script)) # undo mocktime self.nodes[0].setmocktime(0) self.nodes[2].setmocktime(0) # Uncompressed pubkeys are no longer supported in default relay policy, # but (for now) are still valid in blocks. def test_uncompressed_pubkey(self): print("\tTesting uncompressed pubkeys") # Segwit transactions using uncompressed pubkeys are not accepted # under default policy, but should still pass consensus. key = CECKey() key.set_secretbytes(b"9") key.set_compressed(False) pubkey = CPubKey(key.get_pubkey()) assert_equal(len(pubkey), 65) # This should be an uncompressed pubkey assert(len(self.utxo) > 0) utxo = self.utxo.pop(0) # Test 1: P2WPKH # First create a P2WPKH output that uses an uncompressed pubkey pubkeyhash = hash160(pubkey) scriptPKH = CScript([OP_0, pubkeyhash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(utxo.sha256, utxo.n), b"")) tx.vout.append(CTxOut(utxo.nValue-100000, scriptPKH)) tx.rehash() # Confirm it in a block. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) self.test_node.test_witness_block(block, accepted=True) # Now try to spend it. Send it to a P2WSH output, which we'll # use in the next test. witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) witness_hash = sha256(witness_program) scriptWSH = CScript([OP_0, witness_hash]) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue-100000, scriptWSH)) script = GetP2PKHScript(pubkeyhash) sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [ signature, pubkey ] tx2.rehash() # Should fail policy test. self.test_node.test_transaction_acceptance(tx2, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') # But passes consensus. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) self.test_node.test_witness_block(block, accepted=True) # Test 2: P2WSH # Try to spend the P2WSH output created in last test. # Send it to a P2SH(P2WSH) output, which we'll use in the next test. p2sh_witness_hash = hash160(scriptWSH) scriptP2SH = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) scriptSig = CScript([scriptWSH]) tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.vout.append(CTxOut(tx2.vout[0].nValue-100000, scriptP2SH)) tx3.wit.vtxinwit.append(CTxInWitness()) sign_P2PK_witness_input(witness_program, tx3, 0, SIGHASH_ALL, tx2.vout[0].nValue, key) # Should fail policy test. self.test_node.test_transaction_acceptance(tx3, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') # But passes consensus. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx3]) self.test_node.test_witness_block(block, accepted=True) # Test 3: P2SH(P2WSH) # Try to spend the P2SH output created in the last test. # Send it to a P2PKH output, which we'll use in the next test. scriptPubKey = GetP2PKHScript(pubkeyhash) tx4 = CTransaction() tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), scriptSig)) tx4.vout.append(CTxOut(tx3.vout[0].nValue-100000, scriptPubKey)) tx4.wit.vtxinwit.append(CTxInWitness()) sign_P2PK_witness_input(witness_program, tx4, 0, SIGHASH_ALL, tx3.vout[0].nValue, key) # Should fail policy test. self.test_node.test_transaction_acceptance(tx4, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx4]) self.test_node.test_witness_block(block, accepted=True) # Test 4: Uncompressed pubkeys should still be valid in non-segwit # transactions. tx5 = CTransaction() tx5.vin.append(CTxIn(COutPoint(tx4.sha256, 0), b"")) tx5.vout.append(CTxOut(tx4.vout[0].nValue-100000, CScript([OP_TRUE]))) (sig_hash, err) = SignatureHash(scriptPubKey, tx5, 0, SIGHASH_ALL) signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL tx5.vin[0].scriptSig = CScript([signature, pubkey]) tx5.rehash() # Should pass policy and consensus. self.test_node.test_transaction_acceptance(tx5, True, True) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx5]) self.test_node.test_witness_block(block, accepted=True) self.utxo.append(UTXO(tx5.sha256, 0, tx5.vout[0].nValue)) def test_non_standard_witness(self): print("\tTesting detection of non-standard P2WSH witness") pad = chr(1).encode('latin-1') # Create scripts for tests scripts = [] scripts.append(CScript([OP_DROP] * 100)) scripts.append(CScript([OP_DROP] * 99)) scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 60)) scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 61)) p2wsh_scripts = [] assert(len(self.utxo)) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) # For each script, generate a pair of P2WSH and P2SH-P2WSH output. outputvalue = (self.utxo[0].nValue - 100000) // (len(scripts) * 2) for i in scripts: p2wsh = CScript([OP_0, sha256(i)]) p2sh = hash160(p2wsh) p2wsh_scripts.append(p2wsh) tx.vout.append(CTxOut(outputvalue, p2wsh)) tx.vout.append(CTxOut(outputvalue, CScript([OP_HASH160, p2sh, OP_EQUAL]))) tx.rehash() txid = tx.sha256 self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True) self.nodes[0].generate(1) sync_blocks(self.nodes) # Creating transactions for tests p2wsh_txs = [] p2sh_txs = [] for i in range(len(scripts)): p2wsh_tx = CTransaction() p2wsh_tx.vin.append(CTxIn(COutPoint(txid,i*2))) p2wsh_tx.vout.append(CTxOut(outputvalue - 500000, CScript([OP_0, hash160(hex_str_to_bytes(""))]))) p2wsh_tx.wit.vtxinwit.append(CTxInWitness()) p2wsh_tx.rehash() p2wsh_txs.append(p2wsh_tx) p2sh_tx = CTransaction() p2sh_tx.vin.append(CTxIn(COutPoint(txid,i*2+1), CScript([p2wsh_scripts[i]]))) p2sh_tx.vout.append(CTxOut(outputvalue - 500000, CScript([OP_0, hash160(hex_str_to_bytes(""))]))) p2sh_tx.wit.vtxinwit.append(CTxInWitness()) p2sh_tx.rehash() p2sh_txs.append(p2sh_tx) # Testing native P2WSH # Witness stack size, excluding witnessScript, over 100 is non-standard p2wsh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]] self.std_node.test_transaction_acceptance(p2wsh_txs[0], True, False, b'bad-witness-nonstandard') # Non-standard nodes should accept self.test_node.test_transaction_acceptance(p2wsh_txs[0], True, True) # Stack element size over 80 bytes is non-standard p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]] self.std_node.test_transaction_acceptance(p2wsh_txs[1], True, False, b'bad-witness-nonstandard') # Non-standard nodes should accept self.test_node.test_transaction_acceptance(p2wsh_txs[1], True, True) # Standard nodes should accept if element size is not over 80 bytes p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]] self.std_node.test_transaction_acceptance(p2wsh_txs[1], True, True) # witnessScript size at 3600 bytes is standard p2wsh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]] self.test_node.test_transaction_acceptance(p2wsh_txs[2], True, True) self.std_node.test_transaction_acceptance(p2wsh_txs[2], True, True) # witnessScript size at 3601 bytes is non-standard p2wsh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]] self.std_node.test_transaction_acceptance(p2wsh_txs[3], True, False, b'bad-witness-nonstandard') # Non-standard nodes should accept self.test_node.test_transaction_acceptance(p2wsh_txs[3], True, True) # Repeating the same tests with P2SH-P2WSH p2sh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]] self.std_node.test_transaction_acceptance(p2sh_txs[0], True, False, b'bad-witness-nonstandard') self.test_node.test_transaction_acceptance(p2sh_txs[0], True, True) p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]] self.std_node.test_transaction_acceptance(p2sh_txs[1], True, False, b'bad-witness-nonstandard') self.test_node.test_transaction_acceptance(p2sh_txs[1], True, True) p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]] self.std_node.test_transaction_acceptance(p2sh_txs[1], True, True) p2sh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]] self.test_node.test_transaction_acceptance(p2sh_txs[2], True, True) self.std_node.test_transaction_acceptance(p2sh_txs[2], True, True) p2sh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]] self.std_node.test_transaction_acceptance(p2sh_txs[3], True, False, b'bad-witness-nonstandard') self.test_node.test_transaction_acceptance(p2sh_txs[3], True, True) self.nodes[0].generate(1) # Mine and clean up the mempool of non-standard node # Valid but non-standard transactions in a block should be accepted by standard node sync_blocks(self.nodes) assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(len(self.nodes[1].getrawmempool()), 0) self.utxo.pop(0) def test_reject_blocks(self): print ("\tTesting rejection of block.nVersion < BIP9_TOP_BITS blocks") block = self.build_next_block(nVersion=4) block.solve() resp = self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True))) assert_equal(resp, 'bad-version(0x00000004)') def run_test(self): # Setup the p2p connections and start up the network thread. self.test_node = TestNode() # sets NODE_WITNESS|NODE_NETWORK self.old_node = TestNode() # only NODE_NETWORK self.std_node = TestNode() # for testing node1 (fRequireStandard=true) self.p2p_connections = [self.test_node, self.old_node] self.connections = [] self.connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.test_node, services=NODE_NETWORK|NODE_WITNESS)) self.connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.old_node, services=NODE_NETWORK)) self.connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], self.std_node, services=NODE_NETWORK|NODE_WITNESS)) self.test_node.add_connection(self.connections[0]) self.old_node.add_connection(self.connections[1]) self.std_node.add_connection(self.connections[2]) NetworkThread().start() # Start up network handling in another thread # Keep a place to store utxo's that can be used in later tests self.utxo = [] # Test logic begins here self.test_node.wait_for_verack() print("\nStarting tests before segwit lock in:") self.test_witness_services() # Verifies NODE_WITNESS self.test_non_witness_transaction() # non-witness tx's are accepted self.test_unnecessary_witness_before_segwit_activation() self.test_block_relay(segwit_activated=False) # Advance to segwit being 'started' self.advance_to_segwit_started() sync_blocks(self.nodes) self.test_getblocktemplate_before_lockin() sync_blocks(self.nodes) # At lockin, nothing should change. print("\nTesting behavior post lockin, pre-activation") self.advance_to_segwit_lockin() # Retest unnecessary witnesses self.test_unnecessary_witness_before_segwit_activation() self.test_witness_tx_relay_before_segwit_activation() self.test_block_relay(segwit_activated=False) self.test_p2sh_witness(segwit_activated=False) self.test_standardness_v0(segwit_activated=False) sync_blocks(self.nodes) # Now activate segwit print("\nTesting behavior after segwit activation") self.advance_to_segwit_active() sync_blocks(self.nodes) # Test P2SH witness handling again self.test_reject_blocks() self.test_p2sh_witness(segwit_activated=True) self.test_witness_commitments() self.test_block_malleability() self.test_witness_block_size() self.test_submit_block() self.test_extra_witness_data() self.test_max_witness_push_length() self.test_max_witness_program_length() self.test_witness_input_length() self.test_block_relay(segwit_activated=True) self.test_tx_relay_after_segwit_activation() self.test_standardness_v0(segwit_activated=True) self.test_segwit_versions() self.test_premature_coinbase_witness_spend() self.test_uncompressed_pubkey() self.test_signature_version_1() self.test_non_standard_witness() sync_blocks(self.nodes) self.test_upgrade_after_activation(self.nodes[2], 2) self.test_witness_sigops() if __name__ == '__main__': SegWitTest().main()
45.642404
143
0.658001
13621de3879a3964706c178c2e3c444f97abdac2
628
py
Python
server/users/backends.py
Sonatrix/reango
5533bb126a5972f7f4124c6e9a26c6207596ff80
[ "MIT" ]
60
2016-12-12T19:46:41.000Z
2019-04-29T05:09:50.000Z
server/users/backends.py
Sonatrix/reango
5533bb126a5972f7f4124c6e9a26c6207596ff80
[ "MIT" ]
28
2016-11-06T19:25:38.000Z
2018-06-11T22:43:01.000Z
server/users/backends.py
ncrmro/ango
15bca070ed01ec8fa885a224305d1ac67d458b47
[ "MIT" ]
14
2016-11-30T22:01:12.000Z
2019-03-07T22:45:09.000Z
from django.contrib.auth import get_user_model from django.contrib.auth.backends import ModelBackend from django.contrib.auth.hashers import check_password class UserModelEmailBackend(ModelBackend): def authenticate(self, username="", password="", **kwargs): try: user = get_user_model().objects.get(email__iexact=username) if check_password(password, user.password): return user else: return None except get_user_model().DoesNotExist: # No user was found, return None - triggers default login failed return None
34.888889
76
0.667197
4b4834e647e7ffea388f14c735898103d2763386
1,933
py
Python
main.py
ovsartem/json_navigator
89d41e9ea3c351e74e418062d89f5e8a6e6bb111
[ "MIT" ]
null
null
null
main.py
ovsartem/json_navigator
89d41e9ea3c351e74e418062d89f5e8a6e6bb111
[ "MIT" ]
null
null
null
main.py
ovsartem/json_navigator
89d41e9ea3c351e74e418062d89f5e8a6e6bb111
[ "MIT" ]
null
null
null
import json def get_info(path): """ Reads json file """ with open("frienfs_list_Obama.json", 'r', encoding='utf-8') as f: data = json.load(f) return data def dictionary(element): """ Function to work with dictionary """ all_elements = list(element.keys()) print("This object is a dictionary. Here are all keys.") for i in range(len(all_elements)): print(f"{i+1}) {all_elements[i]}") choice = int(input("Type the humber of the key: ")) if isinstance(element[all_elements[choice-1]], list): return element[all_elements[choice-1]][0] return element[all_elements[choice-1]] def _list(element): """ Function to work with list """ print("This object is a dictionary. Here are all elements.") for i in range(len(element)): print(f"{i+1}) {element[i]}") choice = int(input("Type the humber of the element: ")) return element[choice-1] def other_elements(element): """ Function to work with str,int,float """ print(element) return 111 def main(element): """ Main function to organize all types """ if isinstance(element, dict): return dictionary(element) elif isinstance(element, list): return _list(element) elif isinstance(element, tuple): return _list(element) else: return other_elements(element) def _work(): """ Cycles the main function. Here you can change the path of json file. """ print("This is json file navigator. You can leave whenever you want.") data = get_info("frienfs_list_Obama.json") stop = False while stop != True: data = main(data) if data == 111: stop = True if __name__ == '__main__': start = True while start != False: _work() move = input("Do you want to repeat? +/: ") if move == "-": start = False
24.1625
74
0.602173
d867838c31b8010793298ab7616e80742167f681
5,469
py
Python
py2app/bundletemplate/lib/site.py
MAKOMO/py2app
942763aaffc2da553db743a2ebb5b3ae96acdb64
[ "MIT" ]
null
null
null
py2app/bundletemplate/lib/site.py
MAKOMO/py2app
942763aaffc2da553db743a2ebb5b3ae96acdb64
[ "MIT" ]
null
null
null
py2app/bundletemplate/lib/site.py
MAKOMO/py2app
942763aaffc2da553db743a2ebb5b3ae96acdb64
[ "MIT" ]
null
null
null
""" Append module search paths for third-party packages to sys.path. This is stripped down and customized for use in py2app applications """ import sys # os is actually in the zip, so we need to do this here. # we can't call it python24.zip because zlib is not a built-in module (!) _libdir = "/lib/python" + sys.version[:3] _parent = "/".join(__file__.split("/")[:-1]) if not _parent.endswith(_libdir): _parent += _libdir sys.path.append(_parent + "/site-packages.zip") # Stuffit decompresses recursively by default, that can mess up py2app bundles, # add the uncompressed site-packages to the path to compensate for that. sys.path.append(_parent + "/site-packages") ENABLE_USER_SITE = False USER_SITE = None USER_BASE = None def _import_os(): global os import os # noqa: E402 _import_os() try: basestring except NameError: basestring = str def makepath(*paths): dir = os.path.abspath(os.path.join(*paths)) return dir, os.path.normcase(dir) for m in sys.modules.values(): f = getattr(m, "__file__", None) if isinstance(f, basestring) and os.path.exists(f): m.__file__ = os.path.abspath(m.__file__) del m # This ensures that the initial path provided by the interpreter contains # only absolute pathnames, even if we're running from the build directory. L = [] _dirs_in_sys_path = {} dir = dircase = None # sys.path may be empty at this point for dir in sys.path: # Filter out duplicate paths (on case-insensitive file systems also # if they only differ in case); turn relative paths into absolute # paths. dir, dircase = makepath(dir) if dircase not in _dirs_in_sys_path: L.append(dir) _dirs_in_sys_path[dircase] = 1 sys.path[:] = L del dir, dircase, L _dirs_in_sys_path = None def _init_pathinfo(): global _dirs_in_sys_path _dirs_in_sys_path = d = {} for dir in sys.path: if dir and not os.path.isdir(dir): continue dir, dircase = makepath(dir) d[dircase] = 1 def addsitedir(sitedir): global _dirs_in_sys_path if _dirs_in_sys_path is None: _init_pathinfo() reset = 1 else: reset = 0 sitedir, sitedircase = makepath(sitedir) if sitedircase not in _dirs_in_sys_path: sys.path.append(sitedir) # Add path component try: names = os.listdir(sitedir) except os.error: return names.sort() for name in names: if name[-4:] == os.extsep + "pth": addpackage(sitedir, name) if reset: _dirs_in_sys_path = None def addpackage(sitedir, name): global _dirs_in_sys_path if _dirs_in_sys_path is None: _init_pathinfo() reset = 1 else: reset = 0 fullname = os.path.join(sitedir, name) try: with open(fullname) as f: while 1: dir = f.readline() if not dir: break if dir[0] == "#": continue if dir.startswith("import"): exec(dir) continue if dir[-1] == "\n": dir = dir[:-1] dir, dircase = makepath(sitedir, dir) if dircase not in _dirs_in_sys_path and os.path.exists(dir): sys.path.append(dir) _dirs_in_sys_path[dircase] = 1 except IOError: return if reset: _dirs_in_sys_path = None def _get_path(userbase): version = sys.version_info if sys.platform == "darwin" and getattr(sys, "_framework", None): return "%s/lib/python/site-packages" % (userbase,) return "%s/lib/python%d.%d/site-packages" % (userbase, version[0], version[1]) def _getuserbase(): env_base = os.environ.get("PYTHONUSERBASE", None) if env_base: return env_base def joinuser(*args): return os.path.expanduser(os.path.join(*args)) if getattr(sys, "_framework", None): return joinuser("~", "Library", sys._framework, "%d.%d" % sys.version_info[:2]) return joinuser("~", ".local") def getuserbase(): """Returns the `user base` directory path. The `user base` directory can be used to store data. If the global variable ``USER_BASE`` is not initialized yet, this function will also set it. """ global USER_BASE if USER_BASE is None: USER_BASE = _getuserbase() return USER_BASE def getusersitepackages(): """Returns the user-specific site-packages directory path. If the global variable ``USER_SITE`` is not initialized yet, this function will also set it. """ global USER_SITE userbase = getuserbase() # this will also set USER_BASE if USER_SITE is None: USER_SITE = _get_path(userbase) return USER_SITE # # Run custom site specific code, if available. # try: import sitecustomize # noqa: F401 except ImportError: pass # # Remove sys.setdefaultencoding() so that users cannot change the # encoding after initialization. The test for presence is needed when # this module is run as a script, because this code is executed twice. # if hasattr(sys, "setdefaultencoding"): del sys.setdefaultencoding import builtins # noqa: E402 import _sitebuiltins # noqa: E402 builtins.help = _sitebuiltins._Helper() builtins.quit = _sitebuiltins.Quitter('quit', 'Ctrl-D (i.e. EOF)') builtins.exit = _sitebuiltins.Quitter('exit', 'Ctrl-D (i.e. EOF)')
26.548544
87
0.640519
b6c0dee51be70674d12dd64c650c880877c6882d
2,356
py
Python
mason/engines/metastore/models/table/table.py
kyprifog/mason
bf45672124ef841bc16216c293034f4ccc506621
[ "Apache-2.0" ]
4
2021-04-12T17:49:34.000Z
2022-01-23T19:54:29.000Z
mason/engines/metastore/models/table/table.py
kyprifog/mason
bf45672124ef841bc16216c293034f4ccc506621
[ "Apache-2.0" ]
24
2021-04-30T18:40:25.000Z
2021-05-12T20:52:06.000Z
mason/engines/metastore/models/table/table.py
kyprifog/mason
bf45672124ef841bc16216c293034f4ccc506621
[ "Apache-2.0" ]
3
2021-04-12T19:40:43.000Z
2021-09-07T21:56:36.000Z
from datetime import datetime from typing import Optional, List, Dict, Union import pandas as pd from mason.engines.metastore.models.schemas.text import TextSchema from mason.clients.responsable import Responsable from mason.clients.response import Response from mason.engines.metastore.models.schemas.schema import Schema from mason.engines.storage.models.path import Path from dask.dataframe.core import DataFrame as DDataFrame from pandas import DataFrame as PDataFrame class Table(Responsable): def __init__(self, name: str, schema: Schema, created_at: Optional[datetime] = None, created_by: Optional[str] = None, database_name: Optional[str] = None, paths: List[Path] = [], source_path: Optional[Path] = None): self.name = name self.database_name = database_name self.schema = schema self.created_at = created_at self.created_by = created_by self.paths = paths self.source_path = source_path lt: Optional[str] if (isinstance(schema, TextSchema)): lt = schema.line_terminator else: lt = None self.line_terminator: Optional[str] = lt def as_df(self) -> PDataFrame: pd_dict: Dict[str, str] = self.schema.to_pd_dict() column_names: List[str] = list(pd_dict.keys()) return pd.DataFrame(columns=column_names).astype(pd_dict) def as_dask_df(self) -> DDataFrame: import dask.dataframe as dd return dd.from_pandas(self.as_df(), npartitions=8) def to_dict(self) -> Dict[str, Union[str, datetime, dict]]: return { "Name": self.name, "CreatedAt": self.created_at or "", "CreatedBy": self.created_by or "", "Schema": self.schema.to_dict() } def to_response(self, response: Response): response.add_data(self.to_dict()) return response def column_names(self) -> List[str]: return self.schema.column_names() class TableList(Responsable): def __init__(self, tables: List[Table]): self.tables = tables def to_dict(self) -> dict: return {'Tables': list(map(lambda t: t.to_dict(), self.tables))} def to_response(self, response: Response): data = self.to_dict() response.add_data(data) return response
33.183099
220
0.654499
2a6768d18d00eac1aa5b0854f121267cd9b7dbeb
5,747
py
Python
game_seq_embedder/game_seq_embedder/transformers/modeling_tf_camembert.py
fuxiAIlab/PMTC
bea55d821bc8adf64044194a0b72d8ce913a6213
[ "Artistic-1.0-Perl" ]
4
2021-02-28T11:58:18.000Z
2022-02-03T03:26:45.000Z
game_seq_embedder/game_seq_embedder/transformers/modeling_tf_camembert.py
fuxiAIlab/PMTC
bea55d821bc8adf64044194a0b72d8ce913a6213
[ "Artistic-1.0-Perl" ]
2
2022-03-16T13:57:37.000Z
2022-03-16T14:00:51.000Z
game_seq_embedder/game_seq_embedder/transformers/modeling_tf_camembert.py
fuxiAIlab/PMTC
bea55d821bc8adf64044194a0b72d8ce913a6213
[ "Artistic-1.0-Perl" ]
2
2020-07-16T16:20:59.000Z
2021-08-08T20:22:47.000Z
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 CamemBERT model. """ from .configuration_camembert import CamembertConfig from .file_utils import add_start_docstrings from .modeling_tf_roberta import ( TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaModel, ) from .utils import logging logger = logging.get_logger(__name__) TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ # See all CamemBERT models at https://huggingface.co/models?filter=camembert ] CAMEMBERT_START_DOCSTRING = r""" .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})` Parameters: config (:class:`~transformers.CamembertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ @add_start_docstrings( "The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top.", CAMEMBERT_START_DOCSTRING, ) class TFCamembertModel(TFRobertaModel): """ This class overrides :class:`~transformers.TFRobertaModel`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = CamembertConfig @add_start_docstrings( """CamemBERT Model with a `language modeling` head on top. """, CAMEMBERT_START_DOCSTRING, ) class TFCamembertForMaskedLM(TFRobertaForMaskedLM): """ This class overrides :class:`~transformers.TFRobertaForMaskedLM`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = CamembertConfig @add_start_docstrings( """CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, CAMEMBERT_START_DOCSTRING, ) class TFCamembertForSequenceClassification(TFRobertaForSequenceClassification): """ This class overrides :class:`~transformers.TFRobertaForSequenceClassification`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = CamembertConfig @add_start_docstrings( """CamemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, CAMEMBERT_START_DOCSTRING, ) class TFCamembertForTokenClassification(TFRobertaForTokenClassification): """ This class overrides :class:`~transformers.TFRobertaForTokenClassification`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = CamembertConfig @add_start_docstrings( """CamemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, CAMEMBERT_START_DOCSTRING, ) class TFCamembertForMultipleChoice(TFRobertaForMultipleChoice): """ This class overrides :class:`~transformers.TFRobertaForMultipleChoice`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = CamembertConfig @add_start_docstrings( """CamemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, CAMEMBERT_START_DOCSTRING, ) class TFCamembertForQuestionAnswering(TFRobertaForQuestionAnswering): """ This class overrides :class:`~transformers.TFRobertaForQuestionAnswering`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = CamembertConfig
39.634483
224
0.753437
2338c143f1a4ff42cfb5f8d8230ffe0d86677e3a
4,316
py
Python
Preference2/src/main/java/voidblue/preference/demo/Preference/Preference.py
voidblue/PreferenceWebPage
7b36a6b0df09b84aa46fb63f9b191c84b46509d6
[ "Apache-2.0" ]
null
null
null
Preference2/src/main/java/voidblue/preference/demo/Preference/Preference.py
voidblue/PreferenceWebPage
7b36a6b0df09b84aa46fb63f9b191c84b46509d6
[ "Apache-2.0" ]
null
null
null
Preference2/src/main/java/voidblue/preference/demo/Preference/Preference.py
voidblue/PreferenceWebPage
7b36a6b0df09b84aa46fb63f9b191c84b46509d6
[ "Apache-2.0" ]
null
null
null
import numpy as np import openpyxl import tensorflow as tf import numpy.core._methods import numpy.lib.format from Softmax import Softmax import os import sys if getattr(sys, 'frozen', False): # frozen dir_ = os.path.dirname(sys.executable) else: # unfrozen dir_ = os.path.dirname(os.path.realpath(__file__)) class Pref(Softmax): def process_ranking(self, target_data = None ): xlist = [] first = 0 second = 0 third = 0 # print(target_data) for y in target_data: first = 0 second = 0 third = 0 forth = 0 fifth = 0 for item in y: # if xxx > third: # third = xxx # if third > second: # temp = second # second = third # third = temp # if second > first: # temp = first # first = second # second = temp # # if item > first: # first = item # if third > second: # temp = second # second = third # third = temp # if second > first: # temp = first # first = second # second = temp if item > fifth: fifth = item if fifth > forth: temp = forth forth = fifth fifth = temp if forth > third: temp = third third = forth forth = temp if third > second: temp = second second = third third = temp if second > first: temp = first first = second second = temp if len(list(np.where(y == first))) >= 1: xlist.append(list(np.where(y == first)[0])) else: xlist.append([0]) if len(list(np.where(y == second))) >= 1: xlist.append(list(np.where(y == second)[0])) else: xlist.append([0]) if len(list(np.where(y == third))) >= 1: xlist.append(list(np.where(y == third)[0])) else: xlist.append([0]) xlist.append(list(np.where(y == forth)[0])) xlist.append(list(np.where(y == fifth)[0])) return list(xlist) def target_ranking(self, x_data): temp = x_data for i, w in enumerate(self.weights): temp = tf.nn.softmax(tf.add(tf.matmul(temp,-w),self.bias[i])) return self.sess.run(temp) def return_rank_accuracy(self, y_data ,data): try: wb = openpyxl.load_workbook("테스트결과" + '.xlsx') except: wb = openpyxl.Workbook() wb.save("테스트결과" + ".xlsx") ws = wb.active accuracy = 0 sametime = [0, 0, 0, 0, 0] for i in range(len(y_data)): acc = 0 ws.cell(row=i +2, column= 14).value = 1 if y_data[i][data[5*i]] == 1: accuracy += 1 sametime[0]+=1 acc += 1 elif y_data[i][data[(5 * i) + 1]] == 1: accuracy += 1 sametime[1] += 1 acc += 1 elif y_data[i][data[(5 * i) + 2]] == 1: accuracy += 1 sametime[2] += 1 acc += 1 elif y_data[i][data[(5 * i) + 3]] == 1: accuracy += 1 sametime[3] += 1 acc += 1 elif y_data[i][data[(5 * i) + 4]] == 1: accuracy += 1 sametime[4] += 1 acc += 1 else: ws.cell(row=i + 2, column= 14).value = 0 # if(acc == 3): # print(i, "번쨰 데이터가 모두 적중 (0부터 시작)") # break # print(sametime) wb.save("테스트결과" + '.xlsx') wb.close() accuracy /= len(y_data) print('accuracy = {}'.format(accuracy))
30.609929
73
0.401993
8d756e2fb9607ed1a1ee3a35144f1674d20b1170
10,192
py
Python
flashfocus/display_protocols/x11.py
ardevd/flashfocus
694bd97ba30d565c82235c976c7133e28778f0fc
[ "MIT" ]
null
null
null
flashfocus/display_protocols/x11.py
ardevd/flashfocus
694bd97ba30d565c82235c976c7133e28778f0fc
[ "MIT" ]
null
null
null
flashfocus/display_protocols/x11.py
ardevd/flashfocus
694bd97ba30d565c82235c976c7133e28778f0fc
[ "MIT" ]
null
null
null
"""Xorg utility code. All submodules in flashfocus.display_protocols are expected to contain a minimal set of functions/classes for abstracting across various display protocols. See list in flashfocus.compat """ import functools import logging from queue import Queue import struct from threading import Thread from typing import Any, Callable, Dict, List, Optional, Union from xcffib.xproto import ( CreateNotifyEvent, CW, EventMask, PropertyNotifyEvent, WindowClass, WindowError, ) from xpybutil import conn, root from xpybutil.ewmh import ( get_active_window, get_client_list, get_current_desktop, get_wm_desktop, get_wm_state, get_wm_window_opacity, set_wm_window_opacity_checked, ) from xpybutil.icccm import get_wm_class, set_wm_class_checked, set_wm_name_checked import xpybutil.window from xpybutil.util import get_atom_name, PropertyCookieSingle from flashfocus.display import WMEvent, WMEventType from flashfocus.errors import WMError from flashfocus.util import match_regex Event = Union[CreateNotifyEvent, PropertyNotifyEvent] def ignore_window_error(function: Callable) -> Callable: @functools.wraps(function) def wrapper(*args, **kwargs): try: return function(*args, **kwargs) except WindowError: pass return wrapper class Window: def __init__(self, window_id: int) -> None: """Represents an Xorg window. Parameters ---------- window_id The XORG window ID Attributes ---------- id The XORG window ID """ if window_id is None: raise WMError("Undefined window") self.id = window_id self._properties: Dict = dict() def __eq__(self, other) -> bool: if type(self) != type(other): raise TypeError("Arguments must be of the same type") return self.id == other.id def __ne__(self, other) -> bool: if type(self) != type(other): raise TypeError("Arguments must be of the same type") return self.id != other.id @property def properties(self) -> Dict: """Get a dictionary with the window class and instance.""" # Properties are cached after the first call to this function and so might not necessarily # be correct if the properties are changed between calls. This is acceptable for our # purposes because Windows are short-lived objects. if not self._properties: try: reply = get_wm_class(self.id).reply() except (struct.error, WindowError) as e: raise WMError("Invalid window: %s", self.id) from e try: self._properties = {"window_id": reply[0], "window_class": reply[1]} except TypeError: pass return self._properties def match(self, criteria: Dict) -> bool: """Determine whether the window matches a set of criteria. Parameters ---------- criteria Dictionary of regexes of the form {PROPERTY: REGEX} e.g {"window_id": r"termite"} """ if not criteria.get("window_id") and not criteria.get("window_class"): return True for prop in ["window_id", "window_class"]: # https://github.com/fennerm/flashfocus/issues/43 # I'm not 100 % sure but this issue seems to indicate that in some WMs a window might # have an ID but not a class. if ( criteria.get(prop) and self.properties.get(prop) and not match_regex(criteria[prop], self.properties[prop]) ): return False return True @property def opacity(self) -> float: return get_wm_window_opacity(self.id).reply() @ignore_window_error def set_opacity(self, opacity: Optional[float]) -> None: # If opacity is None just silently ignore the request if opacity is not None: cookie = set_wm_window_opacity_checked(self.id, opacity) cookie.check() @ignore_window_error def set_class(self, title: str, class_: str) -> None: set_wm_class_checked(self.id, title, class_).check() @ignore_window_error def set_name(self, name: str) -> None: set_wm_name_checked(self.id, name).check() @ignore_window_error def destroy(self) -> None: try: conn.core.DestroyWindow(self.id, True).check() except WindowError as e: raise WMError from e @ignore_window_error def is_fullscreen(self) -> bool: wm_states = get_wm_state(self.id).reply() # wm_states might be null in some WMs - #29 if wm_states: for wm_state in wm_states: if get_atom_name(wm_state) == "_NET_WM_STATE_FULLSCREEN": return True return False def _create_message_window() -> Window: """Create a hidden window for sending X client-messages. The window's properties can be used to send messages between threads. Returns ------- int An X-window id. """ setup = conn.get_setup() window_id = conn.generate_id() conn.core.CreateWindow( depth=setup.roots[0].root_depth, wid=window_id, parent=root, x=0, y=0, width=1, height=1, border_width=0, _class=WindowClass.InputOutput, visual=setup.roots[0].root_visual, value_mask=CW.EventMask, value_list=[EventMask.PropertyChange], is_checked=True, ).check() return Window(window_id) class DisplayHandler(Thread): """Parse events from the X-server and pass them on to FlashServer""" def __init__(self, queue: Queue) -> None: # This is set to True when initialization of the thread is complete and its ready to begin # the event loop self.ready = False super(DisplayHandler, self).__init__() # Queue of messages to be handled by the flash server self.queue: Queue = queue # This property is set by the server during shutdown and signals that the display handler # should disconnect from XCB self.keep_going: bool = True # In order to interrupt the event loop we need to map a special message-passing window. # When it comes time to exit we set the name of the window to 'KILL'. This is then # picked up as an event in the event loop. See https://xcb.freedesktop.org/tutorial/events/ self.message_window: Window = _create_message_window() def run(self) -> None: # PropertyChange is for detecting changes in focus # SubstructureNotify is for detecting new mapped windows xpybutil.window.listen(xpybutil.root, "PropertyChange", "SubstructureNotify") # Also listen to property changes in the message window xpybutil.window.listen(self.message_window.id, "PropertyChange") self.ready = True while self.keep_going: event = conn.wait_for_event() if isinstance(event, PropertyNotifyEvent): self._handle_property_change(event) elif isinstance(event, CreateNotifyEvent): self._handle_new_mapped_window(event) def stop(self) -> None: set_wm_name_checked(self.message_window.id, "KILL").check() self.keep_going = False self.join() self.message_window.destroy() def queue_window(self, window: Window, event_type: WMEventType) -> None: self.queue.put(WMEvent(window=window, event_type=event_type)) def _handle_new_mapped_window(self, event: Event) -> None: logging.info(f"Window {event.window} mapped...") if event.window is not None: window = Window(event.window) # Check that window is visible so that we don't accidentally set # opacity of windows which are not for display. Without this step # window opacity can become frozen and stop responding to flashes. if window in list_mapped_windows(): self.queue_window(window, WMEventType.NEW_WINDOW) else: logging.info(f"Window {window.id} is not visible, ignoring...") def _handle_property_change(self, event: Event) -> None: """Handle a property change on a watched window.""" atom_name = get_atom_name(event.atom) if atom_name == "_NET_ACTIVE_WINDOW": focused_window = get_focused_window() if focused_window is not None: logging.info(f"Focus shifted to {focused_window.id}") self.queue_window(focused_window, WMEventType.FOCUS_SHIFT) elif atom_name == "WM_NAME" and event.window == self.message_window.id: # Received kill signal from server -> terminate the thread self.keep_going = False @ignore_window_error def get_focused_window() -> Optional[Window]: window_id = get_active_window().reply() if window_id is not None: return Window(window_id) else: return None def _try_unwrap(cookie: PropertyCookieSingle) -> Optional[Any]: """Try reading a reply from the X server, ignoring any errors encountered.""" try: return cookie.reply() except WindowError: return None @ignore_window_error def list_mapped_windows(workspace: Optional[int] = None) -> List[Window]: mapped_window_ids = get_client_list().reply() if mapped_window_ids is None: mapped_window_ids = list() mapped_windows = [Window(wid) for wid in mapped_window_ids if wid is not None] if workspace is not None: cookies = [get_wm_desktop(wid) for wid in mapped_window_ids] workspaces = [_try_unwrap(cookie) for cookie in cookies] mapped_windows = [win for win, ws in zip(mapped_windows, workspaces) if ws == workspace] return mapped_windows @ignore_window_error def get_focused_workspace() -> int: return get_current_desktop().reply() @ignore_window_error def disconnect_display_conn() -> None: conn.disconnect()
33.636964
99
0.645899
995c3165d08ccedec632bb58689f90632fd7cf13
4,481
py
Python
test/test_acquirer.py
coleygroup/molpal
7b3dd1488af6e734caea527fe2738ff7f6ebfc49
[ "MIT" ]
81
2020-12-15T14:28:57.000Z
2022-03-14T12:26:00.000Z
test/test_acquirer.py
ashuein/molpal
1e17a0c406516ceaeaf273a6983d06206bcfe76f
[ "MIT" ]
13
2021-01-07T17:09:00.000Z
2022-03-01T12:45:22.000Z
test/test_acquirer.py
ashuein/molpal
1e17a0c406516ceaeaf273a6983d06206bcfe76f
[ "MIT" ]
23
2020-12-15T16:09:48.000Z
2022-03-13T11:29:40.000Z
import string import unittest import numpy as np from molpal.acquirer import Acquirer class TestAcquirer(unittest.TestCase): @classmethod def setUpClass(cls): cls.xs = string.ascii_lowercase cls.y_means = np.arange(len(cls.xs), dtype=np.double)[::-1] cls.y_vars = np.zeros(len(cls.xs)) cls.init_size = 10 cls.batch_size = 10 cls.acq = Acquirer( size=len(cls.xs), init_size=cls.init_size, batch_size=cls.batch_size, metric='greedy', epsilon=0., seed=0 ) def test_acquire_initial(self): init_xs = self.acq.acquire_initial(self.xs) self.assertEqual(len(init_xs), self.init_size) def test_acquire_initial_set_seed(self): acq = Acquirer( size=len(self.xs), init_size=self.init_size, batch_size=self.batch_size, metric='greedy', epsilon=0., seed=0 ) init_xs_1 = acq.acquire_initial(self.xs) acq = Acquirer( size=len(self.xs), init_size=self.init_size, batch_size=self.batch_size, metric='greedy', epsilon=0., seed=0 ) init_xs_2 = acq.acquire_initial(self.xs) self.assertEqual(set(init_xs_1), set(init_xs_2)) def test_acquire_initial_None_seed(self): """There is a roughly 1-in-2.5E13 chance that the same initial batch is chosen twice in a row, causing this test to report failure. If this test fails twice in a row, it is safe to assume that the test is genuinely failing.""" acq = Acquirer( size=len(self.xs), init_size=self.init_size, batch_size=self.batch_size, metric='greedy', epsilon=0., seed=None ) init_xs_1 = acq.acquire_initial(self.xs) acq = Acquirer( size=len(self.xs), init_size=self.init_size, batch_size=self.batch_size, metric='greedy', epsilon=0., seed=None ) init_xs_2 = acq.acquire_initial(self.xs) self.assertNotEqual(set(init_xs_1), set(init_xs_2)) def test_acquire_batch_explored(self): """Acquirers should not reacquire old points""" init_xs = self.acq.acquire_initial(self.xs) explored = {x: 0. for x in init_xs} batch_xs = self.acq.acquire_batch( self.xs, self.y_means, self.y_vars, explored=explored ) self.assertEqual(len(batch_xs), self.batch_size) self.assertNotEqual(set(init_xs), set(batch_xs)) def test_acquire_batch_correct_points(self): """Acquirers should acquire the top-m points by calculated utility. This test acquirer uses the greedy metric because the utilities are equal to the input Y_means. Assuming utility calculation is working correctly, this test ensures that the acquirer uses these utilities properly.""" batch_xs = self.acq.acquire_batch( self.xs, self.y_means, self.y_vars, explored={} ) self.assertEqual(set(batch_xs), set(self.xs[:self.batch_size])) explored = {x: 0. for x in batch_xs} batch_xs_2 = self.acq.acquire_batch( self.xs, self.y_means, self.y_vars, explored=explored ) self.assertEqual(set(batch_xs_2), set(self.xs[self.batch_size:2*self.batch_size])) explored_2 = {x: 0. for x in batch_xs_2} batch_xs_3 = self.acq.acquire_batch( self.xs, self.y_means, self.y_vars, explored={**explored, **explored_2} ) self.assertEqual(set(batch_xs_3), set(self.xs[2*self.batch_size:])) def test_acquire_batch_epsilon(self): """There is roughly a 1-in-5*10^6 (= nCr(26, 10)) chance that a random batch is the same as the calculated top-m batch, causing this test to report a failure. There is a roughly 1-in-2.5E13 chance this test fails twice in arow. If that happens, it is safe to assume that the test is genuinely failing.""" acq = Acquirer( size=len(self.xs), init_size=self.init_size, batch_size=self.batch_size, metric='greedy', epsilon=1., seed=0 ) explored = {} batch_xs = acq.acquire_batch( self.xs, self.y_means, self.y_vars, explored=explored ) self.assertNotEqual(set(batch_xs), set(self.xs[:self.batch_size])) if __name__ == "__main__": unittest.main()
38.299145
79
0.622852
ccf7f4444c9c4febe83ac3db638f182316e29555
1,170
py
Python
linearExt.py
gcant/pairwise-comparison-BP
f995d99440fd37b2850442413672a8e20b9f5b99
[ "Apache-2.0" ]
2
2021-10-04T09:48:50.000Z
2022-01-13T21:24:43.000Z
linearExt.py
gcant/pairwise-comparison-BP
f995d99440fd37b2850442413672a8e20b9f5b99
[ "Apache-2.0" ]
null
null
null
linearExt.py
gcant/pairwise-comparison-BP
f995d99440fd37b2850442413672a8e20b9f5b99
[ "Apache-2.0" ]
null
null
null
import ctypes import numpy as np import networkx as nx # C arrays of ints/doubles using numpy array_int = np.ctypeslib.ndpointer(dtype=ctypes.c_int,ndim=1, flags='CONTIGUOUS') array_double = np.ctypeslib.ndpointer(dtype=np.double,ndim=1, flags='CONTIGUOUS') lib = ctypes.cdll.LoadLibrary("./out/LEMP.so") lib.full_algorithm.argtypes = [ ctypes.c_int, ctypes.c_int, array_int, ctypes.c_int, ctypes.c_double, array_double] lib.full_algorithm.restype = ctypes.c_int def BP(G, L, tol=10e-10): M = np.array(list(G.edges())).flatten().astype(ctypes.c_int) output = np.zeros(L*(G.number_of_nodes()+1) + 4) s = lib.full_algorithm( ctypes.c_int(G.number_of_nodes()), ctypes.c_int(G.number_of_edges()), M, ctypes.c_int(L), ctypes.c_double(tol), output) pts = output[:L].copy() A = output[L:-4].reshape(G.number_of_nodes(),L) S1 = output[-4]/G.number_of_nodes() S2 = output[-3]/G.number_of_nodes() S = output[-2] logV = output[-1] density_states = S - G.number_of_nodes()*np.log(2) return pts, A, S1, S2, density_states, S, logV, s
27.857143
81
0.641026
f2f9966821a411eef4fb7167f4a20e8faf90a885
5,221
py
Python
python_modules/libraries/dagster-airflow/dagster_airflow_tests/conftest.py
hspak/dagster
94cff048d5d757d0fe1d83abe236252a1c86bd41
[ "Apache-2.0" ]
null
null
null
python_modules/libraries/dagster-airflow/dagster_airflow_tests/conftest.py
hspak/dagster
94cff048d5d757d0fe1d83abe236252a1c86bd41
[ "Apache-2.0" ]
null
null
null
python_modules/libraries/dagster-airflow/dagster_airflow_tests/conftest.py
hspak/dagster
94cff048d5d757d0fe1d83abe236252a1c86bd41
[ "Apache-2.0" ]
null
null
null
'''Test fixtures for dagster-airflow. These make very heavy use of fixture dependency and scope. If you're unfamiliar with pytest fixtures, read: https://docs.pytest.org/en/latest/fixture.html. ''' # pylint doesn't understand the way that pytest constructs fixture dependnecies # pylint: disable=redefined-outer-name, unused-argument import os import shutil import subprocess import tempfile import uuid import docker import pytest import six from dagster import check from dagster.utils import file_relative_path, load_yaml_from_path, mkdir_p, pushd @pytest.fixture(scope='session') def git_repository_root(): return six.ensure_str(subprocess.check_output(['git', 'rev-parse', '--show-toplevel']).strip()) @pytest.fixture(scope='session') def test_repo_path(git_repository_root): # pylint: disable=redefined-outer-name return file_relative_path( __file__, os.path.join(git_repository_root, '.buildkite', 'images', 'docker', 'test_project'), ) @pytest.fixture(scope='session') def environments_path(test_repo_path): # pylint: disable=redefined-outer-name return os.path.join(test_repo_path, 'test_pipelines', 'environments') @pytest.fixture(scope='module') def airflow_home(): '''Check that AIRFLOW_HOME is set, and return it''' airflow_home_dir = os.getenv('AIRFLOW_HOME') assert airflow_home_dir, 'No AIRFLOW_HOME set -- is airflow installed?' airflow_home_dir = os.path.abspath(os.path.expanduser(airflow_home_dir)) return airflow_home_dir @pytest.fixture(scope='module') def temp_dir(): '''Context manager for temporary directories. pytest implicitly wraps in try/except. ''' dir_path = os.path.join('/tmp', str(uuid.uuid4())) mkdir_p(dir_path) yield dir_path shutil.rmtree(dir_path) @pytest.fixture(scope='module') def clean_airflow_home(airflow_home): '''Ensure that the existing contents of AIRFLOW_HOME do not interfere with test.''' airflow_dags_path = os.path.join(airflow_home, 'dags') # Ensure Airflow DAGs folder exists if not os.path.exists(airflow_dags_path): os.makedirs(airflow_dags_path) tempdir_path = tempfile.mkdtemp() # Move existing DAGs aside for test dags_files = os.listdir(airflow_dags_path) for dag_file in dags_files: shutil.move(os.path.join(airflow_dags_path, dag_file), tempdir_path) yield # Clean up DAGs produced by test shutil.rmtree(airflow_dags_path) os.makedirs(airflow_dags_path) # Move original DAGs back file_paths = os.listdir(tempdir_path) for file_path in file_paths: shutil.move( os.path.join(tempdir_path, file_path), os.path.join(airflow_dags_path, file_path) ) shutil.rmtree(tempdir_path) @pytest.fixture(scope='session') def docker_client(): '''Instantiate a Docker Python client.''' try: client = docker.from_env() client.info() except docker.errors.APIError: # pylint: disable=protected-access check.failed('Couldn\'t find docker at {url} -- is it running?'.format(url=client._url(''))) return client @pytest.fixture(scope='session') def dagster_docker_image(): assert ( 'DAGSTER_DOCKER_IMAGE' in os.environ ), 'DAGSTER_DOCKER_IMAGE must be set in your environment for these tests' # Will be set in environment by .buildkite/pipeline.py -> tox.ini to: # ${AWS_ACCOUNT_ID}.dkr.ecr.us-west-1.amazonaws.com/dagster-docker-buildkite:${BUILDKITE_BUILD_ID}-${TOX_PY_VERSION} return os.environ['DAGSTER_DOCKER_IMAGE'] @pytest.fixture(scope='session') def build_docker_image(test_repo_path, docker_client, dagster_docker_image): with pushd(test_repo_path): subprocess.check_output(['./build.sh'], shell=True) return dagster_docker_image @pytest.fixture(scope='session') def docker_image(docker_client, build_docker_image): '''Check that the airflow image exists.''' try: docker_client.images.get(build_docker_image) except docker.errors.ImageNotFound: check.failed( 'Couldn\'t find docker image {image} required for test: please run the script at ' '{script_path}'.format( image=build_docker_image, script_path=file_relative_path(__file__, 'test_project/build.sh'), ) ) return build_docker_image @pytest.fixture(scope='module') def dags_path(airflow_home): '''Abspath to the magic Airflow DAGs folder.''' path = os.path.join(airflow_home, 'dags', '') mkdir_p(os.path.abspath(path)) return path @pytest.fixture(scope='module') def plugins_path(airflow_home): '''Abspath to the magic Airflow plugins folder.''' path = os.path.join(airflow_home, 'plugins', '') mkdir_p(os.path.abspath(path)) return path @pytest.fixture(scope='module') def environment_dict(s3_bucket, test_repo_path): env_dict = load_yaml_from_path(os.path.join(test_repo_path, 'env.yaml')) env_dict['storage'] = {'s3': {'s3_bucket': s3_bucket}} yield env_dict @pytest.fixture(scope='session') def s3_bucket(): yield 'dagster-scratch-80542c2' @pytest.fixture(scope='session') def gcs_bucket(): yield 'dagster-scratch-ccdfe1e'
30.005747
120
0.714039
9b45df84786d8b4294f3ee937d3f61b66b05730e
1,974
py
Python
lib/pybtex-0.19/pybtex/tests/database_test/data.py
cabeen/bibfmt
a2607506f15249f8e0ee900db103d57afec7dec8
[ "MIT" ]
1
2021-02-20T19:53:48.000Z
2021-02-20T19:53:48.000Z
lib/pybtex-0.19/pybtex/tests/database_test/data.py
cabeen/bibfmt
a2607506f15249f8e0ee900db103d57afec7dec8
[ "MIT" ]
null
null
null
lib/pybtex-0.19/pybtex/tests/database_test/data.py
cabeen/bibfmt
a2607506f15249f8e0ee900db103d57afec7dec8
[ "MIT" ]
null
null
null
# vim:fileencoding=utf-8 from pybtex.database import Entry, Person from pybtex.database import BibliographyData reference_data = BibliographyData( entries=[ ('ruckenstein-diffusion', Entry('article', fields={ 'language': u'english', 'title': u'Predicting the Diffusion Coefficient in Supercritical Fluids', 'journal': u'Ind. Eng. Chem. Res.', 'volume': u'36', 'year': u'1997', 'pages': u'888-895', }, persons={'author': [Person(u'Liu, Hongquin'), Person(u'Ruckenstein, Eli')]}, )), ('test-booklet', Entry('booklet', fields={ 'language': u'english', 'title': u'Just a booklet', 'year': u'2006', 'month': u'January', 'address': u'Moscow', 'howpublished': u'Published by Foo', }, persons={'author': [Person(u'de Last, Jr., First Middle')]} )), ('test-inbook', Entry('inbook', fields={ 'publisher': u'Some Publisher', 'language': u'english', 'title': u'Some Title', 'series': u'Some series', 'booktitle': u'Some Good Book', 'number': u'3', 'edition': u'Second', 'year': u'1933', 'pages': u'44--59', }, persons={'author': [Person(u'Jackson, Peter')]} )), ('viktorov-metodoj', Entry('book', fields={ 'publisher': u'Л.: <<Химия>>', 'year': u'1977', 'language': u'russian', 'title': u'Методы вычисления физико-химических величин и прикладные расчёты', }, persons={'author': [Person(u'Викторов, Михаил Маркович')]} )), ], preamble=['%%% pybtex example file'] )
35.25
93
0.459473
befce7838d0c6d6ae667596c75b03e63f01ad478
846
py
Python
main.py
hectorrdz98/imageclassification-cisco
3f3ab94887e3ccb79853274490426b64b55568dc
[ "Apache-2.0" ]
null
null
null
main.py
hectorrdz98/imageclassification-cisco
3f3ab94887e3ccb79853274490426b64b55568dc
[ "Apache-2.0" ]
null
null
null
main.py
hectorrdz98/imageclassification-cisco
3f3ab94887e3ccb79853274490426b64b55568dc
[ "Apache-2.0" ]
null
null
null
import os import time import flask import subprocess # Create an instance of Flask app = flask.Flask(__name__) @app.route("/images", methods=['POST']) def images(): for file in flask.request.files.values(): filename = os.path.join(".", str(int(time.time())) + "_" + file.filename) file.save(filename) result = tf_classify(filename) os.remove(filename) return flask.jsonify(result) return flask.jsonify([]) def tf_classify(name): print("detecting %s..." % name) p = subprocess.Popen(["python", "./tensorflow-models/tutorials/image/imagenet/classify_image.py", "--model_dir=.", "--image_file=" + name], stdout=subprocess.PIPE) out, _ = p.communicate() out = out.decode("utf-8") return out.split("\r\n")[1:-1] if __name__ == "__main__": app.run(host="0.0.0.0")
30.214286
144
0.634752
68422639a0ffa078adca4eb341f99e0138ea79fa
16,894
py
Python
clearml/backend_interface/task/populate.py
glemarivero/clearml
28b85028fe4da3ab963b69e8ac0f7feef73cfcf6
[ "Apache-2.0" ]
null
null
null
clearml/backend_interface/task/populate.py
glemarivero/clearml
28b85028fe4da3ab963b69e8ac0f7feef73cfcf6
[ "Apache-2.0" ]
null
null
null
clearml/backend_interface/task/populate.py
glemarivero/clearml
28b85028fe4da3ab963b69e8ac0f7feef73cfcf6
[ "Apache-2.0" ]
null
null
null
import json import os from functools import reduce from logging import getLogger from typing import Optional, Sequence, Union, Tuple from six.moves.urllib.parse import urlparse from pathlib2 import Path from ...task import Task from .repo import ScriptInfo class CreateAndPopulate(object): def __init__( self, project_name=None, # Optional[str] task_name=None, # Optional[str] task_type=None, # Optional[str] repo=None, # Optional[str] branch=None, # Optional[str] commit=None, # Optional[str] script=None, # Optional[str] working_directory=None, # Optional[str] packages=None, # Optional[Union[bool, Sequence[str]]] requirements_file=None, # Optional[Union[str, Path]] docker=None, # Optional[str] base_task_id=None, # Optional[str] add_task_init_call=True, # bool raise_on_missing_entries=False, # bool verbose=False, # bool ): # type: (...) -> None """ Create a new Task from an existing code base. If the code does not already contain a call to Task.init, pass add_task_init_call=True, and the code will be patched in remote execution (i.e. when executed by `clearml-agent` :param project_name: Set the project name for the task. Required if base_task_id is None. :param task_name: Set the name of the remote task. Required if base_task_id is None. :param task_type: Optional, The task type to be created. Supported values: 'training', 'testing', 'inference', 'data_processing', 'application', 'monitor', 'controller', 'optimizer', 'service', 'qc', 'custom' :param repo: Remote URL for the repository to use, or path to local copy of the git repository Example: 'https://github.com/allegroai/clearml.git' or '~/project/repo' :param branch: Select specific repository branch/tag (implies the latest commit from the branch) :param commit: Select specific commit id to use (default: latest commit, or when used with local repository matching the local commit id) :param script: Specify the entry point script for the remote execution. When used in tandem with remote git repository the script should be a relative path inside the repository, for example: './source/train.py' . When used with local repository path it supports a direct path to a file inside the local repository itself, for example: '~/project/source/train.py' :param working_directory: Working directory to launch the script from. Default: repository root folder. Relative to repo root or local folder. :param packages: Manually specify a list of required packages. Example: ["tqdm>=2.1", "scikit-learn"] or `True` to automatically create requirements based on locally installed packages (repository must be local). :param requirements_file: Specify requirements.txt file to install when setting the session. If not provided, the requirements.txt from the repository will be used. :param docker: Select the docker image to be executed in by the remote session :param base_task_id: Use a pre-existing task in the system, instead of a local repo/script. Essentially clones an existing task and overrides arguments/requirements. :param add_task_init_call: If True, a 'Task.init()' call is added to the script entry point in remote execution. :param raise_on_missing_entries: If True raise ValueError on missing entries when populating :param verbose: If True print verbose logging """ if len(urlparse(repo).scheme) <= 1: folder = repo repo = None else: folder = None if raise_on_missing_entries and not base_task_id: if not script: raise ValueError("Entry point script not provided") if not repo and not folder and not Path(script).is_file(): raise ValueError("Script file \'{}\' could not be found".format(script)) if raise_on_missing_entries and commit and branch: raise ValueError( "Specify either a branch/tag or specific commit id, not both (either --commit or --branch)") if raise_on_missing_entries and not folder and working_directory and working_directory.startswith('/'): raise ValueError("working directory \'{}\', must be relative to repository root") if requirements_file and not Path(requirements_file).is_file(): raise ValueError("requirements file could not be found \'{}\'") self.folder = folder self.commit = commit self.branch = branch self.repo = repo self.script = script self.cwd = working_directory assert not packages or isinstance(packages, (tuple, list, bool)) self.packages = list(packages) if packages is not None and not isinstance(packages, bool) \ else (packages or None) self.requirements_file = Path(requirements_file) if requirements_file else None self.base_task_id = base_task_id self.docker = docker self.add_task_init_call = add_task_init_call self.project_name = project_name self.task_name = task_name self.task_type = task_type self.task = None self.raise_on_missing_entries = raise_on_missing_entries self.verbose = verbose def create_task(self): # type: () -> Task """ Create the new populated Task :return: newly created Task object """ local_entry_file = None repo_info = None if self.folder or (self.script and Path(self.script).is_file()): self.folder = os.path.expandvars(os.path.expanduser(self.folder)) if self.folder else None self.script = os.path.expandvars(os.path.expanduser(self.script)) if self.script else None self.cwd = os.path.expandvars(os.path.expanduser(self.cwd)) if self.cwd else None if Path(self.script).is_file(): entry_point = self.script else: entry_point = (Path(self.folder) / self.script).as_posix() entry_point = os.path.abspath(entry_point) if not os.path.isfile(entry_point): raise ValueError("Script entrypoint file \'{}\' could not be found".format(entry_point)) local_entry_file = entry_point repo_info, requirements = ScriptInfo.get( filepaths=[entry_point], log=getLogger(), create_requirements=self.packages is True, uncommitted_from_remote=True, detect_jupyter_notebook=False) # check if we have no repository and no requirements raise error if self.raise_on_missing_entries and (not self.requirements_file and not self.packages) \ and not self.repo and ( not repo_info or not repo_info.script or not repo_info.script.get('repository')): raise ValueError("Standalone script detected \'{}\', but no requirements provided".format(self.script)) if self.base_task_id: if self.verbose: print('Cloning task {}'.format(self.base_task_id)) task = Task.clone(source_task=self.base_task_id, project=Task.get_project_id(self.project_name)) else: # noinspection PyProtectedMember task = Task._create( task_name=self.task_name, project_name=self.project_name, task_type=self.task_type or Task.TaskTypes.training) # if there is nothing to populate, return if not any([ self.folder, self.commit, self.branch, self.repo, self.script, self.cwd, self.packages, self.requirements_file, self.base_task_id, self.docker ]): return task task_state = task.export_task() if 'script' not in task_state: task_state['script'] = {} if repo_info: task_state['script']['repository'] = repo_info.script['repository'] task_state['script']['version_num'] = repo_info.script['version_num'] task_state['script']['branch'] = repo_info.script['branch'] task_state['script']['diff'] = repo_info.script['diff'] or '' task_state['script']['working_dir'] = repo_info.script['working_dir'] task_state['script']['entry_point'] = repo_info.script['entry_point'] task_state['script']['binary'] = repo_info.script['binary'] task_state['script']['requirements'] = repo_info.script.get('requirements') or {} if self.cwd: self.cwd = self.cwd cwd = self.cwd if Path(self.cwd).is_dir() else ( Path(repo_info.script['repo_root']) / self.cwd).as_posix() if not Path(cwd).is_dir(): raise ValueError("Working directory \'{}\' could not be found".format(cwd)) cwd = Path(cwd).relative_to(repo_info.script['repo_root']).as_posix() entry_point = \ Path(repo_info.script['repo_root']) / repo_info.script['working_dir'] / repo_info.script[ 'entry_point'] entry_point = entry_point.relative_to(cwd).as_posix() task_state['script']['entry_point'] = entry_point task_state['script']['working_dir'] = cwd elif self.repo: # normalize backslashes and remove first one entry_point = '/'.join([p for p in self.script.split('/') if p and p != '.']) cwd = '/'.join([p for p in (self.cwd or '.').split('/') if p and p != '.']) if cwd and entry_point.startswith(cwd + '/'): entry_point = entry_point[len(cwd) + 1:] task_state['script']['repository'] = self.repo task_state['script']['version_num'] = self.commit or None task_state['script']['branch'] = self.branch or None task_state['script']['diff'] = '' task_state['script']['working_dir'] = cwd or '.' task_state['script']['entry_point'] = entry_point else: # standalone task task_state['script']['entry_point'] = self.script task_state['script']['working_dir'] = '.' # update requirements reqs = [] if self.requirements_file: with open(self.requirements_file.as_posix(), 'rt') as f: reqs = [line.strip() for line in f.readlines()] if self.packages and self.packages is not True: reqs += self.packages if reqs: # make sure we have clearml. clearml_found = False for line in reqs: if line.strip().startswith('#'): continue package = reduce(lambda a, b: a.split(b)[0], "#;@=~<>", line).strip() if package == 'clearml': clearml_found = True break if not clearml_found: reqs.append('clearml') task_state['script']['requirements'] = {'pip': '\n'.join(reqs)} elif not self.repo and repo_info and not repo_info.script.get('requirements'): # we are in local mode, make sure we have "requirements.txt" it is a must reqs_txt_file = Path(repo_info.script['repo_root']) / "requirements.txt" if self.raise_on_missing_entries and not reqs_txt_file.is_file(): raise ValueError( "requirements.txt not found [{}] " "Use --requirements or --packages".format(reqs_txt_file.as_posix())) if self.add_task_init_call: script_entry = os.path.abspath('/' + task_state['script'].get('working_dir', '.') + '/' + task_state['script']['entry_point']) idx_a = 0 # find the right entry for the patch if we have a local file (basically after __future__ if local_entry_file: with open(local_entry_file, 'rt') as f: lines = f.readlines() future_found = -1 for i, line in enumerate(lines): tokens = [t.strip() for t in line.split(' ') if t.strip()] if tokens and tokens[0] in ('import', 'from',): if '__future__' in line: future_found = i else: break if future_found >= 0: idx_a = future_found + 1 task_init_patch = '' if self.repo: # if we do not have requirements, add clearml to the requirements.txt if not reqs: task_init_patch += \ "diff --git a/requirements.txt b/requirements.txt\n" \ "--- a/requirements.txt\n" \ "+++ b/requirements.txt\n" \ "@@ -0,0 +1,1 @@\n" \ "+clearml\n" # Add Task.init call task_init_patch += \ "diff --git a{script_entry} b{script_entry}\n" \ "--- a{script_entry}\n" \ "+++ b{script_entry}\n" \ "@@ -{idx_a},0 +{idx_b},3 @@\n" \ "+from clearml import Task\n" \ "+Task.init()\n" \ "+\n".format( script_entry=script_entry, idx_a=idx_a, idx_b=idx_a + 1) else: # Add Task.init call task_init_patch += \ "from clearml import Task\n" \ "Task.init()\n\n" task_state['script']['diff'] = task_init_patch + task_state['script'].get('diff', '') # set base docker image if provided if self.docker: task.set_base_docker(self.docker) if self.verbose: if task_state['script']['repository']: repo_details = {k: v for k, v in task_state['script'].items() if v and k not in ('diff', 'requirements', 'binary')} print('Repository Detected\n{}'.format(json.dumps(repo_details, indent=2))) else: print('Standalone script detected\n Script: {}'.format(self.script)) if task_state['script'].get('requirements') and \ task_state['script']['requirements'].get('pip'): print('Requirements:{}{}'.format( '\n Using requirements.txt: {}'.format( self.requirements_file.as_posix()) if self.requirements_file else '', '\n {}Packages: {}'.format('Additional ' if self.requirements_file else '', self.packages) if self.packages else '' )) if self.docker: print('Base docker image: {}'.format(self.docker)) # update the Task task.update_task(task_state) self.task = task return task def update_task_args(self, args=None): # type: (Optional[Union[Sequence[str], Sequence[Tuple[str, str]]]]) -> () """ Update the newly created Task argparse Arguments If called before Task created, used for argument verification :param args: Arguments to pass to the remote execution, list of string pairs (argument, value) or list of strings '<argument>=<value>'. Example: ['lr=0.003', (batch_size, 64)] """ if not args: return # check args are in format <key>=<value> args_list = [] for a in args: if isinstance(a, (list, tuple)): assert len(a) == 2 args_list.append(a) continue try: parts = a.split('=', 1) assert len(parts) == 2 args_list.append(parts) except Exception: raise ValueError( "Failed parsing argument \'{}\', arguments must be in \'<key>=<value>\' format") if not self.task: return task_params = self.task.get_parameters() args_list = {'Args/{}'.format(k): v for k, v in args_list} task_params.update(args_list) self.task.set_parameters(task_params) def get_id(self): # type: () -> Optional[str] """ :return: Return the created Task id (str) """ return self.task.id if self.task else None
48.82659
120
0.575352
05c81881b5c765f006e11e8b5944c8bec7c0772b
31,217
py
Python
packages/syft/src/syft/core/tensor/smpc/mpc_tensor.py
souravrhythm/PySyft
08b44682959970ef395c529e92651fa77284124a
[ "Apache-1.1" ]
8,428
2017-08-10T09:17:49.000Z
2022-03-31T08:20:14.000Z
packages/syft/src/syft/core/tensor/smpc/mpc_tensor.py
bayegaspard/PySyft
f92dd6567bb16c6c91f4659e0ba109ad3a0e6cd5
[ "Apache-1.1" ]
4,779
2017-08-09T23:19:00.000Z
2022-03-29T11:49:36.000Z
packages/syft/src/syft/core/tensor/smpc/mpc_tensor.py
bayegaspard/PySyft
f92dd6567bb16c6c91f4659e0ba109ad3a0e6cd5
[ "Apache-1.1" ]
2,307
2017-08-10T08:52:12.000Z
2022-03-30T05:36:07.000Z
# future from __future__ import annotations # stdlib import functools import itertools import secrets from typing import Any from typing import Callable from typing import Dict from typing import Iterable from typing import List from typing import Optional from typing import Tuple from typing import Union # third party import numpy as np import numpy.typing as npt import torch # relative from . import utils from .... import logger from ....ast.klass import get_run_class_method from ....grid import GridURL from ...smpc.protocol.spdz import spdz from ..passthrough import PassthroughTensor # type: ignore from ..passthrough import SupportedChainType # type: ignore from ..util import implements # type: ignore from .share_tensor import ShareTensor METHODS_FORWARD_ALL_SHARES = { "repeat", "copy", "diagonal", "flatten", "transpose", "partition", "resize", "ravel", "compress", "reshape", "squeeze", "swapaxes", "sum", "__pos__", "__neg__", "take", "choose", "cumsum", "trace", } INPLACE_OPS = { "resize", } PARTIES_REGISTER_CACHE: Dict[Any, GridURL] = {} class MPCTensor(PassthroughTensor): __slots__ = ( "seed_przs", "mpc_shape", "parties", "parties_info", "ring_size", ) def __init__( self, parties: List[Any], secret: Optional[Any] = None, shares: Optional[List[ShareTensor]] = None, shape: Optional[Tuple[int, ...]] = None, seed_przs: Optional[int] = None, ring_size: Optional[int] = None, ) -> None: if secret is None and shares is None: raise ValueError("Secret or shares should be populated!") if (shares is not None) and (not isinstance(shares, (tuple, list))): raise ValueError("Shares should be a list or tuple") if seed_przs is None: # Allow the user to specify if they want to use a specific seed when generating the shares # ^This is unsecure and should be used with cautioness seed_przs = secrets.randbits(32) self.seed_przs = seed_przs self.parties = parties self.parties_info = MPCTensor.get_parties_info(parties) if ring_size is not None: self.ring_size = ring_size else: self.ring_size = MPCTensor.get_ring_size_from_secret(secret, shares) self.mpc_shape = shape # TODO: We can get this from the the secret if the secret is local # TODO: https://app.clubhouse.io/openmined/story/1128/tech-debt-for-adp-smpc-demo?stories_sort_by\ # =priority&stories_group_by=WORKFLOW_STATE if shape is None: raise ValueError("Shape of the secret should be known") if secret is not None: shares = MPCTensor._get_shares_from_secret( secret=secret, parties=parties, parties_info=self.parties_info, shape=shape, seed_przs=seed_przs, ring_size=self.ring_size, ) if shares is None: raise ValueError("Shares should not be None at this step") res = list(MPCTensor._mpc_from_shares(shares, parties=parties)) # we need to make sure that when we zip up clients from # multiple MPC tensors that they are in corresponding order # so we always sort all of them by the id of the domain # TODO: store children as lists of dictionaries because eventually # it's likely that we have multiple shares from the same client # (For example, if you wanted a domain to have 90% share ownership # you'd need to produce 10 shares and give 9 of them to the same domain) # TODO captured: https://app.clubhouse.io/openmined/story/1128/tech-debt-for-adp-smpc-\ # demo?stories_sort_by=priority&stories_group_by=WORKFLOW_STATE res.sort(key=lambda share: share.client.name + share.client.id.no_dash) super().__init__(res) @staticmethod def get_ring_size_from_secret( secret: Optional[Any] = None, shares: Optional[List[Any]] = None ) -> int: if secret is None: value = shares[0] # type: ignore else: value = secret if utils.ispointer(value): dtype = getattr(value, "public_dtype", None) else: dtype = getattr(value, "dtype", None) ring_size = utils.TYPE_TO_RING_SIZE.get(dtype, None) if ring_size is not None: return ring_size logger.warning("Ring size was not found! Defaulting to 2**32.") return 2 ** 32 @staticmethod def get_parties_info(parties: Iterable[Any]) -> List[GridURL]: # relative from ....grid.client import GridHTTPConnection parties_info: List[GridURL] = [] for party in parties: connection = party.routes[0].connection if not isinstance(connection, GridHTTPConnection): raise TypeError( f"You tried to pass {type(connection)} for multiplication dependent operation." + "Currently Syft works only with hagrid" + "We apologize for the inconvenience" + "We will add support for local python objects very soon." ) base_url = PARTIES_REGISTER_CACHE.get(party, None) if base_url is None: base_url = connection.base_url PARTIES_REGISTER_CACHE[party] = base_url try: pass # We do not use sy.register, should reenable after fixing. # sy.register( # nosec # name="Howard Wolowtiz", # email="howard@mit.edu", # password="astronaut", # url=url, # port=port, # verbose=False, # ) except Exception: """ """ # TODO : should modify to return same client if registered. # print("Proxy Client already User Register", e) if base_url is not None: parties_info.append(base_url) else: raise Exception( f"Failed to get GridURL from {base_url} for party {party}." ) return parties_info def publish(self, sigma: float) -> MPCTensor: new_shares = [] for share in self.child: share.block for share in self.child: new_share = share.publish(sigma=sigma) new_shares.append(new_share) return MPCTensor( parties=self.parties, shares=new_shares, shape=self.mpc_shape, seed_przs=self.seed_przs, ) @property def shape(self) -> Optional[Tuple[int, ...]]: return self.mpc_shape @staticmethod def _mpc_from_shares( shares: List[ShareTensor], parties: Optional[List[Any]] = None, ) -> List[ShareTensor]: if not isinstance(shares, (list, tuple)): raise ValueError("_mpc_from_shares expected a list or tuple of shares") if utils.ispointer(shares[0]): # Remote shares return shares elif parties is None: raise ValueError( "Parties should not be None if shares are not already sent to parties" ) else: return MPCTensor._mpc_from_local_shares(shares, parties) @staticmethod def _mpc_from_local_shares( shares: List[ShareTensor], parties: List[Any] ) -> List[ShareTensor]: # TODO: ShareTensor needs to have serde serializer/deserializer shares_ptr = [share.send(party) for share, party in zip(shares, parties)] return shares_ptr @staticmethod def _get_shares_from_secret( secret: Any, parties: List[Any], shape: Tuple[int, ...], seed_przs: int, parties_info: List[GridURL], ring_size: int, ) -> List[ShareTensor]: if utils.ispointer(secret): if shape is None: raise ValueError("Shape must be specified when the secret is remote") return MPCTensor._get_shares_from_remote_secret( secret=secret, shape=shape, parties=parties, seed_przs=seed_przs, parties_info=parties_info, ring_size=ring_size, ) return MPCTensor._get_shares_from_local_secret( secret=secret, seed_przs=seed_przs, ring_size=ring_size, shape=shape, parties_info=parties_info, ) @staticmethod def _get_shares_from_remote_secret( secret: Any, shape: Tuple[int, ...], parties: List[Any], seed_przs: int, parties_info: List[GridURL], ring_size: int, ) -> List[ShareTensor]: shares = [] for i, party in enumerate(parties): if secret is not None and party == secret.client: value = secret else: value = None # relative from ..autodp.single_entity_phi import ( TensorWrappedSingleEntityPhiTensorPointer, ) if isinstance(secret, TensorWrappedSingleEntityPhiTensorPointer): share_wrapper = secret.to_local_object_without_private_data_child() share_wrapper_pointer = share_wrapper.send(party) remote_share = party.syft.core.tensor.smpc.share_tensor.ShareTensor.generate_przs_on_dp_tensor( rank=i, parties_info=parties_info, value=value, shape=shape, seed_przs=seed_przs, share_wrapper=share_wrapper_pointer, ring_size=ring_size, ) else: remote_share = ( party.syft.core.tensor.smpc.share_tensor.ShareTensor.generate_przs( rank=i, parties_info=parties_info, value=value, shape=shape, seed_przs=seed_przs, ring_size=ring_size, ) ) shares.append(remote_share) return shares @staticmethod def _get_shares_from_local_secret( secret: Any, shape: Tuple[int, ...], seed_przs: int, parties_info: List[GridURL], ring_size: int = 2 ** 32, ) -> List[ShareTensor]: shares = [] nr_parties = len(parties_info) for i in range(nr_parties): if i == nr_parties - 1: value = secret else: value = None local_share = ShareTensor.generate_przs( rank=i, parties_info=parties_info, value=value, shape=shape, seed_przs=seed_przs, init_clients=False, ring_size=ring_size, ) shares.append(local_share) return shares def request( self, reason: str = "", block: bool = False, timeout_secs: Optional[int] = None, verbose: bool = False, ) -> None: for child in self.child: child.request( reason=reason, block=block, timeout_secs=timeout_secs, verbose=verbose ) @property def block(self) -> "MPCTensor": """Block until all shares have been created.""" for share in self.child: share.block return self def block_with_timeout(self, secs: int, secs_per_poll: int = 1) -> "MPCTensor": """Block until all shares have been created or until timeout expires.""" for share in self.child: share.block_with_timeout(secs=secs, secs_per_poll=secs_per_poll) return self def reconstruct(self) -> np.ndarray: # TODO: It might be that the resulted shares (if we run any computation) might # not be available at this point. We need to have this fail well with a nice # description as to which node wasn't able to be reconstructued. # Captured: https://app.clubhouse.io/openmined/story/1128/tech-debt-for-adp-smpc-demo?\ # stories_sort_by=priority&stories_group_by=WORKFLOW_STATE # for now we need to convert the values coming back to int32 # sometimes they are floats coming from DP def convert_child_numpy_type(tensor: Any, np_type: type) -> Any: if isinstance(tensor, np.ndarray): return np.array(tensor, np_type) if hasattr(tensor, "child"): tensor.child = convert_child_numpy_type( tensor=tensor.child, np_type=np_type ) return tensor dtype = utils.RING_SIZE_TO_TYPE.get(self.ring_size, None) if dtype is None: raise ValueError(f"Type for ring size {self.ring_size} was not found!") for share in self.child: if not share.exists: raise Exception( "One of the shares doesn't exist. This probably means the SMPC " "computation isn't yet complete. Try again in a moment or call .block.reconstruct()" "instead to block until the SMPC operation is complete which creates this variable." ) local_shares = [] for share in self.child: res = share.get() res = convert_child_numpy_type(res, dtype) local_shares.append(res) is_share_tensor = isinstance(local_shares[0], ShareTensor) if is_share_tensor: local_shares = [share.child for share in local_shares] result = local_shares[0] op = ShareTensor.get_op(self.ring_size, "add") for share in local_shares[1:]: result = op(result, share) if hasattr(result, "child") and isinstance(result.child, ShareTensor): return result.child.child return result get = reconstruct @staticmethod def hook_method(__self: MPCTensor, method_name: str) -> Callable[..., Any]: """Hook a framework method. Args: method_name (str): method to hook Returns: A hooked method """ def method_all_shares( _self: MPCTensor, *args: List[Any], **kwargs: Dict[Any, Any] ) -> Any: shares = [] for share in _self.child: method = getattr(share, method_name) new_share = method(*args, **kwargs) shares.append(new_share) # TODO: generalize type after fixed precision dummy_res = np.random.randint( _self.mpc_shape[0], size=_self.mpc_shape, dtype=np.int32 # type: ignore ) if method_name not in INPLACE_OPS: dummy_res = getattr(dummy_res, method_name)(*args, **kwargs) else: getattr(dummy_res, method_name)(*args, **kwargs) new_shape = dummy_res.shape res = MPCTensor(parties=_self.parties, shares=shares, shape=new_shape) return res return functools.partial(method_all_shares, __self) def __getattribute__(self, attr_name: str) -> Any: if attr_name in METHODS_FORWARD_ALL_SHARES: return MPCTensor.hook_method(self, attr_name) return object.__getattribute__(self, attr_name) @staticmethod def reshare(mpc_tensor: MPCTensor, parties: Iterable[Any]) -> MPCTensor: """Reshare a given secret to a superset of parties. Args: mpc_tensor(MPCTensor): input MPCTensor to reshare. parties(List[Any]): Input parties List. Returns: res_mpc(MPCTensor): Reshared MPCTensor. Raises: ValueError: If the input MPCTensor and input parties are same. Note: We provide an additional layer of abstraction such that, when computation is performed on data belonging to different parties The underlying secret are automatically converted into secret shares of their input. Assume there are two parties Parties P1,P2 tensor_1 = data_pointer_1 (party 1 data) tensor_2 = data_pointer_2 (party 2 data) result -------> tensor_1+ tensor_1 (local computation as the data belongs to the same party) Interesting scenario is when result --------> tensor_1+tensor_2 Each tensor belongs to two different parties. There are automatically secret shared without the user knowing that a MPCTensor is being created underneath. """ mpc_parties = set(mpc_tensor.parties) parties = set(parties) shape = mpc_tensor.shape seed_przs = mpc_tensor.seed_przs client_map = {share.client: share for share in mpc_tensor.child} if mpc_parties == parties: raise ValueError( "Input parties for resharing are same as the input parties." ) parties_info = MPCTensor.get_parties_info(parties) shares = [client_map.get(party) for party in parties] for i, party in enumerate(parties): shares[ i ] = party.syft.core.tensor.smpc.share_tensor.ShareTensor.generate_przs( rank=i, parties_info=parties_info, value=shares[i], shape=shape, seed_przs=seed_przs, ring_size=mpc_tensor.ring_size, ) res_mpc = MPCTensor(shares=shares, ring_size=mpc_tensor.ring_size, shape=shape, parties=parties) # type: ignore return res_mpc @staticmethod def sanity_checks(mpc_tensor: MPCTensor, other: Any) -> Tuple[MPCTensor, Any]: """Performs sanity checks to share data to whole superset of parites involved. Args: mpc_tensor(MPCTensor): input MPCTensor to perform sanity check on. other (Any): input operand. Returns: Tuple[MPCTensor,Any]: Rehared Tensor values. """ if utils.ispointer(other): parties = mpc_tensor.parties client = other.client public_shape = other.public_shape if public_shape is None: # TODO: Should be modified after Trask's Synthetic data PR. raise ValueError("The input tensor pointer should have public shape.") if client not in parties: new_parties = [client] new_parties += parties mpc_tensor = MPCTensor.reshare(mpc_tensor, new_parties) other = MPCTensor(secret=other, parties=new_parties, shape=public_shape) elif isinstance(other, MPCTensor): p1 = set(mpc_tensor.parties) # parties in first MPCTensor p2 = set(other.parties) # parties in second MPCTensor. if p1 != p2: parties_union = p1.union(p2) mpc_tensor = ( MPCTensor.reshare(mpc_tensor, parties_union) if p1 != parties_union else mpc_tensor ) other = ( MPCTensor.reshare(other, parties_union) if p2 != parties_union else other ) return mpc_tensor, other def __apply_private_op( self, other: MPCTensor, op_str: str, **kwargs: Dict[Any, Any] ) -> List[ShareTensor]: # relative from ..tensor import TensorPointer op_method = f"__{op_str}__" if op_str in {"add", "sub"}: if len(self.child) != len(other.child): raise ValueError( "Zipping two different lengths will drop data. " + f"{len(self.child)} vs {len(other.child)}" ) if not isinstance(self.child[0], TensorPointer): res_shares = [ getattr(a, op_method)(a, b, **kwargs) for a, b in zip(self.child, other.child) ] else: res_shares = [] attr_path_and_name = f"{self.child[0].path_and_name}.__{op_str}__" op = get_run_class_method(attr_path_and_name, SMPC=True) for x, y in zip(self.child, other.child): res_shares.append(op(x, x, y, **kwargs)) else: raise ValueError(f"MPCTensor Private {op_str} not supported") return res_shares def __apply_public_op( self, y: Any, op_str: str, **kwargs: Dict[Any, Any] ) -> List[ShareTensor]: # relative from ..tensor import TensorPointer op_method = f"__{op_str}__" if op_str in {"mul", "matmul", "add", "sub"}: if not isinstance(self.child[0], TensorPointer): res_shares = [ getattr(share, op_method)(share, y, **kwargs) for share in self.child ] else: res_shares = [] attr_path_and_name = f"{self.child[0].path_and_name}.__{op_str}__" op = get_run_class_method(attr_path_and_name, SMPC=True) for share in self.child: res_shares.append(op(share, share, y, **kwargs)) else: raise ValueError(f"MPCTensor Public {op_str} not supported") return res_shares def __apply_op( self, y: Union[int, float, torch.Tensor, np.ndarray, MPCTensor], op_str: str, ) -> MPCTensor: """Apply an operation on "self" which is a MPCTensor "y". This function checks if "y" is private or public value. Args: y (Union[int, float, torch.Tensor, np.ndarray, MPCTensor]: tensor to apply the operation. op_str (str): the operation. Returns: MPCTensor. the operation "op_str" applied on "self" and "y" """ x, y = MPCTensor.sanity_checks(self, y) kwargs: Dict[Any, Any] = {"seed_id_locations": secrets.randbits(64)} if isinstance(y, MPCTensor): result = x.__apply_private_op(y, op_str, **kwargs) y_ring_size = y.ring_size else: result = x.__apply_public_op(y, op_str, **kwargs) y_ring_size = MPCTensor.get_ring_size_from_secret(y) if self.ring_size != y_ring_size: raise ValueError( f"Ring size mismatch between self {self.ring_size} and other {y_ring_size}" ) y_shape = getattr(y, "shape", (1,)) shape = utils.get_shape(op_str, self.shape, y_shape) ring_size = utils.get_ring_size(self.ring_size, y_ring_size) result = MPCTensor( shares=result, shape=shape, ring_size=ring_size, parties=x.parties ) return result def add( self, y: Union[int, float, np.ndarray, torch.tensor, MPCTensor] ) -> MPCTensor: """Apply the "add" operation between "self" and "y". Args: y (Union[MPCTensor, torch.Tensor, float, int]): self + y Returns: MPCTensor. Result of the operation. """ res = self.__apply_op(y, "add") return res def sub(self, y: MPCTensor) -> MPCTensor: res = self.__apply_op(y, "sub") return res def rsub(self, y: MPCTensor) -> MPCTensor: new_self = self * (-1) res = new_self.__apply_op(y, "add") return res def mul( self, y: Union[int, float, np.ndarray, torch.tensor, MPCTensor] ) -> MPCTensor: # relative from ..tensor import TensorPointer self, y = MPCTensor.sanity_checks(self, y) kwargs: Dict[Any, Any] = {"seed_id_locations": secrets.randbits(64)} op = "__mul__" res_shares: List[Any] = [] if isinstance(y, MPCTensor): res_shares = spdz.mul_master(self, y, "mul", **kwargs) else: if not isinstance(self.child[0], TensorPointer): res_shares = [ getattr(a, op)(a, b, **kwargs) for a, b in zip(self.child, itertools.repeat(y)) # type: ignore ] else: attr_path_and_name = f"{self.child[0].path_and_name}.__mul__" tensor_op = get_run_class_method(attr_path_and_name, SMPC=True) for share in self.child: res_shares.append(tensor_op(share, share, y, **kwargs)) y_shape = getattr(y, "shape", (1,)) new_shape = utils.get_shape("mul", self.mpc_shape, y_shape) res = MPCTensor( parties=self.parties, shares=res_shares, shape=new_shape, ring_size=self.ring_size, ) return res def lt( self, y: Union[int, float, np.ndarray, torch.tensor, MPCTensor] ) -> MPCTensor: mpc_res = spdz.lt_master(self, y, "mul") # type: ignore return mpc_res def gt( self, y: Union[int, float, np.ndarray, torch.tensor, MPCTensor] ) -> MPCTensor: mpc_res = MPCTensor.lt(y, self) # type: ignore return mpc_res def ge( self, y: Union[int, float, np.ndarray, torch.tensor, MPCTensor] ) -> MPCTensor: mpc_res = 1 - MPCTensor.lt(self, y) return mpc_res # type: ignore def le( self, y: Union[int, float, np.ndarray, torch.tensor, MPCTensor] ) -> MPCTensor: mpc_res = 1 - MPCTensor.lt(y, self) # type: ignore return mpc_res # type: ignore def eq( self, y: Union[int, float, np.ndarray, torch.tensor, MPCTensor] ) -> MPCTensor: # TODO: Should make two comparisons parallel mpc_res = MPCTensor.le(self, y) - MPCTensor.lt(self, y) return mpc_res def ne( self, y: Union[int, float, np.ndarray, torch.tensor, MPCTensor] ) -> MPCTensor: mpc_res = 1 - MPCTensor.eq(self, y) return mpc_res # type: ignore def matmul( self, y: Union[int, float, np.ndarray, torch.tensor, "MPCTensor"] ) -> MPCTensor: """Apply the "matmul" operation between "self" and "y" Args: y (Union[int, float, np.ndarray, torch.tensor, "MPCTensor"]): self @ y Returns: MPCTensor: Result of the opeartion. """ if isinstance(y, ShareTensor): raise ValueError("Private matmul not supported yet") res = self.__apply_op(y, "matmul") return res def put( self, indices: npt.ArrayLike, values: npt.ArrayLike, mode: Optional[str] = "raise", ) -> MPCTensor: """Performs Numpy put operation on the underlying ShareTensors. Args: indices (npt.ArrayLike): Target indices, interpreted as integers. values (npt.ArrayLike): Values to place at target indices. mode (Optional[str]): Specifies how out-of-bounds indices will behave. Returns: res (MPCTensor): Result of the operation. """ shares = [] shares.append(self.child[0].put(indices, values, mode)) # since the value is public we assign directly to prevent overhead of random share creation. zero = np.zeros_like(values) for share in self.child[1::]: shares.append(share.put(indices, zero.copy(), mode)) res = MPCTensor(shares=shares, parties=self.parties, shape=self.shape) return res def sign(self) -> MPCTensor: """Calculate sign of given tensor. Returns: MPCTensor: with computed sign. """ res: MPCTensor = 2 * (self > 0) - 1 # type: ignore return res def __abs__(self) -> MPCTensor: """Calculates absolute value of MPCTensor. Returns: MPCTensor: computed absolute values of underlying tensor. """ return self * self.sign() def __pow__(self, power: int) -> MPCTensor: """Compute integer power of a number iteratively using mul. - Divide power by 2 and multiply base to itself (if the power is even) - Decrement power by 1 to make it even and then follow the first step Args: power (int): integer value to apply the Returns: MPCTensor: Result of the pow operation Raises: RuntimeError: if negative power is given """ # TODO: Implement after we have reciprocal function. if power < 0: raise RuntimeError("Negative integer powers not supported yet.") base = self # TODO: should modify for general ring sizes. result = np.ones(shape=self.shape, dtype=np.int32) while power > 0: # If power is odd if power % 2 == 1: result = base * result result.block # Divide the power by 2 power = power // 2 # Multiply base to itself base = base * base base.block return result def __str__(self) -> str: res = "MPCTensor" for share in self.child: res = f"{res}\n\t{share}" return res @property def synthetic(self) -> np.ndarray: # TODO finish. max_vals and min_vals not available at present. return ( np.random.rand(*list(self.shape)) * (self.max_vals - self.min_vals) # type: ignore + self.min_vals ).astype(self.public_dtype) def __repr__(self) -> str: # out = self.synthetic.__repr__() # out += "\n\n (The data printed above is synthetic - it's an imitation of the real data.)" out = "" out += "\n\nMPCTensor" out += ".shape=" + str(self.shape) + "\n" for i, child in enumerate(self.child): out += f"\t .child[{i}] = " + child.__repr__() + "\n" out = out[:-1] + "" return out __add__ = add __radd__ = add __sub__ = sub __rsub__ = rsub __mul__ = mul __rmul__ = mul __matmul__ = matmul __lt__ = lt __gt__ = gt __ge__ = ge __le__ = le __eq__ = eq __ne__ = ne @implements(MPCTensor, np.add) def add(x: np.ndarray, y: MPCTensor) -> SupportedChainType: return y.add(x) @implements(MPCTensor, np.subtract) def sub(x: np.ndarray, y: MPCTensor) -> SupportedChainType: return y.rsub(x) @implements(MPCTensor, np.multiply) def mul(x: np.ndarray, y: MPCTensor) -> SupportedChainType: return y.mul(x) # @implements(MPCTensor, np.greater) # def mul(x: np.ndarray, y: MPCTensor) -> SupportedChainType: # return y.gt(x)
33.280384
120
0.572925
b46d7aaf79ad7c30dae4a1a8ee7f51facaac5943
1,381
py
Python
HTC_lib/VASP/KPOINTS/Write_HSE06_band_str_KPOINTS.py
bitsoal/VASP_HTC_framework
e947227f238fc3ff4d950c1e5fd0a4995b9bf3eb
[ "MIT" ]
10
2018-03-06T01:27:53.000Z
2021-12-03T07:27:33.000Z
HTC_lib/VASP/KPOINTS/Write_HSE06_band_str_KPOINTS.py
bitsoal/VASP_HTC_framework
e947227f238fc3ff4d950c1e5fd0a4995b9bf3eb
[ "MIT" ]
null
null
null
HTC_lib/VASP/KPOINTS/Write_HSE06_band_str_KPOINTS.py
bitsoal/VASP_HTC_framework
e947227f238fc3ff4d950c1e5fd0a4995b9bf3eb
[ "MIT" ]
5
2018-03-06T02:08:58.000Z
2021-08-18T02:12:40.000Z
# coding: utf-8 # In[5]: import re, os, sys # In[21]: def read_band_str_kpoints_from_OUTCAR(cal_loc): kpoint_list = [] with open(os.path.join(cal_loc, "OUTCAR"), "r") as f: for line in f: if "k-point" in line and 'plane waves' in line: kpoint = line.split(":")[1].split("plane waves")[0] kpoint_list.append(re.findall("-*[\.0-9]+", kpoint)) return kpoint_list def read_scf_IBZKPT(cal_loc): with open(os.path.join(cal_loc, "IBZKPT"), "r") as f: kpoint_list = [line.strip() for line in f if line.strip()] no_of_kpoints = int(kpoint_list[1]) #import pprint #pprint.pprint(kpoint_list[:no_of_kpoints+3]) return kpoint_list[:no_of_kpoints+3] # In[22]: def write_HSE06_band_str_KPOINTS(IBZKPT, band_str_KPT): IBZKPT[1] = str(int(IBZKPT[1]) + len(band_str_KPT)) with open("KPOINTS", "w") as f: for line in IBZKPT: f.write(line + "\n") for line in band_str_KPT: f.write("{} {} {} ".format(*line) + "0\n") # In[23]: if __name__ == '__main__': #IBZKPT = read_scf_IBZKPT("data") #band_str_KPT = read_band_str_kpoints_from_OUTCAR("data/") IBZKPT = read_scf_IBZKPT(sys.argv[1]) band_str_KPT = read_band_str_kpoints_from_OUTCAR(sys.argv[2]) write_HSE06_band_str_KPOINTS(IBZKPT, band_str_KPT)
26.056604
68
0.615496
95949b0241062b4801ccad8a0bbd993c9735e0cb
502
py
Python
Python/5KYU/MaximumSubArraySum.py
CasperKristiansson/Code-Wars-Challenges
5ffe276d2c30c42349dfa1482b2bdf14782ce43e
[ "MIT" ]
null
null
null
Python/5KYU/MaximumSubArraySum.py
CasperKristiansson/Code-Wars-Challenges
5ffe276d2c30c42349dfa1482b2bdf14782ce43e
[ "MIT" ]
null
null
null
Python/5KYU/MaximumSubArraySum.py
CasperKristiansson/Code-Wars-Challenges
5ffe276d2c30c42349dfa1482b2bdf14782ce43e
[ "MIT" ]
null
null
null
# https://www.codewars.com/kata/54521e9ec8e60bc4de000d6c/train/python def max_sequence(arr): total = 0 for i in range(len(arr)): for j in range(len(arr), -1, -1): if(sum(arr[i:j + 1]) > total): total = sum(arr[i:j + 1]) return total # Other solutions with O(n) time complexity def maxSequence(arr): maxl = 0 maxg = 0 for n in arr: maxl = max(0, maxl + n) maxg = max(maxg, maxl) print(maxl, maxg) return maxg
25.1
69
0.557769
ebea0040ccf72c6b0fe73cc7514aea5681a38acb
2,060
py
Python
setup.py
raviraina/pybagit
86ac67038f57d350dd823c0878328376554b2838
[ "MIT" ]
null
null
null
setup.py
raviraina/pybagit
86ac67038f57d350dd823c0878328376554b2838
[ "MIT" ]
null
null
null
setup.py
raviraina/pybagit
86ac67038f57d350dd823c0878328376554b2838
[ "MIT" ]
1
2021-06-07T19:26:01.000Z
2021-06-07T19:26:01.000Z
try: from setuptools import setup, find_packages except ImportError: from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages longdesc = """ PyBagIt Version 1.5.3 This module helps with creating an managing BagIt-compliant packages. It has been created to conform to BagIt v0.97. Documentation is available at http://ahankinson.github.io/pybagit. Code hosting is available on GitHub at http://github.com/ahankinson/pybagit/. Requirements ------------ Tested with Python 2.6+ (2.5 or lower will not work.) No external modules required. Module has not been tested on Windows. Running Tests ------------- There are a number of unit tests written to verify that this module functions as expected. To run this, simply type python setup.py test in the package directory. NOTE: You will need a network connection to verify the 'fetch' tests. If you don't have a network connection you can skip these tests by commenting them out in 'bagtest.py' Setup and Install ----------------- To install this module, simply run: python setup.py install You can also install it with easy_install: easy_install pybagit (you may need to run these commands as a privileged user, e.g. 'sudo') """ setup( name="pybagit", long_description=longdesc, version="1.5.3", url="http://ahankinson.github.io/pybagit", author="Andrew Hankinson", author_email="andrew.hankinson@mail.mcgill.ca", license="http://www.opensource.org/licenses/mit-license.php", packages=find_packages(exclude=["ez_setup"]), classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Information Technology", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Internet", "Topic :: Software Development :: Libraries", "Topic :: System :: Archiving :: Packaging", ], include_package_data=True, description="A library for dealing with BagIt packages.", test_suite="bagtest", )
27.837838
77
0.707282
9d7c00120a66fb09c07e5619c2544cbe96451947
135,435
py
Python
src/sage/plot/plot.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
3
2019-07-15T13:48:24.000Z
2019-11-08T12:31:43.000Z
src/sage/plot/plot.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
2
2018-10-30T13:40:20.000Z
2020-07-23T12:13:30.000Z
src/sage/plot/plot.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
1
2020-07-23T10:29:58.000Z
2020-07-23T10:29:58.000Z
r""" 2D Plotting Sage provides extensive 2D plotting functionality. The underlying rendering is done using the matplotlib Python library. The following graphics primitives are supported: - :func:`~sage.plot.arrow.arrow` - an arrow from a min point to a max point. - :func:`~sage.plot.circle.circle` - a circle with given radius - :func:`~sage.plot.ellipse.ellipse` - an ellipse with given radii and angle - :func:`~sage.plot.arc.arc` - an arc of a circle or an ellipse - :func:`~sage.plot.disk.disk` - a filled disk (i.e. a sector or wedge of a circle) - :func:`~sage.plot.line.line` - a line determined by a sequence of points (this need not be straight!) - :func:`~sage.plot.point.point` - a point - :func:`~sage.plot.text.text` - some text - :func:`~sage.plot.polygon.polygon` - a filled polygon The following plotting functions are supported: - :func:`plot` - plot of a function or other Sage object (e.g., elliptic curve). - :func:`parametric_plot` - :func:`~sage.plot.contour_plot.implicit_plot` - :func:`polar_plot` - :func:`~sage.plot.contour_plot.region_plot` - :func:`list_plot` - :func:`~sage.plot.scatter_plot.scatter_plot` - :func:`~sage.plot.bar_chart.bar_chart` - :func:`~sage.plot.contour_plot.contour_plot` - :func:`~sage.plot.density_plot.density_plot` - :func:`~sage.plot.plot_field.plot_vector_field` - :func:`~sage.plot.plot_field.plot_slope_field` - :func:`~sage.plot.matrix_plot.matrix_plot` - :func:`~sage.plot.complex_plot.complex_plot` - :func:`graphics_array` - The following log plotting functions: - :func:`plot_loglog` - :func:`plot_semilogx` and :func:`plot_semilogy` - :func:`list_plot_loglog` - :func:`list_plot_semilogx` and :func:`list_plot_semilogy` The following miscellaneous Graphics functions are included: - :func:`Graphics` - :func:`is_Graphics` - :func:`~sage.plot.colors.hue` Type ``?`` after each primitive in Sage for help and examples. EXAMPLES: We draw a curve:: sage: plot(x^2, (x,0,5)) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**2, (x,0,5)) sphinx_plot(g) We draw a circle and a curve:: sage: circle((1,1), 1) + plot(x^2, (x,0,5)) Graphics object consisting of 2 graphics primitives .. PLOT:: g = circle((1,1), 1) + plot(x**2, (x,0,5)) sphinx_plot(g) Notice that the aspect ratio of the above plot makes the plot very tall because the plot adopts the default aspect ratio of the circle (to make the circle appear like a circle). We can change the aspect ratio to be what we normally expect for a plot by explicitly asking for an 'automatic' aspect ratio:: sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), aspect_ratio='automatic') The aspect ratio describes the apparently height/width ratio of a unit square. If you want the vertical units to be twice as big as the horizontal units, specify an aspect ratio of 2:: sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), aspect_ratio=2) The ``figsize`` option adjusts the figure size. The default figsize is 4. To make a figure that is roughly twice as big, use ``figsize=8``:: sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), figsize=8) You can also give separate horizontal and vertical dimensions. Both will be measured in inches:: sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), figsize=[4,8]) However, do not make the figsize too big (e.g. one dimension greater than 327 or both in the mid-200s) as this will lead to errors or crashes. See :meth:`~sage.plot.graphics.Graphics.show` for full details. Note that the axes will not cross if the data is not on both sides of both axes, even if it is quite close:: sage: plot(x^3, (x,1,10)) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**3, (x,1,10)) sphinx_plot(g) When the labels have quite different orders of magnitude or are very large, scientific notation (the `e` notation for powers of ten) is used:: sage: plot(x^2, (x,480,500)) # no scientific notation Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**2, (x,480,500)) sphinx_plot(g) :: sage: plot(x^2, (x,300,500)) # scientific notation on y-axis Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**2, (x,300,500)) sphinx_plot(g) But you can fix your own tick labels, if you know what to expect and have a preference:: sage: plot(x^2, (x,300,500), ticks=[100,50000]) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**2, (x,300,500), ticks=[100,50000]) sphinx_plot(g) To change the ticks on one axis only, use the following notation:: sage: plot(x^2, (x,300,500), ticks=[None,50000]) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**2, (x,300,500), ticks=[None,50000]) sphinx_plot(g) You can even have custom tick labels along with custom positioning. :: sage: plot(x^2, (x,0,3), ticks=[[1,2.5],pi/2], tick_formatter=[["$x_1$","$x_2$"],pi]) # long time Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**2, (x,0,3), ticks=[[1,2.5],pi/2], tick_formatter=[["$x_1$","$x_2$"],pi]) sphinx_plot(g) We construct a plot involving several graphics objects:: sage: G = plot(cos(x), (x, -5, 5), thickness=5, color='green', title='A plot') sage: P = polygon([[1,2], [5,6], [5,0]], color='red') sage: G + P Graphics object consisting of 2 graphics primitives .. PLOT:: G = plot(cos(x), (x, -5, 5), thickness=5, color='green', title='A plot') P = polygon([[1,2], [5,6], [5,0]], color='red') sphinx_plot(G + P) Next we construct the reflection of the above polygon about the `y`-axis by iterating over the list of first-coordinates of the first graphic element of ``P`` (which is the actual Polygon; note that ``P`` is a Graphics object, which consists of a single polygon):: sage: Q = polygon([(-x,y) for x,y in P[0]], color='blue') sage: Q # show it Graphics object consisting of 1 graphics primitive .. PLOT:: P = polygon([[1,2], [5,6], [5,0]], color='red') Q = polygon([(-x,y) for x,y in P[0]], color='blue') sphinx_plot(Q) We combine together different graphics objects using "+":: sage: H = G + P + Q sage: print(H) Graphics object consisting of 3 graphics primitives sage: type(H) <class 'sage.plot.graphics.Graphics'> sage: H[1] Polygon defined by 3 points sage: list(H[1]) [(1.0, 2.0), (5.0, 6.0), (5.0, 0.0)] sage: H # show it Graphics object consisting of 3 graphics primitives .. PLOT:: G = plot(cos(x), (x, -5, 5), thickness=5, color='green', title='A plot') P = polygon([[1,2], [5,6], [5,0]], color='red') Q = polygon([(-x,y) for x,y in P[0]], color='blue') H = G + P + Q sphinx_plot(H) We can put text in a graph:: sage: L = [[cos(pi*i/100)^3,sin(pi*i/100)] for i in range(200)] sage: p = line(L, rgbcolor=(1/4,1/8,3/4)) sage: t = text('A Bulb', (1.5, 0.25)) sage: x = text('x axis', (1.5,-0.2)) sage: y = text('y axis', (0.4,0.9)) sage: g = p+t+x+y sage: g.show(xmin=-1.5, xmax=2, ymin=-1, ymax=1) .. PLOT:: L = [[cos(pi*i/100)**3,sin(pi*i/100)] for i in range(200)] p = line(L, rgbcolor=(1.0/4.0,1.0/8.0,3.0/4.0)) t = text('A Bulb', (1.5, 0.25)) x = text('x axis', (1.5,-0.2)) y = text('y axis', (0.4,0.9)) g = p+t+x+y g.xmin(-1.5) g.xmax(2) g.ymin(-1) g.ymax(1) sphinx_plot(g) We can add a title to a graph:: sage: x = var('x') sage: plot(x^2, (x,-2,2), title='A plot of $x^2$') Graphics object consisting of 1 graphics primitive .. PLOT:: g=plot(x**2, (x,-2,2), title='A plot of $x^2$') sphinx_plot(g) We can set the position of the title:: sage: plot(x^2, (-2,2), title='Plot of $x^2$', title_pos=(0.5,-0.05)) Graphics object consisting of 1 graphics primitive .. PLOT:: g=plot(x**2, (-2,2), title='Plot of $x^2$', title_pos=(0.5,-0.05)) sphinx_plot(g) We plot the Riemann zeta function along the critical line and see the first few zeros:: sage: i = CDF.0 # define i this way for maximum speed. sage: p1 = plot(lambda t: arg(zeta(0.5+t*i)), 1, 27, rgbcolor=(0.8,0,0)) sage: p2 = plot(lambda t: abs(zeta(0.5+t*i)), 1, 27, color=hue(0.7)) sage: print(p1 + p2) Graphics object consisting of 2 graphics primitives sage: p1 + p2 # display it Graphics object consisting of 2 graphics primitives .. PLOT:: from sage.rings.complex_double import ComplexDoubleElement i = ComplexDoubleElement(0,1) # define i this way for maximum speed. p1 = plot(lambda t: arg(zeta(0.5+t*i)), 1, 27, rgbcolor=(0.8,0,0)) p2 = plot(lambda t: abs(zeta(0.5+t*i)), 1, 27, color=hue(0.7)) g = p1 + p2 sphinx_plot(g) .. NOTE:: Not all functions in Sage are symbolic. When plotting non-symbolic functions they should be wrapped in ``lambda``:: sage: plot(lambda x:fibonacci(round(x)), (x,1,10)) Graphics object consisting of 1 graphics primitive .. PLOT:: g=plot(lambda x:fibonacci(round(x)), (x,1,10)) sphinx_plot(g) Many concentric circles shrinking toward the origin:: sage: show(sum(circle((i,0), i, hue=sin(i/10)) for i in [10,9.9,..,0])) # long time .. PLOT:: g = sum(circle((i,0), i, hue=sin(i/10)) for i in srange(0,10,0.1)) sphinx_plot(g) Here is a pretty graph:: sage: g = Graphics() sage: for i in range(60): ....: p = polygon([(i*cos(i),i*sin(i)), (0,i), (i,0)],\ ....: color=hue(i/40+0.4), alpha=0.2) ....: g = g + p sage: g.show(dpi=200, axes=False) .. PLOT:: g=Graphics() for i in range(60): # i/40 doesn't convert to real number p = polygon([(i*cos(i),i*sin(i)), (0,i), (i,0)],\ color=hue(0.025*i+0.4), alpha=0.2) g = g + p g.axes(False) sphinx_plot(g) Another graph:: sage: x = var('x') sage: P = plot(sin(x)/x, -4, 4, color='blue') + \ ....: plot(x*cos(x), -4, 4, color='red') + \ ....: plot(tan(x), -4, 4, color='green') sage: P.show(ymin=-pi, ymax=pi) .. PLOT:: g = plot(sin(x)/x, -4, 4, color='blue') + \ plot(x*cos(x), -4, 4, color='red') + \ plot(tan(x), -4, 4, color='green') g.ymin(-pi) g.ymax(pi) sphinx_plot(g) PYX EXAMPLES: These are some examples of plots similar to some of the plots in the PyX (http://pyx.sourceforge.net) documentation: Symbolline:: sage: y(x) = x*sin(x^2) sage: v = [(x, y(x)) for x in [-3,-2.95,..,3]] sage: show(points(v, rgbcolor=(0.2,0.6, 0.1), pointsize=30) + plot(spline(v), -3.1, 3)) .. PLOT:: #y(x)=x*sin(x**2) gave SyntaxError: can't assign to function call def y(x): return x*sin(x**2) v=list() for x in srange(-3,3,0.05): v.append((x, y(x))) g = points(v, rgbcolor=(0.2,0.6, 0.1), pointsize=30) + plot(spline(v), -3.1, 3) sphinx_plot(g) Cycliclink:: sage: x = var('x') sage: g1 = plot(cos(20*x)*exp(-2*x), 0, 1) sage: g2 = plot(2*exp(-30*x) - exp(-3*x), 0, 1) sage: show(graphics_array([g1, g2], 2, 1), xmin=0) .. PLOT:: g1 = plot(cos(20*x)*exp(-2*x), 0, 1) g2 = plot(2*exp(-30*x) - exp(-3*x), 0, 1) g = graphics_array([g1, g2], 2, 1) sphinx_plot(g) Pi Axis:: sage: g1 = plot(sin(x), 0, 2*pi) sage: g2 = plot(cos(x), 0, 2*pi, linestyle="--") sage: (g1+g2).show(ticks=pi/6, tick_formatter=pi) # long time # show their sum, nicely formatted .. PLOT:: g1 = plot(sin(x), 0, 2*pi, ticks=pi/6, tick_formatter=pi) g2 = plot(cos(x), 0, 2*pi, linestyle="--", ticks=pi/6, tick_formatter=pi) sphinx_plot(g1+g2) An illustration of integration:: sage: f(x) = (x-3)*(x-5)*(x-7)+40 sage: P = line([(2,0),(2,f(2))], color='black') sage: P += line([(8,0),(8,f(8))], color='black') sage: P += polygon([(2,0),(2,f(2))] + [(x, f(x)) for x in [2,2.1,..,8]] + [(8,0),(2,0)], rgbcolor=(0.8,0.8,0.8),aspect_ratio='automatic') sage: P += text("$\\int_{a}^b f(x) dx$", (5, 20), fontsize=16, color='black') sage: P += plot(f, (1, 8.5), thickness=3) sage: P # show the result Graphics object consisting of 5 graphics primitives .. PLOT:: #inline f substitution to avoid SyntaxError: can't assign to function call in sphinx_plot def f(x): return (x-3)*(x-5)*(x-7)+40 P = line([(2,0),(2,f(2))], color='black') P = P + line([(8,0),(8,f(8))], color='black') L = list(((2,0), (2,f(2)))) for i in srange(2,8.1,0.1): L.append((i,f(i))) L.append((8,0)) L.append((2,0)) P = P + polygon(L, rgbcolor=(0.8,0.8,0.8), aspect_ratio='automatic') P = P + text("$\\int_{a}^b f(x) dx$", (5, 20), fontsize=16, color='black') P = P + plot(f, (1, 8.5), thickness=3) sphinx_plot(P) NUMERICAL PLOTTING: Sage includes Matplotlib, which provides 2D plotting with an interface that is a likely very familiar to people doing numerical computation. You can use ``plt.clf()`` to clear the current image frame and ``plt.close()`` to close it. For example, :: sage: import pylab as plt sage: t = plt.arange(0.0, 2.0, 0.01) sage: s = sin(2*pi*t) sage: P = plt.plot(t, s, linewidth=1.0) sage: xl = plt.xlabel('time (s)') sage: yl = plt.ylabel('voltage (mV)') sage: t = plt.title('About as simple as it gets, folks') sage: plt.grid(True) sage: plt.savefig(os.path.join(SAGE_TMP, 'sage.png')) sage: plt.clf() sage: plt.savefig(os.path.join(SAGE_TMP, 'blank.png')) sage: plt.close() sage: plt.imshow([[1,2],[0,1]]) <matplotlib.image.AxesImage object at ...> We test that ``imshow`` works as well, verifying that :trac:`2900` is fixed (in Matplotlib). :: sage: plt.imshow([[(0.0,0.0,0.0)]]) <matplotlib.image.AxesImage object at ...> sage: plt.savefig(os.path.join(SAGE_TMP, 'foo.png')) Since the above overwrites many Sage plotting functions, we reset the state of Sage, so that the examples below work! :: sage: reset() See http://matplotlib.sourceforge.net for complete documentation about how to use Matplotlib. TESTS: We test dumping and loading a plot. :: sage: p = plot(sin(x), (x, 0,2*pi)) sage: Q = loads(dumps(p)) Verify that a clean sage startup does *not* import matplotlib:: sage: os.system("sage -c \"if 'matplotlib' in sys.modules: sys.exit(1)\"") # long time 0 AUTHORS: - Alex Clemesha and William Stein (2006-04-10): initial version - David Joyner: examples - Alex Clemesha (2006-05-04) major update - William Stein (2006-05-29): fine tuning, bug fixes, better server integration - William Stein (2006-07-01): misc polish - Alex Clemesha (2006-09-29): added contour_plot, frame axes, misc polishing - Robert Miller (2006-10-30): tuning, NetworkX primitive - Alex Clemesha (2006-11-25): added plot_vector_field, matrix_plot, arrow, bar_chart, Axes class usage (see axes.py) - Bobby Moretti and William Stein (2008-01): Change plot to specify ranges using the (varname, min, max) notation. - William Stein (2008-01-19): raised the documentation coverage from a miserable 12 percent to a 'wopping' 35 percent, and fixed and clarified numerous small issues. - Jason Grout (2009-09-05): shifted axes and grid functionality over to matplotlib; fixed a number of smaller issues. - Jason Grout (2010-10): rewrote aspect ratio portions of the code - Jeroen Demeyer (2012-04-19): move parts of this file to graphics.py (:trac:`12857`) - Aaron Lauve (2016-07-13): reworked handling of 'color' when passed a list of functions; now more in-line with other CAS's. Added list functionality to linestyle and legend_label options as well. (:trac:`12962`) """ #***************************************************************************** # Copyright (C) 2006 Alex Clemesha <clemesha@gmail.com> # Copyright (C) 2006-2008 William Stein <wstein@gmail.com> # Copyright (C) 2010 Jason Grout # # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from __future__ import print_function, absolute_import from six.moves import range from six import iteritems from functools import reduce ## IMPORTANT: Do *not* import matplotlib at module scope. It takes a ## surprisingly long time to initialize itself. It's better if it is ## imported in functions, so it only gets started if it is actually ## going to be used. #DEFAULT_FIGSIZE=(6, 3.70820393249937) EMBEDDED_MODE = False import sage.misc.misc from sage.arith.srange import srange from sage.misc.randstate import current_randstate #for plot adaptive refinement from math import sin, cos, pi #for polar_plot from sage.ext.fast_eval import fast_float, is_fast_float from sage.misc.decorators import options from .graphics import Graphics, GraphicsArray from sage.plot.polygon import polygon # import of line2d below is only for redirection of imports from sage.plot.line import line, line2d #Currently not used - see comment immediately above about #figure.canvas.mpl_connect('draw_event', pad_for_tick_labels) # TODO - figure out how to use this, add documentation #def pad_for_tick_labels(event): # import matplotlib.transforms as mtransforms # figure=event.canvas.figure # bboxes = [] # for ax in figure.axes: # bbox = ax.xaxis.get_label().get_window_extent() # # the figure transform goes from relative coords->pixels and we # # want the inverse of that # bboxi = bbox.inverse_transformed(figure.transFigure) # bboxes.append(bboxi) # # bbox = ax.yaxis.get_label().get_window_extent() # bboxi = bbox.inverse_transformed(figure.transFigure) # bboxes.append(bboxi) # for label in (ax.get_xticklabels()+ax.get_yticklabels() \ # + ax.get_xticklabels(minor=True) \ # +ax.get_yticklabels(minor=True)): # bbox = label.get_window_extent() # bboxi = bbox.inverse_transformed(figure.transFigure) # bboxes.append(bboxi) # # # this is the bbox that bounds all the bboxes, again in relative # # figure coords # bbox = mtransforms.Bbox.union(bboxes) # adjusted=adjust_figure_to_contain_bbox(figure,bbox) # # if adjusted: # figure.canvas.draw() # return False # #Currently not used - see comment above about #figure.canvas.mpl_connect('draw_event', pad_for_tick_labels) # TODO - figure out how to use this, add documentation #def adjust_figure_to_contain_bbox(fig, bbox,pad=1.1): # """ # For each amount we are over (in axes coordinates), we adjust by over*pad # to give ourselves a bit of padding. # """ # left=fig.subplotpars.left # bottom=fig.subplotpars.bottom # right=fig.subplotpars.right # top=fig.subplotpars.top # # adjusted=False # if bbox.xmin<0: # left-=bbox.xmin*pad # adjusted=True # if bbox.ymin<0: # bottom-=bbox.ymin*pad # adjusted=True # if bbox.xmax>1: # right-=(bbox.xmax-1)*pad # adjusted=True # if bbox.ymax>1: # top-=(bbox.ymax-1)*pad # adjusted=True # # if left<right and bottom<top: # fig.subplots_adjust(left=left, bottom=bottom, right=right, top=top) # return adjusted # else: # return False _SelectiveFormatterClass = None def SelectiveFormatter(formatter, skip_values): """ This matplotlib formatter selectively omits some tick values and passes the rest on to a specified formatter. EXAMPLES: This example is almost straight from a matplotlib example. :: sage: from sage.plot.plot import SelectiveFormatter sage: import matplotlib.pyplot as plt sage: import numpy sage: fig=plt.figure() sage: ax=fig.add_subplot(111) sage: t = numpy.arange(0.0, 2.0, 0.01) sage: s = numpy.sin(2*numpy.pi*t) sage: p = ax.plot(t, s) sage: formatter=SelectiveFormatter(ax.xaxis.get_major_formatter(),skip_values=[0,1]) sage: ax.xaxis.set_major_formatter(formatter) sage: fig.savefig(os.path.join(SAGE_TMP, 'test.png')) """ global _SelectiveFormatterClass if _SelectiveFormatterClass is None: from matplotlib.ticker import Formatter class _SelectiveFormatterClass(Formatter): def __init__(self, formatter,skip_values): """ Initialize a SelectiveFormatter object. INPUT: - formatter -- the formatter object to which we should pass labels - skip_values -- a list of values that we should skip when formatting the tick labels EXAMPLES:: sage: from sage.plot.plot import SelectiveFormatter sage: import matplotlib.pyplot as plt sage: import numpy sage: fig=plt.figure() sage: ax=fig.add_subplot(111) sage: t = numpy.arange(0.0, 2.0, 0.01) sage: s = numpy.sin(2*numpy.pi*t) sage: line=ax.plot(t, s) sage: formatter=SelectiveFormatter(ax.xaxis.get_major_formatter(),skip_values=[0,1]) sage: ax.xaxis.set_major_formatter(formatter) sage: fig.savefig(os.path.join(SAGE_TMP, 'test.png')) """ self.formatter=formatter self.skip_values=skip_values def set_locs(self, locs): """ Set the locations for the ticks that are not skipped. EXAMPLES:: sage: from sage.plot.plot import SelectiveFormatter sage: import matplotlib.ticker sage: formatter=SelectiveFormatter(matplotlib.ticker.Formatter(),skip_values=[0,200]) sage: formatter.set_locs([i*100 for i in range(10)]) """ self.formatter.set_locs([l for l in locs if l not in self.skip_values]) def __call__(self, x, *args, **kwds): """ Return the format for tick val *x* at position *pos* EXAMPLES:: sage: from sage.plot.plot import SelectiveFormatter sage: import matplotlib.ticker sage: formatter=SelectiveFormatter(matplotlib.ticker.FixedFormatter(['a','b']),skip_values=[0,2]) sage: [formatter(i,1) for i in range(10)] ['', 'b', '', 'b', 'b', 'b', 'b', 'b', 'b', 'b'] """ if x in self.skip_values: return '' else: return self.formatter(x, *args, **kwds) return _SelectiveFormatterClass(formatter, skip_values) def xydata_from_point_list(points): r""" Returns two lists (xdata, ydata), each coerced to a list of floats, which correspond to the x-coordinates and the y-coordinates of the points. The points parameter can be a list of 2-tuples or some object that yields a list of one or two numbers. This function can potentially be very slow for large point sets. TESTS:: sage: from sage.plot.plot import xydata_from_point_list sage: xydata_from_point_list([CC(0), CC(1)]) # ticket 8082 ([0.0, 1.0], [0.0, 0.0]) This function should work for anything than can be turned into a list, such as iterators and such (see :trac:`10478`):: sage: xydata_from_point_list(iter([(0,0), (sqrt(3), 2)])) ([0.0, 1.7320508075688772], [0.0, 2.0]) sage: xydata_from_point_list((x, x^2) for x in range(5)) ([0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 1.0, 4.0, 9.0, 16.0]) sage: xydata_from_point_list(enumerate(prime_range(1, 15))) ([0.0, 1.0, 2.0, 3.0, 4.0, 5.0], [2.0, 3.0, 5.0, 7.0, 11.0, 13.0]) sage: from builtins import zip sage: xydata_from_point_list(list(zip([2,3,5,7], [11, 13, 17, 19]))) ([2.0, 3.0, 5.0, 7.0], [11.0, 13.0, 17.0, 19.0]) """ from sage.rings.complex_number import ComplexNumber if not isinstance(points, (list, tuple)): points = list(points) try: points = [[float(z) for z in points]] except TypeError: pass elif len(points) == 2 and not isinstance(points[0], (list, tuple, ComplexNumber)): try: points = [[float(z) for z in points]] except TypeError: pass if len(points) and len(list(points[0])) != 2: raise ValueError("points must have 2 coordinates in a 2d line") xdata = [float(z[0]) for z in points] ydata = [float(z[1]) for z in points] return xdata, ydata @options(alpha=1, thickness=1, fill=False, fillcolor='automatic', fillalpha=0.5, plot_points=200, adaptive_tolerance=0.01, adaptive_recursion=5, detect_poles=False, exclude=None, legend_label=None, __original_opts=True, aspect_ratio='automatic') def plot(funcs, *args, **kwds): r""" Use plot by writing ``plot(X, ...)`` where `X` is a Sage object (or list of Sage objects) that either is callable and returns numbers that can be coerced to floats, or has a plot method that returns a ``GraphicPrimitive`` object. There are many other specialized 2D plot commands available in Sage, such as ``plot_slope_field``, as well as various graphics primitives like :class:`~sage.plot.arrow.Arrow`; type ``sage.plot.plot?`` for a current list. Type ``plot.options`` for a dictionary of the default options for plots. You can change this to change the defaults for all future plots. Use ``plot.reset()`` to reset to the default options. PLOT OPTIONS: - ``plot_points`` - (default: 200) the minimal number of plot points. - ``adaptive_recursion`` - (default: 5) how many levels of recursion to go before giving up when doing adaptive refinement. Setting this to 0 disables adaptive refinement. - ``adaptive_tolerance`` - (default: 0.01) how large a difference should be before the adaptive refinement code considers it significant. See the documentation further below for more information, starting at "the algorithm used to insert". - ``base`` - (default: 10) the base of the logarithm if a logarithmic scale is set. This must be greater than 1. The base can be also given as a list or tuple ``(basex, basey)``. ``basex`` sets the base of the logarithm along the horizontal axis and ``basey`` sets the base along the vertical axis. - ``scale`` -- (default: ``"linear"``) string. The scale of the axes. Possible values are ``"linear"``, ``"loglog"``, ``"semilogx"``, ``"semilogy"``. The scale can be also be given as single argument that is a list or tuple ``(scale, base)`` or ``(scale, basex, basey)``. The ``"loglog"`` scale sets both the horizontal and vertical axes to logarithmic scale. The ``"semilogx"`` scale sets the horizontal axis to logarithmic scale. The ``"semilogy"`` scale sets the vertical axis to logarithmic scale. The ``"linear"`` scale is the default value when :class:`~sage.plot.graphics.Graphics` is initialized. - ``xmin`` - starting x value in the rendered figure. This parameter is passed directly to the ``show`` procedure and it could be overwritten. - ``xmax`` - ending x value in the rendered figure. This parameter is passed directly to the ``show`` procedure and it could be overwritten. - ``ymin`` - starting y value in the rendered figure. This parameter is passed directly to the ``show`` procedure and it could be overwritten. - ``ymax`` - ending y value in the rendered figure. This parameter is passed directly to the ``show`` procedure and it could be overwritten. - ``detect_poles`` - (Default: False) If set to True poles are detected. If set to "show" vertical asymptotes are drawn. - ``legend_label`` - a (TeX) string serving as the label for `X` in the legend. If `X` is a list, then this option can be a single string, or a list or dictionary with strings as entries/values. If a dictionary, then keys are taken from ``range(len(X))``. .. note:: - If the ``scale`` is ``"linear"``, then irrespective of what ``base`` is set to, it will default to 10 and will remain unused. - If you want to limit the plot along the horizontal axis in the final rendered figure, then pass the ``xmin`` and ``xmax`` keywords to the :meth:`~sage.plot.graphics.Graphics.show` method. To limit the plot along the vertical axis, ``ymin`` and ``ymax`` keywords can be provided to either this ``plot`` command or to the ``show`` command. - This function does NOT simply sample equally spaced points between xmin and xmax. Instead it computes equally spaced points and adds small perturbations to them. This reduces the possibility of, e.g., sampling `\sin` only at multiples of `2\pi`, which would yield a very misleading graph. - If there is a range of consecutive points where the function has no value, then those points will be excluded from the plot. See the example below on automatic exclusion of points. - For the other keyword options that the ``plot`` function can take, refer to the method :meth:`~sage.plot.graphics.Graphics.show` and the further options below. COLOR OPTIONS: - ``color`` - (Default: 'blue') One of: - an RGB tuple (r,g,b) with each of r,g,b between 0 and 1. - a color name as a string (e.g., 'purple'). - an HTML color such as '#aaff0b'. - a list or dictionary of colors (valid only if `X` is a list): if a dictionary, keys are taken from ``range(len(X))``; the entries/values of the list/dictionary may be any of the options above. - 'automatic' -- maps to default ('blue') if `X` is a single Sage object; and maps to a fixed sequence of regularly spaced colors if `X` is a list. - ``legend_color`` - the color of the text for `X` (or each item in `X`) in the legend. Default color is 'black'. Options are as in ``color`` above, except that the choice 'automatic' maps to 'black' if `X` is a single Sage object. - ``fillcolor`` - The color of the fill for the plot of `X` (or each item in `X`). Default color is 'gray' if `X` is a single Sage object or if ``color`` is a single color. Otherwise, options are as in ``color`` above. APPEARANCE OPTIONS: The following options affect the appearance of the line through the points on the graph of `X` (these are the same as for the line function): INPUT: - ``alpha`` - How transparent the line is - ``thickness`` - How thick the line is - ``rgbcolor`` - The color as an RGB tuple - ``hue`` - The color given as a hue LINE OPTIONS: Any MATPLOTLIB line option may also be passed in. E.g., - ``linestyle`` - (default: "-") The style of the line, which is one of - ``"-"`` or ``"solid"`` - ``"--"`` or ``"dashed"`` - ``"-."`` or ``"dash dot"`` - ``":"`` or ``"dotted"`` - ``"None"`` or ``" "`` or ``""`` (nothing) - a list or dictionary (see below) The linestyle can also be prefixed with a drawing style (e.g., ``"steps--"``) - ``"default"`` (connect the points with straight lines) - ``"steps"`` or ``"steps-pre"`` (step function; horizontal line is to the left of point) - ``"steps-mid"`` (step function; points are in the middle of horizontal lines) - ``"steps-post"`` (step function; horizontal line is to the right of point) If `X` is a list, then ``linestyle`` may be a list (with entries taken from the strings above) or a dictionary (with keys in ``range(len(X))`` and values taken from the strings above). - ``marker`` - The style of the markers, which is one of - ``"None"`` or ``" "`` or ``""`` (nothing) -- default - ``","`` (pixel), ``"."`` (point) - ``"_"`` (horizontal line), ``"|"`` (vertical line) - ``"o"`` (circle), ``"p"`` (pentagon), ``"s"`` (square), ``"x"`` (x), ``"+"`` (plus), ``"*"`` (star) - ``"D"`` (diamond), ``"d"`` (thin diamond) - ``"H"`` (hexagon), ``"h"`` (alternative hexagon) - ``"<"`` (triangle left), ``">"`` (triangle right), ``"^"`` (triangle up), ``"v"`` (triangle down) - ``"1"`` (tri down), ``"2"`` (tri up), ``"3"`` (tri left), ``"4"`` (tri right) - ``0`` (tick left), ``1`` (tick right), ``2`` (tick up), ``3`` (tick down) - ``4`` (caret left), ``5`` (caret right), ``6`` (caret up), ``7`` (caret down), ``8`` (octagon) - ``"$...$"`` (math TeX string) - ``(numsides, style, angle)`` to create a custom, regular symbol - ``numsides`` -- the number of sides - ``style`` -- ``0`` (regular polygon), ``1`` (star shape), ``2`` (asterisk), ``3`` (circle) - ``angle`` -- the angular rotation in degrees - ``markersize`` - the size of the marker in points - ``markeredgecolor`` -- the color of the marker edge - ``markerfacecolor`` -- the color of the marker face - ``markeredgewidth`` - the size of the marker edge in points - ``exclude`` - (Default: None) values which are excluded from the plot range. Either a list of real numbers, or an equation in one variable. FILLING OPTIONS: - ``fill`` - (Default: False) One of: - "axis" or True: Fill the area between the function and the x-axis. - "min": Fill the area between the function and its minimal value. - "max": Fill the area between the function and its maximal value. - a number c: Fill the area between the function and the horizontal line y = c. - a function g: Fill the area between the function that is plotted and g. - a dictionary ``d`` (only if a list of functions are plotted): The keys of the dictionary should be integers. The value of ``d[i]`` specifies the fill options for the i-th function in the list. If ``d[i] == [j]``: Fill the area between the i-th and the j-th function in the list. (But if ``d[i] == j``: Fill the area between the i-th function in the list and the horizontal line y = j.) - ``fillalpha`` - (default: 0.5) How transparent the fill is. A number between 0 and 1. MATPLOTLIB STYLE SHEET OPTION: - ``stylesheet`` - (Default: classic) Support for loading a full matplotlib style sheet. Any style sheet listed in ``matplotlib.pyplot.style.available`` is acceptable. If a non-existing style is provided the default classic is applied. EXAMPLES: We plot the `\sin` function:: sage: P = plot(sin, (0,10)); print(P) Graphics object consisting of 1 graphics primitive sage: len(P) # number of graphics primitives 1 sage: len(P[0]) # how many points were computed (random) 225 sage: P # render Graphics object consisting of 1 graphics primitive .. PLOT:: P = plot(sin, (0,10)) sphinx_plot(P) :: sage: P = plot(sin, (0,10), plot_points=10); print(P) Graphics object consisting of 1 graphics primitive sage: len(P[0]) # random output 32 sage: P # render Graphics object consisting of 1 graphics primitive .. PLOT:: P = plot(sin, (0,10), plot_points=10) sphinx_plot(P) We plot with ``randomize=False``, which makes the initial sample points evenly spaced (hence always the same). Adaptive plotting might insert other points, however, unless ``adaptive_recursion=0``. :: sage: p=plot(1, (x,0,3), plot_points=4, randomize=False, adaptive_recursion=0) sage: list(p[0]) [(0.0, 1.0), (1.0, 1.0), (2.0, 1.0), (3.0, 1.0)] Some colored functions:: sage: plot(sin, 0, 10, color='purple') Graphics object consisting of 1 graphics primitive .. PLOT:: P=plot(sin,0,10,color='purple') sphinx_plot(P) :: sage: plot(sin, 0, 10, color='#ff00ff') Graphics object consisting of 1 graphics primitive .. PLOT:: P=plot(sin, 0, 10, color='#ff00ff') sphinx_plot(P) We plot several functions together by passing a list of functions as input:: sage: plot([x*exp(-n*x^2)/.4 for n in [1..5]], (0, 2), aspect_ratio=.8) Graphics object consisting of 5 graphics primitives .. PLOT:: g = plot([x*exp(-n*x**2)/.4 for n in range(1,6)], (0, 2), aspect_ratio=.8) sphinx_plot(g) By default, color will change from one primitive to the next. This may be controlled by modifying ``color`` option:: sage: g1 = plot([x*exp(-n*x^2)/.4 for n in [1..3]], (0, 2), color='blue', aspect_ratio=.8); g1 Graphics object consisting of 3 graphics primitives sage: g2 = plot([x*exp(-n*x^2)/.4 for n in [1..3]], (0, 2), color=['red','red','green'], linestyle=['-','--','-.'], aspect_ratio=.8); g2 Graphics object consisting of 3 graphics primitives .. PLOT:: g1 = plot([x*exp(-n*x**2)/.4 for n in range(1,4)], (0, 2), color='blue', aspect_ratio=.8) g2 = plot([x*exp(-n*x**2)/.4 for n in range(1,4)], (0, 2), color=['red','red','green'], linestyle=['-','--','-.'], aspect_ratio=.8) sphinx_plot(graphics_array([[g1], [g2]])) We can also build a plot step by step from an empty plot:: sage: a = plot([]); a # passing an empty list returns an empty plot (Graphics() object) Graphics object consisting of 0 graphics primitives sage: a += plot(x**2); a # append another plot Graphics object consisting of 1 graphics primitive .. PLOT:: a = plot([]) a = a + plot(x**2) sphinx_plot(a) :: sage: a += plot(x**3); a # append yet another plot Graphics object consisting of 2 graphics primitives .. PLOT:: a = plot([]) a = a + plot(x**2) a = a + plot(x**3) sphinx_plot(a) The function `\sin(1/x)` wiggles wildly near `0`. Sage adapts to this and plots extra points near the origin. :: sage: plot(sin(1/x), (x, -1, 1)) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin(1/x), (x, -1, 1)) sphinx_plot(g) Via the matplotlib library, Sage makes it easy to tell whether a graph is on both sides of both axes, as the axes only cross if the origin is actually part of the viewing area:: sage: plot(x^3,(x,0,2)) # this one has the origin Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**3,(x,0,2)) sphinx_plot(g) :: sage: plot(x^3,(x,1,2)) # this one does not Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**3,(x,1,2)) sphinx_plot(g) Another thing to be aware of with axis labeling is that when the labels have quite different orders of magnitude or are very large, scientific notation (the `e` notation for powers of ten) is used:: sage: plot(x^2,(x,480,500)) # this one has no scientific notation Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**2,(x,480,500)) sphinx_plot(g) :: sage: plot(x^2,(x,300,500)) # this one has scientific notation on y-axis Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**2,(x,300,500)) sphinx_plot(g) You can put a legend with ``legend_label`` (the legend is only put once in the case of multiple functions):: sage: plot(exp(x), 0, 2, legend_label='$e^x$') Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(exp(x), 0, 2, legend_label='$e^x$') sphinx_plot(g) Sage understands TeX, so these all are slightly different, and you can choose one based on your needs:: sage: plot(sin, legend_label='sin') Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin,legend_label='sin') sphinx_plot(g) :: sage: plot(sin, legend_label='$sin$') Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin,legend_label='$sin$') sphinx_plot(g) :: sage: plot(sin, legend_label=r'$\sin$') Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin,legend_label=r'$\sin$') sphinx_plot(g) It is possible to use a different color for the text of each label:: sage: p1 = plot(sin, legend_label='sin', legend_color='red') sage: p2 = plot(cos, legend_label='cos', legend_color='green') sage: p1 + p2 Graphics object consisting of 2 graphics primitives .. PLOT:: p1 = plot(sin, legend_label='sin', legend_color='red') p2 = plot(cos, legend_label='cos', legend_color='green') g = p1 + p2 sphinx_plot(g) Prior to :trac:`19485`, legends by default had a shadowless gray background. This behavior can be recovered by setting the legend options on your plot object:: sage: p = plot(sin(x), legend_label=r'$\sin(x)$') sage: p.set_legend_options(back_color=(0.9,0.9,0.9), shadow=False) .. PLOT:: g = plot(sin(x), legend_label=r'$\sin(x)$') g.set_legend_options(back_color=(0.9,0.9,0.9), shadow=False) sphinx_plot(g) If `X` is a list of Sage objects and ``legend_label`` is 'automatic', then Sage will create labels for each function according to their internal representation:: sage: plot([sin(x), tan(x), 1-x^2], legend_label='automatic') Graphics object consisting of 3 graphics primitives .. PLOT:: g = plot([sin(x), tan(x), 1-x**2], legend_label='automatic') sphinx_plot(g) If ``legend_label`` is any single string other than 'automatic', then it is repeated for all members of `X`:: sage: plot([sin(x), tan(x)], color='blue', legend_label='trig') Graphics object consisting of 2 graphics primitives .. PLOT:: g = plot([sin(x), tan(x)], color='blue', legend_label='trig') sphinx_plot(g) Note that the independent variable may be omitted if there is no ambiguity:: sage: plot(sin(1.0/x), (-1, 1)) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin(1.0/x), (-1, 1)) sphinx_plot(g) Plotting in logarithmic scale is possible for 2D plots. There are two different syntaxes supported:: sage: plot(exp, (1, 10), scale='semilogy') # log axis on vertical Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(exp, (1, 10), scale='semilogy') sphinx_plot(g) :: sage: plot_semilogy(exp, (1, 10)) # same thing Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot_semilogy(exp, (1, 10)) sphinx_plot(g) :: sage: plot_loglog(exp, (1, 10)) # both axes are log Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot_loglog(exp, (1, 10)) sphinx_plot(g) :: sage: plot(exp, (1, 10), scale='loglog', base=2) # long time # base of log is 2 Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(exp, (1, 10), scale='loglog', base=2) sphinx_plot(g) We can also change the scale of the axes in the graphics just before displaying:: sage: G = plot(exp, 1, 10) # long time sage: G.show(scale=('semilogy', 2)) # long time The algorithm used to insert extra points is actually pretty simple. On the picture drawn by the lines below:: sage: p = plot(x^2, (-0.5, 1.4)) + line([(0,0), (1,1)], color='green') sage: p += line([(0.5, 0.5), (0.5, 0.5^2)], color='purple') sage: p += point(((0, 0), (0.5, 0.5), (0.5, 0.5^2), (1, 1)), color='red', pointsize=20) sage: p += text('A', (-0.05, 0.1), color='red') sage: p += text('B', (1.01, 1.1), color='red') sage: p += text('C', (0.48, 0.57), color='red') sage: p += text('D', (0.53, 0.18), color='red') sage: p.show(axes=False, xmin=-0.5, xmax=1.4, ymin=0, ymax=2) .. PLOT:: g = plot(x**2, (-0.5, 1.4)) + line([(0,0), (1,1)], color='green') g = g + line([(0.5, 0.5), (0.5, 0.5**2)], color='purple') g = g + point(((0, 0), (0.5, 0.5), (0.5, 0.5**2), (1, 1)), color='red', pointsize=20) g = g + text('A', (-0.05, 0.1), color='red') g = g + text('B', (1.01, 1.1), color='red') g = g + text('C', (0.48, 0.57), color='red') g = g + text('D', (0.53, 0.18), color='red') g.axes(False) g.xmin(-0.5) g.xmax(1.4) g.ymin(0) g.ymax(2) sphinx_plot(g) You have the function (in blue) and its approximation (in green) passing through the points A and B. The algorithm finds the midpoint C of AB and computes the distance between C and D. If that distance exceeds the ``adaptive_tolerance`` threshold (*relative* to the size of the initial plot subintervals), the point D is added to the curve. If D is added to the curve, then the algorithm is applied recursively to the points A and D, and D and B. It is repeated ``adaptive_recursion`` times (5, by default). The actual sample points are slightly randomized, so the above plots may look slightly different each time you draw them. We draw the graph of an elliptic curve as the union of graphs of 2 functions. :: sage: def h1(x): return abs(sqrt(x^3 - 1)) sage: def h2(x): return -abs(sqrt(x^3 - 1)) sage: P = plot([h1, h2], 1,4) sage: P # show the result Graphics object consisting of 2 graphics primitives .. PLOT:: def h1(x): return abs(sqrt(x**3 - 1)) def h2(x): return -abs(sqrt(x**3 - 1)) P = plot([h1, h2], 1,4) sphinx_plot(P) It is important to mention that when we draw several graphs at the same time, parameters ``xmin``, ``xmax``, ``ymin`` and ``ymax`` are just passed directly to the ``show`` procedure. In fact, these parameters would be overwritten:: sage: p=plot(x^3, x, xmin=-1, xmax=1,ymin=-1, ymax=1) sage: q=plot(exp(x), x, xmin=-2, xmax=2, ymin=0, ymax=4) sage: (p+q).show() As a workaround, we can perform the trick:: sage: p1 = line([(a,b) for a,b in zip(p[0].xdata,p[0].ydata) if (b>=-1 and b<=1)]) sage: q1 = line([(a,b) for a,b in zip(q[0].xdata,q[0].ydata) if (b>=0 and b<=4)]) sage: (p1+q1).show() We can also directly plot the elliptic curve:: sage: E = EllipticCurve([0,-1]) sage: plot(E, (1, 4), color=hue(0.6)) Graphics object consisting of 1 graphics primitive .. PLOT:: E = EllipticCurve([0,-1]) g = plot(E, (1, 4), color=hue(0.6)) sphinx_plot(g) We can change the line style as well:: sage: plot(sin(x), (x, 0, 10), linestyle='-.') Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin(x), (x, 0, 10), linestyle='-.') sphinx_plot(g) If we have an empty linestyle and specify a marker, we can see the points that are actually being plotted:: sage: plot(sin(x), (x,0,10), plot_points=20, linestyle='', marker='.') Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin(x), (x,0,10), plot_points=20, linestyle='', marker='.') sphinx_plot(g) The marker can be a TeX symbol as well:: sage: plot(sin(x), (x,0,10), plot_points=20, linestyle='', marker=r'$\checkmark$') Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin(x), (x,0,10), plot_points=20, linestyle='', marker=r'$\checkmark$') sphinx_plot(g) Sage currently ignores points that cannot be evaluated :: sage: set_verbose(-1) sage: plot(-x*log(x), (x,0,1)) # this works fine since the failed endpoint is just skipped. Graphics object consisting of 1 graphics primitive sage: set_verbose(0) This prints out a warning and plots where it can (we turn off the warning by setting the verbose mode temporarily to -1.) :: sage: set_verbose(-1) sage: plot(x^(1/3), (x,-1,1)) Graphics object consisting of 1 graphics primitive sage: set_verbose(0) .. PLOT:: set_verbose(-1) g = plot(x**(1.0/3.0), (x,-1,1)) sphinx_plot(g) set_verbose(0) Plotting the real cube root function for negative input requires avoiding the complex numbers one would usually get. The easiest way is to use absolute value:: sage: plot(sign(x)*abs(x)^(1/3), (x,-1,1)) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sign(x)*abs(x)**(1.0/3.0), (x,-1,1)) sphinx_plot(g) We can also use the following:: sage: plot(sign(x)*(x*sign(x))^(1/3), (x,-4,4)) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sign(x)*(x*sign(x))**(1.0/3.0), (x,-4,4)) sphinx_plot(g) A way that points to how to plot other functions without symbolic variants is using lambda functions:: sage: plot(lambda x : RR(x).nth_root(3), (x,-1, 1)) Graphics object consisting of 1 graphics primitive .. PLOT:: sphinx_plot(plot(lambda x : RR(x).nth_root(3), (x,-1, 1))) We can detect the poles of a function:: sage: plot(gamma, (-3, 4), detect_poles=True).show(ymin=-5, ymax=5) .. PLOT:: g = plot(gamma, (-3, 4), detect_poles=True) g.ymin(-5) g.ymax(5) sphinx_plot(g) We draw the Gamma-Function with its poles highlighted:: sage: plot(gamma, (-3, 4), detect_poles='show').show(ymin=-5, ymax=5) .. PLOT:: g = plot(gamma, (-3, 4), detect_poles='show') g.ymin(-5) g.ymax(5) sphinx_plot(g) The basic options for filling a plot:: sage: p1 = plot(sin(x), -pi, pi, fill='axis') sage: p2 = plot(sin(x), -pi, pi, fill='min', fillalpha=1) sage: p3 = plot(sin(x), -pi, pi, fill='max') sage: p4 = plot(sin(x), -pi, pi, fill=(1-x)/3, fillcolor='blue', fillalpha=.2) sage: graphics_array([[p1, p2], [p3, p4]]).show(frame=True, axes=False) # long time .. PLOT:: p1 = plot(sin(x), -pi, pi, fill='axis'); print(p1) p2 = plot(sin(x), -pi, pi, fill='min', fillalpha=1) p3 = plot(sin(x), -pi, pi, fill='max') p4 = plot(sin(x), -pi, pi, fill=(1-x)/3, fillcolor='blue', fillalpha=.2) g = graphics_array([[p1, p2], [p3, p4]]) sphinx_plot(g) # Needs to accept options 'frame', 'axes', ... The basic options for filling a list of plots:: sage: (f1, f2) = x*exp(-1*x^2)/.35, x*exp(-2*x^2)/.35 sage: p1 = plot([f1, f2], -pi, pi, fill={1: [0]}, fillcolor='blue', fillalpha=.25, color='blue') sage: p2 = plot([f1, f2], -pi, pi, fill={0: x/3, 1:[0]}, color=['blue']) sage: p3 = plot([f1, f2], -pi, pi, fill=[0, [0]], fillcolor=['orange','red'], fillalpha=1, color={1: 'blue'}) sage: p4 = plot([f1, f2], (x,-pi, pi), fill=[x/3, 0], fillcolor=['grey'], color=['red', 'blue']) sage: graphics_array([[p1, p2], [p3, p4]]).show(frame=True, axes=False) # long time .. PLOT:: (f1, f2) = x*exp(-1*x**2)/.35, x*exp(-2*x**2)/.35 p1 = plot([f1, f2], -pi, pi, fill={1: [0]}, fillcolor='blue', fillalpha=.25, color='blue') p2 = plot([f1, f2], -pi, pi, fill={0: x/3, 1:[0]}, color=['blue']) p3 = plot([f1, f2], -pi, pi, fill=[0, [0]], fillcolor=['orange','red'], fillalpha=1, color={1: 'blue'}) p4 = plot([f1, f2], (x,-pi, pi), fill=[x/3, 0], fillcolor=['grey'], color=['red', 'blue']) g = graphics_array([[p1, p2], [p3, p4]]) sphinx_plot(g) # Needs to accept options 'frame', 'axes', ... A example about the growth of prime numbers:: sage: plot(1.13*log(x), 1, 100, fill=lambda x: nth_prime(x)/floor(x), fillcolor='red') Graphics object consisting of 2 graphics primitives .. PLOT:: sphinx_plot(plot(1.13*log(x), 1, 100, fill=lambda x: nth_prime(x)/floor(x), fillcolor='red')) Fill the area between a function and its asymptote:: sage: f = (2*x^3+2*x-1)/((x-2)*(x+1)) sage: plot([f, 2*x+2], -7,7, fill={0: [1]}, fillcolor='#ccc').show(ymin=-20, ymax=20) .. PLOT:: f = (2*x**3+2*x-1)/((x-2)*(x+1)) g = plot([f, 2*x+2], -7,7, fill={0: [1]}, fillcolor='#ccc') g.ymin(-20) g.ymax(20) sphinx_plot(g) Fill the area between a list of functions and the x-axis:: sage: def b(n): return lambda x: bessel_J(n, x) sage: plot([b(n) for n in [1..5]], 0, 20, fill='axis') Graphics object consisting of 10 graphics primitives .. PLOT:: def b(n): return lambda x: bessel_J(n, x) g = plot([b(n) for n in range(1,6)], 0, 20, fill='axis') sphinx_plot(g) Note that to fill between the ith and jth functions, you must use the dictionary key-value syntax ``i:[j]``; using key-value pairs like ``i:j`` will fill between the ith function and the line y=j:: sage: def b(n): return lambda x: bessel_J(n, x) + 0.5*(n-1) sage: plot([b(c) for c in [1..5]], 0, 20, fill={i:[i-1] for i in [1..4]}, color={i:'blue' for i in [1..5]}, aspect_ratio=3, ymax=3) Graphics object consisting of 9 graphics primitives sage: plot([b(c) for c in [1..5]], 0, 20, fill={i:i-1 for i in [1..4]}, color='blue', aspect_ratio=3) # long time Graphics object consisting of 9 graphics primitives .. PLOT:: def b(n): return lambda x: bessel_J(n, x) + 0.5*(n-1) g1 = plot([b(n) for n in range(1,6)], 0, 20, fill={i:[i-1] for i in range(1,5)}, color={i:'blue' for i in range(1,6)}, aspect_ratio=3) g2 = plot([b(n) for n in range(1,6)], 0, 20, fill={i:i-1 for i in range(1,5)}, color='blue', aspect_ratio=3) # long time g1.ymax(3) g = graphics_array([[g1], [g2]]) sphinx_plot(g) Extra options will get passed on to :meth:`~sage.plot.graphics.Graphics.show`, as long as they are valid:: sage: plot(sin(x^2), (x, -3, 3), title=r'Plot of $\sin(x^2)$', axes_labels=['$x$','$y$']) # These labels will be nicely typeset Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin(x**2), (x, -3, 3), title=r'Plot of $\sin(x^2)$', axes_labels=['$x$','$y$']) # These labels will be nicely typeset sphinx_plot(g) :: sage: plot(sin(x^2), (x, -3, 3), title='Plot of sin(x^2)', axes_labels=['x','y']) # These will not Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin(x**2), (x, -3, 3), title='Plot of sin(x^2)', axes_labels=['x','y']) # These will not sphinx_plot(g) :: sage: plot(sin(x^2), (x, -3, 3), axes_labels=['x','y'], axes_labels_size=2.5) # Large axes labels (w.r.t. the tick marks) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin(x**2), (x, -3, 3), axes_labels=['x','y'], axes_labels_size=2.5) # Large axes labels (w.r.t. the tick marks) sphinx_plot(g) :: sage: plot(sin(x^2), (x, -3, 3), figsize=[8,2]) Graphics object consisting of 1 graphics primitive sage: plot(sin(x^2), (x, -3, 3)).show(figsize=[8,2]) # These are equivalent .. PLOT:: g = plot(sin(x**2), (x, -3, 3), figsize=[8,2]) sphinx_plot(g) This includes options for custom ticks and formatting. See documentation for :meth:`show` for more details. :: sage: plot(sin(pi*x), (x, -8, 8), ticks=[[-7,-3,0,3,7],[-1/2,0,1/2]]) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin(pi*x), (x, -8, 8), ticks=[[-7,-3,0,3,7],[-1/2,0,1/2]]) sphinx_plot(g) :: sage: plot(2*x+1,(x,0,5),ticks=[[0,1,e,pi,sqrt(20)],2],tick_formatter="latex") Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(2*x+1,(x,0,5),ticks=[[0,1,e,pi,sqrt(20)],2],tick_formatter="latex") sphinx_plot(g) This is particularly useful when setting custom ticks in multiples of `pi`. :: sage: plot(sin(x),(x,0,2*pi),ticks=pi/3,tick_formatter=pi) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(sin(x),(x,0,2*pi),ticks=pi/3,tick_formatter=pi) sphinx_plot(g) You can even have custom tick labels along with custom positioning. :: sage: plot(x**2, (x,0,3), ticks=[[1,2.5],[0.5,1,2]], tick_formatter=[["$x_1$","$x_2$"],["$y_1$","$y_2$","$y_3$"]]) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot(x**2, (x,0,3), ticks=[[1,2.5],[0.5,1,2]], tick_formatter=[["$x_1$","$x_2$"],["$y_1$","$y_2$","$y_3$"]]) sphinx_plot(g) You can force Type 1 fonts in your figures by providing the relevant option as shown below. This also requires that LaTeX, dvipng and Ghostscript be installed:: sage: plot(x, typeset='type1') # optional - latex Graphics object consisting of 1 graphics primitive A example with excluded values:: sage: plot(floor(x), (x, 1, 10), exclude=[1..10]) Graphics object consisting of 11 graphics primitives .. PLOT:: g = plot(floor(x), (x, 1, 10), exclude=list(range(1,11))) sphinx_plot(g) We exclude all points where :class:`~sage.functions.prime_pi.PrimePi` makes a jump:: sage: jumps = [n for n in [1..100] if prime_pi(n) != prime_pi(n-1)] sage: plot(lambda x: prime_pi(x), (x, 1, 100), exclude=jumps) Graphics object consisting of 26 graphics primitives .. PLOT:: #jumps = [n for n in [1..100] if prime_pi(n) != prime_pi(n-1)] #syntaxError: invalid syntax, so we need more code jumps=list() for n in range(1,101): if prime_pi(n) != prime_pi(n-1): jumps.append(n) g = plot(lambda x: prime_pi(x), (x, 1, 100), exclude=jumps) sphinx_plot(g) Excluded points can also be given by an equation:: sage: g(x) = x^2-2*x-2 sage: plot(1/g(x), (x, -3, 4), exclude=g(x)==0, ymin=-5, ymax=5) # long time Graphics object consisting of 3 graphics primitives .. PLOT:: def g(x): return x**2-2*x-2 G = plot(1/g(x), (x, -3, 4), exclude=g(x)==0, ymin=-5, ymax=5) sphinx_plot(G) ``exclude`` and ``detect_poles`` can be used together:: sage: f(x) = (floor(x)+0.5) / (1-(x-0.5)^2) sage: plot(f, (x, -3.5, 3.5), detect_poles='show', exclude=[-3..3], ymin=-5, ymax=5) Graphics object consisting of 12 graphics primitives .. PLOT:: def f(x): return (floor(x)+0.5) / (1-(x-0.5)**2) g = plot(f, (x, -3.5, 3.5), detect_poles='show', exclude=list(range(-3,4)), ymin=-5, ymax=5) sphinx_plot(g) Regions in which the plot has no values are automatically excluded. The regions thus excluded are in addition to the exclusion points present in the ``exclude`` keyword argument.:: sage: set_verbose(-1) sage: plot(arcsec, (x, -2, 2)) # [-1, 1] is excluded automatically Graphics object consisting of 2 graphics primitives .. PLOT:: set_verbose(-1) g = plot(arcsec, (x, -2, 2)) # [-1, 1] is excluded automatically sphinx_plot(g) :: sage: plot(arcsec, (x, -2, 2), exclude=[1.5]) # x=1.5 is also excluded Graphics object consisting of 3 graphics primitives .. PLOT:: set_verbose(-1) g = plot(arcsec, (x, -2, 2), exclude=[1.5]) # x=1.5 is also excluded sphinx_plot(g) :: sage: plot(arcsec(x/2), -2, 2) # plot should be empty; no valid points Graphics object consisting of 0 graphics primitives sage: plot(sqrt(x^2-1), -2, 2) # [-1, 1] is excluded automatically Graphics object consisting of 2 graphics primitives .. PLOT:: set_verbose(-1) g = plot(sqrt(x**2-1), -2, 2) # [-1, 1] is excluded automatically sphinx_plot(g) :: sage: plot(arccsc, -2, 2) # [-1, 1] is excluded automatically Graphics object consisting of 2 graphics primitives sage: set_verbose(0) .. PLOT:: set_verbose(-1) g = plot(arccsc, -2, 2) # [-1, 1] is excluded automatically sphinx_plot(g) TESTS: We do not randomize the endpoints:: sage: p = plot(x, (x,-1,1)) sage: p[0].xdata[0] == -1 True sage: p[0].xdata[-1] == 1 True We check to make sure that the x/y min/max data get set correctly when there are multiple functions. :: sage: d = plot([sin(x), cos(x)], 100, 120).get_minmax_data() sage: d['xmin'] 100.0 sage: d['xmax'] 120.0 We check various combinations of tuples and functions, ending with tests that lambda functions work properly with explicit variable declaration, without a tuple. :: sage: p = plot(lambda x: x,(x,-1,1)) sage: p = plot(lambda x: x,-1,1) sage: p = plot(x,x,-1,1) sage: p = plot(x,-1,1) sage: p = plot(x^2,x,-1,1) sage: p = plot(x^2,xmin=-1,xmax=2) sage: p = plot(lambda x: x,x,-1,1) sage: p = plot(lambda x: x^2,x,-1,1) sage: p = plot(lambda x: 1/x,x,-1,1) sage: f(x) = sin(x+3)-.1*x^3 sage: p = plot(lambda x: f(x),x,-1,1) We check to handle cases where the function gets evaluated at a point which causes an 'inf' or '-inf' result to be produced. :: sage: p = plot(1/x, 0, 1) sage: p = plot(-1/x, 0, 1) Bad options now give better errors:: sage: P = plot(sin(1/x), (x,-1,3), foo=10) Traceback (most recent call last): ... RuntimeError: Error in line(): option 'foo' not valid. sage: P = plot(x, (x,1,1)) # trac ticket #11753 Traceback (most recent call last): ... ValueError: plot start point and end point must be different We test that we can plot `f(x)=x` (see :trac:`10246`):: sage: f(x)=x; f x |--> x sage: plot(f,(x,-1,1)) Graphics object consisting of 1 graphics primitive Check that :trac:`15030` is fixed:: sage: plot(abs(log(x)), x) Graphics object consisting of 1 graphics primitive Check that if excluded points are less than xmin then the exclusion still works for polar and parametric plots. The following should show two excluded points:: sage: set_verbose(-1) sage: polar_plot(sin(sqrt(x^2-1)), (x,0,2*pi), exclude=[1/2,2,3]) Graphics object consisting of 3 graphics primitives sage: parametric_plot((sqrt(x^2-1),sqrt(x^2-1/2)), (x,0,5), exclude=[1,2,3]) Graphics object consisting of 3 graphics primitives sage: set_verbose(0) Legends can contain variables with long names, :trac:`13543`:: sage: hello = var('hello') sage: label = '$' + latex(hello) + '$' sage: plot(x, x, 0, 1, legend_label=label) Graphics object consisting of 1 graphics primitive Extra keywords should be saved if object has a plot method, :trac:`20924`:: sage: G = graphs.PetersenGraph() sage: p = G.plot() sage: p.aspect_ratio() 1.0 sage: pp = plot(G) sage: pp.aspect_ratio() 1.0 """ if 'color' in kwds and 'rgbcolor' in kwds: raise ValueError('only one of color or rgbcolor should be specified') elif 'color' in kwds: kwds['rgbcolor'] = kwds.pop('color', (0,0,1)) # take blue as default ``rgbcolor`` G_kwds = Graphics._extract_kwds_for_show(kwds, ignore=['xmin', 'xmax']) original_opts = kwds.pop('__original_opts', {}) do_show = kwds.pop('show',False) from sage.structure.element import is_Vector if kwds.get('parametric',False) and is_Vector(funcs): funcs = tuple(funcs) if hasattr(funcs, 'plot'): G = funcs.plot(*args, **original_opts) # If we have extra keywords already set, then update them for ext in G._extra_kwds: if ext in G_kwds: G_kwds[ext] = G._extra_kwds[ext] # if we are using the generic plotting method else: n = len(args) # if there are no extra args, try to get xmin,xmax from # keyword arguments or pick some silly default if n == 0: xmin = kwds.pop('xmin', -1) xmax = kwds.pop('xmax', 1) G = _plot(funcs, (xmin, xmax), **kwds) # if there is one extra arg, then it had better be a tuple elif n == 1: G = _plot(funcs, *args, **kwds) elif n == 2: # if there are two extra args, then pull them out and pass them as a tuple xmin = args[0] xmax = args[1] args = args[2:] G = _plot(funcs, (xmin, xmax), *args, **kwds) elif n == 3: # if there are three extra args, then pull them out and pass them as a tuple var = args[0] xmin = args[1] xmax = args[2] args = args[3:] G = _plot(funcs, (var, xmin, xmax), *args, **kwds) elif ('xmin' in kwds) or ('xmax' in kwds): xmin = kwds.pop('xmin', -1) xmax = kwds.pop('xmax', 1) G = _plot(funcs, (xmin, xmax), *args, **kwds) pass else: sage.misc.misc.verbose("there were %s extra arguments (besides %s)" % (n, funcs), level=0) G._set_extra_kwds(G_kwds) if do_show: G.show() return G def _plot(funcs, xrange, parametric=False, polar=False, fill=False, label='', randomize=True, **options): """ Internal function which does the actual plotting. INPUT: - ``funcs`` - function or list of functions to be plotted - ``xrange`` - two or three tuple of [input variable], min and max - ``parametric`` - (default: False) a boolean for whether this is a parametric plot - ``polar`` - (default: False) a boolean for whether this is a polar plot - ``fill`` - (default: False) an input for whether this plot is filled - ``randomize`` - (default: True) a boolean for whether to use random plot points The following option is deprecated in favor of ``legend_label``: - ``label`` - (default: '') a string for the label All other usual plot options are also accepted, and a number are required (see the example below) which are normally passed through the options decorator to :func:`plot`. OUTPUT: - A ``Graphics`` object EXAMPLES:: See :func:`plot` for many, many implicit examples. Here is an explicit one:: sage: from sage.plot.plot import _plot sage: P = _plot(e^(-x^2),(-3,3),fill=True,color='red',plot_points=50,adaptive_tolerance=2,adaptive_recursion=True,exclude=None) sage: P.show(aspect_ratio='automatic') TESTS: Make sure that we get the right number of legend entries as the number of functions varies (:trac:`10514`):: sage: p1 = plot(1*x, legend_label='1x') sage: p2 = plot(2*x, legend_label='2x', color='green') sage: p1+p2 Graphics object consisting of 2 graphics primitives :: sage: len(p1.matplotlib().axes[0].legend().texts) 1 sage: len((p1+p2).matplotlib().axes[0].legend().texts) 2 sage: q1 = plot([sin(x), tan(x)], color='blue', legend_label='trig') sage: len(q1.matplotlib().axes[0].legend().texts) 2 sage: q1 Graphics object consisting of 2 graphics primitives sage: q2 = plot([sin(x), tan(x)], legend_label={1:'tan'}) sage: len(q2.matplotlib().axes[0].legend().texts) 2 sage: q2 Graphics object consisting of 2 graphics primitives :: Make sure that we don't get multiple legend labels for plot segments (:trac:`11998`):: sage: p1 = plot(1/(x^2-1),(x,-2,2),legend_label="foo",detect_poles=True) sage: len(p1.matplotlib().axes[0].legend().texts) 1 sage: p1.show(ymin=-10,ymax=10) # should be one legend Parametric plots that get evaluated at invalid points should still plot properly (:trac:`13246`):: sage: parametric_plot((x, arcsec(x)), (x, -2, 2)) Graphics object consisting of 2 graphics primitives """ from sage.plot.colors import Color from sage.plot.misc import setup_for_eval_on_grid if funcs == []: return Graphics() orig_funcs = funcs # keep the original functions (for use in legend labels) excluded_points = [] funcs, ranges = setup_for_eval_on_grid(funcs, [xrange], options['plot_points']) xmin, xmax, delta = ranges[0] xrange=ranges[0][:2] # parametric_plot will be a list or tuple of two functions (f,g) # and will plotted as (f(x), g(x)) for all x in the given range if parametric: f, g = funcs # or we have only a single function to be plotted: else: f = funcs # Keep ``rgbcolor`` option 'automatic' only for lists of functions. # Otherwise, let the plot color be 'blue'. if parametric or not isinstance(funcs, (list, tuple)): if 'rgbcolor' in options.keys() and options['rgbcolor'] == 'automatic': options['rgbcolor'] = (0, 0, 1) # default color for a single curve. # Check to see if funcs is a list of functions that will be all plotted together. if isinstance(funcs, (list, tuple)) and not parametric: def golden_rainbow(i,lightness=0.4): # note: sage's "blue" has hue-saturation-lightness values (2/3, 1, 1/2). g = 0.61803398875 return Color((0.66666666666666 + i*g) % 1, 1, lightness, space='hsl') default_line_styles = ("-", "--", "-.", ":")*len(funcs) G = Graphics() for i, h in enumerate(funcs): options_temp = options.copy() color_temp = options_temp.pop('rgbcolor', 'automatic') fill_temp = options_temp.pop('fill', fill) fillcolor_temp = options_temp.pop('fillcolor', 'automatic') # perhaps the 2nd argument should be ``options_temp['color']`` linestyle_temp = options_temp.pop('linestyle', None) legend_label_temp = options_temp.pop('legend_label', None) legend_color_temp = options_temp.pop('legend_color', None) # passed more than one color directive? one_plot_color = False if isinstance(color_temp, dict): if i in color_temp: color_entry = color_temp[i] else: color_entry = golden_rainbow(i) elif isinstance(color_temp, (list, tuple)) and isinstance(color_temp[0], (str, list, tuple)): if i < len(color_temp): color_entry = color_temp[i] else: color_entry = golden_rainbow(i) elif color_temp == 'automatic': color_entry = golden_rainbow(i) else: # assume a single color was assigned for all plots one_plot_color = True color_entry = color_temp # passed more than one fill directive? if isinstance(fill_temp, dict): if i in fill_temp: fill_entry_listQ = fill_temp[i] if isinstance(fill_entry_listQ, list): if fill_entry_listQ[0] < len(funcs): fill_entry = funcs[fill_entry_listQ[0]] else: fill_entry = False else: fill_entry = fill_entry_listQ else: fill_entry = False elif isinstance(fill_temp, (list, tuple)): if i < len(fill_temp): fill_entry_listQ = fill_temp[i] if isinstance(fill_entry_listQ, list): if fill_entry_listQ[0] < len(funcs): fill_entry = funcs[fill_entry_listQ[0]] else: fill_entry = False else: fill_entry = fill_entry_listQ else: fill_entry = False else: fill_entry = fill_temp # passed more than one fillcolor directive? fillcolor_entry = 'gray' # the default choice if isinstance(fillcolor_temp, dict): if i in fillcolor_temp: fillcolor_entry = fillcolor_temp[i] else: fillcolor_entry = golden_rainbow(i,0.85) elif isinstance(fillcolor_temp, (list, tuple)): if i < len(fillcolor_temp): fillcolor_entry = fillcolor_temp[i] else: fillcolor_entry = golden_rainbow(i,0.85) elif fillcolor_temp == 'automatic': # check that we haven't overwritten automatic multi-colors in color_temp if len(funcs) > 1 and not one_plot_color: fillcolor_entry = golden_rainbow(i,0.85) elif fillcolor_temp is not None: fillcolor_entry = fillcolor_temp # passed more than one linestyle directive? if isinstance(linestyle_temp, dict): if i in linestyle_temp: linestyle_entry = linestyle_temp[i] else: linestyle_entry = default_line_styles[i] elif isinstance(linestyle_temp, (list, tuple)): if i < len(linestyle_temp): linestyle_entry = linestyle_temp[i] else: linestyle_entry = default_line_styles[i] elif linestyle_temp == 'automatic': linestyle_entry = default_line_styles[i] elif linestyle_temp is None: linestyle_entry = 'solid' else: linestyle_entry = linestyle_temp # passed more than one legend_label directive? legend_label_entry = orig_funcs[i].__repr__() # the 'automatic' choice if isinstance(legend_label_temp, dict): if i in legend_label_temp: legend_label_entry = legend_label_temp[i] elif isinstance(legend_label_temp, (list, tuple)): if i < len(legend_label_temp): legend_label_entry = legend_label_temp[i] elif legend_label_temp is not 'automatic': # assume it is None or str. legend_label_entry = legend_label_temp # passed more than one legend_color directive? legend_color_entry = 'black' # the default choice if isinstance(legend_color_temp, dict): if i in legend_color_temp: legend_color_entry = legend_color_temp[i] elif isinstance(legend_color_temp, (list, tuple)) and isinstance(legend_color_temp[0], (str, list, tuple)): if i < len(legend_color_temp): legend_color_entry = legend_color_temp[i] elif legend_color_temp == 'automatic': if len(funcs)>1: legend_color_entry = golden_rainbow(i) elif legend_color_temp is not None: legend_color_entry = legend_color_temp G += plot(h, xrange, polar=polar, fill=fill_entry, fillcolor=fillcolor_entry, \ rgbcolor=color_entry, linestyle=linestyle_entry, \ legend_label=legend_label_entry, legend_color=legend_color_entry, **options_temp) return G adaptive_tolerance = options.pop('adaptive_tolerance') adaptive_recursion = options.pop('adaptive_recursion') plot_points = int(options.pop('plot_points')) exclude = options.pop('exclude') if exclude is not None: from sage.symbolic.expression import Expression if isinstance(exclude, Expression) and exclude.is_relational(): if len(exclude.variables()) > 1: raise ValueError('exclude has to be an equation of only one variable') v = exclude.variables()[0] points = [e.right() for e in exclude.solve(v) if e.left() == v and (v not in e.right().variables())] # We are only interested in real solutions for x in points: try: excluded_points.append(float(x)) except TypeError: pass excluded_points.sort() # We should either have a list in excluded points or exclude # itself must be a list elif isinstance(exclude, (list, tuple)): excluded_points = sorted(exclude) else: raise ValueError('exclude needs to be a list of numbers or an equation') # We make sure that points plot points close to the excluded points are computed epsilon = 0.001*(xmax - xmin) initial_points = reduce(lambda a,b: a+b, [[x - epsilon, x + epsilon] for x in excluded_points], []) data = generate_plot_points(f, xrange, plot_points, adaptive_tolerance, adaptive_recursion, randomize, initial_points) else: data = generate_plot_points(f, xrange, plot_points, adaptive_tolerance, adaptive_recursion, randomize) for i in range(len(data)-1): # If the difference between consecutive x-values is more than # 2 times the difference between two consecutive plot points, then # add an exclusion point. if abs(data[i+1][0] - data[i][0]) > 2*abs(xmax - xmin)/plot_points: excluded_points.append((data[i][0] + data[i+1][0])/2) if parametric: # We need the original x-values to be able to exclude points in parametric plots exclude_data = data newdata = [] for x,fdata in data: try: newdata.append((fdata, g(x))) except (ValueError, TypeError): newdata.append((fdata, 0)) # append a dummy value 0 excluded_points.append(x) data = newdata excluded_points.sort(reverse=True) G = Graphics() fillcolor = options.pop('fillcolor', 'automatic') fillalpha = options.pop('fillalpha', 0.5) # TODO: Use matplotlib's fill and fill_between commands. if fill is not False and fill is not None: if parametric: filldata = data else: if fill == 'axis' or fill is True: base_level = 0 elif fill == 'min': base_level = min(t[1] for t in data) elif fill == 'max': base_level = max(t[1] for t in data) elif hasattr(fill, '__call__'): if fill == max or fill == min: if fill == max: fstr = 'max' else: fstr = 'min' msg = "WARNING: You use the built-in function %s for filling. You probably wanted the string '%s'." % (fstr, fstr) sage.misc.misc.verbose(msg, level=0) if not is_fast_float(fill): fill_f = fast_float(fill, expect_one_var=True) else: fill_f = fill filldata = generate_plot_points(fill_f, xrange, plot_points, adaptive_tolerance, \ adaptive_recursion, randomize) filldata.reverse() filldata += data else: try: base_level = float(fill) except TypeError: base_level = 0 if not hasattr(fill, '__call__') and polar: filldata = generate_plot_points(lambda x: base_level, xrange, plot_points, adaptive_tolerance, \ adaptive_recursion, randomize) filldata.reverse() filldata += data if not hasattr(fill, '__call__') and not polar: filldata = [(data[0][0], base_level)] + data + [(data[-1][0], base_level)] if fillcolor == 'automatic': fillcolor = (0.5, 0.5, 0.5) fill_options = {} fill_options['rgbcolor'] = fillcolor fill_options['alpha'] = fillalpha fill_options['thickness'] = 0 if polar: filldata = [(y*cos(x), y*sin(x)) for x, y in filldata] G += polygon(filldata, **fill_options) # We need the original data to be able to exclude points in polar plots if not parametric: exclude_data = data if polar: data = [(y*cos(x), y*sin(x)) for x, y in data] detect_poles = options.pop('detect_poles', False) legend_label = options.pop('legend_label', None) if excluded_points or detect_poles: start_index = 0 # setup for pole detection from sage.rings.all import RDF epsilon = 0.0001 pole_options = {} pole_options['linestyle'] = '--' pole_options['thickness'] = 1 pole_options['rgbcolor'] = '#ccc' # setup for exclusion points exclusion_point = 0 if excluded_points: exclusion_point = excluded_points.pop() flag = True for i in range(len(data)-1): x0, y0 = exclude_data[i] x1, y1 = exclude_data[i+1] # detect poles if (not (polar or parametric)) and detect_poles \ and ((y1 > 0 and y0 < 0) or (y1 < 0 and y0 > 0)): # calculate the slope of the line segment dy = abs(y1-y0) dx = x1 - x0 alpha = (RDF(dy)/RDF(dx)).arctan() if alpha >= RDF(pi/2) - epsilon: G += line(data[start_index:i], **options) if detect_poles == 'show': # draw a vertical asymptote G += line([(x0, y0), (x1, y1)], **pole_options) start_index = i+2 # exclude points if x0 > exclusion_point: while exclusion_point <= x1: try: exclusion_point = excluded_points.pop() except IndexError: # all excluded points were considered flag = False break elif flag and (x0 <= exclusion_point <= x1): G += line(data[start_index:i], **options) start_index = i + 2 while exclusion_point <= x1: try: exclusion_point = excluded_points.pop() except IndexError: # all excluded points were considered flag = False break G += line(data[start_index:], legend_label=legend_label, **options) else: G += line(data, legend_label=legend_label, **options) return G ########## misc functions ################### @options(aspect_ratio=1.0) def parametric_plot(funcs, *args, **kwargs): r""" Plot a parametric curve or surface in 2d or 3d. :func:`parametric_plot` takes two or three functions as a list or a tuple and makes a plot with the first function giving the `x` coordinates, the second function giving the `y` coordinates, and the third function (if present) giving the `z` coordinates. In the 2d case, :func:`parametric_plot` is equivalent to the :func:`plot` command with the option ``parametric=True``. In the 3d case, :func:`parametric_plot` is equivalent to :func:`~sage.plot.plot3d.parametric_plot3d.parametric_plot3d`. See each of these functions for more help and examples. INPUT: - ``funcs`` - 2 or 3-tuple of functions, or a vector of dimension 2 or 3. - ``other options`` - passed to :func:`plot` or :func:`~sage.plot.plot3d.parametric_plot3d.parametric_plot3d` EXAMPLES: We draw some 2d parametric plots. Note that the default aspect ratio is 1, so that circles look like circles. :: sage: t = var('t') sage: parametric_plot( (cos(t), sin(t)), (t, 0, 2*pi)) Graphics object consisting of 1 graphics primitive .. PLOT:: t = var('t') g = parametric_plot( (cos(t), sin(t)), (t, 0, 2*pi)) sphinx_plot(g) :: sage: parametric_plot( (sin(t), sin(2*t)), (t, 0, 2*pi), color=hue(0.6) ) Graphics object consisting of 1 graphics primitive .. PLOT:: t = var('t') g = parametric_plot( (sin(t), sin(2*t)), (t, 0, 2*pi), color=hue(0.6)) sphinx_plot(g) :: sage: parametric_plot((1, t), (t, 0, 4)) Graphics object consisting of 1 graphics primitive .. PLOT:: t =var('t') g = parametric_plot((1, t), (t, 0, 4)) sphinx_plot(g) Note that in parametric_plot, there is only fill or no fill. :: sage: parametric_plot((t, t^2), (t, -4, 4), fill=True) Graphics object consisting of 2 graphics primitives .. PLOT:: t =var('t') g = parametric_plot((t, t**2), (t, -4, 4), fill=True) sphinx_plot(g) A filled Hypotrochoid:: sage: parametric_plot([cos(x) + 2 * cos(x/4), sin(x) - 2 * sin(x/4)], (x,0, 8*pi), fill=True) Graphics object consisting of 2 graphics primitives .. PLOT:: g = parametric_plot([cos(x) + 2 * cos(x/4), sin(x) - 2 * sin(x/4)], (x,0, 8*pi), fill=True) sphinx_plot(g) :: sage: parametric_plot( (5*cos(x), 5*sin(x), x), (x,-12, 12), plot_points=150, color="red") # long time Graphics3d Object .. PLOT:: #AttributeError: 'Line' object has no attribute 'plot' #g = parametric_plot( (5*cos(x), 5*sin(x), x), (x,-12, 12), plot_points=150, color="red") # long time #sphinx_plot(g) :: sage: y=var('y') sage: parametric_plot( (5*cos(x), x*y, cos(x*y)), (x, -4,4), (y,-4,4)) # long time` Graphics3d Object .. PLOT:: #AttributeError: 'sage.plot.plot3d.parametric_surface.ParametricSurf' object has no attribute 'plot' #y = var('y') #g = parametric_plot( (5*cos(x), x*y, cos(x*y)), (x, -4,4), (y,-4,4)) # long time` #sphinx_plot(g) :: sage: t=var('t') sage: parametric_plot( vector((sin(t), sin(2*t))), (t, 0, 2*pi), color='green') # long time Graphics object consisting of 1 graphics primitive .. PLOT:: t = var('t') g = parametric_plot( vector((sin(t), sin(2*t))), (t, 0, 2*pi), color='green') # long time sphinx_plot(g) :: sage: t = var('t') sage: parametric_plot( vector([t, t+1, t^2]), (t, 0, 1)) # long time Graphics3d Object .. PLOT:: #t = var('t') #g = parametric_plot( vector([t, t+1, t**2]), (t, 0, 1)) # long time #sphinx_plot(g) Plotting in logarithmic scale is possible with 2D plots. The keyword ``aspect_ratio`` will be ignored if the scale is not ``'loglog'`` or ``'linear'``.:: sage: parametric_plot((x, x**2), (x, 1, 10), scale='loglog') Graphics object consisting of 1 graphics primitive .. PLOT:: g = parametric_plot((x, x**2), (x, 1, 10), scale='loglog') sphinx_plot(g) We can also change the scale of the axes in the graphics just before displaying. In this case, the ``aspect_ratio`` must be specified as ``'automatic'`` if the ``scale`` is set to ``'semilogx'`` or ``'semilogy'``. For other values of the ``scale`` parameter, any ``aspect_ratio`` can be used, or the keyword need not be provided.:: sage: p = parametric_plot((x, x**2), (x, 1, 10)) sage: p.show(scale='semilogy', aspect_ratio='automatic') TESTS:: sage: parametric_plot((x, t^2), (x, -4, 4)) Traceback (most recent call last): ... ValueError: there are more variables than variable ranges sage: parametric_plot((1, x+t), (x, -4, 4)) Traceback (most recent call last): ... ValueError: there are more variables than variable ranges sage: parametric_plot((-t, x+t), (x, -4, 4)) Traceback (most recent call last): ... ValueError: there are more variables than variable ranges sage: parametric_plot((1, x+t, y), (x, -4, 4), (t, -4, 4)) Traceback (most recent call last): ... ValueError: there are more variables than variable ranges sage: parametric_plot((1, x, y), 0, 4) Traceback (most recent call last): ... ValueError: there are more variables than variable ranges """ num_ranges=0 for i in args: if isinstance(i, (list, tuple)): num_ranges+=1 else: break if num_ranges==0 and len(args)>=2: from sage.misc.superseded import deprecation deprecation(7008, "variable ranges to parametric_plot must be given as tuples, like (2,4) or (t,2,3)") args=tuple(args) num_ranges=1 num_funcs = len(funcs) num_vars=len(sage.plot.misc.unify_arguments(funcs)[0]) if num_vars>num_ranges: raise ValueError("there are more variables than variable ranges") # Reset aspect_ratio to 'automatic' in case scale is 'semilog[xy]'. # Otherwise matplotlib complains. scale = kwargs.get('scale', None) if isinstance(scale, (list, tuple)): scale = scale[0] if scale == 'semilogy' or scale == 'semilogx': kwargs['aspect_ratio'] = 'automatic' if num_funcs == 2 and num_ranges == 1: kwargs['parametric'] = True return plot(funcs, *args, **kwargs) elif (num_funcs == 3 and num_ranges <= 2): return sage.plot.plot3d.parametric_plot3d.parametric_plot3d(funcs, *args, **kwargs) else: raise ValueError("the number of functions and the number of variable ranges is not a supported combination for a 2d or 3d parametric plots") @options(aspect_ratio=1.0) def polar_plot(funcs, *args, **kwds): r""" ``polar_plot`` takes a single function or a list or tuple of functions and plots them with polar coordinates in the given domain. This function is equivalent to the :func:`plot` command with the options ``polar=True`` and ``aspect_ratio=1``. For more help on options, see the documentation for :func:`plot`. INPUT: - ``funcs`` - a function - other options are passed to plot EXAMPLES: Here is a blue 8-leaved petal:: sage: polar_plot(sin(5*x)^2, (x, 0, 2*pi), color='blue') Graphics object consisting of 1 graphics primitive .. PLOT:: g = polar_plot(sin(5*x)**2, (x, 0, 2*pi), color='blue') sphinx_plot(g) A red figure-8:: sage: polar_plot(abs(sqrt(1 - sin(x)^2)), (x, 0, 2*pi), color='red') Graphics object consisting of 1 graphics primitive .. PLOT:: g = polar_plot(abs(sqrt(1 - sin(x)**2)), (x, 0, 2*pi), color='red') sphinx_plot(g) A green limacon of Pascal:: sage: polar_plot(2 + 2*cos(x), (x, 0, 2*pi), color=hue(0.3)) Graphics object consisting of 1 graphics primitive .. PLOT:: g = polar_plot(2 + 2*cos(x), (x, 0, 2*pi), color=hue(0.3)) sphinx_plot(g) Several polar plots:: sage: polar_plot([2*sin(x), 2*cos(x)], (x, 0, 2*pi)) Graphics object consisting of 2 graphics primitives .. PLOT:: g = polar_plot([2*sin(x), 2*cos(x)], (x, 0, 2*pi)) sphinx_plot(g) A filled spiral:: sage: polar_plot(sqrt, 0, 2 * pi, fill=True) Graphics object consisting of 2 graphics primitives .. PLOT:: g = polar_plot(sqrt, 0, 2 * pi, fill=True) sphinx_plot(g) Fill the area between two functions:: sage: polar_plot(cos(4*x) + 1.5, 0, 2*pi, fill=0.5 * cos(4*x) + 2.5, fillcolor='orange') Graphics object consisting of 2 graphics primitives .. PLOT:: g = polar_plot(cos(4*x) + 1.5, 0, 2*pi, fill=0.5 * cos(4*x) + 2.5, fillcolor='orange') sphinx_plot(g) Fill the area between several spirals:: sage: polar_plot([(1.2+k*0.2)*log(x) for k in range(6)], 1, 3 * pi, fill={0: [1], 2: [3], 4: [5]}) Graphics object consisting of 9 graphics primitives .. PLOT:: g = polar_plot([(1.2+k*0.2)*log(x) for k in range(6)], 1, 3 * pi, fill={0: [1], 2: [3], 4: [5]}) sphinx_plot(g) Exclude points at discontinuities:: sage: polar_plot(log(floor(x)), (x, 1, 4*pi), exclude=[1..12]) Graphics object consisting of 12 graphics primitives .. PLOT:: g = polar_plot(log(floor(x)), (x, 1, 4*pi), exclude=list(range(1,13))) sphinx_plot(g) """ kwds['polar']=True return plot(funcs, *args, **kwds) @options(aspect_ratio='automatic') def list_plot(data, plotjoined=False, **kwargs): r""" ``list_plot`` takes either a list of numbers, a list of tuples, a numpy array, or a dictionary and plots the corresponding points. If given a list of numbers (that is, not a list of tuples or lists), ``list_plot`` forms a list of tuples ``(i, x_i)`` where ``i`` goes from 0 to ``len(data)-1`` and ``x_i`` is the ``i``-th data value, and puts points at those tuple values. ``list_plot`` will plot a list of complex numbers in the obvious way; any numbers for which :func:`CC()<sage.rings.complex_field.ComplexField>` makes sense will work. ``list_plot`` also takes a list of tuples ``(x_i, y_i)`` where ``x_i`` and ``y_i`` are the ``i``-th values representing the ``x``- and ``y``-values, respectively. If given a dictionary, ``list_plot`` interprets the keys as `x`-values and the values as `y`-values. The ``plotjoined=True`` option tells ``list_plot`` to plot a line joining all the data. For other keyword options that the ``list_plot`` function can take, refer to :func:`~sage.plot.plot.plot`. It is possible to pass empty dictionaries, lists, or tuples to ``list_plot``. Doing so will plot nothing (returning an empty plot). EXAMPLES:: sage: list_plot([i^2 for i in range(5)]) # long time Graphics object consisting of 1 graphics primitive .. PLOT:: g = list_plot([i**2 for i in range(5)]) # long time sphinx_plot(g) Here are a bunch of random red points:: sage: r = [(random(),random()) for _ in range(20)] sage: list_plot(r, color='red') Graphics object consisting of 1 graphics primitive .. PLOT:: r = [(random(),random()) for _ in range(20)] g = list_plot(r, color='red') sphinx_plot(g) This gives all the random points joined in a purple line:: sage: list_plot(r, plotjoined=True, color='purple') Graphics object consisting of 1 graphics primitive .. PLOT:: r = [(random(),random()) for _ in range(20)] g = list_plot(r, plotjoined=True, color='purple') sphinx_plot(g) You can provide a numpy array.:: sage: import numpy sage: list_plot(numpy.arange(10)) Graphics object consisting of 1 graphics primitive .. PLOT:: import numpy g = list_plot(numpy.arange(10)) sphinx_plot(g) :: sage: list_plot(numpy.array([[1,2], [2,3], [3,4]])) Graphics object consisting of 1 graphics primitive .. PLOT:: import numpy g = list_plot(numpy.array([[1,2], [2,3], [3,4]])) sphinx_plot(g) Plot a list of complex numbers:: sage: list_plot([1, I, pi + I/2, CC(.25, .25)]) Graphics object consisting of 1 graphics primitive .. PLOT:: g = list_plot([1, I, pi + I/2, CC(.25, .25)]) sphinx_plot(g) :: sage: list_plot([exp(I*theta) for theta in [0, .2..pi]]) Graphics object consisting of 1 graphics primitive .. PLOT:: g = list_plot([exp(I*theta) for theta in srange(0,pi,0.2)]) sphinx_plot(g) Note that if your list of complex numbers are all actually real, they get plotted as real values, so this :: sage: list_plot([CDF(1), CDF(1/2), CDF(1/3)]) Graphics object consisting of 1 graphics primitive .. PLOT:: g = list_plot([CDF(1), CDF(1/2), CDF(1/3)]) sphinx_plot(g) is the same as ``list_plot([1, 1/2, 1/3])`` -- it produces a plot of the points `(0,1)`, `(1,1/2)`, and `(2,1/3)`. If you have separate lists of `x` values and `y` values which you want to plot against each other, use the ``zip`` command to make a single list whose entries are pairs of `(x,y)` values, and feed the result into ``list_plot``:: sage: x_coords = [cos(t)^3 for t in srange(0, 2*pi, 0.02)] sage: y_coords = [sin(t)^3 for t in srange(0, 2*pi, 0.02)] sage: list_plot(list(zip(x_coords, y_coords))) Graphics object consisting of 1 graphics primitive .. PLOT:: x_coords = [cos(t)**3 for t in srange(0, 2*pi, 0.02)] y_coords = [sin(t)**3 for t in srange(0, 2*pi, 0.02)] g = list_plot(list(zip(x_coords, y_coords))) sphinx_plot(g) If instead you try to pass the two lists as separate arguments, you will get an error message:: sage: list_plot(x_coords, y_coords) Traceback (most recent call last): ... TypeError: The second argument 'plotjoined' should be boolean (True or False). If you meant to plot two lists 'x' and 'y' against each other, use 'list_plot(list(zip(x,y)))'. Dictionaries with numeric keys and values can be plotted:: sage: list_plot({22: 3365, 27: 3295, 37: 3135, 42: 3020, 47: 2880, 52: 2735, 57: 2550}) Graphics object consisting of 1 graphics primitive .. PLOT:: g = list_plot({22: 3365, 27: 3295, 37: 3135, 42: 3020, 47: 2880, 52: 2735, 57: 2550}) sphinx_plot(g) Plotting in logarithmic scale is possible for 2D list plots. There are two different syntaxes available:: sage: yl = [2**k for k in range(20)] sage: list_plot(yl, scale='semilogy') # long time # log axis on vertical Graphics object consisting of 1 graphics primitive .. PLOT:: yl = [2**k for k in range(20)] g = list_plot(yl, scale='semilogy') # long time # log axis on vertical sphinx_plot(g) :: sage: list_plot_semilogy(yl) # same Graphics object consisting of 1 graphics primitive .. warning:: If ``plotjoined`` is ``False`` then the axis that is in log scale must have all points strictly positive. For instance, the following plot will show no points in the figure since the points in the horizontal axis starts from `(0,1)`. Further, matplotlib will display a user warning. :: sage: list_plot(yl, scale='loglog') # both axes are log doctest:warning ... Graphics object consisting of 1 graphics primitive Instead this will work. We drop the point `(0,1)`.:: sage: list_plot(list(zip(range(1,len(yl)), yl[1:])), scale='loglog') # long time Graphics object consisting of 1 graphics primitive We use :func:`list_plot_loglog` and plot in a different base.:: sage: list_plot_loglog(list(zip(range(1,len(yl)), yl[1:])), base=2) # long time Graphics object consisting of 1 graphics primitive .. PLOT:: yl = [2**k for k in range(20)] g = list_plot_loglog(list(zip(range(1,len(yl)), yl[1:])), base=2) # long time sphinx_plot(g) We can also change the scale of the axes in the graphics just before displaying:: sage: G = list_plot(yl) # long time sage: G.show(scale=('semilogy', 2)) # long time TESTS: We check to see whether elements of the Symbolic Ring are properly handled; see :trac:`16378` :: sage: list_plot([1+I, 2+I]) Graphics object consisting of 1 graphics primitive sage: list_plot([1+I, 2, CC(3+I)]) Graphics object consisting of 1 graphics primitive sage: list_plot([2, SR(1), CC(1+i)]) Graphics object consisting of 1 graphics primitive We check to see that the x/y min/max data are set correctly:: sage: d = list_plot([(100,100), (120, 120)]).get_minmax_data() sage: d['xmin'] 100.0 sage: d['ymin'] 100.0 """ from sage.plot.all import point try: if not data: return Graphics() except ValueError: # numpy raises ValueError if it is not empty pass if not isinstance(plotjoined, bool): raise TypeError("The second argument 'plotjoined' should be boolean " "(True or False). If you meant to plot two lists 'x' " "and 'y' against each other, use 'list_plot(list(zip(x,y)))'.") if isinstance(data, dict): if plotjoined: list_data = sorted(list(iteritems(data))) else: list_data = list(iteritems(data)) return list_plot(list_data, plotjoined=plotjoined, **kwargs) try: from sage.rings.all import RDF RDF(data[0]) data = list(enumerate(data)) except TypeError: # we can get this TypeError if the element is a list # or tuple or numpy array, or an element of CC, CDF # We also want to avoid doing CC(data[0]) here since it will go # through if data[0] is really a tuple and every element of the # data will be converted to a complex and later converted back to # a tuple. # So, the only other check we need to do is whether data[0] is an # element of the Symbolic Ring. if data[0] in sage.symbolic.ring.SR: data = list(enumerate(data)) try: if plotjoined: return line(data, **kwargs) else: return point(data, **kwargs) except (TypeError, IndexError): # Assume we have complex-valued input and plot real and imaginary parts. # Need to catch IndexError because if data is, say, [(0, 1), (1, I)], # point3d() throws an IndexError on the (0,1) before it ever # gets to (1, I). from sage.rings.complex_field import ComplexField CC = ComplexField() # if we get here, we already did "list(enumerate(data))", # so look at z[1] in inner list data = [(z.real(), z.imag()) for z in [CC(z[1]) for z in data]] if plotjoined: return line(data, **kwargs) else: return point(data, **kwargs) #------------------------ Graphs on log scale ---------------------------# @options(base=10) def plot_loglog(funcs, *args, **kwds): """ Plot graphics in 'loglog' scale, that is, both the horizontal and the vertical axes will be in logarithmic scale. INPUT: - ``base`` -- (default: 10) the base of the logarithm. This must be greater than 1. The base can be also given as a list or tuple ``(basex, basey)``. ``basex`` sets the base of the logarithm along the horizontal axis and ``basey`` sets the base along the vertical axis. - ``funcs`` -- any Sage object which is acceptable to the :func:`plot`. For all other inputs, look at the documentation of :func:`plot`. EXAMPLES:: sage: plot_loglog(exp, (1,10)) # plot in loglog scale with base 10 Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot_loglog(exp, (1,10)) # plot in loglog scale with base 10 sphinx_plot(g) :: sage: plot_loglog(exp, (1,10), base=2.1) # long time # with base 2.1 on both axes Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot_loglog(exp, (1,10), base=2.1) # long time # with base 2.1 on both axes sphinx_plot(g) :: sage: plot_loglog(exp, (1,10), base=(2,3)) Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot_loglog(exp, (1,10), base=(2,3)) sphinx_plot(g) """ return plot(funcs, *args, scale='loglog', **kwds) @options(base=10) def plot_semilogx(funcs, *args, **kwds): """ Plot graphics in 'semilogx' scale, that is, the horizontal axis will be in logarithmic scale. INPUT: - ``base`` -- (default: 10) the base of the logarithm. This must be greater than 1. - ``funcs`` -- any Sage object which is acceptable to the :func:`plot`. For all other inputs, look at the documentation of :func:`plot`. EXAMPLES:: sage: plot_semilogx(exp, (1,10)) # long time # plot in semilogx scale, base 10 Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot_semilogx(exp, (1,10)) # long time # plot in semilogx scale, base 10 sphinx_plot(g) :: sage: plot_semilogx(exp, (1,10), base=2) # with base 2 Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot_semilogx(exp, (1,10), base=2) # with base 2 sphinx_plot(g) """ return plot(funcs, *args, scale='semilogx', **kwds) @options(base=10) def plot_semilogy(funcs, *args, **kwds): """ Plot graphics in 'semilogy' scale, that is, the vertical axis will be in logarithmic scale. INPUT: - ``base`` -- (default: 10) the base of the logarithm. This must be greater than 1. - ``funcs`` -- any Sage object which is acceptable to the :func:`plot`. For all other inputs, look at the documentation of :func:`plot`. EXAMPLES:: sage: plot_semilogy(exp, (1,10)) # long time # plot in semilogy scale, base 10 Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot_semilogy(exp, (1,10)) # long time # plot in semilogy scale, base 10 sphinx_plot(g) :: sage: plot_semilogy(exp, (1,10), base=2) # long time # with base 2 Graphics object consisting of 1 graphics primitive .. PLOT:: g = plot_semilogy(exp, (1,10), base=2) # long time # with base 2 sphinx_plot(g) """ return plot(funcs, *args, scale='semilogy', **kwds) @options(base=10) def list_plot_loglog(data, plotjoined=False, **kwds): """ Plot the ``data`` in 'loglog' scale, that is, both the horizontal and the vertical axes will be in logarithmic scale. INPUT: - ``base`` -- (default: 10) the base of the logarithm. This must be greater than 1. The base can be also given as a list or tuple ``(basex, basey)``. ``basex`` sets the base of the logarithm along the horizontal axis and ``basey`` sets the base along the vertical axis. For all other inputs, look at the documentation of :func:`list_plot`. EXAMPLES:: sage: yl = [5**k for k in range(10)]; xl = [2**k for k in range(10)] sage: list_plot_loglog(list(zip(xl, yl))) # long time # plot in loglog scale with base 10 Graphics object consisting of 1 graphics primitive .. PLOT:: yl = [5**k for k in range(10)] xl = [2**k for k in range(10)] g = list_plot_loglog(list(zip(xl, yl))) # long time # plot in loglog scale with base 10 sphinx_plot(g) :: sage: list_plot_loglog(list(zip(xl, yl)), base=2.1) # long time # with base 2.1 on both axes Graphics object consisting of 1 graphics primitive .. PLOT:: yl = [5**k for k in range(10)] xl = [2**k for k in range(10)] g = list_plot_loglog(list(zip(xl, yl)), base=2.1) # long time # with base 2.1 on both axes sphinx_plot(g) :: sage: list_plot_loglog(list(zip(xl, yl)), base=(2,5)) # long time Graphics object consisting of 1 graphics primitive .. warning:: If ``plotjoined`` is ``False`` then the axis that is in log scale must have all points strictly positive. For instance, the following plot will show no points in the figure since the points in the horizontal axis starts from `(0,1)`. :: sage: yl = [2**k for k in range(20)] sage: list_plot_loglog(yl) Graphics object consisting of 1 graphics primitive Instead this will work. We drop the point `(0,1)`.:: sage: list_plot_loglog(list(zip(range(1,len(yl)), yl[1:]))) Graphics object consisting of 1 graphics primitive """ return list_plot(data, plotjoined=plotjoined, scale='loglog', **kwds) @options(base=10) def list_plot_semilogx(data, plotjoined=False, **kwds): """ Plot ``data`` in 'semilogx' scale, that is, the horizontal axis will be in logarithmic scale. INPUT: - ``base`` -- (default: 10) the base of the logarithm. This must be greater than 1. For all other inputs, look at the documentation of :func:`list_plot`. EXAMPLES:: sage: yl = [2**k for k in range(12)] sage: list_plot_semilogx(list(zip(yl,yl))) Graphics object consisting of 1 graphics primitive .. PLOT:: yl = [2**k for k in range(12)] g = list_plot_semilogx(list(zip(yl,yl))) sphinx_plot(g) .. warning:: If ``plotjoined`` is ``False`` then the horizontal axis must have all points strictly positive. Otherwise the plot will come up empty. For instance the following plot contains a point at `(0,1)`. :: sage: yl = [2**k for k in range(12)] sage: list_plot_semilogx(yl) # plot empty due to (0,1) Graphics object consisting of 1 graphics primitive We remove `(0,1)` to fix this.:: sage: list_plot_semilogx(list(zip(range(1, len(yl)), yl[1:]))) Graphics object consisting of 1 graphics primitive :: sage: list_plot_semilogx([(1,2),(3,4),(3,-1),(25,3)], base=2) # with base 2 Graphics object consisting of 1 graphics primitive .. PLOT:: g = list_plot_semilogx([(1,2),(3,4),(3,-1),(25,3)], base=2) # with base 2 sphinx_plot(g) """ return list_plot(data, plotjoined=plotjoined, scale='semilogx', **kwds) @options(base=10) def list_plot_semilogy(data, plotjoined=False, **kwds): """ Plot ``data`` in 'semilogy' scale, that is, the vertical axis will be in logarithmic scale. INPUT: - ``base`` -- (default: 10) the base of the logarithm. This must be greater than 1. For all other inputs, look at the documentation of :func:`list_plot`. EXAMPLES:: sage: yl = [2**k for k in range(12)] sage: list_plot_semilogy(yl) # plot in semilogy scale, base 10 Graphics object consisting of 1 graphics primitive .. PLOT:: yl = [2**k for k in range(12)] g = list_plot_semilogy(yl) # plot in semilogy scale, base 10 sphinx_plot(g) .. warning:: If ``plotjoined`` is ``False`` then the vertical axis must have all points strictly positive. Otherwise the plot will come up empty. For instance the following plot contains a point at `(1,0)`. Further, matplotlib will display a user warning. :: sage: xl = [2**k for k in range(12)]; yl = range(len(xl)) sage: list_plot_semilogy(list(zip(xl,yl))) # plot empty due to (1,0) doctest:warning ... Graphics object consisting of 1 graphics primitive We remove `(1,0)` to fix this.:: sage: list_plot_semilogy(list(zip(xl[1:],yl[1:]))) Graphics object consisting of 1 graphics primitive :: sage: list_plot_semilogy([2, 4, 6, 8, 16, 31], base=2) # with base 2 Graphics object consisting of 1 graphics primitive .. PLOT:: g = list_plot_semilogy([2, 4, 6, 8, 16, 31], base=2) # with base 2 sphinx_plot(g) """ return list_plot(data, plotjoined=plotjoined, scale='semilogy', **kwds) def to_float_list(v): """ Given a list or tuple or iterable v, coerce each element of v to a float and make a list out of the result. EXAMPLES:: sage: from sage.plot.plot import to_float_list sage: to_float_list([1,1/2,3]) [1.0, 0.5, 3.0] """ return [float(x) for x in v] def reshape(v, n, m): """ Helper function for creating graphics arrays. The input array is flattened and turned into an `n\times m` array, with blank graphics object padded at the end, if necessary. INPUT: - ``v`` - a list of lists or tuples - ``n, m`` - integers OUTPUT: A list of lists of graphics objects EXAMPLES:: sage: L = [plot(sin(k*x),(x,-pi,pi)) for k in range(10)] sage: graphics_array(L,3,4) # long time (up to 4s on sage.math, 2012) Graphics Array of size 3 x 4 :: sage: M = [[plot(sin(k*x),(x,-pi,pi)) for k in range(3)],[plot(cos(j*x),(x,-pi,pi)) for j in [3..5]]] sage: graphics_array(M,6,1) # long time (up to 4s on sage.math, 2012) Graphics Array of size 6 x 1 TESTS:: sage: L = [plot(sin(k*x),(x,-pi,pi)) for k in [1..3]] sage: graphics_array(L,0,-1) # indirect doctest Traceback (most recent call last): ... ValueError: array sizes must be positive """ if not (n > 0 and m > 0): raise ValueError('array sizes must be positive') G = Graphics() G.axes(False) if len(v) == 0: return [[G]*m]*n if not isinstance(v[0], Graphics): # a list of lists -- flatten it v = sum([list(x) for x in v], []) # Now v should be a single list. # First, make it have the right length. v = list(v) # do not mutate the argument for i in range(n * m - len(v)): v.append(G) # Next, create a list of lists out of it. L = [] k = 0 for i in range(n): w = [] for j in range(m): w.append(v[k]) k += 1 L.append(w) return L def graphics_array(array, nrows=None, ncols=None): r""" ``graphics_array`` take a list of lists (or tuples) of graphics objects and plots them all on one canvas (single plot). INPUT: - ``array`` -- a list of lists or tuples. The graphics objects to combine into a graphics array. - ``nrows, ncols`` -- (optional) integers. If both are given then the input array is flattened and turned into an ``nrows`` x ``ncols`` array, with blank graphics objects padded at the end, if necessary. If only one is specified, the other is chosen automatically. EXAMPLES: Make some plots of `\sin` functions:: sage: f(x) = sin(x) sage: g(x) = sin(2*x) sage: h(x) = sin(4*x) sage: p1 = plot(f,(-2*pi,2*pi),color=hue(0.5)) # long time sage: p2 = plot(g,(-2*pi,2*pi),color=hue(0.9)) # long time sage: p3 = parametric_plot((f,g),(0,2*pi),color=hue(0.6)) # long time sage: p4 = parametric_plot((f,h),(0,2*pi),color=hue(1.0)) # long time Now make a graphics array out of the plots:: sage: graphics_array(((p1,p2),(p3,p4))) # long time Graphics Array of size 2 x 2 .. PLOT:: def f(x): return sin(x) def g(x): return sin(2*x) def h(x): return sin(4*x) p1 = plot(f,(-2*pi,2*pi),color=hue(0.5)) # long time p2 = plot(g,(-2*pi,2*pi),color=hue(0.9)) # long time p3 = parametric_plot((f,g),(0,2*pi),color=hue(0.6)) # long time p4 = parametric_plot((f,h),(0,2*pi),color=hue(1.0)) # long time g = graphics_array(((p1,p2),(p3,p4))) # long time sphinx_plot(g) One can also name the array, and then use :meth:`~sage.plot.graphics.GraphicsArray.show` or :meth:`~sage.plot.graphics.GraphicsArray.save`:: sage: ga = graphics_array(((p1,p2),(p3,p4))) # long time sage: ga.show() # long time Here we give only one row:: sage: p1 = plot(sin,(-4,4)) sage: p2 = plot(cos,(-4,4)) sage: g = graphics_array([p1, p2]); print(g) Graphics Array of size 1 x 2 sage: g.show() .. PLOT:: p1 = plot(sin,(-4,4)) p2 = plot(cos,(-4,4)) g = graphics_array([p1, p2]) sphinx_plot(g) It is possible to use ``figsize`` to change the size of the plot as a whole:: sage: L = [plot(sin(k*x),(x,-pi,pi)) for k in [1..3]] sage: G = graphics_array(L) sage: G.show(figsize=[5,3]) # smallish and compact sage: G.show(figsize=[10,20]) # bigger and tall and thin; long time (2s on sage.math, 2012) sage: G.show(figsize=8) # figure as a whole is a square Specifying only the number of rows or the number of columns computes the other dimension automatically:: sage: ga = graphics_array([plot(sin)] * 10, nrows=3) sage: ga.nrows(), ga.ncols() (3, 4) sage: ga = graphics_array([plot(sin)] * 10, ncols=3) sage: ga.nrows(), ga.ncols() (4, 3) """ # TODO: refactor the whole array flattening and reshaping into a class if nrows is None and ncols is None: pass elif nrows is not None and ncols is not None: nrows = int(nrows) ncols = int(ncols) array = reshape(array, nrows, ncols) else: # nrows is None xor ncols is None if len(array) > 0 and isinstance(array[0], Graphics): length = len(array) else: length = sum(map(len, array)) if nrows is None: ncols = int(ncols) nrows = length // ncols + 1 elif ncols is None: nrows = int(nrows) ncols = length // nrows + 1 else: assert False array = reshape(array, nrows, ncols) return GraphicsArray(array) def var_and_list_of_values(v, plot_points): """ INPUT: - ``v`` - (v0, v1) or (var, v0, v1); if the former return the range of values between v0 and v1 taking plot_points steps; if var is given, also return var. - ``plot_points`` - integer = 2 (the endpoints) OUTPUT: - ``var`` - a variable or None - ``list`` - a list of floats EXAMPLES:: sage: from sage.plot.plot import var_and_list_of_values sage: var_and_list_of_values((var('theta'), 2, 5), 5) doctest:...: DeprecationWarning: var_and_list_of_values is deprecated. Please use sage.plot.misc.setup_for_eval_on_grid; note that that function has slightly different calling and return conventions which make it more generally applicable See http://trac.sagemath.org/7008 for details. (theta, [2.0, 2.75, 3.5, 4.25, 5.0]) sage: var_and_list_of_values((2, 5), 5) (None, [2.0, 2.75, 3.5, 4.25, 5.0]) sage: var_and_list_of_values((var('theta'), 2, 5), 2) (theta, [2.0, 5.0]) sage: var_and_list_of_values((2, 5), 2) (None, [2.0, 5.0]) """ from sage.misc.superseded import deprecation deprecation(7008, "var_and_list_of_values is deprecated. Please use sage.plot.misc.setup_for_eval_on_grid; note that that function has slightly different calling and return conventions which make it more generally applicable") plot_points = int(plot_points) if plot_points < 2: raise ValueError("plot_points must be greater than 1") if not isinstance(v, (tuple, list)): raise TypeError("v must be a tuple or list") if len(v) == 3: var = v[0] a, b = v[1], v[2] elif len(v) == 2: var = None a, b = v else: raise ValueError("parametric value range must be a list or tuple of length 2 or 3.") a = float(a) b = float(b) if plot_points == 2: return var, [a, b] else: step = (b-a)/float(plot_points-1) values = [a + step * i for i in range(plot_points)] return var, values def setup_for_eval_on_grid(v, xrange, yrange, plot_points): """ This function is deprecated. Please use ``sage.plot.misc.setup_for_eval_on_grid`` instead. Please note that that function has slightly different calling and return conventions which make it more generally applicable. INPUT: - ``v`` - a list of functions - ``xrange`` - 2 or 3 tuple (if 3, first is a variable) - ``yrange`` - 2 or 3 tuple - ``plot_points`` - a positive integer OUTPUT: - ``g`` - tuple of fast callable functions - ``xstep`` - step size in xdirection - ``ystep`` - step size in ydirection - ``xrange`` - tuple of 2 floats - ``yrange`` - tuple of 2 floats EXAMPLES:: sage: x,y = var('x,y') sage: sage.plot.plot.setup_for_eval_on_grid([x^2 + y^2], (x,0,5), (y,0,pi), 11) doctest:...: DeprecationWarning: sage.plot.plot.setup_for_eval_on_grid is deprecated. Please use sage.plot.misc.setup_for_eval_on_grid; note that that function has slightly different calling and return conventions which make it more generally applicable See http://trac.sagemath.org/7008 for details. ([<sage.ext... object at ...>], 0.5, 0.3141592653589793, (0.0, 5.0), (0.0, 3.141592653589793)) We always plot at least two points; one at the beginning and one at the end of the ranges. :: sage: sage.plot.plot.setup_for_eval_on_grid([x^2+y^2], (x,0,1), (y,-1,1), 1) ([<sage.ext... object at ...>], 1.0, 2.0, (0.0, 1.0), (-1.0, 1.0)) """ from sage.misc.superseded import deprecation deprecation(7008, "sage.plot.plot.setup_for_eval_on_grid is deprecated. Please use sage.plot.misc.setup_for_eval_on_grid; note that that function has slightly different calling and return conventions which make it more generally applicable") from sage.plot.misc import setup_for_eval_on_grid as setup g, ranges=setup(v, [xrange, yrange], plot_points) return list(g), ranges[0][2], ranges[1][2], ranges[0][:2], ranges[1][:2] def minmax_data(xdata, ydata, dict=False): """ Returns the minimums and maximums of xdata and ydata. If dict is False, then minmax_data returns the tuple (xmin, xmax, ymin, ymax); otherwise, it returns a dictionary whose keys are 'xmin', 'xmax', 'ymin', and 'ymax' and whose values are the corresponding values. EXAMPLES:: sage: from sage.plot.plot import minmax_data sage: minmax_data([], []) (-1, 1, -1, 1) sage: minmax_data([-1, 2], [4, -3]) (-1, 2, -3, 4) sage: d = minmax_data([-1, 2], [4, -3], dict=True) sage: list(sorted(d.items())) [('xmax', 2), ('xmin', -1), ('ymax', 4), ('ymin', -3)] """ xmin = min(xdata) if len(xdata) > 0 else -1 xmax = max(xdata) if len(xdata) > 0 else 1 ymin = min(ydata) if len(ydata) > 0 else -1 ymax = max(ydata) if len(ydata) > 0 else 1 if dict: return {'xmin':xmin, 'xmax':xmax, 'ymin':ymin, 'ymax':ymax} else: return xmin, xmax, ymin, ymax def adaptive_refinement(f, p1, p2, adaptive_tolerance=0.01, adaptive_recursion=5, level=0): r""" The adaptive refinement algorithm for plotting a function ``f``. See the docstring for plot for a description of the algorithm. INPUT: - ``f`` - a function of one variable - ``p1, p2`` - two points to refine between - ``adaptive_recursion`` - (default: 5) how many levels of recursion to go before giving up when doing adaptive refinement. Setting this to 0 disables adaptive refinement. - ``adaptive_tolerance`` - (default: 0.01) how large a relative difference should be before the adaptive refinement code considers it significant; see documentation for generate_plot_points for more information. See the documentation for :func:`plot` for more information on how the adaptive refinement algorithm works. OUTPUT: - ``list`` - a list of points to insert between ``p1`` and ``p2`` to get a better linear approximation between them TESTS:: sage: from sage.plot.plot import adaptive_refinement sage: adaptive_refinement(sin, (0,0), (pi,0), adaptive_tolerance=0.01, adaptive_recursion=0) [] sage: adaptive_refinement(sin, (0,0), (pi,0), adaptive_tolerance=0.01) [(0.125*pi, 0.3826834323650898), (0.1875*pi, 0.5555702330196022), (0.25*pi, 0.7071067811865475), (0.3125*pi, 0.8314696123025452), (0.375*pi, 0.9238795325112867), (0.4375*pi, 0.9807852804032304), (0.5*pi, 1.0), (0.5625*pi, 0.9807852804032304), (0.625*pi, 0.9238795325112867), (0.6875*pi, 0.8314696123025455), (0.75*pi, 0.7071067811865476), (0.8125*pi, 0.5555702330196022), (0.875*pi, 0.3826834323650899)] This shows that lowering ``adaptive_tolerance`` and raising ``adaptive_recursion`` both increase the number of subdivision points, though which one creates more points is heavily dependent upon the function being plotted. :: sage: x = var('x') sage: f(x) = sin(1/x) sage: n1 = len(adaptive_refinement(f, (0,0), (pi,0), adaptive_tolerance=0.01)); n1 15 sage: n2 = len(adaptive_refinement(f, (0,0), (pi,0), adaptive_recursion=10, adaptive_tolerance=0.01)); n2 79 sage: n3 = len(adaptive_refinement(f, (0,0), (pi,0), adaptive_tolerance=0.001)); n3 26 """ if level >= adaptive_recursion: return [] x = (p1[0] + p2[0])/2.0 msg = '' try: y = float(f(x)) if str(y) in ['nan', 'NaN', 'inf', '-inf']: sage.misc.misc.verbose("%s\nUnable to compute f(%s)"%(msg, x),1) # give up for this branch return [] except (ZeroDivisionError, TypeError, ValueError, OverflowError) as msg: sage.misc.misc.verbose("%s\nUnable to compute f(%s)"%(msg, x), 1) # give up for this branch return [] # this distance calculation is not perfect. if abs((p1[1] + p2[1])/2.0 - y) > adaptive_tolerance: return adaptive_refinement(f, p1, (x, y), adaptive_tolerance=adaptive_tolerance, adaptive_recursion=adaptive_recursion, level=level+1) \ + [(x, y)] + \ adaptive_refinement(f, (x, y), p2, adaptive_tolerance=adaptive_tolerance, adaptive_recursion=adaptive_recursion, level=level+1) else: return [] def generate_plot_points(f, xrange, plot_points=5, adaptive_tolerance=0.01, adaptive_recursion=5, randomize=True, initial_points=None): r""" Calculate plot points for a function f in the interval xrange. The adaptive refinement algorithm is also automatically invoked with a *relative* adaptive tolerance of adaptive_tolerance; see below. INPUT: - ``f`` - a function of one variable - ``p1, p2`` - two points to refine between - ``plot_points`` - (default: 5) the minimal number of plot points. (Note however that in any actual plot a number is passed to this, with default value 200.) - ``adaptive_recursion`` - (default: 5) how many levels of recursion to go before giving up when doing adaptive refinement. Setting this to 0 disables adaptive refinement. - ``adaptive_tolerance`` - (default: 0.01) how large the relative difference should be before the adaptive refinement code considers it significant. If the actual difference is greater than adaptive_tolerance*delta, where delta is the initial subinterval size for the given xrange and plot_points, then the algorithm will consider it significant. - ``initial_points`` - (default: None) a list of points that should be evaluated. OUTPUT: - a list of points (x, f(x)) in the interval xrange, which approximate the function f. TESTS:: sage: from sage.plot.plot import generate_plot_points sage: generate_plot_points(sin, (0, pi), plot_points=2, adaptive_recursion=0) [(0.0, 0.0), (3.141592653589793, 1.2246...e-16)] sage: from sage.plot.plot import generate_plot_points sage: generate_plot_points(lambda x: x^2, (0, 6), plot_points=2, adaptive_recursion=0, initial_points=[1,2,3]) [(0.0, 0.0), (1.0, 1.0), (2.0, 4.0), (3.0, 9.0), (6.0, 36.0)] sage: generate_plot_points(sin(x).function(x), (-pi, pi), randomize=False) [(-3.141592653589793, -1.2246...e-16), (-2.748893571891069, -0.3826834323650899), (-2.356194490192345, -0.707106781186547...), (-2.1598449493429825, -0.831469612302545...), (-1.9634954084936207, -0.9238795325112867), (-1.7671458676442586, -0.9807852804032304), (-1.5707963267948966, -1.0), (-1.3744467859455345, -0.9807852804032304), (-1.1780972450961724, -0.9238795325112867), (-0.9817477042468103, -0.831469612302545...), (-0.7853981633974483, -0.707106781186547...), (-0.39269908169872414, -0.3826834323650898), (0.0, 0.0), (0.39269908169872414, 0.3826834323650898), (0.7853981633974483, 0.707106781186547...), (0.9817477042468103, 0.831469612302545...), (1.1780972450961724, 0.9238795325112867), (1.3744467859455345, 0.9807852804032304), (1.5707963267948966, 1.0), (1.7671458676442586, 0.9807852804032304), (1.9634954084936207, 0.9238795325112867), (2.1598449493429825, 0.831469612302545...), (2.356194490192345, 0.707106781186547...), (2.748893571891069, 0.3826834323650899), (3.141592653589793, 1.2246...e-16)] This shows that lowering adaptive_tolerance and raising adaptive_recursion both increase the number of subdivision points. (Note that which creates more points is heavily dependent on the particular function plotted.) :: sage: x = var('x') sage: f(x) = sin(1/x) sage: [len(generate_plot_points(f, (-pi, pi), plot_points=16, adaptive_tolerance=i, randomize=False)) for i in [0.01, 0.001, 0.0001]] [97, 161, 275] sage: [len(generate_plot_points(f, (-pi, pi), plot_points=16, adaptive_recursion=i, randomize=False)) for i in [5, 10, 15]] [97, 499, 2681] """ from sage.plot.misc import setup_for_eval_on_grid ignore, ranges = setup_for_eval_on_grid([], [xrange], plot_points) xmin, xmax, delta = ranges[0] data = srange(*ranges[0], include_endpoint=True) random = current_randstate().python_random().random for i in range(len(data)): xi = data[i] # Slightly randomize the interior sample points if # randomize is true if randomize and i > 0 and i < plot_points-1: xi += delta*(random() - 0.5) data[i] = xi # add initial points if isinstance(initial_points, list): data = sorted(data + initial_points) exceptions = 0 exception_indices = [] for i in range(len(data)): xi = data[i] try: data[i] = (float(xi), float(f(xi))) if str(data[i][1]) in ['nan', 'NaN', 'inf', '-inf']: msg = "Unable to compute f(%s)" % xi sage.misc.misc.verbose(msg, 1) exceptions += 1 exception_indices.append(i) except (ArithmeticError, TypeError, ValueError) as m: sage.misc.misc.verbose("%s\nUnable to compute f(%s)" % (m, xi), 1) if i == 0: # Given an error for left endpoint, try to move it in slightly for j in range(1, 99): xj = xi + delta*j/100.0 try: data[i] = (float(xj), float(f(xj))) # nan != nan if data[i][1] != data[i][1]: continue break except (ArithmeticError, TypeError, ValueError): pass else: msg = m exceptions += 1 exception_indices.append(i) elif i == plot_points-1: # Given an error for right endpoint, try to move it in slightly for j in range(1, 99): xj = xi - delta*j/100.0 try: data[i] = (float(xj), float(f(xj))) # nan != nan if data[i][1] != data[i][1]: continue break except (ArithmeticError, TypeError, ValueError): pass else: msg = m exceptions += 1 exception_indices.append(i) else: msg = m exceptions += 1 exception_indices.append(i) data = [data[i] for i in range(len(data)) if i not in exception_indices] # calls adaptive refinement i, j = 0, 0 adaptive_tolerance = delta * float(adaptive_tolerance) adaptive_recursion = int(adaptive_recursion) while i < len(data) - 1: for p in adaptive_refinement(f, data[i], data[i+1], adaptive_tolerance=adaptive_tolerance, adaptive_recursion=adaptive_recursion): data.insert(i+1, p) i += 1 i += 1 if (len(data) == 0 and exceptions > 0) or exceptions > 10: sage.misc.misc.verbose("WARNING: When plotting, failed to evaluate function at %s points." % exceptions, level=0) sage.misc.misc.verbose("Last error message: '%s'" % msg, level=0) return data
34.461832
411
0.588917
5211f4da0aaad5f64aa281de472912921aa52214
2,558
py
Python
examples/kernel_lsq.py
joshuagornall/jax
c97cd0a526c12ad81988fd58c1c66df4ddd71813
[ "ECL-2.0", "Apache-2.0" ]
17,375
2018-11-18T02:15:55.000Z
2022-03-31T23:49:46.000Z
examples/kernel_lsq.py
joshuagornall/jax
c97cd0a526c12ad81988fd58c1c66df4ddd71813
[ "ECL-2.0", "Apache-2.0" ]
5,018
2018-11-22T17:04:07.000Z
2022-03-31T23:36:25.000Z
examples/kernel_lsq.py
joshuagornall/jax
c97cd0a526c12ad81988fd58c1c66df4ddd71813
[ "ECL-2.0", "Apache-2.0" ]
1,805
2018-11-21T10:13:53.000Z
2022-03-31T23:49:19.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy.random as npr import jax.numpy as jnp from jax.experimental import optimizers from jax import grad, jit, make_jaxpr, vmap, lax def gram(kernel, xs): '''Compute a Gram matrix from a kernel and an array of data points. Args: kernel: callable, maps pairs of data points to scalars. xs: array of data points, stacked along the leading dimension. Returns: A 2d array `a` such that `a[i, j] = kernel(xs[i], xs[j])`. ''' return vmap(lambda x: vmap(lambda y: kernel(x, y))(xs))(xs) def minimize(f, x, num_steps=10000, step_size=0.000001, mass=0.9): opt_init, opt_update, get_params = optimizers.momentum(step_size, mass) @jit def update(i, opt_state): x = get_params(opt_state) return opt_update(i, grad(f)(x), opt_state) opt_state = opt_init(x) for i in range(num_steps): opt_state = update(i, opt_state) return get_params(opt_state) def train(kernel, xs, ys, regularization=0.01): gram_ = jit(partial(gram, kernel)) gram_mat = gram_(xs) n = xs.shape[0] def objective(v): risk = .5 * jnp.sum((jnp.dot(gram_mat, v) - ys) ** 2.0) reg = regularization * jnp.sum(v ** 2.0) return risk + reg v = minimize(objective, jnp.zeros(n)) def predict(x): prods = vmap(lambda x_: kernel(x, x_))(xs) return jnp.sum(v * prods) return jit(vmap(predict)) if __name__ == "__main__": n = 100 d = 20 # linear kernel linear_kernel = lambda x, y: jnp.dot(x, y, precision=lax.Precision.HIGH) truth = npr.randn(d) xs = npr.randn(n, d) ys = jnp.dot(xs, truth) predict = train(linear_kernel, xs, ys) print('MSE:', jnp.sum((predict(xs) - ys) ** 2.)) def gram_jaxpr(kernel): return make_jaxpr(partial(gram, kernel))(xs) rbf_kernel = lambda x, y: jnp.exp(-jnp.sum((x - y) ** 2)) print() print('jaxpr of gram(linear_kernel):') print(gram_jaxpr(linear_kernel)) print() print('jaxpr of gram(rbf_kernel):') print(gram_jaxpr(rbf_kernel))
26.371134
74
0.685301
76ce937377293eda6b9e042c19c685b83a4560d9
3,047
py
Python
tests/afftc_test.py
huonw/sisfft-py
3cf048022c6641a9c5d60b6db01734fa414e6d7b
[ "MIT" ]
3
2018-10-25T20:52:22.000Z
2020-07-30T03:19:10.000Z
tests/afftc_test.py
huonw/sisfft-py
3cf048022c6641a9c5d60b6db01734fa414e6d7b
[ "MIT" ]
null
null
null
tests/afftc_test.py
huonw/sisfft-py
3cf048022c6641a9c5d60b6db01734fa414e6d7b
[ "MIT" ]
1
2020-05-19T02:59:46.000Z
2020-05-19T02:59:46.000Z
import numpy as np import unittest from sisfft.timer import timer import sisfft afftc = sisfft._afftc #logging.basicConfig(level = logging.INFO) TEST_REPEATS = 20 TEST_LENGTH = 100 def afftc_(self, beta, delta): np.random.seed(1) for _ in range(0, TEST_REPEATS): v1 = np.random.rand(TEST_LENGTH) v1 /= v1.sum() v2 = np.random.rand(TEST_LENGTH) v2 /= v2.sum() with timer('naive'): real = np.convolve(v1, v2) with timer('afftc'): hopeful = np.exp(afftc.convolve(np.log(v1), np.log(v2), beta, delta)) lower = (1 - beta) * real - 2 * delta upper = (1 + beta) * real between = (lower <= hopeful) & (hopeful <= upper) not_between = np.invert(between) self.assertTrue(between.all(), '%s\n%s' % (hopeful[not_between], real[not_between])) def afftc_square_(self, beta, delta): np.random.seed(1) for _ in range(0, TEST_REPEATS): v = np.random.rand(TEST_LENGTH) v /= v.sum() with timer('naive'): real = np.convolve(v, v) with timer('afftc'): hopeful = np.exp(afftc.convolve_square(np.log(v), beta, delta)) lower = (1 - beta) * real - 2 * delta upper = (1 + beta) * real between = (lower <= hopeful) & (hopeful <= upper) not_between = np.invert(between) self.assertTrue(between.all(), '%s\n%s' % (hopeful[not_between], real[not_between])) def afftc_no_lower_bound_(self, beta): np.random.seed(1) for _ in range(0, TEST_REPEATS): v1 = np.random.rand(TEST_LENGTH) v1 /= v1.sum() v2 = np.random.rand(TEST_LENGTH) v2 /= v2.sum() with timer('naive'): real = np.convolve(v1, v2) with timer('afftc'): hopeful = np.exp(afftc.convolve(np.log(v1), np.log(v2), beta, None)) lower = (1 - beta) * real upper = (1 + beta) * real between = (lower <= hopeful) & (hopeful <= upper) not_between = np.invert(between) self.assertTrue(between.all(), '%s\n%s' % (hopeful[not_between], real[not_between])) class Afftc(unittest.TestCase): pass for log10_alpha in range(1, 5 + 1): beta = 10**-log10_alpha for delta in [0.0, 0.0001, 0.01, 0.1]: test = lambda self, beta=beta, delta=delta: afftc_(self, beta, delta) test_square = lambda self, beta=beta, delta=delta: afftc_square_(self, beta, delta) name = 'test_%s_%f' % (beta, delta) name_square = 'test_square_%s_%f' % (beta, delta) test.__name__ = name test_square.__name__ = name_square setattr(Afftc, name, test) setattr(Afftc, name_square, test_square) del test, test_square name_no_bound = 'test_no_bound_%s' % beta test_no_bound = lambda self, beta=beta: afftc_no_lower_bound_(self, beta) test_no_bound.__name__ = name_no_bound setattr(Afftc, name_no_bound, test_no_bound) del test_no_bound
32.763441
91
0.585822
f25b36d42f024b2e081de613c712e84097ae3ad5
2,528
py
Python
thermo/utils/amm.py
janosh/thermo
0202a47ec8abacfd49b065ddd13ad060b0b9a1a3
[ "MIT" ]
9
2019-10-08T20:47:30.000Z
2021-11-20T07:51:25.000Z
thermo/utils/amm.py
janosh/thermo
0202a47ec8abacfd49b065ddd13ad060b0b9a1a3
[ "MIT" ]
4
2021-12-10T12:42:20.000Z
2022-03-01T21:24:18.000Z
thermo/utils/amm.py
janosh/thermo
0202a47ec8abacfd49b065ddd13ad060b0b9a1a3
[ "MIT" ]
3
2019-10-28T21:50:24.000Z
2021-11-10T18:41:20.000Z
import os import automatminer as amm import matminer as mm from automatminer import MatPipe # make MatPipe importable from this file from thermo.utils.decorators import interruptable try: os.remove(os.getcwd() + "/automatminer.log") # delete since not needed except FileNotFoundError: pass featurizers = { "composition": [mm.featurizers.composition.ElementProperty.from_preset("magpie")], "structure": [], } # To save time and computation, we only retain regressors that were among the best in # prior unrestricted benchmarking. See https://tinyurl.com/y27hajoy and "Customizing # TPOT's operators and parameters" at https://epistasislab.github.io/tpot/using. good_regressors = ( "ExtraTreesRegressor", "GradientBoostingRegressor", "RandomForestRegressor", ) # Don't modify TPOT_REGRESSOR_CONFIG in place. Would throw: 'RuntimeError: There was an # error in the TPOT optimization process. This could be because...' tpot_config = amm.automl.config.tpot_configs.TPOT_REGRESSOR_CONFIG.copy() for key in list(tpot_config): if not key.endswith(good_regressors): del tpot_config[key] # pipe_config needs to be a function rather than a dict. Else multiple pipes # running concurrently will receive a handle to the same learner (pipe.learner) # and overwrite each other's fitting. def pipe_config(preset="express", **tpot_kwargs): tpot_default = {"max_time_mins": 10} # "config_dict": tpot_config tpot_default.update(tpot_kwargs) return { **amm.get_preset_config(preset), "autofeaturizer": amm.AutoFeaturizer( # preset="express", featurizers=featurizers, guess_oxistates=False, ), "learner": amm.TPOTAdaptor(**tpot_default), } @interruptable def fit_pred_pipe(train_df, test_df, target, **kwargs): mat_pipe = MatPipe(**pipe_config(**kwargs)) mat_pipe.fit(train_df[["T", "composition", target]], target) pred_df = mat_pipe.predict( test_df[["T", "composition"]], output_col=target + "_pred" ) return mat_pipe, pred_df def featurize(pipe, df): """Use a fitted MatPipe, specifically its autofeaturizer, cleaner and reducer components, to featurize a dataframe. Can be used in combination with custom models that don't fit into the Automatminer API like multi-output regressors. """ df = pipe.autofeaturizer.transform(df, pipe.target) df = pipe.cleaner.transform(df, pipe.target) df = pipe.reducer.transform(df, pipe.target) return df
33.706667
87
0.719146
925bf7375266f131aec790cdc8df5fbb5a19848a
22,121
py
Python
tests/tensorflow/test_transformations.py
generalova-kate/nncf
a2ec7bca7167318c5b1436199a4c7449a9c064e9
[ "Apache-2.0" ]
null
null
null
tests/tensorflow/test_transformations.py
generalova-kate/nncf
a2ec7bca7167318c5b1436199a4c7449a9c064e9
[ "Apache-2.0" ]
1
2021-07-23T07:46:52.000Z
2021-07-23T07:46:52.000Z
tests/tensorflow/test_transformations.py
generalova-kate/nncf
a2ec7bca7167318c5b1436199a4c7449a9c064e9
[ "Apache-2.0" ]
null
null
null
""" Copyright (c) 2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import pytest import networkx as nx import tensorflow as tf from tensorflow.python.keras import layers from tensorflow.python.keras import models from nncf.common.graph.transformations.commands import TargetType from nncf.common.graph.transformations.commands import TransformationPriority from nncf.common.graph.transformations.commands import TransformationType from nncf.common.quantization.structs import QuantizerConfig from nncf.common.quantization.structs import QuantizationMode from nncf.tensorflow.graph.converter import TFModelConverterFactory from nncf.tensorflow.graph.model_transformer import TFModelTransformer from nncf.tensorflow.graph.transformations import commands from nncf.tensorflow.graph.transformations.commands import TFInsertionCommand from nncf.tensorflow.graph.transformations.commands import TFLayer from nncf.tensorflow.graph.transformations.commands import TFLayerWeight from nncf.tensorflow.graph.transformations.commands import TFMultipleInsertionCommands from nncf.tensorflow.graph.transformations.layout import TFTransformationLayout from nncf.tensorflow.graph.utils import is_functional_model from nncf.tensorflow.layers.custom_objects import NNCF_CUSTOM_OBJECTS from nncf.tensorflow.layers.operation import NNCFOperation from nncf.tensorflow.quantization.layers import FakeQuantize from nncf.tensorflow.quantization.quantizers import TFQuantizerSpec from tests.tensorflow.test_compressed_graph import keras_model_to_tf_graph from tests.tensorflow.test_compressed_graph import check_nx_graph from tests.tensorflow.test_compressed_graph import get_nx_graph_from_tf_graph def test_insertion_commands_union_invalid_input(): cmd_0 = commands.TFInsertionCommand(commands.TFBeforeLayer('layer_0')) cmd_1 = commands.TFInsertionCommand(commands.TFAfterLayer('layer_0')) with pytest.raises(Exception): cmd_0.union(cmd_1) priority_types = ["same", "different"] @pytest.mark.parametrize("case", priority_types, ids=priority_types) def test_insertion_command_priority(case): def make_operation_fn(priority_value): def operation_fn(): return priority_value return operation_fn cmds = [] if case == 'same': for idx in range(3): cmds.append( commands.TFInsertionCommand( commands.TFBeforeLayer('layer_0'), make_operation_fn(idx) )) else: priorites = sorted(list(TransformationPriority), key=lambda x: x.value, reverse=True) for priority in priorites: cmds.append( commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_0'), make_operation_fn(priority.value), priority )) res_cmd = cmds[0] for cmd in cmds[1:]: res_cmd = res_cmd + cmd res = res_cmd.insertion_objects assert len(res) == len(cmds) assert all(res[i]() <= res[i + 1]() for i in range(len(res) - 1)) def test_removal_command_union(): cmd_0 = commands.TFRemovalCommand(commands.TFLayer('layer_0')) cmd_1 = commands.TFRemovalCommand(commands.TFLayer('layer_1')) with pytest.raises(Exception): cmd_0.union(cmd_1) def test_add_insertion_command_to_multiple_insertion_commands_same(): check_fn = lambda src, dst: \ dst.type == TargetType.OPERATION_WITH_WEIGHTS and \ src.layer_name == dst.layer_name cmd_0 = commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_0'), lambda: 'cmd_0') cmd_1 = commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_0'), lambda: 'cmd_1') m_cmd = commands.TFMultipleInsertionCommands( target_point=commands.TFLayer('layer_0'), check_target_points_fn=check_fn ) m_cmd.add_insertion_command(cmd_0) m_cmd.add_insertion_command(cmd_1) res_cmds = m_cmd.commands assert len(res_cmds) == 1 res = res_cmds[0].insertion_objects assert len(res) == 2 assert res[0]() == 'cmd_0' assert res[1]() == 'cmd_1' def test_add_insertion_command_to_multiple_insertion_commands_different(): check_fn = lambda src, dst: \ dst.type == TargetType.OPERATION_WITH_WEIGHTS and \ src.layer_name == dst.layer_name cmd_0 = commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_0'), lambda:'cmd_0') cmd_1 = commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_1'), lambda:'cmd_1') m_cmd = commands.TFMultipleInsertionCommands( target_point=commands.TFLayer('layer_0'), check_target_points_fn=check_fn ) m_cmd.add_insertion_command(cmd_0) m_cmd.add_insertion_command(cmd_1) res_cmds = m_cmd.commands assert len(res_cmds) == 2 res = res_cmds[0].insertion_objects assert len(res) == 1 assert res[0]() == 'cmd_0' res = res_cmds[1].insertion_objects assert len(res) == 1 assert res[0]() == 'cmd_1' def test_add_insertion_command_to_multiple_insertion_commands_invalid_input(): m_cmd = commands.TFMultipleInsertionCommands(commands.TFLayerWeight('layer_0', 'weights_0')) cmd = commands.TFRemovalCommand(commands.TFLayer('layer_0')) with pytest.raises(Exception): m_cmd.add_insertion_command(cmd) def test_multiple_insertion_commands_union_invalid_input(): cmd_0 = commands.TFMultipleInsertionCommands(commands.TFLayer('layer_0')) cmd_1 = commands.TFMultipleInsertionCommands(commands.TFLayer('layer_1')) with pytest.raises(Exception): cmd_0.add_insertion_command(cmd_1) def test_multiple_insertion_commands_union(): check_fn_0 = lambda src, dst: \ dst.type == TargetType.OPERATION_WITH_WEIGHTS and \ src.layer_name == dst.layer_name and \ dst.weights_attr_name == 'weight_0' cmd_0 = commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_0'), lambda: 'cmd_0') m_cmd_0 = commands.TFMultipleInsertionCommands( target_point=commands.TFLayer('layer_0'), check_target_points_fn=check_fn_0, commands=[cmd_0] ) check_fn_1 = lambda src, dst: \ dst.type == TargetType.OPERATION_WITH_WEIGHTS and \ src.layer_name == dst.layer_name and \ dst.weights_attr_name == 'weight_1' cmd_1 = commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_1'), lambda:'cmd_1') m_cmd_1 = commands.TFMultipleInsertionCommands( target_point=commands.TFLayer('layer_0'), check_target_points_fn=check_fn_1, commands=[cmd_1] ) m_cmd = m_cmd_0 + m_cmd_1 res_cmds = m_cmd.commands assert len(res_cmds) == 2 res = res_cmds[0].insertion_objects assert len(res) == 1 assert res[0]() == 'cmd_0' res = res_cmds[1].insertion_objects assert len(res) == 1 assert res[0]() == 'cmd_1' def test_transformation_layout_insertion_case(): transformation_layout = TFTransformationLayout() check_fn = lambda src, dst: \ dst.type == TargetType.OPERATION_WITH_WEIGHTS and \ src.layer_name == dst.layer_name command_list = [ commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_0'), lambda: 'cmd_0', TransformationPriority.SPARSIFICATION_PRIORITY), commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_1'), lambda: 'cmd_1', TransformationPriority.SPARSIFICATION_PRIORITY), commands.TFInsertionCommand( commands.TFLayerWeight('layer_1', 'weight_0'), lambda: 'cmd_2', TransformationPriority.SPARSIFICATION_PRIORITY), commands.TFMultipleInsertionCommands( target_point=commands.TFLayer('layer_0'), check_target_points_fn=check_fn, commands=[ commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_0'), lambda: 'cmd_3', TransformationPriority.PRUNING_PRIORITY) ]), commands.TFMultipleInsertionCommands( target_point=commands.TFLayer('layer_1'), check_target_points_fn=check_fn, commands=[ commands.TFInsertionCommand( commands.TFLayerWeight('layer_1', 'weight_0'), lambda: 'cmd_4', TransformationPriority.PRUNING_PRIORITY), commands.TFInsertionCommand( commands.TFLayerWeight('layer_1', 'weight_1'), lambda: 'cmd_5', TransformationPriority.PRUNING_PRIORITY) ]), ] for cmd in command_list: transformation_layout.register(cmd) res_transformations = transformation_layout.transformations assert len(res_transformations) == 2 assert res_transformations[0].type == TransformationType.MULTI_INSERT assert res_transformations[0].target_point.type == TargetType.LAYER assert res_transformations[0].target_point.layer_name == 'layer_0' assert res_transformations[1].type == TransformationType.MULTI_INSERT assert res_transformations[1].target_point.type == TargetType.LAYER assert res_transformations[1].target_point.layer_name == 'layer_1' res_cmds = res_transformations[0].commands assert len(res_cmds) == 2 res = res_cmds[0].insertion_objects assert len(res) == 2 assert res[0]() == 'cmd_3' and res[1]() == 'cmd_0' res = res_cmds[1].insertion_objects assert len(res) == 1 assert res[0]() == 'cmd_1' res_cmds = res_transformations[1].commands assert len(res_cmds) == 2 res = res_cmds[0].insertion_objects assert len(res) == 2 assert res[0]() == 'cmd_4' and res[1]() == 'cmd_2' res = res_cmds[1].insertion_objects assert len(res) == 1 assert res[0]() == 'cmd_5' def test_transformation_layout_removal_case(): transformation_layout = TFTransformationLayout() command_list = [ commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_0'), lambda: 'sparsity_operation', TransformationPriority.SPARSIFICATION_PRIORITY), commands.TFRemovalCommand(commands.TFOperationWithWeights('layer_0', 'weight_0', 'sparsity_operation')), commands.TFInsertionCommand( commands.TFAfterLayer('layer_0'), lambda: 'layer_1' ), commands.TFRemovalCommand(commands.TFLayer('layer_1')), commands.TFInsertionCommand( commands.TFLayerWeight('layer_0', 'weight_0'), lambda: 'pruning_operation', TransformationPriority.PRUNING_PRIORITY ) ] for cmd in command_list: transformation_layout.register(cmd) res_transformations = transformation_layout.transformations assert len(res_transformations) == 5 assert res_transformations[0].type == TransformationType.INSERT assert res_transformations[0].target_point.type == TargetType.OPERATION_WITH_WEIGHTS assert res_transformations[0].target_point.layer_name == 'layer_0' assert res_transformations[0].target_point.weights_attr_name == 'weight_0' assert res_transformations[1].type == TransformationType.REMOVE assert res_transformations[1].target_point.type == TargetType.OPERATION_WITH_WEIGHTS assert res_transformations[1].target_point.layer_name == 'layer_0' assert res_transformations[1].target_point.weights_attr_name == 'weight_0' assert res_transformations[1].target_point.operation_name == 'sparsity_operation' assert res_transformations[2].type == TransformationType.INSERT assert res_transformations[2].target_point.type == TargetType.AFTER_LAYER assert res_transformations[2].target_point.layer_name == 'layer_0' assert res_transformations[3].type == TransformationType.REMOVE assert res_transformations[3].target_point.type == TargetType.LAYER assert res_transformations[3].target_point.layer_name == 'layer_1' assert res_transformations[4].type == TransformationType.INSERT assert res_transformations[4].target_point.type == TargetType.OPERATION_WITH_WEIGHTS assert res_transformations[4].target_point.layer_name == 'layer_0' assert res_transformations[4].target_point.weights_attr_name == 'weight_0' CUSTOM_LAYER_NAME = "custom_layer_for_test" class TwoWeightCustomLayerForTest(tf.keras.layers.Layer): WEIGHT_1_NAME = 'w1' WEIGHT_2_NAME = 'w2' def __init__(self, name=CUSTOM_LAYER_NAME, trainable=True, dtype='float32'): super().__init__(name=name, trainable=trainable, dtype=dtype) self.w1 = self.add_weight(shape=(3, 1, 1, 3), name=self.WEIGHT_1_NAME) self.w2 = self.add_weight(shape=(3, 1, 1, 3), name=self.WEIGHT_2_NAME) def call(self, inputs, **kwargs): x = tf.nn.conv2d(inputs, self.w1, strides=[1, 1, 1, 1], padding='SAME') x = tf.nn.conv2d(x, self.w2, strides=[1, 1, 1, 1], padding='SAME') return x def ModelWithTwoWeightCustomLayer(): input_shape = (None, None, 3) img_input = layers.Input(name='input', shape=input_shape) x = img_input x = TwoWeightCustomLayerForTest()(x) # custom! model = models.Model(img_input, x, name='ModelForCustomLayerTest') model.build([16, 16, 3]) return model def create_transformed_model(transformation_layout: TFTransformationLayout): model = ModelWithTwoWeightCustomLayer() transformer = TFModelTransformer(model) model = transformer.transform(transformation_layout) return model @NNCF_CUSTOM_OBJECTS.register() class MockIdentityOp(NNCFOperation): def build(self, input_shape, input_type, name, layer): return {} def call(self, inputs, weights, _): return inputs def test_multiple_insertion_command_has_same_effect_as_multiple_single_insertions(): check_fn = lambda src, dst: dst.type == TargetType.OPERATION_WITH_WEIGHTS insertion_command_1 = TFInsertionCommand( TFLayerWeight(CUSTOM_LAYER_NAME, TwoWeightCustomLayerForTest.WEIGHT_1_NAME), MockIdentityOp('mock_nncf_op_1'), TransformationPriority.PRUNING_PRIORITY) insertion_command_2 = TFInsertionCommand( TFLayerWeight(CUSTOM_LAYER_NAME, TwoWeightCustomLayerForTest.WEIGHT_2_NAME), MockIdentityOp('mock_nncf_op_2'), TransformationPriority.PRUNING_PRIORITY) multiple_insertion_command = TFMultipleInsertionCommands( target_point=TFLayer(CUSTOM_LAYER_NAME), commands=[insertion_command_1, insertion_command_2], check_target_points_fn=check_fn) transformation_layout_multi = TFTransformationLayout() transformation_layout_multi.register(multiple_insertion_command) transformation_layout_two_single = TFTransformationLayout() transformation_layout_two_single.register(insertion_command_1) transformation_layout_two_single.register(insertion_command_2) model_with_multi = create_transformed_model(transformation_layout_multi) model_with_two_single = create_transformed_model(transformation_layout_two_single) multi_config = model_with_multi.get_config() two_single_config = model_with_two_single.get_config() assert multi_config == two_single_config def create_functional_model(): img_input = layers.Input(name='input', shape=(None, None, 3), dtype='float32') x = layers.Conv2D(filters=16, kernel_size=(3, 3), strides=1, padding="same", activation='relu')(img_input) residual = layers.Conv2D(filters=64, kernel_size=(1, 1), strides=2)(x) residual = layers.BatchNormalization()(residual) x = layers.Conv2D(filters=64, kernel_size=(3, 3), strides=2, padding="same")(x) x = layers.BatchNormalization()(x) x = layers.ReLU()(x) x = layers.Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding="same")(x) x = layers.BatchNormalization()(x) x = tf.keras.layers.Add()([residual, x]) x = layers.Dense(units=10, activation='softmax')(x) model = models.Model(img_input, x, name='ResnetBlockTest') return model def create_sequential_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(None, None, 3))) model.add(layers.Conv2D(filters=64, kernel_size=(1, 1), strides=2, activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dense(2, activation="relu")) return model def apply_insert_after(model): converter = TFModelConverterFactory.create(model) transformations = TFTransformationLayout() qconfig = QuantizerConfig(num_bits=8, mode=QuantizationMode.SYMMETRIC, signedness_to_force=None, per_channel=False) functional_model = is_functional_model(model) for i, layer in enumerate(model.layers): original_node_name = layer.name if functional_model: _, layer_info = converter.get_layer_info_for_node(original_node_name) instance_idx = layer_info.instance_idx else: instance_idx = 0 fake_quantize_name = f'FakeQuantize_{i}/{original_node_name}' fake_quantize_layer = FakeQuantize( TFQuantizerSpec.from_config(qconfig, narrow_range=False, half_range=False), name=fake_quantize_name) transformations.register( TFInsertionCommand( target_point=commands.TFAfterLayer(original_node_name, instance_idx=instance_idx, output_port_id=0), callable_object=fake_quantize_layer, priority=TransformationPriority.QUANTIZATION_PRIORITY)) transformer = TFModelTransformer(model) transformed_model = transformer.transform(transformations) return transformed_model def apply_insert_before(model): converter = TFModelConverterFactory.create(model) transformations = TFTransformationLayout() qconfig = QuantizerConfig(num_bits=8, mode=QuantizationMode.SYMMETRIC, signedness_to_force=None, per_channel=False) functional_model = is_functional_model(model) for i, layer in enumerate(model.layers): # Insertion before input layer is not supported if isinstance(layer, layers.InputLayer): continue original_node_name = layer.name if functional_model: _, layer_info = converter.get_layer_info_for_node(original_node_name) instance_idx = layer_info.instance_idx else: instance_idx = 0 inputs = [layer.input] if isinstance(layer.input, tf.Tensor) else layer.input for port, _ in enumerate(inputs): fake_quantize_name = f'FakeQuantize_{i}.{port}/{original_node_name}' fake_quantize_layer = FakeQuantize( TFQuantizerSpec.from_config(qconfig, narrow_range=False, half_range=False), name=fake_quantize_name) transformations.register( TFInsertionCommand( target_point=commands.TFBeforeLayer(original_node_name, instance_idx=instance_idx, input_port_id=port), callable_object=fake_quantize_layer, priority=TransformationPriority.QUANTIZATION_PRIORITY)) transformer = TFModelTransformer(model) transformed_model = transformer.transform(transformations) return transformed_model def check_graphs(model, ref_graph_filename): data_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'model_transormer') ref_graph_path = os.path.abspath(os.path.join(data_dir, ref_graph_filename)) graph, graph_to_layer_var_names_map = keras_model_to_tf_graph(model) nx_graph = get_nx_graph_from_tf_graph(graph, graph_to_layer_var_names_map) if not os.path.exists(ref_graph_path) and os.getenv("NNCF_TEST_REGEN_DOT") is not None: nx.drawing.nx_pydot.write_dot(nx_graph, ref_graph_path) check_nx_graph(nx_graph, ref_graph_path) def test_functional_insert_after(): model = create_functional_model() transformed_model = apply_insert_after(model) check_graphs(transformed_model, 'functional_insert_after.dot') def test_functional_insert_before(): model = create_functional_model() transformed_model = apply_insert_before(model) check_graphs(transformed_model, 'functional_insert_before.dot') def test_sequential_insert_after(): model = create_sequential_model() transformed_model = apply_insert_after(model) check_graphs(transformed_model, 'sequential_block_insert_after.dot') def test_sequential_insert_before(): model = create_sequential_model() transformed_model = apply_insert_before(model) check_graphs(transformed_model, 'sequential_block_insert_before.dot')
38.139655
112
0.692012
c3d9f0f2a63c243e086caa7277f1ace625824093
3,285
py
Python
experiment_Bayesian_CNN/demo/refactor_debug_dataset.py
slds-lmu/paper_2019_variationalResampleDistributionShift
3664eea4d243eb828d13ba69112308630d80d244
[ "Apache-2.0", "MIT" ]
1
2021-07-12T02:54:57.000Z
2021-07-12T02:54:57.000Z
experiment_Bayesian_CNN/demo/refactor_debug_dataset.py
compstat-lmu/paper_2019_variationalResampleDistributionShift
3664eea4d243eb828d13ba69112308630d80d244
[ "Apache-2.0", "MIT" ]
20
2020-01-28T22:18:55.000Z
2021-09-08T01:21:52.000Z
experiment_Bayesian_CNN/demo/refactor_debug_dataset.py
slds-lmu/paper_2019_variationalResampleDistributionShift
3664eea4d243eb828d13ba69112308630d80d244
[ "Apache-2.0", "MIT" ]
2
2019-12-14T09:17:47.000Z
2020-02-24T16:55:07.000Z
import torchvision import torchvision.transforms as transforms import torch import torch.utils.data as data import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn from torch.autograd import Variable import refactor_dataset_class import Bayesian_config as cf resize = cf.resize import argparse parser = argparse.ArgumentParser(description='PyTorch Training') parser.add_argument('--lr', default=0.0001, type=float, help='learning_rate') parser.add_argument('--net_type', default='3conv3fc', type=str, help='model') #parser.add_argument('--depth', default=28, type=int, help='depth of model') #parser.add_argument('--widen_factor', default=10, type=int, help='width of model') parser.add_argument('--num_samples', default=10, type=int, help='Number of samples') parser.add_argument('--beta_type', default="Blundell", type=str, help='Beta type') parser.add_argument('--p_logvar_init', default=0, type=int, help='p_logvar_init') parser.add_argument('--q_logvar_init', default=-10, type=int, help='q_logvar_init') parser.add_argument('--weight_decay', default=0.0005, type=float, help='weight_decay') parser.add_argument('--dataset', default='mnist', type=str, help='dataset = [mnist/cifar10/cifar100]') parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--testOnly', '-t', action='store_true', help='Test mode with the saved model') #args = parser.parse_args() args = parser.parse_args(["--dataset", "mnist"]) args transform_train = transforms.Compose([ transforms.Resize((resize, resize)), transforms.ToTensor(), transforms.Normalize(cf.mean[args.dataset], cf.std[args.dataset]), ]) # meanstd transformation transform_test = transforms.Compose([ transforms.Resize((resize, resize)), transforms.ToTensor(), transforms.Normalize(cf.mean[args.dataset], cf.std[args.dataset]), ]) start_epoch, num_epochs, batch_size, optim_type = cf.start_epoch, cf.num_epochs, cf.batch_size, cf.optim_type trainset_org = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform_train) trainset_refactor = refactor_dataset_class.VGMMDataset(transform = transform_train) trainloader_org = torch.utils.data.DataLoader(trainset_org, batch_size=batch_size, shuffle=True, num_workers=4) trainloader_refactor = torch.utils.data.DataLoader(trainset_refactor, batch_size=batch_size, shuffle=False, num_workers=4) # num_workers: how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0)# Return network & file name import utils_parent X, y = utils_parent.load_mnist("fashion-mnist") type(y) y.shape ynew = y.argmax(axis = 1) ynew type(ynew) for batch_idx, (inputs_value, targets) in enumerate(trainloader_org): print(inputs_value) print(targets) print("......") print(targets.type) print(targets.shape) break for batch_idx, (inputs_value, targets) in enumerate(trainloader_refactor): print("refactor") print(inputs_value) print(targets) print("......") print(targets.type) print(targets.shape) break for i in range(len(trainset_refactor)): sample = trainset_refactor[i] break trainset_refactor[8000][1]
38.197674
160
0.755251
f427efc3a5218b4f9de2b1ee3fb1882dddc4edaa
5,878
py
Python
docs/source/conf.py
keipertk/Utilities
5b0ab5e20f374bc7f790523a8548fdcfddcfa311
[ "Apache-2.0" ]
1
2019-09-29T16:52:01.000Z
2019-09-29T16:52:01.000Z
docs/source/conf.py
keipertk/Utilities
5b0ab5e20f374bc7f790523a8548fdcfddcfa311
[ "Apache-2.0" ]
null
null
null
docs/source/conf.py
keipertk/Utilities
5b0ab5e20f374bc7f790523a8548fdcfddcfa311
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config import os # -- Project information ----------------------------------------------------- project = u'Utilities' copyright = u'2019, NWChemEx Team' author = u'NWChemEx Team' src_dir = u'utilities' # The short X.Y version version = u'1.0.0' # The full version, including alpha/beta/rc tags release = u'1.0.0alpha' ############################################################################## # Shouldn't need to change anything below this point # ############################################################################## # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.githubpages', 'breathe', 'exhale' ] dir_path = os.path.dirname(os.path.realpath(__file__)) doc_path = os.path.dirname(dir_path) root_path = os.path.dirname(doc_path) breathe_default_project = project breathe_projects = { project : os.path.join(doc_path, "doxyoutput", "xml")} exhale_args = { "containmentFolder" : "./api", "rootFileName" : "library_root.rst", "rootFileTitle" : "Library API", "doxygenStripFromPath" : "..", "createTreeView" : True, "exhaleExecutesDoxygen" : True, "exhaleDoxygenStdin" : "INPUT = " + os.path.join(root_path, project, "detail_") } # Add any paths that contain templates here, relative to this directory. templates_path = [] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = project + 'doc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, project + '.tex',project + ' Documentation', author, 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, project.lower(), project + ' Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, project, project + ' Documentation', author, project, 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True
31.265957
80
0.625383
c056a8f48224599a4183ee559856fc7501519f5d
1,296
py
Python
backend/images/migrations/0001_initial.py
sophiedophie/djangoproject
bad22a6eef032d86cbfe16886bebd4bac948e60c
[ "MIT" ]
null
null
null
backend/images/migrations/0001_initial.py
sophiedophie/djangoproject
bad22a6eef032d86cbfe16886bebd4bac948e60c
[ "MIT" ]
null
null
null
backend/images/migrations/0001_initial.py
sophiedophie/djangoproject
bad22a6eef032d86cbfe16886bebd4bac948e60c
[ "MIT" ]
null
null
null
# Generated by Django 2.0.4 on 2018-04-25 05:42 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('message', models.TextField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('file', models.ImageField(upload_to='')), ('location', models.CharField(max_length=140)), ('caption', models.TextField()), ], options={ 'abstract': False, }, ), ]
31.609756
114
0.525463
08aceca45ffae227bcd37d63cac9e326c2cf2c59
1,973
py
Python
classes/contrib/mypy/validation/validate_typeclass_def.py
ftaebi/classes
28d25861ce476adc8259b491492d53c627095d0b
[ "BSD-2-Clause" ]
475
2019-11-03T07:48:43.000Z
2022-03-29T12:22:44.000Z
classes/contrib/mypy/validation/validate_typeclass_def.py
AVIPAGHADAR1729/classes
ab5ea9f1b3cdbcf87d1f6f4115ed8f42a6cb8700
[ "BSD-2-Clause" ]
305
2019-11-18T11:52:16.000Z
2022-03-31T20:11:51.000Z
classes/contrib/mypy/validation/validate_typeclass_def.py
AVIPAGHADAR1729/classes
ab5ea9f1b3cdbcf87d1f6f4115ed8f42a6cb8700
[ "BSD-2-Clause" ]
24
2020-02-15T18:57:54.000Z
2022-03-27T22:46:08.000Z
from typing import Union from mypy.nodes import ( ARG_POS, EllipsisExpr, ExpressionStmt, FuncDef, PassStmt, StrExpr, ) from mypy.plugin import FunctionContext, MethodContext from mypy.types import CallableType, Instance from typing_extensions import Final _Contexts = Union[MethodContext, FunctionContext] # Messages: _AT_LEAST_ONE_ARG_MSG: Final = ( 'Typeclass definition must have at least one positional argument' ) _FIRST_ARG_KIND_MSG: Final = ( 'First argument in typeclass definition must be positional' ) _REDUNDANT_BODY_MSG: Final = 'Typeclass definitions must not have bodies' def check_type( typeclass: Instance, ctx: _Contexts, ) -> bool: """Checks typeclass definition.""" return all([ _check_first_arg(typeclass, ctx), _check_body(typeclass, ctx), ]) def _check_first_arg( typeclass: Instance, ctx: _Contexts, ) -> bool: sig = typeclass.args[1] assert isinstance(sig, CallableType) if not len(sig.arg_kinds): ctx.api.fail(_AT_LEAST_ONE_ARG_MSG, ctx.context) return False if sig.arg_kinds[0] != ARG_POS: ctx.api.fail(_FIRST_ARG_KIND_MSG, ctx.context) return False return True def _check_body( typeclass: Instance, ctx: _Contexts, ) -> bool: sig = typeclass.args[1] assert isinstance(sig, CallableType) assert isinstance(sig.definition, FuncDef) body = sig.definition.body.body if body: is_useless_body = ( len(body) == 1 and (isinstance(body[0], PassStmt) or ( isinstance(body[0], ExpressionStmt) and isinstance(body[0].expr, (EllipsisExpr, StrExpr)) )) ) if is_useless_body: # We allow a single ellipsis in function a body. # We also allow just a docstring. return True ctx.api.fail(_REDUNDANT_BODY_MSG, ctx.context) return False return True
24.358025
73
0.657375
e3e462e7d14b9bec6530a1b2b4614e2028881032
8,095
py
Python
darwinpush/messagefactories/xml/ScheduleXMLMessageFactory.py
fasteroute/darwinpush
c919049e076cbdf61007fc9cc1c5a0271cde7929
[ "Apache-2.0" ]
3
2015-08-15T15:38:06.000Z
2019-08-06T11:09:32.000Z
darwinpush/messagefactories/xml/ScheduleXMLMessageFactory.py
grundleborg/darwinpush
c919049e076cbdf61007fc9cc1c5a0271cde7929
[ "Apache-2.0" ]
34
2015-07-22T13:47:16.000Z
2015-08-12T17:40:23.000Z
darwinpush/messagefactories/xml/ScheduleXMLMessageFactory.py
grundleborg/darwinpush
c919049e076cbdf61007fc9cc1c5a0271cde7929
[ "Apache-2.0" ]
1
2015-08-30T15:26:24.000Z
2015-08-30T15:26:24.000Z
from darwinpush.messages.ScheduleMessage import * from dateutil.parser import * from darwinpush.utils import timezone_for_date_and_time from darwinpush.xb.raw.sch import OR, OPOR, IP, OPIP, PP, DT, OPDT from darwinpush.xb.raw.ct import DisruptionReasonType from datetime import datetime, timedelta from dateutil.parser import * import pytz class ScheduleXMLMessageFactory: @staticmethod def build(raw, containing_message, xml): m = ScheduleMessage() m.uid = raw.uid m.rid = raw.rid m.headcode = raw.trainId m.start_date = raw.ssd.date() m.toc_code = raw.toc m.passenger_service = bool(raw.isPassengerSvc) m.status = raw.status m.category = raw.trainCat m.active = bool(raw.isActive) m.deleted = bool(raw.deleted) try: m.charter = bool(raw.charter) except AttributeError: m.charter = False if raw.cancelReason is not None: m.cancel_reason_code = raw.cancelReason.value() m.cancel_reason_tiploc = raw.cancelReason.tiploc m.cancel_reason_near = bool(raw.cancelReason.near) else: m.cancel_reason_code = None m.cancel_reason_tiploc = None m.cancel_reason_near = None # Loop through all the points in the order they appear in the XML, instantiate the # appropriate object for them, and add them to the appropriate list. m.origins = [] m.operational_origins = [] m.intermediate_points = [] m.operational_intermediate_points = [] m.passing_points = [] m.destinations = [] m.operational_destinations = [] m.all_points = [] for r in raw.orderedContent(): v = r.value if type(v) == DisruptionReasonType: pass elif type(v) == OR: p = f.build_point(v, Origin) m.origins.append(p) elif type(v) == OPOR: p = f.build_point(v, OperationalOrigin) m.operational_origins.append(p) elif type(v) == IP: p = f.build_point(v, IntermediatePoint) m.intermediate_points.append(p) elif type(v) == OPIP: p = f.build_point(v, OperationalIntermediatePoint) m.operational_intermediate_points.append(p) elif type(v) == PP: p = f.build_point(v, PassingPoint) m.passing_points.append(p) elif type(v) == DT: p = f.build_point(v, Destination) m.destinations.append(p) elif type(v) == OPDT: p = f.build_point(v, OperationalDestination) m.operational_destinations.append(p) else: raise Exception("Type of point is {}.".format(type(v))) m.all_points.append(p) first_point = m.all_points[0] if first_point.raw_working_arrival_time is not None: t = first_point.raw_working_arrival_time elif first_point.raw_working_pass_time is not None: t = first_point.raw_working_pass_time elif first_point.raw_working_departure_time is not None: t = first_point.raw_working_departure_time else: raise Exception() tz = timezone_for_date_and_time(m.start_date, t) day_incrementor = 0 o = None for p in m.all_points: day_incrementor = f.build_times(day_incrementor, o, p, m.start_date, tz) o = p m._raw = raw m._containing_message = containing_message m._xml = xml return m @staticmethod def build_point(raw, t): r = t() r.tiploc = raw.tpl r.activity_codes = raw.act r.planned_activity_codes = raw.planAct r.cancelled = bool(raw.can) try: r.false_tiploc = raw.fd except AttributeError: r.false_tiploc = None try: r.route_delay = raw.rdelay except: r.route_delay = None try: r.raw_working_arrival_time = parse(raw.wta).time() except AttributeError: r.raw_working_arrival_time = None try: r.raw_working_pass_time = parse(raw.wtp).time() except AttributeError: r.raw_working_pass_time = None try: r.raw_working_departure_time = parse(raw.wtd).time() except AttributeError: r.raw_working_departure_time = None try: r.raw_public_arrival_time = parse(raw.pta).time() except AttributeError: r.raw_public_arrival_time = None try: r.raw_public_departure_time = parse(raw.ptd).time() except AttributeError: r.raw_public_departure_time = None return r @staticmethod def build_times(day_incrementor, last_location, this_location, start_date, tz): # Construct all the date/time objects iteratively, checking for back-in-time movement of # any of them. last_time = None if last_location is not None: last_time = f.get_last_time(last_location) if this_location.raw_working_arrival_time is not None: t = this_location.raw_working_arrival_time if last_time is not None: if last_time > t: day_incrementor += 1 d = start_date + timedelta(days=day_incrementor) this_location.working_arrival_time = tz.localize(datetime.combine(d, t)).astimezone(pytz.utc) else: this_location.working_arrival_time = None if this_location.raw_public_arrival_time is not None: t = this_location.raw_public_arrival_time if last_time is not None: if last_time > t: day_incrementor += 1 d = start_date + timedelta(days=day_incrementor) this_location.public_arrival_time = tz.localize(datetime.combine(d, t)).astimezone(pytz.utc) else: this_location.public_arrival_time = None if this_location.raw_working_pass_time is not None: t = this_location.raw_working_pass_time if last_time is not None: if last_time > t: day_incrementor += 1 d = start_date + timedelta(days=day_incrementor) this_location.working_pass_time = tz.localize(datetime.combine(d, t)).astimezone(pytz.utc) else: this_location.working_pass_time = None if this_location.raw_public_departure_time is not None: t = this_location.raw_public_departure_time if last_time is not None: if last_time > t: day_incrementor += 1 d = start_date + timedelta(days=day_incrementor) this_location.public_departure_time = tz.localize(datetime.combine(d, t)).astimezone(pytz.utc) else: this_location.public_departure_time = None if this_location.raw_working_departure_time is not None: t = this_location.raw_working_departure_time if last_time is not None: if last_time > t: day_incrementor += 1 d = start_date + timedelta(days=day_incrementor) this_location.working_departure_time = tz.localize(datetime.combine(d, t)).astimezone(pytz.utc) else: this_location.working_departure_time = None # Return the new day_incrementor value. return day_incrementor @staticmethod def get_last_time(l): if l.raw_working_departure_time is not None: return l.raw_working_departure_time elif l.raw_working_pass_time is not None: return l.raw_working_pass_time elif l.raw_working_arrival_time is not None: return l.raw_working_arrival_time else: raise Exception() f = ScheduleXMLMessageFactory
35.977778
107
0.604818
0c4396f1cbe19ed6a3c4d95eaadb364573e181be
981
py
Python
tests/test_non_neg_omp.py
swasun/RFOMT
64ba63c01bd04f4f959d18aff27e245d8fff3403
[ "MIT" ]
2
2021-12-09T23:44:37.000Z
2021-12-10T10:09:20.000Z
tests/test_non_neg_omp.py
swasun/RFOMT
64ba63c01bd04f4f959d18aff27e245d8fff3403
[ "MIT" ]
null
null
null
tests/test_non_neg_omp.py
swasun/RFOMT
64ba63c01bd04f4f959d18aff27e245d8fff3403
[ "MIT" ]
null
null
null
from bolsonaro.models.nn_omp import NonNegativeOrthogonalMatchingPursuit import numpy as np def test_binary_classif_omp(): N = 1000 L = 100 T = np.random.rand(N, L) w_star = np.zeros(L) w_star[:L//2] = np.abs(np.random.rand(L//2)) T /= np.linalg.norm(T, axis=0) y = T @ w_star requested_solutions = list(range(10, L, 10)) print() print(len(requested_solutions)) print(L//2) nn_omp = NonNegativeOrthogonalMatchingPursuit(max_iter=L, intermediate_solutions_sizes=requested_solutions, fill_with_final_solution=False) nn_omp.fit(T, y) lst_predict = nn_omp.predict(T) print(len(lst_predict)) # solutions = nn_omp(T, y, L, requested_solutions) # # for idx_sol, w in enumerate(solutions): # solution = T @ w # non_zero = w.astype(bool) # print(requested_solutions[idx_sol], np.sum(non_zero), np.linalg.norm(solution - y)/np.linalg.norm(y)) # assert isinstance(results, np.ndarray)
29.727273
143
0.673802
b35322a47724dbeaae13e70107f86ad52ee1111c
731
py
Python
other/TMP.py
RichardLeeK/MachineLearning
5d4194dc54e5c25beeaf0d16c249bb07cf622364
[ "MIT" ]
1
2017-08-17T11:30:26.000Z
2017-08-17T11:30:26.000Z
other/TMP.py
RichardLeeK/MachineLearning
5d4194dc54e5c25beeaf0d16c249bb07cf622364
[ "MIT" ]
null
null
null
other/TMP.py
RichardLeeK/MachineLearning
5d4194dc54e5c25beeaf0d16c249bb07cf622364
[ "MIT" ]
null
null
null
file = open('new_sample_0703.csv') lines = file.readlines() file.close() pen = open('features.csv', 'w') sl = lines[0].split(',') for s in sl: if 'SpectralAnalysis' in s: if 'ABP' in s: pen.write('Spectral,ABP,'+s+'\n') elif 'ICP' in s: pen.write('Spectral,ICP,'+s+'\n') else: pen.write('Spectral,OTH,'+s+'\n') elif 'HRV' in s: pen.write('HRV,,'+s+'\n') elif 'MorphologyAnalysis' in s: if 'Abp' in s: pen.write('Spectral,ABP,'+s+'\n') elif 'Icp' in s: pen.write('Spectral,ICP,'+s+'\n') else: pen.write('Spectral,OTH,'+s+'\n') elif 'BasicInfo' in s: pen.write('Basic,,'+s+'\n') elif 'BRS' in s: pen.write('BRS,,'+s+'\n') pen.close() print('fin')
22.151515
39
0.549932
5dcf170248a0bc35c0cd973c7ae6599d22576515
1,966
py
Python
aliyun-python-sdk-ccc/aliyunsdkccc/request/v20200701/ListBriefSkillGroupsRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-ccc/aliyunsdkccc/request/v20200701/ListBriefSkillGroupsRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-ccc/aliyunsdkccc/request/v20200701/ListBriefSkillGroupsRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkccc.endpoint import endpoint_data class ListBriefSkillGroupsRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'CCC', '2020-07-01', 'ListBriefSkillGroups') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_PageNumber(self): return self.get_query_params().get('PageNumber') def set_PageNumber(self,PageNumber): self.add_query_param('PageNumber',PageNumber) def get_SearchPattern(self): return self.get_query_params().get('SearchPattern') def set_SearchPattern(self,SearchPattern): self.add_query_param('SearchPattern',SearchPattern) def get_InstanceId(self): return self.get_query_params().get('InstanceId') def set_InstanceId(self,InstanceId): self.add_query_param('InstanceId',InstanceId) def get_PageSize(self): return self.get_query_params().get('PageSize') def set_PageSize(self,PageSize): self.add_query_param('PageSize',PageSize)
35.107143
74
0.767548
fa2e3d618a07f2d50df51f3916b51f975ee09372
3,410
py
Python
Python/Encrypt credentials/Encryption sample/utils.py
AdamRiddick/PowerBI-Developer-Samples
4032ffd63f7e3133c2320d23dbdb0e7fbb782a37
[ "MIT" ]
611
2019-05-09T04:56:36.000Z
2022-03-28T07:48:57.000Z
Python/Encrypt credentials/Encryption sample/utils.py
AdamRiddick/PowerBI-Developer-Samples
4032ffd63f7e3133c2320d23dbdb0e7fbb782a37
[ "MIT" ]
56
2017-03-06T12:05:26.000Z
2019-04-29T22:52:29.000Z
Python/Encrypt credentials/Encryption sample/utils.py
AdamRiddick/PowerBI-Developer-Samples
4032ffd63f7e3133c2320d23dbdb0e7fbb782a37
[ "MIT" ]
599
2019-05-08T07:01:04.000Z
2022-03-29T21:45:55.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. cred_types = { 'KEY': 'Key', 'WINDOWS': 'Windows', 'OAUTH2': 'OAuth2', 'BASIC': 'Basic' } class Utils: def validate_config(app): ''' Returns a message to user for missing configuration Args: app (Flask): Flask app object Returns: string: Error info ''' authenticate_mode = app.config['AUTHENTICATION_MODE'] tenant_id = app.config['TENANT_ID'] client_id = app.config['CLIENT_ID'] username = app.config['POWER_BI_USER'] password = app.config['POWER_BI_PASS'] client_secret = app.config['CLIENT_SECRET'] scope = app.config['SCOPE'] authority = app.config['AUTHORITY'] if authenticate_mode == '': return 'Please specify one of the two authentication modes in config.py file' if authenticate_mode.lower() != 'masteruser' and authenticate_mode.lower() != 'serviceprincipal': return 'Please specify one of the two authentication modes [serviceprincipal or masteruser] in config.py file' if authenticate_mode.lower() == 'serviceprincipal' and tenant_id == '': return 'Tenant ID is not provided in config.py file' if client_id == '': return 'Client ID is not provided in config.py file' if authenticate_mode.lower() == 'masteruser': if username == '': return 'Master account username is not provided in config.py file' elif password == '': return 'Master account password is not provided in config.py file' if authenticate_mode.lower() == 'serviceprincipal' and client_secret == '': return 'Client secret is not provided in config.py file' if scope == '': return 'Scope is not provided in config.py file' if authority == '': return 'Authority URL is not provided in config.py file' def serialize_credentials(credentials_arr, cred_type): ''' Returns serialized credentials Args: credentials_arr (dict): Credentials based on the user input of the credentials type cred_type (string): Credentials type (i.e. Basic, Windows) Returns: string: Serialized credentials ''' serialized_credentials = '' if cred_type == cred_types['KEY']: serialized_credentials = '{\'credentialData\':[{\'name\':\'key\',\'value\':\'' + credentials_arr[0] + '\'}]}' elif cred_type == cred_types['WINDOWS']: serialized_credentials = '{\'credentialData\':[{\'name\':\'username\',\'value\':\'' + \ credentials_arr[0] + '\'},{\'name\':\'password\',\'value\':\'' + \ credentials_arr[1] + '\'}]}' elif cred_type == cred_types['OAUTH2']: serialized_credentials = '{\'credentialData\':[{\'name\':\'accessToken\',\'value\':\'' + credentials_arr[0] + '\'}]}' elif cred_type == cred_types['BASIC']: serialized_credentials = '{\'credentialData\':[{\'name\':\'username\',\'value\':\'' + \ credentials_arr[0] + '\'},{\'name\':\'password\',\'value\':\'' + \ credentials_arr[1] + '\'}]}' else: raise Exception('Invalid credentials type') return serialized_credentials
39.651163
129
0.585924
77c82bc5f3adb6e0bae8a57e6d62f8f9c689df71
22,045
py
Python
hummingbird/ml/convert.py
rathijit/hummingbird
b634a4e5152757af2ff7a41059b3e52c8140fc04
[ "MIT" ]
1
2021-05-13T19:14:04.000Z
2021-05-13T19:14:04.000Z
hummingbird/ml/convert.py
hsaputra/hummingbird
0ebd6be58880615bc86eab3648056682b40de614
[ "MIT" ]
null
null
null
hummingbird/ml/convert.py
hsaputra/hummingbird
0ebd6be58880615bc86eab3648056682b40de614
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ Hummingbird main (converters) API. """ from copy import deepcopy import psutil import numpy as np from .operator_converters import constants from ._parse import parse_sklearn_api_model, parse_onnx_api_model, parse_sparkml_api_model from ._topology import convert as topology_converter from ._utils import ( torch_installed, lightgbm_installed, xgboost_installed, pandas_installed, sparkml_installed, is_pandas_dataframe, is_spark_dataframe, tvm_installed, ) from .exceptions import MissingConverter, MissingBackend from .supported import backends # Invoke the registration of all our converters. from . import operator_converters # noqa # Set up the converter dispatcher. from .supported import xgb_operator_list # noqa from .supported import lgbm_operator_list # noqa def _is_onnx_model(model): """ Function returning whether the input model is an ONNX model or not. """ return type(model).__name__ == "ModelProto" def _is_sparkml_model(model): """ Function returning whether the input model is a Spark-ML model or not. """ if sparkml_installed(): from pyspark.ml import Model, Transformer from pyspark.ml.pipeline import PipelineModel return isinstance(model, Model) or isinstance(model, PipelineModel) or isinstance(model, Transformer) else: return False def _supported_backend_check(backend_formatted, backend_original): """ Function used to check whether the specified backend is supported or not. """ if backend_formatted is None: raise MissingBackend("Backend: formatted {}, original {}".format(backend_formatted, backend_original)) def _supported_backend_check_config(model, backend, extra_config): """ Function used to check whether the specified backend and configuration pair is supported or not. """ assert torch_installed(), "To use Hummingbird you need to install torch." import onnx import torch tvm_backend = None if tvm_installed(): import tvm tvm_backend = tvm.__name__ if ( (backend == torch.jit.__name__ and not _is_onnx_model(model)) or backend == tvm_backend or (backend == onnx.__name__ and not _is_onnx_model(model)) ) and constants.TEST_INPUT not in extra_config: raise RuntimeError("Backend {} requires test inputs. Please pass some test input to the convert.".format(backend)) def _convert_sklearn(model, backend, test_input, device, extra_config={}): """ This function converts the specified *scikit-learn* (API) model into its *backend* counterpart. The supported operators and backends can be found at `hummingbird.ml.supported`. """ assert model is not None assert torch_installed(), "To use Hummingbird you need to install torch." # Parse scikit-learn model as our internal data structure (i.e., Topology) # We modify the scikit learn model during translation. model = deepcopy(model) topology = parse_sklearn_api_model(model, extra_config) # Convert the Topology object into a PyTorch model. hb_model = topology_converter(topology, backend, test_input, device, extra_config=extra_config) return hb_model def _convert_lightgbm(model, backend, test_input, device, extra_config={}): """ This function is used to generate a *backend* model from a given input [LightGBM] model. [LightGBM]: https://lightgbm.readthedocs.io/ """ assert ( lightgbm_installed() ), "To convert LightGBM models you need to install LightGBM (or `pip install hummingbird-ml[extra]`)." return _convert_sklearn(model, backend, test_input, device, extra_config) def _convert_xgboost(model, backend, test_input, device, extra_config={}): """ This function is used to generate a *backend* model from a given input [XGBoost] model. [XGBoost]: https://xgboost.readthedocs.io/ """ assert ( xgboost_installed() ), "To convert XGboost models you need to instal XGBoost (or `pip install hummingbird-ml[extra]`)." # XGBoostRegressor and Classifier have different APIs for extracting the number of features. # In the former case we need to infer them from the test_input. if "_features_count" in dir(model): extra_config[constants.N_FEATURES] = model._features_count elif test_input is not None: if type(test_input) is np.ndarray and len(test_input.shape) == 2: extra_config[constants.N_FEATURES] = test_input.shape[1] else: raise RuntimeError( "XGBoost converter is not able to infer the number of input features.\ Please pass a test_input to convert or \ fill an issue at https://github.com/microsoft/hummingbird/." ) else: raise RuntimeError( "XGBoost converter is not able to infer the number of input features.\ Please pass some test_input to the converter." ) return _convert_sklearn(model, backend, test_input, device, extra_config) def _convert_onnxml(model, backend, test_input, device, extra_config={}): """ This function converts the specified [ONNX-ML] model into its *backend* counterpart. The supported operators can be found at `hummingbird.ml.supported`. """ assert model is not None assert torch_installed(), "To use Hummingbird you need to install torch." import onnx # The conversion requires some test input for tracing. # Test inputs can be either provided or generate from the input schema of the model. # Generate some test input if necessary. if test_input is None: import torch from onnxconverter_common.data_types import FloatTensorType, DoubleTensorType, Int32TensorType, Int64TensorType tvm_backend = None if tvm_installed(): import tvm tvm_backend = tvm.__name__ # Get the input information from the ONNX schema. initial_types = [] for input in model.graph.input: name = input.name if hasattr(input, "name") else None data_type = ( input.type.tensor_type.elem_type if hasattr(input, "type") and hasattr(input.type, "tensor_type") and hasattr(input.type.tensor_type, "elem_type") else None ) if name is None: raise RuntimeError( "Cannot fetch input name or data_type from the ONNX schema. Please provide some test input." ) if data_type is None: raise RuntimeError( "Cannot fetch input data_type from the ONNX schema, or data type is not tensor_type. Please provide some test input." ) if not hasattr(input.type.tensor_type, "shape"): raise RuntimeError("Cannot fetch input shape from ONNX schema. Please provide some test input.") shape = [dim.dim_value for dim in input.type.tensor_type.shape.dim] if len(shape) == 1: shape = [1, shape[0]] assert len(shape) == 2 # In ONNX dynamic dimensions will have a shape of 0. Fix the 0-shape in the batch dimension if they exist. if shape[0] == 0: shape[0] = 1 if data_type == 1: initial_types.append((name, FloatTensorType(shape))) elif data_type == 11: initial_types.append((name, DoubleTensorType(shape))) elif data_type == 6: initial_types.append((name, Int32TensorType(shape))) elif data_type == 7: initial_types.append((name, Int64TensorType(shape))) else: raise RuntimeError( "Input data type {} not supported. Please fill an issue at https://github.com/microsoft/hummingbird/, or pass some test_input".format( data_type ) ) first_shape = initial_types[0][1].shape assert all( map(lambda x: x[1].shape == first_shape, initial_types) ), "Hummingbird currently supports only inputs with same shape." extra_config[constants.N_INPUTS] = len(initial_types) extra_config[constants.N_FEATURES] = extra_config[constants.N_INPUTS] * first_shape[1] # Generate some random input data if necessary for the model conversion. if backend == onnx.__name__ or backend == tvm_backend or backend == torch.jit.__name__: test_input = [] for i, it in enumerate(initial_types): if type(it[1]) is FloatTensorType: test_input.append(np.array(np.random.rand(first_shape[0], first_shape[1]), dtype=np.float32)) elif type(it[1]) is DoubleTensorType: test_input.append(np.random.rand(first_shape[0], first_shape[1])) elif type(it[1]) is Int32TensorType: test_input.append(np.array(np.random.randint(100, size=first_shape), dtype=np.int32)) elif type(it[1]) is Int64TensorType: test_input.append(np.random.randint(100, size=first_shape)) else: raise RuntimeError( "Type {} not supported. Please fill an issue on https://github.com/microsoft/hummingbird/.".format( type(it[1]) ) ) if extra_config[constants.N_INPUTS] == 1: test_input = test_input[0] else: test_input = tuple(test_input) extra_config[constants.TEST_INPUT] = test_input # Set the number of features. Some converter requires to know in advance the number of features. if constants.N_FEATURES not in extra_config and test_input is not None: if len(test_input.shape) < 2: extra_config[constants.N_FEATURES] = 1 else: extra_config[constants.N_FEATURES] = test_input.shape[1] # Set the initializers. Some converter requires the access to initializers. initializers = {} if model.graph.initializer is None else {in_.name: in_ for in_ in model.graph.initializer} extra_config[constants.ONNX_INITIALIZERS] = initializers # Parse ONNX model as our internal data structure (i.e., Topology). topology = parse_onnx_api_model(model) # Convert the Topology object into a PyTorch model. hb_model = topology_converter(topology, backend, test_input, device, extra_config=extra_config) return hb_model def _convert_sparkml(model, backend, test_input, device, extra_config={}): """ This function converts the specified *Spark-ML* (API) model into its *backend* counterpart. The supported operators and backends can be found at `hummingbird.ml.supported`. """ assert model is not None assert torch_installed(), "To use Hummingbird you need to install torch." # Parse Spark-ML model as our internal data structure (i.e., Topology) # We modify the Spark-ML model during translation. model = model.copy() topology = parse_sparkml_api_model(model, extra_config) # Convert the Topology object into a PyTorch model. hb_model = topology_converter(topology, backend, test_input, device, extra_config=extra_config) return hb_model def _convert_common(model, backend, test_input=None, device="cpu", extra_config={}): """ A common function called by convert(...) and convert_batch(...) below. """ assert model is not None # We destroy extra_config during conversion, we create a copy here. extra_config = deepcopy(extra_config) # Set some default configurations. # Add test input as extra configuration for conversion. if ( test_input is not None and constants.TEST_INPUT not in extra_config and (is_spark_dataframe(test_input) or len(test_input) > 0) ): extra_config[constants.TEST_INPUT] = test_input # By default we return the converted model wrapped into a `hummingbird.ml._container.SklearnContainer` object. if constants.CONTAINER not in extra_config: extra_config[constants.CONTAINER] = True # By default we set num of intra-op parallelism to be the number of physical cores available if constants.N_THREADS not in extra_config: extra_config[constants.N_THREADS] = psutil.cpu_count(logical=False) # Fix the test_input type if constants.TEST_INPUT in extra_config: if type(extra_config[constants.TEST_INPUT]) == list: extra_config[constants.TEST_INPUT] = np.array(extra_config[constants.TEST_INPUT]) elif type(extra_config[constants.TEST_INPUT]) == tuple: # We are passing multiple datasets. assert all( [type(input) == np.ndarray for input in extra_config[constants.TEST_INPUT]] ), "When passing multiple inputs only ndarrays are supported." assert all([len(input.shape) == 2 for input in extra_config[constants.TEST_INPUT]]) extra_config[constants.N_FEATURES] = sum([input.shape[1] for input in extra_config[constants.TEST_INPUT]]) extra_config[constants.N_INPUTS] = len(extra_config[constants.TEST_INPUT]) elif pandas_installed() and is_pandas_dataframe(extra_config[constants.TEST_INPUT]): # We split the input dataframe into columnar ndarrays extra_config[constants.N_INPUTS] = len(extra_config[constants.TEST_INPUT].columns) extra_config[constants.N_FEATURES] = extra_config[constants.N_INPUTS] input_names = list(extra_config[constants.TEST_INPUT].columns) splits = [extra_config[constants.TEST_INPUT][input_names[idx]] for idx in range(extra_config[constants.N_INPUTS])] splits = [df.to_numpy().reshape(-1, 1) for df in splits] extra_config[constants.TEST_INPUT] = tuple(splits) if len(splits) > 1 else splits[0] extra_config[constants.INPUT_NAMES] = input_names elif sparkml_installed() and is_spark_dataframe(extra_config[constants.TEST_INPUT]): from pyspark.ml.linalg import DenseVector, SparseVector, VectorUDT from pyspark.sql.types import ArrayType, FloatType, DoubleType, IntegerType, LongType df = extra_config[constants.TEST_INPUT] input_names = [field.name for field in df.schema.fields] extra_config[constants.N_INPUTS] = len(input_names) extra_config[constants.N_FEATURES] = extra_config[constants.N_INPUTS] size = df.count() row_dict = df.take(1)[0].asDict() splits = [] for field in df.schema.fields: data_col = row_dict[field.name] spark_dtype = type(field.dataType) shape = 1 if spark_dtype in [DenseVector, VectorUDT]: np_dtype = np.float64 shape = data_col.array.shape[0] elif spark_dtype == SparseVector: np_dtype = np.float64 shape = data_col.size elif spark_dtype == ArrayType: np_dtype = np.float64 shape = len(data_col) elif spark_dtype == IntegerType: np_dtype = np.int32 elif spark_dtype == FloatType: np_dtype = np.float32 elif spark_dtype == DoubleType: np_dtype = np.float64 elif spark_dtype == LongType: np_dtype = np.int64 else: raise ValueError("Unrecognized data type: {}".format(spark_dtype)) splits.append(np.zeros((size, shape), np_dtype)) extra_config[constants.TEST_INPUT] = tuple(splits) if len(splits) > 1 else splits[0] extra_config[constants.INPUT_NAMES] = input_names test_input = extra_config[constants.TEST_INPUT] # We do some normalization on backends. if type(backend) != str: raise ValueError("Backend must be a string: {}".format(backend)) backend_formatted = backend.lower() backend_formatted = backends[backend_formatted] # Check whether we actually support the backend. _supported_backend_check(backend_formatted, backend) _supported_backend_check_config(model, backend_formatted, extra_config) if type(model) in xgb_operator_list: return _convert_xgboost(model, backend_formatted, test_input, device, extra_config) if type(model) in lgbm_operator_list: return _convert_lightgbm(model, backend_formatted, test_input, device, extra_config) if _is_onnx_model(model): return _convert_onnxml(model, backend_formatted, test_input, device, extra_config) if _is_sparkml_model(model): return _convert_sparkml(model, backend_formatted, test_input, device, extra_config) return _convert_sklearn(model, backend_formatted, test_input, device, extra_config) def convert(model, backend, test_input=None, device="cpu", extra_config={}): """ This function converts the specified input *model* into an implementation targeting *backend*. *Convert* supports [Sklearn], [LightGBM], [XGBoost], [ONNX], and [SparkML] models. For *LightGBM* and *XGBoost* currently only the Sklearn API is supported. The detailed list of models and backends can be found at `hummingbird.ml.supported`. The *onnx* backend requires either a test_input of a the initial types set through the exta_config parameter. The *torch.jit* and *tvm* backends require a test_input. For *tvm* backend, the output container can do prediction only on the test data with the same size as test_input. [Sklearn]: https://scikit-learn.org/ [LightGBM]: https://lightgbm.readthedocs.io/ [XGBoost]: https://xgboost.readthedocs.io/ [ONNX]: https://onnx.ai/ [ONNX-ML]: https://github.com/onnx/onnx/blob/master/docs/Operators-ml.md [ONNX operators]: https://github.com/onnx/onnx/blob/master/docs/Operators.md [Spark-ML]: https://spark.apache.org/docs/latest/api/python/pyspark.ml.html Args: model: An input model backend: The target for the conversion test_input: Some input data used to trace the model execution. Multiple inputs can be passed as `tuple` objects or pandas Dataframes. When possible, (`numpy`)`arrays` are suggested. The number of rows becomes the batch size when tracing PyTorch models and compiling with TVM. device: The target device the model should be run. This parameter is only used by the *torch** backends and *tvm*, and the devices supported are the one supported by PyTorch, i.e., 'cpu' or 'cuda'. extra_config: Extra configurations to be used by the individual operator converters. The set of supported extra configurations can be found at `hummingbird.ml.supported` Examples: >>> pytorch_model = convert(sklearn_model,`torch`) Returns: A model implemented in *backend*, which is equivalent to the input model """ assert constants.REMAINDER_SIZE not in extra_config return _convert_common(model, backend, test_input, device, extra_config) def convert_batch(model, backend, test_input, remainder_size=0, device="cpu", extra_config={}): """ A convert function for batch by batch prediction use cases. For some backends such as TVM, a container returned by `convert(...)` function above has a strict requirement on the allowable input shape. The container returned by this function is more flexible in that it can predict on the input of size `test_input.shape[0] * k + remainder_size`, where `k` is any integer. `test_input.shape[0]`, the number of rows in the `test_input`, is interpreted as a batch size, and at test time prediction proceeds in a batch by batch fashion. See the documentation for *convert(...)* above for more information. Args: model: An input model backend: The target for the conversion test_input: Some input data used to trace the model execution. Multiple inputs can be passed as `tuple` objects or pandas Dataframes. When possible, (`numpy`)`arrays` are suggested. The number of rows becomes the batch size when tracing PyTorch models and compiling with TVM. remainder_size: An integer that together with test_input determines the size of test data that can be predicted. The input to the returned container can be of size `test_input.shape[0] * k + remainder_size`, where `k` is any integer. device: The target device the model should be run. This parameter is only used by the *torch** backends and *tvm*, and the devices supported are the one supported by PyTorch, i.e., 'cpu' or 'cuda'. extra_config: Extra configurations to be used by the individual operator converters. The set of supported extra configurations can be found at `hummingbird.ml.supported` Examples: >>> tvm_model = convert_batch(sklearn_model,`tvm`, X) >>> tvm_model = convert_batch(sklearn_model,`tvm`, X, remainder_size=50) Returns: A `BatchContainer` object that wraps one or two containers created by `convert(...)` function above. """ extra_config[constants.REMAINDER_SIZE] = remainder_size return _convert_common(model, backend, test_input, device, extra_config)
46.804671
154
0.664096
a8ffff137f86ceca07334836a572d1025a1574c0
874
py
Python
build/lib/swaglyrics/spotify.py
MatejMecka/SwagLyrics-For-Spotify
74e329ce675f977ade490846f7faadd064c96380
[ "MIT" ]
1
2019-05-23T20:24:05.000Z
2019-05-23T20:24:05.000Z
swaglyrics/spotify.py
MatejMecka/SwagLyrics-For-Spotify
74e329ce675f977ade490846f7faadd064c96380
[ "MIT" ]
null
null
null
swaglyrics/spotify.py
MatejMecka/SwagLyrics-For-Spotify
74e329ce675f977ade490846f7faadd064c96380
[ "MIT" ]
null
null
null
import win32gui def get_info_windows(): windows = [] # Older Spotify versions - simply FindWindow for "SpotifyMainWindow" windows.append(win32gui.GetWindowText(win32gui.FindWindow("SpotifyMainWindow", None))) # Newer Spotify versions - create an EnumHandler for EnumWindows and flood the list with Chrome_WidgetWin_0s def find_spotify_uwp(hwnd, windows): text = win32gui.GetWindowText(hwnd) if win32gui.GetClassName(hwnd) == "Chrome_WidgetWin_0" and len(text) > 0: windows.append(text) win32gui.EnumWindows(find_spotify_uwp, windows) while windows.count != 0: try: text = windows.pop() except: return None try: artist, track = text.split(" - ", 1) return artist, track except: pass def artist(): try: return get_info_windows()[0] except: return None def song(): try: return get_info_windows()[1] except: return None
21.317073
109
0.726545
6c359d5f59caabc6b12bd5ba1cc82e28b9aec304
8,183
py
Python
mapry/cpp/generate/jsoncpp_header.py
Parquery/mapry
93515307f9eba8447fe64b0ac7cc68b2d07205a7
[ "MIT" ]
11
2019-06-26T05:56:41.000Z
2021-03-28T16:44:16.000Z
mapry/cpp/generate/jsoncpp_header.py
Parquery/mapry
93515307f9eba8447fe64b0ac7cc68b2d07205a7
[ "MIT" ]
4
2019-10-18T14:43:59.000Z
2020-04-02T19:12:07.000Z
mapry/cpp/generate/jsoncpp_header.py
Parquery/mapry
93515307f9eba8447fe64b0ac7cc68b2d07205a7
[ "MIT" ]
3
2019-06-17T07:39:03.000Z
2020-04-01T14:01:23.000Z
"""Generate the header for de/serialization from/to Jsoncpp values.""" from typing import List, Sequence, Set, Union # pylint: disable=unused-import from icontract import ensure import mapry import mapry.cpp.generate import mapry.cpp.jinja2_env import mapry.cpp.naming import mapry.indention @ensure(lambda result: not result.endswith('\n')) def _includes( graph: mapry.Graph, cpp: mapry.Cpp, types_header_path: str, parse_header_path: str) -> str: """ Generate the include directives of the header file. :param graph: definition of the object graph :param cpp: C++ settings :param types_header_path: path to the header file that defines the types of the object graph :param parse_header_path: path to the header file that defines the general parsing structures :return: generated code """ # pylint: disable=too-many-branches stl_block = set() # type: Set[str] third_party_block = {"#include <json/json.h> // jsoncpp"} # yapf: disable first_party_block = { '#include "{}"'.format(pth) for pth in [types_header_path, parse_header_path]} # yapf: enable if mapry.needs_type(a_type=graph, query=mapry.String): stl_block.add("#include <string>") if mapry.needs_type(a_type=graph, query=mapry.Path): if cpp.path_as == 'std::filesystem::path': stl_block.add("#include <filesystem>") elif cpp.path_as == "boost::filesystem::path": third_party_block.add("#include <boost/filesystem/path.hpp>") else: raise NotImplementedError( "Unhandled schema.cpp.path_as: {!r}".format(cpp.path_as)) if graph.classes: stl_block.add("#include <map>") stl_block.add("#include <string>") # Check for optional fields has_optional = False for prop in graph.properties.values(): if prop.optional: has_optional = True break if not has_optional: for cls in graph.classes.values(): for prop in cls.properties.values(): if prop.optional: has_optional = True break if not has_optional: for embed in graph.embeds.values(): for prop in embed.properties.values(): if prop.optional: has_optional = True break if has_optional: if cpp.optional_as == "boost::optional": third_party_block.add("#include <boost/optional.hpp>") elif cpp.optional_as == "std::optional": stl_block.add("#include <optional>") elif cpp.optional_as == "std::experimental::optional": third_party_block.add("#include <optional.hpp>") else: raise NotImplementedError( "Unhandled schema.cpp.optional_as: {!r}".format( cpp.optional_as)) block_strs = [ '\n'.join(sorted(third_party_block)), '\n'.join(sorted(stl_block)), '\n'.join(sorted(first_party_block)) ] assert all(block_str == block_str.strip() for block_str in block_strs), \ "No empty blocks in include blocks." return '\n\n'.join(block_strs) _PARSE_JSONCPP_TPL = mapry.cpp.jinja2_env.ENV.from_string( '''\ /** * parses {{graph.name|as_composite}} from a JSON value. * * @param [in] value to be parsed * @param [in] ref reference to the value (e.g., a reference path) * @param [out] target parsed {{ graph.name|as_composite }} * @param [out] errors encountered during parsing */ void {{graph.name|as_variable}}_from( const Json::Value& value, std::string ref, {{ graph.name|as_composite }}* target, parse::Errors* errors); {% if nongraph_composites %} {% for composite in nongraph_composites %} /** * parses {{ composite.name|as_composite }} from a JSON value. * * @param [in] value to be parsed {% for ref_cls in references[composite] %} * @param {{ ref_cls.plural|as_variable }}_registry registry of the {{ ref_cls.name|as_composite }} instances {% endfor %} * @param ref reference to the value (e.g., a reference path) * @param [out] target parsed data * @param [out] errors encountered during parsing */ void {{ composite.name|as_variable }}_from( const Json::Value& value, {% for ref_cls in references[composite] %} const std::map<std::string, std::unique_ptr<{{ ref_cls.name|as_composite }}>>& {{ ref_cls.plural|as_variable }}_registry, {% endfor %} std::string ref, {{ composite.name|as_composite }}* target, parse::Errors* errors); {% endfor %} {% endif %}''') @ensure(lambda result: not result.endswith('\n')) def _parse_definitions(graph: mapry.Graph) -> str: """ Generate the code that defines the parsing functions of Jsoncpp. :param graph: mapry definition of the object graph :return: generated code """ nongraph_composites = [] # type: List[Union[mapry.Embed, mapry.Class]] nongraph_composites.extend(graph.embeds.values()) nongraph_composites.extend(graph.classes.values()) # yapf: disable references = { composite: mapry.references(a_type=composite) for composite in nongraph_composites} # yapf: enable return _PARSE_JSONCPP_TPL.render( graph=graph, nongraph_composites=nongraph_composites, references=references).rstrip() _SERIALIZE_DEFINITIONS_TPL = mapry.cpp.jinja2_env.ENV.from_string( '''\ {% for composite in composites %} /** * serializes {{ composite.name|as_composite }} to a JSON value. * * @param {{ composite.name|as_variable }} to be serialized * @return JSON value */ Json::Value serialize_{{ composite.name|as_variable }}( const {{ composite.name|as_composite }}& {{ composite.name|as_variable }}); {% endfor %}''') @ensure(lambda result: not result.endswith('\n')) def _serialize_definitions(composites: Sequence[mapry.Composite]) -> str: """ Generate the definitions of functions that serialize the composite object. :param composites: all composites (graph, classes and embeds) defined in the graph :return: generated code """ return _SERIALIZE_DEFINITIONS_TPL.render(composites=composites).rstrip() @ensure(lambda result: result.endswith('\n')) def generate( graph: mapry.Graph, cpp: mapry.Cpp, types_header_path: str, parse_header_path: str) -> str: """ Generate the header file for de/serialization from/to Jsoncpp. :param graph: definition of the object graph :param cpp: C++ settings :param types_header_path: path to the header file that defines the types of the object graph :param parse_header_path: path to the header file that defines the general parsing structures :return: content of the header file """ blocks = [ "#pragma once", mapry.cpp.generate.WARNING, _includes( graph=graph, cpp=cpp, types_header_path=types_header_path, parse_header_path=parse_header_path) ] namespace_parts = cpp.namespace.split('::') if namespace_parts: # yapf: disable namespace_opening = '\n'.join( ['namespace {} {{'.format(namespace_part) for namespace_part in namespace_parts]) # yapf: enable blocks.append(namespace_opening) blocks.append('namespace jsoncpp {') blocks.append(_parse_definitions(graph=graph)) composites = [] # type: List[mapry.Composite] composites.append(graph) composites.extend(graph.classes.values()) composites.extend(graph.embeds.values()) blocks.append(_serialize_definitions(composites=composites)) blocks.append('} // namespace jsoncpp') if namespace_parts: # yapf: disable namespace_closing = '\n'.join( ['}} // namespace {}'.format(namespace_part) for namespace_part in reversed(namespace_parts)]) # yapf: enable blocks.append(namespace_closing) blocks.append(mapry.cpp.generate.WARNING) return mapry.indention.reindent( text='\n\n'.join(blocks) + '\n', indention=cpp.indention)
32.472222
79
0.649884
50f6eafaa84195f1646bdcd734976dd3705c091c
641
py
Python
beginner/02-list-overlap.py
chaudha4/python-projects
baba3235069b7d6b084f28904f0662c043762175
[ "MIT" ]
null
null
null
beginner/02-list-overlap.py
chaudha4/python-projects
baba3235069b7d6b084f28904f0662c043762175
[ "MIT" ]
3
2021-11-23T22:19:19.000Z
2022-03-12T00:52:34.000Z
beginner/02-list-overlap.py
chaudha4/python-projects
baba3235069b7d6b084f28904f0662c043762175
[ "MIT" ]
null
null
null
""" Take two lists, say for example these two: a = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89] b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and write a program that returns a list that contains only the elements that are common between the lists """ a = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89] b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] #Using loop c = [] for aa in a: for bb in b: if aa == bb: c.append(aa) print("Using Loop - ", c) # Using set c = list(set(a) & set(b)) print("Using set() - ", c) # Using list comprehensions c = [aa for aa in a for bb in b if aa==bb] print("Using list comprehensions - ", c)
22.103448
105
0.555382
f7f2dfdf55f1fde84f99c713b689479454f6e33f
46,209
py
Python
salt/modules/win_service.py
fake-name/salt
d8f04936e4407f51946e32e8166159778f6c31a5
[ "Apache-2.0" ]
null
null
null
salt/modules/win_service.py
fake-name/salt
d8f04936e4407f51946e32e8166159778f6c31a5
[ "Apache-2.0" ]
null
null
null
salt/modules/win_service.py
fake-name/salt
d8f04936e4407f51946e32e8166159778f6c31a5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Windows Service module. .. versionchanged:: 2016.11.0 - Rewritten to use PyWin32 """ # Import Python libs from __future__ import absolute_import, print_function, unicode_literals import fnmatch import logging import re import time import salt.utils.path # Import Salt libs import salt.utils.platform import salt.utils.path from salt.exceptions import CommandExecutionError # Import 3rd party libs try: import win32security import win32service import win32serviceutil import pywintypes HAS_WIN32_MODS = True except ImportError: HAS_WIN32_MODS = False log = logging.getLogger(__name__) # Define the module's virtual name __virtualname__ = "service" SERVICE_TYPE = { 1: "Kernel Driver", 2: "File System Driver", 4: "Adapter Driver", 8: "Recognizer Driver", 16: "Win32 Own Process", 32: "Win32 Share Process", 256: "Interactive", "kernel": 1, "filesystem": 2, "adapter": 4, "recognizer": 8, "own": 16, "share": 32, } SERVICE_CONTROLS = { 1: "Stop", 2: "Pause/Continue", 4: "Shutdown", 8: "Change Parameters", 16: "Netbind Change", 32: "Hardware Profile Change", 64: "Power Event", 128: "Session Change", 256: "Pre-Shutdown", 512: "Time Change", 1024: "Trigger Event", } SERVICE_STATE = { 1: "Stopped", 2: "Start Pending", 3: "Stop Pending", 4: "Running", 5: "Continue Pending", 6: "Pause Pending", 7: "Paused", } SERVICE_ERRORS = {0: "No Error", 1066: "Service Specific Error"} SERVICE_START_TYPE = { "boot": 0, "system": 1, "auto": 2, "manual": 3, "disabled": 4, 0: "Boot", 1: "System", 2: "Auto", 3: "Manual", 4: "Disabled", } SERVICE_ERROR_CONTROL = { 0: "Ignore", 1: "Normal", 2: "Severe", 3: "Critical", "ignore": 0, "normal": 1, "severe": 2, "critical": 3, } def __virtual__(): """ Only works on Windows systems with PyWin32 installed """ if not salt.utils.platform.is_windows(): return False, "Module win_service: module only works on Windows." if not HAS_WIN32_MODS: return False, "Module win_service: failed to load win32 modules" return __virtualname__ class ServiceDependencies(object): ''' Helper class which provides functionality to get all dependencies and parents of a Windows service Args: name (str): The name of the service. This is not the display name. Use ``get_service_name`` to find the service name. all_services (callback): The name of the method which provides a list of all available service names as done by the ``win_service.get_all()`` method. service_info (callback): The name of the method which allows to pass the service name and returns a dict with meets the requirements ``{service_name: {'Dependencies': []}}`` as done by the ``win_service.info(name)`` method ''' def __init__(self, name, all_services, service_info): # Sort for predictable behavior self._all_services = sorted(all_services()) self._name = self._normalize_name(self._all_services, name) self._service_info = self._populate_service_info(self._all_services, service_info) def _populate_service_info(self, all_services, service_info): ret = {} for name in all_services: dependencies = service_info(name).get('Dependencies', []) # Sort for predictable behavior ret[name] = sorted(self._normalize_multiple_name(all_services, *dependencies)) log.trace("Added dependencies of %s: %s", name, ret[name]) return ret def _dependencies(self, name): dependencies = self._service_info.get(name, []) # Sort for predictable behavior ret = sorted(self._normalize_multiple_name(self._all_services, *dependencies)) log.trace("Added dependencies of %s: %s", name, ret) return ret def _dependencies_recursion(self, name): # Using a list here to maintain order ret = list() try: dependencies = self._dependencies(name) for dependency in dependencies: indirect_dependencies = self._dependencies_recursion(dependency) for indirect_dependency in indirect_dependencies: if indirect_dependency not in ret: ret.append(indirect_dependency) for dependency in dependencies: if dependency not in ret: ret.append(dependency) except Exception as e: log.debug(e) ret = list() return ret def _normalize_name(self, references, difference): # Normalize Input normalized = self._normalize_multiple_name(references, difference) if not normalized: raise ValueError("The provided name '{}' does not exist".format(difference)) return normalized[0] def _normalize_multiple_name(self, references, *differences): # Normalize Input ret = list() for difference in differences: difference_str = str(difference) for reference in references: reference_str = str(reference) if reference_str.lower() == difference_str.lower() and reference_str not in ret: ret.append(reference_str) break return ret def dependencies(self, with_indirect=False): normalized = self._normalize_name(self._all_services, self._name) if bool(with_indirect): ret = self._dependencies_recursion(normalized) else: ret = self._dependencies(normalized) log.trace("Dependencies of '%s': '%s'", normalized, ret) return ret def _parents(self, name): # Using a list here to maintain order ret = list() try: # Sort for predictable behavior for service, dependencies in sorted(self._service_info.items()): if name in dependencies: if service in ret: ret.remove(service) ret.append(service) except Exception as e: log.debug(e) ret = list() return ret def _parents_recursion(self, name): # Using a list here to maintain order ret = list() try: parents = self._parents(name) for parent in parents: if parent not in ret: ret.append(parent) for parent in parents: indirect_parents = self._parents_recursion(parent) for indirect_parent in indirect_parents: if indirect_parent in ret: ret.remove(indirect_parent) ret.append(indirect_parent) except Exception as e: log.debug(e) ret = list() return ret def parents(self, with_indirect=False): normalized = self._normalize_name(self._all_services, self._name) if bool(with_indirect): ret = self._parents_recursion(normalized) else: ret = self._parents(normalized) log.trace("Parents of '%s': '%s'", normalized, ret) return ret def start_order(self, with_deps=False, with_parents=False): ret = [] if with_deps: ret.extend(self.dependencies(with_indirect=True)) normalized = self._normalize_name(self._all_services, self._name) ret.append(normalized) if with_parents: ret.extend(self.parents(with_indirect=True)) return ret def stop_order(self, with_deps=False, with_parents=False): order = self.start_order(with_deps=with_deps, with_parents=with_parents) order.reverse() return order def _status_wait(service_name, end_time, service_states): """ Helper function that will wait for the status of the service to match the provided status before an end time expires. Used for service stop and start .. versionadded:: 2017.7.9,2018.3.4 Args: service_name (str): The name of the service end_time (float): A future time. e.g. time.time() + 10 service_states (list): Services statuses to wait for as returned by info() Returns: dict: A dictionary containing information about the service. :codeauthor: Damon Atkins <https://github.com/damon-atkins> """ info_results = info(service_name) while info_results["Status"] in service_states and time.time() < end_time: # From Microsoft: Do not wait longer than the wait hint. A good interval # is one-tenth of the wait hint but not less than 1 second and not more # than 10 seconds. # https://docs.microsoft.com/en-us/windows/desktop/services/starting-a-service # https://docs.microsoft.com/en-us/windows/desktop/services/stopping-a-service # Wait hint is in ms wait_time = info_results["Status_WaitHint"] # Convert to seconds or 0 wait_time = wait_time / 1000 if wait_time else 0 if wait_time < 1: wait_time = 1 elif wait_time > 10: wait_time = 10 time.sleep(wait_time) info_results = info(service_name) return info_results def _cmd_quote(cmd): r""" Helper function to properly format the path to the binary for the service Must be wrapped in double quotes to account for paths that have spaces. For example: ``"C:\Program Files\Path\to\bin.exe"`` Args: cmd (str): Full path to the binary Returns: str: Properly quoted path to the binary """ # Remove all single and double quotes from the beginning and the end pattern = re.compile("^(\\\"|').*|.*(\\\"|')$") while pattern.match(cmd) is not None: cmd = cmd.strip('"').strip("'") # Ensure the path to the binary is wrapped in double quotes to account for # spaces in the path cmd = '"{0}"'.format(cmd) return cmd def get_enabled(): """ Return a list of enabled services. Enabled is defined as a service that is marked to Auto Start. Returns: list: A list of enabled services CLI Example: .. code-block:: bash salt '*' service.get_enabled """ raw_services = _get_services() services = set() for service in raw_services: if info(service["ServiceName"])["StartType"] in ["Auto"]: services.add(service["ServiceName"]) return sorted(services) def get_disabled(): """ Return a list of disabled services. Disabled is defined as a service that is marked 'Disabled' or 'Manual'. Returns: list: A list of disabled services. CLI Example: .. code-block:: bash salt '*' service.get_disabled """ raw_services = _get_services() services = set() for service in raw_services: if info(service["ServiceName"])["StartType"] in ["Manual", "Disabled"]: services.add(service["ServiceName"]) return sorted(services) def available(name): """ Check if a service is available on the system. Args: name (str): The name of the service to check Returns: bool: ``True`` if the service is available, ``False`` otherwise CLI Example: .. code-block:: bash salt '*' service.available <service name> """ for service in get_all(): if name.lower() == service.lower(): return True return False def missing(name): """ The inverse of service.available. Args: name (str): The name of the service to check Returns: bool: ``True`` if the service is missing, ``False`` otherwise CLI Example: .. code-block:: bash salt '*' service.missing <service name> """ return name not in get_all() def _get_services(): """ Returns a list of all services on the system. """ handle_scm = win32service.OpenSCManager( None, None, win32service.SC_MANAGER_ENUMERATE_SERVICE ) try: services = win32service.EnumServicesStatusEx(handle_scm) except AttributeError: services = win32service.EnumServicesStatus(handle_scm) finally: win32service.CloseServiceHandle(handle_scm) return services def get_all(): """ Return all installed services Returns: list: Returns a list of all services on the system. CLI Example: .. code-block:: bash salt '*' service.get_all """ services = _get_services() ret = set() for service in services: ret.add(service["ServiceName"]) return sorted(ret) def get_service_name(*args): """ The Display Name is what is displayed in Windows when services.msc is executed. Each Display Name has an associated Service Name which is the actual name of the service. This function allows you to discover the Service Name by returning a dictionary of Display Names and Service Names, or filter by adding arguments of Display Names. If no args are passed, return a dict of all services where the keys are the service Display Names and the values are the Service Names. If arguments are passed, create a dict of Display Names and Service Names Returns: dict: A dictionary of display names and service names CLI Examples: .. code-block:: bash salt '*' service.get_service_name salt '*' service.get_service_name 'Google Update Service (gupdate)' 'DHCP Client' """ raw_services = _get_services() services = dict() for raw_service in raw_services: if args: if ( raw_service["DisplayName"] in args or raw_service["ServiceName"] in args or raw_service["ServiceName"].lower() in args ): services[raw_service["DisplayName"]] = raw_service["ServiceName"] else: services[raw_service["DisplayName"]] = raw_service["ServiceName"] return services def info(name): """ Get information about a service on the system Args: name (str): The name of the service. This is not the display name. Use ``get_service_name`` to find the service name. Returns: dict: A dictionary containing information about the service. CLI Example: .. code-block:: bash salt '*' service.info spooler """ try: handle_scm = win32service.OpenSCManager( None, None, win32service.SC_MANAGER_CONNECT ) except pywintypes.error as exc: raise CommandExecutionError( "Failed to connect to the SCM: {0}".format(exc.strerror) ) try: handle_svc = win32service.OpenService( handle_scm, name, win32service.SERVICE_ENUMERATE_DEPENDENTS | win32service.SERVICE_INTERROGATE | win32service.SERVICE_QUERY_CONFIG | win32service.SERVICE_QUERY_STATUS, ) except pywintypes.error as exc: raise CommandExecutionError( "Failed To Open {0}: {1}".format(name, exc.strerror) ) try: config_info = win32service.QueryServiceConfig(handle_svc) status_info = win32service.QueryServiceStatusEx(handle_svc) try: description = win32service.QueryServiceConfig2( handle_svc, win32service.SERVICE_CONFIG_DESCRIPTION ) except pywintypes.error: description = "Failed to get description" delayed_start = win32service.QueryServiceConfig2( handle_svc, win32service.SERVICE_CONFIG_DELAYED_AUTO_START_INFO ) finally: win32service.CloseServiceHandle(handle_scm) win32service.CloseServiceHandle(handle_svc) ret = dict() try: sid = win32security.LookupAccountName("", "NT Service\\{0}".format(name))[0] ret["sid"] = win32security.ConvertSidToStringSid(sid) except pywintypes.error: ret["sid"] = "Failed to get SID" ret["BinaryPath"] = config_info[3] ret["LoadOrderGroup"] = config_info[4] ret["TagID"] = config_info[5] ret["Dependencies"] = config_info[6] ret["ServiceAccount"] = config_info[7] ret["DisplayName"] = config_info[8] ret["Description"] = description ret["Status_ServiceCode"] = status_info["ServiceSpecificExitCode"] ret["Status_CheckPoint"] = status_info["CheckPoint"] ret["Status_WaitHint"] = status_info["WaitHint"] ret["StartTypeDelayed"] = delayed_start flags = list() for bit in SERVICE_TYPE: if isinstance(bit, int): if config_info[0] & bit: flags.append(SERVICE_TYPE[bit]) ret["ServiceType"] = flags if flags else config_info[0] flags = list() for bit in SERVICE_CONTROLS: if status_info["ControlsAccepted"] & bit: flags.append(SERVICE_CONTROLS[bit]) ret["ControlsAccepted"] = flags if flags else status_info["ControlsAccepted"] try: ret["Status_ExitCode"] = SERVICE_ERRORS[status_info["Win32ExitCode"]] except KeyError: ret["Status_ExitCode"] = status_info["Win32ExitCode"] try: ret["StartType"] = SERVICE_START_TYPE[config_info[1]] except KeyError: ret["StartType"] = config_info[1] try: ret["ErrorControl"] = SERVICE_ERROR_CONTROL[config_info[2]] except KeyError: ret["ErrorControl"] = config_info[2] try: ret["Status"] = SERVICE_STATE[status_info["CurrentState"]] except KeyError: ret["Status"] = status_info["CurrentState"] return ret def start(name, timeout=90, with_deps=False, with_parents=False): ''' Start the specified service. .. warning:: You cannot start a disabled service in Windows. If the service is disabled, it will be changed to ``Manual`` start. Args: name (str): The name of the service to start timeout (int): The time in seconds to wait for the service to start before returning. Default is 90 seconds .. versionadded:: 2017.7.9,2018.3.4 with_deps (bool): If enabled start the given service and the services the current service depends on. with_parents (bool): If enabled and in case other running services depend on the to be start service, this flag indicates that those other services will be started as well. Returns: bool: ``True`` if successful, otherwise ``False``. Also returns ``True`` if the service is already started CLI Example: .. code-block:: bash salt '*' service.start <service name> """ # Set the service to manual if disabled if disabled(name): modify(name, start_type="Manual") ret = set() # Using a list here to maintain order services = ServiceDependencies(name, get_all, info) start = services.start_order(with_deps=with_deps, with_parents=with_parents) log.debug("Starting services %s", start) for name in start: try: win32serviceutil.StartService(name) except pywintypes.error as exc: if exc.winerror != 1056: raise CommandExecutionError( 'Failed To Start {0}: {1}'.format(name, exc.strerror)) log.debug('Service "%s" is running', name) srv_status = _status_wait(service_name=name, end_time=time.time() + int(timeout), service_states=['Start Pending', 'Stopped']) ret.add(srv_status['Status'] == 'Running') return False not in ret def stop(name, timeout=90, with_deps=False, with_parents=False): ''' Stop the specified service Args: name (str): The name of the service to stop timeout (int): The time in seconds to wait for the service to stop before returning. Default is 90 seconds .. versionadded:: 2017.7.9,2018.3.4 with_deps (bool): If enabled stop the given service and the services the current service depends on. with_parents (bool): If enabled and in case other running services depend on the to be stopped service, this flag indicates that those other services will be stopped as well. If disabled, the service stop will fail in case other running services depend on the to be stopped service. Returns: bool: ``True`` if successful, otherwise ``False``. Also returns ``True`` if the service is already stopped CLI Example: .. code-block:: bash salt '*' service.stop <service name> ''' ret = set() services = ServiceDependencies(name, get_all, info) stop = services.stop_order(with_deps=with_deps, with_parents=with_parents) log.debug("Stopping services %s", stop) for name in stop: try: win32serviceutil.StopService(name) except pywintypes.error as exc: if exc.winerror != 1062: raise CommandExecutionError( 'Failed To Stop {0}: {1}'.format(name, exc.strerror)) log.debug('Service "%s" is not running', name) srv_status = _status_wait(service_name=name, end_time=time.time() + int(timeout), service_states=['Running', 'Stop Pending']) ret.add(srv_status['Status'] == 'Stopped') return False not in ret def restart(name, timeout=90, with_deps=False, with_parents=False): ''' Restart the named service. This issues a stop command followed by a start. Args: name: The name of the service to restart. .. note:: If the name passed is ``salt-minion`` a scheduled task is created and executed to restart the salt-minion service. timeout (int): The time in seconds to wait for the service to stop and start before returning. Default is 90 seconds .. note:: The timeout is cumulative meaning it is applied to the stop and then to the start command. A timeout of 90 could take up to 180 seconds if the service is long in stopping and starting .. versionadded:: 2017.7.9,2018.3.4 with_deps (bool): If enabled restart the given service and the services the current service depends on. with_parents (bool): If enabled and in case other running services depend on the to be restarted service, this flag indicates that those other services will be restarted as well. If disabled, the service restart will fail in case other running services depend on the to be restarted service. Returns: bool: ``True`` if successful, otherwise ``False`` CLI Example: .. code-block:: bash salt '*' service.restart <service name> """ if "salt-minion" in name: create_win_salt_restart_task() return execute_salt_restart_task() ret = set() ret.add(stop(name=name, timeout=timeout, with_deps=with_deps, with_parents=with_parents)) ret.add(start(name=name, timeout=timeout, with_deps=with_deps, with_parents=with_parents)) return False not in ret def create_win_salt_restart_task(): """ Create a task in Windows task scheduler to enable restarting the salt-minion Returns: bool: ``True`` if successful, otherwise ``False`` CLI Example: .. code-block:: bash salt '*' service.create_win_salt_restart_task() ''' # Updated to use full name for Nessus agent cmd = salt.utils.path.which('cmd') args = '/c ping -n 3 127.0.0.1 && net stop salt-minion && net start ' \ 'salt-minion' return __salt__['task.create_task'](name='restart-salt-minion', user_name='System', force=True, action_type='Execute', cmd=cmd, arguments=args, trigger_type='Once', start_date='1975-01-01', start_time='01:00') def execute_salt_restart_task(): """ Run the Windows Salt restart task Returns: bool: ``True`` if successful, otherwise ``False`` CLI Example: .. code-block:: bash salt '*' service.execute_salt_restart_task() """ return __salt__["task.run"](name="restart-salt-minion") def status(name, *args, **kwargs): """ Return the status for a service. If the name contains globbing, a dict mapping service name to True/False values is returned. .. versionchanged:: 2018.3.0 The service name can now be a glob (e.g. ``salt*``) Args: name (str): The name of the service to check Returns: bool: True if running, False otherwise dict: Maps service name to True if running, False otherwise CLI Example: .. code-block:: bash salt '*' service.status <service name> """ results = {} all_services = get_all() contains_globbing = bool(re.search(r"\*|\?|\[.+\]", name)) if contains_globbing: services = fnmatch.filter(all_services, name) else: services = [name] for service in services: results[service] = info(service)["Status"] in ["Running", "Stop Pending"] if contains_globbing: return results return results[name] def getsid(name): """ Return the SID for this windows service Args: name (str): The name of the service for which to return the SID Returns: str: A string representing the SID for the service CLI Example: .. code-block:: bash salt '*' service.getsid <service name> """ return info(name)["sid"] def modify( name, bin_path=None, exe_args=None, display_name=None, description=None, service_type=None, start_type=None, start_delayed=None, error_control=None, load_order_group=None, dependencies=None, account_name=None, account_password=None, run_interactive=None, ): # pylint: disable=anomalous-backslash-in-string """ Modify a service's parameters. Changes will not be made for parameters that are not passed. .. versionadded:: 2016.11.0 Args: name (str): The name of the service. Can be found using the ``service.get_service_name`` function bin_path (str): The path to the service executable. Backslashes must be escaped, eg: ``C:\\path\\to\\binary.exe`` exe_args (str): Any arguments required by the service executable display_name (str): The name to display in the service manager description (str): The description to display for the service service_type (str): Specifies the service type. Default is ``own``. Valid options are as follows: - kernel: Driver service - filesystem: File system driver service - adapter: Adapter driver service (reserved) - recognizer: Recognizer driver service (reserved) - own (default): Service runs in its own process - share: Service shares a process with one or more other services start_type (str): Specifies the service start type. Valid options are as follows: - boot: Device driver that is loaded by the boot loader - system: Device driver that is started during kernel initialization - auto: Service that automatically starts - manual: Service must be started manually - disabled: Service cannot be started start_delayed (bool): Set the service to Auto(Delayed Start). Only valid if the start_type is set to ``Auto``. If service_type is not passed, but the service is already set to ``Auto``, then the flag will be set. error_control (str): The severity of the error, and action taken, if this service fails to start. Valid options are as follows: - normal: Error is logged and a message box is displayed - severe: Error is logged and computer attempts a restart with the last known good configuration - critical: Error is logged, computer attempts to restart with the last known good configuration, system halts on failure - ignore: Error is logged and startup continues, no notification is given to the user load_order_group (str): The name of the load order group to which this service belongs dependencies (list): A list of services or load ordering groups that must start before this service account_name (str): The name of the account under which the service should run. For ``own`` type services this should be in the ``domain\\username`` format. The following are examples of valid built-in service accounts: - NT Authority\\LocalService - NT Authority\\NetworkService - NT Authority\\LocalSystem - .\LocalSystem account_password (str): The password for the account name specified in ``account_name``. For the above built-in accounts, this can be None. Otherwise a password must be specified. run_interactive (bool): If this setting is True, the service will be allowed to interact with the user. Not recommended for services that run with elevated privileges. Returns: dict: a dictionary of changes made CLI Example: .. code-block:: bash salt '*' service.modify spooler start_type=disabled """ # pylint: enable=anomalous-backslash-in-string # https://msdn.microsoft.com/en-us/library/windows/desktop/ms681987(v=vs.85).aspx # https://msdn.microsoft.com/en-us/library/windows/desktop/ms681988(v-vs.85).aspx handle_scm = win32service.OpenSCManager(None, None, win32service.SC_MANAGER_CONNECT) try: handle_svc = win32service.OpenService( handle_scm, name, win32service.SERVICE_CHANGE_CONFIG | win32service.SERVICE_QUERY_CONFIG, ) except pywintypes.error as exc: raise CommandExecutionError( "Failed To Open {0}: {1}".format(name, exc.strerror) ) config_info = win32service.QueryServiceConfig(handle_svc) changes = dict() # Input Validation if bin_path is not None: # shlex.quote the path to the binary bin_path = _cmd_quote(bin_path) if exe_args is not None: bin_path = "{0} {1}".format(bin_path, exe_args) changes["BinaryPath"] = bin_path if service_type is not None: if service_type.lower() in SERVICE_TYPE: service_type = SERVICE_TYPE[service_type.lower()] if run_interactive: service_type = service_type | \ win32service.SERVICE_INTERACTIVE_PROCESS else: raise CommandExecutionError( "Invalid Service Type: {0}".format(service_type) ) else: if run_interactive is True: service_type = config_info[0] | \ win32service.SERVICE_INTERACTIVE_PROCESS elif run_interactive is False: service_type = config_info[0] ^ \ win32service.SERVICE_INTERACTIVE_PROCESS else: service_type = win32service.SERVICE_NO_CHANGE if service_type is not win32service.SERVICE_NO_CHANGE: flags = list() for bit in SERVICE_TYPE: if isinstance(bit, int) and service_type & bit: flags.append(SERVICE_TYPE[bit]) changes["ServiceType"] = flags if flags else service_type if start_type is not None: if start_type.lower() in SERVICE_START_TYPE: start_type = SERVICE_START_TYPE[start_type.lower()] else: raise CommandExecutionError("Invalid Start Type: {0}".format(start_type)) changes["StartType"] = SERVICE_START_TYPE[start_type] else: start_type = win32service.SERVICE_NO_CHANGE if error_control is not None: if error_control.lower() in SERVICE_ERROR_CONTROL: error_control = SERVICE_ERROR_CONTROL[error_control.lower()] else: raise CommandExecutionError( "Invalid Error Control: {0}".format(error_control) ) changes["ErrorControl"] = SERVICE_ERROR_CONTROL[error_control] else: error_control = win32service.SERVICE_NO_CHANGE if account_name is not None: changes["ServiceAccount"] = account_name if account_name in ["LocalSystem", "LocalService", "NetworkService"]: account_password = "" if account_password is not None: changes["ServiceAccountPassword"] = "XXX-REDACTED-XXX" if load_order_group is not None: changes["LoadOrderGroup"] = load_order_group if dependencies is not None: changes["Dependencies"] = dependencies if display_name is not None: changes["DisplayName"] = display_name win32service.ChangeServiceConfig( handle_svc, service_type, start_type, error_control, bin_path, load_order_group, 0, dependencies, account_name, account_password, display_name, ) if description is not None: win32service.ChangeServiceConfig2( handle_svc, win32service.SERVICE_CONFIG_DESCRIPTION, description ) changes["Description"] = description if start_delayed is not None: # You can only set delayed start for services that are set to auto start # Start type 2 is Auto # Start type -1 is no change if (start_type == -1 and config_info[1] == 2) or start_type == 2: win32service.ChangeServiceConfig2( handle_svc, win32service.SERVICE_CONFIG_DELAYED_AUTO_START_INFO, start_delayed, ) changes["StartTypeDelayed"] = start_delayed else: changes["Warning"] = 'start_delayed: Requires start_type "auto"' win32service.CloseServiceHandle(handle_scm) win32service.CloseServiceHandle(handle_svc) return changes def enable(name, start_type="auto", start_delayed=False, **kwargs): """ Enable the named service to start at boot Args: name (str): The name of the service to enable. start_type (str): Specifies the service start type. Valid options are as follows: - boot: Device driver that is loaded by the boot loader - system: Device driver that is started during kernel initialization - auto: Service that automatically starts - manual: Service must be started manually - disabled: Service cannot be started start_delayed (bool): Set the service to Auto(Delayed Start). Only valid if the start_type is set to ``Auto``. If service_type is not passed, but the service is already set to ``Auto``, then the flag will be set. Returns: bool: ``True`` if successful, ``False`` otherwise CLI Example: .. code-block:: bash salt '*' service.enable <service name> """ modify(name, start_type=start_type, start_delayed=start_delayed) svcstat = info(name) if start_type.lower() == "auto": return ( svcstat["StartType"].lower() == start_type.lower() and svcstat["StartTypeDelayed"] == start_delayed ) else: return svcstat["StartType"].lower() == start_type.lower() def disable(name, **kwargs): """ Disable the named service to start at boot Args: name (str): The name of the service to disable Returns: bool: ``True`` if disabled, ``False`` otherwise CLI Example: .. code-block:: bash salt '*' service.disable <service name> """ modify(name, start_type="Disabled") return info(name)["StartType"] == "Disabled" def enabled(name, **kwargs): """ Check to see if the named service is enabled to start on boot Args: name (str): The name of the service to check Returns: bool: True if the service is set to start CLI Example: .. code-block:: bash salt '*' service.enabled <service name> """ return info(name)["StartType"] == "Auto" def disabled(name): """ Check to see if the named service is disabled to start on boot Args: name (str): The name of the service to check Returns: bool: True if the service is disabled CLI Example: .. code-block:: bash salt '*' service.disabled <service name> """ return not enabled(name) def create( name, bin_path, exe_args=None, display_name=None, description=None, service_type="own", start_type="manual", start_delayed=False, error_control="normal", load_order_group=None, dependencies=None, account_name=".\\LocalSystem", account_password=None, run_interactive=False, **kwargs ): """ Create the named service. .. versionadded:: 2015.8.0 Args: name (str): Specifies the service name. This is not the display_name bin_path (str): Specifies the path to the service binary file. Backslashes must be escaped, eg: ``C:\\path\\to\\binary.exe`` exe_args (str): Any additional arguments required by the service binary. display_name (str): The name to be displayed in the service manager. If not passed, the ``name`` will be used description (str): A description of the service service_type (str): Specifies the service type. Default is ``own``. Valid options are as follows: - kernel: Driver service - filesystem: File system driver service - adapter: Adapter driver service (reserved) - recognizer: Recognizer driver service (reserved) - own (default): Service runs in its own process - share: Service shares a process with one or more other services start_type (str): Specifies the service start type. Valid options are as follows: - boot: Device driver that is loaded by the boot loader - system: Device driver that is started during kernel initialization - auto: Service that automatically starts - manual (default): Service must be started manually - disabled: Service cannot be started start_delayed (bool): Set the service to Auto(Delayed Start). Only valid if the start_type is set to ``Auto``. If service_type is not passed, but the service is already set to ``Auto``, then the flag will be set. Default is ``False`` error_control (str): The severity of the error, and action taken, if this service fails to start. Valid options are as follows: - normal (normal): Error is logged and a message box is displayed - severe: Error is logged and computer attempts a restart with the last known good configuration - critical: Error is logged, computer attempts to restart with the last known good configuration, system halts on failure - ignore: Error is logged and startup continues, no notification is given to the user load_order_group (str): The name of the load order group to which this service belongs dependencies (list): A list of services or load ordering groups that must start before this service account_name (str): The name of the account under which the service should run. For ``own`` type services this should be in the ``domain\\username`` format. The following are examples of valid built-in service accounts: - NT Authority\\LocalService - NT Authority\\NetworkService - NT Authority\\LocalSystem - .\\LocalSystem account_password (str): The password for the account name specified in ``account_name``. For the above built-in accounts, this can be None. Otherwise a password must be specified. run_interactive (bool): If this setting is True, the service will be allowed to interact with the user. Not recommended for services that run with elevated privileges. Returns: dict: A dictionary containing information about the new service CLI Example: .. code-block:: bash salt '*' service.create <service name> <path to exe> display_name='<display name>' """ if display_name is None: display_name = name # Test if the service already exists if name in get_all(): raise CommandExecutionError("Service Already Exists: {0}".format(name)) # shlex.quote the path to the binary bin_path = _cmd_quote(bin_path) if exe_args is not None: bin_path = "{0} {1}".format(bin_path, exe_args) if service_type.lower() in SERVICE_TYPE: service_type = SERVICE_TYPE[service_type.lower()] if run_interactive: service_type = service_type | \ win32service.SERVICE_INTERACTIVE_PROCESS else: raise CommandExecutionError("Invalid Service Type: {0}".format(service_type)) if start_type.lower() in SERVICE_START_TYPE: start_type = SERVICE_START_TYPE[start_type.lower()] else: raise CommandExecutionError("Invalid Start Type: {0}".format(start_type)) if error_control.lower() in SERVICE_ERROR_CONTROL: error_control = SERVICE_ERROR_CONTROL[error_control.lower()] else: raise CommandExecutionError("Invalid Error Control: {0}".format(error_control)) if start_delayed: if start_type != 2: raise CommandExecutionError( 'Invalid Parameter: start_delayed requires start_type "auto"' ) if account_name in [ "LocalSystem", ".\\LocalSystem", "LocalService", ".\\LocalService", "NetworkService", ".\\NetworkService", ]: account_password = "" # Connect to Service Control Manager handle_scm = win32service.OpenSCManager( None, None, win32service.SC_MANAGER_ALL_ACCESS ) # Create the service handle_svc = win32service.CreateService( handle_scm, name, display_name, win32service.SERVICE_ALL_ACCESS, service_type, start_type, error_control, bin_path, load_order_group, 0, dependencies, account_name, account_password, ) if description is not None: win32service.ChangeServiceConfig2( handle_svc, win32service.SERVICE_CONFIG_DESCRIPTION, description ) if start_delayed is not None: # You can only set delayed start for services that are set to auto start # Start type 2 is Auto if start_type == 2: win32service.ChangeServiceConfig2( handle_svc, win32service.SERVICE_CONFIG_DELAYED_AUTO_START_INFO, start_delayed, ) win32service.CloseServiceHandle(handle_scm) win32service.CloseServiceHandle(handle_svc) return info(name) def delete(name, timeout=90): """ Delete the named service Args: name (str): The name of the service to delete timeout (int): The time in seconds to wait for the service to be deleted before returning. This is necessary because a service must be stopped before it can be deleted. Default is 90 seconds .. versionadded:: 2017.7.9,2018.3.4 Returns: bool: ``True`` if successful, otherwise ``False``. Also returns ``True`` if the service is not present CLI Example: .. code-block:: bash salt '*' service.delete <service name> """ handle_scm = win32service.OpenSCManager(None, None, win32service.SC_MANAGER_CONNECT) try: handle_svc = win32service.OpenService( handle_scm, name, win32service.SERVICE_ALL_ACCESS ) except pywintypes.error as exc: win32service.CloseServiceHandle(handle_scm) if exc.winerror != 1060: raise CommandExecutionError( 'Failed to open {0}. {1}'.format(name, exc.strerror)) log.debug('Service "%s" is not present', name) return True try: win32service.DeleteService(handle_svc) except pywintypes.error as exc: raise CommandExecutionError( "Failed to delete {0}. {1}".format(name, exc.strerror) ) finally: log.debug("Cleaning up") win32service.CloseServiceHandle(handle_scm) win32service.CloseServiceHandle(handle_svc) end_time = time.time() + int(timeout) while name in get_all() and time.time() < end_time: time.sleep(1) return name not in get_all()
30.90903
96
0.618819
7ca5e303d6e6b0a70f58133627907a26479fa67d
637
py
Python
sdapis/migrations/0021_auto_20211023_2104.py
mmtahir-dev/cmput404-socialdistribution
a5a4749c8d9c27ccd062e33be5a4fb2f76697394
[ "MIT" ]
null
null
null
sdapis/migrations/0021_auto_20211023_2104.py
mmtahir-dev/cmput404-socialdistribution
a5a4749c8d9c27ccd062e33be5a4fb2f76697394
[ "MIT" ]
49
2021-09-28T21:52:40.000Z
2021-10-03T22:35:49.000Z
sdapis/migrations/0021_auto_20211023_2104.py
mmtahir-dev/cmput404-socialdistribution
a5a4749c8d9c27ccd062e33be5a4fb2f76697394
[ "MIT" ]
1
2021-09-27T03:20:36.000Z
2021-09-27T03:20:36.000Z
# Generated by Django 3.2.8 on 2021-10-24 03:04 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('sdapis', '0020_post_post_id'), ] operations = [ migrations.RemoveField( model_name='post', name='author_id', ), migrations.AddField( model_name='post', name='author', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='post', to=settings.AUTH_USER_MODEL), ), ]
25.48
142
0.627943
30ef77d4215d0bcf60c119a08389ff59a69bafec
1,870
py
Python
loss.py
dropinky/GroupProject
dcf22adffb6e7767ba30ab227bbf2c8b1ede770e
[ "MIT" ]
null
null
null
loss.py
dropinky/GroupProject
dcf22adffb6e7767ba30ab227bbf2c8b1ede770e
[ "MIT" ]
null
null
null
loss.py
dropinky/GroupProject
dcf22adffb6e7767ba30ab227bbf2c8b1ede770e
[ "MIT" ]
null
null
null
import torch from torch import nn import torch.nn.functional as F from torchvision import models class VGG16FeatureExtractor(nn.Module): def __init__(self): super().__init__() vgg16 = models.vgg16(pretrained=True) self.enc_1 = nn.Sequential(*vgg16.features[:5]) self.enc_2 = nn.Sequential(*vgg16.features[5:10]) self.enc_3 = nn.Sequential(*vgg16.features[10:17]) self.enc_4 = nn.Sequential(*vgg16.features[17:23]) # print(self.enc_1) # print(self.enc_2) # print(self.enc_3) # print(self.enc_4) # fix the encoder for i in range(4): for param in getattr(self, 'enc_{:d}'.format(i + 1)).parameters(): param.requires_grad = False def forward(self, image): results = [image] for i in range(4): func = getattr(self, 'enc_{:d}'.format(i + 1)) results.append(func(results[-1])) return results[1:] class ConsistencyLoss(nn.Module): def __init__(self): super().__init__() self.vgg = VGG16FeatureExtractor() self.l2 = nn.MSELoss() def forward(self, csa, csa_d, target, mask): vgg_gt = self.vgg(target) vgg_gt = vgg_gt[-1] mask_r = F.interpolate(mask, size=csa.size()[2:]) lossvalue = self.l2(csa*mask_r, vgg_gt*mask_r) + self.l2(csa_d*mask_r, vgg_gt*mask_r) return lossvalue def calc_gan_loss(discriminator, output, target): y_pred_fake = discriminator(output, target) y_pred = discriminator(target, output) g_loss = (torch.mean((y_pred - torch.mean(y_pred_fake) + 1.) ** 2) + torch.mean((y_pred_fake - torch.mean(y_pred) - 1.) ** 2))/2 d_loss = (torch.mean((y_pred - torch.mean(y_pred_fake) - 1.) ** 2) + torch.mean((y_pred_fake - torch.mean(y_pred) + 1.) ** 2))/2 return g_loss, d_loss
30.655738
132
0.611765
e7ce425f8e8fc0a2a5cd159ade471d27999bb459
728
py
Python
uw-plugins/php/uwsgiplugin.py
jyotikamboj/container
a2abba963b06429c82025f7479b2ae41e8d3a56f
[ "MIT", "BSD-3-Clause" ]
1
2019-01-14T10:58:43.000Z
2019-01-14T10:58:43.000Z
uw-plugins/php/uwsgiplugin.py
jyotikamboj/container
a2abba963b06429c82025f7479b2ae41e8d3a56f
[ "MIT", "BSD-3-Clause" ]
null
null
null
uw-plugins/php/uwsgiplugin.py
jyotikamboj/container
a2abba963b06429c82025f7479b2ae41e8d3a56f
[ "MIT", "BSD-3-Clause" ]
null
null
null
import os NAME='php' ld_run_path = None PHPPATH = 'php-config' phpdir = os.environ.get('UWSGICONFIG_PHPDIR') if phpdir: ld_run_path = "%s/lib" % phpdir PHPPATH = "%s/bin/php-config" % phpdir PHPPATH = os.environ.get('UWSGICONFIG_PHPPATH', PHPPATH) CFLAGS = [os.popen(PHPPATH + ' --includes').read().rstrip(), '-Wno-sign-compare'] LDFLAGS = os.popen(PHPPATH + ' --ldflags').read().rstrip().split() if ld_run_path: LDFLAGS.append('-L%s' % ld_run_path) os.environ['LD_RUN_PATH'] = ld_run_path LIBS = [os.popen(PHPPATH + ' --libs').read().rstrip(), '-lphp5'] phplibdir = os.environ.get('UWSGICONFIG_PHPLIBDIR') if phplibdir: LIBS.append('-Wl,-rpath=%s' % phplibdir) GCC_LIST = ['php_plugin', 'session']
25.103448
81
0.671703
76415fb86d287dcc4cf3ecce5eea95627b632b9c
2,981
py
Python
demo/BERT/helpers/convert_weights.py
kevinch-nv/TensorRT
73225b9acef41426ec7ef00578f8de985899726b
[ "Apache-2.0" ]
3
2019-11-18T14:04:41.000Z
2020-06-19T07:35:19.000Z
demo/BERT/helpers/convert_weights.py
kevinch-nv/TensorRT
73225b9acef41426ec7ef00578f8de985899726b
[ "Apache-2.0" ]
null
null
null
demo/BERT/helpers/convert_weights.py
kevinch-nv/TensorRT
73225b9acef41426ec7ef00578f8de985899726b
[ "Apache-2.0" ]
1
2019-12-11T01:43:05.000Z
2019-12-11T01:43:05.000Z
#!/usr/bin/env python3 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import struct import argparse import re try: from tensorflow.python import pywrap_tensorflow as pyTF except ImportError as err: sys.stderr.write("""Error: Failed to import tensorflow module ({})""".format(err)) sys.exit() parser = argparse.ArgumentParser(description='TensorFlow to TensorRT Weight Dumper') parser.add_argument('-m', '--model', required=True, help='The checkpoint file basename, example basename(model.ckpt-766908.data-00000-of-00001) -> model.ckpt-766908') parser.add_argument('-o', '--output', required=True, help='The weight file to dump all the weights to.') opt = parser.parse_args() print( "Outputting the trained weights in TensorRT's in the following format:") print( "Line 0: <number of buffers N in the file>") print( "Line 1-N: [buffer name] [buffer type] [number of dims D] [space-sep. shape list: d_1 d_2 ... d_D] <d_1 * d_2 * ... * d_D * sizeof(type) bytes of data>") print( "Buffer type is hard-coded to 0 (float), i.e. 4 bytes per coefficient") inputbase = opt.model outputbase = opt.output reader = pyTF.NewCheckpointReader(inputbase) tensor_dict = reader.get_variable_to_shape_map() out_fn = outputbase + ".weights" with open(out_fn, 'wb') as output_file: # there might be training-related variables in the checkpoint that can be discarded exclude_list = ["adam", "global_step", "pooler", "bad_steps", "good_steps", "loss_scale"] param_names = [key for key in sorted(tensor_dict) if all([exclude not in key for exclude in exclude_list])] count = len(param_names) print(count) output_file.write('{}\n'.format(count).encode('ASCII')) for pn in param_names: toks = pn.lower().split('/') if 'encoder' in pn: assert('layer' in pn) l = (re.findall('\d+',pn))[0] outname = 'l{}_'.format(l) + '_'.join(toks[3:]) else: outname = '_'.join(toks) tensor = reader.get_tensor(pn) shape = tensor.shape flat_tensor = tensor.flatten() shape_str = '{} '.format(len(shape)) + ' '.join([str(d) for d in shape]) output_file.write('{} 0 {} '.format(outname, shape_str).encode('ASCII')) output_file.write(flat_tensor.tobytes()) output_file.write('\n'.encode('ASCII')); print('Orig.name:', pn,'TRT name:', outname, 'shape:' , shape_str)
40.283784
166
0.684334
cd3f77985d426e29e36091e06b448642a9d381a3
2,922
py
Python
ancestries.py
shendi-project/shendi
30a1c0dd29f123269a5fb31caccaf113a94f6ddf
[ "MIT" ]
3
2020-09-02T16:57:16.000Z
2021-08-22T06:23:39.000Z
ancestries.py
shendi-project/shendi
30a1c0dd29f123269a5fb31caccaf113a94f6ddf
[ "MIT" ]
29
2020-09-13T13:34:16.000Z
2020-09-22T11:42:06.000Z
ancestries.py
shendi-project/shendi
30a1c0dd29f123269a5fb31caccaf113a94f6ddf
[ "MIT" ]
null
null
null
import json import nethysdb # I don't know if this is useful, but for now I am leaving it here just in case class Ancestry(nethysdb.NethysDB): def __init__(self, link, SourceBook, Page, name, description, YouMight, OthersProbably, PhysicalDescription, Society, AlignmentAndReligion, Adventurers, Names, Hitpoints, Size, Speed, AbilityBoost1, AbilityBoost2, AbilityFlaw): super().__init__(link, SourceBook, Page) self.name = name self.description = description self.YouMight = YouMight self.OthersProbably = OthersProbably self.PhysicalDescription = PhysicalDescription self.Society = Society self.AlignmentAndReligion = AlignmentAndReligion self.Adventurers = Adventurers self.Names = Names self.Hitpoints = Hitpoints self.Size = Size self.Speed = Speed self.AbilityBoost1 = AbilityBoost1 self.AbilityBoost2 = AbilityBoost2 self.AbilityFlaw = AbilityFlaw with open('data/ancestries.json') as f: data = json.load(f) list_of_ancestries = [] # grab data from JSON, create classes and append ancestries on the list for ancestry in data['ancestries']: name = ancestry['race'] link = ancestry['NethysUrl'] SourceBook = ancestry['Source'] Page = ancestry['Page'] description = ancestry['Description'] YouMight = ancestry['YouMight'] OthersProbably = ancestry['OthersProbably'] PhysicalDescription = ancestry['Physical Description'] Society = ancestry['Society'] AlignmentAndReligion = ancestry['Alignment and Religion'] Adventurers = ancestry['Adventurers'] Names = ancestry['Names'] Hitpoints = ancestry['Hit Points'] Size = ancestry['Size'] Speed = ancestry['Speed'] AbilityBoost1 = ancestry['Ability Boosts'][0] AbilityBoost2 = ancestry['Ability Boosts'][1] AbilityFlaw = ancestry['Ability Flaw'][0] name = Ancestry(link, SourceBook, Page, name, description, YouMight, OthersProbably, PhysicalDescription, Society, AlignmentAndReligion, Adventurers, Names, Hitpoints, Size, Speed, AbilityBoost1, AbilityBoost2, AbilityFlaw) list_of_ancestries.append(ancestry['race']) def get_boosts(ancestry): if ancestry in list_of_ancestries: index = list_of_ancestries.index(ancestry) boosts = [] boosts.append(data['ancestries'][index]['Ability Boosts'][0]) boosts.append(data['ancestries'][index]['Ability Boosts'][1]) return boosts else: raise Exception("Ancestry not found in the list_of_ancestries") def get_flaw(ancestry, n): if ancestry in list_of_ancestries: index = list_of_ancestries.index(ancestry) return data['ancestries'][index]['Ability Flaw'][n] else: raise Exception("Ancestry not found in the list_of_ancestries") def main(): print(list_of_ancestries) if __name__ == '__main__': main()
36.987342
231
0.697125
633eed290af5325eec448b70aa18483dc95e05f8
263,640
py
Python
autoprotocol/protocol.py
sreetejreddy/autoprotocol-python
ce32b1c86b0e0e2719931bad39c522ea6ba34a63
[ "BSD-3-Clause" ]
null
null
null
autoprotocol/protocol.py
sreetejreddy/autoprotocol-python
ce32b1c86b0e0e2719931bad39c522ea6ba34a63
[ "BSD-3-Clause" ]
null
null
null
autoprotocol/protocol.py
sreetejreddy/autoprotocol-python
ce32b1c86b0e0e2719931bad39c522ea6ba34a63
[ "BSD-3-Clause" ]
null
null
null
""" Module containing the main `Protocol` object and associated functions :copyright: 2020 by The Autoprotocol Development Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details """ import warnings from .constants import AGAR_CLLD_THRESHOLD, SPREAD_PATH from .container import COVER_TYPES, SEAL_TYPES, Container, Well from .container_type import _CONTAINER_TYPES, ContainerType from .instruction import * # pylint: disable=unused-wildcard-import from .liquid_handle import LiquidClass, Mix, Transfer from .unit import Unit, UnitError from .util import _check_container_type_with_shape, _validate_as_instance class Ref(object): """ Link a ref name (string) to a Container instance. """ def __init__(self, name, opts, container): self.name = name self.opts = opts self.container = container def __repr__(self): return f"Ref({self.name}, {self.container}, {self.opts})" # noinspection PyCompatibility class Protocol(object): """ A Protocol is a sequence of instructions to be executed, and a set of containers on which those instructions act. Parameters ---------- refs : list(Ref) Pre-existing refs that the protocol should be populated with. instructions : list(Instruction) Pre-existing instructions that the protocol should be populated with. propagate_properties : bool, optional Whether liquid handling operations should propagate aliquot properties from source to destination wells. time_constraints : List(time_constraints) Pre-existing time_constraints that the protocol should be populated with. Examples -------- Initially, a Protocol has an empty sequence of instructions and no referenced containers. To add a reference to a container, use the ref() method, which returns a Container. .. code-block:: python p = Protocol() my_plate = p.ref("my_plate", id="ct1xae8jabbe6", cont_type="96-pcr", storage="cold_4") To add instructions to the protocol, use the helper methods in this class .. code-block:: python p.transfer(source=my_plate.well("A1"), dest=my_plate.well("B4"), volume="50:microliter") p.thermocycle(my_plate, groups=[ { "cycles": 1, "steps": [ { "temperature": "95:celsius", "duration": "1:hour" }] }]) Autoprotocol Output: .. code-block:: json { "refs": { "my_plate": { "id": "ct1xae8jabbe6", "store": { "where": "cold_4" } } }, "instructions": [ { "groups": [ { "transfer": [ { "volume": "50.0:microliter", "to": "my_plate/15", "from": "my_plate/0" } ] } ], "op": "pipette" }, { "volume": "10:microliter", "dataref": null, "object": "my_plate", "groups": [ { "cycles": 1, "steps": [ { "duration": "1:hour", "temperature": "95:celsius" } ] } ], "op": "thermocycle" } ] } """ def __init__( self, refs=None, instructions=None, propagate_properties=False, time_constraints=None, ): super(Protocol, self).__init__() self.refs = refs or {} self.instructions = instructions or [] self.propagate_properties = propagate_properties self.time_constraints = time_constraints or [] def __repr__(self): return f"Protocol({self.__dict__})" def container_type(self, shortname): """ Convert a ContainerType shortname into a ContainerType object. Parameters ---------- shortname : str String representing one of the ContainerTypes in the _CONTAINER_TYPES dictionary. Returns ------- ContainerType Returns a Container type object corresponding to the shortname passed to the function. If a ContainerType object is passed, that same ContainerType is returned. Raises ------ ValueError If an unknown ContainerType shortname is passed as a parameter. """ if isinstance(shortname, ContainerType): return shortname elif shortname in _CONTAINER_TYPES: return _CONTAINER_TYPES[shortname] else: raise ValueError( f"Unknown container type {shortname}" f"(known types={str(_CONTAINER_TYPES.keys())})" ) # pragma pylint: disable=redefined-builtin def ref( self, name, id=None, cont_type=None, storage=None, discard=None, cover=None ): """ Add a Ref object to the dictionary of Refs associated with this protocol and return a Container with the id, container type and storage or discard conditions specified. Example Usage: .. code-block:: python p = Protocol() # ref a new container (no id specified) sample_ref_1 = p.ref("sample_plate_1", cont_type="96-pcr", discard=True) # ref an existing container with a known id sample_ref_2 = p.ref("sample_plate_2", id="ct1cxae33lkj", cont_type="96-pcr", storage="ambient") Autoprotocol Output: .. code-block:: json { "refs": { "sample_plate_1": { "new": "96-pcr", "discard": true }, "sample_plate_2": { "id": "ct1cxae33lkj", "store": { "where": "ambient" } } }, "instructions": [] } Parameters ---------- name : str name of the container/ref being created. id : str, optional id of the container being created, from your organization's inventory on http://secure.transcriptic.com. Strings representing ids begin with "ct". cont_type : str or ContainerType container type of the Container object that will be generated. storage : Enum({"ambient", "cold_20", "cold_4", "warm_37"}), optional temperature the container being referenced should be stored at after a run is completed. Either a storage condition must be specified or discard must be set to True. discard : bool, optional if no storage condition is specified and discard is set to True, the container being referenced will be discarded after a run. cover: str, optional name of the cover which will be on the container/ref Returns ------- Container Container object generated from the id and container type provided Raises ------ RuntimeError If a container previously referenced in this protocol (existent in refs section) has the same name as the one specified. RuntimeError If no container type is specified. RuntimeError If no valid storage or discard condition is specified. """ if name in self.refs.keys(): raise RuntimeError( "Two containers within the same protocol cannot have the same " "name." ) opts = {} # Check container type try: cont_type = self.container_type(cont_type) if id and cont_type: opts["id"] = id elif cont_type: opts["new"] = cont_type.shortname except ValueError: raise RuntimeError(f"{cont_type} is not a recognized container type.") if storage: opts["store"] = {"where": storage} elif discard and not storage: opts["discard"] = discard else: raise RuntimeError( "You must specify either a valid storage condition or set " "discard=True for a Ref." ) if cover: opts["cover"] = cover container = Container( id, cont_type, name=name, storage=storage if storage else None, cover=cover if cover else None, ) self.refs[name] = Ref(name, opts, container) return container # pragma pylint: enable=redefined-builtin def add_time_constraint( self, from_dict, to_dict, less_than=None, more_than=None, mirror=False, ideal=None, optimization_cost=None, ): """Constraint the time between two instructions Add time constraints from `from_dict` to `to_dict`. Time constraints guarantee that the time from the `from_dict` to the `to_dict` is less than or greater than some specified duration. Care should be taken when applying time constraints as constraints may make some protocols impossible to schedule or run. Though autoprotocol orders instructions in a list, instructions do not need to be run in the order they are listed and instead depend on the preceding dependencies. Time constraints should be added with such limitations in mind. Constraints are directional; use `mirror=True` if the time constraint should be added in both directions. Note that mirroring is only applied to the less_than constraint, as the more_than constraint implies both a minimum delay betweeen two timing points and also an explicit ordering between the two timing points. Ideal time constraints are sometimes helpful for ensuring that a certain set of operations happen within some specified time. This can be specified by using the `ideal` parameter. There is an optional `optimization_cost` parameter associated with `ideal` time constraints for specifying the penalization system used for calculating deviations from the `ideal` time. When left unspecified, the `optimization_cost` function defaults to linear. Please refer to the ASC for more details on how this is implemented. Example Usage: .. code-block:: python plate_1 = protocol.ref("plate_1", id=None, cont_type="96-flat", discard=True) plate_2 = protocol.ref("plate_2", id=None, cont_type="96-flat", discard=True) protocol.cover(plate_1) time_point_1 = protocol.get_instruction_index() protocol.cover(plate_2) time_point_2 = protocol.get_instruction_index() protocol.add_time_constraint( {"mark": plate_1, "state": "start"}, {"mark": time_point_1, "state": "end"}, less_than = "1:minute") protocol.add_time_constraint( {"mark": time_point_2, "state": "start"}, {"mark": time_point_1, "state": "start"}, less_than = "1:minute", mirror=True) # Ideal time constraint protocol.add_time_constraint( {"mark": time_point_1, "state": "start"}, {"mark": time_point_2, "state": "end"}, ideal = "30:second", optimization_cost = "squared") Autoprotocol Output: .. code-block:: json { "refs": { "plate_1": { "new": "96-flat", "discard": true }, "plate_2": { "new": "96-flat", "discard": true } }, "time_constraints": [ { "to": { "instruction_end": 0 }, "less_than": "1.0:minute", "from": { "ref_start": "plate_1" } }, { "to": { "instruction_start": 0 }, "less_than": "1.0:minute", "from": { "instruction_start": 1 } }, { "to": { "instruction_start": 1 }, "less_than": "1.0:minute", "from": { "instruction_start": 0 } }, { "from": { "instruction_start": 0 }, "to": { "instruction_end": 1 }, "ideal": { "value": "5:minute", "optimization_cost": "squared" } } ], "instructions": [ { "lid": "standard", "object": "plate_1", "op": "cover" }, { "lid": "standard", "object": "plate_2", "op": "cover" } ] } Parameters ---------- from_dict: dict Dictionary defining the initial time constraint condition. Composed of keys: "mark" and "state" mark: int or Container instruction index of container state: "start" or "end" specifies either the start or end of the "mark" point to_dict: dict Dictionary defining the end time constraint condition. Specified in the same format as from_dict less_than: str or Unit, optional max time between from_dict and to_dict more_than: str or Unit, optional min time between from_dict and to_dict mirror: bool, optional choice to mirror the from and to positions when time constraints should be added in both directions (only applies to the less_than constraint) ideal: str or Unit, optional ideal time between from_dict and to_dict optimization_cost: Enum({"linear", "squared", "exponential"}), optional cost function used for calculating the penalty for missing the `ideal` timing Raises ------ ValueError If an instruction mark is less than 0 TypeError If mark is not container or integer TypeError If state not in ['start', 'end'] TypeError If any of `ideal`, `more_than`, `less_than` is not a Unit of the 'time' dimension KeyError If `to_dict` or `from_dict` does not contain 'mark' KeyError If `to_dict` or `from_dict` does not contain 'state' ValueError If time is less than '0:second' ValueError If `optimization_cost` is specified but `ideal` is not ValueError If `more_than` is greater than `less_than` ValueError If `ideal` is smaller than `more_than` or greater than `less_than` RuntimeError If `from_dict` and `to_dict` are equal RuntimeError If from_dict["marker"] and to_dict["marker"] are equal and from_dict["state"] = "end" """ inst_string = "instruction_" cont_string = "ref_" state_strings = ["start", "end"] keys = [] # Move the 4th param to mirror if the caller used the syntax # add_time_constraint(a, b, 1:minute, True) if type(more_than) == bool: mirror = more_than more_than = None # Validate input types def validate_timing(constraint): if constraint is not None: constraint = parse_unit(constraint, "minute") if constraint < Unit(0, "second"): raise ValueError( f"The timing constraint {constraint} cannot be " "less than '0:second'" ) return constraint more_than = validate_timing(more_than) less_than = validate_timing(less_than) ideal = validate_timing(ideal) if ideal and optimization_cost is None: optimization_cost = "linear" if optimization_cost is not None: if ideal is None: raise ValueError( "'optimization_cost' can only be specified if 'ideal'" "is also specified" ) ACCEPTED_COST_FUNCTIONS = ["linear", "squared", "exponential"] if optimization_cost not in ACCEPTED_COST_FUNCTIONS: raise ValueError( f"'optimization_cost': {optimization_cost} has to be a " f"member of {ACCEPTED_COST_FUNCTIONS}" ) if more_than and less_than and more_than > less_than: raise ValueError( f"'more_than': {more_than} cannot be greater than 'less_than': " f"{less_than}" ) if ideal and more_than and ideal < more_than: raise ValueError( f"'ideal': {ideal} cannot be smaller than 'more_than': " f"{more_than}" ) if ideal and less_than and ideal > less_than: raise ValueError( f"'ideal': {ideal} cannot be greater than 'less_than': " f"{less_than}" ) for m in [from_dict, to_dict]: if "mark" in m: if isinstance(m["mark"], Container): k = cont_string elif isinstance(m["mark"], int): k = inst_string if m["mark"] < 0: raise ValueError( f"The instruction 'mark' in {m} must be greater " f"than and equal to 0" ) else: raise TypeError(f"The 'mark' in {m} must be Container or Integer") else: raise KeyError(f"The {m} dict must contain `mark`") if "state" in m: if m["state"] in state_strings: k += m["state"] else: raise TypeError( f"The 'state' in {m} must be in " f"{', '.join(state_strings)}" ) else: raise KeyError(f"The {m} dict must contain 'state'") keys.append(k) if from_dict["mark"] == to_dict["mark"]: if from_dict["state"] == to_dict["state"]: raise RuntimeError( f"The from_dict: {from_dict} and to_dict: {to_dict} are " f"the same" ) if from_dict["state"] == "end": raise RuntimeError( f"The from_dict: {from_dict} cannot come before the " f"to_dict {to_dict}" ) from_time_point = {keys[0]: from_dict["mark"]} to_time_point = {keys[1]: to_dict["mark"]} if less_than is not None: self.time_constraints += [ {"from": from_time_point, "to": to_time_point, "less_than": less_than} ] if mirror: self.add_time_constraint(to_dict, from_dict, less_than, mirror=False) if more_than is not None: self.time_constraints += [ {"from": from_time_point, "to": to_time_point, "more_than": more_than} ] if ideal is not None: ideal_dict = dict(value=ideal) if optimization_cost is not None: ideal_dict["optimization_cost"] = optimization_cost self.time_constraints += [ {"from": from_time_point, "to": to_time_point, "ideal": ideal_dict} ] def get_instruction_index(self): """Get index of the last appended instruction Example Usage: .. code-block:: python p = Protocol() plate_1 = p.ref("plate_1", id=None, cont_type="96-flat", discard=True) p.cover(plate_1) time_point_1 = p.get_instruction_index() # time_point_1 = 0 Raises ------ ValueError If an instruction index is less than 0 Returns ------- int Index of the preceding instruction """ instruction_index = len(self.instructions) - 1 if instruction_index < 0: raise ValueError("Instruction index less than 0") return instruction_index def _append_and_return(self, instructions): """ Append instruction(s) to the Protocol list and returns the Instruction(s). The other functions on Protocol() should be used in lieu of doing this directly. Example Usage: .. code-block:: python p = Protocol() p._append_and_return( Incubate("sample_plate", "ambient", "1:hour") ) Autoprotocol Output: .. code-block:: none "instructions": [ { "duration": "1:hour", "where": "ambient", "object": "sample_plate", "shaking": false, "op": "incubate" } ] Parameters ---------- instructions : Instruction or list(Instruction) Instruction object(s) to be appended. Returns ------- Instruction or list(Instruction) Instruction object(s) to be appended and returned """ if type(instructions) is list: self.instructions.extend(instructions) else: self.instructions.append(instructions) return instructions def batch_containers(self, containers, batch_in=True, batch_out=False): """ Batch containers such that they all enter or exit together. Example Usage: .. code-block:: python plate_1 = protocol.ref("p1", None, "96-pcr", storage="cold_4") plate_2 = protocol.ref("p2", None, "96-pcr", storage="cold_4") protocol.batch_containers([plate_1, plate_2]) Autoprotocol Output: .. code-block:: json { "refs": { "p1": { "new": "96-pcr", "store": { "where": "cold_4" } }, "p2": { "new": "96-pcr", "store": { "where": "cold_4" } } }, "time_constraints": [ { "from": { "ref_start": "p1" }, "less_than": "0:second", "to": { "ref_start": "p2" } }, { "from": { "ref_start": "p1" }, "more_than": "0:second", "to": { "ref_start": "p2" } } ] } Parameters ---------- containers : list(Container) Containers to batch batch_in : bool, optional Batch the entry of containers, default True batch_out: bool, optional Batch the exit of containers, default False Raises ------ TypeError If containers is not a list TypeError If containers is not a list of Container object """ time = Unit(0, "second") if not isinstance(containers, list): raise TypeError("batch_containers containers must be a list") if not all(isinstance(cont, Container) for cont in containers): raise TypeError("batch_containers containers must be a list of containers.") if not batch_in and not batch_out or len(containers) < 2: warnings.warn("batch_containers is used but has no effect") reference_container = containers[0] remainder_containers = containers[1:] states = [] if batch_in: states.append("start") if batch_out: states.append("end") for container in remainder_containers: for state in states: from_dict = {"mark": reference_container, "state": state} to_dict = {"mark": container, "state": state} self.add_time_constraint( from_dict=from_dict, to_dict=to_dict, less_than=time, more_than=time ) def as_dict(self): """ Return the entire protocol as a dictionary. Example Usage: .. code-block:: python from autoprotocol.protocol import Protocol import json p = Protocol() sample_ref_2 = p.ref("sample_plate_2", id="ct1cxae33lkj", cont_type="96-pcr", storage="ambient") p.seal(sample_ref_2) p.incubate(sample_ref_2, "warm_37", "20:minute") print json.dumps(p.as_dict(), indent=2) Autoprotocol Output: .. code-block:: json { "refs": { "sample_plate_2": { "id": "ct1cxae33lkj", "store": { "where": "ambient" } } }, "instructions": [ { "object": "sample_plate_2", "op": "seal" }, { "duration": "20:minute", "where": "warm_37", "object": "sample_plate_2", "shaking": false, "op": "incubate" } ] } Returns ------- dict dict with keys "refs" and "instructions" and optionally "time_constraints" and "outs", each of which contain the "refified" contents of their corresponding Protocol attribute. Raises ------ RuntimeError If either refs or instructions attribute is empty """ outs = {} # pragma pylint: disable=protected-access for n, ref in self.refs.items(): for well in ref.container._wells: if well.name or len(well.properties) > 0: if n not in outs.keys(): outs[n] = {} outs[n][str(well.index)] = {} if well.name: outs[n][str(well.index)]["name"] = well.name if len(well.properties) > 0: outs[n][str(well.index)]["properties"] = well.properties # assign any storage or discard condition changes to ref if "store" in ref.opts: ref.opts["store"] = {"where": ref.container.storage} if ref.container.storage is None and "discard" not in ref.opts: ref.opts["discard"] = True del ref.opts["store"] elif ref.container.storage is not None and "discard" in ref.opts: ref.opts["store"] = {"where": ref.container.storage} del ref.opts["discard"] # pragma pylint: enable=protected-access if outs: setattr(self, "outs", outs) prop_list = [ a for a in dir(self) if not a.startswith("__") and not callable(getattr(self, a)) ] explicit_props = ["outs", "refs", "instructions"] # attributes that are always serialized. optional_props = ["time_constraints"] # optional attributes that are serialized only when there are values for prop in optional_props: if getattr(self, prop): explicit_props.append(prop) return { attr: self._refify(getattr(self, attr)) for attr in prop_list if attr in explicit_props } def store(self, container, condition): """ Manually adjust the storage destiny for a container used within this protocol. Parameters ---------- container : Container Container used within this protocol condition : str New storage destiny for the specified Container Raises ------ TypeError If container argument is not a Container object RuntimeError If the container passed is not already present in self.refs """ if not condition or condition == "discard": condition = None if not isinstance(container, Container): raise TypeError("Protocol.store() can only be used on a Container object.") container.storage = condition r = self.refs.get(container.name) if not r: raise RuntimeError( "That container does not exist in the refs for this protocol." ) if "discard" in r.opts: r.opts.pop("discard") if condition: r.opts["store"] = {"where": str(condition)} else: r.opts.pop("store") r.opts["discard"] = True def acoustic_transfer( self, source, dest, volume, one_source=False, droplet_size="25:nanoliter" ): """ Specify source and destination wells for transferring liquid via an acoustic liquid handler. Droplet size is usually device-specific. Example Usage: .. code-block:: python p.acoustic_transfer( echo.wells(0,1).set_volume("12:nanoliter"), plate.wells_from(0,5), "4:nanoliter", one_source=True) Autoprotocol Output: .. code-block:: none "instructions": [ { "groups": [ { "transfer": [ { "volume": "0.004:microliter", "to": "plate/0", "from": "echo_plate/0" }, { "volume": "0.004:microliter", "to": "plate/1", "from": "echo_plate/0" }, { "volume": "0.004:microliter", "to": "plate/2", "from": "echo_plate/0" }, { "volume": "0.004:microliter", "to": "plate/3", "from": "echo_plate/1" }, { "volume": "0.004:microliter", "to": "plate/4", "from": "echo_plate/1" } ] } ], "droplet_size": "25:microliter", "op": "acoustic_transfer" } ] Parameters ---------- source : Well or WellGroup or list(Well) Well or wells to transfer liquid from. If multiple source wells are supplied and one_source is set to True, liquid will be transferred from each source well specified as long as it contains sufficient volume. Otherwise, the number of source wells specified must match the number of destination wells specified and liquid will be transferred from each source well to its corresponding destination well. dest : Well or WellGroup or list(Well) Well or WellGroup to which to transfer liquid. The number of destination wells must match the number of source wells specified unless one_source is set to True. volume : str or Unit or list The volume(s) of liquid to be transferred from source wells to destination wells. Volume can be specified as a single string or Unit, or can be given as a list of volumes. The length of a list of volumes must match the number of destination wells given unless the same volume is to be transferred to each destination well. one_source : bool, optional Specify whether liquid is to be transferred to destination wells from a group of wells all containing the same substance. droplet_size : str or Unit, optional Volume representing a droplet_size. The volume of each `transfer` group should be a multiple of this volume. Returns ------- AcousticTransfer Returns the :py:class:`autoprotocol.instruction.AcousticTransfer` instruction created from the specified parameters Raises ------ TypeError Incorrect input types, e.g. source/dest are not Well or WellGroup or list of Well RuntimeError Incorrect length for source and destination RuntimeError Transfer volume not being a multiple of droplet size RuntimeError Insufficient volume in source wells """ # Check valid well inputs if not is_valid_well(source): raise TypeError("Source must be of type Well, list of Wells, or WellGroup.") if not is_valid_well(dest): raise TypeError( "Destination (dest) must be of type Well, list of Wells, or " "WellGroup." ) transfers = [] source = WellGroup(source) dest = WellGroup(dest) len_source = len(source.wells) len_dest = len(dest.wells) droplet_size = Unit(droplet_size) max_decimal_places = 12 # for rounding after floating point arithmetic # Auto-generate well-group if only 1 well specified and using >1 source if not one_source: if len_dest > 1 and len_source == 1: source = WellGroup(source.wells * len_dest) len_source = len(source.wells) if len_dest == 1 and len_source > 1: dest = WellGroup(dest.wells * len_source) len_dest = len(dest.wells) if len_source != len_dest: raise RuntimeError( "To transfer liquid from one well or multiple wells " "containing the same source, set one_source to True. To " "transfer liquid from multiple wells to a single " "destination well, specify only one destination well. " "Otherwise, you must specify the same number of source and " "destination wells to do a one-to-one transfer." ) # Auto-generate list from single volume, check if list length matches if isinstance(volume, str) or isinstance(volume, Unit): if len_dest == 1 and not one_source: volume = [Unit(volume).to("ul")] * len_source else: volume = [Unit(volume).to("ul")] * len_dest elif isinstance(volume, list) and len(volume) == len_dest: volume = list(map(lambda x: Unit(x).to("ul"), volume)) else: raise RuntimeError( "Unless the same volume of liquid is being transferred to each " "destination well, each destination well must have a " "corresponding volume in the form of a list." ) vol_errors = [] for vol_d in volume: if not round(vol_d / droplet_size, max_decimal_places) % 1 == 0: vol_errors.append(vol_d) if len(vol_errors) > 0: raise RuntimeError( f"Transfer volume has to be a multiple of the droplet size ({droplet_size}).This is not true for the following volumes: {vol_errors}" ) # Ensure enough volume in single well to transfer to all dest wells if one_source: try: source_vol = [s.available_volume() for s in source.wells] if sum([a for a in volume]) > sum([a for a in source_vol]): raise RuntimeError( "There is not enough volume in the source well(s) " "specified to complete the transfers." ) if len_source >= len_dest and all( i > j for i, j in zip(source_vol, volume) ): sources = source.wells[:len_dest] destinations = dest.wells volumes = volume else: sources = [] source_counter = 0 destinations = [] volumes = [] s = source.wells[source_counter] vol = s.available_volume() for idx, d in enumerate(dest.wells): vol_d = volume[idx] while vol_d > Unit("0:microliter"): if vol > vol_d: sources.append(s) destinations.append(d) volumes.append(vol_d) vol -= vol_d vol = round(vol, max_decimal_places) vol_d -= vol_d vol_d = round(vol_d, max_decimal_places) else: sources.append(s) destinations.append(d) vol = int(vol / droplet_size) * droplet_size volumes.append(vol) vol_d -= vol vol_d = round(vol_d, max_decimal_places) source_counter += 1 if source_counter < len_source: s = source.wells[source_counter] vol = s.available_volume() source = WellGroup(sources) dest = WellGroup(destinations) volume = volumes except (ValueError, AttributeError, TypeError): raise RuntimeError( "When transferring liquid from multiple wells containing " "the same substance to multiple other wells, each source " "Well must have a volume attribute (aliquot) associated " "with it." ) for s, d, v in list(zip(source.wells, dest.wells, volume)): self._remove_cover(s.container, "acoustic_transfer") self._remove_cover(d.container, "acoustic_transfer") xfer = {"from": s, "to": d, "volume": v} # Volume accounting if d.volume: d.volume += v else: d.volume = v if s.volume: s.volume -= v if v > Unit(0, "microliter"): transfers.append(xfer) if not transfers: raise RuntimeError( "At least one transfer must have a nonzero transfer volume." ) for x in transfers: x["volume"] = round(x["volume"].to("nl"), max_decimal_places) return self._append_and_return( AcousticTransfer([{"transfer": transfers}], droplet_size) ) def illuminaseq( self, flowcell, lanes, sequencer, mode, index, library_size, dataref, cycles=None, ): """ Load aliquots into specified lanes for Illumina sequencing. The specified aliquots should already contain the appropriate mix for sequencing and require a library concentration reported in ng/uL. Example Usage: .. code-block:: python p = Protocol() sample_wells = p.ref( "test_plate", None, "96-pcr", discard=True).wells_from(0, 8) p.illuminaseq( "PE", [ {"object": sample_wells[0], "library_concentration": 1.0}, {"object": sample_wells[1], "library_concentration": 5.32}, {"object": sample_wells[2], "library_concentration": 54}, {"object": sample_wells[3], "library_concentration": 20}, {"object": sample_wells[4], "library_concentration": 23}, {"object": sample_wells[5], "library_concentration": 23}, {"object": sample_wells[6], "library_concentration": 21}, {"object": sample_wells[7], "library_concentration": 62} ], "hiseq", "rapid", 'none', 250, "my_illumina") Autoprotocol Output: .. code-block:: none "instructions": [ { "dataref": "my_illumina", "index": "none", "lanes": [ { "object": "test_plate/0", "library_concentration": 1 }, { "object": "test_plate/1", "library_concentration": 5.32 }, { "object": "test_plate/2", "library_concentration": 54 }, { "object": "test_plate/3", "library_concentration": 20 }, { "object": "test_plate/4", "library_concentration": 23 }, { "object": "test_plate/5", "library_concentration": 23 }, { "object": "test_plate/6", "library_concentration": 21 }, { "object": "test_plate/7", "library_concentration": 62 } ], "flowcell": "PE", "mode": "mid", "sequencer": "hiseq", "library_size": 250, "op": "illumina_sequence" } ] Parameters ---------- flowcell : str Flowcell designation: "SR" or " "PE" lanes : list(dict) .. code-block:: none "lanes": [ { "object": aliquot, Well, "library_concentration": decimal, // ng/uL }, {...}] sequencer : str Sequencer designation: "miseq", "hiseq" or "nextseq" mode : str Mode designation: "rapid", "mid" or "high" index : str Index designation: "single", "dual" or "none" library_size: int Library size expressed as an integer of basepairs dataref : str Name of sequencing dataset that will be returned. cycles : Enum({"read_1", "read_2", "index_1", "index_2"}) Parameter specific to Illuminaseq read-length or number of sequenced bases. Refer to the ASC for more details Returns ------- IlluminaSeq Returns the :py:class:`autoprotocol.instruction.IlluminaSeq` instruction created from the specified parameters Raises ------ TypeError If index and dataref are not of type str. TypeError If library_concentration is not a number. TypeError If library_size is not an integer. ValueError If flowcell, sequencer, mode, index are not of type a valid option. ValueError If number of lanes specified is more than the maximum lanes of the specified type of sequencer. KeyError Invalid keys specified for cycles parameter """ valid_flowcells = ["PE", "SR"] # currently available sequencers, modes and max number of lanes and # cycles valid_sequencers = { "miseq": {"max_lanes": 1, "modes": ["high"], "max_cycles_read": 600}, "hiseq": { "max_lanes": 8, "modes": ["high", "rapid"], "max_cycles_read": 500, }, "nextseq": { "max_lanes": 4, "modes": ["high", "mid"], "max_cycles_read": 300, }, } valid_indices = ["single", "dual", "none"] valid_cycles = ["index_1", "index_2", "read_1", "read_2"] max_cycles_ind = 12 if flowcell not in valid_flowcells: raise ValueError( f"Illumina sequencing flowcell type must be one " f"of: {', '.join(valid_flowcells)}." ) if sequencer not in valid_sequencers.keys(): raise ValueError( f"Illumina sequencer must be one of: " f"{', '.join(valid_sequencers.keys())}." ) if not isinstance(lanes, list): raise TypeError("Illumina sequencing lanes must be a list(dict)") for l in lanes: if not isinstance(l, dict): raise TypeError("Illumina sequencing lanes must be a list(dict)") if not all(k in l.keys() for k in ["object", "library_concentration"]): raise TypeError( "Each Illumina sequencing lane must contain an " "'object' and a 'library_concentration'" ) if not isinstance(l["object"], Well): raise TypeError( "Each Illumina sequencing object must be of " "type Well" ) if not isinstance(l["library_concentration"], (float, int)): raise TypeError( "Each Illumina sequencing " "library_concentration must be a number." ) if len(lanes) > valid_sequencers[sequencer]["max_lanes"]: raise ValueError( f"The type of sequencer selected ({sequencer}) only has {valid_sequencers[sequencer]['max_lanes']} lane(s). You specified {len(lanes)}. Please submit additional Illumina Sequencing instructions." ) if mode not in valid_sequencers[sequencer]["modes"]: raise ValueError( f"The type of sequencer selected ({sequencer}) has valid modes: {', '.join(valid_sequencers[sequencer]['modes'])}.You specified: {mode}." ) if index not in valid_indices: raise ValueError( f"Illumina sequencing index must be one of: " f"{', '.join(valid_indices)}." ) if not isinstance(dataref, str): raise TypeError(f"dataref: {dataref}, must be a string") if not isinstance(library_size, int): raise TypeError(f"library_size: {library_size}, must be an integer.") if cycles: if not isinstance(cycles, dict): raise TypeError("Cycles must be a dict.") if not all(c in valid_cycles for c in cycles.keys()): raise KeyError( f"Valid cycle parameters are: " f"{', '.join(valid_cycles)}" ) if "read_1" not in cycles.keys(): raise ValueError("If specifying cycles, 'read_1' must be designated.") if flowcell == "SR" and "read_2" in cycles.keys(): raise ValueError("SR does not have a second read: 'read_2'.") if not all(isinstance(i, int) for i in cycles.values()): raise ValueError("Cycles must be specified as an integer.") for read in ["read_1", "read_2"]: if cycles.get(read): if cycles[read] > valid_sequencers[sequencer]["max_cycles_read"]: raise ValueError( f"The maximum number of cycles for {read} is {valid_sequencers[sequencer]['max_cycles_read']}." ) for ind in ["index_1", "index_2"]: if cycles.get(ind): if cycles[ind] > max_cycles_ind: raise ValueError( f"The maximum number of cycles for {ind} is " f"{max_cycles_ind}." ) # set index 1 and 2 to default 0 if not otherwise specified else: cycles[ind] = 0 return self._append_and_return( IlluminaSeq( flowcell, lanes, sequencer, mode, index, library_size, dataref, cycles ) ) # pylint: disable=redefined-builtin def sangerseq(self, cont, wells, dataref, type="standard", primer=None): """ Send the indicated wells of the container specified for Sanger sequencing. The specified wells should already contain the appropriate mix for sequencing, including primers and DNA according to the instructions provided by the vendor. Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.sangerseq(sample_plate, sample_plate.wells_from(0,5).indices(), "seq_data_022415") Autoprotocol Output: .. code-block:: none "instructions": [ { "dataref": "seq_data_022415", "object": "sample_plate", "wells": [ "A1", "A2", "A3", "A4", "A5" ], "op": "sanger_sequence" } ] Parameters ---------- cont : Container or str Container with well(s) that contain material to be sequenced. wells : list(Well) or WellGroup or Well WellGroup of wells to be measured or a list of well references in the form of ["A1", "B1", "C5", ...] dataref : str Name of sequencing dataset that will be returned. type: Enum({"standard", "rca"}) Sanger sequencing type primer : Container, optional Tube containing sufficient primer for all RCA reactions. This field will be ignored if you specify the sequencing type as "standard". Tube containing sufficient primer for all RCA reactions Returns ------- SangerSeq Returns the :py:class:`autoprotocol.instruction.SangerSeq` instruction created from the specified parameters Raises ------ RuntimeError No primer location specified for rca sequencing type ValueError Wells belong to more than one container TypeError Invalid input type for wells """ seq_type = type.lower() if seq_type == "rca" and not primer: raise RuntimeError( "You must specify the location of primer for " "RCA sequencing reactions." ) if isinstance(wells, Well): wells = WellGroup(wells) if isinstance(wells, WellGroup): container = set([w.container for w in wells]) if len(container) > 1: raise ValueError("All wells need to be on one container for SangerSeq") wells = [str(w.index) for w in wells] if not isinstance(wells, list): raise TypeError( "Unknown input. SangerSeq wells accepts either a" "Well, a WellGroup, or a list of well indices" ) return self._append_and_return(SangerSeq(cont, wells, dataref, type, primer)) def dispense( self, ref, reagent, columns, is_resource_id=False, step_size="5:uL", flowrate=None, nozzle_position=None, pre_dispense=None, shape=None, shake_after=None, ): """ Dispense specified reagent to specified columns. Example Usage: .. code-block:: python from autoprotocol.liquid_handle.liquid_handle_builders import * from autoprotocol.instructions import Dispense from autoprotocol import Protocol p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.dispense(sample_plate, "water", Dispense.builders.columns( [Dispense.builders.column(0, "10:uL"), Dispense.builders.column(1, "20:uL"), Dispense.builders.column(2, "30:uL"), Dispense.builders.column(3, "40:uL"), Dispense.builders.column(4, "50:uL") ]) ) p.dispense( sample_plate, "water", Dispense.builders.columns( [Dispense.builders.column(0, "10:uL")] ), Dispense.builders.nozzle_position( position_x=Unit("1:mm"), position_y=Unit("2:mm"), position_z=Unit("20:mm") ), shape_builder( rows=8, columns=1, format="SBS96" ) ) Autoprotocol Output: .. code-block:: none "instructions": [ { "reagent": "water", "object": "sample_plate", "columns": [ { "column": 0, "volume": "10:microliter" }, { "column": 1, "volume": "20:microliter" }, { "column": 2, "volume": "30:microliter" }, { "column": 3, "volume": "40:microliter" }, { "column": 4, "volume": "50:microliter" } ], "op": "dispense" }, { "reagent": "water", "object": "sample_plate", "columns": [ { "column": 0, "volume": "10:microliter" } ], "nozzle_position" : { "position_x" : "1:millimeter", "position_y" : "2:millimeter", "position_z" : "20:millimeter" }, "shape" : { "rows" : 8, "columns" : 1, "format" : "SBS96" } "op": "dispense" }, ] Parameters ---------- ref : Container Container for reagent to be dispensed to. reagent : str or well Reagent to be dispensed. Use a string to specify the name or resource_id (see below) of the reagent to be dispensed. Alternatively, use a well to specify that the dispense operation must be executed using a specific aliquot as the dispense source. columns : list(dict("column": int, "volume": str/Unit)) Columns to be dispensed to, in the form of a list(dict) specifying the column number and the volume to be dispensed to that column. Columns are expressed as integers indexed from 0. [{"column": <column num>, "volume": <volume>}, ...] is_resource_id : bool, optional If true, interprets reagent as a resource ID step_size : str or Unit, optional Specifies that the dispense operation must be executed using a peristaltic pump with the given step size. Note that the volume dispensed in each column must be an integer multiple of the step_size. Currently, step_size must be either 5 uL or 0.5 uL. If set to None, will use vendor specified defaults. flowrate : str or Unit, optional The rate at which liquid is dispensed into the ref in units of volume/time. nozzle_position : dict, optional A dict represent nozzle offsets from the bottom middle of the plate's wells. see Dispense.builders.nozzle_position; specified as {"position_x": Unit, "position_y": Unit, "position_z": Unit}. pre_dispense : str or Unit, optional The volume of reagent to be dispensed per-nozzle into waste immediately prior to dispensing into the ref. shape: dict, optional The shape of the dispensing head to be used for the dispense. See liquid_handle_builders.shape_builder; specified as {"rows": int, "columns": int, "format": str} with format being a valid SBS format. shake_after: dict, optional Parameters that specify how a plate should be shaken at the very end of the instruction execution. See Dispense.builders.shake_after. Returns ------- Dispense Returns the :py:class:`autoprotocol.instruction.Dispense` instruction created from the specified parameters Raises ------ TypeError Invalid input types, e.g. ref is not of type Container ValueError Columns specified is invalid for this container type ValueError Invalid step-size given ValueError Invalid pre-dispense volume """ _VALID_STEP_SIZES = [Unit(5, "uL"), Unit(0.5, "uL")] _DEFAULT_NOZZLE_COUNT = 8 if not isinstance(ref, Container): raise TypeError(f"ref must be a Container but it was {type(ref)}.") columns = Dispense.builders.columns(columns) ref_cols = list(range(ref.container_type.col_count)) if not all(_["column"] in ref_cols for _ in columns): raise ValueError( f"Specified dispense columns: {columns} contains a column index that is outside of the valid columns: {ref_cols} for ref: {ref}." ) # pre-evaluate all parameters before making any changes to the Protocol if flowrate is not None: flowrate = parse_unit(flowrate, "uL/s") if nozzle_position is not None: nozzle_position = Dispense.builders.nozzle_position(**nozzle_position) if pre_dispense is not None: pre_dispense = parse_unit(pre_dispense, "uL") if shape is not None: shape = Dispense.builders.shape(**shape) if shake_after is not None: shake_after = Dispense.builders.shake_after(**shake_after) nozzle_count = ( shape["rows"] * shape["columns"] if shape else _DEFAULT_NOZZLE_COUNT ) if step_size is not None: step_size = parse_unit(step_size, "uL") if step_size not in _VALID_STEP_SIZES: raise ValueError( f"specified step_size was {step_size} but it must be in " f"{_VALID_STEP_SIZES}" ) for c in columns: if c["volume"] % step_size != Unit("0:uL"): raise ValueError( f"Dispense volume must be a multiple of the step size {step_size}, but column {c} does not meet these requirements." ) if pre_dispense is not None: invalid_pre_dispense_range = pre_dispense < 2 * step_size if invalid_pre_dispense_range and pre_dispense != Unit(0, "uL"): raise ValueError( f"Dispense pre_dispense must either be 0:uL or at least 2 * step_size: {step_size} but it was {pre_dispense}." ) if pre_dispense % step_size != Unit(0, "uL"): raise ValueError( f"Dispense pre_dispense must be a multiple of step_size: {step_size} but it was {pre_dispense}." ) row_count = ref.container_type.row_count() if isinstance(reagent, Well): self._remove_cover(reagent.container, "dispense from") # Volume accounting total_vol_dispensed = sum([Unit(c["volume"]) for c in columns]) * row_count if pre_dispense is not None: total_vol_dispensed += nozzle_count * pre_dispense if reagent.volume: reagent.volume -= total_vol_dispensed else: reagent.volume = -total_vol_dispensed reagent, resource_id, reagent_source = None, None, reagent else: if not isinstance(reagent, str): raise TypeError( f"reagent: {reagent} must be a Well or string but it was: " f"{type(reagent)}." ) if is_resource_id: reagent, resource_id, reagent_source = None, reagent, None else: # reagent remains unchanged resource_id, reagent_source = None, None self._remove_cover(ref, "dispense to") for c in columns: wells = ref.wells_from(c["column"], row_count, columnwise=True) for w in wells: if w.volume: w.volume += c["volume"] else: w.volume = c["volume"] return self._append_and_return( Dispense( object=ref, columns=columns, reagent=reagent, resource_id=resource_id, reagent_source=reagent_source, step_size=step_size, flowrate=flowrate, nozzle_position=nozzle_position, pre_dispense=pre_dispense, shape=shape, shake_after=shake_after, ) ) def dispense_full_plate( self, ref, reagent, volume, is_resource_id=False, step_size="5:uL", flowrate=None, nozzle_position=None, pre_dispense=None, shape=None, shake_after=None, ): """ Dispense the specified amount of the specified reagent to every well of a container using a reagent dispenser. Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.dispense_full_plate(sample_plate, "water", "100:microliter") Autoprotocol Output: .. code-block:: none "instructions": [ { "reagent": "water", "object": "sample_plate", "columns": [ { "column": 0, "volume": "100:microliter" }, { "column": 1, "volume": "100:microliter" }, { "column": 2, "volume": "100:microliter" }, { "column": 3, "volume": "100:microliter" }, { "column": 4, "volume": "100:microliter" }, { "column": 5, "volume": "100:microliter" }, { "column": 6, "volume": "100:microliter" }, { "column": 7, "volume": "100:microliter" }, { "column": 8, "volume": "100:microliter" }, { "column": 9, "volume": "100:microliter" }, { "column": 10, "volume": "100:microliter" }, { "column": 11, "volume": "100:microliter" } ], "op": "dispense" } ] Parameters ---------- ref : Container Container for reagent to be dispensed to. reagent : str or Well Reagent to be dispensed. Use a string to specify the name or resource_id (see below) of the reagent to be dispensed. Alternatively, use a well to specify that the dispense operation must be executed using a specific aliquot as the dispense source. volume : Unit or str Volume of reagent to be dispensed to each well is_resource_id : bool, optional If true, interprets reagent as a resource ID step_size : str or Unit, optional Specifies that the dispense operation must be executed using a peristaltic pump with the given step size. Note that the volume dispensed in each column must be an integer multiple of the step_size. Currently, step_size must be either 5 uL or 0.5 uL. If set to None, will use vendor specified defaults. flowrate : str or Unit, optional The rate at which liquid is dispensed into the ref in units of volume/time. nozzle_position : dict, optional A dict represent nozzle offsets from the bottom middle of the plate's wells. see Dispense.builders.nozzle_position; specified as {"position_x": Unit, "position_y": Unit, "position_z": Unit}. pre_dispense : str or Unit, optional The volume of reagent to be dispensed per-nozzle into waste immediately prior to dispensing into the ref. shape: dict, optional The shape of the dispensing head to be used for the dispense. See liquid_handle_builders.shape_builder; specified as {"rows": int, "columns": int, "format": str} with format being a valid SBS format. shake_after: dict, optional Parameters that specify how a plate should be shaken at the very end of the instruction execution. See Dispense.builders.shake_after. Returns ------- Dispense Returns the :py:class:`autoprotocol.instruction.Dispense` instruction created from the specified parameters """ columns = Dispense.builders.columns( [ {"column": col, "volume": volume} for col in range(ref.container_type.col_count) ] ) return self.dispense( ref, reagent, columns, is_resource_id, step_size, flowrate, nozzle_position, pre_dispense, shape, shake_after, ) def spin( self, ref, acceleration, duration, flow_direction=None, spin_direction=None ): """ Apply acceleration to a container. Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.spin(sample_plate, "1000:g", "20:minute", flow_direction="outward") Autoprotocol Output: .. code-block:: none "instructions": [ { "acceleration": "1000:g", "duration": "20:minute", "flow_direction": "outward", "spin_direction": [ "cw", "ccw" ] "object": "sample_plate", "op": "spin" } ] Parameters ---------- ref : Container The container to be centrifuged. acceleration: str Acceleration to be applied to the plate, in units of `g` or `meter/second^2`. duration: str or Unit Length of time that acceleration should be applied. flow_direction: str Specifies the direction contents will tend toward with respect to the container. Valid directions are "inward" and "outward", default value is "inward". spin_direction: list(str) A list of "cw" (clockwise), "cww" (counterclockwise). For each element in the list, the container will be spun in the stated direction for the set "acceleration" and "duration". Default values are derived from the "flow_direction" parameter. If "flow_direction" is "outward", then "spin_direction" defaults to ["cw", "ccw"]. If "flow_direction" is "inward", then "spin_direction" defaults to ["cw"]. Returns ------- Spin Returns the :py:class:`autoprotocol.instruction.Spin` instruction created from the specified parameters Raises ------ TypeError If ref to spin is not of type Container. TypeError If spin_direction or flow_direction are not properly formatted. ValueError If spin_direction or flow_direction do not have appropriate values. """ if flow_direction is not None and flow_direction not in ["inward", "outward"]: raise ValueError( "The specified value for flow_direction was not valid. If " "specifying, please choose either 'inward' or 'outward'" ) default_directions = {"inward": ["cw"], "outward": ["cw", "ccw"]} if spin_direction is None and flow_direction: spin_direction = default_directions[flow_direction] if spin_direction is not None: if not isinstance(spin_direction, list): raise TypeError("Spin directions must be in the form of a list.") if len(spin_direction) is 0: raise ValueError( "Spin direction must be a list containing at least one " "spin direction ('cw', 'ccw')" ) if spin_direction and not all(s in ["cw", "ccw"] for s in spin_direction): raise ValueError("Spin directions must be 'cw' or 'ccw'.") try: duration = Unit(duration) except ValueError as e: raise ValueError(f"Duration must be a unit. {e}") if not isinstance(ref, Container): raise TypeError("Ref must be of type Container.") if not flow_direction or flow_direction == "inward": self._add_cover(ref, "inward spin") elif flow_direction == "outward": self._remove_cover(ref, "outward spin") return self._append_and_return( Spin(ref, acceleration, duration, flow_direction, spin_direction) ) def agitate(self, ref, mode, speed, duration, temperature=None, mode_params=None): """ Agitate a container in a specific condition for a given duration. If temperature is not specified, container is agitated at ambient temperature by default. Example Usage: .. code-block:: python p = Protocol() plate = p.ref("test pcr plate", id=None, cont_type="96-pcr", storage="cold_4") p.agitate( ref = plate, mode="vortex", speed="1000:rpm", duration="5:minute", temperature="25:celsius" ) Autoprotocol Output: .. code-block:: none "instructions" : [ { "object": "test pcr plate", "mode": "vortex", "speed": "1000:rpm", "duration": "5:minute", "temperature": "25:celsius", "op": "agitate" } ] Parameters ---------- ref : Container Container to be agitated mode : str Mode by which to agitate container speed : str or Unit Speed at which to agitate container duration : str or Unit Specify the duration to agitate for temperature : Unit or str, optional Specify target temperature to agitate container at. Defaults to ambient mode_params : dict, optional Dictionary containing mode params for agitation modes Returns ------- Agitate returns a :py:class:`autoprotocol.instruction.Agitate` instruction created from the specified parameters Raises ------ ValueError If ref provided is not of type Container ValueError If speed is less than 0 rpm ValueError if duration is less than 0 minutes ValueError If `mode_params` not specified for mode `stir_bar` ValueError If valid keys for `mode_params` used for `stir_bar` are not included ValueError If wells specified in `mode_params` are not in the same container ValueError If `bar_shape` is not valid ValueError If `bar_length` is less than 0 millimeter ValueError If `mode` used does not require `mode_params` TypeError If ref cannot be undergo agitate mode `roll` or `invert` """ valid_modes = ["vortex", "invert", "roll", "stir_bar"] valid_bar_shapes = ["bar", "cross"] valid_bar_mode_params = ["wells", "bar_shape", "bar_length"] speed = parse_unit(speed) temperature = parse_unit(temperature, "celsius") if temperature else None duration = parse_unit(duration, "minute") if not isinstance(ref, Container): raise ValueError("Ref is not of type Container.") if speed <= Unit("0:rpm"): raise ValueError(f"Speed: {speed} must be more than 0 rpm.") if duration <= Unit("0:minute"): raise ValueError(f"Duration: {duration} must be longer than 0 minutes.") if mode not in valid_modes: raise ValueError(f"Agitate mode must be one of {valid_modes}") if mode == "stir_bar": if mode_params is None: raise ValueError( "Dictionary `mode_params` must be specified for the " "mode `stir_bar`" ) elif not set(mode_params.keys()) == set(valid_bar_mode_params): raise ValueError( f"Params for `stir_bar` must include " f"{valid_bar_mode_params}" ) wells = WellGroup(mode_params["wells"]) container = set([w.container for w in wells]) shape = mode_params["bar_shape"] length = parse_unit(mode_params["bar_length"], "millimeter") if len(container) > 1: raise ValueError( "All wells need to be on the same container for Agitate" ) if shape not in valid_bar_shapes: raise ValueError(f"Param `bar_shape` must be one of {valid_bar_shapes}") if length <= Unit(0, "millimeter"): raise ValueError( "Params `bar_length` must be greater than 0 millimeter" ) elif mode != "stir_bar" and mode_params: raise ValueError(f"Mode {mode} does not need mode_params specified") elif mode in ["invert", "roll"] and not ref.container_type.is_tube: raise TypeError(f"Specified container {ref} cannot be inverted or rolled.") return self._append_and_return( Agitate(ref, mode, speed, duration, temperature, mode_params) ) def thermocycle( self, ref, groups, volume="10:microliter", dataref=None, dyes=None, melting_start=None, melting_end=None, melting_increment=None, melting_rate=None, lid_temperature=None, ): """ Append a Thermocycle instruction to the list of instructions, with groups is a list(dict) in the form of: .. code-block:: python "groups": [{ "cycles": integer, "steps": [ { "duration": duration, "temperature": temperature, "read": boolean // optional (default false) }, { "duration": duration, "gradient": { "top": temperature, "bottom": temperature }, "read": boolean // optional (default false) } ] }], Thermocycle can also be used for either conventional or row-wise gradient PCR as well as qPCR. Refer to the examples below for details. Example Usage: To thermocycle a container according to the protocol: * 1 cycle: * 95 degrees for 5 minutes * 30 cycles: * 95 degrees for 30 seconds * 56 degrees for 20 seconds * 72 degrees for 30 seconds * 1 cycle: * 72 degrees for 10 minutes * 1 cycle: * 4 degrees for 30 seconds * all cycles: Lid temperature at 97 degrees .. code-block:: python from instruction import Thermocycle p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") # a plate must be sealed before it can be thermocycled p.seal(sample_plate) p.thermocycle( sample_plate, [ Thermocycle.builders.group( steps=[ Thermocycle.builders.step("95:celsius", "5:minute") ] ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step("95:celsius", "30:s"), Thermocycle.builders.step("56:celsius", "20:s"), Thermocycle.builders.step("72:celsius", "20:s"), ], cycles=30 ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step("72:celsius", "10:minute") ] ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step("4:celsius", "30:s") ] ) ], lid_temperature="97:celsius" ) Autoprotocol Output: .. code-block:: none "instructions": [ { "object": "sample_plate", "op": "seal" }, { "volume": "10:microliter", "dataref": null, "object": "sample_plate", "groups": [ { "cycles": 1, "steps": [ { "duration": "5:minute", "temperature": "95:celsius" } ] }, { "cycles": 30, "steps": [ { "duration": "30:second", "temperature": "95:celsius" }, { "duration": "20:second", "temperature": "56:celsius" }, { "duration": "20:second", "temperature": "72:celsius" } ] }, { "cycles": 1, "steps": [ { "duration": "10:minute", "temperature": "72:celsius" } ] }, { "cycles": 1, "steps": [ { "duration": "30:second", "temperature": "4:celsius" } ] } ], "op": "thermocycle" } ] To gradient thermocycle a container according to the protocol: * 1 cycle: * 95 degrees for 5 minutes * 30 cycles: * 95 degrees for 30 seconds Top Row: * 65 degrees for 20 seconds Bottom Row: * 55 degrees for 20 seconds * 72 degrees for 30 seconds * 1 cycle: * 72 degrees for 10 minutes .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") # a plate must be sealed before it can be thermocycled p.seal(sample_plate) p.thermocycle( sample_plate, [ Thermocycle.builders.group( steps=[ Thermocycle.builders.step("95:celsius", "5:minute") ] ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step("95:celsius", "30:s"), Thermocycle.builders.step( {"top": "65:celsius", "bottom": "55:celsius"}, "20:s" ), Thermocycle.builders.step("72:celsius", "20:s"), ], cycles=30 ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step("72:celsius", "10:minute") ] ) ] ) To conduct a qPCR, at least one dye type and the dataref field has to be specified. The example below uses SYBR dye and the following temperature profile: * 1 cycle: * 95 degrees for 3 minutes * 40 cycles: * 95 degrees for 10 seconds * 60 degrees for 30 seconds (Read during extension) .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") # a plate must be sealed before it can be thermocycled p.seal(sample_plate) p.thermocycle( sample_plate, [ Thermocycle.builders.group( steps=[ Thermocycle.builders.step("95:celsius", "3:minute") ] ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step( "95:celsius", "10:second", read=False ), Thermocycle.builders.step( "95:celsius", "10:second", read=True ) ], cycles=40 ) ], dataref = "my_qpcr_data", dyes = {"SYBR": sample_plate.all_wells().indices()} ) Parameters ---------- ref : Container Container to be thermocycled. groups : list(dict) List of thermocycling instructions formatted as above volume : str or Unit, optional Volume contained in wells being thermocycled dataref : str, optional Name of dataref representing read data if performing qPCR dyes : dict, optional Dictionary mapping dye types to the wells they're used in melting_start: str or Unit, optional Temperature at which to start the melting curve. melting_end: str or Unit, optional Temperature at which to end the melting curve. melting_increment: str or Unit, optional Temperature by which to increment the melting curve. Accepted increment values are between 0.1 and 9.9 degrees celsius. melting_rate: str or Unit, optional Specifies the duration of each temperature step in the melting curve. lid_temperature: str or Unit, optional Specifies the lid temperature throughout the duration of the thermocycling instruction Returns ------- Thermocycle Returns the :py:class:`autoprotocol.instruction.Thermocycle` instruction created from the specified parameters Raises ------ AttributeError If groups are not properly formatted TypeError If ref to thermocycle is not of type Container. ValueError Container specified cannot be thermocycled ValueError Lid temperature is not within bounds """ if not isinstance(ref, Container): raise TypeError("Ref must be of type Container.") if "thermocycle" not in ref.container_type.capabilities: raise ValueError( f"Container '{ref.name}' type '{ref.container_type.shortname}', cannot be thermocycled." ) groups = [Thermocycle.builders.group(**_) for _ in groups] dyes = Thermocycle.builders.dyes(**(dyes or {})) melting = Thermocycle.builders.melting( melting_start, melting_end, melting_increment, melting_rate ) # Constants are currently based off the Biorad thermocyclers, and # assumes that they are generally reflective of other thermocyclers _MIN_LID_TEMP = Unit("30:celsius") _MAX_LID_TEMP = Unit("110:celsius") if lid_temperature is not None: lid_temperature = parse_unit(lid_temperature) if not (_MIN_LID_TEMP <= lid_temperature <= _MAX_LID_TEMP): raise ValueError( f"Lid temperature {lid_temperature} has to be within " f"[{_MIN_LID_TEMP}, {_MAX_LID_TEMP}]" ) self._add_seal(ref, "thermocycle") return self._append_and_return( Thermocycle( object=ref, groups=groups, volume=volume, dataref=dataref, dyes=dyes, melting=melting, lid_temperature=lid_temperature, ) ) def incubate( self, ref, where, duration, shaking=False, co2=0, uncovered=False, target_temperature=None, shaking_params=None, ): """ Move plate to designated thermoisolater or ambient area for incubation for specified duration. Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") # a plate must be sealed/covered before it can be incubated p.seal(sample_plate) p.incubate(sample_plate, "warm_37", "1:hour", shaking=True) Autoprotocol Output: .. code-block:: none "instructions": [ { "object": "sample_plate", "op": "seal" }, { "duration": "1:hour", "where": "warm_37", "object": "sample_plate", "shaking": true, "op": "incubate", "co2_percent": 0 } ] Parameters ---------- ref : Ref or str The container to be incubated where : Enum({"ambient", "warm_37", "cold_4", "cold_20", "cold_80"}) Temperature at which to incubate specified container duration : Unit or str Length of time to incubate container shaking : bool, optional Specify whether or not to shake container if available at the specified temperature co2 : Number, optional Carbon dioxide percentage uncovered: bool, optional Specify whether the container should be uncovered during incubation target_temperature : Unit or str, optional Specify a target temperature for a device (eg. an incubating block) to reach during the specified duration. shaking_params: dict, optional Specify "path" and "frequency" of shaking parameters to be used with compatible devices (eg. thermoshakes) Returns ------- Incubate Returns the :py:class:`autoprotocol.instruction.Incubate` instruction created from the specified parameters Raises ------ TypeError Invalid input types given, e.g. ref is not of type Container RuntimeError Incubating uncovered in a location which is shaking """ if not isinstance(ref, Container): raise TypeError("Ref needs to be of type Container") allowed_uncovered = ["ambient"] if uncovered and (where not in allowed_uncovered or shaking): raise RuntimeError( f"If incubating uncovered, location must be in " f"{', '.join(allowed_uncovered)} and not shaking." ) if not isinstance(co2, Number): raise TypeError("co2 must be a number.") if target_temperature: target_temperature = parse_unit(target_temperature, "celsius") if not uncovered: self._add_cover(ref, "incubate") return self._append_and_return( Incubate( ref, where, duration, shaking, co2, target_temperature, shaking_params ) ) def absorbance( self, ref, wells, wavelength, dataref, flashes=25, incubate_before=None, temperature=None, settle_time=None, ): """ Read the absorbance for the indicated wavelength for the indicated wells. Append an Absorbance instruction to the list of instructions for this Protocol object. Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.absorbance(sample_plate, sample_plate.wells_from(0,12), "600:nanometer", "test_reading", flashes=50) Autoprotocol Output: .. code-block:: none "instructions": [ { "dataref": "test_reading", "object": "sample_plate", "wells": [ "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "A9", "A10", "A11", "A12" ], "num_flashes": 50, "wavelength": "600:nanometer", "op": "absorbance" } ] Parameters ---------- ref : str or Container Object to execute the absorbance read on wells : list(Well) or WellGroup or Well WellGroup of wells to be measured or a list of well references in the form of ["A1", "B1", "C5", ...] wavelength : str or Unit wavelength of light absorbance to be read for the indicated wells dataref : str name of this specific dataset of measured absorbances flashes : int, optional number of flashes for the read temperature: str or Unit, optional set temperature to heat plate reading chamber settle_time: Unit, optional the time before the start of the measurement, defaults to vendor specifications incubate_before: dict, optional parameters for incubation before executing the plate read See Also :meth:`Absorbance.builders.incubate_params` Returns ------- Absorbance Returns the :py:class:`autoprotocol.instruction.Absorbance` instruction created from the specified parameters Raises ------ TypeError Invalid input types, e.g. wells given is of type Well, WellGroup or list of wells ValueError Wells specified are not from the same container ValueError Settle time has to be greater than 0 UnitError Settle time is not of type Unit """ wells = WellGroup(wells) container = set([w.container for w in wells]) if len(container) > 1: raise ValueError( "All wells need to be on the same container for Absorbance" ) wells = [str(w.index) for w in wells] if incubate_before: Absorbance.builders.incubate_params(**incubate_before) if settle_time: try: settle_time = Unit(settle_time) if settle_time < Unit(0, "second"): raise ValueError( "'settle_time' must be a time equal " "to or greater than 0." ) except UnitError: raise UnitError("'settle_time' must be of type Unit.") return self._append_and_return( Absorbance( ref, wells, wavelength, dataref, flashes, incubate_before, temperature, settle_time, ) ) def fluorescence( self, ref, wells, excitation, emission, dataref, flashes=25, temperature=None, gain=None, incubate_before=None, detection_mode=None, position_z=None, settle_time=None, lag_time=None, integration_time=None, ): """ Read the fluoresence for the indicated wavelength for the indicated wells. Append a Fluorescence instruction to the list of instructions for this Protocol object. Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.fluorescence(sample_plate, sample_plate.wells_from(0,12), excitation="587:nanometer", emission="610:nanometer", dataref="test_reading") Autoprotocol Output: .. code-block:: none "instructions": [ { "dataref": "test_reading", "excitation": "587:nanometer", "object": "sample_plate", "emission": "610:nanometer", "wells": [ "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "A9", "A10", "A11", "A12" ], "num_flashes": 25, "op": "fluorescence" } ] Parameters ---------- ref : str or Container Container to plate read. wells : list(Well) or WellGroup or Well WellGroup of wells to be measured or a list of well references in the form of ["A1", "B1", "C5", ...] excitation : str or Unit Wavelength of light used to excite the wells indicated emission : str or Unit Wavelength of light to be measured for the indicated wells dataref : str Name of this specific dataset of measured fluoresence flashes : int, optional Number of flashes. temperature: str or Unit, optional set temperature to heat plate reading chamber gain: float, optional float between 0 and 1, multiplier, gain=0.2 of maximum signal amplification incubate_before: dict, optional parameters for incubation before executing the plate read See Also :meth:`Fluorescence.builders.incubate_params` detection_mode: str, optional set the detection mode of the optics, ["top", "bottom"], defaults to vendor specified defaults. position_z: dict, optional distance from the optics to the surface of the plate transport, only valid for "top" detection_mode and vendor capabilities. Specified as either a set distance - "manual", OR calculated from a WellGroup - "calculated_from_wells". Only one position_z determination may be specified .. code-block:: none position_z = { "manual": Unit - OR - "calculated_from_wells": [] } settle_time: Unit, optional the time before the start of the measurement, defaults to vendor specifications lag_time: Unit, optional time between flashes and the start of the signal integration, defaults to vendor specifications integration_time: Unit, optional duration of the signal recording, per Well, defaults to vendor specifications Examples -------- position_z: .. code-block:: none position_z = { "calculated_from_wells": ["plate/A1", "plate/A2"] } -OR- position_z = { "manual": "20:micrometer" } Returns ------- Fluorescence Returns the :py:class:`autoprotocol.instruction.Fluorescence` instruction created from the specified parameters Raises ------ TypeError Invalid input types, e.g. wells given is of type Well, WellGroup or list of wells ValueError Wells specified are not from the same container ValueError Settle time, integration time or lag time has to be greater than 0 UnitError Settle time, integration time, lag time or position z is not of type Unit ValueError Unknown value given for `detection_mode` ValueError Position z specified for non-top detection mode KeyError For position_z, only `manual` and `calculated_from_wells` is allowed NotImplementedError Specifying `calculated_from_wells` as that has not been implemented yet """ wells = WellGroup(wells) container = set([w.container for w in wells]) if len(container) > 1: raise ValueError( "All wells need to be on the same container for Fluorescence" ) wells = [str(w.index) for w in wells] if gain is not None and not (0 <= gain <= 1): raise ValueError( f"fluorescence gain set to {gain} must be between 0 and 1, " f"inclusive" ) if incubate_before: Fluorescence.builders.incubate_params(**incubate_before) valid_detection_modes = ["top", "bottom"] if detection_mode and detection_mode not in valid_detection_modes: raise ValueError( f"Unknown value for 'detection_mode'. Must be one of " f"{valid_detection_modes}." ) if detection_mode == "bottom" and position_z: raise ValueError( "position_z is only valid for 'top' detection_mode " "measurements." ) if settle_time: try: settle_time = Unit(settle_time) if settle_time < Unit(0, "second"): raise ValueError( "'settle_time' must be a time equal " "to or greater than 0." ) except UnitError: raise UnitError("'settle_time' must be of type Unit.") if lag_time: try: lag_time = Unit(lag_time) if lag_time < Unit(0, "second"): raise ValueError( "'lag_time' must be a time equal " "to or greater than 0." ) except UnitError: raise UnitError("'lag_time' must be of type Unit.") if integration_time: try: integration_time = Unit(integration_time) if integration_time < Unit(0, "second"): raise ValueError( "'integration_time' must be a time equal " "to or greater than 0." ) except UnitError: raise UnitError("'integration_time' must be of type Unit.") if position_z: valid_pos_z = ["manual", "calculated_from_wells"] if not isinstance(position_z, dict): raise TypeError("'position_z' must be of type dict.") if len(position_z.keys()) > 1: raise ValueError( "'position_z' can only have one mode of calculation " "specified: 'manual' or 'calculated_from_wells'." ) for k in position_z.keys(): if k not in valid_pos_z: raise KeyError( f"'position_z' keys can only be 'manual' or 'calculated_from_wells'. '{k}' is not a recognized key." ) if "manual" in position_z.keys(): try: manual = Unit(position_z["manual"]) if manual < Unit(0, "micrometer"): raise ValueError( "'manual' z_position must be a length equal " "to or greater than 0." ) except UnitError: raise UnitError("'manual' position_z must be of type Unit.") if "calculated_from_wells" in position_z.keys(): # blocking calculated_from_wells until fully implemented # remove below RunTimeError to release feature raise NotImplementedError( "This feature, 'calculated_from_wells', " "has not been implemented yet. Please use " "'position_z':{'manual': 'set_value'} to " "specify a position_z." ) # pragma pylint: disable=unreachable, unused-variable z_ws = position_z["calculated_from_wells"] if isinstance(z_ws, Well): z_ws = [z_ws] position_z["calculated_from_wells"] = z_ws elif isinstance(z_ws, list): if not all(isinstance(w, Well) for w in z_ws): raise TypeError( "All elements in list must be wells for " "position_z, 'calculated_from_wells'." ) else: raise TypeError( "Wells specified for 'calculated_from_wells' " "must be Well, list of wells, WellGroup." ) # check z_ws against container/ref for measurement # if ref is Container if isinstance(ref, Container): try: valid_z_ws = ref.wells(z_ws) except ValueError: raise ValueError( "Well indices specified for " "'calculated_from_wells' must " "be valid wells of the ref'd " "container." ) # pragma pylint: enable=unreachable, unused-variable return self._append_and_return( Fluorescence( ref, wells, excitation, emission, dataref, flashes, incubate_before, temperature, gain, detection_mode, position_z, settle_time, lag_time, integration_time, ) ) def luminescence( self, ref, wells, dataref, incubate_before=None, temperature=None, settle_time=None, integration_time=None, ): """ Read luminescence of indicated wells. Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.luminescence(sample_plate, sample_plate.wells_from(0,12), "test_reading") Autoprotocol Output: .. code-block:: none "instructions": [ { "dataref": "test_reading", "object": "sample_plate", "wells": [ "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "A9", "A10", "A11", "A12" ], "op": "luminescence" } ] Parameters ---------- ref : str or Container Container to plate read. wells : list(Well) or WellGroup or Well WellGroup of wells to be measured or a list of well references in the form of ["A1", "B1", "C5", ...] dataref : str Name of this dataset of measured luminescence readings. temperature: str or Unit, optional set temperature to heat plate reading chamber settle_time: Unit, optional the time before the start of the measurement, defaults to vendor specifications incubate_before: dict, optional parameters for incubation before executing the plate read See Also :meth:`Absorbance.builders.incubate_params` integration_time: Unit, optional duration of the signal recording, per Well, defaults to vendor specifications Returns ------- Luminescence Returns the :py:class:`autoprotocol.instruction.Luminescence` instruction created from the specified parameters Raises ------ TypeError Invalid input types, e.g. wells given is of type Well, WellGroup or list of wells ValueError Wells specified are not from the same container ValueError Settle time or integration time has to be greater than 0 UnitError Settle time or integration time is not of type Unit """ wells = WellGroup(wells) container = set([w.container for w in wells]) if len(container) > 1: raise ValueError( "All wells need to be on the same container for Luminescence" ) wells = [str(w.index) for w in wells] if incubate_before: Luminescence.builders.incubate_params(**incubate_before) if settle_time: try: settle_time = Unit(settle_time) if settle_time < Unit(0, "second"): raise ValueError( "'settle_time' must be a time equal " "to or greater than 0." ) except UnitError: raise UnitError("'settle_time' must be of type Unit.") if integration_time: try: integration_time = Unit(integration_time) if integration_time < Unit(0, "second"): raise ValueError( "'integration_time' must be a time equal " "to or greater than 0." ) except UnitError: raise UnitError("'integration_time' must be of type Unit.") return self._append_and_return( Luminescence( ref, wells, dataref, incubate_before, temperature, settle_time, integration_time, ) ) def gel_separate(self, wells, volume, matrix, ladder, duration, dataref): """ Separate nucleic acids on an agarose gel. Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.gel_separate(sample_plate.wells_from(0,12), "10:microliter", "agarose(8,0.8%)", "ladder1", "11:minute", "genotyping_030214") Autoprotocol Output: .. code-block:: none "instructions": [ { "dataref": "genotyping_030214", "matrix": "agarose(8,0.8%)", "volume": "10:microliter", "ladder": "ladder1", "objects": [ "sample_plate/0", "sample_plate/1", "sample_plate/2", "sample_plate/3", "sample_plate/4", "sample_plate/5", "sample_plate/6", "sample_plate/7", "sample_plate/8", "sample_plate/9", "sample_plate/10", "sample_plate/11" ], "duration": "11:minute", "op": "gel_separate" } ] Parameters ---------- wells : list(Well) or WellGroup or Well List of wells or WellGroup containing wells to be separated on gel. volume : str or Unit Volume of liquid to be transferred from each well specified to a lane of the gel. matrix : str Matrix (gel) in which to gel separate samples ladder : str Ladder by which to measure separated fragment size duration : str or Unit Length of time to run current through gel. dataref : str Name of this set of gel separation results. Returns ------- GelSeparate Returns the :py:class:`autoprotocol.instruction.GelSeparate` instruction created from the specified parameters Raises ------ TypeError Invalid input types, e.g. wells given is of type Well, WellGroup or list of wells ValueError Specifying more wells than the number of available lanes in the selected matrix """ # Check valid well inputs if not is_valid_well(wells): raise TypeError( "Wells must be of type Well, list of Wells, or " "WellGroup." ) if isinstance(wells, Well): wells = WellGroup(wells) for w in wells: self._remove_cover(w.container, "gel separate") max_well = int(matrix.split("(", 1)[1].split(",", 1)[0]) if len(wells) > max_well: raise ValueError( "Number of wells is greater than available" "lanes in matrix" ) return self._append_and_return( GelSeparate(wells, volume, matrix, ladder, duration, dataref) ) def gel_purify(self, extracts, volume, matrix, ladder, dataref): """ Separate nucleic acids on an agarose gel and purify according to parameters. If gel extract lanes are not specified, they will be sequentially ordered and purified on as many gels as necessary. Each element in extracts specifies a source loaded in a single lane of gel with a list of bands that will be purified from that lane. If the same source is to be run on separate lanes, a new dictionary must be added to extracts. It is also possible to add an element to extract with a source but without a list of bands. In that case, the source will be run in a lane without extraction. Example Usage: .. code-block:: python p = Protocol() sample_wells = p.ref("test_plate", None, "96-pcr", discard=True).wells_from(0, 8) extract_wells = [p.ref("extract_" + str(i.index), None, "micro-1.5", storage="cold_4").well(0) for i in sample_wells] extracts = [make_gel_extract_params( w, make_band_param( "TE", "5:microliter", 80, 79, extract_wells[i])) for i, w in enumerate(sample_wells)] p.gel_purify(extracts, "10:microliter", "size_select(8,0.8%)", "ladder1", "gel_purify_example") Autoprotocol Output: For extracts[0] .. code-block:: none { "band_list": [ { "band_size_range": { "max_bp": 80, "min_bp": 79 }, "destination": Well(Container(extract_0), 0, None), "elution_buffer": "TE", "elution_volume": "Unit(5.0, 'microliter')" } ], "gel": None, "lane": None, "source": Well(Container(test_plate), 0, None) } Parameters ---------- extracts: list(dict) List of gel extraction parameters See Also :meth:`GelPurify.builders.extract` volume: str or Unit Volume of liquid to be transferred from each well specified to a lane of the gel. matrix: str Matrix (gel) in which to gel separate samples ladder: str Ladder by which to measure separated fragment size dataref: str Name of this set of gel separation results. Returns ------- GelPurify Returns the :py:class:`autoprotocol.instruction.GelPurify` instruction created from the specified parameters Raises ------- RuntimeError If matrix is not properly formatted. AttributeError If extract parameters are not a list of dictionaries. KeyError If extract parameters do not contain the specified parameter keys. ValueError If min_bp is greater than max_bp. ValueError If extract destination is not of type Well. ValueError If extract elution volume is not of type Unit ValueError if extract elution volume is not greater than 0. RuntimeError If gel extract lanes are set for some but not all extract wells. RuntimeError If all samples do not fit on single gel type. TypeError If lane designated for gel extracts is not an integer. RuntimeError If designated lane index is outside lanes within the gel. RuntimeError If lanes not designated and number of extracts not equal to number of samples. """ from itertools import groupby from operator import itemgetter try: max_well = int(matrix.split("(", 1)[1].split(",", 1)[0]) except (AttributeError, IndexError): raise RuntimeError("Matrix specified is not properly formatted.") volume = Unit(volume) if volume <= Unit("0:microliter"): raise ValueError(f"Volume: {volume}, must be greater than 0:microliter") if not isinstance(ladder, str): raise TypeError(f"Ladder: {ladder}, must be a string") if not isinstance(dataref, str): raise TypeError(f"Datref: {dataref}, must be a string") if not isinstance(extracts, list): extracts = [extracts] extracts = [GelPurify.builders.extract(**_) for _ in extracts] gel_set = [e["gel"] for e in extracts] lane_set = [e["lane"] for e in extracts] if None in gel_set: if any(gel_set): raise RuntimeError( "If one extract has gel set, all extracts must have " "gel set" ) else: if None in lane_set: if any(lane_set): raise RuntimeError( "If one extract has lane set, all extracts must " "have lane set" ) else: for i, e in enumerate(extracts): e["gel"] = i // max_well e["lane"] = i % max_well else: for e in extracts: e["gel"] = 0 sort_key = itemgetter("gel") parsed_extracts = [ list(grp) for key, grp in groupby(sorted(extracts, key=sort_key), key=sort_key) ] instructions = [] for pe in parsed_extracts: lane_set = [e["lane"] for e in pe] if len(lane_set) > max_well: raise RuntimeError( f"The gel is not large enough to accomodate all lanes: gel has {max_well} wells, {len(lane_set)} lanes specified" ) if None in lane_set: if any(lane_set): raise RuntimeError( "If one extract has lane set, all extracts must have " "lane set" ) else: for i, e in enumerate(pe): e["lane"] = i % max_well lane_set = [e["lane"] for e in pe] if sorted(lane_set) != list(range(0, max(lane_set) + 1)): raise RuntimeError("Lanes must be contiguous, unique, and start from 0") if len(parsed_extracts) > 1: dataref_gel = f"{dataref}_{pe[0]['gel']}" else: dataref_gel = dataref pe = sorted(pe, key=itemgetter("lane")) samples = [e["source"] for e in pe] pe_unpacked = [] for e in pe: for b in e["band_list"]: ext = b ext["lane"] = e["lane"] pe_unpacked.append(ext) instructions.append( self._append_and_return( GelPurify(samples, volume, matrix, ladder, dataref_gel, pe_unpacked) ) ) return instructions def seal(self, ref, type=None, mode=None, temperature=None, duration=None): """ Seal indicated container using the automated plate sealer. Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") p.seal(sample_plate, mode="thermal", temperature="160:celsius") Autoprotocol Output: .. code-block:: none "instructions": [ { "object": "sample_plate", "type": "ultra-clear", "mode": "thermal", "mode_params": { "temperature": "160:celsius" } "op": "seal" } ] Parameters ---------- ref : Container Container to be sealed type : str, optional Seal type to be used, such as "ultra-clear" or "foil". mode: str, optional Sealing method to be used, such as "thermal" or "adhesive". Defaults to None, which is interpreted sensibly based on the execution environment. temperature: Unit or str, optional Temperature at which to melt the sealing film onto the ref. Only applicable to thermal sealing; not respected if the sealing mode is adhesive. If unspecified, thermal sealing temperature defaults correspond with manufacturer-recommended or internally-optimized values for the target container type. Applies only to thermal sealing. duration: Unit or str, optional Duration for which to press the (heated, if thermal) seal down on the ref. Defaults to manufacturer-recommended or internally- optimized seal times for the target container type. Currently applies only to thermal sealing. Returns ------- Seal Returns the :py:class:`autoprotocol.instruction.Seal` instruction created from the specified parameters Raises ------ TypeError If ref is not of type Container. RuntimeError If container type does not have `seal` capability. RuntimeError If seal is not a valid seal type. RuntimeError If the sealing mode is invalid, or incompatible with the given ref RuntimeError If thermal sealing params (temperature and/or duration) are specified alongside an adhesive sealing mode. RuntimeError If specified thermal sealing parameters are invalid RuntimeError If container is already covered with a lid. """ SEALING_MODES = ["thermal", "adhesive"] if not isinstance(ref, Container): raise TypeError("Container to seal must be of type Container.") if "seal" not in ref.container_type.capabilities: raise RuntimeError( f"Container '{ref.name}' type '{ref.container_type.shortname}'," f" cannot be sealed." ) if type is None: type = ref.container_type.seal_types[0] if type not in SEAL_TYPES: raise RuntimeError(f"{type} is not a valid seal type") if ref.is_covered(): raise RuntimeError("A container cannot be sealed over a lid.") if not (mode is None or mode in SEALING_MODES): raise RuntimeError(f"{mode} is not a valid sealing mode") if temperature is not None or duration is not None: if mode == "adhesive": raise RuntimeError( "Thermal sealing parameters `temperature` and `duration` " "are incompatible with the chosen adhesive sealing mode." ) mode = "thermal" mode_params = dict() if temperature is not None: mode_params["temperature"] = parse_unit(temperature, "celsius") if duration is not None: mode_params["duration"] = parse_unit(duration, "second") else: mode_params = None if not ref.is_sealed(): ref.cover = type return self._append_and_return(Seal(ref, type, mode, mode_params)) def unseal(self, ref): """ Remove seal from indicated container using the automated plate unsealer. Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") # a plate must be sealed to be unsealed p.seal(sample_plate) p.unseal(sample_plate) Autoprotocol Output: .. code-block:: none "instructions": [ { "object": "sample_plate", "op": "seal", "type": "ultra-clear" }, { "object": "sample_plate", "op": "unseal" } ] Parameters ---------- ref : Container Container to be unsealed. Returns ------- Unseal Returns the :py:class:`autoprotocol.instruction.Unseal` instruction created from the specified parameters Raises ------ TypeError If ref is not of type Container. RuntimeError If container is covered with a lid not a seal. """ if not isinstance(ref, Container): raise TypeError("Container to unseal must be of type Container.") if ref.is_covered(): raise RuntimeError( "A container with a cover cannot be unsealed, " "use the instruction uncover." ) if ref.is_sealed(): ref.cover = None unseal_inst = Unseal(ref) return self._append_and_return(unseal_inst) def cover(self, ref, lid=None, retrieve_lid=None): """ Place specified lid type on specified container Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.cover(sample_plate, lid="universal") Autoprotocol Output: .. code-block:: none "instructions": [ { "lid": "universal", "object": "sample_plate", "op": "cover" } ] Parameters ---------- ref : Container Container to be convered. lid : str, optional Type of lid to cover the container. Must be a valid lid type for the container type. retrieve_lid: bool, optional Flag to retrieve lid from previously stored location (see uncover). Returns ------- Cover Returns the :py:class:`autoprotocol.instruction.Cover` instruction created from the specified parameters Raises ------ TypeError If ref is not of type Container. RuntimeError If container type does not have `cover` capability. RuntimeError If lid is not a valid lid type. RuntimeError If container is already sealed with a seal. TypeError If retrieve_lid is not a boolean. """ if not isinstance(ref, Container): raise TypeError("Container to cover must be of type Container.") if "cover" not in ref.container_type.capabilities: raise RuntimeError( f"Container '{ref.name}' type '{ref.container_type.shortname}'," f" cannot be covered." ) if lid is None: lid = ref.container_type.cover_types[0] if lid not in COVER_TYPES: raise RuntimeError(f"{lid} is not a valid lid type") if ref.is_sealed(): raise RuntimeError("A container cannot be covered over a seal.") if retrieve_lid is not None and not isinstance(retrieve_lid, bool): raise TypeError("Cover: retrieve_lid must be of type bool") if not ref.is_covered(): ref.cover = lid return self._append_and_return(Cover(ref, lid, retrieve_lid)) def uncover(self, ref, store_lid=None): """ Remove lid from specified container Example Usage: .. code-block:: python p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") # a plate must have a cover to be uncovered p.cover(sample_plate, lid="universal") p.uncover(sample_plate) Autoprotocol Output: .. code-block:: none "instructions": [ { "lid": "universal", "object": "sample_plate", "op": "cover" }, { "object": "sample_plate", "op": "uncover" } ] Parameters ---------- ref : Container Container to remove lid. store_lid: bool, optional Flag to store the uncovered lid. Returns ------- Uncover Returns the :py:class:`autoprotocol.instruction.Uncover` instruction created from the specified parameters Raises ------ TypeError If ref is not of type Container. RuntimeError If container is sealed with a seal not covered with a lid. TypeError If store_lid is not a boolean. """ if not isinstance(ref, Container): raise TypeError("Container to uncover must be of type Container.") if ref.is_sealed(): raise RuntimeError( "A container with a seal cannot be uncovered, " "use the instruction unseal." ) if store_lid is not None and not isinstance(store_lid, bool): raise TypeError("Uncover: store_lid must be of type bool") if ref.is_covered(): ref.cover = None return self._append_and_return(Uncover(ref, store_lid)) def flow_cytometry( self, dataref, samples, lasers, collection_conditions, width_threshold=None, window_extension=None, remove_coincident_events=None, ): """ A non-ambiguous set of parameters for performing flow cytometry. Parameters ---------- dataref : str Name of dataset that will be returned. samples : list(Well) or Well or WellGroup Wells to be analyzed lasers : list(dict) See FlowCytometryBuilders.laser. collection_conditions : dict See FlowCytometryBuilders.collection_conditions. width_threshold : int or float, optional Threshold to determine width measurement. window_extension : int or float, optional Front and rear window extension. remove_coincident_events : bool, optional Remove coincident events. Returns ------- FlowCytometry Returns a :py:class:`autoprotocol.instruction.FlowCytometry` instruction created from the specified parameters. Raises ------ TypeError If `lasers` is not of type list. TypeError If `samples` is not of type Well, list of Well, or WellGroup. TypeError If `width_threshold` is not a number. TypeError If `window_extension` is not a number. TypeError If `remove_coincident_events` is not of type bool. Examples -------- Example flow cytometry protocol .. code-block:: python p = Protocol() plate = p.ref("sample-plate", cont_type="384-flat", discard=True) lasers = [FlowCytometry.builders.laser( excitation="405:nanometers", channels=[ FlowCytometry.builders.channel( emission_filter=FlowCytometry.builders.emission_filter( channel_name="VL1", shortpass="415:nanometers", longpass="465:nanometers" ), detector_gain="10:millivolts" ) ] )] collection_conds = FlowCytometry.builders.collection_conditions( acquisition_volume="5.0:ul", flowrate="12.5:ul/min", wait_time="10:seconds", mix_cycles=10, mix_volume="10:ul", rinse_cycles=10 ) p.flow_cytometry("flow-1234", plate.wells_from(0, 3), lasers, collection_conds) Autoprotocol Output: .. code-block:: json { "op": "flow_cytometry", "dataref": "flow-1234", "samples": [ "sample-plate/0", "sample-plate/1", "sample-plate/2" ], "lasers": [ { "excitation": "405:nanometer", "channels": [ { "emission_filter": { "channel_name": "VL1", "shortpass": "415:nanometer", "longpass": "465:nanometer" }, "detector_gain": "10:millivolt" } ] } ], "collection_conditions": { "acquisition_volume": "5:microliter", "flowrate": "12.5:microliter/minute", "stop_criteria": { "volume": "5:microliter" }, "wait_time": "10:second", "mix_cycles": 10, "mix_volume": "10:microliter", "rinse_cycles": 10 } } """ if not isinstance(lasers, list): raise TypeError("lasers must be of type list.") if not is_valid_well(samples): raise TypeError( "samples must be of type Well, list of Well, " "or WellGroup." ) if width_threshold is not None: if not isinstance(width_threshold, Number): raise TypeError("width_threshold must be a number.") if window_extension is not None: if not isinstance(window_extension, Number): raise TypeError("window_extension must be a number.") if remove_coincident_events is not None: if not isinstance(remove_coincident_events, bool): raise TypeError("remove_coincident_events must be of type " "bool.") lasers = [FlowCytometry.builders.laser(**_) for _ in lasers] collection_conditions = FlowCytometry.builders.collection_conditions( **collection_conditions ) return self._append_and_return( FlowCytometry( dataref, samples, lasers, collection_conditions, width_threshold, window_extension, remove_coincident_events, ) ) def flow_analyze( self, dataref, FSC, SSC, neg_controls, samples, colors=None, pos_controls=None ): """ Perform flow cytometry. The instruction will be executed within the voltage range specified for each channel, optimized for the best sample separation/distribution that can be achieved within these limits. The vendor will specify the device that this instruction is executed on and which excitation and emission spectra are available. At least one negative control is required, which will be used to define data acquisition parameters as well as to determine any autofluorescent properties for the sample set. Additional negative positive control samples are optional. Positive control samples will be used to optimize single color signals and, if desired, to minimize bleed into other channels. For each sample this instruction asks you to specify the `volume` and/or `captured_events`. Vendors might also require `captured_events` in case their device does not support volumetric sample intake. If both conditions are supported, the vendor will specify if data will be collected only until the first one is met or until both conditions are fulfilled. Example Usage: .. code-block:: python p = Protocol() dataref = "test_ref" FSC = {"voltage_range": {"low": "230:volt", "high": "280:volt"}, "area": True, "height": True, "weight": False} SSC = {"voltage_range": {"low": "230:volt", "high": "280:volt"}, "area": True, "height": True, "weight": False} neg_controls = {"well": "well0", "volume": "100:microliter", "captured_events": 5, "channel": "channel0"} samples = [ { "well": "well0", "volume": "100:microliter", "captured_events": 9 } ] p.flow_analyze(dataref, FSC, SSC, neg_controls, samples, colors=None, pos_controls=None) Autoprotocol Output: .. code-block:: json { "channels": { "FSC": { "voltage_range": { "high": "280:volt", "low": "230:volt" }, "area": true, "height": true, "weight": false }, "SSC": { "voltage_range": { "high": "280:volt", "low": "230:volt" }, "area": true, "height": true, "weight": false } }, "op": "flow_analyze", "negative_controls": { "channel": "channel0", "well": "well0", "volume": "100:microliter", "captured_events": 5 }, "dataref": "test_ref", "samples": [ { "well": "well0", "volume": "100:microliter", "captured_events": 9 } ] } Parameters ---------- dataref : str Name of flow analysis dataset generated. FSC : dict Dictionary containing FSC channel parameters in the form of: .. code-block:: none { "voltage_range": { "low": "230:volt", "high": "280:volt" }, "area": true, //default: true "height": true, //default: true "weight": false //default: false } SSC : dict Dictionary of SSC channel parameters in the form of: .. code-block:: none { "voltage_range": { "low": <voltage>, "high": <voltage>" }, "area": true, //default: true "height": true, //default: false "weight": false //default: false } neg_controls : list(dict) List of negative control wells in the form of: .. code-block:: none { "well": well, "volume": volume, "captured_events": integer, // optional, default infinity "channel": [channel_name] } at least one negative control is required. samples : list(dict) List of samples in the form of: .. code-block:: none { "well": well, "volume": volume, "captured_events": integer // optional, default infinity } at least one sample is required colors : list(dict), optional Optional list of colors in the form of: .. code-block:: none [ { "name": "FitC", "emission_wavelength": "495:nanometer", "excitation_wavelength": "519:nanometer", "voltage_range": { "low": <voltage>, "high": <voltage> }, "area": true, //default: true "height": false, //default: false "weight": false //default: false }, ... ] pos_controls : list(dict), optional Optional list of positive control wells in the form of: .. code-block:: none [ { "well": well, "volume": volume, "captured_events": integer, // default: infinity "channel": [channel_name], "minimize_bleed": [{ // optional "from": color, "to": [color] }, ... ] Returns ------- FlowAnalyze Returns the :py:class:`autoprotocol.instruction.FlowAnalyze` instruction created from the specified parameters Raises ------ TypeError If inputs are not of the correct type. UnitError If unit inputs are not properly formatted. AssertionError If required parameters are missing. ValueError If volumes are not correctly formatted or present. """ sources = [] controls = [] if not isinstance(samples, list): raise TypeError("Samples must be of type list.") else: sources.extend(samples) if not isinstance(neg_controls, list): raise TypeError("Neg_controls must be of type list.") else: sources.extend(neg_controls) controls.extend(neg_controls) if pos_controls and not isinstance(pos_controls, list): raise TypeError("Pos_controls must be of type list.") elif pos_controls: sources.extend(pos_controls) controls.extend(neg_controls) for s in sources: if not isinstance(s.get("well"), Well): raise TypeError( "The well for each sample or control must " "be of type Well." ) try: Unit(s.get("volume")) except (ValueError, TypeError) as e: raise ValueError( f"Each sample or control must indicate a " f"volume of type unit. {e}" ) if s.get("captured_events") and not isinstance( s.get("captured_events"), int ): raise TypeError( "captured_events is optional, if given it" " must be of type integer." ) for c in controls: if not isinstance(c.get("channel"), list): raise TypeError( "Channel must be a list of strings " "indicating the colors/channels that this" " control is to be used for." ) if c.get("minimize_bleed") and not isinstance( c.get("minimize_bleed"), list ): raise TypeError("Minimize_bleed must be of type list.") elif c.get("minimize_bleed"): for b in c["minimize_bleed"]: if not isinstance(b, dict): raise TypeError( "Minimize_bleed must be a list of " "dictonaries. Dictonary was not found" ) else: if not b.get("from"): raise ValueError( "Minimize_bleed dictonaries must" " have a key `from`" ) else: if not isinstance(b["from"], str): raise TypeError( "Minimize_bleed `from` must " "have a string as value" ) if not b.get("to"): raise ValueError( "Minimize_bleed dictonaries must" " have a key `to`" ) else: if not isinstance(b["to"], list): raise ValueError( "Minimize_bleed `to` must " "have a list as value" ) else: for t in b["to"]: if not isinstance(t, str): raise TypeError( "Minimize_bleed `to` " "list must contain " "strings." ) assert FSC and SSC, "You must include parameters for FSC and SSC " "channels." channels = {} channels["FSC"] = FSC channels["SSC"] = SSC for c in channels.values(): if not isinstance(c, dict): raise TypeError("Each channel must be of type dict.") assert c["voltage_range"], ( "You must include a voltage_range for" " each channel." ) assert c["voltage_range"]["high"], ( "You must include an upper " "limit for the volage range" "in each channel." ) assert c["voltage_range"]["low"], ( "You must include a lower " "limit for the volage range " "in each channel." ) if colors: if not isinstance(colors, list): raise TypeError("Colors must be of type list.") else: for c in colors: if not isinstance(c, dict): raise TypeError("Colors must contain elements of " "type dict.") else: if not c.get("name") or not isinstance(c.get("name"), str): raise TypeError( "Each color must have a `name` " "that is of type string." ) if c.get("emission_wavelength"): try: Unit(c.get("emission_wavelength")) except (UnitError): raise UnitError( "Each `emission_wavelength` " "must be of type unit." ) else: raise ValueError( "Each color must have an " "`emission_wavelength`." ) if c.get("excitation_wavelength"): try: Unit(c.get("excitation_wavelength")) except (UnitError): raise UnitError( "Each `excitation_wavelength` " "must be of type unit." ) else: raise ValueError( "Each color must have an " "`excitation_wavelength`." ) for s in sources: self._remove_cover(s["well"].container, "flow_analyze") return self._append_and_return( FlowAnalyze(dataref, FSC, SSC, neg_controls, samples, colors, pos_controls) ) def oligosynthesize(self, oligos): """ Specify a list of oligonucleotides to be synthesized and a destination for each product. Example Usage: .. code-block:: python oligo_1 = p.ref("oligo_1", None, "micro-1.5", discard=True) p.oligosynthesize([{"sequence": "CATGGTCCCCTGCACAGG", "destination": oligo_1.well(0), "scale": "25nm", "purification": "standard"}]) Autoprotocol Output: .. code-block:: none "instructions": [ { "oligos": [ { "destination": "oligo_1/0", "sequence": "CATGGTCCCCTGCACAGG", "scale": "25nm", "purification": "standard" } ], "op": "oligosynthesize" } ] Parameters ---------- oligos : list(dict) List of oligonucleotides to synthesize. Each dictionary should contain the oligo's sequence, destination, scale and purification .. code-block:: none [ { "destination": "my_plate/A1", "sequence": "GATCRYMKSWHBVDN", // - standard IUPAC base codes // - IDT also allows rX (RNA), mX (2' O-methyl RNA), and // X*/rX*/mX* (phosphorothioated) // - they also allow inline annotations for // modifications, // e.g. "GCGACTC/3Phos/" for a 3' phosphorylation // e.g. "aggg/iAzideN/cgcgc" for an // internal modification "scale": "25nm" | "100nm" | "250nm" | "1um", "purification": "standard" | "page" | "hplc", // default: standard }, ... ] Returns ------- Oligosynthesize Returns the :py:class:`autoprotocol.instruction.Oligosynthesize` instruction created from the specified parameters """ return self._append_and_return(Oligosynthesize(oligos)) def autopick(self, sources, dests, min_abort=0, criteria=None, dataref="autopick"): """ Pick colonies from the agar-containing location(s) specified in `sources` to the location(s) specified in `dests` in highest to lowest rank order until there are no more colonies available. If fewer than min_abort pickable colonies have been identified from the location(s) specified in `sources`, the run will stop and no further instructions will be executed. Example Usage: Autoprotocol Output: Parameters ---------- sources : Well or WellGroup or list(Well) Reference wells containing agar and colonies to pick dests : Well or WellGroup or list(Well) List of destination(s) for picked colonies criteria : dict Dictionary of autopicking criteria. min_abort : int, optional Total number of colonies that must be detected in the aggregate list of `from` wells to avoid aborting the entire run. dataref: str Name of dataset to save the picked colonies to Returns ------- Autopick Returns the :py:class:`autoprotocol.instruction.Autopick` instruction created from the specified parameters Raises ------ TypeError Invalid input types for sources and dests ValueError Source wells are not all from the same container """ # Check valid well inputs if not is_valid_well(sources): raise TypeError( "Source must be of type Well, list of Wells, or " "WellGroup." ) if not is_valid_well(dests): raise TypeError( "Destinations (dests) must be of type Well, " "list of Wells, or WellGroup." ) pick = {} sources = WellGroup(sources) pick["from"] = sources if len(set([s.container for s in pick["from"]])) > 1: raise ValueError( "All source wells for autopick must exist " "on the same container" ) dests = WellGroup(dests) pick["to"] = dests pick["min_abort"] = min_abort group = [pick] for s in pick["from"]: self._remove_cover(s.container, "autopick") for d in pick["to"]: self._remove_cover(d.container, "autopick") criteria = {} if criteria is None else criteria return self._append_and_return(Autopick(group, criteria, dataref)) def mag_dry(self, head, container, duration, new_tip=False, new_instruction=False): """ Dry beads with magnetized tips above and outside a container for a set time. Example Usage: .. code-block:: python p = Protocol() plate = p.ref("plate_0", None, "96-pcr", storage="cold_20") p.mag_dry("96-pcr", plate, "30:minute", new_tip=False, new_instruction=False) Autoprotocol Output: .. code-block:: none "instructions": [ { "groups": [ [ { "dry": { "duration": "30:minute", "object": "plate_0" } } ] ], "magnetic_head": "96-pcr", "op": "magnetic_transfer" } ] Parameters ---------- head : str Magnetic head to use for the magnetic bead transfers container : Container Container to dry beads above duration : str or Unit Time for drying new_tip : bool Specify whether to use a new tip to complete the step new_instruction: bool Specify whether to create a new magnetic_transfer instruction Returns ------- MagneticTransfer Returns the :py:class:`autoprotocol.instruction.MagneticTransfer` instruction created from the specified parameters """ mag = MagneticTransfer.builders.mag_dry(object=container, duration=duration) self._remove_cover(container, "mag_dry") return self._add_mag(mag, head, new_tip, new_instruction, "dry") def mag_incubate( self, head, container, duration, magnetize=False, tip_position=1.5, temperature=None, new_tip=False, new_instruction=False, ): """ Incubate the container for a set time with tips set at `tip_position`. Example Usage: .. code-block:: python p = Protocol() plate = p.ref("plate_0", None, "96-pcr", storage="cold_20") p.mag_incubate("96-pcr", plate, "30:minute", magnetize=False, tip_position=1.5, temperature=None, new_tip=False) Autoprotocol Output: .. code-block:: none "instructions": [ { "groups": [ [ { "incubate": { "duration": "30:minute", "tip_position": 1.5, "object": "plate_0", "magnetize": false, "temperature": null } } ] ], "magnetic_head": "96-pcr", "op": "magnetic_transfer" } ] Parameters ---------- head : str Magnetic head to use for the magnetic bead transfers container : Container Container to incubate beads duration : str or Unit Time for incubation magnetize : bool Specify whether to magnetize the tips tip_position : float Position relative to well height that tips are held temperature: str or Unit, optional Temperature heat block is set at new_tip : bool Specify whether to use a new tip to complete the step new_instruction: bool Specify whether to create a new magnetic_transfer instruction Returns ------- MagneticTransfer Returns the :py:class:`autoprotocol.instruction.MagneticTransfer` instruction created from the specified parameters """ mag = MagneticTransfer.builders.mag_incubate( object=container, duration=duration, magnetize=magnetize, tip_position=tip_position, temperature=temperature, ) self._remove_cover(container, "mag_incubate") return self._add_mag(mag, head, new_tip, new_instruction, "incubate") def mag_collect( self, head, container, cycles, pause_duration, bottom_position=0.0, temperature=None, new_tip=False, new_instruction=False, ): """ Collect beads from a container by cycling magnetized tips in and out of the container with an optional pause at the bottom of the insertion. Example Usage: .. code-block:: python p = Protocol() plate = p.ref("plate_0", None, "96-pcr", storage="cold_20") p.mag_collect("96-pcr", plate, 5, "30:second", bottom_position= 0.0, temperature=None, new_tip=False, new_instruction=False) Autoprotocol Output: .. code-block:: none "instructions": [ { "groups": [ [ { "collect": { "bottom_position": 0, "object": "plate_0", "temperature": null, "cycles": 5, "pause_duration": "30:second" } } ] ], "magnetic_head": "96-pcr", "op": "magnetic_transfer" } ] Parameters ---------- head : str Magnetic head to use for the magnetic bead transfers container : Container Container to incubate beads cycles: int Number of cycles to raise and lower tips pause_duration : str or Unit Time tips are paused in bottom position each cycle bottom_position : float Position relative to well height that tips are held during pause temperature: str or Unit Temperature heat block is set at new_tip : bool Specify whether to use a new tip to complete the step new_instruction: bool Specify whether to create a new magnetic_transfer instruction Returns ------- MagneticTransfer Returns the :py:class:`autoprotocol.instruction.MagneticTransfer` instruction created from the specified parameters """ mag = MagneticTransfer.builders.mag_collect( object=container, cycles=cycles, pause_duration=pause_duration, bottom_position=bottom_position, temperature=temperature, ) self._remove_cover(container, "mag_collect") return self._add_mag(mag, head, new_tip, new_instruction, "collect") def mag_release( self, head, container, duration, frequency, center=0.5, amplitude=0.5, temperature=None, new_tip=False, new_instruction=False, ): """ Release beads into a container by cycling tips in and out of the container with tips unmagnetized. Example Usage: .. code-block:: python p = Protocol() plate = p.ref("plate_0", None, "96-pcr", storage="cold_20") p.mag_release("96-pcr", plate, "30:second", "60:hertz", center=0.75, amplitude=0.25, temperature=None, new_tip=False, new_instruction=False) Autoprotocol Output: .. code-block:: none "instructions": [ { "groups": [ [ { "release": { "center": 0.75, "object": "plate_0", "frequency": "2:hertz", "amplitude": 0.25, "duration": "30:second", "temperature": null } } ] ], "magnetic_head": "96-pcr", "op": "magnetic_transfer" } ] Parameters ---------- head : str Magnetic head to use for the magnetic bead transfers container : Container Container to incubate beads duration : str or Unit Total time for this sub-operation frequency : str or Unit Cycles per second (hertz) that tips are raised and lowered center : float Position relative to well height where oscillation is centered amplitude : float Distance relative to well height to oscillate around "center" temperature: str or Unit Temperature heat block is set at new_tip : bool Specify whether to use a new tip to complete the step new_instruction: bool Specify whether to create a new magnetic_transfer instruction Returns ------- MagneticTransfer Returns the :py:class:`autoprotocol.instruction.MagneticTransfer` instruction created from the specified parameters """ mag = MagneticTransfer.builders.mag_release( object=container, duration=duration, frequency=frequency, center=center, amplitude=amplitude, temperature=temperature, ) self._remove_cover(container, "mag_release") return self._add_mag(mag, head, new_tip, new_instruction, "release") def mag_mix( self, head, container, duration, frequency, center=0.5, amplitude=0.5, magnetize=False, temperature=None, new_tip=False, new_instruction=False, ): """ Mix beads in a container by cycling tips in and out of the container. Example Usage: .. code-block:: python p = Protocol() plate = p.ref("plate_0", None, "96-pcr", storage="cold_20") p.mag_mix("96-pcr", plate, "30:second", "60:hertz", center=0.75, amplitude=0.25, magnetize=True, temperature=None, new_tip=False, new_instruction=False) Autoprotocol Output: .. code-block:: none "instructions": [ { "groups": [ [ { "mix": { "center": 0.75, "object": "plate_0", "frequency": "2:hertz", "amplitude": 0.25, "duration": "30:second", "magnetize": true, "temperature": null } } ] ], "magnetic_head": "96-pcr", "op": "magnetic_transfer" } ] Parameters ---------- head : str Magnetic head to use for the magnetic bead transfers container : Container Container to incubate beads duration : str or Unit Total time for this sub-operation frequency : str or Unit Cycles per second (hertz) that tips are raised and lowered center : float Position relative to well height where oscillation is centered amplitude : float Distance relative to well height to oscillate around "center" magnetize : bool Specify whether to magnetize the tips temperature: str or Unit Temperature heat block is set at new_tip : bool Specify whether to use a new tip to complete the step new_instruction: bool Specify whether to create a new magnetic_transfer instruction Returns ------- MagneticTransfer Returns the :py:class:`autoprotocol.instruction.MagneticTransfer` instruction created from the specified parameters """ mag = MagneticTransfer.builders.mag_mix( object=container, duration=duration, frequency=frequency, center=center, amplitude=amplitude, magnetize=magnetize, temperature=temperature, ) self._remove_cover(container, "mag_mix") return self._add_mag(mag, head, new_tip, new_instruction, "mix") def image_plate(self, ref, mode, dataref): """ Capture an image of the specified container. Example Usage: .. code-block:: python p = Protocol() agar_plate = p.ref("agar_plate", None, "1-flat", discard=True) bact = p.ref("bacteria", None, "micro-1.5", discard=True) p.spread(bact.well(0), agar_plate.well(0), "55:microliter") p.incubate(agar_plate, "warm_37", "18:hour") p.image_plate(agar_plate, mode="top", dataref="my_plate_image_1") Autoprotocol Output: .. code-block:: json { "refs": { "bacteria": { "new": "micro-1.5", "discard": true }, "agar_plate": { "new": "1-flat", "discard": true } }, "instructions": [ { "volume": "55.0:microliter", "to": "agar_plate/0", "from": "bacteria/0", "op": "spread" }, { "where": "warm_37", "object": "agar_plate", "co2_percent": 0, "duration": "18:hour", "shaking": false, "op": "incubate" }, { "dataref": "my_plate_image_1", "object": "agar_plate", "mode": "top", "op": "image_plate" } ] } Parameters ---------- ref : str or Container Container to take image of mode : str Imaging mode (currently supported: "top") dataref : str Name of data reference of resulting image Returns ------- ImagePlate Returns the :py:class:`autoprotocol.instruction.ImagePlate` instruction created from the specified parameters """ return self._append_and_return(ImagePlate(ref, mode, dataref)) def provision(self, resource_id, dests, amounts=None, volumes=None): """ Provision a commercial resource from a catalog into the specified destination well(s). A new tip is used for each destination well specified to avoid contamination. Parameters ---------- resource_id : str Resource ID from catalog. dests : Well or WellGroup or list(Well) Destination(s) for specified resource. amounts : str or Unit or list(str) or list(Unit) Volume(s) or Mass(es) to transfer of the resource to each destination well. If one volume or mass is specified, each destination well receive that volume or mass of the resource. If destinations should receive different volume or mass, each one should be specified explicitly in a list matching the order of the specified destinations. Note: Volumes and amounts arguments are mutually exclusive. Only one is required volumes : str or Unit or list(str) or list(Unit) Volume to transfer of the resource to each destination well. If one volume is specified, each destination well receive that volume of the resource. If destinations should receive different volumes, each one should be specified explicitly in a list matching the order of the specified destinations. Note: Volumes and amounts arguments are mutually exclusive. Only one is required Raises ------ TypeError If resource_id is not a string. TypeError If the unit provided is not supported TypeError If volume or mass is not specified as a string or Unit (or a list of either) RuntimeError If length of the list of volumes or masses specified does not match the number of destination wells specified. ValueError If the resource measurement mode is volume and the provision exceeds max capacity of well. ValueError If the provisioning of volumes or amounts are not supported. Returns ------- list(Provision) :py:class:`autoprotocol.instruction.Provision` instruction object(s) to be appended and returned """ # Check valid well inputs if not is_valid_well(dests): raise TypeError( "Destinations (dests) must be of type Well, " "list of Wells, or WellGroup." ) dests = WellGroup(dests) if not isinstance(resource_id, str): raise TypeError("Resource ID must be a string.") if (volumes is None and amounts is None) or (volumes and amounts): raise ValueError( "Either volumes or amounts should have value(s), but not both." ) if volumes: provision_amounts = volumes else: provision_amounts = amounts if not isinstance(provision_amounts, list): provision_amounts = [Unit(provision_amounts)] * len(dests) else: if len(provision_amounts) != len(dests): raise RuntimeError( "To provision a resource into multiple " "destinations with multiple volumes or masses, the " "list of volumes or masses must correspond with the " "destinations in length and in order." ) provision_amounts = [ parse_unit(v, ["liter", "gram"]) for v in provision_amounts ] measurement_mode = self._identify_provision_mode(provision_amounts) provision_instructions_to_return: Provision = [] for d, amount in zip(dests, provision_amounts): if d.container.is_covered() or d.container.is_sealed(): self._remove_cover(d.container, "provision") xfer = {"well": d, measurement_mode: amount} if measurement_mode == "volume": d_max_vol = d.container.container_type.true_max_vol_ul if amount > d_max_vol: raise ValueError( f"The volume you are trying to provision ({amount}) exceeds the " f"maximum capacity of this well ({d_max_vol})." ) if amount > Unit(900, "microliter"): diff = amount - Unit(900, "microliter") provision_instructions_to_return.append( self.provision(resource_id, d, Unit(900, "microliter")) ) while diff > Unit(0.0, "microliter"): provision_instructions_to_return.append( self.provision(resource_id, d, diff) ) diff -= diff continue if d.volume: d.volume += amount else: d.set_volume(amount) dest_group = [xfer] if ( self.instructions and self.instructions[-1].op == "provision" and self.instructions[-1].resource_id == resource_id and self.instructions[-1].to[-1]["well"].container == d.container ): self.instructions[-1].to.append(xfer) else: provision_instructions_to_return.append( self._append_and_return( Provision(resource_id, dest_group, measurement_mode) ) ) return provision_instructions_to_return def _identify_provision_mode(self, provision_amounts): unique_measure_modes = set() for amount in provision_amounts: if not isinstance(amount, Unit): raise TypeError(f"Provided amount {amount} is not supported.") if amount.dimensionality == Unit(1, "liter").dimensionality: unique_measure_modes.add("volume") elif amount.dimensionality == Unit(1, "gram").dimensionality: unique_measure_modes.add("mass") else: raise ValueError( f"Provisioning of resources with measurement unit of {amount.unit} is not supported." ) if len(unique_measure_modes) != 1: raise ValueError("Received amounts with more than one measurement mode") measurement_mode = unique_measure_modes.pop() return measurement_mode def flash_freeze(self, container, duration): """ Flash freeze the contents of the specified container by submerging it in liquid nitrogen for the specified amount of time. Example Usage: .. code-block:: python p = Protocol() sample = p.ref("liquid_sample", None, "micro-1.5", discard=True) p.flash_freeze(sample, "25:second") Autoprotocol Output: .. code-block:: json { "refs": { "liquid_sample": { "new": "micro-1.5", "discard": true } }, "instructions": [ { "duration": "25:second", "object": "liquid_sample", "op": "flash_freeze" } ] } Parameters ---------- container : Container or str Container to be flash frozen. duration : str or Unit Duration to submerge specified container in liquid nitrogen. Returns ------- FlashFreeze Returns the :py:class:`autoprotocol.instruction.FlashFreeze` instruction created from the specified parameters """ return self._append_and_return(FlashFreeze(container, duration)) def sonicate( self, wells, duration, mode, mode_params, frequency=None, temperature=None ): """ Sonicate wells using high intensity ultrasonic vibrations. Example Usage: .. code-block:: python p = Protocol() sample_wells = p.ref("sample_plate", None, "96-pcr", storage="warm_37").wells_from(0,2) p.sonicate(sample_wells, duration="1:minute", mode="bath", mode_params={"sample_holder": "suspender"}) Autoprotocol Output: .. code-block:: json { "op": "sonicate", "wells": ["sample_plate/0", "sample_plate/1"], "mode": "bath", "duration": "1:minute", "temperature": "ambient", "frequency": "40:kilohertz" "mode_params": { "sample_holder": "suspender" } } Parameters ---------- wells : Well or WellGroup or list(Well) Wells to be sonicated duration : Unit or str Duration for which to sonicate wells mode: Enum({"bath", "horn"}) Sonicating method to be used, must be "horn" or "bath". Sonicate mode "horn" uses metal probe to create a localized shear force directly in the sample media; "bath" mode applies ultrasound to wells held inside a bath. temperature: Unit or str, optional Temperature at which the sample is kept during sonication. Optional, defaults to ambient frequency: Unit or str, optional Frequency of the ultrasonic wave, usually indicated in kHz. Optional; defaults to the most commonly used frequency for each mode: 20 kHz for `horn`, and 40 kHz for `bath` mode mode_params: Dict Dictionary containing mode parameters for the specified mode. .. code-block:: none { "mode": "bath", "mode_params": { "sample_holder": Enum({"suspender", "perforated_container", "solid_container"}) "power": Unit or str, optional } } - or - { "mode": "horn", "mode_params": { "duty_cycle": Float, 0 < value <=1 "amplitude": Unit or str } } Returns ------- Sonicate Returns the :py:class:`autoprotocol.instruction.Sonicate` instruction created from the specified parameters Raises ------ RuntimeError If valid mode is not specified. TypeError If wells not of type WellGroup or List of Wells. ValueError If invalid `mode_params` for specified mode. TypeError If invalid `mode_params` type for specified mode. """ sonic_modes = ["bath", "horn"] if mode not in sonic_modes: raise RuntimeError(f"{mode} is not a valid sonication mode") if not isinstance(mode_params, dict): raise TypeError(f"Invalid mode_params {mode_params}, must be a dict") parsed_mode_params = {} if mode == "bath": valid_sample_holders = [ "suspender", "perforated_container", "solid_container", ] valid_mode_params = ["sample_holder", "power"] sample_holder = mode_params.get("sample_holder") if sample_holder not in valid_sample_holders: raise ValueError( f"'sample_holder' must be specified in 'mode_params' mode: " f"{mode} and must be one of {valid_sample_holders}." ) parsed_mode_params["sample_holder"] = sample_holder power = mode_params.get("power") if power: parsed_power = parse_unit(power, "power-watt") parsed_mode_params["power"] = parsed_power frequency = frequency or "40:kilohertz" if mode == "horn": valid_mode_params = ["duty_cycle", "amplitude"] if not all(k in mode_params for k in valid_mode_params): raise ValueError( f"Incorrect mode_params. All of " f"{valid_mode_params} must be included in " f"mode: {mode}" ) duty_cycle = mode_params["duty_cycle"] amplitude = mode_params["amplitude"] if not isinstance(duty_cycle, (int, float)): raise TypeError(f"Invalid duty_cycle {duty_cycle}, must be a decimal") duty_cycle = float(duty_cycle) if not 0 <= duty_cycle <= 1: raise ValueError( f"Invalid duty_cycle {duty_cycle}, must be between 0 and " f"1 (inclusive)." ) parsed_mode_params["duty_cycle"] = duty_cycle parsed_amplitude = parse_unit(amplitude, "micrometer") parsed_mode_params["amplitude"] = parsed_amplitude frequency = frequency or "20:kilohertz" if not is_valid_well(wells): raise TypeError("Wells must be of type Well, list of Wells, or WellGroup.") wells = WellGroup(wells) parsed_duration = parse_unit(duration, "seconds") parsed_frequency = parse_unit(frequency, "hertz") if temperature: parsed_temperature = parse_unit(temperature, "celsius") else: parsed_temperature = None return self._append_and_return( Sonicate( wells, parsed_duration, mode, parsed_mode_params, parsed_frequency, parsed_temperature, ) ) def spe( self, well, cartridge, pressure_mode, load_sample, elute, condition=None, equilibrate=None, rinse=None, ): """ Apply a solid phase extraction (spe) technique to a sample. Example Usage: .. code-block:: python p = Protocol() elute_params = [ SPE.builders.mobile_phase_params( is_elute=True, volume="2:microliter", loading_flowrate="100:ul/second", settle_time="2:minute", processing_time="3:minute", flow_pressure="2:bar", resource_id="solvent_a", destination_well=p.ref("Elute %s" % i, None, "micro-1.5", discard=True).well(0)) for i in range(3) ] sample_loading_params = SPE.builders.mobile_phase_params( volume="10:microliter", loading_flowrate="1:ul/second", settle_time="2:minute", processing_time="3:minute", flow_pressure="2:bar", is_sample=True) cartridge = "spe_cartridge" sample = p.ref("Sample", None, "micro-1.5", discard=True).well(0) p.spe(sample, cartridge, "positive", load_sample=sample_loading_params, elute=elute_params) Autoprotocol Output: .. code-block:: none "instructions": [ { "op": "spe", "elute": [ { "loading_flowrate": "100:microliter/second", "resource_id": "solvent_a", "settle_time": "2:minute", "volume": "2:microliter", "flow_pressure": "2:bar", "destination_well": "Elute 0/0", "processing_time": "3:minute" }, { "loading_flowrate": "100:microliter/second", "resource_id": "solvent_a", "settle_time": "2:minute", "volume": "2:microliter", "flow_pressure": "2:bar", "destination_well": "Elute 1/0", "processing_time": "3:minute" }, { "loading_flowrate": "100:microliter/second", "resource_id": "solvent_a", "settle_time": "2:minute", "volume": "2:microliter", "flow_pressure": "2:bar", "destination_well": "Elute 2/0", "processing_time": "3:minute" } ], "cartridge": "spe_cartridge", "well": "Sample/0", "load_sample": { "flow_pressure": "2:bar", "loading_flowrate": "1:microliter/second", "settle_time": "2:minute", "processing_time": "3:minute", "volume": "10:microliter" }, "pressure_mode": "positive" } ] Parameters ---------- well : Well Well to solid phase extract. cartridge : str Cartridge to use for solid phase extraction. pressure_mode : str The direction of pressure applied to the cartridge to force liquid flow. One of "positive", "negative". load_sample: dict Parameters for applying the sample to the cartridge. Single 'mobile_phase_param'. elute: list(dict) Parameters for applying a mobile phase to the cartridge with one or more solvents. List of 'mobile_phase_params'. Requires `destination_well`. condition: list(dict), optional Parameters for applying a mobile phase to the cartridge with one or more solvents. List of 'mobile_phase_params'. equilibrate: list(dict), optional Parameters for applying a mobile phase to the cartridge with one or more solvents. List of 'mobile_phase_params'. rinse: list(dict), optional Parameters for applying a mobile phase to the cartridge with one or more solvents. List of 'mobile_phase_params'. mobile_phase_params: resource_id: str Resource ID of desired solvent. volume: volume Volume added to the cartridge. loading_flowrate: Unit Speed at which volume is added to cartridge. settle_time: Unit Duration for which the solvent remains on the cartridge before a pressure mode is applied. processing_time: Unit Duration for which pressure is applied to the cartridge after `settle_time` has elapsed. flow_pressure: Unit Pressure applied to the column. destination_well: Well Destination well for eluate. Required parameter for each `elute` mobile phase parameter Returns ------- SPE Returns the :py:class:`autoprotocol.instruction.SPE` instruction created from the specified parameters Raises ------ TypeError Invalid input types, e.g. well given is not of type Well ValueError Wells specified are not from the same container ValueError Invalid pressure_mode ValueError settle_time, processing_time, flow_pressure not greater than 0 ValueError If not exactly one elution parameter for each elution container UnitError Improperly formatted units for mobile phase parameters """ if not is_valid_well(well): raise TypeError("Well must be of type Well.") if not isinstance(cartridge, str): raise TypeError("Cartrige must be of type string.") valid_pressure_modes = ["positive", "negative"] if pressure_mode not in valid_pressure_modes: raise ValueError( f"'pressure_mode': {pressure_mode} has to be one " f"of {valid_pressure_modes}" ) load_sample = SPE.builders.mobile_phase_params(is_sample=True, **load_sample) SPE.builders.spe_params(elute, is_elute=True) if condition: SPE.builders.spe_params(condition) if equilibrate: SPE.builders.spe_params(equilibrate) if rinse: SPE.builders.spe_params(rinse) return self._append_and_return( SPE( well, cartridge, pressure_mode, load_sample, elute, condition, equilibrate, rinse, ) ) def image( self, ref, mode, dataref, num_images=1, backlighting=None, exposure=None, magnification=1.0, ): """ Capture an image of the specified container. Example Usage: .. code-block:: python p = Protocol() sample = p.ref("Sample", None, "micro-1.5", discard=True) p.image(sample, "top", "image_1", num_images=3, backlighting=False, exposure={"iso": 4}, magnification=1.0) Autoprotocol Output: .. code-block:: json { "refs": { "Sample": { "new": "micro-1.5", "discard": true } }, "instructions": [ { "magnification": 1.0, "backlighting": false, "mode": "top", "dataref": "image_1", "object": "Sample", "num_images": 3, "op": "image", "exposure": { "iso": 4 } } ] } Parameters ---------- ref : Container Container of which to take image. mode : Enum("top", "bottom", "side") Angle of image. num_images : int Number of images taken of the container. Defaults to 1. dataref : str Name of data reference of resulting image backlighting : Bool, optional Whether back-lighting is desired. magnification : float Ratio of sizes of the image projected on the camera sensor compared to the actual size of the object captured. Defaults to 1.0. exposure : dict, optional Parameters to control exposure: "aperture", "iso", and "shutter_speed". shutter_speed: Unit, optional Duration that the imaging sensor is exposed. iso : Float, optional Light sensitivity of the imaging sensor. aperture: Float, optional Diameter of the lens opening. Returns ------- Image Returns the :py:class:`autoprotocol.instruction.Image` instruction created from the specified parameters Raises ------ TypeError Invalid input types, e.g. num_images is not a positive integer ValueError Invalid exposure parameter supplied """ valid_image_modes = ["top", "bottom", "side"] if not isinstance(ref, Container): raise TypeError(f"image ref: {ref} has to be of type Container") if mode not in valid_image_modes: raise ValueError( f"specified mode: {mode} must be one of " f"{valid_image_modes}" ) if not isinstance(dataref, str): raise TypeError("dataref must be of type String.") if not isinstance(num_images, int) or num_images <= 0: raise TypeError("num_images must be a positive integer.") if magnification: if not isinstance(magnification, (float, int)) or magnification <= 0: raise TypeError("magnification must be a number.") if backlighting: if not isinstance(backlighting, bool): raise TypeError("backlighting must be a boolean.") if exposure: valid_exposure_params = ["shutter_speed", "iso", "aperture"] if not isinstance(exposure, dict): raise TypeError( f"exposure must be a dict with optional keys: " f"{valid_exposure_params}." ) if not all(k in valid_exposure_params for k in exposure): raise ValueError( f"Invalid exposure param. Valid params: " f"{valid_exposure_params}." ) shutter_speed = exposure.get("shutter_speed") if shutter_speed: shutter_speed = parse_unit(shutter_speed, "millimeter/s") iso = exposure.get("iso") if iso: if not isinstance(iso, (float, int)): raise TypeError("iso must be a number.") aperture = exposure.get("aperture") if aperture: if not isinstance(aperture, (float, int)): raise TypeError("aperture must be a number.") return self._append_and_return( Image(ref, mode, dataref, num_images, backlighting, exposure, magnification) ) def _ref_for_well(self, well): return "%s/%d" % (self._ref_for_container(well.container), well.index) def _ref_for_container(self, container): for k in self.refs: v = self.refs[k] if v.container is container: return k def _remove_cover(self, container, action): if not container.container_type.is_tube: if not (container.is_covered() or container.is_sealed()): return elif container.cover in COVER_TYPES: self.uncover(container) elif container.cover in SEAL_TYPES: self.unseal(container) else: raise RuntimeError( f"The operation {action} requires an uncovered container, " f"however, {container.cover} is not a recognized cover or " f"seal type." ) def _add_cover(self, container, action): if not container.container_type.is_tube: if container.is_covered() or container.is_sealed(): return elif "cover" in container.container_type.capabilities: self.cover(container, container.container_type.cover_types[0]) elif "seal" in container.container_type.capabilities: self.seal(container, container.container_type.seal_types[0]) else: raise RuntimeError( f"The operation {action} requires a covered container, " f"however, {container.container_type.name} does not have " f"a recognized cover or seal type." ) def _add_seal(self, container, action): if not container.container_type.is_tube: if container.is_sealed(): return elif container.is_covered(): raise RuntimeError( f"The operation {action} requires a sealed container, " f"however, {container.name} currently hasa lid which needs " f"to be first removed." ) if "seal" in container.container_type.capabilities: self.seal(container, container.container_type.seal_types[0]) else: raise RuntimeError( f"The operation {action} requires a sealed container, " f"however, {container.container_type.name} does not have " f"a recognized seal type." ) def _add_mag(self, sub_op, head, new_tip, new_instruction, sub_op_name): """ Append given magnetic_transfer groups to protocol """ last_instruction = self.instructions[-1] if self.instructions else None maybe_same_instruction = ( new_instruction is False and last_instruction and isinstance(last_instruction, MagneticTransfer) and last_instruction.data.get("magnetic_head") == head ) # Overwriting __dict__ since that's edited on __init__ and we use it # for downstream checks if maybe_same_instruction and new_tip is True: new_groups = last_instruction.data.get("groups") new_groups.append([{sub_op_name: sub_op}]) last_instruction.__dict__ = MagneticTransfer( groups=new_groups, magnetic_head=head ).__dict__ return last_instruction elif maybe_same_instruction and new_tip is False: new_groups = last_instruction.data.get("groups") new_groups[-1].append({sub_op_name: sub_op}) last_instruction.__dict__ = MagneticTransfer( groups=new_groups, magnetic_head=head ).__dict__ return last_instruction else: return self._append_and_return( MagneticTransfer(groups=[[{sub_op_name: sub_op}]], magnetic_head=head) ) # pylint: disable=protected-access def _refify(self, op_data): """ Unpacks protocol objects into Autoprotocol compliant ones Used by as_dict(). Parameters ---------- op_data: any protocol object Returns ------- dict or str or list or any Autoprotocol compliant objects """ if type(op_data) is dict: return {k: self._refify(v) for k, v in op_data.items()} elif type(op_data) is list: return [self._refify(i) for i in op_data] elif isinstance(op_data, Well): return self._ref_for_well(op_data) elif isinstance(op_data, WellGroup): return [self._ref_for_well(w) for w in op_data.wells] elif isinstance(op_data, Container): return self._ref_for_container(op_data) elif isinstance(op_data, Unit): return str(op_data) elif isinstance(op_data, Instruction): return self._refify(op_data._as_AST()) elif isinstance(op_data, Ref): return op_data.opts else: return op_data def _ref_containers_and_wells(self, params): """ Used by harness.run() to process JSON container and well references .. code-block:: python parameters = { "sample": { "id": null, "type": "micro-1.5", "storage": "cold_4", "discard": null }, "mastermix_loc": "sample_plate/A1", "samples": [ "sample_plate/B1", "sample_plate/B2", "sample_plate/B3", "sample_plate/B4" ] } protocol.make_well_references(parameters) returns: .. code-block:: python { "refs":{ "sample": Container(None, "micro-1.5") }, "mastermix_loc": protocol.refs["sample_plate"].well("A1"), "samples": WellGroup([ protocol.refs["sample_plate"].well("B1"), protocol.refs["sample_plate"].well("B2"), protocol.refs["sample_plate"].well("B3"), protocol.refs["sample_plate"].well("B4") ]) } Parameters ---------- params : dict A dictionary of parameters to be passed to a protocol. Returns ------- dict Dictionary of containers and wells Raises ------ RuntimeError Invalid parameters """ parameters = {} containers = {} # ref containers for k, v in params.items(): if isinstance(v, dict): parameters[str(k)] = self._ref_containers_and_wells(v) if isinstance(v, list) and isinstance(v[0], dict): for cont in v: self._ref_containers_and_wells(cont.encode("utf-8")) elif isinstance(v, dict) and "type" in v: if "discard" in v: discard = v["discard"] if discard and v.get("storage"): raise RuntimeError( "You must either specify a storage " "condition or set discard to true, " "not both." ) else: discard = False containers[str(k)] = self.ref( k, v["id"], v["type"], storage=v.get("storage"), discard=discard ) else: parameters[str(k)] = v parameters["refs"] = containers # ref wells (must be done after reffing containers) for k, v in params.items(): if isinstance(v, list) and "/" in str(v[0]): group = WellGroup([]) for w in v: cont, well = w.rsplit("/", 1) group.append(self.refs[cont].container.well(well)) parameters[str(k)] = group elif "/" in str(v): ref_name = v.rsplit("/")[0] if ref_name not in self.refs: raise RuntimeError( f"Parameters contain well references to a container that isn't referenced in this protocol: '{ref_name}'." ) if v.rsplit("/")[1] == "all_wells": parameters[str(k)] = self.refs[ref_name].container.all_wells() else: parameters[str(k)] = self.refs[ref_name].container.well( v.rsplit("/")[1] ) else: parameters[str(k)] = v return parameters def measure_concentration(self, wells, dataref, measurement, volume="2:microliter"): """ Measure the concentration of DNA, ssDNA, RNA or protein in the specified volume of the source aliquots. Example Usage: .. code-block:: python p = Protocol() test_plate = p.ref("test_plate", id=None, cont_type="96-flat", storage=None, discard=True) p.measure_concentration(test_plate.wells_from(0, 3), "mc_test", "DNA") p.measure_concentration(test_plate.wells_from(3, 3), dataref="mc_test2", measurement="protein", volume="4:microliter") Autoprotocol Output: .. code-block:: none { "refs": { "test_plate": { "new": "96-flat", "discard": true } }, "instructions": [ { "volume": "2.0:microliter", "dataref": "mc_test", "object": [ "test_plate/0", "test_plate/1", "test_plate/2" ], "op": "measure_concentration", "measurement": "DNA" }, ... ] } Parameters ---------- wells : list(Well) or WellGroup or Well WellGroup of wells to be measured volume : str or Unit Volume of sample required for analysis dataref : str Name of this specific dataset of measurements measurement : str Class of material to be measured. One of ["DNA", "ssDNA", "RNA", "protein"]. Returns ------- MeasureConcentration Returns the :py:class:`autoprotocol.instruction.MeasureConcentration` instruction created from the specified parameters Raises ------ TypeError `wells` specified is not of a valid input type """ if not is_valid_well(wells): raise TypeError("Wells must be of type Well, list of Wells, or WellGroup.") wells = WellGroup(wells) return self._append_and_return( MeasureConcentration(wells, volume, dataref, measurement) ) def measure_mass(self, container, dataref): """ Measure the mass of a container. Example Usage: .. code-block:: python p = Protocol() test_plate = p.ref("test_plate", id=None, cont_type="96-flat", storage=None, discard=True) p.measure_mass(test_plate, "test_data") Autoprotocol Output: .. code-block:: json { "refs": { "test_plate": { "new": "96-flat", "discard": true } }, "instructions": [ { "dataref": "test_data", "object": [ "test_plate" ], "op": "measure_mass" } ] } Parameters ---------- container : Container container to be measured dataref : str Name of this specific dataset of measurements Returns ------- MeasureMass Returns the :py:class:`autoprotocol.instruction.MeasureMass` instruction created from the specified parameters Raises ------ TypeError Input given is not of type Container """ if not isinstance(container, Container): raise TypeError(f"{container} has to be of type Container") return self._append_and_return(MeasureMass(container, dataref)) def measure_volume(self, wells, dataref): """ Measure the volume of each well in wells. Example Usage: .. code-block:: python p = Protocol() test_plate = p.ref("test_plate", id=None, cont_type="96-flat", storage=None, discard=True) p.measure_volume(test_plate.from_wells(0,2), "test_data") Autoprotocol Output: .. code-block:: json { "refs": { "test_plate": { "new": "96-flat", "discard": true } }, "instructions": [ { "dataref": "test_data", "object": [ "test_plate/0", "test_plate/1" ], "op": "measure_volume" } ] } Parameters ---------- wells : list(Well) or WellGroup or Well list of wells to be measured dataref : str Name of this specific dataset of measurements Returns ------- MeasureVolume Returns the :py:class:`autoprotocol.instruction.MeasureVolume` instruction created from the specified parameters Raises ------ TypeError `wells` specified is not of a valid input type """ if not is_valid_well(wells): raise TypeError("Wells must be of type Well, list of Wells, or WellGroup.") wells = WellGroup(wells) return self._append_and_return(MeasureVolume(wells, dataref)) def count_cells(self, wells, volume, dataref, labels=None): """ Count the number of cells in a sample that are positive/negative for a given set of labels. Example Usage: .. code-block:: python p = Protocol() cell_suspension = p.ref( "cells_with_trypan_blue", id=None, cont_type="micro-1.5", discard=True ) p.count_cells( cell_suspension.well(0), "10:microliter", "my_cell_count", ["trypan_blue"] ) Autoprotocol Output: .. code-block:: json { "refs": { "cells_with_trypan_blue": { "new": "micro-1.5", "discard": true } }, "instructions": [ { "dataref": "my_cell_count", "volume": "10:microliter", "wells": [ "cells_with_trypan_blue/0" ], "labels": [ "trypan_blue" ], "op": "count_cells" } ] } Parameters ---------- wells: Well or list(Well) or WellGroup List of wells that will be used for cell counting. volume: Unit Volume that should be consumed from each well for the purpose of cell counting. dataref: str Name of dataset that will be returned. labels: list(string), optional Cells will be scored for presence or absence of each label in this list. If staining is required to visualize these labels, they must be added before execution of this instruction. Returns ------- CountCells Returns the :py:class:`autoprotocol.instruction.CountCells` instruction created from the specified parameters Raises ------ TypeError `wells` specified is not of a valid input type """ # Check valid well inputs if not is_valid_well(wells): raise TypeError("Wells must be of type Well, list of Wells, or WellGroup.") wells = WellGroup(wells) # Parse volume parsed_volume = parse_unit(volume, "microliter") # Eliminate duplicates from labels parsed_labels = list(set(labels)) return self._append_and_return( CountCells(wells, parsed_volume, dataref, parsed_labels) ) def spectrophotometry( self, dataref, obj, groups, interval=None, num_intervals=None, temperature=None, shake_before=None, ): """ Generates an instruction with one or more plate reading steps executed on a single plate with the same device. This could be executed once, or at a defined interval, across some total duration. Example Usage: .. code-block:: python p = Protocol() read_plate = p.ref("read plate", cont_type="96-flat", discard=True) groups = Spectrophotometry.builders.groups( [ Spectrophotometry.builders.group( "absorbance", Spectrophotometry.builders.absorbance_mode_params( wells=read_plate.wells(0, 1), wavelength=["100:nanometer", "200:nanometer"], num_flashes=15, settle_time="1:second" ) ), Spectrophotometry.builders.group( "fluorescence", Spectrophotometry.builders.fluorescence_mode_params( wells=read_plate.wells(0, 1), excitation=[ Spectrophotometry.builders.wavelength_selection( ideal="650:nanometer" ) ], emission=[ Spectrophotometry.builders.wavelength_selection( shortpass="600:nanometer", longpass="700:nanometer" ) ], num_flashes=15, settle_time="1:second", lag_time="9:second", integration_time="2:second", gain=0.3, read_position="top" ) ), Spectrophotometry.builders.group( "luminescence", Spectrophotometry.builders.luminescence_mode_params( wells=read_plate.wells(0, 1), num_flashes=15, settle_time="1:second", integration_time="2:second", gain=0.3 ) ), Spectrophotometry.builders.group( "shake", Spectrophotometry.builders.shake_mode_params( duration="1:second", frequency="9:hertz", path="ccw_orbital", amplitude="1:mm" ) ), ] ) shake_before = Spectrophotometry.builders.shake_before( duration="10:minute", frequency="5:hertz", path="ccw_orbital", amplitude="1:mm" ) p.spectrophotometry( dataref="test data", obj=read_plate, groups=groups, interval="10:minute", num_intervals=2, temperature="37:celsius", shake_before=shake_before ) Autoprotocol Output: .. code-block:: json { "op": "spectrophotometry", "dataref": "test data", "object": "read plate", "groups": [ { "mode": "absorbance", "mode_params": { "wells": [ "read plate/0", "read plate/1" ], "wavelength": [ "100:nanometer", "200:nanometer" ], "num_flashes": 15, "settle_time": "1:second" } }, { "mode": "fluorescence", "mode_params": { "wells": [ "read plate/0", "read plate/1" ], "excitation": [ { "ideal": "650:nanometer" } ], "emission": [ { "shortpass": "600:nanometer", "longpass": "700:nanometer" } ], "num_flashes": 15, "settle_time": "1:second", "lag_time": "9:second", "integration_time": "2:second", "gain": 0.3, "read_position": "top" } }, { "mode": "luminescence", "mode_params": { "wells": [ "read plate/0", "read plate/1" ], "num_flashes": 15, "settle_time": "1:second", "integration_time": "2:second", "gain": 0.3 } }, { "mode": "shake", "mode_params": { "duration": "1:second", "frequency": "9:hertz", "path": "ccw_orbital", "amplitude": "1:millimeter" } } ], "interval": "10:minute", "num_intervals": 2, "temperature": "37:celsius", "shake_before": { "duration": "10:minute", "frequency": "5:hertz", "path": "ccw_orbital", "amplitude": "1:millimeter" } } Parameters ---------- dataref : str Name of the resultant dataset to be returned. obj : Container or str Container to be read. groups : list A list of groups generated by SpectrophotometryBuilders groups builders, any of absorbance_mode_params, fluorescence_mode_params, luminescence_mode_params, or shake_mode_params. interval : Unit or str, optional The time between each of the read intervals. num_intervals : int, optional The number of times that the groups should be executed. temperature : Unit or str, optional The temperature that the entire instruction should be executed at. shake_before : dict, optional A dict of params generated by SpectrophotometryBuilders.shake_before that dictates how the obj should be incubated with shaking before any of the groups are executed. Returns ------- Spectrophotometry Returns the :py:class:`autoprotocol.instruction.Spectrophotometry` instruction created from the specified parameters Raises ------ TypeError Invalid num_intervals specified, must be an int ValueError No interval specified but shake groups specified with no duration """ groups = Spectrophotometry.builders.groups(groups) if interval is not None: interval = parse_unit(interval, "seconds") if num_intervals and not isinstance(num_intervals, int): raise TypeError(f"Invalid num_intervals {num_intervals}, must be an int.") if temperature is not None: temperature = parse_unit(temperature, "celsius") if shake_before is not None: shake_before = Spectrophotometry.builders.shake_before(**shake_before) shake_groups = [_ for _ in groups if _["mode"] == "shake"] any_shake_duration_undefined = any( _["mode_params"].get("duration") is None for _ in shake_groups ) if any_shake_duration_undefined and interval is None: raise ValueError( "If no interval is specified, then every shake group must " "include a defined duration." ) return self._append_and_return( Spectrophotometry( dataref=dataref, object=obj, groups=groups, interval=interval, num_intervals=num_intervals, temperature=temperature, shake_before=shake_before, ) ) # pylint: disable=protected-access def transfer( self, source, destination, volume, rows=1, columns=1, source_liquid=LiquidClass, destination_liquid=LiquidClass, method=Transfer, one_tip=False, density=None, mode=None, ): """Generates LiquidHandle instructions between wells Transfer liquid between specified pairs of source & destination wells. Parameters ---------- source : Well or WellGroup or list(Well) Well(s) to transfer liquid from. destination : Well or WellGroup or list(Well) Well(s) to transfer liquid to. volume : str or Unit or list(str) or list(Unit) Volume(s) of liquid to be transferred from source wells to destination wells. The number of volumes specified must correspond to the number of destination wells. rows : int, optional Number of rows to be concurrently transferred columns : int, optional Number of columns to be concurrently transferred source_liquid : LiquidClass or list(LiquidClass), optional Type(s) of liquid contained in the source Well. This affects the aspirate and dispense behavior including the flowrates, liquid level detection thresholds, and physical movements. destination_liquid : LiquidClass or list(LiquidClass), optional Type(s) of liquid contained in the destination Well. This affects liquid level detection thresholds. method : Transfer or list(Transfer), optional Integrates with the specified source_liquid and destination_liquid to define a set of physical movements. one_tip : bool, optional If True then a single tip will be used for all operations density : Unit or str, optional Density of the liquid to be aspirated/dispensed mode : str, optional The liquid handling mode Returns ------- list(LiquidHandle) Returns a list of :py:class:`autoprotocol.instruction.LiquidHandle` instructions created from the specified parameters Raises ------ ValueError if the specified parameters can't be interpreted as lists of equal length ValueError if one_tip is true, but not all transfer methods have a tip_type Examples -------- Transfer between two single wells .. code-block:: python from autoprotocol import Protocol, Unit p = Protocol() source = p.ref("source", cont_type="384-flat", discard=True) destination = p.ref( "destination", cont_type="394-pcr", discard=True ) p.transfer(source.well(0), destination.well(1), "5:ul") Sequential transfers between two groups of wells .. code-block:: python sources = source.wells_from(0, 8, columnwise=True) dests = destination.wells_from(1, 8, columnwise=True) volumes = [Unit(x, "ul") for x in range(1, 9)] p.transfer(sources, dests, volumes) Concurrent transfers between two groups of wells .. code-block:: python # single-column concurrent transfer p.transfer( source.well(0), destination.well(1), "5:ul", rows=8 ) # 96-well concurrent transfer from the A1 to B2 quadrants p.transfer( source.well(0), destination.well(13), "5:ul", rows=8, columns=12 ) # 384-well concurrent transfer p.transfer( source.well(0), destination.well(0), "5:ul", rows=16, columns=24 ) Transfer with extra parameters .. code-block:: python from autoprotocol.liquid_handle import Transfer from autoprotocol.instruction import LiquidHandle p.transfer( source.well(0), destination.well(0), "5:ul", method=Transfer( mix_before=True, dispense_z=LiquidHandle.builders.position_z( reference="well_top" ) ) ) Transfer using other built in Transfer methods .. code-block:: python from autoprotocol.liquid_handle import DryWellTransfer p.transfer( source.well(0), destination.well(1), "5:ul", method=DryWellTransfer ) For examples of other more complicated behavior, see the documentation for LiquidHandleMethod. See Also -------- Transfer : base LiquidHandleMethod for transfer operations """ def location_helper(source, destination, volume, method, density): """Generates LiquidHandle transfer locations Parameters ---------- source : Well Well to transfer liquid from. destination : Well Well to transfer liquid to. volume : Unit The volume of liquid to be transferred from source well to destination well. method : Transfer Integrates the two input liquid classes and defines a set of transfers based on their attributes and methods. density : Unit The density of liquid to be aspirated/dispensed. Returns ------- list(dict) LiquidHandle locations """ self._remove_cover(source.container, "liquid_handle from") self._remove_cover(destination.container, "liquid_handle into") self._transfer_volume(source, destination, volume, method._shape) return [ LiquidHandle.builders.location( location=source, # pylint: disable=protected-access transports=method._aspirate_transports(volume, density), ), LiquidHandle.builders.location( location=destination, # pylint: disable=protected-access transports=method._dispense_transports(volume, density), ), ] # validate parameter types source = WellGroup(source) destination = WellGroup(destination) count = max((len(source), len(destination))) if len(source) == 1: source = WellGroup([source[0]] * count) if len(destination) == 1: destination = WellGroup([destination[0]] * count) if not isinstance(volume, list): volume = [volume] * count volume = [parse_unit(_, "uL") for _ in volume] if density: if not isinstance(density, list): density = [density] * count elif len(density) != count: raise ValueError( f"the length of provided density: {len(density)} does not match the number of transports." ) density = [parse_unit(d, "mg/ml") for d in density] for d in density: if d.magnitude <= 0: raise ValueError(f"Density: {d} must be a value larger than 0.") else: # if density is None, it should still be a list of None density = [density] * count if not isinstance(source_liquid, list): source_liquid = [source_liquid] * count source_liquid = [_validate_as_instance(_, LiquidClass) for _ in source_liquid] if not isinstance(destination_liquid, list): destination_liquid = [destination_liquid] * count destination_liquid = [ _validate_as_instance(_, LiquidClass) for _ in destination_liquid ] if not isinstance(method, list): method = [method] * count method = [_validate_as_instance(_, Transfer) for _ in method] # validate parameter counts countable_parameters = ( source, destination, volume, density, source_liquid, destination_liquid, method, ) correct_parameter_counts = all(len(_) == count for _ in countable_parameters) if not correct_parameter_counts: raise ValueError( f"Specified parameters {countable_parameters} could not all be interpreted as the same length {correct_parameter_counts}." ) # format shape shape = LiquidHandle.builders.shape(rows, columns, None) # validate all containers against the shape for aliquot in sum(source, destination): container_type = aliquot.container.container_type _check_container_type_with_shape(container_type, shape) # apply liquid classes to transfer methods for src, des, met in zip(source_liquid, destination_liquid, method): met._shape = LiquidHandle.builders.shape(**shape) met._source_liquid = src met._destination_liquid = des # apply tip types to transfer methods for vol, met in zip(volume, method): if met._has_calibration() and not met.tip_type: try: met.tip_type = met._rec_tip_type(vol) except RuntimeError: met.tip_type = met._get_sorted_tip_types()[-1].name # if one tip is true then all methods need to have the same tip_type if one_tip is True: tip_types = [_.tip_type for _ in method] if not all(_ == tip_types[0] for _ in tip_types): raise ValueError( f"If one_tip is true and any tip_type is set, then all tip types must be the same but {tip_types} was specified." ) # generate either a LiquidHandle location or instruction list locations, instructions = [], [] for src, des, vol, met, dens in zip( source, destination, volume, method, density ): max_tip_capacity = met._tip_capacity() remaining_vol = vol while remaining_vol > Unit(0, "ul"): transfer_vol = min(remaining_vol, max_tip_capacity) if one_tip is True: locations += location_helper(src, des, transfer_vol, met, dens) else: location_transports = location_helper( src, des, transfer_vol, met, dens ) source_transports = location_transports[0]["transports"] instruction_mode = mode if not instruction_mode: instruction_mode = LiquidHandle.builders.desired_mode( source_transports, mode ) instructions.append( LiquidHandle( location_transports, shape=met._shape, mode=instruction_mode, mode_params=( LiquidHandle.builders.instruction_mode_params( tip_type=met.tip_type ) ), ) ) remaining_vol -= transfer_vol # if one tip is true then there's a locations list if locations: source_transports = locations[0]["transports"] # if not mode: mode = LiquidHandle.builders.desired_mode(source_transports, mode) instructions.append( LiquidHandle( locations, shape=shape, mode=mode, mode_params=LiquidHandle.builders.instruction_mode_params( tip_type=method[0].tip_type ), ) ) return self._append_and_return(instructions) # pylint: disable=protected-access def mix( self, well, volume, rows=1, columns=1, liquid=LiquidClass, method=Mix, one_tip=False, mode=None, ): """Generates LiquidHandle instructions within wells Mix liquid in specified wells. Parameters ---------- well : Well or WellGroup or list(Well) Well(s) to be mixed. volume : str or Unit or list(str) or list(Unit) Volume(s) of liquid to be mixed within the specified well(s). The number of volume(s) specified must correspond with the number of well(s). rows : int, optional Number of rows to be concurrently mixed columns : int, optional Number of columns to be concurrently mixed liquid : LiquidClass or list(LiquidClass), optional Type(s) of liquid contained in the Well(s). This affects the aspirate and dispense behavior including the flowrates, liquid level detection thresholds, and physical movements. method : Mix or list(Mix), optional Method(s) with which Integrates with the specified liquid to define a set of physical movements. one_tip : bool, optional If True then a single tip will be used for all operations mode : str, optional The liquid handling mode Returns ------- list(LiquidHandle) Returns a list of :py:class:`autoprotocol.instruction.LiquidHandle` instructions created from the specified parameters Raises ------ ValueError if the specified parameters can't be interpreted as lists of equal length ValueError if one_tip is true, but not all mix methods have a tip_type ValueError if the specified volume is larger than the maximum tip capacity of the available liquid_handling devices for a given mix Examples -------- Mix within a single well .. code-block:: python from autoprotocol import Protocol, Unit p = Protocol() plate = p.ref("example_plate", cont_type="384-flat", discard=True) p.mix(plate.well(0), "5:ul") Sequential mixes within multiple wells .. code-block:: python wells = plate.wells_from(0, 8, columnwise=True) volumes = [Unit(x, "ul") for x in range(1, 9)] p.mix(wells, volumes) Concurrent mixes within multiple wells .. code-block:: python # single-column concurrent mix p.mix(plate.well(0), "5:ul", rows=8) # 96-well concurrent mix in the A1 quadrant p.mix(plate.well(0), "5:ul", rows=8, columns=12) # 96-well concurrent mix in the A2 quadrant p.mix(plate.well(1), "5:ul", rows=8, columns=12) # 384-well concurrent mix p.mix(plate.well(0), "5:ul", rows=16, columns=24) Mix with extra parameters .. code-block:: python from autoprotocol.liquid_handle import Mix from autoprotocol.instruction import LiquidHandle p.mix( plate.well(0), "5:ul", rows=8, method=Mix( mix_params=LiquidHandle.builders.mix( ) ) ) See Also -------- Mix : base LiquidHandleMethod for mix operations """ def location_helper(aliquot, volume, method): """Generates LiquidHandle mix locations Parameters ---------- aliquot : Well Wells to transfer mix liquid in. volume : Unit The volume of liquid to be transferred within the aliquot. method : Mix Integrates the input liquid class and defines a set of transfers based on its attributes and methods. Returns ------- list(dict) LiquidHandle locations """ self._remove_cover(aliquot.container, "liquid_handle in") return [ LiquidHandle.builders.location( location=aliquot, transports=method._mix_transports(volume) ) ] # validate parameter types well = WellGroup(well) count = len(well) if not isinstance(volume, list): volume = [volume] * count volume = [parse_unit(_, "uL") for _ in volume] if not isinstance(liquid, list): liquid = [liquid] * count liquid = [_validate_as_instance(_, LiquidClass) for _ in liquid] if not isinstance(method, list): method = [method] * count method = [_validate_as_instance(_, Mix) for _ in method] # validate parameter counts countable_parameters = (well, volume, liquid, method) correct_parameter_counts = all(len(_) == count for _ in countable_parameters) if not correct_parameter_counts: raise ValueError( f"Specified parameters {countable_parameters} could not all be interpreted as the same length {correct_parameter_counts}." ) # format shape shape = LiquidHandle.builders.shape(rows, columns, None) # validate all containers against the shape for aliquot in well: container_type = aliquot.container.container_type _check_container_type_with_shape(container_type, shape) # apply liquid classes to mix methods for liq, met in zip(liquid, method): met._shape = LiquidHandle.builders.shape(**shape) met._liquid = liq # apply tip types to mix methods for vol, met in zip(volume, method): if met._has_calibration() and not met.tip_type: try: met.tip_type = met._rec_tip_type(vol) except RuntimeError: met.tip_type = met._get_sorted_tip_types()[-1].name # if one tip is true then all methods need to have the same tip_type if one_tip is True: tip_types = [_.tip_type for _ in method] if not all(_ == tip_types[0] for _ in tip_types): raise ValueError( f"If one_tip is true and any tip_type is set, then all tip types must be the same but {tip_types} was specified." ) # generate either a LiquidHandle location or instruction list locations, instructions = [], [] for wel, vol, met in zip(well, volume, method): max_tip_capacity = met._tip_capacity() if vol > max_tip_capacity: raise ValueError( f"Attempted mix volume {vol} is larger than the maximum capacity of {max_tip_capacity} for transfer shape {vol.shape}." ) self._remove_cover(wel.container, "liquid_handle mix") if one_tip is True: locations += location_helper(wel, vol, met) else: location_transports = location_helper(wel, vol, met) source_transports = location_transports[0]["transports"] instruction_mode = mode if not instruction_mode: instruction_mode = LiquidHandle.builders.desired_mode( source_transports, mode ) instructions.append( LiquidHandle( location_transports, shape=met._shape, mode=instruction_mode, mode_params=( LiquidHandle.builders.instruction_mode_params( tip_type=met.tip_type ) ), ) ) # if one tip is true then there's a locations list if locations: source_transports = locations[0]["transports"] if not mode: mode = LiquidHandle.builders.desired_mode(source_transports, mode) instructions.append( LiquidHandle( locations, shape=shape, mode=mode, mode_params=LiquidHandle.builders.instruction_mode_params( tip_type=method[0].tip_type ), ) ) return self._append_and_return(instructions) def spread( self, source, dest, volume="50:microliter", dispense_speed="20:microliter/second", ): """ Spread the specified volume of the source aliquot across the surface of the agar contained in the object container. Uses a spiral pattern generated by a set of liquid_handle instructions. Example Usage: .. code-block:: python p = Protocol() agar_plate = p.ref("agar_plate", None, "1-flat", discard=True) bact = p.ref("bacteria", None, "micro-1.5", discard=True) p.spread(bact.well(0), agar_plate.well(0), "55:microliter") Parameters ---------- source : Well Source of material to spread on agar dest : Well Reference to destination location (plate containing agar) volume : str or Unit, optional Volume of source material to spread on agar dispense_speed : str or Unit, optional Speed at which to dispense source aliquot across agar surface Returns ------- LiquidHandle Returns a :py:class:`autoprotocol.instruction.LiquidHandle` instruction created from the specified parameters Raises ------ TypeError If specified source is not of type Well TypeError If specified destination is not of type Well """ def euclidean_distance(point_a, point_b): """ Calculate the euclidean distance between a pair of xy coordinates Parameters ---------- point_a: Iterable First point point_b: Iterable Second point Returns ------- float The distance between the two points """ from math import sqrt x_distance = abs(point_a[0] - point_b[0]) y_distance = abs(point_a[1] - point_b[1]) return sqrt(x_distance ** 2 + y_distance ** 2) # Check validity of Well inputs if not isinstance(source, Well): raise TypeError("Source must be of type Well.") if not isinstance(dest, Well): raise TypeError("Destination, (dest), must be of type Well.") self._remove_cover(source.container, "spread") self._remove_cover(dest.container, "spread") volume = Unit(volume) if dest.volume: dest.volume += volume else: dest.volume = volume if source.volume: source.volume -= volume aspirate_transport_list = [ LiquidHandle.builders.transport( mode_params=LiquidHandle.builders.mode_params( position_z=LiquidHandle.builders.position_z( reference="liquid_surface", offset=Unit("-1:mm"), detection_method="capacitance", detection_threshold=AGAR_CLLD_THRESHOLD, ) ) ), LiquidHandle.builders.transport( volume=-volume, mode_params=LiquidHandle.builders.mode_params( position_z=LiquidHandle.builders.position_z( reference="liquid_surface", detection_method="tracked", offset=Unit("-1.0:mm"), ) ), ), ] dispense_transport_list = [ LiquidHandle.builders.transport( mode_params=LiquidHandle.builders.mode_params( position_z=LiquidHandle.builders.position_z( reference="liquid_surface", detection_method="capacitance", detection_threshold=AGAR_CLLD_THRESHOLD, ) ) ) ] distances = [ euclidean_distance(first, second) for first, second in zip(SPREAD_PATH, SPREAD_PATH[1:]) ] distance_total = sum(distances) distance_ratios = [dist / distance_total for dist in distances] for ratio, position in zip(distance_ratios, SPREAD_PATH[1:]): dispense_transport_list += [ LiquidHandle.builders.transport( volume=volume * ratio, flowrate=LiquidHandle.builders.flowrate(dispense_speed), mode_params=LiquidHandle.builders.mode_params( position_x=LiquidHandle.builders.position_xy(position[0]), position_y=LiquidHandle.builders.position_xy(position[1]), position_z=LiquidHandle.builders.position_z( reference="liquid_surface", detection_method="tracked", offset=Unit("0.5:mm"), ), ), ) ] location = [ LiquidHandle.builders.location( location=source, transports=aspirate_transport_list ), LiquidHandle.builders.location( location=dest, transports=dispense_transport_list ), ] return self._append_and_return(LiquidHandle(location)) def _transfer_volume(self, source, destination, volume, shape): """ Transfers volume and properties between aliquots. Parameters ---------- source : Well The shape origin to be transferred from destination : Well The shape origin to be transferred to volume : Unit The volume to be transferred shape : dict See Also Instruction.builders.shape Raises ------ RuntimeError If the inferred sources and destinations aren't the same length """ source_wells = source.container.wells_from_shape(source.index, shape) dest_wells = destination.container.wells_from_shape(destination.index, shape) if not len(source_wells) == len(dest_wells): raise RuntimeError( f"Transfer source: {source_wells} and destination: " f"{dest_wells} WellGroups didn't have the same number of wells." ) for source_well, dest_well in zip(source_wells, dest_wells): if self.propagate_properties: dest_well.add_properties(source_well.properties) if source_well.volume is not None: source_well.volume -= volume if dest_well.volume is not None: dest_well.volume += volume else: dest_well.volume = volume def evaporate(self, ref, mode, duration, evaporator_temperature, mode_params=None): """ Removes liquid or moisture from a container using the mode specified. Example Usage: .. code-block:: python p = Protocol() c = p.ref("container", id=None, cont_type="micro-1.5", storage="cold_20") blowdown_params = Evaporate.builders.get_mode_params( mode="blowdown", mode_params={ "gas":"nitrogen", "vortex_speed":Unit("200:rpm"), "blow_rate": "200:uL/sec" }) p.evaporate(c, mode="blowdown", duration="10:minute", evaporator_temperature="22:degC", mode_params = blowdown_params .. code-block:: json { "op": "evaporate", "ref": "container", "mode": "blowdown", "duration": "10:minute", "evaporator_temperature": "22:degC", "mode_params": { "gas": "ntirogen", "vortex_speed": "200:rpm", "blow_rate": "200:uL/sec" } } Parameters ---------- ref : Container Sample container mode : Str The mode of evaporation method duration : Unit or Str The length of time the sample is evaporated for evaporator_temperature : Unit or str The incubation temperature of the sample being evaporated mode_params : Dict Dictionary of parameters for evaporation mode Returns ------- Evaporate Returns a :py:class:`autoprotocol.instruction.Evaporate` instruction created from the specified parameters Raises ------ TypeError If the provided object is not a Container type. ValueError If the duration is less than 0 minute TypeError If evaporator_temperature is not provided in Unit or str ValueError If the evaporation_temperature is lower than or equal to condenser_temperature """ duration = parse_unit(duration, "minute") evaporator_temperature = parse_unit(evaporator_temperature, "celsius") mode_params = Evaporate.builders.get_mode_params(mode, mode_params) if not isinstance(ref, Container): raise TypeError("Param `ref` must be a container object.") if duration <= Unit("0:minute"): raise ValueError( f"Param `duration`: {duration} should be longer than 0 minute." ) if mode_params: condenser_temp = mode_params.get("condenser_temperature") if "condenser_temperature" in mode_params.keys(): if condenser_temp >= evaporator_temperature: raise ValueError( f"Param `condenser_temperature`: {condenser_temp} " "cannot be higher than the evaporator_temperature:" f" {evaporator_temperature}" ) return self._append_and_return( Evaporate( ref=ref, duration=duration, evaporator_temperature=evaporator_temperature, mode=mode, mode_params=mode_params, ) )
35.550162
212
0.488905
c28ca180cf30536f8896dcfd8956ae8d688e844a
1,397
py
Python
sims/s279/plot-jz-extent.py
ammarhakim/ammar-simjournal
85b64ddc9556f01a4fab37977864a7d878eac637
[ "MIT", "Unlicense" ]
1
2019-12-19T16:21:13.000Z
2019-12-19T16:21:13.000Z
sims/s279/plot-jz-extent.py
ammarhakim/ammar-simjournal
85b64ddc9556f01a4fab37977864a7d878eac637
[ "MIT", "Unlicense" ]
null
null
null
sims/s279/plot-jz-extent.py
ammarhakim/ammar-simjournal
85b64ddc9556f01a4fab37977864a7d878eac637
[ "MIT", "Unlicense" ]
2
2020-01-08T06:23:33.000Z
2020-01-08T07:06:50.000Z
import numpy from pylab import * import tables rc('text', usetex=True) def findXloc(X, fx, val): cross = [] for i in range(X.shape[0]-1): if val>fx[i] and val<fx[i+1]: cross.append(0.5*(X[i]+X[i+1])) elif val<fx[i] and val>fx[i+1]: cross.append(0.5*(X[i]+X[i+1])) return cross LX = 50.0 LY = 25.0 B0 = 1/15.0 n0 = 1.0 mu0 = 1.0 elcCharge = -1.0 ionCharge = 1.0 ionMass = 1.0 elcMass = ionMass/25 va = B0/sqrt(mu0*elcMass*n0) ionCycl = ionCharge*B0/ionMass timeSlice = [] extent = [] for i in range(15,41): print ('Working on %d ...' % i) fh = tables.openFile ("s279-gem-tenmom_q_%d.h5" % i) tm = fh.root.timeData._v_attrs['vsTime']*ionCycl q = fh.root.StructGridField nx, ny = q.shape[0], q.shape[1] X = linspace(-LX/2, LX/2, nx) Y = linspace(-LY/2, LY/2, ny) ux = q[:,:,1]/q[:,:,0] ux1 = ux[:,ny/2] minix = ux1.argmin() maxix = ux1.argmax() minx = X[minix] maxx = X[maxix] # store time and current sheet extent timeSlice.append(fh.root.timeData._v_attrs['vsTime']*ionCycl) extent.append(maxx-minx) timeSliceA = numpy.array(timeSlice) extentA = numpy.array(extent) plot(timeSliceA, extentA, '-ro') title('10M Current sheet extension v/s time') xlabel('Time ($t\Omega_{ci}$)') ylabel('Extension ($d_i$)') savefig('s279-10m-current-extension-vs-t.png') show()
22.532258
65
0.600573
f2ece11d0132b9ad0967de59fc926acad68c4053
5,492
py
Python
options/base_options.py
KshingWang/LesionSeg
a3c38aa7481eb7ce6a3b0fe5f9c4b349b8cf0b19
[ "BSD-3-Clause" ]
16
2020-02-22T02:05:07.000Z
2021-11-18T14:34:53.000Z
options/base_options.py
KshingWang/LesionSeg
a3c38aa7481eb7ce6a3b0fe5f9c4b349b8cf0b19
[ "BSD-3-Clause" ]
9
2020-04-30T13:53:39.000Z
2021-12-15T09:43:26.000Z
options/base_options.py
KshingWang/LesionSeg
a3c38aa7481eb7ce6a3b0fe5f9c4b349b8cf0b19
[ "BSD-3-Clause" ]
7
2020-02-22T18:25:23.000Z
2022-01-26T12:06:53.000Z
import argparse import os from util import util import torch import models import data from configurations import * class BaseOptions(): def __init__(self): self.initialized = False def initialize(self, parser): parser.add_argument('--dataroot', default=PATH_DATASET) parser.add_argument('--batch_size', type=int, default=16, help='input batch size') parser.add_argument('--testSize', type=int, default=256, help='the image size used in val/test phases') parser.add_argument('--trainSize', type=int, default=128, help='then image size used in train phase') parser.add_argument('--display_winsize', type=int, default=128, help='display window size for both visdom and HTML') parser.add_argument('--input_nc', type=int, default=1, help='# of input image channels') parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') parser.add_argument('--name', type=str, default='experiment_name', help='name of the experiment. It decides where to store samples and models') parser.add_argument('--dataset_mode', type=str, default='ms', help='chooses how datasets are loaded. [unaligned | aligned | single]') parser.add_argument('--model', type=str, default='ms', help='currently only ms model available') parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]') parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data') parser.add_argument('--checkpoints_dir', type=str, default='../Checkpoints', help='models are saved here') parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator') parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation') parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal|xavier|kaiming|orthogonal]') parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.') parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information') parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_size{trainSize}') self.initialized = True return parser def gather_options(self): # initialize parser with basic options if not self.initialized: parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = self.initialize(parser) # get the basic options opt, _ = parser.parse_known_args() # modify model-related parser options model_name = opt.model model_option_setter = models.get_option_setter(model_name) parser = model_option_setter(parser, self.isTrain) opt, _ = parser.parse_known_args() # parse again with the new defaults # modify dataset-related parser options dataset_name = opt.dataset_mode dataset_option_setter = data.get_option_setter(dataset_name) parser = dataset_option_setter(parser, self.isTrain) self.parser = parser return parser.parse_args() def print_options(self, opt): message = '' message += '----------------- Options ---------------\n' for k, v in sorted(vars(opt).items()): comment = '' default = self.parser.get_default(k) if v != default: comment = '\t[default: %s]' % str(default) message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) message += '----------------- End -------------------' print(message) # save to the disk expr_dir = os.path.join(opt.checkpoints_dir, opt.name) util.mkdirs(expr_dir) file_name = os.path.join(expr_dir, '%s_opt.txt' % opt.phase) with open(file_name, 'wt') as opt_file: opt_file.write(message) opt_file.write('\n') def parse(self): opt = self.gather_options() opt.isTrain = self.isTrain # train or test # process opt.suffix if opt.suffix: suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else '' opt.name = opt.name + suffix self.print_options(opt) # set gpu ids str_ids = opt.gpu_ids.split(',') opt.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: opt.gpu_ids.append(id) if len(opt.gpu_ids) > 0: torch.cuda.set_device(opt.gpu_ids[0]) self.opt = opt return self.opt
50.385321
223
0.641843
7f7904395c8a63fe6e64f48c53bf10491a6ef52b
7,540
py
Python
20180617/CombineStackingAndCatBoostKfold/Feature.py
fengjiaxin/Home_Credit_Default_Risk
3407e76b4e5cfb8dd6056d24675b80fe0e82c123
[ "Apache-2.0" ]
26
2018-06-13T07:34:16.000Z
2020-12-07T16:38:25.000Z
20180617/CombineStackingAndCatBoostKfold/Feature.py
fengjiaxin/Home_Credit_Default_Risk
3407e76b4e5cfb8dd6056d24675b80fe0e82c123
[ "Apache-2.0" ]
1
2019-05-02T12:48:31.000Z
2019-05-25T09:06:22.000Z
20180617/CombineStackingAndCatBoostKfold/Feature.py
fengjiaxin/Home_Credit_Default_Risk
3407e76b4e5cfb8dd6056d24675b80fe0e82c123
[ "Apache-2.0" ]
6
2018-08-02T11:03:33.000Z
2021-11-09T10:42:11.000Z
# coding:utf-8 import os import gc import sys import importlib import pandas as pd from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from xgboost import XGBClassifier from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from mlxtend.classifier import StackingCVClassifier class Feature(object): def __init__(self, *, input_path, output_path): self.__fill_value_transformer_array = importlib.import_module( "20180603.StackingReallyMax.FillValueTransformerArray" ) self.__indicate_feature_transformer_array = importlib.import_module( "20180603.StackingReallyMax.IndicateFeatureTransformerArray" ) self.__input_path = input_path self.__output_path = output_path # data prepare self.__train, self.__test = [None for _ in range(2)] self.__train_feature, self.__train_label = [None for _ in range(2)] self.__test_feature = None # model fit self.__rfc = None self.__etc = None self.__gbc = None self.__xbc = None self.__lr_l1 = None self.__lr_l2 = None self.__net = None self.__knc = None self.__rfc_pl = None self.__etc_pl = None self.__gbc_pl = None self.__xbc_pl = None self.__lr_l1_pl = None self.__lr_l2_pl = None self.__net_pl = None self.__knc_pl = None self.__clf = None self.__oof_train = None self.__oof_test = None # model_feature_output self.__feature_train = None self.__feature_test = None def data_prepare(self): self.__train = pd.read_csv(os.path.join(self.__input_path, "first_layer_train.csv")) self.__test = pd.read_csv(os.path.join(self.__input_path, "first_layer_test.csv")) self.__train_label = self.__train["TARGET"] self.__train_feature = self.__train.drop(["TARGET"], axis=1) self.__test_feature = self.__test del self.__train, self.__test gc.collect() def model_fit(self): self.__rfc = RandomForestClassifier(n_jobs=-1) self.__etc = ExtraTreesClassifier(n_jobs=-1) self.__gbc = GradientBoostingClassifier() self.__xbc = XGBClassifier(n_jobs=-1) self.__lr_l1 = LogisticRegression(penalty="l1") self.__lr_l2 = LogisticRegression(penalty="l2") self.__net = MLPClassifier() self.__knc = KNeighborsClassifier(n_jobs=-1) self.__rfc_pl = Pipeline( steps=[ ("AddIndicator", self.__indicate_feature_transformer_array.IndicateFeatureTransformerArray(columns=[9, 10, 11])), ("FillNa", self.__fill_value_transformer_array.FillValueTransformerArray(filling_values=-999.0)), ("Clf", self.__rfc) ] ) self.__etc_pl = Pipeline( steps=[ ("AddIndicator", self.__indicate_feature_transformer_array.IndicateFeatureTransformerArray(columns=[9, 10, 11])), ("FillNa", self.__fill_value_transformer_array.FillValueTransformerArray(filling_values=-999.0)), ("Clf", self.__etc) ] ) self.__gbc_pl = Pipeline( steps=[ ("AddIndicator", self.__indicate_feature_transformer_array.IndicateFeatureTransformerArray(columns=[9, 10, 11])), ("FillNa", self.__fill_value_transformer_array.FillValueTransformerArray(filling_values=-999.0)), ("Clf", self.__gbc) ] ) self.__xbc_pl = Pipeline( steps=[ ("AddIndicator", self.__indicate_feature_transformer_array.IndicateFeatureTransformerArray(columns=[9, 10, 11])), ("FillNa", self.__fill_value_transformer_array.FillValueTransformerArray(filling_values=-999.0)), ("Clf", self.__xbc) ] ) self.__lr_l1_pl = Pipeline( steps=[ ("AddIndicator", self.__indicate_feature_transformer_array.IndicateFeatureTransformerArray(columns=[9, 10, 11])), ("FillNa", self.__fill_value_transformer_array.FillValueTransformerArray(filling_values=0)), ("Clf", self.__lr_l1) ] ) self.__lr_l2_pl = Pipeline( steps=[ ("AddIndicator", self.__indicate_feature_transformer_array.IndicateFeatureTransformerArray(columns=[9, 10, 11])), ("FillNa", self.__fill_value_transformer_array.FillValueTransformerArray(filling_values=0)), ("Clf", self.__lr_l2) ] ) self.__net_pl = Pipeline( steps=[ ("AddIndicator", self.__indicate_feature_transformer_array.IndicateFeatureTransformerArray(columns=[9, 10, 11])), ("FillNa", self.__fill_value_transformer_array.FillValueTransformerArray(filling_values=0)), ("Clf", self.__net) ] ) self.__knc_pl = Pipeline( steps=[ ("AddIndicator", self.__indicate_feature_transformer_array.IndicateFeatureTransformerArray(columns=[9, 10, 11])), ("FillNa", self.__fill_value_transformer_array.FillValueTransformerArray(filling_values=0)), ("Clf", self.__knc) ] ) self.__clf = StackingCVClassifier( classifiers=[self.__rfc_pl, self.__etc_pl, self.__gbc_pl, self.__xbc_pl, self.__lr_l1_pl, self.__lr_l2_pl, self.__net_pl, self.__knc_pl], meta_classifier=self.__lr_l1_pl, use_probas=True, cv=2, store_train_meta_features=True, verbose=True ) self.__clf.fit(self.__train_feature.values, self.__train_label.values) self.__oof_train = self.__clf.train_meta_features_ self.__oof_test = self.__clf.predict_meta_features(self.__test_feature.values) self.__oof_train = self.__oof_train[:, [i for i in range(2*len(self.__clf.classifiers)) if i % 2 != 0]] self.__oof_test = self.__oof_test[:, [i for i in range(2*len(self.__clf.classifiers)) if i % 2 != 0]] self.__oof_train = pd.DataFrame( self.__oof_train, columns=["rf_2", "et_2", "gb_2", "xg_2", "lr_l1_2", "lr_l2_2", "net_2", "knc_2"] ) self.__oof_test = pd.DataFrame( self.__oof_test, columns=["rf_2", "et_2", "gb_2", "xg_2", "lr_l1_2", "lr_l2_2", "net_2", "knc_2"] ) def model_feature_output(self): self.__feature_train = pd.concat([self.__train_feature, self.__oof_train], axis=1) self.__feature_test = pd.concat([self.__test_feature, self.__oof_test], axis=1) self.__feature_train.to_csv(os.path.join(self.__output_path, "feature_train_res.csv"), index=False) self.__feature_test.to_csv(os.path.join(self.__output_path, "feature_test_res.csv"), index=False) if __name__ == "__main__": feature = Feature( input_path=sys.argv[1], output_path=sys.argv[2] ) feature.data_prepare() feature.model_fit() feature.model_feature_output()
39.89418
129
0.627188
819f84abee150481cc46d06b7de8fe299786ef61
5,998
py
Python
model.py
Yuibooo/pytorch-soft-actor-critic
cc17d0732712c404a8a2adc102aab00da0d7c87b
[ "MIT" ]
null
null
null
model.py
Yuibooo/pytorch-soft-actor-critic
cc17d0732712c404a8a2adc102aab00da0d7c87b
[ "MIT" ]
null
null
null
model.py
Yuibooo/pytorch-soft-actor-critic
cc17d0732712c404a8a2adc102aab00da0d7c87b
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal LOG_SIG_MAX = 2 LOG_SIG_MIN = -20 epsilon = 1e-6 # Initialize Policy weights def weights_init_(m): if isinstance(m, nn.Linear): torch.nn.init.xavier_uniform_(m.weight, gain=1) torch.nn.init.constant_(m.bias, 0) class ValueNetwork(nn.Module): def __init__(self, num_inputs, hidden_dim): super(ValueNetwork, self).__init__() self.linear1 = nn.Linear(num_inputs, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.linear3 = nn.Linear(hidden_dim, 1) self.apply(weights_init_) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x class QNetwork(nn.Module): def __init__(self, num_inputs, num_actions, hidden_dim): super(QNetwork, self).__init__() # Q1 architecture self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.linear3 = nn.Linear(hidden_dim, 1) # Q2 architecture self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim) self.linear5 = nn.Linear(hidden_dim, hidden_dim) self.linear6 = nn.Linear(hidden_dim, 1) # Q3 architecture self.linear7 = nn.Linear(num_inputs + num_actions, hidden_dim) self.linear8 = nn.Linear(hidden_dim, hidden_dim) self.linear9 = nn.Linear(hidden_dim, 1) self.apply(weights_init_) def forward(self, state, action): xu = torch.cat([state, action], 1) x1 = F.relu(self.linear1(xu)) x1 = F.relu(self.linear2(x1)) x1 = self.linear3(x1) x2 = F.relu(self.linear4(xu)) x2 = F.relu(self.linear5(x2)) x2 = self.linear6(x2) x3 = F.relu(self.linear7(xu)) x3 = F.relu(self.linear8(x3)) x3 = self.linear9(x3) return x1, x2, x3 def q1(self, state, action): q1 = F.relu(self.linear1(torch.cat([state, action], 1))) q1 = F.relu(self.linear2(q1)) q1 = self.linear3(q1) return q1 class GaussianPolicy(nn.Module): def __init__(self, num_inputs, num_actions, hidden_dim, action_space=None): super(GaussianPolicy, self).__init__() self.linear1 = nn.Linear(num_inputs, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.mean_linear = nn.Linear(hidden_dim, num_actions) self.log_std_linear = nn.Linear(hidden_dim, num_actions) self.apply(weights_init_) # action rescaling if action_space is None: self.action_scale = torch.tensor(1.) self.action_bias = torch.tensor(0.) else: self.action_scale = torch.FloatTensor( (action_space.high - action_space.low) / 2.) self.action_bias = torch.FloatTensor( (action_space.high + action_space.low) / 2.) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) mean = self.mean_linear(x) log_std = self.log_std_linear(x) log_std = torch.clamp(log_std, min=LOG_SIG_MIN, max=LOG_SIG_MAX) return mean, log_std def sample(self, state): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) x_t = normal.rsample() # for reparameterization trick (mean + std * N(0,1)) y_t = torch.tanh(x_t) action = y_t * self.action_scale + self.action_bias log_prob = normal.log_prob(x_t) # Enforcing Action Bound log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + epsilon) log_prob = log_prob.sum(1, keepdim=True) mean = torch.tanh(mean) * self.action_scale + self.action_bias return action, log_prob, mean def lod_prob(self, state, action): # used for fit distribution mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) x_t = torch.atan(action) log_prob = normal.log_prob(x_t) # Enforcing Action Bound log_prob -= torch.log((1 - action.pow(2)) + epsilon) log_prob = log_prob.sum(1, keepdim=True) return log_prob def to(self, device): self.action_scale = self.action_scale.to(device) self.action_bias = self.action_bias.to(device) return super(GaussianPolicy, self).to(device) class DeterministicPolicy(nn.Module): def __init__(self, num_inputs, num_actions, hidden_dim, action_space=None): super(DeterministicPolicy, self).__init__() self.linear1 = nn.Linear(num_inputs, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.mean = nn.Linear(hidden_dim, num_actions) self.noise = torch.Tensor(num_actions) self.apply(weights_init_) # action rescaling if action_space is None: self.action_scale = 1. self.action_bias = 0. else: self.action_scale = torch.FloatTensor( (action_space.high - action_space.low) / 2.) self.action_bias = torch.FloatTensor( (action_space.high + action_space.low) / 2.) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) mean = torch.tanh(self.mean(x)) * self.action_scale + self.action_bias return mean def sample(self, state): mean = self.forward(state) noise = self.noise.normal_(0., std=0.1) noise = noise.clamp(-0.25, 0.25) action = mean + noise return action, torch.tensor(0.), mean def to(self, device): self.action_scale = self.action_scale.to(device) self.action_bias = self.action_bias.to(device) return super(GaussianPolicy, self).to(device)
33.50838
84
0.621207
e82d5dce623b7b6329497fb5da7586095a07a36c
22,215
py
Python
openks/distributed/openks_distributed/gpu/GPUDistributed.py
HIT-SCIR-xuanxuan/OpenKS
a7f2ce0890822113322aad22e98d6c961e63caef
[ "Apache-2.0" ]
88
2020-07-13T05:36:59.000Z
2022-03-17T21:30:44.000Z
openks/distributed/openks_distributed/gpu/GPUDistributed.py
HIT-SCIR-xuanxuan/OpenKS
a7f2ce0890822113322aad22e98d6c961e63caef
[ "Apache-2.0" ]
16
2021-04-25T03:04:10.000Z
2022-02-07T02:36:29.000Z
openks/distributed/openks_distributed/gpu/GPUDistributed.py
HIT-SCIR-xuanxuan/OpenKS
a7f2ce0890822113322aad22e98d6c961e63caef
[ "Apache-2.0" ]
35
2020-11-13T15:49:43.000Z
2022-03-30T07:55:07.000Z
# Copyright (c) 2020 Room 525 Research Group, Zhejiang University. # All Rights Reserved. import logging import paddle.fluid as fluid import paddle.fluid.io as io import paddle.fluid.transpiler.distribute_transpiler as dist_transpiler from paddle.fluid.executor import Executor from paddle.fluid.parallel_executor import ParallelExecutor from paddle.fluid.compiler import CompiledProgram from paddle.fluid.framework import Program from ...openks_distributed.base import \ BaseDistributedAlgorithm, BaseDistributedOptimizer, Mode from paddle.fluid import compiler from .fs_wrapper import LocalFS, BDFS import os import sys import six import json import re import shutil class TrainStatus(object): def __init__(self, epoch_no=-1): # completed epoch self._epoch_no = epoch_no def next(self): return self._epoch_no + 1 def __eq__(self, t): return self._epoch_no == t._epoch_no def __ne__(self, t): return not self == t class GPUDistributedAlgorithm(BaseDistributedAlgorithm): def __init__(self): super(GPUDistributedAlgorithm, self).__init__(Mode.COLLECTIVE) self._local_ip = 0 self.startup_program = None self._origin_program = None self._transpiled_program = None self.main_program = None self._checkoint_prefix = "__paddle_fleet_checkpoint__" self._param_file_name = "_paddle_fleet_param__" def init_worker(self): logging.warn( "You should not call 'init_worker' method for collective mode.") def run_worker(self, main_programs=None, scopes=None): logging.warn( "You should not call 'run_worker' method for collective mode.") def init_server(self, model_dir=None): logging.warn( "You should not call 'init_server' method for collective mode.") def run_server(self): logging.warn( "You should not call 'run_server' method for collective mode.") def stop_worker(self): logging.warn( "You should not call 'stop_worker' method for collective mode.") def distributed_optimizer(self, optimizer, strategy=None): self._optimizer = \ HeterogeneousDistributedOptimizer(optimizer, strategy) return self._optimizer def save_inference_model(self, executor, dirname, feeded_var_names=None, target_vars=None, main_program=None, export_for_deployment=True): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. """ assert isinstance(executor, Executor), \ "In fleet.save_inference_model() function, executor must be as" \ " Executor type." if main_program is None: main_program = self._origin_program assert isinstance(main_program, Program), \ "In fleet.save_inference_model() function, main_program " \ "must be as Program type." io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program, None, None, export_for_deployment) def save_persistables(self, executor, dirname, main_program=None, filename=None): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. """ assert isinstance(executor, Executor), \ "In fleet.save_inference_model() function, executor must be as" \ " Executor type." if main_program is None: main_program = self._origin_program assert isinstance(main_program, Program), \ "In fleet.save_inference_model() function, main_program " \ "must be as Program type." io.save_persistables(executor, dirname, main_program, filename=filename) def _save_train_status(self, path, train_status): d = {} d["epoch_no"] = train_status._epoch_no file_name = "{}/fleet_train_status".format(path) with open(file_name, 'w') as f: json.dump(d, f) def _load_train_status(self, path): file_name = "{}/fleet_train_status".format(path) r = TrainStatus() if not os.path.isfile(file_name): return r d = {} with open(file_name, 'r') as f: d = json.load(f) assert "epoch_no" in d, "Can't find epoch_no in dict from train_status file:{}".format( d) r._epoch_no = d["epoch_no"] assert r._epoch_no >= 0, "Data in checkpoint file is not valid:{}".format( d) return r def _get_last_checkpoint_no(self, root_path, fs): """ only get the first depth """ max_no = -1 d = {} dirs = fs.list_dirs(root_path) for dir in dirs: g = dir.split(".") if len(g) != 2: continue if g[0] != "__paddle_fleet_checkpoint__": continue try: n = int(g[1]) if n > max_no: max_no = n except: continue return max_no def clean_redundant_check_points(self, root_path, fs=LocalFS(), checkpoint_num=1): max_no = self._get_last_checkpoint_no(root_path, fs) if max_no < 0: return if checkpoint_num < 1: checkpoint_num = 1 dirs = fs.list_dirs(root_path) for dir in dirs: g = dir.split(".") if len(g) != 2: continue if g[0] != self._checkoint_prefix: continue try: n = int(g[1]) if n <= max_no - checkpoint_num: path = "{}/{}.{}".format(root_path, self._checkoint_prefix, n) fs.rmr(path) except Exception as e: print(e) continue def save_check_point(self, executor, path, train_status, main_program=None, fs=LocalFS(), local_cache_path=".cache", remain_all_checkpoint=True): """ This function save persistables and current epoch num to path. """ if main_program == None: main_program = self._transpiled_program if not fs.stat(path): fs.mkdir(path) max_no = self._get_last_checkpoint_no(path, fs=fs) if max_no < 0: max_no = -1 real_path = "{}/{}.{}".format(path, self._checkoint_prefix, max_no + 1) tmp_path = "{}.tmp".format(real_path) saved_path = tmp_path local_fs = LocalFS() cache_path = None if fs.need_upload_download(): cache_path = "{}/{}.{}.saved_cache".format( local_cache_path, self._checkoint_prefix, max_no + 1) if not local_fs.stat(cache_path): local_fs.mkdir(cache_path) saved_path = cache_path self.save_persistables( executor=executor, dirname=saved_path, main_program=main_program, filename=self._param_file_name) self._save_train_status(path=saved_path, train_status=train_status) if fs.need_upload_download(): fs.delete(tmp_path) fs.upload(cache_path, tmp_path) fs.mv(tmp_path, real_path) if not remain_all_checkpoint: self.clean_redundant_check_points(path) def load_check_point(self, executor, path, trainer_id, main_program=None, fs=LocalFS(), local_cache_path=".cache", ignore_empty=True): """ This function load persistables and current epoch num from path. """ max_no = self._get_last_checkpoint_no(path, fs) if not ignore_empty: assert max_no >= 0, "Can't find checkpoint" if max_no < 0: return None local_fs = LocalFS() if fs.need_upload_download(): cache_path = "{}/{}.{}.load_cache.{}".format( local_cache_path, self._checkoint_prefix, max_no, trainer_id) if local_fs.stat(cache_path): local_fs.delete(cache_path) real_path = "{}/{}.{}".format(path, self._checkoint_prefix, max_no) load_path = real_path if fs.need_upload_download(): fs.download(real_path, cache_path) load_path = cache_path if main_program == None: main_program = self._transpiled_program io.load_persistables( executor=executor, dirname=load_path, main_program=main_program, filename=self._param_file_name) return self._load_train_status(load_path) algorithm = GPUDistributedAlgorithm() class HeterogeneousDistributedOptimizer(BaseDistributedOptimizer): """ HeterogeneousDistributedOptimizer is a wrapper for paddle.fluid.optimizer HeterogeneousA user should pass a paddle.fluid.optimizer to DistributedOptimizer minimize() function is implemented. HeterogeneousDistributedOptimizer is the starting point for a user who wants to run distributed training. The optimized information will be stored in Fleet() instance who holds the global information about current distributed training. """ def __init__(self, optimizer, strategy): super(HeterogeneousDistributedOptimizer, self).__init__(optimizer, strategy) self._forward_recompute = strategy.forward_recompute if (not isinstance(strategy.recompute_checkpoints, list)): raise ValueError("DistStrategy.recompute_checkpoints should" "be a List") self._recompute_checkpoints = strategy.recompute_checkpoints self._use_amp = strategy.use_amp self._amp_loss_scaling = strategy.amp_loss_scaling self.print_config = False def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): return self._optimizer.backward(loss, startup_program, parameter_list, no_grad_set, callbacks) def apply_gradients(self, params_grads): return self._optimizer.apply_gradients(params_grads) def _check_condition(self, name, **kwargs): for k, v in six.iteritems(kwargs): if v is True: assert False, "you can't use %s and %s together" % (name, k) def _check_collective_mode(self, main_program, optimizer, strategy): """ Check the conflict conditions. """ if strategy.use_local_sgd: strategy.mode = "collective" strategy.collective_mode = "local_sgd" self._check_condition( "use_local_sgd", use_dgc=main_program._enable_dgc, use_dist_fc=strategy.use_dist_fc, use_lamb=main_program._use_lamb) if strategy.use_dist_fc: self._check_condition( "use_dist_fc", use_dgc=main_program._enable_dgc, use_local_sgd=strategy.use_local_sgd, use_lamb=main_program._use_lamb) assert strategy.dist_fc_config is not None, "GPUBuildStrategy.dist_fc_config should be set" if strategy._ut4grad_allreduce: strategy.mode = "collective" strategy.collective_mode = "grad_allreduce" self._check_condition( "_ut4grad_allreduce", use_dgc=main_program._enable_dgc, use_lamb=main_program._use_lamb) if self._strategy.collective_mode=="local_sgd" \ or self._strategy.collective_mode == "grad_allreduce": assert self._strategy.mode == "collective", \ "local_sgd and grad_allreduce can be used under collective mode" def _transpile(self, startup_program, main_program): """ Transpile the programs to distributed programs. And add the variables. """ worker_endpoints = algorithm.worker_endpoints() trainer_id = algorithm.worker_index() current_endpoint = algorithm.worker_endpoints()[trainer_id] worker_endpoints_env = ','.join(worker_endpoints) trainers_num = algorithm.worker_num() if self.print_config: print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ trainer_id:{}".format(worker_endpoints, trainers_num, current_endpoint, trainer_id)) # call transpiler config = dist_transpiler.DistributeTranspilerConfig() config.mode = self._strategy.mode config.collective_mode = self._strategy.collective_mode config.nccl_comm_num = self._strategy.nccl_comm_num config.use_hierarchical_allreduce = self._strategy.use_hierarchical_allreduce config.hierarchical_allreduce_inter_nranks = self._strategy.hierarchical_allreduce_inter_nranks t = dist_transpiler.DistributeTranspiler(config=config) t.transpile( trainer_id=trainer_id, trainers=worker_endpoints_env, startup_program=startup_program, program=main_program, current_endpoint=current_endpoint) def _get_node_ips_from_endpoints(self, endpoints): ss = set() ips = [] for ep in endpoints: ip = ep.split(":")[0].strip() if ip not in ss: ss.add(ip) ips.append(ip) else: continue return ips def _node_num(self): worker_endpoints = algorithm.worker_endpoints() current_endpoint = algorithm.worker_endpoints()[algorithm.worker_index()] worker_endpoints_env = ','.join(worker_endpoints) node_ips = self._get_node_ips_from_endpoints(worker_endpoints) node_ip = current_endpoint.split(":")[0].strip() node_num = len(node_ips) return node_num def _try_to_compile(self, startup_program, main_program): node_num = self._node_num() assert node_num >= 1, "nccl2 node_num must >= 1, now:{}" % node_num exec_strategy = self._strategy.exec_strategy if node_num <= 1: if self._strategy.nccl_comm_num > 1: logging.warn("set nccl_comm_num=1 since you only have 1 node.") self._strategy.nccl_comm_num = 1 if self._strategy.use_hierarchical_allreduce: logging.warn( "set use_hierarchical_allreduce=False since you only have 1 node." ) self._strategy.use_hierarchical_allreduce = False sync_allreduce = os.getenv("FLAGS_sync_nccl_allreduce") if sync_allreduce is None or sync_allreduce == "1": exec_strategy.num_threads = self._strategy.nccl_comm_num + 1 if self._strategy.use_hierarchical_allreduce: exec_strategy.num_threads = 2 * self._strategy.nccl_comm_num + 1 if exec_strategy.num_threads > 4: logging.warn( "if you use use_hierarchical_allreduce or " "with multi nccl comm, please export FLAGS_sync_nccl_allreduce = 0" ) # NOTE. open sync_batch_norm will hang when use multi num_threads sync_batch_norm = self._strategy.sync_batch_norm if sync_batch_norm is not None and sync_batch_norm is True: self._strategy.nccl_comm_num = 1 self._strategy.use_hierarchical_allreduce = False exec_strategy.num_threads = 1 logging.warn( "use sync_batch_norm will hang when set num_threads > 1, so " "set num_threads=1, nccl_comm_num=1, use_hierarchical_allreduce=False." ) if self.print_config: print("node_num:", node_num, "num_threads:", exec_strategy.num_threads, "use_hierarchical_allreduce:", self._strategy.use_hierarchical_allreduce, "nccl_comm_num:", self._strategy.nccl_comm_num, "FLAGS_sync_nccl_allreduce:", sync_allreduce) self._transpile(startup_program, main_program) if self._strategy.mode == "collective": return main_program self._strategy.num_trainers = algorithm.worker_num() self._strategy.trainer_id = algorithm.worker_index() self._strategy.trainers_endpoints = algorithm.worker_endpoints() self._strategy.enable_backward_optimizer_op_deps = True self._compiled_program = compiler.CompiledProgram(main_program) self._compiled_program.with_data_parallel( loss_name=self._loss.name, build_strategy=self._strategy, exec_strategy=self._strategy.exec_strategy, share_vars_from=None) return self._compiled_program def raiseOptimizeError(self, strategy_name, optimize_name): raise ValueError("can not use {0} when you set DistStrategy.{1} " "as True".format(optimize_name, strategy_name)) def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): """ minimize a program through loss Args: loss (Variable|Variable List): loss variable or loss variable list to run optimization. startup_program (Program): startup_program for initializing parameters in `parameter_list`. parameter_list (list): list of Variables to update. no_grad_set (set|None): set of Variables should be ignored. Returns: tuple: (optimize_ops, params_grads) which are, list of operators appended; and list of (param, grad) Variables pair for optimization. Note that in parameter server mode, a worker will not get anything about optimize_os Because optimizer algorithms run on pserver side. We will make this usable in pserver process, but currently the optimization part is written into BaseDistributedAlgorithm(). A user does not need to care about how to startup a pserver node. """ # check optimizer conflicts if self._forward_recompute: if self._recompute_checkpoints == []: raise ValueError("please set strategy.recompute_checkpoints" "when set strategy.forward_recompute as True") if self._optimizer.__class__.__name__ in [ "RecomputeOptimizer", "OptimizerWithMixedPrecision" ]: self.raiseOptimizeError("forward_recompute", self._optimizer.__class__.__name__) self._optimizer = \ fluid.optimizer.RecomputeOptimizer(self._optimizer) self._optimizer._set_checkpoints(self._recompute_checkpoints) if self._use_amp: if self._optimizer.__class__.__name__ in [ "OptimizerWithMixedPrecision", "DGCMomentumOptimizer" ]: self.raiseOptimizeError("mixed_precision", self._optimizer.__class__.__name__) self._optimizer = fluid.contrib.mixed_precision.decorate( self._optimizer, init_loss_scaling=self._amp_loss_scaling, use_dynamic_loss_scaling=True) main_program = loss.block.program if startup_program is None: startup_program = fluid.default_startup_program() algorithm.startup_program = startup_program self._loss = loss self._check_collective_mode(main_program, self._optimizer, self._strategy) optimize_ops, param_grads = self._optimizer.minimize( loss, startup_program=startup_program, parameter_list=parameter_list, no_grad_set=no_grad_set) algorithm._origin_program = main_program.clone(for_test=False) algorithm._transpiled_program = main_program algorithm.main_program = self._try_to_compile(startup_program, main_program) return optimize_ops, param_grads
38.434256
113
0.588026
83c0cb455d4a0461ca241652c69e54f15837b488
2,069
py
Python
src/preprocess/vipcup_dicom2nifty.py
cmlab-mira/MedicalPro
3918c95197fd24406ce2117cc7ff9ce21bb8c620
[ "MIT" ]
6
2020-02-01T07:19:32.000Z
2021-05-10T13:55:49.000Z
src/preprocess/vipcup_dicom2nifty.py
cmlab-mira/MedicalPro
3918c95197fd24406ce2117cc7ff9ce21bb8c620
[ "MIT" ]
1
2020-06-21T08:33:35.000Z
2020-06-21T08:33:35.000Z
src/preprocess/vipcup_dicom2nifty.py
cmlab-mira/MedicalPro
3918c95197fd24406ce2117cc7ff9ce21bb8c620
[ "MIT" ]
1
2020-11-11T06:24:12.000Z
2020-11-11T06:24:12.000Z
import logging import argparse from pathlib import Path import dicom2nifti def main(args): data_dir = args.data_dir output_dir = args.output_dir if output_dir.exists() is False: output_dir.mkdir(parents=True) for sub_dir in data_dir.iterdir(): dir_name = sub_dir.name (output_dir / 'training').mkdir(exist_ok=True) (output_dir / 'testing').mkdir(exist_ok=True) patient_paths = sorted(dir_ for dir_ in sub_dir.iterdir() if dir_.is_dir()) for path in patient_paths: folders = [folder for folder in path.iterdir() if folder.is_dir()] for folder in folders: dcm_files = list(folder.glob('*/*.dcm')) if len(dcm_files) == 1: # contour dicom continue else: case_id = folder.parts[-2] if folder.parts[-3] == 'VIP_CUP18_TestData': output_path = output_dir / 'testing' / f"{case_id}.nii.gz" else: output_path = output_dir / 'training' / f"{case_id}.nii.gz" try: dicom2nifti.dicom_series_to_nifti(folder.as_posix(), output_path.as_posix(), reorient_nifti=True) except Exception: print(f"Failed: case {case_id}.") def _parse_args(): parser = argparse.ArgumentParser(description="Convert the data of VIPCUP from dicom to nifti format.") parser.add_argument('data_dir', type=Path, help='The directory of the dataset.') parser.add_argument('output_dir', type=Path, help='The directory of the processed data.') args = parser.parse_args() return args if __name__ == "__main__": logging.basicConfig(format='%(asctime)s | %(levelname)s | %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') args = _parse_args() main(args)
36.946429
106
0.550507
4e6ca70ae0267d7b862cfff119419ebcab36f5b7
38,844
py
Python
GPT2RGA.py
asigalov61/Lars-Ulrich-Challenge
381880fac426e91954ae0c58448041ead4bdffb2
[ "Apache-2.0" ]
6
2021-10-09T14:12:10.000Z
2022-01-25T06:14:46.000Z
GPT2RGA.py
asigalov61/Lars-Ulrich-Challenge
381880fac426e91954ae0c58448041ead4bdffb2
[ "Apache-2.0" ]
1
2022-03-27T12:22:39.000Z
2022-03-27T12:22:39.000Z
GPT2RGA.py
asigalov61/Lars-Ulrich-Challenge
381880fac426e91954ae0c58448041ead4bdffb2
[ "Apache-2.0" ]
2
2021-10-09T14:12:17.000Z
2021-11-04T00:57:07.000Z
#! /usr/bin/python3 r'''############################################################################### ################################################################################### # # # GPT-2 with Relative Global Attention # Version 0.5 # # PLEASE NOTE THAT THIS IS A WORK IN PROGRESS # CHECK BACK FOR UPDATES SOON # # Based upon a source-code of Sashmark97: # https://github.com/Sashmark97/midigen # # Project Los Angeles # Tegridy Code 2021 # # https://github.com/Tegridy-Code/Project-Los-Angeles # # ################################################################################### ################################################################################### # Copyright 2021 Project Los Angeles / Tegridy Code # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################### ###################################################################################''' ######################################################## # # Critical dependencies/requirements: # # pip install torch # pip install tqdm # ######################################################## print('Loading GPT2-RGA Module...') ######################################################## import glob import os import sys import math import time import random import pickle import joblib from tqdm import tqdm import torch from torch.utils.data import Dataset, DataLoader from torch.optim import Adam import torch.nn as nn from torch.nn import functional as F from torch.optim.lr_scheduler import LambdaLR from torch.nn.modules.normalization import LayerNorm from torch.nn.parameter import Parameter from torch.nn.modules.linear import Linear from torch.nn.modules.dropout import Dropout from torch.nn.modules.normalization import LayerNorm from torch.nn.init import * from torch.nn.functional import linear, softmax, dropout ######################################################## # Constants SEQUENCE_START = 0 RANGE_NOTE_ON = 128 RANGE_NOTE_OFF = 128 RANGE_VEL = 32 RANGE_TIME_SHIFT = 100 # Taken from the paper ADAM_BETA_1 = 0.9 ADAM_BETA_2 = 0.98 ADAM_EPSILON = 10e-9 LR_DEFAULT_START = 1.0 SCHEDULER_WARMUP_STEPS = 4000 # LABEL_SMOOTHING_E = 0.1 # DROPOUT_P = 0.1 TOKEN_END = RANGE_NOTE_ON + RANGE_NOTE_OFF + RANGE_VEL + RANGE_TIME_SHIFT TOKEN_PAD = TOKEN_END + 1 VOCAB_SIZE = TOKEN_PAD + 1 TORCH_FLOAT = torch.float32 TORCH_INT = torch.int32 TORCH_LABEL_TYPE = torch.long PREPEND_ZEROS_WIDTH = 4 TORCH_CPU_DEVICE = torch.device("cpu") USE_CUDA = 1 TORCH_CUDA_DEVICE = torch.device("cuda:0") #==== weight_modulus = 1 print_modulus = 1 n_workers = 1 lr = None ce_smoothing = None batch_size = 4 random_seq = True epochs = 5 rpr = False #'store_true' max_seq = 1024 n_layers = 6 num_heads = 8 d_model = 512 dim_feedforward = 512 dropout_prob = 0.1 ######################################################## def cpu_device(): return TORCH_CPU_DEVICE def get_device(): if((not USE_CUDA) or (TORCH_CUDA_DEVICE is None)): return TORCH_CPU_DEVICE else: return TORCH_CUDA_DEVICE def train(cur_epoch, model, dataloader, loss, opt, lr_scheduler=None, num_iters=-1): best_eval_acc = 0.0 best_eval_acc_epoch = -1 best_eval_loss = float("inf") best_eval_loss_epoch = -1 loss_hist = [] out = -1 model.train() with tqdm(total=len(dataloader)) as bar_train: for batch_num, batch in enumerate(dataloader): time_before = time.time() opt.zero_grad() x = batch[0].to(get_device()) tgt = batch[1].to(get_device()) y, _ = model(x) y = y.reshape(y.shape[0] * y.shape[1], -1) tgt = tgt.flatten() out = loss.forward(y, tgt) out.backward() opt.step() if(lr_scheduler is not None): lr_scheduler.step() time_after = time.time() time_took = time_after - time_before lr = opt.param_groups[0]['lr'] bar_train.set_description(f'Epoch: {cur_epoch} Loss: {float(out):.4} LR: {float(lr):.8}') bar_train.update(1) loss_hist.append(out.item()) if batch_num == num_iters: break return loss_hist def compute_epiano_accuracy(out, tgt): softmax = nn.Softmax(dim=-1) out = torch.argmax(softmax(out), dim=-1) out = out.flatten() tgt = tgt.flatten() mask = (tgt != TOKEN_PAD) out = out[mask] tgt = tgt[mask] if(len(tgt) == 0): return 1.0 num_right = (out == tgt) num_right = torch.sum(num_right).type(TORCH_FLOAT) acc = num_right / len(tgt) return acc def eval_model(model, dataloader, loss, num_iters=-1): model.eval() avg_acc = -1 avg_loss = -1 with torch.set_grad_enabled(False): n_test = len(dataloader) sum_loss = 0.0 sum_acc = 0.0 with tqdm(total=len(dataloader)) as bar_eval: for batch in dataloader: x = batch[0].to(get_device()) tgt = batch[1].to(get_device()) y, _ = model(x) sum_acc += float(compute_epiano_accuracy(y, tgt)) y = y.reshape(y.shape[0] * y.shape[1], -1) tgt = tgt.flatten() out = loss.forward(y, tgt) sum_loss += float(out) bar_eval.set_description(f'Loss val: {float(out):.4} Acc: {float(sum_acc / (bar_eval.n + 1)):.4}') bar_eval.update(1) if bar_eval.n == num_iters: break avg_loss = sum_loss / n_test avg_acc = sum_acc / n_test return avg_loss, avg_acc class LrStepTracker: def __init__(self, model_dim=512, warmup_steps=4000, init_steps=0): # Store Values self.warmup_steps = warmup_steps self.model_dim = model_dim self.init_steps = init_steps # Begin Calculations self.invsqrt_dim = (1 / math.sqrt(model_dim)) self.invsqrt_warmup = (1 / (warmup_steps * math.sqrt(warmup_steps))) # step def step(self, step): step += self.init_steps if(step <= self.warmup_steps): return self.invsqrt_dim * self.invsqrt_warmup * step else: invsqrt_step = (1 / math.sqrt(step)) return self.invsqrt_dim * invsqrt_step # get_lr def get_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] ######################################################## #@title Functions class EPianoDataset(Dataset): """ ---------- Author: Damon Gwinn ---------- Pytorch Dataset for the Maestro e-piano dataset (https://magenta.tensorflow.org/datasets/maestro). Recommended to use with Dataloader (https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) Uses all files found in the given root directory of pre-processed (preprocess_midi.py) Maestro midi files. ---------- """ def __init__(self, midi_list, max_seq=2048, random_seq=True): self.max_seq = max_seq self.random_seq = random_seq self.data_files = midi_list def __len__(self): """ ---------- Author: Damon Gwinn ---------- How many data files exist in the given directory ---------- """ return len(self.data_files) def __getitem__(self, idx): """ ---------- Author: Damon Gwinn ---------- Gets the indexed midi batch. Gets random sequence or from start depending on random_seq. Returns the input and the target. ---------- """ raw_mid = torch.tensor(self.data_files, dtype=TORCH_LABEL_TYPE, device=cpu_device()) x, tgt = process_midi(raw_mid, self.max_seq, self.random_seq) return x, tgt def process_midi(raw_mid, max_seq, random_seq): """ ---------- Author: Damon Gwinn ---------- Takes in pre-processed raw midi and returns the input and target. Can use a random sequence or go from the start based on random_seq. ---------- """ x = torch.full((max_seq, ), TOKEN_PAD, dtype=TORCH_LABEL_TYPE, device=cpu_device()) tgt = torch.full((max_seq, ), TOKEN_PAD, dtype=TORCH_LABEL_TYPE, device=cpu_device()) raw_len = len(raw_mid) full_seq = max_seq + 1 # Performing seq2seq if(raw_len == 0): return x, tgt start = 0 end = 0 # Randomly selecting a range if (random_seq): end_range = raw_len - full_seq start = random.randint(abs(SEQUENCE_START), abs(end_range)) # Always taking from the start to as far as we can else: start = SEQUENCE_START end = start + full_seq data = raw_mid[start:end] x = data[:max_seq] tgt = data[1:full_seq] return x, tgt ######################################################## class CausalSelfAttention(nn.Module): """ A vanilla multi-head masked self-attention layer with a projection at the end. It is possible to use torch.nn.MultiheadAttention here but I am including an explicit implementation here to show that there is nothing too scary here. """ def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads self.key = nn.Linear(config.n_embd, config.n_embd) self.query = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) # regularization self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) # output projection self.proj = nn.Linear(config.n_embd, config.n_embd) # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) self.n_head = config.n_head def forward(self, x, layer_past=None): B, T, C = x.size() # calculate query, key, values for all heads in batch and move head forward to be the batch dim k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_drop(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_drop(self.proj(y)) return y class Block(nn.Module): """ an unassuming Transformer block """ def __init__(self, config): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) self.enable_rpr = config.enable_rpr if config.enable_rpr: self.attn = MultiheadAttentionRPR(config.n_embd, config.n_head, config.attn_pdrop, er_len=config.er_len) else: self.attn = CausalSelfAttention(config) self.mlp = nn.Sequential( nn.Linear(config.n_embd, config.dim_feedforward), nn.GELU(), nn.Linear(config.dim_feedforward, config.n_embd), nn.Dropout(config.resid_pdrop), ) def forward(self, x, mask=None): if self.enable_rpr: x = x + self.attn(self.ln1(x), self.ln1(x), self.ln1(x), attn_mask=mask)[0] else: x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x class MultiheadAttentionRPR(nn.Module): """ ---------- Author: Pytorch Modified: Damon Gwinn ---------- For Relative Position Representation support (https://arxiv.org/abs/1803.02155) https://pytorch.org/docs/1.2.0/_modules/torch/nn/modules/activation.html#MultiheadAttention Modification to add RPR embedding Er and call custom multi_head_attention_forward_rpr ---------- """ def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, er_len=None): super(MultiheadAttentionRPR, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn # Adding RPR embedding matrix if(er_len is not None): self.Er = Parameter(torch.rand((er_len, self.head_dim), dtype=torch.float32)) else: self.Er = None self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None): if hasattr(self, '_qkv_same_embed_dim') and self._qkv_same_embed_dim is False: # return F.multi_head_attention_forward( # query, key, value, self.embed_dim, self.num_heads, # self.in_proj_weight, self.in_proj_bias, # self.bias_k, self.bias_v, self.add_zero_attn, # self.dropout, self.out_proj.weight, self.out_proj.bias, # training=self.training, # key_padding_mask=key_padding_mask, need_weights=need_weights, # attn_mask=attn_mask, use_separate_proj_weight=True, # q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, # v_proj_weight=self.v_proj_weight) return multi_head_attention_forward_rpr( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, rpr_mat=self.Er) else: if not hasattr(self, '_qkv_same_embed_dim'): warnings.warn('A new version of MultiheadAttention module has been implemented. \ Please re-train your model with the new module', UserWarning) # return F.multi_head_attention_forward( # query, key, value, self.embed_dim, self.num_heads, # self.in_proj_weight, self.in_proj_bias, # self.bias_k, self.bias_v, self.add_zero_attn, # self.dropout, self.out_proj.weight, self.out_proj.bias, # training=self.training, # key_padding_mask=key_padding_mask, need_weights=need_weights, # attn_mask=attn_mask) return multi_head_attention_forward_rpr( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, rpr_mat=self.Er) # multi_head_attention_forward_rpr def multi_head_attention_forward_rpr(query, # type: Tensor key, # type: Tensor value, # type: Tensor embed_dim_to_check, # type: int num_heads, # type: int in_proj_weight, # type: Tensor in_proj_bias, # type: Tensor bias_k, # type: Optional[Tensor] bias_v, # type: Optional[Tensor] add_zero_attn, # type: bool dropout_p, # type: float out_proj_weight, # type: Tensor out_proj_bias, # type: Tensor training=True, # type: bool key_padding_mask=None, # type: Optional[Tensor] need_weights=True, # type: bool attn_mask=None, # type: Optional[Tensor] use_separate_proj_weight=False, # type: bool q_proj_weight=None, # type: Optional[Tensor] k_proj_weight=None, # type: Optional[Tensor] v_proj_weight=None, # type: Optional[Tensor] static_k=None, # type: Optional[Tensor] static_v=None, # type: Optional[Tensor] rpr_mat=None ): ''' print('Query: ', query.shape, 'Key: ', key.shape, 'Value: ', value.shape) print('Equal: ', torch.equal(query, key) and torch.equal(key, value)) print('embed_dim_to_check: ', embed_dim_to_check) print('num_heads:', num_heads) print('in_proj_weight: ', in_proj_weight.shape) print('in_proj_bias: ', in_proj_bias.shape) print('bias_k:', bias_k, 'bias_v', bias_v) print('add_zero_attn:', add_zero_attn) print('dropout_p: ', dropout_p) print('out_proj_weight: ', out_proj_weight.shape) print('out_proj_bias:', out_proj_bias.shape) print('training:', training) print('need_weights:', need_weights) print('use_separate_proj_weight:', use_separate_proj_weight) print('key_padding_mask:', key_padding_mask) print('attn_mask:', attn_mask.shape) print('q_proj_weight:', q_proj_weight) print('k_proj_weight:', k_proj_weight) print('v_proj_weight:', v_proj_weight) print('static_k:', static_k) print('static_v:', static_v) print('rpr_mat:', rpr_mat.shape) ''' """ ---------- Author: Pytorch Modified: Damon Gwinn ---------- For Relative Position Representation support (https://arxiv.org/abs/1803.02155) https://pytorch.org/docs/1.2.0/_modules/torch/nn/functional.html Modification to take RPR embedding matrix and perform skew optimized RPR (https://arxiv.org/abs/1809.04281) ---------- """ # type: (...) -> Tuple[Tensor, Optional[Tensor]] qkv_same = torch.equal(query, key) and torch.equal(key, value) kv_same = torch.equal(key, value) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check assert list(query.size()) == [tgt_len, bsz, embed_dim] assert key.size() == value.size() head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if use_separate_proj_weight is not True: if qkv_same: # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif kv_same: # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, torch.zeros((attn_mask.size(0), 1), dtype=attn_mask.dtype, device=attn_mask.device)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, torch.zeros((key_padding_mask.size(0), 1), dtype=key_padding_mask.dtype, device=key_padding_mask.device)], dim=1) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, torch.zeros((attn_mask.size(0), 1), dtype=attn_mask.dtype, device=attn_mask.device)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, torch.zeros((key_padding_mask.size(0), 1), dtype=key_padding_mask.dtype, device=key_padding_mask.device)], dim=1) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] ######### ADDITION OF RPR ########### if(rpr_mat is not None): rpr_mat = _get_valid_embedding(rpr_mat, q.shape[1], k.shape[1]) qe = torch.einsum("hld,md->hlm", q, rpr_mat) srel = _skew(qe) attn_output_weights += srel if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) attn_output_weights = softmax( attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None def _get_valid_embedding(Er, len_q, len_k): """ ---------- Author: Damon Gwinn ---------- Gets valid embeddings based on max length of RPR attention ---------- """ len_e = Er.shape[0] start = max(0, len_e - len_q) return Er[start:, :] def _skew(qe): """ ---------- Author: Damon Gwinn ---------- Performs the skew optimized RPR computation (https://arxiv.org/abs/1809.04281) ---------- """ sz = qe.shape[1] mask = (torch.triu(torch.ones(sz, sz).to(qe.device)) == 1).float().flip(0) qe = mask * qe qe = F.pad(qe, (1,0, 0,0, 0,0)) qe = torch.reshape(qe, (qe.shape[0], qe.shape[2], qe.shape[1])) srel = qe[:, 1:, :] return srel class GPT(nn.Module): """ the full GPT language model, with a context size of block_size """ def __init__(self, config): super().__init__() # input embedding stem self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.drop = nn.Dropout(config.embd_pdrop) # transformer self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.softmax = nn.Softmax(dim=-1) self.enable_rpr = config.enable_rpr self.block_size = config.block_size self.apply(self._init_weights) logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) def get_block_size(self): return self.block_size def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def configure_optimizers(self, train_config): """ This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won't (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() whitelist_weight_modules = (torch.nn.Linear, ) blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) for mn, m in self.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name if pn.endswith('bias'): # all biases will not be decayed no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) # special case the position embedding parameter in the root GPT module as not decayed no_decay.add('pos_emb') # validate that we considered every parameter param_dict = {pn: p for pn, p in self.named_parameters()} inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ % (str(param_dict.keys() - union_params), ) # create the pytorch optimizer object optim_groups = [ {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay}, {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas) return optimizer def forward(self, idx, targets=None): b, t = idx.size() if self.enable_rpr: mask = generate_square_subsequent_mask(t).to(get_device()) else: mask = None assert t <= self.block_size, "Cannot forward, model block size is exhausted." # forward the GPT model token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector x = self.drop(token_embeddings + position_embeddings) if self.enable_rpr: x = x.permute(1,0,2) for module in self.blocks: x = module(x, mask=mask) x = x.permute(1,0,2) else: x = self.blocks(x) x = self.ln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) if self.enable_rpr: del mask return logits, loss def generate(self, primer=None, target_seq_length=1024, beam=0, beam_chance=1.0, temperature=0, stop_token=TOKEN_END, silent_mode=True): assert (not self.training), "Cannot generate while in training mode" if not silent_mode: print("Generating sequence of max length:", target_seq_length) gen_seq = torch.full((1,target_seq_length), TOKEN_PAD, dtype=TORCH_LABEL_TYPE, device=get_device()) num_primer = len(primer) gen_seq[..., :num_primer] = primer.type(TORCH_LABEL_TYPE).to(get_device()) cur_i = num_primer while(cur_i < target_seq_length): logits, _ = self.forward(gen_seq[..., :cur_i]) y = self.softmax(logits)[..., :TOKEN_END] token_probs = y[:, cur_i-1, :] / (temperature if temperature > 0 else 1.) if(beam == 0): beam_ran = 2.0 else: beam_ran = random.uniform(0,1) if(beam_ran <= beam_chance): token_probs = token_probs.flatten() top_res, top_i = torch.topk(token_probs, beam) beam_rows = top_i // VOCAB_SIZE beam_cols = top_i % VOCAB_SIZE gen_seq = gen_seq[beam_rows, :] gen_seq[..., cur_i] = beam_cols else: distrib = torch.distributions.categorical.Categorical(probs=token_probs) next_token = distrib.sample() gen_seq[:, cur_i] = next_token # Let the transformer decide to end if it wants to if(next_token == stop_token): if not silent_mode: print("Model called end of sequence at:", cur_i, "/", target_seq_length) break cur_i += 1 if(cur_i % 50 == 0): if not silent_mode: print(cur_i, "/", target_seq_length) return gen_seq[:, :cur_i] def generate_square_subsequent_mask(sz: int) -> Tensor: r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). """ mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask class GPTConfig: """ base GPT config, params common to all GPT versions """ embd_pdrop = 0.1 resid_pdrop = 0.1 attn_pdrop = 0.1 def __init__(self, vocab_size, block_size, dim_feedforward, enable_rpr=False, er_len=None, **kwargs): self.vocab_size = vocab_size self.block_size = block_size self.dim_feedforward = dim_feedforward self.enable_rpr = enable_rpr self.er_len = er_len for k,v in kwargs.items(): setattr(self, k, v) import logging logger = logging.getLogger(__name__) ######################################################## def Plot_Losses(losses): pass ######################################################## print('GPT2-RGA loading complete!') print('Enjoy!') ######################################################## ########################################################
37.458052
140
0.571877
6caa1b3e4d44ad185c35d31e48a8de0dc13ff07b
3,991
py
Python
alipay/aop/api/request/AlipayOpenMiniDeploypackageQueryRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/request/AlipayOpenMiniDeploypackageQueryRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/request/AlipayOpenMiniDeploypackageQueryRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayOpenMiniDeploypackageQueryModel import AlipayOpenMiniDeploypackageQueryModel class AlipayOpenMiniDeploypackageQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayOpenMiniDeploypackageQueryModel): self._biz_content = value else: self._biz_content = AlipayOpenMiniDeploypackageQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.open.mini.deploypackage.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
27.524138
148
0.646455
8c8a7e91a09e3679b6d7166ed50dde4b9defb052
1,229
py
Python
pyrival/strings/hashing.py
tusshar2000/PyRival
1d4b29e264088978243a9e72e4bc603acc1fee11
[ "Apache-2.0" ]
3
2020-05-07T10:48:11.000Z
2020-08-15T08:31:40.000Z
pyrival/strings/hashing.py
dipta007/PyRival
4763ce2e1a931438194ea9c5aebc28ef7535c4bc
[ "Apache-2.0" ]
null
null
null
pyrival/strings/hashing.py
dipta007/PyRival
4763ce2e1a931438194ea9c5aebc28ef7535c4bc
[ "Apache-2.0" ]
2
2021-05-22T13:45:06.000Z
2022-03-06T18:22:05.000Z
import random HMOD = 2147483647 HBASE1 = random.randrange(HMOD) HBASE2 = random.randrange(HMOD) class Hashing: def __init__(self, s, mod=HMOD, base1=HBASE1, base2=HBASE2): self.mod, self.base1, self.base2 = mod, base1, base2 self._len = _len = len(s) f_hash, s_hash = [0] * (_len + 1), [0] * (_len + 1) for i in range(_len): f_hash[i + 1] = (base1 * f_hash[i] + s[i]) % mod s_hash[i + 1] = (base2 * s_hash[i] + s[i]) % mod self.f_hash, self.s_hash = f_hash, s_hash def hashed(self, start, stop): return ( (self.f_hash[stop] - pow(self.base1, stop - start, self.mod) * self.f_hash[start]) % self.mod, (self.s_hash[stop] - pow(self.base2, stop - start, self.mod) * self.s_hash[start]) % self.mod, ) def get_hashes(self, length): mod = self.mod pow_base1, pow_base2 = pow(self.base1, length, mod), pow(self.base2, length, mod) f_hash = [(self.f_hash[i + length] - pow_base1 * self.f_hash[i]) % mod for i in range(self._len - length + 1)] s_hash = [(self.s_hash[i + length] - pow_base2 * self.s_hash[i]) % mod for i in range(self._len - length + 1)] return f_hash, s_hash
40.966667
118
0.585028
70d7553dc15bd3713ac246afb86a928af7c7e1d6
7,890
py
Python
backend/a_list_33817/settings.py
crowdbotics-apps/a-list-33817
c220a0e3192bf0573ff504e3ecb26adaa8e1ff42
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/a_list_33817/settings.py
crowdbotics-apps/a-list-33817
c220a0e3192bf0573ff504e3ecb26adaa8e1ff42
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/a_list_33817/settings.py
crowdbotics-apps/a-list-33817
c220a0e3192bf0573ff504e3ecb26adaa8e1ff42
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" Django settings for a_list_33817 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import io import environ import logging import google.auth from google.cloud import secretmanager from google.auth.exceptions import DefaultCredentialsError from google.api_core.exceptions import PermissionDenied from modules.manifest import get_modules # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) env_file = os.path.join(BASE_DIR, ".env") env = environ.Env() env.read_env(env_file) # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) try: # Pull secrets from Secret Manager _, project = google.auth.default() client = secretmanager.SecretManagerServiceClient() settings_name = os.environ.get("SETTINGS_NAME", "django_settings") name = client.secret_version_path(project, settings_name, "latest") payload = client.access_secret_version(name=name).payload.data.decode("UTF-8") env.read_env(io.StringIO(payload)) except (DefaultCredentialsError, PermissionDenied): pass # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', 'storages', ] MODULES_APPS = get_modules() INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS + MODULES_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'a_list_33817.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'web_build')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'a_list_33817.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'web_build/static')] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # AWS S3 config AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "") AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "") AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "") AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "") USE_S3 = ( AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_STORAGE_BUCKET_NAME and AWS_STORAGE_REGION ) if USE_S3: AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "") AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"} AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read") AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media") AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True) DEFAULT_FILE_STORAGE = env.str( "DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage" ) MEDIA_URL = '/mediafiles/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles') # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend" # GCP config GS_BUCKET_NAME = env.str("GS_BUCKET_NAME", "") if GS_BUCKET_NAME: DEFAULT_FILE_STORAGE = "storages.backends.gcloud.GoogleCloudStorage" STATICFILES_STORAGE = "storages.backends.gcloud.GoogleCloudStorage" GS_DEFAULT_ACL = "publicRead"
30.346154
112
0.736502
7647cd81df62920d836e52b8e914d6b255e43dab
3,670
py
Python
non-tts-utilities/ttslua-file-generator/lib/deckutil.py
larikk/TTS-YGO
8c1718a01e97e9e972ba0c16c47d14c56354b5d5
[ "MIT" ]
null
null
null
non-tts-utilities/ttslua-file-generator/lib/deckutil.py
larikk/TTS-YGO
8c1718a01e97e9e972ba0c16c47d14c56354b5d5
[ "MIT" ]
null
null
null
non-tts-utilities/ttslua-file-generator/lib/deckutil.py
larikk/TTS-YGO
8c1718a01e97e9e972ba0c16c47d14c56354b5d5
[ "MIT" ]
null
null
null
import requests from functools import cmp_to_key def printDeck(deck): print("Name", deck['name']) print("Code", deck['code']) print("Date", deck['release-date']) print("Image", deck['image']) if 'next' in deck: print("Next", deck['next']) cards = "" for card in deck['cards']: cards += card['Card number'] + " " cards += card['Name'].ljust(60) + " " cards += card['Rarity'].ljust(25) + " " cards += card['Category'].ljust(30) + " " if 'Qty' in card: cards += card['Qty'] + " " cards += "\n" print(cards) #Sorts by rarity and then set code rarityOrder = ["Secret Rare", "Ultra Rare", "Shatterfoil Rare", "Super Rare", "Rare", "Common"] def compareCards(a, b): deltaRarity = a['__r'] - b['__r'] if deltaRarity == 0: return a['__n'] - b['__n'] return deltaRarity def sortCards(deck): cards = deck['cards'] lengthCodeNumber = 0 for c in reversed(cards[0]['Card number']): if c.isdigit(): lengthCodeNumber += 1 else: break # makes comparing above faster and easier for card in cards: card['__r'] = rarityOrder.index(card['Rarity']) card['__n'] = int(card['Card number'][-lengthCodeNumber]) return sorted(cards, key=cmp_to_key(compareCards)) def isExtraDeckCard(cardType): types = ["Fusion", "Synchro", "XYZ", "Link"] isExtra = False for type_ in types: if type_ in cardType: isExtra = True break return isExtra def extractCardId(card): cardVariants = card['card_images'] ids = map(lambda e: e['id'], cardVariants) id = min(ids) # Need to make an exception for Dark Magician # Polymerization alt artwork is fine because alt id is higher than main id if id == 36996508: id = 46986414 return str(id) def attachAdditionalData(deck): cards = deck['cards'] names = [card['Name'] for card in cards] names = "|".join(names) r = requests.get("https://db.ygoprodeck.com/api/v7/cardinfo.php", params={"name": names, "misc": "yes"}) nameToDataMapping = {} json = r.json() for cardData in json['data']: name = cardData['name'].lower() nameToDataMapping[name] = cardData # handle renames for misc in cardData['misc_info']: if 'beta_name' in misc: name = misc['beta_name'].lower() nameToDataMapping[name] = cardData for card in cards: name = card['Name'].lower() data = nameToDataMapping[name] card['id'] = extractCardId(data) card['isExtraDeckCard'] = isExtraDeckCard(data['type']) def asYdkFile(deck): attachAdditionalData(deck) main = [] extra = [] for card in deck['cards']: id = card['id'] isExtra = card['isExtraDeckCard'] n = 1 if 'Qty' in card: n = int(card['Qty']) for _ in range(n): if isExtra: extra.append(id) else: main.append(id) if len(main) > 0: main = "#main\n" + "\n".join(main) + "\n" else: main = "#main\n" if len(extra) > 0: extra = "#extra\n" + "\n".join(extra) + "\n" else: extra = "#extra\n" result = "#created by ...\n" result += main result += extra result += "!side" return result def asTtsLuaFile(deck): return f"""\ return {{ code = "{deck['code']}", name = "{deck['name']}", releaseDate = "{deck['release-date']}", image = "{deck['image']}", cards = [[ {deck['ydk']} ]] }} """
24.965986
108
0.546322
3c362ddad8056e5809e8c76c215c503aab497437
2,177
py
Python
flowx/imbound/_interface/visco/_interface/_redistance_solid.py
Balaras-Group/flowX
29c1d6209abbfab553997b557794e4d7b06a09a8
[ "BSD-3-Clause" ]
null
null
null
flowx/imbound/_interface/visco/_interface/_redistance_solid.py
Balaras-Group/flowX
29c1d6209abbfab553997b557794e4d7b06a09a8
[ "BSD-3-Clause" ]
7
2020-03-05T20:39:32.000Z
2020-03-13T01:11:26.000Z
flowx/imbound/_interface/visco/_interface/_redistance_solid.py
Balaras-Group/flowX
29c1d6209abbfab553997b557794e4d7b06a09a8
[ "BSD-3-Clause" ]
1
2020-03-09T17:38:00.000Z
2020-03-09T17:38:00.000Z
import numpy from numba import jit def redistance_solid(s, soo, dt, dx, dy, nx, ny): _jit_redistance_solid(s, soo, dt, dx, dy, nx, ny) return @jit(nopython=True) def _jit_redistance_solid(s, soo, dt, dx, dy, nx, ny): eps = 1e-14 sgn = soo / numpy.abs(soo + eps) so = numpy.copy(s) s[:, :] = 0.0 for i in range(1, nx - 1): for j in range(1, ny - 1): sm = so[i, j] sxl = so[i - 1, j] sxr = so[i + 1, j] syl = so[i, j - 1] syr = so[i, j + 1] if ( (soo[i, j] * soo[i - 1, j] < 0) or (soo[i, j] * soo[i + 1, j] < 0) or (soo[i, j] * soo[i, j - 1] < 0) or (soo[i, j] * soo[i, j + 1] < 0) ): s[i, j] = soo[i, j] else: # - First Order Upwind ----- ap = numpy.maximum((sm - sxl), 0.0) / dx an = numpy.minimum((sm - sxl), 0.0) / dx bp = numpy.maximum((sxr - sm), 0.0) / dx bn = numpy.minimum((sxr - sm), 0.0) / dx cp = numpy.maximum((sm - syl), 0.0) / dy cn = numpy.minimum((sm - syl), 0.0) / dy dp = numpy.maximum((syr - sm), 0.0) / dy dn = numpy.minimum((syr - sm), 0.0) / dy if so[i, j] > 0.0: agf = ( numpy.sqrt( numpy.maximum(ap**2, bn**2) + numpy.maximum(cp**2, dn**2) ) ) - 1.0 elif so[i, j] < 0.0: agf = ( numpy.sqrt( numpy.maximum(an**2, bp**2) + numpy.maximum(cn**2, dp**2) ) ) - 1.0 else: agf = 0.0 # - Solve Level Set Re-distance equation --------- s[i, j] = so[i, j] - dt * (sgn[i, j] * (agf)) if s[i, j] * soo[i, j] < 0.0: print("WARNING: LS Dist Function Changed Signs - ", i, j) return
26.228916
66
0.35232
ae65e5f190182de9d6144faa2b51c78075e49d5b
12,946
py
Python
fed_experiment.py
LGNRoy/TSFL
bc2a53637bf1c662646815f07e56da41c0466e0e
[ "MIT" ]
null
null
null
fed_experiment.py
LGNRoy/TSFL
bc2a53637bf1c662646815f07e56da41c0466e0e
[ "MIT" ]
null
null
null
fed_experiment.py
LGNRoy/TSFL
bc2a53637bf1c662646815f07e56da41c0466e0e
[ "MIT" ]
null
null
null
import argparse import os import numpy as np import pickle import torch.utils.data import torch.nn as nn from GCN_model.utlis.utils import * from utils import * from DataTransformer import transform def add_args(parser): """ parser : argparse.ArgumentParser return a parser added with args required by fit """ # Training settings parser.add_argument('--case_name', type=str, default='knn', help='connective functions ("distance","knn","pcc","plv")') parser.add_argument('--data_dir', type=str, default="./result/ISRUC_S3_knn", help='Data directory') parser.add_argument('--model', type=str, default='graphsage', help='Model name. Currently supports SAGE, GAT and GCN.') parser.add_argument('--normalize_features', type=bool, default=False, help='Whether or not to symmetrically normalize feat matrices') parser.add_argument('--normalize_adjacency', type=bool, default=False, help='Whether or not to symmetrically normalize adj matrices') parser.add_argument('--sparse_adjacency', type=bool, default=False, help='Whether or not the adj matrix is to be processed as a sparse matrix') parser.add_argument('--hidden_size', type=int, default=32, help='Size of GNN hidden layer') parser.add_argument('--node_embedding_dim', type=int, default=32, help='Dimensionality of the vector space the atoms will be embedded in') parser.add_argument('--alpha', type=float, default=0.2, help='Alpha value for LeakyRelu used in GAT') parser.add_argument('--num_heads', type=int, default=2, help='Number of attention heads used in GAT') parser.add_argument('--dropout', type=float, default=0.3, help='Dropout used between GraphSAGE layers') parser.add_argument('--readout_hidden_dim', type=int, default=64, help='Size of the readout hidden layer') parser.add_argument('--graph_embedding_dim', type=int, default=64, help='Dimensionality of the vector space the molecule will be embedded in') parser.add_argument('--client_optimizer', type=str, default='adam', metavar="O", help='SGD with momentum; adam') parser.add_argument('--lr', type=float, default=0.0015, metavar='LR', help='learning rate (default: 0.0015)') parser.add_argument('--batch_size', type=int, default=8, metavar='BS', help='batch size (default: batch_size)') parser.add_argument('--wd', help='weight decay parameter;', metavar="WD", type=float, default=0.001) parser.add_argument('--epochs', type=int, default=5, metavar='EP', help='how many epochs will be trained locally') parser.add_argument('--frequency_of_the_test', type=int, default=5, help='How frequently to run eval') parser.add_argument('--device', type=str, default="cuda:0", metavar="DV", help='gpu device for training') parser.add_argument('--metric', type=str, default='roc-auc', help='Metric to be used to evaluate classification models') parser.add_argument('--test_freq', type=int, default=1024, help='How often to test') args = parser.parse_args() return args def train_model(args): np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed_all(0) path = args.data_dir case_name = args.case_name epochs = args.epochs lr = args.lr batch_size = args.batch_size transformed_path = path+"/"+case_name if not os.path.exists(transformed_path): adj_matrices, feature_matrices, labels = get_data(path) os.mkdir(transformed_path) numb_participants = 5 train_mask, test_mask = niid_split_mask(labels) os.mkdir(transformed_path+"/test") writer=open("{}/test/{}.pkl".format(transformed_path, "adjacency_matrices"),'wb') pickle.dump(np.array(adj_matrices)[test_mask], writer) writer.close() writer=open("{}/test/{}.pkl".format(transformed_path, "feature_matrices"),'wb') pickle.dump(np.array(feature_matrices)[test_mask], writer) writer.close() np.save("{}/test/{}.npy".format(transformed_path, "labels"), labels[test_mask]) for i, mask in enumerate(train_mask): os.mkdir(transformed_path+"/Agent{}".format(i)) writer=open("{}/Agent{}/{}.pkl".format(transformed_path, i, "adjacency_matrices"),'wb') pickle.dump(np.array(adj_matrices)[mask], writer) writer.close() writer=open("{}/Agent{}/{}.pkl".format(transformed_path, i, "feature_matrices"),'wb') pickle.dump(np.array(feature_matrices)[mask], writer) writer.close() np.save("{}/Agent{}/{}.npy".format(transformed_path, i, "labels"), labels[mask]) compact = (args.model == 'graphsage') # 加载数据 train_data_set = [] test_data_set = [] feat_dim = 256 num_cats = 5 num_participants = len(os.listdir(transformed_path))-1 # 分布式网络中,子节点的数量 for folder in os.listdir(transformed_path): print("Load: {}/{}".format(transformed_path, folder)) loaded_data = get_dataloader(transformed_path+"/"+folder, compact=compact, normalize_features=False, normalize_adj=False) _, feature_matrices, labels = get_data(transformed_path+"/"+folder) feat_dim = feature_matrices[0].shape[1] num_cats = labels[0].shape[0] print("lenth = %d" % len(loaded_data)) print("feat_dim = %d" % feat_dim) print("num_cats = %d" % num_cats) print() if folder != "test": train_data_set.append(loaded_data) print("Train mask") print(sum(labels)) else: test_data_set.append(loaded_data) print("Test mask") print(sum(labels)) #初始化模型 device = torch.device("cuda:0" if (torch.cuda.is_available() and args.device == 'cuda:0') else "cpu") os.mkdir(path +"/"+ args.model) logFile = open(path +"/"+ args.model + "/log.txt", 'a+') print("logfile:", path +"/"+ args.model + "/log.txt") global_model = get_model(args, feat_dim, num_cats) print(global_model.readout) print(global_model.readout, file=logFile) participants = [get_model(args, feat_dim, num_cats) for i in range(num_participants)] print("len_participants:", len(participants)) for participant_model in participants: sync_participants(participant_model, global_model) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") for model in participants: model.to(device=device, dtype=torch.float32, non_blocking=True) model.train() global_model.to(device=device, dtype=torch.float32, non_blocking=True) global_model.train() train_loader = train_data_set test_loader = test_data_set history_train = [[] for i in participants] history_test = [] history_CM = [] criterion = torch.nn.BCEWithLogitsLoss(reduction='none') opts = [torch.optim.Adam(model.parameters(), lr=lr) for model in participants] best_model = None best_f1 = 0 for e in range(epochs): for mol_idxs in range(int(len(train_loader[0])/batch_size)): participants_loss_train = [] for i in range(len(participants)): batch_loss = calculate_loss(model=participants[i], dataloader=iter(train_loader[i]), batch_size=batch_size, device=device, criterion=criterion, is_sage=compact) optimizer = opts[i] optimizer.zero_grad() participants_loss_train.append(batch_loss) batch_loss.backward() optimizer.step() history_train[i].append(batch_loss) weight_aggregate(global_model, participants) if mol_idxs % 5 == 0 or mol_idxs==int(len(train_loader[0])/batch_size)-1: global_loss_test = calculate_loss(model=global_model, dataloader=iter(test_loader[0]), batch_size=batch_size*8, device=device, criterion=criterion, is_sage=compact) acc, f1, cm = acc_f1(global_model, iter(test_loader[0]), device, compact) print('Train epoch {:^3} at batch {:^5} with global accuracy {:5.4f}, F1 score {:5.4f}, test loss {:5.4f}, participants train loss [{:5.4f}, {:5.4f}, {:5.4f}] [({:2.0f}%)]'.format( e, mol_idxs, acc, f1, global_loss_test, participants_loss_train[0], participants_loss_train[1], participants_loss_train[2], mol_idxs / int(len(train_loader[0])/batch_size) * 100), file=logFile) history_test.append(global_loss_test) print(cm, file=logFile) print('Train epoch {:^3} at batch {:^5} with global accuracy {:5.4f}, F1 score {:5.4f}, test loss {:5.4f}, participants train loss [{:5.4f}, {:5.4f}, {:5.4f}] [({:2.0f}%)]'.format( e, mol_idxs, acc, f1, global_loss_test, participants_loss_train[0], participants_loss_train[1], participants_loss_train[2], mol_idxs / int(len(train_loader[0])/batch_size) * 100)) history_test.append(global_loss_test) # print(cm) history_CM.append(cm) if f1 > best_f1: best_model = global_model best_f1 = f1 print("", file=logFile) print() logFile.close() np.save(path +"/"+ args.model+"/history_CM",np.array(history_CM)) np.save(path +"/"+ args.model+"/history_test",np.array([loss.cpu().detach().numpy() for loss in history_test])) np.save(path +"/"+ args.model+"/history_train",np.array([[loss.cpu().detach().numpy() for loss in parti] for parti in history_train])) torch.save(global_model,path +"/"+ args.model+"/global_model.model") for i, participant in enumerate(participants): torch.save(participant,path +"/"+ args.model+"/participant_model_{}.model".format(i)) best_model.eval() best_model.to(device) with torch.no_grad(): y_pred = [] y_true = [] masks = [] if compact: for mol_idx, (forest, feature_matrix, label, mask) in enumerate(iter(test_loader[0])): forest = [level.to(device=device, dtype=torch.long, non_blocking=True) for level in forest] feature_matrix = feature_matrix.to(device=device, dtype=torch.float32, non_blocking=True) logits = best_model(forest, feature_matrix) y_pred.append(nn.Sigmoid()(logits).cpu().numpy()) y_true.append(label.numpy()) masks.append(mask.numpy()) else: for mol_idx, (adj_matrix, feature_matrix, label, mask) in enumerate(iter(test_loader[0])): adj_matrix = adj_matrix.to(device=device, dtype=torch.float32, non_blocking=True) feature_matrix = feature_matrix.to(device=device, dtype=torch.float32, non_blocking=True) logits = best_model(adj_matrix, feature_matrix) y_pred.append(nn.Sigmoid()(logits).cpu().numpy()) y_true.append(label.numpy()) masks.append(mask.numpy()) y_pred = np.array(y_pred) y_true = np.array(y_true) masks = np.array(masks) AllPred = np.argmax(y_pred, axis=1) AllTrue = np.argmax(y_true, axis=1) PrintScore(AllTrue, AllPred, savePath=path +"/"+ args.model+"/") if __name__ == '__main__': parser = argparse.ArgumentParser() args = add_args(parser) path = { 'data':"./data/ISRUC_S3/ISRUC_S3.npz", 'save':args.data_dir+"/", "cheb_k" : 3, "disM" : "./data/ISRUC_S3/DistanceMatrix.npy", "feature" :'./output/Feature_0.npz' } transform(path, args.case_name) train_model(args) #python fed_experiment.py --model gat --case_name knn --data_dir ./result/ISRUC_S3_knn #python fed_experiment.py --model gcn --case_name knn --data_dir ./result/ISRUC_S3_knn #python fed_experiment.py --model graphsage --case_name knn --data_dir ./result/ISRUC_S3_knn
40.080495
196
0.596941
3b94ea132d8d82fdfc9f92dd9539d52ddc3ff2f2
7,015
py
Python
third_party/maya/lib/pxrUsdMayaGL/testenv/testProxyShapeLiveSurface.py
YuqiaoZhang/USD
bf3a21e6e049486441440ebf8c0387db2538d096
[ "BSD-2-Clause" ]
88
2018-07-13T01:22:00.000Z
2022-01-16T22:15:27.000Z
third_party/maya/lib/pxrUsdMayaGL/testenv/testProxyShapeLiveSurface.py
YuqiaoZhang/USD
bf3a21e6e049486441440ebf8c0387db2538d096
[ "BSD-2-Clause" ]
1
2020-07-07T22:39:42.000Z
2020-07-07T22:39:42.000Z
third_party/maya/lib/pxrUsdMayaGL/testenv/testProxyShapeLiveSurface.py
YuqiaoZhang/USD
bf3a21e6e049486441440ebf8c0387db2538d096
[ "BSD-2-Clause" ]
26
2018-06-06T03:39:22.000Z
2021-08-28T23:02:42.000Z
#!/pxrpythonsubst # # Copyright 2018 Pixar # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # from pxr import UsdMaya # Maya 2017 and later use PyQt5/PySide2 while Maya 2016 and earlier use # PyQt4/PySide. We test whether we're running in Maya 2017+ by trying to import # PySide2, which should only be available there. If that succeeds, we import # the rest of the modules from PySide2. Otherwise, we assume we're in 2016 or # earlier and we import everything from PySide. try: import PySide2 usePySide2 = True except ImportError: usePySide2 = False if usePySide2: from PySide2 import QtCore from PySide2.QtTest import QTest from PySide2.QtWidgets import QWidget from shiboken2 import wrapInstance else: from PySide import QtCore from PySide.QtTest import QTest from PySide.QtGui import QWidget from shiboken import wrapInstance from maya import OpenMayaUI as OMUI from maya import cmds import os import sys import unittest class testProxyShapeLiveSurface(unittest.TestCase): @classmethod def setUpClass(cls): # The test USD data is authored Z-up, so make sure Maya is configured # that way too. cmds.upAxis(axis='z') cmds.loadPlugin('pxrUsd') def setUp(self): cmds.file( os.path.abspath('ProxyShapeLiveSurfaceTest.ma'), open=True, force=True) def testObjectPosition(self): """ Tests that an object created interactively is positioned correctly on the live surface. """ # Load our reference assembly. UsdMaya.LoadReferenceAssemblies() # Create a new custom viewport. window = cmds.window(widthHeight=(500, 400)) cmds.paneLayout() panel = cmds.modelPanel() cmds.modelPanel(panel, edit=True, camera='persp') cmds.modelEditor(cmds.modelPanel(panel, q=True, modelEditor=True), edit=True, displayAppearance='smoothShaded', rnm='vp2Renderer') cmds.showWindow(window) # Get the viewport widget. view = OMUI.M3dView() OMUI.M3dView.getM3dViewFromModelPanel(panel, view) viewWidget = wrapInstance(long(view.widget()), QWidget) # Make our assembly live. cmds.makeLive('Block_1') # Enter interactive creation context. cmds.setToolTo('CreatePolyTorusCtx') # Click in the center of the viewport widget. QTest.mouseClick(viewWidget, QtCore.Qt.LeftButton, QtCore.Qt.NoModifier, viewWidget.rect().center()) # Find the torus (it should be called pTorus1). self.assertTrue(cmds.ls('pTorus1')) # Check the torus's transform. # The Block_1 is originally 1 unit deep and centered at the origin, so # its original top plane is aligned at z=0.5. # It is scaled 5x, which makes the top plane aligned at z=2.5. # Then it is translated along z by 4.0, so its top plane is finally # aligned at z=6.5. translate = cmds.xform('pTorus1', q=True, t=True) self.assertAlmostEqual(translate[2], 6.5, places=3) def testObjectNormal(self): """ Tests that an object created interactively by dragging in the viewport has the correct orientation based on the live surface normal. """ from pxr import Gf # Load our reference assembly. UsdMaya.LoadReferenceAssemblies() # Create a new custom viewport. window = cmds.window(widthHeight=(500, 400)) cmds.paneLayout() panel = cmds.modelPanel() cmds.modelPanel(panel, edit=True, camera='persp') cmds.modelEditor(cmds.modelPanel(panel, q=True, modelEditor=True), edit=True, displayAppearance='smoothShaded', rnm='vp2Renderer') cmds.showWindow(window) # Get the viewport widget. view = OMUI.M3dView() OMUI.M3dView.getM3dViewFromModelPanel(panel, view) viewWidget = wrapInstance(long(view.widget()), QWidget) # Make our assembly live. cmds.makeLive('Block_2') # Enter interactive creation context. cmds.setToolTo('CreatePolyConeCtx') # Click in the center of the viewport widget. QTest.mouseClick(viewWidget, QtCore.Qt.LeftButton, QtCore.Qt.NoModifier, viewWidget.rect().center()) # Find the cone (it should be called pCone1). self.assertTrue(cmds.ls('pCone1')) # Check the cone's rotation. # Because our scene is Z-axis up, the cone's Z-axis should be aligned # with Block_2's surface normal (though it might not necessarily have # the same exact rotation). rotationAngles = cmds.xform('pCone1', q=True, ro=True) rotation = (Gf.Rotation(Gf.Vec3d.XAxis(), rotationAngles[0]) * Gf.Rotation(Gf.Vec3d.YAxis(), rotationAngles[1]) * Gf.Rotation(Gf.Vec3d.ZAxis(), rotationAngles[2])) actualZAxis = rotation.TransformDir(Gf.Vec3d.ZAxis()) expectedRotation = (Gf.Rotation(Gf.Vec3d.XAxis(), 75.0) * Gf.Rotation(Gf.Vec3d.YAxis(), 90.0)) expectedZAxis = expectedRotation.TransformDir(Gf.Vec3d.ZAxis()) # Verify that the error angle between the two axes is less than # 0.1 degrees (less than ~0.0003 of a revolution, so not bad). That's # about as close as we're going to get. errorRotation = Gf.Rotation(actualZAxis, expectedZAxis) self.assertLess(errorRotation.GetAngle(), 0.1) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase( testProxyShapeLiveSurface) results = unittest.TextTestRunner(stream=sys.stdout).run(suite) if results.wasSuccessful(): exitCode = 0 else: exitCode = 1 # maya running interactively often absorbs all the output. comment out the # following to prevent maya from exiting and open the script editor to look # at failures. cmds.quit(abort=True, exitCode=exitCode)
37.31383
80
0.673557
7232bc1c958207c5977daa5aeda123682d01a739
4,017
py
Python
generate_csr.py
pagopa/le-azure-acme-tiny
eb1e6a08af72bcc17a971f101c94223093889fb1
[ "MIT" ]
null
null
null
generate_csr.py
pagopa/le-azure-acme-tiny
eb1e6a08af72bcc17a971f101c94223093889fb1
[ "MIT" ]
null
null
null
generate_csr.py
pagopa/le-azure-acme-tiny
eb1e6a08af72bcc17a971f101c94223093889fb1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import argparse import logging import textwrap import sys import cryptography.hazmat.primitives import cryptography.x509 LOGGER = logging.getLogger(__name__) LOGGER.addHandler(logging.StreamHandler()) LOGGER.setLevel(logging.INFO) def get_csr(common_name, out, keyout, rsa_key_size): log = LOGGER # generate private_key, RSA type # TODO support ECDSA type of certificates log.info("Generating a RSA private key...") private_key = cryptography.hazmat.primitives.asymmetric.rsa.generate_private_key( public_exponent=65537, # this is the RSA e exponent. DO NOT CHANGE THIS VALUE! key_size=rsa_key_size ) # save private_key with open(keyout, "wb") as f: f.write( private_key.private_bytes( encoding=cryptography.hazmat.primitives.serialization.Encoding.PEM, format=cryptography.hazmat.primitives.serialization.PrivateFormat.PKCS8, encryption_algorithm=cryptography.hazmat.primitives.serialization.NoEncryption() ) ) log.info("Private key saved to %s", keyout) # CSR creation log.info("Building a Certificate Signing Request (CSR)...") builder = cryptography.x509.CertificateSigningRequestBuilder() # set Common Name builder = builder.subject_name(cryptography.x509.Name( [cryptography.x509.NameAttribute( cryptography.x509.oid.NameOID.COMMON_NAME, common_name)] )) # set Basic Constraints builder = builder.add_extension(cryptography.x509.BasicConstraints( ca=False, path_length=None), critical=True) # set Key Usage builder = builder.add_extension(cryptography.x509.KeyUsage( digital_signature=True, key_encipherment=True, content_commitment=False, data_encipherment=False, key_agreement=False, key_cert_sign=False, crl_sign=False, encipher_only=False, decipher_only=False), critical=True ) # set Extended Key Usage builder = builder.add_extension( cryptography.x509.ExtendedKeyUsage( [cryptography.x509.oid.ExtendedKeyUsageOID.SERVER_AUTH]), critical=False ) # set Common Name in SAN field too builder = builder.add_extension( cryptography.x509.SubjectAlternativeName( [cryptography.x509.DNSName(common_name)]), critical=False ) # sign the CSR with private key csr = builder.sign( private_key, cryptography.hazmat.primitives.hashes.SHA256()) # save CSR to file with open(out, "wb") as f: f.write( csr.public_bytes( encoding=cryptography.hazmat.primitives.serialization.Encoding.DER) ) log.info("CSR saved to %s", out) def main(argv=None): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent("""\ This script generates a CSR in DER format. Example Usage: python3 generate_csr.py --common-name example.com --keyout csr.key --out csr.der --rsa-key-size 2048 """) ) parser.add_argument("--common-name", required=True, help="X509 Common Name string") parser.add_argument("--quiet", action="store_const", const=logging.ERROR, help="Suppress output except for errors") parser.add_argument("--rsa-key-size", default=2048, type=int, choices=[2048, 3072, 4096], help="RSA key size in bits") parser.add_argument("--out", default="csr.der", help="Destination of the CSR") parser.add_argument("--keyout", default="csr.key", help="Destination of the CSR private key") args = parser.parse_args(argv) LOGGER.setLevel(args.quiet or LOGGER.level) # TODO add support for arbitrary SAN fields get_csr(args.common_name, args.out, args.keyout, args.rsa_key_size) if __name__ == "__main__": main(sys.argv[1:])
36.189189
112
0.669156
4b028708c31ecb3d0a7d4a47ab3ba64a875dc025
10,708
py
Python
GNN/gnn.py
BrandonBian/OSDR-GNN
0f631d5ddad77df7260c11de3507af014f9447ed
[ "MIT" ]
null
null
null
GNN/gnn.py
BrandonBian/OSDR-GNN
0f631d5ddad77df7260c11de3507af014f9447ed
[ "MIT" ]
null
null
null
GNN/gnn.py
BrandonBian/OSDR-GNN
0f631d5ddad77df7260c11de3507af014f9447ed
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from torch_geometric.nn.inits import glorot from torch_geometric.nn import MessagePassing from torch_geometric.utils import add_self_loops, softmax, degree class GIN(MessagePassing): def __init__(self, emb_dim): super(GIN, self).__init__() self.mlp = torch.nn.Sequential( nn.Linear(emb_dim, 2 * emb_dim), nn.BatchNorm1d(2 * emb_dim), nn.ReLU(), nn.Linear(2 * emb_dim, emb_dim)) def forward(self, x, edge_index, edge_attr): # Here return self.propagate(edge_index=edge_index, x=x, edge_attr=edge_attr) def message(self, x_j, edge_attr): return x_j + edge_attr def update(self, aggr_out): return self.mlp(aggr_out) # MLP class GCN(MessagePassing): def __init__(self, emb_dim): super(GCN, self).__init__() self.linear = nn.Linear(emb_dim, emb_dim) def forward(self, x, edge_index, edge_attr): edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0)) self_loop_attr = torch.zeros((x.size(0), edge_attr.size(1)), dtype=edge_attr.dtype).to(x.device) edge_attr = torch.cat((edge_attr, self_loop_attr), dim=0) row, col = edge_index deg = degree(col, x.size(0), dtype=x.dtype) deg_inv_sqrt = deg.pow(-0.5) norm = deg_inv_sqrt[row] * deg_inv_sqrt[col] return self.propagate(edge_index, x=x, edge_attr=edge_attr, norm=norm) def message(self, x_j, edge_attr, norm): return norm.view(-1, 1) * (x_j + edge_attr) class GAT(MessagePassing): def __init__(self, emb_dim): super(GAT, self).__init__() self.att = nn.Parameter(torch.Tensor(1, 2 * emb_dim)) glorot(self.att) def forward(self, x, edge_index, edge_attr): edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0)) self_loop_attr = torch.zeros((x.size(0), edge_attr.size(1)), dtype=edge_attr.dtype).to(x.device) edge_attr = torch.cat((edge_attr, self_loop_attr), dim=0) return self.propagate(edge_index=edge_index, x=x, edge_attr=edge_attr) def message(self, edge_index, x_i, x_j, edge_attr): x_j = x_j + edge_attr alpha = (torch.cat([x_i, x_j], dim=-1) * self.att).sum(dim=-1) alpha = F.leaky_relu(alpha, 0.2) alpha = softmax(alpha, edge_index[0]) return x_j * alpha.view(-1, 1) class GraphSAGE(MessagePassing): def __init__(self, emb_dim): super(GraphSAGE, self).__init__(aggr='mean') self.linear = nn.Linear(emb_dim, emb_dim) def forward(self, x, edge_index, edge_attr): return self.propagate(edge_index=edge_index, x=x, edge_attr=edge_attr) def message(self, x_j, edge_attr): return x_j + edge_attr def update(self, aggr_out): return F.normalize(aggr_out, p=2, dim=-1) class GraphNN(torch.nn.Module): # TODO: some hierarchical information that we need to change? def __init__(self, node_dim, edge_dim, hid_dim, hier_dim, num_class, num_layers, network): super(GraphNN, self).__init__() self.drop = nn.Dropout(p=0.1) self.network = network self.hier_dim = hier_dim self.num_class = num_class self.num_layers = num_layers self.linear_node = nn.Linear(node_dim, hid_dim) self.linear_edge = nn.Linear(edge_dim, hid_dim) self.output_layer = nn.Sequential( # TODO: if everything works fine, then hier_dim = 0 for material predictions. nn.Linear(hier_dim + hid_dim, 2 * hid_dim), nn.BatchNorm1d(2 * hid_dim), nn.PReLU(), nn.Linear(2 * hid_dim, num_class) ) self.layers = nn.ModuleList() self.lin_layers = nn.ModuleList() for layer in range(self.num_layers): if self.network == 'gin': self.layers.append(GIN(hid_dim)) elif self.network == 'gcn': self.layers.append(GCN(hid_dim)) elif self.network == 'gat': self.layers.append(GAT(hid_dim)) elif self.network == 'sage': self.layers.append(GraphSAGE(hid_dim)) self.lin_layers.append(nn.Linear(hid_dim, hid_dim)) def forward(self, x, edge_index, e, c): # TODO: this part is essential, figure out what is it doing? # GraphNN forward() parameters: # x = x - node features # edge = edge_index - 2 nodes to each edge (compressed version of the adj matrix) # e = e - edge features # c = 0/y1/y2 - ground truth input predictions (Teacher forcing) # different feature space, project to similar feature dimension h = self.linear_node(x) # linear transformation (project from node dimension to hidden dimension) e = self.linear_edge(e) # linear transformation h_list = [h] for layer in range(self.num_layers): # for each GNN layer if self.network != 'gin': # default is GIN, so this part can be ignored h = self.lin_layers[layer](h_list[layer]) h = self.layers[layer](h_list[layer], edge_index, e) # Passing data to one layer of GNN h = self.drop(F.leaky_relu(h, negative_slope=0.2)) # Take node embeddings, activation, drop-out h_list.append(h) # take node embeddings of all layers and take sum (residual network - uses skip connections) h_list = [h.unsqueeze_(0) for h in h_list] h = torch.sum(torch.cat(h_list), 0) # if commented out previous two lines, will give the embeddings of the last layer if self.hier_dim > 0: h = self.output_layer(torch.cat((h, c), dim=-1)) else: h = self.output_layer(h) return h class HierarchicalGNN(nn.Module): def __init__(self, node_dim, edge_dim, hid_dim, num_class_l1, num_class_l2, num_class_l3, num_layers, network): super(HierarchicalGNN, self).__init__() self.gnn_level1 = GraphNN(node_dim, edge_dim, hid_dim, 0, num_class_l1, num_layers, network) self.gnn_level2 = GraphNN(node_dim, edge_dim, hid_dim, num_class_l1, num_class_l2, num_layers, network) self.gnn_level3 = GraphNN(node_dim, edge_dim, hid_dim, num_class_l2, num_class_l3, num_layers, network) def forward(self, x, edge_index, e, y1, y2): # gnn.forward() parameters: # x = batch.x.float() - node attributes # edge_index = batch.edge_index - 2 nodes to each edge # e = batch.e.float() - edge attributes # y1 = F.one_hot(batch.y1, self.num_class_l1) - tier 1 function # y2 = F.one_hot(batch.y2, self.num_class_l2) - tier 2 function # GraphNN forward() parameters: # x = x - node attributes # edge = edge_index - 2 nodes to each edge # e = e - edge attributes # c = 0/y1/y2 - ground truth input predictions (Teacher forcing) # compute tier predictions (softmax?) # First MLP no predecessor so just vector of 0 as input predictions # TODO: are these the MLPs? yp_l1 = self.gnn_level1(x, edge_index, e, 0) yp_l2 = self.gnn_level2(x, edge_index, e, y1) yp_l3 = self.gnn_level3(x, edge_index, e, y2) return yp_l1, yp_l2, yp_l3 # returns tier predictions @torch.no_grad() def predict(self, x, edge_index, e): yp_l1 = F.softmax(self.gnn_level1(x, edge_index, e, 0), dim=-1) yp_l2 = F.softmax(self.gnn_level2(x, edge_index, e, yp_l1), dim=-1) yp_l3 = F.softmax(self.gnn_level3(x, edge_index, e, yp_l2), dim=-1) return yp_l1, yp_l2, yp_l3 class CustomizedGNN(nn.Module): def __init__(self, node_dim, edge_dim, hid_dim, num_materials, num_layers, network): super(CustomizedGNN, self).__init__() # TODO: num_materials for GraphNN, only one gnn level needed - done self.gnn_level1 = GraphNN(node_dim, edge_dim, hid_dim, 0, num_materials, num_layers, network) def forward(self, x, edge_index, e): # TODO: acquire the material predictions, only one gnn layer - done material_predictions = self.gnn_level1(x, edge_index, e, 0) # 0 here emulate input predictions return material_predictions @torch.no_grad() def predict(self, x, edge_index, e): # TODO: acquire the material predictions, only one gnn layer - done material_predictions = F.softmax(self.gnn_level1(x, edge_index, e, 0), dim=-1) return material_predictions class MLP(nn.Module): def __init__(self, node_dim, hid_dim, num_class_l1, num_class_l2, num_class_l3): super(MLP, self).__init__() self.mlp_level1 = nn.Sequential( nn.Linear(node_dim, hid_dim), nn.ReLU(), nn.Dropout(p=0.1), nn.Linear(hid_dim, num_class_l1) ) self.mlp_level2 = nn.Sequential( nn.Linear(node_dim + num_class_l1, hid_dim), nn.ReLU(), nn.Dropout(p=0.1), nn.Linear(hid_dim, num_class_l2) ) self.mlp_level3 = nn.Sequential( nn.Linear(node_dim + num_class_l2, hid_dim), nn.ReLU(), nn.Dropout(p=0.1), nn.Linear(hid_dim, num_class_l3) ) def forward(self, x, y1, y2): yp_l1 = self.mlp_level1(x) yp_l2 = self.mlp_level2(torch.cat((x, y1), dim=-1)) yp_l3 = self.mlp_level3(torch.cat((x, y2), dim=-1)) return yp_l1, yp_l2, yp_l3 @torch.no_grad() def predict(self, x): yp_l1 = F.softmax(self.mlp_level1(x), dim=-1) yp_l2 = F.softmax(self.mlp_level2(torchcat((x, yp_l1), dim=-1)), dim=-1) yp_l3 = F.softmax(self.mlp_level3(torch.cat((x, yp_l2), dim=-1)), dim=-1) return yp_l1, yp_l2, yp_l3 class Linear(nn.Module): def __init__(self, node_dim, hid_dim, num_class_l1, num_class_l2, num_class_l3): super(Linear, self).__init__() self.linear_l1 = nn.Linear(node_dim, num_class_l1) self.linear_l2 = nn.Linear(node_dim + num_class_l1, num_class_l2) self.linear_l3 = nn.Linear(node_dim + num_class_l2, num_class_l3) def forward(self, x, y1, y2): yp_l1 = self.linear_l1(x) yp_l2 = self.linear_l2(torch.cat((x, y1), dim=-1)) yp_l3 = self.linear_l3(torch.cat((x, y2), dim=-1)) return yp_l1, yp_l2, yp_l3 @torch.no_grad() def predict(self, x): yp_l1 = F.softmax(self.linear_l1(x), dim=-1) yp_l2 = F.softmax(self.linear_l2(torch.cat((x, yp_l1), dim=-1)), dim=-1) yp_l3 = F.softmax(self.linear_l3(torch.cat((x, yp_l2), dim=-1)), dim=-1) return yp_l1, yp_l2, yp_l3 if __name__ == "__main__": pass
40.407547
115
0.631117
253ae8541403b78175a056e3981770d02ec2b4a9
17,584
py
Python
patrickstar/core/preprocess.py
zhuzilin/PatrickStar
72daf8dbded07e03d911db6369b075c9bfcd5245
[ "BSD-3-Clause" ]
null
null
null
patrickstar/core/preprocess.py
zhuzilin/PatrickStar
72daf8dbded07e03d911db6369b075c9bfcd5245
[ "BSD-3-Clause" ]
2
2022-03-15T06:57:11.000Z
2022-03-15T07:55:31.000Z
patrickstar/core/preprocess.py
zhuzilin/PatrickStar
72daf8dbded07e03d911db6369b075c9bfcd5245
[ "BSD-3-Clause" ]
null
null
null
# BSD 3-Clause License # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the psutil authors nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import contextlib import functools import torch from patrickstar.core import PatrickStarClient, AccessType, ChunkType from patrickstar.core import register_param, is_param_registered, ParamType from patrickstar.manager import _runtime_config from patrickstar.ops import Embedding from patrickstar.utils import logger, print_rank, get_rank, get_world_size from patrickstar.utils import see_memory_usage _orig_torch_empty = torch.empty def empty_cpu_tensor_half(*size, **kwargs): if "device" not in kwargs.keys(): kwargs["device"] = torch.device("cpu:0") tensor = _orig_torch_empty(*size, **kwargs) if tensor.is_floating_point(): return tensor.half() else: return tensor def new_cpu_tensor_half(cls, *args): device = torch.device("cpu:0") tensor = torch.ones((1, 1), device=device).new_empty(*args).half() print_rank( f"During model initialization, a new tensor of shape {tensor.shape} is created." ) if tensor.is_floating_point(): return tensor.half() else: return tensor def empty_cpu_tensor(*size, **kwargs): if "device" not in kwargs.keys(): kwargs["device"] = torch.device("cpu:0") tensor = _orig_torch_empty(*size, **kwargs) return tensor def new_cpu_tensor(cls, *args): device = torch.device("cpu:0") tensor = torch.ones((1, 1), device=device).new_empty(*args) return tensor @contextlib.contextmanager def torch_scope(do_allreduce=True): r"""All parameters initialized in this scope will not be managed in chunks.""" _runtime_config.push() _runtime_config.config["use_chunk"] = False _runtime_config.config["do_allreduce"] = do_allreduce yield _runtime_config.pop() def cast_forward(module, dtype): if not isinstance(dtype, torch.dtype): raise ValueError("dtype should be of torch.dtype.") old_forward = module.forward def forward(*args, **kwargs): casted_args = [] for arg in args: if isinstance(arg, torch.Tensor) and torch.is_floating_point(arg): casted_args.append(arg.to(dtype)) else: casted_args.append(arg) casted_kwargs = {} for k, v in kwargs.items(): if isinstance(v, torch.Tensor) and torch.is_floating_point(v): casted_kwargs[k] = v.to(dtype) else: casted_kwargs[k] = v return old_forward(*casted_args, **casted_kwargs) module.forward = forward # Inserts _post_init_method at the end of init method # for all sub classes of torch.nn.Module class InsertPostInitMethodToModuleSubClasses(object): def __init__(self, config=None, dtype=None): self._set_dtype(config, dtype) assert self.dtype in [ torch.half, torch.float, ], f"Invalid data type {self.dtype}, allowed values are [torch.half, torch.float]" def __enter__(self): def preprocess_after(f): @functools.wraps(f) def wrapper(module, *args, **kwargs): print_rank( f"Before initializing {module.__class__.__name__}", force=False ) f(module, *args, **kwargs) self._post_init_method(module) print_rank( f"After initializing followed by post init for {module.__class__.__name__}", force=False, ) return wrapper def _enable_class(cls): cls._old_init = cls.__init__ cls.__init__ = preprocess_after(cls.__init__) def _init_subclass(cls, **kwargs): cls.__init__ = preprocess_after(cls.__init__) # Replace .__init__() for all existing subclasses of torch.nn.Module for subclass in torch.nn.modules.module.Module.__subclasses__(): if subclass == torch.nn.Embedding: _enable_class(Embedding) else: _enable_class(subclass) # holding on to the current __init__subclass__ for exit torch.nn.modules.module.Module._old_init_subclass = ( torch.nn.modules.module.Module.__init_subclass__ ) torch.Tensor.__old_new__ = torch.Tensor.__new__ # Replace .__init__() for future subclasses of torch.nn.Module torch.nn.modules.module.Module.__init_subclass__ = classmethod(_init_subclass) if self.dtype == torch.half: torch.Tensor.__new__ = new_cpu_tensor_half torch.empty = empty_cpu_tensor_half else: torch.Tensor.__new__ = new_cpu_tensor torch.empty = empty_cpu_tensor self._pre_context_exec() def __exit__(self, exc_type, exc_value, traceback): def _disable_class(cls): cls.__init__ = cls._old_init # Replace .__init__() for all existing subclasses of torch.nn.Module for subclass in torch.nn.modules.module.Module.__subclasses__(): if subclass == torch.nn.Embedding: _disable_class(Embedding) else: _disable_class(subclass) # Replace .__init__() for future subclasses of torch.nn.Module torch.nn.modules.module.Module.__init_subclass__ = ( torch.nn.modules.module.Module._old_init_subclass ) torch.Tensor.__new__ = torch.Tensor.__old_new__ torch.empty = _orig_torch_empty self._post_context_exec() # Now that we cleaned up the metaclass injection, raise the exception. if exc_type is not None: return False # To be implemented by inheriting classes def _post_init_method(self, module): pass def _pre_context_exec(self): pass def _post_context_exec(self): pass def _set_dtype(self, ds_config, dtype): if dtype is None: self.dtype = torch.half else: self.dtype = dtype class PSPreProcessCtx(InsertPostInitMethodToModuleSubClasses): """ A context to initialize model """ def __init__( self, client: PatrickStarClient, release_after_init=False, use_cpu_embedding=False, dtype=None, ): super().__init__(config=None, dtype=dtype) self.rank = get_rank() self.world_size = get_world_size() self.client = client self.dummy_param_list = [] self.param_idx = 0 self.release_after_init = release_after_init self.use_cpu_embedding = use_cpu_embedding self.submodule_id = -1 def _pre_context_exec(self): Embedding.use_cpu = self.use_cpu_embedding def _new(cls, *args, **kwargs): embedding = object.__new__(Embedding) return embedding torch.nn.Embedding.__new__ = _new def _post_context_exec(self): """The callback function when the context exits. 1. Copy param.data to fp16 and fp32 chunk based params. 2. Append dummy chunk so that the number of chunks is an integer multiple of number of processes. 3. Add a dummy param at the start of CPU Embedding for huggingface. """ logger.info("Post Model Init Context") def _origin_new(cls, *arg, **kwargs): return object.__new__(cls) torch.nn.Embedding.__new__ = _origin_new if Embedding.use_cpu: for instance in Embedding.instances: # A walkaround for huggingface. # Huggingface will use the type of the first parameter as the # dtype of the module. And we need the module to be identified as # fp16 for the mixed precision training in patrickstar. # However, when use_cpu_embedding is True, the weight of embedding # remains to fp32 (otherwise cause error on older version of pytorch). # As the embedding is usually the first submodule, we insert a # dummy fp16 Parameter as the placeholder. # # TODO(zilinzhu) Figure out why dummy in the __init__ of Embedding will # cause numeric error. instance.dummy = torch.nn.Parameter( torch.tensor([], dtype=torch.half), requires_grad=False ) register_param( instance.dummy, ParamType.TORCH_BASED, torch.half, "embedding_dummy", ) instance._parameters.move_to_end("dummy", last=False) # Clean the members to prevent elements not grabage collected. Embedding.instances = [] Embedding.use_cpu = False chunk_num = 0 for param_fp16_chunk_id, param_fp32_chunk_id in zip( self.client.chunk_ids_generator(ChunkType.PARAM_FP16), self.client.chunk_ids_generator(ChunkType.PARAM_FP32), ): if self.client.chunk_tensor_index.is_local_chunk(param_fp16_chunk_id): for param_fp16, param_fp32 in zip( self.client.chunk_tensor_index.params_generator( param_fp16_chunk_id ), self.client.chunk_tensor_index.params_generator( param_fp32_chunk_id ), ): if is_param_registered(param_fp32) and is_param_registered( param_fp16 ): ps_data_fp16 = self.client.access_data( param_fp16, torch.device("cpu:0") ) ps_data_fp32 = self.client.access_data( param_fp32, torch.device("cpu:0") ) # Here the dtype of param_fp16 is actually fp32. ps_data_fp16.copy_(param_fp16.data) ps_data_fp32.copy_(param_fp16.data) self.client.release_data(param_fp16) self.client.release_data(param_fp32) param_fp16 = param_fp16.to(torch.half) else: for param_fp16 in self.client.chunk_tensor_index.params_generator( param_fp16_chunk_id ): assert not self.client.is_local_param(param_fp16, AccessType.DATA) # When release_after_init is True, we will release the remote # param tensor here. # When release_after_init is False, this will help cast dtype of # remote params to torch.half (See the NOTE below). param_fp16.data = torch.tensor( [], dtype=torch.half, device=param_fp16.device ) chunk_num += 1 world_size = get_world_size() logger.info(f"param fp16 chunk num {chunk_num}") while chunk_num % world_size != 0: self.client.append_dummy_chunk(torch.half, ChunkType.PARAM_FP16) chunk_num += 1 def _post_init_method(self, module): r"""The function to call at the end of the constructor of each nn.Module. The main functionality is registering the params to chunks and remove the remote tensor if `release_after_init` is False. """ self.submodule_id += 1 see_memory_usage( f"Before converting parmas in {module.__class__.__name__}", force=False ) if self.use_cpu_embedding: # In CPU embedding optimization, # the embedding is managed by torch instead of chunk. if module.__class__.__name__ == "Embedding": logger.debug( f"** Converting Maintain PyTorch Params in {module.__class__.__name__}" ) for name, param in module.named_parameters(recurse=False): param_fp32 = torch.nn.Parameter(param.data.clone()) register_param( param, ParamType.TORCH_BASED, torch.float, f"embedding_{name}" ) self.client.torch_param_allreduce_list.append(param) return print_rank(f"Converting Params in {module.__class__.__name__}", force=False) if not _runtime_config.use_chunk: for name, param in module.named_parameters(recurse=False): name = f"{module.__class__.__name__}.{name}_{self.param_idx}" register_param(param, ParamType.TORCH_BASED, torch.float, name) if _runtime_config.do_allreduce: self.client.torch_param_allreduce_list.append(param) # We need to cast the inputs to fp32 for the unmanaged modules. cast_forward(module, torch.float) return # The granularity of `post_init_method` is nn.Module, e.g. BertAttention. # For every process, we will initialize the params. # NOTE() The order of params in model initialization is a bit different from the # the one in optimizer parameter group. param_fp16_list = [] param_fp32_list = [] for name, param in module.named_parameters(recurse=False): name = f"{module.__class__.__name__}.{name}_{self.param_idx}" register_param(param, ParamType.CHUNK_BASED, torch.half, name) self.param_idx += 1 param_fp16_list.append(param) logger.debug( f"** Converting Params {name} in module id {self.submodule_id}" ) # Append a tensor to the param fp32 chunk list. # Before that, we have to build a fp32 param. param_fp32 = torch.nn.Parameter( torch.tensor([], dtype=torch.float, device=torch.device("cpu:0")), requires_grad=False, ) param_fp32_list.append(param_fp32) register_param( param_fp32, ParamType.CHUNK_BASED, torch.float, f"{name}_fp32" ) param_fp32.ps_attr.reset_shape(param.shape) self.client.param_fp16_to_param_fp32_map[param] = param_fp32 self.client.chunk_based_param_fp16.append(param) self.client.append_tensor( param_fp16_list, torch.half, AccessType.DATA, ChunkType.PARAM_FP16 ) self.client.append_tensor( param_fp32_list, torch.float, AccessType.DATA, ChunkType.PARAM_FP32 ) for param_fp16, param_fp32 in zip(param_fp16_list, param_fp32_list): # Delete the memory of non local tensors if not self.client.is_local_param(param_fp16, AccessType.DATA): param_fp16.ps_attr._is_local = False param_fp32.ps_attr._is_local = False # TODO(jiaruifang) fix distributed init bug. # Check results will fail when not release_after_init. # As release tensor here will make the random seed generator # behave differently (less random number generated). # NOTE(why dtype is torch.float rather than torch.half) # PyTorch version lower than 1.5 can not initialize torch.half # tensors on CPU. So although the param_fp16 is a fp16 type param, # its pytorch dtype still be float. if not self.release_after_init: # Here we use a non-empty tensor for huggingface. Because it # needs to initialize the weight for padding_idx. param_fp16.data = torch.tensor( [0], dtype=torch.float, device=param_fp16.device ) else: param_fp16.ps_attr._is_local = True param_fp32.ps_attr._is_local = True cast_forward(module, torch.half)
40.422989
96
0.618574
f6338d6b5b80188124ec43f4abcef9d222552160
2,370
py
Python
track_model/train_track_model.py
QUVA-Lab/lang-tracker
6cb3630471765565b6f2d34a160f0cd51d95a082
[ "BSD-2-Clause-FreeBSD" ]
31
2017-09-13T13:40:59.000Z
2022-01-25T16:55:19.000Z
track_model/train_track_model.py
zhenyangli/lang-tracker
dddd808a22582573ab0a5e4c3dbf0ba054e42d61
[ "BSD-3-Clause" ]
4
2017-09-14T01:56:58.000Z
2021-01-28T00:58:58.000Z
track_model/train_track_model.py
QUVA-Lab/lang-tracker
6cb3630471765565b6f2d34a160f0cd51d95a082
[ "BSD-2-Clause-FreeBSD" ]
9
2017-09-28T03:22:08.000Z
2021-01-19T10:56:44.000Z
import caffe import numpy as np import os import sys import track_model_train as track_model import train_config def compute_accuracy(scores, labels): is_pos = (labels != 0) is_neg = np.logical_not(is_pos) num_all = labels.shape[0] num_pos = np.sum(is_pos) num_neg = num_all - num_pos is_correct = np.logical_xor(scores < 0, is_pos) accuracy_all = np.sum(is_correct) / float(num_all) accuracy_pos = np.sum(is_correct[is_pos]) / float(num_pos) accuracy_neg = np.sum(is_correct[is_neg]) / float(num_neg) return accuracy_all, accuracy_pos, accuracy_neg def train(config): with open('./track_model/proto_train.prototxt', 'w') as f: f.write(str(track_model.generate_model('train', config))) caffe.set_device(config.gpu_id) caffe.set_mode_gpu() solver = caffe.get_solver('./track_model/solver_sgd.prototxt') solver.net.copy_from(config.weights) #solver.net.save('./snapshots/track_model/_iter_0.caffemodel') #solver.restore('./snapshots/track_model/_iter_50000.solverstate') loss_avg = 0.0 avg_accuracy_all, avg_accuracy_pos, avg_accuracy_neg = 0, 0, 0 decay = 0.99 for it in range(config.max_iter): solver.step(1) loss_val = solver.net.blobs['loss'].data #scores_val = solver.net.blobs['fcn_scaled_scores'].data.copy() #label_val = solver.net.blobs['label'].data.copy() #import ipdb; ipdb.set_trace() loss_avg = decay*loss_avg + (1-decay)*loss_val if it % config.iter_display == 0: print('\titer = %d, cls_loss (cur) = %f, cls_loss (avg) = %f' % (it, loss_val, loss_avg)) # Accuracy #accuracy_all, accuracy_pos, accuracy_neg = compute_accuracy(scores_val, label_val) #avg_accuracy_all = decay*avg_accuracy_all + (1-decay)*accuracy_all #avg_accuracy_pos = decay*avg_accuracy_pos + (1-decay)*accuracy_pos #avg_accuracy_neg = decay*avg_accuracy_neg + (1-decay)*accuracy_neg #print('\titer = %d, accuracy (cur) = %f (all), %f (pos), %f (neg)' # % (it, accuracy_all, accuracy_pos, accuracy_neg)) #print('\titer = %d, accuracy (avg) = %f (all), %f (pos), %f (neg)' # % (it, avg_accuracy_all, avg_accuracy_pos, avg_accuracy_neg)) if __name__ == '__main__': config = train_config.Config() train(config)
35.909091
91
0.662447
e1dcda2647bcaf756ef5188b8343f9bd78166957
55,989
py
Python
python/ccxt/liquid.py
ive-a-dream/ccxt
1c6ec43f6d577f95610f5e4c01354bb91e8633c1
[ "MIT" ]
null
null
null
python/ccxt/liquid.py
ive-a-dream/ccxt
1c6ec43f6d577f95610f5e4c01354bb91e8633c1
[ "MIT" ]
null
null
null
python/ccxt/liquid.py
ive-a-dream/ccxt
1c6ec43f6d577f95610f5e4c01354bb91e8633c1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange import math from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import NotSupported from ccxt.base.errors import DDoSProtection from ccxt.base.errors import InvalidNonce from ccxt.base.decimal_to_precision import TICK_SIZE from ccxt.base.precise import Precise class liquid(Exchange): def describe(self): return self.deep_extend(super(liquid, self).describe(), { 'id': 'liquid', 'name': 'Liquid', 'countries': ['JP', 'CN', 'TW'], 'version': '2', 'rateLimit': 1000, 'has': { 'CORS': None, 'spot': True, 'margin': None, # has but not fully implemented 'swap': None, # has but not fully implemented 'future': False, 'option': False, 'cancelOrder': True, 'createOrder': True, 'editOrder': True, 'fetchBalance': True, 'fetchClosedOrders': True, 'fetchCurrencies': True, 'fetchMarkets': True, 'fetchMyTrades': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchOrders': True, 'fetchTicker': True, 'fetchTickers': True, 'fetchTrades': True, 'fetchTradingFee': True, 'fetchTradingFees': True, 'fetchWithdrawals': True, 'withdraw': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/45798859-1a872600-bcb4-11e8-8746-69291ce87b04.jpg', 'api': 'https://api.liquid.com', 'www': 'https://www.liquid.com', 'doc': [ 'https://developers.liquid.com', ], 'fees': 'https://help.liquid.com/getting-started-with-liquid/the-platform/fee-structure', 'referral': 'https://www.liquid.com/sign-up/?affiliate=SbzC62lt30976', }, 'api': { 'public': { 'get': [ 'currencies', 'products', 'products/{id}', 'products/{id}/price_levels', 'executions', 'ir_ladders/{currency}', 'fees', # add fetchFees, fetchTradingFees, fetchFundingFees ], }, 'private': { 'get': [ 'accounts', # undocumented https://github.com/ccxt/ccxt/pull/7493 'accounts/balance', 'accounts/main_asset', 'accounts/{id}', 'accounts/{currency}/reserved_balance_details', 'crypto_accounts', # add fetchAccounts 'crypto_withdrawal', 'crypto_withdrawals', 'crypto_withdrawals/crypto_networks', 'executions/me', 'fiat_accounts', # add fetchAccounts 'fund_infos', # add fetchDeposits 'loan_bids', 'loans', 'orders', 'orders/{id}', 'orders/{id}/trades', # add fetchOrderTrades 'trades', 'trades/{id}/loans', 'trading_accounts', 'trading_accounts/{id}', 'transactions', 'withdrawals', # add fetchWithdrawals 'user/fee_tier', 'user/fees', 'trading_accounts/{id}', 'bank_accounts', 'accounts/{currency}/reserved_balance_details', ], 'post': [ 'crypto_withdrawals', 'fund_infos', 'fiat_accounts', 'loan_bids', 'orders', 'withdrawals', 'fees/estimate', ], 'put': [ 'crypto_withdrawal/{id}/cancel', 'loan_bids/{id}/close', 'loans/{id}', 'orders/{id}', # add editOrder 'orders/{id}/cancel', 'trades/{id}', 'trades/{id}/adjust_margin', 'trades/{id}/close', 'trades/close_all', 'trading_accounts/{id}', 'withdrawals/{id}/cancel', ], }, }, 'fees': { 'trading': { 'tierBased': True, 'percentage': True, 'taker': 0.0030, 'maker': 0.0000, 'tiers': { 'perpetual': { 'maker': [ [0, 0.0000], [25000, 0.0000], [50000, -0.00025], [100000, -0.00025], [1000000, -0.00025], [10000000, -0.00025], [25000000, -0.00025], [50000000, -0.00025], [75000000, -0.00025], [100000000, -0.00025], [200000000, -0.00025], [300000000, -0.00025], ], 'taker': [ [0, 0.00120], [25000, 0.00115], [50000, 0.00110], [100000, 0.00105], [1000000, 0.00100], [10000000, 0.00095], [25000000, 0.00090], [50000000, 0.00085], [75000000, 0.00080], [100000000, 0.00075], [200000000, 0.00070], [300000000, 0.00065], ], }, 'spot': { 'taker': [ [0, 0.003], [10000, 0.0029], [20000, 0.0028], [50000, 0.0026], [100000, 0.0020], [1000000, 0.0016], [5000000, 0.0012], [10000000, 0.0010], [25000000, 0.0009], [50000000, 0.0008], [100000000, 0.0007], [200000000, 0.0006], [500000000, 0.0004], [1000000000, 0.0003], ], 'maker': [ [0, 0.0000], [10000, 0.0020], [20000, 0.0019], [50000, 0.0018], [100000, 0.0016], [1000000, 0.0008], [5000000, 0.0007], [10000000, 0.0005], [25000000, 0.0000], [50000000, 0.0000], [100000000, 0.0000], [200000000, 0.0000], [500000000, 0.0000], [1000000000, 0.0000], ], }, }, }, }, 'precisionMode': TICK_SIZE, 'exceptions': { 'API rate limit exceeded. Please retry after 300s': DDoSProtection, 'API Authentication failed': AuthenticationError, 'Nonce is too small': InvalidNonce, 'Order not found': OrderNotFound, 'Can not update partially filled order': InvalidOrder, 'Can not update non-live order': OrderNotFound, 'not_enough_free_balance': InsufficientFunds, 'must_be_positive': InvalidOrder, 'less_than_order_size': InvalidOrder, 'price_too_high': InvalidOrder, 'price_too_small': InvalidOrder, # {"errors":{"order":["price_too_small"]}} 'product_disabled': BadSymbol, # {"errors":{"order":["product_disabled"]}} }, 'commonCurrencies': { 'BIFI': 'BIFIF', 'HOT': 'HOT Token', 'MIOTA': 'IOTA', # https://github.com/ccxt/ccxt/issues/7487 'P-BTC': 'BTC', 'TON': 'Tokamak Network', }, 'options': { 'cancelOrderException': True, 'networks': { 'ETH': 'ERC20', 'TRX': 'TRC20', 'XLM': 'Stellar', 'ALGO': 'Algorand', }, 'swap': { 'fetchMarkets': { 'settlementCurrencies': ['BTC', 'ETH', 'XRP', 'QASH', 'USD', 'JPY', 'EUR', 'SGD', 'AUD'], }, }, }, }) def fetch_currencies(self, params={}): response = self.publicGetCurrencies(params) # # [ # { # currency_type: 'fiat', # currency: 'USD', # symbol: '$', # assets_precision: 2, # quoting_precision: 5, # minimum_withdrawal: '15.0', # withdrawal_fee: 5, # minimum_fee: null, # minimum_order_quantity: null, # display_precision: 2, # depositable: True, # withdrawable: True, # discount_fee: 0.5, # credit_card_fundable: False, # lendable: False, # position_fundable: True, # has_memo: False, # stable_currency: null, # root_currency: 'USD', # minimum_loan_bid_quantity: '0.0', # maximum_order_taker_quantity: null, # name: 'United States Dollar' # }, # ] # result = {} for i in range(0, len(response)): currency = response[i] id = self.safe_string(currency, 'currency') code = self.safe_currency_code(id) name = self.safe_string(currency, 'name') depositable = self.safe_value(currency, 'depositable') withdrawable = self.safe_value(currency, 'withdrawable') active = depositable and withdrawable amountPrecision = self.safe_integer(currency, 'assets_precision') result[code] = { 'id': id, 'code': code, 'info': currency, 'name': name, 'active': active, 'deposit': depositable, 'withdraw': withdrawable, 'fee': self.safe_number(currency, 'withdrawal_fee'), 'precision': amountPrecision, 'limits': { 'amount': { 'min': math.pow(10, -amountPrecision), 'max': math.pow(10, amountPrecision), }, 'withdraw': { 'min': self.safe_number(currency, 'minimum_withdrawal'), 'max': None, }, }, } return result def fetch_markets(self, params={}): spot = self.publicGetProducts(params) # # [ # { # "id":"637", # "product_type":"CurrencyPair", # "code":"CASH", # "name":null, # "market_ask":"0.00000797", # "market_bid":"0.00000727", # "indicator":null, # "currency":"BTC", # "currency_pair_code":"TFTBTC", # "symbol":null, # "btc_minimum_withdraw":null, # "fiat_minimum_withdraw":null, # "pusher_channel":"product_cash_tftbtc_637", # "taker_fee":"0.0", # "maker_fee":"0.0", # "low_market_bid":"0.00000685", # "high_market_ask":"0.00000885", # "volume_24h":"3696.0755956", # "last_price_24h":"0.00000716", # "last_traded_price":"0.00000766", # "last_traded_quantity":"1748.0377978", # "average_price":null, # "quoted_currency":"BTC", # "base_currency":"TFT", # "tick_size":"0.00000001", # "disabled":false, # "margin_enabled":false, # "cfd_enabled":false, # "perpetual_enabled":false, # "last_event_timestamp":"1596962820.000797146", # "timestamp":"1596962820.000797146", # "multiplier_up":"9.0", # "multiplier_down":"0.1", # "average_time_interval":null # }, # ] # perpetual = self.publicGetProducts({'perpetual': '1'}) # # [ # { # "id":"604", # "product_type":"Perpetual", # "code":"CASH", # "name":null, # "market_ask":"11721.5", # "market_bid":"11719.0", # "indicator":null, # "currency":"USD", # "currency_pair_code":"P-BTCUSD", # "symbol":"$", # "btc_minimum_withdraw":null, # "fiat_minimum_withdraw":null, # "pusher_channel":"product_cash_p-btcusd_604", # "taker_fee":"0.0012", # "maker_fee":"0.0", # "low_market_bid":"11624.5", # "high_market_ask":"11859.0", # "volume_24h":"0.271", # "last_price_24h":"11621.5", # "last_traded_price":"11771.5", # "last_traded_quantity":"0.09", # "average_price":"11771.5", # "quoted_currency":"USD", # "base_currency":"P-BTC", # "tick_size":"0.5", # "disabled":false, # "margin_enabled":false, # "cfd_enabled":false, # "perpetual_enabled":true, # "last_event_timestamp":"1596963309.418853092", # "timestamp":"1596963309.418853092", # "multiplier_up":null, # "multiplier_down":"0.1", # "average_time_interval":300, # "index_price":"11682.8124", # "mark_price":"11719.96781", # "funding_rate":"0.00273", # "fair_price":"11720.2745" # }, # ] # currencies = self.fetch_currencies() currenciesByCode = self.index_by(currencies, 'code') result = [] markets = self.array_concat(spot, perpetual) for i in range(0, len(markets)): market = markets[i] id = self.safe_string(market, 'id') baseId = self.safe_string(market, 'base_currency') quoteId = self.safe_string(market, 'quoted_currency') productType = self.safe_string(market, 'product_type') swap = (productType == 'Perpetual') type = 'swap' if swap else 'spot' spot = not swap base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) disabled = self.safe_value(market, 'disabled', False) baseCurrency = self.safe_value(currenciesByCode, base) minAmount = None if baseCurrency is not None: minAmount = self.safe_number(baseCurrency['info'], 'minimum_order_quantity') lastPrice = self.safe_number(market, 'last_traded_price') minPrice = None maxPrice = None if lastPrice: multiplierDown = self.safe_number(market, 'multiplier_down') multiplierUp = self.safe_number(market, 'multiplier_up') if multiplierDown is not None: minPrice = lastPrice * multiplierDown if multiplierUp is not None: maxPrice = lastPrice * multiplierUp margin = self.safe_value(market, 'margin_enabled') symbol = base + '/' + quote maker = self.fees['trading']['maker'] taker = self.fees['trading']['taker'] parsedMarket = { 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'settle': None, 'baseId': baseId, 'quoteId': quoteId, 'settleId': None, 'type': type, 'spot': spot, 'margin': spot and margin, 'swap': swap, 'future': False, 'option': False, 'active': not disabled, 'contract': swap, 'linear': None, 'inverse': None, 'taker': taker, 'maker': maker, 'contractSize': None, 'expiry': None, 'expiryDatetime': None, 'strike': None, 'optionType': None, 'precision': { 'amount': self.parse_number('0.00000001'), 'price': self.safe_number(market, 'tick_size'), }, 'limits': { 'leverage': { 'min': None, 'max': None, }, 'amount': { 'min': minAmount, 'max': None, }, 'price': { 'min': minPrice, 'max': maxPrice, }, 'cost': { 'min': None, 'max': None, }, }, 'info': market, } if swap: settlementCurrencies = self.options['fetchMarkets']['settlementCurrencies'] for i in range(0, len(settlementCurrencies)): settle = settlementCurrencies[i] parsedMarket['settle'] = settle parsedMarket['symbol'] = symbol + ':' + settle parsedMarket['linear'] = quote == settle parsedMarket['inverse'] = base == settle parsedMarket['taker'] = self.safe_number(market, 'taker_fee', taker) parsedMarket['maker'] = self.safe_number(market, 'maker_fee', maker) parsedMarket['contractSize'] = self.parse_number('1') result.append(parsedMarket) else: result.append(parsedMarket) return result def parse_balance(self, response): result = { 'info': response, 'timestamp': None, 'datetime': None, } crypto = self.safe_value(response, 'crypto_accounts', []) fiat = self.safe_value(response, 'fiat_accounts', []) for i in range(0, len(crypto)): balance = crypto[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_string(balance, 'balance') account['used'] = self.safe_string(balance, 'reserved_balance') result[code] = account for i in range(0, len(fiat)): balance = fiat[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_string(balance, 'balance') account['used'] = self.safe_string(balance, 'reserved_balance') result[code] = account return self.safe_balance(result) def fetch_balance(self, params={}): self.load_markets() response = self.privateGetAccounts(params) # # { # crypto_accounts: [ # { # id: 2221179, # currency: 'USDT', # balance: '0.0', # reserved_balance: '0.0', # pusher_channel: 'user_xxxxx_account_usdt', # lowest_offer_interest_rate: null, # highest_offer_interest_rate: null, # address: '0', # currency_symbol: 'USDT', # minimum_withdraw: null, # currency_type: 'crypto' # }, # ], # fiat_accounts: [ # { # id: 1112734, # currency: 'USD', # balance: '0.0', # reserved_balance: '0.0', # pusher_channel: 'user_xxxxx_account_usd', # lowest_offer_interest_rate: null, # highest_offer_interest_rate: null, # currency_symbol: '$', # send_to_btc_address: null, # exchange_rate: '1.0', # currency_type: 'fiat' # } # ] # } # return self.parse_balance(response) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() request = { 'id': self.market_id(symbol), } response = self.publicGetProductsIdPriceLevels(self.extend(request, params)) return self.parse_order_book(response, symbol, None, 'buy_price_levels', 'sell_price_levels') def parse_ticker(self, ticker, market=None): timestamp = self.milliseconds() last = None if 'last_traded_price' in ticker: if ticker['last_traded_price']: length = len(ticker['last_traded_price']) if length > 0: last = self.safe_string(ticker, 'last_traded_price') marketId = self.safe_string(ticker, 'id') market = self.safe_market(marketId, market) symbol = market['symbol'] baseId = self.safe_string(ticker, 'base_currency') quoteId = self.safe_string(ticker, 'quoted_currency') if (baseId is not None) and (quoteId is not None): symbol = self.safe_currency_code(baseId) + '/' + self.safe_currency_code(quoteId) open = self.safe_string(ticker, 'last_price_24h') return self.safe_ticker({ 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_string(ticker, 'high_market_ask'), 'low': self.safe_string(ticker, 'low_market_bid'), 'bid': self.safe_string(ticker, 'market_bid'), 'bidVolume': None, 'ask': self.safe_string(ticker, 'market_ask'), 'askVolume': None, 'vwap': None, 'open': open, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_string(ticker, 'volume_24h'), 'quoteVolume': None, 'info': ticker, }, market, False) def fetch_tickers(self, symbols=None, params={}): self.load_markets() response = self.publicGetProducts(params) result = {} for i in range(0, len(response)): ticker = self.parse_ticker(response[i]) symbol = ticker['symbol'] result[symbol] = ticker return self.filter_by_array(result, 'symbol', symbols) def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = { 'id': market['id'], } response = self.publicGetProductsId(self.extend(request, params)) return self.parse_ticker(response, market) def parse_trade(self, trade, market=None): # { id: 12345, # quantity: "6.789", # price: "98765.4321", # taker_side: "sell", # created_at: 1512345678, # my_side: "buy" } timestamp = self.safe_timestamp(trade, 'created_at') orderId = self.safe_string(trade, 'order_id') # 'taker_side' gets filled for both fetchTrades and fetchMyTrades takerSide = self.safe_string(trade, 'taker_side') # 'my_side' gets filled for fetchMyTrades only and may differ from 'taker_side' mySide = self.safe_string(trade, 'my_side') side = mySide if (mySide is not None) else takerSide takerOrMaker = None if mySide is not None: takerOrMaker = 'taker' if (takerSide == mySide) else 'maker' price = self.safe_string(trade, 'price') amount = self.safe_string(trade, 'quantity') id = self.safe_string(trade, 'id') market = self.safe_market(None, market) return self.safe_trade({ 'info': trade, 'id': id, 'order': orderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': market['symbol'], 'type': None, 'side': side, 'takerOrMaker': takerOrMaker, 'price': price, 'amount': amount, 'cost': None, 'fee': None, }, market) def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'product_id': market['id'], } if limit is not None: request['limit'] = limit if since is not None: # timestamp should be in seconds, whereas we use milliseconds in since and everywhere request['timestamp'] = int(since / 1000) response = self.publicGetExecutions(self.extend(request, params)) result = response if (since is not None) else response['models'] return self.parse_trades(result, market, since, limit) def fetch_trading_fee(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = { 'id': market['id'], } response = self.publicGetProductsId(self.extend(request, params)) # # { # "id":"637", # "product_type":"CurrencyPair", # "code":"CASH", # "name":null, # "market_ask":"0.00000797", # "market_bid":"0.00000727", # "indicator":null, # "currency":"BTC", # "currency_pair_code":"TFTBTC", # "symbol":null, # "btc_minimum_withdraw":null, # "fiat_minimum_withdraw":null, # "pusher_channel":"product_cash_tftbtc_637", # "taker_fee":"0.0", # "maker_fee":"0.0", # "low_market_bid":"0.00000685", # "high_market_ask":"0.00000885", # "volume_24h":"3696.0755956", # "last_price_24h":"0.00000716", # "last_traded_price":"0.00000766", # "last_traded_quantity":"1748.0377978", # "average_price":null, # "quoted_currency":"BTC", # "base_currency":"TFT", # "tick_size":"0.00000001", # "disabled":false, # "margin_enabled":false, # "cfd_enabled":false, # "perpetual_enabled":false, # "last_event_timestamp":"1596962820.000797146", # "timestamp":"1596962820.000797146", # "multiplier_up":"9.0", # "multiplier_down":"0.1", # "average_time_interval":null # } # return self.parse_trading_fee(response, market) def parse_trading_fee(self, fee, market=None): marketId = self.safe_string(fee, 'id') symbol = self.safe_symbol(marketId, market) return { 'info': fee, 'symbol': symbol, 'maker': self.safe_number(fee, 'maker_fee'), 'taker': self.safe_number(fee, 'taker_fee'), 'percentage': True, 'tierBased': True, } def fetch_trading_fees(self, params={}): self.load_markets() spot = self.publicGetProducts(params) # # [ # { # "id":"637", # "product_type":"CurrencyPair", # "code":"CASH", # "name":null, # "market_ask":"0.00000797", # "market_bid":"0.00000727", # "indicator":null, # "currency":"BTC", # "currency_pair_code":"TFTBTC", # "symbol":null, # "btc_minimum_withdraw":null, # "fiat_minimum_withdraw":null, # "pusher_channel":"product_cash_tftbtc_637", # "taker_fee":"0.0", # "maker_fee":"0.0", # "low_market_bid":"0.00000685", # "high_market_ask":"0.00000885", # "volume_24h":"3696.0755956", # "last_price_24h":"0.00000716", # "last_traded_price":"0.00000766", # "last_traded_quantity":"1748.0377978", # "average_price":null, # "quoted_currency":"BTC", # "base_currency":"TFT", # "tick_size":"0.00000001", # "disabled":false, # "margin_enabled":false, # "cfd_enabled":false, # "perpetual_enabled":false, # "last_event_timestamp":"1596962820.000797146", # "timestamp":"1596962820.000797146", # "multiplier_up":"9.0", # "multiplier_down":"0.1", # "average_time_interval":null # }, # ] # perpetual = self.publicGetProducts({'perpetual': '1'}) # # [ # { # "id":"604", # "product_type":"Perpetual", # "code":"CASH", # "name":null, # "market_ask":"11721.5", # "market_bid":"11719.0", # "indicator":null, # "currency":"USD", # "currency_pair_code":"P-BTCUSD", # "symbol":"$", # "btc_minimum_withdraw":null, # "fiat_minimum_withdraw":null, # "pusher_channel":"product_cash_p-btcusd_604", # "taker_fee":"0.0012", # "maker_fee":"0.0", # "low_market_bid":"11624.5", # "high_market_ask":"11859.0", # "volume_24h":"0.271", # "last_price_24h":"11621.5", # "last_traded_price":"11771.5", # "last_traded_quantity":"0.09", # "average_price":"11771.5", # "quoted_currency":"USD", # "base_currency":"P-BTC", # "tick_size":"0.5", # "disabled":false, # "margin_enabled":false, # "cfd_enabled":false, # "perpetual_enabled":true, # "last_event_timestamp":"1596963309.418853092", # "timestamp":"1596963309.418853092", # "multiplier_up":null, # "multiplier_down":"0.1", # "average_time_interval":300, # "index_price":"11682.8124", # "mark_price":"11719.96781", # "funding_rate":"0.00273", # "fair_price":"11720.2745" # }, # ] # markets = self.array_concat(spot, perpetual) result = {} for i in range(0, len(markets)): market = markets[i] marketId = self.safe_string(market, 'id') symbol = self.safe_symbol(marketId, market) result[symbol] = self.parse_trading_fee(market) return result def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) # the `with_details` param is undocumented - it adds the order_id to the results request = { 'product_id': market['id'], 'with_details': True, } if limit is not None: request['limit'] = limit response = self.privateGetExecutionsMe(self.extend(request, params)) return self.parse_trades(response['models'], market, since, limit) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() clientOrderId = self.safe_string_2(params, 'clientOrderId', 'client_order_id') params = self.omit(params, ['clientOrderId', 'client_order_id']) request = { 'order_type': type, 'product_id': self.market_id(symbol), 'side': side, 'quantity': self.amount_to_precision(symbol, amount), } if clientOrderId is not None: request['client_order_id'] = clientOrderId if (type == 'limit') or (type == 'limit_post_only') or (type == 'market_with_range') or (type == 'stop'): request['price'] = self.price_to_precision(symbol, price) response = self.privatePostOrders(self.extend(request, params)) # # { # "id": 2157474, # "order_type": "limit", # "quantity": "0.01", # "disc_quantity": "0.0", # "iceberg_total_quantity": "0.0", # "side": "sell", # "filled_quantity": "0.0", # "price": "500.0", # "created_at": 1462123639, # "updated_at": 1462123639, # "status": "live", # "leverage_level": 1, # "source_exchange": "QUOINE", # "product_id": 1, # "product_code": "CASH", # "funding_currency": "USD", # "currency_pair_code": "BTCUSD", # "order_fee": "0.0", # "client_order_id": null, # } # return self.parse_order(response) def cancel_order(self, id, symbol=None, params={}): self.load_markets() request = { 'id': id, } response = self.privatePutOrdersIdCancel(self.extend(request, params)) order = self.parse_order(response) if order['status'] == 'closed': if self.options['cancelOrderException']: raise OrderNotFound(self.id + ' order closed already: ' + self.json(response)) return order def edit_order(self, id, symbol, type, side, amount, price=None, params={}): self.load_markets() if price is None: raise ArgumentsRequired(self.id + ' editOrder() requires the price argument') request = { 'order': { 'quantity': self.amount_to_precision(symbol, amount), 'price': self.price_to_precision(symbol, price), }, 'id': id, } response = self.privatePutOrdersId(self.extend(request, params)) return self.parse_order(response) def parse_order_status(self, status): statuses = { 'live': 'open', 'filled': 'closed', 'cancelled': 'canceled', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # # createOrder # # { # "id": 2157474, # "order_type": "limit", # "quantity": "0.01", # "disc_quantity": "0.0", # "iceberg_total_quantity": "0.0", # "side": "sell", # "filled_quantity": "0.0", # "price": "500.0", # "created_at": 1462123639, # "updated_at": 1462123639, # "status": "live", # "leverage_level": 1, # "source_exchange": "QUOINE", # "product_id": 1, # "product_code": "CASH", # "funding_currency": "USD", # "currency_pair_code": "BTCUSD", # "order_fee": "0.0" # "client_order_id": null, # } # # fetchOrder, fetchOrders, fetchOpenOrders, fetchClosedOrders # # { # "id": 2157479, # "order_type": "limit", # "quantity": "0.01", # "disc_quantity": "0.0", # "iceberg_total_quantity": "0.0", # "side": "sell", # "filled_quantity": "0.01", # "price": "500.0", # "created_at": 1462123639, # "updated_at": 1462123639, # "status": "filled", # "leverage_level": 2, # "source_exchange": "QUOINE", # "product_id": 1, # "product_code": "CASH", # "funding_currency": "USD", # "currency_pair_code": "BTCUSD", # "order_fee": "0.0", # "executions": [ # { # "id": 4566133, # "quantity": "0.01", # "price": "500.0", # "taker_side": "buy", # "my_side": "sell", # "created_at": 1465396785 # } # ] # } # orderId = self.safe_string(order, 'id') timestamp = self.safe_timestamp(order, 'created_at') marketId = self.safe_string(order, 'product_id') market = self.safe_value(self.markets_by_id, marketId) status = self.parse_order_status(self.safe_string(order, 'status')) amount = self.safe_number(order, 'quantity') filled = self.safe_number(order, 'filled_quantity') price = self.safe_number(order, 'price') type = self.safe_string(order, 'order_type') tradeCost = 0 tradeFilled = 0 average = self.safe_number(order, 'average_price') trades = self.parse_trades(self.safe_value(order, 'executions', []), market, None, None, { 'order': orderId, 'type': type, }) numTrades = len(trades) for i in range(0, numTrades): # php copies values upon assignment, but not references them # todo rewrite self(shortly) trade = trades[i] trade['order'] = orderId trade['type'] = type tradeFilled = self.sum(tradeFilled, trade['amount']) tradeCost = self.sum(tradeCost, trade['cost']) cost = None lastTradeTimestamp = None if numTrades > 0: lastTradeTimestamp = trades[numTrades - 1]['timestamp'] if not average and (tradeFilled > 0): average = tradeCost / tradeFilled if cost is None: cost = tradeCost if filled is None: filled = tradeFilled remaining = None if amount is not None and filled is not None: remaining = amount - filled side = self.safe_string(order, 'side') clientOrderId = self.safe_string(order, 'client_order_id') return { 'id': orderId, 'clientOrderId': clientOrderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': lastTradeTimestamp, 'type': type, 'timeInForce': None, 'postOnly': None, 'status': status, 'symbol': market['symbol'], 'side': side, 'price': price, 'stopPrice': None, 'amount': amount, 'filled': filled, 'cost': cost, 'remaining': remaining, 'average': average, 'trades': trades, 'fee': { 'currency': market['quote'], 'cost': self.safe_number(order, 'order_fee'), }, 'info': order, } def fetch_order(self, id, symbol=None, params={}): self.load_markets() request = { 'id': id, } response = self.privateGetOrdersId(self.extend(request, params)) return self.parse_order(response) def fetch_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() market = None request = { # 'funding_currency': market['quoteId'], # filter orders based on "funding" currency(quote currency) # 'product_id': market['id'], # 'status': 'live', # 'filled', 'cancelled' # 'trading_type': 'spot', # 'margin', 'cfd' 'with_details': 1, # return full order details including executions } if symbol is not None: market = self.market(symbol) request['product_id'] = market['id'] if limit is not None: request['limit'] = limit response = self.privateGetOrders(self.extend(request, params)) # # { # "models": [ # { # "id": 2157474, # "order_type": "limit", # "quantity": "0.01", # "disc_quantity": "0.0", # "iceberg_total_quantity": "0.0", # "side": "sell", # "filled_quantity": "0.0", # "price": "500.0", # "created_at": 1462123639, # "updated_at": 1462123639, # "status": "live", # "leverage_level": 1, # "source_exchange": "QUOINE", # "product_id": 1, # "product_code": "CASH", # "funding_currency": "USD", # "currency_pair_code": "BTCUSD", # "order_fee": "0.0", # "executions": [], # optional # } # ], # "current_page": 1, # "total_pages": 1 # } # orders = self.safe_value(response, 'models', []) return self.parse_orders(orders, market, since, limit) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): request = {'status': 'live'} return self.fetch_orders(symbol, since, limit, self.extend(request, params)) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): request = {'status': 'filled'} return self.fetch_orders(symbol, since, limit, self.extend(request, params)) def withdraw(self, code, amount, address, tag=None, params={}): tag, params = self.handle_withdraw_tag_and_params(tag, params) self.check_address(address) self.load_markets() currency = self.currency(code) request = { # 'auth_code': '', # optional 2fa code 'crypto_withdrawal': { 'currency': currency['id'], 'address': address, 'amount': amount, # 'payment_id': tag, # for XRP only # 'memo_type': 'text', # 'text', 'id' or 'hash', for XLM only # 'memo_value': tag, # for XLM only }, } if tag is not None: if code == 'XRP': request['crypto_withdrawal']['payment_id'] = tag elif code == 'XLM': request['crypto_withdrawal']['memo_type'] = 'text' # overrideable via params request['crypto_withdrawal']['memo_value'] = tag else: raise NotSupported(self.id + ' withdraw() only supports a tag along the address for XRP or XLM') networks = self.safe_value(self.options, 'networks', {}) paramsCwArray = self.safe_value(params, 'crypto_withdrawal', {}) network = self.safe_string_upper(paramsCwArray, 'network') # self line allows the user to specify either ERC20 or ETH network = self.safe_string(networks, network, network) # handle ERC20>ETH alias if network is not None: request['crypto_withdrawal']['network'] = network params['crypto_withdrawal'] = self.omit(params['crypto_withdrawal'], 'network') response = self.privatePostCryptoWithdrawals(self.deep_extend(request, params)) # # { # "id": 1353, # "address": "1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2", # "amount": 1.0, # "state": "pending", # "currency": "BTC", # "withdrawal_fee": 0.0, # "created_at": 1568016450, # "updated_at": 1568016450, # "payment_id": null # } # return self.parse_transaction(response, currency) def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): self.load_markets() request = { # state: 'processed', # optional: pending, filed, cancelled, processing, processed, reverted to_be_reviewed, declined, broadcasted } currency = None if code is not None: currency = self.currency(code) response = self.privateGetCryptoWithdrawals(self.extend(request, params)) # # { # models: [ # { # id: '2', # address: '1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2', # amount: '0.01', # state: 'processed', # currency: 'BTC', # withdrawal_fee: '0.0005', # created_at: '1614718276', # updated_at: '1614720926', # payment_id: null, # transaction_hash: 'xxxxxxxx...', # broadcasted_at: '1614720762', # wallet_label: 'btc', # chain_name: 'Bitcoin', # network: null # }, # ], # current_page: '1', # total_pages: '1' # } # transactions = self.safe_value(response, 'models', []) return self.parse_transactions(transactions, currency, since, limit) def parse_transaction_status(self, status): statuses = { 'pending': 'pending', 'cancelled': 'canceled', 'approved': 'ok', 'processing': 'pending', 'processed': 'ok', 'reverted': 'failed', 'to_be_reviewed': 'pending', 'declined': 'failed', 'broadcasted': 'ok', } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # withdraw # # { # id: '1', # address: '1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2', # amount: '0.01', # state: 'pending', # currency: 'BTC', # withdrawal_fee: '0.0007', # created_at: '1626000533', # updated_at: '1626000533', # payment_id: null, # transaction_hash: null, # broadcasted_at: null, # wallet_label: null, # chain_name: 'Bitcoin', # network: null # }, # # fetchWithdrawals # # { # id: '2', # address: '1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2', # amount: '0.01', # state: 'processed', # currency: 'BTC', # withdrawal_fee: '0.0005', # created_at: '1614718276', # updated_at: '1614720926', # payment_id: '', # transaction_hash: 'xxxxxxxx...', # broadcasted_at: '1614720762', # wallet_label: 'btc', # chain_name: 'Bitcoin', # network: null # }, # # fetchDeposits # # ... # id = self.safe_string(transaction, 'id') address = self.safe_string(transaction, 'address') tag = self.safe_string_2(transaction, 'payment_id', 'memo_value') txid = self.safe_string(transaction, 'transaction_hash') currencyId = self.safe_string_2(transaction, 'currency', 'asset') code = self.safe_currency_code(currencyId, currency) timestamp = self.safe_timestamp(transaction, 'created_at') updated = self.safe_timestamp(transaction, 'updated_at') type = 'withdrawal' status = self.parse_transaction_status(self.safe_string(transaction, 'state')) amountString = self.safe_string(transaction, 'amount') feeCostString = self.safe_string(transaction, 'withdrawal_fee') amount = self.parse_number(Precise.string_sub(amountString, feeCostString)) network = self.safe_string(transaction, 'chain_name') return { 'info': transaction, 'id': id, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'network': network, 'address': address, 'addressTo': None, 'addressFrom': None, 'tag': tag, 'tagTo': None, 'tagFrom': None, 'type': type, 'amount': amount, 'currency': code, 'status': status, 'updated': updated, 'fee': { 'currency': code, 'cost': self.parse_number(feeCostString), }, } def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = '/' + self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) headers = { 'X-Quoine-API-Version': self.version, 'Content-Type': 'application/json', } if api == 'private': self.check_required_credentials() if method == 'GET': if query: url += '?' + self.urlencode(query) elif query: body = self.json(query) nonce = self.nonce() request = { 'path': url, 'token_id': self.apiKey, 'iat': int(math.floor(nonce / 1000)), # issued at } if not ('client_order_id' in query): request['nonce'] = nonce headers['X-Quoine-Auth'] = self.jwt(request, self.encode(self.secret)) else: if query: url += '?' + self.urlencode(query) url = self.urls['api'] + url return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if code >= 200 and code < 300: return if code == 401: # expected non-json response self.throw_exactly_matched_exception(self.exceptions, body, body) return if code == 429: raise DDoSProtection(self.id + ' ' + body) if response is None: return feedback = self.id + ' ' + body message = self.safe_string(response, 'message') errors = self.safe_value(response, 'errors') if message is not None: # # {"message": "Order not found"} # self.throw_exactly_matched_exception(self.exceptions, message, feedback) elif errors is not None: # # {"errors": {"user": ["not_enough_free_balance"]}} # {"errors": {"quantity": ["less_than_order_size"]}} # {"errors": {"order": ["Can not update partially filled order"]}} # types = list(errors.keys()) for i in range(0, len(types)): type = types[i] errorMessages = errors[type] for j in range(0, len(errorMessages)): message = errorMessages[j] self.throw_exactly_matched_exception(self.exceptions, message, feedback) else: raise ExchangeError(feedback)
41.229013
143
0.452089
48fd769824ccc88a2917568eb9b92054c317dde7
1,319
py
Python
micropython/examples/pico_display/demo.py
jpwsutton/pimoroni-pico
2dd70029deca9e19362f4ad6134b8361915f6129
[ "MIT" ]
null
null
null
micropython/examples/pico_display/demo.py
jpwsutton/pimoroni-pico
2dd70029deca9e19362f4ad6134b8361915f6129
[ "MIT" ]
null
null
null
micropython/examples/pico_display/demo.py
jpwsutton/pimoroni-pico
2dd70029deca9e19362f4ad6134b8361915f6129
[ "MIT" ]
null
null
null
import time, random import picodisplay as display WIDTH = 240 HEIGHT = 135 display_buffer = bytearray(WIDTH * HEIGHT) display.init(display_buffer) display.set_backlight(1.0) i = 0 width = display.get_width() height = display.get_height() class Ball: def __init__(self, x, y, r, dx, dy, pen): self.x = x self.y = y self.r = r self.dx = dx self.dy = dy self.pen = pen # initialise shapes balls = [] for i in range(0, 100): balls.append( Ball( random.randint(0, width), random.randint(0, height), random.randint(0, 10) + 3, random.randint(0, 255) / 128, random.randint(0, 255) / 128, display.create_pen(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)), ) ) while True: display.set_pen(120, 40, 60) display.clear() for ball in balls: ball.x += ball.dx ball.y += ball.dy if ball.x < 0 or ball.x > width: ball.dx *= -1 if ball.y < 0 or ball.y > height: ball.dy *= -1 display.set_pen(ball.pen) display.circle(int(ball.x), int(ball.y), int(ball.r)) display.update() time.sleep(0.01)
24.425926
115
0.526914
7259396d5574ceea129c1b009bcdf6fcc2691416
14,757
py
Python
cengal/io/net_io/versions/v_0/net_io_abstract.py
FI-Mihej/Cengal
516b9780da6ccc9168f8f89d7ba13dc29e24bc0b
[ "Apache-2.0" ]
3
2018-07-23T18:48:58.000Z
2021-07-18T14:17:20.000Z
cengal/io/net_io/versions/v_0/net_io_abstract.py
FI-Mihej/Cengal
516b9780da6ccc9168f8f89d7ba13dc29e24bc0b
[ "Apache-2.0" ]
null
null
null
cengal/io/net_io/versions/v_0/net_io_abstract.py
FI-Mihej/Cengal
516b9780da6ccc9168f8f89d7ba13dc29e24bc0b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 # Copyright © 2016 ButenkoMS. All rights reserved. Contacts: <gtalk@butenkoms.space> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import socket import errno import copy import enum from contextlib import contextmanager """ Module Docstring Docstrings: http://www.python.org/dev/peps/pep-0257/ """ __author__ = "ButenkoMS <gtalk@butenkoms.space>" __copyright__ = "Copyright © 2016 ButenkoMS. All rights reserved. Contacts: <gtalk@butenkoms.space>" __credits__ = ["ButenkoMS <gtalk@butenkoms.space>", ] __license__ = "Apache License, Version 2.0" __version__ = "1.0.0" __maintainer__ = "ButenkoMS <gtalk@butenkoms.space>" __email__ = "gtalk@butenkoms.space" # __status__ = "Prototype" __status__ = "Development" # __status__ = "Production" class LoopIsAlreadyBegun(Exception): """ You can not run NetIOUserApi.start() if it was already started (and still running). """ pass class WrongConnectionType(Exception): """ You cannot run NetIOUserApi.make_connection() for ConnectionType.active_accepted connection. This kind of connections are made only from (and by) inside of IO loop and logic itself. """ pass class CanNotMakeConnection(Exception): """ Currently not used. If there will be some exception on connect() call - it will be raised without any changes. """ pass class ConnectionType(enum.Enum): passive = 0 # passive socket (bind()) active_accepted = 1 # active accepted socket (accept()) active_connected = 2 # active connected socket (connect()) class ConnectionState(enum.Enum): not_connected_yet = 0 # socket is not in connection process waiting_for_connection = 1 # socket is in connection process (async connection is delayed) connected = 2 # socket is successfully connected worker_fault = 3 # there was unhandled exception from one of the WorkerBase callbacks io_fault = 4 # there was some IO trouble waiting_for_disconnection = 5 # connection was marked as "should be closed" but was not closed yet disconnected = 6 # socket is closed class ConnectionInfo: def __init__(self, worker_obj, connection_type: ConnectionType, socket_address=None, socket_family=socket.AF_INET, socket_type=socket.SOCK_STREAM, socket_protocol=0, socket_fileno=None, backlog=0): """ :param worker_obj: constructed worker object (see WorkerBase for more info). If this is a passive connection - it (worker_obj) will be inherited by the descendant active_accepted connections by copy.copy() call (see WorkerBase.__copy__() method for more info) :param connection_type: see ConnectionType() description :param socket_address: see socket.bind()/socket.connect() docs :param socket_family: see socket.socket() docs :param socket_type: see socket.socket() docs :param socket_protocol: see socket.socket() docs :param socket_fileno: see socket.socket() docs :param backlog: see socket.listen() docs """ self.worker_obj = worker_obj self.connection_type = connection_type self.socket_address = socket_address self.socket_family = socket_family self.socket_type = socket_type self.socket_protocol = socket_protocol self.socket_fileno = socket_fileno self.backlog = backlog class Connection: """ Connection class. Usually created by IO loop or by IO API. But you can also create it by yourself """ def __init__(self, connection_id, connection_info: ConnectionInfo, connection_and_address_pair: tuple, connection_state: ConnectionState, connection_name=None, ): """ :param connection_id: unique connection identificator (unique within the IO object). You may use some random GUID if you are creating connection by your self. :param connection_info: new connection will be created using information provided in connection_info object. See ConnectionInfo() for more information :param connection_and_address_pair: (conn, address) tuple where conn is connected socket (or it can be socket is in the process of connection. But only if it was made by IO loop.). :param connection_state: see ConnectionState for more information :param connection_name: name of the connection (if it was provided) """ self.connection_id = connection_id self.connection_info = connection_info self.conn, self.address = connection_and_address_pair self.connection_state = connection_state self.connection_name = connection_name self.worker_obj = connection_info.worker_obj self.read_data = b'' # already read data self.must_be_written_data = memoryview(b'') # this data should be written self.force_write_call = False def add_must_be_written_data(self, data): """ Use this method to add data to output buffers :param data: some new output data to be send through this connection :return: """ self.must_be_written_data = memoryview(bytes(self.must_be_written_data) + data) class NetIOUserApi: """ You may rely and use freely use methods of this base class from inside your program or from inside your worker (WorkerBase). """ def __init__(self): super().__init__() self.all_connections = set() self.passive_connections = set() self.connection_by_id = dict() self.connection_by_name = dict() self.connection_by_fileno = dict() def start(self, destroy_on_finish=True): """ Will start IO loop :param destroy_on_finish: if True - destroy() will be called from inside of this method :return: """ raise NotImplementedError() def stop(self): """ Will initiate IO loop stop process :return: """ raise NotImplementedError() def make_connection(self, connection_info: ConnectionInfo = None, name=None)->Connection: """ Will create connection from given connection_info object. Than connection will be established. Immediate or delayed - depends on the connection type: - ConnectionType.passive - immediate; - ConnectionType.active_connected - delayed. In both cases WorkerBase.on_connect will be called immediately after connection will be successfully established (IF it will be successfully established). :param connection_info: new connection will be created using information provided in connection_info object. See ConnectionInfo() for more information :param name: name of the connection. If you'll provide it - you will be able to find this connection in NetIOUserApi.connection_by_name dictionary by it's name. :return: """ raise NotImplementedError() def add_connection(self, connection: Connection): """ Will register already established connection. You need to use this method for example if you have already connected socket :param connection: :return: """ raise NotImplementedError() def remove_connection(self, connection: Connection): """ Will close and remove connection :param connection: :return: """ raise NotImplementedError() def check_is_connection_need_to_sent_data(self, connection: Connection): """ Will check connection to output data presence. It is automatically called after EACH WorkerBase callback call by the IO loop. But if you are filling other connection's output buffer - you'll need to make this call for that connection by your self. :param connection: :return: """ raise NotImplementedError() class NetIOCallbacks: """ Callbacks from this class will be called from inside (and by) IOMethodBase loop. """ def __init__(self): super().__init__() def on_accept_connection(self, connection: Connection): raise NotImplementedError() def on_connected(self, connection: Connection): raise NotImplementedError() def on_read(self, connection: Connection): raise NotImplementedError() def on_write(self, connection: Connection): raise NotImplementedError() def on_close(self, connection: Connection): raise NotImplementedError() class NetIOBase(NetIOUserApi, NetIOCallbacks): """ Base class for any IO implementation (Linux, BSD, Windows, cross platform, etc.). """ def __init__(self, transport): """ :param transport: class of the desired IOMethod. Instance (object) will be created by NetIOBase itself """ super().__init__() self.method = transport(self) def destroy(self): raise NotImplementedError() class WorkerBase: """ Base class for all workers. on_* callbacks will be called by the IO loop. General info: You can read input data from self.connection at any time (see "Caution" section of __init__ doc string) from any callback. You can write output data (to be send) to self.connection at any time (see "Caution") from any callback. """ def __init__(self, api: NetIOUserApi=None, connection: Connection=None): """ Caution: Please do not rely on self.api and self.connection inside of your __init__ constructor: it is guaranteed that they will be set before any callback call, but not at the construction process. :param api: link to the constructed network io object :param connection: link to the constructed connection object """ self.api = api self.connection = connection def on_connect(self): """ Will be called after connection successfully established :return: """ pass def on_read(self): """ Will be called if there is some NEW data in the connection input buffer :return: """ pass def on_no_more_data_to_write(self): """ Will be called after all data is sent. Normally it will be called once (one single shot after each portion of out data is sent). If you'll set self.connection.force_write_call to True state - this callback may be called continuously (but not guaranteed: it depends of used IOMethod implementation) :return: """ pass def on_connection_lost(self): """ Will be called AFTER connection socket was actually closed and removed from IOMethod checking list. At this time, self.connection.connection_state is already set to ConnectionState.disconnected. :return: """ pass def __copy__(self): """ This method SHOULD be implemented. It should create a new instance and copy some global (shared) data from current object to that new instance. It will be called when new peer is connected to existing passive connection So this is the way you may use to give all new connection some links to some global data by worker object of the passive connection replication process. :return: """ raise NotImplementedError() @contextmanager def net_io(net_io_obj: NetIOBase): """ Context manager. Usage: main_io = NetIOBase() with(net_io(main_io)) as io: print('Preparing connections') connection1 = io.make_connection(...) connection2 = io.make_connection(...) k = c + 12 ... connectionN = io.make_connection(...) print('Starting IO loop') print('IO loop was finished properly') :param net_io_obj: constructed IO instance (object) :return: """ try: yield net_io_obj net_io_obj.start(destroy_on_finish=False) finally: net_io_obj.destroy() class IOMethodBase: """ Base class for all IOMethod implementation (select, epoll, overlapped io, kqueue, etc.) All his methods are called by the NetIOBase instance. """ def __init__(self, interface: NetIOBase): self.interface = interface self.should_be_closed = set() pass def loop_iteration(self, timeout=None): """ Single IO loop iteration. This method holds all IOMethod logic. :return: """ raise NotImplementedError() def destroy(self): """ Initiates destruction process :return: """ raise NotImplementedError() def set__can_read(self, conn: socket.socket, state=True): """ Will allow (True) or disallow (False) "socket available to read" checks for socket :param conn: target socket :param state: True - allow; False - disallow :return: """ raise NotImplementedError() def set__need_write(self, conn: socket.socket, state=True): """ Will allow (True) or disallow (False) "socket available to write" checks for socket :param conn: target socket :param state: True - allow; False - disallow :return: """ raise NotImplementedError() def set__should_be_closed(self, conn: socket.socket): """ Mark socket as "should be closed" :param conn: target socket :return: """ raise NotImplementedError() def add_connection(self, conn: socket.socket): """ Will add socket to the internal connections list :param conn: target socket :return: """ raise NotImplementedError() def remove_connection(self, conn: socket.socket): """ Will remove socket from the internal connections list :param conn: target socket :return: """ raise NotImplementedError()
34.969194
120
0.659213
58232ae7d6fdc1ebc32a23850fc3b2016e22af2b
2,037
py
Python
webtool/server/migrations/0027_booklet.py
wodo/WebTool3
1582a03d619434d8a6139f705a1b5860e9b5b8b8
[ "BSD-2-Clause" ]
13
2018-12-16T21:01:24.000Z
2019-07-03T06:23:41.000Z
webtool/server/migrations/0027_booklet.py
dav-kempten/WebTool3
859f39df67cb0f853c7fe33cb5d08b999d8692fc
[ "BSD-2-Clause" ]
26
2019-07-07T06:44:06.000Z
2021-09-07T07:28:34.000Z
webtool/server/migrations/0027_booklet.py
dav-kempten/WebTool3
859f39df67cb0f853c7fe33cb5d08b999d8692fc
[ "BSD-2-Clause" ]
3
2017-06-18T06:22:52.000Z
2019-07-03T06:21:05.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2018-12-11 07:33 from __future__ import unicode_literals import django.contrib.postgres.fields from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('server', '0026_auto_20181211_0526'), ] operations = [ migrations.CreateModel( name='Booklet', fields=[ ('updated', models.DateTimeField(auto_now=True)), ('deprecated', models.BooleanField(default=False, verbose_name='Element gilt als gelöscht')), ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('references', django.contrib.postgres.fields.ArrayField(base_field=models.CharField(max_length=7), help_text='Welche Veranstaltungen kommen in das Booklet', size=None, verbose_name='Inhalt')), ('format', models.CharField(choices=[('desktop', 'Desktop'), ('desktop', 'Print')], default='desktop', help_text='Formatierungsvorgaben', max_length=10, verbose_name='Formatvorlage')), ('header', models.CharField(blank=True, default='', help_text='Das ist der Text für das Titelblatt', max_length=125, verbose_name='Titel')), ('sub_header', models.CharField(blank=True, default='', help_text='Das ist der Untertitel für das Titelblatt', max_length=125, verbose_name='Untertitel')), ('main_header', models.CharField(blank=True, default='', help_text='Das ist der Haupttitel für das Titelblatt', max_length=125, verbose_name='Haupttitel')), ('status', models.CharField(choices=[('pending', 'Pending'), ('failed', 'Failed'), ('done', 'Done')], default='pending', max_length=10)), ], options={ 'verbose_name': 'Programmheft', 'verbose_name_plural': 'Programmhefte', 'ordering': ('updated',), 'get_latest_by': 'updated', }, ), ]
53.605263
209
0.633775
6c3a3d4ae4f4c46fc9dafb815c9cd2a3e33c81da
6,730
py
Python
main.py
royd1990/DD2424-Project
2665f81d1ecdbaca257ef4ac18c59b64dd16ae5a
[ "MIT" ]
null
null
null
main.py
royd1990/DD2424-Project
2665f81d1ecdbaca257ef4ac18c59b64dd16ae5a
[ "MIT" ]
null
null
null
main.py
royd1990/DD2424-Project
2665f81d1ecdbaca257ef4ac18c59b64dd16ae5a
[ "MIT" ]
null
null
null
import argparse import os import numpy as np import torch import torch.optim as optim import torch.nn as nn from torch.utils.data import DataLoader from tqdm import tqdm import utils from model import Model def train(net, data_loader, train_optimizer, temperature, loss_type, tau_plus): net.train() total_loss = 0 total_count = 0 train_progress = tqdm(data_loader) for pos_1, pos_2, target in train_progress: pos_1 = pos_1.cuda(non_blocking=True) pos_2 = pos_2.cuda(non_blocking=True) feature_1, out_1 = net(pos_1) feature_2, out_2 = net(pos_2) # neg score out = torch.cat([out_1, out_2], dim=0) neg = torch.exp(torch.mm(out, out.t().contiguous()) / temperature) mask = utils.get_negative_mask(batch_size).cuda() neg = neg.masked_select(mask).view(2 * batch_size, -1) # pos score pos = torch.exp(torch.sum(out_1 * out_2, dim=-1) / temperature) pos = torch.cat([pos, pos], dim=0) # estimator g() if loss_type: N = batch_size * 2 - 2 Ng = (-tau_plus * N * pos + neg.sum(dim = -1)) / (1 - tau_plus) # constrain (optional) Ng = torch.clamp(Ng, min = N * np.e**(-1 / temperature)) else: Ng = neg.sum(dim=-1) # contrastive loss loss = (- torch.log(pos / (pos + Ng) )).mean() train_optimizer.zero_grad() loss.backward() train_optimizer.step() total_count += batch_size total_loss += loss.item() * batch_size current_loss = total_loss / total_count train_progress.set_description('Train Epoch: [{}/{}] Loss: {:.4f}'.format(epoch, epochs, current_loss)) training_loss = total_loss / total_count return training_loss # test for one epoch, use weighted knn to find the most similar images' label to assign the test image def test(network, memory_data_loader, test_set_loader): network.eval() total_top1 = 0 total_top5 = 0 total_num = 0 feature_bank = [] with torch.no_grad(): # generate feature bank for data, _, target in tqdm(memory_data_loader, desc='Extract Features'): feature, out = network(data.cuda(non_blocking=True)) feature_bank.append(feature) # [D, N] feature_bank = torch.cat(feature_bank, dim=0).t().contiguous() # [N] feature_targets = torch.tensor(memory_data_loader.dataset.labels, device=feature_bank.device) # loop test data to predict the label by weighted knn search test_progress = tqdm(test_set_loader) for data, _, target in test_progress: data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True) feature, out = network(data) total_num += data.size(0) # compute cos similarity between each feature vector and feature bank -> [B, N] sim_matrix = torch.mm(feature, feature_bank) # [B, K] sim_weight, sim_indices = sim_matrix.topk(k=k, dim=-1) # [B, K] sim_labels = torch.gather(feature_targets.expand(data.size(0), -1), dim=-1, index=sim_indices) sim_weight = (sim_weight / temperature).exp() # counts for each class one_hot_label = torch.zeros(data.size(0) * k, c, device=sim_labels.device) # [B*K, C] one_hot_label = one_hot_label.scatter(dim=-1, index=sim_labels.view(-1, 1).long(), value=1.0) # weighted score -> [B, C] pred_scores = torch.sum(one_hot_label.view(data.size(0), -1, c) * sim_weight.unsqueeze(dim=-1), dim=1) pred_labels = pred_scores.argsort(dim=-1, descending=True) total_top1 += torch.sum((pred_labels[:, :1] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item() total_top5 += torch.sum((pred_labels[:, :5] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item() test_progress.set_description('KNN Test Epoch: [{}/{}] Acc@1:{:.2f}% Acc@5:{:.2f}%' .format(epoch, epochs, total_top1 / total_num * 100, total_top5 / total_num * 100)) return total_top1 / total_num * 100, total_top5 / total_num * 100 if __name__ == '__main__': parser = argparse.ArgumentParser(description='Train SimCLR') parser.add_argument('--input_dim', default=128, type=int, help='Input dim for latent vector') parser.add_argument('--temperature', default=0.5, type=float, help='Temperature used in softmax') parser.add_argument('--tau_plus', default=0.1, type=float, help='Positive class priorx') parser.add_argument('--k', default=200, type=int, help='Top k most similar images used in prediction') parser.add_argument('--batch_size', default=32, type=int, help='Number of images in a mini-batch') parser.add_argument('--epochs', default=500, type=int, help='Number of sweeps over the train set') parser.add_argument('--loss_type', default=True, type=bool, help='Debiased contrastive loss or standard loss') # args parse args = parser.parse_args() input_dim = args.input_dim temperature = args.temperature tau_plus = args.tau_plus k = args.k batch_size = args.batch_size epochs = args.epochs loss_type = args.loss_type # data prepare #train_data = utils.STL10Pair(root='data', split='train+unlabeled', transform=utils.train_transform) train_data = utils.MNISTPair(root='data', train=True, transform=utils.train_transform, download=True) train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, pin_memory=True, drop_last=True) memory_data = utils.MNISTPair(root='data', train=True, transform=utils.test_transform) memory_loader = DataLoader(memory_data, batch_size=batch_size, shuffle=False, pin_memory=True) test_data = utils.MNISTPair(root='data', train=False, transform=utils.test_transform) test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, pin_memory=True) # model setup and optimizer config model = Model(input_dim).cuda() model = nn.DataParallel(model) optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-6) c = len(memory_data.classes) print('# Classes: {}'.format(c)) # training loop if not os.path.exists('results'): os.mkdir('results') for epoch in range(1, epochs + 1): train_loss = train(model, train_loader, optimizer, temperature, loss_type, tau_plus) if epoch % 25 == 0: test_acc_1, test_acc_5 = test(model, memory_loader, test_loader) torch.save(model.state_dict(), 'results/model_{}.pth'.format(epoch))
43.419355
125
0.645468
daf182375541e1f4c66c579ab0d5d361a3779fab
5,143
py
Python
tf_agents/bandits/policies/categorical_policy.py
ayansengupta17/agents
c5a2f1f57d4fd0070eb75204aa0b1663de3e2c0a
[ "Apache-2.0" ]
2
2021-10-30T16:57:37.000Z
2021-11-17T10:21:17.000Z
tf_agents/bandits/policies/categorical_policy.py
ayansengupta17/agents
c5a2f1f57d4fd0070eb75204aa0b1663de3e2c0a
[ "Apache-2.0" ]
null
null
null
tf_agents/bandits/policies/categorical_policy.py
ayansengupta17/agents
c5a2f1f57d4fd0070eb75204aa0b1663de3e2c0a
[ "Apache-2.0" ]
2
2020-06-05T18:38:16.000Z
2020-07-08T14:41:42.000Z
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Policy that chooses actions based on a categorical distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import import tensorflow_probability as tfp from tf_agents.policies import tf_policy from tf_agents.trajectories import policy_step from tf_agents.utils import common from tf_agents.utils import nest_utils tfd = tfp.distributions def _validate_weights(weights): if len(weights.shape) != 1: raise ValueError( 'Expected a 1D `Tensor` of weights; got {}.'.format(weights)) class CategoricalPolicy(tf_policy.TFPolicy): """Policy that chooses an action based on a categorical distribution. The distribution is specified by a set of weights for each action and an inverse temperature. The unnormalized probability distribution is given by `exp(weight * inv_temp)`. Weights and inverse temperature are typically maintained as `Variable`s, and are updated by an `Agent`. Note that this policy does not make use of `time_step.observation` at all. That is, it is a non-contextual bandit policy. """ def __init__(self, weights, time_step_spec, action_spec, inverse_temperature=1., emit_log_probability=True, name=None): """Initializes `CategoricalPolicy`. The `weights` and `inverse_temperature` arguments may be either `Tensor`s or `tf.Variable`s. If they are variables, then any assignments to those variables will be reflected in the output of the policy. The shape of `weights` is used to determine the action_spec for this policy; `action_spec.maximum = weights.shape[0]`. If `emit_log_probability=True`, the info field of the `PolicyStep` returned will be a `PolicyInfo` tuple with log-probability that can be accessed using `policy_step.get_log_probability(step.info)`. Args: weights: a vector of weights, corresponding to the unscaled log probabilities of a categorical distribution. time_step_spec: A `TimeStep` spec of the expected time_steps. action_spec: A `tensor_spec` of action specification. inverse_temperature: a float value used to scale `weights`. Lower values will induce a more uniform distribution over actions; higher values will result in a sharper distribution. emit_log_probability: Whether to emit log probabilities or not. name: The name of this policy. Raises: ValueError: If the number of actions specified by the action_spec does not match the dimension of weights. """ _validate_weights(weights) self._weights = weights self._inverse_temperature = inverse_temperature if action_spec.maximum + 1 != tf.compat.dimension_value(weights.shape[0]): raise ValueError( 'Number of actions ({}) does not match weights dimension ({}).' .format(action_spec.maximum + 1, tf.compat.dimension_value(weights.shape[0]))) super(CategoricalPolicy, self).__init__( time_step_spec=time_step_spec, action_spec=action_spec, emit_log_probability=True, name=name) def _variables(self): return [v for v in [self._weights, self._inverse_temperature] if isinstance(v, tf.Variable)] def _distribution(self, time_step, policy_state): """Implementation of `distribution`. Returns a `Categorical` distribution. The returned `Categorical` distribution has (unnormalized) probabilities `exp(inverse_temperature * weights)`. Args: time_step: A `TimeStep` tuple corresponding to `time_step_spec()`. policy_state: Unused in `CategoricalPolicy`. It is simply passed through. Returns: A `PolicyStep` named tuple containing: `action`: A (optionally nested) of tfp.distribution.Distribution capturing the distribution of next actions. `state`: A policy state tensor for the next call to distribution. `info`: Optional side information such as action log probabilities. """ outer_shape = nest_utils.get_outer_shape(time_step, self._time_step_spec) logits = ( self._inverse_temperature * common.replicate(self._weights, outer_shape)) action_distribution = tfd.Independent( tfd.Categorical(logits=logits, dtype=self._action_spec.dtype)) return policy_step.PolicyStep(action_distribution, policy_state)
40.496063
80
0.722341
ef5e3d6c3d7165ee77824c43334cfc873c07267d
1,621
py
Python
tests/_tests_scripts/z_distributed_12.py
pdanilov/catalyst
2ede5354b2a02807b3c1c69fc0718351382c8301
[ "Apache-2.0" ]
null
null
null
tests/_tests_scripts/z_distributed_12.py
pdanilov/catalyst
2ede5354b2a02807b3c1c69fc0718351382c8301
[ "Apache-2.0" ]
null
null
null
tests/_tests_scripts/z_distributed_12.py
pdanilov/catalyst
2ede5354b2a02807b3c1c69fc0718351382c8301
[ "Apache-2.0" ]
1
2018-12-21T15:56:21.000Z
2018-12-21T15:56:21.000Z
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import TensorDataset from catalyst import dl class Projector(nn.Module): """ Simpler neural network example - Projector. """ def __init__(self, input_size: int): """ Init method. Args: input_size(int): number of features in projected space. """ super().__init__() self.linear = nn.Linear(input_size, 1) def forward(self, X: torch.Tensor) -> torch.Tensor: """ Forward method. Args: X(torch.Tensor): input tensor. Returns: (torch.Tensor): output projection. """ return self.linear(X).squeeze(-1) def datasets_fn(num_features: int): """ Datasets closure. Args: num_features: number of features for dataset creation. """ X = torch.rand(int(1e4), num_features) y = torch.rand(X.shape[0]) dataset = TensorDataset(X, y) return {"train": dataset, "valid": dataset} num_features = 10 model = Projector(num_features) # example 12 - distibuted training with datasets closure runner = dl.SupervisedRunner() runner.train( model=model, # loaders={"train": loader, "valid": loader}, datasets={ "batch_size": 32, "num_workers": 1, "get_datasets_fn": datasets_fn, "num_features": num_features, }, criterion=nn.MSELoss(), optimizer=optim.Adam(model.parameters()), logdir="logs/log_example_12", num_epochs=10, verbose=True, check=True, fp16=False, distributed=True, )
22.205479
67
0.613819
ab83b84922c1fc225ef942f80a56792bbc817273
6,558
py
Python
superset/common/utils.py
ekmixon/superset
540277ebb108ccaf7937a173f6cfde90f2e72813
[ "Apache-2.0" ]
2
2021-09-13T07:20:49.000Z
2021-11-14T20:06:47.000Z
superset/common/utils.py
ekmixon/superset
540277ebb108ccaf7937a173f6cfde90f2e72813
[ "Apache-2.0" ]
62
2020-05-06T22:51:53.000Z
2022-03-28T20:49:17.000Z
superset/common/utils.py
ekmixon/superset
540277ebb108ccaf7937a173f6cfde90f2e72813
[ "Apache-2.0" ]
1
2022-02-07T18:59:01.000Z
2022-02-07T18:59:01.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging from typing import Any, Dict, Optional from flask_caching import Cache from pandas import DataFrame from superset import app from superset.constants import CacheRegion from superset.exceptions import CacheLoadError from superset.extensions import cache_manager from superset.models.helpers import QueryResult from superset.stats_logger import BaseStatsLogger from superset.utils.cache import set_and_log_cache from superset.utils.core import error_msg_from_exception, get_stacktrace, QueryStatus config = app.config stats_logger: BaseStatsLogger = config["STATS_LOGGER"] logger = logging.getLogger(__name__) _cache: Dict[CacheRegion, Cache] = { CacheRegion.DEFAULT: cache_manager.cache, CacheRegion.DATA: cache_manager.data_cache, } class QueryCacheManager: """ Class for manage query-cache getting and setting """ # pylint: disable=too-many-instance-attributes,too-many-arguments def __init__( self, df: DataFrame = DataFrame(), query: str = "", annotation_data: Optional[Dict[str, Any]] = None, status: Optional[str] = None, error_message: Optional[str] = None, is_loaded: bool = False, stacktrace: Optional[str] = None, is_cached: Optional[bool] = None, cache_dttm: Optional[str] = None, cache_value: Optional[Dict[str, Any]] = None, ) -> None: self.df = df self.query = query self.annotation_data = {} if annotation_data is None else annotation_data self.status = status self.error_message = error_message self.is_loaded = is_loaded self.stacktrace = stacktrace self.is_cached = is_cached self.cache_dttm = cache_dttm self.cache_value = cache_value # pylint: disable=too-many-arguments def set_query_result( self, key: str, query_result: QueryResult, annotation_data: Optional[Dict[str, Any]] = None, force_query: Optional[bool] = False, timeout: Optional[int] = None, datasource_uid: Optional[str] = None, region: CacheRegion = CacheRegion.DEFAULT, ) -> None: """ Set dataframe of query-result to specific cache region """ try: self.status = query_result.status self.query = query_result.query self.error_message = query_result.error_message self.df = query_result.df self.annotation_data = {} if annotation_data is None else annotation_data if self.status != QueryStatus.FAILED: stats_logger.incr("loaded_from_source") if not force_query: stats_logger.incr("loaded_from_source_without_force") self.is_loaded = True value = { "df": self.df, "query": self.query, "annotation_data": self.annotation_data, } if self.is_loaded and key and self.status != QueryStatus.FAILED: self.set( key=key, value=value, timeout=timeout, datasource_uid=datasource_uid, region=region, ) except Exception as ex: # pylint: disable=broad-except logger.exception(ex) if not self.error_message: self.error_message = str(ex) self.status = QueryStatus.FAILED self.stacktrace = get_stacktrace() @classmethod def get( cls, key: Optional[str], region: CacheRegion = CacheRegion.DEFAULT, force_query: Optional[bool] = False, force_cached: Optional[bool] = False, ) -> "QueryCacheManager": """ Initialize QueryCacheManager by query-cache key """ query_cache = cls() if not key or not _cache[region] or force_query: return query_cache cache_value = _cache[region].get(key) if cache_value: logger.info("Cache key: %s", key) stats_logger.incr("loading_from_cache") try: query_cache.df = cache_value["df"] query_cache.query = cache_value["query"] query_cache.annotation_data = cache_value.get("annotation_data", {}) query_cache.status = QueryStatus.SUCCESS query_cache.is_loaded = True query_cache.is_cached = cache_value is not None query_cache.cache_dttm = ( cache_value["dttm"] if cache_value is not None else None ) query_cache.cache_value = cache_value stats_logger.incr("loaded_from_cache") except KeyError as ex: logger.exception(ex) logger.error( "Error reading cache: %s", error_msg_from_exception(ex), exc_info=True, ) logger.info("Serving from cache") if force_cached and not query_cache.is_loaded: logger.warning( "force_cached (QueryContext): value not found for key %s", key ) raise CacheLoadError("Error loading data from cache") return query_cache @staticmethod def set( key: Optional[str], value: Dict[str, Any], timeout: Optional[int] = None, datasource_uid: Optional[str] = None, region: CacheRegion = CacheRegion.DEFAULT, ) -> None: """ set value to specify cache region, proxy for `set_and_log_cache` """ if key: set_and_log_cache(_cache[region], key, value, timeout, datasource_uid)
36.433333
85
0.619396
fe647177db346bfa38f1a0e6396789fab73fdbb2
7,889
py
Python
main.py
iCurlmyster/Nerual-Network-with-Human-Resource-Analytics
a5d94354be6e9cd4f2c24289e257247d367eef89
[ "Apache-2.0" ]
null
null
null
main.py
iCurlmyster/Nerual-Network-with-Human-Resource-Analytics
a5d94354be6e9cd4f2c24289e257247d367eef89
[ "Apache-2.0" ]
null
null
null
main.py
iCurlmyster/Nerual-Network-with-Human-Resource-Analytics
a5d94354be6e9cd4f2c24289e257247d367eef89
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf import pandas as pd import numpy as np import sys is_verbose = False do_plot = False do_relu = False do_full = False if len(sys.argv) > 1: if "-v" in sys.argv: is_verbose = True if "-plot" in sys.argv: do_plot = True if "-relu" in sys.argv: do_relu = True if "-full" in sys.argv: do_full = True np.random.seed(7) tf.set_random_seed(7) init_data = pd.read_csv("./HR_comma_sep.csv") if is_verbose: # take a look at the info # we see no rows are missing in any column. We also see "sales" and "salary" are object types. print(init_data.info()) # lets take a look at the first 5 entries of object data print("Sales: {0}".format(init_data["sales"][:5])) print("Salary: {0}".format(init_data["salary"][:5])) # We can see that sales looks like nominal data and salary looks like ordinal data # Lets see how many unique entries there are sales_unique_n = init_data["sales"].nunique() salary_unique_n = init_data["salary"].nunique() ## 10 unique print("Unique sale categories: {0}".format(sales_unique_n)) ## 3 unique print("Unique salary categories: {0}".format(salary_unique_n)) # Now lets break these categories out into easily digestible features for our model sales_unique_feature_names = init_data["sales"].unique() salary_unique_feature_names = init_data["salary"].unique() # Function to breakdown a category into individual binary features def break_down_features(feature_list, category, orig_data): for name in feature_list: orig_data[category+"_"+name] = [1 if x == name else 0 for _, x in enumerate(orig_data[category])] break_down_features(sales_unique_feature_names, "sales", init_data) break_down_features(salary_unique_feature_names, "salary", init_data) # Now that we have added our new categories we can drop our old object ones. init_data = init_data.drop(["sales", "salary"], axis=1) if is_verbose: # Now lets look at what the percentage of the people that left vs the people that stayed print(init_data["left"].value_counts() / len(init_data["left"])) ## 0: 0.761917; 1: 0.238083 # Now lets create a stratified splitting method to ensure the data is split with the same percentages # of our feature of interest as the original data set as a whole. def stratified_split_data(data, ratio): # Grab the data into its own category stayed_data = data.loc[data["left"] == 0] left_data = data.loc[data["left"] == 1] # mix up the data stayed_data = stayed_data.iloc[np.random.permutation(len(stayed_data))] left_data = left_data.iloc[np.random.permutation(len(left_data))] test_stayed_set_size = int(len(stayed_data) * ratio) test_left_set_size = int(len(left_data) * ratio) # Concatenate the partitioned data train_set = pd.concat([stayed_data[test_stayed_set_size:], left_data[test_left_set_size:]], ignore_index=True) test_set = pd.concat([stayed_data[:test_stayed_set_size], left_data[:test_left_set_size]], ignore_index=True) # Now mix up the concatenated data train_shuffled_indices = np.random.permutation(len(train_set)) test_shuffled_indices = np.random.permutation(len(test_set)) return train_set.iloc[train_shuffled_indices], test_set.iloc[test_shuffled_indices] train_set, test_set = stratified_split_data(init_data, 0.2) if is_verbose: # Now lets make sure we still have the same percentages print(train_set["left"].value_counts() / len(train_set["left"])) data = (train_set.drop("left", axis=1)).values data_labels = train_set["left"].values data_labels = data_labels.reshape([len(data_labels), 1]) num_features = data.shape[1] n_samples = data.shape[0] X_init = tf.placeholder(tf.float32, [None, num_features]) Y_init = tf.placeholder(tf.float32, [None, 1]) w_1 = tf.Variable(tf.truncated_normal([num_features, 10], stddev=0.01)) b_1 = tf.Variable(tf.truncated_normal([10], stddev=0.01)) layer_1 = tf.nn.elu(tf.add(tf.matmul(X_init, w_1), b_1)) if do_relu: layer_1 = tf.nn.relu(tf.add(tf.matmul(X_init, w_1), b_1)) w_2 = tf.Variable(tf.truncated_normal([10, 8], stddev=0.01)) b_2 = tf.Variable(tf.truncated_normal([8], stddev=0.01)) layer_2 = tf.nn.elu(tf.add(tf.matmul(layer_1, w_2), b_2)) if do_relu: layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, w_2), b_2)) w_3 = tf.Variable(tf.truncated_normal([8, 1], stddev=0.01)) b_3 = tf.Variable(tf.truncated_normal([1], stddev=0.01)) output_layer = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, w_3), b_3)) cost = -tf.reduce_mean(tf.multiply(Y_init, tf.log(output_layer)) + (1 - Y_init)*tf.log(1 - output_layer) ) optimizer = tf.train.AdamOptimizer(1e-3).minimize(cost) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) loss_values = [] num_epochs = 600 if do_full: num_epochs = 7000 batch_size = 50 count = len(data) for epoch in range(num_epochs): start_n = 0 c = None o = None if do_full: _, c = sess.run([optimizer, cost], feed_dict={X_init:data, Y_init:data_labels}) else: while start_n < count: sess.run(optimizer, feed_dict={X_init:data[start_n:(start_n + batch_size)], Y_init:data_labels[start_n:(start_n + batch_size)]}) start_n += batch_size c = sess.run(cost, feed_dict={X_init:data, Y_init:data_labels}) loss_values.append(c) sys.stdout.write("Epoch: {0}/{1} cost: {2} \r".format(epoch+1, num_epochs, c)) sys.stdout.flush() if is_verbose: print("Final cost = {0} weights: {1} biases: {2}".format(sess.run(cost, feed_dict={X_init:data, Y_init:data_labels}), sess.run(w_2), sess.run(b_2) ) ) else: print("Final cost = {0}".format(sess.run(cost, feed_dict={X_init:data, Y_init:data_labels})) ) # Lets take a look at the confusion matrix predictions = sess.run(output_layer, feed_dict={X_init:data}) if is_verbose: print("Displaying first 5 predictions and first 5 labels.") print(predictions[:5]) print(data_labels[:5]) # define our confusion matrix function to spit out all of the data we want to see. def confusion_matrix(pred_data, act_data, threshold=0.7): stayed_true = 0 stayed_false = 0 left_true = 0 left_false = 0 for i in range(len(pred_data)): if pred_data[i][0] >= threshold and act_data[i][0] == 1: left_true += 1 elif pred_data[i][0] < threshold and act_data[i][0] == 1: left_false += 1 elif pred_data[i][0] >= threshold and act_data[i][0] == 0: stayed_false += 1 elif pred_data[i][0] < threshold and act_data[i][0] == 0: stayed_true += 1 precision = left_true/np.max([1e-5, (left_true + left_false)]) recall = left_true/np.max([1e-5, (left_true + stayed_false)]) f1_score = 2*((precision*recall)/(precision+recall)) print("Stayed True: {0}\nStayed False: {1}\nLeft True: {2}\nLeft False: {3}".format(stayed_true, stayed_false, left_true, left_false)) print("Precision = {0}".format(precision)) print("Recall = {0}".format(recall)) print("F1 score = {0}".format(f1_score)) print("Total Accuracy = {0}".format((stayed_true+left_true)/(len(pred_data))) ) confusion_matrix(predictions, data_labels, 0.33) if is_verbose: ## test is getting comparable numbers as well ## However lets test the precision and recall and see what is happening test_data = (test_set.drop("left", axis=1)).values test_data_labels = test_set["left"].values test_data_labels = test_data_labels.reshape([len(test_data_labels), 1]) print("Cost for test data: {0}".format(sess.run(cost, feed_dict={X_init:test_data, Y_init:test_data_labels}) ) ) test_predictions = sess.run(output_layer, feed_dict={X_init:test_data}) confusion_matrix(test_predictions, test_data_labels, 0.33) if do_plot: import matplotlib.pyplot as plt plt.plot(loss_values) plt.show() sess.close()
38.671569
154
0.699708
e5e9f7077e8df48cebaddce82e4c3ff48e23328b
23,373
py
Python
category_encoders/tests/test_encoders.py
deil87/categorical-encoding
c867aa09343b55cbcb600958542d6e8b0c405d86
[ "BSD-3-Clause" ]
null
null
null
category_encoders/tests/test_encoders.py
deil87/categorical-encoding
c867aa09343b55cbcb600958542d6e8b0c405d86
[ "BSD-3-Clause" ]
null
null
null
category_encoders/tests/test_encoders.py
deil87/categorical-encoding
c867aa09343b55cbcb600958542d6e8b0c405d86
[ "BSD-3-Clause" ]
null
null
null
import doctest import math import os import random import sklearn import pandas as pd import numpy as np from datetime import timedelta from sklearn.utils.estimator_checks import check_transformer_general, check_transformers_unfitted from unittest2 import TestSuite, TextTestRunner, TestCase # or `from unittest import ...` if on Python 3.4+ import category_encoders as encoders __author__ = 'willmcginnis' # subroutines def create_array(n_rows=1000, extras=False, has_none=True): """ Creates a numpy dataset with some categorical variables :return: """ ds = [[ random.random(), random.random(), random.choice(['A', 'B', 'C']), random.choice(['A', 'B', 'C', 'D']) if extras else random.choice(['A', 'B', 'C']), random.choice(['A', 'B', 'C', None, np.nan]) if has_none else random.choice(['A', 'B', 'C']), random.choice(['A']) ] for _ in range(n_rows)] return np.array(ds) def create_dataset(n_rows=1000, extras=False, has_none=True): """ Creates a dataset with some categorical variables """ ds = [[ random.random(), # Floats random.choice([float('nan'), float('inf'), float('-inf'), -0, 0, 1, -1, math.pi]), # Floats with edge scenarios row, # Unique integers str(row), # Unique strings random.choice(['A']), # Invariant random.choice(['A', 'B_b', 'C_c_c']), # Strings with underscores to test reverse_dummies() random.choice(['A', 'B', 'C', None]) if has_none else random.choice(['A', 'B', 'C']), # None random.choice(['A', 'B', 'C', 'D']) if extras else random.choice(['A', 'B', 'C']), # With a new string value random.choice([12, 43, -32]) # Number in the column name ] for row in range(n_rows)] df = pd.DataFrame(ds, columns=['float', 'float_edge', 'unique_int', 'unique_str', 'invariant', 'underscore', 'none', 'extra', 321]) return df def verify_numeric(X_test): for dt in X_test.dtypes: numeric = False if np.issubdtype(dt, np.dtype(int)) or np.issubdtype(dt, np.dtype(float)): numeric = True assert numeric def verify_inverse_transform(x, x_inv): """ Verify x is equal to x_inv. The test returns true for NaN.equals(NaN) as it should. """ assert x.equals(x_inv) # data definitions np_X = create_array(n_rows=100) np_X_t = create_array(n_rows=50, extras=True) np_y = np.random.randn(np_X.shape[0]) > 0.5 np_y_t = np.random.randn(np_X_t.shape[0]) > 0.5 X = create_dataset(n_rows=100) X_t = create_dataset(n_rows=50, extras=True) y = pd.DataFrame(np_y) y_t = pd.DataFrame(np_y_t) # this class utilises parametrised tests where we loop over different encoders # tests that are applicable to only one encoder are the end of the class class TestEncoders(TestCase): def test_np(self): for encoder_name in encoders.__all__: with self.subTest(encoder_name=encoder_name): # Encode a numpy array enc = getattr(encoders, encoder_name)() enc.fit(np_X, np_y) verify_numeric(enc.transform(np_X_t)) def test_classification(self): for encoder_name in encoders.__all__: with self.subTest(encoder_name=encoder_name): cols = ['unique_str', 'underscore', 'extra', 'none', 'invariant', 321] enc = getattr(encoders, encoder_name)(cols=cols) enc.fit(X, np_y) verify_numeric(enc.transform(X_t)) enc = getattr(encoders, encoder_name)(verbose=1) enc.fit(X, np_y) verify_numeric(enc.transform(X_t)) enc = getattr(encoders, encoder_name)(drop_invariant=True) enc.fit(X, np_y) verify_numeric(enc.transform(X_t)) enc = getattr(encoders, encoder_name)(return_df=False) enc.fit(X, np_y) self.assertTrue(isinstance(enc.transform(X_t), np.ndarray)) self.assertEqual(enc.transform(X_t).shape[0], X_t.shape[0], 'Row count must not change') # documented in issue #122 # when we use the same encoder on two different datasets, it should not explode # X_a = pd.DataFrame(data=['1', '2', '2', '2', '2', '2'], columns=['col_a']) # X_b = pd.DataFrame(data=['1', '1', '1', '2', '2', '2'], columns=['col_b']) # different values and name # y_dummy = [True, False, True, False, True, False] # enc = getattr(encoders, encoder_name)() # enc.fit(X_a, y_dummy) # enc.fit(X_b, y_dummy) # verify_numeric(enc.transform(X_b)) def test_impact_encoders(self): for encoder_name in ['LeaveOneOutEncoder', 'TargetEncoder', 'WOEEncoder']: with self.subTest(encoder_name=encoder_name): # encode a numpy array and transform with the help of the target enc = getattr(encoders, encoder_name)() enc.fit(np_X, np_y) verify_numeric(enc.transform(np_X_t, np_y_t)) # target is a DataFrame enc = getattr(encoders, encoder_name)() enc.fit(X, y) verify_numeric(enc.transform(X_t, y_t)) # when we run transform(X, y) and there is a new value in X, something is wrong and we raise an error enc = getattr(encoders, encoder_name)(impute_missing=True, handle_unknown='error', cols=['extra']) enc.fit(X, y) self.assertRaises(ValueError, enc.transform, (X_t, y_t)) def test_error_handling(self): for encoder_name in encoders.__all__: with self.subTest(encoder_name=encoder_name): # we exclude some columns X = create_dataset(n_rows=100) X = X.drop(['unique_str', 'none'], axis=1) X_t = create_dataset(n_rows=50, extras=True) X_t = X_t.drop(['unique_str', 'none'], axis=1) # illegal state, we have to first train the encoder... enc = getattr(encoders, encoder_name)() with self.assertRaises(ValueError): enc.transform(X) # wrong count of attributes enc = getattr(encoders, encoder_name)() enc.fit(X, y) with self.assertRaises(ValueError): enc.transform(X_t.iloc[:, 0:3]) # no cols enc = getattr(encoders, encoder_name)(cols=[]) enc.fit(X, y) self.assertTrue(enc.transform(X_t).equals(X_t)) def test_handle_unknown_error(self): # BaseN has problems with None -> ignore None X = create_dataset(n_rows=100, has_none=False) X_t = create_dataset(n_rows=50, extras=True, has_none=False) for encoder_name in (set(encoders.__all__) - {'HashingEncoder'}): # HashingEncoder supports new values by design -> excluded with self.subTest(encoder_name=encoder_name): # new value during scoring enc = getattr(encoders, encoder_name)(handle_unknown='error') enc.fit(X, y) with self.assertRaises(ValueError): _ = enc.transform(X_t) def test_sklearn_compliance(self): for encoder_name in encoders.__all__: with self.subTest(encoder_name=encoder_name): # in sklearn < 0.19.0, these methods require classes, # in sklearn >= 0.19.0, these methods require instances if sklearn.__version__ < '0.19.0': encoder = getattr(encoders, encoder_name) else: encoder = getattr(encoders, encoder_name)() check_transformer_general(encoder_name, encoder) check_transformers_unfitted(encoder_name, encoder) def test_inverse_transform(self): # we do not allow None in these data (but "none" column without any None is ok) X = create_dataset(n_rows=100, has_none=False) X_t = create_dataset(n_rows=50, has_none=False) X_t_extra = create_dataset(n_rows=50, extras=True, has_none=False) cols = ['underscore', 'none', 'extra', 321] for encoder_name in ['BaseNEncoder', 'BinaryEncoder', 'OneHotEncoder', 'OrdinalEncoder']: with self.subTest(encoder_name=encoder_name): # simple run enc = getattr(encoders, encoder_name)(verbose=1, cols=cols) enc.fit(X) verify_inverse_transform(X_t, enc.inverse_transform(enc.transform(X_t))) # when a new value is encountered, do not raise an exception enc = getattr(encoders, encoder_name)(verbose=1, cols=cols) enc.fit(X, y) _ = enc.inverse_transform(enc.transform(X_t_extra)) def test_types(self): X = pd.DataFrame({ 'Int': [1, 2, 1, 2], 'Float': [1.1, 2.2, 3.3, 4.4], 'Complex': [3.45J, 3.45J, 3.45J, 3.45J], 'None': [None, None, None, None], 'Str': ['a', 'c', 'c', 'd'], 'PdTimestamp': [pd.Timestamp('2012-05-01'), pd.Timestamp('2012-05-02'), pd.Timestamp('2012-05-03'), pd.Timestamp('2012-05-06')], 'PdTimedelta': [pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('1 days'), pd.Timedelta('1 days')], 'TimeDelta': [timedelta(-9999), timedelta(-9), timedelta(-1), timedelta(999)], 'Bool': [False, True, True, False], 'Tuple': [('a', 'tuple'), ('a', 'tuple'), ('a', 'tuple'), ('b', 'tuple')], # 'Categorical': pd.Categorical(list('bbea'), categories=['e', 'a', 'b'], ordered=True), # 'List': [[1,2], [2,3], [3,4], [4,5]], # 'Dictionary': [{1: "a", 2: "b"}, {1: "a", 2: "b"}, {1: "a", 2: "b"}, {1: "a", 2: "b"}], # 'Set': [{'John', 'Jane'}, {'John', 'Jane'}, {'John', 'Jane'}, {'John', 'Jane'}], # 'Array': [array('i'), array('i'), array('i'), array('i')] }) y = [1, 0, 0, 1] for encoder_name in encoders.__all__: encoder = getattr(encoders, encoder_name)() encoder.fit_transform(X, y) # encoder specific tests def test_binary_bin(self): data = np.array(['a', 'ba', 'ba']) out = encoders.BinaryEncoder().fit_transform(data) self.assertTrue(pd.DataFrame([[0, 1], [1, 0], [1, 0]], columns=['0_0', '0_1']).equals(out)) def test_binary_dist(self): data = np.array(['apple', 'orange', 'peach', 'lemon']) encoder = encoders.BinaryEncoder() encoder.fit(data) # split dataframe into two transforms and recombine a = encoder.transform(data[:1]) b = encoder.transform(data[1:]) split = pd.concat([a, b]) split = split.reset_index(drop=True) # run all at once c = encoder.transform(data) # make sure they are the same self.assertTrue(split.equals(c)) def test_leave_one_out(self): enc = encoders.LeaveOneOutEncoder(verbose=1, randomized=True, sigma=0.1) enc.fit(X, y) verify_numeric(enc.transform(X_t)) verify_numeric(enc.transform(X_t, y_t)) def test_leave_one_out_values(self): df = pd.DataFrame({ 'color': ["a", "a", "a", "b", "b", "b"], 'outcome': [1, 0, 0, 1, 0, 1]}) X = df.drop('outcome', axis=1) y = df.drop('color', axis=1) ce_leave = encoders.LeaveOneOutEncoder(cols=['color'], randomized=False) obtained = ce_leave.fit_transform(X, y['outcome']) self.assertEquals([0.0, 0.5, 0.5, 0.5, 1.0, 0.5], list(obtained['color'])) def test_leave_one_out_fit_callTwiceOnDifferentData_ExpectRefit(self): x_a = pd.DataFrame(data=['1', '2', '2', '2', '2', '2'], columns=['col_a']) x_b = pd.DataFrame(data=['1', '1', '1', '2', '2', '2'], columns=['col_b']) # different values and name y_dummy = [True, False, True, False, True, False] encoder = encoders.LeaveOneOutEncoder() encoder.fit(x_a, y_dummy) encoder.fit(x_b, y_dummy) mapping = encoder.mapping self.assertEqual(1, len(mapping)) col_b_mapping = mapping[0] self.assertEqual('col_b', col_b_mapping['col']) # the model must get updated self.assertEqual({'sum': 2.0, 'count': 3, 'mean': 2.0/3.0}, col_b_mapping['mapping']['1']) self.assertEqual({'sum': 1.0, 'count': 3, 'mean': 01.0/3.0}, col_b_mapping['mapping']['2']) def test_one_hot(self): enc = encoders.OneHotEncoder(verbose=1, return_df=False) enc.fit(X) self.assertEqual(enc.transform(X_t).shape[1], enc.transform(X_t[X_t['extra'] != 'A']).shape[1], 'We have to get the same count of columns') enc = encoders.OneHotEncoder(verbose=1, return_df=True, impute_missing=True) enc.fit(X) out = enc.transform(X_t) self.assertIn('extra_-1', out.columns.values) enc = encoders.OneHotEncoder(verbose=1, return_df=True, impute_missing=True, handle_unknown='ignore') enc.fit(X) out = enc.transform(X_t) self.assertEqual(len([x for x in out.columns.values if str(x).startswith('extra_')]), 3) enc = encoders.OneHotEncoder(verbose=1, return_df=True, impute_missing=True, handle_unknown='error') enc.fit(X) with self.assertRaises(ValueError): out = enc.transform(X_t) enc = encoders.OneHotEncoder(verbose=1, return_df=True, handle_unknown='ignore', use_cat_names=True) enc.fit(X) out = enc.transform(X_t) self.assertIn('extra_A', out.columns.values) enc = encoders.OneHotEncoder(verbose=1, return_df=True, use_cat_names=True) enc.fit(X) out = enc.transform(X_t) self.assertIn('extra_-1', out.columns.values) # test inverse_transform X_i = create_dataset(n_rows=100, has_none=False) X_i_t = create_dataset(n_rows=50, has_none=False) X_i_t_extra = create_dataset(n_rows=50, extras=True, has_none=False) cols = ['underscore', 'none', 'extra', 321] enc = encoders.OneHotEncoder(verbose=1, use_cat_names=True, cols=cols) enc.fit(X_i) obtained = enc.inverse_transform(enc.transform(X_i_t)) obtained[321] = obtained[321].astype('int64') # numeric columns are incorrectly typed as object... verify_inverse_transform(X_i_t, obtained) def test_ordinal(self): enc = encoders.OrdinalEncoder(verbose=1, return_df=True, impute_missing=True) enc.fit(X) out = enc.transform(X_t) self.assertEqual(len(set(out['extra'].values)), 4) self.assertIn(0, set(out['extra'].values)) self.assertFalse(enc.mapping is None) self.assertTrue(len(enc.mapping) > 0) enc = encoders.OrdinalEncoder(verbose=1, mapping=enc.mapping, return_df=True, impute_missing=True) enc.fit(X) out = enc.transform(X_t) self.assertEqual(len(set(out['extra'].values)), 4) self.assertIn(0, set(out['extra'].values)) self.assertTrue(len(enc.mapping) > 0) enc = encoders.OrdinalEncoder(verbose=1, return_df=True, impute_missing=True, handle_unknown='ignore') enc.fit(X) out = enc.transform(X_t) out_cats = [x for x in set(out['extra'].values) if np.isfinite(x)] self.assertEqual(len(out_cats), 3) self.assertFalse(enc.mapping is None) def test_ordinal_dist(self): data = np.array([ ['apple', None], ['peach', 'lemon'] ]) encoder = encoders.OrdinalEncoder(impute_missing=True) encoder.fit(data) a = encoder.transform(data) self.assertEqual(a.values[0, 1], 0) self.assertEqual(a.values[1, 1], 1) encoder = encoders.OrdinalEncoder(impute_missing=False) encoder.fit(data) a = encoder.transform(data) self.assertTrue(np.isnan(a.values[0, 1])) self.assertEqual(a.values[1, 1], 1) def test_target_encoder(self): enc = encoders.TargetEncoder(verbose=1, smoothing=2, min_samples_leaf=2) enc.fit(X, y) verify_numeric(enc.transform(X_t)) verify_numeric(enc.transform(X_t, y_t)) def test_target_encoder_fit_HaveConstructorSetSmoothingAndMinSamplesLeaf_ExpectUsedInFit(self): k = 2 f = 10 binary_cat_example = pd.DataFrame( {'Trend': ['UP', 'UP', 'DOWN', 'FLAT', 'DOWN', 'UP', 'DOWN', 'FLAT', 'FLAT', 'FLAT'], 'target': [1, 1, 0, 0, 1, 0, 0, 0, 1, 1]}) encoder = encoders.TargetEncoder(cols=['Trend'], min_samples_leaf=k, smoothing=f) encoder.fit(binary_cat_example, binary_cat_example['target']) trend_mapping = encoder.mapping[0]['mapping'] self.assertAlmostEqual(0.4125, trend_mapping['DOWN']['smoothing'], delta=1e-4) self.assertEqual(0.5, trend_mapping['FLAT']['smoothing']) self.assertAlmostEqual(0.5874, trend_mapping['UP']['smoothing'], delta=1e-4) def test_target_encoder_fit_transform_HaveConstructorSetSmoothingAndMinSamplesLeaf_ExpectCorrectValueInResult(self): k = 2 f = 10 binary_cat_example = pd.DataFrame( {'Trend': ['UP', 'UP', 'DOWN', 'FLAT', 'DOWN', 'UP', 'DOWN', 'FLAT', 'FLAT', 'FLAT'], 'target': [1, 1, 0, 0, 1, 0, 0, 0, 1, 1]}) encoder = encoders.TargetEncoder(cols=['Trend'], min_samples_leaf=k, smoothing=f) result = encoder.fit_transform(binary_cat_example, binary_cat_example['target']) values = result['Trend'].values self.assertAlmostEqual(0.5874, values[0], delta=1e-4) self.assertAlmostEqual(0.5874, values[1], delta=1e-4) self.assertAlmostEqual(0.4125, values[2], delta=1e-4) self.assertEqual(0.5, values[3]) def test_woe(self): cols = ['unique_str', 'underscore', 'extra', 'none', 'invariant', 321] # balanced label with balanced features X_balanced = pd.DataFrame(data=['1', '1', '1', '2', '2', '2'], columns=['col1']) y_balanced = [True, False, True, False, True, False] enc = encoders.WOEEncoder() enc.fit(X_balanced, y_balanced) X1 = enc.transform(X_balanced) self.assertTrue(all(X1.sum() < 0.001), "When the class label is balanced, WoE should sum to 0 in each transformed column") enc = encoders.WOEEncoder(cols=cols) enc.fit(X, np_y) X1 = enc.transform(X_t) verify_numeric(X1[cols]) self.assertTrue(np.isfinite(X1[cols].values).all(), 'There must not be any NaN, inf or -inf in the transformed columns') self.assertEqual(len(list(X_t)), len(list(X1)), 'The count of attributes must not change') self.assertEqual(len(X_t), len(X1), 'The count of rows must not change') X2 = enc.transform(X_t, np_y_t) verify_numeric(X2) self.assertTrue(np.isfinite(X2[cols].values).all(), 'There must not be any NaN, inf or -inf in the transformed columns') self.assertEqual(len(list(X_t)), len(list(X2)), 'The count of attributes must not change') self.assertEqual(len(X_t), len(X2), 'The count of rows must not change') X3 = enc.transform(X, np_y) verify_numeric(X3) self.assertTrue(np.isfinite(X3[cols].values).all(), 'There must not be any NaN, inf or -inf in the transformed columns') self.assertEqual(len(list(X)), len(list(X3)), 'The count of attributes must not change') self.assertEqual(len(X), len(X3), 'The count of rows must not change') self.assertTrue(X3['unique_str'].var() < 0.001, 'The unique string column must not be predictive of the label') X4 = enc.fit_transform(X, np_y) verify_numeric(X4) self.assertTrue(np.isfinite(X4[cols].values).all(), 'There must not be any NaN, inf or -inf in the transformed columns') self.assertEqual(len(list(X)), len(list(X4)), 'The count of attributes must not change') self.assertEqual(len(X), len(X4), 'The count of rows must not change') self.assertTrue(X4['unique_str'].var() < 0.001, 'The unique string column must not be predictive of the label') enc = encoders.WOEEncoder() enc.fit(X, np_y) X1 = enc.transform(X_t) self.assertEqual(len(list(X_t)), len(list(X1)), 'The count of attributes must not change') self.assertEqual(len(X_t), len(X1), 'The count of rows must not change') verify_numeric(X1) X2 = enc.transform(X_t, np_y_t) verify_numeric(X2) self.assertEqual(len(list(X_t)), len(list(X2)), 'The count of attributes must not change') self.assertEqual(len(X_t), len(X2), 'The count of rows must not change') # seed enc = encoders.WOEEncoder(cols=cols, random_state=2001, randomized=True) enc.fit(X, np_y) X1 = enc.transform(X_t, np_y_t) X2 = enc.transform(X_t, np_y_t) self.assertTrue(X1.equals(X2), "When the seed is given, the results must be identical") verify_numeric(X1) verify_numeric(X2) # invariant target y_invariant = [True, True, True, True, True, True] enc = encoders.WOEEncoder() with self.assertRaises(ValueError): enc.fit(X_balanced, y_invariant) # branch coverage unit tests - no cols enc = encoders.WOEEncoder(cols=[]) enc.fit(X, np_y) self.assertTrue(enc.transform(X_t).equals(X_t)) # missing values in the target y_missing = [True, True, None, True, True, True] enc = encoders.WOEEncoder() with self.assertRaises(ValueError): enc.fit(X_balanced, y_missing) # impute missing enc = encoders.WOEEncoder(impute_missing=False) enc.fit(X, np_y) X1 = enc.transform(X_t) verify_numeric(X1) self.assertTrue(X1.isnull().values.any()) self.assertEqual(len(list(X_t)), len(list(X1)), 'The count of attributes must not change') self.assertEqual(len(X_t), len(X1), 'The count of rows must not change') X2 = enc.transform(X_t, np_y_t) verify_numeric(X2) self.assertTrue(X1.isnull().values.any()) self.assertEqual(len(list(X_t)), len(list(X2)), 'The count of attributes must not change') self.assertEqual(len(X_t), len(X2), 'The count of rows must not change') # beware: for some reason doctest does not raise exceptions - you have to read the text output def test_doc(self): suite = TestSuite() for filename in os.listdir('../'): if filename.endswith(".py"): suite.addTest(doctest.DocFileSuite('../' + filename)) runner = TextTestRunner(verbosity=2) runner.run(suite)
45.472763
148
0.591965
bbf8ed787af592ca4a5e3d4a3d0585122b0ecab1
4,648
py
Python
tasks/Scrapy/scrapy_official_newspapers/spiders/USFR_1.py
thefirebanks/policy-data-analyzer
670a4ea72ab71975b84c4a4ec43d573371c4a986
[ "RSA-MD" ]
1
2021-05-17T02:30:30.000Z
2021-05-17T02:30:30.000Z
tasks/Scrapy/scrapy_official_newspapers/spiders/USFR_1.py
thefirebanks/policy-data-analyzer
670a4ea72ab71975b84c4a4ec43d573371c4a986
[ "RSA-MD" ]
2
2022-01-13T03:44:13.000Z
2022-03-12T00:57:48.000Z
tasks/Scrapy/scrapy_official_newspapers/spiders/USFR_1.py
thefirebanks/policy-data-analyzer
670a4ea72ab71975b84c4a4ec43d573371c4a986
[ "RSA-MD" ]
1
2021-05-16T20:50:38.000Z
2021-05-16T20:50:38.000Z
import csv import datetime import json import scrapy from scrapy_official_newspapers.items import ScrapyOfficialNewspapersItem from scrapy_official_newspapers.spiders import BaseSpider class USFR_1(BaseSpider): name = "USFR_1" country = "USA" country_code = "US" # You can find the ISO3166 country code here: https://gist.github.com/ssskip/5a94bfcd2835bf1dea52 state_name = "Federal" satate_code = "" # As per the Holidays package, you can find the code here https://pypi.org/project/holidays/ if avaiable. source = "Federal Register" spider_builder = "Jordi Planas" scrapable = "True" allowed_domains = ["api.govinfo.gov"] start_date = "2015-03-01" stop_date = "2021-03-10" # API_key_file = 'C:/Users/user/Google Drive/Els_meus_documents/projectes/CompetitiveIntelligence/WRI/Notebooks/credentials/us_gov_api_key.json' # API_key_file = 'C:/Users/jordi/Documents/claus/us_gov_api_key.json' API_key_file = '/home/propietari/Documents/claus/us_gov_api_key.json' # API_key_file = '/home/propietari/Documents/claus/us_gov_api_key_jpc.json' def __init__(self): # First we import the two dictionaries that we are going to use to filter the policies. self.keyword_dict = self.import_json('./keywords_and_dictionaries/keywords_knowledge_domain_EN.json') self.negative_keyword_dict = self.import_json('./keywords_and_dictionaries/negative_keywords_knowledge_domain_EN.json') # We upload the credentials to access the API self.API_key = self.import_json(self.API_key_file)["us gov apikey jp"] # This is to set the time span variables. self.from_date, self.today = self.create_date_span(self.start_date) self.to_date = datetime.datetime.strptime(self.stop_date, '%Y-%m-%d').date() # This piece of code is to deal with the fact that the scraping can't be done in a single batch. The spiders breaks when the user credentials reach its limits # as the items are not recovered consecutively, the final list has gaps. This piece of code is to fill the gaps in ulterior runs. path = "/home/propietari/Documents/GitHub/policy-data-analyzer/tasks/Scrapy/scrapy_official_newspapers/output/" file_name = "USFR_20210310.csv" file = path + file_name self.dates_dict = {} with open(file, 'r', errors="surrogateescape") as f: reader = csv.reader(f) for row in reader: self.dates_dict[datetime.datetime.strptime(row[6], '%Y-%m-%d').date()] = 0 def start_requests(self): for day in self.create_date_list(self.from_date, self.stop_date, 1, "days", self.country_code): if day not in self.dates_dict: print(day) start_url = f'https://api.govinfo.gov/packages/FR-{day}/granules?offset=0&pageSize=300&api_key={self.API_key}' #print(start_urls) yield scrapy.Request(start_url, dont_filter=True, callback=self.parse) def parse(self, response): for granule in json.loads(response.text)["granules"]: url = granule["granuleLink"] + f'?api_key={self.API_key}' # self.debug(url) yield scrapy.Request(url, dont_filter=True, callback=self.parse_other) def parse_other(self, response): summary_full = response.json() #self.debug(summary_full) title = summary_full["title"] if "summary" in summary_full: summary = summary_full["summary"] else: summary = "" text_to_search = summary_full["title"] + " " + summary if self.search_keywords(text_to_search, self.keyword_dict, self.negative_keyword_dict): item = ScrapyOfficialNewspapersItem() item['country'] = self.country item['state'] = self.state_name item['data_source'] = self.source item['law_class'] = summary_full['category'] item['title'] = summary_full['title'] item['reference'] = summary_full['granuleId'] item['authorship'] = summary_full['agencies'][0]['name'] item['summary'] = summary item['publication_date'] = summary_full['dateIssued'] item['url'] = summary_full['download']['txtLink'].replace('htm', 'summary?api_key=') doc_url = summary_full['download']['txtLink'] + f'?api_key={self.API_key}' # self.debug(doc_url) item['file_urls'] = [doc_url] item['doc_name'] = self.HSA1_encoding(summary_full['download']['txtLink'] + f'?api_key={self.API_key}') + ".txt" yield item
49.978495
166
0.664587
26136898f383904bfd389de08d8eb1ccfb55142f
1,901
py
Python
naiivedisjointsets.py
orionsring/basic_python
2556d1b3d95334f41cf688f61d4e65bbf38e701a
[ "MIT" ]
null
null
null
naiivedisjointsets.py
orionsring/basic_python
2556d1b3d95334f41cf688f61d4e65bbf38e701a
[ "MIT" ]
null
null
null
naiivedisjointsets.py
orionsring/basic_python
2556d1b3d95334f41cf688f61d4e65bbf38e701a
[ "MIT" ]
null
null
null
#!/usr/bin/python import unittest import disjoint class Disjoint: def __init__(self): self._sets = [] def createSet(self, repr): self._sets.apend(repr) # def mergeSets(self, repr1, repr2): set1 = self.findset(repr1) set2 = sefl.findSet(repr2) if set1 != set2: set1.extend(set2) self._sets.remove(set2) def findSet(self, repr1): for oneSet in self._sets: if repr1 in oneSet: return oneSet def getSets(self): # python convention is to expose attributs directly return self._sets # test class : class TestSequenceFunctions(unittest.TestCase): def setUp(self): pass def test_empty(self): dis = disjoint.Disjoint() self.assertEqual([], dis.getSets()) self.assertEqual(None, dis.findSet(1)) def test_init(self): dis = disjoint.Disjoint(); for i in range(1, 6): dis.createSet(i) for i in range(1, 6): found = dis.findSet(i) self.assertEqual(1, len(found)) self.assertEqual(i, found[0]) expected = [[i] for i in range(1, 6)] self.assertEqual(expected, dis.getSets()) def test_simple(self): dis = disjoint.Disjoint() for i in range(1, 6): dis.createSet(i) pairs = [[1, 2], [2, 4], [4, 5]] for p in pairs: p1 = p[0] p2 = p[1] if dis.findSet(p1) != dis.findSet(p2): dis.mergeSets(p1, p2) expectedSets = [[1, 2, 4, 5], [3]] self.assertEqual(expectedSets, dis.getSets()) if __name__ == '__main__': unittest.main() # Note that there is cameCase here and that is not part of pep - 8 # Note 2 - The getSets method is unnecessarry -
26.041096
88
0.533403
8f3d090b54ff1fcf7e54a93c88752bb2068ee90c
831
py
Python
corehq/apps/sms/handlers/forwarding.py
dslowikowski/commcare-hq
ad8885cf8dab69dc85cb64f37aeaf06106124797
[ "BSD-3-Clause" ]
1
2015-02-10T23:26:39.000Z
2015-02-10T23:26:39.000Z
corehq/apps/sms/handlers/forwarding.py
SEL-Columbia/commcare-hq
992ee34a679c37f063f86200e6df5a197d5e3ff6
[ "BSD-3-Clause" ]
null
null
null
corehq/apps/sms/handlers/forwarding.py
SEL-Columbia/commcare-hq
992ee34a679c37f063f86200e6df5a197d5e3ff6
[ "BSD-3-Clause" ]
null
null
null
from corehq.apps.sms.models import ( ForwardingRule, FORWARD_ALL, FORWARD_BY_KEYWORD, ) from corehq.apps.sms.api import send_sms_with_backend def forwarding_handler(v, text, msg): rules = ForwardingRule.view("sms/forwarding_rule", key=[v.domain], include_docs=True).all() text_words = text.upper().split() keyword_to_match = text_words[0] if len(text_words) > 0 else "" for rule in rules: matches_rule = False if rule.forward_type == FORWARD_ALL: matches_rule = True elif rule.forward_type == FORWARD_BY_KEYWORD: matches_rule = (keyword_to_match == rule.keyword.upper()) if matches_rule: send_sms_with_backend(v.domain, "+%s" % v.phone_number, text, rule.backend_id) return True return False
34.625
73
0.652226
26827ada9161bf8a8f937ba561e7037f89c4bae1
373
py
Python
custom/icds_reports/migrations/0144_merge_20191106_1522.py
rochakchauhan/commcare-hq
aa7ab3c2d0c51fe10f2b51b08101bb4b5a376236
[ "BSD-3-Clause" ]
1
2020-07-14T13:00:23.000Z
2020-07-14T13:00:23.000Z
custom/icds_reports/migrations/0144_merge_20191106_1522.py
rochakchauhan/commcare-hq
aa7ab3c2d0c51fe10f2b51b08101bb4b5a376236
[ "BSD-3-Clause" ]
1
2021-06-02T04:45:16.000Z
2021-06-02T04:45:16.000Z
custom/icds_reports/migrations/0144_merge_20191106_1522.py
rochakchauhan/commcare-hq
aa7ab3c2d0c51fe10f2b51b08101bb4b5a376236
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.22 on 2019-11-06 15:22 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('icds_reports', '0143_remove_group_by_thr_view'), ('icds_reports', '0143_add_ucrreconciliationstatus_squashed'), ] operations = [ ]
21.941176
70
0.69437