hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
daf5488d1b5d701e455b28156dfe56ebf5465e9a
19,391
py
Python
electra/pretrain/pretrain_utils.py
entelecheia/electra-tf2
08845a1c4bff78bc7d50b8331170b9c925c0d919
[ "Apache-2.0" ]
null
null
null
electra/pretrain/pretrain_utils.py
entelecheia/electra-tf2
08845a1c4bff78bc7d50b8331170b9c925c0d919
[ "Apache-2.0" ]
null
null
null
electra/pretrain/pretrain_utils.py
entelecheia/electra-tf2
08845a1c4bff78bc7d50b8331170b9c925c0d919
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2020 The Google Research Authors. # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers for preparing pre-training data and supplying them to the model.""" import collections import os import numpy as np import tensorflow as tf from ..util import utils from ..model import tokenization def get_dataset(config, batch_size, num_cpu_threads=4, world_size=1, rank=0): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.io.FixedLenFeature([config.max_seq_length], tf.int64), "input_mask": tf.io.FixedLenFeature([config.max_seq_length], tf.int64), "segment_ids": tf.io.FixedLenFeature([config.max_seq_length], tf.int64), } input_files = [] for input_pattern in config.pretrain_tfrecords.split(","): input_files.extend(tf.io.gfile.glob(input_pattern)) d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files)) d = d.shard(num_shards=world_size, index=rank) d = d.repeat() d = d.shuffle(buffer_size=len(input_files), seed=config.seed, reshuffle_each_iteration=False) cycle_length = min(num_cpu_threads, len(input_files)) d = d.interleave( tf.data.TFRecordDataset, cycle_length=cycle_length, deterministic=True) d = d.shuffle(buffer_size=100, seed=config.seed, reshuffle_each_iteration=False) d = d.map(lambda record: _decode_record(record, name_to_features)) d = d.batch(batch_size) return d def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.io.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) example[name] = t return example # model inputs - it's a bit nicer to use a namedtuple rather than keep the # features as a dict Inputs = collections.namedtuple( "Inputs", ["input_ids", "input_mask", "segment_ids", "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"]) def features_to_inputs(features): return Inputs( input_ids=features["input_ids"], input_mask=features["input_mask"], segment_ids=features["segment_ids"], masked_lm_positions=(features["masked_lm_positions"] if "masked_lm_positions" in features else None), masked_lm_ids=(features["masked_lm_ids"] if "masked_lm_ids" in features else None), masked_lm_weights=(features["masked_lm_weights"] if "masked_lm_weights" in features else None), ) def get_updated_inputs(inputs, **kwargs): features = inputs._asdict() for k, v in kwargs.items(): features[k] = v return features_to_inputs(features) def get_shape_list(tensor, expected_rank=None, name=None): """Returns a list of the shape of tensor, preferring static dimensions. Args: tensor: A tf.Tensor object to find the shape of. expected_rank: (optional) int. The expected rank of `tensor`. If this is specified and the `tensor` has a different rank, and exception will be thrown. name: Optional name of the tensor for the error message. Returns: A list of dimensions of the shape of tensor. All static dimensions will be returned as python integers, and dynamic dimensions will be returned as tf.Tensor scalars. """ if isinstance(tensor, np.ndarray) or isinstance(tensor, list): shape = np.array(tensor).shape if isinstance(expected_rank, six.integer_types): assert len(shape) == expected_rank elif expected_rank is not None: assert len(shape) in expected_rank return shape # # if name is None: # name = tensor.name # # if expected_rank is not None: # assert_rank(tensor, expected_rank, name) shape = tensor.shape.as_list() non_static_indexes = [] for (index, dim) in enumerate(shape): if dim is None: non_static_indexes.append(index) if not non_static_indexes: return shape dyn_shape = tf.shape(tensor) for index in non_static_indexes: shape[index] = dyn_shape[index] return shape def gather_positions(sequence, positions): """Gathers the vectors at the specific positions over a minibatch. Args: sequence: A [batch_size, seq_length] or [batch_size, seq_length, depth] tensor of values positions: A [batch_size, n_positions] tensor of indices Returns: A [batch_size, n_positions] or [batch_size, n_positions, depth] tensor of the values at the indices """ shape = get_shape_list(sequence, expected_rank=[2, 3]) depth_dimension = (len(shape) == 3) if depth_dimension: B, L, D = shape else: B, L = shape D = 1 sequence = tf.expand_dims(sequence, -1) position_shift = tf.expand_dims(L * tf.range(B), -1) flat_positions = tf.reshape(positions + position_shift, [-1]) flat_sequence = tf.reshape(sequence, [B * L, D]) gathered = tf.gather(flat_sequence, flat_positions) if depth_dimension: return tf.reshape(gathered, [B, -1, D]) else: return tf.reshape(gathered, [B, -1]) def scatter_update(sequence, updates, positions): """Scatter-update a sequence. Args: sequence: A [batch_size, seq_len] or [batch_size, seq_len, depth] tensor updates: A tensor of size batch_size*seq_len(*depth) positions: A [batch_size, n_positions] tensor Returns: A tuple of two tensors. First is a [batch_size, seq_len] or [batch_size, seq_len, depth] tensor of "sequence" with elements at "positions" replaced by the values at "updates." Updates to index 0 are ignored. If there are duplicated positions the update is only applied once. Second is a [batch_size, seq_len] mask tensor of which inputs were updated. """ shape = get_shape_list(sequence, expected_rank=[2, 3]) depth_dimension = (len(shape) == 3) if depth_dimension: B, L, D = shape else: B, L = shape D = 1 sequence = tf.expand_dims(sequence, -1) N = get_shape_list(positions)[1] shift = tf.expand_dims(L * tf.range(B), -1) flat_positions = tf.reshape(positions + shift, [-1, 1]) flat_updates = tf.reshape(updates, [-1, D]) updates = tf.scatter_nd(flat_positions, flat_updates, [B * L, D]) updates = tf.reshape(updates, [B, L, D]) flat_updates_mask = tf.ones([B * N], tf.int32) updates_mask = tf.scatter_nd(flat_positions, flat_updates_mask, [B * L]) updates_mask = tf.reshape(updates_mask, [B, L]) not_first_token = tf.concat([tf.zeros((B, 1), tf.int32), tf.ones((B, L - 1), tf.int32)], -1) updates_mask *= not_first_token updates_mask_3d = tf.expand_dims(updates_mask, -1) # account for duplicate positions if sequence.dtype == tf.float32: updates_mask_3d = tf.cast(updates_mask_3d, tf.float32) updates /= tf.maximum(1.0, updates_mask_3d) else: assert sequence.dtype == tf.int32 updates = tf.math.floordiv(updates, tf.maximum(1, updates_mask_3d)) updates_mask = tf.minimum(updates_mask, 1) updates_mask_3d = tf.minimum(updates_mask_3d, 1) updated_sequence = (((1 - updates_mask_3d) * sequence) + (updates_mask_3d * updates)) if not depth_dimension: updated_sequence = tf.squeeze(updated_sequence, -1) return updated_sequence, updates_mask def _get_candidates_mask(inputs: Inputs, vocab, disallow_from_mask=None): """Returns a mask tensor of positions in the input that can be masked out.""" ignore_ids = [vocab["[SEP]"], vocab["[CLS]"], vocab["[MASK]"]] candidates_mask = tf.ones_like(inputs.input_ids, tf.bool) for ignore_id in ignore_ids: candidates_mask &= tf.not_equal(inputs.input_ids, ignore_id) candidates_mask &= tf.cast(inputs.input_mask, tf.bool) if disallow_from_mask is not None: candidates_mask &= ~disallow_from_mask return candidates_mask def mask(config, inputs, mask_prob, proposal_distribution=1.0, disallow_from_mask=None, already_masked=None): """Implementation of dynamic masking. The optional arguments aren't needed for BERT/ELECTRA and are from early experiments in "strategically" masking out tokens instead of uniformly at random. Args: config: configure_pretraining.PretrainingConfig inputs: pretrain_data.Inputs containing input input_ids/input_mask mask_prob: percent of tokens to mask proposal_distribution: for non-uniform masking can be a [B, L] tensor of scores for masking each position. disallow_from_mask: a boolean tensor of [B, L] of positions that should not be masked out already_masked: a boolean tensor of [B, N] of already masked-out tokens for multiple rounds of masking Returns: a pretrain_data.Inputs with masking added """ # Get the batch size, sequence length, and max masked-out tokens N = config.max_predictions_per_seq B, L = get_shape_list(inputs.input_ids) # Find indices where masking out a token is allowed vocab = tokenization.ElectraTokenizer( config.vocab_file, do_lower_case=config.do_lower_case).get_vocab() candidates_mask = _get_candidates_mask(inputs, vocab, disallow_from_mask) # Set the number of tokens to mask out per example num_tokens = tf.cast(tf.reduce_sum(inputs.input_mask, -1), tf.float32) num_to_predict = tf.maximum(1, tf.minimum( N, tf.cast(tf.round(num_tokens * mask_prob), tf.int32))) masked_lm_weights = tf.cast(tf.sequence_mask(num_to_predict, N), tf.float32) if already_masked is not None: masked_lm_weights *= (1 - already_masked) # Get a probability of masking each position in the sequence candidate_mask_float = tf.cast(candidates_mask, tf.float32) sample_prob = (proposal_distribution * candidate_mask_float) sample_prob /= tf.reduce_sum(sample_prob, axis=-1, keepdims=True) # Sample the positions to mask out sample_prob = tf.stop_gradient(sample_prob) sample_logits = tf.math.log(sample_prob) masked_lm_positions = tf.random.categorical( sample_logits, N, dtype=tf.int32) masked_lm_positions *= tf.cast(masked_lm_weights, tf.int32) # Get the ids of the masked-out tokens shift = tf.expand_dims(L * tf.range(B), -1) flat_positions = tf.reshape(masked_lm_positions + shift, [-1, 1]) masked_lm_ids = tf.gather_nd(tf.reshape(inputs.input_ids, [-1]), flat_positions) masked_lm_ids = tf.reshape(masked_lm_ids, [B, -1]) masked_lm_ids *= tf.cast(masked_lm_weights, tf.int32) # Update the input ids replace_with_mask_positions = masked_lm_positions * tf.cast( tf.less(tf.random.uniform([B, N]), 0.85), tf.int32) inputs_ids, _ = scatter_update( inputs.input_ids, tf.fill([B, N], vocab["[MASK]"]), replace_with_mask_positions) return get_updated_inputs( inputs, input_ids=tf.stop_gradient(inputs_ids), masked_lm_positions=masked_lm_positions, masked_lm_ids=masked_lm_ids, masked_lm_weights=masked_lm_weights ) def unmask(inputs: Inputs): unmasked_input_ids, _ = scatter_update( inputs.input_ids, inputs.masked_lm_ids, inputs.masked_lm_positions) return get_updated_inputs(inputs, input_ids=unmasked_input_ids) def sample_from_softmax(logits, disallow=None): if disallow is not None: logits -= 1000.0 * disallow uniform_noise = tf.random.uniform( get_shape_list(logits), minval=0, maxval=1) gumbel_noise = tf.cast(-tf.math.log(-tf.math.log(uniform_noise + 1e-9) + 1e-9), logits.dtype) return tf.one_hot(tf.argmax(tf.nn.softmax(logits + gumbel_noise), -1, output_type=tf.int32), logits.shape[-1]) ENDC = "\033[0m" COLORS = ["\033[" + str(n) + "m" for n in list(range(91, 97)) + [90]] RED = COLORS[0] BLUE = COLORS[3] CYAN = COLORS[5] GREEN = COLORS[1] def print_tokens(inputs: Inputs, inv_vocab, updates_mask=None): """Pretty-print model inputs.""" pos_to_tokid = {} for tokid, pos, weight in zip( inputs.masked_lm_ids[0], inputs.masked_lm_positions[0], inputs.masked_lm_weights[0]): if weight == 0: pass else: pos_to_tokid[pos] = tokid text = "" provided_update_mask = (updates_mask is not None) if not provided_update_mask: updates_mask = np.zeros_like(inputs.input_ids) for pos, (tokid, um) in enumerate( zip(inputs.input_ids[0], updates_mask[0])): token = inv_vocab[tokid] if token == "[PAD]": break if pos in pos_to_tokid: token = RED + token + " (" + inv_vocab[pos_to_tokid[pos]] + ")" + ENDC if provided_update_mask: assert um == 1 else: if provided_update_mask: assert um == 0 text += token + " " utils.log(utils.printable_text(text)) class PretrainingConfig(object): """Defines pre-training hyperparameters.""" def __init__(self, model_name, **kwargs): self.model_name = model_name self.seed = 42 self.debug = False # debug mode for quickly running things self.do_train = True # pre-train ELECTRA self.do_eval = False # evaluate generator/discriminator on unlabeled data # self.phase2 = False self.phase = 1 # amp self.amp = True self.xla = True self.fp16_compression = False # optimizer type self.optimizer = 'adam' self.gradient_accumulation_steps = 1 # lamb whitelisting for LN and biases self.skip_adaptive = False # loss functions self.electra_objective = True # if False, use the BERT objective instead self.gen_weight = 1.0 # masked language modeling / generator loss self.disc_weight = 50.0 # discriminator loss self.mask_prob = 0.15 # percent of input tokens to mask out / replace # optimization self.learning_rate = 5e-4 self.lr_decay_power = 0.5 self.weight_decay_rate = 0.01 self.num_warmup_steps = 10000 self.opt_beta_1 = 0.878 self.opt_beta_2 = 0.974 self.end_lr = 0.0 # training settings self.log_freq = 10 self.skip_checkpoint = False self.save_checkpoints_steps = 1000 self.num_train_steps = 1000000 self.num_eval_steps = 100 self.keep_checkpoint_max = 5 # maximum number of recent checkpoint files to keep; change to 0 or None to keep all checkpoints self.restore_checkpoint = None self.load_weights = False # model settings self.model_size = "base" # one of "small", "base", or "large" # override the default transformer hparams for the provided model size; see # modeling.BertConfig for the possible hparams and util.training_utils for # the defaults self.model_hparam_overrides = ( kwargs["model_hparam_overrides"] if "model_hparam_overrides" in kwargs else {}) self.embedding_size = None # bert hidden size by default self.vocab_size = 30522 # number of tokens in the vocabulary self.do_lower_case = True # lowercase the input? # generator settings self.uniform_generator = False # generator is uniform at random self.shared_embeddings = True # share generator/discriminator token embeddings? # self.untied_generator = True # tie all generator/discriminator weights? self.generator_layers = 1.0 # frac of discriminator layers for generator self.generator_hidden_size = 0.25 # frac of discrim hidden size for gen self.disallow_correct = False # force the generator to sample incorrect # tokens (so 15% of tokens are always # fake) self.temperature = 1.0 # temperature for sampling from generator # batch sizes self.max_seq_length = 128 self.train_batch_size = 128 self.eval_batch_size = 128 self.results_dir = "results" self.json_summary = None self.wandb_group = f'electra-pretraining-p{self.phase}' self.wandb_project = 'electra-pretraining' self.update(kwargs) # default locations of data files self.pretrain_tfrecords = os.path.join( "data", "pretrain_tfrecords/pretrain_data.tfrecord*") self.vocab_file = os.path.join("vocab", "vocab.txt") self.model_dir = os.path.join(self.results_dir, "models", model_name) self.checkpoints_dir = os.path.join(self.model_dir, "checkpoints") self.weights_dir = os.path.join(self.model_dir, "weights") self.results_txt = os.path.join(self.results_dir, "unsup_results.txt") self.results_pkl = os.path.join(self.results_dir, "unsup_results.pkl") self.log_dir = os.path.join(self.model_dir, "logs") self.max_predictions_per_seq = int((self.mask_prob + 0.005) * self.max_seq_length) # defaults for different-sized model if self.model_size == "base": self.embedding_size = 768 self.hidden_size = 768 self.num_hidden_layers = 12 if self.hidden_size % 64 != 0: raise ValueError("Hidden size {} should be divisible by 64. Number of attention heads is hidden size {} / 64 ".format(self.hidden_size, self.hidden_size)) self.num_attention_heads = int(self.hidden_size / 64.) elif self.model_size == "large": self.embedding_size = 1024 self.hidden_size = 1024 self.num_hidden_layers = 24 if self.hidden_size % 64 != 0: raise ValueError("Hidden size {} should be divisible by 64. Number of attention heads is hidden size {} / 64 ".format(self.hidden_size, self.hidden_size)) self.num_attention_heads = int(self.hidden_size / 64.) else: raise ValueError("--model_size : 'base' and 'large supported only.") self.act_func = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.update(kwargs) def update(self, kwargs): for k, v in kwargs.items(): if v is not None: self.__dict__[k] = v
39.094758
171
0.661235
6045ee908213bf426287fa6349722c32ca6903e6
2,103
py
Python
RecoEgamma/EgammaIsolationAlgos/python/egmElectronIsolationPUPPI_cff.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
RecoEgamma/EgammaIsolationAlgos/python/egmElectronIsolationPUPPI_cff.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
RecoEgamma/EgammaIsolationAlgos/python/egmElectronIsolationPUPPI_cff.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms import PhysicsTools.IsolationAlgos.CITKPFIsolationSumProducerForPUPPI_cfi as _mod IsoConeDefinitions = cms.VPSet( cms.PSet( isolationAlgo = cms.string('ElectronPFIsolationWithConeVeto'), coneSize = cms.double(0.3), VetoConeSizeBarrel = cms.double(0.0), VetoConeSizeEndcaps = cms.double(0.015), isolateAgainst = cms.string('h+'), miniAODVertexCodes = cms.vuint32(2,3) ), cms.PSet( isolationAlgo = cms.string('ElectronPFIsolationWithConeVeto'), coneSize = cms.double(0.3), VetoConeSizeBarrel = cms.double(0.0), VetoConeSizeEndcaps = cms.double(0.0), isolateAgainst = cms.string('h0'), miniAODVertexCodes = cms.vuint32(2,3) ), cms.PSet( isolationAlgo = cms.string('ElectronPFIsolationWithConeVeto'), coneSize = cms.double(0.3), VetoConeSizeBarrel = cms.double(0.0), VetoConeSizeEndcaps = cms.double(0.08), isolateAgainst = cms.string('gamma'), miniAODVertexCodes = cms.vuint32(2,3) ) ) egmElectronIsolationAODPUPPI = _mod.CITKPFIsolationSumProducerForPUPPI.clone( srcToIsolate = "gedGsfElectrons", srcForIsolationCone = '', isolationConeDefinitions = IsoConeDefinitions ) egmElectronIsolationMiniAODPUPPI = _mod.CITKPFIsolationSumProducerForPUPPI.clone( srcToIsolate = "slimmedElectrons", srcForIsolationCone = 'packedPFCandidates', puppiValueMap = '', isolationConeDefinitions = IsoConeDefinitions ) egmElectronIsolationMiniAODPUPPINoLeptons = _mod.CITKPFIsolationSumProducerForPUPPI.clone( srcToIsolate = "slimmedElectrons", srcForIsolationCone = 'packedPFCandidates', puppiValueMap = '', usePUPPINoLepton = True, isolationConeDefinitions = IsoConeDefinitions )
46.733333
90
0.617689
2fa0f1b53d52bc141c9e6443c5143fedc061c573
1,092
py
Python
CNS_Platform/CNS_AIl_AI_module.py
Jonghyun-Kim-73/ERC_Project
271ec7e77002fcf43158492a6938563af8442e70
[ "Apache-2.0" ]
1
2021-03-02T10:31:24.000Z
2021-03-02T10:31:24.000Z
CNS_Platform/CNS_AIl_AI_module.py
Jonghyun-Kim-73/ERC_Project
271ec7e77002fcf43158492a6938563af8442e70
[ "Apache-2.0" ]
null
null
null
CNS_Platform/CNS_AIl_AI_module.py
Jonghyun-Kim-73/ERC_Project
271ec7e77002fcf43158492a6938563af8442e70
[ "Apache-2.0" ]
1
2021-03-02T10:31:11.000Z
2021-03-02T10:31:11.000Z
import numpy as np class Mainnet: def __init__(self): self.EM_SV_net, self.AB_DIG_Net = self.make_net() def make_net(self): import tensorflow as tf from keras import backend as K from keras.models import Model from keras.layers import Input, Dense, Lambda, LSTM, RepeatVector import os os.environ['CUDA_VISIBLE_DEVICES'] = '-1' def sampling(args): z_mean, z_log_sigma = args epsilon = tf.keras.backend.random_normal(shape=(1, 8)) return z_mean + z_log_sigma * epsilon x = Input(shape=(397,)) y = RepeatVector(10)(x) h = LSTM(4)(y) z_mean = Dense(8)(h) z_log_sigma = Dense(8)(h) z = Lambda(sampling, output_shape=(8,))([z_mean, z_log_sigma]) h_decoded = RepeatVector(10)(z) x_decoded_mean = LSTM(4, return_sequences=True)(h_decoded) x_decoded_mean = LSTM(26, return_sequences=False)(x_decoded_mean) vae = Model(x, x_decoded_mean) vae.load_weights('vae_lstm_weight.h5') return vae
29.513514
73
0.612637
907e8393c80426e0973e74cc3b82505080fe2ca4
1,249
py
Python
main.py
bsppbep/mesh_lora
cef36ee138e624b9fc6e14b2cf89594d6dc8bc9e
[ "MIT" ]
5
2020-10-26T09:06:51.000Z
2022-03-03T14:40:10.000Z
main.py
bsppbep/mesh_lora
cef36ee138e624b9fc6e14b2cf89594d6dc8bc9e
[ "MIT" ]
null
null
null
main.py
bsppbep/mesh_lora
cef36ee138e624b9fc6e14b2cf89594d6dc8bc9e
[ "MIT" ]
1
2020-11-18T03:51:38.000Z
2020-11-18T03:51:38.000Z
#-*- coding: utf-8 -*- """Mesh LoRa. A meshed LoRa network of communication beacons is being built here. Each tag has a unique identifier in the network (between 1 and 254). But we can also use one or more tags with the identifier 255. This tag can only relay messages. """ import time from mesh_lora import Messenger from setup_logger import logger # If you run this code on a module that does not have an # RFM95 module, you can use a simulation of the RFM95 module. simulation = False if simulation: from simulated_RFM95 import RFM95 else: from RFM95 import RFM95 # defines RFM95 rfm95 = RFM95() # start logger logger.info('start') # Initialize the messenger. # The id (between 1 and 254) must be unique in the network. # If you want the tag to act only as a relay, you can use id 255. # The id 255 does not need to be unique in the network. my_messenger = Messenger(rfm95, id_in_network=255) logger.info('Messenger id : {}'.format(my_messenger.id_in_network)) # Start my_messenger.start() while True: try: if my_messenger.id_in_network == 1: my_messenger.post('hello 2') if my_messenger.id_in_network == 2: my_messenger.post('hi 1') time.sleep(4) except: break
24.98
70
0.707766
75c77aaf03d48bec1de4695db8ad09f3c0942ac6
1,154
py
Python
fullcalendar/admin.py
jonge-democraten/mezzanine-swingtime
1a68430a8470da038b50b96a33f26e5cb77145d7
[ "MIT" ]
1
2018-10-31T11:23:17.000Z
2018-10-31T11:23:17.000Z
fullcalendar/admin.py
jonge-democraten/mezzanine-fullcalendar
1a68430a8470da038b50b96a33f26e5cb77145d7
[ "MIT" ]
null
null
null
fullcalendar/admin.py
jonge-democraten/mezzanine-fullcalendar
1a68430a8470da038b50b96a33f26e5cb77145d7
[ "MIT" ]
null
null
null
from django.utils.translation import ugettext_lazy as _ from django.contrib import admin from mezzanine.core.admin import StackedDynamicInlineAdmin, DisplayableAdmin from fullcalendar.models import * class EventCategoryAdmin(admin.ModelAdmin): list_display = ('name',) class OccurrenceInline(StackedDynamicInlineAdmin): model = Occurrence fields = ('start_time', 'end_time', 'description', 'location') class EventAdmin(DisplayableAdmin): list_display = ('publish_date', 'title', 'status') search_fields = ('title', 'description', 'content') fieldsets = ( (None, { "fields": [ "title", "status", ("publish_date", "expiry_date"), "event_category", "content" ] }), (_("Meta data"), { "fields": [ "_meta_title", "slug", ("description", "gen_description"), "keywords", "in_sitemap" ], "classes": ("collapse-closed",) }), ) inlines = [OccurrenceInline] admin.site.register(Event, EventAdmin) admin.site.register(EventCategory, EventCategoryAdmin)
28.146341
76
0.610919
a80d0f550737e2bc0d3a4beaae9ee83f5d9349ac
1,215
py
Python
share.py
chenwenfang/MSSC
f8da9bfed9df26ae7240dbb3905eb2e88213f4c3
[ "Apache-2.0" ]
null
null
null
share.py
chenwenfang/MSSC
f8da9bfed9df26ae7240dbb3905eb2e88213f4c3
[ "Apache-2.0" ]
null
null
null
share.py
chenwenfang/MSSC
f8da9bfed9df26ae7240dbb3905eb2e88213f4c3
[ "Apache-2.0" ]
null
null
null
def get_neighborhood_weights_edgesnumber(ns,edge_dict): """ :param ns: this is the candidate community set :param edge_dict: e.g. {node1: {node2: {weight: value1}, {node3: {weight: value2 }}}}, node1 and node2 is connected with edge-weight value1, node1 and node3 is connnected with edge-weight value2 :return: the neighbors dict (whose key is the node index and value is the number of neightbors in ns); Win (Wout) is the total edge-weight in (external) ns; number_in (number_out) is the total number of edges in (external) ns; """ neighborhood_dict = {} Win = 0 number_in = 0 Wout = 0 number_out = 0 for i in ns: neii = edge_dict[i] for j in neii: if j in ns: Win += float(neii[j]['weight']) number_in += 1 else: Wout += float(neii[j]['weight']) number_out += 1 if (j not in neighborhood_dict): neighborhood_dict[j] = 1 else: neighborhood_dict[j] = neighborhood_dict[j] + 1 Win /= 2 number_in /= 2 return neighborhood_dict,Win, number_in, Wout, number_out
45
231
0.576955
bc836f0bcfe67c4c4aea170a87bdbf51e53fbdb1
1,359
py
Python
openstack/tests/unit/network/v2/test_auto_allocated_topology.py
horion/openstacksdk
cbb0e12e1dc944847f2ba0e67bf35b9c7a67b3a3
[ "Apache-2.0" ]
99
2018-03-28T15:41:45.000Z
2022-01-23T17:22:13.000Z
openstack/tests/unit/network/v2/test_auto_allocated_topology.py
horion/openstacksdk
cbb0e12e1dc944847f2ba0e67bf35b9c7a67b3a3
[ "Apache-2.0" ]
5
2018-05-25T16:54:23.000Z
2021-11-21T02:27:16.000Z
openstack/tests/unit/network/v2/test_auto_allocated_topology.py
horion/openstacksdk
cbb0e12e1dc944847f2ba0e67bf35b9c7a67b3a3
[ "Apache-2.0" ]
104
2018-04-06T14:33:54.000Z
2022-03-01T01:58:09.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from openstack.network.v2 import auto_allocated_topology from openstack.tests.unit import base EXAMPLE = { 'tenant_id': '1', 'dry_run': False, } class TestAutoAllocatedTopology(base.TestCase): def test_basic(self): topo = auto_allocated_topology.AutoAllocatedTopology self.assertEqual('auto_allocated_topology', topo.resource_key) self.assertEqual('/auto-allocated-topology', topo.base_path) self.assertFalse(topo.allow_create) self.assertTrue(topo.allow_fetch) self.assertFalse(topo.allow_commit) self.assertTrue(topo.allow_delete) self.assertFalse(topo.allow_list) def test_make_it(self): topo = auto_allocated_topology.AutoAllocatedTopology(**EXAMPLE) self.assertEqual(EXAMPLE['tenant_id'], topo.project_id)
35.763158
75
0.740986
0d1af156eea5f22d3eb84c402d27bc7664b83d93
32,739
py
Python
jgscm/__init__.py
hail-is/jgscm
ee39501d4f7c0756abc8cab028b20b9db5507ac6
[ "MIT" ]
null
null
null
jgscm/__init__.py
hail-is/jgscm
ee39501d4f7c0756abc8cab028b20b9db5507ac6
[ "MIT" ]
2
2019-04-06T16:29:34.000Z
2020-04-20T20:31:31.000Z
jgscm/__init__.py
hail-is/jgscm
ee39501d4f7c0756abc8cab028b20b9db5507ac6
[ "MIT" ]
1
2020-02-10T15:31:35.000Z
2020-02-10T15:31:35.000Z
import base64 import errno from itertools import islice import os import sys import uuid from google.cloud.exceptions import NotFound, Forbidden, BadRequest from google.cloud.storage import Client as GSClient, Blob import nbformat from notebook.services.contents.checkpoints import Checkpoints, \ GenericCheckpointsMixin try: import notebook.transutils # https://github.com/jupyter/notebook/issues/3056 except ImportError: pass from notebook.services.contents.manager import ContentsManager from tornado import web from tornado.escape import url_unescape from traitlets import Any, Bool, Int, Unicode, default from concurrent.futures import ThreadPoolExecutor, wait if sys.version_info[0] == 2: import socket BrokenPipeError = socket.error base64.encodebytes = base64.encodestring base64.decodebytes = base64.decodestring else: unicode = str class GoogleStorageCheckpoints(GenericCheckpointsMixin, Checkpoints): checkpoint_dir = Unicode( ".ipynb_checkpoints", config=True, help="""The directory name in which to keep file checkpoints This is a path relative to the file"s own directory. By default, it is .ipynb_checkpoints """, ) checkpoint_bucket = Unicode( "", config=True, help="The bucket name where to keep file checkpoints." " If empty, the current bucket is used." ) def create_file_checkpoint(self, content, format, path): """Create a checkpoint of the current state of a file Returns a checkpoint model for the new checkpoint. """ checkpoint_id = str(uuid.uuid4()) cp = self._get_checkpoint_path(checkpoint_id, path) self.log.debug("creating checkpoint %s for %s as %s", checkpoint_id, path, cp) blob = self.parent._save_file(cp, content, format) return { "id": checkpoint_id, "last_modified": blob.updated, } def create_notebook_checkpoint(self, nb, path): """Create a checkpoint of the current state of a file Returns a checkpoint model for the new checkpoint. """ checkpoint_id = str(uuid.uuid4()) cp = self._get_checkpoint_path(checkpoint_id, path) self.log.debug("creating checkpoint %s for %s as %s", checkpoint_id, path, cp) blob = self.parent._save_notebook(cp, nb) return { "id": checkpoint_id, "last_modified": blob.updated, } def get_file_checkpoint(self, checkpoint_id, path): """Get the content of a checkpoint for a non-notebook file. Returns a dict of the form: { "type": "file", "content": <str>, "format": {"text","base64"}, } """ self.log.info("restoring %s from checkpoint %s", path, checkpoint_id) cp = self._get_checkpoint_path(checkpoint_id, path) exists, blob = self.parent._fetch(cp) if not exists: raise web.HTTPError(404, u"No such checkpoint: %s for %s" % ( checkpoint_id, path)) content, fmt = self.parent._read_file(blob, None) return { "type": "file", "content": content, "format": fmt } def get_notebook_checkpoint(self, checkpoint_id, path): """Get the content of a checkpoint for a notebook. Returns a dict of the form: { "type": "notebook", "content": <output of nbformat.read>, } """ self.log.info("restoring %s from checkpoint %s", path, checkpoint_id) cp = self._get_checkpoint_path(checkpoint_id, path) exists, blob = self.parent._fetch(cp) if not exists: raise web.HTTPError(404, u"No such checkpoint: %s for %s" % ( checkpoint_id, path)) nb = self.parent._read_notebook(blob) return { "type": "notebook", "content": nb } def rename_checkpoint(self, checkpoint_id, old_path, new_path): """Rename a single checkpoint from old_path to new_path.""" old_cp = self._get_checkpoint_path(checkpoint_id, old_path) new_cp = self._get_checkpoint_path(checkpoint_id, new_path) self.parent.rename_file(old_cp, new_cp) def delete_checkpoint(self, checkpoint_id, path): """delete a checkpoint for a file""" cp = self._get_checkpoint_path(checkpoint_id, path) self.parent.delete_file(cp) def list_checkpoints(self, path): """Return a list of checkpoints for a given file""" cp = self._get_checkpoint_path(None, path) bucket_name, bucket_path = self.parent._parse_path(cp) try: bucket = self.parent._get_bucket(bucket_name) it = bucket.list_blobs(prefix=bucket_path, delimiter="/", max_results=self.parent.max_list_size) checkpoints = [{ "id": os.path.splitext(file.path)[0][-36:], "last_modified": file.updated, } for file in islice(it, self.parent.max_list_size)] except NotFound: return [] checkpoints.sort(key=lambda c: c["last_modified"], reverse=True) self.log.debug("list_checkpoints: %s: %s", path, checkpoints) return checkpoints def _get_checkpoint_path(self, checkpoint_id, path): if path.startswith("/"): path = path[1:] bucket_name, bucket_path = self.parent._parse_path(path) if self.checkpoint_bucket: bucket_name = self.checkpoint_bucket slash = bucket_path.rfind("/") + 1 name, ext = os.path.splitext(bucket_path[slash:]) if checkpoint_id is not None: return "%s/%s%s/%s-%s%s" % ( bucket_name, bucket_path[:slash], self.checkpoint_dir, name, checkpoint_id, ext) return "%s/%s%s/%s" % (bucket_name, bucket_path[:slash], self.checkpoint_dir, name) class GoogleStorageContentManager(ContentsManager): project = Unicode( "", config=True, help="The name of the project in Google Cloud to use. If you do not " "set this parameter, google.cloud will pick the default project " "from the execution context if it exists." ) keyfile = Unicode( "", config=True, help="The path to the Google Cloud API JSON keyfile which is needed " "for authorization. If you do not set this parameter, " "google.cloud will be OK if the default project exists." ) max_list_size = Int(128, config=True, help="list_blobs() limit") cache_buckets = Bool(True, config=True, help="Value indicating whether to cache the bucket " "objects for faster operations.") hide_dotted_blobs = Bool(True, config=True, help="Consider blobs which names start with dot " "as hidden.") # redefine untitled_directory to change the default value untitled_directory = Unicode( "untitled-folder", config=True, help="The base name used when creating untitled directories.") default_path = Unicode( "", config=True, help="The default path to open.") post_save_hook = Any(None, config=True, help="""Python callable or importstring thereof to be called on the path of a file just saved. This can be used to process the file on disk, such as converting the notebook to a script or HTML via nbconvert. It will be called as (all arguments passed by keyword):: hook(os_path=path, model=model, contents_manager=instance) - path: the GCS path to the file just written - model: the model representing the file - contents_manager: this ContentsManager instance """ ) def __init__(self, *args, **kwargs): # Stub for the GSClient instance (set lazily by the client property). self._client = None super(GoogleStorageContentManager, self).__init__(*args, **kwargs) def debug_args(fn): def wrapped_fn(self, *args, **kwargs): self.log.debug("call %s(%s%s%s)", fn.__name__, ", ".join(repr(a) for a in args), ", " if args and kwargs else "", ", ".join("%s=%r" % p for p in kwargs.items())) result = fn(self, *args, **kwargs) self.log.debug("result %s %s", fn.__name__, result) return result return wrapped_fn @debug_args def is_hidden(self, path): if path == "": return False if path.startswith("/"): path = path[1:] bucket_name, bucket_path = self._parse_path(path) try: bucket = self._get_bucket(bucket_name) except Forbidden: return True if bucket is None: return True if self.hide_dotted_blobs and \ self._get_blob_name(bucket_path).startswith("."): return True return False @debug_args def file_exists(self, path=""): if path == "" or path.endswith("/"): return False if path.startswith("/"): path = path[1:] bucket_name, bucket_path = self._parse_path(path) if not bucket_path: return False bucket = self._get_bucket(bucket_name) if bucket is None or bucket_path == "": return False blob = bucket.blob(bucket_path) return blob.exists() and not ( blob.name.endswith("/") and blob.size == 0) @debug_args def dir_exists(self, path): if path.startswith("/"): path = path[1:] if path == "": return True if not path.endswith("/"): path += "/" bucket_name, blob_prefix_name = self._parse_path(path) # Get the bucket, fail if the bucket cannot be found. bucket = self._get_bucket(bucket_name) if not bucket: return False # Only check that bucket exists. if not blob_prefix_name: return True # Check that some blobs exist with the prefix as a path. if list(bucket.list_blobs(prefix=blob_prefix_name, max_results=1)): return True return False @debug_args def get(self, path, content=True, type=None, format=None): if isinstance(path, Blob): obj = path path = self._get_blob_path(obj) elif path.startswith("/"): path = path[1:] if not path: path = self.default_path type = self._resolve_storagetype(path, type) if type == "directory": if path and not path.endswith("/"): path += "/" exists, members = self._fetch(path, content=content) if not exists: raise web.HTTPError(404, u"No such directory: %s" % path) model = self._dir_model(path, members, content=content) else: exists, blob = self._fetch(path) if not exists: raise web.HTTPError(404, u"No such file: %s" % path) if type == "notebook" or (type is None and path.endswith(".ipynb")): model = self._notebook_model(blob, content=content) else: model = self._file_model(blob, content=content, format=format) return model @debug_args def save(self, model, path): if path.startswith("/"): path = path[1:] if "type" not in model: raise web.HTTPError(400, u"No file type provided") if "content" not in model and model["type"] != "directory": raise web.HTTPError(400, u"No file content provided") if "/" not in path and self.default_path: path = "%s/%s" % (self.default_path, path) bucket_name, bucket_path = self._parse_path(path) if bucket_path == "" and model["type"] != "directory": raise web.HTTPError(403, u"You may only create directories " u"(buckets) at the root level.") if bucket_path != "" and model["type"] == "directory" and \ bucket_path[-1] != "/": path += "/" self.log.debug("Saving %s", path) self.run_pre_save_hook(model=model, path=path) try: if model["type"] == "notebook": nb = nbformat.from_dict(model["content"]) self.check_and_sign(nb, path) self._save_notebook(path, nb) # One checkpoint should always exist for notebooks. if not self.checkpoints.list_checkpoints(path): self.create_checkpoint(path) elif model["type"] == "file": # Missing format will be handled internally by _save_file. self._save_file(path, model["content"], model.get("format")) elif model["type"] == "directory": self._save_directory(path, model) else: raise web.HTTPError( 00, u"Unhandled contents type: %s" % model["type"]) except web.HTTPError: raise except Exception as e: self.log.error(u"Error while saving file: %s %s", path, e, exc_info=True) raise web.HTTPError( 500, u"Unexpected error while saving file: %s %s" % (path, e)) validation_message = None if model["type"] == "notebook": self.validate_notebook_model(model) validation_message = model.get("message", None) model = self.get(path, content=False) if validation_message: model["message"] = validation_message self.run_post_save_hook(model=model, os_path=path) return model @debug_args def delete_file(self, path): if path.startswith("/"): path = path[1:] bucket_name, bucket_path = self._parse_path(path) bucket = self._get_bucket(bucket_name, throw=True) if bucket_path == "": bucket.delete() del self._bucket_cache[bucket_name] return it = bucket.list_blobs(prefix=bucket_path, delimiter="/", max_results=self.max_list_size) files = list(islice(it, self.max_list_size)) folders = it.prefixes bucket.delete_blobs(files) for folder in folders: self.delete_file(bucket_name + "/" + folder) @debug_args def rename_file(self, old_path, new_path): if old_path.startswith("/"): old_path = old_path[1:] if new_path.startswith("/"): new_path = new_path[1:] old_bucket_name, old_bucket_path = self._parse_path(old_path) old_bucket = self._get_bucket(old_bucket_name, throw=True) new_bucket_name, new_bucket_path = self._parse_path(new_path) new_bucket = self._get_bucket(new_bucket_name, throw=True) old_blob = old_bucket.get_blob(old_bucket_path) if old_bucket_name == new_bucket_name: if old_blob is not None: old_bucket.rename_blob(old_blob, new_bucket_path) return if not old_bucket_path.endswith("/"): old_bucket_path += "/" if not new_bucket_path.endswith("/"): new_bucket_path += "/" it = old_bucket.list_blobs(prefix=old_bucket_path, delimiter="/", max_results=self.max_list_size) old_blobs = list(islice(it, self.max_list_size)) folders = it.prefixes for ob in old_blobs: old_bucket.rename_blob( ob, new_bucket_path + self._get_blob_name(ob)) for f in folders: self.rename_file( old_bucket_name + "/" + f, new_bucket_name + "/" + f.replace(old_bucket_path, new_bucket_path, 1)) return if old_blob is not None: old_bucket.copy_blob(old_blob, new_bucket, new_bucket_path) old_bucket.delete_blob(old_blob) return if not old_bucket_path.endswith("/"): old_bucket_path += "/" if not new_bucket_path.endswith("/"): new_bucket_path += "/" it = old_bucket.list_blobs(prefix=old_bucket_path, delimiter="/", max_results=self.max_list_size) old_blobs = list(islice(it, self.max_list_size)) folders = it.prefixes for ob in old_blobs: old_bucket.copy_blob(ob, new_bucket, new_bucket_path + self._get_blob_name(ob)) ob.delete() for f in folders: self.rename_file( old_bucket_name + "/" + f, new_bucket_name + "/" + f.replace(old_bucket_path, new_bucket_path, 1)) @property def client(self): """ :return: used instance of :class:`google.cloud.storage.Client`. """ if self._client is not None: return self._client if not self.project: self._client = GSClient() else: self._client = GSClient.from_service_account_json( self.keyfile, project=self.project) return self._client def run_post_save_hook(self, model, os_path): """Run the post-save hook if defined, and log errors""" if self.post_save_hook: try: self.log.debug("Running post-save hook on %s", os_path) self.post_save_hook(os_path=os_path, model=model, contents_manager=self) except Exception: self.log.error("Post-save hook failed on %s", os_path, exc_info=True) @default("checkpoints_class") def _checkpoints_class_default(self): return GoogleStorageCheckpoints def _resolve_storagetype(self, path, storagetype): """Based on the arguments and status of GCS, return a valid type.""" if "/" not in path or path.endswith("/") or path == "": if storagetype not in (None, "directory"): raise web.HTTPError( 400, u"%s is not a directory" % path, reason="bad type") return "directory" if storagetype is None and path.endswith(".ipynb"): return "notebook" if storagetype is not None: return storagetype # If type cannot be inferred from the argument set, use # the storage API to see if a blob or a prefix exists. if self.file_exists(path): return "file" if self.dir_exists(path): return "directory" raise web.HTTPError( 404, u"%s does not exist" % path, reason="bad type") def _get_bucket(self, name, throw=False): """ Get the bucket by it's name. Uses cache by default. :param name: bucket name. :param throw: If True raises NotFound exception, otherwise, returns None. :return: instance of :class:`google.cloud.storage.Bucket` or None. """ if not self.cache_buckets: try: bucket_descriptor = self.client.bucket(name, user_project=self.client.project) return self.client.get_bucket(bucket_descriptor) except NotFound: if throw: raise return None try: cache = self._bucket_cache except AttributeError: self._bucket_cache = cache = {} try: return cache[name] except KeyError: try: bucket_descriptor = self.client.bucket(name, user_project=self.client.project) bucket = self.client.get_bucket(bucket_descriptor) except BrokenPipeError as e: if e.errno in (None, errno.EPIPE): return self._get_bucket(name, throw) else: raise except (BadRequest, NotFound): if throw: raise return None cache[name] = bucket return bucket def _parse_path(self, path): """ Splits the path into bucket name and path inside the bucket. :param path: string to split. :return: tuple(bucket name, bucket path). """ if self.default_path and not path.startswith(f"{self.default_path}/"): path = f"{self.default_path}/{path}" bucket, _, blobname = path.partition("/") return bucket, blobname @staticmethod def _get_blob_path(blob): """ Gets blob path. :param blob: instance of :class:`google.cloud.storage.Blob`. :return: path string. """ return blob.bucket.name + "/" + blob.name @staticmethod def _get_blob_name(blob): """ Gets blob name (last part of the path). :param blob: instance of :class:`google.cloud.storage.Blob`. :return: name string. """ if isinstance(blob, Blob): return os.path.basename(blob.name) assert isinstance(blob, (unicode, str)) if blob.endswith("/"): blob = blob[:-1] return os.path.basename(blob) @staticmethod def _get_dir_name(path): """ Extracts directory name like os.path.dirname. :param path: GCS path string. :return: directory name string. """ if path.endswith("/"): path = path[:-1] return path.rsplit("/", 1)[-1] @debug_args def _fetch(self, path, content=True): """ Retrieves the blob by it's path. :param path: blob path or directory name. :param content: If False, just check if path exists. :return: tuple(exists Bool, :class:`google.cloud.storage.Blob` or tuple(file [Blob], folders list)). """ if path == "": try: buckets = self.client.list_buckets() return True, ([], [b.name + "/" for b in buckets]) except BrokenPipeError as e: if e.errno in (None, errno.EPIPE): return self._fetch(path, content) else: raise try: bucket_name, bucket_path = self._parse_path(path) except ValueError: return False, None try: bucket = self._get_bucket(bucket_name) except Forbidden: return True, None if bucket is None: return False, None if bucket_path == "" and not content: return True, None if bucket_path == "" or bucket_path.endswith("/"): if bucket_path != "": try: exists = bucket.blob(bucket_path).exists() except BrokenPipeError as e: if e.errno in (None, errno.EPIPE): return self._fetch(path, content) else: raise if exists and not content: return True, None # blob may not exist but at the same time be a part of a path delimiter = '/' if content else None # https://github.com/hail-is/hail/issues/8586 max_list_size = self.max_list_size if content else 1 try: it = bucket.list_blobs(prefix=bucket_path, delimiter=delimiter, max_results=max_list_size) try: files = list(islice(it, max_list_size)) except BrokenPipeError as e: if e.errno in (None, errno.EPIPE): return self._fetch(path, content) else: raise except NotFound: del self._bucket_cache[bucket_name] return False, None folders = it.prefixes return (bool(files or folders or bucket_path == ""), (files, folders) if content else None) if not content: return bucket.blob(bucket_path).exists(), None try: blob = bucket.get_blob(bucket_path) except BrokenPipeError as e: if e.errno in (None, errno.EPIPE): return self._fetch(path, content) else: raise return blob is not None, blob def _base_model(self, blob): """Builds the common base of a contents model""" last_modified = blob.updated created = last_modified model = { "name": self._get_blob_name(blob), "path": self._get_blob_path(blob), "last_modified": last_modified, "created": created, "content": None, "format": None, "mimetype": blob.content_type, "writable": True } return model def _read_file(self, blob, format): """Reads a non-notebook file. blob: instance of :class:`google.cloud.storage.Blob`. format: If "text", the contents will be decoded as UTF-8. If "base64", the raw bytes contents will be encoded as base64. If not specified, try to decode as UTF-8, and fall back to base64 """ bcontent = blob.download_as_string() if format is None or format == "text": # Try to interpret as unicode if format is unknown or if unicode # was explicitly requested. try: return bcontent.decode("utf8"), "text" except UnicodeError: if format == "text": raise web.HTTPError( 400, "%s is not UTF-8 encoded" % self._get_blob_path(blob), reason="bad format", ) return base64.encodebytes(bcontent).decode("ascii"), "base64" def _file_model(self, blob, content=True, format=None): """Builds a model for a file if content is requested, include the file contents. format: If "text", the contents will be decoded as UTF-8. If "base64", the raw bytes contents will be encoded as base64. If not specified, try to decode as UTF-8, and fall back to base64 """ model = self._base_model(blob) model["type"] = "file" if content: content, format = self._read_file(blob, format) if model["mimetype"] == "text/plain": default_mime = { "text": "text/plain", "base64": "application/octet-stream" }[format] model["mimetype"] = default_mime model.update( content=content, format=format, ) return model def _read_notebook(self, blob): """ Reads a notebook file from GCS blob. :param blob: :class:`google.cloud.storage.Blob` instance. :return: :class:`nbformat.notebooknode.NotebookNode` instance. """ data = blob.download_as_string().decode("utf-8") nb = nbformat.reads(data, as_version=4) self.mark_trusted_cells(nb, self._get_blob_path(blob)) return nb def _notebook_model(self, blob, content=True): """Builds a notebook model. if content is requested, the notebook content will be populated as a JSON structure (not double-serialized) """ model = self._base_model(blob) model["type"] = "notebook" if content: nb = self._read_notebook(blob) model["content"] = nb model["mimetype"] = "application/x-ipynb+json" model["format"] = "json" self.validate_notebook_model(model) return model def _dir_model(self, path, members, content=True): """Builds a model for a directory if content is requested, will include a listing of the directory """ model = { "type": "directory", "name": self._get_dir_name(path), "path": path.rstrip('/'), "last_modified": "", "created": "", "content": None, "format": None, "mimetype": "application/x-directory", "writable": (members is not None or not self.is_hidden(path)) } if content: blobs, folders = members if path != "": tmpl = "%s/%%s" % self._parse_path(path)[0] else: tmpl = "%s" _, this = self._parse_path(path) with ThreadPoolExecutor(max_workers=64) as pool: blob_futures = [ pool.submit(self.get, path=blob, content=False) for blob in blobs if self._get_blob_path(blob) != path and self.should_list(self._get_blob_name(blob))] folder_futures = [ pool.submit(self.get, path=tmpl % folder, content=False) for folder in folders if self.should_list(folder) and folder != this] self.log.debug(f'running {len(blob_futures) + len(folder_futures)}' f' 32-parallel') done, not_done = wait(blob_futures + folder_futures) assert not not_done model["content"] = [x.result() for x in done] model["format"] = "json" return model def _save_notebook(self, path, nb): """ Uploads notebook to GCS. :param path: blob path. :param nb: :class:`nbformat.notebooknode.NotebookNode` instance. :return: created :class:`google.cloud.storage.Blob`. """ bucket_name, bucket_path = self._parse_path(path) bucket = self._get_bucket(bucket_name, throw=True) data = nbformat.writes(nb, version=nbformat.NO_CONVERT) blob = bucket.blob(bucket_path) blob.upload_from_string(data, "application/x-ipynb+json") return blob def _save_file(self, path, content, format): """Uploads content of a generic file to GCS. :param: path blob path. :param: content file contents string. :param: format the description of the input format, can be either "text" or "base64". :return: created :class:`google.cloud.storage.Blob`. """ bucket_name, bucket_path = self._parse_path(path) bucket = self._get_bucket(bucket_name, throw=True) if format not in {"text", "base64"}: raise web.HTTPError( 400, u"Must specify format of file contents as \"text\" or " u"\"base64\"", ) try: if format == "text": bcontent = content.encode("utf8") else: b64_bytes = content.encode("ascii") bcontent = base64.decodebytes(b64_bytes) except Exception as e: raise web.HTTPError( 400, u"Encoding error saving %s: %s" % (path, e) ) blob = bucket.blob(bucket_path) blob.upload_from_string(bcontent) return blob def _save_directory(self, path, model): """Creates a directory in GCS.""" exists, obj = self._fetch(path) if exists: if isinstance(obj, Blob): raise web.HTTPError(400, u"Not a directory: %s" % path) else: self.log.debug("Directory %r already exists", path) return bucket_name, bucket_path = self._parse_path(path) if bucket_path == "": self.client.create_bucket(bucket_name) else: bucket = self._get_bucket(bucket_name, throw=True) bucket.blob(bucket_path).upload_from_string( b"", content_type="application/x-directory") debug_args = staticmethod(debug_args)
38.426056
95
0.557683
36ac8ae2ed2821ead2905989553b79b6c0505118
3,781
py
Python
python/GafferCortexUI/OpPathPreview.py
danieldresser-ie/gaffer
78c22487156a5800fcca49a24f52451a8ac0c559
[ "BSD-3-Clause" ]
1
2016-07-31T09:55:09.000Z
2016-07-31T09:55:09.000Z
python/GafferCortexUI/OpPathPreview.py
Kthulhu/gaffer
8995d579d07231988abc92c3ac2788c15c8bc75c
[ "BSD-3-Clause" ]
null
null
null
python/GafferCortexUI/OpPathPreview.py
Kthulhu/gaffer
8995d579d07231988abc92c3ac2788c15c8bc75c
[ "BSD-3-Clause" ]
1
2020-02-15T16:15:54.000Z
2020-02-15T16:15:54.000Z
########################################################################## # # Copyright (c) 2012, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import IECore import Gaffer import GafferUI import GafferCortex import GafferCortexUI class OpPathPreview( GafferUI.DeferredPathPreview ) : def __init__( self, path ) : self.__column = GafferUI.ListContainer( borderWidth = 8 ) GafferUI.DeferredPathPreview.__init__( self, self.__column, path ) with self.__column : # we'll replace this with the op in _deferredUpdate() GafferUI.Spacer( IECore.V2i( 1 ) ) button = GafferUI.Button( "Launch" ) self.__executeClickedConnection = button.clickedSignal().connect( Gaffer.WeakMethod( self.__executeClicked ) ) self._updateFromPath() def isValid( self ) : path = self.getPath() if not isinstance( path, GafferCortex.ClassLoaderPath ) : return False if hasattr( path.classLoader(), "classType" ) : if not issubclass( path.classLoader().classType(), IECore.Op ) : return False else : if path.classLoader().searchPath() != IECore.ClassLoader.defaultOpLoader().searchPath() : return False return path.isLeaf() def _load( self ) : return self.getPath().load()() def _deferredUpdate( self, op ) : self.__node = Gaffer.ParameterisedHolderNode() self.__node.setParameterised( op ) GafferCortexUI.ParameterPresets.autoLoad( self.__node ) self.__column[0] = GafferUI.NodeUI.create( self.__node ) def __executeClicked( self, button ) : # Create a copy of our op self.__node.setParameterisedValues() op = self.__node.getParameterised()[0] opCopy = self.getPath().load()() IECore.ParameterAlgo.copyClasses( op.parameters(), opCopy.parameters(), ) opCopy.parameters().setValue( op.parameters().getValue().copy() ) # Launch an OpDialogue, executing the copy in the background dialogue = GafferCortexUI.OpDialogue( opCopy, executeInBackground = True, executeImmediately = True ) self.ancestor( GafferUI.Window ).addChildWindow( dialogue ) dialogue.setVisible( True ) GafferUI.PathPreviewWidget.registerType( "Op", OpPathPreview )
34.063063
113
0.705369
4e1835e8b2744d29b4406cdc5701d32379d71c77
319
py
Python
src/prefect/tasks/cubejs/__init__.py
suryatmodulus/prefect
e4ac9f6aa831140c7fba0397f3e5e0884b1b9e42
[ "Apache-2.0" ]
3
2021-11-09T10:46:58.000Z
2022-03-11T04:22:35.000Z
src/prefect/tasks/cubejs/__init__.py
suryatmodulus/prefect
e4ac9f6aa831140c7fba0397f3e5e0884b1b9e42
[ "Apache-2.0" ]
8
2021-10-11T16:42:59.000Z
2022-03-31T08:42:24.000Z
src/prefect/tasks/cubejs/__init__.py
suryatmodulus/prefect
e4ac9f6aa831140c7fba0397f3e5e0884b1b9e42
[ "Apache-2.0" ]
1
2022-03-11T04:22:40.000Z
2022-03-11T04:22:40.000Z
""" This is a collection of tasks to interact with a Cube.js or Cube Cloud environment. """ try: from prefect.tasks.cubejs.cubejs_tasks import CubeJSQueryTask except ImportError as err: raise ImportError( 'prefect.tasks.cubejs` requires Prefect to be installed with the "cubejs" extra.' ) from err
29
89
0.733542
68a460e9023c6da78d1ba6ed3e3b2597a663b497
381
py
Python
auth-api/migrations/versions/a0f0a77dc77f_merge_heads.py
karthik-aot/sbc-auth
f24028040fda67d4f10ae9b608b8832c15d2a8ad
[ "Apache-2.0" ]
11
2019-09-26T06:58:25.000Z
2022-01-26T06:19:39.000Z
auth-api/migrations/versions/a0f0a77dc77f_merge_heads.py
karthik-aot/sbc-auth
f24028040fda67d4f10ae9b608b8832c15d2a8ad
[ "Apache-2.0" ]
1,622
2019-05-07T21:08:38.000Z
2022-03-28T17:07:15.000Z
auth-api/migrations/versions/a0f0a77dc77f_merge_heads.py
karthik-aot/sbc-auth
f24028040fda67d4f10ae9b608b8832c15d2a8ad
[ "Apache-2.0" ]
98
2019-03-01T21:36:15.000Z
2021-12-01T22:11:25.000Z
"""merge heads Revision ID: a0f0a77dc77f Revises: 3c89ccb6bb32, a37f90e6802d Create Date: 2021-05-03 08:30:00.475241 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = 'a0f0a77dc77f' down_revision = ('3c89ccb6bb32', 'a37f90e6802d') branch_labels = None depends_on = None def upgrade(): pass def downgrade(): pass
15.24
48
0.740157
f13346bec1052b9eb2d1ed7b8b14f69df38c842f
10,383
py
Python
kubernetes/test/test_extensions_v1beta1_api.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
2
2020-06-21T08:03:18.000Z
2020-06-21T09:53:29.000Z
kubernetes/test/test_extensions_v1beta1_api.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_extensions_v1beta1_api.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
1
2020-12-10T07:28:08.000Z
2020-12-10T07:28:08.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: release-1.16 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import kubernetes.client from kubernetes.client.api.extensions_v1beta1_api import ExtensionsV1beta1Api # noqa: E501 from kubernetes.client.rest import ApiException class TestExtensionsV1beta1Api(unittest.TestCase): """ExtensionsV1beta1Api unit test stubs""" def setUp(self): self.api = kubernetes.client.api.extensions_v1beta1_api.ExtensionsV1beta1Api() # noqa: E501 def tearDown(self): pass def test_create_namespaced_daemon_set(self): """Test case for create_namespaced_daemon_set """ pass def test_create_namespaced_deployment(self): """Test case for create_namespaced_deployment """ pass def test_create_namespaced_deployment_rollback(self): """Test case for create_namespaced_deployment_rollback """ pass def test_create_namespaced_ingress(self): """Test case for create_namespaced_ingress """ pass def test_create_namespaced_network_policy(self): """Test case for create_namespaced_network_policy """ pass def test_create_namespaced_replica_set(self): """Test case for create_namespaced_replica_set """ pass def test_create_pod_security_policy(self): """Test case for create_pod_security_policy """ pass def test_delete_collection_namespaced_daemon_set(self): """Test case for delete_collection_namespaced_daemon_set """ pass def test_delete_collection_namespaced_deployment(self): """Test case for delete_collection_namespaced_deployment """ pass def test_delete_collection_namespaced_ingress(self): """Test case for delete_collection_namespaced_ingress """ pass def test_delete_collection_namespaced_network_policy(self): """Test case for delete_collection_namespaced_network_policy """ pass def test_delete_collection_namespaced_replica_set(self): """Test case for delete_collection_namespaced_replica_set """ pass def test_delete_collection_pod_security_policy(self): """Test case for delete_collection_pod_security_policy """ pass def test_delete_namespaced_daemon_set(self): """Test case for delete_namespaced_daemon_set """ pass def test_delete_namespaced_deployment(self): """Test case for delete_namespaced_deployment """ pass def test_delete_namespaced_ingress(self): """Test case for delete_namespaced_ingress """ pass def test_delete_namespaced_network_policy(self): """Test case for delete_namespaced_network_policy """ pass def test_delete_namespaced_replica_set(self): """Test case for delete_namespaced_replica_set """ pass def test_delete_pod_security_policy(self): """Test case for delete_pod_security_policy """ pass def test_get_api_resources(self): """Test case for get_api_resources """ pass def test_list_daemon_set_for_all_namespaces(self): """Test case for list_daemon_set_for_all_namespaces """ pass def test_list_deployment_for_all_namespaces(self): """Test case for list_deployment_for_all_namespaces """ pass def test_list_ingress_for_all_namespaces(self): """Test case for list_ingress_for_all_namespaces """ pass def test_list_namespaced_daemon_set(self): """Test case for list_namespaced_daemon_set """ pass def test_list_namespaced_deployment(self): """Test case for list_namespaced_deployment """ pass def test_list_namespaced_ingress(self): """Test case for list_namespaced_ingress """ pass def test_list_namespaced_network_policy(self): """Test case for list_namespaced_network_policy """ pass def test_list_namespaced_replica_set(self): """Test case for list_namespaced_replica_set """ pass def test_list_network_policy_for_all_namespaces(self): """Test case for list_network_policy_for_all_namespaces """ pass def test_list_pod_security_policy(self): """Test case for list_pod_security_policy """ pass def test_list_replica_set_for_all_namespaces(self): """Test case for list_replica_set_for_all_namespaces """ pass def test_patch_namespaced_daemon_set(self): """Test case for patch_namespaced_daemon_set """ pass def test_patch_namespaced_daemon_set_status(self): """Test case for patch_namespaced_daemon_set_status """ pass def test_patch_namespaced_deployment(self): """Test case for patch_namespaced_deployment """ pass def test_patch_namespaced_deployment_scale(self): """Test case for patch_namespaced_deployment_scale """ pass def test_patch_namespaced_deployment_status(self): """Test case for patch_namespaced_deployment_status """ pass def test_patch_namespaced_ingress(self): """Test case for patch_namespaced_ingress """ pass def test_patch_namespaced_ingress_status(self): """Test case for patch_namespaced_ingress_status """ pass def test_patch_namespaced_network_policy(self): """Test case for patch_namespaced_network_policy """ pass def test_patch_namespaced_replica_set(self): """Test case for patch_namespaced_replica_set """ pass def test_patch_namespaced_replica_set_scale(self): """Test case for patch_namespaced_replica_set_scale """ pass def test_patch_namespaced_replica_set_status(self): """Test case for patch_namespaced_replica_set_status """ pass def test_patch_namespaced_replication_controller_dummy_scale(self): """Test case for patch_namespaced_replication_controller_dummy_scale """ pass def test_patch_pod_security_policy(self): """Test case for patch_pod_security_policy """ pass def test_read_namespaced_daemon_set(self): """Test case for read_namespaced_daemon_set """ pass def test_read_namespaced_daemon_set_status(self): """Test case for read_namespaced_daemon_set_status """ pass def test_read_namespaced_deployment(self): """Test case for read_namespaced_deployment """ pass def test_read_namespaced_deployment_scale(self): """Test case for read_namespaced_deployment_scale """ pass def test_read_namespaced_deployment_status(self): """Test case for read_namespaced_deployment_status """ pass def test_read_namespaced_ingress(self): """Test case for read_namespaced_ingress """ pass def test_read_namespaced_ingress_status(self): """Test case for read_namespaced_ingress_status """ pass def test_read_namespaced_network_policy(self): """Test case for read_namespaced_network_policy """ pass def test_read_namespaced_replica_set(self): """Test case for read_namespaced_replica_set """ pass def test_read_namespaced_replica_set_scale(self): """Test case for read_namespaced_replica_set_scale """ pass def test_read_namespaced_replica_set_status(self): """Test case for read_namespaced_replica_set_status """ pass def test_read_namespaced_replication_controller_dummy_scale(self): """Test case for read_namespaced_replication_controller_dummy_scale """ pass def test_read_pod_security_policy(self): """Test case for read_pod_security_policy """ pass def test_replace_namespaced_daemon_set(self): """Test case for replace_namespaced_daemon_set """ pass def test_replace_namespaced_daemon_set_status(self): """Test case for replace_namespaced_daemon_set_status """ pass def test_replace_namespaced_deployment(self): """Test case for replace_namespaced_deployment """ pass def test_replace_namespaced_deployment_scale(self): """Test case for replace_namespaced_deployment_scale """ pass def test_replace_namespaced_deployment_status(self): """Test case for replace_namespaced_deployment_status """ pass def test_replace_namespaced_ingress(self): """Test case for replace_namespaced_ingress """ pass def test_replace_namespaced_ingress_status(self): """Test case for replace_namespaced_ingress_status """ pass def test_replace_namespaced_network_policy(self): """Test case for replace_namespaced_network_policy """ pass def test_replace_namespaced_replica_set(self): """Test case for replace_namespaced_replica_set """ pass def test_replace_namespaced_replica_set_scale(self): """Test case for replace_namespaced_replica_set_scale """ pass def test_replace_namespaced_replica_set_status(self): """Test case for replace_namespaced_replica_set_status """ pass def test_replace_namespaced_replication_controller_dummy_scale(self): """Test case for replace_namespaced_replication_controller_dummy_scale """ pass def test_replace_pod_security_policy(self): """Test case for replace_pod_security_policy """ pass if __name__ == '__main__': unittest.main()
22.870044
124
0.663874
0922cc75a62ba7bfe0746cb0a7b74ec4ab844c95
7,482
py
Python
stests/monitoring/on_consensus_finality_signature.py
Fraser999/stests
482a84e562223731e47e5e2b91d0a081f5c4aad6
[ "Apache-2.0" ]
null
null
null
stests/monitoring/on_consensus_finality_signature.py
Fraser999/stests
482a84e562223731e47e5e2b91d0a081f5c4aad6
[ "Apache-2.0" ]
null
null
null
stests/monitoring/on_consensus_finality_signature.py
Fraser999/stests
482a84e562223731e47e5e2b91d0a081f5c4aad6
[ "Apache-2.0" ]
null
null
null
from datetime import datetime import typing import dramatiq from stests import chain from stests.core import cache from stests.core import factory from stests.core.logging import log_event from stests.core.types.chain import BlockStatus from stests.core.types.chain import Deploy from stests.core.types.chain import DeployStatus from stests.core.types.infra import Network from stests.core.types.infra import Node from stests.core.types.infra import NodeEventInfo from stests.core.types.infra import NodeIdentifier from stests.core.utils import encoder from stests.events import EventType # Queue to which messages will be dispatched. _QUEUE = "monitoring.events.consensus.fault" class _Context(): """Contextual information passed along chain of execution. """ def __init__(self, info: NodeEventInfo): self.block = None self.block_hash = info.block_hash self.deploy = None self.deploy_hash = None self.info = info self.network_id = factory.create_network_id(info.network) self.network = cache.infra.get_network(self.network_id) self.node_id = factory.create_node_id(self.network_id, info.node_index) self.node = cache.infra.get_node(self.node_id) self.on_chain_block = None self.on_chain_deploy = None @property def deploy_hashes(self): """Gets set of associated deploy hashes.""" try: return self.on_chain_block['header']['deploy_hashes'] except (TypeError, KeyError): return [] @property def deploy_execution_ctx(self): """Returns workload generated execution context.""" return cache.orchestration.get_context( self.deploy.network, self.deploy.run_index, self.deploy.run_type, ) @property def transfer_hashes(self): """Gets set of associated transfer hashes.""" try: return self.on_chain_block['header']['transfer_hashes'] except (TypeError, KeyError): return [] @dramatiq.actor(queue_name=_QUEUE) def on_consensus_finality_signature(info: NodeEventInfo): """Event: raised whenever a consensus finality signature is emitted by a node. :param info: Node event information. """ if not _is_block_processed(info): _process_block(_Context(info)) def _is_block_processed(info: NodeEventInfo) -> bool: """Returns flag indicating whether finalised deploy event has already been processed. """ _, encached = cache.monitoring.set_block(info) return not encached def _is_deploy_processed(ctx: _Context) -> bool: """Returns flag indicating whether finalised deploy event has already been processed. """ _, encached = cache.monitoring.set_deploy(ctx.network.name, ctx.block_hash, ctx.deploy_hash) return not encached def _process_block(ctx: _Context): """Processes a finalised block. """ # Escape if block not found. try: ctx.on_chain_block = chain.get_block(ctx.network, ctx.node, ctx.block_hash) except Exception as err: log_event(EventType.CHAIN_QUERY_BLOCK_NOT_FOUND, None, ctx.block_hash) return # Escape if block empty. if not ctx.deploy_hashes and not ctx.transfer_hashes: log_event(EventType.CHAIN_ADDED_BLOCK_EMPTY, None, ctx.block_hash) return # Set stats. ctx.block = factory.create_block_statistics_on_addition( block_hash = ctx.block_hash, block_hash_parent = ctx.on_chain_block['header']['parent_hash'], chain_name = ctx.network.chain_name, era_id = ctx.on_chain_block['header']['era_id'], deploy_cost_total = None, deploy_count = len(ctx.deploy_hashes) + len(ctx.transfer_hashes), deploy_gas_price_avg = None, height = ctx.on_chain_block['header']['height'], is_switch_block = ctx.on_chain_block['header']['era_end'] is not None, network = ctx.network.name, proposer = ctx.on_chain_block['header']['proposer'], size_bytes = None, state_root_hash = ctx.on_chain_block['header']['state_root_hash'], status = BlockStatus.FINALIZED.name, timestamp = datetime.strptime(ctx.on_chain_block['header']['timestamp'], "%Y-%m-%dT%H:%M:%S.%fZ"), ) # Emit event. log_event(EventType.CHAIN_ADDED_BLOCK, f"{ctx.block_hash}", ctx.block) # Process associated deploys + transfers. _process_block_deploys(ctx) def _process_block_deploys(ctx: _Context): """Processes a finalised block. """ for deploy_hash in ctx.deploy_hashes + ctx.transfer_hashes: ctx.deploy_hash = deploy_hash if not _is_deploy_processed(ctx): _process_deploy(ctx) def _process_deploy(ctx: _Context): """Processes a finalised deploy. """ # Set deploy - escape if not found. try: ctx.on_chain_deploy = chain.get_deploy(ctx.network, ctx.node, ctx.deploy_hash) except Exception as err: log_event(EventType.CHAIN_QUERY_DEPLOY_NOT_FOUND, None, ctx.deploy_hash) return # Emit event. log_event(EventType.CHAIN_ADDED_DEPLOY, f"{ctx.block_hash}.{ctx.deploy_hash}", ctx.info) # Escape if deploy cannot be correlated to a workflow. ctx.deploy = cache.state.get_deploy_on_finalisation(ctx.network.name, ctx.deploy_hash) if not ctx.deploy: return # Process correlated - i.e. deploys previously dispatched by a generator. _process_deploy_correlated(ctx) def _process_deploy_correlated(ctx: _Context): """Process a monitored deploy that was previously dispatched during a generator run. """ # Notify. log_event(EventType.WFLOW_DEPLOY_CORRELATED, f"{ctx.block_hash}.{ctx.deploy_hash}", ctx.node, block_hash=ctx.block_hash, deploy_hash=ctx.deploy_hash) # Update cache: deploy. ctx.deploy.block_hash = ctx.block_hash try: ctx.deploy.deploy_cost = int(ctx.on_chain_deploy["execution_results"][0]["result"]["Success"]["cost"]) except KeyError: try: ctx.deploy.deploy_cost = int(ctx.on_chain_deploy["execution_results"][0]["result"]["cost"]) except KeyError: ctx.deploy.deploy_cost = 0 ctx.deploy.era_id = ctx.block.era_id ctx.deploy.finalization_duration = ctx.block.timestamp.timestamp() - ctx.deploy.dispatch_timestamp.timestamp() ctx.deploy.finalization_node_index = ctx.node.index ctx.deploy.finalization_timestamp = ctx.block.timestamp ctx.deploy.state_root_hash = ctx.block.state_root_hash ctx.deploy.status = DeployStatus.ADDED cache.state.set_deploy(ctx.deploy) # Update cache: account balance. if ctx.deploy.deploy_cost > 0: cache.state.decrement_account_balance_on_deploy_finalisation(ctx.deploy, ctx.deploy.deploy_cost) # Enqueue message for processing by orchestrator. _enqueue_correlated(ctx) def _enqueue_correlated(ctx: _Context): """Enqueues a correlated deploy for further processing by orchestrator. """ dramatiq.get_broker().enqueue(dramatiq.Message( queue_name="orchestration.engine.step", actor_name="on_step_deploy_finalized", args=([ encoder.encode(ctx.deploy_execution_ctx), encoder.encode(ctx.node_id), ctx.block_hash, ctx.deploy_hash ]), kwargs=dict(), options=dict(), ))
33.702703
153
0.686982
9d29d77cb65d89efc7a7f0a789c6ffb5bf468c6f
10,726
py
Python
venv/lib/python2.7/site-packages/openpyxl/drawing/fill.py
Christian-Castro/castro_odoo8
8247fdb20aa39e043b6fa0c4d0af509462ab3e00
[ "Unlicense" ]
7
2016-12-12T02:29:42.000Z
2020-05-12T21:21:21.000Z
venv/lib/python2.7/site-packages/openpyxl/drawing/fill.py
Christian-Castro/castro_odoo8
8247fdb20aa39e043b6fa0c4d0af509462ab3e00
[ "Unlicense" ]
31
2017-01-05T06:07:28.000Z
2018-05-27T13:13:06.000Z
venv/lib/python2.7/site-packages/openpyxl/drawing/fill.py
Christian-Castro/castro_odoo8
8247fdb20aa39e043b6fa0c4d0af509462ab3e00
[ "Unlicense" ]
3
2017-12-21T23:30:12.000Z
2019-01-03T20:51:52.000Z
from __future__ import absolute_import # Copyright (c) 2010-2016 openpyxl from openpyxl.descriptors.serialisable import Serialisable from openpyxl.descriptors import ( Alias, Bool, Integer, Set, NoneSet, Typed, MinMax, Sequence, ) from openpyxl.descriptors.excel import Relation from openpyxl.descriptors.nested import NestedNoneSet from openpyxl.descriptors.sequence import NestedSequence from openpyxl.xml.constants import DRAWING_NS from .colors import ColorChoice from openpyxl.descriptors.excel import ExtensionList as OfficeArtExtensionList from .effect import * """ Fill elements from drawing main schema """ class PatternFillProperties(Serialisable): tagname = "pattFill" namespace = DRAWING_NS prst = NoneSet(values=(['pct5', 'pct10', 'pct20', 'pct25', 'pct30', 'pct40', 'pct50', 'pct60', 'pct70', 'pct75', 'pct80', 'pct90', 'horz', 'vert', 'ltHorz', 'ltVert', 'dkHorz', 'dkVert', 'narHorz', 'narVert', 'dashHorz', 'dashVert', 'cross', 'dnDiag', 'upDiag', 'ltDnDiag', 'ltUpDiag', 'dkDnDiag', 'dkUpDiag', 'wdDnDiag', 'wdUpDiag', 'dashDnDiag', 'dashUpDiag', 'diagCross', 'smCheck', 'lgCheck', 'smGrid', 'lgGrid', 'dotGrid', 'smConfetti', 'lgConfetti', 'horzBrick', 'diagBrick', 'solidDmnd', 'openDmnd', 'dotDmnd', 'plaid', 'sphere', 'weave', 'divot', 'shingle', 'wave', 'trellis', 'zigZag'])) preset = Alias("prst") fgClr = Typed(expected_type=ColorChoice, allow_none=True) foreground = Alias("fgClr") bgClr = Typed(expected_type=ColorChoice, allow_none=True) background = Alias("bgClr") __elements__ = ("fgClr", "bgClr") def __init__(self, prst=None, fgClr=None, bgClr=None, ): self.prst = prst self.fgClr = fgClr self.bgClr = bgClr class RelativeRect(Serialisable): tagname = "rect" namespace = DRAWING_NS l = MinMax(min=0, max=100, allow_none=True) left = Alias('l') t = MinMax(min=0, max=100, allow_none=True) top = Alias('t') r = MinMax(min=0, max=100, allow_none=True) right = Alias('r') b = MinMax(min=0, max=100, allow_none=True) bottom = Alias('b') def __init__(self, l=None, t=None, r=None, b=None, ): self.l = l self.t = t self.r = r self.b = b class StretchInfoProperties(Serialisable): tagname = "stretch" namespace = DRAWING_NS fillRect = Typed(expected_type=RelativeRect, allow_none=True) def __init__(self, fillRect=RelativeRect(), ): self.fillRect = fillRect class GradientStop(Serialisable): tagname = "gradStop" pos = MinMax(min=0, max=100, allow_none=True) # Color Choice Group def __init__(self, pos=None, ): self.pos = pos class GradientStopList(Serialisable): tagname = "gradStopLst" gs = Sequence(expected_type=GradientStop) def __init__(self, gs=None, ): if gs is None: gs = [GradientStop(), GradientStop()] self.gs = gs class LinearShadeProperties(Serialisable): ang = Integer() scaled = Bool(allow_none=True) def __init__(self, ang=None, scaled=None, ): self.ang = ang self.scaled = scaled class PathShadeProperties(Serialisable): path = Set(values=(['shape', 'circle', 'rect'])) fillToRect = Typed(expected_type=RelativeRect, allow_none=True) def __init__(self, path=None, fillToRect=None, ): self.path = path self.fillToRect = fillToRect class GradientFillProperties(Serialisable): tagname = "gradFill" flip = NoneSet(values=(['x', 'y', 'xy'])) rotWithShape = Bool(allow_none=True) gsLst = Typed(expected_type=GradientStopList, allow_none=True) stop_list = Alias("gsLst") lin = Typed(expected_type=LinearShadeProperties, allow_none=True) linear = Alias("lin") path = Typed(expected_type=PathShadeProperties, allow_none=True) tileRect = Typed(expected_type=RelativeRect, allow_none=True) __elements__ = ('gsLst', 'lin', 'path', 'tileRect') def __init__(self, flip=None, rotWithShape=None, gsLst=None, lin=None, path=None, tileRect=None, ): self.flip = flip self.rotWithShape = rotWithShape self.gsLst = gsLst self.lin = lin self.path = path self.tileRect = tileRect class Blip(Serialisable): tagname = "blip" namespace = DRAWING_NS #Using attribute groupAG_Blob cstate = NoneSet(values=(['email', 'screen', 'print', 'hqprint'])) embed = Relation() #rId link = Relation() #hyperlink noGrp = Bool(allow_none=True) noSelect = Bool(allow_none=True) noRot = Bool(allow_none=True) noChangeAspect = Bool(allow_none=True) noMove = Bool(allow_none=True) noResize = Bool(allow_none=True) noEditPoints = Bool(allow_none=True) noAdjustHandles = Bool(allow_none=True) noChangeArrowheads = Bool(allow_none=True) noChangeShapeType = Bool(allow_none=True) # some elements are choice extLst = Typed(expected_type=OfficeArtExtensionList, allow_none=True) alphaBiLevel = Typed(expected_type=AlphaBiLevelEffect, allow_none=True) alphaCeiling = Typed(expected_type=AlphaCeilingEffect, allow_none=True) alphaFloor = Typed(expected_type=AlphaFloorEffect, allow_none=True) alphaInv = Typed(expected_type=AlphaInverseEffect, allow_none=True) alphaMod = Typed(expected_type=AlphaModulateEffect, allow_none=True) alphaModFix = Typed(expected_type=AlphaModulateFixedEffect, allow_none=True) alphaRepl = Typed(expected_type=AlphaReplaceEffect, allow_none=True) biLevel = Typed(expected_type=BiLevelEffect, allow_none=True) blur = Typed(expected_type=BlurEffect, allow_none=True) clrChange = Typed(expected_type=ColorChangeEffect, allow_none=True) clrRepl = Typed(expected_type=ColorReplaceEffect, allow_none=True) duotone = Typed(expected_type=DuotoneEffect, allow_none=True) fillOverlay = Typed(expected_type=FillOverlayEffect, allow_none=True) grayscl = Typed(expected_type=GrayscaleEffect, allow_none=True) hsl = Typed(expected_type=HSLEffect, allow_none=True) lum = Typed(expected_type=LuminanceEffect, allow_none=True) tint = Typed(expected_type=TintEffect, allow_none=True) __elements__ = ('alphaBiLevel', 'alphaCeiling', 'alphaFloor', 'alphaInv', 'alphaMod', 'alphaModFix', 'alphaRepl', 'biLevel', 'blur', 'clrChange', 'clrRepl', 'duotone', 'fillOverlay', 'grayscl', 'hsl', 'lum', 'tint') def __init__(self, cstate=None, embed=None, link=None, noGrp=None, noSelect=None, noRot=None, noChangeAspect=None, noMove=None, noResize=None, noEditPoints=None, noAdjustHandles=None, noChangeArrowheads=None, noChangeShapeType=None, extLst=None, alphaBiLevel=None, alphaCeiling=None, alphaFloor=None, alphaInv=None, alphaMod=None, alphaModFix=None, alphaRepl=None, biLevel=None, blur=None, clrChange=None, clrRepl=None, duotone=None, fillOverlay=None, grayscl=None, hsl=None, lum=None, tint=None, ): self.cstate = cstate self.embed = embed self.link = link self.noGrp = noGrp self.noSelect = noSelect self.noRot = noRot self.noChangeAspect = noChangeAspect self.noMove = noMove self.noResize = noResize self.noEditPoints = noEditPoints self.noAdjustHandles = noAdjustHandles self.noChangeArrowheads = noChangeArrowheads self.noChangeShapeType = noChangeShapeType self.extLst = extLst self.alphaBiLevel = alphaBiLevel self.alphaCeiling = alphaCeiling self.alphaFloor = alphaFloor self.alphaInv = alphaInv self.alphaMod = alphaMod self.alphaModFix = alphaModFix self.alphaRepl = alphaRepl self.biLevel = biLevel self.blur = blur self.clrChange = clrChange self.clrRepl = clrRepl self.duotone = duotone self.fillOverlay = fillOverlay self.grayscl = grayscl self.hsl = hsl self.lum = lum self.tint = tint class TileInfoProperties(Serialisable): tx = Integer(allow_none=True) ty = Integer(allow_none=True) sx = Integer(allow_none=True) sy = Integer(allow_none=True) flip = NoneSet(values=(['x', 'y', 'xy'])) algn = Set(values=(['tl', 't', 'tr', 'l', 'ctr', 'r', 'bl', 'b', 'br'])) def __init__(self, tx=None, ty=None, sx=None, sy=None, flip=None, algn=None, ): self.tx = tx self.ty = ty self.sx = sx self.sy = sy self.flip = flip self.algn = algn class BlipFillProperties(Serialisable): tagname = "blipFill" dpi = Integer(allow_none=True) rotWithShape = Bool(allow_none=True) blip = Typed(expected_type=Blip, allow_none=True) srcRect = Typed(expected_type=RelativeRect, allow_none=True) tile = Typed(expected_type=TileInfoProperties, allow_none=True) stretch = Typed(expected_type=StretchInfoProperties, allow_none=True) __elements__ = ("blip", "srcRect", "tile", "stretch") def __init__(self, dpi=None, rotWithShape=None, blip=None, tile=None, stretch=StretchInfoProperties(), srcRect=None, ): self.dpi = dpi self.rotWithShape = rotWithShape self.blip = blip self.tile = tile self.stretch = stretch self.srcRect = srcRect
30.733524
97
0.58829
f50f274b3acfb9c9a4ac34ad1d3d2ed913ad3196
2,135
py
Python
Scripts/Python/iris pero en python.py
ceceher/Analisis-multivariado
08f88ce71201ac4e290bfdcac89287e021662cb4
[ "MIT" ]
null
null
null
Scripts/Python/iris pero en python.py
ceceher/Analisis-multivariado
08f88ce71201ac4e290bfdcac89287e021662cb4
[ "MIT" ]
null
null
null
Scripts/Python/iris pero en python.py
ceceher/Analisis-multivariado
08f88ce71201ac4e290bfdcac89287e021662cb4
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from matplotlib import pyplot as plt from numpy.core.fromnumeric import mean from sklearn.cluster import MeanShift from sklearn.decomposition import PCA from sklearn.cluster import MiniBatchKMeans from sklearn import datasets iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target #Hagamos un gráfico xmin, xmax = X[:, 0].min() - 0.5, X[:, 0].min() + 0.5 ymin, ymax = X[:, 1].min() - 0.5, X[:, 1].min() + 0.5 plt.figure(2, figsize = (8,9)) plt.clf() plt.scatter(X[:, 0], X[:, 1], c = y, cmap = plt.cm.Set1, edgecolors= 'k') #plt.show() if __name__ == "__main__": iris = datasets.load_iris() dataset = iris ############################################# # Meanshift en Iris ############################################# meanshift = MeanShift().fit(X) print(meanshift.labels_) print(len(meanshift.labels_)) print("="*64) print(meanshift.cluster_centers_) dataset['meanshift'] = meanshift.labels_ print("="*64) print(dataset) print("="*64 + "\n Componentes principales \n" + "="*64) pca = PCA(n_components = 2) pca.fit(X) pca_data = pca.transform(X) print(pca_data) print("="*64 + "\n MeanShift de PCA \n" + "="*64) meanshift = MeanShift().fit(pca_data) plt.scatter(pca_data[:, 0], pca_data[:, 1], c = meanshift.predict(pca_data)) plt.scatter(meanshift.cluster_centers_[:, 0], meanshift.cluster_centers_[:, 1], c = [ 'purple','yellow'], s = 200) plt.show() # No se porque sale una gráfica con 5 colores diferentes pero solo me marca 2 centro para los clusters ############################################# # Kmeans en Iris ############################################# print("="*64 + "\n K-means en Iris \n" + "="*64) kmeans = MiniBatchKMeans(n_clusters=4, batch_size=8).fit(X) print("Total de centros: ", len(kmeans.cluster_centers_)) print("="*64) print(kmeans.predict(X)) dataset['group'] = kmeans.predict(X) print(dataset)
26.036585
107
0.551756
bdb5a26660d8c923f26e60d108a3325e1b66d7b8
2,145
py
Python
torch/utils/data/datapipes/utils/common.py
WBobby/pytorch
655960460ccca936fa5c06df6bbafd25b5582115
[ "Intel" ]
1
2019-11-20T08:10:31.000Z
2019-11-20T08:10:31.000Z
torch/utils/data/datapipes/utils/common.py
WBobby/pytorch
655960460ccca936fa5c06df6bbafd25b5582115
[ "Intel" ]
null
null
null
torch/utils/data/datapipes/utils/common.py
WBobby/pytorch
655960460ccca936fa5c06df6bbafd25b5582115
[ "Intel" ]
1
2022-01-19T10:55:49.000Z
2022-01-19T10:55:49.000Z
import os import fnmatch import warnings from io import BufferedIOBase from typing import Iterable, List, Union def match_masks(name : str, masks : Union[str, List[str]]) -> bool: # empty mask matches any input name if not masks: return True if isinstance(masks, str): return fnmatch.fnmatch(name, masks) for mask in masks: if fnmatch.fnmatch(name, mask): return True return False def get_file_pathnames_from_root( root: str, masks: Union[str, List[str]], recursive: bool = False, abspath: bool = False) -> Iterable[str]: # print out an error message and raise the error out def onerror(err : OSError): warnings.warn(err.filename + " : " + err.strerror) raise err for path, dirs, files in os.walk(root, onerror=onerror): if abspath: path = os.path.abspath(path) for f in files: if match_masks(f, masks): yield os.path.join(path, f) if not recursive: break def get_file_binaries_from_pathnames(pathnames: Iterable, mode: str): if not isinstance(pathnames, Iterable): pathnames = [pathnames, ] if mode in ('b', 't'): mode = 'r' + mode for pathname in pathnames: if not isinstance(pathname, str): raise TypeError("Expected string type for pathname, but got {}" .format(type(pathname))) yield (pathname, open(pathname, mode)) def validate_pathname_binary_tuple(data): if not isinstance(data, tuple): raise TypeError("pathname binary data should be tuple type, but got {}".format(type(data))) if len(data) != 2: raise TypeError("pathname binary tuple length should be 2, but got {}".format(str(len(data)))) if not isinstance(data[0], str): raise TypeError("pathname binary tuple should have string type pathname, but got {}".format(type(data[0]))) if not isinstance(data[1], BufferedIOBase): raise TypeError("pathname binary tuple should have BufferedIOBase based binary type, but got {}".format(type(data[1])))
32.5
127
0.632168
c38e8f9b6d3d2bf71a21acd494318fe58917604c
691
py
Python
sdk/python/pulumi_azure_native/netapp/v20201201/__init__.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/netapp/v20201201/__init__.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/netapp/v20201201/__init__.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from ... import _utilities import typing # Export this package's modules as members: from ._enums import * from .account import * from .backup import * from .backup_policy import * from .get_account import * from .get_backup import * from .get_backup_policy import * from .get_pool import * from .get_snapshot import * from .get_snapshot_policy import * from .get_volume import * from .pool import * from .snapshot import * from .snapshot_policy import * from .volume import * from ._inputs import * from . import outputs
27.64
80
0.748191
08b1e95d3aedc5a3f02b6ea508ea1d2ee3174a67
6,579
py
Python
kydavra/GeneticAlgorithmSelector.py
ScienceKot/kydavra
cbed15c1e0337c250fa9cc3350135764467ef071
[ "MIT" ]
33
2020-08-17T04:22:41.000Z
2022-03-05T18:49:16.000Z
kydavra/GeneticAlgorithmSelector.py
SigmoidAI/kydavra
e17f3855b94045953d0df6d13b9d9e0dffa9a8a3
[ "MIT" ]
null
null
null
kydavra/GeneticAlgorithmSelector.py
SigmoidAI/kydavra
e17f3855b94045953d0df6d13b9d9e0dffa9a8a3
[ "MIT" ]
9
2020-09-22T13:14:28.000Z
2022-01-31T06:44:31.000Z
''' Created with love by Sigmoid @Author - Păpăluță Vasile - vpapaluta06@gmail.com ''' # Importing all needed libraries import random from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split class GeneticAlgorithmSelector: def __init__(self, nb_children : int = 4, nb_generation : int = 200, scoring_metric = accuracy_score, max : bool = True) -> None: ''' Setting up the model :param nb_children: integer, default = 4 The number of children created at every generation :param nb_generation: integer, default = 200 The number of generations created to find the best feature combination :param scoring_metric: function, default = sklearn.metrics.accuracy_score The sklearn like scoring metric :param max: boolean, default = True Used to define whatever we need the biggest of the smallest values computed by self.scoring_metric ''' self.nb_children = nb_children self.nb_generation = nb_generation self.scoring_metric = scoring_metric self.max = max def inverse(self, value : int) -> int : ''' This function inverses the value coming to function :param value: integer, o or 1 The value that should be inverted :return: integer Return the inverse of :param value (if value = 0 ==> 1, else 0) ''' if value == 0: return 1 else: return 0 def cross_over(self, population : list) -> list: ''' This function apply the crossing-over process on 2 arrys-like lists :param population: 2-d array like list The population with 2 array that will be uses to create new individuals in the population :return: 2-d array like list Return the population with parents and their children after corssing-over ''' # Creating an empty list for the new generation new_generation = [] # Adding nb_children children to the new generatin for i in range(self.nb_children//2): first = random.randrange(0, len(self.X_columns)-1) second = random.randrange(0, len(self.X_columns)-1) if first > second: first, second = second, first new_generation.append(population[0][0:first] + population[1][first: second] + population[0][second:]) new_generation.append(population[1][0:first] + population[0][first: second] + population[1][second:]) # Adding the new generation to the population for gene in new_generation: population.append(gene) return population def mutate(self, gene : list) -> list: ''' This function generates a random mutation on a gene :param gene: 1-d array like list The list with zeros and ones that will be mutated :return: 1-drray like list The gene list after mutation ''' # Choosing a random place to generate a mutation mutation_locus = random.randrange(0, len(self.X_columns)-1) # Generating a mutation gene[mutation_locus] = self.inverse(gene[mutation_locus]) return gene def gene_to_cols(self, gene : list) -> list: ''' This function convert the zeros and ones list to columns list :param gene: 1-d array like list The list with zeros and ones that must be transformed in a columns sequence :return: 1-d array like list The lust with columns that will go to the model ''' cols = [] for i in range(len(gene)): if gene[i] == 1: cols.append(self.X_columns[i]) return cols def select(self, algo, dataframe : 'pd.DataFrame', y_column : str, test_size=0.2): ''' This function selects the best columns :param algo: sklearn algorithm class An sklearn algorithm class :param dataframe: pandas DataFrame Data Frame on which the algorithm is applied :param y_column: string The column name of the value that we what to predict :param test_size: float, default = 0.2 The percent of data set that will be used to find the trained algorithm accuracy :return: list The list of columns selected by algorithm ''' # Getting the list with names of columns without the target one self.X_columns = [col for col in dataframe.columns if col != y_column] # Generating the empty population and a temporal one population = [] temp = [] for i in range(len(self.X_columns)): temp.append(random.choice([0, 1])) population.append(temp) temp = [self.inverse(x) for x in population[-1]] population.append(temp) # Creating new generations and testing in searching for individual with the best metric for gen in range(self.nb_generation): # Creating an empty list with the metrics acc = [] # Generating the first cross-over population = self.cross_over(population) # Generating some mutations for i in range(2, len(population)): population[i] = self.mutate(population[i]) # Measuring the accuracy of every individual in the population for gene in population: if set(gene) == set([0]): continue X = dataframe[self.gene_to_cols(gene)].values y = dataframe[y_column].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=0) algo.fit(X_train, y_train) y_pred = algo.predict(X_test) acc.append(self.scoring_metric(y_test, y_pred)) # Selecting the 2 best members of the population based on whatever the metric's property if self.max: res = sorted(range(len(acc)), key=lambda sub: acc[sub])[-2:] else: res = sorted(range(len(acc)), key=lambda sub: acc[sub])[:2] # Creating a new population with the 2 best members population = [population[res[0]], population[res[1]]] return self.gene_to_cols(population[0])
44.755102
134
0.598875
bb0ac780c72b8e6be418e361ae629978f4591809
690
py
Python
roles/alpine/library/zpool_exists.py
wenerme/ansible-role-alpine
a0e8190173cd557f84539c53d26bf073433aa815
[ "MIT" ]
3
2019-11-27T02:30:59.000Z
2020-11-25T01:33:26.000Z
roles/alpine/library/zpool_exists.py
wenerme/ansible-role-alpine
a0e8190173cd557f84539c53d26bf073433aa815
[ "MIT" ]
null
null
null
roles/alpine/library/zpool_exists.py
wenerme/ansible-role-alpine
a0e8190173cd557f84539c53d26bf073433aa815
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import os import re import tempfile # import module snippets from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_bytes, to_native def main(): module = AnsibleModule( argument_spec=dict( name=dict(type='str'), ), mutually_exclusive=[['insertbefore', 'insertafter']], add_file_common_args=True, supports_check_mode=True, ) params = module.params name = params['name'] if name is None: module.fail_json(msg='name is required') proc = subprocess.call(["zpool", name, 'status']) if __name__ == '__main__': main()
23
61
0.647826
d39bf52e1ccaadd2939ef4ff81b9a85364ea05e1
3,181
py
Python
sdks/apigw-manager/src/apigw_manager/apigw/utils.py
IMBlues/bkpaas-python-sdk
a87bee3d26f0ddeac124c7a4679cd3eff4abb8fc
[ "MIT" ]
17
2021-08-03T03:15:35.000Z
2022-03-18T06:10:04.000Z
sdks/apigw-manager/src/apigw_manager/apigw/utils.py
IMBlues/bkpaas-python-sdk
a87bee3d26f0ddeac124c7a4679cd3eff4abb8fc
[ "MIT" ]
7
2021-08-03T07:10:12.000Z
2022-03-23T04:47:22.000Z
sdks/apigw-manager/src/apigw_manager/apigw/utils.py
IMBlues/bkpaas-python-sdk
a87bee3d26f0ddeac124c7a4679cd3eff4abb8fc
[ "MIT" ]
9
2021-08-03T03:20:36.000Z
2022-03-08T13:47:50.000Z
# -*- coding: utf-8 -*- """ * TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-蓝鲸 PaaS 平台(BlueKing-PaaS) available. * Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. * Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://opensource.org/licenses/MIT * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the * specific language governing permissions and limitations under the License. """ import os import zipfile import yaml from django.conf import settings from apigw_manager.core import configuration def get_configuration(**kwargs): """Generate management configuration according to the settings""" settings_mappings = [ ("BK_APIGW_NAME", "api_name"), ("BK_APP_CODE", "bk_app_code"), ("BK_APP_SECRET", "bk_app_secret"), ] for attr, key in settings_mappings: if key not in kwargs and hasattr(settings, attr): kwargs[key] = getattr(settings, attr) host = kwargs.pop("host", "") if not host: apigw_name = kwargs.get("apigw_name") or getattr(settings, "BK_APIGW_API_NAME", "bk-apigateway") if hasattr(settings, "BK_API_URL_TMPL"): host = "%s/prod/" % settings.BK_API_URL_TMPL.format(api_name=apigw_name).rstrip("/") elif hasattr(settings, "BK_API_STAGE_URL_TMPL"): host = settings.BK_API_STAGE_URL_TMPL.format( api_name=apigw_name, stage_name="prod", ) # stage has been added to host, here stage is set to an empty string return configuration.Configuration( host=host.rstrip("/"), stage="", **kwargs, ) def yaml_load(content): """Load YAML""" return yaml.load(content, Loader=yaml.FullLoader) def parse_value_list(*values): """Parse value list""" data = {} for i in values: key, sep, value = i.partition(":") if not sep: data[key] = None else: data[key] = yaml_load(value) return data class ZipArchiveFile: @classmethod def archive(cls, path, output): """归档文件 其中的文件名,设置为基于 path 的相对路径 """ archived_files = cls._get_archived_files(path) with zipfile.ZipFile(output, "w") as zip_: for file_path, name in archived_files.items(): zip_.write(file_path, name) return output @classmethod def _get_archived_files(cls, path): """获取待归档文件,及去掉基准目录后的文件名""" if os.path.isfile(path): return {path: os.path.basename(path)} path = path if path.endswith("/") else path + "/" path_to_name = {} for root, dirs, files in os.walk(path): for name in files: file_path = os.path.join(root, name) path_to_name[file_path] = file_path[len(path) :] return path_to_name
31.49505
118
0.638164
df9b6a4b7e73cc092740319fecb9da572dc7f3d9
788
py
Python
PWCNet/correlation_package_pytorch1_2/setup.py
withlqs/DAIN
9abab9eabb86bbbd781bc51e2073945248eccc7c
[ "MIT" ]
null
null
null
PWCNet/correlation_package_pytorch1_2/setup.py
withlqs/DAIN
9abab9eabb86bbbd781bc51e2073945248eccc7c
[ "MIT" ]
null
null
null
PWCNet/correlation_package_pytorch1_2/setup.py
withlqs/DAIN
9abab9eabb86bbbd781bc51e2073945248eccc7c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import os import torch from setuptools import setup, find_packages from torch.utils.cpp_extension import BuildExtension, CUDAExtension cxx_args = ['-std=c++14'] nvcc_args = [ '-gencode', 'arch=compute_50,code=sm_50', '-gencode', 'arch=compute_52,code=sm_52', '-gencode', 'arch=compute_60,code=sm_60', '-gencode', 'arch=compute_75,code=sm_75', # '-gencode', 'arch=compute_70,code=sm_70', '-gencode', 'arch=compute_86,code=sm_86' ] setup( name='correlation_cuda', ext_modules=[ CUDAExtension('correlation_cuda', [ 'correlation_cuda.cc', 'correlation_cuda_kernel.cu' ], extra_compile_args={'cxx': cxx_args, 'nvcc': nvcc_args}) ], cmdclass={ 'build_ext': BuildExtension })
26.266667
67
0.656091
d286b1f8fbb07bffdd23639bcef992bc445a6819
4,471
py
Python
profiles_api/views.py
palakjadwani/profiles-rest-api
cfad7e944396ed941a509bf65fce26beb15116f3
[ "MIT" ]
null
null
null
profiles_api/views.py
palakjadwani/profiles-rest-api
cfad7e944396ed941a509bf65fce26beb15116f3
[ "MIT" ]
6
2020-05-06T09:17:16.000Z
2022-02-10T09:17:14.000Z
profiles_api/views.py
palakjadwani/profiles-rest-api
cfad7e944396ed941a509bf65fce26beb15116f3
[ "MIT" ]
null
null
null
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from rest_framework import viewsets from rest_framework.authentication import TokenAuthentication from rest_framework import filters from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.settings import api_settings from rest_framework.permissions import IsAuthenticated from profiles_api import serializers from profiles_api import models from profiles_api import permissions class HelloApiView(APIView): """Test API view""" serializer_class = serializers.HelloSerializer def get(self, request, format=None): """Return a list of APIView features""" an_apiview = [ 'Uses HTTP methods as function (get, post, patch, put, delete)', 'Is similar to a traditional Django View', 'Gives you the most control over your application logic', 'Is mapped manually to URLs', ] return Response({'message' : 'Hello!', 'an_apiview' : an_apiview}) def post(self, request): """Create a hello message with our name""" serializer = self.serializer_class(data=request.data) if serializer.is_valid(): name = serializer.validated_data.get('name') message = f'Hello {name}' return Response({'message':message}) else: return Response( serializer.errors, status = status.HTTP_400_BAD_REQUEST ) def put(self, request, pk=None): """Handle updating an object""" return Response({'method': 'PUT'}) def patch(self, request, pk=None): """Handle a partial update of an object""" return Response({'method': 'PATCH'}) def delete(self, request, pk=None): """Delete an object""" return Response({'method': 'DELETE'}) class HelloViewSet(viewsets.ViewSet): """test API ViewSet""" serializer_class = serializers.HelloSerializer def list(self, request): """Return a hello message""" a_viewset = [ 'Uses actions (list, create, retreive, update, partial_update)', 'Automatically maps to URLs using Routers', 'Provides more fuctionality with less code', ] return Response({'message':'Hello!', 'a_viewset': a_viewset}) def create(self, request): """Create a new hello maessage""" serializer = self.serializer_class(data=request.data) if serializer.is_valid(): name = serializer.validated_data.get('name') message = f'Hello {name}!' return Response({'message':message}) else: return Response( serializer.errors, status = status.HTTP_400_BAD_REQUEST ) def retrieve(self, request, pk=None): """handle getting an object by it's ID""" return Response({'http_method':'GET'}) def update(self, request, pk=None): """Handle updating an object""" return Response({'http_method':'PUT'}) def partial_update(self, request, pk=None): """Handle updating part of an object""" return Response({'http_method':'PATCH'}) def destroy(self, request, pk=None): """handle removing an object""" return Response({'http_method':'DELETE'}) class UserProfileViewSet(viewsets.ModelViewSet): """Handle creating and updating profiles""" serializer_class = serializers.UserProfileSerializer queryset = models.UserProfile.objects.all() authentication_classes = (TokenAuthentication,) permission_classes = (permissions.UpdateOwnProfile,) filter_backends = (filters.SearchFilter,) search_fields = ('name', 'email',) class UserLoginApiView(ObtainAuthToken): """Handle creating user authentication tokens""" renderer_classes = api_settings.DEFAULT_RENDERER_CLASSES class UserProfileFeedViewSet(viewsets.ModelViewSet): """Handles creating, reading and updating profile feed items""" authentication_classes = (TokenAuthentication,) serializer_class = serializers.ProfileFeedItemSerializer queryset = models.ProfileFeedItem.objects.all() permission_classes = (permissions.UpdateOwnStatus, IsAuthenticated) def perform_create(self, serializer): """Sets the user profile to the logged in user""" serializer.save(user_profile=self.request.user)
35.204724
76
0.666518
66b99341ec2f922aa165c950dd0301ebd3458d4a
84
py
Python
chesstimer/timer.py
theseana/pesteh
1125dc1055e3b8466c3c539c4afc2149d663dd46
[ "MIT" ]
1
2022-01-16T00:33:57.000Z
2022-01-16T00:33:57.000Z
chesstimer/timer.py
theseana/pesteh
1125dc1055e3b8466c3c539c4afc2149d663dd46
[ "MIT" ]
null
null
null
chesstimer/timer.py
theseana/pesteh
1125dc1055e3b8466c3c539c4afc2149d663dd46
[ "MIT" ]
null
null
null
timer = 1052 m = int(timer/60) s = timer % 60 print('{:02d}:{:02d}'.format(m, s))
12
35
0.559524
3cf2e3021819a13c8f91b0612e0f2053fad3d04d
16,022
py
Python
借来的plugins/OPQ-SetuBot/module/database.py
njjjay/IOTQQPlugins_selfuse
23bda39647c14256e6366bf49d72bb71ba68cbd7
[ "MIT" ]
19
2020-06-16T03:36:24.000Z
2022-01-30T07:46:29.000Z
借来的plugins/OPQ-SetuBot/module/database.py
njjjay/IOTQQPlugins_selfuse
23bda39647c14256e6366bf49d72bb71ba68cbd7
[ "MIT" ]
1
2020-08-01T18:20:10.000Z
2020-08-03T10:42:04.000Z
借来的plugins/OPQ-SetuBot/module/database.py
njjjay/IOTQQPlugins_selfuse
23bda39647c14256e6366bf49d72bb71ba68cbd7
[ "MIT" ]
5
2020-08-12T02:02:20.000Z
2021-06-09T08:38:33.000Z
from tinydb import TinyDB, Query, where from tinydb.storages import MemoryStorage from tinydb.operations import add from loguru import logger from module.send import action from module import config import os import time import re import random from retrying import retry groupConfig = TinyDB('./config/groupConfig.json') friendConfig = TinyDB('./config/friendConfig.json') setuTagConfig = TinyDB('./config/setuTagConfig.json') lotteryData = TinyDB('./config/lotteryData.json') setuDB = TinyDB('./config/setu.json') tmpDB = TinyDB(storage=MemoryStorage) # Q = Query() # todo: 创建一个数据库的基本操作类,接下来各个模块的小类全部继承这个base类 # # def matches_regex(values, pattern): # # return any(re.match(pattern, value) for value in values) # for v in values: # print(v) class BasicOperation: @staticmethod def change_dict(dicta, lista, change, ret=''): x = dicta[lista[0]] ret += (str(lista[0]) + ' ') if len(lista) == 1: rt_befeore = dicta.copy() dicta[lista[0]] = change return '{}: {}\n↓↓↓↓\n{}: {}'.format(ret, rt_befeore[lista[0]], ret, dicta[lista[0]]) lista.pop(0) return BasicOperation.change_dict(x, lista, change, ret) @staticmethod def auth(qqg: int, qq: int): # superadmin:1 ,群主:2 , 管理员:3 if qq == config.superadmin: return 1 elif res := groupConfig.get(where('GroupId') == qqg): if qq == res['GroupOwner']: return 2 elif qq in res['admins'] or qq in res['managers']: # 管理员 return 3 else: return 0 else: return 0 @staticmethod def updateGroupData(groupid: int, data: dict): groupConfig.update(data, where('GroupId') == groupid) @staticmethod def getGroupConf(groupid: int): return groupConfig.get(where('GroupId') == groupid) @staticmethod def getUserconf(userid: int): if conf := friendConfig.get(where('QQ') == userid): return conf else: return { 'setuinfo': { 'title': True, 'pid': False, 'purl': True, 'page': True, 'author': True, 'uurl': True, 'uid': False, 'url_original': True, # '': True, # '': True, # '': True }, 'original': False, 'setuLevel': 1, 'refreshSent': 600, 'at': False, 'at_warning': False, # @ 'returnTags': True, 'msg_inputError': '必须是正整数数字哦~', # 非int 'msg_notFind': '你的xp好奇怪啊', # 没结果 'msg_tooMuch': '爪巴', # 大于最大值 'msg_lessThan0': '¿¿¿', # 小于0 'msg_setuClosed': 'setu已关闭~', 'msg_r18Closed': '未开启r18~', 'msg_insufficient': '关于{tag}的图片只获取到{num}张' } class LocalSetu: @staticmethod def conversionLevel(level_int): conversionDict = {0: 'normal', 1: 'sexy', 2: 'porn', 3: 'all'} return conversionDict[level_int] @classmethod def addSetu(cls, data: dict, level: int, groupid: int): # 改成单个插入 由上级控制 ,群独立 typE = cls.conversionLevel(level) data['time'] = int(time.time()) if res := setuDB.get((where('artwork') == data['artwork']) & (where('page') == data['page'])): # 数据库有数据 data['type'] = res['type'] for k, v in data['type'].items(): # 遍历 'type': {'normal': [], 'sexy': [], 'porn': []} if k != typE: # 群号出现在非这次修改的等级里 if groupid in v: data['type'][k].remove(groupid) else: data['type'][k].append(groupid) data['type'][k] = list(set(data['type'][k])) # 以防万一,去重 setuDB.update(data, (where('artwork') == data['artwork']) & (where('page') == data['page'])) logger.info( 'pid:{} page:{} group:{}-->{}'.format(data['artwork'], data['page'], res['type'], data['type'])) else: data['type'][typE].append(groupid) setuDB.insert(data) logger.info('pid:{} page:{} group:{}'.format(data['artwork'], data['page'], data['type'])) # return '群{}:{}添加成功,图片分级{}'.format(groupid, data['original'],typE) @staticmethod def delSetu(artworkid, groupid, page: int = None): if page == None: if res := setuDB.search((where('artwork') == artworkid) & ( (where('type')['normal'].any([groupid])) | (where('type')['sexy'].any([groupid])) | (where('type')['porn'].any([groupid])) )): # 数据库有数据 for data in res: for k, v in data['type'].items(): if groupid in v: data['type'][k].remove(groupid) setuDB.update(data, (where('artwork') == artworkid) & (where('page') == data['page'])) return True else: return False else: if res := setuDB.get((where('artwork') == artworkid) & (where('page') == page) & ( (where('type')['normal'].any([groupid])) | (where('type')['sexy'].any([groupid])) | (where('type')['porn'].any([groupid])) )): # 数据库有数据 for k, v in res['type'].items(): if groupid in v: res['type'][k].remove(groupid) setuDB.update(res, (where('artwork') == artworkid) & (where('page') == page)) return True else: return False @staticmethod def updateSetu(artworkid, page, data): setuDB.update(data, (where('artwork') == artworkid & where('page') == page)) @classmethod def _serchtags(cls, taglist: list, expr=None): # print(taglist) if not taglist: return expr if expr: expr = expr & (where('tags').any((where('name').matches(taglist[0], re.I | re.M)))) else: expr = where('tags').any((where('name').matches(taglist[0], re.I | re.M))) taglist.pop(0) return cls._serchtags(taglist, expr) @classmethod def getSetu(cls, groupid: int, level: int, num: int, tags: list): # 用lv做key {lv:[{'sexy':[0,123]},]} tags = tags.copy() # 有bug,递归会把上层的也删掉 level = cls.conversionLevel(level) # 转换 for i in range(len(tags)): tags[i] = '.*{}'.format(tags[i]) if level != 'all': # 指定setu等级 allTagList = ['normal', 'sexy', 'porn'] allTagList.remove(level) if tags: data = setuDB.search( (~where('type')[allTagList[0]].any([groupid])) & (~where('type')[allTagList[1]].any([groupid])) & (where('type')[level].any([0, groupid])) & cls._serchtags(tags) ) else: data = setuDB.search( (~where('type')[allTagList[0]].any([groupid])) & (~where('type')[allTagList[1]].any([groupid])) & (where('type')[level].any([0, groupid])) ) else: # 从全部色图中搜索 if tags: data = setuDB.search( ( (where('type')['normal'].any([0, groupid])) | (where('type')['sexy'].any([0, groupid])) | (where('type')['porn'].any([0, groupid])) ) & (cls._serchtags(tags)) ) else: data = setuDB.search( ( (where('type')['normal'].any([0, groupid])) | (where('type')['sexy'].any([0, groupid])) | (where('type')['porn'].any([0, groupid])) ) ) if len(data) <= num: return data return random.sample(data, num) class Cmd(BasicOperation): pass # # @staticmethod # def getGroupData(qqg): # return groupConfig.get(Q['GroupId'] == qqg) class Setu(BasicOperation): @staticmethod def ifSent(ID, url, refreshTime): filename = os.path.basename(url) if data := tmpDB.table('sentlist').search((where('id') == ID) & (where('filename') == filename)): # 如果有数据 if time.time() - data[0]['time'] <= refreshTime: # 发送过 logger.info('id:{},{}发送过~'.format(ID, filename)) return True else: tmpDB.table('sentlist').update({'time': time.time()}, (where('id') == ID) & (where('filename') == filename)) return False else: # 没数据 tmpDB.table('sentlist').insert({'id': ID, 'time': time.time(), 'filename': filename}) return False @staticmethod def freq(groupid, num, refreshTime, freqCount): if data_tmp := tmpDB.table('freq').get(where('group') == groupid): # 如果有数据 if refreshTime != 0 and (time.time() - data_tmp['time'] >= refreshTime): # 刷新 tmpDB.table('freq').update({'time': time.time(), 'freq': 0}, where('group') == groupid) return False elif freqCount != 0 and num + data_tmp['freq'] > freqCount: # 大于限制且不为0 logger.info('群:{}大于频率限制:{}次/{}s'.format(groupid, freqCount, refreshTime)) return freqCount, data_tmp['time'] # 记录 tmpDB.table('freq').update(add('freq', num), where('group') == groupid) else: # 没数据 logger.info('群:{}第一次调用'.format(groupid)) tmpDB.table('freq').insert({'group': groupid, 'time': time.time(), 'freq': num}) return False @staticmethod def getGroupConf(groupid: int, msgType: str): # data = {} if res := groupConfig.get(where('GroupId') == groupid): for k, v in res.items(): # print(k, v) if type(v) == dict: try: res[k] = v[msgType] except: pass # data[str(k)] = v # print(res) return res class Lottery: @staticmethod def getUserInfo(qq: int, conf: dict, pool: str): if res := lotteryData.table(pool).get(where('qq') == qq): return res else: data = { 'qq': qq, 'allCount': 0, # 总次数 'farFiveStarFloors': conf[pool]['fiveStarFloorsCount'], # 离5星保底次数 'farFourStarFloors': conf[pool]['fourStarFloorsCount'], # 离4星保底次数 'FiveStarFloorsCount': 0, # 5星保底数 'FourStarFloorsCount': 0, # 4星保底数 'FiveStarCount': 0, # 获取到的5星数量 'FourStarCount': 0, # 获取到的4星数量 'certainlyFiveStarUp': False, # 必定5星up 'certainlyFourStarUp': False, # 必定4星up } lotteryData.table(pool).insert(data) return data @staticmethod def updateUserinfo(qq, pool, data): lotteryData.table(pool).update(data, where('qq') == qq) class Event: @staticmethod def changeGroupAdmin(group: int, admins: list, flag: bool): pass @staticmethod def changeGroupManager(group: int, managers: list, flag: bool): pass @staticmethod def updateAdminAndManager(groupid: int, admins: list, managers: list): groupConfig.update({'admins': admins, 'managers': managers}, where('GroupId') == groupid) # @staticmethod # def class Getdata: @staticmethod def defaultdata(data): data['managers'] = [] # 所有的管理者(可以设置bot功能的) # ----------------------------------------------------- data['setuLevel'] = {'group': 1, 'temp': 3} # 默认等级 0:正常 1:性感 2:色情 3:All data['setuinfo'] = { 'title': True, 'pid': False, 'purl': True, 'page': True, 'author': True, 'uurl': True, 'uid': False, 'url_original': True, # '': True } data['returnTags'] = True # 显示tag data['original'] = {'group': False, 'temp': False} # 是否原图 data['setu'] = {'group': True, 'temp': True} # 色图功能开关 data['r18'] = {'group': False, 'temp': True} # 是否开启r18 data['freq'] = 10 # 频率 (次) data['refreshTime'] = 60 # 刷新时间 (s) data['refreshSent'] = 900 # 刷新sent时间 (s) data['maxnum'] = {'group': 3, 'temp': 10} # 一次最多数量 data['msgCount'] = {'text': 0, 'pic': 0, 'voice': 0} # 消息数量 data['revoke'] = {'group': 20, 'temp': 0} # 撤回消息延时(0为不撤回) data['at'] = False # @ data['at_warning'] = False # @ data['msg_inputError'] = '必须是正整数数字哦~' # 非int data['msg_notFind'] = '你的xp好奇怪啊' # 没结果 data['msg_tooMuch'] = '爪巴' # 大于最大值 data['msg_lessThan0'] = '¿¿¿' # 小于0 data['msg_setuClosed'] = 'setu已关闭~' data['msg_r18Closed'] = '未开启r18~' data['msg_insufficient'] = '关于{tag}的图片只获取到{num}张' data['msg_frequency'] = '本群每{time}s能调用{num}次,已经调用{num_call}次,离刷新还有{r_time}s' # data['msg_'] = '' # return data @classmethod def updateData(cls, data, groupid): if groupConfig.search(where('GroupId') == groupid): logger.info('群:{}已存在,更新数据~'.format(groupid)) groupConfig.update(data, where('GroupId') == groupid) else: cls.defaultdata(data) logger.info('群:{}不存在,插入数据~'.format(groupid)) groupConfig.insert(data) @retry(stop_max_attempt_number=3, wait_random_max=2000) def updateAllGroupData(self): logger.info('开始更新所有群数据~') data = action.getGroupList() allgroups_get = [x['GroupId'] for x in data] for group in data: del group['GroupNotice'] # 删除不需要的key admins = action.getGroupAdminList(group['GroupId']) admins_QQid = [i['MemberUin'] for i in admins] group['admins'] = admins_QQid # 管理员列表 self.updateData(group, group['GroupId']) allgroups_db = [i['GroupId'] for i in groupConfig.all()] if extraGroup := list(set(allgroups_db).difference(set(allgroups_get))): # 多余的群 logger.info('数据库中多余群:{}'.format(extraGroup)) for groupid_del in extraGroup: groupConfig.remove(where('GroupId') == groupid_del) logger.info('已删除群:{}数据'.format(groupid_del)) logger.success('更新群信息成功~') return @classmethod @retry(stop_max_attempt_number=3, wait_random_max=2000) def updateGroupData(cls, groupid: int): logger.info('开始刷新群:{}的数据'.format(groupid)) data = action.getGroupList() for group in data: if group['GroupId'] == groupid: del group['GroupNotice'] # 删除不需要的key admins = action.getGroupAdminList(groupid) admins_QQid = [i['MemberUin'] for i in admins] group['admins'] = admins_QQid logger.info('群:{}的admins:{}'.format(groupid, admins_QQid)) cls.updateData(group, group['GroupId']) return logger.warning('群:{}不存在~'.format(groupid))
38.700483
114
0.48708
7950078596d2c065a217c94205bfc57e7ee8e2e1
10,310
py
Python
tfs/collection.py
st-walker/tfs
7a229f4fecbf04d544c5116d79a281e4365ccd1d
[ "MIT" ]
5
2019-02-18T14:38:59.000Z
2021-12-14T15:33:50.000Z
tfs/collection.py
st-walker/tfs
7a229f4fecbf04d544c5116d79a281e4365ccd1d
[ "MIT" ]
54
2019-02-19T14:44:36.000Z
2022-02-16T15:07:53.000Z
tfs/collection.py
st-walker/tfs
7a229f4fecbf04d544c5116d79a281e4365ccd1d
[ "MIT" ]
4
2019-10-17T08:58:57.000Z
2022-02-15T15:55:18.000Z
""" Collection ---------------------- Advanced **TFS** files reading and writing functionality. """ import pathlib from pandas import DataFrame from tfs.frame import TfsDataFrame from tfs.reader import read_tfs from tfs.writer import write_tfs class _MetaTfsCollection(type): """ Metaclass for TfsCollection. It takes the class attributes declared as `Tfs(...)` and replaces it for a property getter and setter. Check TfsCollection docs. """ def __new__(mcs, cls_name, bases, dct: dict): new_dict = dict(dct) new_dict["_two_plane_names"] = [] # for name in dct: for key, value in dct.items(): try: args = value.args kwargs = value.kwargs except AttributeError: continue new_props = _define_property(args, kwargs) try: prop_x, prop_y = new_props new_dict.pop(key) new_dict["_two_plane_names"].append(key) new_dict[key + "_x"] = prop_x new_dict[key + "_y"] = prop_y except TypeError: new_dict[key] = new_props return super().__new__(mcs, cls_name, bases, new_dict) class TfsCollection(metaclass=_MetaTfsCollection): """ Abstract class to lazily load and write **TFS** files. Classes inheriting from this abstract class will be able to define **TFS** files as readable or writable, and read or write them just as attribute access or assignments. All attributes will be read and written as ``TfsDataFrame`` objects. Example: If **./example** is a directory that contains two **TFS** files **beta_phase_x.tfs** and **beta_phase_y.tfs** with `BETX` and `BETY` columns respectively: .. sourcecode:: python class ExampleCollection(TfsCollection) # All TFS attributes must be marked with the Tfs(...) class, and generated attribute # names will be appended with _x / _y depending on files found in "./example" beta = Tfs("beta_phase_{}.tfs") # A TFS attribute other_value = 7 # A traditional attribute. def get_filename(template: str, plane: str) -> str: return template.format(plane) example = ExampleCollection("./example") # Get the BETX / BETY column from "beta_phase_x.tfs": beta_x_column = example.beta_x.BETX # / example.beta_x.BETY # Get the BETY column from "beta_phase_y.tfs": beta_y_column = example.beta_y.BETY # The planes can also be accessed as items (both examples below work): beta_y_column = example.beta["y"].BETY beta_y_column = example.beta["Y"].BETY # This will write an empty DataFrame to "beta_phase_y.tfs": example.allow_write = True example.beta["y"] = DataFrame() If the file to be loaded is not defined for two planes then the attribute can be declared as: ``coupling = Tfs("getcouple.tfs", two_planes=False)`` and then accessed as ``f1001w_column = example.coupling.F1001W``. No file will be loaded until the corresponding attribute is accessed and the loaded ``TfsDataFrame`` will be buffered, thus the user should expect an ``IOError`` if the requested file is not in the provided directory (only the first time, but is better to always take it into account!). When a ``TfsDataFrame`` is assigned to one attribute, it will be set as the buffer value. If the ``self.allow_write`` attribute is set to ``True``, an assignment on one of the attributes will trigger the corresponding file write. """ def __init__(self, directory: pathlib.Path, allow_write: bool = None): self.directory = pathlib.Path(directory) if isinstance(directory, str) else directory self.allow_write = False if allow_write is None else allow_write self.maybe_call = _MaybeCall(self) self._buffer = {} def get_filename(self, *args, **kwargs): """ Return the filename to be loaded or written. This function will get as parameters any parameter given to the Tfs(...) attributes. It must return the filename to be written according to those parameters. If ``two_planes=False`` is not present in the Tfs(...) definition, it will also be given the keyword argument ``plane="x"`` or ``plane="y"``. """ raise NotImplementedError("This is an abstract method, it should be implemented in subclasses.") def write_to(self, *args, **kwargs): """ Returns the filename and `TfsDataFrame` to be written on assignments. If this function is overwritten, it will replace ``get_filename(...)`` in file writes to find out the filename of the file to be written. It also gets the value assigned as first parameter. It must return a tuple (filename, tfs_data_frame). """ raise NotImplementedError("This is an abstract method, it should be implemented in subclasses.") def clear(self): """ Clear the file buffer. Any subsequent attribute access will try to load the corresponding file again. """ self._buffer = {} def read_tfs(self, filename: str) -> TfsDataFrame: """ Reads the **TFS** file from ``self.directory`` with the given filename. This function can be overwritten to use something instead of ``tfs-pandas`` to load the files. Arguments: filename (str): The name of the file to load. Returns: A ``TfsDataFrame`` built from reading the requested file. """ tfs_data_df = read_tfs(self.directory / filename) if "NAME" in tfs_data_df: tfs_data_df = tfs_data_df.set_index("NAME", drop=False) return tfs_data_df def __getattr__(self, attr: str) -> object: if attr in self._two_plane_names: return TfsCollection._TwoPlanes(self, attr) raise AttributeError(f"{self.__class__.__name__} object has no attribute {attr}") def _load_tfs(self, filename: str): try: return self._buffer[filename] except KeyError: tfs_data = self.read_tfs(filename) if "NAME" in tfs_data: tfs_data = tfs_data.set_index("NAME", drop=False) self._buffer[filename] = tfs_data return self._buffer[filename] def _write_tfs(self, filename: str, data_frame: DataFrame): if self.allow_write: write_tfs(self.directory / filename, data_frame) self._buffer[filename] = data_frame class _TwoPlanes(object): def __init__(self, parent, attr): self.parent = parent self.attr = attr def __getitem__(self, plane: str): return getattr(self.parent, self.attr + "_" + plane.lower()) def __setitem__(self, plane: str, value): setattr(self.parent, self.attr + "_" + plane.lower(), value) class Tfs: """Class to mark attributes as **TFS** attributes. Any parameter given to this class will be passed to the ``get_filename()`` and ``write_to()`` methods, together with the plane if ``two_planes=False`` is not present. """ def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs # Private methods to define the properties ################################## def _define_property(args, kwargs): if "two_planes" not in kwargs: return _define_property_two_planes(args, kwargs) elif kwargs["two_planes"]: kwargs.pop("two_planes") return _define_property_two_planes(args, kwargs) else: kwargs.pop("two_planes") def getter_funct(self): return _getter(self, *args, **kwargs) def setter_funct(self, tfs_data): return _setter(self, tfs_data, *args, **kwargs) return property(fget=getter_funct, fset=setter_funct) def _define_property_two_planes(args, kwargs) -> tuple: x_kwargs = dict(kwargs) y_kwargs = dict(kwargs) x_kwargs["plane"] = "x" y_kwargs["plane"] = "y" def x_getter_funct(self): return _getter(self, *args, **x_kwargs) def x_setter_funct(self, tfs_data): return _setter(self, tfs_data, *args, **x_kwargs) def y_getter_funct(self): return _getter(self, *args, **y_kwargs) def y_setter_funct(self, tfs_data): return _setter(self, tfs_data, *args, **y_kwargs) property_x = property(fget=x_getter_funct, fset=x_setter_funct) property_y = property(fget=y_getter_funct, fset=y_setter_funct) return property_x, property_y def _getter(self, *args, **kwargs): filename = self.get_filename(*args, **kwargs) return self._load_tfs(filename) def _setter(self, value, *args, **kwargs): try: filename, data_frame = self.write_to(value, *args, **kwargs) self._write_tfs(filename, data_frame) except NotImplementedError: filename = self.get_filename(*args, **kwargs) self._write_tfs(filename, value) class _MaybeCall: """ Handles the maybe_call feature of the TfsCollection. This class defines the `maybe_call` attribute in the instances of `TfsCollection`. To avoid repetitive try / except blocks, this class allows you to do: ``meas.maybe_call.beta["x"](some_funct, args, kwargs)``. If the requested file is available, the call is equivalent to: ``some_funct(args, kwargs)``, if not then no function is called and the program continues. """ def __init__(self, parent): self.parent = parent def __getattr__(self, attr): return _MaybeCall.MaybeCallAttr(self.parent, attr) class MaybeCallAttr: def __init__(self, parent, attr): self.parent = parent self.attr = attr def __getitem__(self, item): return _MaybeCall.MaybeCallAttr(self.parent, self.attr + "_" + item) def __call__(self, function_call, *args, **kwargs): try: tfs_file = getattr(self.parent, self.attr) except IOError: return lambda funct: None # Empty function return function_call(tfs_file, *args, **kwargs)
36.048951
104
0.63967
c895e9888b8318f5541cb699e275cdf33e70e2bf
3,379
py
Python
tests/test_datasets.py
duranbe/doccano-transformer
1d19de73bf3b0cebadb31508e3a1864b4e1a6414
[ "MIT" ]
null
null
null
tests/test_datasets.py
duranbe/doccano-transformer
1d19de73bf3b0cebadb31508e3a1864b4e1a6414
[ "MIT" ]
null
null
null
tests/test_datasets.py
duranbe/doccano-transformer
1d19de73bf3b0cebadb31508e3a1864b4e1a6414
[ "MIT" ]
null
null
null
import json from collections import defaultdict from pathlib import Path from unittest import TestCase from doccano_transformer.datasets import NERDataset class TestNERDataset(TestCase): @classmethod def setUp(self): current_path = Path(__file__).parent self.shared_datadir = current_path / 'data' / 'labeling' def test_from_labeling_text_label_jsonl_to_conll2003(self): src_path = self.shared_datadir / 'labeling_text_label.jsonl' filename = 'labeling_text_label.conll2003' users = defaultdict(list) d = NERDataset.from_jsonl(filepath=src_path) for x in d.to_conll2003(str.split): users[x['user']].append(x['data']) for user, data in users.items(): with open(self.shared_datadir / (filename + f'.user{user}')) as f: expected = f.read() self.assertEqual(''.join(data), expected) def test_from_labeling_jsonl_to_conll2003(self): src_path = self.shared_datadir / 'labeling.jsonl' filename = 'labeling.conll2003' users = defaultdict(list) d = NERDataset.from_jsonl(filepath=src_path) for x in d.to_conll2003(str.split): users[x['user']].append(x['data']) for user, data in users.items(): with open(self.shared_datadir / (filename + f'.user{user}')) as f: expected = f.read() self.assertEqual(''.join(data), expected) def test_from_labeling_text_label_jsonl_to_spacy(self): src_path = self.shared_datadir / 'labeling_text_label.jsonl' filename = 'labeling_text_label.spacy' users = defaultdict(list) d = NERDataset.from_jsonl(filepath=src_path) for x in d.to_spacy(str.split): users[x['user']].append(x['data']) for user, data in users.items(): with open(self.shared_datadir / (filename + f'.user{user}')) as f: expected = json.load(f) # print(data) self.assertEqual(data, expected) def test_from_labeling_jsonl_to_spacy(self): src_path = self.shared_datadir / 'labeling.jsonl' filename = 'labeling.spacy' users = defaultdict(list) d = NERDataset.from_jsonl(filepath=src_path) for x in d.to_spacy(str.split): users[x['user']].append(x['data']) for user, data in users.items(): with open(self.shared_datadir / (filename + f'.user{user}')) as f: expected = json.load(f) self.assertEqual(data, expected) def test_from_labeling_spacy_to_jsonl(self): src_path = self.shared_datadir / 'labeling.spacy.user1' filename = self.shared_datadir / 'labeling.user1.jsonl' d = NERDataset.from_spacy(filepath=src_path) data = next(d.to_jsonl()) with open(filename) as f: expected = json.load(f) self.assertEqual(data, dict(expected)) def test_from_multi_labeling_spacy_to_jsonl(self): src_path = self.shared_datadir / 'labeling.spacy.user2' filename = self.shared_datadir / 'labeling.user2.jsonl' d = NERDataset.from_spacy(filepath=src_path,user_id=2) data = d.to_jsonl() with open(filename) as f: expected = map(json.loads,f) for d,e in zip(data,expected): self.assertEqual(d, dict(e))
39.752941
78
0.632436
9da11d6a5cfe0a6d9b039592994da66dc5b32b31
5,325
py
Python
labconfig.py
labscript-suite-bitbucket-archive/spielman-labscript_utils_mainline--forked-from--labscript_suite-labscript_utils
62811f8d31b40d79307029d7283c01d71213307c
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
labconfig.py
labscript-suite-bitbucket-archive/spielman-labscript_utils_mainline--forked-from--labscript_suite-labscript_utils
62811f8d31b40d79307029d7283c01d71213307c
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
labconfig.py
labscript-suite-bitbucket-archive/spielman-labscript_utils_mainline--forked-from--labscript_suite-labscript_utils
62811f8d31b40d79307029d7283c01d71213307c
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
##################################################################### # # # labconfig.py # # # # Copyright 2013, Monash University # # # # This file is part of the labscript suite (see # # http://labscriptsuite.org) and is licensed under the Simplified # # BSD License. See the license.txt file in the root of the project # # for the full license. # # # ##################################################################### import sys import os import socket import subprocess try: import configparser except ImportError: # Python 2 import ConfigParser as configparser from labscript_utils import labscript_suite_install_dir # Look for a 'labconfig' folder in the labscript install directory: if labscript_suite_install_dir is not None: config_prefix = os.path.join(labscript_suite_install_dir, 'labconfig') else: # No labscript install directory found? Revert to system defaults if os.name == 'nt': config_prefix = os.path.abspath(r'C:\labconfig') else: config_prefix = os.path.join(os.getenv('HOME'),'labconfig') if not os.path.exists(config_prefix): config_prefix='/etc/labconfig/' if not os.path.exists(config_prefix): message = (r"Couldn't find labconfig folder. Please ensure it exists. " + r"If the labscript suite is installed, labconfig must be <labscript_suite_install_dir>/labconfig/. " + r"If the labscript suite is not installed, then C:\labconfig\ is checked on Windows, " + r" and $HOME/labconfig/ then /etc/labconfig/ checked on unix.") raise IOError(message) config_prefix = os.path.abspath(config_prefix) if sys.platform == 'darwin': hostname = subprocess.check_output(['scutil', '--get', 'LocalHostName']).decode('utf8').strip() else: hostname = socket.gethostname() default_config_path = os.path.join(config_prefix,'%s.ini'%hostname) class LabConfig(configparser.SafeConfigParser): NoOptionError = configparser.NoOptionError NoSectionError = configparser.NoSectionError def __init__(self,config_path=default_config_path,required_params={},defaults={}): if isinstance(config_path,list): self.config_path = config_path[0] else: self.config_path = config_path self.file_format = "" for section, options in required_params.items(): self.file_format += "[%s]\n"%section for option in options: self.file_format += "%s = <value>\n"%option # If the folder doesn't exist, create it if not os.path.exists(os.path.dirname(self.config_path)): os.mkdir(os.path.dirname(self.config_path)) # If the file doesn't exist, create it if not os.path.exists(self.config_path): with open(self.config_path,'a+') as f: f.write(self.file_format) # Load the config file configparser.SafeConfigParser.__init__(self,defaults) self.read(config_path) #read all files in the config path if it is a list (self.config_path only contains one string) try: for section, options in required_params.items(): for option in options: self.get(section,option) except configparser.NoOptionError as e: raise Exception('The experiment configuration file located at %s does not have the required keys. Make sure the config file containes the following structure:\n%s'%(config_path, self.file_format)) # Overwrite the add_section method to only attempt to add a section if it doesn't # exist. We don't ever care whether a section exists or not, only that it does exist # when we try and save an attribute into it. def add_section(self,section): # Create the group if it doesn't exist if not section.lower() == 'default' and not self.has_section(section): configparser.SafeConfigParser.add_section(self, section) # Overwrite the set method so that it adds the section if it doesn't exist, # and immediately saves the data to the file (to avoid data loss on program crash) def set(self, section, option, value): self.add_section(section) configparser.SafeConfigParser.set(self,section,option,value) self.save() # Overwrite the remove section function so that it immediately saves the change to disk def remove_section(self,section): configparser.SafeConfigParser.remove_section(self,section) self.save() # Overwrite the remove option function so that it immediately saves the change to disk def remove_option(self,section,option): configparser.SafeConfigParser.remove_option(self,section,option) self.save() # Provide a convenience method to save the contents of the ConfigParser to disk def save(self): with open(self.config_path, 'w+') as f: self.write(f)
44.375
208
0.614648
efff774df8b7ee79428772a0bc7b7b7e7b6b162a
111
py
Python
PythonFiles/MCQGame2.py
IamVaibhavsar/Python_Files
283d73929a3e11955c71499407c4f8bff56e4273
[ "MIT" ]
null
null
null
PythonFiles/MCQGame2.py
IamVaibhavsar/Python_Files
283d73929a3e11955c71499407c4f8bff56e4273
[ "MIT" ]
null
null
null
PythonFiles/MCQGame2.py
IamVaibhavsar/Python_Files
283d73929a3e11955c71499407c4f8bff56e4273
[ "MIT" ]
1
2019-07-26T15:25:21.000Z
2019-07-26T15:25:21.000Z
class Question: def __init__ (self,prompt,answer): self.prompt=prompt self.answer=answer
27.75
39
0.648649
427c79481b49b26fccbefbec4fd11d29e61aa903
10,700
py
Python
docs/conf.py
zmunk/scrapy
015b71d89fd641bfd926608a2490a963cf4fb40d
[ "BSD-3-Clause" ]
2
2021-05-18T02:27:56.000Z
2021-05-18T11:11:12.000Z
docs/conf.py
zmunk/scrapy
015b71d89fd641bfd926608a2490a963cf4fb40d
[ "BSD-3-Clause" ]
4
2020-06-06T03:16:43.000Z
2020-07-27T16:43:50.000Z
docs/conf.py
zmunk/scrapy
015b71d89fd641bfd926608a2490a963cf4fb40d
[ "BSD-3-Clause" ]
null
null
null
# Scrapy documentation build configuration file, created by # sphinx-quickstart on Mon Nov 24 12:02:52 2008. # # This file is execfile()d with the current directory set to its containing dir. # # The contents of this file are pickled, so don't put values in the namespace # that aren't pickleable (module imports are okay, they're removed automatically). # # All configuration values have a default; values that are commented out # serve to show the default. import sys from datetime import datetime from os import path # If your extensions are in another directory, add it here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.append(path.join(path.dirname(__file__), "_ext")) sys.path.insert(0, path.dirname(path.dirname(__file__))) # General configuration # --------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'hoverxref.extension', 'notfound.extension', 'scrapydocs', 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Scrapy' copyright = '2008–{}, Scrapy developers'.format(datetime.now().year) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. try: import scrapy version = '.'.join(map(str, scrapy.version_info[:2])) release = scrapy.__version__ except ImportError: version = '' release = '' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. language = 'en' # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] exclude_patterns = ['build'] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['.build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # List of Sphinx warnings that will not be raised suppress_warnings = ['epub.unknown_project_files'] # Options for HTML output # ----------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # Add path to the RTD explicitly to robustify builds (otherwise might # fail in a clean Debian build env) import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. # html_style = 'scrapydoc.css' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, the reST sources are included in the HTML build as _sources/<name>. html_copy_source = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'Scrapydoc' # Options for LaTeX output # ------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual]). latex_documents = [ ('index', 'Scrapy.tex', 'Scrapy Documentation', 'Scrapy developers', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True # Options for the linkcheck builder # --------------------------------- # A list of regular expressions that match URIs that should not be checked when # doing a linkcheck build. linkcheck_ignore = [ 'http://localhost:\d+', 'http://hg.scrapy.org', 'http://directory.google.com/' ] # Options for the Coverage extension # ---------------------------------- coverage_ignore_pyobjects = [ # Contract’s add_pre_hook and add_post_hook are not documented because # they should be transparent to contract developers, for whom pre_hook and # post_hook should be the actual concern. r'\bContract\.add_(pre|post)_hook$', # ContractsManager is an internal class, developers are not expected to # interact with it directly in any way. r'\bContractsManager\b$', # For default contracts we only want to document their general purpose in # their __init__ method, the methods they reimplement to achieve that purpose # should be irrelevant to developers using those contracts. r'\w+Contract\.(adjust_request_args|(pre|post)_process)$', # Methods of downloader middlewares are not documented, only the classes # themselves, since downloader middlewares are controlled through Scrapy # settings. r'^scrapy\.downloadermiddlewares\.\w*?\.(\w*?Middleware|DownloaderStats)\.', # Base classes of downloader middlewares are implementation details that # are not meant for users. r'^scrapy\.downloadermiddlewares\.\w*?\.Base\w*?Middleware', # Private exception used by the command-line interface implementation. r'^scrapy\.exceptions\.UsageError', # Methods of BaseItemExporter subclasses are only documented in # BaseItemExporter. r'^scrapy\.exporters\.(?!BaseItemExporter\b)\w*?\.', # Extension behavior is only modified through settings. Methods of # extension classes, as well as helper functions, are implementation # details that are not documented. r'^scrapy\.extensions\.[a-z]\w*?\.[A-Z]\w*?\.', # methods r'^scrapy\.extensions\.[a-z]\w*?\.[a-z]', # helper functions # Never documented before, and deprecated now. r'^scrapy\.item\.DictItem$', r'^scrapy\.linkextractors\.FilteringLinkExtractor$', # Implementation detail of LxmlLinkExtractor r'^scrapy\.linkextractors\.lxmlhtml\.LxmlParserLinkExtractor', ] # Options for the InterSphinx extension # ------------------------------------- intersphinx_mapping = { 'attrs': ('https://www.attrs.org/en/stable/', None), 'coverage': ('https://coverage.readthedocs.io/en/stable', None), 'cssselect': ('https://cssselect.readthedocs.io/en/latest', None), 'itemloaders': ('https://itemloaders.readthedocs.io/en/latest/', None), 'pytest': ('https://docs.pytest.org/en/latest', None), 'python': ('https://docs.python.org/3', None), 'sphinx': ('https://www.sphinx-doc.org/en/master', None), 'tox': ('https://tox.readthedocs.io/en/latest', None), 'twisted': ('https://twistedmatrix.com/documents/current', None), 'twistedapi': ('https://twistedmatrix.com/documents/current/api', None), } # Options for sphinx-hoverxref options # ------------------------------------ hoverxref_auto_ref = True hoverxref_role_types = { "class": "tooltip", "confval": "tooltip", "hoverxref": "tooltip", "mod": "tooltip", "ref": "tooltip", } hoverxref_roles = ['command', 'reqmeta', 'setting', 'signal'] def setup(app): app.connect('autodoc-skip-member', maybe_skip_member) def maybe_skip_member(app, what, name, obj, skip, options): if not skip: # autodocs was generating a text "alias of" for the following members # https://github.com/sphinx-doc/sphinx/issues/4422 return name in {'default_item_class', 'default_selector_class'} return skip
33.333333
82
0.710467
7c698d83895af2aaee69a2efa69f75aafaf715ae
4,771
py
Python
scripts/django_tests_settings.py
PeterJCLaw/django-stubs
29ac1c3017f764f58bb341e43d11f399076c631a
[ "MIT" ]
null
null
null
scripts/django_tests_settings.py
PeterJCLaw/django-stubs
29ac1c3017f764f58bb341e43d11f399076c631a
[ "MIT" ]
1
2021-06-15T16:24:10.000Z
2021-06-15T16:24:10.000Z
scripts/django_tests_settings.py
p7g/django-stubs
fe63fd1d2b7dd47cfc111a7753e45370e9497a2e
[ "MIT" ]
null
null
null
SECRET_KEY = '1' SITE_ID = 1 INSTALLED_APPS = [ 'django.contrib.contenttypes', 'django.contrib.auth', 'django.contrib.sites', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.admin.apps.SimpleAdminConfig', 'django.contrib.staticfiles', ] test_modules = [ 'absolute_url_overrides', 'admin_autodiscover', 'admin_changelist', 'admin_checks', 'admin_custom_urls', 'admin_default_site', 'admin_docs', 'admin_filters', 'admin_inlines', 'admin_ordering', 'admin_registration', 'admin_scripts', 'admin_utils', 'admin_views', 'admin_widgets', 'aggregation', 'aggregation_regress', 'annotations', 'app_loading', 'apps', 'auth_tests', 'backends', 'base', 'bash_completion', 'basic', 'builtin_server', 'bulk_create', 'cache', 'check_framework', 'choices', 'conditional_processing', 'constraints', 'contenttypes_tests', 'context_processors', 'csrf_tests', 'custom_columns', 'custom_lookups', 'custom_managers', 'custom_methods', 'custom_migration_operations', 'custom_pk', 'datatypes', 'dates', 'datetimes', 'db_functions', 'db_typecasts', 'db_utils', 'dbshell', 'decorators', 'defer', 'defer_regress', 'delete', 'delete_regress', 'deprecation', 'dispatch', 'distinct_on_fields', 'empty', 'expressions', 'expressions_case', 'expressions_window', 'extra_regress', 'field_deconstruction', 'field_defaults', 'field_subclassing', 'file_storage', 'file_uploads', 'files', 'filtered_relation', 'fixtures', 'fixtures_model_package', 'fixtures_regress', 'flatpages_tests', 'force_insert_update', 'foreign_object', 'forms_tests', 'from_db_value', 'generic_inline_admin', 'generic_relations', 'generic_relations_regress', 'generic_views', 'get_earliest_or_latest', 'get_object_or_404', 'get_or_create', 'gis_tests', 'handlers', 'httpwrappers', 'humanize_tests', 'i18n', 'import_error_package', 'indexes', 'inline_formsets', 'inspectdb', 'introspection', 'invalid_models_tests', 'known_related_objects', 'logging_tests', 'lookup', 'm2m_and_m2o', 'm2m_intermediary', 'm2m_multiple', 'm2m_recursive', 'm2m_regress', 'm2m_signals', 'm2m_through', 'm2m_through_regress', 'm2o_recursive', 'mail', 'managers_regress', 'many_to_many', 'many_to_one', 'many_to_one_null', 'max_lengths', 'messages_tests', 'middleware', 'middleware_exceptions', 'migrate_signals', 'migration_test_data_persistence', 'migrations', 'migrations2', 'model_fields', 'model_forms', 'model_formsets', 'model_formsets_regress', 'model_indexes', 'model_inheritance', 'model_inheritance_regress', 'model_meta', 'model_options', 'model_package', 'model_regress', 'modeladmin', 'multiple_database', 'mutually_referential', 'nested_foreign_keys', 'no_models', 'null_fk', 'null_fk_ordering', 'null_queries', 'one_to_one', 'or_lookups', 'order_with_respect_to', 'ordering', 'pagination', 'postgres_tests', 'prefetch_related', 'project_template', 'properties', 'proxy_model_inheritance', 'proxy_models', 'queries', 'queryset_pickle', 'raw_query', 'redirects_tests', 'requests', 'reserved_names', 'resolve_url', 'responses', 'reverse_lookup', 'save_delete_hooks', 'schema', 'select_for_update', 'select_related', 'select_related_onetoone', 'select_related_regress', 'serializers', 'servers', 'sessions_tests', 'settings_tests', 'shell', 'shortcuts', 'signals', 'signed_cookies_tests', 'signing', 'sitemaps_tests', 'sites_framework', 'sites_tests', 'staticfiles_tests', 'str', 'string_lookup', 'swappable_models', 'syndication_tests', 'template_backends', 'template_loader', 'template_tests', 'test_client', 'test_client_regress', 'test_exceptions', 'test_runner', 'test_runner_apps', 'test_utils', 'timezones', 'transaction_hooks', 'transactions', 'unmanaged_models', 'update', 'update_only_fields', 'urlpatterns', 'urlpatterns_reverse', 'user_commands', 'utils_tests', 'validation', 'validators', 'version', 'view_tests', 'wsgi', ] invalid_apps = { 'import_error_package', } for app in invalid_apps: test_modules.remove(app) INSTALLED_APPS += test_modules
20.743478
50
0.62817
36ba1659bbf981dfb6fb0298922e53a87e01b93e
16,592
py
Python
tensorflow/python/data/kernel_tests/group_by_window_test.py
EricRemmerswaal/tensorflow
141ff27877579c81a213fa113bd1b474c1749aca
[ "Apache-2.0" ]
190,993
2015-11-09T13:17:30.000Z
2022-03-31T23:05:27.000Z
tensorflow/python/data/kernel_tests/group_by_window_test.py
EricRemmerswaal/tensorflow
141ff27877579c81a213fa113bd1b474c1749aca
[ "Apache-2.0" ]
48,461
2015-11-09T14:21:11.000Z
2022-03-31T23:17:33.000Z
tensorflow/python/data/kernel_tests/group_by_window_test.py
EricRemmerswaal/tensorflow
141ff27877579c81a213fa113bd1b474c1749aca
[ "Apache-2.0" ]
104,981
2015-11-09T13:40:17.000Z
2022-03-31T19:51:54.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `tf.data.experimental.group_by_window()`.""" from absl.testing import parameterized import numpy as np from tensorflow.python.data.kernel_tests import checkpoint_test_base from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import combinations from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import string_ops from tensorflow.python.platform import test # NOTE(mrry): These tests are based on the tests in bucket_ops_test.py. # Currently, they use a constant batch size, though should be made to use a # different batch size per key. class GroupByWindowTest(test_base.DatasetTestBase, parameterized.TestCase): def _dynamicPad(self, bucket, window, window_size): # TODO(mrry): To match `tf.contrib.training.bucket()`, implement a # generic form of padded_batch that pads every component # dynamically and does not rely on static shape information about # the arguments. return dataset_ops.Dataset.zip( (dataset_ops.Dataset.from_tensors(bucket), window.padded_batch( 32, (tensor_shape.TensorShape([]), tensor_shape.TensorShape( [None]), tensor_shape.TensorShape([3]))))) @combinations.generate(test_base.default_test_combinations()) def testSingleBucket(self): def _map_fn(v): return (v, array_ops.fill([v], v), array_ops.fill([3], string_ops.as_string(v))) input_dataset = dataset_ops.Dataset.from_tensor_slices( math_ops.range(32)).map(_map_fn) bucketed_dataset = input_dataset.group_by_window( key_func=lambda x, y, z: 0, reduce_func=lambda k, bucket: self._dynamicPad(k, bucket, 32), window_size=32) get_next = self.getNext(bucketed_dataset) which_bucket, bucketed_values = self.evaluate(get_next()) self.assertEqual(0, which_bucket) expected_scalar_int = np.arange(32, dtype=np.int64) expected_unk_int64 = np.zeros((32, 31)).astype(np.int64) for i in range(32): expected_unk_int64[i, :i] = i expected_vec3_str = np.vstack(3 * [np.arange(32).astype(bytes)]).T self.assertAllEqual(expected_scalar_int, bucketed_values[0]) self.assertAllEqual(expected_unk_int64, bucketed_values[1]) self.assertAllEqual(expected_vec3_str, bucketed_values[2]) @combinations.generate(test_base.default_test_combinations()) def testEvenOddBuckets(self): def _map_fn(v): return (v, array_ops.fill([v], v), array_ops.fill([3], string_ops.as_string(v))) input_dataset = dataset_ops.Dataset.from_tensor_slices( math_ops.range(64)).map(_map_fn) bucketed_dataset = input_dataset.group_by_window( key_func=lambda x, y, z: math_ops.cast(x % 2, dtypes.int64), reduce_func=lambda k, bucket: self._dynamicPad(k, bucket, 32), window_size=32) get_next = self.getNext(bucketed_dataset) # Get two minibatches (one containing even values, one containing odds) which_bucket_even, bucketed_values_even = self.evaluate(get_next()) which_bucket_odd, bucketed_values_odd = self.evaluate(get_next()) # Count number of bucket_tensors. self.assertEqual(3, len(bucketed_values_even)) self.assertEqual(3, len(bucketed_values_odd)) # Ensure bucket 0 was used for all minibatch entries. self.assertAllEqual(0, which_bucket_even) self.assertAllEqual(1, which_bucket_odd) # Test the first bucket outputted, the events starting at 0 expected_scalar_int = np.arange(0, 32 * 2, 2, dtype=np.int64) expected_unk_int64 = np.zeros((32, 31 * 2)).astype(np.int64) for i in range(0, 32): expected_unk_int64[i, :2 * i] = 2 * i expected_vec3_str = np.vstack(3 * [np.arange(0, 32 * 2, 2).astype(bytes)]).T self.assertAllEqual(expected_scalar_int, bucketed_values_even[0]) self.assertAllEqual(expected_unk_int64, bucketed_values_even[1]) self.assertAllEqual(expected_vec3_str, bucketed_values_even[2]) # Test the second bucket outputted, the odds starting at 1 expected_scalar_int = np.arange(1, 32 * 2 + 1, 2, dtype=np.int64) expected_unk_int64 = np.zeros((32, 31 * 2 + 1)).astype(np.int64) for i in range(0, 32): expected_unk_int64[i, :2 * i + 1] = 2 * i + 1 expected_vec3_str = np.vstack( 3 * [np.arange(1, 32 * 2 + 1, 2).astype(bytes)]).T self.assertAllEqual(expected_scalar_int, bucketed_values_odd[0]) self.assertAllEqual(expected_unk_int64, bucketed_values_odd[1]) self.assertAllEqual(expected_vec3_str, bucketed_values_odd[2]) @combinations.generate(test_base.default_test_combinations()) def testEvenOddBucketsFilterOutAllOdd(self): def _map_fn(v): return { "x": v, "y": array_ops.fill([v], v), "z": array_ops.fill([3], string_ops.as_string(v)) } def _dynamic_pad_fn(bucket, window, _): return dataset_ops.Dataset.zip( (dataset_ops.Dataset.from_tensors(bucket), window.padded_batch( 32, { "x": tensor_shape.TensorShape([]), "y": tensor_shape.TensorShape([None]), "z": tensor_shape.TensorShape([3]) }))) input_dataset = dataset_ops.Dataset.from_tensor_slices(math_ops.range( 128)).map(_map_fn).filter(lambda d: math_ops.equal(d["x"] % 2, 0)) bucketed_dataset = input_dataset.group_by_window( key_func=lambda d: math_ops.cast(d["x"] % 2, dtypes.int64), reduce_func=lambda k, bucket: _dynamic_pad_fn(k, bucket, 32), window_size=32) get_next = self.getNext(bucketed_dataset) # Get two minibatches ([0, 2, ...] and [64, 66, ...]) which_bucket0, bucketed_values_even0 = self.evaluate(get_next()) which_bucket1, bucketed_values_even1 = self.evaluate(get_next()) # Ensure that bucket 1 was completely filtered out self.assertAllEqual(0, which_bucket0) self.assertAllEqual(0, which_bucket1) self.assertAllEqual( np.arange(0, 64, 2, dtype=np.int64), bucketed_values_even0["x"]) self.assertAllEqual( np.arange(64, 128, 2, dtype=np.int64), bucketed_values_even1["x"]) @combinations.generate(test_base.default_test_combinations()) def testDynamicWindowSize(self): components = np.arange(100).astype(np.int64) # Key fn: even/odd # Reduce fn: batches of 5 # Window size fn: even=5, odd=10 def window_size_func(key): window_sizes = constant_op.constant([5, 10], dtype=dtypes.int64) return window_sizes[key] dataset = dataset_ops.Dataset.from_tensor_slices(components) dataset = dataset.group_by_window( key_func=lambda x: x % 2, reduce_func=lambda _, xs: xs.batch(20), window_size=None, window_size_func=window_size_func) get_next = self.getNext(dataset) with self.assertRaises(errors.OutOfRangeError): batches = 0 while True: result = self.evaluate(get_next()) is_even = all(x % 2 == 0 for x in result) is_odd = all(x % 2 == 1 for x in result) self.assertTrue(is_even or is_odd) expected_batch_size = 5 if is_even else 10 self.assertEqual(expected_batch_size, result.shape[0]) batches += 1 self.assertEqual(batches, 15) @combinations.generate(test_base.default_test_combinations()) def testSimple(self): components = np.random.randint(100, size=(200,)).astype(np.int64) dataset = dataset_ops.Dataset.from_tensor_slices(components).map( lambda x: x * x) dataset = dataset.group_by_window( key_func=lambda x: x % 2, reduce_func=lambda _, xs: xs.batch(4), window_size=4) get_next = self.getNext(dataset) counts = [] with self.assertRaises(errors.OutOfRangeError): while True: result = self.evaluate(get_next()) self.assertTrue( all(x % 2 == 0 for x in result) or all(x % 2 == 1) for x in result) counts.append(result.shape[0]) self.assertEqual(len(components), sum(counts)) num_full_batches = len([c for c in counts if c == 4]) self.assertGreaterEqual(num_full_batches, 24) self.assertTrue(all(c == 4 for c in counts[:num_full_batches])) @combinations.generate(test_base.default_test_combinations()) def testImmediateOutput(self): components = np.array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 0, 0, 2, 2, 0, 0], dtype=np.int64) dataset = dataset_ops.Dataset.from_tensor_slices(components) dataset = dataset.repeat(-1) dataset = dataset.group_by_window( key_func=lambda x: x % 3, reduce_func=lambda _, xs: xs.batch(4), window_size=4) get_next = self.getNext(dataset) # The input is infinite, so this test demonstrates that: # 1. We produce output without having to consume the entire input, # 2. Different buckets can produce output at different rates, and # 3. For deterministic input, the output is deterministic. for _ in range(3): self.assertAllEqual([0, 0, 0, 0], self.evaluate(get_next())) self.assertAllEqual([1, 1, 1, 1], self.evaluate(get_next())) self.assertAllEqual([2, 2, 2, 2], self.evaluate(get_next())) self.assertAllEqual([0, 0, 0, 0], self.evaluate(get_next())) @combinations.generate(test_base.default_test_combinations()) def testSmallGroups(self): components = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0], dtype=np.int64) dataset = dataset_ops.Dataset.from_tensor_slices(components) dataset = dataset.group_by_window( key_func=lambda x: x % 2, reduce_func=lambda _, xs: xs.batch(4), window_size=4) get_next = self.getNext(dataset) self.assertAllEqual([0, 0, 0, 0], self.evaluate(get_next())) self.assertAllEqual([1, 1, 1, 1], self.evaluate(get_next())) # The small outputs at the end are deterministically produced in key # order. self.assertAllEqual([0, 0, 0], self.evaluate(get_next())) self.assertAllEqual([1], self.evaluate(get_next())) @combinations.generate(test_base.default_test_combinations()) def testEmpty(self): dataset = dataset_ops.Dataset.range(4).group_by_window( key_func=lambda _: 0, reduce_func=lambda _, xs: xs, window_size=0) get_next = self.getNext(dataset) with self.assertRaisesRegex( errors.InvalidArgumentError, "Window size must be greater than zero, but got 0."): print(self.evaluate(get_next())) @combinations.generate(test_base.default_test_combinations()) def testReduceFuncError(self): components = np.random.randint(100, size=(200,)).astype(np.int64) def reduce_func(_, xs): # Introduce an incorrect padded shape that cannot (currently) be # detected at graph construction time. return xs.padded_batch( 4, padded_shapes=(tensor_shape.TensorShape([]), constant_op.constant([5], dtype=dtypes.int64) * -1)) dataset = dataset_ops.Dataset.from_tensor_slices(components) dataset = dataset.map(lambda x: (x, ops.convert_to_tensor([x * x]))) dataset = dataset.group_by_window( key_func=lambda x, _: x % 2, reduce_func=reduce_func, window_size=32) get_next = self.getNext(dataset) with self.assertRaises(errors.InvalidArgumentError): self.evaluate(get_next()) @combinations.generate(test_base.default_test_combinations()) def testConsumeWindowDatasetMoreThanOnce(self): components = np.random.randint(50, size=(200,)).astype(np.int64) def reduce_func(key, window): # Apply two different kinds of padding to the input: tight # padding, and quantized (to a multiple of 10) padding. return dataset_ops.Dataset.zip(( window.padded_batch( 4, padded_shapes=tensor_shape.TensorShape([None])), window.padded_batch( 4, padded_shapes=ops.convert_to_tensor([(key + 1) * 10])), )) dataset = dataset_ops.Dataset.from_tensor_slices(components) dataset = dataset.map( lambda x: array_ops.fill([math_ops.cast(x, dtypes.int32)], x)) # pylint: disable=g-long-lambda dataset = dataset.group_by_window( key_func=lambda x: math_ops.cast( array_ops.shape(x)[0] // 10, dtypes.int64), reduce_func=reduce_func, window_size=4) get_next = self.getNext(dataset) counts = [] with self.assertRaises(errors.OutOfRangeError): while True: tight_result, multiple_of_10_result = self.evaluate(get_next()) self.assertEqual(0, multiple_of_10_result.shape[1] % 10) self.assertAllEqual(tight_result, multiple_of_10_result[:, :tight_result.shape[1]]) counts.append(tight_result.shape[0]) self.assertEqual(len(components), sum(counts)) @combinations.generate(test_base.default_test_combinations()) def testShortCircuit(self): dataset = dataset_ops.Dataset.range(10).group_by_window( key_func=lambda x: x, reduce_func=lambda _, window: window.batch(1), window_size=1) self.assertDatasetProduces( dataset, expected_output=[[i] for i in range(10)]) @combinations.generate(test_base.default_test_combinations()) def testGroupByWindowWithAutotune(self): dataset = dataset_ops.Dataset.range(1000).group_by_window( key_func=lambda x: x // 10, reduce_func=lambda key, window: dataset_ops.Dataset.from_tensors(key), window_size=4) dataset = dataset.map(lambda x: x + 1, num_parallel_calls=-1) get_next = self.getNext(dataset) self.evaluate(get_next()) @combinations.generate(test_base.default_test_combinations()) def testGroupByWindowCardinality(self): dataset = dataset_ops.Dataset.range(1).repeat().group_by_window( key_func=lambda x: x % 2, reduce_func=lambda key, window: dataset_ops.Dataset.from_tensors(key), window_size=4) self.assertEqual(self.evaluate(dataset.cardinality()), dataset_ops.INFINITE) @combinations.generate(test_base.default_test_combinations()) def testName(self): dataset = dataset_ops.Dataset.from_tensors(np.int64(42)).group_by_window( key_func=lambda x: x, reduce_func=lambda key, window: window.batch(4), window_size=4, name="group_by_window") self.assertDatasetProduces(dataset, [[42]]) class GroupByWindowCheckpointTest(checkpoint_test_base.CheckpointTestBase, parameterized.TestCase): def _build_dataset(self, components): dataset = dataset_ops.Dataset.from_tensor_slices(components).repeat(-1) dataset = dataset.group_by_window( key_func=lambda x: x % 3, reduce_func=lambda _, xs: xs.batch(4), window_size=4) return dataset @combinations.generate(test_base.default_test_combinations()) def test(self): components = np.array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 0, 0, 2, 2, 0, 0], dtype=np.int64) self.verify_unused_iterator( lambda: self._build_dataset(components), num_outputs=12, verify_exhausted=False) self.verify_multiple_breaks( lambda: self._build_dataset(components), num_outputs=12, verify_exhausted=False) self.verify_reset_restored_iterator( lambda: self._build_dataset(components), num_outputs=12, verify_exhausted=False) if __name__ == "__main__": test.main()
41.069307
80
0.679785
cff9b2b3f1159bc656b4d3ba4f21d01d2274f087
1,064
py
Python
account/migrations/0002_userinfo.py
ZiYin-ss/python-blog2
78f30bb969fc0d2f0ddb7c1221bb2210387f2c09
[ "MIT" ]
null
null
null
account/migrations/0002_userinfo.py
ZiYin-ss/python-blog2
78f30bb969fc0d2f0ddb7c1221bb2210387f2c09
[ "MIT" ]
null
null
null
account/migrations/0002_userinfo.py
ZiYin-ss/python-blog2
78f30bb969fc0d2f0ddb7c1221bb2210387f2c09
[ "MIT" ]
null
null
null
# Generated by Django 3.2.7 on 2021-10-21 18:09 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('account', '0001_initial'), ] operations = [ migrations.CreateModel( name='UserInfo', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('school', models.CharField(blank=True, max_length=100)), ('company', models.CharField(blank=True, max_length=100)), ('profession', models.CharField(blank=True, max_length=100)), ('address', models.CharField(blank=True, max_length=100)), ('aboutme', models.TextField(blank=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
36.689655
121
0.62406
565cb246133194bb38b5a48e36746987ff513d69
873
py
Python
home/views.py
ViniciusBessa/django_hortifruti
d98ce422c32eecfc3c776207a562b8a880595088
[ "MIT" ]
1
2021-12-02T01:04:41.000Z
2021-12-02T01:04:41.000Z
home/views.py
ViniciusBessa/django_hortifruti
d98ce422c32eecfc3c776207a562b8a880595088
[ "MIT" ]
null
null
null
home/views.py
ViniciusBessa/django_hortifruti
d98ce422c32eecfc3c776207a562b8a880595088
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.views import View from core.models import Produto, dados_comuns class HomeView(View): """ View que renderiza a home do projeto Attribute template_name: Recebe o template que deve ser renderizado pelo view Attribute context: Um dicionário que será utilizado no template """ template_name = 'home.html' context = {} def get(self, request, *args, **kwargs): self.context.update(dados_comuns(request.user)) produtos_mais_vendidos = Produto.mais_vendidos() produtos_categorias = Produto.receber_produtos(self.context.get('categorias'), 4, 2) self.context.update({ 'produtos_categorias': produtos_categorias, 'produtos_mais_vendidos': produtos_mais_vendidos, }) return render(request, self.template_name, self.context)
30.103448
92
0.702176
b1b20daa07905e92fd8a5f9057bd73a4cd02ce81
838
py
Python
170522_visualizing_one_million_cells/cluster.py
Sangram-Rout/scanpy_usage
38030605c74c755167302caa431cf3ff62de646f
[ "BSD-3-Clause" ]
52
2017-07-25T20:30:02.000Z
2022-03-18T07:22:45.000Z
170522_visualizing_one_million_cells/cluster.py
Sangram-Rout/scanpy_usage
38030605c74c755167302caa431cf3ff62de646f
[ "BSD-3-Clause" ]
16
2017-08-11T12:26:10.000Z
2020-12-10T23:12:00.000Z
170522_visualizing_one_million_cells/cluster.py
Sangram-Rout/scanpy_usage
38030605c74c755167302caa431cf3ff62de646f
[ "BSD-3-Clause" ]
49
2017-09-10T22:39:31.000Z
2022-03-06T08:04:32.000Z
import matplotlib matplotlib.use('Agg') # plotting backend compatible with screen import sys import scanpy.api as sc sc.settings.verbosity = 2 # show logging output sc.settings.autosave = True # save figures, do not show them sc.settings.set_figure_params(dpi=300) # set sufficiently high resolution for saving filename = sys.argv[1] # read filename from command line def basic_analysis(filename): adata = sc.read_10x_h5(filename) sc.pp.recipe_zheng17(adata) sc.pp.neighbors(adata) sc.tl.louvain(adata) sc.tl.paga(adata) sc.tl.umap(adata) sc.tl.rank_genes_groups(adata, 'louvain') adata.write('./write/result.h5ad') # plotting sc.pl.paga(adata) sc.pl.umap(adata, color='louvain') sc.pl.rank_genes_groups(adata, save='.pdf') if __name__ == "__main__": basic_analysis(filename)
28.896552
85
0.71957
b9d889ee1044fa5b5ee94d8c8cd78a594fdf590b
8,954
py
Python
tools/build.py
NeuroSystemsLLC/brainflow
1178bc767eb55819148e8be25592fa24a91868db
[ "MIT" ]
null
null
null
tools/build.py
NeuroSystemsLLC/brainflow
1178bc767eb55819148e8be25592fa24a91868db
[ "MIT" ]
null
null
null
tools/build.py
NeuroSystemsLLC/brainflow
1178bc767eb55819148e8be25592fa24a91868db
[ "MIT" ]
null
null
null
import argparse import platform import subprocess import os from shutil import rmtree def run_command(cmd, cwd=None): print('Running command: %s' % (' '.join(cmd))) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=cwd) while True: p.stdout.flush() line = p.stdout.read(1) if line: print(line.decode('utf-8', 'ignore'), end='') else: if p.poll() != None: break if p.returncode != 0: raise ValueError('Process finished with error code %d' % p.returncode) class Generator: def __init__(self, priority): self.priority = priority def get_generator(self): raise NotImplementedError def get_arch(self): raise NotImplementedError def __lt__(self, other): return self.priority < other.priority class VS2019(Generator): def __init__(self): super(VS2019, self).__init__(10) def get_generator(self): return 'Visual Studio 16 2019' def get_arch(self): return 'x64' class VS2017(Generator): def __init__(self): super(VS2017, self).__init__(5) def get_generator(self): return 'Visual Studio 15 2017 Win64' def get_arch(self): return None def get_win_generators(): result = list() try: output = subprocess.check_output(['C:\\Program Files (x86)\\Microsoft Visual Studio\\Installer\\vswhere.exe', '-property', 'displayName']) output = output.decode('utf-8', 'ignore') print(output) if '2019' in output: result.append(VS2019()) if '2017' in output: result.append(VS2017()) except BaseException as e: print('No Visual Studio Installations Found') return sorted(result, reverse=True) def check_deps(): try: cmake = subprocess.check_output(['cmake', '--version']) except BaseException as e: print('You need to install CMake first. Run: python -m pip install cmake') raise e def prepare_args(): parser = argparse.ArgumentParser() cur_folder = os.path.dirname(os.path.abspath(__file__)) bluetooth_default = False if platform.system() == 'Windows': bluetooth_default = True parser.add_argument('--oymotion', dest='oymotion', action='store_true') parser.add_argument('--no-oymotion', dest='oymotion', action='store_false') parser.set_defaults(oymotion=True) parser.add_argument('--msvc-runtime', type=str, choices=['static', 'dynamic'], help='how to link MSVC runtime', required=False, default='static') generators = get_win_generators() if not generators: parser.add_argument('--generator', type=str, help='generator for CMake', required=True) parser.add_argument('--arch', type=str, help='arch for CMake', required=False) else: generator = generators[0] parser.add_argument('--generator', type=str, help='generator for CMake', required=False, default=generator.get_generator()) if generator.get_arch() is not None: parser.add_argument('--arch', type=str, choices=['x64', 'Win32', 'ARM', 'ARM64'], help='arch for CMake', required=False, default=generator.get_arch()) else: parser.add_argument('--arch', type=str, choices=['x64', 'Win32', 'ARM', 'ARM64'], help='arch for CMake', required=False) parser.add_argument('--cmake-system-version', type=str, help='system version for win', required=False, default='8.1') elif platform.system() == 'Darwin': macos_ver = platform.mac_ver()[0] versions = [int(x) for x in macos_ver.split('.')] if versions[0] >= 11: parser.add_argument('--cmake-osx-architectures', type=str, help='archs for osx', required=False, default='"arm64;x86_64"') else: parser.add_argument('--cmake-osx-architectures', type=str, help='archs for osx', required=False) parser.add_argument('--cmake-osx-deployment-target', type=str, help='min supported version of osx', required=False, default='10.13') parser.add_argument('--use-libftdi', action='store_true') try: output = subprocess.check_output(['ninja', '--version']) print(output) parser.add_argument('--generator', type=str, help='CMake generator', required=False, default='Ninja') except BaseException: parser.add_argument('--generator', type=str, help='CMake generator', required=False, default='') print('Ninja is a recommended generator for MacOS and is not found') else: parser.add_argument('--generator', type=str, help='CMake generator', required=False) parser.add_argument('--use-libftdi', action='store_true') parser.add_argument('--build-dir', type=str, help='build folder', required=False, default=os.path.join(cur_folder, '..', 'build')) parser.add_argument('--cmake-install-prefix', type=str, help='installation folder, full path', required=False, default=os.path.join(cur_folder, '..', 'installed')) parser.add_argument('--use-openmp', action='store_true') parser.add_argument('--build-bluetooth', action='store_true') parser.add_argument('--warnings-as-errors', action='store_true') parser.add_argument('--debug', action='store_true') parser.add_argument('--clear-build-dir', action='store_true') parser.add_argument('--num-jobs', type=int, help='num jobs to run in parallel', required=False, default=4) parser.add_argument('--bluetooth', dest='bluetooth', action='store_true') parser.add_argument('--no-bluetooth', dest='bluetooth', action='store_false') parser.set_defaults(bluetooth=bluetooth_default) args = parser.parse_args() return args def config(args): if args.clear_build_dir: if os.path.exists(args.build_dir): rmtree(args.build_dir) if os.path.exists(args.cmake_install_prefix): rmtree(args.cmake_install_prefix) if not os.path.exists(args.build_dir): os.makedirs(args.build_dir) cur_folder = os.path.dirname(os.path.abspath(__file__)) brainflow_root_folder = os.path.join(cur_folder, '..') cmd_config = list() cmd_config.append('cmake') cmd_config.append('-DCMAKE_INSTALL_PREFIX=%s' % args.cmake_install_prefix) if hasattr(args, 'cmake_system_version') and args.cmake_system_version: cmd_config.append('-DCMAKE_SYSTEM_VERSION=%s' % args.cmake_system_version) if hasattr(args, 'use_libftdi') and args.use_libftdi: cmd_config.append('-DUSE_LIBFTDI=ON') if args.warnings_as_errors: cmd_config.append('-DWARNINGS_AS_ERRORS=ON') if args.use_openmp: cmd_config.append('-DUSE_OPENMP=ON') if hasattr(args, 'oymotion') and args.oymotion: cmd_config.append('-DBUILD_OYMOTION_SDK=ON') if hasattr(args, 'build_bluetooth') and args.build_bluetooth: cmd_config.append('-DBUILD_BLUETOOTH=ON') if hasattr(args, 'cmake_osx_architecture') and args.cmake_osx_architecture: cmd_config.append('-DCMAKE_OSX_ARCHITECTURES=%s' % args.cmake_osx_architecture) if hasattr(args, 'cmake_osx_deployment_target') and args.cmake_osx_deployment_target: cmd_config.append('-DCMAKE_OSX_DEPLOYMENT_TARGET=%s' % args.cmake_osx_deployment_target) if hasattr(args, 'generator') and args.generator: cmd_config.extend(['-G', args.generator]) if hasattr(args, 'arch') and args.arch: cmd_config.extend(['-A', args.arch]) if hasattr(args, 'msvc_runtime'): cmd_config.append('-DMSVC_RUNTIME=%s' % (args.msvc_runtime)) if platform.system() != 'Windows': if hasattr(args, 'debug') and args.debug: cmd_config.append('-DCMAKE_BUILD_TYPE=Debug') else: cmd_config.append('-DCMAKE_BUILD_TYPE=Release') if hasattr(args, 'bluetooth') and args.bluetooth: cmd_config.append('-DBUILD_BLUETOOTH=ON') cmd_config.append(brainflow_root_folder) run_command(cmd_config, args.build_dir) def build(args): if platform.system() == 'Windows': config = 'Release' if args.debug: config = 'Debug' cmd_build = ['cmake', '--build', '.', '--target', 'install', '--config', config, '-j', str(args.num_jobs), '--parallel', str(args.num_jobs)] run_command(cmd_build, cwd=args.build_dir) else: if hasattr(args, 'generator') and args.generator and args.generator.lower() == 'ninja': run_command(['ninja', '-j', str(args.num_jobs)], cwd=args.build_dir) run_command(['ninja', 'install'], cwd=args.build_dir) else: run_command(['make', '-j', str(args.num_jobs)], cwd=args.build_dir) run_command(['make', 'install'], cwd=args.build_dir) def main(): check_deps() args = prepare_args() config(args) build(args) if __name__ == '__main__': main()
42.436019
167
0.655573
647914e929c2f6455e5e69370806d9172d4475be
4,435
py
Python
micro_cata/.ipynb_checkpoints/param_gamma-checkpoint.py
amrodrig72/micro_cata
7f216b0847e479e40af52801a5390d6f930085a4
[ "MIT" ]
null
null
null
micro_cata/.ipynb_checkpoints/param_gamma-checkpoint.py
amrodrig72/micro_cata
7f216b0847e479e40af52801a5390d6f930085a4
[ "MIT" ]
null
null
null
micro_cata/.ipynb_checkpoints/param_gamma-checkpoint.py
amrodrig72/micro_cata
7f216b0847e479e40af52801a5390d6f930085a4
[ "MIT" ]
null
null
null
#Expected file: '../data/gardner_mt_catastrophe_only_tubulin.csv' def param_gamma (file): #Import packages import pandas as pd; import numpy as np; import bebi103 import math; import scipy; import scipy.stats as st; import numba; import tqdm; import warnings import iqplot; import bokeh.io; import bokeh.plotting; import colorcet; import holoviews as hv bokeh.io.output_notebook() hv.extension("bokeh") #import data data3 = pd.read_csv(file, comment= "#") #reorganize data frame to increasing concentration df = data3[['7 uM', '9 uM', '10 uM', '12 uM', '14 uM']] #Rename columns so that they start at 0 and end at 4 for looping df = df.rename(columns={"7 uM": 0, "9 uM": 1, "10 uM": 2, "12 uM": 3, "14 uM": 4, }) #Melt dataframe df = pd.melt(df, value_name='Time[s]') #Rename column varible to Concentration df.rename(columns = {'variable':'Concentration'}, inplace = True) #Drop NaN rows df = df.dropna() #Reset our index df = df.reset_index(drop = True) #Define function to get log likelihood for the gamma distribution def log_like_gamma(params, t): """Log likelihood for a Gamma distribution.""" alpha, beta = params if alpha <= 0 or beta <= 0: return -np.inf return st.gamma.logpdf(t, alpha, loc=0, scale=1/beta).sum() ##Now we can make the funciton to find the parameter estimates for gamma distribution model def gamma_mle(t): # Initial guess t_bar = np.mean(t) beta_guess = t_bar / np.var(t) alpha_guess = t_bar * beta_guess with warnings.catch_warnings(): warnings.simplefilter("ignore") # We need to crank up the tolerance for this one res = scipy.optimize.minimize( lambda params, t: -log_like_gamma(params, t), (alpha_guess, beta_guess), args=(t,), method="powell", tol=1e-7, ) if res.success: return res.x else: raise RuntimeError('Convergence failed with message', res.message) # Bootstrapping functions rg = np.random.default_rng(10000) def draw_bs_sample(data): """Draw a bootstrap sample from a 1D data set.""" return rg.choice(data, size=len(data)) def draw_bs_reps_mle(mle_fun, data, args=(), size=1000, progress_bar=False): """Draw nonparametric bootstrap replicates of maximum likelihood estimator. Returns ------- output : numpy array Bootstrap replicates of MLEs. """ if progress_bar: iterator = tqdm.tqdm(range(size)) else: iterator = range(size) return np.array([mle_fun(draw_bs_sample(data), *args) for _ in iterator]) #Create an empty dataframe containing our Alpha and Beta parameter values for the different concentrations of tubulin results = np.empty((len(df["Concentration"].unique()), 2)) for Concentration, g in df.groupby("Concentration"): results[Concentration] = gamma_mle(g["Time[s]"].values) df_mle = pd.DataFrame( data=results, columns=["Alpha", "Beta"], ) #Now we can plot our parameter estimates and their confidence intervals for the five difference concentrations of ##tubulin added colors = colorcet.b_glasbey_category10 reps = {} for Concentration, g in tqdm.tqdm(df.groupby("Concentration")): # Extract time points t = g["Time[s]"].values # Generate bootstrap replicates reps[Concentration] = draw_bs_reps_mle(gamma_mle, t, size=5000, progress_bar = False,) p = bokeh.plotting.figure( x_axis_label="Alpha", y_axis_label="Beta", frame_height=400, frame_width=400, ) for Concentration, bs_reps in reps.items(): # Extract contour lines in Alpha-Beta plane. x_line, y_line = bebi103.viz.contour_lines_from_samples( x=bs_reps[:, -2], y=bs_reps[:, -2], levels=[0.95] ) # Plot the contour lines with fill for x, y in zip(x_line, y_line): p.line(x, y, line_width=2, color=colors[Concentration], legend_label=f'Concentration {Concentration}') p.patch(x, y, fill_color=colors[Concentration], alpha=0.3) p.legend.location = "top_left" return bokeh.io.show(p)
34.648438
121
0.623224
bdf2fb866102f04138515d031595c2f26b9911e9
4,394
py
Python
tatk/nlu/bert/model.py
yqzhangthu/tatk
4d27e89604a33f19f1c7b8fe5dc92d4ba6c6f10a
[ "Apache-2.0" ]
null
null
null
tatk/nlu/bert/model.py
yqzhangthu/tatk
4d27e89604a33f19f1c7b8fe5dc92d4ba6c6f10a
[ "Apache-2.0" ]
null
null
null
tatk/nlu/bert/model.py
yqzhangthu/tatk
4d27e89604a33f19f1c7b8fe5dc92d4ba6c6f10a
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn from pytorch_pretrained_bert import BertModel class BertNLU(nn.Module): def __init__(self, model_config, intent_dim, tag_dim, DEVICE, intent_weight=None): super(BertNLU, self).__init__() self.DEVICE = DEVICE self.bert = BertModel.from_pretrained(model_config['pre-trained']) for p in self.parameters(): p.requires_grad = False self.intent_dim = intent_dim self.tag_dim = tag_dim self.dropout = nn.Dropout(model_config['dropout']) self.intent_classifier = nn.Linear(self.bert.config.hidden_size, self.intent_dim) self.tag_classifier = nn.Linear(self.bert.config.hidden_size, self.tag_dim) nn.init.xavier_uniform_(self.intent_classifier.weight) nn.init.xavier_uniform_(self.tag_classifier.weight) self.tag_loss = torch.nn.CrossEntropyLoss() self.intent_loss = torch.nn.BCEWithLogitsLoss(pos_weight=intent_weight) if model_config['optimizer'] == 'Adam': self.optim = torch.optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=model_config['lr']) else: self.optim = torch.optim.SGD(filter(lambda p: p.requires_grad, self.parameters()), lr=model_config['lr']) def forward(self, word_seq_tensor, word_mask_tensor): self.bert.eval() word_seq_tensor = word_seq_tensor.to(self.DEVICE) word_mask_tensor = word_mask_tensor.to(self.DEVICE) with torch.no_grad(): encoder_layers, pooled_output = self.bert(input_ids=word_seq_tensor, attention_mask=word_mask_tensor, output_all_encoded_layers=False) # encoder_layers = [batch_size, sequence_length, hidden_size] # pooled_output = [batch_size, hidden_size] encoder_layers = self.dropout(encoder_layers) pooled_output = self.dropout(pooled_output) tag_logits = self.tag_classifier(encoder_layers) intent_logits = self.intent_classifier(pooled_output) # tag_logits = [batch_size, sequence_length, tag_dim] # intent_logits = [batch_size, intent_dim] return intent_logits, tag_logits def train_batch(self, word_seq_tensor, tag_seq_tensor, intent_tensor, word_mask_tensor, tag_mask_tensor): self.optim.zero_grad() word_seq_tensor = word_seq_tensor.to(self.DEVICE) tag_seq_tensor = tag_seq_tensor.to(self.DEVICE) intent_tensor = intent_tensor.to(self.DEVICE, torch.float) word_mask_tensor = word_mask_tensor.to(self.DEVICE) tag_mask_tensor = tag_mask_tensor.to(self.DEVICE) intent_logits, tag_logits = self.forward(word_seq_tensor, word_mask_tensor) active_tag_loss = tag_mask_tensor.view(-1) == 1 active_tag_logits = tag_logits.view(-1, self.tag_dim)[active_tag_loss] active_tag_labels = tag_seq_tensor.view(-1)[active_tag_loss] intent_loss = self.intent_loss(intent_logits, intent_tensor)/intent_tensor.size(0) tag_loss = self.tag_loss(active_tag_logits, active_tag_labels)/intent_tensor.size(0) loss = intent_loss + tag_loss loss.backward() self.optim.step() return intent_loss.item(), tag_loss.item(), loss.item() def eval_batch(self, word_seq_tensor, tag_seq_tensor, intent_tensor, word_mask_tensor, tag_mask_tensor): with torch.no_grad(): word_seq_tensor = word_seq_tensor.to(self.DEVICE) tag_seq_tensor = tag_seq_tensor.to(self.DEVICE) intent_tensor = intent_tensor.to(self.DEVICE, torch.float) word_mask_tensor = word_mask_tensor.to(self.DEVICE) tag_mask_tensor = tag_mask_tensor.to(self.DEVICE) intent_logits, tag_logits = self.forward(word_seq_tensor, word_mask_tensor) active_tag_loss = tag_mask_tensor.view(-1) == 1 active_tag_logits = tag_logits.view(-1, self.tag_dim)[active_tag_loss] active_tag_labels = tag_seq_tensor.view(-1)[active_tag_loss] intent_loss = self.intent_loss(intent_logits, intent_tensor)/intent_tensor.size(0) tag_loss = self.tag_loss(active_tag_logits, active_tag_labels)/intent_tensor.size(0) loss = intent_loss + tag_loss return intent_loss.item(), tag_loss.item(), loss.item()
52.939759
118
0.686391
7e810db2476ab0a46b7ec51bb35a6c9f0d241d61
3,768
py
Python
Machine-Learning-with-Python- From-LM-to-DL/Unit 2. Non Linear Classification, Linear Regression, Colaborative Filtering/mnist/part1/test_environment6.py
andresdelarosa1887/Public-Projects
db8d8e0c0f5f0f7326346462fcdfe21ce8142a12
[ "Unlicense" ]
1
2020-09-29T17:29:34.000Z
2020-09-29T17:29:34.000Z
Machine-Learning-with-Python- From-LM-to-DL/Unit 2. Non Linear Classification, Linear Regression, Colaborative Filtering/mnist/part1/test_environment6.py
andresdelarosa1887/Public-Projects
db8d8e0c0f5f0f7326346462fcdfe21ce8142a12
[ "Unlicense" ]
null
null
null
Machine-Learning-with-Python- From-LM-to-DL/Unit 2. Non Linear Classification, Linear Regression, Colaborative Filtering/mnist/part1/test_environment6.py
andresdelarosa1887/Public-Projects
db8d8e0c0f5f0f7326346462fcdfe21ce8142a12
[ "Unlicense" ]
null
null
null
import sys import numpy as np import matplotlib.pyplot as plt sys.path.append("..") from utils import * from linear_regression import * from svm import * from softmax import * from features import * from kernel import * ##Given the following parameters X = np.array([ [1, 2, 3], [2, 4, 6], [3, 6, 9], [4, 8, 12], ]) n_components = 2 ##Understanding Principal Components Analysis. These two functions were given. def center_data(X): feature_means = X.mean(axis=0) return (X - feature_means), feature_means def principal_components(centered_data): scatter_matrix = np.dot(centered_data.transpose(), centered_data) eigen_values, eigen_vectors = np.linalg.eig(scatter_matrix) # Re-order eigenvectors by eigenvalue magnitude: idx = eigen_values.argsort()[::-1] eigen_values = eigen_values[idx] eigen_vectors = eigen_vectors[:, idx] return eigen_vectors def project_onto_PC(X, pcs, n_components, feature_means): x_centered, feature_means = center_data(X) n,m = X.shape X_pca = np.dot(x_centered, pcs) return X_pca[0:n, 0:n_components] ##Trying the MINST regression using the given components train_x, train_y, test_x, test_y = get_MNIST_data() def center_data(X): feature_means = X.mean(axis=0) return (X - feature_means) def principal_components(centered_data): scatter_matrix = np.dot(centered_data.transpose(), centered_data) eigen_values, eigen_vectors = np.linalg.eig(scatter_matrix) # Re-order eigenvectors by eigenvalue magnitude: idx = eigen_values.argsort()[::-1] eigen_values = eigen_values[idx] eigen_vectors = eigen_vectors[:, idx] return eigen_vectors #principal_components(center_data(train_x)) def project_onto_PC(X, n_components): data_centered = center_data(X) pcs= principal_components(data_centered) x_centered = center_data(X) n,m = X.shape X_pca = np.dot(x_centered, pcs) return X_pca[0:n, 0:n_components] test_x_pca = project_onto_PC(test_x, n_components) train_x_pca= project_onto_PC(train_x, n_components) def run_softmax_on_MNIST_using_PCA(temp_parameter=1): n_components = 18 train_x, train_y, test_x, test_y = get_MNIST_data() train_x_pca = project_onto_PC(train_x, n_components) test_x_pca = project_onto_PC(test_x, n_components) theta, cost_function_history = softmax_regression(train_x_pca, train_y, temp_parameter, alpha=0.3, lambda_factor=1.0e-4, k=10, num_iterations=150) plot_cost_function_over_time(cost_function_history) test_error = compute_test_error(test_x_pca, test_y, theta, temp_parameter) return test_error print('softmax PCA using test_error=', run_softmax_on_MNIST_using_PCA(temp_parameter=1)) ##Dimensionality Reduction using Principal Component Analysis-- Other Approach train_x_centered, feature_means = center_data(X) pcs = principal_components(train_x_centered) ##Mean of each feature feature_means= np.mean(X, axis=0) ##Center of the data data_center= X - feature_means ##Covariance of the matrix in order to check the covariance score for each column with respect to the actual column cov_matrix= np.cov(data_center) eigenval, eigenvec = np.linalg.eig(cov_matrix) significance = [np.abs(i)/np.sum(eigenval) for i in eigenval] #Plotting the Cumulative Summation of the Explained Variance plt.figure() plt.plot(np.cumsum(significance)) plt.xlabel('Number of Components') plt.ylabel('Variance (%)') #for each component plt.title('Pulsar Dataset Explained Variance') plt.show()
30.387097
115
0.701168
fd096cb33e7c6df37e6df5db7bbc0435218879ae
12,372
py
Python
boqn/dropwave_test_runner.py
RaulAstudillo06/BOQN
c5b2bb9e547e2489f856ebf86c749fb24eba1022
[ "MIT" ]
null
null
null
boqn/dropwave_test_runner.py
RaulAstudillo06/BOQN
c5b2bb9e547e2489f856ebf86c749fb24eba1022
[ "MIT" ]
null
null
null
boqn/dropwave_test_runner.py
RaulAstudillo06/BOQN
c5b2bb9e547e2489f856ebf86c749fb24eba1022
[ "MIT" ]
null
null
null
import os import sys import time from copy import copy import numpy as np import torch torch.set_default_dtype(torch.float64) import botorch from botorch.settings import debug debug._set_state(True) # Get script directory script_dir = os.path.dirname(os.path.realpath(sys.argv[0])) project_path = script_dir[:-5] # Problem setup from dropwave import Dropwave dropwave = Dropwave() input_dim = 2 test_problem = 'dropwave' results_folder = project_path + '/experiments_results/' + test_problem + '/' # Define network structure from dag import DAG n_nodes = 2 dag_as_list = [[]] dag_as_list.append([0]) dag= DAG(dag_as_list) active_input_indices = [[0, 1], []] main_input_indices = copy(active_input_indices) # EI-QN especifics from botorch.acquisition.objective import GenericMCObjective from network_gp import NetworkGP from botorch.acquisition.monte_carlo import qExpectedImprovement from botorch.sampling.samplers import SobolQMCNormalSampler from posterior_mean import PosteriorMean g_mapping = lambda Y: Y[..., -1] g = GenericMCObjective(g_mapping) def output_for_EIQN(simulator_output): return simulator_output MC_SAMPLES = 512 BATCH_SIZE = 1 # EI especifics from botorch.models import FixedNoiseGP from gpytorch.mlls import ExactMarginalLogLikelihood from botorch.acquisition import ExpectedImprovement from botorch.acquisition import PosteriorMean as GPPosteriorMean from botorch import fit_gpytorch_model from botorch.models.transforms import Standardize def output_for_EI(simulator_output): return simulator_output[...,[-1]] # KG especifics from botorch.acquisition import qKnowledgeGradient def optimize_KG_and_get_suggested_point(acq_func): """Optimizes the KG acquisition function, and returns a new candidate.""" candidate, _ = custom_optimize_acqf( acq_function=acq_func, bounds=bounds, q=BATCH_SIZE, num_restarts=10*input_dim, raw_samples=100*input_dim, #options={'disp': True, 'iprint': 101}, ) new_x = candidate.detach() return new_x # Random especifics def update_random_observations(best_Random): """Simulates a random policy by taking a the current list of best values observed randomly, drawing a new random point, observing its value, and updating the list. """ x = torch.rand([1, input_dim]) simulator_output = dropwave.evaluate(x) fx = output_for_EI(simulator_output) next_Random_best = fx.max().item() best_Random.append(max(best_Random[-1], next_Random_best)) return best_Random # GP model training def initialize_model(X, Y, Yvar=None): # define model model = FixedNoiseGP(X, Y, torch.ones(Y.shape) * 1e-6, outcome_transform=Standardize(m=Y.shape[-1], batch_shape=torch.Size([]))) mll = ExactMarginalLogLikelihood(model.likelihood, model) return mll, model # Initial data generation def generate_initial_X(n, seed=None): # generate training data if seed is not None: old_state = torch.random.get_rng_state() torch.manual_seed(seed) X = torch.rand([n, input_dim]) torch.random.set_rng_state(old_state) else: X = torch.rand([n, input_dim]) return X # Acquisition function optimization from botorch.optim import optimize_acqf from custom_optimizer import custom_optimize_acqf bounds = torch.tensor([[0. for i in range(input_dim)], [1. for i in range(input_dim)]]) def optimize_acqf_and_get_suggested_point(acq_func, posterior_mean): """Optimizes the acquisition function, and returns a new candidate.""" baseline_candidate, _ = optimize_acqf( acq_function=posterior_mean, bounds=bounds, q=BATCH_SIZE, num_restarts=10*input_dim, raw_samples=100*input_dim, ) baseline_candidate = baseline_candidate.detach().view(torch.Size([1, BATCH_SIZE, input_dim])) candidate, acq_value = custom_optimize_acqf( acq_function=acq_func, bounds=bounds, q=BATCH_SIZE, num_restarts=10*input_dim, raw_samples=100*input_dim, baseline_initial_conditions=baseline_candidate, #options={'disp': True, 'iprint': 101}, ) baseline_acq_value = acq_func.forward(baseline_candidate)[0].detach() print('Test begins') print(acq_value) print(baseline_acq_value) print('Test ends') if baseline_acq_value > acq_value: print('Baseline candidate was best found.') new_x = baseline_candidate elif baseline_acq_value == acq_value: p = np.random.rand(1) if p > 0.5: new_x = baseline_candidate else: new_x = candidate else: new_x = candidate new_x = new_x.detach().view([BATCH_SIZE, input_dim]) return new_x # Run BO loop times N_BATCH = 100 if not os.path.exists(results_folder): os.makedirs(results_folder) if not os.path.exists(results_folder + 'X/'): os.makedirs(results_folder + 'X/') if not os.path.exists(results_folder + 'Y/'): os.makedirs(results_folder + 'Y/') if not os.path.exists(results_folder + 'running_times/'): os.makedirs(results_folder + 'running_times/') run_EIQN = False run_EI = False run_KG = True run_Random = False if len(sys.argv) == 3: first_trial = int(sys.argv[1]) last_trial = int(sys.argv[2]) elif len(sys.argv) == 2: first_trial = int(sys.argv[1]) last_trial = int(sys.argv[1]) if len(sys.argv) > 1: for trial in range(first_trial, last_trial + 1): # call helper functions to generate initial training data and initialize model X = generate_initial_X(n=2*(input_dim+1), seed=trial) simulator_output_at_X = dropwave.evaluate(X) if run_EIQN: best_observed_EIQN = [] running_times_EIQN = [] X_EIQN = X.clone() fX_EIQN = simulator_output_at_X best_value_EIQN = g_mapping(fX_EIQN).max().item() best_observed_EIQN.append(best_value_EIQN) if run_EI: best_observed_EI = [] running_times_EI = [] X_EI = X.clone() fX_EI = output_for_EI(simulator_output_at_X) mll_EI, model_EI = initialize_model(X_EI, fX_EI) best_value_EI = fX_EI.max().item() best_observed_EI.append(best_value_EI) if run_KG: best_observed_KG = [] running_times_KG = [] X_KG = X.clone() fX_KG = output_for_EI(simulator_output_at_X) mll_KG, model_KG = initialize_model(X_KG, fX_KG) best_value_KG = fX_KG.max().item() best_observed_KG.append(best_value_KG) if run_Random: best_observed_Random = [] running_times_Random = [] best_observed_Random.append(output_for_EI(simulator_output_at_X).max().item()) # run N_BATCH rounds of BayesOpt after the initial random batch for iteration in range(1, N_BATCH + 1): print('Experiment: ' + test_problem) print('Replication id: ' + str(trial)) print('Iteration: ' + str(iteration)) if run_EIQN: t0 = time.time() model_EIQN = NetworkGP(dag, X_EIQN, fX_EIQN, active_input_indices=active_input_indices, main_input_indices=main_input_indices) qmc_sampler = SobolQMCNormalSampler(num_samples=MC_SAMPLES) EIQN = qExpectedImprovement( model=model_EIQN, best_f=best_value_EIQN, sampler=qmc_sampler, objective=g, ) posterior_mean_EIQN = PosteriorMean( model=model_EIQN, sampler=qmc_sampler, objective=g, ) new_x_EIQN = optimize_acqf_and_get_suggested_point(EIQN, posterior_mean_EIQN) print('Candidate suggested by the EIQN policy: ' + str(new_x_EIQN)) t1 = time.time() running_times_EIQN.append(t1 - t0) new_fx_EIQN = dropwave.evaluate(new_x_EIQN) X_EIQN = torch.cat([X_EIQN, new_x_EIQN], 0) fX_EIQN = torch.cat([fX_EIQN, new_fx_EIQN], 0) best_value_EIQN = g_mapping(fX_EIQN).max().item() best_observed_EIQN.append(best_value_EIQN) print('Best value so far found the EIQN policy: ' + str(best_value_EIQN) ) np.savetxt(results_folder + test_problem + '_EIQN_' + str(trial) + '.txt', np.atleast_1d(best_observed_EIQN)) np.savetxt(results_folder + 'running_times/' + test_problem + '_rt_EIQN_' + str(trial) + '.txt', np.atleast_1d(running_times_EIQN)) np.savetxt(results_folder + 'X/' + test_problem + '_X_EIQN_' + str(trial) + '.txt', X_EIQN.numpy()) np.savetxt(results_folder + 'Y/' + test_problem + '_Y_EIQN_' + str(trial) + '.txt', fX_EIQN.numpy()) if run_EI: t0 = time.time() fit_gpytorch_model(mll_EI) EI = ExpectedImprovement(model=model_EI, best_f=best_value_EI) posterior_mean_EI = GPPosteriorMean(model=model_EI) new_x_EI = optimize_acqf_and_get_suggested_point(EI, posterior_mean_EI) mll_EI, model_EI = initialize_model(X_EI, fX_EI) t1 = time.time() running_times_EI.append(t1 - t0) new_fx_EI = output_for_EI(dropwave.evaluate(new_x_EI)) X_EI = torch.cat([X_EI, new_x_EI], 0) fX_EI = torch.cat([fX_EI, new_fx_EI], 0) best_value_EI = fX_EI.max().item() best_observed_EI.append(best_value_EI) print('Best value so far found the EI policy: ' + str(best_value_EI) ) np.savetxt(results_folder + test_problem + '_EI_' + str(trial) + '.txt', np.atleast_1d(best_observed_EI)) np.savetxt(results_folder + 'running_times/' + test_problem + '_rt_EI_' + str(trial) + '.txt', np.atleast_1d(running_times_EI)) np.savetxt(results_folder + 'X/' + test_problem + '_X_EI_' + str(trial) + '.txt', X_EI.numpy()) np.savetxt(results_folder + 'Y/' + test_problem + '_Y_EI_' + str(trial) + '.txt', fX_EI.numpy()) if run_KG: t0 = time.time() fit_gpytorch_model(mll_KG) KG = qKnowledgeGradient(model=model_KG, num_fantasies=8) new_x_KG = optimize_KG_and_get_suggested_point(KG) mll_KG, model_KG = initialize_model(X_KG, fX_KG) t1 = time.time() running_times_KG.append(t1 - t0) new_fx_KG = output_for_EI(dropwave.evaluate(new_x_KG)) X_KG = torch.cat([X_KG, new_x_KG], 0) fX_KG = torch.cat([fX_KG, new_fx_KG], 0) best_value_KG = fX_KG.max().item() best_observed_KG.append(best_value_KG) print('Best value so far found the KG policy: ' + str(best_value_KG) ) np.savetxt(results_folder + test_problem + '_KG_' + str(trial) + '.txt', np.atleast_1d(best_observed_KG)) np.savetxt(results_folder + 'running_times/' + test_problem + '_rt_KG_' + str(trial) + '.txt', np.atleast_1d(running_times_KG)) np.savetxt(results_folder + 'X/' + test_problem + '_X_KG_' + str(trial) + '.txt', X_KG.numpy()) np.savetxt(results_folder + 'Y/' + test_problem + '_Y_KG_' + str(trial) + '.txt', fX_KG.numpy()) if run_Random: best_observed_Random = update_random_observations(best_observed_Random) print('Best value so far found the Random policy: ' + str(best_observed_Random[-1])) np.savetxt(results_folder + test_problem + '_Random_' + str(trial) + '.txt', np.atleast_1d(best_observed_Random)) print('')
38.303406
147
0.620272
4c8c2371406849ab59119bb6c6541ede81cf303c
7,673
py
Python
onshape.py
PartyParrot9000/APITools
34b3faf1e96102e27d162973497e135296971c69
[ "MIT" ]
null
null
null
onshape.py
PartyParrot9000/APITools
34b3faf1e96102e27d162973497e135296971c69
[ "MIT" ]
null
null
null
onshape.py
PartyParrot9000/APITools
34b3faf1e96102e27d162973497e135296971c69
[ "MIT" ]
null
null
null
''' onshape ====== Provides access to the Onshape REST API ''' import os import random import string import json import hmac import hashlib import base64 import urllib.request import urllib.parse import urllib.error import datetime import requests from urllib.parse import urlparse from urllib.parse import parse_qs class Onshape(): ''' Provides access to the Onshape REST API. Attributes: - stack (str): Base URL - creds (str, default='./sketchgraphs/onshape/creds/creds.json'): Credentials location - logging (bool, default=True): Turn logging on or off ''' def __init__(self, stack, creds='./creds.json', logging=True): ''' Instantiates an instance of the Onshape class. Reads credentials from a JSON file of this format: { "http://cad.onshape.com": { "access_key": "YOUR KEY HERE", "secret_key": "YOUR KEY HERE" }, etc... add new object for each stack to test on } The creds.json file should be stored in the root project folder; optionally, you can specify the location of a different file. Args: - stack (str): Base URL - creds (str, default='./sketchgraphs/onshape/creds/creds.json'): Credentials location ''' if not os.path.isfile(creds): raise IOError('%s is not a file' % creds) with open(creds) as f: try: stacks = json.load(f) if stack in stacks: self._url = stack self._access_key = stacks[stack]['access_key'].encode( 'utf-8') self._secret_key = stacks[stack]['secret_key'].encode( 'utf-8') self._logging = logging else: raise ValueError('specified stack not in file') except TypeError: raise ValueError('%s is not valid json' % creds) if self._logging: print('onshape instance created: url = %s, access key = %s' % ( self._url, self._access_key)) def _make_nonce(self): ''' Generate a unique ID for the request, 25 chars in length Returns: - str: Cryptographic nonce ''' chars = string.digits + string.ascii_letters nonce = ''.join(random.choice(chars) for i in range(25)) if self._logging: print('nonce created: %s' % nonce) return nonce def _make_auth(self, method, date, nonce, path, query={}, ctype='application/json'): ''' Create the request signature to authenticate Args: - method (str): HTTP method - date (str): HTTP date header string - nonce (str): Cryptographic nonce - path (str): URL pathname - query (dict, default={}): URL query string in key-value pairs - ctype (str, default='application/json'): HTTP Content-Type ''' query = urllib.parse.urlencode(query) hmac_str = (method + '\n' + nonce + '\n' + date + '\n' + ctype + '\n' + path + '\n' + query + '\n').lower().encode('utf-8') signature = base64.b64encode( hmac.new(self._secret_key, hmac_str, digestmod=hashlib.sha256).digest()) auth = 'On ' + self._access_key.decode('utf-8') + \ ':HmacSHA256:' + signature.decode('utf-8') if self._logging: print({ 'query': query, 'hmac_str': hmac_str, 'signature': signature, 'auth': auth }) return auth def _make_headers(self, method, path, query={}, headers={}): ''' Creates a headers object to sign the request Args: - method (str): HTTP method - path (str): Request path, e.g. /api/documents. No query string - query (dict, default={}): Query string in key-value format - headers (dict, default={}): Other headers to pass in Returns: - dict: Dictionary containing all headers ''' date = datetime.datetime.utcnow().strftime('%a, %d %b %Y %H:%M:%S GMT') nonce = self._make_nonce() ctype = headers.get( 'Content-Type') if headers.get('Content-Type') else 'application/json' auth = self._make_auth(method, date, nonce, path, query=query, ctype=ctype) req_headers = { 'Content-Type': 'application/json', 'Date': date, 'On-Nonce': nonce, 'Authorization': auth, 'User-Agent': 'Onshape Python Sample App', 'Accept': 'application/json' } # add in user-defined headers for h in headers: req_headers[h] = headers[h] return req_headers def request(self, method, path, query={}, headers={}, body={}, base_url=None, timeout=None, check_status=True): ''' Issues a request to Onshape Args: - method (str): HTTP method - path (str): Path e.g. /api/documents/:id - query (dict, default={}): Query params in key-value pairs - headers (dict, default={}): Key-value pairs of headers - body (dict, default={}): Body for POST request - base_url (str, default=None): Host, including scheme and port (if different from creds file) - timeout (float, default=None): Timeout to use with requests.request(). - check_status (bool, default=True): Raise exception if response status code is unsuccessful. Returns: - requests.Response: Object containing the response from Onshape ''' req_headers = self._make_headers(method, path, query, headers) if base_url is None: base_url = self._url url = base_url + path + '?' + urllib.parse.urlencode(query) if self._logging: print(body) print(req_headers) print('request url: ' + url) is_binary = False if 'Accept' in headers and headers['Accept'] == 'application/vnd.onshape.v1+octet-stream': is_binary = True # only parse as json string if we have to body = json.dumps(body) if type(body) == dict else body res = requests.request( method, url, headers=req_headers, data=body, allow_redirects=False, stream=True, timeout=timeout) if res.status_code == 307: location = urlparse(res.headers["Location"]) querystring = parse_qs(location.query) if self._logging: print('request redirected to: ' + location.geturl()) new_query = {} new_base_url = location.scheme + '://' + location.netloc for key in querystring: # won't work for repeated query params new_query[key] = querystring[key][0] return self.request(method, location.path, query=new_query, headers=headers, base_url=new_base_url) elif not 200 <= res.status_code <= 206: if self._logging: print('request failed, details: ' + res.text) else: if self._logging: if is_binary: print('request succeeded') else: print('request succeeded, details: ' + res.text) if check_status: res.raise_for_status() return res
33.50655
115
0.549589
5399301142bba7f00de32fea340036aa796a3a52
10,198
py
Python
examples/moocdl/moocdl.py
Myfanily123456/DecryptLogin
bf11dde3430b3b64ed59d3487803baac48685d4d
[ "MIT" ]
1
2022-02-23T11:58:57.000Z
2022-02-23T11:58:57.000Z
examples/moocdl/moocdl.py
Myfanily123456/DecryptLogin
bf11dde3430b3b64ed59d3487803baac48685d4d
[ "MIT" ]
null
null
null
examples/moocdl/moocdl.py
Myfanily123456/DecryptLogin
bf11dde3430b3b64ed59d3487803baac48685d4d
[ "MIT" ]
null
null
null
''' Function: MOOC下载器 Author: Charles 微信公众号: Charles的皮卡丘 ''' import os import re import time import click import random import shutil import argparse import subprocess from tqdm import tqdm from DecryptLogin import login from urllib.parse import urlencode '''命令行参数解析''' def parseArgs(): parser = argparse.ArgumentParser(description='MOOC下载器') parser.add_argument('--url', dest='url', help='课程链接, 例如: https://www.icourse163.org/course/SJTU-1003381021', type=str, required=True) args = parser.parse_args() return args '''MOOC下载器''' class MOOCDL(): def __init__(self, username='s_sharing@126.com', password='123456', **kwargs): self.infos_return, self.session = self.login(username, password) '''运行''' def run(self, url): # 从课程主页面获取信息 url = url.replace('learn/', 'course/') response = self.session.get(url) term_id = re.findall(r'termId : "(\d+)"', response.text)[0] course_name = ' - '.join(re.findall(r'name:"(.+)"', response.text)) course_name = self.filterBadCharacter(course_name) course_id = re.findall(r'https?://www.icourse163.org/(course|learn)/\w+-(\d+)', url)[0] print(f'从课程主页面获取的信息如下:\n\t[课程名]: {course_name}, [课程ID]: {course_name}, [TID]: {term_id}') # 获取资源列表 resource_list = [] data = { 'tid': term_id, 'mob-token': self.infos_return['results']['mob-token'], } response = self.session.post('https://www.icourse163.org/mob/course/courseLearn/v1', data=data) course_info = response.json() file_types = [1, 3, 4] for chapter_num, chapter in enumerate(course_info.get('results', {}).get('termDto', {}).get('chapters', [])): for lesson_num, lesson in enumerate(chapter.get('lessons', [])) if chapter.get('lessons') is not None else []: for unit_num, unit in enumerate(lesson.get('units', [])): if unit['contentType'] not in file_types: continue savedir = course_name self.checkdir(savedir) for item in [self.filterBadCharacter(chapter['name']), self.filterBadCharacter(lesson['name']), self.filterBadCharacter(unit['name'])]: savedir = os.path.join(savedir, item) self.checkdir(savedir) if unit['contentType'] == file_types[0]: savename = self.filterBadCharacter(unit['name']) + '.mp4' resource_list.append({ 'savedir': savedir, 'savename': savename, 'type': 'video', 'contentId': unit['contentId'], 'id': unit['id'], }) elif unit['contentType'] == file_types[1]: savename = self.filterBadCharacter(unit['name']) + '.pdf' resource_list.append({ 'savedir': savedir, 'savename': savename, 'type': 'pdf', 'contentId': unit['contentId'], 'id': unit['id'], }) elif unit['contentType'] == file_types[2]: if unit.get('jsonContent'): json_content = eval(unit['jsonContent']) savename = self.filterBadCharacter(json_content['fileName']) resource_list.append({ 'savedir': savedir, 'savename': savename, 'type': 'rich_text', 'jsonContent': json_content, }) print(f'成功获得资源列表, 数量为{len(resource_list)}') # 下载对应资源 pbar = tqdm(resource_list) for resource in pbar: pbar.set_description(f'downloading {resource["savename"]}') # --下载视频 if resource['type'] == 'video': data = { 'bizType': '1', 'mob-token': self.infos_return['results']['mob-token'], 'bizId': resource['id'], 'contentType': '1', } while True: response = self.session.post('https://www.icourse163.org/mob/j/v1/mobileResourceRpcBean.getResourceToken.rpc', data=data) if response.json()['results'] is not None: break time.sleep(0.5 + random.random()) signature = response.json()['results']['videoSignDto']['signature'] data = { 'enVersion': '1', 'clientType': '2', 'mob-token': self.infos_return['results']['mob-token'], 'signature': signature, 'videoId': resource['contentId'], } response = self.session.post('https://vod.study.163.com/mob/api/v1/vod/videoByNative', data=data) # ----下载视频 videos = response.json()['results']['videoInfo']['videos'] resolutions, video_url = [3, 2, 1], None for resolution in resolutions: for video in videos: if video['quality'] == resolution: video_url = video["videoUrl"] break if video_url is not None: break if '.m3u8' in video_url: self.m3u8download({ 'download_url': video_url, 'savedir': resource['savedir'], 'savename': resource['savename'], }) else: self.defaultdownload({ 'download_url': video_url, 'savedir': resource['savedir'], 'savename': resource['savename'], }) # ----下载字幕 srt_info = response.json()['results']['videoInfo']['srtCaptions'] if srt_info: for srt_item in srt_info: srt_name = os.path.splitext(resource['savename'])[0] + '_' + srt_item['languageCode'] + '.srt' srt_url = srt_item['url'] response = self.session.get(srt_url) fp = open(os.path.join(resource['savedir'], srt_name), 'wb') fp.write(response.content) fp.close() # --下载PDF elif resource['type'] == 'pdf': data = { 't': '3', 'cid': resource['contentId'], 'unitId': resource['id'], 'mob-token': self.infos_return['results']['mob-token'], } response = self.session.post('http://www.icourse163.org/mob/course/learn/v1', data=data) pdf_url = response.json()['results']['learnInfo']['textOrigUrl'] self.defaultdownload({ 'download_url': pdf_url, 'savedir': resource['savedir'], 'savename': resource['savename'], }) # --下载富文本 elif resource['type'] == 'rich_text': download_url = 'http://www.icourse163.org/mob/course/attachment.htm?' + urlencode(resource['jsonContent']) self.defaultdownload({ 'download_url': download_url, 'savedir': resource['savedir'], 'savename': resource['savename'], }) '''登录''' def login(self, username, password): lg = login.Login() infos_return, session = lg.icourse163(username, password) return infos_return, session '''检查文件夹是否存在''' def checkdir(self, dirpath): if not os.path.exists(dirpath): os.mkdir(dirpath) return False return True '''清除可能出问题的字符''' def filterBadCharacter(self, string): need_removed_strs = ['<em>', '</em>', '<', '>', '\\', '/', '?', ':', '"', ':', '|', '?', '*'] for item in need_removed_strs: string = string.replace(item, '') try: rule = re.compile(u'[\U00010000-\U0010ffff]') except: rule = re.compile(u'[\uD800-\uDBFF][\uDC00-\uDFFF]') string = rule.sub('', string) return string.strip().encode('utf-8', 'ignore').decode('utf-8') '''默认下载器''' def defaultdownload(self, info): try: is_success = False with self.session.get(info['download_url'], stream=True, verify=False) as response: if response.status_code == 200: total_size, chunk_size = int(response.headers['content-length']), 1024 label = '[FileSize]: %0.2fMB' % (total_size / 1024 / 1024) with click.progressbar(length=total_size, label=label) as progressbar: with open(os.path.join(info['savedir'], info['savename']), 'wb') as fp: for chunk in response.iter_content(chunk_size=chunk_size): if chunk: fp.write(chunk) progressbar.update(len(chunk)) is_success = True except: is_success = False return is_success '''下载m3u8文件''' def m3u8download(self, info): savepath = os.path.join(info['savedir'], info['savename']) ext = os.path.splitext(info['savename'])[-1] download_url = info['download_url'] p = subprocess.Popen(f'ffmpeg -i "{download_url}" tmp.{ext}') while True: if subprocess.Popen.poll(p) is not None: shutil.move(f'tmp.{ext}', savepath) return True '''run''' if __name__ == '__main__': args = parseArgs() client = MOOCDL() client.run(args.url)
45.123894
155
0.488429
00ea98fc4c7a2248daeea39702a1737a091a26c4
706
py
Python
tests/mock.py
ushiboy/pi-cmd
1d9cba8f1e82005078e0d737efaa6d628a55f420
[ "MIT" ]
1
2021-06-28T02:15:55.000Z
2021-06-28T02:15:55.000Z
tests/mock.py
ushiboy/picmd
1d9cba8f1e82005078e0d737efaa6d628a55f420
[ "MIT" ]
1
2020-05-20T14:38:06.000Z
2020-05-20T14:44:31.000Z
tests/mock.py
ushiboy/picmd
1d9cba8f1e82005078e0d737efaa6d628a55f420
[ "MIT" ]
null
null
null
class MockSerial: @property def in_waiting(self): if self._cursor < len(self._buffer_datas): return len(self._buffer_datas[self._cursor]) return 0 def __init__(self, buffer_datas=None): if buffer_datas is None: buffer_datas = [] self._buffer_datas = buffer_datas self._cursor = 0 self.written_data = b'' def read(self, size): # ignore size if self._cursor < len(self._buffer_datas): r = self._buffer_datas[self._cursor] self._cursor += 1 return r return b'' def write(self, data): self.written_data += data def close(self): pass
24.344828
56
0.570822
aba3d494758ab59bb84eb39eff03c15da0eafeae
767
py
Python
461.Hamming-Distance.py
mickey0524/leetcode
6bedeb6ff29b02a97178cca464c5fd639951801f
[ "MIT" ]
18
2018-07-14T12:45:37.000Z
2022-03-26T14:51:04.000Z
461.Hamming-Distance.py
mickey0524/leetcode
6bedeb6ff29b02a97178cca464c5fd639951801f
[ "MIT" ]
null
null
null
461.Hamming-Distance.py
mickey0524/leetcode
6bedeb6ff29b02a97178cca464c5fd639951801f
[ "MIT" ]
3
2019-05-29T04:09:22.000Z
2021-06-07T23:37:46.000Z
# https://leetcode.com/problems/hamming-distance/ # # algorithms # Easy (70.58%) # Total Accepted: 253,549 # Total Submissions: 359,219 class Solution(object): def hammingDistance(self, x, y): """ :type x: int :type y: int :rtype: int """ ans = 0 for _ in xrange(32): x_bit, y_bit = x & 1, y & 1 if x_bit != y_bit: ans += 1 x >>= 1 y >>= 1 return ans class Solution1(object): def hammingDistance(self, x, y): """ :type x: int :type y: int :rtype: int """ xor = x ^ y res = 0 while xor: res += 1 xor &= (xor - 1) return res
17.431818
49
0.431551
d0081ba553d230f1a10a1fad0d54c902a4264a35
2,246
py
Python
flow/benchmarks/baselines/us_merge012.py
cuijiaxun/MITC
a226308424237a69b5e938baf72949de9b1b4bf2
[ "MIT" ]
1
2021-06-17T03:25:13.000Z
2021-06-17T03:25:13.000Z
flow/benchmarks/baselines/us_merge012.py
cuijiaxun/MITC
a226308424237a69b5e938baf72949de9b1b4bf2
[ "MIT" ]
null
null
null
flow/benchmarks/baselines/us_merge012.py
cuijiaxun/MITC
a226308424237a69b5e938baf72949de9b1b4bf2
[ "MIT" ]
1
2021-03-18T16:20:57.000Z
2021-03-18T16:20:57.000Z
"""Evaluates the baseline performance of merge without RL control. Baseline is no AVs. """ import numpy as np from flow.core.experiment import Experiment from flow.core.params import InitialConfig from flow.core.params import TrafficLightParams from flow.benchmarks.us_merge_baseline import flow_params def merge_baseline(num_runs): """Run script for all merge baselines. Parameters ---------- num_runs : int number of rollouts the performance of the environment is evaluated over flow_params : dict the flow meta-parameters describing the structure of a benchmark. Must be one of the merge flow_params Returns ------- flow.core.experiment.Experiment class needed to run simulations """ exp_tag = flow_params['exp_tag'] sim_params = flow_params['sim'] vehicles = flow_params['veh'] env_params = flow_params['env'] net_params = flow_params['net'] initial_config = flow_params.get('initial', InitialConfig()) traffic_lights = flow_params.get('tls', TrafficLightParams()) # set the evaluation flag to True env_params.evaluate = True # import the scenario class module = __import__('flow.scenarios', fromlist=[flow_params['scenario']]) scenario_class = getattr(module, flow_params['scenario']) # create the scenario object scenario = scenario_class( name=exp_tag, vehicles=vehicles, net_params=net_params, initial_config=initial_config, traffic_lights=traffic_lights ) # import the environment class module = __import__('flow.envs', fromlist=[flow_params['env_name']]) env_class = getattr(module, flow_params['env_name']) # create the environment object env = env_class(env_params, sim_params, scenario) exp = Experiment(env) results = exp.run(num_runs, env_params.horizon, convert_to_csv=True) avg_speed = np.mean(results['mean_returns']) return avg_speed if __name__ == '__main__': runs = 30 # number of simulations to average over res = merge_baseline(num_runs=runs) print('---------') print('TODO SEEMS WRONG The average speed across {} runs is {}'.format(runs, res))
29.946667
86
0.685663
a6a2bb24074a52a95a5c5a759aed70bedb5affbb
48
py
Python
sanic-utils/sanic_utils/__init__.py
chivandikwa/sanic-utils
cbce8b7eb860d9c47b77d48c77ec6ecd7b13aa13
[ "MIT" ]
null
null
null
sanic-utils/sanic_utils/__init__.py
chivandikwa/sanic-utils
cbce8b7eb860d9c47b77d48c77ec6ecd7b13aa13
[ "MIT" ]
null
null
null
sanic-utils/sanic_utils/__init__.py
chivandikwa/sanic-utils
cbce8b7eb860d9c47b77d48c77ec6ecd7b13aa13
[ "MIT" ]
null
null
null
from sanic_utils import from_json # noqa: F401
24
47
0.791667
e18b7bfacb8f282c34efe5ea99032c07d4c3a6f1
1,312
py
Python
setup.py
clld/ids
ae52459d3b9284e5da8d755b66e2757dbb3875df
[ "Apache-2.0" ]
4
2016-08-26T17:53:33.000Z
2021-11-23T15:05:14.000Z
setup.py
clld/ids
ae52459d3b9284e5da8d755b66e2757dbb3875df
[ "Apache-2.0" ]
13
2015-01-29T13:17:10.000Z
2021-11-23T10:49:02.000Z
setup.py
clld/ids
ae52459d3b9284e5da8d755b66e2757dbb3875df
[ "Apache-2.0" ]
2
2015-12-06T22:03:27.000Z
2021-11-22T12:32:27.000Z
from setuptools import setup, find_packages setup( name='ids', version='0.0', description='ids', long_description='', classifiers=[ "Programming Language :: Python", "Framework :: Pyramid", "Topic :: Internet :: WWW/HTTP", "Topic :: Internet :: WWW/HTTP :: WSGI :: Application", ], author='', author_email='', url='', keywords='web pyramid pylons', packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=[ 'clld>=9.0.0', 'clldmpg>=4.2.0', 'clldutils>=3.9.0', 'clld-glottologfamily-plugin>=4.0.0', 'csvw>=1.11.0', 'pyglottolog>=3.6.0', 'pyconcepticon>=2.8.0', 'pycldf>=1.23.0', 'sqlalchemy>=1.4.23', 'waitress>=1.4.4', ], extras_require={ 'dev': [ 'flake8', 'tox', ], 'test': [ 'psycopg2>=2.8.6', 'pytest>=6.2.5', 'pytest-clld>=1.0.3', 'pytest-mock>=3.6.1', 'pytest-cov>=2.12.1', 'coverage>=5.5', 'selenium>=3.141.0', 'zope.component>=5.0.1', ], }, test_suite="ids", entry_points="""\ [paste.app_factory] main = ids:main """, )
23.428571
63
0.476372
d309498cdbc0049546db403b718365f43d98bc5c
10,945
py
Python
python/phonenumbers/geocoder.py
rodgar-nvkz/python-phonenumbers
4c7c4892211dbc9bc328bc3356b03853eaf993dc
[ "Apache-2.0" ]
2,424
2015-01-05T05:34:45.000Z
2022-03-28T22:37:53.000Z
python/phonenumbers/geocoder.py
rodgar-nvkz/python-phonenumbers
4c7c4892211dbc9bc328bc3356b03853eaf993dc
[ "Apache-2.0" ]
166
2015-01-30T23:59:18.000Z
2022-03-14T21:08:42.000Z
python/phonenumbers/geocoder.py
rodgar-nvkz/python-phonenumbers
4c7c4892211dbc9bc328bc3356b03853eaf993dc
[ "Apache-2.0" ]
345
2015-01-02T00:33:27.000Z
2022-03-26T13:06:57.000Z
"""Phone number geocoding functionality >>> import phonenumbers >>> from phonenumbers.geocoder import description_for_number >>> from phonenumbers.util import u >>> gb_number = phonenumbers.parse("+442083612345", "GB") >>> de_number = phonenumbers.parse("0891234567", "DE") >>> ch_number = phonenumbers.parse("0431234567", "CH") >>> str(description_for_number(gb_number, "en")) 'London' >>> str(description_for_number(gb_number, "fr")) # fall back to English 'London' >>> str(description_for_number(gb_number, "en", region="GB")) 'London' >>> str(description_for_number(gb_number, "en", region="US")) # fall back to country 'United Kingdom' >>> str(description_for_number(de_number, "en")) 'Munich' >>> u('M\u00fcnchen') == description_for_number(de_number, "de") True >>> u('Z\u00fcrich') == description_for_number(ch_number, "de") True >>> str(description_for_number(ch_number, "en")) 'Zurich' >>> str(description_for_number(ch_number, "fr")) 'Zurich' >>> str(description_for_number(ch_number, "it")) 'Zurigo' """ # Based very loosely on original Java code: # java/src/com/google/i18n/phonenumbers/geocoding/PhoneNumberOfflineGeocoder.java # Copyright (C) 2009-2011 The Libphonenumber Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .util import prnt, unicod, u, U_EMPTY_STRING from .phonenumberutil import region_code_for_number, PhoneNumberType from .phonenumberutil import country_mobile_token, national_significant_number, number_type from .phonenumberutil import region_code_for_country_code, region_codes_for_country_code from .phonenumberutil import is_valid_number_for_region, parse, NumberParseException from .phonenumberutil import is_number_type_geographical from .prefix import _prefix_description_for_number try: from .geodata import GEOCODE_DATA, GEOCODE_LONGEST_PREFIX from .geodata.locale import LOCALE_DATA except ImportError: # pragma no cover # Before the generated code exists, the geodata/ directory is empty. # The generation process imports this module, creating a circular # dependency. The hack below works around this. import os import sys if (os.path.basename(sys.argv[0]) == "buildmetadatafromxml.py" or os.path.basename(sys.argv[0]) == "buildprefixdata.py"): prnt("Failed to import generated data (but OK as during autogeneration)", file=sys.stderr) GEOCODE_DATA = {'1': {'en': u('United States')}} GEOCODE_LONGEST_PREFIX = 1 LOCALE_DATA = {'US': {'en': u('United States')}} else: raise __all__ = ['country_name_for_number', 'description_for_valid_number', 'description_for_number'] def country_name_for_number(numobj, lang, script=None, region=None): """Returns the customary display name in the given language for the given territory the given PhoneNumber object is from. If it could be from many territories, nothing is returned. Arguments: numobj -- The PhoneNumber object for which we want to get a text description. lang -- A 2-letter lowercase ISO 639-1 language code for the language in which the description should be returned (e.g. "en") script -- A 4-letter titlecase (first letter uppercase, rest lowercase) ISO script code as defined in ISO 15924, separated by an underscore (e.g. "Hant") region -- A 2-letter uppercase ISO 3166-1 country code (e.g. "GB") The script and region parameters are currently ignored. Returns a text description in the given language code, for the given phone number's region, or an empty string if no description is available.""" region_codes = region_codes_for_country_code(numobj.country_code) if len(region_codes) == 1: return _region_display_name(region_codes[0], lang, script, region) else: region_where_number_is_valid = u("ZZ") for region_code in region_codes: if is_valid_number_for_region(numobj, region_code): # If the number has already been found valid for one region, # then we don't know which region it belongs to so we return # nothing. if region_where_number_is_valid != u("ZZ"): return U_EMPTY_STRING region_where_number_is_valid = region_code return _region_display_name(region_where_number_is_valid, lang, script, region) def _region_display_name(region_code, lang, script=None, region=None): if region_code in LOCALE_DATA: # The Locale data has a set of names for this region, in various languages. name = LOCALE_DATA[region_code].get(lang, "") if name.startswith('*'): # If the location name is "*<other_lang>", this indicates that the # name is held elsewhere, specifically in the [other_lang] entry other_lang = name[1:] name = LOCALE_DATA[region_code].get(other_lang, "") return unicod(name) return U_EMPTY_STRING def description_for_valid_number(numobj, lang, script=None, region=None): """Return a text description of a PhoneNumber object, in the language provided. The description might consist of the name of the country where the phone number is from and/or the name of the geographical area the phone number is from if more detailed information is available. If the phone number is from the same region as the user, only a lower-level description will be returned, if one exists. Otherwise, the phone number's region will be returned, with optionally some more detailed information. For example, for a user from the region "US" (United States), we would show "Mountain View, CA" for a particular number, omitting the United States from the description. For a user from the United Kingdom (region "GB"), for the same number we may show "Mountain View, CA, United States" or even just "United States". This function assumes the validity of the number passed in has already been checked, and that the number is suitable for geocoding. We consider fixed-line and mobile numbers possible candidates for geocoding. Arguments: numobj -- A valid PhoneNumber object for which we want to get a text description. lang -- A 2-letter lowercase ISO 639-1 language code for the language in which the description should be returned (e.g. "en") script -- A 4-letter titlecase (first letter uppercase, rest lowercase) ISO script code as defined in ISO 15924, separated by an underscore (e.g. "Hant") region -- The region code for a given user. This region will be omitted from the description if the phone number comes from this region. It should be a two-letter upper-case CLDR region code. Returns a text description in the given language code, for the given phone number, or an empty string if the number could come from multiple countries, or the country code is in fact invalid.""" number_region = region_code_for_number(numobj) if region is None or region == number_region: mobile_token = country_mobile_token(numobj.country_code) national_number = national_significant_number(numobj) if mobile_token != U_EMPTY_STRING and national_number.startswith(mobile_token): # In some countries, eg. Argentina, mobile numbers have a mobile token # before the national destination code, this should be removed before # geocoding. national_number = national_number[len(mobile_token):] region = region_code_for_country_code(numobj.country_code) try: copied_numobj = parse(national_number, region) except NumberParseException: # If this happens, just re-use what we had. copied_numobj = numobj area_description = _prefix_description_for_number(GEOCODE_DATA, GEOCODE_LONGEST_PREFIX, copied_numobj, lang, script, region) else: area_description = _prefix_description_for_number(GEOCODE_DATA, GEOCODE_LONGEST_PREFIX, numobj, lang, script, region) if area_description != "": return area_description else: # Fall back to the description of the number's region return country_name_for_number(numobj, lang, script, region) else: # Otherwise, we just show the region(country) name for now. return _region_display_name(number_region, lang, script, region) # TODO: Concatenate the lower-level and country-name information in an # appropriate way for each language. def description_for_number(numobj, lang, script=None, region=None): """Return a text description of a PhoneNumber object for the given language. The description might consist of the name of the country where the phone number is from and/or the name of the geographical area the phone number is from. This function explicitly checks the validity of the number passed in Arguments: numobj -- The PhoneNumber object for which we want to get a text description. lang -- A 2-letter lowercase ISO 639-1 language code for the language in which the description should be returned (e.g. "en") script -- A 4-letter titlecase (first letter uppercase, rest lowercase) ISO script code as defined in ISO 15924, separated by an underscore (e.g. "Hant") region -- The region code for a given user. This region will be omitted from the description if the phone number comes from this region. It should be a two-letter upper-case CLDR region code. Returns a text description in the given language code, for the given phone number, or an empty string if no description is available.""" ntype = number_type(numobj) if ntype == PhoneNumberType.UNKNOWN: return "" elif not is_number_type_geographical(ntype, numobj.country_code): return country_name_for_number(numobj, lang, script, region) return description_for_valid_number(numobj, lang, script, region) if __name__ == '__main__': # pragma no cover import doctest doctest.testmod()
48.429204
99
0.696848
ba1b045a2f8bddbee6061c434ea2b4c9f5c2f60c
952
py
Python
readthedocs/payments/utils.py
agarwalrounak/readthedocs.org
4911600c230809bd6fb3585d1903121db2928ad6
[ "MIT" ]
10
2019-05-21T03:00:40.000Z
2022-03-12T11:24:39.000Z
readthedocs/payments/utils.py
agarwalrounak/readthedocs.org
4911600c230809bd6fb3585d1903121db2928ad6
[ "MIT" ]
12
2019-12-05T04:47:01.000Z
2022-01-09T00:56:58.000Z
readthedocs/payments/utils.py
agarwalrounak/readthedocs.org
4911600c230809bd6fb3585d1903121db2928ad6
[ "MIT" ]
5
2019-07-08T23:45:10.000Z
2021-02-26T07:29:49.000Z
# -*- coding: utf-8 -*- """ Payment utility functions. These are mostly one-off functions. Define the bulk of Stripe operations on :py:class:`readthedocs.payments.forms.StripeResourceMixin`. """ import stripe from django.conf import settings stripe.api_key = getattr(settings, 'STRIPE_SECRET', None) def delete_customer(customer_id): """Delete customer from Stripe, cancelling subscriptions.""" try: customer = stripe.Customer.retrieve(customer_id) return customer.delete() except stripe.error.InvalidRequestError: pass def cancel_subscription(customer_id, subscription_id): """Cancel Stripe subscription, if it exists.""" try: customer = stripe.Customer.retrieve(customer_id) if hasattr(customer, 'subscriptions'): subscription = customer.subscriptions.retrieve(subscription_id) return subscription.delete() except stripe.error.StripeError: pass
27.2
75
0.712185
4e983584f89e0e6a328c365c38be256664a4d7ed
116
py
Python
web/templatetags/to_i.py
otoyo/satisfactory-mobile
60d3fba20031bfbc795d4ff831370c27834c1d21
[ "MIT" ]
null
null
null
web/templatetags/to_i.py
otoyo/satisfactory-mobile
60d3fba20031bfbc795d4ff831370c27834c1d21
[ "MIT" ]
null
null
null
web/templatetags/to_i.py
otoyo/satisfactory-mobile
60d3fba20031bfbc795d4ff831370c27834c1d21
[ "MIT" ]
null
null
null
from django import template register = template.Library() @register.filter def to_i(value): return int(value)
14.5
29
0.75
a4407848923c8c6ff2de703135b7b7bea3e85333
3,689
py
Python
library/cartridge_get_disabled_instances.py
tarantool/ansible-cartridge
14d86752d582f43f0d8efb27dbaa1175ff6e8ac2
[ "BSD-2-Clause" ]
17
2019-09-02T15:31:56.000Z
2022-03-29T18:49:59.000Z
library/cartridge_get_disabled_instances.py
tarantool/ansible-cartridge
14d86752d582f43f0d8efb27dbaa1175ff6e8ac2
[ "BSD-2-Clause" ]
171
2019-10-24T15:34:34.000Z
2022-03-29T09:18:46.000Z
library/cartridge_get_disabled_instances.py
tarantool/ansible-cartridge
14d86752d582f43f0d8efb27dbaa1175ff6e8ac2
[ "BSD-2-Clause" ]
14
2019-12-23T08:27:06.000Z
2021-07-06T15:53:49.000Z
#!/usr/bin/env python from ansible.module_utils.helpers import Helpers as helpers argument_spec = { 'module_hostvars': {'required': True, 'type': 'dict'}, 'play_hosts': {'required': True, 'type': 'list'}, 'ignore_split_brain': {'required': False, 'type': 'bool', 'default': False}, } def get_disabled_instances_from_instance_config(instance_vars): return instance_vars['instance_info']['disabled_instances'] def get_topology_checksum_from_instance_config(instance_vars): return instance_vars['instance_info']['topology_checksum'] def config_mismatched(module_hostvars, instance_name, other_hosts): current_checksum = get_topology_checksum_from_instance_config(module_hostvars[instance_name]) for other_name in other_hosts: other_checksum = get_topology_checksum_from_instance_config(module_hostvars[other_name]) if current_checksum != other_checksum: return True return False def count_cluster_disabled_instances(module_hostvars, play_hosts, ignore_split_brain=False): config_mismatch_count = 0 healthy_count = 0 votes_to_disable = {} play_hosts = list(filter( # Disabled instances is None on stateboard and not started instances lambda name: all([ get_disabled_instances_from_instance_config(module_hostvars[name]) is not None, get_topology_checksum_from_instance_config(module_hostvars[name]) is not None, ]), play_hosts, )) for instance_name in play_hosts: disabled_instances = get_disabled_instances_from_instance_config(module_hostvars[instance_name]) not_disabled_names = list(filter(lambda other_name: other_name not in disabled_instances, play_hosts)) if config_mismatched(module_hostvars, instance_name, not_disabled_names): config_mismatch_count += 1 continue healthy_count += 1 for disabled_instance in disabled_instances: votes_to_disable[disabled_instance] = votes_to_disable.get(disabled_instance, 0) + 1 if healthy_count == 0 and config_mismatch_count > 0: return None, 'All instances in cluster has different topology configs' final_disabled_instances = [] split_brain_detected = False for name, score in votes_to_disable.items(): if score >= float(healthy_count) / 2: final_disabled_instances.append(name) if score != healthy_count: split_brain_detected = True if split_brain_detected: msg = "It seems that you have split brain in your cluster." if ignore_split_brain: helpers.warn(msg) else: msg += " Set 'cartridge_ignore_split_brain' flag to ignore this error." return None, msg return sorted(final_disabled_instances), None def count_inventory_disabled_instances(module_hostvars, play_hosts): return sorted(filter( lambda name: helpers.is_disabled(module_hostvars[name]), play_hosts, )) def count_disabled_instances(params): module_hostvars = params['module_hostvars'] play_hosts = params['play_hosts'] ignore_split_brain = params['ignore_split_brain'] inventory_disabled_instances = count_inventory_disabled_instances(module_hostvars, play_hosts) cluster_disabled_instances, err = count_cluster_disabled_instances(module_hostvars, play_hosts, ignore_split_brain) if err: return helpers.ModuleRes(failed=True, msg=err) return helpers.ModuleRes(changed=False, inventory=inventory_disabled_instances, cluster=cluster_disabled_instances) if __name__ == '__main__': helpers.execute_module(argument_spec, count_disabled_instances)
35.815534
119
0.73299
fa8bfdd43fa8170c8fefb81e61066ab0f0503372
143
py
Python
main.py
dclavijo45/mvc-flask-template
4904047ad4cd0679ce634b0a92ec5fcdd6152f15
[ "MIT" ]
null
null
null
main.py
dclavijo45/mvc-flask-template
4904047ad4cd0679ce634b0a92ec5fcdd6152f15
[ "MIT" ]
null
null
null
main.py
dclavijo45/mvc-flask-template
4904047ad4cd0679ce634b0a92ec5fcdd6152f15
[ "MIT" ]
null
null
null
from config import PORT, HOST, DEBUG from __init__ import app if __name__ == "__main__": app.run(host=HOST, port=PORT, debug=bool(DEBUG))
23.833333
52
0.727273
6e8f29999283e6ae9da9895523043178413a0b0c
4,550
py
Python
parse_display.py
leiflundgren/mx-trace-print
6523b63ef7d196fb761ee17bf6576174c0d9ec40
[ "Apache-2.0" ]
null
null
null
parse_display.py
leiflundgren/mx-trace-print
6523b63ef7d196fb761ee17bf6576174c0d9ec40
[ "Apache-2.0" ]
2
2019-01-21T12:54:04.000Z
2019-01-28T16:51:55.000Z
parse_display.py
leiflundgren/mx-trace-print
6523b63ef7d196fb761ee17bf6576174c0d9ec40
[ "Apache-2.0" ]
null
null
null
import io import tools class ParseDisplayOutput: class Individual: def __init__(self, dict) -> None: self.dict = dict def __str__(self) -> str: return "{id}: {name} {state}".format(id=self.id, name=self.unit_name, state=self.state) def get(self, attrName) -> str: val = self.dict.get(attrName) return ( None if val is None else val.strip() ) @property def is_header(self) -> bool: return self.dict.find('Version') is not None @property def id(self) -> str: return self.get('Trace ind') @property def state(self) -> str: return self.get('State') @property def stored(self) -> str: return self.get('Stored') @property def size(self) -> str: return self.get('Size per lim') @property def trace_type(self) -> str: return self.get('Type') @property def rotating(self) -> str: return self.get('Rotating') @property def textlevel(self) -> str: return self.get('Textlevel') @property def lim(self) -> str: return self.get('Lim no') @property def unit_no(self) -> str: return self.get('Unit no') @property def unit_name(self) -> str: return self.get('Unit name') @property def time_mark(self) -> str: return self.get('Time mark') @property def by_user(self) -> str: return self.get('by user') # @property # def (self) -> str: # return self.dict[''].strip() def __init__(self, source) -> None: self.source = tools.read(source) if isinstance(self.source, str): self.source = self.source.splitlines() parts = [] #List[str] self.individuals = [] # List['ParseDisplayOutput.Individual'] in_header = True for line in self.source: line = line.strip() ## skip header, until a line starts with Version if in_header: if line.startswith('Version'): in_header = False else: continue if line.startswith('Version'): mpos = line.index(', Market:') self.version = line[8:mpos].strip() self.market = line[mpos+9:].strip() continue if line.startswith('First'): last = line.find('Last:')-1 while last > 0 and line[last] == ' ': last=last-1 if last>0 and line[last] != ',': line = line[:last+1] + ',' + line[last+1:] if len(line) > 0 : parts.extend(map(str.strip, line.split(','))) else: individual = self.parse_individual(parts) if individual is not None: self.individuals.append(individual) parts = [] def __str__(self) -> str: return "\n".join( [str(i) for i in self.individuals ] ) @property def is_valid(self) -> bool: return not self.individuals is None @property def first_trace(self) -> str: return self.individuals[0].get('First') @property def last_trace(self) -> str: return self.individuals[0].get('Last') def get_individual(self, id) -> 'Individual': if isinstance(id, int): return self.individuals[id] if id < len(self.individuals) else None for ind in self.individuals[1:]: # Avoid header if ind.id == id or ind.unit_name == id: return ind return None ### convenience method that returns the id of Individual matching unitname, or None def get_id(self, unitname) -> str: ind = self.get_individual(unitname) return ind.id if not ind is None else None ## Trace ind: 3, State: setup , Stored: 0, Size per lim: 5000, Type : unit-trace , Rotating: on , Textlevel: all, Lim no : 1, Unit no: 0206, Unit name: CMP , Time mark: 2018-12-13 16:46:11 (CET), by user: mxone_admin @staticmethod def parse_individual(parts) -> 'Individual': d = dict(map(str.strip, itm.split(':', 1)) for itm in parts) return ParseDisplayOutput.Individual(d) if len(d) > 0 else None
33.455882
246
0.520659
f053e128fd90e83ac18d9161549734473560349a
6,954
py
Python
MP3/mp3.py
AndrewQuinn2020/EECS-332-MPs
ee164e98bd6b1b05296e4abec69a8b5d5de2581b
[ "MIT" ]
null
null
null
MP3/mp3.py
AndrewQuinn2020/EECS-332-MPs
ee164e98bd6b1b05296e4abec69a8b5d5de2581b
[ "MIT" ]
null
null
null
MP3/mp3.py
AndrewQuinn2020/EECS-332-MPs
ee164e98bd6b1b05296e4abec69a8b5d5de2581b
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # Anything not directly related to processing here import sys from pathlib import Path import matplotlib.pyplot as plt import numpy as np from mp3_helper import * from PIL import Image np.set_printoptions(threshold=sys.maxsize) np.set_printoptions(linewidth=1000) def img2dict(data): """Construct a histogram of the count of every value found in the 2D array data, in a dictionary, along with the minimum and maximum greyscale value it found in the data.""" hist_data = {} for i in range(0, data.shape[0]): for j in range(0, data.shape[1]): if data[i, j] not in hist_data.keys(): hist_data[data[i, j]] = 1 else: hist_data[data[i, j]] += 1 return hist_data def hist2matrix(hist): """Returns a |hist|-by-2 matrix, with keys on top and values on bottom.""" m = np.zeros((len(hist), 2)).astype(int) # print(m.shape) c = 0 for key in sorted(hist.keys()): m[c, 0] = key m[c, 1] = hist[key] c += 1 return m def matrix2cmd(matrix_in): """Given an n*2 matrix of keys in column 0 and integer values in column 1, returns a new n*2 matrix of the same keys, but the values have been summed up.""" matrix_out = np.zeros_like(matrix_in) c = 0 for i in range(0, matrix_in.shape[0]): c += matrix_in[i, 1] # print(c) matrix_out[i, 0] = matrix_in[i, 0] matrix_out[i, 1] = c return matrix_out def cmd2plottable(cmd_in): """Given the output of matrix2cmd, constructs a 256*2 matrix for plotting the cumulative distribution function.""" matrix_out = np.zeros((256, 2)) cumval = 0 nextval = 0 for i in range(0, 256): matrix_out[i, 0] = i matrix_out[i, 1] = cumval if matrix_out[i, 0] == cmd_in[nextval, 0]: matrix_out[i, 1] = cmd_in[nextval, 1] cumval = matrix_out[i, 1] if nextval < cmd_in.shape[0] - 1: nextval += 1 return matrix_out def cmd2dict(cmd): """Returns a dictionary of what to replace each value by.""" pixel_count = cmd[cmd.shape[0] - 1, cmd.shape[1] - 1] scaling_dict = dict() for i in range(0, cmd.shape[0]): scaling_dict[cmd[i, 0]] = round( ((cmd[i, 1] - cmd[0, 1]) / (pixel_count - cmd[0, 1])) * 255 ) return scaling_dict if __name__ == "__main__": hello() for image in test_images: img_data = load_gs(image) hist_data = img2dict(img_data) hist = hist2matrix(hist_data) hist_cmd = matrix2cmd(hist) plottable_cmd = cmd2plottable(hist_cmd) hist_eq_dict = cmd2dict(hist_cmd) results_data = np.zeros_like(img_data).astype(int) for i in range(0, results_data.shape[0]): for j in range(0, results_data.shape[1]): results_data[i, j] = hist_eq_dict[img_data[i, j]] results_hist = img2dict(results_data) results_hist_matrix = hist2matrix(results_hist) results_hist_cmd = matrix2cmd(results_hist_matrix) plottable_results_cmd = cmd2plottable(results_hist_cmd) test_results_path = save_gs( results_data, Path(image).stem, dir=test_results_dir ) print("Processed image saved to: {}".format(test_results_path)) # Let's plot some histograms. fig = plt.figure() ax1 = fig.add_subplot(111) ax1.set_title("Pixels per color value: `{}`".format(Path(image).stem + ".bmp")) ax1.set_xlabel("Pixel color value ($v \in \{0, 1, \dots, 255\}$)") ax1.set_ylabel("# / pixels per grayscale value") ln1 = ax1.bar( hist_data.keys(), hist_data.values(), alpha=0.6, color="r", label="Original" ) ln2 = ax1.bar( results_hist.keys(), results_hist.values(), alpha=0.6, color="b", label="EQ'd", ) ax2 = ax1.twinx() ln3 = ax2.bar( plottable_cmd[:, 0], plottable_cmd[:, 1], alpha=0.1, color="g", label="cdf (Original)", ) ln4 = ax2.bar( plottable_results_cmd[:, 0], plottable_results_cmd[:, 1], alpha=0.1, color="purple", label="cdf (EQ'd)", ) plt.legend( [ln1, ln2, ln3, ln4], [ln1.get_label(), ln2.get_label(), ln3.get_label(), ln4.get_label()], ) plt.tight_layout() plt.savefig(os.path.join(test_results_dir, Path(image).stem + "_hist.svg")) plt.savefig(os.path.join(test_results_dir, Path(image).stem + "_hist.jpg")) plt.close() for image in images: img_data = load_gs(image) hist_data = img2dict(img_data) hist = hist2matrix(hist_data) hist_cmd = matrix2cmd(hist) plottable_cmd = cmd2plottable(hist_cmd) hist_eq_dict = cmd2dict(hist_cmd) results_data = np.zeros_like(img_data).astype(int) for i in range(0, results_data.shape[0]): for j in range(0, results_data.shape[1]): results_data[i, j] = hist_eq_dict[img_data[i, j]] results_hist = img2dict(results_data) results_hist_matrix = hist2matrix(results_hist) results_hist_cmd = matrix2cmd(results_hist_matrix) plottable_results_cmd = cmd2plottable(results_hist_cmd) results_path = save_gs(results_data, Path(image).stem) print("Processed image saved: {}".format(results_path)) # Let's plot some histograms. fig = plt.figure() ax1 = fig.add_subplot(111) ax1.set_title("Pixels per color value: `{}`".format(Path(image).stem + ".bmp")) ax1.set_xlabel("Pixel color value ($v \in \{0, 1, \dots, 255\}$)") ax1.set_ylabel("Number of pixels") ln1 = ax1.bar( hist_data.keys(), hist_data.values(), alpha=0.6, color="r", label="Original" ) ln2 = ax1.bar( results_hist.keys(), results_hist.values(), alpha=0.6, color="b", label="EQ'd", ) ax2 = ax1.twinx() ln3 = ax2.bar( plottable_cmd[:, 0], plottable_cmd[:, 1], alpha=0.1, color="g", label="cdf (Original)", ) ln4 = ax2.bar( plottable_results_cmd[:, 0], plottable_results_cmd[:, 1], alpha=0.1, color="purple", label="cdf (EQ'd)", ) plt.legend( [ln1, ln2, ln3, ln4], [ln1.get_label(), ln2.get_label(), ln3.get_label(), ln4.get_label()], ) plt.tight_layout() plt.savefig(os.path.join(results_dir, Path(image).stem + "_hist.svg")) plt.savefig(os.path.join(results_dir, Path(image).stem + "_hist.jpg")) plt.close()
30.234783
88
0.568881
45019d83b315ffa8eeae4c46657baa6ed9afbded
923
py
Python
allennlp/modules/token_embedders/pretrained_transformer_embedder.py
donna-legal/allennlp
fd1e3cfaed07ec3ba03b922d12eee47f8be16837
[ "Apache-2.0" ]
2
2019-12-03T20:04:56.000Z
2021-03-29T10:38:06.000Z
allennlp/modules/token_embedders/pretrained_transformer_embedder.py
donna-legal/allennlp
fd1e3cfaed07ec3ba03b922d12eee47f8be16837
[ "Apache-2.0" ]
null
null
null
allennlp/modules/token_embedders/pretrained_transformer_embedder.py
donna-legal/allennlp
fd1e3cfaed07ec3ba03b922d12eee47f8be16837
[ "Apache-2.0" ]
2
2019-12-04T16:55:13.000Z
2019-12-06T18:47:15.000Z
from overrides import overrides from transformers.modeling_auto import AutoModel import torch from allennlp.modules.token_embedders.token_embedder import TokenEmbedder @TokenEmbedder.register("pretrained_transformer") class PretrainedTransformerEmbedder(TokenEmbedder): """ Uses a pretrained model from ``transformers`` as a ``TokenEmbedder``. """ def __init__(self, model_name: str) -> None: super().__init__() self.transformer_model = AutoModel.from_pretrained(model_name) # I'm not sure if this works for all models; open an issue on github if you find a case # where it doesn't work. self.output_dim = self.transformer_model.config.hidden_size @overrides def get_output_dim(self): return self.output_dim def forward(self, token_ids: torch.LongTensor) -> torch.Tensor: # type: ignore return self.transformer_model(token_ids)[0]
32.964286
95
0.728061
5a610adcf6fb461d2175f7ca917d41c401c4b549
27,401
py
Python
whitebot.py
kittykatz9/whitebot
bed4b41800249286d95832fa15c49364831d34b5
[ "MIT" ]
null
null
null
whitebot.py
kittykatz9/whitebot
bed4b41800249286d95832fa15c49364831d34b5
[ "MIT" ]
null
null
null
whitebot.py
kittykatz9/whitebot
bed4b41800249286d95832fa15c49364831d34b5
[ "MIT" ]
1
2018-10-09T18:58:49.000Z
2018-10-09T18:58:49.000Z
import discord import datetime import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from discord.ext import commands import json pending = [] # https://discordapp.com/oauth2/authorize?client_id=498889371030781952&scope=bot&permissions=268512342 # https://discordapp.com/oauth2/authorize?client_id=498964999918583820&scope=bot&permissions=268512306 now = datetime.datetime.now() with open("stats.json") as f: stats = json.load(f) with open("config.json") as f: config = json.load(f) with open("config.json") as f: config = json.load(f) TOKEN = config['LOGIN'][0]['TOKEN'] PREFIX = config['LOGIN'][0]['PREFIX'] print(PREFIX) client = commands.Bot(command_prefix=PREFIX) def save_stats_backup(stats): with open("stats_backup.json", "w") as f: f.write(json.dumps(stats)) def save_stats(stats): with open("stats.json", "w") as f: f.write(json.dumps(stats)) @client.event async def on_ready(): print("Bot is Ready") @client.event async def on_message(message): await client.process_commands(message) @client.event async def on_member_remove(member): if member.mention in pending: pending.remove(member.mention) @client.event async def on_member_join(member): role = discord.utils.get(member.server.roles, name="pending") await client.add_roles(member, role) pending.append(member.mention) @client.event async def on_member_kick(member): role = discord.utils.get(member.server.roles, name="pending") if member.mention in pending: time = now.strftime("%Y-%m-%d %H:%M") if role in member.roles: y = str(now.year) m = str(now.month) d = str(now.day) await client.kick(ctx.message.mentions[0]) stats['Statistics'][0]['Applicants'] += 1 stats['Statistics'][0]['Users Denied'] += 1 stats['Applied'][0][str(member)] = time stats['Denied'][0][str(member)] = time stats['Data Applied'][0][y][0][m][0][d] += 1 stats['Data Denied'][0][y][0][m][0][d] += 1 save_stats(stats) await client.say("User " + member + " denied") pending.remove(member) @client.event async def on_member_ban(member): role = discord.utils.get(member.server.roles, name="pending") if member.mention in pending: time = now.strftime("%Y-%m-%d %H:%M") if role in member.roles: y = str(now.year) m = str(now.month) d = str(now.day) await client.kick(ctx.message.mentions[0]) stats['Statistics'][0]['Applicants'] += 1 stats['Statistics'][0]['Users Denied'] += 1 stats['Applied'][0][str(member)] = time stats['Denied'][0][str(member)] = time stats['Data Applied'][0][y][0][m][0][d] += 1 stats['Data Denied'][0][y][0][m][0][d] += 1 save_stats(stats) await client.say("User " + member + " denied") pending.remove(member) @client.event async def on_member_update(before, member): role = discord.utils.get(member.server.roles, name="pending") if role in before.roles and role not in member.roles: if member.mention in pending: time = now.strftime("%Y-%m-%d %H:%M") y = str(now.year) m = str(now.month) d = str(now.day) await client.remove_roles(member, role) stats['Statistics'][0]['Applicants'] += 1 stats['Statistics'][0]['Users Accepted'] += 1 stats['Applied'][0][str(member)] = time stats['Accepted'][0][str(member)] = time stats['Data Applied'][0][y][0][m][0][d] += 1 stats['Data Accepted'][0][y][0][m][0][d] += 1 save_stats(stats) await client.say("User", member, "accepted") pending.remove(member.mention) @client.command(pass_context=True) async def accept(ctx): if ctx.message.author.server_permissions.administrator: try: if ctx.message.mentions[0] in ctx.message.server.members: print("valid") channel = discord.utils.get(ctx.message.server.channels, id="498971465144860672") if ctx.message.channel == channel: role = discord.utils.get(ctx.message.server.roles, name="pending") member = ctx.message.mentions[0] time = now.strftime("%Y-%m-%d %H:%M") if role in member.roles: y = str(now.year) m = str(now.month) d = str(now.day) pending.remove(member) await client.remove_roles(member, role) stats['Statistics'][0]['Applicants'] += 1 stats['Statistics'][0]['Users Accepted'] += 1 stats['Applied'][0][str(member)] = time stats['Accepted'][0][str(member)] = time stats['Data Applied'][0][y][0][m][0][d] += 1 stats['Data Accepted'][0][y][0][m][0][d] += 1 save_stats(stats) await client.say("User " + member + " accepted") else: await client.say("User Not pending...") except IndexError: await client.say("You must mention someone...") else: await client.say("You can't use this... Not admin...") await client.delete_message(ctx.message) @client.command(pass_context=True) async def deny(ctx): if ctx.message.author.server_permissions.administrator: try: if ctx.message.mentions[0] in ctx.message.server.members: print("valid") save_stats_backup(stats) role = discord.utils.get(ctx.message.server.roles, name="pending") channel = discord.utils.get(ctx.message.server.channels, id="498971465144860672") if ctx.message.channel == channel: member = ctx.message.mentions[0] time = now.strftime("%Y-%m-%d %H:%M") if role in member.roles: y = str(now.year) m = str(now.month) d = str(now.day) pending.remove(member) await client.kick(ctx.message.mentions[0]) stats['Statistics'][0]['Applicants'] += 1 stats['Statistics'][0]['Users Denied'] += 1 stats['Applied'][0][str(member)] = time stats['Denied'][0][str(member)] = time stats['Data Applied'][0][y][0][m][0][d] += 1 stats['Data Denied'][0][y][0][m][0][d] += 1 save_stats(stats) await client.say("User " + member + " denied") else: await client.say("User already denied him") except IndexError: await client.say("You must mention someone...") else: await client.say("You can't use this... Not admin...") await client.delete_message(ctx.message) # @client.command(pass_context=True) # async def ping(ctx): # now = datetime.datetime.utcnow() # diff = str(ctx.message.timestamp - now) # final = [] # for i in diff: # if i == ":" or i == "0": # continue # else: # final.append(i) # final = ''.join(str(x) for x in final) # embed = discord.Embed(title="Ping: " '{:.2f}ms'.format(float(final)*100)) # await client.say(embed=embed) @client.command(pass_context=True) async def showstats(ctx): if ctx.message.author.server_permissions.administrator: accepted = int(stats['Statistics'][0]['Users Accepted']) denied = int(stats['Statistics'][0]['Users Denied']) applied = int(stats['Statistics'][0]['Applicants']) try: acceptedP = (accepted/applied) * 100 deniedP = (denied/applied) * 100 except ZeroDivisionError: acceptedP = 0 deniedP = 0 embed = discord.Embed(title="Statistics", colour=discord.Colour(0xf0d434)) embed.add_field(name="Users Applied (total)", value=applied) embed.add_field(name="Users Accepted (total/percentage)", value="{} / {:.2f}%".format(accepted, acceptedP)) embed.add_field(name="Users Denied (total/percentage)", value="{} / {:.2f}%".format(denied, deniedP)) await client.say(embed=embed) else: await client.say("You can't use this... Not admin...") await client.delete_message(ctx.message) @client.command(pass_context=True) async def showaccepted(ctx): embed = discord.Embed(title="Statistics", colour=discord.Colour(0xf0d434)) embed.set_author(name="Users Accepted", icon_url="https://cdn.discordapp.com/embed/avatars/0.png") for i in stats['Accepted'][0]: embed.add_field(name=i, value=stats['Accepted'][0][i]) await client.say(embed=embed) await client.delete_message(ctx.message) @client.command(pass_context=True) async def showdenied(ctx): embed = discord.Embed(title="Users Denied", colour=discord.Colour(0xf0d434)) embed.set_author(name="Users Denied", icon_url="https://cdn.discordapp.com/embed/avatars/0.png") for i in stats['Denied'][0]: embed.add_field(name=i, value=stats['Denied'][0][i]) await client.say(embed=embed) await client.delete_message(ctx.message) @client.command(pass_context=True) async def showapplied(ctx): embed = discord.Embed(title="Users Applied", colour=discord.Colour(0xf0d434)) embed.set_author(name="Users Applied", icon_url="https://cdn.discordapp.com/embed/avatars/0.png") for i in stats['Applied'][0]: embed.add_field(name=i, value=stats['Applied'][0][i]) await client.say(embed=embed) await client.delete_message(ctx.message) @client.command(pass_context=True) async def showgraph(ctx, *args): """ This command has 4 possible arguments: There are 3 types of graphs: Plot graphs Pie graphs Bar graph To make a plot graph: .showgraph [year] [month1] [month2] <plot> All of these arguments are optional but give different outputs. Example: .showgraph 2018 (Shows a plot graph of the whole year) .showgraph 2018 1 2 (Shows a plot graph of Jan and Feb) .showgraph 2018 1 (Shows a plot graph for Jan) .showgraph 2018 1 plot (Same as before) .showgraph now (Shows a plot graph for the current month) To make a Pie graph: .showgraph pie Pie graphs calculate using all the statistics, so there are no other options. To make a Bar graph: .showgraph [year] [month1] [month2] <bar> Bar graphs only work with more than one month, so you have to always specify the months unless you want to get a chart for the whole year. Example: .showgraph 2018 1 5 bar (Shows a bar graph for the months Jan through May) .showgraph 2018 bar (Shows a bar graph for the whole year) Any questions or improvements? Talk to Kitty ^^ xoxo """ m = 0 m2 = 0 try: arg1 = args[0] yr = arg1 arg2 = args[1] m = arg2 arg3 = args[2] m2 = arg3 arg4 = args[3] except: pass if len(args) > 4: return await client.say("Too many arguments...") elif len(args) == 4: try: if int(arg1) > 2020 or int(arg1) < 2018 or int(arg2) > 12 or int(arg2) < 1 or int(arg3) > 12 or int(arg3) < 1: return await client.say("Expected year between 2018 and 2020. Read up on instructions.") else: if str(arg4).lower() == 'plot': graphtype = 'plot' elif str(arg4).lower() == 'bar': graphtype = 'bar' elif str(arg4).lower() == 'pie': graphtype = 'pie' except TypeError: print(arg1, arg2, arg3, arg4) print(type(arg1), type(arg2), type(arg3), type(arg4)) return await client.say("Expected a number. Read up on instructions") elif len(args) == 3: try: if int(arg1) > 2020 or int(arg1) < 2018 or int(arg2) > 12 or int(arg2) < 1: return await client.say("Expected year between 2018 and 2020 and a month between 1 and 12\n. Read up on instructions.") if str(arg3).lower() == 'plot': graphtype = 'plot' m2 = 0 elif str(arg3).lower() == 'bar': graphtype = 'bar' m2 = 0 elif str(arg3).lower() == 'pie': graphtype = 'pie' m2 = 0 else: if int(arg3) > 12 or int(arg3) < 1: return await client.say("Expected a month between 1 and 12 Read up on instructions.") graphtype = 'plot' m2 = 0 except TypeError: return await client.say("Expected a month or a graph type. Read up on instructions") except UnboundLocalError: graphtype = 'plot' m2 = 0 elif len(args) == 2: try: if int(arg1) > 2020 or int(arg1) < 2018: return await client.say("Expected year between 2018 and 2020\n. Read up on instructions.") if str(arg2).lower() == 'plot': graphtype = 'plot' elif str(arg2).lower() == 'bar': graphtype = 'bar' elif str(arg2).lower() == 'pie': graphtype = 'pie' else: if arg3: if int(arg3) > 12 or int(arg3) < 1: return await client.say("Expected a year between 2018 and 2020. Read up on instructions.") else: graphtype = 'plot' except TypeError: return await client.say("Expected a year between 2018 and 2020 or a graph type. Read up on instructions") except UnboundLocalError: graphtype = 'plot' except ValueError: if str(arg2).lower() == 'plot': graphtype = 'plot' elif str(arg2).lower() == 'bar': graphtype = 'bar' elif str(arg2).lower() == 'pie': graphtype = 'pie' else: graphtype = 'plot' elif len(args) == 1: try: if int(arg1) > 2020 or int(arg1) < 2018: return await client.say("Expected a year between 2018 and 2020. Read instructions") graphtype = 'plot' m = 1 m2 = 12 realmonth = 'January' realmonth2 = 'December' except TypeError: if str(arg1).lower() == 'plot': graphtype = plot elif str(arg1).lower() == 'bar': graphtype = 'bar' elif str(arg1).lower() == 'pie': graphtype = 'pie' elif str(arg1).lower() == 'now': yr = now.year m = now.month realmonth = now.strftime("%B") m2 = 0 else: return await client.say("Expected a year between 2018 and 2020 or a graph type. Read up on instructions.") except ValueError: if str(arg1).lower() == 'plot': graphtype = 'plot' elif str(arg1).lower() == 'bar': graphtype = 'bar' elif str(arg1).lower() == 'pie': graphtype = 'pie' else: graphtype = 'plot' else: return await client.say("Type '{}help showgraph' if you are in doubt...".format(PREFIX)) if m == "1": realmonth = "January" if m2 == "1": realmonth = "January" if m == "2": realmonth = "February" if m2 == "2": realmonth2 = "February" if m == "3": realmonth = "March" if m2 == "3": realmonth2 = "March" if m == "4": realmonth = "April" if m2 == "4": realmonth2 = "April" if m == "5": realmonth = "May" if m2 == "5": realmonth2 = "May" if m == "6": realmonth = "June" if m2 == "6": realmonth2 = "June" if m == "7": realmonth = "July" if m2 == "7": realmonth2 = "July" if m == "8": realmonth = "August" if m2 == "8": realmonth2 = "August" if m == "9": realmonth = "September" if m2 == "9": realmonth2 = "September" if m == "10": realmonth = "October" if m2 == "10": realmonth2 = "October" if m == "11": realmonth = "November" if m2 == "11": realmonth2 = "November" if m == "12": realmonth = "December" if m2 == "12": realmonth2 = "December" channel = ctx.message.channel bg_color = '#36393E' fg_color = 'white' if graphtype == "plot": if m2 == 0: x = [] y = [] print("m: ", m) print(m2) for i in stats['Data Applied'][0][str(yr)][0][str(m)][0]: x.append(int(i)) y.append(stats['Data Applied'][0][str(yr)][0][str(m)][0][i]) ax = plt.figure().gca() ax.plot(x, y) # ax.yaxis.set_major_locator(MaxNLocator(integer=True)) # ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.spines['bottom'].set_color('white') ax.spines['top'].set_color('white') ax.spines['right'].set_color('white') ax.spines['left'].set_color('white') ax.tick_params(axis='x', colors='white') ax.tick_params(axis='y', colors='white') ax.yaxis.label.set_color('white') ax.xaxis.label.set_color('white') ax.title.set_color('white') ax.set_facecolor('#36393E') plt.xlabel('Days of the Month', color='white') plt.ylabel('Number of Applicants', color='white') plt.title('Applicant Data for {}, {}'.format(realmonth, yr), color='white') plt.plot(x, y, color='whitesmoke') plt.savefig("plot.png", bbox_inches='tight', facecolor='#36393E') with open("plot.png", "rb") as f: await client.send_file(channel, f) plt.clf() plt.cla() else: if int(m) > int(m2): return await client.say("Wrong order of months") else: x = [] y = [] for j in range(int(m), int(m2)+1): for i in stats['Data Applied'][0][str(yr)][0][str(j)][0]: y.append(stats['Data Applied'][0][str(yr)][0][str(j)][0][i]) x.append(int(j)) ax = plt.figure().gca() ax.plot(x, y) # ax.yaxis.set_major_locator(MaxNLocator(integer=True)) # ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.spines['bottom'].set_color('white') ax.spines['top'].set_color('white') ax.spines['right'].set_color('white') ax.spines['left'].set_color('white') ax.tick_params(axis='x', colors='white') ax.tick_params(axis='y', colors='white') ax.yaxis.label.set_color('white') ax.xaxis.label.set_color('white') ax.title.set_color('white') ax.set_facecolor('#36393E') plt.xlabel('Months', color='whitesmoke') plt.ylabel('Number of Applicants', color='white') plt.title('Applicant Data for {}, between {} and {}'.format( yr, realmonth, realmonth2), color='white') plt.plot(x, y, color='whitesmoke') plt.savefig("plot.png", bbox_inches='tight', facecolor='#36393E') with open("plot.png", "rb") as f: await client.send_file(channel, f) plt.clf() plt.cla() if graphtype == "pie": x = [stats['Statistics'][0]['Users Accepted']] y = [stats['Statistics'][0]['Users Denied']] slices = [x, y] activities = ["Accepted", "Denied"] cols = ['c', 'm'] plt.title('Total Applicant Data', color='white') patches, texts, autotexts = plt.pie(slices, labels=activities, colors=cols, startangle=90, shadow=True, explode=(0, 0), autopct='%1.1f%%') for text in texts: text.set_color('white') for autotext in autotexts: autotext.set_color('black') plt.savefig("pie.png", bbox_inches='tight', facecolor='#36393E') with open("pie.png", "rb") as f: await client.send_file(channel, f) plt.clf() plt.cla() if graphtype == "bar": print("M2: ", m2) if m2 != 0: accepted = [] denied = [] dates = [] applied = [] for j in range(int(m), int(m2)+1): for i in stats['Data Accepted'][0][str(yr)][0][str(j)][0]: accepted.append(stats['Data Accepted'][0][str(yr)][0][str(j)][0][i]) dates.append(int(j)) for j in range(int(m), int(m2)+1): for i in stats['Data Denied'][0][str(yr)][0][str(j)][0]: denied.append(stats['Data Denied'][0][str(yr)][0][str(j)][0][i]) for j in range(int(m), int(m2)+1): for i in stats['Data Applied'][0][str(yr)][0][str(j)][0]: applied.append(stats['Data Applied'][0][str(yr)][0][str(j)][0][i]) width = 0.35 print(dates) ax = plt.figure().gca() ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.spines['bottom'].set_color('white') ax.spines['top'].set_color('white') ax.spines['right'].set_color('white') ax.spines['left'].set_color('white') ax.tick_params(axis='x', colors='white') ax.tick_params(axis='y', colors='white') ax.yaxis.label.set_color('white') ax.xaxis.label.set_color('white') ax.title.set_color('white') plt.xticks(dates, dates) p1 = plt.bar(dates, accepted, width) p2 = plt.bar(dates, denied, width, bottom=denied) ax.set_facecolor('#36393E') plt.ylabel('Users', color='white') plt.title('Users Accepted/Denied\nPer months: {} - {}'.format(realmonth, realmonth2), color='white') plt.legend((p1[0], p2[0]), ('Accepted', 'Denied ')) plt.savefig("bar.png", bbox_inches='tight', facecolor='#36393E') with open("bar.png", "rb") as f: await client.send_file(channel, f) plt.clf() plt.cla() else: await client.say("For bar graph, you must specify 2 or more months") @client.command(pass_context=True) async def clear(ctx, number, age=None): number = int(number) counter = 0 if number > 100 and age is None: secondcounter = number while secondcounter > 100: mgs = [] number = int(number) async for x in client.logs_from(ctx.message.channel, limit=number): mgs.append(x) await client.delete_messages(mgs) if secondcounter > 0: mgs = [] number = int(number) async for x in client.logs_from(ctx.message.channel, limit=number): mgs.append(x) await client.delete_messages(mgs) else: print("done cleaning of {} messages".format(number)) elif number < 100 and age is None: mgs = [] number = int(number) async for x in client.logs_from(ctx.message.channel, limit=number): mgs.append(x) await client.delete_messages(mgs) else: async for x in client.logs_from(ctx.message.channel, limit=number): if counter < number: await client.delete_message(x) counter += 1 @client.command(pass_context=True) async def resetstats(ctx): save_stats_backup(stats) for k in range(2018, 2021): for j in range(1, 8, 2): for i in range(1, 32): stats['Data Applied'][0][str(k)][0][str(j)][0][str(i)] = 0 stats['Data Accepted'][0][str(k)][0][str(j)][0][str(i)] = 0 stats['Data Denied'][0][str(k)][0][str(j)][0][str(i)] = 0 for k in range(2018, 2021): for j in range(4, 7, 2): for i in range(1, 31): stats['Data Applied'][0][str(k)][0][str(j)][0][str(i)] = 0 stats['Data Accepted'][0][str(k)][0][str(j)][0][str(i)] = 0 stats['Data Denied'][0][str(k)][0][str(j)][0][str(i)] = 0 for k in range(2018, 2021): for j in range(8, 13, 2): for i in range(1, 32): stats['Data Applied'][0][str(k)][0][str(j)][0][str(i)] = 0 stats['Data Accepted'][0][str(k)][0][str(j)][0][str(i)] = 0 stats['Data Denied'][0][str(k)][0][str(j)][0][str(i)] = 0 for k in range(2018, 2021): for j in range(9, 12, 2): for i in range(1, 32): stats['Data Applied'][0][str(k)][0][str(j)][0][str(i)] = 0 stats['Data Accepted'][0][str(k)][0][str(j)][0][str(i)] = 0 stats['Data Denied'][0][str(k)][0][str(j)][0][str(i)] = 0 for k in range(2018, 2021): for i in range(1, 32): stats['Data Applied'][0][str(k)][0]["2"][0][str(i)] = 0 stats['Data Accepted'][0][str(k)][0]["2"][0][str(i)] = 0 stats['Data Denied'][0][str(k)][0]["2"][0][str(i)] = 0 for element in list(stats['Applied'][0]): del stats['Applied'][0][element] for element in list(stats['Denied'][0]): del stats['Denied'][0][element] for element in list(stats['Accepted'][0]): del stats['Accepted'][0][element] stats['Statistics'][0]['Applicants'] = 0 stats['Statistics'][0]['Users Accepted'] = 0 stats['Statistics'][0]['Users Denied'] = 0 save_stats(stats) client.run(TOKEN)
38.811615
135
0.513412
07c3af3b65c62f585f64625260dc2611c57e297e
1,396
py
Python
trace/google/cloud/trace_v1/types.py
q-logic/google-cloud-python
a65065c89c059bc564bbdd79288a48970907c399
[ "Apache-2.0" ]
null
null
null
trace/google/cloud/trace_v1/types.py
q-logic/google-cloud-python
a65065c89c059bc564bbdd79288a48970907c399
[ "Apache-2.0" ]
40
2019-07-16T10:04:48.000Z
2020-01-20T09:04:59.000Z
trace/google/cloud/trace_v1/types.py
q-logic/google-cloud-python
a65065c89c059bc564bbdd79288a48970907c399
[ "Apache-2.0" ]
2
2019-07-18T00:05:31.000Z
2019-11-27T14:17:22.000Z
# -*- coding: utf-8 -*- # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import sys from google.api_core.protobuf_helpers import get_messages from google.cloud.trace_v1.proto import trace_pb2 from google.protobuf import empty_pb2 from google.protobuf import timestamp_pb2 _shared_modules = [ empty_pb2, timestamp_pb2, ] _local_modules = [ trace_pb2, ] names = [] for module in _shared_modules: # pragma: NO COVER for name, message in get_messages(module).items(): setattr(sys.modules[__name__], name, message) names.append(name) for module in _local_modules: for name, message in get_messages(module).items(): message.__module__ = "google.cloud.trace_v1.types" setattr(sys.modules[__name__], name, message) names.append(name) __all__ = tuple(sorted(names))
27.372549
74
0.738539
7e1fed207803633be00841d46bc4dc68e3aec535
3,422
py
Python
setup.py
FJLendinez/django-ninja-knox
cf4790e52d39b0da678c43eef3fe80876fec3912
[ "MIT" ]
null
null
null
setup.py
FJLendinez/django-ninja-knox
cf4790e52d39b0da678c43eef3fe80876fec3912
[ "MIT" ]
null
null
null
setup.py
FJLendinez/django-ninja-knox
cf4790e52d39b0da678c43eef3fe80876fec3912
[ "MIT" ]
null
null
null
# Always prefer setuptools over distutils # To use a consistent encoding from codecs import open from os import path from setuptools import find_packages, setup here = path.abspath(path.dirname(__file__)) # Get the long description from the relevant file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='django-ninja-knox', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version='0.1.2', description='Authentication for django-ninja', long_description=long_description, long_description_content_type='text/markdown', # The project's main homepage. url='https://github.com/FJLendinez/django-ninja-knox/', # Author details author='Francisco Javier Lendínez Tirado', author_email='fjlendinez@gmail.com', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 5 - Production/Stable', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Internet :: WWW/HTTP :: Session', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], # What does your project relate to? keywords='django-ninja authentication login', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages( exclude=['contrib', 'docs', 'tests*', 'knox_project']), # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=['django', 'django-ninja', 'cryptography'], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] extras_require={ 'dev': [], 'test': [], }, python_requires='>=3.7', # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. )
36.795699
94
0.679427
5c43288fec9a21a4d7a81f459187f8f61c547a6b
331
py
Python
activity/migrations/0009_remove_service_worship.py
welz-atm/RCCG-dominionSanctuary
46d9ad65370f783756152e731343626e39b1c686
[ "MIT" ]
null
null
null
activity/migrations/0009_remove_service_worship.py
welz-atm/RCCG-dominionSanctuary
46d9ad65370f783756152e731343626e39b1c686
[ "MIT" ]
null
null
null
activity/migrations/0009_remove_service_worship.py
welz-atm/RCCG-dominionSanctuary
46d9ad65370f783756152e731343626e39b1c686
[ "MIT" ]
null
null
null
# Generated by Django 3.2.5 on 2021-09-21 15:05 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('activity', '0008_auto_20210921_1345'), ] operations = [ migrations.RemoveField( model_name='service', name='worship', ), ]
18.388889
48
0.595166
817a9de7524c97bcbb3cc00457bd2e02688a0130
23,768
py
Python
tests/sampledata.py
pentest-a2p2v/pentest-a2p2v-core
d8dfee3312c656551f85587ed04770795090879d
[ "Apache-2.0" ]
56
2021-06-09T23:40:08.000Z
2022-02-10T14:39:57.000Z
tests/sampledata.py
pentest-a2p2v/pentest-a2p2v-core
d8dfee3312c656551f85587ed04770795090879d
[ "Apache-2.0" ]
3
2021-05-18T12:23:49.000Z
2022-03-03T16:27:57.000Z
tests/sampledata.py
pentest-a2p2v/pentest-a2p2v-core
d8dfee3312c656551f85587ed04770795090879d
[ "Apache-2.0" ]
4
2021-06-16T01:38:24.000Z
2022-03-28T05:55:11.000Z
#!/usr/bin/env python3 # # Copyright (C) 2018-2021 Toshiba Corporation and Peraton Labs, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import configparser from a2p2v.types import Capability class NetworkGraph(dict): def __init__(self, nodes={}): self.nodes = nodes @classmethod def create_sample_graph(cls): network_graph = NetworkGraph() # Populate the dictionary network_graph['SW1'] = { 'OPC-2': {'route': False}, 'USER2-2': {'route': False}, 'PLC-1': {'route': False}, } network_graph['SW2'] = { 'HMI-2': {'route': False}, 'OPC-1': {'route': False}, 'USER2-1': {'route': False}, } network_graph['SW3'] = { 'GW-2': {'route': False}, 'USER1-1': {'route': False}, 'HMI-1': {'route': False}, } network_graph['HMI'] = { 'HMI-1': {'route': False}, 'HMI-2': {'route': False}, } network_graph['HMI-1'] = { 'HMI': {'route': False}, 'SW3': {'route': False}, } network_graph['HMI-2'] = { 'HMI': {'route': False}, 'SW2': {'route': False}, } network_graph['USER1'] = {'USER1-1': {'route': False}} network_graph['USER1-1'] = { 'USER1': {'route': False}, 'SW3': {'route': False}, } network_graph['USER2'] = { 'USER2-1': {'route': False}, 'USER2-2': {'route': False}, } network_graph['USER2-1'] = { 'USER2': {'route': False}, 'SW2': {'route': False}, } network_graph['USER2-2'] = { 'USER2': {'route': False}, 'SW1': {'route': False}, } network_graph['GW'] = { 'GW-1': {'route': False}, 'GW-2': {'route': False}, } network_graph['GW-1'] = { 'GW': {'route': False}, 'EX_CLOUD': {'route': False}, } network_graph['GW-2'] = { 'GW': {'route': False}, 'SW3': {'route': False}, } network_graph['EX_CLOUD'] = { 'ATTACKER-1': {'route': False}, 'GW-1': {'route': False}, } network_graph['ATTACKER'] = {'ATTACKER-1': {'route': False}} network_graph['ATTACKER-1'] = { 'ATTACKER': {'route': False}, 'EX_CLOUD': {'route': False}, } network_graph['OPC'] = { 'OPC-1': {'route': False}, 'OPC-2': {'route': False}, } network_graph['OPC-1'] = { 'OPC': {'route': False}, 'SW2': {'route': False}, } network_graph['OPC-2'] = { 'OPC': {'route': False}, 'SW1': {'route': False}, } network_graph['PLC'] = {'PLC-1': {'route': False}} network_graph['PLC-1'] = { 'PLC': {'route': False}, 'SW1': {'route': False}, } # Populate the nodes dictionary network_graph.nodes['SW1'] = { 'node_id': 'SW1', 'node_passive': True, 'nodeType': 'switch', } network_graph.nodes['SW2'] = { 'node_id': 'SW2', 'node_passive': True, 'nodeType': 'switch', } network_graph.nodes['SW3'] = { 'node_id': 'SW3', 'node_passive': True, 'nodeType': 'switch', } network_graph.nodes['HMI'] = { 'node_id': 'HMI', 'node_passive': False, 'nodeType': 'host', } network_graph.nodes['HMI-1'] = { 'node_id': '192.168.30.101', 'node_passive': True, 'nodeType': 'interface', } network_graph.nodes['HMI-2'] = { 'node_id': '192.168.20.101', 'node_passive': True, 'nodeType': 'interface', } network_graph.nodes['USER1'] = { 'node_id': 'USER1', 'node_passive': False, 'nodeType': 'host', } network_graph.nodes['USER1-1'] = { 'node_id': '192.168.30.102', 'node_passive': True, 'nodeType': 'interface', } network_graph.nodes['USER2'] = { 'node_id': 'USER2', 'node_passive': False, 'nodeType': 'host', } network_graph.nodes['USER2-1'] = { 'node_id': '192.168.20.103', 'node_passive': True, 'nodeType': 'interface', } network_graph.nodes['USER2-2'] = { 'node_id': '192.168.10.103', 'node_passive': True, 'nodeType': 'interface', } network_graph.nodes['GW'] = { 'node_id': 'GW', 'node_passive': False, 'nodeType': 'host', } network_graph.nodes['GW-1'] = { 'node_id': '172.16.1.1', 'node_passive': True, 'nodeType': 'interface', } network_graph.nodes['GW-2'] = { 'node_id': '192.168.30.1', 'node_passive': True, 'nodeType': 'interface', } network_graph.nodes['EX_CLOUD'] = { 'node_id': 'EX_CLOUD', 'node_passive': True, 'nodeType': 'switch', } network_graph.nodes['ATTACKER'] = { 'node_id': 'ATTACKER', 'node_passive': False, 'nodeType': 'host', } network_graph.nodes['ATTACKER-1'] = { 'node_id': '192.168.30.200', 'node_passive': True, 'nodeType': 'interface', } network_graph.nodes['OPC'] = { 'node_id': 'OPC', 'node_passive': False, 'nodeType': 'host', } network_graph.nodes['OPC-1'] = { 'node_id': '192.168.20.104', 'node_passive': True, 'nodeType': 'interface', } network_graph.nodes['OPC-2'] = { 'node_id': '192.168.10.104', 'node_passive': True, 'nodeType': 'interface', } network_graph.nodes['PLC'] = { 'node_id': 'PLC', 'node_passive': False, 'nodeType': 'host', } network_graph.nodes['PLC-1'] = { 'node_id': '192.168.10.250', 'node_passive': True, 'nodeType': 'interface', } return network_graph def get_hosts_db(): hosts_db = { 'HMI': { 'interfaces': {('192.168.30.101', ''), ('192.168.20.101', '')}, 'capabilities': [ 'smb', 'exploit/windows/smb/ms10_061_spoolss', 'exploit/windows/smb/ms17_010_psexec', 'rdp', ], }, 'USER1': { 'interfaces': {('192.168.30.102', '')}, 'capabilities': [ 'rdp', 'smb', 'exploit/windows/smb/ms17_010_psexec', ], }, 'USER2': { 'interfaces': {('192.168.10.103', ''), ('192.168.20.103', '')}, 'capabilities': [ 'rdp', 'smb', 'exploit/windows/smb/ms17_010_psexec', ], }, 'GW': { 'interfaces': {('192.168.30.1', ''), ('172.16.1.1', '')}, 'capabilities': ['ssh'], }, 'ATTACKER': { 'interfaces': {('192.168.30.200', '')}, 'capabilities': [], }, 'OPC': { 'interfaces': {('192.168.20.104', ''), ('192.168.10.104', '')}, 'capabilities': [ 'rdp', 'smb', 'exploit/windows/smb/ms17_010_psexec', ], }, 'PLC': { 'interfaces': {('192.168.10.250', '')}, 'capabilities': [ 'modbus', 'modbus.write_register', 'modbus.write_register.change_temp', ], }, } return hosts_db # Capabilities dictionary def get_capabilities(): capabilities = { 'remote_code_execution': Capability( capability_id="remote_code_execution", title="remote_code_execution", capability_class="exploit", subclass="", severity="high", solution="", rank="", cves="", preconditions=[], actions=[], postconditions=[ { 'type': 'state', 'key': 'current_access', 'value': 'metasploit', }, { 'type': 'state', 'key': 'current_host', 'value': '$target_host', }, {'type': 'state', 'key': 'current_role', 'value': 'admin'}, ], cvss=10, ), 'privilege_escalation': Capability( capability_id="privilege_escalation", title="privilege_escalation", capability_class="exploit", subclass="", severity="high", solution="", rank="", cves="", preconditions=[ { 'host': '$target_host', 'type': 'state', 'key': 'current_access', 'value': 'shell', } ], actions=[], postconditions=[ {'type': 'state', 'key': 'current_role', 'value': 'admin'} ], cvss=10, ), 'smb': Capability( capability_id="smb", title="smb", capability_class="service", subclass="smb", severity="low", solution="Consider disabling or restricting access to file sharing on hosts", rank="normal", cves="", preconditions=[ { 'host': '$current_host', 'type': 'state', 'key': 'current_access', 'value': 'shell', }, { 'host': '$target_host', 'type': 'credential', 'key': 'role', 'value': 'user', }, { 'host': '$target_host', 'type': 'service', 'key': 'port', 'value': 'tcp/445', }, ], actions=[ { 'type': 'shell_command', 'key': 'SMB Client', 'value': 'smbclient -U $username -P $password //$target_host/C$', } ], postconditions=[], cvss=10, ), 'rdp': Capability( capability_id="rdp", title="rdp", capability_class="service", subclass="rdp", severity="low", solution="Ensure secure passwords are used", rank="normal", cves="", preconditions=[ { 'host': '$current_host', 'type': 'state', 'key': 'current_access', 'value': 'shell', }, { 'host': '$target_host', 'type': 'credential', 'key': 'role', 'value': 'user', }, { 'host': '$target_host', 'type': 'service', 'key': 'port', 'value': 'tcp/3389', }, ], actions=[ { 'type': 'shell_command', 'key': 'Remote Desktop', 'value': 'rdesktop -u $username -p $password $target_host', } ], postconditions=[ {'type': 'state', 'key': 'current_access', 'value': 'desktop'}, { 'type': 'state', 'key': 'current_host', 'value': '$target_host', }, {'type': 'state', 'key': 'current_role', 'value': '$role'}, ], cvss=10, ), 'ssh': Capability( capability_id="ssh", title="ssh", capability_class="service", subclass="ssh", severity="none", solution="Ensure secure passwords are used", rank="normal", cves="", preconditions=[ { 'host': '$current_host', 'type': 'state', 'key': 'current_access', 'value': 'shell', }, { 'host': '$target_host', 'type': 'credential', 'key': 'role', 'value': 'user', }, { 'host': '$target_host', 'type': 'service', 'key': 'port', 'value': 'tcp/22', }, ], actions=[ { 'type': 'metasploit', 'key': 'parameters', 'value': 'module=auxiliary/scanner/ssh/ssh_login rhosts=$target_host username=$username password=$password', } ], postconditions=[ {'type': 'state', 'key': 'current_access', 'value': 'shell'}, { 'type': 'state', 'key': 'current_host', 'value': '$target_host', }, {'type': 'state', 'key': 'current_role', 'value': '$role'}, ], cvss=10, ), 'modbus': Capability( capability_id="modbus", title="modbus", capability_class="service", subclass="modbus", severity="high", solution="Restrict access to this sensitive, insecure service.", rank="excellent", cves="", preconditions=[ { 'host': '$current_host', 'type': 'state', 'key': 'current_access', 'value': 'shell', }, { 'host': '$target_host', 'type': 'service', 'key': 'port', 'value': 'tcp/502', }, ], actions=[ { 'type': 'metasploit', 'key': 'parameters', 'value': 'module=auxiliary/scanner/scada/modbusclient rhost=$target_host action=$action data_address=$data_address data_registers=$data_registers unit_number=$unit_number', } ], postconditions=[], cvss=10, ), 'modbus.write_register': Capability( capability_id="modbus.write_register", title="modbus", capability_class="service", subclass="modbus.write_register", severity="high", solution="Restrict access to this sensitive, insecure service.", rank="excellent", cves="", preconditions=[ { 'host': '$target_host', 'type': 'capability', 'key': 'capability_id', 'value': 'modbus', } ], actions=[ { 'type': 'capability', 'key': 'parameters', 'value': 'action=WRITE_REGISTERS', } ], postconditions=[], cvss=10, ), 'modbus.write_register.change_temp': Capability( capability_id="modbus.write_register.change_temp", title="modbus", capability_class="service", subclass="modbus.write_register.change_temp", severity="high", solution="Restrict access to this sensitive, insecure service.", rank="excellent", cves="", preconditions=[ { 'host': '$target_host', 'type': 'capability', 'key': 'capability_id', 'value': 'modbus.write_register', } ], actions=[ { 'type': 'capability', 'key': 'parameters', 'value': 'data_address=2 data_registers=30 unit_number=255', } ], postconditions=[], cvss=10, ), 'exploit/windows/smb/ms17_010_psexec': Capability( capability_id="exploit/windows/smb/ms17_010_psexec", title="MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote Windows Code Execution", capability_class="exploit", subclass="remote_code_execution", severity="high", solution="Apply Microsoft patches", rank="normal", cves="CVE-2017-0143,CVE-2017-0146,CVE-2017-0147", preconditions=[], actions=[ { 'type': 'metasploit', 'key': 'remote_code_execution', 'value': 'module=exploit/windows/smb/ms17_010_psexec rhosts=$target_host lport=4444', } ], postconditions=[ { 'type': 'state', 'key': 'current_access', 'value': 'metasploit', }, { 'type': 'state', 'key': 'current_host', 'value': '$target_host', }, {'type': 'state', 'key': 'current_role', 'value': 'admin'}, ], cvss=10, ), 'exploit/windows/smb/ms10_061_spoolss': Capability( capability_id="exploit/windows/smb/ms10_061_spoolss", title="MS10-061 Microsoft Print Spooler Service Impersonation Vulnerability", capability_class="exploit", subclass="remote_code_execution", severity="high", solution="Microsoft has released a set of patches for Windows XP, 2003, Vista, 2008, 7, and 2008 R2.", rank="excellent", cves="CVE-2010-2729", preconditions=[], actions=[ { 'type': 'metasploit', 'key': 'remote_code_execution', 'value': 'module=exploit/windows/smb/ms10_061_spoolss rhosts=$target_host', } ], postconditions=[ { 'type': 'state', 'key': 'current_access', 'value': 'metasploit', }, { 'type': 'state', 'key': 'current_host', 'value': '$target_host', }, {'type': 'state', 'key': 'current_role', 'value': 'admin'}, ], cvss=10, ), } return capabilities def create_sample_config(): # Create a configuration object config = configparser.ConfigParser() # Create the configuration sections for section in [ 'INPUT', 'PLANNING', 'INITIAL CONDITIONS', 'GOALS', 'SENSITIVE', 'METASPLOIT', ]: config.add_section(section) # Populate the INPUT section config.set('INPUT', 'default_datafile', 'lab_config/simple.nessus') config.set('INPUT', 'default_netfile', 'lab_config/networkGraph.xml') # Populate the PLANNING sesction config.set( 'PLANNING', 'score_weights', '{"NUM_EXPLOITS":-0.5, "LENGTH":-0.5, "NUM_SERVICES":0.2, "SEVERITY":-0.2}', ) # Populate the INITIAL CONDITIONS section config.set( 'INITIAL CONDITIONS', 'initial_condition1', '{"host":"attacker", "type":"state", "key":"initial_host", "value":"attacker"}', ) config.set( 'INITIAL CONDITIONS', 'initial_condition2', '{"host":"attacker", "type":"state", "key":"current_role", "value":"admin"}', ) config.set( 'INITIAL CONDITIONS', 'initial_condition3', '{"host":"attacker", "type":"state", "key":"current_access", "value":"metasploit"}', ) config.set( 'INITIAL CONDITIONS', 'initial_condition4', '{"host":"gw", "type":"credential", "username":"username", "password":"password", "role":"user"}', ) config.set( 'INITIAL CONDITIONS', 'initial_condition5', '{"host":"192.168.0.115", "type":"credential", "username":"testuser", "password":"welcome1", "role":"user"}', ) # Populate the GOALS section config.set( 'GOALS', 'change_temperature', '{"type":"state", "key":"current_status", "value":"change_temp"}', ) # Populate the SENSITIVE section config.set( 'SENSITIVE', 'sensitive1', '{"type":"state", "key":"current_host", "value":"OPC"}', ) config.set( 'SENSITIVE', 'sensitive2', '{"type":"state", "key":"current_status", "value":"change_temp"}', ) # Populate the METASPLOIT section config.set('METASPLOIT', 'host', '127.0.0.1') config.set('METASPLOIT', 'port', '55552') config.set('METASPLOIT', 'user', 'msf') config.set('METASPLOIT', 'password', 'welcome1') config.set('METASPLOIT', 'payload', 'example_payload') return config initial_conditions = { 'initial_condition1': '{"host":"attacker", "type":"state", "key":"initial_host", "value":"attacker"}', 'initial_condition2': '{"host":"attacker", "type":"state", "key":"current_role", "value":"admin"}', 'initial_condition3': '{"host":"attacker", "type":"state", "key":"current_access", "value":"metasploit"}', 'initial_condition4': '{"host":"gw", "type":"credential", "username":"username", "password":"password", "role":"user"}', 'initial_condition5': '{"host":"192.168.0.115", "type":"credential", "username":"testuser", "password":"welcome1", "role":"user"}', } goal_conditions = [ { 'id': 'goal_condition1', "type": "state", "key": "current_status", "value": "change_temp", }, ] sample_network_graph = NetworkGraph.create_sample_graph() sample_hosts_db = get_hosts_db() sample_config = create_sample_config() if __name__ == '__main__': for capability_name in capabilities.keys(): print(f'capability: {capability_name}')
32.337415
192
0.436595
00cd971e21c2a17e3ba268837961686a4247125a
2,964
py
Python
sdk/textanalytics/azure-ai-textanalytics/samples/sample_get_detailed_diagnostics_information.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/textanalytics/azure-ai-textanalytics/samples/sample_get_detailed_diagnostics_information.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/textanalytics/azure-ai-textanalytics/samples/sample_get_detailed_diagnostics_information.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ FILE: sample_get_detailed_diagnostics_information.py DESCRIPTION: This sample demonstrates how to retrieve batch statistics, the model version used, and the raw response in JSON format returned from the service. USAGE: python sample_get_detailed_diagnostics_information.py Set the environment variables with your own values before running the sample: 1) AZURE_TEXT_ANALYTICS_ENDPOINT - the endpoint to your Cognitive Services resource. 2) AZURE_TEXT_ANALYTICS_KEY - your Text Analytics subscription key """ import os import logging import json _LOGGER = logging.getLogger(__name__) class GetDetailedDiagnosticsInformationSample(object): def get_detailed_diagnostics_information(self): from azure.core.credentials import AzureKeyCredential from azure.ai.textanalytics import TextAnalyticsClient endpoint = os.environ["AZURE_TEXT_ANALYTICS_ENDPOINT"] key = os.environ["AZURE_TEXT_ANALYTICS_KEY"] # This client will log detailed information about its HTTP sessions, at DEBUG level text_analytics_client = TextAnalyticsClient(endpoint=endpoint, credential=AzureKeyCredential(key), logging_enable=True) documents = [ "I had the best day of my life.", "This was a waste of my time. The speaker put me to sleep.", "No tengo dinero ni nada que dar...", "L'hôtel n'était pas très confortable. L'éclairage était trop sombre." ] json_responses = [] def callback(resp): _LOGGER.debug("document_count: {}".format(resp.statistics["document_count"])) _LOGGER.debug("valid_document_count: {}".format(resp.statistics["valid_document_count"])) _LOGGER.debug("erroneous_document_count: {}".format(resp.statistics["erroneous_document_count"])) _LOGGER.debug("transaction_count: {}".format(resp.statistics["transaction_count"])) _LOGGER.debug("model_version: {}".format(resp.model_version)) json_response = json.dumps(resp.raw_response) json_responses.append(json_response) result = text_analytics_client.extract_key_phrases( documents, show_stats=True, model_version="latest", raw_response_hook=callback ) for doc in result: _LOGGER.warning("Doc with id {} has these warnings: {}".format(doc.id, doc.warnings)) _LOGGER.debug("json response: {}".format(json_responses[0])) if __name__ == '__main__': sample = GetDetailedDiagnosticsInformationSample() sample.get_detailed_diagnostics_information()
39.52
127
0.670715
2c48a32a3dd63aa84092ff1e2c953991fc7e076d
689
py
Python
src/shared/fileloading.py
sr-lab/pyrrho
8e05101d6bea97872bf8386ff1aa4a86e259ffd1
[ "MIT" ]
null
null
null
src/shared/fileloading.py
sr-lab/pyrrho
8e05101d6bea97872bf8386ff1aa4a86e259ffd1
[ "MIT" ]
null
null
null
src/shared/fileloading.py
sr-lab/pyrrho
8e05101d6bea97872bf8386ff1aa4a86e259ffd1
[ "MIT" ]
null
null
null
def load_file_lines (file): """ Loads a file as a list of lines. Args: file (str): The path of the file. Returns: list of str: A list of lines in the file. """ data = [] with open(file, mode='r') as target: for line in target: data.append(line.rstrip('\n')) return data def load_float_file (file): """ Loads a data file of newline-delimited floating-point values. Args: file (str): The path of the file. Returns: list of float: The data from the file. """ data = [] with open(file, 'r') as target: for entry in target: data.append(float(entry)) return data
23.758621
69
0.56894
2c16a3f84338d3792e22c9851882e63f18e39c34
4,137
py
Python
recsys19_hybridsvd/polara-master/polara/recommender/external/lightfm/lightfmwrapper.py
chenzheng128/SoRec
deb045e3b9ce575671d08e15ec5a011b49e4d45f
[ "Apache-2.0" ]
1
2020-08-15T09:57:34.000Z
2020-08-15T09:57:34.000Z
recsys19_hybridsvd/polara-master/polara/recommender/external/lightfm/lightfmwrapper.py
chenzheng128/SoRec
deb045e3b9ce575671d08e15ec5a011b49e4d45f
[ "Apache-2.0" ]
null
null
null
recsys19_hybridsvd/polara-master/polara/recommender/external/lightfm/lightfmwrapper.py
chenzheng128/SoRec
deb045e3b9ce575671d08e15ec5a011b49e4d45f
[ "Apache-2.0" ]
1
2021-01-12T07:32:47.000Z
2021-01-12T07:32:47.000Z
# python 2/3 interoperability from __future__ import print_function import numpy as np from numpy.lib.stride_tricks import as_strided from lightfm import LightFM from polara.recommender.models import RecommenderModel from polara.lib.similarity import stack_features from polara.tools.timing import track_time class LightFMWrapper(RecommenderModel): def __init__(self, *args, item_features=None, user_features=None, **kwargs): super(LightFMWrapper, self).__init__(*args, **kwargs) self.method='LightFM' self.rank = 10 self.fit_method = 'fit' self.item_features = item_features self.item_feature_labels = None self.item_alpha = 0.0 self.item_identity = True self._item_features_csr = None self.user_features = user_features self.user_feature_labels = None self.user_alpha = 0.0 self.user_identity = True self._user_features_csr = None self.loss = 'warp' self.learning_schedule = 'adagrad' self.learning_rate = 0.05 self.max_sampled = 10 self.seed = 0 self._model = None def build(self): self._model = LightFM(no_components=self.rank, item_alpha=self.item_alpha, user_alpha=self.user_alpha, loss=self.loss, learning_rate=self.learning_rate, learning_schedule=self.learning_schedule, max_sampled=self.max_sampled, random_state=self.seed) fit = getattr(self._model, self.fit_method) matrix = self.get_training_matrix() if self.item_features is not None: item_features = self.item_features.reindex(self.data.index.itemid.old.values, fill_value=[]) self._item_features_csr, self.item_feature_labels = stack_features(item_features, add_identity=self.item_identity, normalize=True, dtype='f4') if self.user_features is not None: user_features = self.user_features.reindex(self.data.index.userid.training.old.values, fill_value=[]) self._user_features_csr, self.user_feature_labels = stack_features(user_features, add_identity=self.user_identity, normalize=True, dtype='f4') with track_time(self.training_time, verbose=self.verbose, model=self.method): fit(matrix, item_features=self._item_features_csr, user_features=self._user_features_csr) def slice_recommendations(self, test_data, shape, start, stop, test_users=None): if self.data.warm_start: raise NotImplementedError slice_data = self._slice_test_data(test_data, start, stop) all_items = self.data.index.itemid.new.values n_users = stop - start n_items = len(all_items) # use stride tricks to avoid unnecessary copies of repeated indices # have to conform with LightFM's dtype to avoid additional copies itemsize = np.dtype('i4').itemsize useridx = as_strided(test_users[start:stop].astype('i4', copy=False), (n_users, n_items), (itemsize, 0)) itemidx = as_strided(all_items.astype('i4', copy=False), (n_users, n_items), (0, itemsize)) scores = self._model.predict(useridx.ravel(), itemidx.ravel(), user_features=self._user_features_csr, item_features=self._item_features_csr ).reshape(n_users, n_items) return scores, slice_data
45.966667
113
0.564902
6b88e3f604f15e2a12f5cb4f9dbbfc2bff039b14
30,920
py
Python
include/HydrusConstants.py
sakharovaan/hydrus
443c8932947d0c786435bcd53911536e0bdce7e8
[ "WTFPL" ]
3
2019-06-19T09:29:50.000Z
2019-12-18T14:17:21.000Z
include/HydrusConstants.py
sakharovaan/hydrus-unleashed
443c8932947d0c786435bcd53911536e0bdce7e8
[ "WTFPL" ]
4
2019-02-03T14:43:05.000Z
2019-06-26T20:59:13.000Z
include/HydrusConstants.py
sakharovaan/hydrus
443c8932947d0c786435bcd53911536e0bdce7e8
[ "WTFPL" ]
null
null
null
import os import sys # dirs if getattr( sys, 'frozen', False ): RUNNING_FROM_FROZEN_BUILD = True # we are in a pyinstaller frozen app BASE_DIR = getattr( sys, '_MEIPASS', None ) if BASE_DIR is None: raise Exception( 'It seems this hydrus is running from a frozen bundle, but there was no _MEIPASS variable under sys to define the bundle directory.' ) else: RUNNING_FROM_FROZEN_BUILD = False BASE_DIR = sys.path[0] if BASE_DIR == '': BASE_DIR = os.getcwd() PLATFORM_WINDOWS = False PLATFORM_OSX = False PLATFORM_LINUX = False if sys.platform == 'win32': PLATFORM_WINDOWS = True elif sys.platform == 'darwin': PLATFORM_OSX = True elif sys.platform == 'linux': PLATFORM_LINUX = True RUNNING_FROM_SOURCE = sys.argv[0].endswith( '.py' ) or sys.argv[0].endswith( '.pyw' ) RUNNING_FROM_OSX_APP = os.path.exists( os.path.join( BASE_DIR, 'running_from_app' ) ) BIN_DIR = os.path.join( BASE_DIR, 'bin' ) HELP_DIR = os.path.join( BASE_DIR, 'help' ) INCLUDE_DIR = os.path.join( BASE_DIR, 'include' ) STATIC_DIR = os.path.join( BASE_DIR, 'static' ) DEFAULT_DB_DIR = os.path.join( BASE_DIR, 'db' ) if PLATFORM_OSX: USERPATH_DB_DIR = os.path.join( os.path.expanduser( '~' ), 'Library', 'Hydrus' ) else: USERPATH_DB_DIR = os.path.join( os.path.expanduser( '~' ), 'Hydrus' ) LICENSE_PATH = os.path.join( BASE_DIR, 'license.txt' ) # import traceback import yaml options = {} # Misc NETWORK_VERSION = 18 SOFTWARE_VERSION = 357 CLIENT_API_VERSION = 8 SERVER_THUMBNAIL_DIMENSIONS = ( 200, 200 ) HYDRUS_KEY_LENGTH = 32 UPDATE_DURATION = 100000 READ_BLOCK_SIZE = 256 * 1024 lifetimes = [ ( 'one month', 31 * 86400 ), ( 'three months', 3 * 31 * 86400 ), ( 'six months', 6 * 31 * 86400 ), ( 'one year', 12 * 31 * 86400 ), ( 'two years', 24 * 31 * 86400 ), ( 'five years', 60 * 31 * 86400 ), ( 'does not expire', None ) ] # Enums BANDWIDTH_TYPE_DATA = 0 BANDWIDTH_TYPE_REQUESTS = 1 bandwidth_type_string_lookup = {} bandwidth_type_string_lookup[ BANDWIDTH_TYPE_DATA ] = 'data' bandwidth_type_string_lookup[ BANDWIDTH_TYPE_REQUESTS ] = 'requests' CONTENT_MERGE_ACTION_COPY = 0 CONTENT_MERGE_ACTION_MOVE = 1 CONTENT_MERGE_ACTION_TWO_WAY_MERGE = 2 content_merge_string_lookup = {} content_merge_string_lookup[ CONTENT_MERGE_ACTION_COPY ] = 'copy from worse to better' content_merge_string_lookup[ CONTENT_MERGE_ACTION_MOVE ] = 'move from worse to better' content_merge_string_lookup[ CONTENT_MERGE_ACTION_TWO_WAY_MERGE ] = 'copy in both directions' CONTENT_STATUS_CURRENT = 0 CONTENT_STATUS_PENDING = 1 CONTENT_STATUS_DELETED = 2 CONTENT_STATUS_PETITIONED = 3 content_status_string_lookup = {} content_status_string_lookup[ CONTENT_STATUS_CURRENT ] = 'current' content_status_string_lookup[ CONTENT_STATUS_PENDING ] = 'pending' content_status_string_lookup[ CONTENT_STATUS_DELETED ] = 'deleted' content_status_string_lookup[ CONTENT_STATUS_PETITIONED ] = 'petitioned' CONTENT_TYPE_MAPPINGS = 0 CONTENT_TYPE_TAG_SIBLINGS = 1 CONTENT_TYPE_TAG_PARENTS = 2 CONTENT_TYPE_FILES = 3 CONTENT_TYPE_RATINGS = 4 CONTENT_TYPE_MAPPING = 5 CONTENT_TYPE_DIRECTORIES = 6 CONTENT_TYPE_URLS = 7 CONTENT_TYPE_VETO = 8 CONTENT_TYPE_ACCOUNTS = 9 CONTENT_TYPE_OPTIONS = 10 CONTENT_TYPE_SERVICES = 11 CONTENT_TYPE_UNKNOWN = 12 CONTENT_TYPE_ACCOUNT_TYPES = 13 CONTENT_TYPE_VARIABLE = 14 CONTENT_TYPE_HASH = 15 CONTENT_TYPE_TIMESTAMP = 16 CONTENT_TYPE_TITLE = 17 CONTENT_TYPE_NOTES = 18 CONTENT_TYPE_FILE_VIEWING_STATS = 19 content_type_string_lookup = {} content_type_string_lookup[ CONTENT_TYPE_MAPPINGS ] = 'mappings' content_type_string_lookup[ CONTENT_TYPE_TAG_SIBLINGS ] = 'tag siblings' content_type_string_lookup[ CONTENT_TYPE_TAG_PARENTS ] = 'tag parents' content_type_string_lookup[ CONTENT_TYPE_FILES ] = 'files' content_type_string_lookup[ CONTENT_TYPE_RATINGS ] = 'ratings' content_type_string_lookup[ CONTENT_TYPE_MAPPING ] = 'mapping' content_type_string_lookup[ CONTENT_TYPE_DIRECTORIES ] = 'directories' content_type_string_lookup[ CONTENT_TYPE_URLS ] = 'urls' content_type_string_lookup[ CONTENT_TYPE_VETO ] = 'veto' content_type_string_lookup[ CONTENT_TYPE_ACCOUNTS ] = 'accounts' content_type_string_lookup[ CONTENT_TYPE_OPTIONS ] = 'options' content_type_string_lookup[ CONTENT_TYPE_SERVICES ] = 'services' content_type_string_lookup[ CONTENT_TYPE_UNKNOWN ] = 'unknown' content_type_string_lookup[ CONTENT_TYPE_ACCOUNT_TYPES ] = 'account types' content_type_string_lookup[ CONTENT_TYPE_VARIABLE ] = 'variable' content_type_string_lookup[ CONTENT_TYPE_HASH ] = 'hash' content_type_string_lookup[ CONTENT_TYPE_TIMESTAMP ] = 'timestamp' content_type_string_lookup[ CONTENT_TYPE_TITLE ] = 'title' content_type_string_lookup[ CONTENT_TYPE_NOTES ] = 'notes' content_type_string_lookup[ CONTENT_TYPE_FILE_VIEWING_STATS ] = 'file viewing stats' REPOSITORY_CONTENT_TYPES = [ CONTENT_TYPE_FILES, CONTENT_TYPE_MAPPINGS, CONTENT_TYPE_TAG_PARENTS, CONTENT_TYPE_TAG_SIBLINGS ] CONTENT_UPDATE_ADD = 0 CONTENT_UPDATE_DELETE = 1 CONTENT_UPDATE_PEND = 2 CONTENT_UPDATE_RESCIND_PEND = 3 CONTENT_UPDATE_PETITION = 4 CONTENT_UPDATE_RESCIND_PETITION = 5 CONTENT_UPDATE_EDIT_LOG = 6 CONTENT_UPDATE_ARCHIVE = 7 CONTENT_UPDATE_INBOX = 8 CONTENT_UPDATE_RATING = 9 CONTENT_UPDATE_DENY_PEND = 11 CONTENT_UPDATE_DENY_PETITION = 12 CONTENT_UPDATE_ADVANCED = 13 CONTENT_UPDATE_UNDELETE = 14 CONTENT_UPDATE_SET = 15 CONTENT_UPDATE_FLIP = 16 content_update_string_lookup = {} content_update_string_lookup[ CONTENT_UPDATE_ADD ] = 'add' content_update_string_lookup[ CONTENT_UPDATE_DELETE ] = 'delete' content_update_string_lookup[ CONTENT_UPDATE_PEND ] = 'pending' content_update_string_lookup[ CONTENT_UPDATE_RESCIND_PEND ] = 'rescind pending' content_update_string_lookup[ CONTENT_UPDATE_PETITION ] = 'petition' content_update_string_lookup[ CONTENT_UPDATE_RESCIND_PETITION ] = 'rescind petition' content_update_string_lookup[ CONTENT_UPDATE_EDIT_LOG ] = 'edit log' content_update_string_lookup[ CONTENT_UPDATE_ARCHIVE ] = 'archive' content_update_string_lookup[ CONTENT_UPDATE_INBOX ] = 'inbox' content_update_string_lookup[ CONTENT_UPDATE_RATING ] = 'rating' content_update_string_lookup[ CONTENT_UPDATE_DENY_PEND ] = 'deny pend' content_update_string_lookup[ CONTENT_UPDATE_DENY_PETITION ] = 'deny petition' content_update_string_lookup[ CONTENT_UPDATE_UNDELETE ] = 'undelete' content_update_string_lookup[ CONTENT_UPDATE_SET ] = 'set' content_update_string_lookup[ CONTENT_UPDATE_FLIP ] = 'flip on/off' DEFINITIONS_TYPE_HASHES = 0 DEFINITIONS_TYPE_TAGS = 1 DUPLICATE_POTENTIAL = 0 DUPLICATE_FALSE_POSITIVE = 1 DUPLICATE_SAME_QUALITY = 2 DUPLICATE_ALTERNATE = 3 DUPLICATE_BETTER = 4 DUPLICATE_SMALLER_BETTER = 5 DUPLICATE_LARGER_BETTER = 6 DUPLICATE_WORSE = 7 DUPLICATE_MEMBER = 8 DUPLICATE_KING = 9 duplicate_type_string_lookup = {} duplicate_type_string_lookup[ DUPLICATE_POTENTIAL ] = 'potential duplicates' duplicate_type_string_lookup[ DUPLICATE_FALSE_POSITIVE ] = 'not related/false positive' duplicate_type_string_lookup[ DUPLICATE_SAME_QUALITY ] = 'same quality' duplicate_type_string_lookup[ DUPLICATE_ALTERNATE ] = 'alternates' duplicate_type_string_lookup[ DUPLICATE_BETTER ] = 'this is better' duplicate_type_string_lookup[ DUPLICATE_SMALLER_BETTER ] = 'smaller hash_id is better' duplicate_type_string_lookup[ DUPLICATE_LARGER_BETTER ] = 'larger hash_id is better' duplicate_type_string_lookup[ DUPLICATE_WORSE ] = 'this is worse' duplicate_type_string_lookup[ DUPLICATE_MEMBER ] = 'duplicates' duplicate_type_string_lookup[ DUPLICATE_KING ] = 'the best quality duplicate' ENCODING_RAW = 0 ENCODING_HEX = 1 ENCODING_BASE64 = 2 encoding_string_lookup = {} encoding_string_lookup[ ENCODING_RAW ] = 'raw bytes' encoding_string_lookup[ ENCODING_HEX ] = 'hexadecimal' encoding_string_lookup[ ENCODING_BASE64 ] = 'base64' IMPORT_FOLDER_TYPE_DELETE = 0 IMPORT_FOLDER_TYPE_SYNCHRONISE = 1 EXPORT_FOLDER_TYPE_REGULAR = 0 EXPORT_FOLDER_TYPE_SYNCHRONISE = 1 HAMMING_EXACT_MATCH = 0 HAMMING_VERY_SIMILAR = 2 HAMMING_SIMILAR = 4 HAMMING_SPECULATIVE = 8 hamming_string_lookup = {} hamming_string_lookup[ HAMMING_EXACT_MATCH ] = 'exact match' hamming_string_lookup[ HAMMING_VERY_SIMILAR ] = 'very similar' hamming_string_lookup[ HAMMING_SIMILAR ] = 'similar' hamming_string_lookup[ HAMMING_SPECULATIVE ] = 'speculative' HYDRUS_CLIENT = 0 HYDRUS_SERVER = 1 HYDRUS_TEST = 2 MAINTENANCE_IDLE = 0 MAINTENANCE_SHUTDOWN = 1 MAINTENANCE_FORCED = 2 GET_DATA = 0 POST_DATA = 1 POST_PETITIONS = 2 RESOLVE_PETITIONS = 3 MANAGE_USERS = 4 GENERAL_ADMIN = 5 EDIT_SERVICES = 6 UNKNOWN_PERMISSION = 7 CREATABLE_PERMISSIONS = [ GET_DATA, POST_DATA, POST_PETITIONS, RESOLVE_PETITIONS, MANAGE_USERS, GENERAL_ADMIN ] ADMIN_PERMISSIONS = [ RESOLVE_PETITIONS, MANAGE_USERS, GENERAL_ADMIN, EDIT_SERVICES ] permissions_string_lookup = {} permissions_string_lookup[ GET_DATA ] = 'get data' permissions_string_lookup[ POST_DATA ] = 'post data' permissions_string_lookup[ POST_PETITIONS ] = 'post petitions' permissions_string_lookup[ RESOLVE_PETITIONS ] = 'resolve petitions' permissions_string_lookup[ MANAGE_USERS ] = 'manage users' permissions_string_lookup[ GENERAL_ADMIN ] = 'general administration' permissions_string_lookup[ EDIT_SERVICES ] = 'edit services' permissions_string_lookup[ UNKNOWN_PERMISSION ] = 'unknown' # new permissions PERMISSION_ACTION_PETITION = 0 PERMISSION_ACTION_CREATE = 1 PERMISSION_ACTION_OVERRULE = 2 permission_pair_string_lookup = {} permission_pair_string_lookup[ ( CONTENT_TYPE_ACCOUNTS, None ) ] = 'cannot change accounts' permission_pair_string_lookup[ ( CONTENT_TYPE_ACCOUNTS, PERMISSION_ACTION_CREATE ) ] = 'can create accounts' permission_pair_string_lookup[ ( CONTENT_TYPE_ACCOUNTS, PERMISSION_ACTION_OVERRULE ) ] = 'can manage accounts completely' permission_pair_string_lookup[ ( CONTENT_TYPE_ACCOUNT_TYPES, None ) ] = 'cannot change account types' permission_pair_string_lookup[ ( CONTENT_TYPE_ACCOUNT_TYPES, PERMISSION_ACTION_OVERRULE ) ] = 'can manage account types completely' permission_pair_string_lookup[ ( CONTENT_TYPE_SERVICES, None ) ] = 'cannot change services' permission_pair_string_lookup[ ( CONTENT_TYPE_SERVICES, PERMISSION_ACTION_OVERRULE ) ] = 'can manage services completely' permission_pair_string_lookup[ ( CONTENT_TYPE_FILES, None ) ] = 'can only download files' permission_pair_string_lookup[ ( CONTENT_TYPE_FILES, PERMISSION_ACTION_PETITION ) ] = 'can petition to remove existing files' permission_pair_string_lookup[ ( CONTENT_TYPE_FILES, PERMISSION_ACTION_CREATE ) ] = 'can upload new files and petition existing ones' permission_pair_string_lookup[ ( CONTENT_TYPE_FILES, PERMISSION_ACTION_OVERRULE ) ] = 'can upload and delete files and process petitions' permission_pair_string_lookup[ ( CONTENT_TYPE_MAPPINGS, None ) ] = 'can only download mappings' permission_pair_string_lookup[ ( CONTENT_TYPE_MAPPINGS, PERMISSION_ACTION_PETITION ) ] = 'can petition to remove existing mappings' permission_pair_string_lookup[ ( CONTENT_TYPE_MAPPINGS, PERMISSION_ACTION_CREATE ) ] = 'can upload new mappings and petition existing ones' permission_pair_string_lookup[ ( CONTENT_TYPE_MAPPINGS, PERMISSION_ACTION_OVERRULE ) ] = 'can upload and delete mappings and process petitions' permission_pair_string_lookup[ ( CONTENT_TYPE_TAG_PARENTS, None ) ] = 'can only download tag parents' permission_pair_string_lookup[ ( CONTENT_TYPE_TAG_PARENTS, PERMISSION_ACTION_PETITION ) ] = 'can petition to add or remove tag parents' permission_pair_string_lookup[ ( CONTENT_TYPE_TAG_PARENTS, PERMISSION_ACTION_OVERRULE ) ] = 'can upload and delete tag parents and process petitions' permission_pair_string_lookup[ ( CONTENT_TYPE_TAG_SIBLINGS, None ) ] = 'can only download tag siblings' permission_pair_string_lookup[ ( CONTENT_TYPE_TAG_SIBLINGS, PERMISSION_ACTION_PETITION ) ] = 'can petition to add or remove tag siblings' permission_pair_string_lookup[ ( CONTENT_TYPE_TAG_SIBLINGS, PERMISSION_ACTION_OVERRULE ) ] = 'can upload and delete tag siblings and process petitions' TAG_REPOSITORY = 0 FILE_REPOSITORY = 1 LOCAL_FILE_DOMAIN = 2 MESSAGE_DEPOT = 3 LOCAL_TAG = 5 LOCAL_RATING_NUMERICAL = 6 LOCAL_RATING_LIKE = 7 RATING_NUMERICAL_REPOSITORY = 8 RATING_LIKE_REPOSITORY = 9 COMBINED_TAG = 10 COMBINED_FILE = 11 LOCAL_BOORU = 12 IPFS = 13 LOCAL_FILE_TRASH_DOMAIN = 14 COMBINED_LOCAL_FILE = 15 TEST_SERVICE = 16 LOCAL_NOTES = 17 CLIENT_API_SERVICE = 18 SERVER_ADMIN = 99 NULL_SERVICE = 100 service_string_lookup = {} service_string_lookup[ TAG_REPOSITORY ] = 'hydrus tag repository' service_string_lookup[ FILE_REPOSITORY ] = 'hydrus file repository' service_string_lookup[ LOCAL_FILE_DOMAIN ] = 'local file domain' service_string_lookup[ LOCAL_FILE_TRASH_DOMAIN ] = 'local trash file domain' service_string_lookup[ COMBINED_LOCAL_FILE ] = 'virtual combined local file service' service_string_lookup[ MESSAGE_DEPOT ] = 'hydrus message depot' service_string_lookup[ LOCAL_TAG ] = 'local tag service' service_string_lookup[ LOCAL_RATING_NUMERICAL ] = 'local numerical rating service' service_string_lookup[ LOCAL_RATING_LIKE ] = 'local like/dislike rating service' service_string_lookup[ RATING_NUMERICAL_REPOSITORY ] = 'hydrus numerical rating repository' service_string_lookup[ RATING_LIKE_REPOSITORY ] = 'hydrus like/dislike rating repository' service_string_lookup[ COMBINED_TAG ] = 'virtual combined tag service' service_string_lookup[ COMBINED_FILE ] = 'virtual combined file service' service_string_lookup[ LOCAL_BOORU ] = 'client local booru' service_string_lookup[ CLIENT_API_SERVICE ] = 'client api' service_string_lookup[ IPFS ] = 'ipfs daemon' service_string_lookup[ TEST_SERVICE ] = 'test service' service_string_lookup[ LOCAL_NOTES ] = 'local file notes service' service_string_lookup[ SERVER_ADMIN ] = 'hydrus server administration service' service_string_lookup[ NULL_SERVICE ] = 'null service' LOCAL_FILE_SERVICES = ( LOCAL_FILE_DOMAIN, LOCAL_FILE_TRASH_DOMAIN, COMBINED_LOCAL_FILE ) LOCAL_TAG_SERVICES = ( LOCAL_TAG, ) LOCAL_SERVICES = LOCAL_FILE_SERVICES + LOCAL_TAG_SERVICES + ( LOCAL_RATING_LIKE, LOCAL_RATING_NUMERICAL, LOCAL_BOORU, LOCAL_NOTES, CLIENT_API_SERVICE ) RATINGS_SERVICES = ( LOCAL_RATING_LIKE, LOCAL_RATING_NUMERICAL, RATING_LIKE_REPOSITORY, RATING_NUMERICAL_REPOSITORY ) REPOSITORIES = ( TAG_REPOSITORY, FILE_REPOSITORY, RATING_LIKE_REPOSITORY, RATING_NUMERICAL_REPOSITORY ) RESTRICTED_SERVICES = REPOSITORIES + ( SERVER_ADMIN, MESSAGE_DEPOT ) REMOTE_SERVICES = RESTRICTED_SERVICES + ( IPFS, ) FILE_SERVICES = LOCAL_FILE_SERVICES + ( FILE_REPOSITORY, IPFS ) TAG_SERVICES = ( LOCAL_TAG, TAG_REPOSITORY ) ADDREMOVABLE_SERVICES = ( LOCAL_RATING_LIKE, LOCAL_RATING_NUMERICAL, FILE_REPOSITORY, TAG_REPOSITORY, SERVER_ADMIN, IPFS ) NONEDITABLE_SERVICES = ( LOCAL_FILE_DOMAIN, LOCAL_FILE_TRASH_DOMAIN, LOCAL_TAG, COMBINED_FILE, COMBINED_TAG, COMBINED_LOCAL_FILE ) AUTOCOMPLETE_CACHE_SPECIFIC_FILE_SERVICES = ( LOCAL_FILE_DOMAIN, LOCAL_FILE_TRASH_DOMAIN, COMBINED_LOCAL_FILE, FILE_REPOSITORY ) ALL_SERVICES = REMOTE_SERVICES + LOCAL_SERVICES + ( COMBINED_FILE, COMBINED_TAG ) SERVICES_WITH_THUMBNAILS = [ FILE_REPOSITORY, LOCAL_FILE_DOMAIN ] DELETE_FILES_PETITION = 0 DELETE_TAG_PETITION = 1 BAN = 0 SUPERBAN = 1 CHANGE_ACCOUNT_TYPE = 2 ADD_TO_EXPIRES = 3 SET_EXPIRES = 4 SCORE_PETITION = 0 SERVICE_INFO_NUM_FILES = 0 SERVICE_INFO_NUM_INBOX = 1 SERVICE_INFO_NUM_LOCAL = 2 SERVICE_INFO_NUM_MAPPINGS = 3 SERVICE_INFO_NUM_DELETED_MAPPINGS = 4 SERVICE_INFO_NUM_DELETED_FILES = 5 SERVICE_INFO_NUM_THUMBNAILS = 6 SERVICE_INFO_NUM_THUMBNAILS_LOCAL = 7 SERVICE_INFO_TOTAL_SIZE = 8 SERVICE_INFO_NUM_NAMESPACES = 9 SERVICE_INFO_NUM_TAGS = 10 SERVICE_INFO_NUM_PENDING = 11 SERVICE_INFO_NUM_CONVERSATIONS = 12 SERVICE_INFO_NUM_UNREAD = 13 SERVICE_INFO_NUM_DRAFTS = 14 SERVICE_INFO_NUM_PENDING_MAPPINGS = 15 SERVICE_INFO_NUM_PETITIONED_MAPPINGS = 16 SERVICE_INFO_NUM_PENDING_FILES = 15 SERVICE_INFO_NUM_PETITIONED_FILES = 16 SERVICE_INFO_NUM_PENDING_TAG_SIBLINGS = 17 SERVICE_INFO_NUM_PETITIONED_TAG_SIBLINGS = 18 SERVICE_INFO_NUM_PENDING_TAG_PARENTS = 19 SERVICE_INFO_NUM_PETITIONED_TAG_PARENTS = 20 SERVICE_INFO_NUM_SHARES = 21 SERVICE_INFO_NUM_VIEWABLE_FILES = 22 SERVICE_UPDATE_DELETE_PENDING = 0 SERVICE_UPDATE_RESET = 1 ADD = 0 DELETE = 1 EDIT = 2 SET = 3 APPROVE = 0 DENY = 1 GET = 0 POST = 1 OPTIONS = 2 query_type_string_lookup = {} query_type_string_lookup[ GET ] = 'GET' query_type_string_lookup[ POST ] = 'POST' query_type_string_lookup[ OPTIONS ] = 'OPTIONS' APPLICATION_HYDRUS_CLIENT_COLLECTION = 0 IMAGE_JPEG = 1 IMAGE_PNG = 2 IMAGE_GIF = 3 IMAGE_BMP = 4 APPLICATION_FLASH = 5 APPLICATION_YAML = 6 IMAGE_ICON = 7 TEXT_HTML = 8 VIDEO_FLV = 9 APPLICATION_PDF = 10 APPLICATION_ZIP = 11 APPLICATION_HYDRUS_ENCRYPTED_ZIP = 12 AUDIO_MP3 = 13 VIDEO_MP4 = 14 AUDIO_OGG = 15 AUDIO_FLAC = 16 AUDIO_WMA = 17 VIDEO_WMV = 18 UNDETERMINED_WM = 19 VIDEO_MKV = 20 VIDEO_WEBM = 21 APPLICATION_JSON = 22 IMAGE_APNG = 23 UNDETERMINED_PNG = 24 VIDEO_MPEG = 25 VIDEO_MOV = 26 VIDEO_AVI = 27 APPLICATION_HYDRUS_UPDATE_DEFINITIONS = 28 APPLICATION_HYDRUS_UPDATE_CONTENT = 29 TEXT_PLAIN = 30 APPLICATION_RAR = 31 APPLICATION_7Z = 32 IMAGE_WEBP = 33 IMAGE_TIFF = 34 APPLICATION_PSD = 35 APPLICATION_OCTET_STREAM = 100 APPLICATION_UNKNOWN = 101 ALLOWED_MIMES = ( IMAGE_JPEG, IMAGE_PNG, IMAGE_APNG, IMAGE_GIF, IMAGE_BMP, IMAGE_WEBP, IMAGE_TIFF, IMAGE_ICON, APPLICATION_FLASH, VIDEO_AVI, VIDEO_FLV, VIDEO_MOV, VIDEO_MP4, VIDEO_MKV, VIDEO_WEBM, VIDEO_MPEG, APPLICATION_PSD, APPLICATION_PDF, APPLICATION_ZIP, APPLICATION_RAR, APPLICATION_7Z, AUDIO_MP3, AUDIO_OGG, AUDIO_FLAC, AUDIO_WMA, VIDEO_WMV, APPLICATION_HYDRUS_UPDATE_CONTENT, APPLICATION_HYDRUS_UPDATE_DEFINITIONS ) SEARCHABLE_MIMES = ( IMAGE_JPEG, IMAGE_PNG, IMAGE_APNG, IMAGE_GIF, IMAGE_WEBP, IMAGE_TIFF, IMAGE_ICON, APPLICATION_FLASH, VIDEO_AVI, VIDEO_FLV, VIDEO_MOV, VIDEO_MP4, VIDEO_MKV, VIDEO_WEBM, VIDEO_MPEG, APPLICATION_PSD, APPLICATION_PDF, APPLICATION_ZIP, APPLICATION_RAR, APPLICATION_7Z, AUDIO_MP3, AUDIO_OGG, AUDIO_FLAC, AUDIO_WMA, VIDEO_WMV ) DECOMPRESSION_BOMB_IMAGES = ( IMAGE_JPEG, IMAGE_PNG ) IMAGES = ( IMAGE_JPEG, IMAGE_PNG, IMAGE_APNG, IMAGE_GIF, IMAGE_BMP, IMAGE_WEBP, IMAGE_TIFF, IMAGE_ICON ) AUDIO = ( AUDIO_MP3, AUDIO_OGG, AUDIO_FLAC, AUDIO_WMA ) VIDEO = ( VIDEO_AVI, VIDEO_FLV, VIDEO_MOV, VIDEO_MP4, VIDEO_WMV, VIDEO_MKV, VIDEO_WEBM, VIDEO_MPEG ) NATIVE_VIDEO = ( IMAGE_APNG, VIDEO_AVI, VIDEO_FLV, VIDEO_MOV, VIDEO_MP4, VIDEO_WMV, VIDEO_MKV, VIDEO_WEBM, VIDEO_MPEG ) APPLICATIONS = ( APPLICATION_FLASH, APPLICATION_PSD, APPLICATION_PDF, APPLICATION_ZIP, APPLICATION_RAR, APPLICATION_7Z ) NOISY_MIMES = tuple( [ APPLICATION_FLASH ] + list( AUDIO ) + list( VIDEO ) ) ARCHIVES = ( APPLICATION_ZIP, APPLICATION_HYDRUS_ENCRYPTED_ZIP, APPLICATION_RAR, APPLICATION_7Z ) MIMES_WITH_THUMBNAILS = ( APPLICATION_FLASH, IMAGE_JPEG, IMAGE_PNG, IMAGE_APNG, IMAGE_GIF, IMAGE_BMP, IMAGE_WEBP, IMAGE_TIFF, IMAGE_ICON, VIDEO_AVI, VIDEO_FLV, VIDEO_MOV, VIDEO_MP4, VIDEO_WMV, VIDEO_MKV, VIDEO_WEBM, VIDEO_MPEG ) HYDRUS_UPDATE_FILES = ( APPLICATION_HYDRUS_UPDATE_DEFINITIONS, APPLICATION_HYDRUS_UPDATE_CONTENT ) MIMES_WE_CAN_PHASH = ( IMAGE_JPEG, IMAGE_PNG, IMAGE_WEBP, IMAGE_TIFF, IMAGE_ICON ) mime_enum_lookup = {} mime_enum_lookup[ 'collection' ] = APPLICATION_HYDRUS_CLIENT_COLLECTION mime_enum_lookup[ 'image/jpe' ] = IMAGE_JPEG mime_enum_lookup[ 'image/jpeg' ] = IMAGE_JPEG mime_enum_lookup[ 'image/jpg' ] = IMAGE_JPEG mime_enum_lookup[ 'image/x-png' ] = IMAGE_PNG mime_enum_lookup[ 'image/png' ] = IMAGE_PNG mime_enum_lookup[ 'image/apng' ] = IMAGE_APNG mime_enum_lookup[ 'image/gif' ] = IMAGE_GIF mime_enum_lookup[ 'image/bmp' ] = IMAGE_BMP mime_enum_lookup[ 'image/webp' ] = IMAGE_WEBP mime_enum_lookup[ 'image/tiff' ] = IMAGE_TIFF mime_enum_lookup[ 'image/x-icon' ] = IMAGE_ICON mime_enum_lookup[ 'image/vnd.microsoft.icon' ] = IMAGE_ICON mime_enum_lookup[ 'image' ] = IMAGES mime_enum_lookup[ 'application/x-shockwave-flash' ] = APPLICATION_FLASH mime_enum_lookup[ 'application/x-photoshop' ] = APPLICATION_PSD mime_enum_lookup[ 'image/vnd.adobe.photoshop' ] = APPLICATION_PSD mime_enum_lookup[ 'application/octet-stream' ] = APPLICATION_OCTET_STREAM mime_enum_lookup[ 'application/x-yaml' ] = APPLICATION_YAML mime_enum_lookup[ 'PDF document' ] = APPLICATION_PDF mime_enum_lookup[ 'application/pdf' ] = APPLICATION_PDF mime_enum_lookup[ 'application/zip' ] = APPLICATION_ZIP mime_enum_lookup[ 'application/vnd.rar' ] = APPLICATION_RAR mime_enum_lookup[ 'application/x-7z-compressed' ] = APPLICATION_7Z mime_enum_lookup[ 'application/json' ] = APPLICATION_JSON mime_enum_lookup[ 'application/hydrus-encrypted-zip' ] = APPLICATION_HYDRUS_ENCRYPTED_ZIP mime_enum_lookup[ 'application/hydrus-update-content' ] = APPLICATION_HYDRUS_UPDATE_CONTENT mime_enum_lookup[ 'application/hydrus-update-definitions' ] = APPLICATION_HYDRUS_UPDATE_DEFINITIONS mime_enum_lookup[ 'application' ] = APPLICATIONS mime_enum_lookup[ 'audio/mp3' ] = AUDIO_MP3 mime_enum_lookup[ 'audio/ogg' ] = AUDIO_OGG mime_enum_lookup[ 'audio/flac' ] = AUDIO_FLAC mime_enum_lookup[ 'audio/x-ms-wma' ] = AUDIO_WMA mime_enum_lookup[ 'text/html' ] = TEXT_HTML mime_enum_lookup[ 'text/plain' ] = TEXT_PLAIN mime_enum_lookup[ 'video/x-msvideo' ] = VIDEO_AVI mime_enum_lookup[ 'video/x-flv' ] = VIDEO_FLV mime_enum_lookup[ 'video/quicktime' ] = VIDEO_MOV mime_enum_lookup[ 'video/mp4' ] = VIDEO_MP4 mime_enum_lookup[ 'video/mpeg' ] = VIDEO_MPEG mime_enum_lookup[ 'video/x-ms-wmv' ] = VIDEO_WMV mime_enum_lookup[ 'video/x-matroska' ] = VIDEO_MKV mime_enum_lookup[ 'video/webm' ] = VIDEO_WEBM mime_enum_lookup[ 'video' ] = VIDEO mime_enum_lookup[ 'unknown mime' ] = APPLICATION_UNKNOWN mime_string_lookup = {} mime_string_lookup[ APPLICATION_HYDRUS_CLIENT_COLLECTION ] = 'collection' mime_string_lookup[ IMAGE_JPEG ] = 'image/jpg' mime_string_lookup[ IMAGE_PNG ] = 'image/png' mime_string_lookup[ IMAGE_APNG ] = 'image/apng' mime_string_lookup[ IMAGE_GIF ] = 'image/gif' mime_string_lookup[ IMAGE_BMP ] = 'image/bmp' mime_string_lookup[ IMAGE_WEBP ] = 'image/webp' mime_string_lookup[ IMAGE_TIFF ] = 'image/tiff' mime_string_lookup[ IMAGE_ICON ] = 'image/x-icon' mime_string_lookup[ IMAGES ] = 'image' mime_string_lookup[ APPLICATION_FLASH ] = 'application/x-shockwave-flash' mime_string_lookup[ APPLICATION_OCTET_STREAM ] = 'application/octet-stream' mime_string_lookup[ APPLICATION_YAML ] = 'application/x-yaml' mime_string_lookup[ APPLICATION_JSON ] = 'application/json' mime_string_lookup[ APPLICATION_PDF ] = 'application/pdf' mime_string_lookup[ APPLICATION_PSD ] = 'application/x-photoshop' mime_string_lookup[ APPLICATION_ZIP ] = 'application/zip' mime_string_lookup[ APPLICATION_RAR ] = 'application/vnd.rar' mime_string_lookup[ APPLICATION_7Z ] = 'application/x-7z-compressed' mime_string_lookup[ APPLICATION_HYDRUS_ENCRYPTED_ZIP ] = 'application/hydrus-encrypted-zip' mime_string_lookup[ APPLICATION_HYDRUS_UPDATE_CONTENT ] = 'application/hydrus-update-content' mime_string_lookup[ APPLICATION_HYDRUS_UPDATE_DEFINITIONS ] = 'application/hydrus-update-definitions' mime_string_lookup[ APPLICATIONS ] = 'application' mime_string_lookup[ AUDIO_MP3 ] = 'audio/mp3' mime_string_lookup[ AUDIO_OGG ] = 'audio/ogg' mime_string_lookup[ AUDIO_FLAC ] = 'audio/flac' mime_string_lookup[ AUDIO_WMA ] = 'audio/x-ms-wma' mime_string_lookup[ AUDIO ] = 'audio' mime_string_lookup[ TEXT_HTML ] = 'text/html' mime_string_lookup[ TEXT_PLAIN ] = 'text/plain' mime_string_lookup[ VIDEO_AVI ] = 'video/x-msvideo' mime_string_lookup[ VIDEO_FLV ] = 'video/x-flv' mime_string_lookup[ VIDEO_MOV ] = 'video/quicktime' mime_string_lookup[ VIDEO_MP4 ] = 'video/mp4' mime_string_lookup[ VIDEO_MPEG ] = 'video/mpeg' mime_string_lookup[ VIDEO_WMV ] = 'video/x-ms-wmv' mime_string_lookup[ VIDEO_MKV ] = 'video/x-matroska' mime_string_lookup[ VIDEO_WEBM ] = 'video/webm' mime_string_lookup[ VIDEO ] = 'video' mime_string_lookup[ UNDETERMINED_WM ] = 'audio/x-ms-wma or video/x-ms-wmv' mime_string_lookup[ APPLICATION_UNKNOWN ] = 'unknown mime' mime_ext_lookup = {} mime_ext_lookup[ APPLICATION_HYDRUS_CLIENT_COLLECTION ] = '.collection' mime_ext_lookup[ IMAGE_JPEG ] = '.jpg' mime_ext_lookup[ IMAGE_PNG ] = '.png' mime_ext_lookup[ IMAGE_APNG ] = '.png' mime_ext_lookup[ IMAGE_GIF ] = '.gif' mime_ext_lookup[ IMAGE_BMP ] = '.bmp' mime_ext_lookup[ IMAGE_WEBP ] = '.webp' mime_ext_lookup[ IMAGE_TIFF ] = '.tiff' mime_ext_lookup[ IMAGE_ICON ] = '.ico' mime_ext_lookup[ APPLICATION_FLASH ] = '.swf' mime_ext_lookup[ APPLICATION_OCTET_STREAM ] = '.bin' mime_ext_lookup[ APPLICATION_YAML ] = '.yaml' mime_ext_lookup[ APPLICATION_JSON ] = '.json' mime_ext_lookup[ APPLICATION_PDF ] = '.pdf' mime_ext_lookup[ APPLICATION_PSD ] = '.psd' mime_ext_lookup[ APPLICATION_ZIP ] = '.zip' mime_ext_lookup[ APPLICATION_RAR ] = '.rar' mime_ext_lookup[ APPLICATION_7Z ] = '.7z' mime_ext_lookup[ APPLICATION_HYDRUS_ENCRYPTED_ZIP ] = '.zip.encrypted' mime_ext_lookup[ APPLICATION_HYDRUS_UPDATE_CONTENT ] = '' mime_ext_lookup[ APPLICATION_HYDRUS_UPDATE_DEFINITIONS ] = '' mime_ext_lookup[ AUDIO_MP3 ] = '.mp3' mime_ext_lookup[ AUDIO_OGG ] = '.ogg' mime_ext_lookup[ AUDIO_FLAC ] = '.flac' mime_ext_lookup[ AUDIO_WMA ] = '.wma' mime_ext_lookup[ TEXT_HTML ] = '.html' mime_ext_lookup[ TEXT_PLAIN ] = '.txt' mime_ext_lookup[ VIDEO_AVI ] = '.avi' mime_ext_lookup[ VIDEO_FLV ] = '.flv' mime_ext_lookup[ VIDEO_MOV ] = '.mov' mime_ext_lookup[ VIDEO_MP4 ] = '.mp4' mime_ext_lookup[ VIDEO_MPEG ] = '.mpeg' mime_ext_lookup[ VIDEO_WMV ] = '.wmv' mime_ext_lookup[ VIDEO_MKV ] = '.mkv' mime_ext_lookup[ VIDEO_WEBM ] = '.webm' mime_ext_lookup[ APPLICATION_UNKNOWN ] = '' #mime_ext_lookup[ 'application/x-rar-compressed' ] = '.rar' ALLOWED_MIME_EXTENSIONS = [ mime_ext_lookup[ mime ] for mime in ALLOWED_MIMES ] PREDICATE_TYPE_TAG = 0 PREDICATE_TYPE_NAMESPACE = 1 PREDICATE_TYPE_PARENT = 2 PREDICATE_TYPE_WILDCARD = 3 PREDICATE_TYPE_SYSTEM_EVERYTHING = 4 PREDICATE_TYPE_SYSTEM_INBOX = 5 PREDICATE_TYPE_SYSTEM_ARCHIVE = 6 PREDICATE_TYPE_SYSTEM_UNTAGGED = 7 PREDICATE_TYPE_SYSTEM_NUM_TAGS = 8 PREDICATE_TYPE_SYSTEM_LIMIT = 9 PREDICATE_TYPE_SYSTEM_SIZE = 10 PREDICATE_TYPE_SYSTEM_AGE = 11 PREDICATE_TYPE_SYSTEM_HASH = 12 PREDICATE_TYPE_SYSTEM_WIDTH = 13 PREDICATE_TYPE_SYSTEM_HEIGHT = 14 PREDICATE_TYPE_SYSTEM_RATIO = 15 PREDICATE_TYPE_SYSTEM_DURATION = 16 PREDICATE_TYPE_SYSTEM_MIME = 17 PREDICATE_TYPE_SYSTEM_RATING = 18 PREDICATE_TYPE_SYSTEM_SIMILAR_TO = 19 PREDICATE_TYPE_SYSTEM_LOCAL = 20 PREDICATE_TYPE_SYSTEM_NOT_LOCAL = 21 PREDICATE_TYPE_SYSTEM_NUM_WORDS = 22 PREDICATE_TYPE_SYSTEM_FILE_SERVICE = 23 PREDICATE_TYPE_SYSTEM_NUM_PIXELS = 24 PREDICATE_TYPE_SYSTEM_DIMENSIONS = 25 PREDICATE_TYPE_SYSTEM_DUPLICATE_RELATIONSHIP_COUNT = 26 PREDICATE_TYPE_SYSTEM_TAG_AS_NUMBER = 27 PREDICATE_TYPE_SYSTEM_KNOWN_URLS = 28 PREDICATE_TYPE_SYSTEM_FILE_VIEWING_STATS = 29 PREDICATE_TYPE_OR_CONTAINER = 30 SYSTEM_PREDICATES = [ PREDICATE_TYPE_SYSTEM_EVERYTHING, PREDICATE_TYPE_SYSTEM_INBOX, PREDICATE_TYPE_SYSTEM_ARCHIVE, PREDICATE_TYPE_SYSTEM_UNTAGGED, PREDICATE_TYPE_SYSTEM_NUM_TAGS, PREDICATE_TYPE_SYSTEM_LIMIT, PREDICATE_TYPE_SYSTEM_SIZE, PREDICATE_TYPE_SYSTEM_AGE, PREDICATE_TYPE_SYSTEM_HASH, PREDICATE_TYPE_SYSTEM_WIDTH, PREDICATE_TYPE_SYSTEM_HEIGHT, PREDICATE_TYPE_SYSTEM_RATIO, PREDICATE_TYPE_SYSTEM_DURATION, PREDICATE_TYPE_SYSTEM_MIME, PREDICATE_TYPE_SYSTEM_RATING, PREDICATE_TYPE_SYSTEM_SIMILAR_TO, PREDICATE_TYPE_SYSTEM_LOCAL, PREDICATE_TYPE_SYSTEM_NOT_LOCAL, PREDICATE_TYPE_SYSTEM_NUM_WORDS, PREDICATE_TYPE_SYSTEM_FILE_SERVICE, PREDICATE_TYPE_SYSTEM_NUM_PIXELS, PREDICATE_TYPE_SYSTEM_DIMENSIONS, PREDICATE_TYPE_SYSTEM_TAG_AS_NUMBER, PREDICATE_TYPE_SYSTEM_DUPLICATE_RELATIONSHIP_COUNT, PREDICATE_TYPE_SYSTEM_KNOWN_URLS, PREDICATE_TYPE_SYSTEM_FILE_VIEWING_STATS ] SITE_TYPE_DEVIANT_ART = 0 SITE_TYPE_GIPHY = 1 SITE_TYPE_PIXIV = 2 SITE_TYPE_BOORU = 3 SITE_TYPE_TUMBLR = 4 SITE_TYPE_HENTAI_FOUNDRY = 5 SITE_TYPE_NEWGROUNDS = 6 SITE_TYPE_NEWGROUNDS_MOVIES = 7 SITE_TYPE_NEWGROUNDS_GAMES = 8 SITE_TYPE_HENTAI_FOUNDRY_ARTIST = 9 SITE_TYPE_HENTAI_FOUNDRY_ARTIST_PICTURES = 10 SITE_TYPE_HENTAI_FOUNDRY_ARTIST_SCRAPS = 11 SITE_TYPE_HENTAI_FOUNDRY_TAGS = 12 SITE_TYPE_PIXIV_ARTIST_ID = 13 SITE_TYPE_PIXIV_TAG = 14 SITE_TYPE_DEFAULT = 15 SITE_TYPE_WATCHER = 16 site_type_string_lookup = {} site_type_string_lookup[ SITE_TYPE_DEFAULT ] = 'default' site_type_string_lookup[ SITE_TYPE_BOORU ] = 'booru' site_type_string_lookup[ SITE_TYPE_DEVIANT_ART ] = 'deviant art' site_type_string_lookup[ SITE_TYPE_GIPHY ] = 'giphy' site_type_string_lookup[ SITE_TYPE_HENTAI_FOUNDRY ] = 'hentai foundry' site_type_string_lookup[ SITE_TYPE_HENTAI_FOUNDRY_ARTIST ] = 'hentai foundry artist' site_type_string_lookup[ SITE_TYPE_HENTAI_FOUNDRY_ARTIST_PICTURES ] = 'hentai foundry artist pictures' site_type_string_lookup[ SITE_TYPE_HENTAI_FOUNDRY_ARTIST_SCRAPS ] = 'hentai foundry artist scraps' site_type_string_lookup[ SITE_TYPE_HENTAI_FOUNDRY_TAGS ] = 'hentai foundry tags' site_type_string_lookup[ SITE_TYPE_NEWGROUNDS ] = 'newgrounds' site_type_string_lookup[ SITE_TYPE_NEWGROUNDS_GAMES ] = 'newgrounds games' site_type_string_lookup[ SITE_TYPE_NEWGROUNDS_MOVIES ] = 'newgrounds movies' site_type_string_lookup[ SITE_TYPE_PIXIV ] = 'pixiv' site_type_string_lookup[ SITE_TYPE_PIXIV_ARTIST_ID ] = 'pixiv artist id' site_type_string_lookup[ SITE_TYPE_PIXIV_TAG ] = 'pixiv tag' site_type_string_lookup[ SITE_TYPE_TUMBLR ] = 'tumblr' site_type_string_lookup[ SITE_TYPE_WATCHER ] = 'watcher' TIMESTAMP_TYPE_SOURCE = 0 TIMEZONE_GMT = 0 TIMEZONE_LOCAL = 1 TIMEZONE_OFFSET = 2 URL_TYPE_POST = 0 URL_TYPE_API = 1 URL_TYPE_FILE = 2 URL_TYPE_GALLERY = 3 URL_TYPE_WATCHABLE = 4 URL_TYPE_UNKNOWN = 5 URL_TYPE_NEXT = 6 URL_TYPE_DESIRED = 7 URL_TYPE_SOURCE = 8 url_type_string_lookup = {} url_type_string_lookup[ URL_TYPE_POST ] = 'post url' url_type_string_lookup[ URL_TYPE_API ] = 'api url' url_type_string_lookup[ URL_TYPE_FILE ] = 'file url' url_type_string_lookup[ URL_TYPE_GALLERY ] = 'gallery url' url_type_string_lookup[ URL_TYPE_WATCHABLE ] = 'watchable url' url_type_string_lookup[ URL_TYPE_UNKNOWN ] = 'unknown url' url_type_string_lookup[ URL_TYPE_NEXT ] = 'next page url' url_type_string_lookup[ URL_TYPE_DESIRED ] = 'downloadable/pursuable url' url_type_string_lookup[ URL_TYPE_SOURCE ] = 'associable/source url' # default options DEFAULT_SERVER_ADMIN_PORT = 45870 DEFAULT_SERVICE_PORT = 45871 SERVER_ADMIN_KEY = b'server admin' def construct_python_tuple( self, node ): return tuple( self.construct_sequence( node ) ) def represent_python_tuple( self, data ): return self.represent_sequence( 'tag:yaml.org,2002:python/tuple', data ) yaml.SafeLoader.add_constructor( 'tag:yaml.org,2002:python/tuple', construct_python_tuple ) yaml.SafeDumper.add_representer( tuple, represent_python_tuple ) with open('config.yaml') as f: config = yaml.safe_load(f.read()) MYSQL_HOST = config['mysql_db']['host'] MYSQL_USER = config['mysql_db']['user'] MYSQL_PASSWORD = config['mysql_db']['password'] MYSQL_DB = config['mysql_db']['database'] JSON_PATH = config['json_path']
40.953642
868
0.810511
9009b876e8ef7329095c6051afbc5a7fafd8565b
5,598
py
Python
Lib/wsgiref/util.py
jasonadu/Python-2.5
93e24b88564de120b1296165b5c55975fdcb8a3c
[ "PSF-2.0" ]
69
2015-01-16T13:12:55.000Z
2022-02-14T12:55:27.000Z
Lib/wsgiref/util.py
jasonadu/Python-2.5
93e24b88564de120b1296165b5c55975fdcb8a3c
[ "PSF-2.0" ]
3
2019-07-19T18:02:02.000Z
2021-04-25T06:35:42.000Z
Lib/wsgiref/util.py
jasonadu/Python-2.5
93e24b88564de120b1296165b5c55975fdcb8a3c
[ "PSF-2.0" ]
32
2015-02-06T12:10:32.000Z
2019-06-18T03:21:36.000Z
"""Miscellaneous WSGI-related Utilities""" import posixpath __all__ = [ 'FileWrapper', 'guess_scheme', 'application_uri', 'request_uri', 'shift_path_info', 'setup_testing_defaults', ] class FileWrapper: """Wrapper to convert file-like objects to iterables""" def __init__(self, filelike, blksize=8192): self.filelike = filelike self.blksize = blksize if hasattr(filelike,'close'): self.close = filelike.close def __getitem__(self,key): data = self.filelike.read(self.blksize) if data: return data raise IndexError def __iter__(self): return self def next(self): data = self.filelike.read(self.blksize) if data: return data raise StopIteration def guess_scheme(environ): """Return a guess for whether 'wsgi.url_scheme' should be 'http' or 'https' """ if environ.get("HTTPS") in ('yes','on','1'): return 'https' else: return 'http' def application_uri(environ): """Return the application's base URI (no PATH_INFO or QUERY_STRING)""" url = environ['wsgi.url_scheme']+'://' from urllib import quote if environ.get('HTTP_HOST'): url += environ['HTTP_HOST'] else: url += environ['SERVER_NAME'] if environ['wsgi.url_scheme'] == 'https': if environ['SERVER_PORT'] != '443': url += ':' + environ['SERVER_PORT'] else: if environ['SERVER_PORT'] != '80': url += ':' + environ['SERVER_PORT'] url += quote(environ.get('SCRIPT_NAME') or '/') return url def request_uri(environ, include_query=1): """Return the full request URI, optionally including the query string""" url = application_uri(environ) from urllib import quote path_info = quote(environ.get('PATH_INFO','')) if not environ.get('SCRIPT_NAME'): url += path_info[1:] else: url += path_info if include_query and environ.get('QUERY_STRING'): url += '?' + environ['QUERY_STRING'] return url def shift_path_info(environ): """Shift a name from PATH_INFO to SCRIPT_NAME, returning it If there are no remaining path segments in PATH_INFO, return None. Note: 'environ' is modified in-place; use a copy if you need to keep the original PATH_INFO or SCRIPT_NAME. Note: when PATH_INFO is just a '/', this returns '' and appends a trailing '/' to SCRIPT_NAME, even though empty path segments are normally ignored, and SCRIPT_NAME doesn't normally end in a '/'. This is intentional behavior, to ensure that an application can tell the difference between '/x' and '/x/' when traversing to objects. """ path_info = environ.get('PATH_INFO','') if not path_info: return None path_parts = path_info.split('/') path_parts[1:-1] = [p for p in path_parts[1:-1] if p and p<>'.'] name = path_parts[1] del path_parts[1] script_name = environ.get('SCRIPT_NAME','') script_name = posixpath.normpath(script_name+'/'+name) if script_name.endswith('/'): script_name = script_name[:-1] if not name and not script_name.endswith('/'): script_name += '/' environ['SCRIPT_NAME'] = script_name environ['PATH_INFO'] = '/'.join(path_parts) # Special case: '/.' on PATH_INFO doesn't get stripped, # because we don't strip the last element of PATH_INFO # if there's only one path part left. Instead of fixing this # above, we fix it here so that PATH_INFO gets normalized to # an empty string in the environ. if name=='.': name = None return name def setup_testing_defaults(environ): """Update 'environ' with trivial defaults for testing purposes This adds various parameters required for WSGI, including HTTP_HOST, SERVER_NAME, SERVER_PORT, REQUEST_METHOD, SCRIPT_NAME, PATH_INFO, and all of the wsgi.* variables. It only supplies default values, and does not replace any existing settings for these variables. This routine is intended to make it easier for unit tests of WSGI servers and applications to set up dummy environments. It should *not* be used by actual WSGI servers or applications, since the data is fake! """ environ.setdefault('SERVER_NAME','127.0.0.1') environ.setdefault('SERVER_PROTOCOL','HTTP/1.0') environ.setdefault('HTTP_HOST',environ['SERVER_NAME']) environ.setdefault('REQUEST_METHOD','GET') if 'SCRIPT_NAME' not in environ and 'PATH_INFO' not in environ: environ.setdefault('SCRIPT_NAME','') environ.setdefault('PATH_INFO','/') environ.setdefault('wsgi.version', (1,0)) environ.setdefault('wsgi.run_once', 0) environ.setdefault('wsgi.multithread', 0) environ.setdefault('wsgi.multiprocess', 0) from StringIO import StringIO environ.setdefault('wsgi.input', StringIO("")) environ.setdefault('wsgi.errors', StringIO()) environ.setdefault('wsgi.url_scheme',guess_scheme(environ)) if environ['wsgi.url_scheme']=='http': environ.setdefault('SERVER_PORT', '80') elif environ['wsgi.url_scheme']=='https': environ.setdefault('SERVER_PORT', '443') _hoppish = { 'connection':1, 'keep-alive':1, 'proxy-authenticate':1, 'proxy-authorization':1, 'te':1, 'trailers':1, 'transfer-encoding':1, 'upgrade':1 }.has_key def is_hop_by_hop(header_name): """Return true if 'header_name' is an HTTP/1.1 "Hop-by-Hop" header""" return _hoppish(header_name.lower()) #
27.174757
79
0.650947
6379780f573369cb05cfcd73318f05a55e3432c6
9,658
py
Python
venvlink/__init__.py
np-8/venvlink
099ec9845a51697fb15b40f483cd69d030efd518
[ "MIT" ]
4
2021-01-31T12:55:07.000Z
2021-12-20T20:23:02.000Z
venvlink/__init__.py
np-8/venvlink
099ec9845a51697fb15b40f483cd69d030efd518
[ "MIT" ]
9
2020-12-28T13:46:17.000Z
2022-01-05T17:10:44.000Z
venvlink/__init__.py
np-8/venvlink
099ec9845a51697fb15b40f483cd69d030efd518
[ "MIT" ]
1
2020-12-24T00:40:14.000Z
2020-12-24T00:40:14.000Z
import logging logging.basicConfig( level=logging.INFO, format="%(asctime)s %(name)-12s %(levelname)-8s %(message)s", datefmt="%m-%d %H:%M", ) from functools import partial import os from pathlib import Path import subprocess import sys import shutil from venvlink.__version__ import __version__ from venvlink.config import Configuration from venvlink.exceptions import UserAborted from venvlink.utils import is_in_accepted_values, get_input logger = logging.getLogger(__name__) def get_scripts_dir(venv_dir): """ Parameters --------- venv_dir: pathlib.Path The virtual environment root dir. """ return venv_dir / "Scripts" def get_from_scripts_dir(venv_dir, file="activate"): return get_scripts_dir(venv_dir) / file def get_from_venv_dir(venv_dir, file="pyvenv.cfg"): return venv_dir / file def get_venvlink_header(entering=True, comment_symbol='#', shell='Powershell'): tmp = 'entered' if entering else 'left' text = f"{comment_symbol} This file is automatically generated with venvlink v.{__version__}\n" text += f"{comment_symbol} The contents of this file are automatically executed\n" text += f"{comment_symbol} when the project folder is {tmp} with {shell}.\n" return text def get_venvlink_env_text(): text = get_venvlink_header(entering=True, comment_symbol='#') text += '\n' + r'& "$workdir\Scripts\Activate.ps1"' return text def get_venvlink_leave_text(): text = get_venvlink_header(entering=False, comment_symbol='#') text += "\ntry { & deactivate }\n" text += "catch { }" return text def get_activate_ps_text(venvdir_src, real_activate_ps1): return f""" Write-Host "[venvlink]" -NoNewline -ForegroundColor Cyan Write-Host " activate " -NoNewline -ForegroundColor White Write-Host "{venvdir_src}" -NoNewline -ForegroundColor White & '{real_activate_ps1}'""" class VenvLink: def __init__(self, config_file=None): config_file = Path(config_file) if config_file is not None else None self.config = Configuration(config_file) def delete_env(self, project_name): """ Removes virtual environment created with create_env. Parameters ---------- project_name: str The project name for which the virtual enviroment was created. This should be the virtual environment name in the folder where all the virtual environments are located. """ folder = self.venv_folder / project_name if folder.exists(): logger.info("Removing %s", folder) shutil.rmtree(folder) else: logger.info("Could not remove %s! No such folder.", folder) def create_venv(self, project_name, workdir, system_site_packages=False): """ Parameters ---------- project_name: str The project name for which the virtual enviroment is created. This will be the virtual environment name in the folder where all the virtual environments are located. workdir: pathlib.Path The working directory; the directory into which the "linked virtual environment" is created system_site_packages: bool The --system_site_packages of "python -m venv" """ try: self._check_no_venv_in_workdir(workdir, project_name) except UserAborted: print("Canceled.") return try: # Create the virtual environment in the "centralized location" # Note: project_name may change project_name = self._create_venv_to_venv_folder( project_name, system_site_packages=system_site_packages) except UserAborted: print("Canceled.") return # Create the "proxied" virtual environment in the workdir self._create_venv_to_workdir(workdir, project_name) def _create_venv_to_venv_folder(self, project_name, system_site_packages=False): # Create the folder for all the virtual environments self.venv_folder.mkdir(exist_ok=True, parents=True) ret = self._check_that_venv_does_not_exist(project_name) if ret == "skipcreate": return project_name if ret == "newname": project_name = self._get_new_venv_name() subprocess_cmd = [sys.executable, "-m", "venv", project_name] if system_site_packages: subprocess_cmd.append("--system-site-packages") print('Running: "{}" with cwd="{}"'.format(" ".join(subprocess_cmd), self.venv_folder)) subprocess.run(subprocess_cmd, cwd=self.venv_folder) return project_name def __venv_exists(self, project_name): return (self.venv_folder / project_name).exists() def _check_that_venv_does_not_exist(self, project_name): """ Returns ret: str 'continue' 'skipcreate' or 'newname' """ if not self.__venv_exists(project_name): return "continue" return self._when_venv_exists_already(project_name) def _get_new_venv_name(self): prompt = "Give a new projectname: " errortxt = "Sorry, that projectname exists already. " return get_input( prompt, validator=lambda x: not self.__venv_exists(x), on_validationerror=errortxt, ) def _when_venv_exists_already(self, project_name): """ When venv already exists with the project_name, ask user opinion. Returns ------- ret: str 'skipcreate' or 'newname' Raises ------ UserAborted, if user aborted. """ text = f'The virtual environment for a projectname "{project_name}" exists already. ' text += f'If you use the name "{project_name}", you will SHARE the virtual environment ' text += "with the other project(s) using the same name." + os.linesep text += "Continue?" + os.linesep print(text) prompt = "[Y] Yes [N] No, give new name. [A] Abort: " validator = partial(is_in_accepted_values, accepted_values={"Y", "N", "A"}) value = get_input(prompt, validator).upper() if value == "Y": return "skipcreate" elif value == "N": return "newname" elif value == "A": raise UserAborted() def _check_no_venv_in_workdir(self, workdir, project_name, venvname="venv"): venvdir_dst = workdir / venvname if venvdir_dst.exists(): print(f'The activate proxy inside "{venvdir_dst}" exists already!') print( "Do you want to remove it? (This will remove just the link, not the virtual environment it is linked to)" ) prompt = "[Y] Yes [A] Abort: " validator = partial(is_in_accepted_values, accepted_values={"Y", "A"}) value = get_input(prompt, validator).upper() if value == "A": raise UserAborted() elif value == "Y": print("Removing ", str(venvdir_dst)) shutil.rmtree(venvdir_dst) else: # should not ever happen. ValueError() return True def _create_venv_to_workdir(self, workdir, project_name, venvname="venv"): # Create the working directory if it does not # exists (should probably always exist, but anyway.) workdir.mkdir(exist_ok=True, parents=True) venvdir_dst = workdir / venvname venvdir_dst.mkdir() # Make proxies to needed files venvdir_src = self.venv_folder / project_name real_activate_ps1 = venvdir_src / "Scripts" / "Activate.ps1" real_activate_bat = venvdir_src / "Scripts" / "activate.bat" files_and_contents = ( ( "Scripts" + os.path.sep + "Activate.ps1", get_activate_ps_text(venvdir_src, real_activate_ps1), ), ( "Scripts" + os.path.sep + "activate.bat", ("@echo off\n" f"""echo venvlink: Activating virtual env in \"{venvdir_src}\"\n""" f"""call \"{real_activate_bat}\""""), ), # Dummy file which makes possible to run simply "venv\Scripts\activate" ("Scripts" + os.path.sep + "activate", ""), ) for file, content in files_and_contents: file_dst = venvdir_dst / file file_dst.parent.mkdir(exist_ok=True, parents=True) with open(file_dst, "w", encoding="utf-8") as f: print(content, file=f) with open(venvdir_dst / "venvlink-autoenv.ps1", "w") as f: print(get_venvlink_env_text(), file=f, end='') with open(venvdir_dst / "venvlink-autoenv.leave.ps1", "w") as f: print(get_venvlink_leave_text(), file=f, end='') @property def venv_folder(self): return Path(self.config.venv_folder)
34.616487
122
0.583144
8ecb03639c0310faa3d006a6db97d86ec3af7e07
1,693
py
Python
workloads/tune_grid_cifar.py
SymbioticLab/Fluid
3598be4f640514a72b4d67e18d7cfbc4a8cd7fd8
[ "Apache-2.0" ]
12
2021-03-10T15:36:04.000Z
2022-01-07T16:07:24.000Z
workloads/tune_grid_cifar.py
SymbioticLab/Fluid
3598be4f640514a72b4d67e18d7cfbc4a8cd7fd8
[ "Apache-2.0" ]
2
2022-01-07T16:03:36.000Z
2022-01-14T08:21:06.000Z
workloads/tune_grid_cifar.py
SymbioticLab/Fluid
3598be4f640514a72b4d67e18d7cfbc4a8cd7fd8
[ "Apache-2.0" ]
3
2021-05-16T03:15:08.000Z
2021-12-10T11:50:16.000Z
from pathlib import Path from ray import tune from ray.util.sgd.utils import BATCH_SIZE import workloads.common as com from fluid.trainer import TorchTrainer from workloads.common import cifar as workload DATA_PATH, RESULTS_PATH = com.detect_paths() EXP_NAME = com.remove_prefix(Path(__file__).stem, "tune_") def create_grid_search_space(exp_no): # mutations = space.create_grid_space_1() method_name = "space.create_grid_space_" + str(exp_no) mutations = eval(method_name)() return {key: tune.sample_from(val) for key, val in mutations.items()} def setup_tune_scheduler(exp_no): search_space = create_grid_search_space(exp_no) sync_to_driver = not RESULTS_PATH.startswith("/nfs") return dict( config=search_space, resources_per_trial={"gpu": 1}, sync_to_driver=sync_to_driver, local_dir=RESULTS_PATH, name=EXP_NAME + str(exp_no), ) def main(): exp_no, sd = com.init_ray() MyTrainable = TorchTrainer.as_trainable( data_creator=workload.data_creator, model_creator=workload.model_creator, loss_creator=workload.loss_creator, optimizer_creator=workload.optimizer_creator, config={"seed": sd, BATCH_SIZE: 64, "extra_fluid_trial_resources": {}}, ) params = { # **com.run_options(__file__), # 'stop': workload.create_stopper(), **setup_tune_scheduler(exp_no), } analysis = tune.run(MyTrainable, stop={"training_iteration": 81}, **params) dfs = analysis.trial_dataframes for logdir, df in dfs.items(): ld = Path(logdir) df.to_csv(ld / "trail_dataframe.csv") if __name__ == "__main__": main()
28.216667
79
0.691672
72805f43ee059259d038e1a58381805f3b4dc571
2,875
py
Python
run_webcam.py
connor-john/tf-pose-estimation
0a1a07864a42e7cc75d15b739cd2452b5eabd8d4
[ "Apache-2.0" ]
1
2021-02-02T03:08:44.000Z
2021-02-02T03:08:44.000Z
run_webcam.py
connor-john/tf-pose-estimation
0a1a07864a42e7cc75d15b739cd2452b5eabd8d4
[ "Apache-2.0" ]
null
null
null
run_webcam.py
connor-john/tf-pose-estimation
0a1a07864a42e7cc75d15b739cd2452b5eabd8d4
[ "Apache-2.0" ]
null
null
null
import argparse import logging import time import cv2 import numpy as np from tf_pose.estimator import TfPoseEstimator from tf_pose.networks import get_graph_path, model_wh logger = logging.getLogger('TfPoseEstimator-WebCam') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) fps_time = 0 def str2bool(v): return v.lower() in ("yes", "true", "t", "1") if __name__ == '__main__': parser = argparse.ArgumentParser(description='tf-pose-estimation realtime webcam') parser.add_argument('--camera', type=str, default=0) parser.add_argument('--resize', type=str, default='0x0', help='if provided, resize images before they are processed. default=0x0, Recommends : 432x368 or 656x368 or 1312x736 ') parser.add_argument('--resize-out-ratio', type=float, default=4.0, help='if provided, resize heatmaps before they are post-processed. default=1.0') parser.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin / mobilenet_v2_large / mobilenet_v2_small') parser.add_argument('--show-process', type=bool, default=False, help='for debug purpose, if enabled, speed for inference is dropped.') parser.add_argument('--tensorrt', type=str, default="False", help='for tensorrt process.') args = parser.parse_args() logger.debug('initialization %s : %s' % (args.model, get_graph_path(args.model))) w, h = model_wh(args.resize) if w > 0 and h > 0: e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h), trt_bool=str2bool(args.tensorrt)) else: e = TfPoseEstimator(get_graph_path(args.model), target_size=(432, 368), trt_bool=str2bool(args.tensorrt)) logger.debug('cam read+') cam = cv2.VideoCapture(args.camera) ret_val, image = cam.read() logger.info('cam image=%dx%d' % (image.shape[1], image.shape[0])) while True: ret_val, image = cam.read() logger.debug('image process+') humans = e.inference(image, resize_to_default=(w > 0 and h > 0), upsample_size=args.resize_out_ratio) logger.debug('postprocess+') image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) # TfPoseEstimator.logpunches() logger.debug('show+') cv2.putText(image, "FPS: %f" % (1.0 / (time.time() - fps_time)), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.imshow('tf-pose-estimation result', image) fps_time = time.time() if cv2.waitKey(1) == 27: break logger.debug('finished+') cv2.destroyAllWindows()
38.333333
143
0.649391
4f324c94c410c97be07ee99a0a8f054c703c7f2b
740
py
Python
setup.py
rassamyjs/lambdata-20-try2
e334d52c6f48db31877a29c41c2879127338f9c6
[ "MIT" ]
null
null
null
setup.py
rassamyjs/lambdata-20-try2
e334d52c6f48db31877a29c41c2879127338f9c6
[ "MIT" ]
null
null
null
setup.py
rassamyjs/lambdata-20-try2
e334d52c6f48db31877a29c41c2879127338f9c6
[ "MIT" ]
null
null
null
import setuptools REQUIRED = ['numpy', 'pandas'] with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="lambdata_rassamyjs", # Replace with your own username version="0.0.4", author="rassamyjs", description="A collection of data science functions", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/rassamyjs/lambdata_20", packages=setuptools.find_packages(), install_requires=REQUIRED, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
30.833333
64
0.655405
329d7611387ed90d67dc0349b145e484f2e97210
4,466
py
Python
analysis/anesthetized/deconv/deconvolve-anesthetized-ketamine.py
goldman-lab/oculomotor-response-timescales
fa9f73e6f6a256a5983248b30c6348a50f1fdfcf
[ "BSD-3-Clause" ]
null
null
null
analysis/anesthetized/deconv/deconvolve-anesthetized-ketamine.py
goldman-lab/oculomotor-response-timescales
fa9f73e6f6a256a5983248b30c6348a50f1fdfcf
[ "BSD-3-Clause" ]
null
null
null
analysis/anesthetized/deconv/deconvolve-anesthetized-ketamine.py
goldman-lab/oculomotor-response-timescales
fa9f73e6f6a256a5983248b30c6348a50f1fdfcf
[ "BSD-3-Clause" ]
1
2022-01-05T18:26:33.000Z
2022-01-05T18:26:33.000Z
import numpy as np import sys sys.path.append('../../../tools/') import fitting_functions import os import scipy.io as sio import scipy.optimize import tqdm def loadFitResult(filename): fit_file = sio.loadmat(filename) sses = fit_file['sses'] lls = fit_file['lls'] fits = fit_file['fits'] return fits, lls, sses def loadBestFits(filename, n): fit_file = sio.loadmat(filename) lls = fit_file['lls'] fits = fit_file['fits'] best_trace_ind = np.argmax(lls[n-1,:]) best_fits = np.zeros((fits.shape[1], fits[n-1,0].shape[1])) for i in range(fits.shape[1]): best_fits[i,:] = fits[n-1,i][best_trace_ind,:] return best_fits short_duration = 15 long_duration = 90 num_ics = 50 if __name__ == "__main__": ketamine_traces = [ '82411p', '82411r', '63011d','70911i', '70911l', '70911m', '82411p', '82411r'] if not os.path.isdir('results'): os.makedirs('results') if not os.path.isdir('results/Ketamine'): os.makedirs('results/Ketamine') if not os.path.isdir('results/Ketamine/distributed'): os.makedirs('results/Ketamine/distributed') for fish_num in tqdm.trange(len(ketamine_traces), desc='Fish no.'): trange, pe_short, pe_long = fitting_functions.importDataKetamine('../../../data/anesthetized/fixed/Ketamine/'+ketamine_traces[fish_num]+'.mat') best_fits = loadBestFits('../fit/results/Ketamine/'+ketamine_traces[fish_num]+'.mat', 4) timeconstants = best_fits[0, 4:] # Bridge the gap between release time and real data trange_deconv_mid = np.arange(0, int(0.2304/(72*2e-4))+1)*72*2e-4 pe_short_deconv_mid = fitting_functions.exponentialModel(trange_deconv_mid, best_fits[0,:]) pe_long_deconv_mid = fitting_functions.exponentialModel(trange_deconv_mid, best_fits[1,:]) # Construct 10s hold trange_short_deconv_pre = np.arange(0, short_duration, 72*2e-4) pe_short_deconv_pre = np.ones(len(trange_short_deconv_pre)) trange_long_deconv_pre = np.arange(0, long_duration, 72*2e-4) pe_long_deconv_pre = np.ones(len(trange_long_deconv_pre)) trange_short_deconv = np.concatenate((trange_short_deconv_pre, short_duration+trange_deconv_mid, short_duration+0.2304+trange[1:])) trange_long_deconv = np.concatenate((trange_long_deconv_pre, long_duration+trange_deconv_mid, long_duration+0.2304+trange[1:])) pe_short_deconv = np.concatenate((pe_short_deconv_pre, pe_short_deconv_mid, pe_short[1:])) pe_long_deconv = np.concatenate((pe_long_deconv_pre, pe_long_deconv_mid, pe_long[1:])) ### For nonlinear fitting if not os.path.isdir('results/Ketamine/distributed/'+ketamine_traces[fish_num]): os.makedirs('results/Ketamine/distributed/'+ketamine_traces[fish_num]) cs_nonlin = np.zeros((num_ics, 4)) costs_nonlin = np.zeros(num_ics) for i in tqdm.trange(start_trace_num[fish_num], num_ics, desc='IC no.'): ics_ = np.random.rand(4) ics_ /= np.sum(ics_) f, p, c, cost, grad = fitting_functions.blindDeconvN_NonLin([trange_short_deconv, trange_long_deconv],\ [pe_short_deconv, pe_long_deconv],\ [len(trange_short_deconv_pre)+1, len(trange_long_deconv_pre)+1],\ 72*2e-4, np.concatenate((ics_, timeconstants)), method='TNC') sio.savemat('results/Ketamine/distributed/'+ketamine_traces[fish_num]+'/nonlinear'+str(i+1)+'.mat', {'c':c, 'cost':cost, 'grad':grad}) cs_nonlin[i,:] = c costs_nonlin[i] = cost ### For linear fitting f_linear, p_linear, c_linear, cost_f_linear, cost_p_linear, grad_linear = fitting_functions.blindDeconvN_Linear([trange_short_deconv, trange_long_deconv],\ [pe_short_deconv, pe_long_deconv],\ [len(trange_short_deconv_pre)+1, len(trange_long_deconv_pre)+1],\ 72*2e-4, np.concatenate((cs_nonlin[np.argmin(costs_nonlin), :], timeconstants)), dense=True) sio.savemat('results/Ketamine/distributed/'+ketamine_traces[fish_num]+'.mat', {'c':c_linear, 'cost_f':cost_f_linear, 'cost_p':cost_p_linear, 'grad':grad_linear})
52.541176
170
0.638603
9bfe888fd1b5f0a549232674c7480371613a0fd3
2,805
py
Python
barcode/upc.py
fxjung/python-barcode
926041158fea2edc83d32a4e6b332ad4eadd663c
[ "MIT" ]
null
null
null
barcode/upc.py
fxjung/python-barcode
926041158fea2edc83d32a4e6b332ad4eadd663c
[ "MIT" ]
null
null
null
barcode/upc.py
fxjung/python-barcode
926041158fea2edc83d32a4e6b332ad4eadd663c
[ "MIT" ]
null
null
null
"""Module: barcode.upc :Provided barcodes: UPC-A """ __docformat__ = "restructuredtext en" from functools import reduce from barcode.base import Barcode from barcode.charsets import upc as _upc from barcode.errors import IllegalCharacterError, NumberOfDigitsError class UniversalProductCodeA(Barcode): """Initializes new UPC-A barcode. :parameters: upc : String The upc number as string. writer : barcode.writer Instance The writer to render the barcode (default: SVGWriter). make_ean: boolean """ name = "UPC-A" digits = 11 def __init__(self, upc, writer=None, make_ean=False): self.ean = make_ean upc = upc[: self.digits] if not upc.isdigit(): raise IllegalCharacterError("UPC code can only contain numbers.") if len(upc) != self.digits: raise NumberOfDigitsError( "UPC must have {0} digits, not " "{1}.".format(self.digits, len(upc)) ) self.upc = upc self.upc = "{}{}".format(upc, self.calculate_checksum()) self.writer = writer or Barcode.default_writer() def __unicode__(self): if self.ean: return "0" + self.upc else: return self.upc __str__ = __unicode__ def get_fullcode(self): if self.ean: return "0" + self.upc else: return self.upc def calculate_checksum(self): """Calculates the checksum for UPCA/UPC codes :return: The checksum for 'self.upc' :rtype: Integer """ def sum_(x, y): return int(x) + int(y) upc = self.upc[0 : self.digits] oddsum = reduce(sum_, upc[::2]) evensum = reduce(sum_, upc[1::2]) check = (evensum + oddsum * 3) % 10 if check == 0: return 0 else: return 10 - check def build(self): """Builds the barcode pattern from 'self.upc' :return: The pattern as string :rtype: String """ code = _upc.EDGE[:] for _i, number in enumerate(self.upc[0:6]): code += _upc.CODES["L"][int(number)] code += _upc.MIDDLE for number in self.upc[6:]: code += _upc.CODES["R"][int(number)] code += _upc.EDGE return [code] def to_ascii(self): """Returns an ascii representation of the barcode. :rtype: String """ code = self.build() for i, line in enumerate(code): code[i] = line.replace("1", "|").replace("0", "_") return "\n".join(code) def render(self, text=None): self.writer.set_options({"module_width": 0.33}) return Barcode.render(self, text) UPCA = UniversalProductCodeA
25.044643
85
0.56328
d66f589759bdc1737645d7b5c8361b5940a33182
53,353
py
Python
tools/configure.py
brccabral/caer
2ddb84095202aa98224b04612eff9e97c8680309
[ "MIT" ]
3
2021-01-23T19:53:28.000Z
2021-01-23T19:53:53.000Z
tools/configure.py
brccabral/caer
2ddb84095202aa98224b04612eff9e97c8680309
[ "MIT" ]
null
null
null
tools/configure.py
brccabral/caer
2ddb84095202aa98224b04612eff9e97c8680309
[ "MIT" ]
1
2021-01-01T10:37:55.000Z
2021-01-01T10:37:55.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """configure script to get build parameters from user.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import errno import os import platform import re import subprocess import sys # pylint: disable=g-import-not-at-top try: from shutil import which except ImportError: from distutils.spawn import find_executable as which # pylint: enable=g-import-not-at-top _DEFAULT_CUDA_VERSION = '10' _DEFAULT_CUDNN_VERSION = '7' _DEFAULT_TENSORRT_VERSION = '6' _DEFAULT_CUDA_COMPUTE_CAPABILITIES = '3.5,7.0' _SUPPORTED_ANDROID_NDK_VERSIONS = [10, 11, 12, 13, 14, 15, 16, 17, 18] _DEFAULT_PROMPT_ASK_ATTEMPTS = 10 _TF_BAZELRC_FILENAME = '.tf_configure.bazelrc' _TF_WORKSPACE_ROOT = '' _TF_BAZELRC = '' _TF_CURRENT_BAZEL_VERSION = None _TF_MIN_BAZEL_VERSION = '3.1.0' _TF_MAX_BAZEL_VERSION = '3.99.0' NCCL_LIB_PATHS = [ 'lib64/', 'lib/powerpc64le-linux-gnu/', 'lib/x86_64-linux-gnu/', '' ] # List of files to configure when building Bazel on Apple platforms. APPLE_BAZEL_FILES = [ 'tensorflow/lite/experimental/ios/BUILD', 'tensorflow/lite/experimental/objc/BUILD', 'tensorflow/lite/experimental/swift/BUILD', 'tensorflow/lite/tools/benchmark/experimental/ios/BUILD' ] # List of files to move when building for iOS. IOS_FILES = [ 'tensorflow/lite/experimental/objc/TensorFlowLiteObjC.podspec', 'tensorflow/lite/experimental/swift/TensorFlowLiteSwift.podspec', ] class UserInputError(Exception): pass def is_windows(): return platform.system() == 'Windows' def is_linux(): return platform.system() == 'Linux' def is_macos(): return platform.system() == 'Darwin' def is_ppc64le(): return platform.machine() == 'ppc64le' def is_cygwin(): return platform.system().startswith('CYGWIN_NT') def get_input(question): try: try: answer = raw_input(question) except NameError: answer = input(question) # pylint: disable=bad-builtin except EOFError: answer = '' return answer def symlink_force(target, link_name): """Force symlink, equivalent of 'ln -sf'. Args: target: items to link to. link_name: name of the link. """ try: os.symlink(target, link_name) except OSError as e: if e.errno == errno.EEXIST: os.remove(link_name) os.symlink(target, link_name) else: raise e def sed_in_place(filename, old, new): """Replace old string with new string in file. Args: filename: string for filename. old: string to replace. new: new string to replace to. """ with open(filename, 'r') as f: filedata = f.read() newdata = filedata.replace(old, new) with open(filename, 'w') as f: f.write(newdata) def write_to_bazelrc(line): with open(_TF_BAZELRC, 'a') as f: f.write(line + '\n') def write_action_env_to_bazelrc(var_name, var): write_to_bazelrc('build --action_env {}="{}"'.format(var_name, str(var))) def run_shell(cmd, allow_non_zero=False, stderr=None): if stderr is None: stderr = sys.stdout if allow_non_zero: try: output = subprocess.check_output(cmd, stderr=stderr) except subprocess.CalledProcessError as e: output = e.output else: output = subprocess.check_output(cmd, stderr=stderr) return output.decode('UTF-8').strip() def cygpath(path): """Convert path from posix to windows.""" return os.path.abspath(path).replace('\\', '/') def get_python_path(environ_cp, python_bin_path): """Get the python site package paths.""" python_paths = [] if environ_cp.get('PYTHONPATH'): python_paths = environ_cp.get('PYTHONPATH').split(':') try: stderr = open(os.devnull, 'wb') library_paths = run_shell([ python_bin_path, '-c', 'import site; print("\\n".join(site.getsitepackages()))' ], stderr=stderr).split('\n') except subprocess.CalledProcessError: library_paths = [ run_shell([ python_bin_path, '-c', 'from distutils.sysconfig import get_python_lib;' 'print(get_python_lib())' ]) ] all_paths = set(python_paths + library_paths) paths = [] for path in all_paths: if os.path.isdir(path): paths.append(path) return paths def get_python_major_version(python_bin_path): """Get the python major version.""" return run_shell([python_bin_path, '-c', 'import sys; print(sys.version[0])']) def setup_python(environ_cp): """Setup python related env variables.""" # Get PYTHON_BIN_PATH, default is the current running python. default_python_bin_path = sys.executable ask_python_bin_path = ('Please specify the location of python. [Default is ' '{}]: ').format(default_python_bin_path) while True: python_bin_path = get_from_env_or_user_or_default(environ_cp, 'PYTHON_BIN_PATH', ask_python_bin_path, default_python_bin_path) # Check if the path is valid if os.path.isfile(python_bin_path) and os.access(python_bin_path, os.X_OK): break elif not os.path.exists(python_bin_path): print('Invalid python path: {} cannot be found.'.format(python_bin_path)) else: print('{} is not executable. Is it the python binary?'.format( python_bin_path)) environ_cp['PYTHON_BIN_PATH'] = '' # Convert python path to Windows style before checking lib and version if is_windows() or is_cygwin(): python_bin_path = cygpath(python_bin_path) # Get PYTHON_LIB_PATH python_lib_path = environ_cp.get('PYTHON_LIB_PATH') if not python_lib_path: python_lib_paths = get_python_path(environ_cp, python_bin_path) if environ_cp.get('USE_DEFAULT_PYTHON_LIB_PATH') == '1': python_lib_path = python_lib_paths[0] else: print('Found possible Python library paths:\n %s' % '\n '.join(python_lib_paths)) default_python_lib_path = python_lib_paths[0] python_lib_path = get_input( 'Please input the desired Python library path to use. ' 'Default is [{}]\n'.format(python_lib_paths[0])) if not python_lib_path: python_lib_path = default_python_lib_path environ_cp['PYTHON_LIB_PATH'] = python_lib_path python_major_version = get_python_major_version(python_bin_path) if python_major_version == '2': write_to_bazelrc('build --host_force_python=PY2') # Convert python path to Windows style before writing into bazel.rc if is_windows() or is_cygwin(): python_lib_path = cygpath(python_lib_path) # Set-up env variables used by python_configure.bzl write_action_env_to_bazelrc('PYTHON_BIN_PATH', python_bin_path) write_action_env_to_bazelrc('PYTHON_LIB_PATH', python_lib_path) write_to_bazelrc('build --python_path=\"{}"'.format(python_bin_path)) environ_cp['PYTHON_BIN_PATH'] = python_bin_path # If choosen python_lib_path is from a path specified in the PYTHONPATH # variable, need to tell bazel to include PYTHONPATH if environ_cp.get('PYTHONPATH'): python_paths = environ_cp.get('PYTHONPATH').split(':') if python_lib_path in python_paths: write_action_env_to_bazelrc('PYTHONPATH', environ_cp.get('PYTHONPATH')) # Write tools/python_bin_path.sh with open( os.path.join(_TF_WORKSPACE_ROOT, 'tools', 'python_bin_path.sh'), 'w') as f: f.write('export PYTHON_BIN_PATH="{}"'.format(python_bin_path)) def reset_tf_configure_bazelrc(): """Reset file that contains customized config settings.""" open(_TF_BAZELRC, 'w').close() def cleanup_makefile(): """Delete any leftover BUILD files from the Makefile build. These files could interfere with Bazel parsing. """ makefile_download_dir = os.path.join(_TF_WORKSPACE_ROOT, 'tensorflow', 'contrib', 'makefile', 'downloads') if os.path.isdir(makefile_download_dir): for root, _, filenames in os.walk(makefile_download_dir): for f in filenames: if f.endswith('BUILD'): os.remove(os.path.join(root, f)) def get_var(environ_cp, var_name, query_item, enabled_by_default, question=None, yes_reply=None, no_reply=None): """Get boolean input from user. If var_name is not set in env, ask user to enable query_item or not. If the response is empty, use the default. Args: environ_cp: copy of the os.environ. var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". query_item: string for feature related to the variable, e.g. "CUDA for Nvidia GPUs". enabled_by_default: boolean for default behavior. question: optional string for how to ask for user input. yes_reply: optional string for reply when feature is enabled. no_reply: optional string for reply when feature is disabled. Returns: boolean value of the variable. Raises: UserInputError: if an environment variable is set, but it cannot be interpreted as a boolean indicator, assume that the user has made a scripting error, and will continue to provide invalid input. Raise the error to avoid infinitely looping. """ if not question: question = 'Do you wish to build TensorFlow with {} support?'.format( query_item) if not yes_reply: yes_reply = '{} support will be enabled for TensorFlow.'.format(query_item) if not no_reply: no_reply = 'No {}'.format(yes_reply) yes_reply += '\n' no_reply += '\n' if enabled_by_default: question += ' [Y/n]: ' else: question += ' [y/N]: ' var = environ_cp.get(var_name) if var is not None: var_content = var.strip().lower() true_strings = ('1', 't', 'true', 'y', 'yes') false_strings = ('0', 'f', 'false', 'n', 'no') if var_content in true_strings: var = True elif var_content in false_strings: var = False else: raise UserInputError( 'Environment variable %s must be set as a boolean indicator.\n' 'The following are accepted as TRUE : %s.\n' 'The following are accepted as FALSE: %s.\n' 'Current value is %s.' % (var_name, ', '.join(true_strings), ', '.join(false_strings), var)) while var is None: user_input_origin = get_input(question) user_input = user_input_origin.strip().lower() if user_input == 'y': print(yes_reply) var = True elif user_input == 'n': print(no_reply) var = False elif not user_input: if enabled_by_default: print(yes_reply) var = True else: print(no_reply) var = False else: print('Invalid selection: {}'.format(user_input_origin)) return var def set_build_var(environ_cp, var_name, query_item, option_name, enabled_by_default, bazel_config_name=None): """Set if query_item will be enabled for the build. Ask user if query_item will be enabled. Default is used if no input is given. Set subprocess environment variable and write to .bazelrc if enabled. Args: environ_cp: copy of the os.environ. var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". query_item: string for feature related to the variable, e.g. "CUDA for Nvidia GPUs". option_name: string for option to define in .bazelrc. enabled_by_default: boolean for default behavior. bazel_config_name: Name for Bazel --config argument to enable build feature. """ var = str(int(get_var(environ_cp, var_name, query_item, enabled_by_default))) environ_cp[var_name] = var if var == '1': write_to_bazelrc('build:%s --define %s=true' % (bazel_config_name, option_name)) write_to_bazelrc('build --config=%s' % bazel_config_name) elif bazel_config_name is not None: # TODO(mikecase): Migrate all users of configure.py to use --config Bazel # options and not to set build configs through environment variables. write_to_bazelrc('build:%s --define %s=true' % (bazel_config_name, option_name)) def set_action_env_var(environ_cp, var_name, query_item, enabled_by_default, question=None, yes_reply=None, no_reply=None, bazel_config_name=None): """Set boolean action_env variable. Ask user if query_item will be enabled. Default is used if no input is given. Set environment variable and write to .bazelrc. Args: environ_cp: copy of the os.environ. var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". query_item: string for feature related to the variable, e.g. "CUDA for Nvidia GPUs". enabled_by_default: boolean for default behavior. question: optional string for how to ask for user input. yes_reply: optional string for reply when feature is enabled. no_reply: optional string for reply when feature is disabled. bazel_config_name: adding config to .bazelrc instead of action_env. """ var = int( get_var(environ_cp, var_name, query_item, enabled_by_default, question, yes_reply, no_reply)) if not bazel_config_name: write_action_env_to_bazelrc(var_name, var) elif var: write_to_bazelrc('build --config=%s' % bazel_config_name) environ_cp[var_name] = str(var) def convert_version_to_int(version): """Convert a version number to a integer that can be used to compare. Version strings of the form X.YZ and X.Y.Z-xxxxx are supported. The 'xxxxx' part, for instance 'homebrew' on OS/X, is ignored. Args: version: a version to be converted Returns: An integer if converted successfully, otherwise return None. """ version = version.split('-')[0] version_segments = version.split('.') # Treat "0.24" as "0.24.0" if len(version_segments) == 2: version_segments.append('0') for seg in version_segments: if not seg.isdigit(): return None version_str = ''.join(['%03d' % int(seg) for seg in version_segments]) return int(version_str) def check_bazel_version(min_version, max_version): """Check installed bazel version is between min_version and max_version. Args: min_version: string for minimum bazel version (must exist!). max_version: string for maximum bazel version (must exist!). Returns: The bazel version detected. """ if which('bazel') is None: print('Cannot find bazel. Please install bazel.') sys.exit(1) stderr = open(os.devnull, 'wb') curr_version = run_shell(['bazel', '--version'], allow_non_zero=True, stderr=stderr) if curr_version.startswith('bazel '): curr_version = curr_version.split('bazel ')[1] min_version_int = convert_version_to_int(min_version) curr_version_int = convert_version_to_int(curr_version) max_version_int = convert_version_to_int(max_version) # Check if current bazel version can be detected properly. if not curr_version_int: print('WARNING: current bazel installation is not a release version.') print('Make sure you are running at least bazel %s' % min_version) return curr_version print('You have bazel %s installed.' % curr_version) if curr_version_int < min_version_int: print('Please upgrade your bazel installation to version %s or higher to ' 'build TensorFlow!' % min_version) sys.exit(1) if (curr_version_int > max_version_int and 'TF_IGNORE_MAX_BAZEL_VERSION' not in os.environ): print('Please downgrade your bazel installation to version %s or lower to ' 'build TensorFlow! To downgrade: download the installer for the old ' 'version (from https://github.com/bazelbuild/bazel/releases) then ' 'run the installer.' % max_version) sys.exit(1) return curr_version def set_cc_opt_flags(environ_cp): """Set up architecture-dependent optimization flags. Also append CC optimization flags to bazel.rc.. Args: environ_cp: copy of the os.environ. """ if is_ppc64le(): # gcc on ppc64le does not support -march, use mcpu instead default_cc_opt_flags = '-mcpu=native' elif is_windows(): default_cc_opt_flags = '/arch:AVX' else: default_cc_opt_flags = '-march=native -Wno-sign-compare' question = ('Please specify optimization flags to use during compilation when' ' bazel option "--config=opt" is specified [Default is %s]: ' ) % default_cc_opt_flags cc_opt_flags = get_from_env_or_user_or_default(environ_cp, 'CC_OPT_FLAGS', question, default_cc_opt_flags) for opt in cc_opt_flags.split(): write_to_bazelrc('build:opt --copt=%s' % opt) # It should be safe on the same build host. if not is_ppc64le() and not is_windows(): write_to_bazelrc('build:opt --host_copt=-march=native') write_to_bazelrc('build:opt --define with_default_optimizations=true') def set_tf_cuda_clang(environ_cp): """set TF_CUDA_CLANG action_env. Args: environ_cp: copy of the os.environ. """ question = 'Do you want to use clang as CUDA compiler?' yes_reply = 'Clang will be used as CUDA compiler.' no_reply = 'nvcc will be used as CUDA compiler.' set_action_env_var( environ_cp, 'TF_CUDA_CLANG', None, False, question=question, yes_reply=yes_reply, no_reply=no_reply, bazel_config_name='cuda_clang') def set_tf_download_clang(environ_cp): """Set TF_DOWNLOAD_CLANG action_env.""" question = 'Do you wish to download a fresh release of clang? (Experimental)' yes_reply = 'Clang will be downloaded and used to compile tensorflow.' no_reply = 'Clang will not be downloaded.' set_action_env_var( environ_cp, 'TF_DOWNLOAD_CLANG', None, False, question=question, yes_reply=yes_reply, no_reply=no_reply, bazel_config_name='download_clang') def get_from_env_or_user_or_default(environ_cp, var_name, ask_for_var, var_default): """Get var_name either from env, or user or default. If var_name has been set as environment variable, use the preset value, else ask for user input. If no input is provided, the default is used. Args: environ_cp: copy of the os.environ. var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". ask_for_var: string for how to ask for user input. var_default: default value string. Returns: string value for var_name """ var = environ_cp.get(var_name) if not var: var = get_input(ask_for_var) print('\n') if not var: var = var_default return var def set_clang_cuda_compiler_path(environ_cp): """Set CLANG_CUDA_COMPILER_PATH.""" default_clang_path = which('clang') or '' ask_clang_path = ('Please specify which clang should be used as device and ' 'host compiler. [Default is %s]: ') % default_clang_path while True: clang_cuda_compiler_path = get_from_env_or_user_or_default( environ_cp, 'CLANG_CUDA_COMPILER_PATH', ask_clang_path, default_clang_path) if os.path.exists(clang_cuda_compiler_path): break # Reset and retry print('Invalid clang path: %s cannot be found.' % clang_cuda_compiler_path) environ_cp['CLANG_CUDA_COMPILER_PATH'] = '' # Set CLANG_CUDA_COMPILER_PATH environ_cp['CLANG_CUDA_COMPILER_PATH'] = clang_cuda_compiler_path write_action_env_to_bazelrc('CLANG_CUDA_COMPILER_PATH', clang_cuda_compiler_path) def prompt_loop_or_load_from_env(environ_cp, var_name, var_default, ask_for_var, check_success, error_msg, suppress_default_error=False, resolve_symlinks=False, n_ask_attempts=_DEFAULT_PROMPT_ASK_ATTEMPTS): """Loop over user prompts for an ENV param until receiving a valid response. For the env param var_name, read from the environment or verify user input until receiving valid input. When done, set var_name in the environ_cp to its new value. Args: environ_cp: (Dict) copy of the os.environ. var_name: (String) string for name of environment variable, e.g. "TF_MYVAR". var_default: (String) default value string. ask_for_var: (String) string for how to ask for user input. check_success: (Function) function that takes one argument and returns a boolean. Should return True if the value provided is considered valid. May contain a complex error message if error_msg does not provide enough information. In that case, set suppress_default_error to True. error_msg: (String) String with one and only one '%s'. Formatted with each invalid response upon check_success(input) failure. suppress_default_error: (Bool) Suppress the above error message in favor of one from the check_success function. resolve_symlinks: (Bool) Translate symbolic links into the real filepath. n_ask_attempts: (Integer) Number of times to query for valid input before raising an error and quitting. Returns: [String] The value of var_name after querying for input. Raises: UserInputError: if a query has been attempted n_ask_attempts times without success, assume that the user has made a scripting error, and will continue to provide invalid input. Raise the error to avoid infinitely looping. """ default = environ_cp.get(var_name) or var_default full_query = '%s [Default is %s]: ' % ( ask_for_var, default, ) for _ in range(n_ask_attempts): val = get_from_env_or_user_or_default(environ_cp, var_name, full_query, default) if check_success(val): break if not suppress_default_error: print(error_msg % val) environ_cp[var_name] = '' else: raise UserInputError('Invalid %s setting was provided %d times in a row. ' 'Assuming to be a scripting mistake.' % (var_name, n_ask_attempts)) if resolve_symlinks and os.path.islink(val): val = os.path.realpath(val) environ_cp[var_name] = val return val def create_android_ndk_rule(environ_cp): """Set ANDROID_NDK_HOME and write Android NDK WORKSPACE rule.""" if is_windows() or is_cygwin(): default_ndk_path = cygpath('%s/Android/Sdk/ndk-bundle' % environ_cp['APPDATA']) elif is_macos(): default_ndk_path = '%s/library/Android/Sdk/ndk-bundle' % environ_cp['HOME'] else: default_ndk_path = '%s/Android/Sdk/ndk-bundle' % environ_cp['HOME'] def valid_ndk_path(path): return (os.path.exists(path) and os.path.exists(os.path.join(path, 'source.properties'))) android_ndk_home_path = prompt_loop_or_load_from_env( environ_cp, var_name='ANDROID_NDK_HOME', var_default=default_ndk_path, ask_for_var='Please specify the home path of the Android NDK to use.', check_success=valid_ndk_path, error_msg=('The path %s or its child file "source.properties" ' 'does not exist.')) write_action_env_to_bazelrc('ANDROID_NDK_HOME', android_ndk_home_path) write_action_env_to_bazelrc( 'ANDROID_NDK_API_LEVEL', get_ndk_api_level(environ_cp, android_ndk_home_path)) def create_android_sdk_rule(environ_cp): """Set Android variables and write Android SDK WORKSPACE rule.""" if is_windows() or is_cygwin(): default_sdk_path = cygpath('%s/Android/Sdk' % environ_cp['APPDATA']) elif is_macos(): default_sdk_path = '%s/library/Android/Sdk' % environ_cp['HOME'] else: default_sdk_path = '%s/Android/Sdk' % environ_cp['HOME'] def valid_sdk_path(path): return (os.path.exists(path) and os.path.exists(os.path.join(path, 'platforms')) and os.path.exists(os.path.join(path, 'build-tools'))) android_sdk_home_path = prompt_loop_or_load_from_env( environ_cp, var_name='ANDROID_SDK_HOME', var_default=default_sdk_path, ask_for_var='Please specify the home path of the Android SDK to use.', check_success=valid_sdk_path, error_msg=('Either %s does not exist, or it does not contain the ' 'subdirectories "platforms" and "build-tools".')) platforms = os.path.join(android_sdk_home_path, 'platforms') api_levels = sorted(os.listdir(platforms)) api_levels = [x.replace('android-', '') for x in api_levels] def valid_api_level(api_level): return os.path.exists( os.path.join(android_sdk_home_path, 'platforms', 'android-' + api_level)) android_api_level = prompt_loop_or_load_from_env( environ_cp, var_name='ANDROID_API_LEVEL', var_default=api_levels[-1], ask_for_var=('Please specify the Android SDK API level to use. ' '[Available levels: %s]') % api_levels, check_success=valid_api_level, error_msg='Android-%s is not present in the SDK path.') build_tools = os.path.join(android_sdk_home_path, 'build-tools') versions = sorted(os.listdir(build_tools)) def valid_build_tools(version): return os.path.exists( os.path.join(android_sdk_home_path, 'build-tools', version)) android_build_tools_version = prompt_loop_or_load_from_env( environ_cp, var_name='ANDROID_BUILD_TOOLS_VERSION', var_default=versions[-1], ask_for_var=('Please specify an Android build tools version to use. ' '[Available versions: %s]') % versions, check_success=valid_build_tools, error_msg=('The selected SDK does not have build-tools version %s ' 'available.')) write_action_env_to_bazelrc('ANDROID_BUILD_TOOLS_VERSION', android_build_tools_version) write_action_env_to_bazelrc('ANDROID_SDK_API_LEVEL', android_api_level) write_action_env_to_bazelrc('ANDROID_SDK_HOME', android_sdk_home_path) def get_ndk_api_level(environ_cp, android_ndk_home_path): """Gets the appropriate NDK API level to use for the provided Android NDK path.""" # First check to see if we're using a blessed version of the NDK. properties_path = '%s/source.properties' % android_ndk_home_path if is_windows() or is_cygwin(): properties_path = cygpath(properties_path) with open(properties_path, 'r') as f: filedata = f.read() revision = re.search(r'Pkg.Revision = (\d+)', filedata) if revision: ndk_version = revision.group(1) else: raise Exception('Unable to parse NDK revision.') if int(ndk_version) not in _SUPPORTED_ANDROID_NDK_VERSIONS: print('WARNING: The NDK version in %s is %s, which is not ' 'supported by Bazel (officially supported versions: %s). Please use ' 'another version. Compiling Android targets may result in confusing ' 'errors.\n' % (android_ndk_home_path, ndk_version, _SUPPORTED_ANDROID_NDK_VERSIONS)) # Now grab the NDK API level to use. Note that this is different from the # SDK API level, as the NDK API level is effectively the *min* target SDK # version. platforms = os.path.join(android_ndk_home_path, 'platforms') api_levels = sorted(os.listdir(platforms)) api_levels = [ x.replace('android-', '') for x in api_levels if 'android-' in x ] def valid_api_level(api_level): return os.path.exists( os.path.join(android_ndk_home_path, 'platforms', 'android-' + api_level)) android_ndk_api_level = prompt_loop_or_load_from_env( environ_cp, var_name='ANDROID_NDK_API_LEVEL', var_default='21', # 21 is required for ARM64 support. ask_for_var=('Please specify the (min) Android NDK API level to use. ' '[Available levels: %s]') % api_levels, check_success=valid_api_level, error_msg='Android-%s is not present in the NDK path.') return android_ndk_api_level def set_gcc_host_compiler_path(environ_cp): """Set GCC_HOST_COMPILER_PATH.""" default_gcc_host_compiler_path = which('gcc') or '' cuda_bin_symlink = '%s/bin/gcc' % environ_cp.get('CUDA_TOOLKIT_PATH') if os.path.islink(cuda_bin_symlink): # os.readlink is only available in linux default_gcc_host_compiler_path = os.path.realpath(cuda_bin_symlink) gcc_host_compiler_path = prompt_loop_or_load_from_env( environ_cp, var_name='GCC_HOST_COMPILER_PATH', var_default=default_gcc_host_compiler_path, ask_for_var='Please specify which gcc should be used by nvcc as the host compiler.', check_success=os.path.exists, resolve_symlinks=True, error_msg='Invalid gcc path. %s cannot be found.', ) write_action_env_to_bazelrc('GCC_HOST_COMPILER_PATH', gcc_host_compiler_path) def reformat_version_sequence(version_str, sequence_count): """Reformat the version string to have the given number of sequences. For example: Given (7, 2) -> 7.0 (7.0.1, 2) -> 7.0 (5, 1) -> 5 (5.0.3.2, 1) -> 5 Args: version_str: String, the version string. sequence_count: int, an integer. Returns: string, reformatted version string. """ v = version_str.split('.') if len(v) < sequence_count: v = v + (['0'] * (sequence_count - len(v))) return '.'.join(v[:sequence_count]) def set_tf_cuda_paths(environ_cp): """Set TF_CUDA_PATHS.""" ask_cuda_paths = ( 'Please specify the comma-separated list of base paths to look for CUDA ' 'libraries and headers. [Leave empty to use the default]: ') tf_cuda_paths = get_from_env_or_user_or_default(environ_cp, 'TF_CUDA_PATHS', ask_cuda_paths, '') if tf_cuda_paths: environ_cp['TF_CUDA_PATHS'] = tf_cuda_paths def set_tf_cuda_version(environ_cp): """Set TF_CUDA_VERSION.""" ask_cuda_version = ( 'Please specify the CUDA SDK version you want to use. ' '[Leave empty to default to CUDA %s]: ') % _DEFAULT_CUDA_VERSION tf_cuda_version = get_from_env_or_user_or_default(environ_cp, 'TF_CUDA_VERSION', ask_cuda_version, _DEFAULT_CUDA_VERSION) environ_cp['TF_CUDA_VERSION'] = tf_cuda_version def set_tf_cudnn_version(environ_cp): """Set TF_CUDNN_VERSION.""" ask_cudnn_version = ( 'Please specify the cuDNN version you want to use. ' '[Leave empty to default to cuDNN %s]: ') % _DEFAULT_CUDNN_VERSION tf_cudnn_version = get_from_env_or_user_or_default(environ_cp, 'TF_CUDNN_VERSION', ask_cudnn_version, _DEFAULT_CUDNN_VERSION) environ_cp['TF_CUDNN_VERSION'] = tf_cudnn_version def is_cuda_compatible(lib, cuda_ver, cudnn_ver): """Check compatibility between given library and cudnn/cudart libraries.""" ldd_bin = which('ldd') or '/usr/bin/ldd' ldd_out = run_shell([ldd_bin, lib], True) ldd_out = ldd_out.split(os.linesep) cudnn_pattern = re.compile('.*libcudnn.so\\.?(.*) =>.*$') cuda_pattern = re.compile('.*libcudart.so\\.?(.*) =>.*$') cudnn = None cudart = None cudnn_ok = True # assume no cudnn dependency by default cuda_ok = True # assume no cuda dependency by default for line in ldd_out: if 'libcudnn.so' in line: cudnn = cudnn_pattern.search(line) cudnn_ok = False elif 'libcudart.so' in line: cudart = cuda_pattern.search(line) cuda_ok = False if cudnn and len(cudnn.group(1)): cudnn = convert_version_to_int(cudnn.group(1)) if cudart and len(cudart.group(1)): cudart = convert_version_to_int(cudart.group(1)) if cudnn is not None: cudnn_ok = (cudnn == cudnn_ver) if cudart is not None: cuda_ok = (cudart == cuda_ver) return cudnn_ok and cuda_ok def set_tf_tensorrt_version(environ_cp): """Set TF_TENSORRT_VERSION.""" if not is_linux(): raise ValueError('Currently TensorRT is only supported on Linux platform.') if not int(environ_cp.get('TF_NEED_TENSORRT', False)): return ask_tensorrt_version = ( 'Please specify the TensorRT version you want to use. ' '[Leave empty to default to TensorRT %s]: ') % _DEFAULT_TENSORRT_VERSION tf_tensorrt_version = get_from_env_or_user_or_default( environ_cp, 'TF_TENSORRT_VERSION', ask_tensorrt_version, _DEFAULT_TENSORRT_VERSION) environ_cp['TF_TENSORRT_VERSION'] = tf_tensorrt_version def set_tf_nccl_version(environ_cp): """Set TF_NCCL_VERSION.""" if not is_linux(): raise ValueError('Currently NCCL is only supported on Linux platform.') if 'TF_NCCL_VERSION' in environ_cp: return ask_nccl_version = ( 'Please specify the locally installed NCCL version you want to use. ' '[Leave empty to use http://github.com/nvidia/nccl]: ') tf_nccl_version = get_from_env_or_user_or_default(environ_cp, 'TF_NCCL_VERSION', ask_nccl_version, '') environ_cp['TF_NCCL_VERSION'] = tf_nccl_version def get_native_cuda_compute_capabilities(environ_cp): """Get native cuda compute capabilities. Args: environ_cp: copy of the os.environ. Returns: string of native cuda compute capabilities, separated by comma. """ device_query_bin = os.path.join( environ_cp.get('CUDA_TOOLKIT_PATH'), 'extras/demo_suite/deviceQuery') if os.path.isfile(device_query_bin) and os.access(device_query_bin, os.X_OK): try: output = run_shell(device_query_bin).split('\n') pattern = re.compile('[0-9]*\\.[0-9]*') output = [pattern.search(x) for x in output if 'Capability' in x] output = ','.join(x.group() for x in output if x is not None) except subprocess.CalledProcessError: output = '' else: output = '' return output def set_tf_cuda_compute_capabilities(environ_cp): """Set TF_CUDA_COMPUTE_CAPABILITIES.""" while True: native_cuda_compute_capabilities = get_native_cuda_compute_capabilities( environ_cp) if not native_cuda_compute_capabilities: default_cuda_compute_capabilities = _DEFAULT_CUDA_COMPUTE_CAPABILITIES else: default_cuda_compute_capabilities = native_cuda_compute_capabilities ask_cuda_compute_capabilities = ( 'Please specify a list of comma-separated CUDA compute capabilities ' 'you want to build with.\nYou can find the compute capability of your ' 'device at: https://developer.nvidia.com/cuda-gpus. Each capability ' 'can be specified as "x.y" or "compute_xy" to include both virtual and' ' binary GPU code, or as "sm_xy" to only include the binary ' 'code.\nPlease note that each additional compute capability ' 'significantly increases your build time and binary size, and that ' 'TensorFlow only supports compute capabilities >= 3.5 [Default is: ' '%s]: ' % default_cuda_compute_capabilities) tf_cuda_compute_capabilities = get_from_env_or_user_or_default( environ_cp, 'TF_CUDA_COMPUTE_CAPABILITIES', ask_cuda_compute_capabilities, default_cuda_compute_capabilities) # Check whether all capabilities from the input is valid all_valid = True # Remove all whitespace characters before splitting the string # that users may insert by accident, as this will result in error tf_cuda_compute_capabilities = ''.join(tf_cuda_compute_capabilities.split()) for compute_capability in tf_cuda_compute_capabilities.split(','): m = re.match('[0-9]+.[0-9]+', compute_capability) if not m: # We now support sm_35,sm_50,sm_60,compute_70. sm_compute_match = re.match('(sm|compute)_?([0-9]+[0-9]+)', compute_capability) if not sm_compute_match: print('Invalid compute capability: %s' % compute_capability) all_valid = False else: ver = int(sm_compute_match.group(2)) if ver < 30: print( 'ERROR: TensorFlow only supports small CUDA compute' ' capabilities of sm_30 and higher. Please re-specify the list' ' of compute capabilities excluding version %s.' % ver) all_valid = False if ver < 35: print('WARNING: XLA does not support CUDA compute capabilities ' 'lower than sm_35. Disable XLA when running on older GPUs.') else: ver = float(m.group(0)) if ver < 3.0: print('ERROR: TensorFlow only supports CUDA compute capabilities 3.0 ' 'and higher. Please re-specify the list of compute ' 'capabilities excluding version %s.' % ver) all_valid = False if ver < 3.5: print('WARNING: XLA does not support CUDA compute capabilities ' 'lower than 3.5. Disable XLA when running on older GPUs.') if all_valid: break # Reset and Retry environ_cp['TF_CUDA_COMPUTE_CAPABILITIES'] = '' # Set TF_CUDA_COMPUTE_CAPABILITIES environ_cp['TF_CUDA_COMPUTE_CAPABILITIES'] = tf_cuda_compute_capabilities write_action_env_to_bazelrc('TF_CUDA_COMPUTE_CAPABILITIES', tf_cuda_compute_capabilities) def set_other_cuda_vars(environ_cp): """Set other CUDA related variables.""" # If CUDA is enabled, always use GPU during build and test. if environ_cp.get('TF_CUDA_CLANG') == '1': write_to_bazelrc('build --config=cuda_clang') else: write_to_bazelrc('build --config=cuda') def set_host_cxx_compiler(environ_cp): """Set HOST_CXX_COMPILER.""" default_cxx_host_compiler = which('g++') or '' host_cxx_compiler = prompt_loop_or_load_from_env( environ_cp, var_name='HOST_CXX_COMPILER', var_default=default_cxx_host_compiler, ask_for_var=('Please specify which C++ compiler should be used as the ' 'host C++ compiler.'), check_success=os.path.exists, error_msg='Invalid C++ compiler path. %s cannot be found.', ) write_action_env_to_bazelrc('HOST_CXX_COMPILER', host_cxx_compiler) def set_host_c_compiler(environ_cp): """Set HOST_C_COMPILER.""" default_c_host_compiler = which('gcc') or '' host_c_compiler = prompt_loop_or_load_from_env( environ_cp, var_name='HOST_C_COMPILER', var_default=default_c_host_compiler, ask_for_var=('Please specify which C compiler should be used as the host ' 'C compiler.'), check_success=os.path.exists, error_msg='Invalid C compiler path. %s cannot be found.', ) write_action_env_to_bazelrc('HOST_C_COMPILER', host_c_compiler) def system_specific_test_config(environ_cp): """Add default build and test flags required for TF tests to bazelrc.""" write_to_bazelrc('test --flaky_test_attempts=3') write_to_bazelrc('test --test_size_filters=small,medium') # Each instance of --test_tag_filters or --build_tag_filters overrides all # previous instances, so we need to build up a complete list and write a # single list of filters for the .bazelrc file. # Filters to use with both --test_tag_filters and --build_tag_filters test_and_build_filters = ['-benchmark-test', '-no_oss'] # Additional filters for --test_tag_filters beyond those in # test_and_build_filters test_only_filters = ['-oss_serial'] if is_windows(): test_and_build_filters.append('-no_windows') if ((environ_cp.get('TF_NEED_CUDA', None) == '1') or (environ_cp.get('TF_NEED_ROCM', None) == '1')): test_and_build_filters += ['-no_windows_gpu', '-no_gpu'] else: test_and_build_filters.append('-gpu') elif is_macos(): test_and_build_filters += ['-gpu', '-nomac', '-no_mac'] elif is_linux(): if ((environ_cp.get('TF_NEED_CUDA', None) == '1') or (environ_cp.get('TF_NEED_ROCM', None) == '1')): test_and_build_filters.append('-no_gpu') write_to_bazelrc('test --test_env=LD_LIBRARY_PATH') else: test_and_build_filters.append('-gpu') # Disable tests with "v1only" tag in "v2" Bazel config, but not in "v1" config write_to_bazelrc('test:v1 --test_tag_filters=%s' % ','.join(test_and_build_filters + test_only_filters)) write_to_bazelrc('test:v1 --build_tag_filters=%s' % ','.join(test_and_build_filters)) write_to_bazelrc( 'test:v2 --test_tag_filters=%s' % ','.join(test_and_build_filters + test_only_filters + ['-v1only'])) write_to_bazelrc('test:v2 --build_tag_filters=%s' % ','.join(test_and_build_filters + ['-v1only'])) def set_system_libs_flag(environ_cp): syslibs = environ_cp.get('TF_SYSTEM_LIBS', '') if syslibs: if ',' in syslibs: syslibs = ','.join(sorted(syslibs.split(','))) else: syslibs = ','.join(sorted(syslibs.split())) write_action_env_to_bazelrc('TF_SYSTEM_LIBS', syslibs) for varname in ('PREFIX', 'LIBDIR', 'INCLUDEDIR', 'PROTOBUF_INCLUDE_PATH'): if varname in environ_cp: write_to_bazelrc('build --define=%s=%s' % (varname, environ_cp[varname])) def set_windows_build_flags(environ_cp): """Set Windows specific build options.""" # First available in VS 16.4. Speeds up Windows compile times by a lot. See # https://groups.google.com/a/tensorflow.org/d/topic/build/SsW98Eo7l3o/discussion # pylint: disable=line-too-long write_to_bazelrc('build --copt=/d2ReducedOptimizeHugeFunctions --host_copt=/d2ReducedOptimizeHugeFunctions') if get_var( environ_cp, 'TF_OVERRIDE_EIGEN_STRONG_INLINE', 'Eigen strong inline', True, ('Would you like to override eigen strong inline for some C++ ' 'compilation to reduce the compilation time?'), 'Eigen strong inline overridden.', 'Not overriding eigen strong inline, ' 'some compilations could take more than 20 mins.'): # Due to a known MSVC compiler issue # https://github.com/tensorflow/tensorflow/issues/10521 # Overriding eigen strong inline speeds up the compiling of # conv_grad_ops_3d.cc and conv_ops_3d.cc by 20 minutes, # but this also hurts the performance. Let users decide what they want. write_to_bazelrc('build --define=override_eigen_strong_inline=true') def config_info_line(name, help_text): """Helper function to print formatted help text for Bazel config options.""" print('\t--config=%-12s\t# %s' % (name, help_text)) def configure_ios(): """Configures TensorFlow for iOS builds. This function will only be executed if `is_macos()` is true. """ if not is_macos(): return for filepath in APPLE_BAZEL_FILES: existing_filepath = os.path.join(_TF_WORKSPACE_ROOT, filepath + '.apple') renamed_filepath = os.path.join(_TF_WORKSPACE_ROOT, filepath) symlink_force(existing_filepath, renamed_filepath) for filepath in IOS_FILES: filename = os.path.basename(filepath) new_filepath = os.path.join(_TF_WORKSPACE_ROOT, filename) symlink_force(filepath, new_filepath) def validate_cuda_config(environ_cp): """Run find_cuda_config.py and return cuda_toolkit_path, or None.""" def maybe_encode_env(env): """Encodes unicode in env to str on Windows python 2.x.""" if not is_windows() or sys.version_info[0] != 2: return env for k, v in env.items(): if isinstance(k, unicode): k = k.encode('ascii') if isinstance(v, unicode): v = v.encode('ascii') env[k] = v return env cuda_libraries = ['cuda', 'cudnn'] if is_linux(): if int(environ_cp.get('TF_NEED_TENSORRT', False)): cuda_libraries.append('tensorrt') if environ_cp.get('TF_NCCL_VERSION', None): cuda_libraries.append('nccl') proc = subprocess.Popen( [environ_cp['PYTHON_BIN_PATH'], 'third_party/gpus/find_cuda_config.py'] + cuda_libraries, stdout=subprocess.PIPE, env=maybe_encode_env(environ_cp)) if proc.wait(): # Errors from find_cuda_config.py were sent to stderr. print('Asking for detailed CUDA configuration...\n') return False config = dict( tuple(line.decode('ascii').rstrip().split(': ')) for line in proc.stdout) print('Found CUDA %s in:' % config['cuda_version']) print(' %s' % config['cuda_library_dir']) print(' %s' % config['cuda_include_dir']) print('Found cuDNN %s in:' % config['cudnn_version']) print(' %s' % config['cudnn_library_dir']) print(' %s' % config['cudnn_include_dir']) if 'tensorrt_version' in config: print('Found TensorRT %s in:' % config['tensorrt_version']) print(' %s' % config['tensorrt_library_dir']) print(' %s' % config['tensorrt_include_dir']) if config.get('nccl_version', None): print('Found NCCL %s in:' % config['nccl_version']) print(' %s' % config['nccl_library_dir']) print(' %s' % config['nccl_include_dir']) print('\n') environ_cp['CUDA_TOOLKIT_PATH'] = config['cuda_toolkit_path'] return True def main(): global _TF_WORKSPACE_ROOT global _TF_BAZELRC global _TF_CURRENT_BAZEL_VERSION parser = argparse.ArgumentParser() parser.add_argument( '--workspace', type=str, default=os.path.abspath(os.path.dirname(__file__)), help='The absolute path to your active Bazel workspace.') args = parser.parse_args() _TF_WORKSPACE_ROOT = args.workspace _TF_BAZELRC = os.path.join(_TF_WORKSPACE_ROOT, _TF_BAZELRC_FILENAME) # Make a copy of os.environ to be clear when functions and getting and setting # environment variables. environ_cp = dict(os.environ) try: current_bazel_version = check_bazel_version(_TF_MIN_BAZEL_VERSION, _TF_MAX_BAZEL_VERSION) except subprocess.CalledProcessError as e: print('Error checking bazel version: ', e.output.decode('UTF-8').strip()) raise e _TF_CURRENT_BAZEL_VERSION = convert_version_to_int(current_bazel_version) reset_tf_configure_bazelrc() cleanup_makefile() setup_python(environ_cp) if is_windows(): environ_cp['TF_NEED_OPENCL'] = '0' environ_cp['TF_CUDA_CLANG'] = '0' environ_cp['TF_NEED_TENSORRT'] = '0' # TODO(ibiryukov): Investigate using clang as a cpu or cuda compiler on # Windows. environ_cp['TF_DOWNLOAD_CLANG'] = '0' environ_cp['TF_NEED_MPI'] = '0' if is_macos(): environ_cp['TF_NEED_TENSORRT'] = '0' else: environ_cp['TF_CONFIGURE_IOS'] = '0' if environ_cp.get('TF_ENABLE_XLA', '1') == '1': write_to_bazelrc('build --config=xla') set_action_env_var( environ_cp, 'TF_NEED_ROCM', 'ROCm', False, bazel_config_name='rocm') if (environ_cp.get('TF_NEED_ROCM') == '1' and 'LD_LIBRARY_PATH' in environ_cp and environ_cp.get('LD_LIBRARY_PATH') != '1'): write_action_env_to_bazelrc('LD_LIBRARY_PATH', environ_cp.get('LD_LIBRARY_PATH')) if (environ_cp.get('TF_NEED_ROCM') == '1' and environ_cp.get('ROCM_PATH')): write_action_env_to_bazelrc('ROCM_PATH', environ_cp.get('ROCM_PATH')) write_action_env_to_bazelrc('ROCM_ROOT', environ_cp.get('ROCM_PATH')) if ((environ_cp.get('TF_NEED_ROCM') == '1') and (environ_cp.get('TF_ENABLE_MLIR_GENERATED_GPU_KERNELS') == '1')): write_to_bazelrc( 'build:rocm --define tensorflow_enable_mlir_generated_gpu_kernels=1') environ_cp['TF_NEED_CUDA'] = str( int(get_var(environ_cp, 'TF_NEED_CUDA', 'CUDA', False))) if (environ_cp.get('TF_NEED_CUDA') == '1' and 'TF_CUDA_CONFIG_REPO' not in environ_cp): set_action_env_var( environ_cp, 'TF_NEED_TENSORRT', 'TensorRT', False, bazel_config_name='tensorrt') environ_save = dict(environ_cp) for _ in range(_DEFAULT_PROMPT_ASK_ATTEMPTS): if validate_cuda_config(environ_cp): cuda_env_names = [ 'TF_CUDA_VERSION', 'TF_CUBLAS_VERSION', 'TF_CUDNN_VERSION', 'TF_TENSORRT_VERSION', 'TF_NCCL_VERSION', 'TF_CUDA_PATHS', # Items below are for backwards compatibility when not using # TF_CUDA_PATHS. 'CUDA_TOOLKIT_PATH', 'CUDNN_INSTALL_PATH', 'NCCL_INSTALL_PATH', 'NCCL_HDR_PATH', 'TENSORRT_INSTALL_PATH' ] # Note: set_action_env_var above already writes to bazelrc. for name in cuda_env_names: if name in environ_cp: write_action_env_to_bazelrc(name, environ_cp[name]) break # Restore settings changed below if CUDA config could not be validated. environ_cp = dict(environ_save) set_tf_cuda_version(environ_cp) set_tf_cudnn_version(environ_cp) if is_linux(): set_tf_tensorrt_version(environ_cp) set_tf_nccl_version(environ_cp) set_tf_cuda_paths(environ_cp) else: raise UserInputError( 'Invalid CUDA setting were provided %d ' 'times in a row. Assuming to be a scripting mistake.' % _DEFAULT_PROMPT_ASK_ATTEMPTS) set_tf_cuda_compute_capabilities(environ_cp) if 'LD_LIBRARY_PATH' in environ_cp and environ_cp.get( 'LD_LIBRARY_PATH') != '1': write_action_env_to_bazelrc('LD_LIBRARY_PATH', environ_cp.get('LD_LIBRARY_PATH')) set_tf_cuda_clang(environ_cp) if environ_cp.get('TF_CUDA_CLANG') == '1': # Ask whether we should download the clang toolchain. set_tf_download_clang(environ_cp) if environ_cp.get('TF_DOWNLOAD_CLANG') != '1': # Set up which clang we should use as the cuda / host compiler. set_clang_cuda_compiler_path(environ_cp) else: # Use downloaded LLD for linking. write_to_bazelrc('build:cuda_clang --config=download_clang_use_lld') else: # Set up which gcc nvcc should use as the host compiler # No need to set this on Windows if not is_windows(): set_gcc_host_compiler_path(environ_cp) set_other_cuda_vars(environ_cp) else: # CUDA not required. Ask whether we should download the clang toolchain and # use it for the CPU build. set_tf_download_clang(environ_cp) # ROCm / CUDA are mutually exclusive. # At most 1 GPU platform can be configured. gpu_platform_count = 0 if environ_cp.get('TF_NEED_ROCM') == '1': gpu_platform_count += 1 if environ_cp.get('TF_NEED_CUDA') == '1': gpu_platform_count += 1 if gpu_platform_count >= 2: raise UserInputError('CUDA / ROCm are mututally exclusive. ' 'At most 1 GPU platform can be configured.') set_cc_opt_flags(environ_cp) set_system_libs_flag(environ_cp) if is_windows(): set_windows_build_flags(environ_cp) if get_var(environ_cp, 'TF_SET_ANDROID_WORKSPACE', 'android workspace', False, ('Would you like to interactively configure ./WORKSPACE for ' 'Android builds?'), 'Searching for NDK and SDK installations.', 'Not configuring the WORKSPACE for Android builds.'): create_android_ndk_rule(environ_cp) create_android_sdk_rule(environ_cp) system_specific_test_config(environ_cp) set_action_env_var(environ_cp, 'TF_CONFIGURE_IOS', 'iOS', False) if environ_cp.get('TF_CONFIGURE_IOS') == '1': configure_ios() print('Preconfigured Bazel build configs. You can use any of the below by ' 'adding "--config=<>" to your build command. See .bazelrc for more ' 'details.') config_info_line('mkl', 'Build with MKL support.') config_info_line('mkl_aarch64', 'Build with oneDNN support for Aarch64.') config_info_line('monolithic', 'Config for mostly static monolithic build.') config_info_line('numa', 'Build with NUMA support.') config_info_line( 'dynamic_kernels', '(Experimental) Build kernels into separate shared objects.') config_info_line('v2', 'Build TensorFlow 2.x instead of 1.x.') print('Preconfigured Bazel build configs to DISABLE default on features:') config_info_line('noaws', 'Disable AWS S3 filesystem support.') config_info_line('nogcp', 'Disable GCP support.') config_info_line('nohdfs', 'Disable HDFS support.') config_info_line('nonccl', 'Disable NVIDIA NCCL support.') if __name__ == '__main__': main()
37.024983
110
0.678537
1f8ba258ae0a1c5754d0f1dcd71c148270e0b392
4,232
py
Python
gdal/swig/python/samples/val_at_coord.py
SarahVasher1/gdal
a370ec25625584856886f02fd04e540de048112f
[ "MIT" ]
null
null
null
gdal/swig/python/samples/val_at_coord.py
SarahVasher1/gdal
a370ec25625584856886f02fd04e540de048112f
[ "MIT" ]
null
null
null
gdal/swig/python/samples/val_at_coord.py
SarahVasher1/gdal
a370ec25625584856886f02fd04e540de048112f
[ "MIT" ]
1
2021-04-26T14:47:38.000Z
2021-04-26T14:47:38.000Z
#!/usr/bin/env python ############################################################################### # $Id$ # # Project: GDAL Python samples # Purpose: Outputs the value of the raster bands at a given # (longitude, latitude) or (X, Y) location. # Author: Even Rouault # ############################################################################### # Copyright (c) 2010, Even Rouault <even dot rouault at spatialys.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import sys from osgeo import gdal from osgeo import osr # ============================================================================= def Usage(): print('Usage: val_at_coord.py [-display_xy] [longitude latitude | -coordtype=georef X Y] filename') print('') print('By default, the 2 first arguments are supposed to be the location') print('in longitude, latitude order. If -coordtype=georef is specified before') print('the next 2 values will be interpreted as the X and Y coordinates') print('in the dataset spatial reference system.') sys.exit(1) # ============================================================================= display_xy = False coordtype_georef = False longitude = None latitude = None filename = None # ============================================================================= # Parse command line arguments. # ============================================================================= i = 1 while i < len(sys.argv): arg = sys.argv[i] if arg == '-coordtype=georef': coordtype_georef = True elif arg == '-display_xy': display_xy = True elif longitude is None: longitude = float(arg) elif latitude is None: latitude = float(arg) elif filename is None: filename = arg else: Usage() i = i + 1 if longitude is None: Usage() if latitude is None: Usage() if filename is None: filename() # Open input dataset ds = gdal.Open(filename, gdal.GA_ReadOnly) if ds is None: print('Cannot open %s' % filename) sys.exit(1) # Build Spatial Reference object based on coordinate system, fetched from the # opened dataset if coordtype_georef: X = longitude Y = latitude else: srs = osr.SpatialReference() srs.ImportFromWkt(ds.GetProjection()) srsLatLong = srs.CloneGeogCS() # Convert from (longitude,latitude) to projected coordinates ct = osr.CoordinateTransformation(srsLatLong, srs) (X, Y, height) = ct.TransformPoint(longitude, latitude) # Read geotransform matrix and calculate corresponding pixel coordinates geomatrix = ds.GetGeoTransform() (success, inv_geometrix) = gdal.InvGeoTransform(geomatrix) x = int(inv_geometrix[0] + inv_geometrix[1] * X + inv_geometrix[2] * Y) y = int(inv_geometrix[3] + inv_geometrix[4] * X + inv_geometrix[5] * Y) if display_xy: print('x=%d, y=%d' % (x, y)) if x < 0 or x >= ds.RasterXSize or y < 0 or y >= ds.RasterYSize: print('Passed coordinates are not in dataset extent') sys.exit(1) res = ds.ReadAsArray(x, y, 1, 1) if len(res.shape) == 2: print(res[0][0]) else: for val in res: print(val[0][0])
32.305344
103
0.61035
ec8df9b0c2464979a3176862070c6202b9198305
768
py
Python
sa/profiles/Alstec/7200/get_capabilities.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
84
2017-10-22T11:01:39.000Z
2022-02-27T03:43:48.000Z
sa/profiles/Alstec/7200/get_capabilities.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
22
2017-12-11T07:21:56.000Z
2021-09-23T02:53:50.000Z
sa/profiles/Alstec/7200/get_capabilities.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
23
2017-12-06T06:59:52.000Z
2022-02-24T00:02:25.000Z
# --------------------------------------------------------------------- # Alstec.7200.get_capabilities # --------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # NOC modules from noc.sa.profiles.Generic.get_capabilities import Script as BaseScript from noc.sa.profiles.Generic.get_capabilities import false_on_cli_error class Script(BaseScript): name = "Alstec.7200.get_capabilities" @false_on_cli_error def has_lldp_cli(self): """ Check box has lldp enabled """ r = self.cli("show lldp") return "LLDP transmit/receive disabled on all interfaces." not in r
33.391304
75
0.514323
fbd5d1e2e6d9d69fb788b8e63269ede64d71f99b
6,796
py
Python
image_master.py
YOULOF2/OpenWater
646e7a344ccd6b872fe802852866989534931ddc
[ "MIT" ]
1
2021-04-12T18:23:30.000Z
2021-04-12T18:23:30.000Z
image_master.py
YOULOF2/OpenWater
646e7a344ccd6b872fe802852866989534931ddc
[ "MIT" ]
null
null
null
image_master.py
YOULOF2/OpenWater
646e7a344ccd6b872fe802852866989534931ddc
[ "MIT" ]
null
null
null
import os from PIL import Image, ImageFont, ImageDraw, ImageTk import shutil from time import sleep from typing import Union from pathlib import Path from datetime import datetime class ImageMaster: def __init__(self): self.default_img = "assets/images/default_imgs/default_img.png" self.preview_img_loc = "assets/images/preview_imgs" self.uploaded_img_loc = r"assets/images/uploaded/uploaded_img.png" self.preview_watermarks_loc = "assets/images/preview_watermarks" self.custom_fonts_loc = "assets/fonts/uploaded_fonts" self.default_font = "Arial.ttf" self.current_font_list = sorted(Path(self.custom_fonts_loc).iterdir(), key=os.path.getmtime) self.preview_watermarks = sorted(Path(self.preview_watermarks_loc).iterdir(), key=os.path.getmtime) self.width, self.height = self.get_internal_image() self.image_scale = 1 self.default_sizing = (self.default_sizing()) def default_sizing(self): if int(self.width) > 2000: self.image_scale = 6 return int(self.width / 6), int(self.height / 6) elif 800 <= int(self.width) < 2000: self.image_scale = 2 return int(self.width / 2), int(self.height / 2) elif self.height > 800: self.image_scale = 1.5 return int(self.width / 1.5), int(self.height / 1.5) else: self.image_scale = 1 return self.width, self.height def get_internal_image(self): try: image_tuple = Image.open(self.uploaded_img_loc).size except FileNotFoundError: image_tuple = Image.open(self.default_img).size return image_tuple else: return image_tuple def refresh_pre_watermarks(self): self.preview_watermarks = sorted(Path(self.preview_watermarks_loc).iterdir(), key=os.path.getmtime) def transfer_file(self, original_dir, file_type): if file_type == "img": original = original_dir target = self.uploaded_img_loc shutil.copyfile(original, target) elif file_type == "font": with open(original_dir) as file: file_name = os.path.basename(file.name) original = original_dir target = f"{self.custom_fonts_loc}/{file_name}" shutil.copyfile(original, target) self.current_font_list = sorted(Path(self.custom_fonts_loc).iterdir(), key=os.path.getmtime) def get_last_preview_watermarks(self): self.refresh_pre_watermarks() self.preview_watermarks.reverse() last_watermark_name = self.preview_watermarks[0] return last_watermark_name def get_image_object(self): """ If no preview images found, returns Image object to default img :return: """ self.refresh_pre_watermarks() if len(self.preview_watermarks) > 0: max_no = 0 for watermark_file in self.preview_watermarks: splitted_file_no = int(watermark_file.stem.split("-")[1].split(".")[0]) if splitted_file_no > max_no: max_no = splitted_file_no return ImageTk.PhotoImage(Image.open(f"assets/images/preview_imgs/preview_img-{max_no}.png") .resize(self.default_sizing, Image.ANTIALIAS)) elif len(os.listdir("assets/images/uploaded")) == 1: return ImageTk.PhotoImage(Image.open(self.uploaded_img_loc) .resize(self.default_sizing, Image.ANTIALIAS)) else: return ImageTk.PhotoImage(Image.open(self.default_img) .resize(self.default_sizing, Image.ANTIALIAS)) def text_to_image(self, font_name: str, text: str, coordinates: tuple, colour: Union[str, tuple], font_size: int, rotation_angle): """ This method does 2 things: 1. It takes the parameters given and generates a transparent image with text ton it 2. It then merges the uploaded image with the generated transparent watermark image and saves it. If colour arguement is None, defaults to the colour black :param rotation_angle: :param font_name: :param text: :param coordinates: :param colour: :param font_size: :return: """ self.refresh_pre_watermarks() font = ImageFont.truetype(f"assets/fonts/uploaded_fonts/{font_name}", font_size) img = Image.new("RGBA", (self.width, self.height)) draw = ImageDraw.Draw(img) draw.text(coordinates, text, colour, font=font) final_img = img.rotate(rotation_angle) if len(self.preview_watermarks) == 0: final_img.save("assets/images/preview_watermarks/watermark-1.png") else: last_img_name = self.get_last_preview_watermarks() splitted_img_name = last_img_name.stem.split("-")[1].split(".")[0] new_str = int(splitted_img_name) + 1 final_img.save(f"assets/images/preview_watermarks/watermark-{new_str}.png") self.preview_watermarks.reverse() self.refresh_pre_watermarks() last_watermark = str(self.get_last_preview_watermarks()).split("\\")[-1] foreground = Image.open(f"assets/images/preview_watermarks/{last_watermark}") raw_img = Image.open("assets/images/uploaded/uploaded_img.png") self.preview_watermarks.reverse() background = raw_img.convert("RGBA") sleep(1) max_no = 0 for file in self.preview_watermarks: splitted_file_no = int(file.stem.split("-")[1].split(".")[0]) if splitted_file_no > max_no: max_no = splitted_file_no Image.alpha_composite(background, foreground).save(f"assets/images/preview_imgs/preview_img-{max_no}.png") def save_image(self, save_to_loc): time = str(datetime.now().strftime("%I%p-%d-%m")) max_no = 1 for file in self.preview_watermarks: splitted_file_no = int(file.stem.split("-")[1].split(".")[0]) if splitted_file_no > max_no: max_no = splitted_file_no original = f"{self.preview_img_loc}/preview_img-{max_no}.png" target = f"{save_to_loc}/{time}-watermarked.png" try: shutil.copyfile(original, target) self.clean_up() except FileNotFoundError: pass def clean_up(self): for file in os.listdir(self.preview_watermarks_loc): os.remove(f"assets/images/preview_watermarks/{file}") for file in os.listdir(self.preview_img_loc): os.remove(f"assets/images/preview_imgs/{file}")
43.564103
117
0.631254
cef57cf50cf4f428bd015d470a55ea566aa2e652
2,912
py
Python
solargis/request/system.py
power-guard/solargis-py
42c919fccc6f9abf05441a1ffa75633cff1eab23
[ "MIT" ]
null
null
null
solargis/request/system.py
power-guard/solargis-py
42c919fccc6f9abf05441a1ffa75633cff1eab23
[ "MIT" ]
null
null
null
solargis/request/system.py
power-guard/solargis-py
42c919fccc6f9abf05441a1ffa75633cff1eab23
[ "MIT" ]
null
null
null
import datetime as dt import xml.etree.ElementTree as ET from enum import Enum from solargis.abstractelement import AbstractElement from solargis.validator import Validator class InstallationType(Enum): """This property of the PV system helps to estimate how modules are cooled by air. For sloped roof with PV modules on rails tilted at the same angle as the roof choose 'ROOF_MOUNTED' value. For PV modules incorporated into building facade choose 'BUILDING_INTEGRATED' value. This option is considered as the worst ventilated. As the best ventilated option is considered 'FREE_STANDING' installation. This typically means stand-alone installation on tilted racks anchored into the ground. Also choose this option if a PV system is installed on a flat roof.""" FREE_STANDING = 'FREE_STANDING' ROOF_MOUNTED = 'ROOF_MOUNTED' BUILDING_INTEGRATED = 'BUILDING_INTEGRATED' class System(AbstractElement): """Parametrization of the PV system. Required for simulating PVOUT parameter.""" DATE_FORMAT = '%Y-%m-%d' def __init__(self, installed_power: float, module, inverter, losses, topology=None, installation_type: InstallationType = None, date_startup: dt.date = None, self_shading: bool = None): Validator.not_none(module, 'module') Validator.not_none(inverter, 'inverter') Validator.not_none(losses, 'losses') Validator.greater_than(installed_power, 0, 'installed power') if installation_type is not None: Validator.value_in_enum(installation_type, InstallationType) self.installed_power = installed_power self.module = module self.inverter = inverter self.losses = losses self.topology = topology self.installation_type = installation_type self.date_startup = date_startup self.self_shading = self_shading self.element_name = 'system' self.prefix = 'pv' def to_element(self): attributes = dict() attributes['installedPower'] = str(self.installed_power) if self.installation_type is not None: attributes['installationType'] = self.installation_type.value if self.date_startup is not None: attributes['dateStartup'] = self.date_startup.strftime(self.DATE_FORMAT) if self.self_shading is not None: attributes['selfShading'] = str(self.self_shading).lower() system = ET.Element(self.get_element_name(), attrib=attributes) system.append(self.module.to_element()) system.append(self.inverter.to_element()) system.append(self.losses.to_element()) if self.topology is not None: system.append(self.topology.to_element()) return system
35.950617
84
0.673077
84ce3ed06e5c4fe52d1ab48ea94e10c9f8a015a8
2,370
py
Python
src/lm_based/extract_start_end_from_lm.py
vered1986/time_expressions
32d182d7f741eec007141f5ca89c0d419e23a9a7
[ "Apache-2.0" ]
1
2022-02-25T15:00:42.000Z
2022-02-25T15:00:42.000Z
src/lm_based/extract_start_end_from_lm.py
vered1986/time_expressions
32d182d7f741eec007141f5ca89c0d419e23a9a7
[ "Apache-2.0" ]
null
null
null
src/lm_based/extract_start_end_from_lm.py
vered1986/time_expressions
32d182d7f741eec007141f5ca89c0d419e23a9a7
[ "Apache-2.0" ]
null
null
null
import os import json import argparse from transformers import pipeline from src.lm_based.common import compute_distribution def main(): parser = argparse.ArgumentParser() parser.add_argument("--out_dir", default="output/lm_based", type=str, required=False, help="Output directory") parser.add_argument("--device", default=-1, type=int, required=False, help="GPU device or -1 for CPU") parser.add_argument("--lang", default=None, type=str, required=False, help="Language code. If not specified, computes for all") args = parser.parse_args() # Load multilingual BERT unmasker = pipeline('fill-mask', model='bert-base-multilingual-cased', device=args.device) # Iterate over languages if args.lang is not None: langs = [args.lang] else: langs = [file.replace(".txt", "") for file in os.listdir("data/templates/distribution")] # Iterate over languages for lang in langs: print(lang) templates = json.load(open(f"data/templates/start_end/{lang}.json")) templates = {edge: [template for template in curr_templates if "[MASK]" in template] for edge, curr_templates in templates.items()} ampm_map = None # This language uses 12hr clock if os.path.exists(f"data/ampm/{lang}.json"): ampm_map = json.load(open(f"data/ampm/{lang}.json")) max_num = 12 else: max_num = 23 # Build the numbers map numbers_map = {str(num): num for num in range(0, max_num + 1)} numbers_map.update({"0" + str(num): num for num in range(0, 10)}) time_expressions = [line.strip().split("\t") for line in open(f"data/time_expressions/{lang}.txt")] time_expressions_map = {en: other.split("|") for en, other in time_expressions} # Compute the distribution grounding = {} for edge, curr_templates in templates.items(): grounding[edge] = compute_distribution( unmasker, curr_templates, numbers_map, time_expressions_map, ampm_map) grounding = {exp: {edge: grounding[edge][exp] for edge in ["start", "end"]} for exp in grounding["end"].keys()} with open(f"{args.out_dir}/{lang}_start_end.json", "w") as f_out: json.dump(grounding, f_out) if __name__ == '__main__': main()
38.225806
119
0.637553
f13ecd4c6902d12617217a60efc2e87bcef0f621
805
py
Python
openstack_dashboard/dashboards/admin/volume_groups/panel.py
stackhpc/horizon
0899f67657e0be62dd9e6be327c63bccb4607dc6
[ "Apache-2.0" ]
930
2015-01-04T08:06:03.000Z
2022-03-13T18:47:13.000Z
openstack_dashboard/dashboards/admin/volume_groups/panel.py
stackhpc/horizon
0899f67657e0be62dd9e6be327c63bccb4607dc6
[ "Apache-2.0" ]
26
2015-02-23T16:37:31.000Z
2020-07-02T08:37:41.000Z
openstack_dashboard/dashboards/admin/volume_groups/panel.py
stackhpc/horizon
0899f67657e0be62dd9e6be327c63bccb4607dc6
[ "Apache-2.0" ]
1,040
2015-01-01T18:48:28.000Z
2022-03-19T08:35:18.000Z
# Copyright 2019 NEC Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from openstack_dashboard.dashboards.project.volume_groups \ import panel as project_panel class VolumeGroups(project_panel.VolumeGroups): policy_rules = (("volume", "context_is_admin"),)
38.333333
78
0.742857
1d769523375fb89448159c201d312ff54454f67d
1,193
py
Python
src/pylero/wiki_page_attachment.py
yuxisun1217/pylero
0210eb2243e02ab218f19a224e94eb63081f13e3
[ "MIT" ]
null
null
null
src/pylero/wiki_page_attachment.py
yuxisun1217/pylero
0210eb2243e02ab218f19a224e94eb63081f13e3
[ "MIT" ]
null
null
null
src/pylero/wiki_page_attachment.py
yuxisun1217/pylero
0210eb2243e02ab218f19a224e94eb63081f13e3
[ "MIT" ]
null
null
null
# -*- coding: utf8 -*- from __future__ import absolute_import, division, print_function from __future__ import unicode_literals from pylero.base_polarion import BasePolarion from pylero.user import User class WikiPageAttachment(BasePolarion): """Object to handle the Polarion WSDL tns3:WikiPageAttachment class Attributes: author (User) file_name (string) wiki_page_attachment_id (string) length (long) title (string) updated (dateTime) url (string) """ _cls_suds_map = {"author": {"field_name": "author", "cls": User}, "file_name": "fileName", "wiki_page_attachment_id": "id", "length": "length", "title": "title", "updated": "updated", "url": "url", "uri": "_uri", "_unresolved": "_unresolved"} _obj_client = "tracker_client" _obj_struct = "tns3:WikiPageAttachment" class ArrayOfWikiPageAttachment(BasePolarion): _obj_client = "tracker_client" _obj_struct = "tns3:ArrayOfWikiPageAttachment"
31.394737
71
0.576697
523c44d83408edb8429c86bd3708146454206d4b
1,708
py
Python
profilesapi/migrations/0001_initial.py
diyajaiswal11/Profile-rest-api
b5acbd97be7b1186c9ee9063a96efd1148419229
[ "MIT" ]
3
2020-06-04T05:22:39.000Z
2020-09-23T19:44:07.000Z
profilesapi/migrations/0001_initial.py
diyajaiswal11/Profile-rest-api
b5acbd97be7b1186c9ee9063a96efd1148419229
[ "MIT" ]
null
null
null
profilesapi/migrations/0001_initial.py
diyajaiswal11/Profile-rest-api
b5acbd97be7b1186c9ee9063a96efd1148419229
[ "MIT" ]
null
null
null
# Generated by Django 3.0.6 on 2020-05-05 19:28 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('email', models.EmailField(max_length=255, unique=True)), ('name', models.CharField(max_length=255)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'abstract': False, }, ), ]
50.235294
266
0.638759
85c038a796dbb37dd83276f7c0667fa4a560ce58
1,499
py
Python
db/sqlite.py
DeepCISO/demo-aitextgen-2022-01-31
9aee1d7413e8ef4a672dfa7f3efbd4dd2151b285
[ "MIT" ]
null
null
null
db/sqlite.py
DeepCISO/demo-aitextgen-2022-01-31
9aee1d7413e8ef4a672dfa7f3efbd4dd2151b285
[ "MIT" ]
null
null
null
db/sqlite.py
DeepCISO/demo-aitextgen-2022-01-31
9aee1d7413e8ef4a672dfa7f3efbd4dd2151b285
[ "MIT" ]
null
null
null
import sqlite3 import time from sqlite3 import Error from pprint import pprint def create_connection(db_file): conn = None try: conn = sqlite3.connect(db_file) conn.row_factory = sqlite3.Row except Error as e: print(e) return conn def get_all_tweets(conn): cursor = conn.cursor() cursor.execute("SELECT * FROM tweets") rows = [dict(row) for row in cursor.fetchall()] return rows def postprocess_tweets_to_common_format(rows): common = [] for row in rows: common_row = create_common_format_dict( "twitter", time.mktime(time.strptime(row["created_at"], "%Y-%m-%d %H:%M:%S %Z")), row["screen_name"], ( # 10x weight for RTs, arbitrarily set (row["retweets_count"] * 10) + row["likes_count"] ), row["tweet"], ) common.append(common_row) return common def create_common_format_dict(source, epoch, author, score, content): return { "source": source, "epoch": epoch, "author": author, "score": score, "content": content, } def get_sqlite_twint(db_file): print("Loading tweets from sqlite database") conn = create_connection(db_file) rows = get_all_tweets(conn) print("Got tweets from sqlite database, preprocessing") common = postprocess_tweets_to_common_format(rows) print("Returning common-format tweet data from sqlite") return common
24.983333
82
0.624416
55a6c9f34c504d90f8f386ba771b55dff7a795a9
70,980
py
Python
cerberus/base.py
intrinseca/cerberus
5c267b554a39b5a8650659d3eea0cf383e47a166
[ "0BSD" ]
1
2020-07-24T04:23:14.000Z
2020-07-24T04:23:14.000Z
cerberus/base.py
intrinseca/cerberus
5c267b554a39b5a8650659d3eea0cf383e47a166
[ "0BSD" ]
null
null
null
cerberus/base.py
intrinseca/cerberus
5c267b554a39b5a8650659d3eea0cf383e47a166
[ "0BSD" ]
null
null
null
import re import typing from ast import literal_eval from collections import abc, ChainMap from datetime import date, datetime from typing import ( Any, Callable, ClassVar, Container, Dict, Generic, Iterable, List, Mapping, NamedTuple, Optional, Sequence, Set, Sized, Tuple, Type, Union, ) from warnings import warn from cerberus import errors from cerberus.platform import get_type_args, get_type_origin, ForwardRef, _GenericAlias from cerberus.typing import ( AllowUnknown, Document, DocumentPath, ErrorHandlerConfig, FieldName, NoneType, RegistryItem, RegistryItems, RulesSet, Schema, TypesMapping, ) from cerberus.utils import drop_item_from_tuple, readonly_classproperty, schema_hash RULE_SCHEMA_SEPARATOR = "The rule's arguments are validated against this schema:" toy_error_handler = errors.ToyErrorHandler() _ellipsis = typing.Tuple[int, ...].__args__[-1] def dummy_for_rule_validation(rule_constraints: str) -> Callable: def dummy(self, constraint, field, value): raise RuntimeError( 'Dummy method called. Its purpose is to hold just' 'validation constraints for a rule in its ' 'docstring.' ) f = dummy f.__doc__ = rule_constraints return f # Exceptions class DocumentError(Exception): """ Raised when the target document is missing or has the wrong format """ class SchemaError(Exception): """ Raised when the validation schema is missing, has the wrong format or contains errors. """ # Schema mangling _normalized_rulesset_cache = {} # type: Dict[int, Dict[str, Any]] def normalize_rulesset(rules: RulesSet) -> RulesSet: """ Transforms a set of rules into a canonical form. """ if not isinstance(rules, abc.Mapping): return rules _hash = schema_hash(rules) if _hash in _normalized_rulesset_cache: return _normalized_rulesset_cache[_hash] rules = dict(rules) rules_with_whitespace = [x for x in rules if " " in x] if rules_with_whitespace: for rule in rules_with_whitespace: rules[rule.replace(" ", "_")] = rules.pop(rule) if isinstance(rules.get("dependencies"), str): rules["dependencies"] = (rules["dependencies"],) if "excludes" in rules: constraint = rules["excludes"] if isinstance(constraint, str) or not isinstance(constraint, Container): rules["excludes"] = (constraint,) if "type" in rules: constraint = rules["type"] if not (isinstance(constraint, Iterable) and not isinstance(constraint, str)): rules["type"] = (constraint,) _expand_generic_type_aliases(rules) _expand_composed_of_rules(rules) _normalize_contained_rulessets(rules) _normalized_rulesset_cache[_hash] = rules return rules def normalize_schema(schema: Schema) -> Schema: """ Transforms a schema into a canonical form. """ return {field: normalize_rulesset(rules) for field, rules in schema.items()} def _expand_generic_type_aliases(rules: Dict[str, Any]) -> None: compound_types = [] plain_types = [] is_nullable = False for constraint in _flatten_Union_and_Optional(rules.pop("type")): if isinstance(constraint, _GenericAlias): origin = get_type_origin(constraint) args = get_type_args(constraint) # mappings, e.g. Mapping[int, str] if issubclass(origin, abc.Mapping) and not constraint.__parameters__: compound_types.append( { "type": origin, "keysrules": {"type": args[0]}, "valuesrules": {"type": args[1]}, } ) # list-like and sets, e.g. List[str] elif ( issubclass(origin, (abc.MutableSequence, abc.Set)) and not constraint.__parameters__ ): compound_types.append({"type": origin, "itemsrules": {"type": args[0]}}) # tuples elif issubclass(origin, tuple) and args: # e.g. Tuple[str, ...] if args[-1] is _ellipsis: compound_types.append( {"type": origin, "itemsrules": {"type": args[0]}} ) # e.g. Tuple[int, str, Tuple] else: compound_types.append( {"type": origin, "items": tuple({"type": x} for x in args)} ) else: plain_types.append(origin) # from typing.Optional elif constraint is NoneType: # type: ignore is_nullable = True elif isinstance(constraint, ForwardRef): plain_types.append(constraint.__forward_arg__) else: plain_types.append(constraint) if compound_types or is_nullable: if "anyof" in rules: raise SchemaError( "The usage of the `anyof` rule is not possible in a rulesset where the" "`type` rule specifies compound types as constraints." ) if plain_types: compound_types.append({"type": tuple(plain_types)}) if is_nullable: compound_types.append({"nullable": True}) rules["anyof"] = tuple(compound_types) else: rules["type"] = tuple(plain_types) def _flatten_Union_and_Optional(type_constraints): for constraint in type_constraints: if get_type_origin(constraint) is typing.Union: yield from _flatten_Union_and_Optional(get_type_args(constraint)) else: yield constraint def _expand_composed_of_rules(rules: Dict[str, Any]) -> None: """ Expands of-rules that have another rule agglutinated in a rules set. """ composed_rules = [ x for x in rules if x.startswith(('allof_', 'anyof_', 'noneof_', 'oneof_')) ] if not composed_rules: return for composed_rule in composed_rules: of_rule, rule = composed_rule.split('_', 1) rules[of_rule] = tuple({rule: x} for x in rules[composed_rule]) for rule in composed_rules: rules.pop(rule) def _normalize_contained_rulessets(rules: Dict[str, Any]) -> None: if isinstance(rules.get("schema"), abc.Mapping): rules['schema'] = normalize_schema(rules['schema']) for rule in ("allow_unknown", "itemsrules", "keysrules", "valuesrules"): if rule in rules: rules[rule] = normalize_rulesset(rules[rule]) for rule in ('allof', 'anyof', 'items', 'noneof', 'oneof'): if not isinstance(rules.get(rule), Sequence): continue rules[rule] = tuple(normalize_rulesset(x) for x in rules[rule]) # Registries class Registry(Generic[RegistryItem]): """ A registry to store and retrieve schemas and parts of it by a name that can be used in validation schemas. :param definitions: Optional, initial definitions. """ def __init__( self, definitions: Union[RegistryItems, Iterable[Tuple[str, RegistryItem]]] = () ): self._storage = {} # type: Dict[str, RegistryItem] self.extend(definitions) def add(self, name: str, definition: RegistryItem) -> None: """ Register a definition to the registry. Existing definitions are replaced silently. :param name: The name which can be used as reference in a validation schema. :param definition: The definition. """ if not isinstance(definition, abc.Mapping): raise TypeError("Value must be of Mapping type.") # TODO add `_normalize_value: staticmethod` as class attribute declaration when # Python3.5 was dropped and remove this # type: ignore self._storage[name] = self._normalize_value(definition) # type: ignore def all(self) -> RegistryItems: """ Returns a :class:`dict` with all registered definitions mapped to their name. """ return self._storage def clear(self): """ Purge all definitions in the registry. """ self._storage.clear() def extend( self, definitions: Union[RegistryItems, Iterable[Tuple[str, RegistryItem]]] ) -> None: """ Add several definitions at once. Existing definitions are replaced silently. :param definitions: The names and definitions. """ for name, definition in dict(definitions).items(): self.add(name, definition) def get( self, name: str, default: Optional[RegistryItem] = None ) -> Optional[RegistryItem]: """ Retrieve a definition from the registry. :param name: The reference that points to the definition. :param default: Return value if the reference isn't registered. """ return self._storage.get(name, default) def remove(self, *names: str) -> None: """ Unregister definitions from the registry. :param names: The names of the definitions that are to be unregistered. """ for name in names: self._storage.pop(name, None) class SchemaRegistry(Registry): _normalize_value = staticmethod(normalize_schema) class RulesSetRegistry(Registry): _normalize_value = staticmethod(normalize_rulesset) schema_registry, rules_set_registry = SchemaRegistry(), RulesSetRegistry() # Defining types TypeDefinition = NamedTuple( 'TypeDefinition', ( ('name', str), ('included_types', Tuple[Type[Any], ...]), ('excluded_types', Tuple[Type[Any], ...]), ), ) """ This class is used to define types that can be used as value in the :attr:`~cerberus.Validator.types_mapping` property. The ``name`` should be descriptive and match the key it is going to be assigned to. A value that is validated against such definition must be an instance of any of the types contained in ``included_types`` and must not match any of the types contained in ``excluded_types``. """ # The Validator class ValidatorMeta(type): """ Metaclass for all validators """ def __new__(mcls, name, bases, namespace): if '__doc__' not in namespace: namespace['__doc__'] = bases[0].__doc__ return super().__new__(mcls, name, bases, namespace) def __init__(cls, name, bases, namespace): def attributes_with_prefix(prefix): return tuple( x[len(prefix) + 2 :] for x in dir(cls) if x.startswith('_' + prefix + '_') ) super().__init__(name, bases, namespace) validation_rules = { attribute: cls.__get_rule_schema('_validate_' + attribute) for attribute in attributes_with_prefix('validate') } cls.checkers = tuple(x for x in attributes_with_prefix('check_with')) x = validation_rules['check_with']['oneof'] x[1]['itemsrules']['oneof'][1]['allowed'] = x[2]['allowed'] = cls.checkers for rule in (x for x in cls.mandatory_validations if x != 'nullable'): validation_rules[rule]['required'] = True cls.coercers, cls.default_setters, normalization_rules = (), (), {} for attribute in attributes_with_prefix('normalize'): if attribute.startswith('coerce_'): cls.coercers += (attribute[len('coerce_') :],) elif attribute.startswith('default_setter_'): cls.default_setters += (attribute[len('default_setter_') :],) else: normalization_rules[attribute] = cls.__get_rule_schema( '_normalize_' + attribute ) for rule in ('coerce', 'rename_handler'): x = normalization_rules[rule]['oneof'] x[1]['itemsrules']['oneof'][1]['allowed'] = x[2]['allowed'] = cls.coercers normalization_rules['default_setter']['oneof'][1][ 'allowed' ] = cls.default_setters cls.normalization_rules = normalize_schema(normalization_rules) cls.validation_rules = normalize_schema(validation_rules) cls.rules = ChainMap(cls.normalization_rules, cls.validation_rules) def __get_rule_schema(mcls, method_name): docstring = getattr(mcls, method_name).__doc__ if docstring is None: result = {} else: if RULE_SCHEMA_SEPARATOR in docstring: docstring = docstring.split(RULE_SCHEMA_SEPARATOR)[1] try: result = literal_eval(docstring.strip()) except Exception: result = {} if not result and method_name != '_validate_meta': warn( "No validation schema is defined for the arguments of rule " "'%s'" % method_name.split('_', 2)[-1] ) return result class UnconcernedValidator(metaclass=ValidatorMeta): """ Validator class. Normalizes and/or validates any mapping against a validation-schema which is provided as an argument at class instantiation or upon calling the :meth:`~cerberus.Validator.validate`, :meth:`~cerberus.Validator.validated` or :meth:`~cerberus.Validator.normalized` method. An instance itself is callable and executes a validation. All instantiation parameters are optional. There are the introspective properties :attr:`types`, :attr:`validators`, :attr:`coercers`, :attr:`default_setters`, :attr:`rules`, :attr:`normalization_rules` and :attr:`validation_rules`. The attributes reflecting the available rules are assembled considering constraints that are defined in the docstrings of rules' methods and is effectively used as validation schema for :attr:`schema`. :param schema: See :attr:`~cerberus.Validator.schema`. Defaults to :obj:`None`. :param ignore_none_values: See :attr:`~cerberus.Validator.ignore_none_values`. Defaults to ``False``. :param allow_unknown: See :attr:`~cerberus.Validator.allow_unknown`. Defaults to ``False``. :param require_all: See :attr:`~cerberus.Validator.require_all`. Defaults to ``False``. :param purge_unknown: See :attr:`~cerberus.Validator.purge_unknown`. Defaults to to ``False``. :param purge_readonly: Removes all fields that are defined as ``readonly`` in the normalization phase. :param error_handler: The error handler that formats the result of :attr:`~cerberus.Validator.errors`. When given as two-value tuple with an error-handler class and a dictionary, the latter is passed to the initialization of the error handler. Default: :class:`~cerberus.errors.BasicErrorHandler`. """ mandatory_validations = ('nullable',) # type: ClassVar[Tuple[str, ...]] """ Rules that are evaluated on any field, regardless whether defined in the schema or not.""" priority_validations = ( 'nullable', 'readonly', 'type', 'empty', ) # type: ClassVar[Tuple[str, ...]] """ Rules that will be processed in that order before any other. """ types_mapping = { 'boolean': TypeDefinition('boolean', (bool,), ()), 'bytearray': TypeDefinition('bytearray', (bytearray,), ()), 'bytes': TypeDefinition('bytes', (bytes,), ()), 'complex': TypeDefinition('complex', (complex,), ()), 'date': TypeDefinition('date', (date,), (datetime,)), 'datetime': TypeDefinition('datetime', (datetime,), ()), 'dict': TypeDefinition('dict', (Mapping,), ()), 'float': TypeDefinition('float', (float,), ()), 'frozenset': TypeDefinition('frozenset', (frozenset,), ()), 'integer': TypeDefinition('integer', (int,), (bool,)), 'list': TypeDefinition('list', (list,), ()), 'number': TypeDefinition('number', (int, float), (bool,)), 'set': TypeDefinition('set', (set,), ()), 'string': TypeDefinition('string', (str,), ()), 'tuple': TypeDefinition('tuple', (tuple,), ()), 'type': TypeDefinition('type', (type,), ()), } # type: ClassVar[TypesMapping] """ This mapping holds all available constraints for the type rule and their assigned :class:`~cerberus.TypeDefinition`. """ types_mapping.update( (x, TypeDefinition(x, (getattr(abc, x),), ())) for x in abc.__all__ # type: ignore ) _valid_schemas = set() # type: ClassVar[Set[Tuple[int, int]]] """ A :class:`set` of hashes derived from validation schemas that are legit for a particular ``Validator`` class. """ # these will be set by the metaclass, here type hints are given: checkers = () # type: ClassVar[Tuple[str, ...]] coercers = () # type: ClassVar[Tuple[str, ...]] default_setters = () # type: ClassVar[Tuple[str, ...]] normalization_rules = {} # type: ClassVar[Schema] rules = {} # type: ClassVar[Dict[str, RulesSet]] validation_rules = {} # type: ClassVar[Schema] def __init__( self, schema: Schema = None, *, allow_unknown: AllowUnknown = False, error_handler: ErrorHandlerConfig = errors.BasicErrorHandler, ignore_none_values: bool = False, purge_unknown: bool = False, purge_readonly: bool = False, require_all: bool = False, rules_set_registry: RulesSetRegistry = rules_set_registry, schema_registry: SchemaRegistry = schema_registry, **extra_config: Any ): self._config = extra_config # type: Dict[str, Any] """ This dictionary holds the configuration arguments that were used to initialize the :class:`Validator` instance except the ``error_handler``. """ self._config.update( { "error_handler": error_handler, "ignore_none_values": ignore_none_values, "purge_readonly": purge_readonly, "purge_unknown": purge_unknown, "require_all": require_all, "rules_set_registry": rules_set_registry, "schema_registry": schema_registry, } ) self.document = None # type: Optional[Document] """ The document that is or was recently processed. Type: any :term:`mapping` """ self._errors = errors.ErrorList() """ The list of errors that were encountered since the last document processing was invoked. Type: :class:`~cerberus.errors.ErrorList` """ self.recent_error = None # type: Optional[errors.ValidationError] """ The last individual error that was submitted. Type: :class:`~cerberus.errors.ValidationError` or ``None`` """ self.document_error_tree = errors.DocumentErrorTree() """ A tree representiation of encountered errors following the structure of the document. Type: :class:`~cerberus.errors.DocumentErrorTree` """ self.schema_error_tree = errors.SchemaErrorTree() """ A tree representiation of encountered errors following the structure of the schema. Type: :class:`~cerberus.errors.SchemaErrorTree` """ self.document_path = () # type: DocumentPath """ The path within the document to the current sub-document. Type: :class:`tuple` """ self.schema_path = () # type: DocumentPath """ The path within the schema to the current sub-schema. Type: :class:`tuple` """ self.update = False self.error_handler = self.__init_error_handler(error_handler) """ The error handler used to format :attr:`~cerberus.Validator.errors` and process submitted errors with :meth:`~cerberus.Validator._error`. Type: :class:`~cerberus.errors.BaseErrorHandler` """ self.schema = schema self.allow_unknown = allow_unknown self._remaining_rules = [] # type: List[str] """ Keeps track of the rules that are next in line to be evaluated during the validation of a field. Type: :class:`list` """ super().__init__() @staticmethod def __init_error_handler(config: ErrorHandlerConfig) -> errors.BaseErrorHandler: if isinstance(config, errors.BaseErrorHandler): return config if isinstance(config, tuple): error_handler, eh_config = config else: error_handler, eh_config = config, {} if isinstance(error_handler, type) and issubclass( error_handler, errors.BaseErrorHandler ): return error_handler(**eh_config) else: raise RuntimeError('Invalid error_handler configuration.') @classmethod def clear_caches(cls): """ Purge the cache of known valid schemas. """ cls._valid_schemas.clear() def _error(self, *args): """ Creates and adds one or multiple errors. :param args: Accepts different argument's signatures. *1. Bulk addition of errors:* - :term:`iterable` of :class:`~cerberus.errors.ValidationError`-instances The errors will be added to :attr:`~cerberus.Validator._errors`. *2. Custom error:* - the invalid field's name - the error message A custom error containing the message will be created and added to :attr:`~cerberus.Validator._errors`. There will however be fewer information contained in the error (no reference to the violated rule and its constraint). *3. Defined error:* - the invalid field's name - the error-reference, see :mod:`cerberus.errors` - arbitrary, supplemental information about the error A :class:`~cerberus.errors.ValidationError` instance will be created and added to :attr:`~cerberus.Validator._errors`. """ if len(args) == 1: self._errors.extend(args[0]) for error in args[0]: self.document_error_tree.add(error) self.schema_error_tree.add(error) self.error_handler.emit(error) elif len(args) == 2 and isinstance(args[1], str): self._error(args[0], errors.CUSTOM, args[1]) elif len(args) >= 2: field = args[0] code = args[1].code rule = args[1].rule info = args[2:] document_path = self.document_path + (field,) schema_path = self.schema_path if code != errors.UNKNOWN_FIELD.code and rule is not None: schema_path += (field, rule) if not rule: constraint = None else: field_definitions = self._resolve_rules_set(self.schema[field]) if rule == 'nullable': constraint = field_definitions.get(rule, False) elif rule == 'required': constraint = field_definitions.get(rule, self.require_all) if rule not in field_definitions: schema_path = "__require_all__" else: constraint = field_definitions[rule] value = self.document.get(field) self.recent_error = errors.ValidationError( document_path, schema_path, code, rule, constraint, value, info ) self._error([self.recent_error]) def _get_child_validator( self, document_crumb: Union[FieldName, Iterable[FieldName], None] = None, schema_crumb: Union[FieldName, Iterable[FieldName], None] = None, **kwargs: Any ) -> 'UnconcernedValidator': """ Creates a new instance of Validator-(sub-)class. All initial parameters of the parent are passed to the initialization, unless a parameter is given as an explicit *keyword*-parameter. :param document_crumb: Extends the :attr:`~cerberus.Validator.document_path` of the child-validator. :param schema_crumb: Extends the :attr:`~cerberus.Validator.schema_path` of the child-validator. :param kwargs: Overriding keyword-arguments for initialization. """ child_config = ChainMap(kwargs, self._config) if not self.is_child: child_config = child_config.new_child( { 'is_child': True, 'error_handler': toy_error_handler, 'root_allow_unknown': self.allow_unknown, 'root_document': self.document, 'root_schema': self.schema, } ) child_validator = self.__class__(**child_config) if document_crumb is None: child_validator.document_path = self.document_path else: if not isinstance(document_crumb, tuple): document_crumb = (document_crumb,) child_validator.document_path = self.document_path + document_crumb if schema_crumb is None: child_validator.schema_path = self.schema_path else: if not isinstance(schema_crumb, tuple): schema_crumb = (schema_crumb,) child_validator.schema_path = self.schema_path + schema_crumb return child_validator def __get_rule_handler(self, domain, rule): methodname = '_{0}_{1}'.format(domain, rule.replace(' ', '_')) result = getattr(self, methodname, None) if result is None: raise RuntimeError( "There's no handler for '{}' in the '{}' " "domain.".format(rule, domain) ) return result def _drop_nodes_from_errorpaths( self, _errors: errors.ErrorList, dp_items: Iterable[int], sp_items: Iterable[int], ) -> None: """ Removes nodes by index from an errorpath, relatively to the basepaths of self. :param errors: A list of :class:`errors.ValidationError` instances. :param dp_items: A list of integers, pointing at the nodes to drop from the :attr:`document_path`. :param sp_items: Alike ``dp_items``, but for :attr:`schema_path`. """ dp_basedepth = len(self.document_path) sp_basedepth = len(self.schema_path) for error in _errors: for i in sorted(dp_items, reverse=True): error.document_path = drop_item_from_tuple( error.document_path, dp_basedepth + i ) for i in sorted(sp_items, reverse=True): error.schema_path = drop_item_from_tuple( error.schema_path, sp_basedepth + i ) if error.child_errors: self._drop_nodes_from_errorpaths(error.child_errors, dp_items, sp_items) def _lookup_field(self, path): """ Searches for a field as defined by path. This method is used by the ``dependency`` evaluation logic. :param path: Path elements are separated by a ``.``. A leading ``^`` indicates that the path relates to the document root, otherwise it relates to the currently evaluated document, which is possibly a subdocument. The sequence ``^^`` at the start will be interpreted as a literal ``^``. :type path: :class:`str` :returns: Either the found field name and its value or :obj:`None` for both. :rtype: A two-value :class:`tuple`. """ if path.startswith('^'): path = path[1:] context = self.document if path.startswith('^') else self.root_document else: context = self.document parts = path.split('.') for part in parts: if part not in context: return None, None context = context.get(part, {}) return parts[-1], context def _resolve_rules_set(self, rules_set): if isinstance(rules_set, Mapping): return rules_set elif isinstance(rules_set, str): return self.rules_set_registry.get(rules_set) return None def _resolve_schema(self, schema): if isinstance(schema, Mapping): return schema elif isinstance(schema, str): return self.schema_registry.get(schema) return None # Properties # TODO replace a lot with __getattr__ and __setattr__ @property def allow_unknown(self) -> AllowUnknown: """ If ``True`` unknown fields that are not defined in the schema will be ignored. If a mapping with a validation schema is given, any undefined field will be validated against its rules. Also see :ref:`allowing-the-unknown`. Type: :class:`bool` or any :term:`mapping` """ return self._config.get('allow_unknown', False) @allow_unknown.setter def allow_unknown(self, value: AllowUnknown) -> None: if isinstance(value, Mapping): self._config['allow_unknown'] = normalize_rulesset(value) elif isinstance(value, bool): self._config['allow_unknown'] = value else: raise TypeError @property def errors(self) -> Any: """ The errors of the last processing formatted by the handler that is bound to :attr:`~cerberus.Validator.error_handler`. """ return self.error_handler(self._errors) @property def ignore_none_values(self) -> bool: """ Whether to not process :obj:`None`-values in a document or not. Type: :class:`bool` """ return self._config.get('ignore_none_values', False) @ignore_none_values.setter def ignore_none_values(self, value: bool) -> None: self._config['ignore_none_values'] = value @property def is_child(self) -> bool: """ ``True`` for child-validators obtained with :meth:`~cerberus.Validator._get_child_validator`. Type: :class:`bool` """ return self._config.get('is_child', False) @property def _is_normalized(self) -> bool: """ ``True`` if the document is already normalized. """ return self._config.get('_is_normalized', False) @_is_normalized.setter def _is_normalized(self, value: bool) -> None: self._config['_is_normalized'] = value @property def purge_unknown(self) -> bool: """ If ``True``, unknown fields will be deleted from the document unless a validation is called with disabled normalization. Also see :ref:`purging-unknown-fields`. Type: :class:`bool` """ return self._config.get('purge_unknown', False) @purge_unknown.setter def purge_unknown(self, value: bool) -> None: self._config['purge_unknown'] = value @property def purge_readonly(self) -> bool: """ If ``True``, fields declared as readonly will be deleted from the document unless a validation is called with disabled normalization. Type: :class:`bool` """ return self._config.get('purge_readonly', False) @purge_readonly.setter def purge_readonly(self, value: bool) -> None: self._config['purge_readonly'] = value @property def require_all(self) -> bool: """ If ``True`` known fields that are defined in the schema will be required. Type: :class:`bool` """ return self._config["require_all"] @require_all.setter def require_all(self, value: bool) -> None: self._config['require_all'] = value @property def root_allow_unknown(self) -> AllowUnknown: """ The :attr:`~cerberus.Validator.allow_unknown` attribute of the first level ancestor of a child validator. """ return self._config.get('root_allow_unknown', self.allow_unknown) @property def root_require_all(self) -> bool: """ The :attr:`~cerberus.Validator.require_all` attribute of the first level ancestor of a child validator. """ return self._config.get('root_require_all', self.require_all) @property def root_document(self) -> Document: """ The :attr:`~cerberus.Validator.document` attribute of the first level ancestor of a child validator. """ return self._config.get('root_document', self.document) @property def rules_set_registry(self) -> RulesSetRegistry: """ The registry that holds referenced rules sets. Type: :class:`~cerberus.Registry` """ return self._config["rules_set_registry"] @rules_set_registry.setter def rules_set_registry(self, registry: RulesSetRegistry) -> None: self._config['rules_set_registry'] = registry @property def root_schema(self) -> Optional[Schema]: """ The :attr:`~cerberus.Validator.schema` attribute of the first level ancestor of a child validator. """ return self._config.get('root_schema', self.schema) @property # type: ignore def schema(self): """ The validation schema of a validator. When a schema is passed to a validator method (e.g. ``validate``), it replaces this attribute. Type: any :term:`mapping` or :obj:`None` """ return self._schema @schema.setter def schema(self, schema): if schema is None: self._schema = None elif self.is_child: self._schema = schema else: self._schema = normalize_schema(schema) @property def schema_registry(self) -> SchemaRegistry: """ The registry that holds referenced schemas. Type: :class:`~cerberus.Registry` """ return self._config["schema_registry"] @schema_registry.setter def schema_registry(self, registry: SchemaRegistry) -> None: self._config['schema_registry'] = registry # FIXME the returned method has the correct docstring, but doesn't appear # in the API docs @readonly_classproperty def types(cls) -> Tuple[str, ...]: """ The constraints that can be used for the 'type' rule. Type: A tuple of strings. """ return tuple(cls.types_mapping) # Document processing def __init_processing(self, document, schema=None): self._errors = errors.ErrorList() self.recent_error = None self.document_error_tree = errors.DocumentErrorTree() self.schema_error_tree = errors.SchemaErrorTree() if not self.is_child: self._is_normalized = False if schema is not None: self.schema = schema if self.schema is None: if isinstance(self.allow_unknown, Mapping): self.schema = {} else: raise SchemaError(errors.MISSING_SCHEMA) if document is None: raise DocumentError(errors.DOCUMENT_MISSING) if not isinstance(document, Mapping): raise DocumentError(errors.DOCUMENT_FORMAT.format(document)) self.document = document self.error_handler.start(self) def _drop_remaining_rules(self, *rules): """ Drops rules from the queue of the rules that still need to be evaluated for the currently processed field. If no arguments are given, the whole queue is emptied. """ if rules: for rule in (x for x in rules if x in self._remaining_rules): self._remaining_rules.remove(rule) else: self._remaining_rules.clear() # # Normalizing def normalized( self, document: Document, schema: Optional[Schema] = None, always_return_document: bool = False, ) -> Optional[Document]: """ Returns the document normalized according to the specified rules of a schema. :param document: The document to normalize. :param schema: The validation schema. Defaults to :obj:`None`. If not provided here, the schema must have been provided at class instantiation. :param always_return_document: Return the document, even if an error occurred. Defaults to: ``False``. :return: A normalized copy of the provided mapping or :obj:`None` if an error occurred during normalization. """ self.__init_processing(document, schema) self.document = self.__normalize_mapping(document, self.schema) self.error_handler.end(self) self._errors.sort() if self._errors and not always_return_document: return None else: return self.document def __normalize_mapping(self, mapping, schema): mapping = mapping.copy() if isinstance(schema, str): schema = self._resolve_schema(schema) schema = {k: self._resolve_rules_set(v) for k, v in schema.items()} self.__normalize_rename_fields(mapping, schema) if self.purge_unknown and not self.allow_unknown: self._normalize_purge_unknown(mapping, schema) if self.purge_readonly: self.__normalize_purge_readonly(mapping, schema) # Check `readonly` fields before applying default values because # a field's schema definition might contain both `readonly` and # `default`. self.__validate_readonly_fields(mapping, schema) self.__normalize_default_fields(mapping, schema) self._normalize_coerce(mapping, schema) self.__normalize_containers(mapping, schema) self._is_normalized = True return mapping def _normalize_coerce(self, mapping, schema): """ {'oneof': [ {'type': 'Callable'}, {'type': 'Iterable', 'itemsrules': {'oneof': [{'type': 'Callable'}, {'type': 'string'}]}}, {'type': 'string'} ]} """ error = errors.COERCION_FAILED for field in mapping: if field in schema and 'coerce' in schema[field]: mapping[field] = self.__normalize_coerce( schema[field]['coerce'], field, mapping[field], schema[field].get('nullable', False), error, ) elif ( isinstance(self.allow_unknown, Mapping) and 'coerce' in self.allow_unknown ): mapping[field] = self.__normalize_coerce( self.allow_unknown['coerce'], field, mapping[field], self.allow_unknown.get('nullable', False), error, ) def __normalize_coerce(self, processor, field, value, nullable, error): if isinstance(processor, str): processor = self.__get_rule_handler('normalize_coerce', processor) elif isinstance(processor, Iterable): result = value for p in processor: result = self.__normalize_coerce(p, field, result, nullable, error) if ( errors.COERCION_FAILED in self.document_error_tree.fetch_errors_from( self.document_path + (field,) ) ): break return result try: return processor(value) except RuntimeError: raise except Exception as e: if not (nullable and value is None): self._error(field, error, str(e)) return value def __normalize_containers(self, mapping, schema): for field in mapping: rules = set(schema.get(field, ())) if isinstance(mapping[field], Mapping): if 'keysrules' in rules: self.__normalize_mapping_per_keysrules( field, mapping, schema[field]['keysrules'] ) if 'valuesrules' in rules: self.__normalize_mapping_per_valuesrules( field, mapping, schema[field]['valuesrules'] ) if any( x in rules for x in ('allow_unknown', 'purge_unknown', 'schema') ) or isinstance(self.allow_unknown, Mapping): self.__normalize_mapping_per_schema(field, mapping, schema) elif isinstance(mapping[field], str): continue elif isinstance(mapping[field], Sequence): if 'itemsrules' in rules: self.__normalize_sequence_per_itemsrules(field, mapping, schema) elif 'items' in rules: self.__normalize_sequence_per_items(field, mapping, schema) def __normalize_mapping_per_keysrules(self, field, mapping, property_rules): schema = {k: property_rules for k in mapping[field]} document = {k: k for k in mapping[field]} validator = self._get_child_validator( document_crumb=field, schema_crumb=(field, 'keysrules'), schema=schema ) result = validator.normalized(document, always_return_document=True) if validator._errors: self._drop_nodes_from_errorpaths(validator._errors, [], [2, 4]) self._error(validator._errors) for _in, out in ((k, v) for k, v in result.items() if k != v): if out in mapping[field]: warn( "Normalizing keys of {path}: {key} already exists, " "its value is replaced.".format( path='.'.join(str(x) for x in self.document_path + (field,)), key=_in, ) ) mapping[field][out] = mapping[field][_in] else: mapping[field][out] = mapping[field][_in] del mapping[field][_in] def __normalize_mapping_per_valuesrules(self, field, mapping, value_rules): schema = {k: value_rules for k in mapping[field]} validator = self._get_child_validator( document_crumb=field, schema_crumb=(field, 'valuesrules'), schema=schema ) mapping[field] = validator.normalized( mapping[field], always_return_document=True ) if validator._errors: self._drop_nodes_from_errorpaths(validator._errors, [], [2]) self._error(validator._errors) def __normalize_mapping_per_schema(self, field, mapping, schema): rules = schema.get(field, {}) if not rules and isinstance(self.allow_unknown, Mapping): rules = self.allow_unknown validator = self._get_child_validator( document_crumb=field, schema_crumb=(field, 'schema'), schema=rules.get('schema', {}), allow_unknown=rules.get('allow_unknown', self.allow_unknown), # noqa: E501 purge_unknown=rules.get('purge_unknown', self.purge_unknown), require_all=rules.get('require_all', self.require_all), ) # noqa: E501 value_type = type(mapping[field]) result_value = validator.normalized(mapping[field], always_return_document=True) mapping[field] = value_type(result_value) if validator._errors: self._error(validator._errors) def __normalize_sequence_per_items(self, field, mapping, schema): rules, values = schema[field]['items'], mapping[field] if len(rules) != len(values): return schema = {k: v for k, v in enumerate(rules)} document = {k: v for k, v in enumerate(values)} validator = self._get_child_validator( document_crumb=field, schema_crumb=(field, 'items'), schema=schema ) value_type = type(mapping[field]) result = validator.normalized(document, always_return_document=True) mapping[field] = value_type(result.values()) if validator._errors: self._drop_nodes_from_errorpaths(validator._errors, [], [2]) self._error(validator._errors) def __normalize_sequence_per_itemsrules(self, field, mapping, schema): constraint = schema[field]['itemsrules'] schema = {k: constraint for k in range(len(mapping[field]))} document = {k: v for k, v in enumerate(mapping[field])} validator = self._get_child_validator( document_crumb=field, schema_crumb=(field, 'itemsrules'), schema=schema ) value_type = type(mapping[field]) result = validator.normalized(document, always_return_document=True) mapping[field] = value_type(result.values()) if validator._errors: self._drop_nodes_from_errorpaths(validator._errors, [], [2]) self._error(validator._errors) @staticmethod def __normalize_purge_readonly(mapping, schema): for field in [x for x in mapping if schema.get(x, {}).get('readonly', False)]: mapping.pop(field) return mapping @staticmethod def _normalize_purge_unknown(mapping, schema): """ {'type': 'boolean'} """ for field in [x for x in mapping if x not in schema]: mapping.pop(field) return mapping def __normalize_rename_fields(self, mapping, schema): for field in tuple(mapping): if field in schema: self._normalize_rename(mapping, schema, field) self._normalize_rename_handler(mapping, schema, field) elif ( isinstance(self.allow_unknown, Mapping) and 'rename_handler' in self.allow_unknown ): self._normalize_rename_handler( mapping, {field: self.allow_unknown}, field ) return mapping def _normalize_rename(self, mapping, schema, field): """ {'type': 'Hashable'} """ if 'rename' in schema[field]: mapping[schema[field]['rename']] = mapping[field] del mapping[field] def _normalize_rename_handler(self, mapping, schema, field): """ {'oneof': [ {'type': 'Callable'}, {'type': 'Iterable', 'itemsrules': {'oneof': [{'type': 'Callable'}, {'type': 'string'}]}}, {'type': 'string'} ]} """ if 'rename_handler' not in schema[field]: return new_name = self.__normalize_coerce( schema[field]['rename_handler'], field, field, False, errors.RENAMING_FAILED ) if new_name != field: mapping[new_name] = mapping[field] del mapping[field] def __validate_readonly_fields(self, mapping, schema): for field in ( x for x in schema if x in mapping and self._resolve_rules_set(schema[x]).get('readonly') ): self._validate_readonly(schema[field]['readonly'], field, mapping[field]) def __normalize_default_fields(self, mapping, schema): empty_fields = [ x for x in schema if x not in mapping or ( mapping[x] is None # noqa: W503 and not schema[x].get('nullable', False) ) # noqa: W503 ] for field in (x for x in empty_fields if 'default' in schema[x]): self._normalize_default(mapping, schema, field) known_fields_states = set() fields_with_default_setter = [ x for x in empty_fields if 'default_setter' in schema[x] ] while fields_with_default_setter: field = fields_with_default_setter.pop(0) try: self._normalize_default_setter(mapping, schema, field) except KeyError: fields_with_default_setter.append(field) except RuntimeError: raise except Exception as e: self._error(field, errors.SETTING_DEFAULT_FAILED, str(e)) fields_processing_state = hash(tuple(fields_with_default_setter)) if fields_processing_state in known_fields_states: for field in fields_with_default_setter: self._error( field, errors.SETTING_DEFAULT_FAILED, 'Circular dependencies of default setters.', ) break else: known_fields_states.add(fields_processing_state) def _normalize_default(self, mapping, schema, field): """ {'nullable': True} """ mapping[field] = schema[field]['default'] def _normalize_default_setter(self, mapping, schema, field): """ {'oneof': [ {'type': 'Callable'}, {'type': 'string'} ]} """ if 'default_setter' in schema[field]: setter = schema[field]['default_setter'] if isinstance(setter, str): setter = self.__get_rule_handler('normalize_default_setter', setter) mapping[field] = setter(mapping) # # Validating def validate( self, document: Document, schema: Optional[Schema] = None, update: bool = False, normalize: bool = True, ) -> bool: """ Normalizes and validates a mapping against a validation-schema of defined rules. :param document: The document to normalize. :param schema: The validation schema. Defaults to :obj:`None`. If not provided here, the schema must have been provided at class instantiation. :param update: If ``True``, required fields won't be checked. :param normalize: If ``True``, normalize the document before validation. :return: ``True`` if validation succeeds, otherwise ``False``. Check the :func:`errors` property for a list of processing errors. """ self.update = update self._unrequired_by_excludes = set() # type: Set[FieldName] self.__init_processing(document, schema) del document, schema if normalize: self.document = self.__normalize_mapping(self.document, self.schema) for field in self.document: # type: ignore definitions = self.schema.get(field) # type: ignore if definitions is not None: self.__validate_definitions(definitions, field) else: self.__validate_unknown_fields(field) if not self.update: self.__validate_required_fields(self.document) self.error_handler.end(self) self._errors.sort() return not bool(self._errors) __call__ = validate def validated( self, document: Document, schema: Optional[Schema] = None, update: bool = False, normalize: bool = True, always_return_document: bool = False, ) -> Optional[Document]: """ Wrapper around :meth:`~cerberus.Validator.validate` that returns the normalized and validated document or :obj:`None` if validation failed. """ self.validate( document=document, schema=schema, update=update, normalize=normalize ) if self._errors and not always_return_document: return None else: return self.document def __validate_unknown_fields(self, field): if self.allow_unknown: value = self.document[field] if isinstance(self.allow_unknown, (Mapping, str)): # validate that unknown fields matches the schema # for unknown_fields schema_crumb = 'allow_unknown' if self.is_child else '__allow_unknown__' validator = self._get_child_validator( schema_crumb=schema_crumb, schema={field: self.allow_unknown} ) if not validator({field: value}, normalize=False): self._error(validator._errors) else: self._error(field, errors.UNKNOWN_FIELD) def __validate_definitions(self, definitions, field): """ Validate a field's value against its defined rules. """ definitions = self._resolve_rules_set(definitions) value = self.document[field] rules_queue = [ x for x in self.priority_validations if x in definitions or x in self.mandatory_validations ] rules_queue.extend( x for x in self.mandatory_validations if x not in rules_queue ) rules_queue.extend( x for x in definitions if x not in rules_queue and x not in self.normalization_rules and x not in ('allow_unknown', 'require_all', 'meta', 'required') ) self._remaining_rules = rules_queue while self._remaining_rules: rule = self._remaining_rules.pop(0) rule_handler = self.__get_rule_handler('validate', rule) rule_handler(definitions.get(rule, None), field, value) # Remember to keep the validation methods below this line # sorted alphabetically _validate_allow_unknown = dummy_for_rule_validation( """ {'oneof': [{'type': 'boolean'}, {'type': ['dict', 'string'], 'check_with': 'rulesset'}]} """ ) def _validate_allowed(self, allowed_values, field, value): """ {'type': 'container_but_not_string'} """ if isinstance(value, Iterable) and not isinstance(value, str): unallowed = tuple(x for x in value if x not in allowed_values) if unallowed: self._error(field, errors.UNALLOWED_VALUES, unallowed) else: if value not in allowed_values: self._error(field, errors.UNALLOWED_VALUE, value) def _validate_check_with(self, checks, field, value): """ {'oneof': [ {'type': 'Callable'}, {'type': 'Iterable', 'itemsrules': {'oneof': [{'type': 'Callable'}, {'type': 'string'}]}}, {'type': 'string'} ]} """ if isinstance(checks, str): value_checker = self.__get_rule_handler('check_with', checks) value_checker(field, value) elif isinstance(checks, Iterable): for v in checks: self._validate_check_with(v, field, value) else: checks(field, value, self._error) def _validate_contains(self, expected_values, field, value): """ {'empty': False } """ if not isinstance(value, Container): return if not isinstance(expected_values, Iterable) or isinstance( expected_values, str ): expected_values = set((expected_values,)) else: expected_values = set(expected_values) missing_values = expected_values - set(value) if missing_values: self._error(field, errors.MISSING_MEMBERS, missing_values) def _validate_dependencies(self, dependencies, field, value): """ {'type': ('Hashable', 'Iterable', 'Mapping'), 'check_with': 'dependencies'} """ if isinstance(dependencies, str): dependencies = (dependencies,) if isinstance(dependencies, Sequence): self.__validate_dependencies_sequence(dependencies, field) elif isinstance(dependencies, Mapping): self.__validate_dependencies_mapping(dependencies, field) if ( self.document_error_tree.fetch_node_from( self.schema_path + (field, 'dependencies') ) is not None ): return True def __validate_dependencies_mapping(self, dependencies, field): validated_dependencies_counter = 0 error_info = {} for dependency_name, dependency_values in dependencies.items(): if not isinstance(dependency_values, Sequence) or isinstance( dependency_values, str ): dependency_values = [dependency_values] wanted_field, wanted_field_value = self._lookup_field(dependency_name) if wanted_field_value in dependency_values: validated_dependencies_counter += 1 else: error_info.update({dependency_name: wanted_field_value}) if validated_dependencies_counter != len(dependencies): self._error(field, errors.DEPENDENCIES_FIELD_VALUE, error_info) def __validate_dependencies_sequence(self, dependencies, field): for dependency in dependencies: if self._lookup_field(dependency)[0] is None: self._error(field, errors.DEPENDENCIES_FIELD, dependency) def _validate_empty(self, empty, field, value): """ {'type': 'boolean'} """ if isinstance(value, Sized) and len(value) == 0: self._drop_remaining_rules( 'allowed', 'forbidden', 'items', 'minlength', 'maxlength', 'regex', 'check_with', ) if not empty: self._error(field, errors.EMPTY) def _validate_excludes(self, excluded_fields, field, value): """ {'type': ('Hashable', 'Iterable'), 'itemsrules': {'type': 'Hashable'}} """ if isinstance(excluded_fields, str) or not isinstance( excluded_fields, Container ): excluded_fields = (excluded_fields,) # Mark the currently evaluated field as not required for now if it actually is. # One of the so marked will be needed to pass when required fields are checked. if self.schema[field].get('required', self.require_all): self._unrequired_by_excludes.add(field) for excluded_field in excluded_fields: if excluded_field in self.schema and self.schema[field].get( 'required', self.require_all ): self._unrequired_by_excludes.add(excluded_field) if any(excluded_field in self.document for excluded_field in excluded_fields): exclusion_str = ', '.join( "'{0}'".format(field) for field in excluded_fields ) self._error(field, errors.EXCLUDES_FIELD, exclusion_str) def _validate_forbidden(self, forbidden_values, field, value): """ {'type': 'Container'} """ if isinstance(value, str): if value in forbidden_values: self._error(field, errors.FORBIDDEN_VALUE, value) elif isinstance(value, Iterable): forbidden = set(value) & set(forbidden_values) if forbidden: self._error(field, errors.FORBIDDEN_VALUES, list(forbidden)) else: if value in forbidden_values: self._error(field, errors.FORBIDDEN_VALUE, value) def _validate_items(self, items, field, values): """ {'type': 'Sequence', 'check_with': 'items'} """ if len(items) != len(values): self._error(field, errors.ITEMS_LENGTH, len(items), len(values)) else: schema = {i: definition for i, definition in enumerate(items)} validator = self._get_child_validator( document_crumb=field, schema_crumb=(field, 'items'), # noqa: E501 schema=schema, ) if not validator( {i: value for i, value in enumerate(values)}, update=self.update, normalize=False, ): self._error(field, errors.ITEMS, validator._errors) def _validate_itemsrules(self, rulesset, field, value): """ {'type': ('dict', 'string'), 'check_with': 'rulesset'} """ if not isinstance(value, Sequence): return schema = {i: rulesset for i in range(len(value))} validator = self._get_child_validator( document_crumb=field, schema_crumb=(field, 'itemsrules'), schema=schema, allow_unknown=self.allow_unknown, ) validator( {i: v for i, v in enumerate(value)}, update=self.update, normalize=False ) if validator._errors: self._drop_nodes_from_errorpaths(validator._errors, [], [2]) self._error(field, errors.ITEMSRULES, validator._errors) def __validate_logical(self, operator, definitions, field, value): """ Validates value against all definitions and logs errors according to the operator. """ valid_counter = 0 _errors = errors.ErrorList() for i, definition in enumerate(definitions): schema = {field: definition.copy()} for rule in ('allow_unknown', 'type'): if rule not in definition and rule in self.schema[field]: schema[field][rule] = self.schema[field][rule] if 'allow_unknown' not in definition: schema[field]['allow_unknown'] = self.allow_unknown validator = self._get_child_validator( schema_crumb=(field, operator, i), schema=schema, allow_unknown=True ) if validator(self.document, update=self.update, normalize=False): valid_counter += 1 else: self._drop_nodes_from_errorpaths(validator._errors, [], [3]) _errors.extend(validator._errors) return valid_counter, _errors def _validate_anyof(self, definitions, field, value): """ {'type': 'Sequence', 'logical': 'anyof'} """ valids, _errors = self.__validate_logical('anyof', definitions, field, value) if valids < 1: self._error(field, errors.ANYOF, _errors, valids, len(definitions)) def _validate_allof(self, definitions, field, value): """ {'type': 'Sequence', 'logical': 'allof'} """ valids, _errors = self.__validate_logical('allof', definitions, field, value) if valids < len(definitions): self._error(field, errors.ALLOF, _errors, valids, len(definitions)) def _validate_noneof(self, definitions, field, value): """ {'type': 'Sequence', 'logical': 'noneof'} """ valids, _errors = self.__validate_logical('noneof', definitions, field, value) if valids > 0: self._error(field, errors.NONEOF, _errors, valids, len(definitions)) def _validate_oneof(self, definitions, field, value): """ {'type': 'Sequence', 'logical': 'oneof'} """ valids, _errors = self.__validate_logical('oneof', definitions, field, value) if valids != 1: self._error(field, errors.ONEOF, _errors, valids, len(definitions)) def _validate_max(self, max_value, field, value): """ {'nullable': False } """ try: if value > max_value: self._error(field, errors.MAX_VALUE) except TypeError: pass def _validate_min(self, min_value, field, value): """ {'nullable': False } """ try: if value < min_value: self._error(field, errors.MIN_VALUE) except TypeError: pass def _validate_maxlength(self, max_length, field, value): """ {'type': 'integer'} """ if isinstance(value, Iterable) and len(value) > max_length: self._error(field, errors.MAX_LENGTH, len(value)) _validate_meta = dummy_for_rule_validation('') def _validate_minlength(self, min_length, field, value): """ {'type': 'integer'} """ if isinstance(value, Iterable) and len(value) < min_length: self._error(field, errors.MIN_LENGTH, len(value)) def _validate_nullable(self, nullable, field, value): """ {'type': 'boolean'} """ if value is None: if not (nullable or self.ignore_none_values): self._error(field, errors.NULLABLE) self._drop_remaining_rules( 'allowed', 'empty', 'forbidden', 'items', 'keysrules', 'min', 'max', 'minlength', 'maxlength', 'regex', 'schema', 'type', 'valuesrules', ) def _validate_keysrules(self, schema, field, value): """ {'type': ('Mapping', 'string'), 'check_with': 'rulesset', 'forbidden': ('rename', 'rename_handler')} """ if isinstance(value, Mapping): validator = self._get_child_validator( document_crumb=field, schema_crumb=(field, 'keysrules'), schema={k: schema for k in value.keys()}, ) if not validator({k: k for k in value.keys()}, normalize=False): self._drop_nodes_from_errorpaths(validator._errors, [], [2, 4]) self._error(field, errors.KEYSRULES, validator._errors) def _validate_readonly(self, readonly, field, value): """ {'type': 'boolean'} """ if readonly: if not self._is_normalized: self._error(field, errors.READONLY_FIELD) # If the document was normalized (and therefore already been # checked for readonly fields), we still have to return True # if an error was filed. has_error = ( errors.READONLY_FIELD in self.document_error_tree.fetch_errors_from( self.document_path + (field,) ) ) if self._is_normalized and has_error: self._drop_remaining_rules() def _validate_regex(self, pattern, field, value): """ {'type': 'string'} """ if not isinstance(value, str): return if not pattern.endswith('$'): pattern += '$' re_obj = re.compile(pattern) if not re_obj.match(value): self._error(field, errors.REGEX_MISMATCH) _validate_required = dummy_for_rule_validation(""" {'type': 'boolean'} """) _validate_require_all = dummy_for_rule_validation(""" {'type': 'boolean'} """) def __validate_required_fields(self, document): """ Validates that required fields are not missing. :param document: The document being validated. """ required = set( field for field, definition in self.schema.items() if self._resolve_rules_set(definition).get('required', self.require_all) ) required -= self._unrequired_by_excludes missing = required - set( field for field in document if document.get(field) is not None or not self.ignore_none_values ) for field in missing: self._error(field, errors.REQUIRED_FIELD) # At least one field from self._unrequired_by_excludes should be present in # document. if self._unrequired_by_excludes: fields = set(field for field in document if document.get(field) is not None) if self._unrequired_by_excludes.isdisjoint(fields): for field in self._unrequired_by_excludes - fields: self._error(field, errors.REQUIRED_FIELD) def _validate_schema(self, schema, field, value): """ {'type': ('Mapping', 'string'), 'check_with': 'schema'} """ if not isinstance(value, Mapping): return schema = self._resolve_schema(schema) allow_unknown = self.schema[field].get('allow_unknown', self.allow_unknown) require_all = self.schema[field].get('require_all', self.require_all) validator = self._get_child_validator( document_crumb=field, schema_crumb=(field, 'schema'), schema=schema, allow_unknown=allow_unknown, require_all=require_all, ) if not validator(value, update=self.update, normalize=False): self._error(field, errors.SCHEMA, validator._errors) def _validate_type(self, data_type, field, value): """ {'type': 'tuple', 'itemsrules': { 'oneof': ( {'type': 'string', 'check_with': 'type_names'}, {'type': ('type', 'generic_type_alias')} )}} """ if not data_type: return for _type in data_type: if isinstance(_type, str): type_definition = self.types_mapping[_type] if isinstance(value, type_definition.included_types) and not isinstance( value, type_definition.excluded_types ): return else: if isinstance(value, _type): return self._error(field, errors.TYPE) self._drop_remaining_rules() def _validate_valuesrules(self, schema, field, value): """ {'type': ['dict', 'string'], 'check_with': 'rulesset', 'forbidden': ['rename', 'rename_handler']} """ if isinstance(value, Mapping): schema_crumb = (field, 'valuesrules') validator = self._get_child_validator( document_crumb=field, schema_crumb=schema_crumb, schema={k: schema for k in value}, ) validator(value, update=self.update, normalize=False) if validator._errors: self._drop_nodes_from_errorpaths(validator._errors, [], [2]) self._error(field, errors.VALUESRULES, validator._errors)
38.555133
88
0.590786
293f6f9ad7220e3b81db7ff1321d7c7a4a0a3b22
3,494
py
Python
examples/reaktor_lazerbass.py
rawbengal/python-osc
18c836fc4cab49f1b662e0b47f25831e58b84c3a
[ "Unlicense" ]
2
2015-12-14T19:33:37.000Z
2018-08-24T08:03:42.000Z
examples/reaktor_lazerbass.py
rawbengal/python-osc
18c836fc4cab49f1b662e0b47f25831e58b84c3a
[ "Unlicense" ]
null
null
null
examples/reaktor_lazerbass.py
rawbengal/python-osc
18c836fc4cab49f1b662e0b47f25831e58b84c3a
[ "Unlicense" ]
4
2015-11-25T00:23:49.000Z
2017-11-06T19:17:53.000Z
"""Example to drive/show reaktor's lazerbass instrument in pygame.""" import argparse import pygame import multiprocessing import queue import logging from pygame.locals import * from pythonosc import dispatcher from pythonosc import osc_server logging.basicConfig( level=logging.DEBUG, format='[%(levelname)s] (%(threadName)-10s) %(message)s', ) _BLACK = pygame.Color(0, 0, 0) _WHITE = pygame.Color(255, 255, 255) class ReaktorDisplay(multiprocessing.Process): def __init__(self, bq): multiprocessing.Process.__init__(self) self._bq = bq def run(self): pygame.init() font = pygame.font.SysFont("monospace", 15) screen = pygame.display.set_mode((640, 480)) # FULLSCREEN running = True dirty = True # OSC controlled parameters. self._parameters = { 'beating': 0.0, 'blocks': 0.0, 'basic_Model': 0.0, 'Do!': 0.0, } while running: for event in pygame.event.get(): if event.type == QUIT: running = False if dirty: screen.fill(_BLACK) # Draw a gauge using rectangles. # Left, top, width, height. pygame.draw.rect( screen, _WHITE, [10, 10, 50, 100], 2) pygame.draw.rect( screen, _WHITE, [10, 110, 50, -int(self._parameters['beating'] * 100)]) # Draw a button-like square for on/off display. pygame.draw.rect( screen, _WHITE, [10, 200, 50, 50], 2) pygame.draw.rect( screen, _WHITE, [10, 200, 50, 50 if self._parameters['blocks'] >= 0.5 else 0]) # Show actual values. for index, [key, val] in enumerate(self._parameters.items()): label = font.render("{0}: {1}".format(key, val), 1, _WHITE) screen.blit(label, (200, index * 15)) pygame.display.flip() dirty = False try: what, value = self._bq.get(True) self._parameters[what] = value dirty = True logging.debug('Received new value {0} = {1}'.format(what, value)) except queue.Empty: running = False pygame.quit() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--server_ip", default="0.0.0.0", help="The ip to listen to for reaktor OSC messages") parser.add_argument( "--server_port", type=int, default=8000, help="The port to listen on for reaktor OSC messages") #parser.add_argument("--client_ip", # default="127.0.0.1", help="The ip to listen on") #parser.add_argument("--client_port", # type=int, default=5005, help="The port to listen on") args = parser.parse_args() #client = udp_client.UDPClient(args.client_ip, args.client_port) bq = multiprocessing.Queue() reaktor = ReaktorDisplay(bq) def put_in_queue(args, value): """Put a named argument in the queue to be able to use a single queue.""" bq.put([args[0], value]) dispatcher = dispatcher.Dispatcher() dispatcher.map("/debug", logging.debug) dispatcher.map("/beating", put_in_queue, "beating") dispatcher.map("/blocks", put_in_queue, "blocks") dispatcher.map("/basic_Model", put_in_queue, "basic_Model") dispatcher.map("/Do!", put_in_queue, "Do!") server = osc_server.ThreadingOSCUDPServer( (args.server_ip, args.server_port), dispatcher) logging.info("Serving on {}".format(server.server_address)) # Exit thread when the main thread terminates. reaktor.daemon = True reaktor.start() server.serve_forever()
30.382609
90
0.638523
a507ce8f8848c201fbbb6269ffde042bd8814669
2,193
py
Python
circuitPython/examples/ev-charge-point/ev-charge-point/eve_helper.py
BRTSG-FOSS/pico-bteve
1697b9a972ad5e9c2cecca6d560aa16cab725a61
[ "MIT" ]
1
2022-01-29T03:16:57.000Z
2022-01-29T03:16:57.000Z
circuitPython/examples/ev-charge-point/ev-charge-point/eve_helper.py
BRTSG-FOSS/pico-brteve
1697b9a972ad5e9c2cecca6d560aa16cab725a61
[ "MIT" ]
15
2021-09-22T08:36:08.000Z
2022-01-26T08:51:42.000Z
circuitPython/examples/ev-charge-point/ev-charge-point/eve_helper.py
BRTSG-FOSS/pico-bteve
1697b9a972ad5e9c2cecca6d560aa16cab725a61
[ "MIT" ]
null
null
null
import time from brteve.brt_eve_bt817_8 import BrtEve EVE_CMD_FIFO_SIZE = ((4) * 1024) EVE_CMD_FIFO_MASK = (EVE_CMD_FIFO_SIZE - 1) class eve_helper(): RAM_G_SIZE = (1024*1024) def __init__(self, eve: BrtEve): self.eve = eve self.VertextFormat=4 self.VertextPrecision=16 def set_precision(self, VertextFormat): lst={0:1, 1:2, 2:4, 3:8, 4:16} self.VertextFormat=VertextFormat self.VertextPrecision=lst[VertextFormat] def get_precision(self, v): return (int)(v*self.VertextPrecision) def cmd_(self): pass def cmd_rp(self): return self.eve.rd32 (self.eve.REG_CMD_READ) & EVE_CMD_FIFO_MASK def cmd_wp(self): return self.eve.rd32 (self.eve.REG_CMD_WRITE) & EVE_CMD_FIFO_MASK def wait_flush(self): rp = self.cmd_rp() wp = self.cmd_wp() while rp != wp: rp = self.cmd_rp() wp = self.cmd_wp() time.sleep(0.01) def flash_switch_fullmode(self): self.eve.cmd_flashdetach() self.wait_flush() self.eve.cmd_flashattach() self.wait_flush() self.eve.cmd_flashfast() self.wait_flush() def Display_Start(self): self.eve.cmd_dlstart() self.eve.ClearColorRGB(255, 255, 255) self.eve.Clear(1, 1, 1) self.eve.ColorRGB(255, 255, 255) self.eve.VertexFormat(self.VertextFormat) def Display_End(self): self.eve.Display() self.eve.swap() self.wait_flush() def draw_image(self, img, addr, x, y): self.eve.BitmapHandle(1) self.eve.cmd_setbitmap(addr, img["format"], img["width"], img["height"]) self.eve.Begin(self.eve.BITMAPS) self.eve.Vertex2f((x), (y)) self.eve.End() def draw_image_with_tag(self, img, addr, x, y, tag): self.eve.BitmapHandle(1) self.eve.cmd_setbitmap(addr, img["format"], img["width"], img["height"]) self.eve.Tag(tag) self.eve.Begin(self.eve.BITMAPS) self.eve.Vertex2f((x),(y)) self.eve.End() self.eve.Tag(0) def current_milli_time(self): return round(time.time() * 1000)
27.074074
80
0.603739
3ef31950a6d0c5adfa29208684aa3a3a56e3c3bd
23,710
py
Python
cryspy/procedure_rhochi/rhochi_pd.py
ikibalin/rhochi
1ca03f18dc72006322a101ed877cdbba33ed61e7
[ "MIT" ]
null
null
null
cryspy/procedure_rhochi/rhochi_pd.py
ikibalin/rhochi
1ca03f18dc72006322a101ed877cdbba33ed61e7
[ "MIT" ]
null
null
null
cryspy/procedure_rhochi/rhochi_pd.py
ikibalin/rhochi
1ca03f18dc72006322a101ed877cdbba33ed61e7
[ "MIT" ]
null
null
null
import numpy import scipy import scipy.interpolate from cryspy.A_functions_base.matrix_operations import calc_m1_m2_m1t, calc_m_v from cryspy.A_functions_base.unit_cell import \ calc_sthovl_by_unit_cell_parameters, calc_matrix_t from cryspy.A_functions_base.structure_factor import \ calc_f_nucl_by_dictionary, \ calc_f_charge_by_dictionary, \ calc_sft_ccs_by_dictionary, \ calc_index_hkl_multiplicity_in_range, \ calc_f_m_perp_ordered_by_dictionary from cryspy.A_functions_base.integrated_intensity_powder_diffraction import \ calc_powder_iint_1d_para, calc_powder_iint_1d_ordered, calc_powder_iint_1d_mix from cryspy.A_functions_base.preferred_orientation import calc_preferred_orientation_pd from cryspy.A_functions_base.powder_diffraction_const_wavelength import \ calc_profile_pseudo_voight, calc_lorentz_factor from .rhochi_diffrn import get_flags na = numpy.newaxis def calc_background(ttheta, background_ttheta, background_intensity, flag_background_intensity: bool = False): x_p = numpy.copy(background_ttheta) y_p = numpy.copy(background_intensity) x_min = ttheta.min() x_max = ttheta.max() if x_p.min() > x_min: y_0 = (y_p[1]-y_p[0])*(x_min - x_p[0])/(x_p[1]-x_p[0]) + y_p[0] x_p = numpy.insert(x_p, 0, x_min) y_p = numpy.insert(y_p, 0, y_0) if x_p.max() <= x_max: x_max = x_max + 1. y_last = (y_p[-1]-y_p[-2])*(x_max - x_p[-2])/(x_p[-1]-x_p[-2]) + y_p[-2] x_p = numpy.append(x_p, x_max) y_p = numpy.append(y_p, y_last) x_left = x_p[:-1] x_right = x_p[1:] flags = numpy.logical_and(ttheta[:, na] >= x_left[na, :], ttheta[:, na] < x_right[na, :]) p0 = numpy.argwhere(flags)[:,1] p1 = p0 + 1 intensity = (y_p[p1]-y_p[p0]) * (ttheta-x_p[p0])/(x_p[p1]-x_p[p0]) + y_p[p0] # f = scipy.interpolate.interp1d( # background_ttheta, background_intensity, kind="linear", fill_value="extrapolate") # intensity = f(ttheta) dder = {} if flag_background_intensity: ttheta_shift = ttheta[:, na] - background_ttheta[na, :] diff_b_tth = background_ttheta[1:]-background_ttheta[:-1] # y_n + (y_np1-y_np)*(x-x_n)/(x_np1-x_n) # 1 -(x-x_n)/(x_np1-x_n) + (x-x_nm1)/(x_n-x_nm1) dder_bkgr = numpy.zeros((ttheta.size, background_ttheta.size), dtype=float) dder["background_intensity"] = dder_bkgr return intensity, dder def calc_chi_sq_for_pd_by_dictionary( dict_pd, dict_crystals, dict_in_out: dict = None, flag_use_precalculated_data: bool=False, flag_calc_analytical_derivatives: bool = False): """Calculate chi_sq for diffrn experiment. """ if dict_in_out is None: flag_dict = False flag_use_precalculated_data = False dict_in_out_keys = [] else: flag_dict = True dict_in_out_keys = dict_in_out.keys() dict_pd_keys = dict_pd.keys() phase_name = [hh["name"].lower() for hh in dict_crystals] excluded_points = dict_pd["excluded_points"] ttheta = dict_pd["ttheta"] offset_ttheta = dict_pd["offset_ttheta"] ttheta_zs = ttheta - offset_ttheta flags_offset_ttheta = dict_pd["flags_offset_ttheta"] if flag_dict: dict_in_out["ttheta"] = ttheta_zs dict_in_out["excluded_points"] = excluded_points wavelength = dict_pd["wavelength"] flags_wavelength = dict_pd["flags_wavelength"] radiation = dict_pd["radiation"] if "beam_polarization" in dict_pd_keys: beam_polarization = dict_pd["beam_polarization"] flipper_efficiency = dict_pd["flipper_efficiency"] magnetic_field = dict_pd["magnetic_field"] flags_beam_polarization = dict_pd["flags_beam_polarization"] flags_flipper_efficiency = dict_pd["flags_flipper_efficiency"] else: beam_polarization, flipper_efficiency, magnetic_field = 0., 0., 0. flags_beam_polarization, flags_flipper_efficiency = False, False sthovl_min = numpy.sin(0.5*ttheta_zs.min() - numpy.pi/90.)/wavelength if sthovl_min <= 0: sthovl_min = 0.0001 sthovl_max = numpy.sin(0.5*ttheta_zs.max() + numpy.pi/90.)/wavelength if sthovl_max <= sthovl_min: sthovl_max = sthovl_min+0.01 if sthovl_max >= 1.: sthovl_max = 0.99999/wavelength background_ttheta = dict_pd["background_ttheta"] background_intensity = dict_pd["background_intensity"] flags_background_intensity = dict_pd["flags_background_intensity"] flag_background_intensity = numpy.any(flags_background_intensity) if (flag_use_precalculated_data and ("signal_background" in dict_in_out) and not(flag_background_intensity)): signal_background = dict_in_out["signal_background"] else: signal_background, dder_s_bkgr = calc_background(ttheta, background_ttheta, background_intensity, flag_background_intensity= (flag_background_intensity and flag_calc_analytical_derivatives)) dict_in_out["signal_background"] = signal_background pd_phase_name = dict_pd["phase_name"] pd_phase_scale = dict_pd["phase_scale"] pd_phase_resolution_parameters = dict_pd["phase_resolution_parameters"] # U_phase, V_phase, W_phase, X_phase, Y_phase pd_phase_ig = dict_pd["phase_ig"] # IG_phase flags_pd_phase_scale = dict_pd["flags_phase_scale"] flags_pd_phase_resolution_parameters = dict_pd["flags_phase_resolution_parameters"] # U_phase, V_phase, W_phase, X_phase, Y_phase flags_pd_phase_ig = dict_pd["flags_phase_ig"] # IG_phase resolution_parameters = dict_pd["resolution_parameters"] # U, V, W, X, Y asymmetry_parameters = dict_pd["asymmetry_parameters"] # p1, p2, p3, p4 flags_resolution_parameters = dict_pd["flags_resolution_parameters"] flags_asymmetry_parameters = dict_pd["flags_asymmetry_parameters"] flag_asymmetry_parameters = numpy.any(flags_asymmetry_parameters) if "texture_name" in dict_pd_keys: flag_texture = True pd_texture_name = dict_pd["texture_name"] pd_texture_g1 = dict_pd["texture_g1"] pd_texture_g2 = dict_pd["texture_g2"] pd_texture_axis = dict_pd["texture_axis"] pd_flags_texture_g1 = dict_pd["flags_texture_g1"] pd_flags_texture_g2 = dict_pd["flags_texture_g2"] pd_flags_texture_axis = dict_pd["flags_texture_axis"] else: flag_texture = False k = dict_pd["k"] cthm = dict_pd["cthm"] lorentz_factor, dder_lf = calc_lorentz_factor(ttheta_zs, k=k, cthm=cthm, flag_ttheta=flags_offset_ttheta) dict_in_out["lorentz_factor"] = lorentz_factor total_signal_plus = numpy.zeros_like(ttheta_zs) total_signal_minus = numpy.zeros_like(ttheta_zs) for p_name, p_scale, p_resolution, p_ig, flags_p_scale, flags_p_resolution, flags_p_ig in zip(pd_phase_name, pd_phase_scale, pd_phase_resolution_parameters.transpose(), pd_phase_ig, flags_pd_phase_scale, flags_pd_phase_resolution_parameters.transpose(), flags_pd_phase_ig): p_name = p_name.lower() flag_phase_texture = False if flag_texture: ind_texture = numpy.argwhere(pd_texture_name==p_name) if ind_texture.shape[0] != 0: texture_g1 = pd_texture_g1[ind_texture[0]] texture_g2 = pd_texture_g2[ind_texture[0]] texture_axis = pd_texture_axis[:, ind_texture[0]] flag_phase_texture = True flags_texture_g1 = pd_flags_texture_g1[ind_texture[0]] flags_texture_g2 = pd_flags_texture_g2[ind_texture[0]] flags_texture_axis = pd_flags_texture_axis[:, ind_texture[0]] ind_phase = phase_name.index(p_name) dict_crystal = dict_crystals[ind_phase] dict_in_out_keys = dict_in_out.keys() if f"dict_in_out_{p_name:}" in dict_in_out_keys: dict_in_out_phase = dict_in_out[f"dict_in_out_{p_name:}"] else: dict_in_out_phase = {} dict_in_out[f"dict_in_out_{p_name:}"] = dict_in_out_phase dict_in_out_phase_keys = dict_in_out_phase.keys() dict_crystal_keys = dict_crystal.keys() if "reduced_symm_elems" in dict_crystal_keys: reduced_symm_elems = dict_crystal["reduced_symm_elems"] translation_elems = dict_crystal["translation_elems"] elif "full_symm_elems" in dict_crystal_keys: full_symm_elems = dict_crystal["full_symm_elems"] elif "full_mcif_elems" in dict_crystal_keys: full_mcif_elems = dict_crystal["full_mcif_elems"] unit_cell_parameters = dict_crystal["unit_cell_parameters"] flags_unit_cell_parameters = dict_crystal["flags_unit_cell_parameters"] flag_unit_cell_parameters = numpy.any(flags_unit_cell_parameters) if flag_unit_cell_parameters: sc_uc = dict_crystal["sc_uc"] v_uc = dict_crystal["v_uc"] unit_cell_parameters = numpy.dot(sc_uc, unit_cell_parameters) + v_uc if (flag_use_precalculated_data and ("index_hkl" in dict_in_out_phase_keys) and ("multiplicity_hkl" in dict_in_out_phase_keys) and not(flag_unit_cell_parameters or flags_offset_ttheta)): index_hkl = dict_in_out_phase["index_hkl"] multiplicity_hkl = dict_in_out_phase["multiplicity_hkl"] else: if flag_phase_texture: reduced_symm_elems_p1 = numpy.array([[0], [0], [0], [1], [1], [0], [0], [0], [1], [0], [0], [0], [1]], dtype=int) translation_elems_p1 = numpy.array([[0], [0], [0], [1]], dtype=int) index_hkl, multiplicity_hkl = calc_index_hkl_multiplicity_in_range( sthovl_min, sthovl_max, unit_cell_parameters, reduced_symm_elems_p1, translation_elems_p1, False) else: if "reduced_symm_elems" in dict_crystal_keys: centrosymmetry = dict_crystal["centrosymmetry"] index_hkl, multiplicity_hkl = calc_index_hkl_multiplicity_in_range( sthovl_min, sthovl_max, unit_cell_parameters, reduced_symm_elems, translation_elems, centrosymmetry) else: translation_elems_p1 = numpy.array([[0], [0], [0], [1]], dtype=int) index_hkl, multiplicity_hkl = calc_index_hkl_multiplicity_in_range( sthovl_min, sthovl_max, unit_cell_parameters, full_mcif_elems[:13], translation_elems_p1, False) if (("index_hkl" in dict_in_out_phase_keys) and flag_use_precalculated_data): if index_hkl.shape != dict_in_out_phase["index_hkl"].shape: flag_use_precalculated_data = False else: flag_use_precalculated_data = numpy.all(numpy.logical_and(dict_in_out_phase["index_hkl"], index_hkl)) dict_in_out_phase["index_hkl"] = index_hkl dict_in_out_phase["multiplicity_hkl"] = multiplicity_hkl flag_sthovl_hkl = flag_unit_cell_parameters sthovl_hkl, dder_sthovl_hkl = calc_sthovl_by_unit_cell_parameters(index_hkl, unit_cell_parameters, flag_unit_cell_parameters=flag_unit_cell_parameters) flag_ttheta_hkl = flag_sthovl_hkl or flags_wavelength ttheta_hkl = 2*numpy.arcsin(sthovl_hkl*wavelength) dict_in_out_phase["ttheta_hkl"] = ttheta_hkl if radiation[0].startswith("neutrons"): f_nucl, dder_f_nucl = calc_f_nucl_by_dictionary( dict_crystal, dict_in_out_phase, flag_use_precalculated_data=flag_use_precalculated_data) flag_f_nucl = len(dder_f_nucl.keys()) > 0 flag_para = False if "atom_para_index" in dict_crystal_keys: sft_ccs, dder_sft_ccs = calc_sft_ccs_by_dictionary( dict_crystal, dict_in_out_phase, flag_use_precalculated_data=flag_use_precalculated_data) flag_sft_ccs = len(dder_sft_ccs.keys()) > 0 flag_matrix_t = flag_unit_cell_parameters matrix_t, dder_matrix_t = calc_matrix_t( index_hkl, unit_cell_parameters, flag_unit_cell_parameters=flag_unit_cell_parameters) flag_tensor_sigma = flag_sft_ccs or flag_unit_cell_parameters tensor_sigma, dder_tensor_sigma = calc_m1_m2_m1t(matrix_t, sft_ccs, flag_m1=flag_sft_ccs, flag_m2=flag_unit_cell_parameters) flag_para = True flag_ordered = False if "atom_ordered_index" in dict_crystal_keys: f_m_perp_o_ccs, dder_f_m_perp_o_ccs = calc_f_m_perp_ordered_by_dictionary( dict_crystal, dict_in_out_phase, flag_use_precalculated_data=flag_use_precalculated_data) flag_f_m_perp_o = len(dder_f_m_perp_o_ccs.keys()) > 0 flag_ordered = True flag_matrix_t = flag_unit_cell_parameters matrix_t, dder_matrix_t = calc_matrix_t( index_hkl, unit_cell_parameters, flag_unit_cell_parameters=flag_unit_cell_parameters) f_m_perp_o, dder_f_m_perp_o = calc_m_v(matrix_t, f_m_perp_o_ccs, flag_m=flag_unit_cell_parameters, flag_v=flag_f_m_perp_o) if flag_para and not(flag_ordered): flag_iint_plus_minus = flag_f_nucl or flag_tensor_sigma or flags_beam_polarization or flags_flipper_efficiency if (("iint_plus" in dict_in_out_phase_keys) and ("iint_minu" in dict_in_out_phase_keys) and flag_use_precalculated_data and not(flag_iint_plus_minus)): iint_plus, iint_minus = dict_in_out_phase["iint_plus"], dict_in_out_phase["iint_minus"] else: iint_plus, iint_minus, dder_plus, dder_minus = calc_powder_iint_1d_para( f_nucl, tensor_sigma, beam_polarization, flipper_efficiency, magnetic_field, flag_f_nucl=flag_f_nucl, flag_tensor_sigma=flag_tensor_sigma, flag_polarization=flags_beam_polarization, flag_flipper=flags_flipper_efficiency) elif not(flag_para) and flag_ordered: flag_iint_plus_minus = flag_f_nucl or flag_f_m_perp_o or flags_beam_polarization or flags_flipper_efficiency if (("iint_plus" in dict_in_out_phase_keys) and ("iint_minus" in dict_in_out_phase_keys) and flag_use_precalculated_data and not(flag_iint_plus_minus)): iint_plus, iint_minus = dict_in_out_phase["iint_plus"], dict_in_out_phase["iint_minus"] else: iint_plus, dder_plus = calc_powder_iint_1d_ordered( f_nucl, f_m_perp_o, flag_f_nucl=flag_f_nucl and flag_calc_analytical_derivatives, flag_f_m_perp=flag_f_m_perp_o and flag_calc_analytical_derivatives) iint_minus = iint_plus dder_minus = dder_plus elif flag_para and flag_ordered: flag_iint_plus_minus = flag_f_nucl or flag_tensor_sigma or flag_f_m_perp_o or flags_beam_polarization or flags_flipper_efficiency if (("iint_plus" in dict_in_out_phase_keys) and ("iint_minu" in dict_in_out_phase_keys) and flag_use_precalculated_data and not(flag_iint_plus_minus)): iint_plus, iint_minus = dict_in_out_phase["iint_plus"], dict_in_out_phase["iint_minus"] else: iint_plus, iint_minus, dder_plus, dder_minus = calc_powder_iint_1d_mix( f_nucl, f_m_perp_o, tensor_sigma, beam_polarization, flipper_efficiency, magnetic_field, flag_f_nucl=flag_f_nucl and flag_calc_analytical_derivatives, flag_f_m_perp_ordered=flag_f_m_perp_o and flag_calc_analytical_derivatives, flag_tensor_sigma=flag_tensor_sigma and flag_calc_analytical_derivatives, flag_polarization=flags_beam_polarization and flag_calc_analytical_derivatives, flag_flipper=flags_flipper_efficiency and flag_calc_analytical_derivatives) else: iint_plus = numpy.square(numpy.abs(f_nucl)) iint_minus = numpy.square(numpy.abs(f_nucl)) dict_in_out_phase["iint_plus"] = iint_plus dict_in_out_phase["iint_minus"] = iint_minus elif radiation[0].startswith("X-rays"): f_charge, dder_f_charge = calc_f_charge_by_dictionary( dict_crystal, wavelength, dict_in_out_phase, flag_use_precalculated_data=flag_use_precalculated_data) flag_f_charge = len(dder_f_charge.keys()) > 0 iint = numpy.square(numpy.abs(f_charge)) # FIXME: preparation for XMD iint_plus = iint iint_minus = iint dict_in_out_phase["iint_plus"] = iint_plus dict_in_out_phase["iint_minus"] = iint_minus if flag_phase_texture: flag_texture_g1 = numpy.any(flags_texture_g1) flag_texture_g2 = numpy.any(flags_texture_g2) flag_texture_axis = numpy.any(flags_texture_axis) flag_hh = numpy.any([flag_texture_g1, flag_texture_g2, flag_texture_axis]) if (flag_use_precalculated_data and ("preferred_orientation" in dict_in_out_phase_keys) and not(flag_hh)): preferred_orientation = dict_in_out_phase["preferred_orientation"] else: preferred_orientation, dder_po = calc_preferred_orientation_pd( index_hkl, texture_g1, texture_g2, texture_axis, unit_cell_parameters, flag_texture_g1=flag_texture_g1 and flag_calc_analytical_derivatives, flag_texture_g2=flag_texture_g2 and flag_calc_analytical_derivatives, flag_texture_axis=flag_texture_axis and flag_calc_analytical_derivatives) dict_in_out_phase["preferred_orientation"] = preferred_orientation flag_rp = numpy.any(flags_p_resolution) or numpy.any(flags_resolution_parameters) hh = resolution_parameters + p_resolution u, v, w, x, y = hh[0], hh[1], hh[2], hh[3], hh[4] p_1, p_2, p_3, p_4 = asymmetry_parameters[0], asymmetry_parameters[1], asymmetry_parameters[2], asymmetry_parameters[3] profile_pv, dder_pv = calc_profile_pseudo_voight(ttheta_zs, ttheta_hkl, u, v, w, p_ig, x, y, p_1, p_2, p_3, p_4, flag_ttheta=flags_offset_ttheta, flag_ttheta_hkl=flag_ttheta_hkl, flag_u=flag_rp, flag_v=flag_rp, flag_w=flag_rp, flag_i_g=flags_p_ig, flag_x=flag_rp, flag_y=flag_rp, flag_p_1=flag_asymmetry_parameters, flag_p_2=flag_asymmetry_parameters, flag_p_3=flag_asymmetry_parameters, flag_p_4=flag_asymmetry_parameters) dict_in_out_phase["profile_pv"] = profile_pv # flags_p_scale iint_m_plus = iint_plus * multiplicity_hkl iint_m_minus = iint_minus * multiplicity_hkl lf = calc_lorentz_factor(ttheta_hkl, k=k, cthm=cthm, flag_ttheta=None)[0] dict_in_out_phase["iint_plus_with_factors"] = 0.5 * p_scale * lf * iint_m_plus dict_in_out_phase["iint_minus_with_factors"] = 0.5 * p_scale * lf * iint_m_minus if flag_texture: # 0.5 to have the same meaning for the scale factor as in FullProf signal_plus = 0.5 * p_scale * lorentz_factor * (profile_pv * (iint_m_plus * preferred_orientation)[na, :]).sum(axis=1) # sum over hkl signal_minus = 0.5 * p_scale * lorentz_factor * (profile_pv * (iint_m_minus * preferred_orientation)[na, :]).sum(axis=1) dict_in_out_phase["iint_plus_with_factors"] *= preferred_orientation dict_in_out_phase["iint_minus_with_factors"] *= preferred_orientation else: signal_plus = 0.5 * p_scale * lorentz_factor * (profile_pv * iint_m_plus[na, :]).sum(axis=1) signal_minus = 0.5 * p_scale * lorentz_factor * (profile_pv * iint_m_minus[na, :]).sum(axis=1) dict_in_out_phase["signal_plus"] = signal_plus dict_in_out_phase["signal_minus"] = signal_minus total_signal_plus += signal_plus total_signal_minus += signal_minus if flag_dict: dict_in_out["signal_plus"] = total_signal_plus dict_in_out["signal_minus"] = total_signal_minus if ("signal_exp_plus" in dict_pd_keys) and ("signal_exp_minus" in dict_pd_keys): signal_exp_plus = dict_pd["signal_exp_plus"] signal_exp_minus = dict_pd["signal_exp_minus"] if flag_dict: dict_in_out["signal_exp_plus"] = signal_exp_plus dict_in_out["signal_exp_minus"] = signal_exp_minus flag_chi_sq_sum, flag_chi_sq_difference = True, True if "flag_chi_sq_sum" in dict_pd_keys: flag_chi_sq_sum = dict_pd["flag_chi_sq_sum"] if "flag_chi_sq_difference" in dict_pd_keys: flag_chi_sq_difference = dict_pd["flag_chi_sq_difference"] if flag_chi_sq_sum: signal_exp = signal_exp_plus[0, :] + signal_exp_minus[0, :] signal_sigma = numpy.sqrt(numpy.square(signal_exp_plus[1, :]) + numpy.square(signal_exp_minus[1, :])) else: signal_exp = dict_pd["signal_exp"][0,:] signal_sigma = dict_pd["signal_exp"][1,:] if flag_dict: dict_in_out["signal_exp"] = dict_pd["signal_exp"] flag_chi_sq_sum = True flag_chi_sq_difference = False chi_sq = 0. n_point = 0 if flag_chi_sq_sum: in_points = numpy.logical_not(excluded_points) total_signal_sum = total_signal_plus + total_signal_minus + signal_background chi_sq_sum = ((numpy.square((signal_exp - total_signal_sum)/signal_sigma)*in_points)).sum(axis=0) chi_sq += chi_sq_sum n_point += numpy.sum(in_points) if flag_chi_sq_difference: signal_exp_diff = signal_exp_plus[0, :] - signal_exp_minus[0, :] signal_sigma_diff = numpy.sqrt(numpy.square(signal_exp_plus[1, :]) + numpy.square(signal_exp_minus[1, :])) total_signal_diff = total_signal_plus - total_signal_minus chi_sq_diff = (numpy.square((signal_exp_diff - total_signal_diff)/signal_sigma_diff)).sum(axis=0) chi_sq += chi_sq_diff n_point += signal_exp_diff.shape[0] if numpy.isnan(chi_sq): chi_sq = 1e30 flags_pd = get_flags(dict_pd) l_flags_crystal = [get_flags(dict_crystal) for dict_crystal in dict_crystals] l_parameter_name = [] for way, flags in flags_pd.items(): pd_type_name = dict_pd["type_name"] ind_1d = numpy.atleast_1d(numpy.argwhere(flags)) #.flatten() parameter_name = [(pd_type_name, ) + way + (tuple(ind_1d[ind,:]), ) for ind in range(ind_1d.shape[0])] l_parameter_name.extend(parameter_name) for flags_crystal, dict_crystal in zip(l_flags_crystal, dict_crystals): for way, flags in flags_crystal.items(): crystal_type_name = dict_crystal["type_name"] ind_1d = numpy.atleast_1d(numpy.argwhere(flags)) #.flatten() parameter_name = [(crystal_type_name, ) + way + (tuple(ind_1d[ind,:]), ) for ind in range(ind_1d.shape[0])] l_parameter_name.extend(parameter_name) if flag_background_intensity: pass der_chi_sq = numpy.zeros((len(l_parameter_name), ), dtype=float) dder_chi_sq = numpy.zeros((len(l_parameter_name), len(l_parameter_name)), dtype=float) return chi_sq, n_point, der_chi_sq, dder_chi_sq, l_parameter_name
51.655773
145
0.680051
8197be9c56c0ed01500155a45f1181e855d5dc2e
2,865
py
Python
ml/rl/types.py
baek-jinoo/Horizon
30c75bed0e328e18bfc324f010101fac930c3abc
[ "BSD-3-Clause" ]
null
null
null
ml/rl/types.py
baek-jinoo/Horizon
30c75bed0e328e18bfc324f010101fac930c3abc
[ "BSD-3-Clause" ]
null
null
null
ml/rl/types.py
baek-jinoo/Horizon
30c75bed0e328e18bfc324f010101fac930c3abc
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. """ EXPERIMENTAL These generic types define common interface between modules. Above all, these facilitates model exporting through ONNX. ONNX doesn't trace dictionary so we use NamedTuple to act in place of dictionaries. NamedTuple is also more compact than dictionary; so, this should be good overall. """ from typing import Any, NamedTuple, Optional, Union import numpy as np import torch from caffe2.python import core """ We use a mix of frameworks in our system. Therefore, we can't pinpoint the exact type of value """ ValueType = Union[torch.Tensor, core.BlobReference, np.ndarray] class IdListFeature(NamedTuple): lengths: ValueType values: ValueType class FeatureVector(NamedTuple): float_features: Optional[ValueType] = None # id_list_features should ideally be Mapping[str, IdListFeature]; however, # that doesn't work well with ONNX. # User is expected to dynamically define the type of id_list_features based # on the actual features used in the model. id_list_features: Optional[NamedTuple] = None DiscreteAction = ValueType ParametricAction = FeatureVector class ActorOutput(NamedTuple): action: ValueType log_prob: Optional[ValueType] = None Action = Union[ DiscreteAction, ParametricAction ] # One-hot vector for discrete action DQN and feature vector for everyone else State = FeatureVector class StateInput(NamedTuple): """ This class makes it easier to plug modules into predictor """ state: State class StateAction(NamedTuple): state: State action: Action class MaxQLearningInput(NamedTuple): state: State action: Action next_action: Action next_state: Optional[State] # Available in case of discrete action tiled_next_state: Optional[State] # Available in case of parametric action possible_actions: Optional[Action] possible_actions_mask: ValueType possible_next_actions: Optional[Action] possible_next_actions_mask: ValueType reward: ValueType not_terminal: ValueType step: Optional[ValueType] time_diff: ValueType class SARSAInput(NamedTuple): state: State action: Action next_state: State next_action: Action reward: ValueType not_terminal: ValueType step: Optional[ValueType] time_diff: ValueType class ExtraData(NamedTuple): action_probability: Optional[ValueType] = None class TrainingBatch(NamedTuple): training_input: Union[MaxQLearningInput, SARSAInput] extras: Any class SingleQValue(NamedTuple): q_value: ValueType class AllActionQValues(NamedTuple): q_values: ValueType class CappedContinuousAction(NamedTuple): """ Continuous action in range [-1, 1], e.g., the output of DDPG actor """ action: ValueType
23.483607
80
0.74555
cef3b259a23fd83f5525280d0fdad775727ff12c
3,195
py
Python
nbkode/testsuite/test_against_scipy.py
Yash-10/numbakit-ode
aa5a0f417a2218bd471db754b35cc61996b2461e
[ "BSD-3-Clause" ]
37
2020-11-07T08:53:49.000Z
2021-12-24T00:01:16.000Z
nbkode/testsuite/test_against_scipy.py
Yash-10/numbakit-ode
aa5a0f417a2218bd471db754b35cc61996b2461e
[ "BSD-3-Clause" ]
24
2020-11-04T02:05:28.000Z
2022-03-28T21:14:08.000Z
nbkode/testsuite/test_against_scipy.py
Yash-10/numbakit-ode
aa5a0f417a2218bd471db754b35cc61996b2461e
[ "BSD-3-Clause" ]
4
2020-12-24T09:19:50.000Z
2022-03-04T16:45:49.000Z
""" nbkode.testsuite.test_against_scipy ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Comparisons using SciPy as a gold standard. :copyright: 2020 by nbkode Authors, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import numpy as np import pytest from numpy.testing import assert_allclose from scipy import integrate import nbkode from nbkode.nbcompat import numba equivalents = [ (nbkode.RungeKutta23, integrate.RK23), (nbkode.RungeKutta45, integrate.RK45), (nbkode.DOP853, integrate.DOP853), ] @numba.njit def exponential1(t, x): return -0.01 * x @numba.njit def exponential2(t, x): return np.asarray([-0.01, -0.05]) * x y0_1 = np.atleast_1d(1.0) y0_2 = np.atleast_1d([1.0, 2.0]) @pytest.mark.parametrize("nbkode_cls, scipy_cls", equivalents) def test_exponential1(nbkode_cls, scipy_cls): nbkode_sol = nbkode_cls(exponential1, 0, y0_1) scipy_sol = scipy_cls(exponential1, 0, y0_1, t_bound=30) assert_allclose(nbkode_sol.f, scipy_sol.f) assert_allclose(nbkode_sol.h, scipy_sol.h_abs) ndx = 0 while True: ndx += 1 nbkode_sol.step() scipy_sol.step() if scipy_sol.status != "running": break # We do not compare the last state as Scipy solvers are bound within step # and nbkode are not. msg = f"Step: {ndx}, Time: {scipy_sol.t}" assert_allclose(nbkode_sol.t, scipy_sol.t, err_msg=msg) assert_allclose(nbkode_sol.y, scipy_sol.y, err_msg=msg) assert_allclose(nbkode_sol.f, scipy_sol.f, err_msg=msg) assert_allclose(nbkode_sol.h, scipy_sol.h_abs, err_msg=msg) assert_allclose(nbkode_sol.K, scipy_sol.K, err_msg=msg) @pytest.mark.parametrize("nbkode_cls, scipy_cls", equivalents) def test_exponential2(nbkode_cls, scipy_cls): nbkode_sol = nbkode_cls(exponential2, 0, y0_2) scipy_sol = scipy_cls(exponential2, 0, y0_2, t_bound=30) assert_allclose(nbkode_sol.f, scipy_sol.f) assert_allclose(nbkode_sol.h, scipy_sol.h_abs) ndx = 0 while True: ndx += 1 nbkode_sol.step() scipy_sol.step() if scipy_sol.status != "running": break # We do not compare the last state as Scipy solvers are bound within step # and nbkode are not. msg = f"Step: {ndx}, Time: {scipy_sol.t}" assert_allclose(nbkode_sol.t, scipy_sol.t, err_msg=msg) assert_allclose(nbkode_sol.y, scipy_sol.y, err_msg=msg) assert_allclose(nbkode_sol.f, scipy_sol.f, err_msg=msg) assert_allclose(nbkode_sol.h, scipy_sol.h_abs, err_msg=msg) assert_allclose(nbkode_sol.K, scipy_sol.K, err_msg=msg) # TODO: RK23 interpolation is not working correctly, the results do no match SciPy @pytest.mark.parametrize("nbkode_cls, scipy_cls", equivalents[1:]) def test_interpolate(nbkode_cls, scipy_cls): t_eval = np.linspace(0, 300, 160) nb_t, nb_y = nbkode_cls(exponential2, 0, y0_2, t_bound=500).run(t_eval) scipy_sol = integrate.solve_ivp( exponential2, [0, 500], y0_2, t_eval=t_eval, method=scipy_cls.__name__ ) assert_allclose(nb_t, scipy_sol.t) assert_allclose(nb_y, scipy_sol.y.T)
32.602041
82
0.683568
a861847cb01ded5597035cc3b66e4eb713b76a67
4,979
py
Python
apps/admin/views/user.py
panla/kesousou
df6751b0a2e8eeec5122418cd29fe1f99e23f39e
[ "MIT" ]
1
2021-04-27T01:18:45.000Z
2021-04-27T01:18:45.000Z
apps/admin/views/user.py
panla/kesousou
df6751b0a2e8eeec5122418cd29fe1f99e23f39e
[ "MIT" ]
5
2020-08-26T14:47:47.000Z
2021-03-22T08:56:43.000Z
apps/admin/views/user.py
panla/kesousou
df6751b0a2e8eeec5122418cd29fe1f99e23f39e
[ "MIT" ]
null
null
null
import datetime from django.db.models import Q from django.contrib.auth.views import get_user_model from rest_framework import status from rest_framework import generics from rest_framework.views import APIView from rest_framework.response import Response from rest_framework_jwt.settings import api_settings from rest_framework_jwt.authentication import JSONWebTokenAuthentication from drf_yasg.utils import swagger_auto_schema from common.users import authenticate, IsAdminUser from common.page import page_params, get_results from admin.parameters.user import create_token_response, create_token_body, token_parameters from admin.parameters.user import user_create_parameters, user_update_parameters, user_filter_params from admin.serializers.user import UserSerializer User = get_user_model() jwt_response_payload_handler = api_settings.JWT_RESPONSE_PAYLOAD_HANDLER jwt_payload_handler = api_settings.JWT_PAYLOAD_HANDLER jwt_encode_handler = api_settings.JWT_ENCODE_HANDLER jwt_decode_handler = api_settings.JWT_DECODE_HANDLER class UserJWTView(APIView): @swagger_auto_schema( request_body=create_token_body, operation_id='create_token', responses={201: create_token_response}, tags=['users'] ) def post(self, request, *args, **kwargs): """ 登录 """ user = authenticate(request.data.get('username'), request.data.get('password')) if user: token = jwt_encode_handler(jwt_payload_handler(user)) response = Response({'token': token, 'user_id': user.id}, status=status.HTTP_201_CREATED) if api_settings.JWT_AUTH_COOKIE: expiration = (datetime.datetime.utcnow() + api_settings.JWT_EXPIRATION_DELTA) response.set_cookie(api_settings.JWT_AUTH_COOKIE, token, expires=expiration, httponly=True) return response return Response({'detail': '该用户校验不通过'}, status=status.HTTP_400_BAD_REQUEST) class UsersView(APIView): authentication_classes = [JSONWebTokenAuthentication] permission_classes = [IsAdminUser] dic = { 'false': False, 'true': True } @swagger_auto_schema( manual_parameters=page_params + token_parameters + user_filter_params, operation_id='user_list', responses={200: UserSerializer(many=True)}, tags=['users'] ) def get(self, request, *args, **kwargs): """ 查看用户列表, 查询参数 text, is_superuser, is_active,排序参数 order 查询字段包括 name, mobile, email """ text = request.query_params.get('text') is_superuser = request.query_params.get('is_superuser') is_active = request.query_params.get('is_active') order = request.query_params.get('order') queryset = User.objects.all() if text: queryset = queryset.filter(Q(name=text) | Q(mobile=text) | Q(email=text)) if is_superuser: queryset = queryset.filter(is_superuser=self.dic[is_superuser]) if is_active: queryset = queryset.filter(is_active=self.dic[is_active]) if order: queryset = queryset.order_by(order) data = get_results(request, queryset, self, UserSerializer) return Response({'count': queryset.count(), 'users': data}, status.HTTP_200_OK) @swagger_auto_schema( manual_parameters=token_parameters, request_body=user_create_parameters, operation_id='user_create', responses={201: UserSerializer()}, tags=['users'] ) def post(self, request, *args, **kwargs): """ 创建用户 """ serializer = UserSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response({'user': serializer.data}, status.HTTP_201_CREATED) else: return Response({'error': f'{serializer.errors}'}, status.HTTP_400_BAD_REQUEST) class UserView(generics.RetrieveUpdateAPIView): authentication_classes = [JSONWebTokenAuthentication] permission_classes = [IsAdminUser] queryset = User.objects.all() serializer_class = UserSerializer @swagger_auto_schema( manual_parameters=token_parameters, operation_id='user_retrieve', responses={200: UserSerializer()}, tags=['users'] ) def get(self, request, *args, **kwargs): return self.retrieve(request, *args, **kwargs) @swagger_auto_schema( manual_parameters=token_parameters, request_body=user_update_parameters, operation_id='user_update', responses={201: UserSerializer()}, tags=['users'] ) def put(self, request, *args, **kwargs): return self.update(request, *args, **kwargs) @swagger_auto_schema( manual_parameters=token_parameters, request_body=user_update_parameters, operation_id='user_partial_update', responses={201: UserSerializer()}, tags=['users'] ) def patch(self, request, *args, **kwargs): return self.partial_update(request, *args, **kwargs)
40.153226
116
0.702952
c794c827ec735387c66892378a68c03ebc09fc87
1,265
py
Python
brian2/utils/arrays.py
CharleeSF/brian2
d2be1ed33a8ac51b1891f89a2544123a937c43ff
[ "BSD-2-Clause" ]
2
2020-03-20T13:30:19.000Z
2020-03-20T13:30:57.000Z
brian2/utils/arrays.py
CharleeSF/brian2
d2be1ed33a8ac51b1891f89a2544123a937c43ff
[ "BSD-2-Clause" ]
null
null
null
brian2/utils/arrays.py
CharleeSF/brian2
d2be1ed33a8ac51b1891f89a2544123a937c43ff
[ "BSD-2-Clause" ]
null
null
null
''' Helper module containing functions that operate on numpy arrays. ''' import numpy as np def calc_repeats(delay): ''' Calculates offsets corresponding to an array, where repeated values are subsequently numbered, i.e. if there n identical values, the returned array will have values from 0 to n-1 at their positions. The code is complex because tricks are needed for vectorisation. This function is used in the Python `SpikeQueue` to calculate the offset array for the insertion of spikes with their respective delays into the queue and in the numpy code for synapse creation to calculate how many synapses for each source-target pair exist. Examples -------- >>> import numpy as np >>> print(calc_repeats(np.array([7, 5, 7, 3, 7, 5]))) [0 0 1 0 2 1] ''' # We use merge sort because it preserves the input order of equal # elements in the sorted output I = np.argsort(delay, kind='mergesort') xs = delay[I] J = (xs[1:] != xs[:-1]) A = np.hstack((0, np.cumsum(J))) B = np.hstack((0, np.cumsum(np.logical_not(J)))) BJ = np.hstack((0, B[:-1][J])) ei = B-BJ[A] ofs = np.zeros_like(delay, dtype=np.int32) ofs[I] = np.array(ei, dtype=ofs.dtype) return ofs
34.189189
79
0.660079
47cc44573810267dc4096e66619e724bafdf4900
2,207
py
Python
signalr/transports/_ws_transport.py
hakimo-ai/signalr-client-py
a5035d92bfd9e1eabed7c7bcf08f711e2e7cccb7
[ "Apache-2.0" ]
null
null
null
signalr/transports/_ws_transport.py
hakimo-ai/signalr-client-py
a5035d92bfd9e1eabed7c7bcf08f711e2e7cccb7
[ "Apache-2.0" ]
null
null
null
signalr/transports/_ws_transport.py
hakimo-ai/signalr-client-py
a5035d92bfd9e1eabed7c7bcf08f711e2e7cccb7
[ "Apache-2.0" ]
null
null
null
import json import sys import gevent import ssl if sys.version_info[0] < 3: from urlparse import urlparse, urlunparse else: from urllib.parse import urlparse, urlunparse from websocket import create_connection from ._transport import Transport class WebSocketsTransport(Transport): def __init__(self, session, connection): Transport.__init__(self, session, connection) self.ws = None self.__requests = {} def _get_name(self): return 'webSockets' @staticmethod def __get_ws_url_from(url): parsed = urlparse(url) scheme = 'wss' if parsed.scheme == 'https' else 'ws' url_data = (scheme, parsed.netloc, parsed.path, parsed.params, parsed.query, parsed.fragment) return urlunparse(url_data) def start(self): ws_url = self.__get_ws_url_from(self._get_url('connect')) self.ws = create_connection(ws_url, header=self.__get_headers(), cookie=self.__get_cookie_str(), enable_multithread=True, sslopt={'cert_reqs': ssl.CERT_NONE}) self._session.get(self._get_url('start')) def _receive(): for notification in self.ws: self._handle_notification(notification) return _receive def send(self, data): self.ws.send(json.dumps(data)) gevent.sleep() def close(self): self.ws.close() def accept(self, negotiate_data): return bool(negotiate_data['TryWebSockets']) class HeadersLoader(object): def __init__(self, headers): self.headers = headers def __get_headers(self): headers = self._session.headers loader = WebSocketsTransport.HeadersLoader(headers) if self._session.auth: self._session.auth(loader) return ['%s: %s' % (name, headers[name]) for name in headers] def __get_cookie_str(self): return '; '.join([ '%s=%s' % (name, value) for name, value in self._session.cookies.items() ])
28.662338
101
0.588129
3a14e5bb847ed62ced791a4395ae823ce504c5b2
138
py
Python
irispy/__init__.py
zpodushkin/irispy
e801c0c8ece0e5ad7ff1fae3cf9adb6e360cd655
[ "MIT" ]
5
2020-03-16T19:26:00.000Z
2020-04-04T09:25:50.000Z
irispy/__init__.py
zpodushkin/irispy
e801c0c8ece0e5ad7ff1fae3cf9adb6e360cd655
[ "MIT" ]
1
2020-04-05T00:06:05.000Z
2020-04-10T22:28:16.000Z
irispy/__init__.py
zpodushkin/irispy
e801c0c8ece0e5ad7ff1fae3cf9adb6e360cd655
[ "MIT" ]
null
null
null
from .dispatcher.dispatcher import Dispatcher from .types.methods import Method from .types import objects from .types.exceptions import *
34.5
45
0.833333
8f490888b8cc7090f1365691167a1f3895fc3df1
4,922
py
Python
tests/test_solver_crt_tau.py
astrojhgu/ares
42008c8e4bf79f0b000cc833e02a86510bce7611
[ "MIT" ]
1
2019-01-04T15:13:18.000Z
2019-01-04T15:13:18.000Z
tests/test_solver_crt_tau.py
astrojhgu/ares
42008c8e4bf79f0b000cc833e02a86510bce7611
[ "MIT" ]
null
null
null
tests/test_solver_crt_tau.py
astrojhgu/ares
42008c8e4bf79f0b000cc833e02a86510bce7611
[ "MIT" ]
null
null
null
""" test_solver_crt_tau.py Author: Jordan Mirocha Affiliation: UCLA Created on: Tue May 31 20:42:40 PDT 2016 Description: """ import os import time import ares import numpy as np import matplotlib.pyplot as pl from ares.physics.Constants import c, ev_per_hz, erg_per_ev def test(tol=5e-2): alpha = -2. beta = -6. zi = 10. zf = 6. # Initialize radiation background pars = \ { 'include_He': 0, 'approx_He': 0, 'initial_redshift': zi, 'final_redshift': zf, 'pop_sfr_model': 'sfrd-func', 'pop_sfrd': lambda z: 0.1 * (1. + z)**beta, # for analytic solution to work this must be const 'pop_sfrd_units': 'msun/yr/mpc^3', 'pop_sed': 'pl', 'pop_alpha': alpha, 'pop_Emin': 5e2, 'pop_Emax': 1e3, 'pop_EminNorm': 2e2, 'pop_EmaxNorm': 3e4, 'pop_logN': -np.inf, 'pop_solve_rte': True, 'pop_approx_tau': False, 'pop_tau_Nz': 1e2, } colors = 'k', 'b' for i, include_He in enumerate([0, 1]): pars['include_He'] = include_He pars['approx_He'] = include_He pars['pop_approx_tau'] = False # Create OpticalDepth instance igm = ares.solvers.OpticalDepth(**pars) # Impose an ionization history: neutral for all times igm.ionization_history = lambda z: 0.0 # Tabulate tau tau = igm.TabulateOpticalDepth() igm.save(prefix='tau_test', suffix='pkl', clobber=True) # Run radiation background calculation pars['tau_table'] = 'tau_test.pkl' sim_1 = ares.simulations.MetaGalacticBackground(**pars) sim_1.run() os.remove('tau_test.pkl') # Compare to transparent IGM solution pars['pop_approx_tau'] = True sim_2 = ares.simulations.MetaGalacticBackground(**pars) sim_2.run() # Grab histories z1, E1, f1 = sim_1.get_history(0, flatten=True) z2, E2, f2 = sim_2.get_history(0, flatten=True) # Impose a transparent IGM to check tau I/O if i == 0: igm.ionization_history = lambda z: 1.0 # Tabulate tau tau = igm.TabulateOpticalDepth() igm.save(prefix='tau_test', suffix='pkl', clobber=True) pars['tau_table'] = 'tau_test.pkl' pars['pop_approx_tau'] = False sim_3 = ares.simulations.MetaGalacticBackground(**pars) sim_3.run() z3, E3, f3 = sim_3.get_history(0, flatten=True) os.remove('tau_test.pkl') # Check at *lowest* redshift assert np.allclose(f3[0], f2[0]), "Problem with tau I/O." # Compare to analytic solution if i == 0: # Grab GalaxyPopulation E = E1 pop = sim_2.pops[0] # Cosmologically-limited solution to the RTE # [Equation A1 in Mirocha (2014)] f_an = np.array(map(lambda E: pop.Emissivity(zf, E), E)) f_an *= (1. + zf)**(4.5 - (alpha + beta)) / 4. / np.pi \ / pop.cosm.HubbleParameter(zf) / (alpha + beta - 1.5) f_an *= ((1. + zi)**(alpha + beta - 1.5) - (1. + zf)**(alpha + beta - 1.5)) f_an *= c * ev_per_hz / E / erg_per_ev pl.semilogy(E2, f_an, ls=':', color='k', label='analytic') label = 'neutral' pl.semilogy(E2, f2[0], ls='--', color=colors[i], label='ionized') pl.annotate('H only', (0.05, 0.97), xycoords='axes fraction', ha='left', va='top') # Check analytic solution at *lowest* redshift diff = np.abs(f_an - f2[0]) / f_an # Loose tolerance in this example since tau table is coarse assert diff[0] < tol, \ "Relative error between analytical and numerical solutions exceeds %.3g." % tol else: label = None pl.annotate('H+He', (0.05, 0.9), xycoords='axes fraction', ha='left', va='top', color='b') # Plot solution assuming neutral IGM pl.semilogy(E1, f1[0], ls='-', color=colors[i], label=label) # Assert that transparent IGM -> larger fluxes in soft X-rays assert np.all(f2[0] >= f1[0]) # Make sure X-ray background is harder when helium is included if i == 0: f_H = f1[0].copy() else: assert np.all(f1[0] <= f_H), \ "XRB should be harder when He is included!" pl.xlabel(ares.util.labels['E']) pl.ylabel(ares.util.labels['flux']) pl.legend(fontsize=14) pl.savefig('%s.png' % __file__.rstrip('.py')) pl.close() if __name__ == '__main__': test()
30.571429
100
0.530882
319870ef05ff3369f6c84a7694ade6d751ad580c
381
py
Python
sphinx/source/docs/examples/line_server.py
timelyportfolio/bokeh
a976a85535cf137c6238ce9e90b41ab14ae8ce22
[ "BSD-3-Clause" ]
2
2021-09-01T12:36:06.000Z
2021-11-17T10:48:36.000Z
sphinx/source/docs/examples/line_server.py
brian15co/bokeh
6cecb7211277b9d838039d0eb15e50a10f9ac3d1
[ "BSD-3-Clause" ]
null
null
null
sphinx/source/docs/examples/line_server.py
brian15co/bokeh
6cecb7211277b9d838039d0eb15e50a10f9ac3d1
[ "BSD-3-Clause" ]
1
2021-08-01T08:38:53.000Z
2021-08-01T08:38:53.000Z
from bokeh.plotting import figure, output_server, show #prepare some data x = [1, 2, 3, 4, 5] y = [6, 7, 2, 4, 5] # output to static HTML file output_server("simple_line") # Plot a `line` renderer setting the color, line thickness, title, and legend value. p = figure(title="simple line server example") p.line(x, y, legend="Temp.", x_axis_label='x', y_axis_label='y') show(p)
25.4
84
0.698163
d0986c5ef189fb92c0285cb42d49de07b40e59da
1,687
py
Python
jdcloud_sdk/services/captcha/models/Scene.py
Tanc009/jdcloud-sdk-python
8b045c99bc5b73ca7348e950b6f01e03a27982f5
[ "Apache-2.0" ]
14
2018-04-19T09:53:56.000Z
2022-01-27T06:05:48.000Z
jdcloud_sdk/services/captcha/models/Scene.py
Tanc009/jdcloud-sdk-python
8b045c99bc5b73ca7348e950b6f01e03a27982f5
[ "Apache-2.0" ]
15
2018-09-11T05:39:54.000Z
2021-07-02T12:38:02.000Z
jdcloud_sdk/services/captcha/models/Scene.py
Tanc009/jdcloud-sdk-python
8b045c99bc5b73ca7348e950b6f01e03a27982f5
[ "Apache-2.0" ]
33
2018-04-20T05:29:16.000Z
2022-02-17T09:10:05.000Z
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. class Scene(object): def __init__(self, appId, sceneName, sceneType, sceneAvgQps, sceneMaxQps, sceneId=None, sceneSecret=None, appName=None, description=None, createTime=None): """ :param sceneId: (Optional) 场景id,更新时必填 :param sceneSecret: (Optional) 场景密钥 :param appId: 所属应用id :param appName: (Optional) 所属应用名称 :param sceneName: 场景名称 :param sceneType: 场景类型:account:账号场景(登录、注册等)activity:活动场景(秒杀、领券等)content:内容场景(发帖评论、签到投票等)other:其它 :param sceneAvgQps: 平均qps :param sceneMaxQps: 高峰期qps :param description: (Optional) 场景描述 :param createTime: (Optional) 创建时间 """ self.sceneId = sceneId self.sceneSecret = sceneSecret self.appId = appId self.appName = appName self.sceneName = sceneName self.sceneType = sceneType self.sceneAvgQps = sceneAvgQps self.sceneMaxQps = sceneMaxQps self.description = description self.createTime = createTime
36.673913
159
0.691168
26251631750c73f8fdf874dd1d9081f1d72f87e0
2,424
py
Python
app.py
technetbytes/Pythonic-Template
78b565359d640b208ed6189ebefc5760751c16d7
[ "Apache-2.0" ]
2
2020-04-06T07:59:02.000Z
2020-04-06T07:59:04.000Z
app.py
technetbytes/Pythonic-Template
78b565359d640b208ed6189ebefc5760751c16d7
[ "Apache-2.0" ]
2
2020-04-06T12:13:34.000Z
2020-04-06T13:49:29.000Z
app.py
technetbytes/Pythonic-Template
78b565359d640b208ed6189ebefc5760751c16d7
[ "Apache-2.0" ]
null
null
null
from config import configuration from config import database from db import mssql import pandas as pd from assets import file_storage from cache import data_cache from bridge.databse_bridge import DbBridge '''Get configuration data from the .resource/config.ini file''' # use configuration class get DATABASE Section from ini file #config = configuration.Configuration(None) # db_config = config.get_section("DATABASE") # print(db_config['HOST']) # use DatabaseConfiguration class user directly get DATABASE host using property #ds = database.DatabaseConfiguration(None) # print(ds.host) '''Insert & Get record in the database''' #obj_sql = mssql.MsSqlDb(None) # conn = obj_sql.get_connection() # data = pd.read_sql_query("select top 1 * from [knowHow].[dbo].[tModels]", conn) # print(data) # data2 = obj_sql.get_data("select top 1 * from [knowHow].[dbo].[tModels]") # print(data2) #obj_sql.insert_data("INSERT INTO KnowHow.dbo.tModels (Name, ModelName, Description, CreatedBy, CreatedOn, ModifiedBy, ModifiedOn, IsActive, CategoryId) VALUES('test1', 'test-1', 'test1 desc', 10, getdate(), NULL, '', 0, 1);") '''Set & Read data in the cloud storage''' #file_manager = file_storage.FileManager(None) #file_manager.load_config() #file_manager.upload_file("/home/saqib/Pictures/ijmal.png","ijmalbhai") #s = file_manager.get_file_url("ijmalbhai") #print(s) #img = file_manager.get_image("https://res.cloudinary.com/dnbcbz9eu/image/upload/v1586115769/ijmalbhai.png") #print(img) '''Set & Read data in the cache''' #redis_cache = data_cache.DataDeposit(None) #redis_cache.load_config() #redis_cache.set_item("Afa","Hello world") #print(redis_cache.get_item("Afa")) def main(): direct_db() orm_model_call() def direct_db(): print("Direct database call ...") bridge = DbBridge() print(bridge.get_application()) bridge.load_db() print(bridge.get_data("select top 1 * from [knowHow].[dbo].[tModels]")) def orm_model_call(): print("ORM mapper call ...") bridge = DbBridge() bridge.load_db() from models import projects projects = bridge.get_data_forModel(projects.Project) print('\n### All Projects:') for prj in projects: print(f'project id {prj.id} with keys {prj.webKey} and {prj.mobileKey}') print("done") if __name__ == "__main__": print("Start Pythonic-Template Application") main() print("End Pythonic-Template Application")
31.076923
226
0.723185
f729e714918038b9f396ec89a8394119a0377539
460
py
Python
tests/dsfs/test_neural_networks.py
dbradf/dsfs
efcd08ca56b4e14b926cc824f15474b04a9d94cb
[ "Apache-2.0" ]
null
null
null
tests/dsfs/test_neural_networks.py
dbradf/dsfs
efcd08ca56b4e14b926cc824f15474b04a9d94cb
[ "Apache-2.0" ]
null
null
null
tests/dsfs/test_neural_networks.py
dbradf/dsfs
efcd08ca56b4e14b926cc824f15474b04a9d94cb
[ "Apache-2.0" ]
null
null
null
import dsfs.neural_networks as under_test def test_xor_network(): xor_network = [[[20.0, 20, -30], [20.0, 20, -10]], [[-60.0, 60, -30]]] assert 0.000 < under_test.feed_forward(xor_network, [0, 0])[-1][0] < 0.001 assert 0.999 < under_test.feed_forward(xor_network, [1, 0])[-1][0] < 1.000 assert 0.999 < under_test.feed_forward(xor_network, [0, 1])[-1][0] < 1.000 assert 0.000 < under_test.feed_forward(xor_network, [1, 1])[-1][0] < 0.001
41.818182
78
0.634783
d467b821208e58ba66b028cf6e5b408fcb714c59
20,617
py
Python
sdk/lusid_asyncio/models/a2_b_movement_record.py
finbourne/lusid-sdk-python-asyncio-preview
290f93590ab5485661216c8622d3de9f7af0ed60
[ "MIT" ]
null
null
null
sdk/lusid_asyncio/models/a2_b_movement_record.py
finbourne/lusid-sdk-python-asyncio-preview
290f93590ab5485661216c8622d3de9f7af0ed60
[ "MIT" ]
null
null
null
sdk/lusid_asyncio/models/a2_b_movement_record.py
finbourne/lusid-sdk-python-asyncio-preview
290f93590ab5485661216c8622d3de9f7af0ed60
[ "MIT" ]
null
null
null
# coding: utf-8 """ LUSID API FINBOURNE Technology # noqa: E501 The version of the OpenAPI document: 0.11.3923 Contact: info@finbourne.com Generated by: https://openapi-generator.tech """ try: from inspect import getfullargspec except ImportError: from inspect import getargspec as getfullargspec import pprint import re # noqa: F401 import six from lusid_asyncio.configuration import Configuration class A2BMovementRecord(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. required_map (dict): The key is attribute name and the value is whether it is 'required' or 'optional'. """ openapi_types = { 'portfolio_id': 'ResourceId', 'holding_type': 'str', 'instrument_scope': 'str', 'instrument_uid': 'str', 'sub_holding_keys': 'dict(str, PerpetualProperty)', 'currency': 'str', 'transaction_id': 'str', 'movement_name': 'str', 'effective_date': 'datetime', 'units': 'float', 'start': 'A2BCategory', 'flows': 'A2BCategory', 'gains': 'A2BCategory', 'carry': 'A2BCategory', 'end': 'A2BCategory', 'properties': 'dict(str, ModelProperty)', 'group_id': 'str' } attribute_map = { 'portfolio_id': 'portfolioId', 'holding_type': 'holdingType', 'instrument_scope': 'instrumentScope', 'instrument_uid': 'instrumentUid', 'sub_holding_keys': 'subHoldingKeys', 'currency': 'currency', 'transaction_id': 'transactionId', 'movement_name': 'movementName', 'effective_date': 'effectiveDate', 'units': 'units', 'start': 'start', 'flows': 'flows', 'gains': 'gains', 'carry': 'carry', 'end': 'end', 'properties': 'properties', 'group_id': 'groupId' } required_map = { 'portfolio_id': 'optional', 'holding_type': 'optional', 'instrument_scope': 'optional', 'instrument_uid': 'optional', 'sub_holding_keys': 'optional', 'currency': 'optional', 'transaction_id': 'optional', 'movement_name': 'optional', 'effective_date': 'optional', 'units': 'optional', 'start': 'optional', 'flows': 'optional', 'gains': 'optional', 'carry': 'optional', 'end': 'optional', 'properties': 'optional', 'group_id': 'optional' } def __init__(self, portfolio_id=None, holding_type=None, instrument_scope=None, instrument_uid=None, sub_holding_keys=None, currency=None, transaction_id=None, movement_name=None, effective_date=None, units=None, start=None, flows=None, gains=None, carry=None, end=None, properties=None, group_id=None, local_vars_configuration=None): # noqa: E501 """A2BMovementRecord - a model defined in OpenAPI" :param portfolio_id: :type portfolio_id: lusid_asyncio.ResourceId :param holding_type: The type of the holding e.g. Position, Balance, CashCommitment, Receivable, ForwardFX etc. :type holding_type: str :param instrument_scope: The unique Lusid Instrument Id (LUID) of the instrument that the holding is in. :type instrument_scope: str :param instrument_uid: The unique Lusid Instrument Id (LUID) of the instrument that the holding is in. :type instrument_uid: str :param sub_holding_keys: The sub-holding properties which identify the holding. Each property will be from the 'Transaction' domain. These are configured when a transaction portfolio is created. :type sub_holding_keys: dict[str, lusid_asyncio.PerpetualProperty] :param currency: The holding currency. :type currency: str :param transaction_id: The unique identifier for the transaction. :type transaction_id: str :param movement_name: The name of the movement. :type movement_name: str :param effective_date: The date of the movement. :type effective_date: datetime :param units: The number of units of the instrument that are affected by the movement. :type units: float :param start: :type start: lusid_asyncio.A2BCategory :param flows: :type flows: lusid_asyncio.A2BCategory :param gains: :type gains: lusid_asyncio.A2BCategory :param carry: :type carry: lusid_asyncio.A2BCategory :param end: :type end: lusid_asyncio.A2BCategory :param properties: The properties which have been requested to be decorated onto the holding. These will be from the 'Instrument' domain. :type properties: dict[str, lusid_asyncio.ModelProperty] :param group_id: Arbitrary string that can be used to cross reference an entry in the A2B report with activity in the A2B-Movements. This should be used purely as a token. The content should not be relied upon. :type group_id: str """ # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration.get_default_copy() self.local_vars_configuration = local_vars_configuration self._portfolio_id = None self._holding_type = None self._instrument_scope = None self._instrument_uid = None self._sub_holding_keys = None self._currency = None self._transaction_id = None self._movement_name = None self._effective_date = None self._units = None self._start = None self._flows = None self._gains = None self._carry = None self._end = None self._properties = None self._group_id = None self.discriminator = None if portfolio_id is not None: self.portfolio_id = portfolio_id self.holding_type = holding_type self.instrument_scope = instrument_scope self.instrument_uid = instrument_uid self.sub_holding_keys = sub_holding_keys self.currency = currency self.transaction_id = transaction_id self.movement_name = movement_name if effective_date is not None: self.effective_date = effective_date if units is not None: self.units = units if start is not None: self.start = start if flows is not None: self.flows = flows if gains is not None: self.gains = gains if carry is not None: self.carry = carry if end is not None: self.end = end self.properties = properties self.group_id = group_id @property def portfolio_id(self): """Gets the portfolio_id of this A2BMovementRecord. # noqa: E501 :return: The portfolio_id of this A2BMovementRecord. # noqa: E501 :rtype: lusid_asyncio.ResourceId """ return self._portfolio_id @portfolio_id.setter def portfolio_id(self, portfolio_id): """Sets the portfolio_id of this A2BMovementRecord. :param portfolio_id: The portfolio_id of this A2BMovementRecord. # noqa: E501 :type portfolio_id: lusid_asyncio.ResourceId """ self._portfolio_id = portfolio_id @property def holding_type(self): """Gets the holding_type of this A2BMovementRecord. # noqa: E501 The type of the holding e.g. Position, Balance, CashCommitment, Receivable, ForwardFX etc. # noqa: E501 :return: The holding_type of this A2BMovementRecord. # noqa: E501 :rtype: str """ return self._holding_type @holding_type.setter def holding_type(self, holding_type): """Sets the holding_type of this A2BMovementRecord. The type of the holding e.g. Position, Balance, CashCommitment, Receivable, ForwardFX etc. # noqa: E501 :param holding_type: The holding_type of this A2BMovementRecord. # noqa: E501 :type holding_type: str """ self._holding_type = holding_type @property def instrument_scope(self): """Gets the instrument_scope of this A2BMovementRecord. # noqa: E501 The unique Lusid Instrument Id (LUID) of the instrument that the holding is in. # noqa: E501 :return: The instrument_scope of this A2BMovementRecord. # noqa: E501 :rtype: str """ return self._instrument_scope @instrument_scope.setter def instrument_scope(self, instrument_scope): """Sets the instrument_scope of this A2BMovementRecord. The unique Lusid Instrument Id (LUID) of the instrument that the holding is in. # noqa: E501 :param instrument_scope: The instrument_scope of this A2BMovementRecord. # noqa: E501 :type instrument_scope: str """ self._instrument_scope = instrument_scope @property def instrument_uid(self): """Gets the instrument_uid of this A2BMovementRecord. # noqa: E501 The unique Lusid Instrument Id (LUID) of the instrument that the holding is in. # noqa: E501 :return: The instrument_uid of this A2BMovementRecord. # noqa: E501 :rtype: str """ return self._instrument_uid @instrument_uid.setter def instrument_uid(self, instrument_uid): """Sets the instrument_uid of this A2BMovementRecord. The unique Lusid Instrument Id (LUID) of the instrument that the holding is in. # noqa: E501 :param instrument_uid: The instrument_uid of this A2BMovementRecord. # noqa: E501 :type instrument_uid: str """ self._instrument_uid = instrument_uid @property def sub_holding_keys(self): """Gets the sub_holding_keys of this A2BMovementRecord. # noqa: E501 The sub-holding properties which identify the holding. Each property will be from the 'Transaction' domain. These are configured when a transaction portfolio is created. # noqa: E501 :return: The sub_holding_keys of this A2BMovementRecord. # noqa: E501 :rtype: dict[str, lusid_asyncio.PerpetualProperty] """ return self._sub_holding_keys @sub_holding_keys.setter def sub_holding_keys(self, sub_holding_keys): """Sets the sub_holding_keys of this A2BMovementRecord. The sub-holding properties which identify the holding. Each property will be from the 'Transaction' domain. These are configured when a transaction portfolio is created. # noqa: E501 :param sub_holding_keys: The sub_holding_keys of this A2BMovementRecord. # noqa: E501 :type sub_holding_keys: dict[str, lusid_asyncio.PerpetualProperty] """ self._sub_holding_keys = sub_holding_keys @property def currency(self): """Gets the currency of this A2BMovementRecord. # noqa: E501 The holding currency. # noqa: E501 :return: The currency of this A2BMovementRecord. # noqa: E501 :rtype: str """ return self._currency @currency.setter def currency(self, currency): """Sets the currency of this A2BMovementRecord. The holding currency. # noqa: E501 :param currency: The currency of this A2BMovementRecord. # noqa: E501 :type currency: str """ self._currency = currency @property def transaction_id(self): """Gets the transaction_id of this A2BMovementRecord. # noqa: E501 The unique identifier for the transaction. # noqa: E501 :return: The transaction_id of this A2BMovementRecord. # noqa: E501 :rtype: str """ return self._transaction_id @transaction_id.setter def transaction_id(self, transaction_id): """Sets the transaction_id of this A2BMovementRecord. The unique identifier for the transaction. # noqa: E501 :param transaction_id: The transaction_id of this A2BMovementRecord. # noqa: E501 :type transaction_id: str """ self._transaction_id = transaction_id @property def movement_name(self): """Gets the movement_name of this A2BMovementRecord. # noqa: E501 The name of the movement. # noqa: E501 :return: The movement_name of this A2BMovementRecord. # noqa: E501 :rtype: str """ return self._movement_name @movement_name.setter def movement_name(self, movement_name): """Sets the movement_name of this A2BMovementRecord. The name of the movement. # noqa: E501 :param movement_name: The movement_name of this A2BMovementRecord. # noqa: E501 :type movement_name: str """ self._movement_name = movement_name @property def effective_date(self): """Gets the effective_date of this A2BMovementRecord. # noqa: E501 The date of the movement. # noqa: E501 :return: The effective_date of this A2BMovementRecord. # noqa: E501 :rtype: datetime """ return self._effective_date @effective_date.setter def effective_date(self, effective_date): """Sets the effective_date of this A2BMovementRecord. The date of the movement. # noqa: E501 :param effective_date: The effective_date of this A2BMovementRecord. # noqa: E501 :type effective_date: datetime """ self._effective_date = effective_date @property def units(self): """Gets the units of this A2BMovementRecord. # noqa: E501 The number of units of the instrument that are affected by the movement. # noqa: E501 :return: The units of this A2BMovementRecord. # noqa: E501 :rtype: float """ return self._units @units.setter def units(self, units): """Sets the units of this A2BMovementRecord. The number of units of the instrument that are affected by the movement. # noqa: E501 :param units: The units of this A2BMovementRecord. # noqa: E501 :type units: float """ self._units = units @property def start(self): """Gets the start of this A2BMovementRecord. # noqa: E501 :return: The start of this A2BMovementRecord. # noqa: E501 :rtype: lusid_asyncio.A2BCategory """ return self._start @start.setter def start(self, start): """Sets the start of this A2BMovementRecord. :param start: The start of this A2BMovementRecord. # noqa: E501 :type start: lusid_asyncio.A2BCategory """ self._start = start @property def flows(self): """Gets the flows of this A2BMovementRecord. # noqa: E501 :return: The flows of this A2BMovementRecord. # noqa: E501 :rtype: lusid_asyncio.A2BCategory """ return self._flows @flows.setter def flows(self, flows): """Sets the flows of this A2BMovementRecord. :param flows: The flows of this A2BMovementRecord. # noqa: E501 :type flows: lusid_asyncio.A2BCategory """ self._flows = flows @property def gains(self): """Gets the gains of this A2BMovementRecord. # noqa: E501 :return: The gains of this A2BMovementRecord. # noqa: E501 :rtype: lusid_asyncio.A2BCategory """ return self._gains @gains.setter def gains(self, gains): """Sets the gains of this A2BMovementRecord. :param gains: The gains of this A2BMovementRecord. # noqa: E501 :type gains: lusid_asyncio.A2BCategory """ self._gains = gains @property def carry(self): """Gets the carry of this A2BMovementRecord. # noqa: E501 :return: The carry of this A2BMovementRecord. # noqa: E501 :rtype: lusid_asyncio.A2BCategory """ return self._carry @carry.setter def carry(self, carry): """Sets the carry of this A2BMovementRecord. :param carry: The carry of this A2BMovementRecord. # noqa: E501 :type carry: lusid_asyncio.A2BCategory """ self._carry = carry @property def end(self): """Gets the end of this A2BMovementRecord. # noqa: E501 :return: The end of this A2BMovementRecord. # noqa: E501 :rtype: lusid_asyncio.A2BCategory """ return self._end @end.setter def end(self, end): """Sets the end of this A2BMovementRecord. :param end: The end of this A2BMovementRecord. # noqa: E501 :type end: lusid_asyncio.A2BCategory """ self._end = end @property def properties(self): """Gets the properties of this A2BMovementRecord. # noqa: E501 The properties which have been requested to be decorated onto the holding. These will be from the 'Instrument' domain. # noqa: E501 :return: The properties of this A2BMovementRecord. # noqa: E501 :rtype: dict[str, lusid_asyncio.ModelProperty] """ return self._properties @properties.setter def properties(self, properties): """Sets the properties of this A2BMovementRecord. The properties which have been requested to be decorated onto the holding. These will be from the 'Instrument' domain. # noqa: E501 :param properties: The properties of this A2BMovementRecord. # noqa: E501 :type properties: dict[str, lusid_asyncio.ModelProperty] """ self._properties = properties @property def group_id(self): """Gets the group_id of this A2BMovementRecord. # noqa: E501 Arbitrary string that can be used to cross reference an entry in the A2B report with activity in the A2B-Movements. This should be used purely as a token. The content should not be relied upon. # noqa: E501 :return: The group_id of this A2BMovementRecord. # noqa: E501 :rtype: str """ return self._group_id @group_id.setter def group_id(self, group_id): """Sets the group_id of this A2BMovementRecord. Arbitrary string that can be used to cross reference an entry in the A2B report with activity in the A2B-Movements. This should be used purely as a token. The content should not be relied upon. # noqa: E501 :param group_id: The group_id of this A2BMovementRecord. # noqa: E501 :type group_id: str """ self._group_id = group_id def to_dict(self, serialize=False): """Returns the model properties as a dict""" result = {} def convert(x): if hasattr(x, "to_dict"): args = getfullargspec(x.to_dict).args if len(args) == 1: return x.to_dict() else: return x.to_dict(serialize) else: return x for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = self.attribute_map.get(attr, attr) if serialize else attr if isinstance(value, list): result[attr] = list(map( lambda x: convert(x), value )) elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], convert(item[1])), value.items() )) else: result[attr] = convert(value) return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, A2BMovementRecord): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, A2BMovementRecord): return True return self.to_dict() != other.to_dict()
33.199678
352
0.63113
2d0e3dd28e79053c76397d829edb8c4830f51983
4,249
py
Python
fabric_quick_setup/mod.py
max-niederman/fabric-quick-setup
40c959c6cd2295c679576680fab3cda2b15222f5
[ "MIT" ]
2
2020-06-03T04:38:22.000Z
2020-07-07T03:37:38.000Z
fabric_quick_setup/mod.py
max-niederman/fabric-quick-setup
40c959c6cd2295c679576680fab3cda2b15222f5
[ "MIT" ]
null
null
null
fabric_quick_setup/mod.py
max-niederman/fabric-quick-setup
40c959c6cd2295c679576680fab3cda2b15222f5
[ "MIT" ]
null
null
null
# Mod.py import requests import jenkinsapi from jenkinsapi.jenkins import Jenkins import json import re import lxml from bs4 import BeautifulSoup from pprint import pprint def download(url: str, out='', name=None): r = requests.get(url) filename = out + name if name else out + url.split('/')[-1] with open(filename, 'wb') as outfile: outfile.write(r.content) # Errors class InvalidModResourceError(Exception): pass class ModVersionNotFoundError(InvalidModResourceError): pass # Mod Class class Mod: def __init__(self, resource: dict): self.resource = resource def install(self, mc_dir: str, mc_version: str): if self.resource['type'] == 'github': # Get Latest Asset for Minecraft Version if 'release' in self.resource['filters']: release = requests.get(f'https://api.github.com/repos/{self.resource["repo"]}/releases/{self.resource["filters"]["release"]}').json() assets = release.assets else: # Get all release assets for repo releases = requests.get(f'https://api.github.com/repos/{self.resource["repo"]}/releases').json() assets = list() releases.reverse() for release in releases: assets += release['assets'] # Filter assets and get latest asset if 'mc-version' in self.resource['filters']: assets = [x for x in assets if mc_version in x['name']] if assets: asset = assets[0] else: raise ModVersionNotFoundError('No assets were found for this version of Minecraft') download(asset['browser_download_url'], out=f'{mc_dir}\mods\\') elif self.resource['type'] == 'fabric': # Snapshot to eventual release version fabric_versions = requests.get('https://meta.fabricmc.net/v2/versions/game').json() mc_versions = [v['version'] for v in fabric_versions] f = re.compile('\d.\d\d$') seen_version = False if f.match(mc_version): release_version = mc_version else: for version in mc_versions: if version == mc_version: seen_version = True if f.match(version) and seen_version: release_version = version[:-1] + str(int(version[-1]) + 1) break # Get Jenkins Artifact and Download jenkins = Jenkins('https://jenkins.modmuss50.me') job = jenkins.get_job(f'Fabric/API {release_version}') build = job.get_last_good_build() artifacts = build.get_artifact_dict() artifact = list(artifacts.values())[-1] artifact.save_to_dir(f'{mc_dir}\mods\\') elif self.resource['type'] == 'optifine': # Get optifine.net downloads page with requests.get('https://www.optifine.net/downloads') as r: downloads_page = BeautifulSoup(r.text, 'lxml') # Get list of mirrors and get mirror of latest release for Minecraft version mirrors = downloads_page.select('.downloadLineMirror') mirrors = [x for x in mirrors if mc_version in x.a['href']] if mirrors: mirror = mirrors[0] else: raise ModVersionNotFoundError('No releases were found for this version of Minecraft') # Get mirror page with requests.get(mirror.a['href']) as r: mirror_page = BeautifulSoup(r.text, 'lxml') # Get download link download_elem = mirror_page.find('span', {'id': 'Download'}) download(f'https://optifine.net/{download_elem.a["href"]}', out=f'{mc_dir}\mods\\', name=download_elem.get_text()[11:-1]) elif self.resource['url']: download(self.resource['url'], out=f'{mc_dir}\mods\\') else: raise InvalidModResourceError('No valid mod resource data was found')
40.466667
149
0.562721
bc7f5fd8611c570b4aac667431aa747cee3dbc52
46,205
py
Python
ibm_cloud_networking_services/zone_firewall_access_rules_v1.py
IBM/networking-services-python-sdk
a19e47db6a5971562a502982d69a5868997245f3
[ "Apache-2.0" ]
1
2022-03-15T02:13:25.000Z
2022-03-15T02:13:25.000Z
ibm_cloud_networking_services/zone_firewall_access_rules_v1.py
IBM/networking-services-python-sdk
a19e47db6a5971562a502982d69a5868997245f3
[ "Apache-2.0" ]
57
2020-06-24T06:58:01.000Z
2022-03-28T14:52:33.000Z
ibm_cloud_networking_services/zone_firewall_access_rules_v1.py
IBM/networking-services-python-sdk
a19e47db6a5971562a502982d69a5868997245f3
[ "Apache-2.0" ]
10
2020-06-23T04:09:28.000Z
2022-03-26T18:20:35.000Z
# coding: utf-8 # (C) Copyright IBM Corp. 2020. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Zone Firewall Access Rules """ from enum import Enum from typing import Dict, List import json from ibm_cloud_sdk_core import BaseService, DetailedResponse from ibm_cloud_sdk_core.authenticators.authenticator import Authenticator from ibm_cloud_sdk_core.get_authenticator import get_authenticator_from_environment from ibm_cloud_sdk_core.utils import convert_model from .common import get_sdk_headers ############################################################################## # Service ############################################################################## class ZoneFirewallAccessRulesV1(BaseService): """The Zone Firewall Access Rules V1 service.""" DEFAULT_SERVICE_URL = 'https://api.cis.cloud.ibm.com' DEFAULT_SERVICE_NAME = 'zone_firewall_access_rules' @classmethod def new_instance(cls, crn: str, zone_identifier: str, service_name: str = DEFAULT_SERVICE_NAME, ) -> 'ZoneFirewallAccessRulesV1': """ Return a new client for the Zone Firewall Access Rules service using the specified parameters and external configuration. :param str crn: Full crn of the service instance. :param str zone_identifier: Zone identifier (zone id). """ if crn is None: raise ValueError('crn must be provided') if zone_identifier is None: raise ValueError('zone_identifier must be provided') authenticator = get_authenticator_from_environment(service_name) service = cls( crn, zone_identifier, authenticator ) service.configure_service(service_name) return service def __init__(self, crn: str, zone_identifier: str, authenticator: Authenticator = None, ) -> None: """ Construct a new client for the Zone Firewall Access Rules service. :param str crn: Full crn of the service instance. :param str zone_identifier: Zone identifier (zone id). :param Authenticator authenticator: The authenticator specifies the authentication mechanism. Get up to date information from https://github.com/IBM/python-sdk-core/blob/master/README.md about initializing the authenticator of your choice. """ if crn is None: raise ValueError('crn must be provided') if zone_identifier is None: raise ValueError('zone_identifier must be provided') BaseService.__init__(self, service_url=self.DEFAULT_SERVICE_URL, authenticator=authenticator) self.crn = crn self.zone_identifier = zone_identifier ######################### # Zone Firewall Access Rules ######################### def list_all_zone_access_rules(self, *, notes: str = None, mode: str = None, configuration_target: str = None, configuration_value: str = None, page: int = None, per_page: int = None, order: str = None, direction: str = None, match: str = None, **kwargs ) -> DetailedResponse: """ List all firewall access rules. List all firewall access rules for a zone. :param str notes: (optional) Search access rules by note.(Not case sensitive). :param str mode: (optional) Search access rules by mode. :param str configuration_target: (optional) Search access rules by configuration target. :param str configuration_value: (optional) Search access rules by configuration value which can be IP, IPrange, or country code. :param int page: (optional) Page number of paginated results. :param int per_page: (optional) Maximum number of access rules per page. :param str order: (optional) Field by which to order list of access rules. :param str direction: (optional) Direction in which to order results [ascending/descending order]. :param str match: (optional) Whether to match all (all) or atleast one search parameter (any). :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ListZoneAccessRulesResp` object """ headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='list_all_zone_access_rules') headers.update(sdk_headers) params = { 'notes': notes, 'mode': mode, 'configuration.target': configuration_target, 'configuration.value': configuration_value, 'page': page, 'per_page': per_page, 'order': order, 'direction': direction, 'match': match } if 'headers' in kwargs: headers.update(kwargs.get('headers')) url = '/v1/{0}/zones/{1}/firewall/access_rules/rules'.format( *self.encode_path_vars(self.crn, self.zone_identifier)) request = self.prepare_request(method='GET', url=url, headers=headers, params=params) response = self.send(request) return response def create_zone_access_rule(self, *, mode: str = None, notes: str = None, configuration: 'ZoneAccessRuleInputConfiguration' = None, **kwargs ) -> DetailedResponse: """ Create firewall access rule. Create a new firewall access rule for a given zone under a service instance. :param str mode: (optional) The action to apply to a matched request. :param str notes: (optional) A personal note about the rule. Typically used as a reminder or explanation for the rule. :param ZoneAccessRuleInputConfiguration configuration: (optional) Configuration object specifying access rule. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ZoneAccessRuleResp` object """ if configuration is not None: configuration = convert_model(configuration) headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='create_zone_access_rule') headers.update(sdk_headers) data = { 'mode': mode, 'notes': notes, 'configuration': configuration } data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) url = '/v1/{0}/zones/{1}/firewall/access_rules/rules'.format( *self.encode_path_vars(self.crn, self.zone_identifier)) request = self.prepare_request(method='POST', url=url, headers=headers, data=data) response = self.send(request) return response def delete_zone_access_rule(self, accessrule_identifier: str, **kwargs ) -> DetailedResponse: """ Delete firewall access rule. Delete an access rule given its id. :param str accessrule_identifier: Identifier of the access rule to be deleted. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `DeleteZoneAccessRuleResp` object """ if accessrule_identifier is None: raise ValueError('accessrule_identifier must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='delete_zone_access_rule') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) url = '/v1/{0}/zones/{1}/firewall/access_rules/rules/{2}'.format( *self.encode_path_vars(self.crn, self.zone_identifier, accessrule_identifier)) request = self.prepare_request(method='DELETE', url=url, headers=headers) response = self.send(request) return response def get_zone_access_rule(self, accessrule_identifier: str, **kwargs ) -> DetailedResponse: """ Get firewall access rule. Get the details of a firewall access rule for a given zone under a given service instance. :param str accessrule_identifier: Identifier of firewall access rule for the given zone. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ZoneAccessRuleResp` object """ if accessrule_identifier is None: raise ValueError('accessrule_identifier must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='get_zone_access_rule') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) url = '/v1/{0}/zones/{1}/firewall/access_rules/rules/{2}'.format( *self.encode_path_vars(self.crn, self.zone_identifier, accessrule_identifier)) request = self.prepare_request(method='GET', url=url, headers=headers) response = self.send(request) return response def update_zone_access_rule(self, accessrule_identifier: str, *, mode: str = None, notes: str = None, **kwargs ) -> DetailedResponse: """ Update firewall access rule. Update an existing firewall access rule for a given zone under a given service instance. :param str accessrule_identifier: Identifier of firewall access rule. :param str mode: (optional) The action to apply to a matched request. :param str notes: (optional) A personal note about the rule. Typically used as a reminder or explanation for the rule. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `ZoneAccessRuleResp` object """ if accessrule_identifier is None: raise ValueError('accessrule_identifier must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='update_zone_access_rule') headers.update(sdk_headers) data = { 'mode': mode, 'notes': notes } data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) url = '/v1/{0}/zones/{1}/firewall/access_rules/rules/{2}'.format( *self.encode_path_vars(self.crn, self.zone_identifier, accessrule_identifier)) request = self.prepare_request(method='PATCH', url=url, headers=headers, data=data) response = self.send(request) return response class ListAllZoneAccessRulesEnums: """ Enums for list_all_zone_access_rules parameters. """ class Mode(str, Enum): """ Search access rules by mode. """ BLOCK = 'block' CHALLENGE = 'challenge' WHITELIST = 'whitelist' JS_CHALLENGE = 'js_challenge' class ConfigurationTarget(str, Enum): """ Search access rules by configuration target. """ IP = 'ip' IP_RANGE = 'ip_range' ASN = 'asn' COUNTRY = 'country' class Order(str, Enum): """ Field by which to order list of access rules. """ CONFIGURATION_TARGET = 'configuration.target' CONFIGURATION_VALUE = 'configuration.value' MODE = 'mode' class Direction(str, Enum): """ Direction in which to order results [ascending/descending order]. """ ASC = 'asc' DESC = 'desc' class Match(str, Enum): """ Whether to match all (all) or atleast one search parameter (any). """ ANY = 'any' ALL = 'all' ############################################################################## # Models ############################################################################## class DeleteZoneAccessRuleRespResult(): """ Container for response information. :attr str id: ID. """ def __init__(self, id: str) -> None: """ Initialize a DeleteZoneAccessRuleRespResult object. :param str id: ID. """ self.id = id @classmethod def from_dict(cls, _dict: Dict) -> 'DeleteZoneAccessRuleRespResult': """Initialize a DeleteZoneAccessRuleRespResult object from a json dictionary.""" args = {} if 'id' in _dict: args['id'] = _dict.get('id') else: raise ValueError('Required property \'id\' not present in DeleteZoneAccessRuleRespResult JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a DeleteZoneAccessRuleRespResult object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'id') and self.id is not None: _dict['id'] = self.id return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this DeleteZoneAccessRuleRespResult object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'DeleteZoneAccessRuleRespResult') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'DeleteZoneAccessRuleRespResult') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ListZoneAccessRulesRespResultInfo(): """ Statistics of results. :attr int page: Page number. :attr int per_page: Number of results per page. :attr int count: Number of results. :attr int total_count: Total number of results. """ def __init__(self, page: int, per_page: int, count: int, total_count: int) -> None: """ Initialize a ListZoneAccessRulesRespResultInfo object. :param int page: Page number. :param int per_page: Number of results per page. :param int count: Number of results. :param int total_count: Total number of results. """ self.page = page self.per_page = per_page self.count = count self.total_count = total_count @classmethod def from_dict(cls, _dict: Dict) -> 'ListZoneAccessRulesRespResultInfo': """Initialize a ListZoneAccessRulesRespResultInfo object from a json dictionary.""" args = {} if 'page' in _dict: args['page'] = _dict.get('page') else: raise ValueError('Required property \'page\' not present in ListZoneAccessRulesRespResultInfo JSON') if 'per_page' in _dict: args['per_page'] = _dict.get('per_page') else: raise ValueError('Required property \'per_page\' not present in ListZoneAccessRulesRespResultInfo JSON') if 'count' in _dict: args['count'] = _dict.get('count') else: raise ValueError('Required property \'count\' not present in ListZoneAccessRulesRespResultInfo JSON') if 'total_count' in _dict: args['total_count'] = _dict.get('total_count') else: raise ValueError('Required property \'total_count\' not present in ListZoneAccessRulesRespResultInfo JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ListZoneAccessRulesRespResultInfo object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'page') and self.page is not None: _dict['page'] = self.page if hasattr(self, 'per_page') and self.per_page is not None: _dict['per_page'] = self.per_page if hasattr(self, 'count') and self.count is not None: _dict['count'] = self.count if hasattr(self, 'total_count') and self.total_count is not None: _dict['total_count'] = self.total_count return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ListZoneAccessRulesRespResultInfo object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ListZoneAccessRulesRespResultInfo') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ListZoneAccessRulesRespResultInfo') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ZoneAccessRuleInputConfiguration(): """ Configuration object specifying access rule. :attr str target: The request property to target. :attr str value: The value for the selected target.For ip the value is a valid ip address.For ip_range the value specifies ip range limited to /16 and /24. For asn the value is an AS number. For country the value is a country code for the country. """ def __init__(self, target: str, value: str) -> None: """ Initialize a ZoneAccessRuleInputConfiguration object. :param str target: The request property to target. :param str value: The value for the selected target.For ip the value is a valid ip address.For ip_range the value specifies ip range limited to /16 and /24. For asn the value is an AS number. For country the value is a country code for the country. """ self.target = target self.value = value @classmethod def from_dict(cls, _dict: Dict) -> 'ZoneAccessRuleInputConfiguration': """Initialize a ZoneAccessRuleInputConfiguration object from a json dictionary.""" args = {} if 'target' in _dict: args['target'] = _dict.get('target') else: raise ValueError('Required property \'target\' not present in ZoneAccessRuleInputConfiguration JSON') if 'value' in _dict: args['value'] = _dict.get('value') else: raise ValueError('Required property \'value\' not present in ZoneAccessRuleInputConfiguration JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ZoneAccessRuleInputConfiguration object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'target') and self.target is not None: _dict['target'] = self.target if hasattr(self, 'value') and self.value is not None: _dict['value'] = self.value return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ZoneAccessRuleInputConfiguration object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ZoneAccessRuleInputConfiguration') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ZoneAccessRuleInputConfiguration') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class TargetEnum(str, Enum): """ The request property to target. """ IP = 'ip' IP_RANGE = 'ip_range' ASN = 'asn' COUNTRY = 'country' class ZoneAccessRuleObjectConfiguration(): """ configuration. :attr str target: target. :attr str value: Value for the given target. For ip the value is a valid ip address.For ip_range the value specifies ip range limited to /16 and /24. For asn the value is an AS number. For country the value is a country code for the country. """ def __init__(self, target: str, value: str) -> None: """ Initialize a ZoneAccessRuleObjectConfiguration object. :param str target: target. :param str value: Value for the given target. For ip the value is a valid ip address.For ip_range the value specifies ip range limited to /16 and /24. For asn the value is an AS number. For country the value is a country code for the country. """ self.target = target self.value = value @classmethod def from_dict(cls, _dict: Dict) -> 'ZoneAccessRuleObjectConfiguration': """Initialize a ZoneAccessRuleObjectConfiguration object from a json dictionary.""" args = {} if 'target' in _dict: args['target'] = _dict.get('target') else: raise ValueError('Required property \'target\' not present in ZoneAccessRuleObjectConfiguration JSON') if 'value' in _dict: args['value'] = _dict.get('value') else: raise ValueError('Required property \'value\' not present in ZoneAccessRuleObjectConfiguration JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ZoneAccessRuleObjectConfiguration object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'target') and self.target is not None: _dict['target'] = self.target if hasattr(self, 'value') and self.value is not None: _dict['value'] = self.value return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ZoneAccessRuleObjectConfiguration object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ZoneAccessRuleObjectConfiguration') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ZoneAccessRuleObjectConfiguration') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class TargetEnum(str, Enum): """ target. """ IP = 'ip' IP_RANGE = 'ip_range' ASN = 'asn' COUNTRY = 'country' class ZoneAccessRuleObjectScope(): """ The scope definition of the access rule. :attr str type: The scope of the access rule, indicating if its applicable at zone level("zone") or inherited from instance level("account"). """ def __init__(self, type: str) -> None: """ Initialize a ZoneAccessRuleObjectScope object. :param str type: The scope of the access rule, indicating if its applicable at zone level("zone") or inherited from instance level("account"). """ self.type = type @classmethod def from_dict(cls, _dict: Dict) -> 'ZoneAccessRuleObjectScope': """Initialize a ZoneAccessRuleObjectScope object from a json dictionary.""" args = {} if 'type' in _dict: args['type'] = _dict.get('type') else: raise ValueError('Required property \'type\' not present in ZoneAccessRuleObjectScope JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ZoneAccessRuleObjectScope object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'type') and self.type is not None: _dict['type'] = self.type return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ZoneAccessRuleObjectScope object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ZoneAccessRuleObjectScope') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ZoneAccessRuleObjectScope') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class TypeEnum(str, Enum): """ The scope of the access rule, indicating if its applicable at zone level("zone") or inherited from instance level("account"). """ ACCOUNT = 'account' ZONE = 'zone' class DeleteZoneAccessRuleResp(): """ delete access rule response. :attr bool success: Operation success flag. :attr List[List[str]] errors: Array of errors encountered. :attr List[List[str]] messages: Array of messages returned. :attr DeleteZoneAccessRuleRespResult result: Container for response information. """ def __init__(self, success: bool, errors: List[List[str]], messages: List[List[str]], result: 'DeleteZoneAccessRuleRespResult') -> None: """ Initialize a DeleteZoneAccessRuleResp object. :param bool success: Operation success flag. :param List[List[str]] errors: Array of errors encountered. :param List[List[str]] messages: Array of messages returned. :param DeleteZoneAccessRuleRespResult result: Container for response information. """ self.success = success self.errors = errors self.messages = messages self.result = result @classmethod def from_dict(cls, _dict: Dict) -> 'DeleteZoneAccessRuleResp': """Initialize a DeleteZoneAccessRuleResp object from a json dictionary.""" args = {} if 'success' in _dict: args['success'] = _dict.get('success') else: raise ValueError('Required property \'success\' not present in DeleteZoneAccessRuleResp JSON') if 'errors' in _dict: args['errors'] = _dict.get('errors') else: raise ValueError('Required property \'errors\' not present in DeleteZoneAccessRuleResp JSON') if 'messages' in _dict: args['messages'] = _dict.get('messages') else: raise ValueError('Required property \'messages\' not present in DeleteZoneAccessRuleResp JSON') if 'result' in _dict: args['result'] = DeleteZoneAccessRuleRespResult.from_dict(_dict.get('result')) else: raise ValueError('Required property \'result\' not present in DeleteZoneAccessRuleResp JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a DeleteZoneAccessRuleResp object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'success') and self.success is not None: _dict['success'] = self.success if hasattr(self, 'errors') and self.errors is not None: _dict['errors'] = self.errors if hasattr(self, 'messages') and self.messages is not None: _dict['messages'] = self.messages if hasattr(self, 'result') and self.result is not None: _dict['result'] = self.result.to_dict() return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this DeleteZoneAccessRuleResp object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'DeleteZoneAccessRuleResp') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'DeleteZoneAccessRuleResp') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ListZoneAccessRulesResp(): """ list access rules response. :attr bool success: Operation success flag. :attr List[List[str]] errors: Array of errors encountered. :attr List[List[str]] messages: Array of messages returned. :attr List[ZoneAccessRuleObject] result: Container for response information. :attr ListZoneAccessRulesRespResultInfo result_info: Statistics of results. """ def __init__(self, success: bool, errors: List[List[str]], messages: List[List[str]], result: List['ZoneAccessRuleObject'], result_info: 'ListZoneAccessRulesRespResultInfo') -> None: """ Initialize a ListZoneAccessRulesResp object. :param bool success: Operation success flag. :param List[List[str]] errors: Array of errors encountered. :param List[List[str]] messages: Array of messages returned. :param List[ZoneAccessRuleObject] result: Container for response information. :param ListZoneAccessRulesRespResultInfo result_info: Statistics of results. """ self.success = success self.errors = errors self.messages = messages self.result = result self.result_info = result_info @classmethod def from_dict(cls, _dict: Dict) -> 'ListZoneAccessRulesResp': """Initialize a ListZoneAccessRulesResp object from a json dictionary.""" args = {} if 'success' in _dict: args['success'] = _dict.get('success') else: raise ValueError('Required property \'success\' not present in ListZoneAccessRulesResp JSON') if 'errors' in _dict: args['errors'] = _dict.get('errors') else: raise ValueError('Required property \'errors\' not present in ListZoneAccessRulesResp JSON') if 'messages' in _dict: args['messages'] = _dict.get('messages') else: raise ValueError('Required property \'messages\' not present in ListZoneAccessRulesResp JSON') if 'result' in _dict: args['result'] = [ZoneAccessRuleObject.from_dict(x) for x in _dict.get('result')] else: raise ValueError('Required property \'result\' not present in ListZoneAccessRulesResp JSON') if 'result_info' in _dict: args['result_info'] = ListZoneAccessRulesRespResultInfo.from_dict(_dict.get('result_info')) else: raise ValueError('Required property \'result_info\' not present in ListZoneAccessRulesResp JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ListZoneAccessRulesResp object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'success') and self.success is not None: _dict['success'] = self.success if hasattr(self, 'errors') and self.errors is not None: _dict['errors'] = self.errors if hasattr(self, 'messages') and self.messages is not None: _dict['messages'] = self.messages if hasattr(self, 'result') and self.result is not None: _dict['result'] = [x.to_dict() for x in self.result] if hasattr(self, 'result_info') and self.result_info is not None: _dict['result_info'] = self.result_info.to_dict() return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ListZoneAccessRulesResp object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ListZoneAccessRulesResp') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ListZoneAccessRulesResp') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ZoneAccessRuleObject(): """ access rule object. :attr str id: Identifier of the firewall access rule. :attr str notes: A personal note about the rule. Typically used as a reminder or explanation for the rule. :attr List[str] allowed_modes: List of modes that are allowed. :attr str mode: The action to be applied to a request matching the access rule. :attr ZoneAccessRuleObjectScope scope: (optional) The scope definition of the access rule. :attr str created_on: The creation date-time of the firewall access rule. :attr str modified_on: The modification date-time of the firewall access rule. :attr ZoneAccessRuleObjectConfiguration configuration: configuration. """ def __init__(self, id: str, notes: str, allowed_modes: List[str], mode: str, created_on: str, modified_on: str, configuration: 'ZoneAccessRuleObjectConfiguration', *, scope: 'ZoneAccessRuleObjectScope' = None) -> None: """ Initialize a ZoneAccessRuleObject object. :param str id: Identifier of the firewall access rule. :param str notes: A personal note about the rule. Typically used as a reminder or explanation for the rule. :param List[str] allowed_modes: List of modes that are allowed. :param str mode: The action to be applied to a request matching the access rule. :param str created_on: The creation date-time of the firewall access rule. :param str modified_on: The modification date-time of the firewall access rule. :param ZoneAccessRuleObjectConfiguration configuration: configuration. :param ZoneAccessRuleObjectScope scope: (optional) The scope definition of the access rule. """ self.id = id self.notes = notes self.allowed_modes = allowed_modes self.mode = mode self.scope = scope self.created_on = created_on self.modified_on = modified_on self.configuration = configuration @classmethod def from_dict(cls, _dict: Dict) -> 'ZoneAccessRuleObject': """Initialize a ZoneAccessRuleObject object from a json dictionary.""" args = {} if 'id' in _dict: args['id'] = _dict.get('id') else: raise ValueError('Required property \'id\' not present in ZoneAccessRuleObject JSON') if 'notes' in _dict: args['notes'] = _dict.get('notes') else: raise ValueError('Required property \'notes\' not present in ZoneAccessRuleObject JSON') if 'allowed_modes' in _dict: args['allowed_modes'] = _dict.get('allowed_modes') else: raise ValueError('Required property \'allowed_modes\' not present in ZoneAccessRuleObject JSON') if 'mode' in _dict: args['mode'] = _dict.get('mode') else: raise ValueError('Required property \'mode\' not present in ZoneAccessRuleObject JSON') if 'scope' in _dict: args['scope'] = ZoneAccessRuleObjectScope.from_dict(_dict.get('scope')) if 'created_on' in _dict: args['created_on'] = _dict.get('created_on') else: raise ValueError('Required property \'created_on\' not present in ZoneAccessRuleObject JSON') if 'modified_on' in _dict: args['modified_on'] = _dict.get('modified_on') else: raise ValueError('Required property \'modified_on\' not present in ZoneAccessRuleObject JSON') if 'configuration' in _dict: args['configuration'] = ZoneAccessRuleObjectConfiguration.from_dict(_dict.get('configuration')) else: raise ValueError('Required property \'configuration\' not present in ZoneAccessRuleObject JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ZoneAccessRuleObject object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'id') and self.id is not None: _dict['id'] = self.id if hasattr(self, 'notes') and self.notes is not None: _dict['notes'] = self.notes if hasattr(self, 'allowed_modes') and self.allowed_modes is not None: _dict['allowed_modes'] = self.allowed_modes if hasattr(self, 'mode') and self.mode is not None: _dict['mode'] = self.mode if hasattr(self, 'scope') and self.scope is not None: _dict['scope'] = self.scope.to_dict() if hasattr(self, 'created_on') and self.created_on is not None: _dict['created_on'] = self.created_on if hasattr(self, 'modified_on') and self.modified_on is not None: _dict['modified_on'] = self.modified_on if hasattr(self, 'configuration') and self.configuration is not None: _dict['configuration'] = self.configuration.to_dict() return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ZoneAccessRuleObject object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ZoneAccessRuleObject') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ZoneAccessRuleObject') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class AllowedModesEnum(str, Enum): """ allowed_modes. """ BLOCK = 'block' CHALLENGE = 'challenge' WHITELIST = 'whitelist' JS_CHALLENGE = 'js_challenge' class ModeEnum(str, Enum): """ The action to be applied to a request matching the access rule. """ BLOCK = 'block' CHALLENGE = 'challenge' WHITELIST = 'whitelist' JS_CHALLENGE = 'js_challenge' class ZoneAccessRuleResp(): """ access rule response. :attr bool success: Operation success flag. :attr List[List[str]] errors: Array of errors encountered. :attr List[List[str]] messages: Array of messages returned. :attr ZoneAccessRuleObject result: access rule object. """ def __init__(self, success: bool, errors: List[List[str]], messages: List[List[str]], result: 'ZoneAccessRuleObject') -> None: """ Initialize a ZoneAccessRuleResp object. :param bool success: Operation success flag. :param List[List[str]] errors: Array of errors encountered. :param List[List[str]] messages: Array of messages returned. :param ZoneAccessRuleObject result: access rule object. """ self.success = success self.errors = errors self.messages = messages self.result = result @classmethod def from_dict(cls, _dict: Dict) -> 'ZoneAccessRuleResp': """Initialize a ZoneAccessRuleResp object from a json dictionary.""" args = {} if 'success' in _dict: args['success'] = _dict.get('success') else: raise ValueError('Required property \'success\' not present in ZoneAccessRuleResp JSON') if 'errors' in _dict: args['errors'] = _dict.get('errors') else: raise ValueError('Required property \'errors\' not present in ZoneAccessRuleResp JSON') if 'messages' in _dict: args['messages'] = _dict.get('messages') else: raise ValueError('Required property \'messages\' not present in ZoneAccessRuleResp JSON') if 'result' in _dict: args['result'] = ZoneAccessRuleObject.from_dict(_dict.get('result')) else: raise ValueError('Required property \'result\' not present in ZoneAccessRuleResp JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ZoneAccessRuleResp object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'success') and self.success is not None: _dict['success'] = self.success if hasattr(self, 'errors') and self.errors is not None: _dict['errors'] = self.errors if hasattr(self, 'messages') and self.messages is not None: _dict['messages'] = self.messages if hasattr(self, 'result') and self.result is not None: _dict['result'] = self.result.to_dict() return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ZoneAccessRuleResp object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ZoneAccessRuleResp') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ZoneAccessRuleResp') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other
38.730092
119
0.608635
208dba7149d0bd3aeab96a0ae4db722a837a3917
127
py
Python
01-python/source code/01/07.py
lizhangjie316/ComputerVision
86d82358bd160074d154773df0284e1154a6d077
[ "Apache-2.0" ]
1
2019-11-05T08:38:03.000Z
2019-11-05T08:38:03.000Z
01-python/source code/01/07.py
lizhangjie316/ComputerVision
86d82358bd160074d154773df0284e1154a6d077
[ "Apache-2.0" ]
6
2020-11-18T22:13:33.000Z
2022-03-12T00:04:02.000Z
01-python/source code/01/07.py
lizhangjie316/ComputerVision
86d82358bd160074d154773df0284e1154a6d077
[ "Apache-2.0" ]
null
null
null
a = [1,2,3,4,5] multi_dia_a = [[1,2,3], [2,3,4], [3,4,5]] print(a[2]) print(multi_dia_a[2][2])
14.111111
24
0.401575
03031a457ff622eaf8a03d92492a20933fee85da
10,705
py
Python
tests/contrib/utils/base_gcp_system_test_case.py
Nipica/airflow
211a71f8a6b9d808bd03af84bd77bf8ff0ef247f
[ "Apache-2.0" ]
null
null
null
tests/contrib/utils/base_gcp_system_test_case.py
Nipica/airflow
211a71f8a6b9d808bd03af84bd77bf8ff0ef247f
[ "Apache-2.0" ]
1
2019-01-14T17:12:47.000Z
2019-01-14T17:12:47.000Z
tests/contrib/utils/base_gcp_system_test_case.py
shubhamod/airflow
04f4622656656d4c55b69d460bbd2ed1379810c4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import subprocess import unittest from glob import glob from shutil import move from tempfile import mkdtemp from airflow.utils import db as db_utils from airflow import models, settings, AirflowException, LoggingMixin from airflow.utils.timezone import datetime from tests.contrib.utils.gcp_authenticator import GcpAuthenticator from tests.contrib.utils.run_once_decorator import run_once AIRFLOW_MAIN_FOLDER = os.path.realpath(os.path.join( os.path.dirname(os.path.realpath(__file__)), os.pardir, os.pardir, os.pardir)) AIRFLOW_PARENT_FOLDER = os.path.realpath(os.path.join(AIRFLOW_MAIN_FOLDER, os.pardir, os.pardir, os.pardir)) ENV_FILE_RETRIEVER = os.path.join(AIRFLOW_PARENT_FOLDER, "get_system_test_environment_variables.py") # Retrieve environment variables from parent directory retriever - it should be # in the path ${AIRFLOW_SOOURCE_DIR}/../../get_system_test_environment_variables.py # and it should print all the variables in form of key=value to the stdout class RetrieveVariables: @staticmethod @run_once def retrieve_variables(): if os.path.isfile(ENV_FILE_RETRIEVER): if os.environ.get('AIRFLOW__CORE__UNIT_TEST_MODE'): raise Exception("Please unset the AIRFLOW__CORE__UNIT_TEST_MODE") variables = subprocess.check_output([ENV_FILE_RETRIEVER]).decode("utf-8") print("Applying variables retrieved") for line in variables.split("\n"): try: variable, key = line.split("=") except ValueError: continue print("{}={}".format(variable, key)) os.environ[variable] = key RetrieveVariables.retrieve_variables() DEFAULT_DATE = datetime(2015, 1, 1) CONTRIB_OPERATORS_EXAMPLES_DAG_FOLDER = os.path.join( AIRFLOW_MAIN_FOLDER, "airflow", "contrib", "example_dags") OPERATORS_EXAMPLES_DAG_FOLDER = os.path.join( AIRFLOW_MAIN_FOLDER, "airflow", "example_dags") AIRFLOW_HOME = os.environ.get('AIRFLOW_HOME', os.path.join(os.path.expanduser('~'), 'airflow')) DAG_FOLDER = os.path.join(AIRFLOW_HOME, "dags") SKIP_TEST_WARNING = """ The test is only run when the test is run in with GCP-system-tests enabled environment. You can enable it in one of two ways: * Set GCP_CONFIG_DIR environment variable to point to the GCP configuration directory which keeps variables.env file with environment variables to set and keys directory which keeps service account keys in .json format * Run this test within automated environment variable workspace where config directory is checked out next to the airflow one. """.format(__file__) class BaseGcpSystemTestCase(unittest.TestCase, LoggingMixin): def __init__(self, method_name, gcp_key, project_extra=None): super(BaseGcpSystemTestCase, self).__init__(methodName=method_name) self.gcp_authenticator = GcpAuthenticator(gcp_key=gcp_key, project_extra=project_extra) self.setup_called = False @staticmethod def skip_check(key_name): return GcpAuthenticator(key_name).full_key_path is None def setUp(self): self.gcp_authenticator.gcp_store_authentication() self.gcp_authenticator.gcp_authenticate() # We checked that authentication works. Ne we revoke it to make # sure we are not relying on the default authentication self.gcp_authenticator.gcp_revoke_authentication() self.setup_called = True # noinspection PyPep8Naming def tearDown(self): self.gcp_authenticator.gcp_restore_authentication() class DagGcpSystemTestCase(BaseGcpSystemTestCase): def __init__(self, method_name, dag_id, gcp_key, dag_name=None, require_local_executor=False, example_dags_folder=CONTRIB_OPERATORS_EXAMPLES_DAG_FOLDER, project_extra=None): super(DagGcpSystemTestCase, self).__init__(method_name=method_name, gcp_key=gcp_key, project_extra=project_extra) self.dag_id = dag_id self.dag_name = self.dag_id + '.py' if not dag_name else dag_name self.example_dags_folder = example_dags_folder self.require_local_executor = require_local_executor self.temp_dir = None @staticmethod def _get_dag_folder(): return DAG_FOLDER @staticmethod def _get_files_to_link(path): """ Returns all file names (note - file names not paths) that have the same base name as the .py dag file (for example dag_name.sql etc.) :param path: path to the dag file. :return: list of files matching the base name """ prefix, ext = os.path.splitext(path) assert ext == '.py', "Dag name should be a .py file and is {} file".format(ext) files_to_link = [] for file in glob(prefix + ".*"): files_to_link.append(os.path.basename(file)) return files_to_link def _symlink_dag_and_associated_files(self, remove=False): target_folder = self._get_dag_folder() source_path = os.path.join(self.example_dags_folder, self.dag_name) for file_name in self._get_files_to_link(source_path): source_path = os.path.join(self.example_dags_folder, file_name) target_path = os.path.join(target_folder, file_name) if remove: try: self.log.info("Remove symlink: {} -> {} ".format( target_path, source_path)) os.remove(target_path) except OSError: pass else: if not os.path.exists(target_path): self.log.info("Symlink: {} -> {} ".format(target_path, source_path)) os.symlink(source_path, target_path) else: self.log.info("Symlink {} already exists. Not symlinking it.". format(target_path)) def _store_dags_to_temporary_directory(self): dag_folder = self._get_dag_folder() self.temp_dir = mkdtemp() self.log.info("Storing DAGS from {} to temporary directory {}". format(dag_folder, self.temp_dir)) try: os.mkdir(dag_folder) except OSError: pass for file in os.listdir(dag_folder): move(os.path.join(dag_folder, file), os.path.join(self.temp_dir, file)) def _restore_dags_from_temporary_directory(self): dag_folder = self._get_dag_folder() self.log.info("Restoring DAGS to {} from temporary directory {}" .format(dag_folder, self.temp_dir)) for file in os.listdir(self.temp_dir): move(os.path.join(self.temp_dir, file), os.path.join(dag_folder, file)) def _run_dag(self): self.log.info("Attempting to run DAG: {}".format(self.dag_id)) if not self.setup_called: raise AirflowException("Please make sure to call super.setUp() in your " "test class!") dag_folder = self._get_dag_folder() dag_bag = models.DagBag(dag_folder=dag_folder, include_examples=False) self.args = {'owner': 'airflow', 'start_date': DEFAULT_DATE} dag = dag_bag.get_dag(self.dag_id) if dag is None: raise AirflowException( "The Dag {} could not be found. It's either an import problem or " "the dag {} was not symlinked to the DAGs folder. " "The content of the {} folder is {}". format(self.dag_id, self.dag_id + ".py", dag_folder, os.listdir(dag_folder))) dag.clear(reset_dag_runs=True) dag.run(ignore_first_depends_on_past=True, verbose=True) @staticmethod def _check_local_executor_setup(): postgres_path = os.path.realpath(os.path.join( AIRFLOW_MAIN_FOLDER, "tests", "contrib", "operators", "postgres_local_executor.cfg")) if postgres_path != os.environ.get('AIRFLOW_CONFIG'): raise AirflowException( """ Please set AIRFLOW_CONFIG variable to '{}' and make sure you have a Postgres server running locally and airflow/airflow.db database created. You can create the database via these commands: 'createuser root' 'createdb airflow/airflow.db` """.format(postgres_path)) # noinspection PyPep8Naming def setUp(self): if self.require_local_executor: self._check_local_executor_setup() try: # We want to avoid random errors while database got reset - those # Are apparently triggered by parser trying to parse DAGs while # The tables are dropped. We move the dags temporarily out of the dags folder # and move them back after reset self._store_dags_to_temporary_directory() try: db_utils.resetdb(settings.RBAC) finally: self._restore_dags_from_temporary_directory() self._symlink_dag_and_associated_files() super(DagGcpSystemTestCase, self).setUp() except Exception as e: # In case of any error during setup - restore the authentication self.gcp_authenticator.gcp_restore_authentication() raise e def tearDown(self): self._symlink_dag_and_associated_files(remove=True) super(DagGcpSystemTestCase, self).tearDown()
41.173077
89
0.645026